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1. Introduction

1.1. Historical remarks on the problem of stability of our Solar system

The question of the stability of the N-body problem dates back to the 18th century (see the historical
comments of Moser (1973), the introduction of Abraham & Marsden (1978) and Lichtenberg &
Lieberman (1992, Section 1.1)). The first scientific investigations can be traced back to Laplace
(1798-1825), Lagrange (1788), Poisson (1808, 1809) and Dirichlet (1805-1858), who al together
analyzed the problem by means of series expansions. Although they al claimed, that the Solar system
is stable on short time scales, the important question of the long-time stability could not be answered
by these early perturbative techniques.

The work of Hamilton and Liouville in the mid 19" century, stimulated the development of the
Hamiltonian formalism. The canonical approach lies at the foundation of most of our modern treatment
of classical mechanics, but it also opens the door to the modern formulations of quantum physics and
general relativity. The "modern” version of the stability problem was first formulated by the letters of
Weierstrass (published in Act. Math.. 35, 1911, pp.29-65). In his notes, he claimed to possess formal
series expansions (in aletter to S. Kovalevski) but was unable to show the convergence of these series,
containing very large numbers produced by the small denominators in the series terms. Since he hoped
to overcome this difficulty (Dirichlet made a similar remark to Kronecker in 1858, that he aso found
such solutions; but he died before writing his proof) he suggested the problem to Mittag-L effler as a
prize question sponsored by King Oscar, the Swedish king. Bruns (1887) stated that no other tool than
series expansions could resolve the problem. The prize was awarded to H. Poincaré (1890), who
actually did not solve the problem, but suggested, that the series expansions of former colleagues
diverge. To this end the preliminary results of Haretu (1878) and Poincaré (1892) where justified in the
work of Poincaré (1893), where he proved that the three body problem does not possess any integrals
aside the ten known ones. This would imply the non-existence of quasi-periodic solutions in the
system, which was in contradiction to Welerstrass expectations, based on his formal series expansions.
Since the simplest model of our Solar system is the three-body problem, which is indeed aso
connected to the interest in understanding the general features of dynamical systems, the question of
the stability of our own Solar system seemed to be answered: the problem, which was pointed out by
Poincaré, was, that even a simple stable system, like the two-body problem, could be destabilized by a
small influence of an additional third disturbing body. He and Von Zeipel (1916) devised the
perturbative methods to treat integrable and therefore stable systems, and showed the behavior of these
systems on short-time scales. With their work they introduced for the first time the geometric concepts
into analytical mechanics (which was in contrast to the approaches of Laplace and Lagrange).



Nowadays, this period could be regarded as the starting point for a modern topological treatment of
symplectic manifolds.

The secular perturbation theory, accounting for resonant interactions between more than one degrees of
freedom, was formalized in the early days of quantum mechanics (Born 1927). Since the general theory

of relativity (Einstein, 1917) and the theory of quantum mechanics (beginning of 20" century) were at
the center of the concerns of physicist at that time, the question of the stability of the Solar system was
somewhat |eft to the margin. Nevertheless Birkhoff (1927) proved Poincar€'s conjecture, that an even
number of stable and unstable fixed points must exist in generic nonlinear systems, in which there is a
rational frequency ratio between two degrees of freedom. The higher order resonances change the
topology of the phase space, leading to the formation of island chains on an increasingly finer and finer
scale. Although the work of Poincaré and Birkhoff indicated the exceeding complexity of the phase
space, Siegel (1942) showed, via Diophantine conditions, the possibility that the formal series,
describing quasiperiodic solutions may converge. At the international Mathematical Congress of 1954
(Amsterdam) Kolmogorov announced his theorem proving that indeed quasiperiodic solutions exist in
Hamiltonian dynamical systems, which are confined on invariant tori of the phases space. The detailed
proof of Kolmogorov’s theorem, under different restrictions, was given by Arnold (1963) and by
Moser (1962) in the case of symplectic mappings. The Kolmogorov-Arnold-Moser theorem (KAM)
states, that alarge measure of invariant tori survive under the perturbation of an integrable Hamiltonian
system. With the KAM theorem, the question of the stability of the Solar system opened again, and it
was shown that the motion in the phase space is not necessarily ergodic, although the motion near the
separatrix of each resonance is chaotic. For weakly perturbed systems the KAM tori penetrate the
chaotic domains and the variations of the actionswithin any separatrix layer are exponentialy small.

The first results on the exponentially stability in weakly perturbed systems can be traced back to Moser
(1955) and Littlewood (1959ab) and they are at the core of the so called Nekhoroshev stability
estimates. A short historical treatment on this topic is aso made Section 1.2.. These results rely on
analytical theories based on formal integrals of motion, which date back to Whittaker (1916, 1937),
Cherry (1924) and Birkhoff (1927). Although the series giving the third integral are in genera
divergent (Siegel 1956) it was shown (Contopoulos 1960, 1963, Gustavson 1966) that the truncated
third integral series is a better conserved quantity, when going to higher orders. In fact, with the
application of the third integral to galactic dynamics Contopoulos (1960) showed, that the dynamical
systems are neither completely integrable nor ergodic, which was in contradiction with the prevailing
opinion of that time. As a basic model for illustrating the transitions from regular to stochastic motion
(which was later replaced by the term chaotic motion) Hénon-Heiles (1964) introduced a simplified
nonlinear Hamiltonian system simulating the behavior of the orbits in the central parts of the Galaxy.
With the aid of computer experiments, numerical and analytical theories evolved in the upcoming years
to determine the critical value of the perturbation at which the transition from order to alarge degree of
chaos. Inspired by the old question of the stability of the Solar system, Chaos theory evolved and gave



new insights into different fields of modern physics. Contopoulos (1966), Rosenbluth (1966) and
Chirikov (1969) gave an understanding of the transition between chaotic and regular motion as a result
of resonance overlapping in phase space. The question of ergodicity of ssimple dynamical systems, like
the Sinai billiard (Sinai 1963) could be established but only for idealized cases. Arnold (1963) showed
that for systems with more than two degrees of freedom the chaotic layers are interconnected to form a
web of resonances that is dense in the phase space. For initial conditions on this web, chaotic motion is
driven along the layers leading to globa diffusion not constrained by the KAM curves. This
mechanism, nowadays caled Arnold diffusion exists down to the limit of infinitesimal perturbations
from integrable systems and can be fast enough to bring a system into an unstable state. The lack of
integrals of motion in higher dimensional systems, on the one hand, and the possibility of chaotic
motion, on the other hand, challenged again the problem of the stability of N-body systems. The
ultimate question of the stability of the Solar system remainstoday still partly unanswered.

1.2. KAM theorem and the concept of exponential stability

Moser (1955) and Littlewood (1959a,b) examined the question of the stability of motions around
elliptic equilibria. The model of interest was the Lagrange configuration in Celestial mechanics. This
model served as the basis for many other exponential stability estimates from that date on and will also
be the application of interest in this thesis. After an initial boost, the subject of exponential stability
was overshadowed in the 60°s and 70s by the investigation of KAM stability: the persistence of
invariant tori in generic Hamiltonian systems, found by Kolmogorov (1954), Moser (1962, 1967) and
Arnold (1963ab), interrupted former research on exponentia stability, which was revived by
Nekhoroshev (1971, 1977, 1979). The mathematical rigour of his analysis on the one hand and the
generality of the results to arbitrary Hamiltonian systems on the other hand, are main reasons, why a
compendium of results on exponential stability in the literature have been collectively called the
"Nekhoroshev stability theorem".

Consider a Hamiltonian system in action-angle variable form:

H=H(J, ¢) = Ho(J) + € H1(J, ¢), (1)
where J = (Jq, ..., Jg) are the action and ¢ = (¢4, ..., ¢q) are the angle variables in d degrees of
freedom. The parameter € will be considered small. For € =0, the motions are confined on d-

dimensional tori. Nekhoroshev (1977) stated a stability theorem for Hamiltonian of the form (1). The
theorem referred to the definition of the stability time T (e) such that:
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where J(0) = (J1(0), ..., Jg(0)) are the initial conditions of an orbit in the action space and a(e) is a

small quantity. The question is, to determine an optimal results for the form of the functions T(e) and



a(e) in the case, when € is small. The J in the unperturbed system are first integrals of motion. The
question of stability is linked to the determination of the rate of change of J along the solutions of the
perturbed system. After atime T = 1/¢, the values of the action variables in generic systems of the
form (1) differ only dlightly (O(e)) from the initial values J(0). However, beyond thetime T = 1/€ the
following questions are posed:

i) Are there perpetually stable solutions, meaning that | J(t) — J(0)| < a(e) for al real t, where a(e)
tends to zero ase — 0? If yes, what is the measure of these solutions in the phase space of the system?

ii) For solutions which are not perpetually stable, how long can the time of stability T(e) be taken so
that J(t) is proved to remain closeto J(0)?

In the integrable case the motion is foliated on d-dimensional tori T9. The angles evolve in time
linearly, the basic frequencies w of the system being defined by dH /9J(0). The functions «, T of the
stability theorem (2) should therefore satisfy:

limT(e) = o,
-0
|EI_)I’TC')I a(e) = 0. (3)

In the perturbed case, the KAM theorem asserts that:

"If an unperturbed system is non degenerate, then for sufficiently small conservative hamiltonian
perturbations, most non-resonant invariant tori do not vanish, but are only slightly deformed, so that
in the phase space of the perturbed system, too, there are invariant tori densely filled with phase
curves winding around them conditionally periodically, with a number of independent frequencies
equal to the number of degrees of freedom. These invariant tori form a majority in the sense that the
measur e of the complement of their union is small when the perturbation issmall...." (Arnold 1978).

At the core of Kolmogorov's proof (1954), are the following considerations (Arnold 1978):

i) the non resonant set of frequencies w of the surviving tori is fixed so that the frequencies are: 1)
incommensurable and 2) satisfy no resonance condition of low order of the harmonics K. The latter
property is expressed via the so caled Diophantine conditions, namely Vy >d -1 there exist a
positive constant K such that | w-k| > K| k|~ for all integer vectorsk # 0. By this condition it can be
shown that the measure of the set of vectors w, lying in a fixed bounded region, for which the
Diophantine condition is violated, is small when K is small. The motion on al other tori should be
conditionally-periodic with exactly the same frequencies as in the unperturbed system.



ii) To find the initial conditions leading to conditionally periodic motion, instead of using the usual
series expansion in powers of the perturbation parameter, Kolmogorov developed a super convergent
method, similar to Newton’s method of tangents. For the Kolmogorov normal form to be convergent
the necessary condition is, that the unperturbed hamiltonian function Hy is analytic and nondegenerate,
and that the perturbing part of the Hamiltonian H; is analytic in a complexified domain of the actions
and the angles. On the other hand, as demonstrated by Giorgilli & Locatelli (1998), the
superconvergent method is actually not necessary to demonstrate the convergence of the Kolmogorov

series.

For weakly perturbed systems of 2 degrees of freedom the KAM tori isolate the thin chaotic layers of
different resonances from each other. This is not true in higher dimensional systems. Arnold (1963)
showed that in such systems the chaotic layers are interconnected to form a web of resonances, while
simple topological arguments yield that the KAM-tori can not guarantee stability. The mechanism,
caled nowadays Arnold diffusion exists also for infinitessimally small perturbations. A question
directly related to the Nekhoroshev theorem is. how fast can Arnold diffusion bring a system into an
unstable state?

The main result due to Nekhoroshev (1977) is a stability theorem under the form of equation (2) which
i) isvalid in systems of any numbers of degrees of freedom and ii) does not depend on the particular
initial conditions in the phase space, like in the KAM case. Nekhoroshev's result is that in open
domains of the phase space the functionsa, T in (2) are of the form:

a(e) = € €7,

T = toel?’, (@)

i.e., the stability time is exponentially long in 1/e. The stability theorem is fulfilled for al initial
conditions close to J(0) below a threshold €y and the stability time depends only on the parameters
a, b, t5, which are strongly connected to the geometry and dimensionality of the system. Although
former studies (Moser 1955, Littlewood 1959ab) already indicated that nearly integrable dynamical
systems exhibit exponential stability, the proof by Nekhoroshev 20 years later, and in particular the so
called geometrical part of the proof demonstrated that it is a global stability theorem and not a local
one, i.e. valid only near elliptic equilibria

The Nekhoroshev theorem is at the core of the results presented in this thesis. The model of the
investigation is the origina one, due to Littlewood 1959b: the restricted three body problem. The
application to the Lagrangian configuration follows the line of development of earlier works. The main
new result is the derivation of physicaly interesting Nekhoroshev estimates for the long term stability

of Trojan motion in the frame work of the elliptic restricted three body problem. A particular



astronomical application regards the long time behavior of Trojan type motion in (exo-)planetary
systems. The mathematical and computer-algebraic interest is in the construction of symplectic
mappings, and of Nekhoroshev estimates based on them. This was only possible by specialized
computer algebra approaches.

1.3. Literature on (Nekhoroshev) stability of Trojan asteroids

The dynamics of the Trojans around Jupiter is a subject of interest to the scientific community since
the discovery of the first Trojan in 1906 (Achilles by Max Wolf, Heidelberg). The observation proved
the existence of asteroids around the Lagrangian fixed points predicted by Lagrange himself. Besides
other analytical approaches than Nekhoroshev estimates (see e.g. Hagel, 1995) various numerical
simulations have been undertaken to understand the stability problem around the equilateral fixed
points of our Solar system. First numerical estimations of the stability regions around these point were
made by Rabe (1967) in the framework of the restricted three body problem. Erdi studied the motion of
the Trojans in many papers (starting with 1988, 1997). The former also gives a detailed referencelist to
earlier work on this topic. Numerical methods were used by Milani (1993, 1994) to show that also real
Trojans are in fact on chaotic orbits, extensive numerical simulations were undertaken by Levison et al.
(1997) showing that Trojans perform slow dispersion on giga years time scales. We must not forget to
mention the work of Beaugé & Roig (2001), Pilat-Lohinger et al. 1999, Dvorak & Tsiganis 2000,
Tsiganis et a. 2000, to name a few, concerned with the existence of chaotic orbits in the system.
Mitchenko et al. 2001 studied the effect of planetary migration on it, Nesvorny & Dones (2002)
analyzed the possibility of Trojan motion around the other planets of our Solar system. The effect of
inclination on the stability of motion of Trojan asteroids was investigated e.g. by Dvorak & Schwarz
2005 or Robutel or Gabern & Jorba 2005. Recent work, e.g. on the inclination problem was done by
Dvorak et al. 2008, the resonant structure of the problem was analyzed by Robutel & Gabern 2006 or
Robutel & Bodossian 2008. A new field on the existence of Trojan planets in extra-solar planetary
systems evolved in the recent years, detailed studies were performed e.g. by Schwarz et al. 2007 or
Schwarz et al. 2008.

Comparing the analytical methods and results used in earlier works on the Nekhoroshev stability of the
Trojan asteroids, different approaches and aso different kinds of models are identified on which the
analysis was based. Littlewood (1959ab) proved the exponential stability of the Lagrangian
configuration (for the first time) using approximate integrals of the equations of motion. On the other
hand, a number of authors (Sim6 (1989), Giorgilli et al. (1989), Celletti & Giorgilli (1991), Giorgilli &
Skokos (1997), Benettin, Fassd & Guzzo (1998) but also Skokos & Dokoumetzidis (2001),
Efthymiopoulos & Sandor (2005)) gave explicit estimates of the region around the Lagrangian points
L4, Ls, within which the stability is ensured for the life-time of the Solar system. Such estimates are



based on the calculation of the size of the remainder of a normal form construction. Efthymiopoul os
(2005a, 2005b) constructed estimates based also on a direct calculation of the formal integrals without
the use of normal forms, rather estimating the influence of the remainder directly. A novel approachin
recent studies has been the use of symplectic mapping models for the analysis of the exponential
stability of the Trojan configuration (Efthymiopoul os 2005, Efthymiopoulos & Sandor 2005).

The above cited works deal with the smplified circular model of the restricted three body problem.
The 3-dimensiona case was used as a basis for the analysis by Giorgilli et a. (1989), Celletti &
Giorgilli (1991), Benettin, Fass6 & Guzzo (1998) and Skokos & Dokoumetzidis (2001). Littlewood
(1959ab), Giorgilli et a. (1989) and Benettin, Fassd & Guzzo (1998) gave a detailed mass study of the
mass-ratio of the primaries beyond the application of the Sun-Jupiter case (e.g. Giorgilli et a. 1989 and
Benettin, Fassd & Guzzo 1998 up to Routh’s mass or Celletti & Ferrara (1996) for the Earth-Moon
system). Differences between the resonant and non-resonant treatment of the normal form where
investigated in Efthymiopoul os (2005b) and Efthymiopoulos & Sandor (2005).

To summarize, the exponential stability of the Trojan motion within the framework of the restricted
three body problem was shown either i) by direct construction of integrals of the equations of motion,
ii) by normal form construction and estimation of the remainder in the case of Hamiltonian flows and

iii) by normal form construction for symplectic mappings.

1.4. Goal and thesis outline

The goa of this thesis is to show the presence of Nekhoroshev stability also in the elliptic restricted
three body problem. To this end | want to show, that there exists a relevant Nekhoroshev stable regime
around the dliptic fixed points of the problem and that there are real (observed) asteroids included in
this domain for a Nekhoroshev-time T equal to the age of the Solar system in the Sun-Jupiter case.
While all former studies on Nekhoroshev theory are based on the circular modelization of the system,
the present thesis extends former results to the elliptic model.

The outline of the thesisis as follows: an outline of Nekhoroshev theorem is given in Chapter 2. While
Section 2.1. states the theorem, Section 2.2. and Section 2.3. looks inside the main parts of the proof
givenin the cited literature.

The restricted problem of three bodies is the main subject of Chapter 3. It covers the different kinds of
formulations of the problem, used by the cited authors, to derive Nekhoroshev stability estimates in the
restricted problem. The Chapter starts with the dimensional force function and ends up in the
formulation of the problem in terms of Delaunay variables.

The model for Trojan-type motion in the restricted problem is subject of Chapter 4. The Lagrangian

configuration is introduced in Section 4.1., useful expansions of various quantities in term of Bessel



functions are given in Section 4.2. They serve as the basis to derive the perturbing function of the 1:1
resonance in modified Delaunay variables, given in Section 4.3.

The stability estimates presented in this thesis are based on the theory of normal forms of symplectic
mapping, i.e. by estimating the magnitude of the non normal form parts of it. The symplectic mapping
approach to Hamiltonian systems is subject of Chapter 5. The connection between the formulation of
dynamical systemsin terms of continuous flows and discrete mappings is discussed in Section 5.1. the
method of construction, the Hadjidemetriou method, developed in Section 5.2. The symplectic
mapping model of the Trojan configuration is derived in Section 5.3. the application to the Sun-Jupiter
caseis presented in Section 5.4.

The normal form theory of symplectic mappings is developed in Chapter 6. The genera approach to
normal forms of symplectic mappings in R?™ is presented in Section 6.1., the application to the Sun-
Jupiter case is demonstrated in Section 6.2. .

The core results are presented in Chapter 7, Section 7.1. introduces the reader to approximate integrals
and the remainder function on which the stability theorem is based. The results are applied in Section
7.2. to the Trojan group of asteroids of our Solar system and the main physical results are put together
with adiscussion of it in Section 7.3.

Chapter 2 is based on the original paper Nekhoroshev (1977), the book of Morbidelli (2002) and
lecture notes of Giorgilli (Pisa, 2002). Useful figures, to understand the geometrical part of the theorem
were produced on the basis of them. Chapter 3 is adopted to our needs from the book of Szebehely
(1967). The basis for Section 4.1. and 4.2. can be found in the book of Stumpff (1959). The book is
written in German, basic series expansions, described in English, can aso be found in other books on
perturbation techniques of Celestia mechanics (e.g. Brumberg 1995). The mapping approach of
Chapter 5 is partly based on the book of Lichtenberg & Lieberman (1992), the original paper due to
Hadijidemetriou (1991) and a previous approach due to Sandor & Erdi (2003). The results, presented in
Chapter 6 and 7 are based on the paper by Efthymiopoulos & Sandor (2005) and are also partly
published in Monthly Notices of the Royal Astronomical Society in Lhotkaet al. (2008).



2. An Outline of Nekhoroshev Theory

2.1. The theorem

Proofs on the initial formulation of the theorem, which can be found in Nekhoroshev (1977, 1979) are
given in Benettin, Galgani & Giorgilli (1985). Extensions of this theorem were found in the case of
isochronous systems with elliptic equilibria by Giorgilli (1988) or isochronous symplectic mappings
with eliptic fixed points (Bazanni, Marmi & Turchetti 1990).

The theorem was further generalized by Guzzo, Fassd & Benetin (1998) and Fassd, Guzzo & Benetin
(1998) in non-isochronous formulations to systems with elliptic equilibria. Other versions of the
theorem, together with their proofs, are based on specific classes of dynamical systems, i.e. done by
Benetin & Galavotti (1986), Giorgilli, Delshams, Fontich, Galgani & Simo6 (1989), Giorgilli &
Zehnder (1992), Lochak (1992) and Pdshel (1993). From the mid 90 s the theorem was extended to
more general dynamical systems or connected to KAM-theorem by Morbidelli & Giorgilli (1995),
Delshams & Guiterrez (1995) and Niedermann (2000).

The extended theorems in the case of systems with elliptic equilibria essentially replace the small
parameter € (Equation 2 in Chapter 1, in short 2;1) by the distance p from the equilibrium (or fixed
point) and the theorems assert stability for orbits librating around the equilibria, at a distance p in phase
space, for times exponentially long in 1/ p. A modern version of the theorem, which is also at the basis

of the approach of thisthesisis given by:

Nekhor oshev theorem (isochronous ver sion)

po\P
lp® = p(O)] <pO* VT = O(e(F) )
where a, b are exponents depending on the number of degrees of freedom and the constant p. is a
maximum distance up to which the Nekhoroshev regime applies. Estimates for a, b were given in
isochronous systems with diophantine frequencies by Giorgilli (1988, b= 1/d) and were further
improved by Efthymiopoulos, Giorgilli & Contopoulos (2004, b = 2/d).
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Figure 1. Nekhoroshev time and distance in phase space. After exponentially long times an orbit leaves the initial distance p(0)”.

Figure 1 sketches the influence of the theorem on the conservation of the actions. The variation of p(t)
is of order p(0)* for exponentially long timesin p=1.

The original proof of Nekhoroshev theorem is divided into the analytical and geometrical part. In the
former one the Hamiltonian is brought into normal form in alocal domain of the action space using the
method of Lie transform. By estimating the size of the remainder terms alocal stability lemmafollows.
The second step is to construct a covering of the action domain by local subdomains, where the local
stability lemma applies. By this construction the global stability lemma follows. Let us provide a

formal outline of theseideas.

2.2. Analytical part

At the core of the analytical part of the theorem is a normal form construction for the Hamiltonian. The
aim is to make a canonical transformation from old to new action-angle variables such that in the new
variables the Hamiltonian dynamicsis as simple as possible. This transformation is done by the method
of the Birkhoff normal form construction, it is based on the method of Lie-transformations. We briefly
discuss the formals aspects and definition of Lie-transform in Hamiltonian flows, as well as the issue
of small divisors, which arise in the Birkhoff series.

Consider a nearly integrable Hamiltonian system of the form:

H = Ho+eHy,
dJ oH oH,
e —0+e—,
dt 0 i 0¢;
dé; oH OH,
= =wiJ)+e —, (1)

dt 83 9J
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whereH = H(J, ¢) isin action-angle form, J = (Jy, ..., Jy) arethe actionsand ¢ = (¢4, ..., ¢q) arethe
angles respectively. Note, that in the integrable approximation (e — 0) of system (1), the actions reduce
to constants J; = Jig and the angles ¢; = ¢i(t) = ai(J) t + ¢jg are linear evolving intime (i =1, ..., d).

Assume, that H; can be expanded into a convergent Fourier series:

Hi= ) h)e'?, @

keK

where k= (ky, ..., Ky) is an integer vector, K is an index set and the order of k is given by
K= |Kki|+...+]|kg|. Our aim is to transform the Hamiltonian into normal form. A Hamiltonian

normal form is defined by:
H® = Z0(J) + O™ ©)
in the non resonant case and by:

HO =Z9Q, ¢r) + O™ )
in the resonant one, where ¢g is a g-dimensional vector ¢ = (d’Rl’ o) ¢R,q) in the g-fold resonant case.
The aim is, roughly speaking, to transform the system (1) so, that the perturbations act beyond the
order r in the small parameter €. To separate the two different cases (3) and (4) we define the resonant
module M = {k: |w-k| = 0}. Here w = (wy, ..., wyq) defines the fundamental set of frequencies. In the
integrable approximation of (1) the frequencies are given by w = V3 - Hy(J). For any fixed module M
the normal form constructed as above is valid in a small open domain of the action space, which
contains the points J* satisfying w(J*) = w. A resonance condition according to M in this notation is
given by:

w1k + ... +wgky=0. 5)
By the use of M we are interested in eliminating from the transformed Hamiltonian harmonics not
belonging to M up to the order r + 1 in the perturbing parameter €. The transformation from (1) to (3)
or (4) needs to be canonical, to preserve the symplectic structure of the system. For this reason we are

looking for a generating function W to transform H to H® up to order r.

2.2.1. Definition of the Lie-operator

Sophus Lie (see Grobner 1967) showed that every canonica transformation can be done using Lie-
transforms. Defining the Lie-derivative by means of the Poisson-bracket of any function with a

generating function W:
lw = 1{-, W}, (6)
the Lie-operator is defined as the exponentia of the Lie-derivative, i.e.:

Ly = €. (7)
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The Lie-operator istherefore in series representation given by:

=D = ®)
1=0 " °
The notation Iy, in (8) is defined as:
W =id
lw® = T Polyw = ({... {-, W} ..., W}, W}, (9)

i.e. by iterated application of (6), where i d isthe identity operator. Basic properties of the Lie-operator

arethefollowing (f;, f> being functions of (J, ¢), ¢ being constant):
() Lw(fi+ f) =Lw f1+ Lw 2,
(i): Lw(fi-f2) = (Lw fo)- 2+ f1-(Lw F2),
(iii):  Lwc=0.
Thus, the Lie-operator Ly, has the same properties, like the differential operator d/dt (and in fact it is

a generaization of it, see Grébner 1967). To prove that the action of the Lie-operator (8) is indeed a
canonical transformation, let X(J, ¢) be any analytic function and define the Hamiltonian flow under X

given by:
dJ 0X
dt 8¢i’
d¢ 00X
— =, 10
dt 9J (10)
wherei =1, ..., d. The timeflow can be replaced by:
(iv) d {- Xt=1I
iv): —={,X}=Ix,
dt X
which is simply shown by:
df oaf o¢ aof 93 af X oIf 90X
——— — — — = — — - — — ={f, X} (11)
dt og; ot 0J ot agi 0 03 09y
On the other hand the solution of (10) in terms of Taylor series, centered around ty, is given by:
3 = Jto) (d‘]i) (t—tg) + = i
i(h) = Ji(te) +| — —t)+=|— +...,
i itto dt . 0 2| g2 N
Bi(t) = ¢i(to) (d¢i) -t s [£0 12
i) = ¢i(te) +| — —t+=|——| +....
i i\to dt . 0 2 dt2 . ( )

Using property (iv) and by comparing (12) with (8) we can conclude that the time development itself is
equivaent to:
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J) = (™ F), .

oi®) = (™ ¢i), , (13)

where i =1, ..., d. But the transformation (¢g, Jg) — (¢(t), J(1)) is canonical for any time t, setting
t = 1in (13) it follows, that the operator Ly = €'* is canonical (Arnold, 1978).

By this property, the Lie-operator can be used to approximate the solution of the system, by using (8)
for finite order n. Using property (iv) the Lie operator has been used in N-body simulations to perform
numerical integration (Hanselmeier & Dvorak 1984, Delva 1984, www.univie.ac.at/adg).

2.2.2. The homological equation

Let us consider our origina problem, to transform (1) into a form (3) or (4). The transformation is
carried out through a composition of canonical transformations (Jo, ¢g) = (J1, 1) = ... = (J, ¢r) such

that at the rth step the non normalized part of the Hamiltonian is pushed to the order O(e)"**. Let us
consider in detail the first step: the transformation needs a generating function W, to be canonical. Due

to the definition of the Lie-operator the transformation from the set of old variables (J©, ¢©) to a set
of new ones (J®, ¢V} can now be easily implemented by:

JO — pelw J(l),

¢(0) — 6€E|w1 ¢(1)_ (14)

Note that, while the Lie-operator formally acts as the generator of a time flow, in redlity it acts as the
generator of the canonical transformation with respect to the flow under W, for a "time" €. This
paradigm shift is at the core of the Lie-transformation method (Rand 1994). Another property of the
Lie-operator is, that for arbitrary functions f = f(J, ¢):

Wi flwd, Lwe) =Lw f(J, ), (15)

thus, the order of the application of Ly, and f on the variables (J, ¢) can be interchanged (Grobner,
1967, "Vertauschungssatz’). Let us apply (14) to our original Hamiltonian H in (1). We get:

H(l)( Jo, ¢(1)) - H(O)( J<0)( Jo, ¢(1)), ¢(0)( Jo, ¢(1>))_ (16)
Using property (v) the transformation (16) can be brought into the form:
HO = H(l)(‘](l)’ ¢(1)) = Lw, HO (17)

which is by use of (8):

1 1
HO = (1 +elw+ e lw,@ + 5 Elw,® + ) (Ho® +€eH, ) (18)
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Note, that Ho® = Ho©, i.e. we are dealing with a near-identity or contact transformation. At this point
we have to specify, which terms of the Hamiltonian perturbation € H;©should be canceled out by W,

from (18) in order that the new Hamiltonian H,‘® has the form (3) or (4) up to order r = 1. In lack of
knowledge of the specific form of H; a natural choice would be to collect terms a) being of first order
of smallnessin € and b) not belonging to the resonant module M defined above. From the algorithmic
point of view, a more efficient choice takes care of the exponential decay of the coefficients of the
Fourier series expansion of (2) which is due to the analyticity condition satisfied by H,¥ (see Giorgilli
2002): introducing a new book keeping variable A and organizing the Fourier terms of H; in powers
of A according to the order of the harmonics K of each term ¢"%¥. The new book-keeping takes care of
the real magnitude of terms, which is defined by the Fourier theorem rather than their formal size in
powers of e (Efthymiopoulos 2008). We will not go into further detail on this two different approaches,
but only stress their common point, which is to collect the contributions of first order of smallness not

belonging to the resonant module, denoted by H 1. The cancelation is achieved by defining W, so asto
satisfy the equation:

lw, Ho® +H1 = 0. (19)

Equation (19) is called the homological equation. By use of the definition of Iy in (6) the equation (19)
is equivalent to the form:

{Ho®, Wi} +H; =0 (20)

and by implementing the Poisson brackets, we get:

OHL® aw, .
A R (21)
0J ¢
Writing Hy according to:
|:ll = Zﬁk(J)eikqs, (22)
ke

where ﬁk marks terms in (2) being of suitable magnitude (see discussion above), a suitable generating

function must also take the form:

_ ike
kek

Implementing the derivativesin (21) yield:

P | o
a@ gz, W@ = ) Rud)et? (24)

A kelK, k&M kelK, k&M

and comparing coefficients we finally get:
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h(J)

Wi(J) = - ,
itk w1(J) + ... + kg wq())

VkekK, k¢ M, (25)

wherek = (ky, ..., Kg).
This completes one iteration step of the so called Lie-transformation method. In the same way we may

eliminate terms of second order to get H® and in general terms of order r to get H®. The recursive
formulae for the r-th Lie-transformation read:

Jr=D — pelw J(r),

¢(r—1) = ¢fw ¢(f), (26)
and
HO = Ly, H*Y, 27)

where W, satisfy the homological equations:

A (r=1)
I\/\/r Ho(r) + Hy ' =0 (28)

forr=1, 2, .... The iteration of the procedure will produce terms in normal form up to order r (terms
being invariant to the application of the Lie-transformation of order greater than r) and terms being not
in normal form of order r + 1, i.e. (3):

H® =Z") + R™*P(J, ¢), (29)
in the nonresonant case, and (4):

H® =z, ¢r) + R™D(, ¢) (30)

in the resonant case. The quantity R"*Y is called the remainder of the Hamiltonian normal form and it

is of order O(e)' L. For generic Hamiltonian systemsit will beitself of the form (2), i.e.

RV, ¢) = ) hrai(d) e 31)

keK

which is an analytic function provided that the Lie-transformation is convergent at every step.

Before we proceed to estimate the influence of R**Y on the general dynamics some special care should
be taken as regards equation (25). By the definition of the resonant module M it becomes clear, why
we excluded resonant terms, i.e. of the form (5) in the normal form construction: the series expansion
would diverge due to the largeness of the coefficients of the resonant terms, stemming from the
denominators of (25). But this is not the only problem. At any stage of the normalization scheme there
isaso apossibility of the denominator to vanish exactly, at values of J, where:

klwl(J)+...+kdwd(J)=O. (32)
The point is, that any open domain in the action space, small what so ever, is densely crossed by an

infinity of resonant manifolds defined by equations of the form (32). Therefore, assuming that H,

contains all the harmonics ¢*¥# with vectors k fulfilling equation (32) the construction as described so
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far cannot be defined in any open domain of the phase space. This fact prevents in genera the
integrability of the system (Poincaré 1892).
In the Nekhoroshev theorem, this problem is dealt with by considering only a finite set of harmonics to
be removed from the Hamiltonian at every step. For finite order K, the normal form obtained by this
construction will always be valid in some local open domain of the system, defined so as to exclude
only low order resonant manifolds of the form (32). This is accomplished by changing the definition of
the resonant module. Namely one has:

M={k: |w-k|=0VK>K}. (33)
The truncation order K. in Fourier space plays an important role in the derivation of the estimates of
exponential stability. In fact an optima choice (see Morbidelli 2002) yields that K.~ et The
remainder contains terms of size exp(—K¢- o) ~ exp(e o), where o is the size of the analyticity
domain of the Hamiltonian in the space of complexified angles. It follows that the remainder is
exponential small ine L,
The restriction of the normal form to be valid only in alocal domain is the reason, why the analytical

part only states a local stability theorem to the system: it is based on the normal form construction of
this form, calculated by means of (25).

2.2.3. Approximate integrals

Assume that we achieved to normalize the Hamiltonian up to order r, i.e. H". To derive a stability
estimate we are interested in bounding the effect of the remainder R"™Y on the dynamics induced by
the normal form Z®. For this reason we will construct approximate integrals from the normal form Z"
and the sequence of generating functions {W;, ..., W;} and look on the influence of the remainder on
them. Denoting by Fo(J®, ) a function which is in involution with the normal form z®, i.e.

{Fo, ZM} = 0, the function Fy is an approximate integral of motion. Calculating the Poisson bracket of
Fo with the full Hamiltonian, i.e. {Fo, H®} will therefore result in that the time derivatived Fy/dtisa
quantity of order r + 1, depending only on the remainder R™% of H®. Now, any function defined by:

Fo=A-J, YA%0, 1 - keM (34)

isafirst integral of Z(", since, by writing the normal form as

_ ik
Z0 = gm‘ 2{I") e (35)
one has:;
_ 2 ‘ ik _
o 254 = 2 7(37) e =0, (36)

if A - ke M. We conclude that there exist d — dim(M) first integrals (Fo, ..., F4_dimm)) for Z", which
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are independent and in involution. Choosing d —dim(M) independent real vectors A - ke M and

computing:
{Fo, H?} = {Z® + RV} = {Fo, R™Y} (37)
results in an estimate on the time variation of the approximate integral according to:
[Fi37, )| = Il {F;, R™HI (38)
where || - || is a suitable norm in the space of Fourier functions. In summary the time variation of

approximate integrals F; can be calculated by means of (37) and from a suitable norm of || R™% ||. It

follows that the speed of motion in actions space can be given an upperbound, given essentially by:
130 - I 1l < II{Fj, RV}l -t. (39)

Finaly, eguation (39) results in a stability estimate of the type (2;1). Namely, if we set
[1Ji(0) = Ji(H) || < a(e) wefind via equation (39) a stability time T(e) given in terms of the remainder
R(r+1):

a(e)

Te)~ — .
| RTD |

(40)

The result K¢ ~ ¢! leading to estimates || Re) || ~ can be reached in principle by upperbounding the
effect of the sequence of generating functions Wy, ..., W; on the series expansion terms, namely, the
influence of (25) on the coefficients wy. Since small denominators in (25) will affect the size of the
coefficients, the knowledge of the number theoretical properties of (5) and (32) plays a major role to
identify leading contributions to the growth of the series terms in the course of the normalization
process. Even if exactly resonant terms are not normalized by virtue of the choice of the resonant
module M, nearby resonances, i.e. where k- w(J) ~ 0, will act on the size of al the coefficients. The
effect of small divisors will accumulate for larger r and in the end will render the formal integrals
obtained by the normal form construction divergent (see eg. Efthymiopoulos et al. 2004 for a numerical
demonstration of this procedure). Thus the optimal order of normalization of H® and thus R™Y will
also optimize the stability estimate, by minimizing || R || in (39) or (40).

Figure 2.: Local stability theorem. An orbit starting at J(0) leaves a local domain (dark gray) along the plane of fast drift.

Figure 2 illustrates the local stability estimate. The orbit starting at the point J(0) remains in a small
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neighbourhood (dark gray) of a plane of "fast drift", until it leaves the local domain, after a time
estimated by (40).

2.3. Geometric part

The aim of the geometric part is to identify domains in the action space, where the local stability
theorem applies. For this reason one defines a "geography of resonances’ in the action space (see e.g.
Morbidelli & Guzzo 1997 or Morbidelli 2002 for an instructive introduction). If one can define a
covering W of local domains in action space, where the local theorem holds one proves, that the
theorem holds globally.

In principle two dangerous situations have to be avoided: i) resonance overlapping and ii) fast diffusion
channels. The former is connected to the value of the perturbation e, that should be sufficiently small.
The latter is connected to the geometric form of the hypersurfaces of constant energy, which are
determined by the steepness conditions of the Hamiltonian. We now outline the main features of the
geometric part of the theorem and discuss the way how these are connected to the mechanism of the
interaction of resonances.

2.3.1. Single resonance dynamics

The local stability estimate of the previous section was developed in resonant domains, defined by the
resonant module M, i.e.

M={]kl=0,w-k=0Vk> K. (41)

To understand, how the definition of M influences the underlying dynamics of the system, we discuss
first the backbone of single resonance dynamics. the pendulum Hamiltonian. The norma form
construction of the previous section leads to such types of Hamiltonian as follows.

The general resonance condition according to (5) is given by:

w-K=wi ki +...+twgky =0, (42)

where K = | kg | +... + | Ky | is called the order of the resonance. If the resonance condition w -k has no
integer solution other than the zero vector k = 0, the frequencies are called non-resonant and the
corresponding motion under the normal form alone is periodic. The corresponding normal form is
called a nonresonant Birkhoff normal form, the resonant module being M = { | k| = 0}. On the other
hand, if wefind d — 1 linearly independent integer vectorsk, ..., ky_; satisfying w - k the motion under
the normal is said to be completely resonant. In this case it is possible to express d — 1 angles as

periodic functions of one single frequency - connected to one resonant angle ¢r in (4) - and thus one
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single closed curve will define the orbit, which lies on a so called resonant torus. The intermediate
case, where ki, ..., ky integer vectors satisfy some resonance condition and therefore m angles are
expressed by the other d — m ones the frequencies, is called a resonance of multiplicity m. The motion
is separable in two independent motions, one taking place on the torus defined by the values of the
actions conjugated to m resonant angles, and the other on the torus defined by the remaining d — m
action-angle variables. The former motion is periodic, while the latter is quasiperiodic (see Arnold
1963).

In single resonance domains the motion is dominated by only one main resonance wg of multiplicity
m = 1. The vector kr denotes the minimal nonzero integer vector related to the main resonance, i.e. the
vector of minimal order such, that kg - w(J) = 0. The resonant angle is defined by:

¢r=kr- ¢, (43)
whileits conjugate action is:

Jr=mg-J (44)
where mg is any integer vector satisfying mg-kr = 0. Constructing the resonant normal form with

respect to the resonant module M results in a decomposition of the transformed Hamiltonian of the

form: H = Z, + Z, + R, where Z,. depends on a subset of the actions say (Jo, ..., Jg) not containing the
action Jg, and Zg contains al the actions say (Jgr, J, ..., Jg) but only the resonant angle ¢g, and the
remainder R consist of higher order harmonics containing all the variables. In a first analysis let us
neglect the remainder terms defined by R. The simplified Hamiltonian resultsin the form

H = an(J21 LR ] Jd) + ZF(JR! ‘]21 ey Jd! QDR) (45)

Since the angles conjugated to the actions J,, ..., Jg are cyclic, these actions are integrals of motion.
Furthermore, since the Hamiltonian Z, depends on one pair (Jr, ¢r), this Hamiltonian is aso
integrable. For any fixed value of the constants J,, ..., Jq, the evolution of the motion takes place
effectively on areduced phase space defined by the (Jg, ¢r)-plane. The orbit evolves along level curves
defined by a constant energy Z; = h, the remaining actions acting only as parameters. If we expand the
single resonance Hamiltonian around the exactly resonant value J* in the action-space J (where
kr wr(J*) = 0) and fix the parameters J,, ..., Jq to the values J,*, ..., J4*, the resonant Hamiltonian Zr
reduces to the form:
7 = (3% | ) [+ w [+ He(* | Jr @0R) + .. (46)

where we defined | = Jg — J*, and we neglected higher order terms in the Taylor series expansion of
order O(JZ).The functions f1, f, are coefficients stemming from the series expansion and thus only

depend on the parameters J*. From the resonance condition kgr- wr(J*) = 0 and Hamilton’s equation

¢r =—0dHes/d Jr the function f; is equal to zero since it is also equal to the time derivative
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¢r=dwgr/dt=0. By expanding Hg into a Fourier series with respect to ¢ and retaining only the
main term (dropping the constant term, since it does not influence the dynamics) the resulting
approximating Hamiltonian reduces to the form of the simple pendulum Hamiltonian:

B A2
Hp = > Ir +yCOS(¢R), (47)

where Iz = Jr— C, and B, C, and y are constants, determined by the constant values of the actions
PSR

We conclude that in a domain of the action space where a single resonant dynamics holds, the phase
portrait of generic nearly integrable Hamiltonian systems of the form (1) can be locally approximated
by the simple pendulum dynamics. The deformation of the invariant curves of the pendulum phase
structure is given by higher order terms of the Fourier / Taylor series of H; on the one hand and by the
influence of the remainder R on the system in general on the other hand. The phase portrait of the

backbone of dynamicsis givenin Figure 3.

Figure 3. The pendulum Hamiltonian; backbone of single resonance dynamics.

The dynamics of the pendulum Hamiltonian is governed by an elliptic stable fixed point at (Jg, ¢r = 7)
and one hyperbolic unstable fixed point a (Jr, ¢r = 0). The two equilibrium points are surrounded by
invariant curves separated by the separatrix, defined for the energy level h=17y. Motion (¢g)
above/below the separatrix circulates with positive/negative derivative from (0, 27), while its
frequency monotonically increases with the distance from the separatrix. Inside the separatrix the angle

¢r librates around the elliptic fixed point ¢r = 7, the motion taking place on closed invariant curves.
The frequency is / By =+/Bh very close to the equilibrium point, and it tends to zero as we
approach the separatrix. On the separatrix itself it takes an infinite time for the trajectories to reach

asymptotically the unstable equilibrium point. The separatrix half-width (counted from fR) is
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24/ v/ B . Therefore the minimum size of the domain for which the resonant construction is valid is
44/v/B inthe Jr direction. The haf width of the resonance in the unperturbed frequency space is

equal to the time derivative ¢, at the apex of the separatrix, namely 2 \ By .

Reszonance
Libration
Separatrix
Rotation

Figure 4. The black and red resonances are well separated (upper right), exchange is possible through chaotic interaction (lower
left), resonance overlapping (lower right).

The single resonance model is only valid if the resonances are well separated in the phase space
(Chirikov 1979). Contopoulos (1966) used this criterion to quantitatively estimate the threshold value
of ¢, that corresponds to the disappearance of KAM tori and to the global transition to chaos. The
separation of resonances in action space is a difficult matter and depends on the number of frequencies
taken into account. The different possible states of the system are illustrated schematically in Figure 4.
In the upper right frame the red and black resonances are well separated, but their separatrices touch
with higher order resonances (i.e. green). Very thin chaotic layers may be present in this situation, but
we expect that still many KAM tori exist between the red and black one, such that the chaotic regions
are locally confined. Homoclinic intersections of the unstable and stable manifolds are present, but
they affect mostly the dynamics of the parent resonance. In the lower left frame the black and red
resonances are separated, but interaction may occur due to the thin chaotic layers around the red and
black separatrices (red and black dots). In the lower right frame separatrix crossing occurs and the
isolation of the red and black resonance breaks. Heteroclinic intersections between the unstable and
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stable manifolds of both resonances affect the stability of the system. The lack of KAM tori to separate
the thin chaotic regions around each separatrix, results in that global chaos is introduced into the
system. While in the upper right and lower left frame of Figure 4, the local stability estimate may
apply, it does not so in a situation like in the lower right frame. To define the regions in action space
without heteroclinic intersections it is necessary to study the manifolds emanating from the unstable
orbits of different resonances and check wether they are isolated or not.

2.3.2. Geography of resonances

The geography of resonances can now be visualized with the help of a concrete example (a more
formal and mathematical rigorous approach can be found eg. in Giorgilli’s lecture notes 2002,
Morbidelli 2002, or in the origina proof of Nekhoroshev 1977). Let us consider the Hamiltonian
introduced in Froeschlé et a. (2000):

32 37 €

H=—+—+J+ .
2 2 COS(¢h1) + COY(¢ho) + COS(¢p3) + 4

The Hamiltonian perturbation can be expanded into Fourier series, resulting in a Hamiltonian of the

(48)

form (1). This particular example has the advantage of being simple enough athough an infinite
number of harmonics are present in the series expansion. The geometry of the flow in hypersurfaces of
constant energy is given in Figure 5, and projections of it in Figures 6 and 7. In Figure 5 the generic
motion of the system is confined to lie on the surface defined by H = h + O(e), meaning that while in
the integrable approximation perpendicular motion to the hyperplane is not allowed it is only of order
O(e) in the full problem. In addition, the motion is aso bounded by the separatrix of the local
approximation in terms of the pendulum Hamiltonian: while motion induced by Z. may be fast
perpendicular to the resonant plane, which is called the plane of fast drift, it can neither enter the non
resonance domain nor drift along the resonant plane itself. Thus the motion along the resonant planes
(indicated by the arrows in Figure 5, 6, 7 respectively) can therefore only emerge from the action of the
remainder R on the dynamics of the system. But since the local stability theorem appliesit follows, that
it is exponentially small in e, i.e. its presence of diffusion along the resonant planes is only on very
(exponentialy) long time scales.
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Figure 5.: Geometry of the Froeschlé Hamiltonian. Motion is restricted to the surface defined by the Hamiltonian. Motion along
the plane of fast drift (arrow).

Figures 6, 7 show the projection of the model to the plane of the actions (J,, J,) for different values of
the parameter €. In Figure 6 or 7 we distinguish the so-called web of resonances or Arnold’s web. The
figures were produced by considering a finite number of harmonics in the expansion up to the order
K = 6. From the unperturbed part of equation (48) we have w; = J;, w, = J, and w3 = 1. Dark lines
indicate exact resonance conditions of the form J; k; + J, ks + ks = O up to the order 5, and gray lines
up to the order 6 respectively. The widths of the resonant lines in Figures 6 and 7 follows the estimate
(Efthymiopoul os, 2008):

1 ——m
A|~§ |Eh0,0‘k3 | y
—— ki® + ko?
Al ~ | € h|(1’|(2’k3 | 172, (49)

ke? ko?
where hy, .k, 1S the coefficient of the term exp(e1 ki + ¢2 Ko + ¢3kg) in the fourier development of
equation (48). The parameter € is therefore responsible for the changes of the widths in Figures 6, 7.
Far from resonance junctions, every resonant line in Figure 6 yields a single resonant dynamics given
by a local Hamiltonian of the form (47), the pendulum Hamiltonian. A Poincaré section condition
¢r = 0 (dashed line, black pointsin Figure 3) yield points around each of the central resonant linesin

Figure 6, 7. On the other hand a section condition falling on the elliptic fixed point of Figure 3 (dashed
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line, 2 black points) results into two resonant lines in Figures 6, 7 parallel to the central line. Since the
widths of resonant lines in Figure 6 & 7 depend on the small parameter €, dangerous resonant
interactions of the type indicated already in Figure 4 may occur. Figures 6, 7 have to be compared to
(Froschlé et al, 2000, 2002), where the web of resonances was found by numerical integration and
using the FLI chaos indicator. The Arnold’s web serves as the "landscape”, on which the "geography"
of resonances is defined. The aim is to define a critical value for ¢y below which it is possible to
exclude resonance overlapping, i.e. the lower right frame of Figure 4. The critical value g marks the
onset of the so-called Nekhoroshev regime. It should be stressed that some degree of overlapping of the
resonances is aways present in the action space, since any small domain is crossed by an infinity of
resonances. However, the non-overlapping criterion, from which follows the value of €y, refersonly to
the finite number of resonances satisfying K < K. This reveals, again, the key role played in the
Nekhoroshev theorem by the choice to truncate the normalization of the Hamiltonian up to a finite
order K. in the Fourier space. In fact, only under such a choiceit is possibleto construct afull covering
of the action space by domains defined through different resonant modules M, so as to ensure that an
exponentially long estimate of the stability holds globally, i.e. for al initial conditions in an open set of

the action space.
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Figure 6.: Arnold Web for e=0.003. No resonance domains, single resonance domains and double resonance domains; compare
with Figure 5. |, no, Il single, Il double resonance domains.

Neglecting the exponential remainder each initial condition is confined to lie within one of the
resonance domains. The action can change at most by a quantity equal to the width of the resonant
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domains in the fast drift direction, which is proportional to 1/K.. Let us define the following sets in
action space:

X no resonance domains, as the set of points being far enough away from all resonant
surface up to order K (1., in Figure 6)

X single resonance domains, characterized by the presence of only resonant surface of
order smaller than K (I1. in Figure 6)

X double resonance domains, centered around the crossing of two single resonant
surfaces of order smaller than K (l11. in Figure 6)
In the non resonant domains (1. in Figure 6), one can eliminate all the harmonics of the perturbation up
to order K and the behavior is governed by a norma form of type (3). The actions are constants of
motion, the local stability theorem guarantees that motion along the resonant planes is exponentially
small. In the single resonance domains (11. in Figure 6) all but one harmonics can be eliminated again
and the behavior can be modeled by means of a normal form of the form (4). Although the actions are
no longer constants of motion, they can only move along the fast drift direction. Since the Hamiltonian
is steep (or convex) the fast drift direction is transversal to all the resonant surfaces. In addition, the
motion is not allowed to enter the non resonant domains, since the actions inside the domains of type I.
of Figure 6 are constant again. It follows, that the motion is restricted to single resonant domains and
the diffusion is bounded again by the exponentially small remainder. In the double resonance domains
(11, in Figure 6) the norma form Hamiltonian has two independent resonant terms kq, k, of order
smaller than order K. and the motion on the action plane can take place in any direction of the plane
spanned by k; and k,. Again the convexity condition prevents the actions to enter the single or no
resonance domains, since in the former motion is confined along the fast drift direction and in the latter
action would become constant again. The motion therefore is confined to be close to the double
resonance region spanned by k; and k,. As a conclusion it is possible to render the local stability
theorem of the analytical part global, provided that it is possible to construct a covering of the action
space by means of domains in which one of the mentioned different types of resonant dynamics holds.
Thisispossibleif € < €.
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Figure 7.: Arnold Web for e=0.04. Resonance overlapping introduces large scale chaos. Compare to Figure 6.

The opposite situation is indicated in Figure 7. With increasing e the widths of the resonant zones
increase too and open fast diffusion channels from one resonance to another. It is not possible to define
resonant domains without overlapping with other resonances of the same order (below K;) and the
diffusion in action space is free to pass from one resonance to another. Resonance overlapping
dominates the evolution of the actions, a situation also indicated in Figure 4 (lower right). A schematic
representation of the diffusion in the resonance overlap regime is given in Figure 8. When there is no
resonance overlap, the systemis said to be in the Nekhoroshev regime. See figure 9 schematic.

Figure 8.: Unsafe region due to resonance overlapping of same multiplicity. The resonant planes I1y, of different resonances of
same multiplicity intersect. Orbits are free to drift from one resonance to another.
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Figure 9.: No resonance domain C”” (I in Figure 6), single resonance domain C” and C (Il in Figure 6). Diffusion is exponentially
slow. The stability theorem applies.

2.3.3. Fast diffusion channels

Finally, another dangerous situation, connected to the violation of steepness condition is illustrated in
Figure 10. In the absence of convexity, the resonant plane Iy s(J) may become tangent to the resonant

manifold Xy implying, that J € Xy and Iy s(J) lie very close to each other. The opening of a

diffusion channel inside a zone, where the near tangency occurs cannot be prevented and large scale
chaos may appear. The necessary condition that the resonant manifold Xy, and the resonant plane
Iy s(J) are transversal to each other, or at least have a tangency of only afinite order, is guaranteed by

the convexity condition of the Hamiltonian. In the original formulation due to Nekhoroshev this
condition refers to steep functions. The stronger condition is convexity. It ensures, that the resonant
manifold and the resonant plane are transversal to each other. An easy example given in Arnold’s book
(1978), refersto the Hamiltonian:

1 2 2 ;
H(J,¢)=5(J1 - J3,°) + esin(gy — ¢2), (50)
which is neither steep nor convex. Since the orbit, defined by the solution
t t
n ===, g =—¢* 2

Jl(t) = —€t, Jz(t) = €t, (51)

lies on the resonant manifold
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k1J1+k2J2=0

for ky =k, =1, it coincides with the plane of fast drift at any of its points. Convexity of the

Hamiltonian excludes such dangerous situations.

Y

gy

Figure 10.: Unsafe region due to fast diffusion channels. The resonant plane ITy, is nearly tangent to the resonant manifold ;.
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3. The Restricted Three Body Problem

In the (general) three body problem (GTBP) three bodies with arbitrary mass (m,, mp, mg) attract each
other according to the Newtonian law of gravity. The question is to specify their subsequent motion if
the bodies are given arbitrary initial conditions. Let us denote by the restricted three body problem
(RTBP) the same problem as the GTBP but with one mass being much smaller than the other two
masses (Mg << My, mp). It follows that there is no influence of the third body (mg) on the first and
second body (called primaries), which are therefore moving around their common barycentre in
Keplerian motion in a plane. Mathematically speaking mg = 0. In the circular restricted three body
problem (CRTBP) the primaries my and mp, are moving on circular orbits. In the elliptic restricted three
body problem (ERTBP) the primaries are moving on elliptic Keplerian orbits. We may restrict the
motion of the third body ms to lie on the invariant plane of motion of the primary bodies or not. The

former oneis called the planar, the latter is called the spatial restricted problem:

GTBP : my, M, Mg # 0

planar CRTBP: my, M, on circular orbit, mg = 0, moving in the plane of the primaries.
spatial CRTBP: my, M, on circular orbit, mg = 0, moving in 3 D space.

planar ERTBP : my, mp on elliptic orbit, mg = 0, moving in the plane of the primaries.
spatial ERTBP: my, My on elliptic orbit, mg = 0, moving in 3D space.

The historical restricted three body problem (HRTBP) in our setting is the planar CRTBP; the term
“restricted” seems to go back to Poincaré (1893) who first called the problem "le probleme restreint";
according to Whittaker’s report (1900, Report on progress of the solution of the problem of three
bodies) the HRTBP dates back (in a different formulation) also to Jacobi (1836) but following
Szebehely (1967) and Winter (1941) the origin may be even dueto Euler (1772).

In this section we want to establish the formalism for the planar and spatial CRTBP, ERTBP. The
notation in principle follows the book of Szebehely (1967) while some minor modifications in the
notation are done for adapting to our needs. The line of development of the models passes from the
force function in dimensional coordinates to the dimensionless formulation of the Lagrangian in fixed
Cartesian coordinates. The transformation to a rotating frame is done in the Hamiltonian formulation.
The construction of the generating functions can be found e.g. in the book of Szebehely. Other relevant
formulations given are by Giorgilli & Skokos 1997 and Skokos & Dokoumetzidis 2001. The first part
of this chapter is dedicated to the circular model (planar and spatial one), in which the Hamiltonian is
constant. The second part introduces the model and upcoming problems when generalizing to the
ERTBP (planar and circular). Since the mathematical formulation of both the CRTBP and the ERTBP
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can be established in an equivalent form using a uniformly rotating coordinate framework in the
circular case and a pulsating non-uniform rotating coordinate system in the elliptic case, the
transformation to polar and Delaunay variables is put together for the two cases at the end of this
Chapter. Nevertheless one should always keep in mind that the difference between the circular and
eliptic problem is that the potential is time dependent in the latter case. Furthermore, under a proper
redefinition of the Hamiltonian the generalized Jacobian constant does not vanish when dealing with
the elliptic restricted problem.

Q Y%
Y A

R, ¥2:P2
Rufpf?

e

Figure 1: Geometry of the restricted three body problem (arbitrary units); Siderial (blue), synodic (black) reference system.
Triangle between my, my, ms (red).

3.1 Planar circular restricted three body problem

3.1.1. Sidereal system

The potential (or in older astronomical literature sometimes called force function) of the restricted
problem, in sidereal dimensional coordinates (Figure 1, blue), according to Newton's law of
gravitational attraction is given by:

¢ = KMy /Ry + My / Ry), (1)
where k is the Gaussian gravitational constant (k ~ 0.017...AU¥* Mg, /?day ") and the distances

R; and R, are defined by:
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Ri% = (X = Xp)? + (Y = Y12,

R = (X = Xp)” + (Y = Yp)°. @)
Here (X1, Y1) and (X5, Y,) are the sidereal positions of the masses m; and m, respectively and the
vector (X, Y) is the position of the test body (mg = 0). Introducing a=my|/M,b=m,|/M as the
distances of m, and my from the center of mass respectively (I being the mutual distance of the

primaries and M = m + mp being the total mass of the system, Figure 1) the equations of motion in
this setting are given by:

d? X 2( (X —bcosnt*) (X+acosnt*))
-k my + )

m;

d2y o[ (Y-bsinnt) (Y +asinnt®)
= -k my + My , (3)

d t*2 R]_3 R23
where n is the mean motion, indicating that nt* is the longitude of m, and t* is the dimensional time.
By introducing the dimensionless quantitiesq; = X /1, o = Y /I, t=nt*, uyy = m /M, uo = mp /M the

Lagrangian function of the system takes the form:

1
L= > (qlz + qzz) +¢(d1, 02, 1) (%)

where ¢ = ¢(qy, o, 1) isthe time dependent dimensionless potential of the problem,

H1 M2
¢(ql! 02, t) =—+—, (5)
P1L P2

and p, and p, are given in unitless form by:
p1? = (01 — 2 COSt)? + (G — pp SINLY,
2% = (01 + 11 COSE? + (0 + g SN (6)

From the definition of the momenta p; = dL / aq;,, (i =1, 2) we get the conjugate variables to (0, )

namely p; = ¢, and p, = §,. From the definition of the Hamiltonian function H = pq - L wefind:

1
H = E (plz + pzz) - ¢(Q1a qZ! t)! (7)

which in siderea coordinates is time dependent through the presence of the time in the distances p;
and p,. Therefore the Hamiltonian in this setting is not a constant of motion. The corresponding

canonical equations are given by:

) oH

a, = e = P1,
oH

O, = — = P2
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b oH ( (01 — po cost) N (Qr + (1 cost)]

et VS M2 ,

5 oH ( (Gp — p2SINt) .\ (Q2+/1155n'[)) -
=T T TM M2 :

3.1.2. Synodic system

To transform the Hamiltonian (7) to a constant of motion we need to introduce a synodic (rotating)
coordinate system (Figure 1, black). For this reason we need to fix the location of the primaries and
look at the motion of the third body relative to them. In the circular case this is accomplished by
choosing a uniformly rotating coordinate system (with respect to the mass n,).

The transformation to new coordinates follows from a bilinear canonical transformation of the type Ws

with time dependent coefficients of the form
Wa(p1, P2, Qr, Q2, V) = —a&j pi Qj, 9)
where the unitary matrix (a;) is defined by:

cost -sint
| (10)

(a”) - ( sint  cost
and (Qq, Qo, Py, Py) are the new variables. The transformation via the generating function (9)
represents uniform rotation with angular velocity t around the common barycentre resulting in the
desired synodic coordinate system. Applying the transformation equations g = -0Ws/dp; and

P =—-0W;5/0Q, (i = 1, 2), we get for the transformed Hamiltonian (accordingto H = H + W/ dt):

A

% (P1*+ P2%) + Q2 P1— QP — $(Q1, Q) (11)
and for the equations connecting the fixed (qy, d) with the rotating (Q1, Qy) system (q; = & Q;):

g, = Qq cost — Q, sint,

0o = Qi sint + Q, cost. (12)
For the conjugate momenta, using the relation P; = a;; pj we get:
P1 = ppcost+ ppsint,
P, = p, cost — p; sint, (13

(the summation convention is applied to repeated subscripts on the same hand side of the equation) for

i =1, 2 To complete the transformation from sidereal (fixed) to synodic (rotating) dimensionless

coordinates we need ¢(Q;, Q,) in the rotating coordinate frame. For this reason we apply (12) to (6)
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and insert (using the identity cos®Q; + sSn?Q = 1) in (5) and finally get for #(Q1, Qo) = #(Qq, Q).
with distancesin the rotating frame defined by

p1% = Qo +(Q1 - u2),
p2% = Q%+ (Qq + up)*. (14)

The canonical equations of motion in the new variables read:

Q il P, +0Q
= = + ,
1 ) 1 2
o aH b0
Z_apz_ 2 1
: dH ¢ _ N
I:’1———=P2+_¢:|32_ " (Q M2)+,uz(Q1 H1) |
3 3
6Q1 an pl pz
dH 08
R
aQZ (9Q2 ,01 pz

The planar CRTBP in thisform was used, e.g. by Giorgilli & Skokos (1997).
3.1.3. Newtonian formulation
The Newtonian formulation (Figure 1, black) is found by solving the first two equations in (15) with

respect to (P, P,) and substituting in the remaining ones. In the usua notation (X, y) = (Qq, Q>),

(X, y) = (P, P,) the egquations of motion of the planar CRTBP, in a rotating coordinate frame, are

given by:
. oy oQ
X—-2y=—,
Y ax
Y aQ 16
+2X=—,
y 3y (16)
where the potential () is defined by:
Q r12 1 r22 1 17
= | —+ — [+ | —+—|
H1 2 1 H2 2 1, (17)

The formulation in the Newtonian framework is used as a starting point by Littlewood 1959a. Note that
he defines the potential dlightly differently (as regards the gravitational terms) and puts the terms
stemming from the Coriolis force (Q X r) on the left hand side of the equations. The distances in (17)

are of the form:
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r?=(x- )+ y%

ro? = (X+ pp)* + Y. (18)

The Jacobi constant connected to the time-independent formulation of the Hamiltonian in this setting is

given by:

C+y=20-C, (19)
where C isthe Jacobi constant in the synodic system, which, translated to the sidereal system, resultsin:
. . . . 21 24y
G+ 8, = 2(q 8~ G G) + — + — — C. (20)

P1 P2

Here C = C + u4 u, indicate the Jacobi constant in the rotating and fixed frameworks respectively.

@ 3
O
N

Figure 2: Zero velocity curves in the circular restricted three body problem (x,y)-plane for u; = 0., 0.04, 0.08, 0.12 (from upper
left to lower right).

One can define zero velocity curvesin the rotating system by means of (19). For agiven value of C, an
asteroid cannot escape from within a closed zero velocity curve, since the velocities would become
complex outside. This first stability criterion may be generalized to the spatial case (Figure 3) but
becomes more complex in the eliptic one. The zero velocity curves defined by different mass ratios of
the primaries are given in Figure 2. Four different types of topologies are shown (from upper left to
lower right): closed red region (i, = 0), banana shaped red region, separated green regions (i, ~ 0.04),
connected inner and disconnected outer green region (u; ~ 0.08) and disconnected red, connected

greenregion (u, ~ 0.12), (compare with Figure 3).
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3.2. Spatial circular restricted three body problem
The generalization from the planar to the spatia case of the CRTBP (used by Sim6 1989, Giorgilli et
a. 1989, Celletti & Giorgilli 1991, Benetin et a. 1998 & Skokos & Dokoumetzidis 2001) is
straightforward.

3.2.1. Hamiltonian formulation

The Lagrangian function corresponding to equation (4) is given by:
1

L= > (q12 + Q22 + Q32) + ¢(01, U2, O3, 1) (21)
and equation (5) generalizesto:
M1 H2
¢(ql’ 02, O3, t) =—+ —, (22)
P1 P2

where the distancesin the 3D case are defined by (compare with (6)):

P12 = (G — pt2 COSY? + (G — pp SIND” + 0%,

2% = (O + 11 COSEY? + (G + pg SN + Q2. (23)
As in the planar case, by introducing p; = al_/aqi =@, (i=1,2, 3), where L is taken from (21), the

Hamiltonian in the fixed sidereal coordinate frame reads (compare with (7)):

1
H = > (P2®+ P2° + ps®) — #(Cl1, G, Tz, ). (24)

The relation between the new synodic and old sidereal coordinates and momenta is given by the
generating function:

Ws(p1, P2, P3, Qu Q2, Q3, 1) = —a&ij pi Qj, (25)

where the matrix (aj) of (10) generalizesto:

cost —sint O
(a,-j) = [ sint cost O ] (26)
0 0 1

The resulting Hamiltonian in the 3D case H = H + W5/ dt (note that here H is defined via (24) and
W5 via(25)) is:

e Y ~
H= > (P1” + Pp” + P3®) + Q. Py — Q1 P — $(Q1, Qz, Qa), (27)
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where the potential ¢(Q, Q,, Qs) of (25) isgiven by :

$(Q1, Q2, Q) = aLe (28)

P1L P2

with the distancesin the rotating coordinate frame being given by:
p1? = (Q1— u2)* + Q% + Q4% (29)
p2° = (Qu + 1) + Q% + Q3% (30)

The canonical equations of motion of the 3D case are the same as equations (15), with the additional
equations Q; = Py and P = 94 / Q.

3.2.2. Newtonian formulation

To get the equations of motion in the Newtonian formulation, we follow the same line of calculations
asinthe 2 D case. Using the set of variables (X, y, z) we get:

X—2y=00/dx,
V+2x=00Q/0dy,

7=00/dz (31)

where the potential ) in the 3D caseis given by:

1 o Jui 1
Q:—(x2+y2)+—l+—2+—,u2y1. (32)
2 r P) 2

Here, the distances in 3D-space are generalized to:
r?=(X- )+ Yy + 2,
2 = (X+ )’ + Y2 + 2. (33)
The Jacobi integral is obtained by multiplying equations (31) by X, y, z respectively, adding the results
and integrating with respect to time:
C+ P+ 2 =20(x Y, 2 - C. (34)

The parameter C is called again the Jacobi constant.
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z
Tli
X
Figure 3: Zero velocity curves in the spatial CRTBP for u; = 0.14. Compare colors with lower left of Figure 2.
C=10,5,2.7,1.5, .5, 1.1 (inner to outer).

The zero velocity curves of the spatial restricted problem are shown in Figure 3, which should be
compared with Figure 2: the connected (middle orange) region corresponds to the connected orange
region in Figure 2 (lower left), the disconnected (inner pink, blue) to the inner pink/blue circle regions.
It is also possible to identify the inner and outer green regions of Figure 2 and 3 respectively, while the

magentaregion in Figure 3 isnot visiblein Figure 2.

3.3. Elliptic restricted three body problem

While in the circular case the introduction of a uniformly rotating coordinate frame simplifies the form
and therefore the analysis of the problem, the elliptic restricted three body problem is of much greater
complexity. The main reasons are, on the one hand the generalized motion of the primaries and on the
other hand, the fact, that the Hamiltonian becomes time-dependent. The problem has been analyzed to
a smaller extent than the circular problem (e.g. Waldvogel 1973, Bennett 1965, Danby 1964, Deprit &
Rom 1970 or Erdi 1977). The problem can be reduced to a mathematically similar form as the circular
problem by use of a non uniformly rotating and pulsating coordinate reference frame. Setting i) the
(O x y)-plane to be the plane of the orbits of the two primaries and ii) the unit of length to the mutual

distance between the primaries, the system can again be brought into a form where the positions of the
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primaries are fixed and the motion of the third body can be analyzed relative to the fixed primary

locations. However contrary to the circular case, the equations of motion are non longer autonomous.
3.3.1. Planar

The mathematical realization is done by introducing the unit length to be the distance between the
primariesin Keplerian motion:

e
Ll (35)

" 1+ecosE’

and using the true anomaly E instead of the time t as the basis for introducing dimensional
coordinates. In (35) a isthe semi-major axis and € is the value of the eccentricity of the conic section of
the motion, which will be restricted in our case to be €lliptic or circular (e < 1). While the definition
takes care of the variable length of the distance between the two primaries, the use of the true anomaly
introduces the non uniformly rotating reference frame. The angular motion of the primaries, with
variable angular velocity E , is defined by:

k(my + mp)?

dE = ——
a¥2(1-e)"”

(1+ cosE)?dt*, (36)

Using the definition of the unit length (35), equation (36) takes the form:

dE
ﬁ I‘2 = (a(l - e)2 kz(ml + mz))l/z.

(37)

It is convenient to write the equations of motion in the fixed coordinate system (compare with (3))
using complex variable notation, before introducing the transformation to the non-uniformly rotating
and pulsating coordinate system. Using the identities X; =bcosnt*, Y;=bsnnt* and
X, =-acosnt*, Y, =-asinnt*the equation of motion of the massless test body in complex form

Z = X + 1Y becomes:

d’z ,Z-7; )
=-mKk —mp k , (38)

wherefor i = 1, 2 the complex variablesare Z; = X; + ¢ Y; and the distances R; are given by
Ri=1Z2-24],
Ro=12-2;]. (39)
The rotation in the complex plane is defined via Z = ze*F, where z= X+i ¥ is the new dependent

variable in the rotating coordinate frame. Substituting to equation (38) yields the equation of motion in
the rotating dimensional reference system:
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d?2z dE dz f z-m z-2 dE\? d2E
+2i = —kmy + My + ( ) - . (40)
d 2 dt* dt* R R® dt* dt2

Using the complex positions(z;, z,) the primaries are located on the real axis of the (X, ¥)-plane
- P1

=X = ———,
! ! 1+ ecosE

- P2
LH=Xp=—"T"T—""7, 41
2 2 1+ ecosE (41)

where pq, p, are positive and p;/ p, = a;/a, = mp/m,. The distances R;, i = 1, 2 from the primary

bodiesin the rotating frame are given by:

R2=1Z-Z1|= |z- % | = (X=%)° + ¥,

R’=1Z2-2|= |2-%|=(X-%)" + ¥ (42)
Note, that for e=0 equation (40) reduces to the CRTBP (3), where E=nt*, py=a;=b and
p>=a,=a. The second transformation to pulsating coordinates is given by introducing non
dimensional coordinates = z/r = & + i 5, which, together with equation (35), leadsto:
~ X(1+ ecosE)

al-¢)

y(1 + ecosE)

n= 43
A(1-) (43)
Here{ = (¢, n) and the equations of motion in synodic coordinates resume the form:
d? d
—§+2u'—{:grad{w, (44)
d E? dE
where the time dependent potential is given by
w=0(1+ecosE)}, (45)
1 M1 op2 1
AU == (E+m°)+ —+ =+ = 1 po. (46)
2 r > 2

The resulting set of equations of motion (separating the real and imaginary part of equation (44)) are:
d2é& dn OJdw
dE2 dE  9¢’
d? d 0
&, ,%8 _dw 47)
dez dE 4y

It is remarkable that the system of equations (47) is formally equivalent to the one of the circular

problem (16). However, despite this formal identity, in the elliptic case the function w depends on the
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coordinates as well as on the independent variable E, which is time-dependent. Therefore the system
(47) is non-autonomous.

If we multiply the first equation in (47) with d ¢/d E and the second with d /d E and add them the
Jacobi integral in the eliptic caseis:

d&y (de? do dw QsnE
(_) +(_) :Zf(—+—):2w—2ef—dE—C- (48)
dE dE dé¢  dp (1 + ecosE)?

If the eccentricity of the primariesis e= 0 the integral term in equation (48) vanishes: the eccentric
anomaly reduces to the dimensionless time and w = ) and (48) becomes the Jacobian integral, already
known from the circular case. In the elliptic case, however due to the presence of E in the integrand of
(48) the Jacobi integral is no longer a constant.

Similar results hold for the Hamiltonian formalism of the ERTBP. Although the potential is time
dependent, formally the Hamiltonian coincides with the Hamiltonian of the CRTBP:

B _
H = > (P1?+ P2%) + Q2 P1 - Q1 P, — ¢(Q1, Qo E). (49)

The independent time variable has to be replaced by the eccentric anomaly and the canonical equations

are.
dQ; 4H
—=— =P + ,
dE P, * @
dQ, oH
=—=P,-0Qq,
dE oP, ° @
and
dP,  oH d¢ Q- o) (Qu+ 1)
—=—— =P+ — =Py~ |n 5 THe 3 '
dE 0Q 9Qq o5 o
dP oH 0
dP,  oH 1+_¢__ P1+Q2ﬂ1+Q2,u2 . (50)
dE  0Q 0Qz i P
3.3.2. Spatial

For the sake of completeness the equations of motion of the spatial ERTBP (e.g. subject in Erdi 1978,
1981) are given here: the derivation of the problem in the spatial case follows the methods already
proposed in the planar case by introducing complex variables. After performing the calculations the
equations of motion in the spatial problem read:

w

& -2n zg,
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[ag=2 51
+{=—,
% (51)
where again
w=1+ecosE)tQ (52)
and the potential Q) is given by
1 H1 M 1
Q=Z(@+P+O)+ =+ 2+ S g (53)
2 I §) 2

The distances in the rotating coordinate frame of the spatial ERTBP are given by
%= -+ + 4
r? =&+ + 17+ 2 (54)

where the coordinate £ is aso given in time varying units according to the definition of the distance
unit asin (35).

3.4 Useful canonical formulations

3.4.1. Polar coordinates

Polar coordinates are defined as follows: as new coordinates we introduce the radial distance Q; " =r
of the asteroid from the barycentre of the system together with the angle Q, " = 6 between r and the
connecting line of u; and u,. The corresponding momenta are defined by the radial velocity P; " =+
and the angular momentum P, " =r2d;(6 + t). The canonical transformation is accomplished using a
generating function of the third kind
W3 =Qq (PrcosQ,” +PsinQ, ) + F(Q17, Q) (55)

in the planar and

W =Q; (P1cosQ,” +P,sinQ, ) +P3Q3" + f(Q1",Q2", Q3") (56)
in the spatial case (extension to cylindrical coordinates). The transformation from old to new variables
read:

Q1 =0Q17cosQ,’,
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Q=0Q1'sinQ,’,
(Q:=Q3") (57)
and from old to new momenta:

P1"=P1cosQ, +P,sinQ, " +0f/0Q,",
P,"=Qy (P2c0sQ, —P1sinQ, ) +af/0Q,",
(P3"=P3+01/0Q3"), (58)

where we used again the definitions Q; = —dW5/dP; and P"j = —dW5/0Q i, withi =1, 2(, 3) and f
can be any arbitrary function in the new coordinates. The new Hamiltonian is given by

H  =H +dW;/at, whichyields

~ 1 -
=5 (P24 P22/ Q) =P —F Q1 Q2 E) (59)
~ 1 -
H = S (P24 P2 /Qu?) =Py - F Q1" Q7 Q' B (60)

in the planar and spatial case respectively and if we choose f in (55, 56) to be constant. Note that in
Giorgilli & Skokos (1997) the authors expressed the planar problem in polar coordinates and
transformed to local coordinates around the Lagrangian point (see Skokos & Dokoumetzidis 2001 for
the spatial problem). The canonical equationsin polar coordinates are given by:

Q. =Py,

Q =P /Q -1,

: F "
Pl =P,?/Q1" %+ o
/ 0
P, oF (61)
2 = -
0Qz
and similarly for the conjugated set (Qz *, P53 "). The potential is
~, M1 M2
Fr=—+— (62)
r. 2
where the distances are given by
r?=Qu 2+ u® -2, Qs "cosQ,
% =Qu %+ ® +2pu1Qy " cosQ,”. (63)

While Giorgilli & Skokos (1997) introduced the polar coordinates locally (they changed the origin to

one of the primaries) our notation allows us to state the problem in global polar coordinates. These are
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nevertheless defined relative to the rotating coordinate system, uniformly rotating in the circular and

non uniformly rotating and pulsating in the elliptic case.

3.4.2. Delaunay variables

In this section we are interested in the formulation of the problem in Delaunay variables, which are
action-angle variables, the actions being constant in the case of the two body problem. Introduced by
Delaunay in the 19th century, such variables simplify the notation of the perturbed two body problem
as well. Using as the set of new variables the mean anomaly g, “and the longitude of the apsidal line
gy, relative to the rotating system and p;”, p,”~ as their conjugate momenta a suitable generating
function of the second kind

Wo= Q' le' (pzlz — ]clf (64)
2=W2 P + - -
2 ] ( P (P ?-p2 ’2)1/2) 2 3 P1 2

connects the old polar with the new Delaunay variables via the relations ¢ = dW,/dp;~ and
P =0W,/0Q ", (i=1,2):

1-Q1" /p12
(1-(p2"/p1))

Ql'(_pz'z 2 1)
2!

G =cos™ 112 ’ 270 .
2 p’l 2 U7 opy

P 2/Q -1
172 |’

b =Q - 0051[
(1-(p2" /P

, [ p? 2 1 )”2
Pl =|- + -~ — s
Q2 A py 2

P, =p. (65)

The connection between the Delaunay variables and the Keplerian elementsis given by:

CI1,=M EI,
@ =¢-f=g,
p=al?=L,

pp=a?4/(1-€) =G, (66)

where M stands for the mean and f for the true anomaly, a for the semi-mgjor axis and e for the

eccentricity of an asteroids orbit considered to lie on atemporary Keplerian ellipse. Here the argument
of the perihelion (¢ — f) in the rotating system is the angle between a radial vector r pointing to the

temporary position of the perihelion of the asteroids orbit and the rotating axis (along the primaries).
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For the sake of completenessin 3D an additional pair of Delaunay elements (h, H) are defined by the
longitude of the node Q) and the inclination i, namely:

h=Q,
H = Gcosi. (67)
The general Hamiltonian in this setting reduces to the very simple form
F=—i—G+R(L,G,H,|,g,h, E), (68)
212

where R is caled the “disturbing function” in terms of Delaunay variables. The expansion of the
disturbing function at the 1:1 resonance will be examined in detail in Chapter 4. The equations of
motion in terms of the Delaunay elements are in canonical form:

. O0F . oF

[=— L=-—,
oL ol

. oF . oF

g: —_—, G:——,
0G 0g

. 0F . oF

h=— H=-—. (69)
oH oh

For u; = 0 the disturbing function vanishes (R = 0) and the equations of motion become | = 1 / L3,

g=-1 and L=G=H =0, indicating that in the rotating system the apsidal line rotates

counterclockwise with unit velocity and the orbital parametersa and e are constant (two body motion).
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4. The 1:1 Resonance

(1-p) r K

Figure 1: Geometry of the RTBP in heliocentric variables (centered at u, = (1 — p)).

4.1. Lagrangian configuration

Besides the case u; =0 the perturbing function (68;3) creates another interesting equilibrium
configuration, called the Lagrangian configuration of the system. To demonstrate it, let usfirst find the
disturbing function in the heliocentric coordinate system. Moving the origin of the reference frame
from the center of mass to the larger of the primaries (u, = 1 — u”) the force function for the action of
the planet with mass u; = ¢~ on the massless body 3 = mg = 0 = u is written in the form (e.g. Brown
& Shook 1964):

A-w) (1 r
F = ; +u (K — r_’Z COS(¢)), (1)

where A is the distance between the perturbing body and the asteroid, given by:
A2 =r24+1"2-2rr cos¢). (2)
Here ¢ is the angle between the radius vector r and r * (see Figure 1). Eliminating the angle ¢ between

(1) and (2) results, likein the preceding Chapter, to:

F=F+R, ©)

where the disturbing function R in the heliocentric setting becomes:

R=y|=-+>—=-=—| (4)

Here the term 1" /21~ was neglected, since it does not contribute in the equations of motion for w,

which depend only on the derivatives of F with respect to . If we assume that the geometry of the
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system is such that the resultant forces are central forces, e.g. the center of force staysin the center of

mass of the system, the system may be solved analytically in terms of uncoupled Kepler motions.

Figure 2: Minima of (Xx,y=0) denoting the collateral fixed points of the restricted problem.

This dynamical restriction of the problem was aready known to Lagrange, who formulated the right
geometrical condition to be fulfilled: the angles between the triangle formed by (r, r*, A) need to be
invariants of the system; in other words, if they form an equilatera triangle, al bodies perform
uncoupled Keplerian motion. This can be readily seen, if wesetr =r” = A in equation (3) and (4); the
force function reduces to the force function of the two body problem. In the Newtonian formulation of
the problem in the CRTBP (17;3) planar or (32;3) spatial case, we are looking for extrema of the
potential Q2 = Q(r4, rp) according to the equations:

90 00 % 0Q % 0

- = + — =
0X ary 00X  drp dx

00 0Q dry  0Q ar, 0

o +— =0, 5
ay 0ry dy 0drp, 9y ®)
and similarly for Q = Q(X, Y, 2) inthe spatia case. The derivatives are:
00 1 ory  p1+X 0rq Yy
- :ﬂl rl_ -0 — = vy T T T
or, r?) O0x r oy 11
l79) 1 or,  X—pux 0ry y
—_— = [p— — |, — = , — = —.
oro He| T2 r,2) O0X ro oy Ip ©)

The set of equations (5) are clearly fulfilled if ry = r, = 1, which corresponds to values (x, y) at which
the three bodies form a equilateral triangle, with u; and u,, being equal to (1 — ) and 1~ respectively.

These points are called equilateral equilibrium points of the restricted problem, namely L, and Ls. In

addition another set of points could be derived from conditions (5), where ry, r, are not equal to unity:
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these solutions are determined by the restriction, that

‘(ml/ax 6r2/8y)‘_Y(/11+,U2)_ y

ary/oy 0ry/dy Y

rira - rirz
vanishes identically, which is true only if y = 0. Therefore the other extrema of the potential L in fact
lie al on the x-axis. The corresponding equilibrium points are called colinear equilibrium points of the
restricted problem denoted by L4, L, and Ls. The potential along the x-axis (for u = 0.1) is plotted in
Figure 2 and indicates, that there is only one point in between the two primaries (L), the other two
lying outside u, (L3) and outside u, (L,) respectively.

The Lagrangian problem was analyzed in Celestial mechanics for decades. Good reference and
literature can be found, e.g. in Erdi (1997) or in the book of Szebehely (1967). The proof, that no other
extrema of the potential exist can be found, e.g. in the book of Stumpff (1965) or Marchal (1990). In
the latter book it is also shown that the equilateral equilibria (L4, Ls) are of eliptic type up to Routh’s

mass (ur=1/2(1- \/@/9) or in other words linearly stable motion around them is guaranteed if
the mass ratio u, / u, does not exceed 1/27. The colinear fixed points are unstable for all mass rations
but nevertheless have their use in space-mission technology (eg. WMAP observatory,
http://map.gsfc.nasa.gov/mission/). Note, that the equilibrium points are also found in the spatial
CRTBP and can be generalized to the ERTBP, with the restriction that their position also becomestime
dependent and they perform elliptic motion with the same eccentricity like the primaries, since the
potentia w is time dependent too.

The geometry of the CRTBP in the Lagrangian configuration is given in Figure 3, indicating the
Lagrangian configuration in the CRTBP together with the zero velocity curves already mentioned in
Chapter 3, Section 3.1.3.. The Lagrangian configuration is also called 1:1 mean motion resonance
(MMR) since one revolution period of the perturbing body is equal to the revolution period of the test
body. Although the geometrical setting of the system introduces simple analysis of the motion it will
also complicate the analytical treatment of the series expansions, as we will see in upcoming sections,
compared to other more general resonance conditions (p: ).
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Figure 3: Lagrangian configuration (schematic) of the RTBP; zero velocity curves (left); geometry (right).

We are left in expressing the disturbing function (4) in the 1:1 resonance in terms of Delaunay
variables asin Chapter 3, Section 3.4.2. Our aim is to express the problem in terms of (68;3). For this
reason we will first express distances in (4) by means of Keplerian orbital elements (a, €, i, w, Q, M)
and then transform to Delaunay variablessimilar to (I, g, h, L, G, H) using relations (66;3) and (67;3).

4.2. Disturbing function in terms of Bessel functions

The distance of Keplerian two body motion, in terms of the eccentric anomaly is given by the well
known formula:

r =a(l-—ecosE). (8)

To express the eccentric anomalies E in terms of the mean anomalies M we make use of Kepler's
equation:

M = E - esin(E). 9)

Since we are interested in powers of r to express the disturbing function (4) we specify trigonometric
relations of the form:

cos(NE) = ag™ + &, cosM) + a,™ cos2M) + ...+ a, ™ cos(v M) + ...,
sin(nE) = by sin(M) + b,® sin2M) +...+b, sin(y M) +..., (10)

Note that in (9) E(-M) = —E(M), therefore the series representation of the cosine terms consist of
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cosine terms, since it is an even function. Similarly, since the sine terms are odd in E and M they

consist of sineterms. The Fourier coefficientsin (10) are given by the formulae:

1 27
ao‘”):—f cosNE)d M,
21 Jo
1 27
a," = —f cos(NE) cos(vy M)d M,
nJo

1 27
b, = —f sn(nE)sin(v M)d M.
T Jo

(11)

Substituting dM in (11) by the differential of Kepler's equation (9) d E(1 — ecosE) the zeroth order

coefficient reduces to:
1 27
ayW = — f cosnE) (1- ecos(E))d E.
271 Jo

Since the integral over (0, 2 ) of the integrand cos(n E) vanishesfor all n and

Oifn>1

27
fo cos(nE)cos(E)dE:{ﬂif ne1’

we are left with
a® = — S ™o
2

By partial integration of the remaining a,", i.e.

dsinlv M)

1 27
a(”):—f COSNE) ——— dM =
Y vr Jo 5 dM

. 27
:(cos(nE)Sln(V M)) 1 mgn(v M)dM,
0,27) M

v v Jo d

the integral can be written in terms of:
n 27
a," = —f snnE)sin(v M)d E.
v Jo
Substituting again M viaKepler's equation, oneis left with:
n 27T
a,™= —f sn(nE)sin(v E— v esin(E))d E
vt Jo

or after trigonometric reduction:

27

a," = n cos((v —n)E—v esin(E)) —cos((v + n) E—v esin(E))d E.

2vnr Jo

Since the integral representation of the Bessel function is of the form:

(12)

(13)
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1

271
Jn(x)=_f cosing — xsing) dy,
2n Jo

the coefficients (13) may be expressed in terms of Bessel-functions of the first kind:

3" = 2 (379~ Jun( ©), (14)

In asimilar way the Fourier-coefficients b, are expressed by:

1 2r d cos(v M
bv(”):——f sin(nE)LclM
0 dM

and after partial integration, reduceto :
n 27 n 27
bW = — f cos(n E) cos(y M) dE = — f cos(n E) cos(v E — v esin(E)) d E.
0 v Jo

After reduction of the cosine product in the above equality, the coefficients b, are again given in

terms of Bessel functions:

0, = = (3 (v &) + den(v ). (15)
4
For n > 1 wetherefore get
© M
CoSNE) = 1D (h-r(v©) = Jun(r ) o,
v=1 v
_ = sin(vM)
BE)= Jyn N .
SNNE) =N ) (3yn(7 ) + (v €) — (16)

y=1

Since for n = 1 the constant terms according to (12) do not vanish we need to treat this case separately.
Using the properties of Bessel-functions:

X
NJn(X) = E (In-1(X) + Jns1(X)),

dlhx 1
dx = > (In-1(0 = Ins1 %),

we rearrange for n = 1 using (12)

1 2 d JV(V 6)
8,V == (000 - (e =— :
N v2  de

b, = 13 J _ 2,
y (Jy-1(v€) + Jy11(v €)) ,(v €).
4 ve

In addition to (16), for n = 1, we get:
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>, dJ, M
COS(E)—ZZ (ve) cos(v M) E,

V2 2

Sln(vM)

sin(e) = ZJV( (17)

4.3. Application to the 1:1 resonance

4.3.1. Expansions in terms of mean anomalies

Different kinds of problems, where eccentric anomalies E need to be expressed in terms of mean
anomalies, are solved using (16) and (17). In the case of the 1:1 resonance, substituting (16) into (8) we
get:

>dJ,
__1+ e2 ve Z (ve COS(VM) a18)

Since we also need the inverse radius vector r~1 in the disturbing function (4) we first write according
to Kepler's equation (9):
sin(v M)

v

E-M=esnB)=2) e
v=1
Differentiating with respect to the mean anomaly M we get:
dE 1 !
dM 1 ecos(E) r

with a/r being given in terms of Bessel functions:

— =1+ ZZJV(V e) cos(v M). (19)
y=1

In addition powers of the form r2, r "~2 and mixed products of the form r r * are part of the disturbing
function. Introducing primed variables (a”, ", E”) to distinguish between quantities concerning u
and ¢~ we take care of their different origin, where necessary. The corresponding series expressions in

terms of mean anomalies are derived in the following way. The square of the distance r? according to

(8) isgiven by the equation:
ry2 5 e
(5) =(1-ecoyE))“=1-2ecoyE)+ > (1+ cos(2E)), (20)

which can be expressed in terms of Bessel functions using (16) and (17). Specia care must be taken to
find the approximation of A. The squares (12, r "2), we have in A? were already found above, the mixed
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product can easily be derived using primed variablesfor r “ in (8) resulting in the identity:
rr’
—— =1-ecosE)-e’cos(E") +ee’cos(E) cosE"). (22)
aa
The angle ¢ between r and r” can be easily expressed by true anomalies and the corresponding
arguments of the perihelia. Since we are dealing with the planar case the angle is formed by the sum:
p=Ff+f +w+w’,
where f and f ~ are the true anomalies of the asteroid and the perturbing planet respectively, w and w”
indicate their arguments of the perihelia. The cosine of ¢ after separating the trigonometric terms
involving true anomalies in products of their trigonometric arguments takes the form:

cos(¢p) = coS(w + w") (cos( ) cos(f) — sin(f) sin(f)) —
—SN(w +w ") (cos f)sin(f) + cos( ) sin(f)). (22)

It is therefore enough to express the trigonometric terms of true anomalies (cos(f), sin(f)) in terms of

mean anomalies again using Bessel functions of the first kind. The formula of the conic section gives:

1- 1
cos(f) = ¢ 2 (23)
e r e
and from
d /r 1 esin(f) 3
wla)=a V
al1-¢€)
we get
1-€ d r
: _ aqr (24)
sin(f) e dM(a)’

since a is a positive quantity. Using the series (19) in (23) and the derivative of (18) with respect to M
in (24) we are left with

cos(f)_Z—ZJ (veycogy M) — e,

y=1

dJ, M
sin(f)=241- ezz (ve) sintv ) (25)

Equations (25) can be readily used to express the cosine of ¢ in (22) in terms of products of simple

trigonometric functionsin termsof f and f “. Up to now al the formulae are exact, with respect to e as
long we incorporate all terms of the infinite series. The identities (18) - (12) together with (16), (17)
and (25) are convergent series expansions, provided that the eccentricities, occurring in the infinite
series (17) and (25) are less than unity. Since all functions are periodic, differentiable and smooth in
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their whole domain of definition, their Fourier series expansions are convergent too. Convergence
problems begin, when e— 1, athough it should be stressed, that the accuracy of the expansions
drastically decreases when the eccentricity approaches e ~ 0.67 .... The convergence may be optimized
for larger e ("), the generalization also to parabolic and hyperbolic motion is possible, we will not
treat this case here. The interested reader is referred to the book of Stumpff (1959, p317+). Sincein our
calculations both, the primaries and the asteroid are assumed to stay in elliptic type motion, we can
always assume the eccentricities to remain small. In addition we will use e” as a parameter to the
system. To get the disturbing function R we are therefore seeking for a multivariate Taylor series in
terms of e and e”. The series expansion of J,(x) with respect to x is maximal of order v. Therefore it is
enough to incorporate all Fourier terms up to order v in the infinite series (16), (17), (25) to find the
correct coefficients of order v. To keep track of the order in the multivariate expansions we introduce a
book keeping variable B~¢, e, which is good as long as the eccentricities remain of the same order of
magnitude.

We only give the Taylor series of the basic termsin R up to first order in the eccentricities here since it
suffices to indicate subsequent investigations. The full expansion of the disturbing function up to 7th
order isgivenin the Appendix I1. From (18) - (22) we conclude:

é:l—ecos(M),lH..., (26)
a
?z1+ecos(M)ﬁ+..., (27)
r 2
(—) ~1-2ecosM) B +..., (28)
a
% ~1-(ecosM)—-e cosM ")) B+ (29)

coS(¢) ~cosM - M "+ w—-w’) + (e  cosM + w — w) +
ecos2M -M +w-w)—ecosM " —w+w))B+... (30)

We are left to expressr "3, A2 and A~ from R by our derived formulae. The series of r "~ with respect
toe” isgiven by:
a3
(—,) =1+3cos(E)e" +...,
]
which after the substitution of (16) and (17) for the eccentric anomalies up to first order yields:
a’\3
(—,) ~1+3e cosM)B+.... (31)
]

The combination of (28) (primed and un-primed), (29) aswell as (30) is used to get A:
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A’~a’+a’?-2aa’cos(M -M " +w-w)-(+2a%ecosM) +2a"?e” cosM ') +
aa (3e'cosM +w-w)—-e cosM -2M " +w-w’) -
ecos2M -M +w-w)+3ecosM  —w+w))B+... (32

Finally, the series form of the inverse distance between the asteroid and the perturbing planet A~ in R
is expressed up to order O(B):

L 1 ecosM)a? 3a’e cosM +w-w’)a
AT * 32 32 *
J Ao Ap 2A;
a’ecodM -2M +w-w)a a?e cosM’)
+ +
2737 AY?
aa’ecos2M -M +w-w) 3aa’ ecosM’ —w+w)
+ - B+..., (33)

3/2 3/2

where we used A, as an abbreviation for the zeroth order approximation of A2 given in (32). The
number of terms clearly increases at higher orders. The disturbing function is given according to (33) -
(27) + 1/2 (32)(31) - 1/2(28)(31), and we finally get the disturbing function in Keplerian elements in
the form:

Vmax

R=Ra e w M,M"a",e,w’)= ZAV(a, ga’,e’)cosg(w, M, M’; w)), (34)
v=1

where the amplitude terms are polynomial in the eccentricities € and e” and the angles ¢, are linear
combinations of their arguments. Here v is equal to the number of all possible trigonometric
combinations of the angles consistent with D"Alembert’s rule up to a given order of expansion in the
eccentricities. The primed quantitiesa’, e”, w~ are parameters of the system. In consistency with our
units (unit length between the perturbing body and the central mass) the semi-major axis itself is unity,
meaning a” = 1. In addition, without loss of generality, we may set the perihelion of the perturbing
planet aligned with the axis spanned by the central mass u, and uq, resultinginw” = 0.

4.3.2. Modified Delaunay elements

Introducing mean longitudesviaM = A1 —w and M " = A" we may define the critical argument 7 of the
1:1 MMR accordingto A = 1" + 7. The series representation of (34) resultsin:

Vmax

R@ & w11 e)= ) Ala ge)cose(r 1), (35)
y=1

where the primed A" increases linearly in time, defined by the mean motion of the disturbing planet.
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The amplitude termsin (35) are either of the form

A P(aga’, e) .
v = : 36
N,(a®+a?-2 aa'cos;(r))p“/2 (36)

or
A = PV(e—’e',), (37)
Q(a a)
where P,, Q, are again polynomials in their arguments and N,, p, are integer numbers. The form
depends on the origin of the expansion, namely A in the case of (36) and r, r ” in the case of (37). We
aready indicated that the 1:1 MMR has to be treated differently than other resonances:. while in
general resonance conditions (p: q) (not both being unity) of the massless and the perturbing body one
may introduce the ratio « =a/a” in the case where a<a” or a =a’/a, where a>a” as a smal
parameter, we need to modify the definition of the small parameter in the 1:1 MMR, since al
combinations (¢ <1, @ > 1, a =1) may occur during the time evolution of the system. Following
Brown and Shook (1964) we introduce the modified ("small") Delaunay element x = Vva/a -1
(connected to L ~a%? in Chapter 3, Section 3.4.2). In addition we need to modify the Delaunay element
G~eand 7 to form a canonical set of variables to the modified Delaunay elements (7, w, X, y) defined

by:
[ a
T:A_A,, X= -, _11
a

w, y=\/§(\/1—e2)—1. (38)

In addition we make use of the fact, that in the 1: 1 MMR the quantity cos(t) remains considerably
smaller than unity as long as | 7| is not very close to zero, which means a close encounter of the
massless body with the perturbing one. Since we need to exclude close encounters in our domain of
definition (the denominators in (36) would become zero). we limit our study to the Trojan type motion.
By expanding (35, i.e. 36) with respect to cos(r) and x we then get:

Vmax

R=R(r, w,x y;a’,e)= ZBV(X, y;a’, e’)coyb,(t, w, 1)). (39)
y=1

The new coefficients B, stem from A, and the new angles 6, depend again linearly on their arguments.
The Hamiltonian in this modified set of Delaunay variables (t, w, X, y) in the rotating coordinate
system (compare with (68;3)) is of the form:

1
H=HT o, xy)=-———-1+x-y'R (40)
2(1+x)
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together with the disturbing function R in terms of (7, w, X, y) given by (39). The canonical equations

of motion in this setting are given by:

dr  H 1 4R
— == -1+u —,
dE  dx (1+x° oX
dw JdH _0R
dE_ay_lu ay’
dx oH _0R
dE  ar H ot
dy oH ,OR (1)
dE o0 " bw

For e” = 0 the problem reduces to the CRTBP (E = t), whilefor e #+ 0 we are dealing with the ERTBP.
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5. The Symplectic Mapping Model

el %/p
[VA

Figure 1.:Motion on the T2-torus, parametrized by ¢;, ¢, with constant actions J;, J,.

5.1. Discrete mapping models from continuous flows

The idea of constructing symplectic mapping models for continuous flows is related to the concept of
reduced phase space of Hamiltonian systems, leading directly to the concept of surface of sectionsin
continuous flows. If we assume as a basic example a d > 2 degrees of freedom autonomous
Hamiltonian, in coordinates (p, ..., Pd, Q1. --., da), the energy surface in the phase space has
dimensionality 2d —1. By projecting out a single generalized coordinate py and considering
consecutive intersections with the lower dimensional phase space defined by gq = const we are left
with a symplectic mapping, with coordinates py, ..., Pg-1, O1, --., dd—1, defining a surface of section in
the reduced phase space with dimension d,eq = 2(d — 1), pq being parameter to the system. Since the
Liouville-Arnold theorem applies for conservative systems in general, the volume preserving property
aso holds for the lower dimensional phase space, therefore if one or more constants of motion in the
dynamical system exist, then the intersections of the trgjectory with the surface of section will al lie on
a unique surface of dimension smaller, than the dimension of the reduced phase space I, Otherwise
the intersections will fill a d-dimensional volume within this section. In particular, for an
autonomous system with two degrees of freedom the phase space is four dimensional. By choosing a
constant energy level of H the projection of the trgjectory lies on a three dimensional subspace. One
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momentum can be expressed by the three other canonical coordinates (e.9. p> = p2(pP1, J1, 02))- By
setting g, = const, any additional constant of motion 1 (py, Pz, 01, Op), if it exists, will lie on a unique
curve on the reduced phase space of the system, which is of dimensionality 2 (the so-called Poincaré
surface of section, Poincaré 1892, 1893). By inspecting the symmetries in the reduced phase space we
are able to deduce the existence of additional integrals of motion of the higher dimensional system. By
construction the selected surface needs to be transverse to the flow, such that all trgjectories starting in
the reduced phase space intersect it an infinite number of times. The analysis of the maotion on the
(d — 1)-dimensional subspace helpsto understand the geometry of the original phase space.

5.2. Hadjidemetriou’s method

Standard methods to construct mappings from flows and vice versa are based on §-functions. The
theory behind as well as some basic examples can be found, e.g. in Lichtenberg, Lieberman (Chapter
3). One of the first mapping models used in Celestial mechanics is due to Hénon-Heiles (1964). The
basic idea behind the §-function approach was due to Chirikov (1979) and introduced to applications of
Celestia mechanics by Wisdom (1982). We will not follow this classical approach here but use instead
a different one, proposed by Hadjidemetriou (1991), according to which the averaged Hamiltonian
with respect to short periodic terms can be used to construct a mapping model to the continuous flow.
While the classic approach, based on the use of ¢-functions, may violate the Poisson structure of
conservative systems (Hadjidemetriou 1996), Hadjidemetrious method by construction preserves the
symplectic structure of phase space using the averaged Hamiltonian as a generating function for the
mapping. Furthermore, one may show that the mapping model has the same fixed points as the original
Hamiltonian model and also with the same stability.

Consider ad-degree of freedom nearly integrable Hamiltonian system of the form:

H(J, 6) = Hy(J) + e Hy(J, 0), 1)
where Hy denotes the integrable and H, the nonintegrable part and € is a small parameter, indicating
the strength of the perturbation. Further let H, be analytic in (J, 6). Let a pair (Jf, Qf) be a canonical
pair where the angle 6; is a fast angle with period T significantly shorter than the periods associated
with the remaining angles (64, ...64_1). The motion of the unperturbed system H takes place on an d-

dimensional torus T9 with constant frequencies

wjsz(J)Z H, jzl,...,d. (2)
J
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In the integrable approximation of the system the projections onto (J;, 6;) of the d-dimensional surface
of section defined by Hp = h, 6; = const (<:> Jj = Jjo, 6; = const) defines the twist mapping in the
(3;, 6;)-plane of the form:
NN
0" = 6 + wjJ). 3
The connection between the integrable part of the flow Hg and the twist mapping comes from the fact,
that the transformation in phase space (J, 0) - (J, 6) itself is given by:
oW
==
" = a—V\,/, (4)
0J

where W is the generating function of old and new variablesW(J *, ). Since the generating function of
the twist map on the plane (J;, 6;) is given by

]
W(3j1, i) = i1 O + fo ©0i(3ne0) dna 5)

the difference equations of the twist mapping projected to (J i 0 j) turn out to be:
Jj,n+1 = Jj,m
Ojns1=0jn+ 21 a(Ins1)- (6)

The mapping in this form is implicit, since the new momentum J,,,, appears on the right hand side of
the equations.

In the next step we are interested in the effect of the perturbation e H, on the twist mapping according
to the disturbing function of the Hamiltonian when € = 0. The main result due to Hadjidemetriou is that
the correct phase space topology is approximated by using the averaged Hamiltonian H as a generating

function to the system, i.e.:

W=1Jn16+T H (In+1, On), (7)
giving the perturbed twist mapping
J ow J=J (Jns1, Bn)
=— = = + — ’ ’
n 80” n n+1 (99n n+1, Un
AW aH
n+1 = = Onp1 = On + —— (Jns1, On)- (8)
n+1 n+1

By averaging over 6;, we are left with a Hamiltonian H of the same number of degree of freedom but

one ignorable coordinate s (or from another point of view with a Hamiltonian on the reduced phase
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space with an additional parameter J¢). If we now introduce the averaged variable again as the new

time variable into the system we obtain a discrete mapping of the dynamical system based on the
averaged Hamiltonian of the problem. The discrete time n plays the role of the revolution period of the
fast angle g; at the n-th revolution period. The state of the mapping at the nth step of iteration
approximates well the state of the continuous flow at the continuoustimet = nT. In particular, it was
shown (Hadjidemetriou 1991) that using (7) as the generating function of the mapping the fixed points

and their stability are conserved.

5.3. Application to the Lagrangian configuration

5.3.1. Implicit mapping

Comparing the periods of Trojan-type motion in the case of Sun-Jupiter (Erdi 1997), one finds well
separated basic periods. The period of revolution around the Sun is the same like Jupiter (~12yr) due
to the 1:1 MMR. The period of libration around the equilateral fixed points is ten time larger
(~145 - 240yrs). The period of the free motion of the argument of the perihelion is between 3000 yr
and 5600 yr and the proper period of the ascending node is beyond 38000 yr. Since we are interested in
the planar approximation of the system we neglect the ascending node and are left with three main
periods (~12yr, ~150yr, ~3000yr) governing the system. The fast angle is therefore identified to
be the revolution period of Jupiter itself, connected to the orbital longitude A". Looking at our

Hamiltonian model (40;4) the averaged Hamiltonian therefore becomes:
- 1 1 m o
H=-———-(1+X—-pu —fz R, w, X, y,A";a", e)dA’, 9)
2(1+x? 27 Jo

where the integral of the disturbing function over A~ gives the same terms as the canonical
transformation implemented in the original paper of to Hadjidemetriou (1991). In the circular problem
(e” =0), it can be readily shown that in all trigonometric arguments of (39;4), the angle A" can only
appear via the combination A" —w. Thus by averaging the circular problem the argument of the
perihelion w of the asteroid disappears together with the orbital longitude of Jupiter A~ from the
averaged Hamiltonian H. This implies, that the conjugated variable y becomes an integral of the
mapping corresponding to the proper eccentricity, which simply becomes a parameter labelling the 2-
dimensional symplectic mapping in the remaining variables (r, x). On the other hand, in the elliptic
case (e” # 0) there are terms depending on w in other combinations surviving the averaging process
(9). Thus the new mapping is 4-dimensional and the dynamics of the action y (as well as w) is coupled
to the dynamics of the pair (7, X). Thisis in fact a consequence of the absence of the Jacobi integral in
the elliptic problem. As aready mentioned in Chapter 3 it is possible to find an additional integral of
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motion in the CRTBP, which is not possible to do in the ERTBP, since the integrand in (48;3) does not
vanish. While in the former problem, the additional integral of motion shows up in the time-invariance
of y in the mapping approach, in the latter one it does not.

The generating function in the planar elliptic problem turns out to be:

1 , = .
W = 7h Xns1 + @n Yne1 — T(— + 1+ X+ Rtn, wn, X041, Yne, @, € )]: (10

21+ x)?

where R is the averaged disturbing function stemming from (9). In units in which the revolution period

of Jupiter is T = 2 &, the mapping equations for the massless body are found by applying (8) via

oW 1 _ OR o
Th+l = =Tn— 2n1- 3 +u (Tnv Wny Xn+1s Yn+ls a,e ) ’
O%ns1 (1 + Xns1) O%ns1
oW R o
Wpny1 = —— =wptu (Tny Wn, %41, Ye1, @, €),
ayn+1 Yn+1
oW R o
Xn = = Xn+1 +/'l P (Tn, Wn, Xn+1, Yn+1; a,e )1
0Th 0Th
oW _OR o
Yn= = Y1t H (Tny Wny Xn+1s Y1y @7, €). (11)
0 wn Owp

The mapping is implicit but symplectic by construction. Like in the continuous formulation, the
problem reduces to the unperturbed two body Keplerian motion, if R=0 or x" =0, which is in
agreement with the result already obtained in Chapter 4, Section 4.1 or at the end of Chapter 3, Section
3.4.2.

5.3.2. Fixed points of the mapping

The set of difference equations given by (11) form a set of coupled twist maps of the form (6) in the
(t, ¥) and (w, y) planes, where the coupling terms are due to the presence of R. The stationary points of
the system (corresponding to periodic solutions of the un-averaged system) should satisfy the
conditionst=w=Xx=y=0,i.e
OH oH oH oH 0
ax 9y 0t dw
the corresponding condition for the period-1 fixed points of the symplectic mapping is given by:

(Tne1r Wne1s Xnt1s Yned) = (Tny Wny X Vo) = (775, 05, X, Y9),

for arbitrary n. The condition for stationary pointsis:
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OH O8H o6H oH 0
ot dw" X dy

Therefore the period-1 fixed points of the mapping correspond to the stationary points of the averaged
system and thus to periodic solutions of the original system. The theoretical values of the fixed points
are given by (Sandor & Erdi 2003):

(ﬁ,wﬂXﬂyﬁ:(Qi , 1—e4-—q, (12)

corresponding to the equilateral fixed points L, and Ls. The colinear fixed point L3 on the other hand is
given by

(T, 0", X", ¥) = (0, o\ l-e? - 1). (13)

Note that in our mapping approach we are not able to look for the missing collateral fixed points L4, L,
located at x* = v* = 0, since the disturbing function becomes singular at a/a” = 1 (see Section 4.3.2).
However, thisis not a problem aslong we limit our analysisto the triangular fixed points L, and Ls.
The stability properties of the fixed points of the mapping are found by the eigenvalues of the Jacobian
matrix. We denote the variations o Tgp1, ¢ wo1, 0 Xoi1, 0 Yo around the fixed point:

Thej =T +0Tj, Wpyj =" +0wj,

Xn+j:X*+5Xj,yn+j:y*+6yj: (14)
where j is meant to be O for the old variables (1, wn, X\, Yn) and 1 for the new set of variables

(Thslr Wnsts Xne1r Yner)- Plugging (14) in (11) and Taylor expanding around the fixed point

(t*, w*, X*, y¥) up to first order with respect to (r,,, wn, Xn+1, Yns1) QIVES:

4 OH d OH
Ont1— O =0p—O" + 271 — (th—=7)+
Tn al:‘n+1 6wn 6Dn+1

(wn— ") +

d OH ,
(Xn+l - Xx) +

(y 1_y*)]1 (15)
O0Xns1 00ns1 0Yne1 00ne1 "

forO=71,wando =x, yor

P
On—0"=0p,1 -0+ 271 — Th—T7)+ wn —w") +
n n+1 [(9Tn Dn( n ) (9wn 6Dn( n )
0 M w2 O (16)
[ — 8 + — ,
PN e I

for O =x, yand o =7, w. Using (14) together with (15, 16) and collecting terms of same index on the

same hand side of the equations resultsin matrix form:

B-(671, 6w, 6%, 6 y1)' = C-(570, d wo, 6 X0, 6 Vo), (17)
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where B, C are 4x4 matrices. Therefore the linearized mapping, centered around the fixed point, reads:
(671, 6wy, 61,6y =B C- (670, 6 wo, 6%, 6 Yo' (18)
The stability of the fixed point depends on the eigenvaluesof B-1 C = M and since M is symplectic all

eigenvalues are either complex conjugate or reciprocal pairs. The eigenvalues of B~ C lie on the unit

circle if the discriminant A > 0 and the modul of |by|, |by| < 2. The quantities A, by, b, are defined

according to:
A= C32—4(C2 - 2),
1
b]_’z = 5 (a + \/K)
wherec;, i =1, ..., 3 arethe coefficients of the characteristic polynomial of B~ C:

P+ 3+ A%+ 31 +1=0.

The coefficients c,, ¢z in the Sun-Jupiter case indicate the fixed pointsto be of elliptic type.

5.4. Mapping model in the Sun - Jupiter - Trojan case

5.4.1. Implicit mapping

In the case of Sun-Jupiter we set in (11) x4~ = 0.000954 ... and e” = 0.0487 ... and iterate the mapping
in its implicit form. The old variables (1, wn, Xn, Yn) ae used as initial points (g, wo, Xo, Yo) for the
root finding algorithm to solve the mapping (11) with respect to (111, Wn+1s Xn+1s Yner) Thisis done at
each step up to given accuracy. Note that in the actual implementation, since the difference system,
defined by the mapping is uncoupled with respect to the angles (1,1, wn+1), it is enough to solve the 2-
dimensional system with respect to (X,,1, Yn+1) @nd plug in the solution in the other two equations to
get (The1, wner)- The resulting surface of section is a 4-dimensional manifold and cannot be visualized
directly. Although we could expect two kinds of twist mapping behavior, the interactions due to the
perturbations may introduce complex structure into the system. To get a first visual impression we
therefore need to define a suitable section of the Poincaré surface of section, like in Sandor & Erdi
(2003). The section condition to find a projection to the (r, X)-plane is defined according to
Wnp = Wo, Wne1 — wn > 0. The other projection to the (w, y)-plane is defined via the section condition
Th = To, Tne1 — Tn > O A X, = 0. The former condition reduces the phase portrait to a 2-dimensional
manifold which could be compared to the mapping obtained for the CRTBP. Note, that since we are
indeed in the ERTBP and not in the CRTBP, without this section condition the pulsating and
nonuniform rotating coordinate system would show up in a pulsating behavior of the phase portrait
plots at different “times’ n.
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Figure 2a.: Phase portraits for the Trojan case of Jupiter; Hadjidemetriou mapping (upper), continuous flow (lower). Relative
orbital longitude 7 vs. variation in the semi-major axis x.

The projections on the (r, x) and (w, y) plane of the implicit mapping iterations are given in Figure 2a
and Figure 2b respectively. While the upper frames in Figure 2ab show the phase portrait of the
implicit mapping model, the lower frames give the mapping obtained by direct numerical integration of
the restricted problem. In the continuous formulation the surface of section was again defined by A" =0
and the same initial conditions as in the corresponding mapping figures where used. These compare
well from a topological point of view: the angular tilt of the invariant curves in Figure 2a (upper
compared to lower frame) corresponds in reality only to a small phase difference in the oscillations A6
of T and x and can be explained by the construction due to Hadjidemetriou’s method (Efthymiopoul os
& Sandor 2005). Note that the visual impression of the tilt is only due to the very different scale of the

axis, the order of Ad in fact is given by 1072 rad. Figure 2a shows the familiar picture of the dynamics
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of the co-orbital motion in the ERTBP, which should be compared to Sandor & Erdi (2003). The
regular motion in the (r, X) planes are rotational and the border of the stability region is marked by
high-order resonances creating chains of islands embedded in the chaotic stickiness zone.

0.000+ .
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0

(1-e’)¥2-1

0.000}

~

y:
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~0.006}

—0.008 ¢

-0.010% : : : ‘ ; -
0 l 2 3 4 5 6

()

Figure 2b.: Phase portraits for the Trojan case of Jupiter; Hadjidemetriou mapping (upper), continuous flow (lower). Argument of
the perihelion w vs. eccentricities. Librational and rotational regime.

Figure 2b shows the librational and rotational behavior of the system. While in the inner part of the
phase space (centered around the fixed point) the asteroid’s perihelion is librating around the fixed
point (between two values 0 < wmin < w < Wmax), the perihelion starts rotating in the outer regions
(0 <= w =< 2n). In fact the former motions correspond to the ERTBP limit of the motions called "non-
paradoxal” by Beaugé & Roig (2001), while the latter motions correspond to the "paradoxa™ motions.
The reason for this terminology is due to the fact that the difference of the two types of motion on the

(w, y)-plane does not correspond to a separatrix resonant dynamics. In fact, a plot in the Laplace-
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Lagrange (h, k)-plane in Figure 3, defined by h = ecos(w) and k = ecos(w), shows that al invariant
curves arein fact librational around a fixed center. The center is given by the eccentricity of Jupiter and
lies 60° before and after Jupiter, namely at (e” cos(60°), e ’sin(60°)). Note that the radius in the
(h, k)-plane ey coincides with the proper eccentricity ey, i.e. it is an approximate integral of motion,
that characterizes together with the other proper elements Dp = Tmax — Tmin @d dp = 8max — amin the

motion on a particular invariant torus of the 4-dimensional mapping given by (11).

€'=0.0487, €,=0.0173
0.07

0.06
0.05 8
004
0.03
002 .

0.01F

ool
0.00 001 002 003 004 005
h

Figure 3.:Laplace-Lagrange plane calculated from the mapping data. The fixed point lies at (e"cos(60 ©), e” sin(60 ©)). The forced
eccentricity e, corresponds to an approximate integral of motion.

To validate the use of the mapping model, the relation between the libration amplitudes D, and d, was

calculated for different invariant curves of Figure 2a and is shown in Figure 4. The relation is amost
perfectly linear, and the slope found in the mapping model coincides with the slope given by the
theoretical value given by Erdi (1988) based on the continuous formulation of the problem
(1/0.275[rad / AU ).
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Figure 4.:Relationship between proper elements d, and D, calculated from the mapping model in Figure 3 for different invariant
curves.

In summary, the mapping model is i) symplectic, ii) reproduces the fixed point and stability of the
original flow together with iii) the correct relation-ship of the proper elements of the Hamiltonian
model. We therefore conclude, that this mapping yields the precise dynamics of the system and can be
used for the construction of Nekhoroshev estimates.

5.4.2. Explicit mapping

To render the implicit mapping (11) explicit we need to expand it with respect to the mapping variables
(t, w, X, y). Although we may lose the accuracy of the mapping far away from the expansion point, we
need to do so, since for the normal form construction in the next chapter we will also need to
diagonalize and complexify the mapping in its explicit form. For this reason we expand the generating
function of the mapping (10) together with the averaged disturbing function (9) up to sufficiently high
order, such that the error in the approximation is bound below machine precision. Since the mapping
variables are of order unity or smaler (0<7, w=<2r and |x| <107, |y| <107% see Figure 2ab)
the expansion around the fixed point in the case of Jupiter (from 19, withe” = .048):

(7%, W', X, Yy = (0., 1.0472, 0., —0.001250782228091052) (19)

was truncated at the 16th order. It has to be stressed, that it is preferable to develop the generating
function W instead of the mapping equations for two reasons: i) we just need to expand one function W
instead of 4 difference equations and ii) the symplectic structure is not violated by the series expansion
of the generating function. The approximated generating function W, is of the multivariate Taylor
seriesform:

W, = {%ﬂ Wiy iz iz Utn' Uzn? Vine1™ Vana1®, (20)

where the index set J is defined as the set of all integers (i, i, i3, i4), where 35 i < 16. A monomial of
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the form:
WV1,V2,V3,V4 ulnil u2ni2 V1n+1i3 V2ﬂ+1i4 (21)
is said of order r, if iy +is+i3+is=r. From pure number theoretical properties it follows, that the

number of monomials of apolynomial of degreer in n variablesis given by the binomial:
n+r
( r )
which is 4845 inthe case of n=4, r = 16 and 74613 in the case n = 6, r = 16 (needed for the series

reversion process of the implicit mapping Uy, Uon, Vin, Von, Vins1, Vone1). Nevertheless the coefficient-

arrays of our polynomialswill turn out to be relatively sparse as we will see in the proceeding sections.
The new variables (uy, u,, vy, Vo) introduced in (21) are the variations of (7, w, X, y) with respect to the
fixed point (7%, w*, X*, y*), namely (similar by 14) they are defined by:

k

U=7—-7" h=w-w",
Vi=X—X,Vo=Yy— V. (22

Although the generating function (20) is approximate, the corresponding mapping will be symplectic
up to machine precision by construction. Furthermore it can be shown, that after the expansion of W
around the fixed points the resulting mapping has the same fixed point at the origin with the same
stability asthe original fixed point. The resulting mapping from W, reads:

Uins1 Utn U1(U1n, Uzn, Vini1, Vons1)

Unia | M. Uzn N Uz(U1n, Uzn, Vini1, Vons1) (23)
Vint1 Vin V1(Uzn, Uzn, Vine1, Vone1) |

Voni1 Von Va2(U1n, Uzns Vins1s Vons1)

where M is the linearized part of the mapping (11), solved with respect to the linear part of the new
mapping variables (n + 1). It isgiven by:

724471%x10%  1.59277x 1073 —19.0939 -10.1437x 1073
M - 552.164x10°®  999587x10° -9.8292x 1073 —8.4445 @
13.8281x 1072 —82.7724x10°° 1.01587 0.
-81.9979x107° 48.9957x10° -38.1077x107° 1.

ThefunctionsU = (Uy, Uy) andV = (V4, Vo) are again multivariate polynomials of the form

Z Ovyvavavs ulnil u2ni2 V1n+1i3 V2n+li41 (25)
{ij}ejl
where O are the rea valued coefficients Uy | U, | V| Vo stemming from the multivariate series
expansion respectively. The inversion of the series is done by composing monomials containing

(Vine1, Vone1) With the linearized solution in (Vi .1, Vone1) until all monomials containing terms with

Vini1, Vone1 @€ pushed to higher orders. After successive steps the multivariate polynomia will be
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explicit up to order K, which we set in our calculations to K = 19. The resulting explicit mapping is

given in matrix form according to:

Uns1 Un Us1"(Ugn, Uzn, Van, Von)

Uzn+1 M. Uz2n n UZ*(Uln: Uzn, Vin, V2n) (26)
Vin+1 Vin V1*(Usn, Uzn, Vin, Von) |

Vons+1 Vaon V5" (Ugn, Uon, Vin, Von)

where the asteriksin U* = (U;", Uy") and V* = (V;*, V5") indicates, that the monomials are depending

on the old variablesonly, i.e. they are of the form:
Ovl,vz,V3,V4 lJlnil u2ni2 Vlni3 V2ni4 (27)

(compare to 23). The full explicit expansion of the mapping consists of 35420 coefficients in the case
of n=4, stemming from a multivariate polynomia of dimension n=6, consisting of 708400
monomials. To estimate the error we checked the conservation of the Poisson structure of the explicit
mapping, which turned out to be of the order 107°. This error affects the size of all quantities derived
from the mapping (normal form, remainder, estimates) by the same order beyond the truncation order
K = 19. The basic periods of the system are derived from the eigenvectors (Aq, Ap, A1, A,) of the
linearized system according to Tj = 1/cos}(Re(Aj)) with j=1,2 and turn out in our case to be
T, =12.1944 and T, = 310.453 in revolution periods of Jupiter, which in the present time units is 2 7.
Tranglated to physical units we get:
T, = 144.626 yr,

T, = 3681.97 yr, (28)

which should be compared to the precise theoretical values given by Erdi (1997), namely
T, = 147.8 yrs and T, = 3683.97 yrs. The difference is less than 3 percent. A serious problem regards
the radius of convergence of the explicit mapping, centered around the fixed point L,. After the
inversion, it turns out that the radius of convergence is smaller for the explicit mapping than for the
implicit mapping. The validity of the explicit mapping is restricted to the librational regime of motion
(in Figure 4b). The reason was found in the series reversion process and will not be dealt with in the
sequel. Therefore there is still ground to improve the estimates developed in later chapters. We will
come back to this point later on in the discussion.
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6. Birkhoff Normal Form

Having determined the explicit mapping in the vicinity of the equilateral fixed points L4, Ls, we can
now proceed in implementing the Birkhoff normal form scheme, which is at the core of the analytical
apparatus of the Nekhoroshev theory: estimating the size of the remainder of the normal form at the
optimal order of truncation yields the estimates of the Nekhoroshev stability of our system (done in
Chapter 7). In fact we are looking, like in the Hamiltonian flow (Chapter 2) on the influence of the
remainder on the integrable approximation to the system. Integrability in the Hamiltonian system is
connected to motion on a torus. The discrete analogon is motion under a twist mapping. The theory on
normal forms of Hamiltonian flows was developed in Chapter 2. The construction of normal formsin

the case of symplectic mappingsis the main subject of the present chapter.

6.1. General Birkhoff normal form algorithm

Let

Xne1 = A Xn + G(Xp), Q)
be a symplectic mapping of even dimension d = 2m, where X is the 2m dimensional vector of the
mapping variables (Uq, ..., Un, Vi, ..., Vim) and A is the linear approximation to the system in matrix
form. G is a vector function of the old variables and in principle could be truncated to include all
nonlinear couplings up to somefinite order N, i.e.:

G=G?+G¥+...+GM, )
where the superscript defines the order of the contributions. These are assumed to be in multivariate
polynomial form, thus a monomia belongs to class G if it is based on Ujij, ijj and the sum of the
exponents ij, kj over j=1,...,m is r. The symplectic condition for the linear part of the

transformation reads:
A-J-A 1=, (3

whereJ is the skew symmetric matrix of the form:

0) 1
_12m O2m

and 0y, 1,1, are the 2mdimensional null and identity matrices respectively. Symplecticity of the full
nonlinear mapping implies the Poisson-structure:
{Ui, Vj} = (5”',
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{u, uj} = {vi. vi} =0, (5)

where, that i, j < mand ¢;; isthe Kronecker delta.

6.1.1. Diagonalization and complexification

In the first step we diagonalize and transform the mapping from the set of real variables X to a
convenient set of complex variables Z = (z, ..., Zm, Z, ..., Zm), Which can be achieved by calculating

the eigensystem of the transposed matrix AT. In addition we need to rescale the linear transformation

induced by the matrix of eigenvectors, so as to preserve the Poisson structure also in the new variables:
{z, 2} =6,
{z. 7} ={z. 7} =0, (6)
whereagaini, | < m. Thetransformation B from real to complex variablestakesthe form:
Z=B-X 7)
and the resulting mapping in complex coordinates reads:
Zno1 = Q- Zn+F(Zy). (8)

The linearized part €, is the frequency vector of the unperturbed twist mapping resulting from the

complex diagonal form of A, i.e.:
Q, = (ewl, L etem et e‘“”“), 9

where the w; are defined via
U)j:_, j:]-a---lmv (10)

and the periods T; are the basic periods of the system. They are calculated from the already obtained

eigensystem above according to:
Tj=cos{(ReAj), j=1,...m, (11)
where (Al, Y\ P Km) are the set of eigenvalues corresponding to the jth eigenvector of the

eigensystem (which we already found in the Sun-Jupiter case according to (28;5)).
Likein therea case (1, 2) let us split the function F into contributions of equal order of magnitude:

F=FP+F®4+  +FN (12)
which in component notation F = (Fy, ..., Fm, Fy, ..., Fr) isgiven by:

N
Fi = -Qw,i Z +ZFi(K)(Zl, cery Zmy 2,y eey Zm) (13)

k=2
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and similarly for the complex conjugated part of F:
=~ \ =
Fizﬂw,imZFi (Zis ooy Zoy Zis oees Zi)- (14)
k=2

The goa of the normal form construction is to find a suitable transformation ® under which the
mapping (8) resumes the form of atwist mapping, i.e.:

Zn1=U(Zy = Qwﬂo'((@ - Zn, (15)

where  Z=(4, .. lm (yh - ly) ae  the  new  transformed  variables  and

U =(Uy, ..., Uy, Uy, ..., Up) defines the normal form of it. The vector valued function:

w'({ Z) = (wl ’(gl 21)1 o0 Wm ’(§m Zm))
yields the corrections of the fundamental frequencies wj. If such a transformation @ exists and its
inverse function ®=1 is defined in the whole domain of the original mapping, including the origin, the
mapping is said to be integrable and the exact integrals of the mapping are defined by | = ¢ Zj orin

old variables:

_ — -1

1 =0 X2y oo Zny Zs oo Zn) @) (Zes +ees Ziny Zas oes Zin)-
The level curves | =const define j=1,...,m independent invariant circles in coordinates
({1, ceslm {4y oo {)  corresponding  to invariant curves in the origina coordinates

(z1, ..y Zm» 21, --., Zm) respectively. On the other hand, if the original mapping (8) is not integrable, the

form of equation (15) generalizesto:

Zn1=U(Zn) = wa,'({@ - Zn+ R(Zp), (16)

whereR=(Ry, ..., Rn, Ry, ..., ﬁm) is the vector of the remainder functions. The question arises, if it is

possible to minimize R by a finite order transformation. The main result of Nekhoroshev theory is
connected to this question and states that by an appropriate transformation ®, the size of R can be
rendered exponentially small in a properly defined domain of the mapping, which is called the
Nekhoroshev domain. This guarantees an exponentialy long practical stability, i.e. the near-
preservation of the integrals |; of the normal form mapping, defined by U, for the orbits of the full

mapping.
6.1.2. Solving the homological equation

The normal form construction presented here is based on the algorithm of Servizi et a (1983), see also
Bazzani, Marmi & Turchetti (1990) for detailed discussion. Since we are dealing with mappings in
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form of multivariate polynomials the unknown functions ® and U in component notation (i = 1, ..., m)

are of the form:

K
(I)i = (I)|(Z) = {| + Z(I)i(l()({b LR ] gm! Zl’ cey Zm) (17)
k=2
and
K J— J—
Ui=Ui(@) = Qui &+ ) UL ooy i Lo ooes L) (18)
k=2

(18) defines a near identity transformation and we therefore already know the first order solutions
uiY =, & stemming from &Y =4, (i=1, ..., m). The functions & and U;*’ with x> 2 are
unknown functions and need to be determined step by step. The homological equation reads:

®oU =F o, (19)
where the small circle denotes polynomial composition. Splitting (19) in terms of the same order, and
defining the projection operators:

[f], =,
[Fl, =) 9= 10404 0,

k<r

[fl, =) fO0=fO4+fDs 40,

- (20)
acting either on scalar or vector functions f or f, the r-th order terms of the homological equation
yield:
Au[®(D)]; + [U@)]; = [F(PD)])]; — [@(U )] P]; = [Pl (2). (21)
In (21) we have defined the linear operator A, = (Ay1, -, Awmi Au1, -.., Ay m) according to:
Au[P(2)]; = [Py, - D) — Ly - [B(D)]y (22)

or in component notation (j =1, ..., m):

A(u,j[q)j(gb SRS gm! Z]_l ] Zm)]r = [(I)l(ﬂw,l 411 (R3] -Qa),m gmf ﬁw,l 211 SRS ﬁu),m gm)]r +

—Qw,j . [(I)j({]_, vy Ly Zl’ ceey Zm)]r’ (23)

and similarly for A,. Equation (21) can be solved recursively to specify the unknown functions [U],
and [®], starting with [U]; = [F]; and [®,] = Z. The solution at the rth step is found by noting that all
guantities appearing on the right-hand side of the equation are already specified by the previous steps,
that is [P], is a known function at order r. Thus to find the right hand side of equation (21) means to
compute the composition of known polynomials and extract the rth order terms. Those which are in
normal form can be identified with [U],, the remaining terms, called [Q], = [P];, - [U], are equivalent
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to A, [®],. By inversion of the linear operator (22) we can identify Aw‘l[Q]r with [®], and thus have
solved the equation up to order r.
The definition of monomials being in normal form is based on the condition, that they belong to the

kernel of A,,. The action of the inverse operator A,,”* on monomials of the type:

O =gy, ampPr. L1 102" L 21/31 Zzﬁz Zmﬁm (24)

a yap am 7 B B2 & PBm
Ayi MO) = By i & {2. 'r;{m ‘1 ¢z lm . (25)
expli Ypeq (@ — Bi) wi) — Qo

Note, that (25) is the discrete analogon to (25;2) of the continuous case. In both equations, small
denominators are present. The kernels of the operators in component notation are defined according to
(k1=1,2 .)

ker(Bpa) = 408 .0 T T, - T

ket(Awo) = &' &Y. 2, 55 . T,

—=k - |

ker(Boi) = &' & K2 T T, T T

ket(Bom) = &' & LV ) Ty o T (26)

and similarly for A,; (note a typo in Lhotka et a (2008), where (@1 — a2) and (81 — B») has to be
replaced by (a; — Bi), i =1, 2 in text and (39)). The application of (25) on normal form terms of form
(26) would lead to zero divisorsin (25). This s the reason why such terms are left un-normalized. The
definition of the normal form agorithm here is according to the nonresonant construction known aso
as the Birkhoff form construction.

The definitions of the kernels according to (26) alows one to solve (21) for both, the unknown

functions [U], and [®],. The solution in component notationis:
[Ui], = {termsof ker(A;)in[Pi],},
[@1], = {[Aw;(Q))], = {termsof Rg(A,,)in[Pi],}, (27)
where Rg(Aw,i) denotes the range of the respective operators A,; and i=1, 2, ..., m. From the
definition of the normal form terms (26) we can conclude that normal form terms exist only for

Ui(r) _ Ui(l') -0,
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for r even. On the other hand, the form of the homological equations (21) implies that the equations are
still satisfied by the addition of any kernel terms, defined by (26), with arbitrary coefficientsin front, to
the generating function ®; specified through the second of equations (27). Since the transformation to
new variables should not violate the Poisson structure of the underlying dynamics, i.e. the symplectic
mapping should transform canonically into a symplectic mapping in new variables, we exploit this
freedom in order to ensure that the transformation done by ®; is symplectic up to order r.

By adding kernel terms with free coefficients of theform (i = 1, ..., m):

— Bm

=B B
[@i], > [®i], + Z Corm i 17 2% 1 G 81 0 (28)
ai=i+1, aj:BJ,ZK(Iﬁﬂk:r

to the generating function at order r, the coefficients are specified by the request, that the Poisson
structure (6) be preserved up to terms of order r — 1, namely:

{[oi],, (@]} =i 6
{[@],, [®] .} = {[®],, [®;],} =0, (29)
wherei, j =1, ..., m. The explicit form in the case of the 4 dimensional mapping will be given in the
next section. The symplectification of the transformation function completes one step of the
normalization procedure. After the rth order of normalization has been accomplished, the (r + 1)th
order may be obtained by iterating up to the desired number of steps. From this time on, we will denote
by o™, any quantity at the rth order of normalization, where o is an arbitrary scalar or vector.

An additiona remark: in the previous notation the transformation from old to new variables (Z - Z)

implies one set of old variables (z, ..., Zn, 21, ..., Zn) being associated with one set of new variables
(&1, oo & {1y s L) In fact with every step of the transformation a new set of variables is

introduced. Thus to be precise in al detail in the notation one would need to incorporate an additional
identifier to specify the actual set of variables, i.e. of the form:

Z- Z(]_) - Z(z) - ... Z(r).

However, we avoided this notation for smplicity.

6.2. Normal form construction in the case of Sun-Jupiter

We now give the explicit algorithm of construction of the normal form in the case of 4 dimensional
symplectic mappingsin this Section and apply it to the ERTBP for the case of Sun-Jupiter.

6.2.1. Complexification and diagonalization

Since the explicit mapping of the Sun-Jupiter-Trojan case (26;5), aready found in Chapter 5, is of the



form (1), where

A=M, G=(U", Uy, V17, Vo)
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(30)

and the set of real variables is indeed X = (uq, Uy, Vq, Vo), We can instantaneously proceed in

diagonalizing M and transforming the symplectic mapping into the set of variables Z € C2. The matrix

B in (7) in the case of Sun-Jupiter-Trojan turns out to be of the form:
B = Re(B) +iIm(B),
where the real and imaginary parts are given by:

33.5883x10% -188.273x107° 4.40164
43.8972x10°® 350.249x10° 86.6193x 1073

Re(B) =
33.5883x10° -188.273x107°° 4.40164
43.8972x107° 350.249x10° 86.6193x 1073
and
~113593x10°  681.194x 107° 0.
) - ~73.7266x10°° -34.6156x10° -21.4709x10°°
113593x 1072 —681.194x107°° 0.

73.7266x10°°  34.6156x10°  21.4709x107°
respectively. The diagonalized linear partin €, in (8) isgiven by
Q0 = Qo1 Qo2 Qo1 Qu2),
where, according to (9):
Q1 =870.17x 1073 +i492.752x 10”2,
Qo =999.795% 1073 + i 20.2374x 1073,

The rotation numbers (10) in the Sun-Jupiter-Trojan case are

w1 = 0.5152500568840412,
w, = 0.02023876973187783,

which yield the periods already found in (28;5):
T, = 12.19443884233018,

T, = 310.4529272489829,

~9.35407x 1073
14.4442
-9.35407x 1073
14.4442

—70.4576 % 107°
0.
70.4576 x 1076
0.

(31)

(32)

(33)

(34)

(35)

(36)

The set of eigenvalues (A, Az, Ag, Ap) and the eigenvectors of the transposed matrix M are given by:

Aq =999.795x 1073+ 20.2374 x 1073,

A, = 870.170x 1073+ 492.752 x 1073 .

The matrix of eigenvectors, before rescaling to fit the Poisson structure (6),

isgiven by:

(37)
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~3.03903x 10°® —24.2479x10°® -599671x10°° -999.979x 1073
-3.03903x10°°% -24.2479x10°® -599671x 1073 -999.979x 1073
7.62807x107°  —42.7578x10°° 999.636x10° —2.12436x 1073
7.62807x107°  —42.7578x10°° 999.636x10°° -2.12436x 1073

5.104140x 10° 2.396460x 10~% 1.48644x107° 0.
~5.10414%10° -2.39646x 102 -1.48644x107° 0.
~-25.7975x107° 154.7030x 107 0. -16.0013x107°
25.79750x 102 -154.703x107° 0. 16.0013x 10°°

, (38)

where the former is the real, the latter is the imaginary part of the matrix. The scaling factors to get B

were found to be 6,71 = 0.0692306 and 8,7 = 0.227105 respectively. The full nonlinear complex
mapping (8), together with the nonlinear contributions given in terms of (12) up to order 7 in the
mapping variables can be found in the Appendix.

6.2.2. Birkhoff normalization

For the Birkhoff normalization scheme, F together with @ and U reduce into the form:

N
Fi=F1i@)=Q,121+ Z Fi%2, 2, 21, 2),

k=2

N
Fo=F(2)=Qu22+ Z F 2, 2, 71, ), (39)

k=2

derived from (13) and

N
Oy =0y(Z) =G+ ) 01 b2, L1 L)

k=2

N
Oy = 0pZ) = Lo+ ) 02 (l1, L2, L1, L), (40)

k=2

N
Up=Ui2) = Q18+ ) UG, 4, 01 D),

k=2

N
Up=Ua(2) = Qualo+ ) Ut &1, 41, 0), (41)

k=2

derived from (17) and (18) respectively. The component notation of the linear operator A,,, according
to (23) reducesto:



79

Ap1[@1(D)], = [01(Qu1-Z)], - Qu1- [@2D)];,
A2l ®AZ)], = [2(Qu2- Z)|, — Qo2 [92(2)]; (42)
and the inverse of the operator (from 25) is given by:

- B B
§1a1§202§1 152 ’

expli (g — B2) w1 + (@2 — Ba2) wy) — eXpli W)’

Ay (o) = Qa1,02,81.52

- B B
§1a1§202§1 152 ’

: (43)
exp(i (a1 — B2) w1 + (a2 — f2) wy) — eXp(i w))

Aw,Z_l(D) = a(kl,(lz,ﬁl,ﬁz
together with Q1 = ¢ “* and Q,,» = ¢'“2 given in (34). The kernel of the operators A,, in component
notation consists, in the 4-dimensional case, of all monomiasof the form:

ker(A,1) = {monomialsof theform* &' 7,57, }

ker(A,) = {monomialsof theform &L &5 7, ZZI } (44)
We fallow the steps (27), (28), resulting in:

[@1]; = [P4], + Z Crken) 98 Zlk Zzl

k=0, 2 (k+1)+1=r

and

k=
[D2]; = [Do]; + Z Conir1 15 {1 5. (45)
k=0, 2 (k+1)+1=r

In the case of the mappingsin C? the values for the coefficients ¢, ;1) and ¢y .1 were explicitly found

in terms of

Re(Cir1)) = —Re(coeff(Pl, L Zlk Zzl))/ZK,
Re(Cox41) = —Re(coeff(Pz, ey Zlk Zzl))/ZK,

Im(Cyrn) = Im{coeff(Ps, 41 &' 2,2, 7)) /1,

|m(C2’k’|+1) =0, (46)

where coeff (P, mon) is the coefficient function, returning the coefficient of monomial mon in P and

P1, P, P3 are abbreviationsfor the Poisson brackets from (29) according to:

Py = {[@4]r, [®1],} =1+ O - D),
P; = {[@2]r, [P2],} = 1+ O - 1),

P3 = {[®1];, [®2];} = 0+ O(r — 1). (47)



80

The normalized mapping U together with the transformating function ® up to order r = 25 can be
found in the Appendix. Note that the imaginary part of ¢,y .1 iS undetermined and it can be assigned

arbitrary values. For simplicity it was set to zero.
6.2.3. Approximate integrals in the case Sun - Jupiter

The effect of the norma form construction in the case of the Sun-Jupiter-Trojan model can be
visualized as follows. Iterating the complexified nonlinear mapping (16), normalized up to order r, for
one arbitrary orbit started near the fixed point (d~0.01), the time-evolution of the corresponding

approximate integral of motion can be calculated numerically according to:

I1,n = gl,n 51,n1

I2,n = §2,n gz,n’

where n is the discrete time parameter. In the absence of the remainder (15) it is clear, that for al times
the quantities |j,=1;n.1=1; are constants (j =1, 2), variation being introduced only by the
numerical error in the preservation of the Poisson structure (err ~ 1072, see end of Section 5.4.2). On
the other hand the remainder R(1, {2, {1, {,) in (16) will add some drift, to the values of the
approximate integrals, stemming from the real nonlinearity in the system. One expects that the
variation of the approximate integrals will decrease with increasing order r up to the optimal order at

which the size of the remainder becomes exponentially small. On this basis, a local stability theorem
can also be constructed for the discrete case.
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Figure 1.: Evolution in time of the approximate integral I;; abscissa: time in thousands; ordinate: median in 107° (middle value),
variation in 10~ (logscale upper and lower value). Note the improvement in the successive close ups.

The effect of the normal form construction in the case of Sun-Jupiter-Trojan is shown in Figure 1 and
Figure 2. In both figures the complexified mapping (17), normalized up to order r, was iterated for
1000 revolution periods of Jupiter, after which the order of normalization in (16) wasincreasedto r + 1
and the orbit was iterated again, using the last state of the system as a new starting point. The figures
show the evolution of the approximate integrals with respect to n, given in units of 1000 (revolution
periods of Jupiter) on the abscissa. A first inspection clearly indicates that, after some steps, with
increasing order of normalization, the approximate integrals I, , tend to a constant value (given on the

ordinate in units of 107°), while the variation of them decreases (given in units of exponents on the
ordinate). In both figures, the best approximation to the integrals is bounded by an error of order 10~°

to 10~*, which is in consistency with the error in the preservation of the Poisson structure, due to the
finite expansion of the generating function.
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Figure 2.: Evolution in time of the approximate integral I,. abscissa: time in thousands; ordinate: median in 107° (middle value),

Looking closer in the panelsin Figure 1, 2 one aso finds ajump in the error of the preservation of the
approximate integrals in both figures (Figure 1d-e & Figure 2d): the reason is due to the presence of a
small divisor (a;5) introduced in the normal form construction (43), showing up at order 16. This
behavior will be analyzed in all detail in the end of Chapter 7. We only mention here that it is strongly
connected to the generic non-integrability of the system, resulting in the fact, that the normal form
construction must fail, when r - co. Nevertheless, this time, the normal form recovers again as one can
see, when comparing the variations in approximate integrals with increasing order beyond 15. The
trends of some of the approximate integrals with respect to time may be explained by two reasons: i) a
"real" dynamical trend, introduced by the remainder (i.e. 1,® in Figure 1 and 1,® in Figure 2)
indicating the non-integrability of the system and ii) the non symplecticity of the explicit mapping, due

to the finite series reversion (up to order 19); the error in the conservation of the Poisson structure (i.e.

variation in 10~ (logscale upper and lower value). Note the improvement in the successive close ups.

1,299 1,299y js present in both figures but bound by the error of approximation.
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The actual calculation is based on the non-resonant norma form construction. Nevertheless the
frequency of the oscillation of the longitude of the perihelion w, introduces a near resonance, since
wy ~ 0. The smallest divisor up to order 16 is therefore smply w,, indicating that the system is nearly
resonant. This fact suggests, that an improvement of the present estimates can be obtained by a
resonant normal form construction, which was not implemented yet in the Birkhoff normalization
scheme. On the other hand, the next small divisor a;g~0.001 appears at order 16. A modification of
the nonresonant construction, in principle follows the idea of Chapter 2: Defining the resonant module
M, excluding near resonance terms introducing a;g into the series modifies the normal form and takes
care of the nearly resonant behavior of the system. However a numerical calculation shows that it does
not modify the estimates appreciably.
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7. Nekhoroshev Estimates

7.1. Approximate integrals and the remainder function

As aready mentioned, the normal form mapping of the preceding chapter [U]., in the new variables
becomes a twist mapping (16;6), which by use of the notation (20;6) is of the form:

Zn=[Ul4 (Zn) = Qwﬂu'(g’a - Zn. (D)
The component notation in the m-dimensional caseisgivenby (j =1, ..., m):

Liner = Y52, (G oo G £ oo Zm)+€”“(§1 """ fnd L) Line (2
where I'; only depends on products of equal powers in the new variables Zj. The mapping (2) is
integrable, the exact integrals are defined in terms of

li=¢i ¢ ©)
(j =1, ..., m). These integrals can be expressed in terms of the old variables, where the transformating
function [®]., is invertible in an open domain around the origin. Denoting the inverse by [®]., 2,
eguation (3) transformsto:
| =[0l, @) @l @ (4)

which isin component notation:

=[] @ s Zo 22y oo 20 (O, 2 s Zons Zas ey 2o,
The level curves, defined by | =const (j =1, ..., m) define m independent invariant circles in the
coordinates Z and Z respectively. Every orbit is therefore defined by m label values(l4, ..., Iy) and lies
on an invariant m-torus (T™) of the normal form mapping, connected to the action-angle variables in
the continuous model. If, however, the remainder terms of (16;6) are present, a small drift of the orbits
across the invariant tori of the normal form mapping is introduced and may harm the integrability of

the system. By upperbounding the cumulative drift induced by the remainder terms of the mapping, the

diffusion may be bound for afinite time span T. In the case of the Sun-Jupiter system, T is order of 10°

revolution periods of Jupiter.

7.1.1. The mapping of radii (action mapping)

The full mapping according to (1) in new variables can also be expressed as
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Zp1 = [@ toF o[®@] (Zn) = [U (Z0) + R™V(Zy), (5)
which isin component notation (j =1, ..., m):

Liner =@ oFjo (@], (41 oo i Lv s L) =
Uil (G oo Gm T oo T * R o i Lo $)- (6)

The resulting mapping is symplectic up to order r and the remainder R™% = (R,"*?, ..., Ry"*") at the
r-th order of normalization is in principle an infinite series, consisting of al terms of orders beyond r,
where these are produced by the terms of the original mapping, defined by F. To calculate the drift
along the tori we construct the mapping of radii, given by multiplying each of the equations (6) by its
complex conjugate. Theradii (j =1, ..., m),
pi=¢i g 7
correspond to the drift along the actions, defined by the integrable approximation (3). The mapping of
radii is also called the mapping of actions for obvious reasons. Dencting by p = (p4, ..., pm) it may be
written in vector form according to:
S
pn+12 = pn2 + Z R(K’r)’ (8)
K=r+2

where R“" = (R*", ..., Rn*") are the remainder contributions in terms of the radii of order «,

normalized up to order r and s is the order of truncation of the remainder, where r < s. In component
notation the mapping (8) may be also written in the form:

am

S
Pini’ = pin’ + Z Bay,...am P17 P27 Py 9)

Siy=r+2

and since the new variables Z are connected to the actionsp via(j = 1, ..., m):

{j=pje?,

ZJ = p] e_i ¢jl
the contributions R; depend on al 2m variables too. The domain of convergence of the action-
mapping can be estimated by D Alembert’s criterion implemented to the majorant series of (8)
implemented in polar type coordinates. Considering the positive section of a hyperball of dimension m,
the space of radii can be seen as a section of a hyperball of dimension m, parametrized by direction
anglesy, € (0, 7/2), wherel =1, ..., m— 1. Theradii transform into:

Pj= pWJ()/l! ceey Vm—l), (10)

where w; are just combinations of trigonometric functions, depending on the dimension of the

hyperball; i.e. if m= 3 the space of radii is (o1, p2, p3) and parametrized by (y4, v, p) according to:
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p1 = pSin(y1) cos(yy),
P2 = p Sin(yy) sin(ys),

p3 = p COYy2),
while in the case of m= 2 (p4, po) is parametrized by vy, p in polar coordinates (implemented in the
Sun-Jupiter case, Section 7.2.1). Note, that since pj = 0, it is enough to define the range of definitions
of y; to be (0,7/2) for al j=1,...,m-1 This is a modification of the usual convention in

parametrizing the hyperball of dimension m. Substituting (10) into (9) we are left with the mapping of
radii of the form:

s
2 2 Fot..
Pinet® = Pl DL Baya PO TI W WS Wi, (11)
Zi”z‘lai:r+2

which is mgjorant to (9), if and only if we choose y; in w; in such away, that w; becomes maximal, i.e.
of order unity (j =1, ..., m). Note, that this can always be achieved in polar coordinates defined by
(10): yj = 0if o(yj) in (10) is of sinetypeand yj = 7/ 2, if o(y;) in (10) is of cosine type (o denoting
basic trigonometric functions in w;). In this case w; (j =1, ..., m) becomes unity and the magjorant
mapping reduces to:
s
,Oj,n+12 :Pj,n2+ Z Bay.. ezt (12)
M ai=r+2

Note, that in fact, by this construction the mapping (12) will give a specific direction (y1*, ..., ym-1") in
action space upperbounding (9) in terms of p. If the convergence radius of (12) along j is denoted by
q j‘l it follows, that the underlying mapping (9) is convergent within q j‘l too. Denoting by A, the kth
order contributions in (12) with respect to the jth component of p = (o4, ..., pm), an estimate of the

radius of convergence can be given using D" Alembert’s criterion, by:
)
Im 5 <di<l (13)

In practice s will be truncated at a finite order too. Since the radius of convergence according to (13)
will aso depend on the direction, parametrized by (y1, ..., Ym-1), estimates will do so too. An example

given below (Sun-Jupiter case) will demonstrate this behavior in areal dynamical system.

7.1.2. Diffusion in action space

In the next step we are interested in the maximum distance traveled in the space of radii after N
iterations of the mapping. Although it may be possible, that successive drifts in the actions (radii) go

aong different directions (and in the best case they will cancel out each other, due to opposite
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directions), we are looking for an upperbound of the whole drift and are assuming the worst case, in
which the drift at each iteration step follows the same direction as the previous one. In other words we
are looking for an upperbound of the stability region. We formalize this idea along the lines suggested
by Giorgilli & Skokos (1997). The maximum distance p traveled in the space of radii, starting on an

arbitrary torus p after N iterations of the mapping (9) can be upper bounded by:
pi2=p? < NJIRD || p¢", (14)
where r is again the order of normalization of the mapping. Solving with respect to N the inequality

transforms into:

N P N(p, 1) (15)
= ———— =N(p, py),
IR | ps"

where N(p, pf) denotes the number of iterations an orbit needs to drift from an initial torus p to a
another torus p¢. Note that already at this step the number of iterations in inequality (15) will be
maximized by minimizing the norm of the remainder || R® ||, independently of the distance p? — p?
we are asking for. Let us consider two extreme cases, namely
) N(p, p)=0,
(i) plfiglo N(p, pf) =0.

In the first case (i) the orbit has no time to drift, since the final torusis the initial one, i.e. p; = p in

(14). In the second case (ii) the estimate of the size of the remainder throughout the whole drift, going
from p to ps becomes infinite, since we are asking for an upperbound N for the limit p; - .

Therefore again the orbit will do it in zero time. The optimal distance of p; is somewhere in between
(p, o0), such that it is far away enough from p but at the same time as close as possible to it, so that we

do not overestimate the remainder seriously. The optimal choice of p¢ isfound by:

d N( ) d pi% = ps 0 (16)
- Py Pf) = =Y,
d ps dpt LR ps!
giving:
1 (Zp ' _rp —1—r(p Z_pz))=0
RO f f f :
or:
r a7
PI=py TS

The time needed for an orbit to drift from p to the optimal distance p¢, given by (17) is therefore given
by inserting (17) into (15), resulting in:
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N(p) = (r —2)" 25 17112 521 = Ty, (18)

1RO
where we defined the Nekhoroshev time Ty to be the time after N steps of the mapping. Note that in
this form Tnex = Tnex(p) is given by the product of [|R® [|F, p? /p" and (r — 2)7**r~"/2. The upper
bound (18) limits the maximum distance p up to which an orbit can drift within Nekhoroshev time
Tnek- The distance depends on the order of normalization r explicitly and implicitly through the
estimate of the norm of the remainder || R" ||. It isinversely proportional to the norm of the remainder
and directly proportional to (r — 2)"/?~1 r="/2. Solving (18) with respect to p one finds the lower bound
of the Nekhoroshev stable region within Nekhoroshev time Ty to be:

r

r =
2) ||R<”||TNek)2 (19)
r —

p=2%(—(2—r)(

and since in the space of radii (o1 xp>X...x pm) the direction p was fixed according to the
parametrization (y4, ..., Ym-1) the estimate also depends on the specific direction of diffusion we are

looking for. This behavior directly translates into the dependency of the norm of the remainder || R® ||
on(y1, ..., Ym-1)- Equation (19) therefore also generalizesto:

1
2-r

-1 r r
Pl = 25 (<@~ 5 ) IRl T (20)

when dealing with a higher dimensional space of radii. As a conclusion, diffusion can be bound, by
means of (20), which is an estimate, depending on the normalization order r, the size of the remainder
[| R || and the Nekhoroshev time Ty« The estimate (20) has to be compared with the isochronous

version of Nekhoroshev theorem in Chapter 2. For an optimal estimate, the remainder || R || needs to

be exponentially small. This happens at an optimal order of truncation r = rqy. The finite bound

I Rlfon) || gives a finite Nekhoroshev stability time Tye, Which is exponentially long since the optimal

remainder is exponentially small.

7.2. Application to Jupiter’s Trojans

In the case of Jupiter’s Trojans we implement the previous estimates in the case m = 2. The full normal

form and the remainder in terms of the mapping of radii can be found in the Appendix.
7.2.1. Preliminaries

In the case of the Sun-Jupiter-Trojan model the space of radii is 2-dimensional, since
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p1=01{,

p2=014, (21)

and the mapping of radii (9) therefore reducesto:

S

2 2 , 2 i
pine1’ = pin+ R = p1 2 + Z aj" p1' p2,

i+j=r+2
S . .
pani1® = pan’ + R"Y = pop® + Z bi,i” p1' p2. (22)
i+]j=r+2
Denoting by " the sum over a ;) p' pJ and by g,” the sum over by ;" p' pl, where k =i + j the

mapping also may be written in terms of

S
2 2
P1ne1” = P + Z £,

K=r+2
S
pami1’ = pon’ + Z a”, (23
K=r+2
where the functions £, g, depend on al the four variables
gl =pP1 (ei ¢l!
§2 = P2 @i ¢2! (24)
and (£,, £,). The parametrization of the space of radii (10) can be performed using
p1=pcoy),
p2 = psiny), (25)
where y is the angle defining the direction in the (p; X p,) space and since pq, p, > 0, it is defined in

theinterval y € (0, 7/ 2). By implementing this parametrization in the mapping (23) we get

S
prosi=pid+ Y a0 cos)siniy)-pl,

i+j=r+2

S
pani=pan?+ ) b0 cosysiniy)-pl. (26)

i+j=r+2

The majorant seriesis defined via | A, |, | B, |, whichis after definition of A,, B, according to:
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S

A©D = Z | &, cos(y) sinl(y) |,

B," = Z | bi, ) cos(y) sinl(y) | (27)

i+j=r+2
given by

S
PLnl = Pin’ + Z APt

K=r+2

S
P2ne1 = Pon’ + Z B,"- p*. (28)

K=r+2

The mapping of radii (28) upper-bounds the motion in the action space and can be used to implement
the stability estimates. The larger the radius of convergence of the mapping, the larger the distance in
phase space we could ask for to be Nekhoroshev stable for a finite Nekhoroshev time Tye.

7.2.2. Radius of convergence and the remainder function

The convergence of the majorant mapping (28) of (23) isgiven by:

e
lim o] <t <4

1G]

lim Ot <p<1, (29)
r—oo | gK(r) |

which we need to estimate along different directionsy in order to determine the radius of convergence
py- For this reason we calculate the ratios (29) by use of the majorant mapping (28) numerically up to

sufficiently high orders, where the ratios stabilize. For the origina mapping stabilization is found at
r ~ 15, yielding the convergenceradius as:

(1 1
b < mln[a, q;] (30
whereq;,, 0y, are also defined through:
Ay(r+1)
Oy A0 ,
By(Hl)
02,y B0 (31)

The norm of the remainders, within the radius of convergence given by (31) can be bound along
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different directionsy according to:

S

” Rl(r,s) ||/\ — Z A/\(I’,K)’

K=r+2

S

IR = ) B (32)

K=r+2

and according to our construction it holds true that

IRLF N < 1Ry,

IR = 1R,
where [[RT || = (IR I, IR,"?]]) is the remainder of the origina mapping (22, 23) and
NRCSIL, = (1R I, 1R |I,) is the remainder due to the majorant mapping of radii, given by
(28). In view of (20), we are now able to find the Nekhoroshev stable region for Trojan asteroids in the
Sun-Jupiter case in the space of radii (o1 X p2). In the next step we will transform the convergence

region and the estimates of the mapping of radii from the plane of radii to the domain of convergence

of the space of proper elements (D D ep). This can be achieved by back transforming the two-torus with
p1 = pcosy) and p, = p Sin(y) to complex variables using the definition:

2= py cos(y) e ¥,

2 = p,Sin(y) e ¥ (33)

and scan the whole torus (¢1, ¢2) € [0, 27)x [0, 27) in order to find the maximum and minimum

values of the quantities:

(t,w, X, h=ey)), (34)
by means of ®~1 (18;6, 41;6) and B™* (7:6) or (32;6). Thistorusis labelled by one pair of values of the
proper elements, defined by

Dp = (Tmin — Tmax) / 2,

€p = (Nmin — Nmax) / 2. (35)

7.3. Nekhoroshev estimates in the Sun-Jupiter-Trojan system

Plotting Dp(y) vs. ey(y) for 0 <y < /2 yields the boundary of the grey-shaded region in Figure 1,
which corresponds to the convergence region of the mapping in the space of radii (23), which can be
trandated to a mapping in the space of proper elements. On the other hand, for any particular direction
v in the space of radii (23), the Nekhoroshev domain of stability region is given by finding, through
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(20) with Tye = 10 %(revolution periods of Jupiter), the value of the normalization order r, at which
one obtains the maximal value of p,. Back-transforming from the space of radii to the space of proper
elements (similar to the convergence region), the stability region in proper element space is given in
Figure 1 and bounded by the continuous black line. The numbers in the picture indicate the optimal
order of truncation, at which p, was found in the space of radii. The positions of the observed asteroids

in proper element space are shown as points respectively. They are based on a catalogue
(http://hamilton.dm.unipi.it/cgi-bin/astdys/astbio), which is based on a variant of Milani’s (1993)
calculation of proper elements in the (Dp, ep)-plane. Most asteroids of the database come with high

inclinations, thus the picture is just indicative, since the points are in fact projections to the (Dp, ep)-

plane. Asteroids on inclined orbits are also diffusing chaotically towards higher proper eccentricities as
aresult of resonant interactions with the Solar system (Robutel, Gabern, Jorba 2005), an effect which
we do not take into account in our model. Nevertheless a few real asteroids are within the analytically
calculated domain of stability, and most other are outside it by a factor < 3 in the maximum distances
intheaxes Dy, €.

0.05
o.o4f
o.osf
o.ozf

0.01}

0.00———
0

Figure 1.: Nekhoroshev stable asteroids (points) within the age of the Solar system. The mapping converges in the gray shaded
region, the stable region is bounded by the thick line. Note the dependency of the region on the optimal order of truncation
(21-25+).

The physical interpretation of Figure 1 is the following: The analytically obtained region of
Nekhoroshev stability covers ~13 % of the convergence domain. In addition, afew asteroids are found
within the analytically calculated domain of stability. The stability region is bounded by libration
amplitude D, < 10° and proper eccentricity e, < 0.01. While the maximum value of D, is close to the
value given in Efthymiopoulos & Sandor 2005, the latter seems to be underestimated. The reason is

found in the small convergence region of the mapping with respect to proper eccentricities (ep < .025)
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and the estimates for e, could probably be improved by improving the convergence domain of the

origina explicit mapping.
7.3.1. Analysis of the remainder function

The estimates depend on the size of the remainder function R, the order of normalization r, the
distance in phase space p and the direction y in action space. The influence of the order on the size of
the remainder terms, and therefore the optimal order of normalization is given in Figures 2 and 3. In
Figure 2 estimates of the size of the remainder as a function of the normalization order r are given for

different direction angles y e (0° 18° ...,90° and different distances in phase space,

py € (0.24x107%, ..., 0.017). In Figure 3 similar plots are given for different distances in phase space
py € (0.75>< 1072, ..., 0.045) by varying the direction angles y from 0° to 90° in steps of 18°. One
clearly sees, that for small distances p, the optimal order of truncation is not reached until r = 25. For

smaller angles y the optimal order r lies near 25 and it is shifted to higher orders of normalization for

larger values of y (Figure 2), which is connected to the conclusion given at the end of Section 7.1.1.

10_5 r 10—7 L
10_11 r 10” 12|
1071+ 10717}
105 1022
10—29 | g 10—27 L
10_35 L ‘ ‘ ‘ ‘ 0.0024 10—32 L ) . . . 0.0024
0 5 10 15 20 25 0O 5 10 15 20 25
108 S
10—11
107%6;
1073}
107261 1107}
1073t L~ ‘ ‘ ‘ ‘ 0.0024
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1077+ 107 e “‘%%ﬁ
1071 0098 10~ 11} T <0.009%
10715} 10-35} -<0.007]
10719+ 10719} 90° 0.0044
107231 1103} |
10—27 L . . . . 0024 . . . . 0.0024
0 5 10 15 20 25 0 5 10 15 20 25

Figure 2.: Dependency of || R ]|

max Py

"(ordinate) on the normalization order r (abscissa) and distance p.
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On the other hand the optimal order of truncation is shifted to smaller values of r when increasing the

distance p, sufficiently (Figure 3). The optima order of truncation reaches r = 15 for very large
distances (py = 0.045) and increases for smaller values of p,. The influence of the direction angle on
the optima order of normalization is smaller, the optimal order marginally increasing when y

increases. Both figures are given in log-linear scale: while in Figure 2 the ordinate varies up to 30

orders of magnitude with respect to changes in p,, it varies only up to 10 order of magnitudes when
changing y. Both arguments indicate that a change in p, dominates the change in the behavior of the

remainder, compared to variationsin y.
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Figure 3.: Dependency of ||R | " (ordinate) on the normalization order r (abscissa) and direction y.

max Py

An interesting feature, connected to Figures 1, 2 of Chapter 6 shows up when analyzing the series
behavior: in both figures 2 and 3 an abrupt change of the remainder function with respect to the
normalization order occurs around the normalization order r = 15, for sufficiently large direction
angles y. There are two reasons for this behavior: i) the generating function of the mapping was
expanded up to order 16 (Chapter 5). Therefore the mapping is symplectic up to order 15. The abrupt
change is then partly due to the loss of symplecticity after the order 15. ii) Since the function p," is

smooth with respect to r, its behavior leads also to a change in the gradient of the remainder function
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| RO ||max With respect to the normalization order r. This can be explained by analyzing the small

divisor termsin the normal form construction (25;6, i.e. 43;6). It isdone in the next Section.
7.3.2. Small divisors

A small divisor of the normal form construction is defined by looking for integer values a4, a», 1, B2,

where one of the denominatorsin (43;6), i.e.

exXp(i (a1 — Bo) w1 + (a2 — f2) wy) — exp(i wy),

eXp(i (ay — f2) w1 + (a2 — B2) w2) — eXp(i wy)
becomes very small, i.e. close to zero. The smallness mainly depends on the fundamental periods of the
system, namely w; and w, in the Sun-Jupiter system (35;6). Since the order of normalization is
connected to the order of truncation in the series, according to r = ay+ @, + By + B,, the first
occurrence of a specific small denominator is determined by the order of normalization. The first
dominating small divisors in the Sun-Jupiter case are a,~2.02x1072 and ag~ 4.05x 1072
respectively. In principle the growth of the series coefficients due to the normal form construction is
dominated by those. At a higher normalization order r additional small divisors may occur and are
summarized in Table 1. While the left column summarizes the first occurrences of small divisor terms

regarding the operator Aw,l‘l, the right column does so for Awyz‘l. The order of normalization is given

in the first column, the responsible monomial term ;** £,* Zlﬁ ! Zzﬁ ? in the second and the order of
magnitude in the last column respectively. Both subtables clearly indicate that a new pair of small
divisors appear at order 15 and 16 respectively. Since they act at each normalization step from there on,
they also affect the growth behavior of the whole series beyond the order 15.

r ay a B B a r ay a By B a

15 0 0 11 4 1.92x1072 15 0 0 12 3 1.92x1072
16 0 0 11 5 1.01x1073 16 0 0 12 4 1.01x1073
25 0 25 0 0 9.28x1073 25 1 0 0 24 9.28x107°
33 0 0 23 10 2.02x10°° 33 0 0 24 9 2.02x1073
50 0 46 13 0 6.68x107* 50 14 0 0 45 6.68x10™*
66 0 41 25 0 3.41x107™* 66 26 0 0 40 3.41x10™*

Table 1.: Small divisors in the Sun-Jupiter-Trojan model: A, ~X(left) and A, (right).

The size of a;5 is comparable to the size of a,, while the effect of a;g is one magnitude larger. Both
together dominate the behavior of the series expansions (and therefore also the norm of the remainders
in Figure 2 and 3) from this order on, and are thus able to explain the local divergent behavior of the
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approximate integrals, already found in Figure 1 & 2 (Chapter 6). In Figure 4 the normalization scheme
was “simulated” up to order 70 according to a numerical method outlined in Subsection 7.3.3.. It shows
the occurrences of the small denominator terms given in Table 1. The dominant denominator is clearly
identified a;5 over along period of the normalization process and although new small divisors occur at

order 25 and 33, the first smaller small divisor appears at order 59, namely agg~10*. After a few
normalization steps an additional small divisor occurs, agg governing the size of the series expansions

from there on. Although the number of possible small denominators at order r is finite, as long the
truncation order itself is finite, the accumulation of small divisor terms spoils the convergence of the
series beyond the optimal order of truncation.

0
0.05- aj ]

a
0.02- a 15 .
0.01+- ags .

@0.005- ]

0.002| A3 1
0.001| 1

Figure 4.: Small divisors of the Sun-Jupiter system with increasing normalization order.

All figures (Figure 2, 3, 4) therefore already demonstrate the expected behavior of formal series due to
the Birkhoff normal form construction. Namely the remainder initially decreases as the order of
normalization increases (Figure 2, 3) giving the impression, that the norm of the remainder will tend to
zero asr — oo. This trend is broken due to the accumulation of small divisor terms and even reversed
after the optimal order of truncation. The change in the growth of the norm of the remainder function
can be attributed to the introduction of new small divisors, which act in the normal form construction
by pushing the coefficients of the series expansions to higher and higher orders of magnitude. Indeed
with increasing normalization order r the size of the remainder will itself tend to infinity.

Nekhoroshev estimates are therefore optimal at the optimal order of truncation. The estimates in use of
(20) are also valid before and beyond, but indeed an underestimation of the stability region. In our
attempt we stopped the calculations at the order of normalization r = 25, which is at the edge of the
optimal order in the normalization scheme for small y and moderate p,. On the other hand for larger y

and smaller p, the optimal order of truncation is beyond our limit, but since the small denominator a;s
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governs the series expansions up to very high orders (r —» 60), the growth behavior of the remainder
function will not change significantly. Therefore the order of truncation r =25 seems aso to be

acceptable, in this case. For larger radii p, in p1 x p, phase the optimal order of truncation turns out to

be smaller (Figure 3) but the estimates are anyway restricted to lie well within the convergence region

of the mapping.
7.3.3. Outlook: pseudo series
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Figure 5.: Non rigorous pseudo-remainder estimate for p=0.02 and y=45°.

A different approach to Nekhoroshev estimates will now be discussed with the help of Figure 5. On the
basis of the theory developed by Efthymiopoulos et al. (2004), it isin principle possible to estimate the
size of the coefficients of the forma series from the normal form construction itself, without
performing the real normalization procedure. The size of the generating function ® can be proven to be
estimated by a detailed analysis of the propagation of small divisors in the various terms of the series
(Servizi et a 1983, Efthymiopoulos et a. 2004). The main result is, that the remainder appears as
piecewise geometrical, thus the ratio of successive ordersis given by:

| RO+ ||
1RO

r
is almost constant within fixed intervals of values of r but increases by abrupt steps at particular values
of r. In the 2D case these values are connected to number-theoretical properties of the fundamental
period of the system w,. Letting g,, dn being the n-th member of the continued fraction sequence of
one specific wy, the values of abrupt change can be estimated to be equal to r = q, + d,. The continued
fractions sequence regarding the larger period w1 /2 isgiven by:
1 5 31 36
( ' 12" 61’ 378" 439’ )
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which should be compared to the case of the circular problem, given in Efthymiopoulos & Sandor
2005. Although the difference in the approximation is clearly due the different approximation of the
fundamental period in the system (wg~ 0.0808... vs. w; ~ 0.08200), the first continued fraction
approximation is given by 1/12 in both. Since the normalization procedure starts at order 3, the abrupt
change of the quantities, shown in figures (1,2;6 and 2, 3) at order 15 fits well to the predicted value.
On the other hand the growth factor in the circular case, was found to be:

Alk—A|
Ar ~ ma)({—},
kAeN ‘ (B(K—/\) wo—1 |

where k, A are integer exponents in the mapping and wy is the fundamental period in the circular case.
The fact that the quantity A is constant depends on the size of the nonlinear part of the mapping and
was estimated by the authors. In our case of the ERTBP the behavior of the series also depends on the
interactions between p; and p, and therefore w; and w,. This complicates the analysis. A first rough

analysis of the influence of (43;6) on arbitrary terms of the form:

- B B
Cal,a/z,ﬁl,ﬁg glal gZQZ {1 ' gz ’

shows that the following terms could be produced in the normalization procedure at each second step:

— Bitl=p
A'1 X C(Y]_,(Yz,ﬁl,ﬁz §(¥1+1 4202 é’l ' 42 21

17 P15 Batl
)LZ X Cal,afz,ﬂl,ﬂz é‘ﬂfl 420# gl ! §2 ’ ]

— Bitl— B
A'3 X Ca/l,afz,ﬂl,ﬂz é’“l"’l 4202 é’l ' {2 21

— Bi— Batl
A’4- X Ca/l,az,ﬂl,ﬂz é’al 4,2024—1 é’l ' §2 ’ .

On the other hand, the growth factors A;, (i = 1, ..., 4) are again strongly connected to the dominating
divisor &, being small and appearing at order r. Denoting by uy1, Ujo, Unq, U the coefficients of the
lowest order normal form terms of monomids of the form %4, GH&d, and &2 E, Léd,
respectively, the growth factors in the case of the ERTBP could be estimated along the direction
v =45°to be:

(@1 Upy e+ By Ty € 1)

A = ei(dl—ﬂl) wiH(az—f2) w2 ,
a

(@1 U et + By Upp e )

Ay = ei(dl—ﬁl) w1+(az—f2) w2
a

(@2 Upy €712 + B Tpy € 2)

A3 = ei((ll—ﬂl) wytH(az—f2) w2 ,
a
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(@2 Uz e 2 + By Tpp € 2)

a

Ay = ei(dl—ﬂl) wiH(az—f2) w2

To thisend it is possible to predict the size of the coefficients in the normal form by growth factors,
instead of actually calculating them. One "just" needs to identify the dominant paths (schematics in
Figure 6) of the normalization procedure: starting with a"real" normalized series expansion of order ro,
one could use dominating monomials as a starting point. |mplementing the growth factors on the series,
a"pseudo” series can be established, and the remainder can be estimated from it, as usual.

—11 -4
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_11-5 124
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Figure 6.: Schematic example of a dominating path, starting with monomial of form Zlu (f)z. Each line indicates one step of
Birkhoff normalization.

The growth of the remainder function in p; x p, space was found to be in good agreement with respect
to directions parametrized by v = 45°: Preliminary results are presented in Figure 5 (left), where the

size of the remainders || R;" || and || R," || are plotted in dependency of the normalization order r.
The norms of the real remainders are given in dashed dark lines, while the norms of the pseudo-
remainders are plotted in gray lines. Again we find an abrupt change of the slope of R around
normalization order 15. Although the norm based on the calculation of the pseudo-remainder does not
indicate the abrupt change in the slope, it reproduce the slope of the overall dependency on r quite
well. In the right frame of Figure 5, the results of the estimation of the pseudo-remainder are used to
reproduce the optimal order of truncation at the radius of convergence pss- ~ 0.2. Again the optimal
order of truncation is found at r ~ 25, indicating, that the Nekhoroshev estimates based on estimates of
the remainder are valid along this direction. For small variations of the direction angles y around 45 °,
the construction of the pseudo-remainder is still valid, while for different direction angles the
correspondence between the real and estimates norms brakes. The reason was found in a complex
interaction of p; X p, space and is subject of future investigations.
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8. Summary and Discussion

8.1. English

The question of the long-term stability of our Solar system is still a partly unsolved problem even
nowadays. Nevertheless, the treatment of this problem by various scientists (see overview in the
Introduction) during the last centuries can be seen as the origin of the modern formulation of science,
from which i.e. the KAM or the Nekhoroshev theorem originated in the field of dynamical systems.
Based on the results of the latter theorem, the goal of the present thesis is to show the existence of a
physically relevant Nekhoroshev stable region around the equilateral fixed points of the elliptic
restricted problem for times comparable to the life-time of a planetary system. Since the restricted
problem serves as the basic model to describe the motion of asteroids in our own Solar system (their
masses can be neglected compared to the masses of the planets) the stability result stated in the
restricted problem directly trandates into a stability result of motion in our own Solar system. The
observation of real asteroids on the one hand and the existence of a Nekhoroshev-type stability region
around the Lagrangian equilibrium points, e.g. of Jupiter, shows the possibility of stable motion in our
Solar system for the age of itself. It is therefore possible to give arelevant insight into the history of our
Solar system by i) observations and the use of aii) pure mathematical tool, the Nekhoroshev theorem.

Short summary of the thesis:

The KAM and Nekhoroshev theorems are stated in the Introduction, the latter is outlined in detail in
Chapter 2. The restricted problem is subject of Chapter 3 which serves as the model to state the
stability results in the present thesis for asteroids near the 1:1 mean motion resonance of the planet
Jupiter and Trojan asteroids. The mathematical realization, i.e. the disturbing function of the 1:1
commensurability is developed in Chapter 4 and given in the Appendix for arbitrary semi-major axes
and eccentricities of the perturbing planet. It can be used for arbitrary configurations of the restricted
problem and is therefore also applicable to describe asteroidal motion in exo-planetary systems. Since
the stability result is derived on the basis of estimates of the remainder of normal form mappings, the
symplectic mapping model for the elliptic restricted problem near the 1:1 resonance is developed in
Chapter 5. The normal form theory is derived in Chapter 6 which directly leads to the Nekhoroshev-
type stability result given in Chapter 7.

The main conclusions of the present research study:
i) It is possible to show the existence of a relevant Nekhoroshev-type stable region around the
equilateral equilibria points of the elliptic restricted problem. Real observed asteroids are found within
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this region. The present thesis therefore extends previous results based on the circular restricted
problem.

& i) Since, the operations of series expansion and series reversion of the mapping also limits the domain
of convergence of the mapping approach, the stability result is restricted to the librational regime of
asteroid motion. It is not possible to state a stability result with the present results for the rotational
regime of motion.

& iii) Within the domain of convergence of the mapping the size of the coefficients of the formal series
expansions depends not only on the normalization order, but also on the direction in phase space, i.e.
the variation in the amplitudes of libration and the eccentricity of the test particle. This leads to the
concept of directional exponential stability in higher dimensional action space and is part of future
investigations.

& iv) Analytical formulae are given in Chapter 7 relating the size of stability to the size of the remainder
of the normal form along specific directions in action space of the restricted problem. The results are
not limited to our Solar system configurations but are also applicableto exo-planetary configurations.

& V) In the case of Jupiter’s Trojan asteroids, a domain of stability for the age of the Solar system could
be derived by analytical means. It is quite realistic with respect to proper librations of the asteroids but
limited with respect to the proper eccentricities due to the limited convergence of the mapping
approach. Trojan asteroids in the Sun-Jupiter system are stable for the age of the Solar system for

proper eccentricitiese, < 0.01 and proper librations D, < 10°.

The present study indicates the possibility of long-term stability of asteroidsin our Solar system for the
age of planetary systemsin the framework of the elliptic restricted three body problem. It is the natural
generalization of former studies based on the circular restricted problem. Despite this successful
generalization, the present research study still neglects the effect of the inclination of the asteroids and
the influence of the other planets on the stability region, which is still beyond the cope of a pure
analytical treatment nowadays due to the complexity of the calculations. Nevertheless, it is a necessary
step for this kind of generalizations of previous results and clearly demonstrates, even at this point, the
relevance of a pure mathematical theorem on the behavior of physical systems, like our own Solar

system.
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8.2. Deutsch

Die Frage nach der Langzeitstabilitd unseres Sonnensystems kann nach wie vor nicht vollig
beantwortet werden. Die Untersuchung dieser Frage hat dennoch, in den letzten Jahrhunderten, die
moderne Formulierung heutiger Wissenschaftsdisziplinen mal3geblich  beeinflusst (Hamilton,
Lagrange, ...). Wegweisende Entdeckungen, wie das KAM und Nekhoroshev Theorem, im Umfeld des
Spezialgebiets Dynamischer Systeme, sind auf diesem Wege entstanden. Basierend auf dem
Nekhoroshev Theorem, soll in dieser Arbeit gezeigt werden, das es auch um die equilateralen
Gleichgewichtspunkte des elliptischen eingeschrankten Dreikorperproblems einen Nekhoroshev-
stabilen Bereich gibt, der fir das Zeitalter eines Planetensystems physikalisch relevant ist. Da die
Massenverhdtnisse in unserem Sonnensystem erlauben, die Massen der Asteroiden im Vergleich zu
den Massen der Planeten zu vernachlassigen, ist das eingeschrankte Dreikorperproblem der erste
Schritt, die Bewegung der Asteroiden in unserem Sonnensystem zu beschreiben. Aus der Stabilitét von
Testteilchen im eingeschrénkten Dreikorperproblem folgt daher ebenso die Stabilitét von Asteroiden in
unserem Sonnensystem (in seiner vereinfachten Darstellung). Zusammen mit der Beobachtung von
realen Asteroiden um die Lagrangepunkte, z.B. von Jupiter, ist es daher mdglich, stabile Bewegung in
unserem Sonnensystem fur das Zeitalter desselben zu zeigen: Die Beobachtungen, zusammen mit einer
rein mathematische Theorie, das Nekhoroshev Theorem, geben Einsicht in die geschichtliche

Entwicklung unseres eigenen Sonnensystems.

Kurzdarstellung der Dissertation:

Beide mathematischen Theorien, das KAM und Nekhoroshev Theorem, werden in der Einleitung kurz
behandelt, wobei das Nekhoroshev Theorem in Kapitel 2 néher beschrieben wird. Das eingeschrankte
Dreikorperproblem liegt den Untersuchungen dieser Arbeit zu Grunde und ist daher Thema von
Kapitel 3. Die mathematische Beschreibung der Trojaner-Asteroiden-Bewegung wird in Kapitel 4
hergeleitet, die Storfunktion der Hamiltonfunktion fur beliebige System-Parameter findet sich im
Anhang Il der vorliegenden Arbeit. Da die Angabe des Stabilitétsbereichs auf Abschétzungen der
Restglieder von Normalformen von Differenzengleichungen beruht, ist die symplektische Abbildung,
welche die Asteroidenbewegung in unserem Sonnensystem beschreibt, Thema von Kapitel 5. Die
Theorie von Normaformen von symplektischen Abbildungen wird in Kapitel 6 entwickelt, der
Zusammenhang zwischen den Restgliedern dieser Formen und deren Auswirkung auf den
Stabilitétsbereich zusammen mit Ergebnissen bzgl. den Jupiter-Trojanern in Kapitel 7 vorgestellt.

Die wichtigsten Resultate der vorliegenden wissenschaftlichen Arbeit:
i) Die Existenz eines relevanten Nekhoroshev stabilen Bereichs um die Lagrangepunkte des
eliptischen eingeschrankten Dreikérperproblems wurde gezeigt. Reale Asteroiden kénnen in diesem
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Bereich beobachtet werden. Das Resultat erweitert somit vorangegangene Studien basierend auf dem
kreisformigen Modell des eingeschrénkten Dreikorperproblems.

& ii) Der Konvergenzbereich der Methode beschrankt sich auf den Phasenraumbereich des
Librationsbewegungen von Asteroiden. Die Ursache liegt in der beschrankten Konvergenz der
Stérreihen. Uber Bereiche auRerhalb des Konvergenzradius kann anhand der vorliegenden Arbeit
keine Aussage bzgl. der Stabilitét im Sinne Nekhoroshev getroffen werden.

< iii) Die Stabilitét folgt direkt aus der Grof3e der nichtlinearen Anteile. Diese hangt nicht nur von der
optimalen Ordnung, sondern auch von der Richtung im Phasenraum ab, in der die Stabilitét untersucht
wird. Es wurde gezeigt, dass die Stabilité im hoher-dimensionalen Wirkungsraum von der Richtung
abhangen kann. Diese Erkenntnisist Bestand zuktinftiger Untersuchungen.

& iv) Ein analytischer Ausdruck, der die Groéle des Stabilitétsbereichs, mit der Nekhoroshev Zeit und der
optimalen Richtung verbindet, wurde in Kapitel 7 abgeleitet. Die Anwendbarkeit der Formeln
beschrankt sich nicht nur auf unser Sonnensystem, sondern kann auch fiir extrasolare Planetensysteme
verwendet werden.

& V) Der Nekhoroshev Bereich im Sonne-Jupiter Fall wurde auf analytischem Wege explizit bestimmt.
Die stabile Region stimmt bzgl. der Librationsbewegungen mit den Beobachtungen gut tberein. Die
Stabilitéat der Trojaner des Sonne-Jupiter Systems konnte fir Exzentrizitéten e, < 0.01 und

Librationsbewegungen D, < 10° fiir das Zeitalter des Sonnensystems gezeigt werden.

Die vorliegende Studie belegt die Mdaglichkeit der Langzeit-Stabilitéd von Asteroiden im
Sonnensystem fir dessen Lebenszeit im Rahmen des dlliptisch eingeschrénkten Dreikérperproblems.
Sie erweitert somit Aussagen vorangegangener Arbeiten, welche auf dem kreisformigen
eingeschrénkten Dreikorperproblem basieren. Die (notwendige) Einbindung zusétzlicher Effekte, wie
die Inklination der Asteroiden und den Einfluss der anderen Planeten auf die Stabilitétszone stellt den
néchsten logischen Schritt einer weiteren Verallgemeinerung dar, die Relevanz einer rein
mathematischen Theorie auf reale physikalische Systeme, wie unserem Sonnensystem, kann bereits aus
dieser Arbeit abgeleitet werden.
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Appendix lI: Formulae

The complete set of formulae, derived in this thesis would fill another 100 pages
(depending on the representation). The expressions given here are meant to be i) anchor
points to rederive the calculations and ii) examples complementing the formal treatment in
the Chapters. The lightbulb at the beginning of each proceeding section refers to the origin
of the expressions, i.e. the Chapter, Section and equation number. The content of this

Appendix is:

page IV IL.L. Disturbing function in the 1:1 resonance

Derived and used in Chapter 4, 5. As a result it can be used for different parameters ¢ “ and
a’ of the perturbing planet. The series are sorted with respect to increasing order in the

trigonometric arguments.

page X1V ILIL. Explicit mapping

Derived and used in Chapter 5, 6. Based on the approximate disturbing function it covers

the librational regime of asteroids of the Sun-Jupiter case.

page XXI IL.III. Normal form mapping

Derived and used Chapter 6, 7. The normal form defines the approximate integrals used in

Chapter 7 to derive the stability estimates.

page XXV ILIV. Remainder function

Derived in Chapter 7. The remainder is at the basis of the Nekhoroshev stable region,

derived for the Sun-Jupiter configuration in 1:1 resonance.

III
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ILI. Disturbing function in the 1:1 resonance
¢ Chapter, 4, 5, Section 4.3.2.
The disturbing function of the 1:1 MMR in the case of Sun-Jupiter was derived in Chapter

4, i.e. by means of (34;4), (35;4), (39;4). It is part of the generating function, derived in
Chapter 5, i.e. through (9;5), (10;5).
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XIv

ILII. Explicit mapping

¢ Chapter 5, 6, Section 5.4.

The explicit mapping, derived in Chapter 6, i.e. in the form (15;6) is given up to 7th order
in the mapping variables. It was derived by means of iterative series reversion (Section

5.4.2.). The real form can be reconstructed from it leading to (11;5).

m ILILL. F,©

o FD=(0.870169533360692 + 0.4927524563214631 i) z;

o F? =(1.371226070425621 + 0.7019865904020263 i) z2 — (0.01948337574586629 +
0.04667619113389489) 7, 7; — (2.614676165190312 + 1.629617436229222i) 7, z; + (0.0500495184029146 —
0.00730167493516427 i) 75 z; — (0.03618064379809882 — 0.05723327056831234 i) 23 + (1.317008770629897 +
0.7038763157368793 ) 72 + (0.03757213633224251 — 0.06971554031126874 1) 73 + (0.02331884024591423 + 0.04668979678578943
i) 22 21 — (0.2130644154953522 + 0.13009 18835773881 i) 25 2, — (0.04811256229074019 — 0.01114787696209221 i) 2, 2,

o F¥ =(3.702198357347421 - 6.65019267603833 i) 7; —
(0.6060399822289254 — 0.2425247310776141 i) z 22 — (11.0351211318573 — 19.19678490091994 i) 7; 2% — (0.07704083720746036 +
0.6500335447650077 i) 7, 73 + (1.203330698332992 + 0.75203496347318881) 73 z; + (10.94238675934796 — 18.42334677221183
i) 7 21 — (1.265284338743407 + 0.6393112499684074 i) 23 71 + (1.176149890262144 — 0.52528304162411541) 25 ) 21 —
(1.428755614387478 — 2.529986796213948 i) 7, 7 z1 + (0.199756165700369 + 1.263009871829049 i) 7 2, z1 — (1.69347440356308 +
0.7150921845398489 i) 73 — (3.636931102586162 — 5.959593295441692 i) 73 — (1.336910419221685 + 1.327226431731362i) 73 —
(0.5754137977610272 — 0.2793435138325123 i) 2, 22 — (0.9112482863306992 + 2.147908609023459i) 7, 73 + (1.322414895411518 +
0.7650225196532181) z; 23 — (1.022841254812297 + 0.705454205902162 i) 73 z; — (2.030430271207477 + 0.2304139887832361
i) 73 70 — (0.1249481454942901 + 0.6181851277503458 i) 77 2, + (1.556855536321054 — 2.305582519322315) 22 71 22

o ™ =(-36.28117923370746 — 20.55060652093868 ) 2} + (2.899515066741232 + 5.459966715298459 i) 7, 7} +
(140.4119132211359 + 81.994095550827424) 7, 23 — (6.274140424012407 + 0.032973103177451793) 2, 23 + (7.420330712087774 —
11.60974032023177) 22 23 — (204.8192842208183 + 122.86041988622661) 22 22 — (5.284525040279112 — 11.87116090573378
i)73 2} — (8.992719069666087 + 15.99085655591381 i) z, 7| 23 + (25.52823701871197 + 13.83586692200064 1) 2, 2, 2} +
(18.32587673007882 — 0.2328341336457847 ) 7 25 2> — (5.015009428436764 — 22.074444562327621) 23 21 + (133.4880551718053 +
81.91976739125614) 23 1 — (16.3726431230267 — 15.83510399537384 ) 23 21 + (9.286367768690784 + 15.70324260632339
i) 227 21 — (28.95158594551631 — 8.71404893154371§) 7, 73 71 + (12.23510635065575 — 24.117296092013888) 7, 23 21 —
(14.73821378782083 — 20.50154312734614) 23 7, 21 + (7.793800267922833 + 29.41483667229451 i) 22 2, 7, — (17.92227042714302
0.59683493439995114) 22 25 21 — (48.41447610858743 + 29.7410657464736 ) 2 21 22 71 — (22.93261727125236 +
4.3789261792326341) 4 — (32.79222262096193 + 20.53044014457355 ) 7} — (12.02495609531129 + 23.01269896553501 i)

2 — (3.191413830480249 + 5.167365053175445 ) 25 73 — (50.5424295678792 + 54.92105860167378 §) 2, 75 + (18.20864982297569 —
11.96658304048294 i) 7, 73 + (7.125879433116444 — 9.06967105877891 ) 73 72 — (65.08204911354822 + 55.06380245327255 i) 3 73
(7.034413628742041 — 12.06340559819943 1) 22 23 + (33.9630037058 1058 — 2.254885714888939 i) z, 7| 73 + (8.343438048813002 —
20.0807005710995 ) 23 7) — (62.52818003543026 + 34.63825807114274 i) 73 2, + (5.870206561081335 — 0.3271106588052071

i) 7} 22 + (22.8284352091583 + 15.64830360803655 ) 25 2} 7 — (0.8652052704905859 + 24.23579189596968 i) 3 7 22

o F® = (=112.1450131870067 + 190.0752633267882i) 7} + (45.04927708650335 — 24.90141431976139) 2, 7{ +
(552.8597590023926 — 923.1110121957156 i) 7, 7} — (2.370159181504285 — 52.43073014090792 ) 7, 7} — (104.071699715881 +
69.14869288457828) 73 23 — (1092.896562717639 — 1802.864055528455 i) 7} 73 + (105.9292267586898 + 43.44988288189337



XV

i) 22 2} — (176.1335987848247 — 101.7248745546424 i) 2, 71 73 + (119.484038255309 — 222.4435944446441i) 2,2, 7, +
(6.049285109038138 — 204.67022743135871) 7, 2, 7, + (222.8903297751101 + 48.32546126075647 i) 73 2} + (1083.355159450502 —
1770.0103169497661) 7} 73 + (175.9074893985915 + 155.955609188564 ) 23 27 + (259.4269448342815 — 156.15040688775

i) 2272 2} + (104.4067411143039 + 254.294201573257314) 2, 73 27 — (322.6566499966986 + 146.7970023052255) 7 73 2} +
(284.3148963692852 + 207.22654637377661) 23 71 73 + (287.0290334761742 — 85.74241227444796§) 23 2, 23 — (3.64966243167018 —
300.8523880325855i) 7} 75 23 — (376.6590598416656 — 641.54374738156994) 25 71 72 23 + (49.03023950100422 + 323.5712200126532
i) 24 21 — (538.7130841136391 — 873.5576898435986 i) 7] z; — (302.4206965691108 — 130.3296240455927) 73 7, —
(170.5969709002997 — 106.7156690590157 i) z, 2} z1 — (600.2351724599022 — 624.88982661475121) z, 73 21 — (302.0929171317029 +
335.8018817683877i)z; 23 21 — (258.7842938846516 + 204.1678096205631 i) 73 23 71 — (497.1132643416337 — 902.970819109029

§) 23 73 21 +(325.8606215021442 + 164.55231931924424) 73 23 71 — (139.269398979029 + 574.83790738239364) 22 21 23 21 —
(432.3890000210047 + 146.9661410084964 i) 3 7; z; — (209.5866149272356 — 838.7081397579341 i) 23 7, 21 — (1.344204207570016 +
197.38038262926061) 7} 2, 21 + (393.2231609510404 — 616.6434216894575) 2, 72 25 71 — (530.1069228522607 —
69.33805013319986 i) 73 2| 22 21 — (437.4994787459364 + 141.9548726440751 i) 25 + (107.5379937630958 — 173.3666532098972 i)
20— (258.6782800376262 + 444.2458089231011 i) 73 + (42.25480622342424 — 27.39237565302497 i) 2, 7! — (1126.394778306598 +
1586.206249629628 1) z, 73 + (344.9650713483003 — 43.20050286720749 i) 7, 24 + (78.65002879085549 + 66.31087948955538 i)

375 — (2408.045312223426 + 2446.3128709788221i) 23 73 + (124.3316701050502 + 173.262066693675 i) 7 23 + (779.685678491318 —
364.8252874936239) 2 71 73 + (204.8120458889071 + 94.37589265348609 i) 23 77 — (2662.35481908981 + 2018.943877055291

i) 23 75 — (109.1013661705621 + 60.98174244819877 i) 7, 22 + (25.05690833712274 + 305.4402086132351) 2, 7 2% +
(800.2094659416555 — 593.3881615059685 1) 73 7, 73 + (32.40101823140348 — 282.2789695897274 ) 3 7| — (1593.676944911732 +
799.7833109901583 i) 73 2, + (1.315878878343561 + 48.76477580135425 i) 7} 7, — (135.8999709657737 — 197.8763354922605

i) 227} 72 + (230.814487945046 + 2.6 156045714858 18 i) 23 73 2> + (449.5258607474453 — 658.20527797471744) 23 71 2

Fi©® = (952.6004267959913 + 596.78781677811234) 2§ —

(173.8089470253659 + 321.4456485102458 ) 2, 7] — (5566.772261995954 + 3488.253961592337 i) z; 2} + (371.7617327533642 +
26.874248241373324) 2 25 — (573.660598201242 — 802.3423897785215 ) 22 z* + (13631.18317077031 + 8520.28455918821

i)7 2+ (304.8301980716473 — 827.0821786799679 i) 23 ! + (885.3817360634591 + 1566.4325628169781) 2, 7 7+ —
(1583.333754415347 + 858.37143829293724) 25 2> 2+ — (1813.941815207779 + 101.190367861731 §) 21 2, 2 + (423.3671504759949 —
1985.12464409862 i) 23 23 — (17902.27922873237 + 11136.699161898714) 73 23 + (1355.9903949493 14 — 1614.44354434639) 23 23 —
(1809.429520493292 + 3066.061778009494) 2, 22 23 + (2111.385054224345 — 920.3372545373387 ) 25 22 25 — (1350.832696997989 —
3354.1600864141114)7; 22 23 + (2277.966674808044 — 2957.793774469572) 22 21 2> — (840.328753575538 + 2478.365726326116

§) 2272 22 + (3555.506788310511 + 134.8449612428256 ) 22 2, 75 + (6111.88333378333 + 3545.749562575064 i) 25 21 2

2+ (3144.101754586833 — 592.00592292339621) 73 23 + (13299.07603081605 + 8218.8850048353094) 2! 22 + (1602.084833999746 +
2756.4288365587864) 74 22 + (1854.100556442519 + 3013.417951421548 i) 2, 75 22 + (6695.793757244761 + 5319.832898855918

i) 222 23 — (4321.874567768291 — 4365.488708061985 i) ) 73 73 — (3369.565940519641 — 4089.8227426250014) 23 23 2} +
(9624.93408961107 + 4066.5708189062094) 23 23 22 + (2239.084176455495 — 5091.303 11180857 ) 22 22 72 — (7025.504110706248 —
2130.1580217049194) 25 2y 22 22 — (1747.509752310816 — 5837.7941576788994) 23 7, 22 + (8377.911225667518 + 1315.659608840182
i) 23 72 24 — (3499.628492533945 + 66.17654742003523 i) 7} 2, 7} — (8864.987545122392 + 5483.448302287936) 25 23 22 2} +
(1488.270068722127 + 7088.262159992251) 23 2; 25 7> + (292.5337373396933 + 6185.943442674811i) 23 7 — (5297.782508247688 +
3248.300152889774) 7] 21 — (5428.041130615191 — 3110.698561918884) 73 7, — (952.4189924865316 + 1487.20343640475i) 2, 2} 21 —
(17647.02961097291 — 14670.21895735914) 2, 74 21 — (2145.254083929289 + 6062.957663346 i) 7, 73 7 + (2201.925917498287 —
2516.0339378937754) 22 2 21 — (23159.80770624599 — 32911.44803783632) 22 73 21 + (4506.582754707184 — 3874.458531490037

i) 73 23 21 — (10555.18965180744 + 13175.371252883 i) 2 71 73 21 + (2198.856479578702 — 5658.6852099083 14 ) 3 2} 21 —
(14985.17271243924 — 37300.869184564994) 23 22 7, — (1643.528413091337 — 3428.4961736702194) 23 22 2, + (7572.994621186839 —
1360.102917634494 i) 7, 22 22 21 — (16370.3472639208 1 + 12549.330534238221) 22 21 22 21 — (6119.576416847271 +
47.83597723132722§) 24 21 1 — (2753.116625233637 — 22713.530087162024) 24 22 21 + (1729.732919218356 — 1.837557186425784 i)
2} 20 21 + (5728.795568944187 + 3762.111225202644 i) 2, 7} 22 21 — (585.3627967884859 + 6565.530604987566 i) 73 21 25 21 —
(15464.06154665317 + 6221.2944719737584) 23 2 2> 21 — (8808.74031834031 + 3326.004747751999 5) 5 + (883.97524791051 +
537.29295000360994) 28 — (5090.545905463991 + 9529.812694359676 i) 25 + (196.1758046739394 + 294.8629452759931 i)

22 25 — (29496.26074290669 + 45208.425841588294) 2 73 + (6526.74320920804 — 845.921578553392#) z; 23 — (536.7564854143538 —
581.43656281410214) 22 24 — (75491.58623730531 + 92345.0450736301 i) 22 73 + (455.8399427931659 + 3090.923698139294 i) 22 24 +
(23325.79456087784 — 5601.3065524079271) 2, 7 73 — (868.0559293826963 — 1813.765644082506 i) 3 7} — (108515.8566332385 +



XVI

103298.0555079244 i) 23 23 — (1538.007518272986 — 1133.5727931610254) 7) 73 + (3451.300093976503 + 7138.001712318725 i) z, 3
23 + (35490.81200214921 — 17720.397327515584) 23 2 23 + (2801.48695737094 + 505.3246914587048 i) 24 22 — (91295.34144292136 +
66109.202311238274) 74 23 + (450.4262064920229 — 864.5305344227253 i) z* 22 — (2645.299650906987 — 177.8138978120122

i) 227} 73 + (6022.853032731652 + 7549.832058932476 i) 73 73 73 + (28852.40635491409 — 24189.716519113491) 23 7,

22+ (1711.079413420544 — 5103.143237690488 ) 23 71 — (42903.73554525537 + 22925.59245936187 §) 5 2, — (343.4307601777096 —
7.488153056733425i) 7 7, — (1392.606135878073 + 966.521519745668 i) 2, 7| 7, — (45.65788409229162 — 1980.9601262759

i) 23 7} 72 + (6521.970475735385 + 4346.183325362892 i) 73 22 7, + (10902.32153026759 — 16897.231452701184) 24 71 2,

F17 = (3149.072255647837 — 4635.934964032738 i) 7] —

(2058.458224615344 — 1097.134008651959) 7, 25 — (21210.04361364009 — 31689.30519749784 i) 7, 25 + (281.8241140711768 —
2376.644384454007 i) 72 2% + (5316.890157186999 + 4281.529397232484 i) 23 73 + (61398.19277359091 — 93390.23162653384

i) 73 73 — (5712.373869419354 + 1814.270194390726 i) 23 23 + (11998.15591747272 — 6723.795758753223 i) 22 21 23 —
(5766.63353330369 — 10273.710219113724) 25 25 7} — (1385.900113441497 — 13898.30838549397 i) 7; 2, 2] — (14757.84776268684 +
3065.359442732821) 73 7} — (99065.705741033 — 153811.592784892) 73 7} — (12244.47392328948 + 10032.4036062847 i) 73 71 —
(29257.02201408971 — 17228.97816573683i) 7, 72 2} — (6464.261566159622 + 15097.16713252074 i) 75 73 21 + (28883.46192676274 +
9921.632465838687 i) 7| 22 z1 — (24664.17549492347 + 21105.13466584605 i) 23 7, Z} — (18188.14422367407 — 7192.149077569483

i) 25 22 7} +(2707.733866859102 — 34016.2417442135 i) 23 2> 2} + (29258.40500953106 — 49751.64221587039 ) 2, 2

22 24 — (5975.912836236237 + 27397.75515647674 i) 73 73 + (96263.1814664661 — 152880.31128333294) 7§ 73 + (23458.88644265544 —
14710.431062192424) 73 23 + (38207.86833381158 — 23622.18499027318i) 7, 7} 73 + (43993.90393747272 — 59014.70094743378

i) 2223 73 + (44870.81500380613 + 42114.817275544214) 7, 73 73 + (45833.94540667772 + 41484.2869892382 1) 23 72 2} +
(32166.99168294617 — 86241.53728529061 i) 23 73 23 — (58409.46818605491 + 21680.14080261511) 73 73 23 + (20778.46049088133 +
66252.48516950975 i) 25 21 22 73 + (57994.28796604207 + 16107.17915779478 i) 23 21 73 + (7925.159954856452 — 72821.58971918897
i) 73 2 2 — (2606.80905153164 — 44601.87472699201 i) 73 7, 73 — (59430.86834292453 — 96703.72930518405 i) 2, 23 72 7} +
(69850.71960211016 — 19911.08405590239) 23 7; 22 23 + (60113.01704058994 — 7835.389500512873 1) 73 23 — (56357.42717444222 —
91688.54910570232) 73 27 + (36943.78115777198 + 49330.85585709547 i) 73 27 — (28187.43935082942 — 18273.95053130993

i) 22 74 72 + (165269.6776587986 + 152212.30456984161) 2, 71 73 — (76606.4476439222 — 34310.04582677481 ) 7, 73 2} —
(42666.97722059299 + 40655.54015776057 ) 23 73 73 + (350799.4802592959 + 187305.3053432741 i) 23 23 23 — (61140.79800573714 +
65609.06030332898 i) 22 73 27 — (158926.3629330345 — 152152.70754570164) 20 21 23 72 — (85032.2967297431 +
29785.98261021442) 23 22 23 + (382504.9000600936 + 103492.6501215684 i) 23 22 23 + (59058.10941887087 + 23651.96673160645 i)
712 72— (22222.91543474179 + 107083.27663364721) 2 23 75 2% — (141836.5003818647 — 235048.07384003734) 23 21 23 22 +
(6007.442716818827 + 81521.51586416688 1) 73 71 72 + (224139.7349417048 + 4362.155680923548 i) 23 75 22 + (1204.830529272149 —
33042.86170105354 ) 71 25 2} + (60415.27146515912 — 94324.71356520383 ) 22 23 22 73 — (98891.9241973041 — 17740.82015734827
i) 23 71 72 24 — (59207.320098006 14 — 209267.2489086982 i) 23 71 22 73 + (5523.817073338651 + 128039.24838247164)

25 21 + (18413.9170395828 — 30715.66730319624 ) 25 z; — (111401.4654203218 — 66674.60470407727 i) 25 21 + (11139.30927424969 —
7561.075765407592i) 25 77 21 — (488168.5704548798 — 404379.5870310922) 25 25 71 — (47510.42698464574 + 114121.8857022621 i)
212 21 +(19903.98305210718 + 19871.0703008995 ) 22 7} z1 — (890026.650427577 — 1.072366562410307x 10° i) 22 73 21 +
(80518.658724568 — 23292.62413523112§) 22 73 71 — (233634.7784724199 + 387540.7695491761§) 25 71 74 21 + (55156.65711506445 +
23427.73165082647i) 73 73 21 — (835111.3468046808 — 1.568036875322472x 10° i) 73 73 7, + (36728.23359509427 +
44978.8479526125 1) 73 73 z1 + (178702.3586382674 — 121324.93388170164) 2, 22 73 21 — (557620.1894224177 +

559973.9752889117 i) 23 21 23 71 + (5097.97133594162 — 78231.71315583288 1) 73 72 z; — (394500.8917017534 —

1.33419913198076 % 10° i) 23 22 z; — (29860.95182523674 + 12879.12308497718 i) 7} 22 z; + (8200.374730005191 +
75616.29596149598 i) 7, 73 23 71 + (178829.081016404 — 200500.9807777272§) 23 72 22 71 — (661225.3676805884 +
418109.69993129374) 73 21 23 21 — (116709.237316319 + 15019.21908819138 i) 23 7 71 — (66066.95823785529 —
627127.58965628311) 23 2, 21 — (181.6343136155338 — 13113.37810740299) 7; 2, 21 — (30740.79438007373 — 46180.11691444243

i) 227 25 21 + (61184.26697100323 — 4740.504679001962 i) 23 73 75 71 + (90460.6797510265 — 191553.1130750119

)23 7 22 21 — (414419.1022203964 + 133456.0956443335 i) 23 71 22 71 — (192196.48021751 + 83176.24040705786 i)

75 — (2591.187466843369 — 4432.698955126593 i) 7] — (109168.6754155818 + 219438.1641081255 i) 75 — (1842.415792820005 —
1306.990647294577 i) 75 25 — (757900.2956391049 + 1.280782242054625 % 10° i) 7, 25 + (139587.5468255114 — 6037.475812087592 i)
21 75 — (3723.515975897863 + 3875.93401565531914) 73 73 — (2.335345120322106 % 10° + 3.264600967305082 % 10° ) 22 25 +
(7662.103984721412 + 57753.895753123334) 22 23 + (663667.4678007492 — 97522.67738439329i) 2> 21 25 — (13370.23049525207 +
6696.383510253781) 23 2} — (4.115255250844436 % 10° + 4.694325066685941 x 10° i) 23 73 — (27220.53576939688 —



XVII

4132.453031384477 i) 73 73 + (52177.83311587315 + 205109.9601135406 i) z, 72 73 + (1.357751365747732x 10° —
411673.4787506969) 23 71 74 — (4821.046961750631 — 24419.88474510884 i) 23 73 — (4.47617083613229 % 10° +
4.10510038139549 x 10° i) 23 23 — (8218.157501841139 + 11467.83384919952 i) 7! 73 — (63025.59164140862 —
29741.06960108254 i) z, 73 73 + (170611.4698845456 + 319525.7411702579) 23 22 73 + (1.516535218979045x 10° —
794743.6432735644 i) 23 7, 73 + (51027.26620841011 + 18679.7828192563 i) 23 7% — (2.998531957489848 x 10° +
2.181220787119466 x 10° i) 5 23 + (6041.293673521701 + 2800.255894247221) 7 23 — (309.3921048283301 +

19732.16007040958 i) z, 7} 23 — (67828.51520447778 — 53804.672503846094) 23 7} 23 + (237636.4811123662 + 266856.9340941136
i) 23 23 73 + (966825.1106516158 — 815700.241000803 1 §) 3 71 73 + (45923.05855762084 — 98814.792021358734) 25 7/ —
(1.143963925942474 x 10° + 649231.1763712855 i) 25 22 — (20.04644996193679 + 2177.817066342422 ) 2° 7, + (6264.872026477732 —
9080.559418724657 i) 7, ) 7o — (13977.41762269461 + 321.99218512193144) 73 7} 7, — (38132.33285071128 — 56408.52908117197
i) 23 73 72 + (166553.8157897645 + 107086.91310661821) 25 7] 72 + (328553.0908884661 — 438257.18065672651) 23 21 22

m ILIL2. F,®

o 71 =(0.9997952030905475 + 0.02023738810051618 1) z,

& P, =-0.02193932925093116 + 0.01412771002666203 ) 22 + (0.2496203897735642 — 0.003162962595832208 i)
2 21 +(0.04057314255690176 — 0.03020080880174968 1) z; z; + (0.003824235035699661 + 0.1353666140846914 1)
72 71 — (0.001213421865078973 — 0.1455805059116234 5) 23 — (0.01852079313490402 — 0.01633259545784685 i)
22+ (7.809581862188754 x 107° + 0.4363878845241665 i) 73 — (0.2492879307901039 + 0.01326163208195616 £)
2221 —(0.009357407433278423 — 0.2910207265858483 i) z2 7 — (0.0001113555806085825 + 0.1583908948070483 i) 21 22

& F,% =(0.1126448099575112 + 0.1805548562744935) 73 — (0.04760095818292598 + 1.451392515230422 1)
22 23 = (0.3530024015860079 + 0.5208116778740028 i) 7; 23 + (1.270442008716912 — 0.1354609475376852i) 7 77 +
(1.833971306817882 — 1.310854031947808 i) 23 z; + (0.3729701438314642 + 0.5010360180121877) 7] 7, + (5.417047218216617 +
0.5286823960334235) 23 71 — (0.09972213816419995 — 2.9130381034853594) 23 71 21 + (3.547406223589169 +
1.67352893162582i) 25 20 71 — (2.827483968516755 — 0.1883953816491517i) 21 22 21 — (0.06819825514760738 —
5.592018767729273 i) z3 — (0.1326777290695202 + 0.1609973008581332) 7; — (0.1080368076727457 — 6.959680869314085 i) 73 +
(0.1471031517325621 — 1.443914585351749) 2, 77 — (0.3035437015104354 — 16.7695438858668 i) 7 73 — (5.381553222923807 +
1.378659964324 1) 7; 75 — (1.852509311513431 — 0.6912070199151377 ) 23 z; — (0.08735189694351951 — 12.76155161751702
i) 25 22 + (1.55586032219011 — 0.02119789244932857 i) 2} 2o — (3.477726735693164 + 2.908362435551417 i) 2 21 22

o RY=
(1.365128177142607 — 0.6434636163925804) 7| — (9.860341838131577 — 0.3454042330535064 ) 2, 7} — (5.295335266130175 —
2.643725815320209i) 7, 7} — (1.699082529674098 + 8.1108033649312154) 2, 73 — (13.2698031953423 + 11.58142849910344
i) 23 2} + (7.720034247549895 — 4.107742582850397 i) 7} 2} + (3.1794293 18830897 — 34.263862177459364) 23 23 +
(29.63709069557501 + 0.35301601985516314) 2 2 23 + (14.1891007804071 — 20.91310024033571 &) 5 2, 75 + (4.390473479409256 +
26.110203823887781) 7 7 25 + (69.53375334067223 — 18.34239643753585 i) 73 7, — (5.016559861162786 — 2.858715511203453
i)7] 21 + (85.89176873923941 + 26.5012520837953 i) 23 21 — (29.55998174575717 + 1.7806356597899414) 2, 2 7y +
(204.511683475663 + 1.0443837383271681) 2, 23 21 — (16.7028178877893 — 66.7000055622878 ) 2, 73 7, + (18.86627931115593 +
25.04175363484588) 22 2 21 + (158.3674534831149 — 29.45289770894598 §) 22 2, 71 — (3.304893544243537 + 27.89966953598986
i) 7} 7 71 — (43.41582470969642 — 42.474121106178841) 25 7 2 71 — (0.8957162290035101 — 136.854621750983 )
24+ (1.22673900583959 — 0.7510659613754018 ) 7} — (4.368753097418479 — 175.9027475168192) z} + (9.783344672796801 +
1.054566983191129i) z, 7} — (11.05025773127397 — 547.1081293747742) 7, 73 — (84.36877114907286 + 52.87710760086914
i)71 23 — (5.603390325360426 + 12.16825001669465 i) 23 2> — (8.186225892992017 — 759.37721225184824) 22 23 +
(13.43085494818493 — 31.085030331692881) 72 23 — (202.7366353098372 + 67.43665447135045 i) 2, 7| 75 — (69.59160124503077 +
3.837207404116436) 23 z; — (2.801028537184259 — 506.4048254032073 i) 23 25 + (0.6143208119966719 + 9.869630120585654
i) 7] 22 + (29.19067543848591 — 18.98157633677584 i) 22 73 2 — (157.8370945099073 + 33.651144557701324) 23 21 2

* F,® =(-3.80986511516409 — 9.120156850419514 i) 7} + (2.092133618968774 + 65.32184765706236) z, 7} +
(19.57481293882461 + 44.265386705365921i) 7, 7} — (55.20693343714459 — 15.29946819625608 i) 7, 7} — (88.8138726094822 —



XVIII

82.02447847240464 1) 73 73 — (40.4987725382933 1 + 86.20559616495922i) 23 23 — (250.3797722591814 + 15.01289887123893

§)23 73 + (0.7349838398246504 — 260.4451395670595 i) 2, 2 2} — (148.083882036965 + 86.884147908002164) 2 2 23 +
(233.5052660006902 — 56.20541497049689 1) 2, z; 2} — (198.085635127589 + 410.3155838595347 i) 73 77 + (42.15042532608727 +
84.222304134822614) 75 22 + (197.2371825819338 — 566.8369729898625 i) 3 22 — (15.12223863254695 — 389.7035008719093

i) 227 23 — (91.43021487538758 + 1239.99870665943 1 i) 2, 73 73 + (736.826707157376 + 115.6072661717396) 2, 23 2} +
(286.7294663755225 — 197.49101384878274) 23 7, 23 — (364.3612921986422 + 970.07866545186895) 73 2, 7% — (369.8705203334965 —
74.358549033570981) 22 7 2} + (456.0890577231218 + 354.5845655113594) 75 21 2, 73 + (1695.7153575404 — 697.5893730255923

i) 4 21 — (22.05435058315011 + 41.28953567932338 i) 2! 7, + (2162.596290481527 + 346.79690986542691) 73 2, +
(19.43167043608413 — 259.2815932962801 i) 2, 7} 2 + (6677.133499115829 + 212.0161237095383 &) 5 73 71 — (716.8229585973132 —
1094.892777650251) 21 23 21 — (291.9694330957726 — 145.23386492943784) 23 22 2, + (9285.613163779653 — 1305.312124086167

i) 2375 21 — (708.0018379621132 + 185.036681424305 i) 22 73 7, — (623.3213240231858 — 2512.876312338958 i) 2, 21 23 21 +
(124.708929284344 + 910.2011003726954 i) 23 7, 21 + (6200.313665072263 — 1692.075432441134) 23 2, 2, + (259.7860786175652 —
41.25185462230034i) 7 7, 71 — (437.9305736585208 + 452.7659527631041) 2, 72 7 21 — (40.32963684679578 —
2093.1386089483981) 23 7, 2> 21 + (7.080238054823465 + 3705.784399840547 i) 73 + (4.637761255120817 + 8.127382605075743 i)

25 — (128.0869517986461 — 4304.8711092242174) 73 — (7.136718125468317 — 64.7396329926658 i) 7, 2 — (468.837082745775 —
18514.36381054579) 25 2} — (2122.397794113937 + 1179.52050024085 i) 7, 7 + (94.04543602860272 — 31.87419852864817 i)

2 7} — (501.2576690208946 — 33880.477648961194) 23 23 + (516.2786794908859 — 466.0926681044025 i) 7 73 — (6580.3555290761 +
3142.784755191064) 2, 21 23 + (74.07651296968973 — 443.3416089597798 i) 3 2% — (248.815362309188 1 — 33007.52530213765

i) 23 73 + (221.6657679767743 + 82.30823514754003 i) 2 23 + (709.5234097646022 — 1103.5655181368574) 2, 7 23 —
(9223.272935872843 + 2838.5519992662331) 23 7 73 — (1704.210441775185 + 36.52089365063776 &) 2} ) — (22.59807816830595 —
16946.04053167121) 23 7, — (68.21520829236951 — 7.8334417618647124) 7! 7, + (130.0052162297415 + 180.8542980862118

i) 227} 72 + (403.3067560687225 — 957.4899810546536 i) 22 22 7, — (6196.692332102816 + 1071.617520375447i) 23 7, 2,

F,® = (—=53.28721272483878 + 19.62067909383665 i)

2§ +(379.9208739302135 — 10.405818302495994) 25 2 + (309.5023506003686 — 122.0367102817544) 2 23 +

(125.6589341289607 + 347.007146094366 i) 7, 7] + (562.1623800261984 + 663.5634350047983 i) 23 2} — (751.6588169545612 —
318.0758639957667 i) 22 2} — (79.82498386685212 — 1746.977679764426 1) 73 7} — (1887.776152024317 + 1.231149122840279

i) 2271 21 — (550.5090131205943 — 1012.815994309817 ) z2 2> 2} — (598.7161500587196 + 1820.770502900797 i) 7,

20 7} — (3047.42769174896 — 1244.894966656368 i) 73 z; + (977.1949082662879 — 444.36222598189394) 73 73 — (4279.079057448414 +
1113.6332279830144) 73 23 + (3760.318408198903 + 110.0487918625943 i) 7, 72 23 — (8929.415843176826 — 548.5399148677132

i) 7273 73 + (823.2594417693127 — 6878.452247271273i) 21 23 23 — (1883.909561973071 + 2779.572717069974 i) 23 7, 23 —
(7249.536419507034 — 2291.369119128269) 23 25 23 + (1123.053671954629 + 3820.5813993352721) 22 25 23 + (2869.56808752949 —
4102.0585068088851) 72 71 22 73 — (7295.128134325563 + 9838.797145996654 i) 73 22 — (717.3671498273369 — 350.7169227197371

i) 7] 22 + (1652.941775857593 — 14377.20933893336 i) 73 73 — (3752.679818578906 + 218.3882247786862) 2, 73 73 —
(2927.307653364916 + 42014.98505918197 i) 25 73 23 + (12660.70254774424 + 5507.0367341353054) 71 23 77 + (2244.304316886827 +
4271.928744884403 1) 73 22 22 — (18182.61127029084 + 55648.81907773615 i) 73 23 22 — (1986.30409312649 — 10081.83588133676

i) 75 23 7} +(27539.33775257437 + 3491.7313833975684) 2, 21 25 23 + (10081.15789516436 — 2084.675471413291i) 23 2 2 —
(19311.63621470046 + 35650.73049557144 i) 23 25 22 — (1032.644109047132 + 4006.825543269355 i) 73 2, 73 — (5362.484208853574 —
6053.680512573099) 25 2% 25 23 + (23559.51108687574 — 2181.048400197642 1) 23 21 22 22 + (45439.38465349741 —
21058.12648897647 i) 23 z1 + (281.9951506691051 — 148.1905001602796 ) 7] z; + (52691.02665835143 + 5222.537175157144) 75 z; +
(1876.279319609902 + 163.4701406702615i) z 2} 21 + (225154.8450391003 — 1911.313890442872) 75 73 71 — (13458.54090492629 —
28166.01370347901 i) z; 23 z1 — (1107.838159857808 + 2852.03973276106£) 23 73 71 + (411543.7061652645 — 54302.14869562394

i) 25 73 71 — (11762.71864504684 + 7670.4186760572284) 23 23 z; — (29673.42089387198 — 86126.17878583068 §) 25 21 23 21 —
(10361.69827794807 — 190.7783379419616%) z3 23 z; + (400571.6627429918 — 102734.530176082) 23 23 z1 + (1800.618956695131 —
6514.607368622292i) 73 23 21 — (26317.68607518332 + 8865.894040648092 i) 5 23 23 21 — (13760.66505706732 —
120607.18723218715) 23 21 23 21 + (5660.625183243737 + 23354.39786240902 i) 73 2 21 + (206130.5626585144 —

77198.14018784938 i) 23 2, z; + (462.9411708137726 + 2099.8924 18754947 i) 7} 25 2, + (4273.447311749571 — 3843.009991989396

i) 2271 22 21 — (23434.19949065543 + 2990.116587061194 ) 73 23 75 71 + (5198.80211353183 + 81595.80077238426 i) 23

21 22 71 + (825.3048483446908 + 99217.99009700005 i) z5 — (46.37923663556279 — 26.17624102910074 1) 28 — (4093.210443848799 —
111104.7708998313 1) 25 — (376.0623497690265 + 43.53976917175885 i) 2, 73 — (17459.29410299748 — 594776.1262548896§) 2, 25 —
(51424.54801936122 + 31154.548441420555) z; 25 + (185.3040668560389 + 699.2786425907618 i) 73 21 — (28018.88991161085 —



XIX

1.379079571348818x 10° i) 23 74 + (11674.13533339656 — 11325.33927490923 i) 73 71 — (220970.7066022785 + 115648.2641387117
i) 22 21 73 + (3326.309573500978 + 533.8212784327036 ) 3 73 — (19894.73399686386 — 1.770063506735921 x 10°

i) 73 73 + (3387.334247797892 + 3155.907280875051 i) 23 23 + (32279.49973548401 — 34982.89668377391 i) 2, 22 23 —
(406811.112837975 + 167499.834759351914) 73 71 73 + (1674.431980604828 — 11229.38056198659 i) 73 22 — (3716.398318429275 —
1.327706000576884 x 10 i) 73 73 — (557.892664506608 — 1567.493554107312i) 7} 73 + (7717.989321123748 + 4480.533669705435

i) 7273 23 +(31722.5318145437 — 51786.01310649923 i) 23 73 23 — (398980.9570782463 + 114823.42221701261§) 23 7,

75 — (45814.43152512708 + 2493.538168657015§) 23 71 + (2410.160931544448 + 551898.56339951511) 23 2, — (80.29187933832591 +
439.9295741434651) 7] 2, — (1230.149171840629 — 884.8863416936629 i) z, 7+ 2, + (7126.757449807181 + 2540.211023795979

i) 72 73 7o + (14125.43011798873 — 37158.98705958242 i) 23 73 75 — (206762.6844055345 + 33779.1679315464 i) 73 21 2>

F,7 = (83.64408737390178 + 290.0574619582591 i) z] —

(43.43559443737217 + 2126.07123176094) z, 25 — (619.7337803689979 + 1954.786698227959 i) 7, 2§ + (2014.781480927104 —
952.1316299312761) 2, 2§ + (4575.387504398479 — 3628.64457474295) 73 2} + (1976.171130472751 + 5666.814977585757

i) 73 23 + (11023.17046809458 + 319.5063574839181i) 23 7; — (12.23270735001552 — 12642.57522305934 1) 2, 21 7; +
(6160.473228084133 + 3166.7948381761461) 25 72 73 — (12599.76170568175 — 5564.839164044762i) 71 72 73 + (9012.215926813853 +
22493.69793183785) 73 2t — (3512.518023723479 + 9162.002147931235 ) 7} 7} — (6643.175155733118 — 30523.4454809598 ) 23 74 +
(714.699757418919 — 31417.0927115498§) z, 23 71 + (4767.462138185586 + 62129.12864609378 i) z, 22 71 — (54282.05312380492 +
4952.46055647769i) 2, 23 71 — (23682.43887050526 — 15468.823364271381) 73 7, 71 + (17150.13741530033 + 52769.19689762125

i) 23 7 21 + (32853.93269782345 — 13463.747316134144) 73 7, 2} — (31203.93419768123 + 20388.53123784128) 20 7, 22

ZH— (74778.13931718652 — 44720.914783734925) 74 73 + (3755.892245469613 + 8923.860291123128) 2} 23 — (109403.2959637758 +
8010.70865799096 i) 73 73 — (1871.934357516824 — 41759.3938364254 1) 25 73 73 — (311275.8393278722 — 22111.54698835874

i) 2,73 73 + (42588.59842142134 — 120770.82091998794) z; 73 73 + (48413.19676663572 — 25463.550355982814) 23 7] 73 -
(408875.6723632055 — 112841.6920438104 i) 23 72 23 + (106548.330595442 + 16528.531943448491) 22 23 23 + (18144.7229742578 —
252593.092380948 i) 2, 71 73 23 — (23813.64761962618 + 95497.59144577864 i) 23 2, 23 — (262069.5354186049 — 119475.5614083777
i) 23 22 73 — (45720.76823 141518 — 17242.964043840414) 73 72 73 + (62051.25290181433 + 50235.53513948497 ) 2, 23 22 73 —
(34361.30519706609 + 221754.1723295659) 22 2) 25 23 — (219433.043489999 + 251306.6093361899 i) 23 23 — (2414.789919405244 +
5237.130214360739) 73 22 — (1667.594135473086 + 355106.7092150292) 75 22 + (2100.399090067842 — 31311.81089294745

i) 227 22 — (218176.5251209737 + 1.427633829654882x 10° i) 7, 75 22 + (330821.7419092286 + 92530.3436940877

i) 71 23 22 — (48830.07974327527 — 19959.02423905088 i) 73 7} 22 — (844444.8694517713 + 2.473832959916086 x 10°

i) 25 73 23 — (88408.82713205602 — 174756.0244594812i) 72 23 23 + (979886.5107112944 + 159586.61962986 i)

2221 2 22 + (14886.06926986529 + 147945.05880847916) 23 72 23 — (1.245695124475151 x 10° + 2.286740990685873 x 10° i)

523 71 — (104152.9168056533 + 22980.515394373954) 7} 23 7 — (86428.65951621982 — 373445.0878113188 1)

22 7 25 + (1.346925700664382 x 10° — 34851.79033616533 i) 23 2) 23 23 + (262727.1912451487 — 82514.73827621773 i)

B21 72 — (845925.0380215767 + 1.13955454826914 % 10° i) 73 2, 2} + (35814.01241374293 — 12312.26073246971 i)

7} 22 2} — (60428.23513420975 + 59837.154097119114) 20 7} 22 73 — (5148.489826365119 — 337655.6132466184 i)

B2 270 +(901171.9203158641 — 163397.7017662088 i) 23 21 72 23 + (1.202753150714307 x 10° - 631739.43910051578) 5 2 +
(864.0161107909863 + 1714.9305486091261) 28 7, + (1.353553203208478 % 10° + 53295.77827309529) 25 71 — (1122.434570818465 —
12557.5210903594 i) z, 73 z1 + (7.201805018325554 x 10° — 348177.7761270834 1) 2, 25 z1 — (311820.9334343227 —
708972.6340393053 i) 71 75 21 + (24304.41914015636 — 7272.527161539687 i) 23 74 21 + (1.665004344384576 % 107 —
2.470440077837727 x 10° i) 23 73 7) — (304378.9167982383 + 162144.3960830149) 72 71 7, — (983385.3734966344 —
2.983139450563304 x 10° i) 2, 7| 73 21 + (4353.964912768817 — 98836.7981934411) 73 73 71 + (2.132928343049594 % 107 —
5.410176480737763 x 10° i) 23 73 7, + (74290.74308773845 — 109164.1722804663 i) 73 73 21 — (918533.165036076 +
400488.8932535503 1) 7, 22 23 21 — (980113.3842303595 — 5.464457809794022x 10% i) 23 7, 23 71 — (274358.1031974403 —
18947.64506870945 i) 73 22 z1 + (1.598630289036902 x 107 — 5.718661916503082 x 10° i) 24 23 7, + (50705.45684121725 +
14581.8311411189) 7} 23 21 + (95533.2905019866 — 236851.4142545986 ) 2 73 73 21 — (1.312691970312158 x 10° +
306824.6461171093 i) 23 22 22 71 — (120380.8640119486 — 5.354664972815532x 10°% i) 23 71 22 71 + (155177.9832310137 +
639181.24716114034) 23 71 71 + (6.652743023846095 % 10° — 3.004349781035028 % 10° i) 23 25 21 — (14971.70998217062 —
4639.318162735666) 7] 25 21 + (28778.57898076316 + 34669.69794937759) 7, 7+ 7, 71 + (41025.09353562018 — 219950.7165881 i)
370 22 21 — (913280.6913344404 + 67769.6268401437 i) 23 72 75 71 + (359942.6021498478 + 2.809948489758765% 10° i) 24 21 2 21 +
(41926.9113256254 + 2.67709470748605 x 10° i) 73 — (132.6818472053728 + 241.7445097738593 i) 7] — (125601.3828252915 —



XX

2.92875251224036 % 10° §) 2} + (234.9380538752109 — 2104.460593139071 i) 7, 25 — (654413.0696609477 — 1.872087203839214 % 107
i) 22 25 — (1.312401097841023 x 10° + 853932.4861415006 ) 7; 25 — (4780.516117693688 — 932.3137014160246

i) 25 73 — (1.34330955769433 x 10® — 5.259084175844097 x 107 i) 23 75 + (308411.4046871596 — 261498.0724547681

i) 2 23 — (7.026637609531042 % 10° + 4.086055041913429x 10° i) z, 7 25 — (4435.494656068623 — 24102.91428164737

i) 23 7 — (1.344201673389921 x 10° — 8.422556572723623 x 107 i) 23 74 + (83275.98254093016 + 71819.27993727724 i)

73 2+ (1.184517728771519x 10° — 1.123531120075142x 10° ) z, 23 73 — (1.637180474317187x 107 + 8.034197656217247 x 10° i)
371 24 + (86296.472221509611 + 13321.32241191986) 23 7 — (536577.6328042524 — 8.311025167774118% 10 i)

7475 — (21838.07225919552 — 24869.81986093052 ) 7} 73 + (250707.3270374737 + 196724.1930462976 i) z, 73 25 +
(1.805268041933681 x 10° — 2.160887449433845x 10° i) 22 73 73 — (2.114816346163657x 107 + 8.222181266904347x 10% i) 23 7, 73 +
(66210.473533216 — 301330.6175309036 §) 23 72 + (122356.5628028268 + 5.054845293253546x 107 i) 23 73 — (9841.792116958253 +
3501.5713884395181) 23 23 — (32034.45586485212 — 54491.531655339261i) 2, 71 73 + (375173.8227154319 + 196583.1081955311 i)
37 7 +(1.3603974991937 x 10° — 2.24918921765156 % 10° i) 23 72 72 — (1.598220376283134 x 107 + 4.508206125061251 x 10° i)
4721 25 — (1.218488345305617x 10° + 108460.8765970713 i) 25 7, + (176645.1363035577 + 1.754052689815114x 107 i)

25 720 +(2609.51152646361 — 718.9253898120566 i) 5 7, — (5357.965272126289 + 7855.459981125157 i) 7

7 72 — (18669.45913715022 — 51893.93760870302 i) 23 7} 75 + (274124.2453386453 + 90180.46410078433 1) 23 23 25 +
(489578.3404501648 — 1.255204899224763 x 10° i) 23 73 7, — (6.700753755551565 x 10° + 1.200939503767909 % 10% i) 23 7, 7,



ILIII. Normal form mapping

¢ Chapter 6, 7, Section 6.2, Section 7.2.

The normal form of the mapping model of the Sun-Jupiter system was derived in chapter
6. The form given here is according to (18;6), i.e. (41;6). The mapping is given after
diagonalization and complexification. The mapping in R* can be reconstructed according

to (7;6). The integrable approximation of the mapping of radii (22;7) is calculated via

21;7):

p1=U-Uy, pp=U,-U,

Note, that U;©¥ = U, = 0 for  even (Section 6.1.2)!

m ILIIL1. U,

L 4

L 2

L 2

U,V = (0.870169533360692 + 0.4927524563214631 i) £,
U, = (3.6546171083044 — 6.453821635951158i) 7 7, — (0.4367732356625151 — 0.771313785372723i) £, &, ,

U,® = (147.2806619443048 — 315.9054061443004 i)
Zf &+ (33.6995550680424 — 46.16956305305763 i) &, £, Z, &7 + (3.668508271686712 — 7.2756047374217414) £ Zj 4

U7 = (227.9238670475072 — 5632.4102329220224) 7, £ + (2072.763334979311 — 3889.973815429828 i)
5T T, 8+ (606.0027627965151 — 1090.521845563910) (2 7, &5 & + (113.1699773688747 — 185.2106659253034 ) 23 75 &1

U =(119952.5072378412 — 410564.1070613753 1)
71 85 - (269235.9655361278 — 378478.0333485194 1) £ T, T, £ + (11500.60974902951 — 40236.94094236312 )

BT 750 +(18469.26144417725 — 34569.136259833930) &3 T, T £ — (6410.350895588956 — 11643.14215663985 ) 2 75 &1

U,V = (2.971045363070645 % 10° — 1.51927782042769% 107 i) Zf -

(2.344893423179776 % 10° — 8.18714568522723% 10° i) (5 T T, &5 + (3.206069044878364 x 10° — 8.576467421202682 % 10° i)
BT 70— (2.0928407312783x 10° — 2.810198610562086 % 100 i) 3 7, T &8 — (4.695097352122903 % 10° -
8.516057711241841x 10°§) & T, To & — (2.831714708871171 x 10° — 4.970683682115696x 10° i) &5 T &4

U1(13) —

(1.634079028298248 x 10% — 8.409013287376201 x 10% i) Z? ] +(3.737544099677136 % 10° — 6.218206679800825 % 10° i) £, Z? I

XXI

8+ (2.881486702211762x 107 — 2.166605254891796 % 108 i) (2 7, T £ — (5.383473490906677 x 10° — 9.813111295365295% 10° i)

BT 7 ¢~ (1.215069045986511 x 10° — 2.28598469753241x 10° i) &4 T T & — (3.561554577732727 10° —

6.229339630995239x 10° i) &5 7, T, &% — (3.284984721880188 x 10° — 5.853305939691521 x 10° i) && Zo £

U1 = (4.275898031737922x 10" — 7.578566542474773 x 10" i) Zf 28 +(1.208153905302991 x 10" —
2.143790463605147x 103 i) £ T) T, {1 + (3.211406467975348 x 10" — 5.670457974608133x 107 ) 2 T, 24 &8 +



XXII

(5.708810196512142x 10" — 1.008120655090055% 10" i) 3 T; 75 & +(1.011893841578862x 10" — 1.786936839146263 x 10'° i)
27T ¢ +(1.838012515522403% 107 - 3.245812679915833% 107 §) 5 7, 5 &3 + (3.021600555011087 % 10'® -

5.335954687339571x 10" ) & 7, ZZ 4 +(3.229289886014312% 10" - 5.70272077209762% 10" i) ] ZZ 4

o U7 =(8.679592471085657x 10'° — 1.528498604386691 x 10'® i)
70 & +(9.353310663513438x 10'° — 1.651605581767145% 10'° i) &5 ) 7, & + (1.021901672348875x 10" -
1.463417666489638 x 10'0 i) 2 75 T 1 + (2.18127788055792x 10'7 — 3.447834401227994% 10" ) £ T, To £ +
(1.030629311371462x 10" — 1.774578742443688x 10" i) £} T} T & + (3.677914449321296 % 10°° — 6.503981138789144 x 10 i)
BT 78 +(7.41637348103588 x 102" — 1.333600115259989x 102 §) £ 7, To &3 — (8.499213012719778 x 10%2 —
1.463030490050339x 102 i) £ 7, Z) &% — (9.650388924369644 x 10 — 1.694676586127637x 10% i) &8 75 ¢

o 0" = (1.510288624105862x 10" —2.711983825958071x 10" i) Z, £1° — (7.66982661746728 x 10" — 1.309396071546895 x 10'* i)
LT T, 8+ (4.963573392053514 % 10' — 7.607414930670258x 10'8 i) 2 7| Za &8 — (7.168785290396862x 10" —
1.150166751175447x 102 i) & 75 T £1 - (2.346348132366417x 102" — 3.260387597032162x 10> i) &} T, Za 0 -
(1.623791062060173 x 10° — 2.508896007862574x 10 i) &5 T) T3 & — (2.008639186208575 x 10°° — 3.538830468561769x 10°° i)
BT 758 +(3.008749341548426 % 102 — 4.249676722319035% 102 i) {1 T, T, &3 + (2.374429583322497 x 1077 —
4.172044455334721x 107 ) 3 T, To & — (7.108846835652774x 1077 — 1.23270032612648x 10% i) & 75 &

o U@ = (—2.79423840395444 x 102 + 4.900486151420649% 102 ) )" ¢!

(2.844800734438695 x 10%° - 5.606126265540417x 10° i) &5 T, T, £1° + (1.613698142703557x 10° — 2.575136978626222x 107! i)

BT 78— (3.1278875494926 x 102 — 5.680850211721989x 102 i) 3 T, Zo &8 — (3.554866980122412x 10% —

6.318178428582637x 102 i) 2 70 T, £ — (3.445033349075128 x 10°° — 6.398887509217389x 10° i) 5 T 5 £ +

(1.774786255872778 x 10°® — 3.058169778402861 % 10% i) (8 T} To £ + (5.670196206918132x 10% — 1.095291161616487 x 10%° i)
37

47,70 ¢ - (2.473542819345203% 10% — 4.310121167857893x 10°° §) (8 7, Zs &3 + (9.748381770190382 % 10%°
1.674731882777627x 10 ) & T, T, & — (9.177976340461885x 10°° — 1.553914818299867x 10°" i) £1° 7' &

* U™ =(-3.454266025192054x 102 +

7.405701039377763 x 10?2 i) Zl 1% - (2.824150635997673 x 10%* — 6.775152976455965 % 107 i) £, Zi” 5,0+

(1.797375663268221 x 10° — 2.80961848330659x 107 i) 2 T, T5 £1° +(9.91824594523809 x 10 — 1.318675290504343x 10> i)

BT 708 +(3.020455255817708 x 10%° — 9.73587449111888x 10 i) &} 7| Ta & + (4.219703609777554 % 10%° —
7.462585644683929% 102 i) 5 T, T £ — (8.6229346464723x 10%° — 1.445467587192143% 107 §) (8 T, T &8 —

(7.716039461732535x 10°! — 1.398369677398347x 102 i) ] T, T & + (1.582322580976549x 10¥ — 2.72662046252324 x 10™ i)

BT 75— (6.517894051571042 10 — 1.105144910310173% 10 §) 2 7, Z5 &3 +(9.233369821904482 x 107 —

1.543225696560311x 10* i) 10 7, 75" &2 — (3.717777533835007 x 10°* — 6.010101904038967x 10¥ i) 1 Z,' &4

o U, = (=7.003405744270526 x 107 + 1.259043571888496x 10°° i) 7, ¢! + (4.198634118952993 x 10° —

7.146830474298998 x 10% i) & Zl 7, £ — (2.324469306022222 x 10 — 3.566465279374746 % 10 i) {3 Z:" gi at+

(3.755637377680806 % 1077 — 6.844435407343133% 107 i) & T, T 10 + (1.998448852181016 % 10%° — 3.741024067020728 x 10%° i)

87758 - (2.446054780462514% 107 — 4.213325876550194x 102 i) 3 7| T3 &8 +(2.512903293704573 % 107 —

4.025094319324287x 10% i) (8 T0 T &1 +(5.076246600181306x 10* — 8.959243388950134x 10* i) 7, T4 £0 -

(7.208618798096489 x 10% — 1.227384986631213x 10% i) /3 Z‘l‘ Zi & +(2.915277918002478 x 10°° — 4.879896383947164 x 10° i)

07 50 & - (4.705104439727929 % 10° — 7.740501541388316x 10° §) (10 7, T & + (3.081046929053638 x 10° —
152 2

4.953242864838803x 10% i) £ 7, 75 2 — (5.463598549357739x 10° — 8.036351959401497x 10% i) (2 7, )



XXII

m ILIIL.2. U,

L 2

L 2

U,V = (0.9997952030905475 + 0.02023738810051618 i) £,

U, = (0.001438307967395525 — 0.071057271125438254) 7, {3 + (=0.01793831647325128 + 0.8862133102549055) £, Z, &

U, = (0.02582749776665437 — 1.400765478443381 i) 5 &3 +
(0.3923958887605282 — 16.27274370009146 ) &1 7, T, &2 + (0.181780951 1190676 — 28.392578780450451) 2 Z; 42

0,7 = —(0.9409276940849999 — 41.56448302687122) T, £ + (13.24821581767036 — 650.3075274061482 i)
07,5 8 +(37.7133753079269 — 1249.926733281540) &2 T; T, {2 + (54.72185250698941 — 1459.9464763375220) 3 T, &2

U, = —(214.1126419650972 — 10675.0835667431 i)
Z;‘ & - (1181.454663502677 — 53135.61294383878i) {; Z, ZZ 23 +(1503.82402386999 — 58707.87581557924 i)

27758 +(1090.920714618263 — 27090.183882568 1) 13 7, T, {2 + (—1449.796727746064 + 115687.83488938274) £+ 7, &>

0,1 = —(382940.0530411026 — 1.895950377868603x 107 i) T, £8 — (584001.6099424638 — 2.855921353605305x 107 i) {1 T, Za &5 —
(456038.2115688027 — 1.944448252269755x 107 i) 2 T, To & — (61122.51211467292 — 3.4772097206764x 10° ) & T, &5 &3 +
(64714.15334796216 — 4.532488585950494 x 10° i) £} T, T, &2 + (—176769.5582331664 + 1.616892675250501x 10° i) 3 7, &>

U, =
—(4.36950767069305x 10® — 2.158121434393861x 10'° ;) ZZ 4 - (8.221209303437402x 10° — 4.084750391681676x 100 i) £, Z, Zi
28 — (3.742148207960722x 10° — 1.735567586063623% 10" i) 2 7 T5 &3 — (8.702795718252641 x 107 — 3.448122767440964 x 10° i)
8T T & - (2.404497533637502 107 — 8.379160852408345x 10° i) £ T, Za &3 + (5.134794529191457x 10° —
8.468897528930426x 107 i) &3 Zf 7, & +(2.524454083150955x 107 — 1.208541647953241x 10° §) ¢ ZT O

0,19 = (1.03329773523978 x 10 — 5.104839191276652x 10> i) 7, £ + (9.283905977468797x 10" —

4.586562560445444% 10° i) &; T, To & + (3.722922238583539x 10'7 — 1.839249222051509% 10'° i) 2 T: Zo &8 +
(1.258121436682828 x 10'° — 6.215549113461554% 10'7 i) &3 T, Ta &3 + (4.155830306528151 x 10™ — 2.053132180561219% 10'° i)
0T T8+ (1.406671584158221 10" — 6.94981044501267x 10™ i) &5 7, T &3 + (4.395987762484166x 10" —
2.171805926144584x 10" i) £0 Zﬁ’ 7, & +(7.24259208215056 x 10'° — 3.514519337855921x 10'2 i) ] ZZ O

U, = (1.849555152789252 % 10** — 9.399650779509293 x 107 i)

75 & - (3.321449832087814 x 10° — 1.572011934089489x 10% i) &1 Z, Zo &8 — (1.490291213457534x 107 —

6.156124741293047x 102 §) 2 T T3 & + (4.863337447161011x 102 — 3.033980499481236 % 102 §) &3 T, T £ +

(1.432783422667513x 10" — 9.790174451896396x 10™ i) £i T 5 &3 + (1.717200796131567x 107 —2.027652600004123 % 10'° i)
_5_3 —6 2

3 4 —(2.343544271214881x 10'° +4.211170206562405% 10'7 i) 20 7, 75 &3 — (1.021216204272772x 10" +
152 152
1.508406647325889x 10'0 i) {7 7| T, &3 + (~5.413338428796031 x 10" — 2.693704193374206x 10"° i) 3 7, &,

U, = (3.41074674543412x 1077 — 2.117942682614908 x 10% i) Zz 230 — (2.613147757248231 x 10> — 1.316546991142139 % 10* i)
0T, 558 +(3.866260190072042 x 10° — 1.883014388200758x 102 i) 2 7; T, &8 + (6.89045585775991 x 102 —
1.768977359388899x 10%° i) £ ZT ?2 4 - (1.328730863975397x 10** - 6.077675680610574x 10 i) £} Z‘l‘ ZZ 28—
(1.107980739308114 x 1022 — 3.187775524856869% 10 i) &5 T, Ta &3 — (2.097593257773633 x 10%° — 2.729412601277495 % 102" i)
077 - (9.118077831795012 10 — 4.254353242993314x 10" §) ] 7, Z5 &3 — (1.318106516698827x 10" +
6.468513878324955% 10" i) £ Zf 7, & + (—4.425675952956321 x 107 + 8.873474611218464x 10" i) £} Z? I
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L 2

U,V = (9.171226004211476 x 10% — 1.324240271905385 x 10> i) Z;" ol -

(2.945168871529361 x 10°° — 1.939410543540521x 102 8) &1 Z, Zo &0 + (1.627186413458658 x 10 — 8.77910260299534 10" i)

8T T8~ (2.593045167564232% 102 — 1.292676288736149%x 10° i) 3 7, 7, & + (1.595824069437254 x 1027 —

1.675065469199483x 102 i) &t 7 To 1 + (1.034984101661096x 10%7 — 4.322449468229572x 10% i) 3 7, T, £8 -

(1.00718423530293 x 102 — 5.671866141440631x 10% §) {0 T, T5 &3 — (7.991360589956805 x 1072 — 3.50368166886451 x 10%* i)
73 -8 2

47,7, - (2.820754558747539x 10*! — 5.238783891073432x 107 4) 3 7| 7, &5 — (3.288585092980324 x 107 +
1.43884453961433x 102 i) 0 T, T, & + (—1.754999961914261 x 10% + 1.11691489656928 x 10 i) {0 7} £,

U,® = —(4.144705951023944 % 10% +

2.80458427375955% 10* i) 7, £12 — (5.389649738274323x 10% — 9.24174548153584x 10* i), 7, Ty £1' +

(1.189654361355738 x 10> — 9.39259898227713 x 10°** i) /2 Zf Zi 230~ (6.589291817160578 x 10% — 3.890624552398259 % 10™ i)
87758 +(1.187275508130774x 107 — 6.153718807560169% 10% i) £ 7, 75 &8 — (3.508332654537857 10%° -
1.969218046865654x 102 i) &5 7, Ty £] — (4.391002466502976x 10% — 1.766114234016975x 10" i) (8 25 T, £8 +
(1.295752927014594 x 10*® — 5.988958353990625 x 10% i) ] ZZ Z;‘ &+ (1.779474177277355 % 107 — 2.744898136020664 x 10% i)
8T 78— (4.63169724881534x 1072 +9.658739846311644x 10* i) & 7, To & — (5.115539773123686x 1022 +

1.101504432640758 x 102 i) £}° Zi" 7, & +(=3.098564985943377 x 107 + 2.055609158507643 x 107 i) 1! Zi' e

U>®) = —(1.475587344070701 x 10% + 1.913803330465082x 10° i) 7o~ £13 +(1.551597318177752x 10%° +

2 52
1.752838427804375x 10”7 §) i T, Ty {% + (9.83878651545924 x 10 — 3.584293369597244x 107 i) 2 T; Ty 1! -
(3.252832912067241 x 10% - 3.19591124542068 x 10" i) £} Zf ZZ 101 (1.944897151916166 x 10* - 1.297199128081203 x 10°7 i)
87T 8~ (4.059301632344629 % 10™ - 2.232199494102451 % 10% i) £5 7, 5 &8 + (2.124720302307463 % 107 —
1.09978462430008 x 10% i) 28 7' 7o & + (1.130286394303603 x 10% — 4.549463427802757x 10 i) {1 T, Ta & —
(6.903526555889309 x 10* — 3.037598149043002x 10% i) £ ZT Z;‘ 25 +(3.021989938216538 x 107 — 1.752816490896053 x 10°° i)
077 & - (3.429372845870374% 102 +2.02352050949818 x 107 i) 10 7, 73 &3 - (8.712300872967838 x 10> —
8.994915784576296x 102 i) {11 Z,' 7, & + (~3.319500389476047x 10%* — 5.351976663551477x 102 i) (12 7, £
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IL.IV. Remainder function

¢ Chapter 7, Section 7.2.

The norm of the remainder series of the mapping of radii (8;7) in the Sun-Jupiter case
(22;7) for odd orders (r = 3 —25) (even orders are of same order of magnitude). The depen-

dency on the direction can be reconstructed according to
p1 =48, = peos(y),

p2 =8 ¢, = psin(y)

m ILIV.L || R," ||,

1R, O || = 6.067544969256355 p} +0.2031526280791481 p, p} +0.7930924125165566 03 p

*

& IR, %Y =660.9854974610917 p; +
893.3345431999121 p, p} + 827.5668435116168 p3 p; + 47.45166640448245 p3 p? + 128.8602207908305 p3 p;

o IR, =59937.62496058284 p] +219176.3061002613 p, p$ +205718.208962497
03 p7 +162078.6936470148 p3 pt + 105479.8353469851 pi p3 +23935.83105309282 p3 p? + 72328.55998600285 pS p,

o [IR*? | = 6.813393944426284 % 10° p} +3.439030598225285% 107
02 0} +4.863406849262812x 107 p3 p] +4.697004084841646x 107 p3 p? + 3.202523964808095% 107 p p3 +
2.716194097583456 % 107 p3 pt +3.424094431472737x 107 p§ p} + 1.968437075455995% 107 p] p? +4.595190819806927 x 107 p p,

o IR =
7.78350794220159 % 10° pi! +4.885591034497581x 10° p, pl® +9.495615508595951 % 10° p3 p] + 1.105417920048005 % 10'° p3 p +
1.075027398820192x 10'° p p] +9.495342825427193x 10° p3 p° +9.783075817440138x 10° p$ p3 + 1.250217881925651 % 10'°
0} ot +2.298157084285596 % 10'° p§ p? + 1.645456364196362x 10'° p3 p? + 3.116749174898388x 10'0 pi° p,

o IR =1.249583919044931 % 10" pl3 +7.35454392960342x 10" p, pi? + 1.749765090679242 x 10"
0% pi! +2.284811732696258 x 10" p3 pl° +2.746050700802838 x 102 p} p] +2.42397141128426x 10'* p3 p} +
2.53825128785677x 102 p$ p] + 3.702473613297327x 10" p] p8 + 6.527059783234685x 10'* p§ p} + 1.016830722277507 x 10"
05 Pt +1.805128747413071x 10" p° p? + 1.389540634614125% 10" pb! p? +2.203477051209622% 10" p}? p,

* IRV =1.192874526327742%x 10" pl° +
2.580708584663976% 10' p, pi* + 4.256274005779924 % 10" p} p}® +4.98047377315536 % 10" p3 pi? + 6.306672974478102x 10'*
P4 pll +6.257195773068062x 10™ p3 pl° + 6.403051706293906 % 10™ p$ p? +7.73526994219681x 10 p] p¥ +
1.48558130626056% 10" p§ p] +3.049582218762737x 10" p3 p§ + 5.764830237353008 x 10'° pi° p7 +9.40891948947894 x 10"
il ot +1.481023516584818x 10' pl2 p? + 1.186342088734544 % 10'0 pb? p? + 1.604031297776095 % 10'® pi* p,

o IR = 1.405803838611058% 10'7 pl7 +2.366343239743881x 10" p, pi® + 3.455389868599391x 10'7 p3 pi’ +
2.152182348591765% 10'7 p3 pl* +2.788176219357597x 10'7 p pl® +1.904789246642115x 10'7 p3 pi? + 8.849649255677335% 107
05 ot +9.926119861769206 % 10" p3 pi0 +1.609960261515904 x 10" p$ p7 +2.308440789959799% 10" p3 p$ +
3.21556696917892x 10%° p¥ p7 + 4.800977394871314x 107 pi! p§ + 5.639142533467146x 10*' p3? p; +9.972285816742162 x 10!
P33 pt +7.048876005552761 % 107 ph* p? + 1.138294862168551 % 107 p)° p? +4.342006015334529x 107 pi® p;



XXVI

L 4

1R = 1.37662197915433 % 10%° pl° +2.637721772867691 % 10%°

02 P18 +4.537161922612415x 102 p3 pl7 +2.62328006126058 x 10%° p3 pl° +3.835749211635842x 102 pi p!° +
2.205151233376422x 10 p3 pi* +5.51408901031919x 10%° p§ pi* + 2.178305149925885x 10*! p3 p!? +2.167887298021244 x 10?2
05 pit +8.317996471707014 x 107 p3 pi0 +9.078376689579527 x 107 pi° p7 +2.199904563910685 x 10* pi! p$ +
2.849044463158056% 107 pi? p] +4.072067550513621x 10% pl? p® +2.896881437533926 x 10* pi* p? + 3.386208384378846 x 10°
pi® pt +5.16977095767574x 107 pl® p? +1.227553701709335% 1077 pi7 p? +2.953719970420448 x 1077 pi® p,

IR0 =

1.291437747313399x 10 p}! +2.77729443633699x 10 p, pI° + 6.170595343492383 x 10% p3 p1° +4.481061731179697 x 107

03 1% +1.107268717036203 x 10> p} pi” +9.043614317201981x 10** p3 pl® + 3.610203523953384 % 10** p§ pi° +
2.32153757972757x 10** p} pi* + 8.36070577037354 x 10** p§ p!3 + 3.487954721325087x 10% p3 p!? + 3.299902001320863 x 10%
P20 pll 1 1.4855639699394 x 1077 pi! p1® + 4.485470045981244 x 10 p? p] + 8.364265502070442x 10% pi3 p$ +
6.340416697494951 x 10%° pi* p7 + 6.875810357687016x 107 p}° p? + 1.028729944279687x 10*! pl¢ p3 +5.107605093653178 x 10°°
pb7 ot +2.427340264758347x 10> pl® p? +2.968489637104511x 10°° p? p? + 6.281995911055177 x 10°° p3° p,

1R P2 || = 1.193744825074662 x 10°° p?° +2.981323765572293 % 10%° p, p?? + 9.046637683829687 x 10%°

0% p3 +8.76050672789297 x 10%° p3 p¥ +5.106684679181833 x 10* p} p!° +7.83356914839294 x 10* p3 pi® +
3.213491334812885% 10° p§ pi7 +2.35128748905594 x 10° p] pl + 8.214735562530348 x 107 p§ pl® + 6.699555200362312 x 10
05 P +1.119630566642137x 10° pi¥ pl3 + 3.798735394089479% 10°° pl! pl? + 3.292983221487054 x 10°!

A% pi! +8.201681368259995 x 10°! p}? pl° +7.02975509197347 x 10% pi* p? +9.7253341143492% 10% pi° pb +
9.647460244822484 x 10* pi® pT + 8.072609433645651x 10* pi7 p? +3.076011762955811x 10™ pi® p3 + 1.263325683112151x 10**
02 pt +2.672915578988992x 10™ p3° p? +2.401339824817205% 10° p3! p? + 6.074535233443848 x 10°* p2? p,

1R, %) || = 1.09201894839391 x 10% p?° + 3.269246255284195x 107

02 P2 +1.356337294759432 % 10% p3 p?3 + 1.818821261708849x 10°° p3 p2? + 4.056394172010488 % 10°* pi p3' +
7.03063072994163 % 10** p3 p2° +3.010303387993029x 10* p$ pl? + 2.855405535429123 % 10** pj p!® + 1.025860233151016x 10**
05 pl7 +4.393288462963795x 10°* p3 pl® +2.191115294435907 x 10* pl° p1° + 4.327558332526302 % 10>

il pi* +1.455461479174372% 10™ p)? pl? +4.569935528026919% 10** pi?® pi? + 4.963663678345839 x 10

pi* pll +18.54329926207975 % 10° p)3 pi® + 5.848812387375207x 10 pi p + 6.891758420248563 x 10°¢ pl7 p¥ +
2.046041227695089x 10°7 pi¥ p] + 1.498451949283383 % 10°7 pl° pf +2.589694108887235x 1077 p3° p7 +9.365254207329485 % 10°
3 ot +1.214977712871328 x 10”7 p32 p3 + 1.185311764442144 % 10°° p3° p? + 4.663574434036739x 10°° p2* p,

m ILIV.2. || R,™ |,

*

1R, || = 1.163946894776521 p3 +0.5876231127842281 p; p? + 0.2027349765301897 p3 ps

1R, || = 966.8901562605935 p3 +
1000.84944994661 p; p3 +410.8653547622711 p? p3 + 157.1191055814907 p3 p3 + 55.84592784858629 p} p,

1R.77 || = 805686.2648389341 p} + 816031.0990634556 p; pS + 429356.5864886108
0} p3 +287234.6702970397 p3 pa + 77574.0686106625 p} p3 + 26808.3522688543 p3 p3 + 5840.346848935354 p% py

1R || = 6.711717249365206 x 10°® p3 + 6.738564348702282 x 10°
01 05 +4.212016136415594 % 10% p? p] +2.958899773737204 % 10° p3 p$ + 8.668857065804628 % 107 pi p3 +
3.639596242854349% 107 p3 pi + 1.068305878791899x 107 p§ p3 + 3.934421284696603 x 10° p] p? + 882319.9661965335 o5 p,

IR =

5.592873239182805x 10" pi! +5.575578226422363x 10" p; pi° + 4.042055338880091 x 10" p? p3 + 2.988100232169888x 10"

03 5 +9.37660781373795x 10'° pt p] + 4.120621662441386x 10'° p7 p§ + 1.364533779201369% 10'* p¢ p3 +

5.909508195571081x 10° p] pi + 1.617511206668383 x 10° p p3 + 5.449467003541929 x 10% p? p3 +9.976363364225641x 10" pi° p,
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1RV || = 4.661064162058988 % 10™ p)? + 4.616864248322368 % 10™ p; pi? + 3.830807903191426x 10"

0% pi! +2.931138546348709% 10' p3 pi° +1.03367418533115% 10" p} p3 + 4.978088698839289x% 10" p3 oS +
1.683120424827433x 10" p§ p] +7.296677755031196x 10'% p] p$ +2.19209277800467 x 10'% p$ p3 +7.74673437380145 x 10"
0] P4 +2.461337591623659% 10" pl° p3 +8.297051605500658 % 10" p!! p2 + 1.230692582678724x 10'° pi2 p,

[ R,1>19 || = 3.884932341675807x 10'7 p}3 +

3.826360182859123% 10'7 p; pi* +3.595785741851012x 10" p? pl* +2.813399848049671x 10'7 p? pi? + 1.120903362952521x 10"
o} pi! +5.889765373361141x 10" p? pi¥ +2.06082590374634 % 10" p° p3 + 8.619686189784648x 10" p] ps +
2.839945425227416% 10" p8 p] + 1.146721450877686 % 10" p p§ +3.344218713137113x 10" pl° p3 + 1.289599923393471x 10"
Pl pd +3.755518897296949 % 10" pl2 p3 +2.005143849652294x 10" pl3 p3 + 6.781787846640516 10'% pi* p,

IR || = 1.855780281825191x 10°* p)7 + 1.437132703073301 % 10%* p; pl® + 2.133066417306583 x 102 p} pi’ +
8.408716064030813x 1072 p3 pb* + 2.821541704492799x% 10°? pt pi? +5.169084343423263 x 10*! p} pi? + 1.207033890084717 x 10*'
00 pil +2.011964852418651x 102 p] pi° +4.012756259749229% 10" pf pJ +5.910615196806119% 10'® p p§ +
1.087523152366079% 10" pl° p7 +2.3085815633282x 10'7 p!! p§ +5.297411911498192x 10'® pi2 p3 + 4.674051074016941 x 10'
p13 p4 +3.43232373187483x 10'° pl* p3 +1.628137191843413% 10' pl° p3 + 1.003259881607825% 10" pl° p,

1R, || = 7.232339444125665x 1077 p)? +9.547135566492241 x 10%7

01 pA% +4.826558198548479 % 1077 p? pi7 +3.13402840364809 x 1077 p? pi¢ +4.304352049551814x 10% pt p’ +
2.128218790992451 x 10%° p3 pi* +5.04915842967402x 107 p§ pi* +5.12681062134098 x 10** p] pi? +7.941614684076075x 10>
08 il +1.491781343064699 x 107 p] pi¥ + 1.790294187690415x 107 p1° p3 + 2.657753940591617x 10*' p}' p§ +
3.285860500439996 % 10%° pi? p] + 1.034468231854947 x 10%° pI® p§ +7.495057579466818 x 10'° pl* p3 +5.198632103750061x 10"
p1% p4 +5.2035123836294% 10" pl p3 + 1.562137077328767x 10" pl” p3 + 1.047137678593161x 10" pi® p,

IR0 =

2.68652624563653x 10°! p3' +1.936185097025911x 10°! p; p3° + 1.688722179296134x 10°' p} pi° + 1.271661250804644 x 10°!

0} pi® +5.347287015883034 x 10°° pt pl7 +2.879739631316473x 10° p7 pi® + 4.389881232247301 x 10% 0§ p}’ +
2.191491310323724x 10% p] pi* +3.952217950361371x 10%® p$ pl® +5.529857170536881 x 1077 p7 pi? + 1.329450522831822x 107’
P10 il 1 1.231502627323516x 10%° pl! pi0 + 1.331264112355659x 107 pi? p3 +2.732944705296066 % 10* pi* p§ +
2.015710891420806 x 10** pl* p3 + 8.2877486922267 x 107 pI° p§ + 1.874324138763366x 10** pl° p3 + 7.309533080703934 x 10?2
017 p4 +8.103990315261074 x 107 pI® p3 + 1.521686104780058 x 10?> pl? p3 + 1.090708855285213 x 10°* p3° p,

[1R;P?) || = 3.096483411043619x 10°* p3° +2.039594895792996 % 10°* p| p3? + 3.455322153418525% 10°*

0} 3! +1.882294218269946 x 10** p3 p3° + 1.611618675768198x 10* pt p)° + 8.811454023765305% 10* pj pi® +
3.528774663278542x 10% pS p)7 + 1.674862971687115% 10°® p] pi® + 3.267592183854049 x 10* p% pi® + 1.309987137309758 x 10>
07 5t +1.96275062675114x 10°! pl° p)? +4.134713294809157x 10% p}! pi? +1.147330700772292 x 10*°

012 pi! +1.003750643033879x 10% p13 pl¥ +5.218291354035019% 10%® pl* p3 +9.028677379013372x 10% pI* oS +
1.692963277121078 x 10%° pl® p] + 6.412757292823847 x 10™ pl7 p§ + 1.500441949562256 x 10* p!® p3 + 1.4663683041741 x 10*°
01° p4 +1.346958302094532 % 107 p2 p3 + 1.581817063249453x 10% p3! p3 + 1.121871665156261x 10 p3? p,

1R || = 3.066385461029748 x 10°7 p33 +

2.990596972417421x 10°7 p; p3* +3.383771987343658 % 10°7 p? p2* +1.995958210079233 x 10> p? p32 + 1.976125875373333% 10"’
ot 3! +1.011171904039853x 10°7 p3 p3° + 8.72234847645974 % 10°° pf pi? + 4.137114768481591x 10°° p] pl® +
1.81814214181587x 10°® p§ pi7 + 7.313467701236144 % 10°° p pi® + 1.762756752607539 % 10> p1° pi’ + 5.823730240792398 x 10>
il p* +17.553509534135575% 10% pl2 p? +2.836886134855179% 10°* pi? pi? + 1.415808735972305 x 10

o1* pl! +2.835091538088612x 10% pl° pl¥ + 5.914460093738904 x 10* pl° p3 + 8.598212286000661 x 10°* pi7 oS +
1.594574396345958 x 10°* pi® p] + 5.479638049930263 x 10> p1° p§ + 1.25607472697997 x 10** p2° p3 + 4.986389099849952 % 10%°
03 p4 +2.368203742378497 % 10% p?2 p3 + 1.765795757739843 x 10%* p23 p2 + 1.150204899930511x 10%® p3* p,
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