Lniversitat
wien

Magisterarbeit

Titel der Diplomarbeit

,Integrating Semantic Business Process Management and
Viewbased Modelling*

Verfasser

Lintner Daniel, Bakk. rer. soc. oec.

Mitverfasser
Blamauer Clemens, Bakk. rer. soc. oec.

angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, 2009
Studienkennzahl It. Studienblatt: A 033 926
Studienrichtung It. Studienblatt: Wirtschaftsinformatik

Betreuerin / Betreuer: PD Dr. Uwe Zdun

Clemens Blamauer Daniel Lintner
OttakringerstraBe 94/7 WestbahnstraBe 5/2/24
1170 Wien 1070 Wien

Hiermit erklaren wir, dass wir diese Arbeit selbstandig verfasst haben, dass wir die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben haben und dass wir die Stellen der Ar-
beit — einschlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem In-
ternet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht haben.

Wir haben uns bemiht, sdmtliche Inhaber der Bildrechte ausfindig zu machen und ihre Zu-

stimmung zur Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheber-
rechtsverletzung bekannt werden, ersuchen wir um Meldung bei uns.

Wien, am

Clemens Blamauer Daniel Lintner

Acknowledgements

We would like to thank our advisors PD Dr. Uwe Zdun and Dipl. Ing. Ta’id
Holmes, DEA from the Distributed System Group of the Institute of Information
Systems, Vienna University of Technology for their help, their suggestions, and
their support during the SemBiz project and during writing this thesis.

We additionally thank eTel Telekom Austria and Hanival Internet Services,
where we commenced and carried out our practical work. Particularly, we want
to thank Mark Evenson for his mentorship and his support as well as Bernhard
Schreder for sharing his knowledge and profound feedback.

Finally we would like to thank all the SemBiz project’s team members, it was
a pleasure to work with you!

Clemens & Daniel
Especially, I want to thank my family: my father, my mother and my sister,

whose love and support during my whole life made it possible to write this thesis
in the first place.

Finally, I dedicate this work to Elisabeth, whose patient love and encourage-
ment made it possible to complete this thesis.

Clemens

Mostly, I need to thank Karin and Yasmin for their absolute backing, love and
staying the course, this work is dedicated to both of you.

I want to thank my family for making all this possible. Concretely I want to
thank my Grandmother Margaretha and my Aunt Michaela, who convinced me to
start my studies and always supported me during this time.

Daniel

Abstract

With the increasing interest in Service Oriented Architectures and re-
lated technologies, such as Web Services and the Business Process Execu-
tion Language (BPEL), Business Process Management (BPM) has become
more and more important in recent years. However, there still exists a gap
between Business Process Modeling, as it is done by business experts, and
Business Process Deployment and Execution, as it is maintained by IT Ex-
perts. Currently, a lot of research is going on in the field of semantic tech-
nologies which promise to enable a high level of automation to narrow or
even close this gap. This should be achieved through a well-defined knowl-
edge representation which allows reasoning on the one hand and generation
of executable code on the other hand.

In this thesis, we analyze the options to transfer ontologized knowl-
edge representations into executable code and suggest a generic engineering
process model using the facilities of Model Driven Software Development
(MDSD) to fulfill this goal. This generic process is evaluated by introducing
a concrete implementation done for the SemBiz project, where a semantic
layer based on the Web Service Modeling Ontology (WSMO) is used for
querying and reasoning over the process space, and a MDSD layer based
on Eclipse Modeling Framework (EMF) is used for process abstraction and
code generation.

11

Abstract

Mit dem zunehmenden Interesse an Service Orientierten Architek-
turen und den damit verbundenen Technologien, wie zum Beispiel Web
Services und der Business Process Execution Language (BPEL), hat Ge-
schiftsprozessmanagement in den letzten Jahren an Bedeutung gewonnen.
Dennoch besteht eine Kluft zwischen der Gestaltung von Geschiftspro-
zessen, wie sie von Expertlnnen der Geschiftswelt durchgefiihrt wird,
und deren Ausfiihrung, die von IT-Expertlnnen umgesetzt und gewartet
wird. Derzeit gibt es intensive Forschungsansitze im Bereich semantischer
Technologien, die hohe Automatisierbarkeit versprechen, sodass diese Kluft
weitgehend oder sogar vollstindig iiberwunden werden soll. Erreicht wer-
den soll dies durch eine wohldefinierte Wissensreprisentation, die logisches
Schlielen erlaubt, auf der einen Seite sowie Generation von ausfithrbarem
Code auf der anderen Seite.

In dieser Magisterarbeit analyisieren wir die Mdglichkeiten, ontol-
ogisiertes Wissen in ausfiihrbaren Code zu iibersetzen und prisentieren
einen allgemeinen Entwicklungsprozess, der die Moglichkeiten von Mod-
ellgetriebener Softwareentwicklung (Model Driven Software Development,
MDSD) niitzt, um dieses Ziel zu erreichen. Dieser allgemeine Prozess wird
dann an Hand einer konkreten Implementierung im Rahmen des SemBiz
Projekts evaluiert. Im Rahmen des Projektes gibt es eine Semantische
Schicht, basierend auf der Web Service Modeling Ontology (WSMO), die
Abfrage und Schliefen iiber die Prozesse der Wissensbasis ermdglicht, und
eine Modellgetriebene Schicht basierend auf dem Eclipse Modeling Frame-
work (EMF), die fiir Prozessabstraktion und Codegenerierung verwendet
wird.

11

Contents

1 Introduction
(by Clemens Blamauer and Daniel Lintner)
1.1 Problemdefinition
1.2 Structure of thiswork

2 The Workflow Technological Space
(by Daniel Lintner)
2.1 Business Process Modeling
2.2 SOA and Web Services

3 The Ontology Technological Space
(by Daniel Lintner)
3.1 Ontologies in the field of Computer Science
3.2 Ontologies in the field of SemanticWeb
3.3 Ontologies in the field of Semantic Web Services

4 The Model Driven Engineering (MDE) Technological Space

(by Clemens Blamauer)

4.1 Model Driven Architecture MDA)

4.2 Eclipse Modeling Framework (EMF)

4.3 Viewbased Modeling Framework (VbMF)
4.3.1 Core View and extension mechanisms
4.3.2 VbMF ControlFlow View
433 VbMF Collaboration View
434 VbMF Information View

5 View-based Ontology Integration Process
(by Clemens Blamauer and Daniel Lintner)

6 View Creation

(by Clemens Blamauer)

6.1 RelatedWork L.
6.1.1 Ontology Definition Metamodel (ODM)
6.1.2 EMF-based Ontology Definition Metamodel
6.1.3 ModelCVS
6.1.4 Differences between Ontologiesand MDE

6.2 Create Ontology Metamodel

6.3 Create Ontology Import

6.4 Create View Metamodel

6.5 Viewlmport

v

11
12

20
22
25
27
28
29
30
31

33

6.6 Manual View and Import Completion

Create Transformation Rules
(by Daniel Lintner)
7.1 Related Work

7.1.1
7.1.2

Modelware
Model Transformations By-Example

7.2 Create Examples
7.3 Deriving Model Correspondences

7.3.1 Classification of source elements
7.3.2 Identification of element correspondences
733 Conclusion
7.4 Design TransformationRules
7.4.1 Incomplete
7.42 Parameterso
743 Precomputed oL,
7.44 Model Navigator
745 PathReminder
7.4.6 Metamodel PolymorphicRules
7.477 Testand Evaluation

Integration and Deployment
(by Clemens Blamauer)
8.1 Integration of single Model Transformation Steps

8.1.1
8.1.2

Transformation Workflow
Workflow Component Adapters

8.2 Transformation Deployment

8.2.1
8.2.2

Evaluation

Web Service Deployment.
Sembiz Process Deployment process

(by Clemens Blamauer and Daniel Lintner)
9.1 Evaluation of the practical transformationtask

9.1.1
9.1.2
9.13
9.14
9.1.5
9.1.6
9.1.7

Mapping the Process Setup
Mapping the Process Startand End
Mapping Atomic Processes
Mapping Atomic Process Invariants
Mapping Composite Processes
Mapping Conditional Branches
Mapping Fault- and Compensationhandling

9.2 OpenIssues and future Work

57
58
58
58
60
61
62
64
67
68
70
72
73
74
75
75
76

78
78
79
80
81
81
81

10

Conclusion
(by Clemens Blamauer and Daniel Linter)

Zusammenfassung auf Deutsch
Lebenslauf Clemens Blamauer

Lebenslauf Daniel Lintner

vi

105

106

107

107

List of Figures

0NN Nt W

L LW LW LW LW W W W W IND NN = === === = = = \O
O AN NP WO OOV NP WNODROOVOIONWDN R~ WND—=O

The Critical IT - Process Divide
Simple EPC diagram
Simple BPMN diagram
Selected classes and properties of the OWL-S Profile
Top level OWL-S processontology
WSML variantspace
The MOF Metadata Architecture
CIM,PIM,and PSM
Ecorekey types
Meta levels of the View-based Modeling Framework
VOMF Core View
VbMF ControlFlow View
VbMF Collaboration View
VbMF Information View
High-level View-based Integration Process
Create View subprocesso o
Common features of UML andOWL
Transformation between Ecore and EODM OWL
ModelCVS Ecore to OWL mapping
The WSMO Metamodel in MOF
Import of XML Schema into an EMF Project
The WSMO Metamodel inEcore
Transformation setup of the Create View Metamodel activity . . .
The BPMO Ontology as an EPackage
Mapping concepts to EClasses
Mapping relations to EClasses and EReferences
Mapping enumeration-like axioms to EEnums
Transformation setup of the Create View Import activity
Transformation setup of the View Import activity
Create Transformation subprocess
Overview of the Modelware work packages
Overview of the MTBE framework
The OrderProvisioning process ontology
The OrderProvisioning BPEL Transaction View
Example for irrelevant elements in the BPMOView
Example for hidden elements in the VbMF CollaborationView . .
Example of missing information for the VbMF InformationView .
1:1 mappings between BPMO views and the VbMF Collaboration

VIBW . .o e e e e e

Vil

63
63

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Example of a source class having multiple 1:1 mappings 65
Example of a 1:N mapping between BusinessProcess and Activity 66

Example of a N:1 correspondance 67
Example of model correspondences on the class level 68
Example model correspondences on the class and attribute level . 69
BPMO View to BPEL Transaction View transformation setup . . . 69
Simple Guidance Metamodel 71
Guidance Example oL 71
Parameter Metamodel, 72
Parameter Example 73
OrderProvisioning BPEL validation 77
Deploy subprocess 78
OrderProvisioning - BPEL Collaboration View 85
OrderProvisioning - BPEL Transaction View 87
Process Start in the BPEL Collaboration View 88
Process Start in the BPEL Information View 88
PleskUserLookup - BPMO Business Process View 91
PleskUserLookup - BPEL Collaboration View 92
PleskUserLookup - BPEL Information View 93
Mapping XOR and CASE SelectProcesses 97
Mapping OR SelectProcesses 98
Generated OrderProvisioning BPEL 102

viil

1 Introduction

In the last two decades, more and more companies began to re-define themselves
through their business processes. The initial idea behind was to become aware of
processes which generate value for either customers or the companies themselves,
to document the outcome and be able to re-engineer business processes according
to changes in market demand [32].

The forming of the service oriented architecture (SOA) pattern, and the de-
velopment of web technologies and standards lead to a couple of enabling tech-
nologies which in combination are able to integrate business processes and the IT
infrastructure properly.

However business processes, as defined by business experts and executable
processes designed by IT personnel are hardly linked and additionally do operate
on different levels of detail. As shown in Figure 1, the so called Critical IT -
Process Divide leaves a gap between business experts (real persons or teams),
which are not necessarily familiar with technical details, and developers, which
may in turn not be familiar or in touch with the development of high level business
processes.

Business process management (BPM) aims at reducing this gap, in managing
business processes from a business view:

”BPM technology provides not only the tools and infrastructure to
define, simulate, and analyze business process models, but also the
tools to implement business processes in such a way that the execution
of the resulting software artifacts can be managed from a business
process perspective.” [41]

Further, the creation and maintenance of process oriented IT infrastructures is
a non-trivial and labor intensive task.

However, there is still a gap between the business and the technical view: busi-
ness experts (real persons or teams) are not necessarily familiar with technical
details. On the other hand, business process models somehow have to be trans-
formed to executables, deployed to the infrastructure and maintained by technical
people.

One example and the scope of this work - is the SemBiz project, which claims
to develop a prototype (toolchain) that supports the whole business process man-
agement lifecycle through

’[...] an exhaustive semantic description framework that allows
managing business processes on the business level as well as support
for automated execution of business processes on the technical level.”
[15]

The Critical IT / Process Divide

Business Experts' Perspective: Processes

Querying the = - = Process

Process Space Manual Labor Implementation

IT Implementation Perspective

Figure 1: The Critical IT - Process Divide
(source: [35])

It uses semantics for discovery, querying and functional composition, and a
Model-driven approach for syntactical composition and domain specific lan-
guages (DSL) for generation of executables [59].

In order to develop and test the SemBiz toolchain, real world use cases are
provided by use case partners, namley eTel Telekom Austria and Hanival Inter-
net Services. Both companies are working in the field of internet service pro-
viding (ISP)/telecommunication. As scientific partners in the project, the Digital
Enterprise Research Institute (DERI) Innsbruck contribute the functional compo-
sition parts like semantic annotation, modeling, process reasoning and discovery,
the Information Systems Institute (Infosys) Vienna is concerned with the syntac-
tical composition which includes model-driven composition and validation and
provides code generation capabilities in order to generate executable processes
(BPEL).

1.1 Problem definition

In order to generate non-semantic, executable code from ontologies, it is nec-
essary to translate between different technological spaces. A part of the prob-
lem is mitigated by the VbMF framework [36,59-61], which reduces complexity
through a Separation of Concerns approach, in providing different architectural
views [38]. In order to make use of the VbMF framework, which is built on
MDSD (model-driven software development) technologies, it is necessary to pop-
ulate VbMF views out of business process ontologies, which is the main focus of
our work.

1.2 Structure of this work

The further work is structured as follows: In Section 2, will give a brief outline
of both BPM and SOA. We will then give a general overview of ontologies in
Section 3, and discuss, how they can improve BPM and SOA through the use
of semantic technologies. In Section 4, we will then introduce the theoretical
concepts of Model-Driven Engineering and technologies to realizing them.

In Section 5 we will present an integration process in order to bridge between
ontologies and model-driven technologies. The first integration step, described
in Section 6 is to automatically create views on ontologies in terms of models
and facilities to populate these views from ontologies. In Section 7 we describe
the next integration step, translating between the ontology views and the VbMF
views. Finally, in Section;j8, we will show how single transformation steps are
combined to provide a Web service that is orchestrated by the Sembiz Deployment
process.

In the evaluation in Section 9 we will analyze the Use Case Partner’s use cases
to evaluate the transformation and outline unaddressed issues and future work.

2 The Workflow Technological Space

The foundation of modern workflow technology dates back on work in the late
1970’s and the early 1980’s. The computer science field of office automation
was researched by industry and universities including AT&T, IBM, Xerox, M.I.T
or the Harvard Business School [29]. Later movements like Business Process
Reengineering made the idea of a process-driven organization more and more
common. Today almost every company is aware of its processes and documented
them in some kind of way but few of them have them actually in an executable
form, so there exists a huge amount of business knowledge in the form of diagrams
but no corresponding executable code.

The following section gives a brief introduction into process modeling nota-
tions. Section 2.2 discusses Service Oriented Architectures (SOA) and Web Ser-
vices as todays enabling technologies.

2.1 Business Process Modeling

In order to describe business processes adequately a number of Business Pro-
cess Modeling Languages (BPMLs) have been developed and used in a variety of
domains and application areas. Their aim is to describe process models including
information about what a process is going to solve, how a process is going to solve
its task, what kind of business data or objects are going to be processed, who is
participating in the process and what kind of responsibilities are associated with
the process. Widely-used BPMLs are Event-driven Process Chains (EPCs) and
the Business Process Modelling Notation (BPMN) which are briefly introduced
in the following paragraphs.

Event-driven Process Chains EPCs provide a simple and easy understandable
notation. The goal of EPCs is to support the modeling of correlations between
businesses and information systems. The notation is based on the elements Event
and Function as well as connectors between them.

Events are said to be passive elements which cause a function or are produced
by a function. An event is represented as a rectangle. Functions are active el-
ements and model concrete tasks or activities carried out in a company. Func-
tions are transformations between an initial and a resulting state. Furthermore, a
complex function again can be modeled in a separate EPC and is then called a
hierarchical function. A Function is represented as a rounded rectangle.

Event 1

Function 1

II

l X

Functlon 2
Functlon 3 [Functlon 4]

Event 4

‘ Event 5 ’ Event 6 ’

J

Function 5

Event 7

Figure 2: Simple EPC diagram (according to [40])

An EPC denotes an ordered graph that makes use of connectors and logical
operators such as OR, AND and XOR in order to steer the activation of the path
of the control flow in a process. A Connector is represented as a circle. Figure 2
gives a simple example of a process modeled with EPC.

Generally one can distinguish between opening and closing connectors. Open-
ing connectors can have one incoming control flow and two or more outgoing
control flows. Closing connectors can have two or more incoming control flows
and exactly one outgoing control flow. An OR connector is used to activate one
or more paths in the control flow, other paths that do not meet a certain condition
are deactivated. An OR connector is represented as an empty circle. Differently,
an XOR connector activates exactly one outgoing control flow based on the given
condition. All other alternative flows are deactivated. An XOR connector is repre-
sented as a circle labeled with an *X’. Finally an AND connector is used to model
a parallel flow, stating that all follow-up paths are activated if a certain condition
is true. An AND connector is represented as a circle labeled with a *+’.

Business Process Modeling Notation BPMN has been developed by the Busi-
ness Process Management Initiative (BPMI) with the primary goal to provide a
readily understandable graphical notation for all business users. It aims to provide

a standardized bridge between the business process design done by business ana-
lysts and experts and the implementation of the business processes done by techni-
cal developers. Additionally BPMN was designed to map with process execution

languages such as the Business Process Execution Language for Web Services
(WS-BPEL).

Company A

_’

Department B

Activity 2

Department A

‘ e

Business Business

Object
[Status A]

— | Object
————— [Status B]

A
_h i
i

I
I
|
I
————— Request - — -r

|
Response

v &

Company B

Figure 3: Simple BPMN diagram

The BPMNSs core element set can be divided into four basic categories:

Flow Objects define the behavior of a Business Process. BPMN distin-
guishes three types of Flow Objects: 1) Events, 2) Activities and 3) Gate-
ways. Events arise in the course of the process flow which have a cause
or an impact influencing the flow of the process. Based on when an event
affects the process flow one can distinguish between events that occur at the
beginning (Start), in the middle (Intermediate) or at the end (End) of the
process. BPMN knows various types of events like Message, Timer, Error
or Compensation. Their graphical notation is a circle with open centers or
internal markers representing the type of the event. Figure 3 makes use of
three events. A Start Event at the beginning, an Intermediate Event waiting
for a message to arrive and an End Event stating the end of the process.
Activities are representing units of work that are performed by a compa-
nies organizational unit. Activities may be atomic (Task) or non-atomic
(Sub-Process) and are illustrated as rounded rectangles. An activity can be

a process too, but is then contained in a separate pool. Figure 3 shows Tasks
(e.g. Activity 1), a collapsed Sub-Process (Subprocess 1) and an external
Process (Company B). For modeling a divergence or a convergence of the
control flow Gateways are used. They describe branches and merges, forks
and joins and are represented as diamonds with internal markers. There
exist Data-Based or Event-Based Exclusive Gateways, Inclusive Gateways,
Complex and Parallel Gateways. Figure 3 contains a Parallel Gateway fork-
ing after Activity 1 and joining before the End Event and a Data-Based
Gateway branching after Activity 2 and merging before joining with the
Parallel Gateway.

e Connecting Objects are used to connect Flow Objects and other infor-
mation. The three Connecting Objects available are 1) Sequence Flow, 2)
Message Flow and 3) Association. A Sequence Flow is used to show the
order of activities performed in a Process. A Sequence Flow is a solid line
with a filled arrowhead. A Message Flow shows the flow of a message that
is sent or received by different activities. A Message Flow is a dashed line
with an open arrowhead. Associations are used to association various infor-
mation with Flow Objects. An Association is a dotted line with a normal
arrowhead.

e Swimmlanes are used to group the primary modeling elements. There exist
two types of Swimmlanes: 1) Pools and 2) Lanes. Pools represent the par-
ticipants in a process €.g. Company A and Company B in Figure 3. Lanes
are used to sub-divide Pools in order to organize and categorize activities,
Department A and B of Figure 3 are examples of Lanes.

e Artifacts provide a way to add additional information about a process
which do not directly influence the flow of a process. Currently there are
three standardized Artifacts, but BPMN allows the definition of any other
required Artifact. Current Artifacts include: 1) Data Object, 2) Group and
3) Annotation. Data Objects provide information about what activities
require as an input respectively what output they produce. Groups are
used to visualize categories of activities for documentation and analyzing
purposes. Annotations, typically in form of natural language text, are a
mechanism to provide additional information for the reader of a diagram
and are connected to specific objects within the diagram.

2.2 SOA and Web Services

Service Oriented Architecture (SOA) is an architectural design approach for soft-
ware and IT infrastructure. It is based on loosely coupled Web services that pro-

7

vide dynamic binding, platform independence and high interoperability. SOA is
an abstract concept, not an implementation.

Web services and -standards One implementation of a Service-oriented archi-
tecture (SOA) are Web services. Web services are software components made
available through the internet which can be published, discovered and invoked.
They make use of XML-based standards in order to interchange data. Concretely
a Web service provides an interface for software operations over a network in
order to perform a message-based data transfer. Web services are said to be self-
contained, meaning their independency of other components or services [27].

”A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards.” [18]

A Web service is an abstract set of functionality characterizing a concrete piece
of software or hardware that sends and receives messages in order to implement
a service whereas one service may be implemented by different agents (e.g. pro-
gramming languages). Such an abstract service description is called a Web service
description (WSD) which documents the mechanics of the message exchange in
a machine-processable format and includes among other things information about
message formats, datatypes, transport protocols, message serialization formats or
the network location where the service can be invoked.

Orchestration Web services independently provide atomic functionalities. In
order to use them in business processes, they need to be composed to higher level
processes. One standardized approach to do this is the Web Services Business
Process Execution Language (WS-BPEL), an XML based language standardized
by OASES (cp. [39]).

3 The Ontology Technological Space

The following section discusses the term ontology in the context of information
and computer science and their fields of use. Further a closer look at ontology
languages and their capabilities in the area of the Semantic Web as well as in the
area of Web services is taken. Further a comprehensive example provides a deeper
understanding of how ontologies are built.

8

The origin of the term ontology can be found in the field of philosophy and can
be considered as a part of the major philosophical branch of metaphysics [13].
Their major task is to draw out a view of what things and what kind of things
exist and attempts to address questions such as: "What is being?’ or "What char-
acteristics do all beings have in common?’ [56]. It is about creating a system of
categories and providing criteria in order to distinguish various types of objects
(concrete and abstract, existent and non-existent) and their ties (relations, depen-
dences and prediction) [9] .

In the field of information and computer science, ontologies have a similar pur-
pose as their philosophical origin. They are briefly discussed in the next section.

3.1 Ontologies in the field of Computer Science

Ontologies strive at classifying and relating things in order to clarify the picture
of what these things are and of what purpose they might be, aiming to make this
knowledge processable by machines. It can be considered as a design artifact
defining a specific vocabulary to describe entities in some domain of interest to-
gether with a set of assumptions about the vocabularies intended meaning [56].

A frequently cited definition is given by Gruber [31]:
”An ontology is an explicit specification of a conceptualization.”

and further:

”A conceptualization is an abstract, simplified view of the world that
we wish to represent for some purpose. Every knowledge base, [...]
is committed to some conceptualization, explicitly or implicitly.”

So an ontology explicitly specifies a conceptualization, which means the
labling of objects, concepts and other entities along with their interrelation in
some area of interest which are used to reach a formal commitment of meaning.

The foundations of ontology languages date back to work in the fields of knowl-
edge representation and reasoning, database management, logic programming and
object oriented programming. Modeling wise, ontologies have many similarities
with other common approaches to cover domain knowledge like the Entity Re-
lationship Model (ERM) or the Unified Modeling Language (UML) but exceed
those in different dimensions ([24], p. 19 - 20).

e The description format consists on semi-stuctured natural language text.

9

e It’s primary goal is to reach an agreement on the meaning of terms and
vocabulary across cooperating communities or individual applications.

e The description language of ontologies is typically syntactically and seman-
tically richer, they are formalized in logic based representation languages an
therefore describe domains in an unambiguous way.

e An ontology provides a formal definition of a domain, not the structure of a
data container

An ontology can be specified in a variety of forms mainly differing in the degree
of formality by which a vocabulary and its meaning is specified. This can even be
in form of natural language which is typically not the case in the field of computer
science. Uschold et al. [62] distinguish:

e highly informal: expressed in natural language

e semi-informal: expressed in a restricted and structured form of natural lan-
guage

e semi-formal: expressed in a artificial formally defined language

e rigorously formal: expressed in meticulously defined terms with formal se-
mantics, theorems and proofs

Nowadays ontologies find their use in many domains and their function
spreads over wide areas of use. As a discussion of all the specific appliances of
ontologies would go beyond the scope of this work , here just an abstract overview
is given. We adhere to [62] where three general spaces of use of ontologies are
identified: Communication, Interoperation and Systems engineering.

Communication As Ontologies reduce conceptual and terminological confu-
sion they enable a shared understanding among people having different needs and
viewpoints arising from their specific context. There may be different aspects
where ontologies are able to facilitate the communication.

Interoperation Enterprise information systems typically combine many sub-
systems and tools and operate on various data sources and formats requiring the
integration of and interoperation between these resources. Ontologies can assist
such inter-operability by supporting translations between different representations
either by directly translating between two specific representations or through act-
ing as an inter-lingua, a pivot between multiple representations.

10

Systems engineering Different to the above mentioned operational role of on-
tologies in software systems, they are applicable to system design and develop-
ment as well for instance when identifying the requirements and clear out rela-
tionships of various system components or doing automatic constituency checks.

Concluding we can say that, generally spoken, ontologies are applied in the
fields of communication, interoperation and system engineering. Their task is
to describe a universe of discourse unambiguously, bridge between different do-
mains as well as enabling reasoning applications to reason over the logical conse-
quences of their statements.

3.2 Ontologies in the field of Semantic Web

When Tim Berners-Lee et al. [20] dealt with the term Semantic Web in early 2001
they envisioned the future of the Web to be more than just a collection of web
pages dedicated to human consumers. Instead the enrichment of the available
information with machine readable semantics should open the way for perform-
ing complex reasoning tasks and understanding meaning by computer system au-
tonomously and help to overcome the informations overloads of today and the
future.

The major building blocks initially enabling the Semantic Web were technolo-
gies like the Extensible Markup Language (XML) [3] together with their scheme
languages XML Schema and Document Type Definition (DTD), the Resource De-
scription Framework (RDF) [10] and the Web Ontology Language (OWL) [11].
XML enables Web publishers and programmers to describe their own tags and
annotate their resources in a standardized way. But still the interpretation of the
meaning behind is up to humans. Based on XML, RDF provides the annotation of
resources on the World Wide Web with various metadata which is cleary identified
through the use of Unified Resource Identifiers (URIs) geared to enable interpre-
tation done by machines. But even though metadata is exactly identified through
their URIs in RDF there is no way of relating such terms. This directly leads to
the use of ontologies.

A dedicated ontology language for the web is OWL. Different to other lan-
guages for the Web, which were designed to present information to human readers
like the Hypertext Markup Language (HTML), the OWL’s goal is to enable the
Web for machines allowing automated processing and integration of Web data.
While mainly extending the RDF standard, OWL adds additional vocabulary for
describing properties and classes as it introduces the ability to describe relations

11

between classes, cardinality, equality, richer typing of properties, characteristics
of properties, and enumerated classes ([24], p. 23).

Based on the required expressiveness one may choose between the three avail-
able sublanguages of the OWL, where each of them is an extension oft its prede-
Cessor:

e OWL Lite is the basic version providing a classification hierarchy and simple
constraints (values of 0 or 1). It has a reduced expressiveness but in turn is
of less complexity.

e OWL DL provides a maximum of expressiveness while still retaining com-
putational completeness and decidability. It includes all available OWL lan-
guage constructs, which may be used under certain constraints.

e OWL Full provides the same features as OWL DL, but does not pose the
same constraints on their usage. Therefor, no computational guarantees are
given when applying the full expressiveness of OWL Full.

A good introduction to ontological knowledge representations can be found
in [12] which is the wine ontology example by the W3C.

3.3 Ontologies in the field of Semantic Web Services

Parallel to the Semantic Web initiatives, the realization of Service Oriented Archi-
tectures gained momentum through enabling technologies for Web services and
a meaningful set of Web standards. These promising developments constituted a
step ahead towards the seamless integration of distributed and heterogenous soft-
ware components. Nevertheless available Web service technologies suffer from
the same problems the common web does: their operation on a syntactic level.

The major drawback with this syntactic level is the currently huge amount of
labor required in order to setup, maintain and change service landscapes. Ma-
chine processable semantics promises to eliminate (some of) theses drawbacks
by introducing automation at every level of the process life cycle including ser-
vice discovery, service execution and service composition and interoperation (cp.
Mcllraith et. al.).

12

Automatic Web service discovery using semantic service descriptions together
with ontology-enhanced search engines allow the automatic location of services
on the base of complex request properties. One could consider the task of search-
ing for some particular travel service which is nowadays still a time consuming
task done by humans, e.g.: “Find a service that sells train tickets for the route
Vienna - Berlin and offers payment via Visa card.”.

Automatic Web service execution Assuming automatic service discovery in
place, autonomous software agents could search the web for appropriate services
and execute them on the behalf of humans. A user could formulate an order
like ”Buy me the cheapest available train ticket from Vienna to Berlin and pay
it with my Visa card”. In todays web, this would involve a couple of human tasks
including browsing the vendors site, login (or even doing registration first), filling
out forms and all the rest of it.

Automatic Web service composition and interoperation comes into play,
when a complex , high-level order description turns out to require a sequence
of various services. Specialized software would be able to reason and interpret
the provided service descriptions, selecting, composing and mediating between
services automatically. Today this is a cumbersome task requiring manual com-
position and the mediation between service request formats generally to difficult
for the average user and a dedicated job for IT-personnel.

OWL-S One prominent language aiming on this requirements is OWL-S. As its
name suggests it is based on OWL (see Section 3.2). OWL-S provides an upper
ontology for services describing the essential types of knowledge about a service,
namely the ServiceProfile, ServiceModel and ServiceGrounding.

e The ServiceProfile basically answers the question of what the service
can do for its clients. A service is said to present a ServiceProfile.
This information can be used by software agents in order to determine if a
service meets the required needs. It contains information like a description
in natural language or contact information, but mainly functional descrip-
tions as shown by Figure 4.

e The ServiceModel contains information of how a service fulfills its task
and describes what happens when a service is executed. A service is said to
be described by a ServiceModel. This information can be used to a) per-
form a more in-depth analysis of whether meets the required needs, b) com-
pose several services fulfilling a more complex need, c) coordinate the ac-
tivities of different participants during service enactment, and d) monitor the

13

rName
Far_ﬂf‘f‘," »

......

<rdfs:subPropertyOf

"#hasParameter" />

[T

= taxonomy

......... »

. ObjectProperty = Sogg

-
S e, .. 1
...... I DatatypeProperty g

e

------- k SubClass/Property .‘-"

Figure 4: Selected classes and properties of the OWL-S Profile (source: [16])

service’s execution. A subclass of the ServiceModel is the Process
class introduced in OWL-S 1.1 providing a rich foundation for describing a
service’s inner structure as shown by Figure 5.

e The ServiceGrounding answers the question of how a service is used.
A service is said to support a ServiceGrounding. The information in
the grounding is used to provide information for the actual interaction with
the service, including the communication protocol, message formats and
other details such as the service’s address and port. Additionally for each
abstract type in the ServiceModel a ServiceGrouding provides an
unambiguous way of exchanging data elements of that type with the service.

In order to annotate a published Web service, each distinct Web ser-
vice is represented by instances of the Service class having the properties
presents, describedBy and supports which in turn point to instances for its
ServiceProfile, ServiceModel and ServiceGrounding. Each of
these basic class provides an essential type of information about the service
which can be further specialized by subclassing them. The upper ontology further
specifies two cardinality constraints: 1) a service can be described by at most
one service model, and 2) a grounding must be associated with exactly one ser-
vice. For the properties presents and describedBy not further restrictions on the
cardinality are given. Nevertheless OWL-S provides a default approach with its
upper ontologies for profiles, models and groundings and allows the construction
of alternative approaches too.

14

Participant

disjointWith

_k ObjectProperty

------k DatatypeProperty
pmmana k SubClass/Property

components

-

Figure 5: Top level OWL-S process ontology (source: [16])

15

There exist a loose collection of tools to support the creation and processing
OWL-S each of them focusing on different specific aspects [58]. The set of tools
are OWL-S Editor, OWL-S Matchmaker, OWL-S Virtual Machine (OWL-S VM),
WSDL20OWL-S converter and OWL-S2UDDI converter.

The OWL-S Editor can be used to develop semantic descriptions for Web
services. It is easy to use and hides the complex constructs of the markup
language.

The OWL-S Matchmaker outputs different degrees of matching for indi-
vidual elements of OWL-S descriptions and service profiles. It allows the
ranking based on a criterion in order to select a service out of a large number
of results, thus provides decision support to autonomously choose the most
suitable service around.

The OWL-S VM provides a client capable to invoke Web services based on
their OWL-S process model. Its base functionality is to control the interac-
tion between services based on the information described in OWL-S.

WSDL20OWL-S reduces human labor as it provides the transformation of
a WSDL WSD into OWL-S. This results in a specification of the Service-
Grounding and a partial specification of the ServiceModel and the Servi-
ceProfile. Nevertheless the OWL-S description of a service is much richer
than the description provided by WSDL and therefor has to be completed
manually. Anyways, WSDL2OWL-S generates a basic structure of the
OWL-S description and reduces work to a great extend.

OWL-S2UDDI goes the other direction then WSDL2OWL-S and converts
OWL-S profile descriptions into UDDI descriptions that can be directly
published in a UDDI registry.

An effort to integrate these and other loose tools into an cohesive framework
is made with the OWL-S Integrated Development Environment (IDE).

WSMO and WSML The Web Services Modeling Language (WSML) is an on-
tology language dedicated to the domain of Web services. It is a formal language
that provides the syntax and semantics for the Web Services Modeling Ontology
(WSMO) which together build a unified language framework to semantically de-
scribe different aspects of Semantic Web Services (SWS), where WSMO serves
as the conceptual model.

16

Differing in their logical expressiveness and the underlying language paradigms
WSML comes with a set of language variants as shown in Figure 6 and outlined
in [24].

First-Order Logic

{with nonmonotonic extensions)

>
Y

ISLIDE 2000 WL Wi

21607 JspI0-1sa14

Description Logics

Logic Programming
fwith nonmonotonic negation)

5L

Figure 6: WSML variant space (source: [17])

e WSML-Core has the least expressive power of all WSML variants and builds
to base for the other variants. Its main features are concepts, attributes,
binary relations and instances as well as concept and relation hierarchies.
Compared to OWL, WSML-Core can be seen as a subset of OWL Lite.
WSML-Core is based on the intersection of the Description Logic SHZ Q
and Horn Logic based Description Logic Programs.

e WSML-DL fully captures the Description Logic of SHZQ(D) . WSML-DL
can be understood to be on the same level as OWL-DL.

o WSML-Flight provides a powerful rule language. It extends WSML-Core
with meta-modeling capabilities, constraints and non-monotonic negation.
WSML-Flight is based on a logic programming variant of F-Logic.

o WSML-Rule further extends WSML-Flight. Extensions include features
from Logic Programming such as function symbols, unsafe rules and un-
stratified negation.

o WSML-Full unifies the power of WSML-DL and WSML-Rule. It supports
non-monotonic negation of WSML-Rule but is still an open research issue.

An example of the WSML syntax is given by Listing 1 which shows the wine
example introduced in Section 3.2 written in WSML.

17

concept Winery

concept Grape

concept Region

concept ConsumableThing

concept WineGrape subConceptOf Grape

concept PotableLiquid subConceptOf ConumableThing
concept Wine subConceptOf PotableLiquid

instance CentralCoastRegion memberOf Region
instance ChardonnayGrape memberOf WineGrape
instance LidemansBin65Chardonnay memberOf Wine

relation madeFromGrape (ofType Wine, ofType WineGrape)
relationInstance madeFromGrape(LidemansBin65Chardonnay, ChardonnayGrape)

concept WineDescriptor

concept WineColor subConceptOf WineDescriptor
instance White memberOf WineColor

instance Rose memberOf WineColor

instance Red memberOf WineColor

relation hasWineDecriptor (ofType Wine, ofType WineDescriptor)
relation hasColor (ofType Wine, ofType WineColor)
subRelationOf hasWineDecriptor
L J

Listing 1: The wine ontology in WSML

The four top-level elements of WSMO build Ontologies, Goals, Web
services and Mediators [26].

e A WSMO ontology consists of non-functional properties, imported on-
tologies, mediators, concepts, relations, functions, instances and axioms.
Non-functional properties are used to describe non-functional aspects of a
WSMO element such as creator, creation date, etc. A non-functional prop-
erty may be one defined by the Dublin Core Metadata Initiative or others
defined by WSMO e.g. the version property. They are allowed in the defi-
nition of all WSMO elements.

Imported ontologies allow the modularization of complex domains of dis-
course. Importing an ontology makes available all statements of the im-
ported ontology, as long as there are no conflicts between the ontologies.
Mediators are used for aligning, merging and transforming ontologies. This
especially useful in order to resolve mismatches when importing ontologies
such as renaming concepts or attributes or the combination of concepts in
different ontologies and domains.

Concepts are the basic elements when defining a terminology of a problem
domain and represent classes of objects of a real or abstract world. A mem-
ber of a concept is called an instance. The signature of a concept is given
by its attributes, which are pairs of attribute names and types and represent

18

named slots for the data values for instances. Concept signatures and con-
straints on the concept can be inherited from superconcepts by subclassing
them. Every instance of a subconcept is an instance of its superconcepts as
well.

Relations are used to define interdependencies between concepts, recep-
tively their instances. Each relation has a set of parameters which are single
valued and can have a range restriction in form of a concept. A relation may
consist of named or unnamed parameter sets. Similar to concepts, relations
may have subrelations which inherit and refine the parameter signature of
the relation.

A function is a special form of a relation where the range specifies the re-
turn value. They can be used to represent built-in predicates of common
datatypes e.g. the conversion from kilometers to miles.

Instances represent objects in a real or abstract world. Their description
follows the signature imposed by the underlaying concept definition.
Axioms can be considered to be logical expressions applied on other ele-
ments in an ontology. They are used to capture nuances of meaning of
modeling elements in a unambiguous way.

The WSMO Web service element describes all aspects of a Web ser-
vices in an explicit and unified manner. Such an unambiguous model along
with well-defined semantics can be interpreted by machines without any hu-
man intervention solving tasks like discovery, selection, composition, medi-
ation, execution or monitoring automatically. A WSMO Web service can be
seen as a computational model able to fulfill user goals. The elements of a
WSMO Web service are its non-functional properties, imported ontologies,
mediators, a capability and interfaces.

Beside the WSMO core non-functional properties, a WSMO Web service
additionally provides non-functional properties describing its quality of ser-
vice (QoS) values, e.g. Accuracy (the error rate of the Web service), Robust-
ness (functional correctness on invalid inputs), Trust (the trust-worthiness of
the Web service) and many others which can be considered on service dis-
covery, selection and negotiation.

A Web service’s imported ontologies may be used to provide a formal vo-
cabulary used in the specification of a Web service.

Mediators are used by a Web service to overcome conflicts between the
terminologies of imported ontologies (ooMediator) or to overcome process
and protocol heterogeneity when interacting with other Web services (ww-
Mediator).

The capability of a Web service describes its functionality by expressing the
state of the world before the service execution (preconditions and assump-

19

tions) and the state of the world after a successful execution (postconditions
and effects).

Interfaces describe two aspects of a WSMO Web service, namely chore-
ography and orchestration. Choreography provides the information of how
to communicate with the Web service. Orchestration provides information
about other Web services of which a Web service makes use in order to
achieve its capability.

e WSMO Goals represent objectives and user desires where Web services are
said to fulfill certain goals. The elements of a goal definition are imported
ontologies together with mediators for assisting the alignment, merging and
transformation between imported ontologies. Further a goal definition may
contain non-functional properties, a requested capability and requested in-
terfaces.

e AWSMO Mediator can be of one of four different mediator types, namely
ggMediator, ooMediator, wgMediator and wwMediator. ggMediators link
two different goals which represents either a refinement of a source goal or
state equal, substitutable goals. ooMediators import ontologies and resolve
mismatches and clashes between ontologies. They may be used by other
mediators as well to map different vocabularies. wgMediators link Web
services to goals expressing that the Web service (totally or partially) fulfills
the goal. wwMediators link two Web services.

4 The Model Driven Engineering (MDE) Techno-
logical Space

Model Driven Engineering is a field of interest in software engineering, that
promises a solution to the growing complexity of software systems and to facili-
tate software evolution and maintainability through the use of models as first-class
objects. Models provide means for specification, visualization, and documenta-
tion of software systems on a high level. Metamodels are used as a (semi-)formal
specification for models and provide a foundation to enable the application of
transformation rules. These rules capture expert knowledge how a model can
be translated to another model or to another representation format (code) and
can then be used to (semi-)automatically build complete software systems out
of models. The translation to another model is usually called model-to-model
transformation, whereas the translation to code is usually called model-to-code
transformation. In this section at first MDE basics are defined, like models and
meta-models. Then, we will present current approaches, like the Object Man-

20

agement Group’s (OMG) Model Driven Architecture (MDA) standard and its
open-source implementation, the Eclipse Modeling Framework (EMF). At last
we will present an overview of the View-based Modeling Framework, that is
defined using EMF and provides a practical and extensible approach for modeling
processes and Service Oriented Architectures.

Model definitions In the literature on MDE one can find different definitions
for model, we will stick to the following two, because of their prominence (OMG)
and their usefulness (Seidewitz).

Definition of model by the OMG:

”A model of a system is a description or specification of that system
and its environment for some certain purpose. A model is often pre-
sented as a combination of drawings and text. The text may be in a
modeling language or in a natural language.” [45]

Definition of model by Seidewitz:

”A model is a set of statements about some system under study
[(SUS)]. Here, statement means some expression about the SUS
that can be considered true or false (although no truth value has to
necessarily be assigned at any particular point in time).

We can use a model to describe an SUS. In this case, we consider the
model correct if all its statements are true for the SUS. [...]
Alternatively, we can use a model as a specification for an SUS. In this
case, we consider a specific SUS valid relative to this specification if
no statement in the model is false for the SUS.” [57]

Meta-model definitions Accordingly to model definitions, also definitions for
meta-model can be found.

Definition of meta-model by the OMG:
”A metamodel is a model of a model.” [45]
Definition of meta-model by Seidewitz:

”A metamodel is a specification model for a class of SUS [(system
under study)] where each SUS in the class is itself a valid model ex-
pressed in a certain modeling language. That is, a metamodel makes
statements about what can be expressed in the valid models of a cer-
tain modeling language.” [57]

21

Concluding we can say, a model represents (describes or specifies) a system in
an abstract way, and thus facilitates understanding and prediction through focus-
ing on relevant aspects for a certain goal. A meta-model is a model of a system
of models (and consequently, a meta-meta-model is a model of a system of meta-
models).

4.1 Model Driven Architecture (MDA)

Definition

”MDA is an approach to system development, which increases the
power of models in that work. It is model-driven because it provides a
means for using models to direct the course of understanding, design,
construction, deployment, operation, maintenance and modification.”
[45]

The MDA approach provides a layered architecture that facilitates direct rep-
resentation and automation based on open standards [22].

Layered architecture The OMG has presented a four layered metadata archi-
tecture, for which a simple example is given in Figure 7. Note that, while the four
layers are typically referred to in literature, the architecture could consist of an
arbitrary number of layers (at least two). These layers are called linguistic layers,
and each layer is a linguistic instance-of its level above, with the exception of the
MO-layer, which represents the reality or the system under study.

MO Convention is to begin the naming hierarchy at the bottom, starting with
the layer containing runtime instances and naming that layer MO (or information
layer in traditional metadata architectures). A runtime object - in our example a
wine object called "Pauillac” is unique in space and time, that is it has a unique
object id and it also has memory allocated.

M1 The M1 layer (model layer) abstracts from the runtime instance and
captures only the relevant aspects for our purpose, e.g. that a wine generally has a
name.

M2 The M2 layer (metamodel layer) then abstracts from the M1 layer, and
specifies the relevant aspects as ”Attribute” and ’Class”.

22

M3 The M3 layer consequently is an abstraction of the M2 layer, in our

9 |

simplified case all M2 elements are instance of the M3 element "MOF:Class” .
This could be continued, however it is important to know that the topmost layer
(MOF) is self-referential, that is, all its elements are expressible by itself.

MOF::Class M3 (meta-metamodel): MOF
/’/ |
-7 |

<<instanceOf>> <<instanceOf>>

-
- I

i M2 (metamodel): UML

1
Attribute |——e] Class

\
N l
\ 1

<<instanceOf>> <<instanceOf>>

N '
N I

\\\ [Wine | M1 (model): User model
)

<<instanceOf>>

Paulliac MO (information layer): Execution

\

Figure 7: The MOF Metadata Architecture

Direct representation The goal of MDA is to focus on the problem domain in-
stead of the technology domain. Therefore it incorporates the concept of views
and viewpoints [38]. A family of notations is provided to model different perspec-
tives, that is different objects of interest on the same abstraction level and/or dif-
ferent levels of abstraction. For different abstraction levels, MDA uses the terms
computational independent model (CIM), platform independent model (PIM) and
platform specific model (PSM) [45]. Figure 8 shows an idealized, abstract soft-
ware engineering process together with these artifacts.

Computational independent model (CIM) A CIM is primary used for
communication between domain experts and system analysts. In software engi-
neering the corresponding term is what is known as a domain model.

Platform independent model (PIM) A PIM is a view of a system focus-
ing on its operation, independent of a specific platform. Platform independence,

"Here called MOF:Class to distinguish from the UML Class.

23

CiMm

PIM

PSM

Implementation

Code

Figure 8: A typical software engineering process with its relationship to CIM,
PIM, and PSM

though, is a flexible term, and depends on the goals one wants to achieve. For
example, a PIM targeting the Java Virtual Machine (JVM) is (widely) platform-
independent with respect to the underlying operating system.

It is not, however, platform-independent with respect to the programming lan-
guage. Platform-indepence therefore lies - to some extent - in the eye of the be-
holder with respect to his goals. Nevertheless there may be more than one PIM
layer, allowing different levels of abstraction.

Platform specific model (PSM) A PSM at last is a view of a system fo-
cusing on the details of that specific platform. The other dimension is the one of
different concerns. Typically, different modeling notations of the UML family are
used therefore, e.g. Class diagrams for the static structure, and Activity diagrams
for system behavior.

Automation In order to provide a consistent way to look on a system as a whole,
it is necessary to transform different models. Some of this transformation tasks
can be done automatically without human interaction through a set of rules [23].
These rules determine, how

e one model can be converted to another model on the same abstraction level
(e.g. structural PIM to behavioral PIM),

e one model can be enriched with details to provide a lower-level model (e.g.
PIM to PSM), and

24

e one model can be used to generate a representation in another format (e.g.
PSM to Code).

Open Standards In order to provide a framework that can be adopted by differ-
ent industry partners, MDA defines/incorporates a set of open standards.

Meta-modeling The Meta Object Facility (MOF) is used to specify meta-
models. It provides a common infrastructure to define and integrate different
meta-models [46].

Modeling The OMG has defined a set of standards (meta-models) that allow
the specification and visualization of software models, of which the UML is prob-
ably best-known [49,50]. Others are the Common Warehouse Metamodel (CWM)
providing specification of metadata for data warehouses and the Object Constraint
Language (OCL), a formal language that allows the description of conditions and
constraints on UML models [44,47].

Model exchange The XML Metadata Exchange (XMI) provides rules in
order to map MOF to XML [48], allowing standard serialization and exchange of
models and meta-models.

Model transformation To support model transformation, standards for
model transformation (MOF Query/View/Transformation, QVT) and code gen-
eration (MOF Model to Text Transformation Language) have recently been
published [51, 52].

Other standards The OMG has elaborated a set of other standards to cover
additional parts of the model-driven process life-cycle, including Model-level
Testing and Debugging and MOF Versioning and Development Lifecycle [1].

Conclusion MDA is one, object-oriented approach for MDE. It provides a
multi-layer architecture incorporating a set of standards for meta-modeling, mod-
eling, model transformation, model exchange and model lifecycle. MDA does
only provide specifications, not an implementation.

4.2 Eclipse Modeling Framework (EMF)
”[MDA] is mostly vaporware.” [4]

25

The Eclipse Modeling Framework [2] is an open source modeling framework
implementing (parts of) the OMG MDA standard. The EMF language for defin-
ing models is called Ecore, a java-based implementation based on the Essential
MOF (EMOF) subset of MOF 2.0 and is partially shown in Figure 9. It allows
the definition of structural models, like UML class diagrams and XML Schema
definitions [6].

[ENamedElement |
| name[1]: String

ETypedElement — EPackage
TowerBound: inf[1] = 0 0.1 I EClassifier I 0. —&{nsUA[1]: String
upperBound: int[1] = 1 eType) eClassifiers nsPrefix[1]: String

(3 T

e

0.*

eSuperTypes

£ eSubPackages
5
2 0.
,_L | g v
EOperation | EPar | EClass EDataType | EEnumLiteral
|] | | isAbstract: boolean[1] = false literal[1]: String
0.0 eParameters 0. value[1]: EInt
| 717
1 N -
eOperations s v |
[eStructuralFeatures 0.1 eLiterals

0. v
L EReference EEnum
I EStructuralFeature I{} containment: boolean[1]=false

EAttribute |
|id: boolean[1] = false |

Figure 9: Ecore key types

Meta-model definition Ecore can also be used to define domain specific meta-
models [5]. This can be done using the graphical Ecore editor shipped with EMF,
XML (due to the use of XMI as model serialization format), or annotated Java.
After defining a generator model, code is generated using Java Emitter Templates
(JET).

Model definition Model definition can be done using generated model/editor
code or again through the use of XML.

Model transformation Model transformations means to describe model trans-
formation rules (aka mapping rules) between a source and a target metamodel. In
other words, a mapping is described on the abstract syntax given by the different
metamodels, which often is a tedious and complex task and requires knowledge
and understanding of both target and source metamodel.

26

These transformation rules are then executed on the model in order to trans-
form the source model into the target model. Further, one can distinguish between
horizontal and vertical transformations on models, where a horizontal transforma-
tion transforms a model into a semantically corresponding model and a vertical
transformation transforms a model into a model on another level of abstraction.

The Generative Modeling Technologies (GMT), a family of Eclipse research
incubator projects, provides tools facilitating model transformation and code gen-
eration among other things. Model-to-model transformation, for example, can be
done using the ATLAS Transformation Language (ATL), a part of the ATLAS
MegaModel Management (AM3) 2 project. The openArchitectureWare® toolset
provides a language family that facilitates model-to-text (Xpand), model-to-model
(Xtend), and text-to-model (Xtext) transformations.

4.3 Viewbased Modeling Framework (VbMF)

The Viewbased Modeling Framework (VbMF), implemented with EMF, is a mod-
eling framework designed to model process-driven service-oriented architectures.
In particular, the VbDMF makes use of the idea of architectural views. An ar-
chitectural view is a representation of a whole system from the perspective of a
particular viewpoint, i.e. a related set of concerns. It represents a specific part
of a systems architecture which is of value and interest to the stakeholders of the
system. Splitting up a systems architecture in different views divides the overall
system concern and allows a comprehensive reduction of complexity [38,59] .

From the MDE point of view, the VbMF provides a core set of meta-models,
namely Core, Controlflow, Collaboration and Information which are used to
model platform independent models and can further be extended to model plat-
form specific or other platform independent models.

As shown in Figure 10, Ecore acts as the meta-meta-model in the M3 layer used
to define the VbMF views (aka. meta-models) in the M2 layer. In addition all
extensions of the framework reside in the M2 layer. The actual models are part of
the M1 layer.

The following sections describe the extension mechanisms of the VbMF as
well as its fundamental platform independent views, namely Core View, Con-
trolflow View, Collaboration View, and Information View.

Zhttp://www.eclipse.org/gmt/am3/
3http://www.openarchitectureware.org/

27

Meta-
meta-model M3

Collaboration Information| |Orchestration NewConcern
meta-model meta-model meta-model > meta-model
~ =

Extension

meta-Tmodel M2

Extension
View M1
MO

(a) Modeling elements

Figure 10: Meta levels of the View-based Modeling Framework (Source: [59])

4.3.1 Core View and extension mechanisms

The fundamental view of the VbMF is the Core View which represents a common
meta-model and defines the basic concepts of View, Process, Service and others,
as shown in Figure 11.

v # core
» [NamedElement -> ExtensibleElement
» [NameSpace
» [Process -> NamedElement, NameSpace
» [Service -> NamedElement, NameSpace
» [Vview -> NamedElement
£ ExtensibleElement

Figure 11: VBMF Core View (Generic EMF Editor)

The core view enhances the extensibility of the framework and acts as a foun-
dation for other views. Each extension view directly or indirectly extends the core
view. Each view meta-model can be further extended and refined via extension
points.

28

” An extension point is any entity that can add additional features (e.g.,
attributes or relations) to construct a new entity. Using relationships,
such as generalization, extend, etc., we can gradually refine an ex-
isting metamodel toward another metamodel at a lower abstraction
level.” [28], p. 24

Separate views can be integrated to provide a comprehensive view on a pro-
cess via integration points. In order to retrieve the integration points, the VbMF
uses a name-based matching algorithm. These transformations between views are
specified on the meta-model (M2) and executed on the actual models (M1). The
concrete model-to-model transformations are specified in the Xtend language, the
transformations from models to code is done with model-to-text transformations
using Xpand.

When representing new concerns, this is typically done through deriving from
the core meta-model and starting from scratch. These views can be used to define
platform-independent models of business-processes.

Further, these views may be extended to capture additional features or to enable
platform-specific representations. Concretely, within the VbMEF this it is done for
representing models of WS-BPEL processes. The corresponding BPEL views are
extension views that capture BPEL specific concepts (for example XSD defini-
tions for data definition, and Web services for service interaction).

4.3.2 VDbMF ControlFlow View

The ControlFlow View’s concern, as its name suggests, is to define the flow of
activities. Consequently, the ControlFlowView meta-model defines the necessary
control structures (see fig. 12). Its primary entity is the ControlFlowView
which extends the core View and contains exactly one (abstract) Activity.
Each activity has a name and may be connected to other activities via its in- and
outgoing Link. Basically, there are two types of activities: structured activities
(sequences and flows) and unstructured activities (simple activities and switches).
The most simple non-abstract activity is the atomic SimpleActivity derived
from the abstract Activity. The abstract St ructuredActivity is a gen-
eralization for activities that act as a container for possibly more than one sub-
activities. There are two non-abstract derivations of St ructuredActivity,
namely the Sequence, which semantically guarantees the order of contained ac-
tivities, and the F 1 ow, describing activities that may take place parallel.

The Switch activity acts as an container for one or more Cases and may con-
tain an activity carried out if non of the cases can be applied. A Case itself has

29

v # controlflow

ControlFlowView -> View
Activity -> NamedElement
SimpleActivity -> Activity
StructuredActivity -> Activity
Sequence -> StructuredActivity
Flow -> StructuredActivity
Switch -> Activity

Case

VVYVVVVYYVYYY

Link -> NamedElement

Figure 12: VbMF ControlFlow View (Generic EMF Editor)

a condition (as a string) and acts as a container for exactly one activity, that is
carried out if the condition applies. The resulting object-structure is a tree, with
the main activity as its root and simple activities as leaves.

4.3.3 VDbMF Collaboration View

As almost every business process faces interaction with other parties or at least is
used by another party, the collaboration between partners represent a vital con-
cern and thus draws the need for a specific architectural view. To model the
various interactions between participants in a process execution the Collabora-
tion view provides elements for modeling partners and their service interfaces
along with the description of the various interaction details necessary (see fig. 13).
Its primary entity is the CollaborationView which extends the core View
and acts as a container for PartnerLinks, PartnerLinkTypes, Roles,
Services, Interfaces and Interactions. Partner descriptions typically
consist of a PartnerLink along with its corresponding PartnerLinkType.
Each PartnerLink has a name and may link Roles via the myRole and the
partnerRole attributes, it refers to exactly one PartnerLinkType as well
astoasetof Interactions.

APartnerLinkType isresponsible for the definition of the various partner
correlations through linking available Roles with PartnerLinks. Together
with an extension of the core’s Service meta-class that contains appropriate
interface descriptions in form of Interface elements a partner definition be-
comes complete. Interfaces are linked to one or more Ro1es, moreover an in-
terface description can contain numerous operations thatin turn describe their
inputs, outputs and faults in terms of Channels. Finally the Interaction ele-
ment acts a platform independent container of the actual interactions of a business

30

v # collaboration

CollaborationView -> View
Service -> Service

Interface -> NamedElement
PartnerLink -> NamedElement
PartnerLinkType -> NamedElement
Role -> NamedElement
Operation -> NamedElement
Interaction -> NamedElement
Message -> NamedElement
Channel -> NamedElement
PartnerLinks

VYV VVYVYVVYVYYYY
(I 0D 070 00 00 0D 070 00 0D 0D 00 0o

Roles

Figure 13: VbMF Collaboration View (Generic EMF Editor)

process solely linking to the providing PartnerLink.

4.3.4 VDbMF Information View

The Information View meta-model handles data definition and transformation for
business objects (see Figure 14).

v # information
» [InformationView -> View
»] DataHandling -> NamedElement
> B Transformation -> NamedElement
» £] ObjectReference -> NamedElement
» H BusinessObject -> NamedElement
» [Type -> NamedElement, NameSpace
» Bl Types -> NameSpace

Figure 14: VbMF Information View (Generic EMF Editor)

The InformationView extends the core View and acts as a container
for BusinessObjects, DataHandlings, as well as the Types container
holding distinct Types. A BusinessObject represents a real-world business
data like e.g. an account, an order or a customer, and it is typed by a refer-
ence to the corresponding technical Type which is defined by its name and its

31

corresponding namespace. A DataHandling is a container for one or more
Transformations, which represent data manipulations within the process
flow by a name and corresponding source and target ObjectReferences. At
last, these Ob jectReferences act as pointers to BusinessObjects.

32

5 View-based Ontology Integration Process

Having now introduced the relevant technological spaces we continue to cover the
problem of getting from ontologies to executable code. Therefore we suggest and
overall integration process shown by Figure 15 which is made up of three process
steps representing the coarse development tasks when integrating ontologies into
the MDE layer.

Viewbased Ontology Integration Process

Create View Create Model Deploy
Transforma’non Transformatlon

Figure 15: High-level View-based Integration Process

The first subprocess, Create View, is concerned with overcoming the diver-
gences between ontologies and models. There are several crucial differences be-
tween those approaches which need to be addressed in order to import the source
ontologies. Section 6 provides a discussion of the fundamental differences and
shows how to overcome them in order to create an equivalent counterpart in form
of a metamodel as well as adequate import functionalities.

In the second process step, various model-to-model transformations are cre-
ated in order to translate models conforming to the before created metamodel into
other models. When creating model transformation rules, developers must have
a solid understanding of the problem domain and the involved models. Further,
a transformation can become very complex and the developers face a variety of
design decisions. Section 7 discusses the main issues when deriving model corre-
spondences and shows how to apply some crucial transformation patterns.

In the final step the implemented transformation is required to be integrated
with existing process landscapes. Section 8 shows how single transformation
components can be orchestrated and finally exposed as a new transformation ser-
vice.

33

6 View Creation

As ontologies are conceptual models they are somewhat similar to computational
independent models (CIMs) in MDE, both can be used to describe domains in an
abstract way. The main differences to MDE approaches are that ontologies shall
allow unambiguous specification of semantics, and usually come with tools that
enable querying and reasoning.

However, both ontologies and model driven approaches mostly define structures
like classes, instances, inheritance, relations and attributes. It therefore seems
obvious to use model-driven approaches to define and/or represent ontologies.
Further, both technologies have been given a lot of attention in the last years, and
there is a lot of ongoing research focusing on converging both approaches and
outlining differences between them in Section 6.1.

Create View

Create Ontology Create Ontology Create View Create View Manulal Vienw and
Metamodel Import Metamodel Import mpol N
Completion

Figure 16: Create View subprocess

The knowledge gained by researching related work in the area will guide us to
(semi-)automatically create model-based views on ontologies and populate them
from WSML ontologies, this process is shown in Figure 16.

The first step in this process is to build an integrated ontology meta-model, able to
express the details the ontology language is providing, and an importing facility
that is capable of loading files of that language. This will be described in Sections
6.2 and 6.3. However, this is a very fine-grained level, so that model transforma-
tions are tedious to write and harder to maintain.

In order to reduce complexity and improve maintainability, additional views can
be created, that focus on the representation of separate concerns of the ontol-
ogy. One example is a conceptual view, for which we will show how they (and
corresponding importing facilities) can (semi-)automatically be built by applying
model-transformations to the ontology meta-model in Sections 6.4 and 6.5 .

We state semi-automatic, as the conceptual view is while still being generic al-
ready usable in this state (i.e. editor generation is possible and the importer facil-
ity populates the view), but has to meet some additional requirements to meet our
concrete use case, e.g. the preservation of references to the original ontology. We

34

will discuss our modifications to the conceptual view in Section 6.6.

6.1 Related Work

There are numerous projects that try to combine the Ontology TS and the MDE
TS, of which some will be outlined in this section, namely the OMG’s Ontol-
ogy Definition Metamodel (ODM), the Ecore Ontology Definition Metamodel
(EODM) and the ModelCVS project. ODM and EODM aim at defining a com-
plete MOF/Ecore based metamodel for ontologies, allowing to model ontologies
in the MDE TS.

However, as ontologies aren’t in widespread use for Software Engineering yet,
they define mappings from and to UML/Ecore, an approach that is also picked
up by the ModelCVS project. As these mappings address the first problem of
translation between ontologies and executable code, we will collect those issues
and summarize them in the next section.

6.1.1 Ontology Definition Metamodel (ODM)

The Ontology Definition Metamodel (ODM) is an upcoming OMG standard for
defining vocabularies for Semantic Web technologies, such as Resource Descrip-
tion Framework (RDF), Web Ontology Language (OWL), Topic Maps, and Com-
mon Logic (CL) and their integration with the Model Driven Architecture. There-
fore it defines a set of normative, MOF-based meta-models for each of these tech-
nologies.

To enable translation between models based on these new meta-models as well as
existing meta-models such as UML and CWM, the standard additionally provides
two mechanisms, namely normative UML profiles and informative mappings.
UML profiles are specified for RDF/OWL and topic maps. As a small-footprint
approach, they allow the the reuse of existing (profile-capable) UML-modeling
tools for ontology development, and the reuse of knowledge of existing UML-
models to be easily translated to ontologies. While this translation can be used
as a basis for ontology engineering, the translation provided can usually only be
used as a starting point, and is not complete.

The mappings provided are specified in QVT and allow a transformation of mod-
els conforming to one meta-model to models conforming to another one. Figure
17 shows an overview of the mapping of common features. A problem with map-
pings is, that not always one element of a model conforming to one meta-model
can be directly mapped to one element of another, this is what OMG calls struc-
ture loss. Additionally, the provided mappings are very general, so that their
straight-forward application may result in unwanted results. The idea of the given

35

mappings is to be informative, that is, to use them as a starting point but to cus-
tomize them for particular models (cp. [53]).

UML elements Package OWL elements Comment
class, property ownedAttribute, 7.3.7 Classes class
type® 7.3.8 Classifiers
7.3.32 Multiplicities
instance 7.3.22 Instances individual OWL individual independent
of class
ownedAttribute, 7.3.7 Classes property OWL property can be global
binary association
subclass, 7.3.7 Classes subclass
generalization 7.3.8 Classifiers subproperty
N-ary association, association class | 7.3.7 Classes class, property

7.3.4 Association Classes

enumeration 7.3.11 Datatypes oneOf

disjoint, cover 7.3.21 Generalization sets disjointWith,
unionOf

multiplicity 7.3.32 Multiplicities minCardinality OWL cardinality declared only
maxCardinality for range

package 7.3.37 Packages ontology

dependency 7.3.12 Dependencies reserved name
RDEF:property

Figure 17: Common features of UML and OWL (source: [53], p. 194)

6.1.2 EMF-based Ontology Definition Metamodel (EODM)

The EMF-based Ontology Definition Meta-model (EODM) is an open source
implementation approach for the OMG ODM based on the Eclipse Modeling
Framework. It’s goal is to provide a comprehensive tool suite for model driven
ontology engineering and model driven software engineering, that is familiar to
software developers and thus facilitates quick habitation of Semantic Web tech-
nologies.

The tool suite consists of a core object model, the EODM Ecore model, an OWL
parser, model transformation facilities and an OWL Editor. The EODM Ecore
model is an implementation of the ODM OWL meta-model and represents the
core of the tool suite. The OWL parser provides parsing, RDF-triple building and
inference of OWL files, reading them into the EODM Ecore model. Addition-
ally it provides serialization for models to OWL ontology files. Using the model
transformation facilities, UML class diagrams can be converted to OWL models

“As of October 8th, 2008 the project has been terminated: http://www.eclipse.org/project-
slidessfEODM %20Termination%20Review.pdf

36

and vice versa. Transformation is done by importing a UML class diagram into
an Ecore model, and then using a mapping scheme to transform Ecore to ODM
respectively the other way round. An overview of the mapping is shown in Figure
18. Because of different background of UML and OWL, these transformations
are usually encompassed with a loss of semantics. Finally the OWL editor, called
EODM workbench, can be used to create new or augment existing (imported/-
transformed) OWL ontology files (cf. [55]).

ECore Model EODM OWL Model

EPackage -¢ | Ontology

Individual
—{ RDFComment

eLiteral

_—1 EClass - > OWLClass
—1 eSuperType | - > —-| SubClassOf |
4| eReference | - > _l OWLObjectProperty |
eReferenceType | & >
Multiplicity -
eOppsite -
4' eAttribute | -4 ! ——I OW LDatatypeProperty |
- -
*‘ EDataType | -4 | { RDFSDataType |
——' EEnum | { OneOf |
>
>

A A A

—' EAnnotation

Figure 18: Transformation between Ecore and EODM OWL (source: [55], p. 71)

6.1.3 ModelCVS

The ModelCVS project ° aims at providing a semantic infrastructure for model-
based tool integration. Part of this is an approach to automatically derive OWL on-
tologies from Ecore based meta-models, which is called lifting process, of which
a summary is shown in Figure 19. The OWL representations then simplify inte-
gration as they concentrate on the conceptual level of a modeling language only.
They further can be used to facilitate reasoning which benefits semantic integra-
tion (cf. [63]).

Shttp://www.modelcvs.org/

37

Ecore Concept OWL Concept Possible Caveat
EFactory, EOperation, no mapping ignored

EParameter

EPackage OWLOntology inverse hierarchy

EClass OWLClass non-exclusive instanceof
EAttribute OWLDatatypeProperty name clash / qualification
EReference OWLObjectProperty name clash / qualification
EDatatype RDFSDatatype straight-forward

EEnum & EENumLiteral | OWLDataRange & RDFSLiteral straight-forward
EAnnotation RDFSLiteral straight-forward

Figure 19: ModelCVS Ecore to OWL mapping (source: [63], p. 532)

6.1.4 Differences between Ontologies and MDE

As aresult of the last sections, in this section the differences between the Ontology
TS (espically OWL and WSMO) and the MDE (particularly UML and Ecore,
resp.) will be outlined and explained.

General problems arise from the fact, that the Ontology TS and the MDE TS have
different backgrounds and consequently a different view on the world. While
the Ontology TS is rooted in Artificial Intelligence and Logical Programming,
the MDE TS comes from classical Software Engineering. Both, Ontologies and
Software Models are usually used to capture knowledge but with a different focus,
the first on generating new knowledge, the latter on generating implementations.
The arising differences and their impact will be outlined in this section.

Different scope Some issues result from the fact that MDE and ontologies are
built for different purposes, and use different underlying semantics (cf. [63]).
Where MDE typically has an implementation focus, ontologies are used for
knowledge representation. Consequently, in MDE sometimes concepts are mod-
eled as attributes using primitive types, while in ontologies this would make no
sense. On the other hand, abstract classes are used in MDE for implementation
purposes, but are hardly useful in ontologies. However, when considering the
context, that ontologies focus on knowledge representation, and MDE approaches
usually focus on data representation this can usually be dealt with when designing
the transformation rules.

Layering problem In ontologies, classes and instances typically reside on the
same layer, and they don’t have a strict separation of meta-levels, resulting in
ontology elements almost naturally crossing meta-levels. That is, a class may have

38

instances which are classes themselves®. This problem is sometimes called layer
mistake (cf. [53,54]). As opposed to RDF/OWL, WSMO has a quite metadata
architecture, that is a concept never is an instance and vice versa, thus avoiding
the so called layer mistake. However, as can be seen in Figure 20, concepts and
instances are used on the same layer. In contrast to the MDA approach, where
instances would only occur on a layer below classes, this is not the case with
ontologies. What we call a conceptual ontology usually defines concepts and
relations, and guasi-model ontologies define instances which are memberOf those
concepts and relations. However, the first may also define instances and the latter
may also define new concepts, so strictly speaking, using the terms meta-model
and model is wrong.

There is no normative mapping approach for these problems, for the same reasons
as those mentioned in Section 6.1.1. One typical occurrence of the first problem,
instances in the conceptual ontology, are enumerations using instances. We will
show how this can be solved in Section 6.4. The second problem can be solved
as well, one approach is to use the meta-model and considering this concepts as
instances of this structure.

Structure conflation and structure loss OWL does not support constructs for
binary or N-ary relationships. Neither Ecore nor MOF support N-ary relation-
ships as well, whereas UML and WSMO define N-ary relations. When mapping
these UML/WSMO constructs to OWL/Ecore, this complex constructs have to
be simulated by simpler ones. The translation from a complex construct to two
simple constructs is called structure conflation (as it is the case with binary asso-
ciations), the translation from a complex construct to a group of simple constructs
is called structure loss (cf. [53]). For a transformation to be reversible, then one
needs to distinguish between classes representing classes and classes representing
relations.

Feature Lack In general ontologies are much more expressive than MDE ap-
proaches, e.g. they allow anonymous classes defined by inference only. For ex-
ample, in OWL there are six ways to describe a class: by a name, through enumer-
ation of individuals, through a restriction on properties, and through intersection,
union and complement of classes (cp. [53,63]).

In contrast to OWL, the WSMO ontology only uses named specification for con-
cepts, identifying this variant as “necessary and sufficient” [25]. Axioms can be
used to model enumeration, restriction, intersection, union, and complement on
instances.

®Possible e.g. in OWL-Full, cp. [11]

39

However, practically speaking, this is not necessarily an issue. One can agree on
semantically poorer variants (e.g. OWL-Lite, WSML-Flight) as a starting point.

Open world vs. Closed world semantics While model-driven approaches are
typically built on a closed world assumption, semantic web technologies usually
use the open world assumption. To illustrate the difference, we provide a simple
example (in RDF like syntax).

Considering the statement

<fclemens> <#livesIn> <#Vienna>
as the one and only in a knowledge base, the query
<#clemens> <#livesIn> <#Graz> ?

would result in a “’false” under closed world semantics, whereas an open world
semantics based system would answer “undefined”. This is because, in a closed
world, everything unknown is false, in an open world, everything unknown is
undefined (cf. [37]). Pragmatically, the different semantics mostly don’t play a
role. Nevertheless, if it has to be they can be solved (1) on the ontology side,
using the construct of negation as failure (NAF) in axioms which return false
where otherwise unknown would have been the answer, and (2) on the MDE side,
introducing Special Cases such as Unknown as part of the model (cp. [30,37,53]).

6.2 Create Ontology Metamodel

The Web Service Modeling Ontology (WSMO, cp. 3.3) has been specified as a
language in Extended-Backus-Naur Form (EBNF), called Web Service Modeling
Language (WSML) and a - semantically equivalent - object-oriented meta-model
in MOF, its ontology top element is shown in Figure 20.

In order to be able to (semi)-automatically define an Ontology View as well
as an importing facility, one has to be able to parse the corresponding ontologies.
For WSMO, this could be done using the WSMO Java API 7. However, writing
Java code for these purposes is quite cumbersome. Fortunately WSMO has an
XML representation, along with a corresponding XML Schema, that can be used
by EMF to derive an Ecore model, as shown in Figure 21. An excerpt of the result
is shown in Figure 22.

"http://wsmod4j.sourceforge.net/

40

ontology

has defntion ot olsion
imports ontology
has superrelation
3 has function
. P— s concept
as type has instance.
. has range
has super concept
instance
has parameter . has type concept .
- has aftrioute values
TogicalExpression
hes detiion
has parameter vale
has range
value has value attributevalue has atirioute’ .
£ J(} attribute.
& has attrinute
“ w -
has domain
Parametervalue
has value

Figure 20: The WSMO Metamodel in MOF (source: [25])

OO New EMF Project

XML Schema Import

Specify one or more ".xsd' or .wsdl' URIs, try to load them, and choose a file name for the generator
model

-£H

i

Model URIs: (" Browse File System... Y (Browse W

lorkspace...)

[platform:/resource/net.phir deli | /model I_xml_syntax.xsd] (Load)
':‘ Create XML Schema to Ecore Map
Generator model file name:
‘wsml_xml_syntax.genmodel
@ (" <Back) (Next >) (Cancel \ Finish

Figure 21: Import of XML Schema into an EMF

41

Project

M
#| Wsmo.ecore &3

¥ || platform:/resource/net.phir.modeling.ontologies.wsmo/model/Wsmo.ecore
v # syntax

» = GenModel

» [AnnotationsType

v [OntologyType
iz ExtendedMetaData
&% group : EFeatureMapEntry
&% annotations : AnnotationsType

&% importsOntology : WsmlIRI

>
>
>
>
P> & usesMediator : WsmlIRI
» 3 concept: ConceptType
» 3 relation : RelationType
> 3 instance : InstanceType
» 3 relationinstance : RelationInstanceType
> 3 axiom : AxiomType
P = name :WsmlIRI
v E ConceptType
b i) ExtendedMetaData
P 5 superConcept : WsmlIRI
P = annotations : AnnotationsType
> 3 attribute : AttributeType
» T name:WsmlRI
v [RelationType
b i) ExtendedMetaData
P & superRelation : WsmlIRI
P = parameters : ParametersType
P = annotations : AnnotationsType
P = arity : Integer
» T name:WsmlRI
¥ H InstanceType
b i) ExtendedMetaData
P> 5 memberOf : WsmlIRI
P = annotations : AnnotationsType
> 3 attributeValue : AttributeValueType
P = name :WsmlIRI
» [AttributeType

Figure 22: The WSMO Metamodel in Ecore, excerpt (Generic EMF Editor)

42

<xsl:template match="/">

<xmi:XMI xmlns:xmi="http: //www.omg.org/XMI” xmi:version="2.0" ...>
<xsl:apply —templates select="%"/>
</xmi:XMI>

</xsl:template>

<xsl:template match="%">
<xsl:copy>
<xsl:copy—of select="@x” />
<xsl:apply —templates />
</xsl:copy>
</xsl:template>

Listing 2: XSLT translating WSML-XML to XMI conforming to WSMO.ecore

6.3 Create Ontology Import

Importing WSML ontologies into the WSMO Ecore metamodel created from the
WSML XML Schema can then be done by wrapping their XML representation
within an XMI header, which is a simple XSLT transformation, shown in 2.

6.4 Create View Metamodel

Though both the Ontology TS and the MDE TS have a different view on the
world, they also incorporate constructs that have similar names and are used
for similar purposes, e.g. Modularization, Classification, and Description. The
goal of this section is to compare these related constructs and apply mappings to
(semi-)automatically create a conceptual view of the imported ontologies using
ATL model transformation rules, an conceptual overview of the transformation is
shown in Figure 23.

Ecore.ecore

PN

conformsTo conformsTo ~ conformsTo

Wsmo.ecore ATL.ecore Ecore.ecore

| ! [

conformsTo conformsTo conformsTo

wsmo2view.atl

BPMO.wsmo v BPMO.ecore

transformation

Figure 23: Transformation setup of the Create View Metamodel activity

43

— Helper functions for IRI

helper context String def : getNamespace() :String =
self.substring (1, self.indexOf(’#’)+1).trim ();

helper context String def : getLocalName() :String =
self.substring (self.indexOf(’#’)+2, self.size ()).trim();

— Helper function(s) for getAllSubConcepts()

helper context Wsml!ConceptType def : getAllSubConcepts ()
Set (Wsml! ConceptType) =
self . getDirectSubConcepts () —> collect (e | e.getAllSubConcepts()) —>
flatten () —> asSet() —> union(self.getDirectSubConcepts ());

helper context Wsml!ConceptType def : getDirectSubConcepts ()
Set (Wsml! ConceptType) =
thisModule . getAllConcepts () —>
select (e | e.superConcept.includes(self.name));

— Helper function(s) for memberOf

helper context Wsml!InstanceType def : isMemberOf(concept : String) : Boolean=
if self.memberOf. includes (concept)
then true — direct member
else thisModule.isSubconceptOf(self.memberOf, concept) endif;

helper def : isSubconceptOf(concepts:Set(String),concept: String): Boolean =
if not thisModule.conceptTypeExists(concept)
then false
else thisModule.getConceptType (concept). getAllSubConcepts () —>
collect (e | e.name) —> flatten () —> asSet() —>
intersection (concepts).size () > 0 endif;

Listing 3: ATL helper rule library (excerpt from wsmoUltil.atl)

Helpers One important building block of handling ontologies are reusable li-
braries providing basic functions, e.g. to get namespace and local name com-
ponents of an IRI, find all sub concepts of a given concept, or determine if an
instance is member of a given concept, as shown in Listing 3.

Mapping Primitive Types Primitive types (WSMO wraps the XML primivite
types) can be mapped to EDataTypes. However, they are not part of the model
source (i.e. the ontology), but of the meta-model (in fact, WSMO uses XML
Schema primitves), so they cannot be resolved using model information. There-
fore primitive types are created by a called rule once for a transformation, as can
be seen in Listing 4.

44

rule createEDataType (ecoreDataType : String){
to t : Ecore!EDataType (
name <— ecoreDataType,
instanceTypeName <—
thisModule . getMapEcorePrimitives (). get(ecoreDataType)

do {
t;
}
}
helper getMapEcorePrimitives () : Map(String , String) =
Map{(’boolean ’,’EBoolean’), (’string ', EString’), ...}
N J
Listing 4: ATL rule translating Ontologies to EPackages
s A
wsmlVariant _”http ://www.wsmo.org/wsml/wsml—syntax /wsml—flight”

namespace { _"http ://www.sembiz.org/bpmo/bpmoOntology#”,
dc _"http :// purl.org/dc/elements/1.1#” }

ontology bpmoOntology
nonFunctionalProperties

dc#title hasValue {"BPMO-Business Process Modeling Ontology”}
endNonFunctionalProperties

// ... concept definition

Listing 5: The BPMO Ontology definition and header in WSML

Mapping Ontologies Both ontologies and packages provide modularization
and act as a container for elements. However, ontology imports cause all con-
tained elements to be visible to the top-level ontology, whereas a package has the
opposite semantics: a sub-package is aware of all its super-packages (cf. [63]).
Listing 5 shows the BPMO Ontology definition and header in WSML, Listing 6
shows the ATL rule that performs the mapping.

For each ontology an EPackage is created, its name and namespace determine the
package’s name and namespace URI, resp. The ontology’s concepts and relations
will be contained as the package’s classifiers. The result of the mapping is shown
in Figure 24.

') bpmoview.ecore 53 _77»2 = 5] = Properties gg
v i bpmoOntology Property Value
» [Event Name '= bpmoOntology
» H Message -> Event Ns Prefix '= bpmoOntology
» [startEvent -> Event r| Ns URI '= http:/ /www.sembiz.org/bpmo/bpmoOntology#

Figure 24: The BPMO Ontology as an EPackage (Generic EMF Editor)

45

rule ontology2epackage {
from o : Wsml!OntologyType
to p : Ecore!EPackage (
name <— o.name.getLocalName(),
nsURI <— o.name. getNamespace (),
nsPrefix <— o.name.getLocalName (),
eClassifiers <— Set{
o.concept ,
o.relation

Listing 6: ATL rule translating Ontologies to EPackages

ontology bpmoOntology
concept Event
hasName ofType _string
concept StartEvent subConceptOf Event

concept Message subConceptOf Event
hasData ofType (0 =) BusinessData

concept StartMessage subConceptOf {StartEvent, Message}

Listing 7: Concepts in WSML

Mapping Concepts In OWL, a class is a set of zero or more individuals. In
UML, a class is a more general construct, also used for implementation purposes
(e.g. abstract classes, that are used for implementation inheritance). In UML, an
instance is instance of exactly one class, whereas in OWL an individual can be
instance zero or more classes.

Similar to OWL classes, WSMO concepts can be mapped to EClasses. A problem
arises in mapping instances that belong to more than one concept , this can be
emulated by deriving a new EClass inheriting from those superclasses. To enable
automation as far as possible, this can be done in the ontology, as shown by the
concept StartMessage in Listing 7.

The translation rule is shown in 8. In order to set the super classes, it uses a helper
that retrieves the direct super concepts of the actual one. The result of this rule is
shown in Figure 25.

Mapping Attributes In MOF, UML, and Ecore, attributes and references be-
long to a class, whereas in OWL a property is independent of a certain class.

46

rule concept2eclass {
from con : Wsml!ConceptType (
not con.isEnumCandidate ()
)
to cla : Ecore!EClass (

name <— con.name.getLocalName (),
eSuperTypes <— Set {

con. getDirectSuperConcepts ()
s

eStructuralFeatures <— Set{con. attribute —> flatten ()}

)
Listing 8: ATL rule translating Concepts to EClasses
#) bpmoview.ecore £3 s = B |[E properties 33-\\
v # bpmoOntology Property Value
v H Event Abstract % false
P % hasName : EString Default Value =
v [Message -> Event ESuper Types = StartEvent -> Event, Message -> Event
%) Event Instance Type Name ‘=
P &2 hasData : BusinessData Interface % false
v [startEvent -> Event Name '= StartMessage

#) Event

v B StartMessage -> StartEvent, Message
#) StartEvent
4 Message

Figure 25: Mapping concepts to EClasses (Generic EMF Editor)

47

This may lead to name clashes when translating from OWL to MDA if different
classes have attributes/references with the same name.

This is per definition no problem when translating from OWL to MDA. When
translating from MDA to OWL, this could be solved using a naming convention
(e.g. weaving the owning class name into the property name, cf. [53, 63]). In
contrast to OWL, attributes in WSMO are defined local to a class, thus avoiding
name clashes. Multiple typed attributes can be emulated by deriving a new
concept, similar to the strategy for instances in the last paragraph.

Listing 9 shows the rules that perform the mapping of attributes.

The first rule, attributeType2eattribute, is responsible for mapping
primitive attribute types. As they are not part of the ontology, a mapped rule can’t
be used to resolve their types. Therefore type and name are temporary encoded
in the attribute’s name, and resolved by the endpoint called rule end () that is
executed at the end of the transformation.

The second and the third rule, attributeType2enumattribute and
attributeType2ereference are responsible for mapping attributes that
are of concept type. The reason why two rules are needed is because some con-
cepts represent enumerations (see the paragraph on enumerations below). Those
attributes then have to be translated to EAttributes, whereas the others have to be
translated to EReferences.

Mapping Relations Relations like the one in Listing 10 can be mapped to
EClasses, their parameters can be mapped to EReferences. In Ecore, references
have to be named, whereas in WSML only the position is relevant and necessary.
Therefore the references are enumerated using thisModule.paramCounter,
as can be seen in Listing 11. The result of the mapping can be seen in Figure 26.

"GL bpmoview.ecore 53 __,'_”S =0\5 Properties 23
v # bpmoBusinessProcess Property Value

v [BusinessProcess Abstract % false
» = hasName : EString Default Value 1=
P 5% withExecution : Execution ESuper Types
b 5 withCapability : Capability Instance Type Name ‘=

v H CompensationProcess -> BusinessPi Interface ¥% false

(%) BusinessProcess Name '= hasCompensation

v £ hasCompensation
> 5* paramO : BusinessProcess
> 5 paraml : CompensationProcess

Figure 26: Mapping relations to EClasses and EReferences (Generic EMF Editor)

48

rule attributeType2eattribute {

from s : Wsml! AttributeType (
s.isPrimitiveType ()

)

to t : Ecore!EAttribute (
name <— thisModule.getBaseType () +
s.range+thisModule . getBaseName ()+s.name. getLocalName (),
lowerBound <— s.getMinCardinality (),
upperBound <— s.getMaxCardinality ()

}

rule attributeType2ereference {
from s: Wsml! AttributeType (
not s.isPrimitiveType () and not s.isEnumAttribute ()
) to t : Ecore!EReference (
eType <— thisModule. getConceptType(s.range),
name <— s.name.getLocalName(),
lowerBound <— s.getMinCardinality (),
upperBound <— s.getMaxCardinality ()

}

rule attributeType2enumattribute {
from s : Wsml! AttributeType (
not s.isPrimitiveType () and s.isEnumAttribute ()
) to t : Ecore!EAttribute (
eType <— thisModule. getConceptType(s.range),
name <— s.name.getLocalName(),
lowerBound <— s.getMinCardinality (),
upperBound <— s.getMaxCardinality ()

)
}
endpoint rule end() {
do {
for (ea in Ecore!EAttribute. alllnstances()—>
select(e | e.name.startsWith (thisModule.getBaseType ()))) {
ea.eType <— ea.getEDataType ();
ea.name <— ea.getReducedName ();
}
}

J

Listing 9: ATL rule translating Attributes to EAttributes and EReferences

49

ontology bpmoBusinessProcess

concept BusinessProcess
hasName ofType (0 1) _string
withExecution ofType Execution
withCapability ofType Capability

concept CompensationProcess subConceptOf BusinessProcess

relation hasCompensation(ofType BusinessProcess, ofType CompensationProcess)

Listing 10: A relation in WSML

r

rule relation2eclass {
from s : Wsml! RelationType
to t : Ecore!EClass (
name <— s.name.getLocalName/(),
eStructuralFeatures <— Set {s.parameters.parameter}

do {

}

thisModule . paramCounter <— 0;

}

rule parameter2reference {
from s : Wsml!ParameterType
to t : Ecore!EReference (
eType <— thisModule. getConceptType(s.range. first()),
name <— ’param’+thisModule.paramCounter.toString (),
lowerBound <— 1,
upperBound <— 1

do {
thisModule . paramCounter <— thisModule.paramCounter + 1;

}

Listing 11: ATL rule translating Relations and Parameters to EClasses and ERef-
erences

50

ontology bpmoBusinessProcess

é(.J.ncept SelectType

instance XOR memberOf SelectType

instance OR memberOf SelectType

instance CASE memberOf SelectType

axiom allowed_select_types
definedBy

!— ?x memberOf SelectType and
naf ((?x = XOR or ?x = OR or ?x=CASE)).

Listing 12: Example of an axiom representing an enumeration

Mapping enumerations Unlike OWL with its oneOf structure, WSMO
doesn’t explicitly define enumerations. Instead, axioms are used to describe a
fixed set of instances that are valid for a class. Those classes with corresponding
axioms, for which an example is shown in Listing 12, can then be translated to
EEnums, and the instances to corresponding ELiterals.

#] bpmoview.ecore &2 _»”S =8 ‘; Properties 53
¥ # bpmoBusinessProcess Property Value
v £ SelectType Default Value = XOR =0
= XOR=10 Instance Type Name ‘=
= OR=1 Name '= SelectType
= CASE=2 Serializable vk true

> 2 LoopType

Figure 27: Mapping enumeration-like axioms to EEnums (Generic EMF Editor)

6.5 View Import

Beside the conceptual view definition, it also has to be populated in order to per-
form any further transformations. This can be done by using model transforma-
tions as well, using the WSMO meta-model as source meta-model and the concep-
tual view meta-model as a target meta-model, and importing the helper libraries.
As an example, for the concept shown in Listing 14, we want rules like the
ones shown in 15. However, this is a repetitive task and may be tedious and error-
prone, given the fact that a conceptual ontology may define a lot of concepts .
Fortunately, as ATL itself also is a model (i.e. there exists a corresponding
ATL.ecore, from which ATL can be generated) we can write a transformation that

8Even for the rather small Sembiz BPMO ontologies, which together define 50 concepts

51

rule concept2eenum {

from con : Wsml!ConceptType (
con.isEnumCandidate ()

)

to cla : Ecore!EEnum (
name <— con.name.getLocalName (),
eLiterals <— Set{con.getDirectInstances ()}

)

do {

}

thisModule .enumCounter <— 0;

}

rule createEEnumLiteral {
from s : Wsml! InstanceType
to t : Ecore! EEnumLiteral (
name <— s.name.getLocalName(),
value <— thisModule.enumCounter

do {
thisModule . enumCounter <— thisModule .enumCounter +1;

}

- J
Listing 13: ATL rules translating Concepts and Instances to EEnums and EEnum-
Literals

ontology bpmoBusinessProcess

concept Execution
executedBy ofType bpmo#BusinessRole
interactsWith ofType bpmo#BusinessRole

Listing 14: Example of a WSML concept from which import rules will be created

52

actually generates the actual importing transformation. In fact, the rules shown in
Listing 15 have been generated by the the rules shown in Listing 16. An overview
of the transformation setup that generates the importing rules is shown in Figure
28.

Ecore.ecore

2SN

conformsTo conformsTo ~ conformsTo

Wsmo.ecore ATL.ecore ATL.ecore

| ! !

conformsTo conformsTo conformsTo

wsmo2import.atl

v

transformation

bpmo.wsmo

bpmolmport.atl

Figure 28: Transformation setup of the Create View Import activity

This resulting transformation’s setup is then shown in Figure 29.

Ecore.ecore

AN

conformsTo conformsTo conformsTo

Wsmo.ecore ATL.ecore bpmo.ecore

[! |

conformsTo conformsTo conformsTo

bpmolmport.atl

Order-] Order-
Provisioning.wsmo Provisioning.bpmo

transformation

Figure 29: Transformation setup of the View Import activity

6.6 Manual View and Import Completion

Unfortunately, the created conceptual view provides not enough information to
continue to work with. At this point, project-specific considerations and require-
ments have to be taken into account.

One reason is that it is necessary (and convenient) to maintain references to
the source (i.e. the IRI of the corresponding ontology element). This is done by

33

-
module
uses wsmoUtil;

helper def : _bpmoBusinessProcess_Execution : String =
“http ://www.sembiz.org/bpmo/bpmoBusinessProcess#Execution ’;

helper def : _bpmoBusinessProcess_withExecution : String =
“http ://www.sembiz . org/bpmo/bpmoBusinessProcess#withExecution ’;

helper def : _bpmoBusinessProcess_withCapability : String =
“http ://www.sembiz.org/bpmo/bpmoBusinessProcess#withCapability ’;

rule instbpmoBusinessProcess_Execution2Execution {
from s : Wsml!InstanceType (
s.isMemberOf (thisModule. _bpmoBusinessProcess_Execution) and
s.hasSingleClassifier (
*http ://www.sembiz.org/bpmo/bpmoBusinessProcess#Execution’
)
) to t : sembizgoal!Execution (
executedBy <— thisModule. getInstanceTypes (
s.getAttributeTypeValue (
thisModule . _bpmoBusinessProcess_executedBy)),
interactsWith <— thisModule. getInstanceTypes (
s.getAttributeTypeValue (
thisModule. _bpmoBusinessProcess_interactsWith))

Listing 15: ATL import helpers and rules

54

s

rule conceptType2HelperConstant{

from s : Wsml!ConceptType

to chd:ATL!Helper

(
definition <— defi

), defi : ATL! Attribute (
name <— ’_’+s.getShortName (),
type <— ATL!StringType,
initExpression <— stringExp

), stringExp : ATL!StringExp (
stringSymbol <— s.name

), mr : ATL!MatchedRule (
name <— ’inst ’+s.getShortName()+’2’+s.name. getLocalName (),
inPattern <— iP,
outPattern <— oP,

),iP : ATL!InPattern (
elements <— Set{iPe},
filter <— conceptFilter
), oP: ATL! OutPattern (
elements <— Set{oPe}
), iPe : ATL!StringSimpleInPatternElement (
varName <— ’s’,
typeName <— ’InstanceType ’,
modelName <— thisModule .wsmIMM
), oPe: ATL!StringSimpleOutPatternElement(
varName <— 't ,
typeName <— s.name.getLocalName (),
modelName <— thisModule .outMM,
bindings <— s.attribute
), conceptFilter : ATL!StringExp (
stringSymbol <— ’s.isMemberOf(thisModule._"+s.getShortName ()
+’) and s.hasSingleClassifier(\’ +s.name+"\")’

}

rule attributeType2HelperConstant{
from s : Wsml! AttributeType (
not s.isPrimitiveType () and not s.isEnumAttribute ()
)
to bind : ATL!Binding (
propertyName <— s.name.getLocalName (),
value <— valueExpr
), valueExpr : ATL!StringExp(
stringSymbol <— s.getValueExpression ()
)
}

— attribute rules for primitive types and enumeration concept types

-

Listing 16: ATL helpers

55

making the top level classes derived from the ontology subclasses of the VbMF
Core’s extensible element.

Another reason is, that the generic conceptual view sees only the instances
of the concepts it is derived from. This is however not enough for our particular
case. As a (political) requirement, all modeling has to be done in ontologies.
This means that ontologies are responsible for data representation which to some
extent conflicts with the purpose of ontologies, focusing on knowledge repre-
sentation, resulting in concepts occurring in instance ontologies and axioms that
model relations between them. Axioms are then used to link instances to concepts
in instance ontologies and also to represent business rules.

Depending on the project’s context it may make sense to either adapt the con-

ceptual view and the importing rules with reasonable effort to satisfy one’s needs
(as it will do for us) or to create additional views with their own concerns.

56

7 Create Transformation Rules

Now having shown how to bridge from the Ontology TS to the MDE TS, the next
step for getting from ontologies to executable code is to bridge the MDE TS to
the Workflow TS. This step may involve, depending on the meta-models describ-
ing the workflow TS, the creation of various model-to-model transformations and
model-to-code/text transformations called model transformations.

As already mentioned above, setting up transformation rules for the transfor-
mation between metamodels is a non-trivial task requiring deep understanding of
the problem domain and the metamodels of discourse. Having a supporting proce-
dure when implementing the mappings should help getting it right faster. Figure
30 shows the Create Model Transformation subprocess of the overall integration
process (which has been shown in Figure 15) which suggests several development
steps for identifying model correspondences and creating model transformation
rules.

Create Model Transformation

. Design Test and
Derive Model .
Create Examples Transformation Evaluate yes
Correspondences .
Rules Transformation
A no
|

@

Figure 30: Create Transformation subprocess

In the beginning, the creation of examples describing the same problem is our
starting point of choice (Section 7.2). Based on this knowledge, model corre-
spondences can be derived. Section 7.3 is concerned with model correspondences
an tries to give an overview of common problems and solutions when mapping a
source to a target model. Having found and defined the model correspondences in
the the meta-model layer, the next step is to transfer these findings into concrete
transformation rules. When writing model-to-model transformations one should
be aware of some common transformation patterns which provide proven solu-
tions and support transformation design. Section 7.4 discusses the most common
and, in our context, important ones and gives concrete examples. Finally, run-
ning and evaluating the transformation gives feedback about the current state of
completeness, this topic is shortly covered in Section 7.4.7.

57

The steps above are applied in an iterative manner in order to divide and con-
quer the problem. It is a good practice to think of the most tricky problems first
and to implement a prove of concept solution. Enhance the complexity of your
test use cases and run the transformation as often as necessary until a satisfying
state is reached.

7.1 Related Work

Actually a lot of work and research is going on in the field of MDE. As model
transformations are a core part of almost any MDE approach, a lot of knowl-
edge concerning the creation and design of transformation rules was created in
recent years. An approach supporting the creation of model transformation rules
is the Model Transformations By-Example (MTBE) approach shortly introduced
in Section 7.1.2. The substantial Modelware [7] project tries to establish MDE and
MDD for the development of industry-level systems including efforts in modeling
theory, technologies and tools.

7.1.1 Modelware

Modelware is an ambitious project that aims at the large-scale deployment of
MDD. This includes a lot of concerns like modeling technologies, engineering
processes and methodologies, the development of tools and other things as shown
by Figure 31 giving an overview of the Modelware work packages. Especially
the projects first work package (WP1) is concerned with modeling technologies
in general and tries to improve state of the art MDD theory and technologies.
One concrete outcome of this work was the creation of a pattern catalogue for
the design of transformation rules. Section 7.4 examines the (in our context most
relevant) ones and gives appropriate examples.

7.1.2 Model Transformations By-Example

The MTBE approach is concerned with providing a more user friendly way for
building model transformation rules on semantically corresponding meta-models.
Their entry is the creation of (basic) transformation rules (ATL) based on the map-
ping between concrete examples of both modeling languages (EMF), showing the
same problem domain. In their work done in [64] Wimmer et. al. investigate some
caveats and general relations when creating mappings between two models and
present an orthogonal and extending approach to existing model transformation
approaches which allows user friendly support for the creation of transformation
rules. Figure 32 gives an overview of the suggested framework.

58

Process and Methodologies

WP2

9

s““’"“‘u' WP5

4" Industrial MDD

Modelling Technologies

WP3 WP6

Man ment
Tools Infrastructure

Conslrainls' l Deliver

WP4

Successful opt|on .
Standards 1 Exploit
& Open Source and Disseminate

Figure 31: Overview of the Modelware work packages (source: [8])

\,laj Model Transformation [E’\/
’ @ [Y S

y

e
=

Metamodel

(-]

Model
T B
0
0
s
8
3
gl
10
0
0
0

Figure 32: Overview of the Model Transformations By-Example framework
(MTBE, source: [43])

In general, an intermediate model is used to represent the correlations between
abstract syntax (as given by the meta-model) and concrete syntax (as given by the
concrete example) as well as correlations between source and target model. These
models act as input for a model transformation rule generation.

7.2 Create Examples

In a first step the creation of a sound example in the form of source and target mod-
els, describing the same problem, supports the developer on (a) understanding the
different meta-models and (b) provides a definition of the desired transformation
outcome. Setting up comprehensive examples showing the problem domain is our
starting point of choice. Based on the existing examples acquiring the knowledge
about semantic correspondences between the examples becomes a much more
easier task and the analysis can happen on the model layer instead of on the meta-
models solely. Additionally, by creating examples, implicit and hidden relations
are discovered. Figure 33 shows the Hanival use case in a visualization in the
WSMO Studio which attended our transformation development all the time.

9 _bpmos#Asset
3 bpmo#SoftwareSystem
%
.
\
5,
= bpmo#BusinessRole Y
T "
\ A
\ ~,
\ “
» N
\ “@ OrderProvisioningSystem
A am_MrdarDrovicinninatad 3 hpmopr#EExecution
\ - P‘ess(_U*.seMan_u_alInteractmnSewerAIIocanonSJmess
@@ bpmo#bpmaolntology o, Plesklse |m>u.'/ T
\ | @»—EndServeralloction
. . | - S ——_ bpmoprAtomicrocss
“h ___Q\ \P\EskUsErE:flstenceRule(lj?.,Ma |sh/=i’|pnﬁgumhnn91ccss) _—
o usercretowie, 4 A R e —
v ~. . \, | T T

. SN /
o#Businesshgi Reg \iterAII DUIT\E\H_SRUIEﬁ /

L ~TryServerallo cationRul

@™-bpmopr=bpmoButhpmapr#BusinessProcess

w @ cUserCreaton”
erProvisioning ey
Ny N /
‘ ~am_cOrderProvisioning

: aEE.E"Opr: Capability

_ & 9 bpmoprECompositeProcess
bpmoprzhasFaultHandler 3
@ cenaserveralloction

=
ccss

scscses
eses

— General Nodes
@ Ontology # \ @m® RegisterallDo
@ Instance | .

= #
Instance Cluster bpmopr#SequenceProcess

\ \ “wr
- ngrv__e‘r‘AllncannnaﬁUn

@ Relation Instance)
Axiom O "3 hpmopr#LoopProcess
=+ Bxternal Nodes

Figure 33: The OrderProvisioning process ontology (WSMT Ontology Editor)

On the target side we started to rebuild relevant and uncertain parts of the use
case per hand using the VbMF Eclipse plugins. Later on, when the first transfor-
mation rules are implemented and executed, one can use the newly created parts

60

in order to extend them to appropriate new target examples. Figure 34 shows the
BPELTransactionView of the OrderProvisioning process.

v BPEL Transaction View OrderProvisioningBPELTransactionView
v Sequence _1
< Simple Activity _1Receive
< Simple Activity _2Preparation
< Simple Activity _2
¥ 4 Switch _3
v <4 Case
v Sequence _4
» < Repeat_5
v < Repeat_12
¥ < Scope _l3Scope
> Sequence _13
¥ <> Fault Handlers
¥ < BPEL Catch
v Sequence _17
< Simple Activity _18Preparation
< Simple Activity _18
» 4 Switch _19
v <4 While _21
v Sequence _22
v < Switch _23
v <4 Case
v Sequence _24
v < While _25
v Sequence _26
< Simple Activity _27Preparation
» <4 Scope _27Scope
< Simple Activity _29Preparation
< Simple Activity _29
< Simple Activity _30Preparation
< Simple Activity _30
< Simple Activity _31Preparation
< Simple Activity _31
< Simple Activity _32Preparation
< Simple Activity _32

Figure 34: The OrderProvisioning BPEL Transaction View (excerpt, Generated
EMF Editor)

7.3 Deriving Model Correspondences

Now that the creation of all required dedicated views for the ontologies is done,
all the necessary infrastructure exists to go to the next step where equivalences or
correspondences between the views are identified.

A developer primarily must be aware of a views concern and the purpose of its
elements. In addition to a views meta-model concrete examples are pretty helpful
to identify all its characteristics. The rest of this section is concerned with a first
analysis on source and target models and shows how to derive correspondences
and identify tricky parts. Finally the relevant elements of the source-model are
related to elements of the specific target-model such that a very coarse grained
initial mapping as well a more fine grained mapping is constructed.

61

7.3.1 Classification of source elements

In order to specify the correspondences of source and target elements an initial
classification of the different elements supports transformation design as after-
wards relevant, hidden and missing elements are identified.

Irrelevant First of all, elements in the source model exist which are for a
different or non-existent purpose than provided by the target views. These ele-
ments are said to be irrelevant to the actual transformation and need no further
attention from the transformation designer for his actual task. All other elements
left are then at least relevant for the transformation. Figure 35 shows the irrelevant
elements of the BPMO source-model.

v # bpmo

» | BPMOView -> View

» [Roles

» [Events

» E Data

» [Entity -> ExtensibleElement
» [BusinessRole -> Entity

» [Actor -> BusinessRole

» [Organization -> Actor

» [Personnel -> Actor

» [Asset -> BusinessRole

» [SoftwareSystem -> Asset
» [PhysicalAsset -> Asset
» [Log -> Entity

> B Event -> Entity

Figure 35: Example for irrelevant elements in the BPMOView (Generic EMF
editor)

The identification of irrelevant elements in the BPMO source models was not
always straight forward. Especially the BusinessRole was pretty misleading dur-
ing the transformation design: A BusinessRole represents a real-world entity that
executes and interacts with business processes. Its subclasses Actor and Asset
represent organizational and technical roles so that BusinessRole can be used to
model the entire organizational structure.

Having in mind the CollaborationView’s element Role, one would possibly sug-
gest a correspondence between those elements. Actually, during the analysis of
the use cases we found that theses elements differ in their semantic and that the
BPMO BusinessRole is irrelevant to our transformation: the VbMF models execu-
tional roles (as used by BPEL) while the BPMO models organizational hierarchy
and relations. The relevant information for a complete transformation actually
was hidden in the Execution element.

62

Hidden Concept Sometimes the information required to generate some spe-
cific object is not explicitly given. There may exist hidden concepts, the phe-
nomenon of concept hiding, where required concepts are hidden in attributes and
association ends. Consider situations where out of an attribute or a relation in the
source model an element in target model has to be generated.

' ~ N7 ~
| bpmobusinessprocess.ecore &3 #] collaboration.ecore £3

¥ # bpmobusinessprocess v # collaboration
» [l BPMOBusinessProcessView -> BPMOView » [CollaborationView > View
» [Execution -> Entity » [Operation -> NamedElement
» [BusinessProcess -> Entity » [Service -> Service
» [AtomicProcess -> BusinessProcess » [Interface -> NamedElement
> » [PartnerLink -> NamedElement
> » [PartnerLinkType -> NamedElement
> » [Role -> NamedElement

] compositeProcess -> BusinessProcess
[sequenceProcess -> CompositeProcess

[parallelProcess -> CompositeProcess

Figure 36: Example for hidden elements in the VbMF CollaborationView
(Generic EMF editor)

As mentioned above, this occurred with the Execution element when deriving
the CollaborationView’s Role. For a complete BPEL and WSDL code generation
the Role is important as it links several other elements. In our approach, for the re-
lation end withExecution of the BusinessProcess, a Role in the CollaborationView
is created.

Missing From time to time, parts of the target cannot be filled out of infor-
mation available in the source. Here some, for a complete transformation, the
designer is required to bypass some information. This ideally is done by addi-
tional models from the source side or by a finalizing human task.

s =

| information.ecore &3

v # information

» E InformationView -> View

v H DataHandling -> NamedElement
» 5 transformation : Transformation
P = view : InformationView

v [Transformation -> NamedElement
P> 5* source : ObjectReference
b 5 target: ObjectReference
P = dataHandling : DataHandling

Figure 37: Example of missing information for the VbMF InformationView
(Generic EMF editor)

63

For the InformationView we had no information for building DataHandling el-
ements respectively Assign elements in the source which are shown in Figure 37.
In our concrete case, setting up these elements is part of a human rework task.
If you are confronted with missing information you might find a solution in by
implementing the Incomplete pattern in Section 7.4.1.

7.3.2 Identification of element correspondences

When defining mapping rules, mapping correspondences between the metamod-
els occur in various granularities which in turn influence object generation in the
target model. The following describes the most common relations between model
objects.

1:1 Mapping One-To-One (1:1) mappings are the most simple and straight-
forward, but also fundamental cases. Here for one instance in the source the ex-
actly one element in the the target is created.

Mostly this means just a mapping of the corresponding attributes. Figure 38
shows this by the mapping of BPMO Message events and AtomicProcess to the
VbMF CollaborationView.

'QL bpmobusinessprocess.ecore 237" . ”&L collaboration.ecore %7'
v # bpmo
» | BPMOView -> View » & CollaborationView -> View

» [Message -> Event) 11 ‘ #| Message -> NamedElement

v # collaboration

'@ bpmobusinessprocess.ecore 23:‘ . "g collaboration.ecore 537'
¥ 1 bpmobusinessprocess v # collaboration
» [] BPMOBusinessProcessView -> BPMOView m » & CollaborationView -> View

> E AtomicProcess -> BusinessProcess —— 1:1 —————¥] Operation -> NamedElement

Figure 38: 1:1 mappings between BPMO views and the VbMF Collaboration view
(Generic EMF Editor)

Listing 17 shows a possible mapping between those elements. Here, for one
Message exactly one corresponding Message is created and its name is set. For
the AtomicProcess a corresponding Operation is created and the attributes name,
in, out and fault are set by passing attributes of the source element to other trans-
formation rules.

64

p
create col

5

create col

this .setName(m. identifier .name)

this .setName(bp.identifier .name) —>
this.in.addAll(bp.capability .preconditionMessages (). createMessage ()) —>|
this.out.addAll(bp.capability . postconditionMessages (). createMessage ())

laboration :: Message this createMessage (bpmo:: Message m):

lab :: Operation this createOperation (bpmopr:: BusinessProcess bp):

Listing 17: Example of a simple 1:1 correspondence

>
>
>
>

Figure 39
editor)

#| bpmobusinessprocess.ecore 53'\\» | #] collaboration.ecore &3
¥ # bpmobusinessprocess ¥ # collaboration
» [BPMOBusinessProcessView -> BPMOView m » [E CollaborationView -> View
» B Execution -> Entity —=p+] Service -> Service

T—————»&] Interface -> NamedElement
] PartnerLink -> NamedElement

ﬁ PartnerLinkType -> NamedElement
>

Role -> NamedElement

5 AtomicProcess -> BusinessPro
[capability -> Entity

B CompositeProcess -> BusinessProcess
B SequenceProcess -> CompositeProcess

: Example of a source class having multiple 1:1 mappings (Generic EMF

createExecutionElements (List [bpmopr:: Execution] el, coll::CollaborationView v):

V.

< < < <

service .addAll(el.createService ()) —>

.interface .addAll(el.createlnterface ()) —>
.partnerLink .addAll(el.createPartnerLink ()) —>
.partnerLinkType.addAll(el.createPartnerLinkType ()) —>
.role.addAll(el.createRole ())

Listing 18: Example of a rule dispatching multiple 1:1 relations

65

A similar case is given by the mapping of Execution to elements of the Collab-
orationView shown by Figure 39.

Here for one Execution element in the source elements for the classes Service,
Interface, PartnerLink, PartnerLinkType and Role need to be created in the target.
Listing 18 shows a transformation rule that bundles the creation of all the elements
for all the instances of Execution and distributes the executions to various creation
rules (similar to those in Listing 17).

1:N Mapping One-To-Many (1:N) mappings occur when for one instance
in the source model multiple equal elements have to be created in the target again
and again.

An example is the transformation of BusinessProcess into Activitiy where mul-
tiple times the same Activity needs to be created in the target. Figure 40 shows
the correspondences of BusinessProcesses and Activities. In BPMO BusinessPro-
cesseses always occur once and are afterwards referenced by other elements.
Within the VbMF ControlflowView acitvities are held in a containment hierarchy
and may occur multiple times.

'QL bpmobusinessprocess.ecore 237'\ - @ controlflow.ecore Xi .
v # bpmobusinessprocess =~ v # controlflow
» | BPMOBusinessProcessView -> BPMOView | » B ControlFlowView -> View
» [BusinessProcess -> Entity) 1:N : & pf] Activity -> NamedElement
» [AtomicProcess -> BusinessProcess) 1:N - =y SimpleActivity -> Activity
» [CompositeProcess > BusinessProcess) 1:N 5t StructuredActivity -> Activity
» | SequenceProcess -> CompositeProcess) 1:N NS Sequence -> StructuredActivity
» [parallelProcess -> CompositeProcess) 1:N & 35 Flow -> StructuredActivity
» & LoopProcess -> CompositeProcess _/}—DH Switch -> Activity
> [SelectProcess -> BusinessProcess ——— TN ———: > H case
» | CompensationHandlers v » [Link -> NamedElement

Figure 40: Example of a 1:N mapping between BusinessProcess and Activity
(Generic EMF editor)

Therefor the once transformed BusinessProcces is not required to be created
again and again but can be cached somehow (see the Path Reminder Pattern
7.4.5). Additionally a simple repetition may sometimes not be sufficient, consider
a unique constraint on the target side which may require a special modification of
attribute values (see the Precomputed Pattern in Section 7.4).

An other case is when for one object in the source one or another object in
the target model is created multiple times. The selection of the actual element
to be created happens conditionally, based on attribute values, relations or the
inheritance structure of source elements.

66

createlnteraction (bpmopr:: BusinessProcess bp):
(bp.withCapability . precondition (). contains (bpmopr:: StartMessage)) ?
createReceive () :
{
(bp.withCapability . postcondition (). contains (bpmopr:: EndMessage)) ?
createReply () : createlnvoke ()
}

Listing 19: Example of an 1:N correspondence depending on a condition

Listing 19 gives an example of a transformation rule where, based on the type
of event in the pre- and postcondition, different elements in the VbMF Collabo-
rationView are created. In cases where the creation depends on the inheritance
of the source element the Metamodel Polymorphic Rules Pattern in Section 7.4.6
may be of interest for the rule design.

N:1 Mapping Many-To-One (N:1) mappings are akin to 1:N mappings. Dif-
ferently, just one specific object in the target model has to be created but many
potential elements in the source model are available. Such a case is given with the
relation between AtomicProcess and Execution. Here the AtomicProcess points
to multiple Executions as shown in Figure 41 which brings up the need for some
decision support.

(-, Example.bpmobusinessprocess &3 N\ E] mhfe= Properties &3 '
Resource Set Property Value
v Processes Has Name '= CreateUser
<+ Atomic Process CreateUser With Capability Capability
v < Executions With Execution < Execution, Execution, Execution
¥ < Execution
4 IRl UserServicel
¥ < Execution
4 IRl UserService2
¥ < Execution A
4 IRl UserService3 v

Figure 41: Example of a N:1 correspondance (Generic EMF editor)

A possible solution to such ambiguous situations is shown in Section 7.4 when
introducing the Incomplete pattern.

7.3.3 Conclusion

At least, initially thinking of model correspondences helps to split the standard and
straight-forward cases from the more complex transformation tasks. Additionally
the investigated correspondences could be documented in a table as it is done in
the example shown by Figures 42 and 43.

67

bpmoprocess.ecore

Capability
Message

= |BPMOBusinessProcessView
Execution

AtomicProcess

bpelcollaboration.ecore

BPELCollaborationView 1

Service il
PartnerLink gl
PartnerLinkType 1:1

Role Al
Interface X i)
Operation 1:1 X
Message Al
Variable X X_|1:n
Receive 1:n, XOR |X [X _|X
Invoke 1:n, XOR |X _|X_[X
|Reply 1:n, XOR [X |X |X
PartnerLinks -

Roles

relevant information
|- |missing information
Figure 42: Example of model correspondences on the class level

One may create such mapping tables based on different view-points and levels
on granularity. In the first example the mappings occur just on the class level.
This provides a rough overview of the element mappings and a markup of relevant
related classes.

Figure 43 provides a more detailed view by showing the class and the attribute
level of the correspondences.

The analysis of model correspondences and the creation of mapping tables
supports rule design. They a) provide a documentation of the mapping, b) make
the standard cases visible and c) help finding the special cases. Additionally, one
could implement such a mapping table in form of a meta-model that could be used
to generate a good portion of the required transformation rules.

7.4 Design Transformation Rules

In this section, we will discuss the design of transformation rules, that perform a
model-to-model transformation like the one shown in Figure 44.

As this is a complex task, we make use of common design patterns describing
best practices and solutions to reoccurring situations developers face when writing
model transformation rules.

A frequently cited description of patterns was given by Christopher Alexander
[19] who wrote:

68

b busi ocess.ecore

|AtomicProcess
lhasName
withExecution
withCapability
Execution
name

identifier
Capability
lhasPrecondition
hhasPostcondition

bpelcollaboration.ecore
BPELCollaborationView |1:
Service fE
name X
uri X
prefix X
interface X
Operation fif)
name X
in X X
out X X
interface X

= |[BPMOBusinessProcessView

-

relevant information
|- |missing information

Figure 43: Example model correspondences on the class and attribute level

Ecore.ecore

PN

conformsTo conformsTo ~ conformsTo

|
bpmo / Xtend bpeltransaction

.ecore .ecore
conformsTo conformsTo conformsTo
bpmo2vbmf.ext
1
1

Order- v OrderProvisioning
Provisioning.bpmo \ransformation .bpeltransaction

Figure 44: BPMO View to BPEL Transaction View transformation setup

69

”Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice”

The following paragraphs present the, in our context, most relevant design
patterns for the development of transformation rules which are part of the pat-
tern catalogue presented in [21] (a deliverable of the afore mentioned Modelware
project). Developers of transformation rules should be aware of these patterns in
order to judge whether a specific pattern is appropriate for their transformation
task or not.

The following descriptions are structured as follows: An introducing problem
description and motivation outlines the concern of the pattern. Then possible
solutions along with examples are given to finally summarize the consequences
when applying the pattern.

7.4.1 Incomplete

Synopsis Sometimes, information given by the source model is insufficient or
non-deterministic and requires human interaction or additional input.

Motivation When the information in the source model poses an undecidable
situation, in other words it requires a non deterministic decision in order to carry
on, one may like to have a way to influence the transformation.

Solution A simple solution to a non-decideable situation would be to encode a
standard choice (e.g. if there are many elements to choose, take the first one), or,
for more complex situations, make use of a heuristic function or reasoning en-
gines. Another way to address non deterministic mappings would be to interrupt
the transformation and make the decision a human task. Let’s consider an Atom-
icProcess pointing to multiple Executions. Without any concrete advise there is
no hint which Execution to use and the selection has to base on some kind of
heuristics (e.g. choose the first one).

One way to achieve the integration of human advises is to build up a support-
ing metamodel representing an incomplete guidance like in the simple example
given by Figure 45. Here the transformation is done in at least two cycles. In the
first round, the transformation initially builds up the supporting model storing for
instance multiple choices of Executions, this is illustrated in Figure 46.

The transformation of the second round takes the supporting model as an ad-
ditional input which then can include hints for incomplete situations.

70

| Guidance.ecore 23-'\\
v # Guidance
» [GuidanceContainer
v B Advise
P = metaTypeName : EString
P = attributeName : EString
P = instanceName : EString
P 3 choice : Choice
E Choice
v [StringChoice -> Choice
&) Choice
P = value : EString

Figure 45: Simple Guidance Metamodel (Generic EMF editor)

p
guidance :: Advise createExecutionAdvice (bpmopr:: BusinessProcess p):

createAdvice (p, p.withExecution)

>

create guidance :: Advise this createAdvice

(bpmopr:: BusinessProcess p, List[bpmopr:: Execution] el):
setMetaTypeName (p. metaType.name) —>
setAttributeName (’’ withExecution’’) —>
choice.addAll(el.createChoice ())

5

create guidance :: StringChoice this createChoice
(bpmopr :: Execution e):
setValue (e.name)

Listing 20: Initializing the guidance model in the first transformation.

. N =
4! transformation.guidance 83 . = B|[E Properties 83\

L[Resource Set Property Value
v Container Attribute Name ‘= withExecution
v <4 Advise AtomicProcess Instance Name '= CreateCustomer
Meta Type Name (= AtomicProcess

< String Choice CustomerServiceA
< String Choice CustomerServiceB
v < Advise AtomicProcess
< String Choice CreditServiceA) §
< String Choice CreditServiceB v

Figure 46: Guidance Example (Generated EMF editor)

collaboration :: Service createService
(guidance :: GuidanceContainer c, bpmopr:: BusinessProcess p):
createService (
p.withExecution.selectFirst(
e | e.name.matches(c.getAdvice(p.name))

)

Listing 21: Using the guidance model in transformation rules.

71

Consequences Simple solutions like heuristics can be fast and easily created
for simple and are a good choice in cases where they are sufficient. Using a
guidance model this means that the transformation operator’s knowledge can be
stored, edited and reused. The supporting guidance model becomes an additional
artifact of the transformation.

7.4.2 Parameters

Synopsis A transformation requires static information influencing the transfor-
mation outcome.

Motivation Model transformations often require static information to complete
the target model, which in many times is just hardcoded in the transformation rules
or are available via helper functions (which are hard-coded in the transformation
as well).

Solution Parameters are elements of the transformation that are not available in
the source model. Hard-coding them into the transformations rules is bad praxis
because their values are only accessible through editing the transformation rules.

& Parameter.ecore 53 N

v i Parameters
» [parameterContainer
v [Parameter
P = name : EString
P 532 parameterValue : ParameterValue
E parametervalue
v 1_1 StringParameterValue -> ParameterValue
(%) ParameterValue
P © value : EString
» [BooleanParameterValue -> ParameterValue
» [IntegerParameterValue -> ParameterValue
» [DoubleParameterValue -> ParameterValue

Figure 47: Parameter Metamodel (Generic EMF editor)

A solution which provides the outsourcing of the parameter settings is the cre-
ation of another supporting metamodel: a parameter metamodel. Like the guid-
ance model, the parameter model can be taken as an input of the transformation
and all possible settings can be done in a dedicated model without touching the
actual transformation rules. Figure 47 shows an example of a simple generic pa-
rameters metamodel in Ecore.

As shown by Figure 48, parameters could be easily managed via the param-
eter model without touching the actual transformation code. Listing 22 shows
an example of a transformation rule accessing a parameter via a helper function.

72

(12 transformation.parameters 53 = B[Properties 2

Resource Set Property | Value
v <4 Parameter Container Value '= Receive_

v Parameter ReceiveActivityPrefix

String Parameter Value Receive_
2 Parameter ReplyActivityPrefix
Parameter createPrepareActivities
< Boolean Parameter Value true A
> Parameter createReworkActivities v

Figure 48: Parameter Example (Generated EMF editor)

-
String getReceivePrefix ():
GLOBALVAR params
.selectFirst(p | p.name.matches(’ ReceiveActivityPrefix > "))

>

create bpelcollaboration :: Receive this createReceive
(bpmopr:: BusinessProcess p):
this .setName(getReceivePrefix () + p.name)

Listing 22: Using parameters in transformation rules.

Listing 28 in Section 8 shows how a parameter model can be integrated in the
transformation.

Consequences Using a parameter model enables comfortable settings and can
be done in a dedicated model without changing the transformation code. Further
this increases reuse and allows an easy switching between different configurations.

7.4.3 Precomputed

Synopsis Sometimes transformations require some kind of pre-computation in-
fluencing or altering the transformation.

Motivation When doing a calculation, maintaining of a counter or even gather
frequent required elements, a function at hand for such a particular task would be
handy.

Solution Typically this is solved using helper functions. They are computed
many times during a transformation and encapsulate general as well as very spe-
cific recurring functionality. Listing 23 shows a Java method supporting a trans-
formation task.

Here, the occurrence of similar processes during the process flow is counted.
Every time a process occurs in the flow it is added (addProcess(Object 0)) and

73

public final static Integer addProcess(Object o) {

count ++;

if (map. containsKey (0)){
List<Integer> li = map.get(o);
1i .add(count);

Yelse{
List<Integer> li = new ArrayList<Integer >();
li .add(count);
map. put(o, li);

}

return count;

Listing 23: Precomputed Example

Void nameset(core :: NamedElement e, bpmopr:: BusinessProcess p) :
e.setName (”_"+addProcess(p))

Listing 24: Usage of the pre-computed function.

the actual counter is returned. This function is used when creating Activities a
multiple times which is required because of the inflicted unique name constraint
posed by BPEL (Listing 24).

Consequences Using helper functions is good praxis. It helps to modularize
the code and to keep it in good order which makes the transformation rules eas-
ier to understand and maintain. Large transformation and complex computations
however may take their time.

7.4.4 Model Navigator
Synopsis Often, when transforming a model element, another element without

direct relation to the actual element is required.

Motivation In order to resolve such indirect relations often an uncomely detour,
for instance over the parent elements, is required which messes up the code and
increases code complexity.

Solution Instead on writing a complex navigation expression every time re-
quired one should outsource such navigations into helper functions which solve
the navigation task as shown by Listing 25.

74

getAtomicProcesses (core :: NamedElement n):
n.eRootContainer.eAllContents.typeSelect (bpmopr:: AtomicProcess)

Listing 25: Model Navigator Example

create controlflow :: SimpleActivity this createSimpleActivity2
(bpmopr :: AtomicProcess p):

cached getMessages(core :: NamedElement n):

Listing 26: Path Reminder Example

Consequences As already said, the use of helper functions contribute to
reusability and less complex code.

7.4.5 Path Reminder

Synopsis Usually during the transformation of the source model single elements
are required many times for different purposes.

Motivation This is especially the case when an element is referenced from var-
ious other elements. The transformations of this element is only required the first
time the transformation passes it, in all other cases a repeating transformation
should be avoided.

Solution A possible solution to this problem is to maintain a cache storing al-
ready created elements. Some transformation engines, like Xtend, come with
special creation or cached rules (Listing 26) which are able to cache their return
values taking their input parameter as the key value.

Consequences When an element is required during the transformation, first the
cache is asked for the element which has typically much faster response times and
avoids unnecessary computation.

7.4.6 Metamodel Polymorphic Rules

Synopsis A lot of transformations need to deal with objects of the same su-
perclass but belonging to a specific subclass which have to be treated differently

75

controlflow :: Activity createActivity
(bpmopr:: BusinessProcess p):
switch {
case (p.metaType.name.matches (”bpmopr:: AtomicProcess”)):
createActivity ((bpmopr:: AtomicProcess)p)
case (p.metaType.name.matches (”bpmopr:: SequenceProcess”)):
createActivity ((bpmopr:: SequenceProcess)p)
case (p.metaType.name.matches (”bpmopr:: ParallelProcess”)):
createActivity ((bpmopr:: ParallelProcess)p)

»

default: {info(”No rule defined for type + p.metaType.name)—> Void}

}

5

create controlflow :: Sequence this createActivity
(bpmopr:: SequenceProcess p):

setName (p.name) —>

activity .addAll(p.subprocess.createActivity ())

create controlflow :: Activity this createActivity
(bpmopr :: AtomicProcess p):
setName (p.name)

Listing 27: A redirecting rule to achieve polymorphic behavior.

during transformation.

Motivation Having rules sharing a common name but specializing on the spe-
cific metamodel classes frees the developer of making the choice of the correct
transformation rule.

Solution The name of the rule acts as a common entry point, the rule selection
is based on the meta-class of the parameter. Some transformation engines allow
polymorphic rules, but others like Extend do not. Here one could work around
implementing a redirecting rule as shown by Listing 27.

Consequences Using polymorphic rules is a good praxis which again reduces
the code complexity. However there may occur runtime errors when the rule for a
specific type is missing, or, is the case of a redirecting rule, explicit type checking
is required.

7.4.7 Test and Evaluation

Based on the initially defined examples and the target output of the transformation,
frequent testing leads the way to correctly transform source to target. Consider set-
ting up a run task for your transformation early in the transformation design. This

76

way the development can pass several cycles with a steadily increasing complexity
and frequent testing.

Beside the comparison to example models/code, another way to verify the out-
come is to open the created artifacts with common editors. Figure 49 shows how
the use case validated by the Netbeans BPEL plugin. Going a step further test and

OrderProvisioning / PLESKSe

@ 6 Errors & 24 Warnings X|

initialized and not used.

& The variable m

" 2_PleskUserLookUpRequest" is
initialized and not used. A
v
1 " -

e “r
= =]
= @ ~ =
P e \

@ 6 Errors X

© Element "invoke" has reference to @ CCBServ

X another element (via
"outputVariable" attribute value)
and this element can not be found. =
Please check namespace N
declarations, "import" elements, v
)SC =

Figure 49: OrderProvisioning BPEL validation (Netbeans BPEL Editor)

evaluation can additionally include deployment and execution. Using a unit test-
ing framework for such a task, as described in [42], is recommended. The BPEL
unit testing framework implementation provides xUnit like white- and black-box
testing for BPEL processes and allows a mocking of all participating partner tracks
of the process.

77

8 Integration and Deployment

By now we have illustrated the building blocks of the integration task, i.e. View
creation, View import, and model transformations. All these steps require input
models (sometimes in different formats, e.g. WSML, XML, XMI/Ecore), trans-
formation models (e.g. ATL, oAW Xtend, XSLT), and produce output models
(again possibly in different formats).

However, a single step for its own is on a very fine-grained, technical level with
little business value, so it is necessary to combine several steps to provide a
valuable BUSINESS-DRIVEN SERVICE [34], providing an interface that hides
implementation details. Because transformation details may change over time (as
did ours during our work), it is necessary to be able to adapt the single steps with
little effort.

Deploy Transformation

Integratel Web Service
Transformation Deployment
Steps ploy

Figure 50: Deploy subprocess

In Section 8.1 we describe how the single transformation steps can be inte-
grated, and in Section 8.2 we show how this combined transformation is deployed
as a Web service (cp. Figure 50).

8.1 Integration of single Model Transformation Steps

In order to combine the single components to a complete transformation, it is
necessary to orchestrate them. Literature research and practical work have shown
that it is reasonable and necessary to (1) be able to easily exchange components
and (2) support multiple transformation technologies. The openArchitectureWare
(0AW) generator MDD/MDA framework provides a solution to both problems:
a workflow engine solving (1) and extensible workflow components that can be
used to create adapters for different technologies, thus solving (2).

78

8.1.1 Transformation Workflow

The oAW workflow engine executes a workflow file, like the one shown in
Listing 28. A workflow is defined in an XML file and consists of a sequence of
workflow components. A workflow component is basically a Java class imple-
menting a particular interface °, its qualified class name has to be specified in the
component’s “class” attribute in the workflow file. Parameters can be passed to
components using XML elements, the workflow engine uses reflection to set the
values on instantiated objects. In- and outputs can be passed from one component
to another using so-called “’slots”, which are actually entries in a workflow-global
map. Another possibility to exchange in- and outputs is using files. (c.f. [14])

Example Workflow In our example in Listing 28, the first step is to import
Wsml files to the BPMO View. The first component there is an adapter for a Java
based importing tool, that parses Wsml files using wsmo4j and writes them to an
XML Document. After that an XSLT transformation adds an XMI header to the
XML document, making it possible to load it using an XMI reader. Finally an
ATL transformation does the actual import.

In the second step, the model transformation from the BPMO to the BPELTrans-
action View is performed using the builtin Xtend Component. For this compo-
nent all the involved metamodels have to be declared. The “invoke” parameter
specifies the transformation rule that actually performs the transformation for the
“bpmoView”.

The third step is a serialization component that serializes the slot content to XMI
again. These latter two steps are then repeated for the transformation from the
BPMO to the BPMOCollaboration and -Information View, resp.

<workflow>
<property file="transformation/workflow/bmpo2vbmf. properties” />
<!—— 1) BPMO View import from WSML (using adapters) —>
<component class="net.phir.oaw.adapter.wsml. Wsml2XmlTransformerComponent”>
<inputWsmlFile value="${importDir }/${bpmoWsmlFiles}”/>
<outputXmlFile value="${xmlFile}”/>
</component>

<component class="net.phir.oaw. adapter. xsl.XslTransformerComponent”>
<xslFile value="${transformDir }/xsl/wsmlXmiHeader. xs1”/>
<inputXmlFile value="${xmlFile}”/>
<outputXmlFile value="${xmiFile}”/>

</component>

<component id="xmiParser” class="org.openarchitectureware .emf.XmiReader”>
<modelFile value="${xmiFile}”/>
<metaModelFile value="${modelDir }/${Wsml}”/>
<outputSlot value="inWsml”/>

Usually org.openarchitectureware.workflow.WorkflowComponentWithID

79

</component>

<component id="wsmo2bpmoView”
class="net.phir.oaw.adapter. atl.AdvancedATLTransformerComponent”>
<workDir value="${tempDir}”/>
<metamodelPath value="Wsml —> ${modelDir }/${Wsml}"/>
<metamodelPath value="bpmobusinessprocess —>
${modelDir }/${bpmobusinessprocessmm }”/>
<inputModelToMetamodelMap value="inWsml —> Wsml”/>
<outputModelToMetamodelMap value="out —> bpmobusinessprocess”/>
<modelPath value="inWsml —> slot:inWsml”/>
<modelPath value="out —> slot:bpmoView”/>
<library value="wsmoUtil —> ${transformDir }/m2m/wsmoUtil.asm”/>
<asmFile value="${transformDir }/m2m/wsmo2bpmoView .asm”/>
</component>

<!—— 2) BPMO to BPEL Transaction View M2M component —>
<component id="xmiParser” class="org.openarchitectureware.emf.XmiReader”>

<outputSlot value="parameters” />
</component>

<component class="oaw.xtend.XtendComponent”>
<metaModel class="oaw.type.emf. EmfMetaModel”>
<metaModelFile value="${bpmobusinessprocessmm}” />
</metaModel>
<metaModel class="oaw.type.emf. EmfMetaModel”>
<metaModelFile value="${parametermm}” />
</metaModel>
<metaModel class="oaw.type.emf.EmfMetaModel”>
<metaModelFile value="${bpeltransactionmm}” />
</metaModel>
<!—— Analog for other metamodels ... —>
<globalVarDef name="params” value="parameters” />
<globalVarDef name="cv” value="bpmoView” />
<invoke value=
“transformation ::m2m:: ext:: bpmo2bpeltransaction :: transform (bpmoView)” />
<outputSlot value="bpeltransaction” />
</component>

<!—— 3) BPEL Transaction View XMI serialization —>

<component id="xmiWriter” class="org.openarchitectureware.emf.XmiWriter”>
<inputSlot value="bpeltransaction” />
<modelFile value="${bpeltransaction}” />

</component>

<!—— Analog for BPMO to BPELCollaboration and —Information —>

</workflow>

Listing 28: The bmpo2vbmf 0AW Workflow

8.1.2 Workflow Component Adapters

Adapters can be used to invoke external components as part of the workflow, such
as ATL or XSLT transformations. For our work we enhanced the ATL adapter
that is available from the SCM repository of openArchitectureWare, and created
adapters for performing XSLT transformations as well as WSML to XML and

80

vice versa transformations.

For the WSML to XML transformation, an excerpt of the implementation is shown
in Listing 29. An adapter has to directly or indirectly implement the Workflow-
Component interface and usually provides some setter methods, that can be used
in the workflow for parametrizing the component: The the parameter’s name in
the workflow has to correspond to one of the according class’s setter properties
in Java Beans style, i.e. <outputXmlFile value="..."/>and public
void setOutputXmlFile (String value),resp.

The AbstractWorkflowComponent provides default implementations for all but
the invoke() method, so that only this one has to be implemented. We use the
wsmo4j Parser and Serializer, to actually perform the transformation.

8.2 Transformation Deployment

The final step in deployment of the BPMO- ontology to VbMF transformation
workflow is the integration with the SemBiz architecture, especially with the De-
ployment Process that it is part of.

8.2.1 Web Service Deployment

The functionality of the BPMO to VbMF transformation has been encapsulated
as a Web Service. The Web Service is responsible for the exposition of the trans-
formation workflow, it receives a couple of WSML files and caches them in a
temporary directory. It configures the oAW workflow (i.e. overloads workflow
properties), executes it and returns the serialized result.

8.2.2 Sembiz Process Deployment process

The Deployment process is orchestrating the still quite technical, encapsulated
services, like the transformation (of BPMO ontologies to VbDMF Views), the gen-
eration (of VbMF Views to BPEL/WSDL), and the deployment (of the gener-
ated BPEL/WSDL) and wrapping them as activities in a process of real business
value: A (semi-)automatic transformation and deployment of semantic business
processes (cp. WRAP SERVICE AS ACTIVITY in [33]). Listing 30 shows an
excerpt of this process.

81

public class Wsml2XmlTransformerComponent extends AbstractWorkflowComponent{

private Parser wsmlParser;
private Serializer xmlSerializer;

private String outputXmlFile;

public void setOutputXmlFile(String outputFile) {
this.outputXmlFile = outputFile;

}

public void invoke(WorkflowContext arg0, ProgressMonitor argl,
Issues arg2) {
try {
List<TopEntity[]> ontologies = parseWsmlFiles(getFiles (inputWsmlFile));
writeToXml(ontologies , getFile (outputXmlFile));
} catch (Exception e) {
e.printStackTrace ();
}
}

private List<TopEntity[]> parseWSMLFiles(File[] fWsml) throws IOException,
ParserException , InvalidModelException{
List<TopEntity[]> ontologies = new ArrayList<TopEntity[]>();
for (File f : wsmlFiles){
ontologies .add(parseWSMLFile(f));
}

return ontologies;

}

private TopEntity [] parseWSMLFile(File fWsml) throws IOException,
ParserException , InvalidModelException{
FileReader wsmlReader = new FileReader (fWsml);
return wsmlParser.parse (new BufferedReader(wsmlReader));

}

Listing 29: An Adapter for the transformation of WSML to XML

82

p
<process name="SemBizDeployment”

>

<partnerLinks>
<partnerLink name="BPMO2VbM” partnerLinkType="bpmo2vbmpl :BPMO2VbM”
partnerRole="BPMO2VbMRole”/>
</partnerLinks>

<variables>
<variable name="TranslateIn” messageType="bpmo2vbmw: TranslateRequest”/>
<variable name="TranslateOut” messageType="bpmo2vbmw: TranslateResponse”/>

</variables>
<sequence>

<assign name="PrepareTranslate” >... </assign>
<invoke name="Translate”
partnerLink="BPMO2VbM”
operation="Translate”
portType="bpmo2vbmpt: BPMO2VbMPortType”
inputVariable="Translateln”
outputVariable="TranslateOut”>
<documentation>Translates BPMO files to VbMF Views</documentation>
</invoke>

<assign name="PrepareGenerate” >...</assign>
<invoke name="Generate”
partnerLink="VbMF”
operation="Generate”
portType="vbmfpt: VbMFPortType”
inputVariable="Generateln”
outputVariable="GenerateOut”>
<documentation>Generates BPEL&WSDL out of VbMF Views</documentation>
</invoke>

<assign name="PrepareDeploy” >... </assign>
<invoke name="Deploy”
partnerLink="VDE”
operation="deploy”
portType="vdept: VDEPortType”
inputVariable="DeployIn”
outputVariable="DeployOut”>
<documentation>
Deploys the process using the VDE framework
</documentation>
</invoke>

Listing 30: The Sembiz Deployment Process

83

namespace {
_"http ://www. hanival .net/sembiz/ws/orderprovisioning#”,
Plesk _"http://www.hanival.net/sembiz/ws/Plesk#”, ... }

ontology OrderProvisioning

importsOntology{
_"http ://www. hanival.net/sembiz/ws/Plesk#Plesk”, ... }

instance OrderProvisioningService memberOf bpmopr#Execution
bpmopr#executedBy hasValue OrderProvisioningSystem
bpmopr#hasGrounding hasValue ’’OrderProvisioningService.wsdl’’

instance Plesk#PleskService memberOf bpmopr#Execution
bpmopr#executedBy hasValue Plesk
bpmopr#hasGrounding hasValue ”PleskService.wsdl”

Listing 31: Process Setup in BPMO

9 Evaluation

At first we will evaluate the transformation task by showing the transformation of
the Hanival use case from the BPMO Ontology to BPEL and WSDL code. We
will then summarize the open issues and future work in the following section.

9.1 Evaluation of the practical transformation task

In order to evaluate the BPMO to BPEL code generation we examine transfor-
mation semantics, restrictions and problems concerning the transformation of the
Hanival use case, the OrderProvisioning process. Starting from the BPMO code,
the derivation of its elements is related to the particular VbMF views to finally
show the produced BPEL and WSDL counterparts.

9.1.1 Mapping the Process Setup

The first thing to consider when setting up a BPEL process is the process’s setup.
A lot of crucial information like namespaces or the import of external resources
is declared here. Listing 31 shows the process setup of the OrderProvisioning
process in BPMO which starts with the initial section for namespace declarations.
Here, the local namespace, as well as any other namspaces, e.g. the PleskService,
are bound. Additionally, in order to use it’s elements in the course of the process
definition, an importsOntology entry has to exist for each participating ontology.
Again, the PleskService gives an example for an imported ontology.

BPEL Transaction View In case of the process setup, only the root element
for the OrderProvisioning process is created in the BPEL Transaction View. It’s

84

the collaboration and information view which are more important for this step.

BPEL Collaboration View For the BPELCollaboration, again the view is
created. Partner information, mainly coming from the Executions, is translated in
form of a Service, where the Service shares the execution’s name as well as its
namespace. Further for each Execution, an Interface as well as a PartnerLink, a
PartnerLinkType and a Role is created an connected to related elements. Figure
51 (a) shows the collaboration model after transforming the process setup.

¥ < BPEL Collaboration View v BPEL Information View OrderProvisioning
<> Receive _lReceive ¥ < Messages
< Reply _1Reply ¥ <> Message StartOrderProvisioning
<> Service OrderProvisioningService Part orderdata
< Service PleskService ¥ < Message EndOrderProvisioning
¥ < Interface OrderProvisioningService Part orderdata
¥ < Operation OrderProvisioning v Schema OrderProvisioning
¥ <4 Channel <> XSD Element OrderData
<> Message StartOrderProvisioing ¥ < Variables
¥ <4 Channel < Variable _1StartOrderProvisioning
<> Message EndOrderProvisioning < Variable _1EndOrderProvisioning
b < Interface PleskService < Schema Import
¥ <4 Partner Links > Schema PleskService
< Partner Link OrderProvisioningService <> WSDL Import OrderProvisioningService.wsdl
< Partner Link PleskService <> WSDL Import PleskService.wsdl|
Partner Link Type OrderProvisioningService
Partner Link Type PleskService
v < Roles
Role OrderProvisioningService
Role PleskService

(a) (b)

Figure 51: OrderProvisioning - BPEL Collaboration View (Generated EMF Edi-
tor)

BPEL Information View Finally the BPELInformationView is generated as
shown by Figure 51 (b). Different to the other VbMF views, the information view
additionally carries the namespace for the OrderProvisioning. Here, for each in-
volved Execution a WSDLImport is created using the Execution’s identifier
and hasGrounding attributes. Further, a Schema is made for every Execution
as well as a Schemalmport for each external partner.

BPEL and WSDL Listing 32 and 33 show the final outcome of the process
setup in terms of BPEL and WSDL. Looking at the generated code, it becomes

85

()

<process name="OrderProvisioning”
targetNamespace="http ://www. hanival . net/sembiz/ws/orderprovisioning#”
xmlns:tns —1725924166 ="http ://www. hanival .net/sembiz/ws/Plesk#”>
<import importType="http ://schemas.xmlsoap.org/wsdl/”
location="0OrderProvisioningService . wsdl”
namespace="http ://www. hanival .net/sembiz/ws/orderprovisioning#”
/>
<import importType="http ://schemas.xmlsoap.org/wsdl/”
location="PleskService . wsdl”
namespace="http ://www. hanival .net/sembiz/ws/Plesk#”
/>
<partnerLinks>
<partnerLink name="OrderProvisioningService”
partnerLinkType="tns1882850496: OrderProvisioningService”
myRole="OrderProvisioningService”
/>
<partnerLink name="PleskService”
partnerLinkType="tns —1725924166: PleskService”
partnerRole="PleskService”
/>
</partnerLinks>

</process>
L J

Listing 32: Process Setup in BPEL

clear that a lot of elements depend on the crucial information kept in the Execution
instances.

9.1.2 Mapping the Process Start and End

In BPMO, the root process is required to have an Execution as well as appropriate
pre- and postcondition events in it’s Capability. More precisely a Receive is
made, if the precondition contains a Start resp. a StartMessage event. On the
contrary a Reply is made if the postcodition contains an End or an EndMessage
event. Listing 34 shows the relevant sections of the Hanival use case.

BPEL Transaction View For the process start, the first (or root) activity
is made in the BPELTransactionView. In the case of the example, the first
activity is a Sequence where it’s first contained activity is made implicitly for
the start (Receive) and the last contained activity is made implicitly for the end
(Reply) of the process. Between start and end, all the other sub-activities are
created. Because processes are referenced multiple times in BPMO but exist only
once as well as naming constrains on BPEL activities, the names of the actual
process are replaced according to their position in the process flow as shown by
Figure 52 where the start Sequence is named ”_1” (see 9.1.3).

86

p
<wsdl: definitions
targetNamespace="http ://www. hanival . net/sembiz/ws/orderprovisioning#”

xmlns="http ://www. hanival .net/sembiz/ws/orderprovisioning#”
xmlns: tns —1725924166="http ://www. hanival . net/sembiz/ws/Plesk#”

>

<wsdl: portType name="OrderProvisioningService”>

</wsdl: portType>
<plnk: partnerLinkType name="OrderProvisioningService”>

<plnk:role
name="OrderProvisioningService”
portType="tns1882850496: OrderProvisioningService”/>
</plnk : partnerLinkType>
</wsdl: definitions >

Listing 33: Process Setup in WSDL

instance OrderProvisioning memberOf bpmopr#SequenceProcess
bpmopr#hasName hasValue ”OrderProvisioning”
bpmopr#withCapability hasValue cOrderProvisioning
bpmopr#withExecution hasValue OrderProvisioningService

// other attributes

instance cOrderProvisioning memberOf bpmopr#Capability
bpmopr#hasPrecondition hasValue cOrderProvisioningPrecAxiom
bpmopr#hasPostcondition hasValue cOrderProvisioningPostAxiom

axiom cOrderProvisioningPrecAxiom

definedBy
?cOrderProvisioningPrec memberOf StartOrderProvisioning.

axiom cOrderProvisioningPostAxiom

definedBy
?cOrderProvisioningPostcl memberOf

EndOrderProvisioning .

concept StartOrderProvisioning subConceptOf {bpmo#StartEvent, bpmo#Message}
bpmo#hasData ofType (1 1) hanival#OrderData

concept EndOrderProvisioning subConceptOf {bpmo#EndEvent, bpmo#Message}
bpmo#hasData ofType (1 1) hanival#OrderData

Listing 34: The Process Start and End in BPMO

N

v BPEL Transaction View
v Sequence _1
<> Simple Activity _1Receive
<> Simple Activity _1Reply

Figure 52: OrderProvisioning - BPEL Transaction View (Generated EMF Editor)

87

BPEL Collaboration View Here, the concrete interactions Receive and Re-
ply are added for the root process which are named exactly like the implicit ac-
tivities made in the BPELTransactionView. Figure 53 shows the Receive interac-
tion ”_1"Receive and it’s properties. The operation named ’OrderProvisioning’ in

4 OrderProvisioning.bpelcollaboration 237\ \ ='
L) Resource Set
¥ < BPEL Collaboration View
<> Receive _lReceive
4 Reply _1Reply
¥ < Interface OrderProvisioningService

|
|
|
¥ < Operation OrderProvisioning \
¥ < Channel !
<4 Message StartOrderProvisioing |

¥ < Channel |
|

I

< Message EndOrderProvisioning

Property

Associated Interface
Create Instance

Name
Operation

Partner Link

{ =)
£ properties 83 ™\

Value

<4 Interface OrderProvisioningService
% false

'= _1Receive

< Operation OrderProvisioning

< Partner Link OrderProvisioningService

Figure 53: Process Start in the BPEL Collaboration View (Generated EMF Editor)

the Interface is then derived from the root process’s name whereas Interface,
partnerLink and portType are derived from the process’s Execution and
the used variables are derived from the MessageEvents (compare Listing

34).

BPEL Information View Here first a Schema element is created for the root
process. It contains all required data definitions to fulfill the start and end inter-
action’s needs. For external resources a Schemalmport is made which contains a

link to the actual schema file.

(2\
< OrderProvisioning.bpelinformation &3

L[Resource Set

v BPEL Information View OrderProvisioning
v < Messages
¥ <> Message StartOrderProvisioning
> Part orderdata
¥ <> Message EndOrderProvisioning
< Part orderdata
¥ <> Schema OrderProvisioning
<> XSD Element OrderData
¥ < Variables
< Variable _1StartOrderProvisioning
< Variable _1EndOrderProvisioning

—

g =
] Properties 83 N\

Property | Value

Element < XSD Element OrderData
Name '= orderdata

Type

Figure 54: Process Start in the BPEL Information View (Generated EMF Editor)

Additionally Messages and variables related to process start and end are cre-
ated. Again watch the naming of the variables in Figure 54.

88

<sequence>
<receive createlnstance="yes” name="_1Receive”
operation="0OrderProvisioning”
partnerLink="OrderProvisioningService”
portType="tns1882850496: OrderProvisioningService”
variable="_1StartOrderProvisioning”/>

<!—— rest of the process ... —>

<reply name="_1Reply”
operation="0OrderProvisioning”
partnerLink="OrderProvisioningService”
portType="tns1882850496: OrderProvisioningService”
variable="_1EndOrderProvisioning”/>
</sequence>
N J

Listing 35: The Process Start and End in BPEL

BPEL and WSDL The translation of the process start results in a vari-
ety of impacts on the BPEL and WSDL files gerated. Listing 35 shows the
relevant part of the BPEL process. The process start results in a Sequence
with a follow up Receive activity. The Sequence is the root container for
the process-flow therefore containing all other activities. A Receive activity
links to a partnerLink, aportType, an operation and refers to an input
variable. Further, the createInstance attribute is set to true. Finally, a
Reply is made at the end of the process pointing to the same operation, partner-
Link and portType as the initial Receive, but owning a dedicated variable.

In WSDL, as shown by Listing 36, the process start and end results in the defini-
tion of the operation provided by the final process (OrderProvisioning) including
the definition of it’s input- and output messages.

9.1.3 Mapping Atomic Processes

From a composite business process, usually At omicProcesses are referenced,
which have to be mapped to Web service calls. There are some issues, which have
to be taken into account when defining the mapping:

e Notevery AtomicProcess actually represents a Web service call.

e Further, as one AtomicProcess may be referenced more than one time,
it is not possible to use its name for the corresponding activity’s name (due
to the named matching algorithm of the VbMF).

e At last, data handling / variable preparation is not modeled in the ontology.

89

<wsdl: message name="StartOrderProvisioning”>
<wsdl: part element="provided:OrderData” name="orderdata”/>
</wsdl : message>
<wsdl : message name="EndOrderProvisioning”>
<wsdl: part element="provided:OrderData” name="orderdata”/>
</wsdl : message>
<!—— Rest of messages —>
<wsdl: portType name="OrderProvisioningService”>
<wsdl: operation name="OrderProvisioning”>
<wsdl:input message="provided: StartOrderProvisioning”
name="StartOrderProvisioning”/>
<wsdl: output message="provided: EndOrderProvisioning”
name="EndOrderProvisioning”/>
<wsdl: fault
message="provided: ManuallnteractionServerAllocationException”
name="ManuallnteractionServerAllocationException”/>
<wsdl: fault
message="provided: ManuallnteractionUserConfigurationException”
name="ManuallnteractionUserConfigurationException”/>
</wsdl:operation>
</wsdl: portType>

Listing 36: Process Start in WSDL

To solve these issues, we first identify those At omicProcesses, that represent
Web services, which are those that have Messages as pre- and postconditions.
We then assign a unique name for each atomic process reference, and create two
simple activities in the BPELTransaction View. The first’s name matches an as-
sign activity in the BPELInformation View, the second’s name matches an invoke
interaction in the BPELCollaboration View. Additionally, variables are created
for in- and output of this activity, and linked to the invoke and the assign. The
latter have to be completed manually in the resulting BPEL code.

The first AtomicProcess within the main OrderProvisioning sequence is the
PleskUserLookup. In listing 37, we show a comprehensive excerpt from the Plesk
ontologies for this process. In terms of BPEL, it has to be translated to a Web
Service operation call, but this has some additional requirements.

BPEL Transaction View In the BPELTransactionView, two simple activi-
ties are created for the PleskUserLookup, as can be seen in Figure 55. One rep-
resents the actual Web service call (”_2”), the other the assign activity before
(”_2Preparation”).

BPEL Collaboration View In the collaboration view, as can be seen in
Figure 56, first the service description is created. This means, that for the ex-
ecution PleskService, a Service, a Partnerlink, a partnerLinkType, a role and
a corresponding interface are created. The PleskUserLookup represents one
operation of this service’s interface. The capability of the PleskUserLookup,

90

instance PleskService memberOf bpmopr#Execution
bpmopr#executedBy hasValue PleskSystem
bpmopr#hasGrounding hasValue
_"http :// localhost:8080/SembizServiceLandscape/PleskService”

instance PleskUserLookUp memberOf bpmopr#AtomicProcess
bpmopr#hasName hasValue ”PleskUserLookUp”
bpmopr#withCapability hasValue cPleskUserLookUp
bpmopr#withExecution hasValue PleskService

instance cPleskUserLookUp memberOf bpmopr#Capability
bpmopr#hasPrecondition hasValue cPleskUserLookUpPrecAxiom
bpmopr#hasPostcondition hasValue cPleskUserLookUpPostAxiom

axiom cPleskUserLookUpPrecAxiom
definedBy
?cPleskUserLookUpPrec memberOf PleskUserLookUpRequest.

axiom cPleskUserLookUpPostAxiom
definedBy
?cPleskUserLookUpPost memberOf PleskUserLookUpResponse.

concept PleskUserLookUpRequest subConceptOf {bpmo#IntermediateEvent,
bpmo#Message }
bpmo#hasData ofType (1 1) hanival#CustomerData

concept PleskUserLookUpResponse subConceptOf {bpmo#IntermediateEvent,
bpmo#Message }
bpmo#hasData ofType (1 1) PleskUserLookUpResponseData

concept PleskUserLookUpResponseData subConceptOf {bpmo#BusinessData}

return ofType (1 1) hanival#CustomerExistsData
L J

Listing 37: PleskUserLookup in BPMO (excerpt from the Plesk ontologies)

v BPEL Transaction View
v Sequence _1
< Simple Activity _1Receive
< Simple Activity _2Preparation
< Simple Activity _2
< Simple Activity _1Reply

Figure 55: PleskUserLookup - BPMO Business Process View (Generated EMF
Editor)

91

cPleskUserLookup describes in- and output of the operation through its pre- and
postcondition. Therefore, the messages PleskUserL.ookupRequest and PleskUser-
LookupResponse are created and linked to the operation via its in- and out
channels. Further, a corresponding invoke interaction is created, representing the

(<4 OrderProvisioningPlesk.bpelcollaboration B = 0] 'l; Properties 2
Resource Set Property Value
¥ 4 BPEL Collaboration View Associated Interface < Interface PleskService
<4 Invoke _2 M Name =2
< Service PleskService ! Operation <> Operation PleskUserLookup
¥ < Interface PleskService ! Partner Link < Partner Link PleskService
¥ < Operation PleskUserLookup
¥ < Channel
<> Message PleskUserLookupRequest
¥ < Channel ‘
<> Message PleskUserLookupResponse !
¥ < Partner Links
< Partner Link PleskService
Partner Link Type PleskService W/
v < Roles A
Role PleskService M

Figure 56: PleskUserLookup - BPEL Collaboration View (Generated EMF Edi-
tor)

Web service call and named like the second activity in the BPELControlflow view
(”-2”). By using appropriate names, this interaction then is linked to in- and out-
put variables (_2_PleskUserLLookupRequest and _2 PleskUserL.ookupResponse)
which themselves correspond to the messages that have been created for the
operation.

BPEL Information View In the BPELInformation View (see Figure 57, two
things have to be done for the PleskUserLookup: to define the data definition for
the used variables and messages (finally BPEL variables and XML Schema) and
to care about variable preparation (finally BPEL assigns).

The first (data definition) will be explained at the example of the PleskUser-
LookupRequest. For the BPMO Message PleskUserLookupRequest, a corre-
sponding BPEL Information message is defined, name and namespace taken from
the BPMO equivalent. For each BusinessData type in the Message’s hasData at-
tribute, a part is created in this message, referencing an XSD Element in the Plesk
namespace. BusinessData are then recursively mapped to XSD Types and XSD
Elements, mapping WSML attributes to XSD Elements. For the second task (vari-
able preparation), an assign data handling is created, which name matches the one
of the first activity in the BPELTransaction View (”_2Preparation”). Per default
only the input variable, in this case 2 PleskUserLookupRequest, is manipulated.
For the corresponding message’s parts, a copy statement with a literal as source

92

v BPEL Information View OrderProvisioning
¥ < Messages
¥ <> Message PleskUserLookupRequest
Part customerdata
¥ <> Message PleskUserLookupResponse
Part pleskuserlookupresponsedata
¥ <> Assign _2Preparation
v < Copy
< From Literal
< To Variable
¥ < Variables
< Variable _2PleskUserLookupRequest
< Variable _2PleskUserLookupResponse
< Schema Import
v Schema PleskService
<> XSD Element CustomerData
<> XSD Element PleskUserLookupResponseData
<> WSDL Import PleskService

Figure 57: PleskUserLookup - BPEL Information View (Generated EMF Editor)

(from) and the variable _2_PleskUserLookupRequest as target (to) is set. As the
BPMO meta-model doesn’t capture data conversion, assigns have to be completed
manually.

BPEL and WSDL The final output after code generation for the PleskUser-
Lookup in terms of BPEL can be seen in Listing 38. Here along with partner
description and variable declaration, an empty assign activity is for the actual ser-
vice call, the invoke activity.

9.1.4 Mapping Atomic Process Invariants

Atomic Processes are not only used to model Web Service operations, but
also to model timing and exception mechanisms. Atomic Processes without
an Execution and with an Exception event as postcondition are mapped to
Throw activities. Listing 39) gives an example of how a Throw is modeled in
BPMO, Listing 40 shows the resulting BPEL code for this atomic process.
Another case would be if an Atomic Process hada Timer eventas a pre-
condition. Here a Wait activity would be created in the BPELTransactionView.

9.1.5 Mapping Composite Processes

The mapping rules for CompositeProcesses are quite straight forward, as
they only affect the BPELTransaction View. Consequently, and in contrast to
atomic processes, a rewriting of names is not necessary. A ParallelProcess

93

(7

<partnerLinks>
<partnerLink name="PleskService”
partnerLinkType="tns —1725924166: PleskService”
partnerRole="PleskService”/>

</partnerLinks>

<variables>

<variable messageType="tns —1725924166:PleskUserLookUpRequest”
name="_2_PleskUserLookUpRequest”/>

<variable messageType="tns —1725924166:PleskUserLookUpResponse”
name="_2_PleskUserLookUpResponse”/>

<variables >

<assign name="_2Preparation”>
<copy>
<from>
<literal >
<!—— variable initialization code —>
</literal >
</from>
<to variable="_2_PleskUserLookUpRequest”/>
</copy>
</assign>
<invoke inputVariable="_2_PleskUserLookUpRequest” name="_2"
operation="PleskUserLookUp”
outputVariable="_2_PleskUserLookUpResponse”
partnerLink="PleskService” portType="tns —1725924166:PleskService”/>

Listing 38: PleskUserLookup in BPEL (excerpt from OrderProvisionging.bpel)

-
instance EndServerAllocation memberOf bpmopr#AtomicProcess
bpmopr#hasName hasValue “EndServerAllocation”
bpmopr#withCapability hasValue cEndServerAllocation

instance cEndServerAllocation memberOf bpmopr#Capability
bpmopr#hasPostcondition hasValue cEndServerAllocationPostcAxiom

axiom cEndServerAllocationPostcAxiom
definedBy
?x memberOf ManuallnteractionServerAllocationException.

concept ManuallnteractionServerAllocationException
subConceptOf {bpmo#EndEvent, bpmo#Exception, bpmo#Message}
bpmo#hasData ofType (1 1) ManuallnteractionServerAllocationError

concept ManuallnteractionServerAllocationError subConceptOf bpmo#BusinessData

errorMessage ofType (1 1) _string
L J

Listing 39: Invariant showing an Atomic Process with an Exception as postcondi-
tion

94

<assign name="_11Preparation”>
<copy>
<from>
<literal >
<!—— wvariable initialization code —>
</literal >
</from>
<to variable="_11_ManuallnteractionServerAllocationException”/>
</copy>
</assign>
<throw
faultName="ManuallnteractionServerAllocationException”
faultVariable="_11_ManuallnteractionServerAllocationException”/>

Listing 40: A Throw translated into BPEL

instance Parl memberOf bpmo#ParallelProcess
bpmo#subprocess hasValue {Atl, At2}

instance Atl memberOf bpmo#AtomicProcess
instance At2 memberOf bpmo#AtomicProcess

is mapped to a BPEL Flow and a SequenceProcess is mapped to a BPEL
Sequence. However, the recursive structure of sequences in BPMO through the
head-/tailProcess attributes is mostly flattened out - a demonstration is given in
the example below by Listing 9.1.5 an 9.1.5. Depending on its LoopType, a
LoopProcess is either mapped to a BPEL While (in case of a WHILE_DO),
a DoUntil (in case of a WHILE_DO), or a ForEach (in case of a DO_UNTIL).
However, there is one issue: As a LoopProcessisaCompositeProcess,it
may have more than one subprocess, though it is unspecified what happens if
it has more than one. So the transformation only accepts LoopProcesses with
only one subprocess.

ParallelProcess Listing 9.1.5 shows a fictional example with a ParallelProcess
in BPMO.
Listing 9.1.5 shows the translation of the ParallelProcess into BPEL code.

SequenceProcess Listing 9.1.5 shows a small (fictional) example with sev-
eral SequenceProcesses.

<flow name="Parl”>

<invoke operation="Atl” ... />
<invoke operation="At2” .../>
</flow>

95

instance SeqlA memberOf bpmo#SequenceProcess
bpmo#subprocess hasValue {Seq2A, SeqlB}
bpmo#headProcess hasValue Seq2A // will be mapped to BPEL sequence
bpmo#tailProcess hasValue SeqlB // won’t be mapped to BPEL

instance SeqlB memberOf bpmo#SequenceProcess

instance Seq2A memberOf bpmo#SequenceProcess
bpmo#subprocess hasValue {Atl, SeqlB}
bpmo#headProcess hasValue Atl // will be mapped to BPEL invoke
bpmo#tailProcess hasValue Seq2B // won’t be mapped to BPEL

instance Seq2B memberOf bpmo#SequenceProcess
bpmo#subprocess hasValue {At2}
bpmo#headProcess hasValue At2 // will be mapped to BPEL invoke

instance Atl memberOf bpmo#AtomicProcess

instance At2 memberOf bpmo#AtomicProcess

- J

-
<sequence name="SeqlA”>

<sequence name="Seq2A”>
<invoke operation="Atl” ... />
<invoke operation="At2” .../ >
</sequence> </—— end of Seq2A—>

</sequence> </—— end of SeqlA—>
.

Of those SequenceProcesses, only the root and those that are referenced
from a headProcess are mapped to BPEL directly, as can be seen in listing
9.1.5.

LoopProcess Listing 9.1.5 shows examples for LoopProcesses in
BPMO.
Listing 9.1.5 shows the resulting BPEL code for this example.

e N
instance RegisterAllDomain memberOf bpmopr#LoopProcess

bpmopr#hasName hasValue “RegisterAllDomain”
bpmopr#subprocess hasValue RegisterAllDomainSeq]l
bpmopr#hasLoopType hasValue bpmopr#WHILE_DO
bpmopr#hasRule hasValue RegisterAllDomainsRule

instance TryServerAllocation memberOf bpmopr#LoopProcess
bpmopr#hasLoopType hasValue bpmopr#DO_UNTIL
bpmopr#subprocess hasValue ServerAllocationl

96

<while name="RegisterAllDomain”>
<condtion>
</—— here comes the condition breaking the loop —>
</conditon>
<sequence name="RegisterAllDomainSeql”>

</sequence>
</while>

<repeatUntil name="TryServerAllocation”
<sequence name="ServerAllocationl”>

</sequence>
<condtion>
<!—— here comes the condition breaking the loop —>
</conditon>
</repeatUntil >

9.1.6 Mapping Conditional Branches

The mapping of ConditionalProcesses depends on their SelectType.
Here, the mapping can’t be done directly, because there exists no exact counterpart
for the XOR, OR and CASE SelectTypes neither in VbMF nor in BPEL.

Listing 41 shows an example of a XOR-SelectProcess modeled in
BPMO. Differently to the semantic source, where a single axiom provides the
selection rules for all possible execution branches (Select]RuleAxiom), rules are
divided into multiple conditions contained by ConditionalProcesses in the
BPMO Process View.

BPEL Transaction View As shown by Figure 58, a XOR-SelectProcess
can be mapped to a Switch, where every ConditionalProcess is mapped
to a Case contained by the Switch’s case attribute. A ConditionalProcess
without a condition can be mapped to a Case contained by the Switch’s
otherwise attribute. The mapping of a CASE-SelectProcess results in
the same structural form as the mapping of a XOR-SelectProcess.

v BPEL Transaction View
v Sequence _1
v <4 Switch _2
¥ < Case $mymessage.mydata="A'
< Simple Activity _3
¥ < Case $mymessage.mydata='B'
< Simple Activity _4
v <4 Case

< Simple Activity _5

Figure 58: Mapping XOR and CASE SelectProcesses (Generated EMF Editor)

97

instance Selectl memberOf bpmopr#SelectProcess
bpmopr#hasName hasValue ”Selectl”
bpmopr#subprocess hasValue {BPl, BP2, BP3}
bpmopr#hasSelectType hasValue bpmopr#XOR
bpmopr#hasRule hasValue SelectlRule

instance SelectlRule memberOf bpmo#BusinessRule
bpmo#hasName hasValue ”SelectlRule”
bpmo#hasAxiom hasValue SelectlRuleAxiom

axiom SelectlRuleAxiom
definedBy
SelectlRuleAxiom (BP1) :—
?x memberOf MyMessage and
?7x[hasData hasValue ?y] and
7y memberOf MyData and
?7y[switchingValue hasValue 'A’]
SelectlRuleAxiom (BP2) :—
?7x memberOf MyMessage and
?x[hasData hasValue ?y] and
?7y memberOf MyData and
?7y[switchingValue hasValue 'B’].

Listing 41: A SelectProcess in BPMO

An OR-SelectProcess is not mapped directly, instead, every Conditi-
onalProcess is mapped to a Switch containing exactly one Case as illus-
trated by Figure 59.

v BPEL Transaction View
v Sequence _1
v < Switch
¥ < Case $mymessage.mydata="'A’
< Simple Activity _3
v < Switch
¥ < Case $mymessage.mydata=''
< Simple Activity _4
v < Switch
v <4 Case
< Simple Activity _5

Figure 59: Mapping OR SelectProcesses (Generated EMF Editor)

BPEL and WSDL The final mapping result for XOR- and CASE-Select—
Processesinterms of BPEL can be seen in listing 42 while Listing 43 represents
the outcome when the SelectType is set to OR.

98

<if>
<condition >... </condition>

<invoke operation="BPl’ ... />

<elseif >
<condition >... </condition>
<invoke operation="BP2’ ... />

</elseif >

<else>

<invoke operation="BP3’ ... />
</else>

</if>

Listing 42: XOR- and CASE SelectProcess mapping result in BPEL

<if>

<condition >... </condition>
<invoke operation="BPl1’ ... />
</if>
<if>
<condition >... </condition>
<invoke operation="BP2’ ... />
</if>
<if>
<condition >... </condition>
<invoke operation="BP3’ ... />
</if>

Listing 43: OR-SelectProcess mapping result in BPEL

99

instance ServerAllocationl memberOf bpmopr#SequenceProcess
bpmopr#hasName hasValue ”ServerAllocationl”
bpmopr#headProcess hasValue ccbs#ServerAllocation
bpmopr#subprocess hasValue {ccbs#ServerAllocation }

relationInstance bpmopr#hasFaultHandler(ServerAllocationl ,
ManuallnteractionServerAllocationl ,
ccbs#iServerAllocationError)

instance ManuallnteractionServerAllocationl memberOf bpmopr#SequenceProcess
bpmopr#hasName hasValue ”ManuallnteractionServerAllocationl”
bpmopr#headProcess hasValue ccbs#ManuallnteractionServerAllocation
bpmopr#subprocess hasValue {ccbs#ManuallnteractionServerAllocation ,
ManuallnteractionServerAllocation2 }
bpmopr#tailProcess hasValue ManuallnteractionServerAllocation2

concept ccbs#ServerAllocationError
subConceptOf {bpmo#IntermediateMessage , bpmo#Exception}
bpmo#hasData ofType (1 1) hanival#CustomerData

instance ccbs#iServerAllocationError memberOf ccbs#ServerAllocationError

Listing 44: Fault- and Compensation handling in BPMO

9.1.7 Mapping Fault- and Compensationhandling

In BPMO, fault and compensation handling is expressed through instances of the
relations hasFaultHandler and hasCompensationHandler. Listing 44
shows an excerpt of the relevant parts from the OrderProvisioning process. Re-
markable here is that because relationInstances only accept instances, an instance
of the ccbs#ServerAllocationError concept is required in order to express the fault
handling.

Transformed to the BPMO Process View, FaultHandler and Compensa-
tionHandler are implemented as standalone elements, operating on the instance
level.

BPEL Transaction View When mapping the control-flow, for each passed
process the existence of Fault- and CompensationHandlers for this pro-
cess is evaluated. IfaFault-or CompensationHandler exists, the resulting
Activity is wrapped by a Scope. Then, for each FaultHandler in the BP-
MOProcess View a BPELCatch is made in the BPELTransaction View, where
it’s faultName and faultVariable attributes are derived from the related
BPMO Exception concept (e.g.: ccbs#ServerAllocationError).

The finally produced BPEL process is not immediately executable but requires
some refinement and completion which still has to be done by a human engineer.
However almost the whole process is set up and the process flow is transformed
completely as partly shown by Figure 60 which shows the process in an editor

100

<scope name="_6Scope”>

<faultHandlers >
<catch faultName="tns —899235814:ServerAllocationError”
faultVariable="_6_ServerAllocationError”

faultMessageType="tns —899235814:ServerAllocationError”>

<invoke inputVariable="_9_ManuallnteractionServerAllocationRequest”

name="_9" operation="ManuallnteractionServerAllocation”
outputVariable="_9_ManuallnteractionServerAllocationResponse”

partnerLink="CCBService”
portType="tns —899235814: CCBService”/>

</catch>

</faultHandlers>
<sequence>
<invoke inputVariable="_7_ServerAllocationRequest”
name="_7" operation="ServerAllocation”
outputVariable="_7_ServerAllocationResponse”

partnerLink="CCBService”
portType="tns —899235814: CCBService”/>
</sequence>
</scope>
.

J

Listing 45: Fault handling in BPEL (excerpt from OrderProvisionging.bpel)

after it’s generation. Just a view minor tasks and configurations have to be done
in order to execute.

9.2 Open Issues and future Work

Though the transformation realizes a high degree of automation, a closer align-
ment between the meta-models of both sides (BPMO and VbMF) could provide
additional potential for improving automation. Below we list cases, where a closer
alignment would be especially useful:

XML Schema Attributes The BPMO uses the WSML meta-modeling capabil-
ities in order to describe the structure of business data, in deriving new concepts
from the BPMO concept BusinessData. This definition takes place on the con-
cept level. The transformation component’s task is to convert those concepts into
XSD Type definitions, which describe input and output of Web services and vari-
ables in BPEL processes. While it is possible to directly derive meaningful and
valid XSD type definitions without having a more detailed meta-model in BPMO,
this solution has drawbacks concerning the created XSD structure. For example,
when creating a Web service and specifying the corresponding, in XML Schema
in many cases it is an arbitrary design decision wether to use an XSD attribute or
an XSD element to store certain data, which means every Web service has some

101

Procesp Start

OrderPr...

OrderPr...

Fault Han...
Catch

Fault Hagldlers
Catch /

PLESKSe...

)
®
w
=
c
@
™

>
o
o
Z|
b
=

ot

>
a
a
]
]
o

=]

]

UpdateU...

w
®
2
]
-4

=
I
3
c
|-

DirectIC...

DirectIH...

CreateH...

CreateH...

Stogam

Figure 60: Generated OrderProvisioning BPEL (NetBeans BPEL editor)

102

extent of freedom in modeling semantically equivalent data. Contrary, this syn-
tactical distinction is not necessary and can’t be directly expressed in the WSML
meta-model, which means that the transformation component has to specify a
meaningful conversion rule. Currently, the used policy is to use XSD Elements
only. Consequently, Web services either have to be designed with alignment to
the produced types or wrapper services have to be generated. This could be done
automatically, e.g. using XSLT. A more flexible solution for this problem could
be achieved by a more fine-grained meta-definition for BusinessData structures.

Assign activities In BPEL, assign activities are used to initialize variables and
manage data conversion in the control flow. While BPEL has to deal with these
fine-grained structures that have to match syntactically, BPMO focuses only on se-
mantic equivalence and similarity, abstracting the syntax details. In BPMO, some-
thing similar could be achieved using axioms that describe semantical equivalence
between different BusinessData or their parts/attributes. But anyways the axioms
would probably not be sufficient, as they have to be syntactically transformed to
XPath expressions used in BPEL assign activities. A more flexible solution for
this problem could be achieved by a more fine-grained meta-definition for Busi-
nessData conversion which eases a transformation to BPEL.

Axiom to XPath conversion Axioms are very powerful mechanisms for de-
scribing BusinessRules and conditions. However, transforming to XPath on a
syntactic level is non-trivial when considering the full expressiveness of axioms,
so concessions have to be made regarding the form of axiom statements. Further,
BPEL execution engines tend to use their own XPath dialects, e.g. for describing
conditions for switch/cases, loops and assigns. In order to achieve full platform
independence concerning a BPEL engine, it would necessary to provide platform
specific XPath rewriting on deployment.

Reverse engineering existing processes and round-tripping Currently, the
transformation component works one way only (BMPO to VbMF/BPEL). Using
the mechanisms of MDD and the existing intermediate BPMO View, it would be
possible and feasible to implement reverse-engineering capabilities, thus enabling
a (semi-) automated population of the semantic layer using existing BPEL process
and Web service descriptions. This would require a) parsing of BPEL, WSDL and
XSD files and populating corresponding VbMF BPEL View models, b) model-to-
model transformations to populate the BPMO View, and c¢) code generation for
BPMO/WSML.

Consequently, the development of reverse engineering tools and capabilities could
also be used to reflect execution information back to the semantic layer. Addi-

103

tionally to the efforts necessary to realize reverse engineering, this would require
appropriate changes to the meta-models (VbMF as well as BPMO) as well.

104

10 Conclusion

In this thesis, we have introduced a generic view-based integration process for the
generation of executable code from ontologies.

In the first step we use MDSD tools for the creation of ontology meta-model
views as well as conceptual ontology views. These ontology views can be used
then to translate into implementation views for which code generation facilities
already exist. An EMF based ontology meta-model can automatically be derived
from an XML Schema definition which typically exists for Semantic Web ontolo-
gies. XML representations of actual ontologies are employed to import models
conforming to this ontology meta-model. However, the information provided by
this view is fine-grained and complicates model transformations to existing views.
In order to reduce the follow-up development effort, we present an automatic lift-
ing transformation that creates a conceptual ontology view as well as initial im-
porting transformation rules. Additionally we have investigated the cases where
the conceptual ontology view alone is insufficient and manual refinement may
be necessary, i.e. when references to the source have to be preserved or when
concepts need to be treated like instances.

In a second step, to perform a translation between different views, various
model-to-model transformations need to be developed. As this is a complex task,
a systematic analysis of source and target views is necessary. It is important to
identify standard and special cases to ease design decisions. Our approach is
guided by best practices like using examples. They are used to support identi-
fying source information as irrelevant, relevant, hidden, or eventually missing.
Additionally, model correspondence cardinalities can be derived from the exam-
ples. Further, we have shown how design patterns for model transformations can
be applied to address common issues in general as well as special cases identified
during analysis.

In the last step we have covered the integration of the developed transforma-
tion with the overall project architecture. We have shown how single transforma-
tion steps can be composed to a complete transformation workflow. After that,
this workflow is exposed as a Web service, that is integrated with the project de-
ployment BPEL process.

The evaluation of the practical work has shown how the concrete transforma-
tion from BPMO Ontologies to executable BPEL processes actually works, using
a real world use case. Though the reached degree of automation is high, manual
work still has to be done by IT specialists. With adequate funding, most open
issues could be solved within reasonable time.

105

A Zusammenfassung auf Deutsch

In dieser Diplomarbeit stellen wir einen generischen, Sichten-basierten Integra-
tionsprozess fiir die Generierung von ausfiihrbarem Code aus Ontologien vor.

Im ersten Schritt verwenden wir modellgetriebene Softwareentwicklungstools
fir die Erstellung von Metamodell-Sichten sowie Konzeptuellen Sichten auf
Ontologien. Diese Ontologie-Sichten konnen dann in Implementierungs-Sichten
transformiert werden, fiir welche Moglichkeiten der Codegenerierung schon
existiert. Ein EMF basiertes Metamodell kann automatisch aus einer XML
Schema Definition, welche fiir Semantic Web Ontologien iiblicherweise existiert,
erstellt werden. XML Reprisentationen von Ontologien konnen dann benutzt
werden, um Modelle zu importieren, die konform zum Ontologie Metamodell
sind. Die Information dieser Modelle ist jedoch sehr detailliert, was Modell-
transformationen zu bereits existierenden Sichten erschwert. Um den folgenden
Entwicklungsaufwand zu verringen, zeigen wir eine automatische Transforma-
tion, die Konzeptuelle Sichten sowie Import-Transformationsregeln erzeugt.
Weiters untersuchen wir jene Fille, wo eine Konzeptuelle Sicht nicht ausreichend
ist und manuelle Verfeinerung notwendig ist, zum Beispiel wenn Modellreferen-
zen erhalten werden miissen oder wenn Konzepte als Instanzen behandelt werden
miissen.

Im zweiten Schritt miissen mehrere Modelltransformationen entwickelt wer-
den, welche die eigentliche Ubersetzung zwischen den Ontologie- und den
Implementierungs-Sichten durchfiihren. Da dies eine komplexe Aufgabe ist, sind
Quell- und Zielsichten systematisch zu analysieren. Es ist wichtig, zwischen
Standard- und Spezialfillen zu unterscheiden, um Entscheidungen beim Entwurf
zu erleichtern. Unsere Herangehensweise wird von bewéhrten Verfahren geleitet,
wie die Benutzung von Beispielen. Diese werden verwendet, um Informationen
in der Quelle als irrelevant, relevant, versteckt, oder sogar fehlend zu identi-
fizieren. Weiters konnen die Kardinalititen von Modellentsprechungen aus den
Beispielen abgeleitet werden. Danach zeigen wir, wie Entwurfsmuster fiir Mod-
elltransformationen angewandt werden konnen, um allgemeine Probleme sowie
Spezialfille, die wihrend der Analyse identifiziert wurden, zu 16sen.

Im letzten Schritt behandeln wir die Integration der entwickelten Transfor-
mation mit der allgemeinen Architektur des Projekts. Wir zeigen, wie einzelne
Transformationsschritte zu einem kompletten Ablauf kombiniert werden konnen,
der dann als Web Service exponiert und mit dem Deployment BPEL-Prozess in-
tegriert wird.

Die Evaluation der praktischen Arbeit zeigt, wie die konkrete Transforma-
tion von SemBiz Ontologien in ausfiihrbaren BPEL Code eigentlich arbeitet, am
Beispiel eines realen Anwendungsfalls. Obwohl der erreichte Grad an Automa-
tisierung hoch ist, ist dennoch manuelle Nachbearbeitung durch IT-Spezialisten

106

notwendig. Mit ausreichenden Mitteln konnten die meisten Hindernisse inner-
halb einer angemessenen Zeitspanne ausgerdumt werden.

B Lebenslauf Clemens Blamauer

Clemens Blamauer studiert seit 2002 Wirtschaftsinformatik an der Technischen
Universitit Wien. Im Mai 2006 schloss er das Bakkalaureatsstudium, Schwer-
punkt Software Quality Engineering, mit dem Titel “Bakkalaureus der Sozial-
und Wirtschaftswissenschaften (Bakk.rer.soc.oec)” ab. Danach setzte er das Mas-
terstudium Wirtschaftsinformatik mit dem Schwerpunkt Internet Computing fort.
Wihrend seines Studium war er am Institut fiir Software Technologie und Inter-
aktive Systeme (Business Informatics Group) als Tutor fiir die Lehrveranstaltung
”Web Engineering” sowie als Studienassistent am Institut fiir Informationssys-
teme, Abteilung Verteilte Systeme, titig.

C Lebenslauf Daniel Lintner

Daniel Lintner begann das Studium Wirtschaftsinformatik an der Universitit
Wien und an der Technischen Universitdit Wien im Jahr 2001. Er erhielt
seinen Abschluss “Bakkalaureus der Sozial- und Wirtschaftswissenschaften
(Bakk.rer.soc.oec)” mit dem Schwerpunkt Software Quality Engineering im Mérz
2006.

Wihrend seines Studium war er am Institut fiir Software Technologie und Inter-
aktive Systeme (Business Informatics Group) als Tutor fiir die Lehrveranstaltung
”Web Engineering” titig. Seit 2006 setzt er das Masterstudium Wirtschaftsinfor-
matik mit dem Schwerpunkt Internet Computing fort.

107

References

[1] Catalog of omg modeling and metadata specifications.
http://www.omg.org/technology/documents/modeling2008/11/03.

[2] Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/modeling/emf/, 2008/11/03.

[3] The extensible markup language. http://www.w3.org/XML/, 2008/10/14.

[4] From Models to Code with the Eclipse Modeling Framework.
http://www.eclipsecon.org/2005/presentations/EclipseCon20051.pdf,
2008/11/03.

[5] Generative model transformer (gmt) project description.
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/description.html,
2008/11/03.

[6] Mastering eclipse modeling framework.
http://www.eclipsecon.org/2005/presentations/EclipseCon20052008/11/03.

[7] Modelware. http://www.modelware-ist.org/, 2009/01/10.

[8] Modelware - description of work. http://www.modelware-
ist.org/images/ModelWare/wp_overview.gif, 2009/01/14.

[9] Ontology. a resource guide for philosophers. http://www.formalontology.it/,
2008/10/31.

[10] The resource description framework. http://www.w3.org/RDF/, 2008/10/14.

[11] The web ontology language. http://www.w3.org/TR/owl-features/,
2008/10/14.

[12] The web ontology language guide. http://www.w3.org/TR/2004/REC-owl-
guide-20040210/, 2008/10/14.

[13] FOIS "01: Proceedings of the international conference on Formal Ontol-
ogy in Information Systems, New York, NY, USA, 2001. ACM. Conference
Chair-Nicola Guarino and Conference Chair-Barry Smith and Conference
Chair-Christopher Welty.

[14] Introduction to openarchitectureware 4.1.2.
http://www.dsmforum.org/events/MDD-TIF07/0AW.pdf, 2009/01/08.

[15] Sembiz project home page. http://www.sembiz.org/, 2008/10/30.

108

[16] Owl-s: Semantic markup for web services.
http://www.w3.org/Submission/OWL-S/, 2008/10/31.

[17] Wsml language reference. http://www.wsmo.org/TR/d16/d16.1/v1.0/,
2008/10/31.

[18] Web services architecture. http://www.w3.0org/TR/2004/NOTE-ws-arch-
20040211/, 2008/10/14.

[19] C. Alexander. The city as a mechanism for sustaining human contact. Uni-
versity of California in Berkeley, California, 1966.

[20] T. Berners-Lee, J. Hendler, and L. Ora. The semantic web. Scientific Amer-
ican, 284(5):34-43, May 2001.

[21] J. Bézivin, G. Olsen, F. Allilaire, S. Bonnet, T. Bailey, K. Mantell, and R. Vo-
gel. D1.6-3 identification of transformation patterns. Information Society
Technologies, September 2006.

[22] G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B. Selic. An mda mani-
festo. MDA Journal, May 2004.

[23] An introduction to Model Driven Architecture.
http://www.ibm.com/developerworks/rational/library/3100.html,
2008/10/30.

[24] E. Cimpian, H. Meyer, D. Roman, A. Sirbu, N. Steinmetz, S. Staab, and
I. Toma. Ontologies and Matchmaking, chapter 3, pages 19 — 54. Springer
Berlin Heidelberg, 2008.

[25] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer,
B. Konig-Ries, J. Kopecky, R. Lara, E. Oren, A. Polleres, J. Scicluna, and
M. Stollberg. D2v1.3 Web Service Modeling Ontology (WSMO). Digital
Enterprise Research Institute, 2006.

[26] J.de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer,
and D. Fensel. D16.1v0.21 the web service modeling language wsml. Digital
Enterprise Research Institute, 2005.

[27] S. Dustdar, H. Gall, and M. Hauswirth. Software-Architekturen fiir Verteilte
Systeme. Springer-Verlag Berlin Heidelberg, 2003.

[28] S. Dustdar, J. Hoffmann, T. Holmes, A. Sirbu, H. Tran, and U. Zdun. D2.2
Semantic Querying, Discovery, and Composition Framework. Distributed

109

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Systems Group Information Systems Institute Vienna University of Technol-
ogy Austria, Digital Enterprise Research Institute Leopold-Franzens Univer-
sitdt Innsbruck Austria, 2007.

C. A. Ellis and G. J. Nutt. Office information systems and computer science.

ACM Comput. Surv., 12(1):27-60, 1980.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

T. R. Gruber and T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5:199-220, 1993.

M. Hammer. Beyond reengineering: How the process-centered organization
is changing our work and our lives. Harper Business, 1996.

C. Hentrich and U. Zdun. Patterns for business object model integration in
process-driven and service-oriented architectures. In PLoP ’06: Proceedings
of the 2006 conference on Pattern languages of programs, pages 1-14, New
York, NY, USA, 2006. ACM.

C. Hentrich and U. Zdun. Patterns for process-oriented integration in
service-oriented architectures. In Proceedings of 11th European Conference
on Pattern Languages of Programs (EuroPlop 06), pages 141-189, Kon-
stanz, Germany, 2006. Universititsverlag Konstanz.

M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic
Business Process Management: A Vision Towards Using Semantic Web Ser-
vices for Business Process Management. In Proceedings of the 2005 IEEE
International Conference on e-Business Engineering (ICEBE), 2005.

T. Holmes, H. Tran, U. Zdun, and S. Dustdar. Modeling human aspects of
business processes - a view-based, model-driven approach. In I. Schiefer-
decker and A. Hartman, editors, ECMDA-FA, volume 5095 of Lecture Notes
in Computer Science, pages 246-261. Springer, 2008.

I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Semantic web
architecture: Stack or two towers? pages 37—41. 2005.

IEEE. IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE, 2000.

D. Jordan, J. Evdemon, A. Alves, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha, C. K. Liu, R. Kha-
laf, D. Konig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri,

110

and A. Yiu. Web services business process execution language version 2.0.
OASIS, April 2007.

[40] G. Keller, M. Niittgens, and A.-W. Scheer. Semantische prozeBmodellierung
auf der grundlage ereignisgesteuerter prozeBketten (epk). Saarbriicken,
1992.

[41] F. Leymann and D. Roller. Web Services and Business Process Management.
IBM Systems Journal, 41(2), 2002.

[42] P. Mayer and D. Liibke. Towards a BPEL unit testing framework. In Pro-
ceedings of the 2006 workshop on Testing, analysis, and verification of web
services and applications (TAV-WEB). ACM, 2006.

[43] A. Miiller and G. Miiller. Model transformation by-example: An eclipse
based framework. Master’s thesis, Institut fiir Softwaretechnik und Interak-
tive Systeme, Vienna University of Technol- ogy Austria, 06 2008.

[44] OMG. Common Warehouse Metamodel, Version 1.1. The Object Manage-
ment Group Inc., 2003.

[45] OMG. MDA Guide Version 1.0.1. The Object Management Group Inc.,
2003.

[46] OMG. Meta Object Facility (MOF) Core Specification, Version 2.0. The
Object Management Group, Inc. (OMG), 2006.

[47] OMG. Object Constraint Language, Version 2.0. The Object Management
Group Inc., 2006.

[48] OMG. MOF 2.0 /XMI Mapping, Version 2.1.1. The Object Management
Group Inc., 2007.

[49] OMG. OMG Unified Modeling Language (OMG UML), Infrastructure,
V2.1.2. The Object Management Group Inc., 2007.

[50] OMG. OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2. The Object Management Group Inc., 2007.

[51] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Speci-
fication, Version 1.0. The Object Management Group, Inc. (OMG), 2008.

[52] OMG. MOF Model to Text Transformation Language, v1.0. The Object
Management Group, Inc. (OMG), 2008.

111

[53] Ontology Definition Metamodel. http://www.omg.org/docs/ptc/07-09-
09.pdf, 2008/11/19.

[54] J. Z. Pan and 1. Horrocks. Metamodeling architecture of web ontology lan-

guages. In In Proceedings of the Semantic Web Working Symposium, pages
131-149, 2001.

[55] Y. Pan, G. Xie, L. Ma, Y. Yang, Z. Qiu, and J. Lee. Model-Driven Ontology
Engineering. Journal on Data Semantics, pages 57-78, 2006.

[56] A.J. Pretorius. Ontologies - introduction and overview. unpublished, 2004.
[57] E. Seidewitz. What models mean. IEEE Softw., 20(5):26-32, 2003.

[58] O. Shafig, M. Moran, E. Cimpian, A. Mocan, M. Zaremba, and D. Fensel.
Investigating semantic web service execution environments: A comparison
between wsmx and owl-s tools. In ICIW ’07: Proceedings of the Second

International Conference on Internet and Web Applications and Services,
page 31, Washington, DC, USA, 2007. IEEE Computer Society.

[59] H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach
for Reducing the Development Complexity in Process-Driven SOA. In Int.
Conf. on Business Process and Services Computing (BPSC), 2007.

[60] H. Tran, U. Zdun, and S. Dustdar. View-based integration of process-driven
soa models at various abstraction levels. In R.-D. Kutsche and N. Milanovic,
editors, Proceedings of First International Workshop on Model-Based Soft-
ware and Data Integration MBSDI 2008, pages 55 — 66. Springer, 2008.

[61] H. Tran, U. Zdun, and S. Dustdar. View-based reverse engineering approach
for enhancing model interoperabiity and reusability in process-driven soas.
In 10th International Conference on Software Reuse (ICSR’08). Springer,
2008.

[62] M. Uschold and M. Gruninger. Ontologies: Principles, methods and appli-
cations. Knowledge Engineering Review, 11:93—-136, 1996.

[63] M. Wimmer, T. Reiter, H. Kargl, G. Kramler, E. Kapsammer, W. Rets-
chitzegger, W. Schwinger, and G. Kappel. Lifting metamodels to ontologies
- a step to the semantic integration of modeling languages. In ACM/IEEE 9th
International Conference on Model Driven Engineering Languages and Sys-
tems, volume 4199 of Lecture Notes in Computer Science, pages 528-542.
Springer Berlin Heidelberg, 11 2006.

112

[64] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards model trans-
formation generation by-example. In HICSS '07: Proceedings of the 40th
Annual Hawaii International Conference on System Sciences, page 285b,
Washington, DC, USA, 2007. IEEE Computer Society.

113

	1 Introduction (by Clemens Blamauer and Daniel Lintner)
	1.1 Problem definition
	1.2 Structure of this work

	2 The Workflow Technological Space (by Daniel Lintner)
	2.1 Business Process Modeling
	2.2 SOA and Web Services

	3 The Ontology Technological Space (by Daniel Lintner)
	3.1 Ontologies in the field of Computer Science
	3.2 Ontologies in the field of Semantic Web
	3.3 Ontologies in the field of Semantic Web Services

	4 The Model Driven Engineering (MDE) Technological Space (by Clemens Blamauer)
	4.1 Model Driven Architecture (MDA)
	4.2 Eclipse Modeling Framework (EMF)
	4.3 Viewbased Modeling Framework (VbMF)
	4.3.1 Core View and extension mechanisms
	4.3.2 VbMF ControlFlow View
	4.3.3 VbMF Collaboration View
	4.3.4 VbMF Information View

	5 View-based Ontology Integration Process (by Clemens Blamauer and Daniel Lintner)
	6 View Creation (by Clemens Blamauer)
	6.1 Related Work
	6.1.1 Ontology Definition Metamodel (ODM)
	6.1.2 EMF-based Ontology Definition Metamodel
	6.1.3 ModelCVS
	6.1.4 Differences between Ontologies and MDE

	6.2 Create Ontology Metamodel
	6.3 Create Ontology Import
	6.4 Create View Metamodel
	6.5 View Import
	6.6 Manual View and Import Completion

	7 Create Transformation Rules (by Daniel Lintner)
	7.1 Related Work
	7.1.1 Modelware
	7.1.2 Model Transformations By-Example

	7.2 Create Examples
	7.3 Deriving Model Correspondences
	7.3.1 Classification of source elements
	7.3.2 Identification of element correspondences
	7.3.3 Conclusion

	7.4 Design Transformation Rules
	7.4.1 Incomplete
	7.4.2 Parameters
	7.4.3 Precomputed
	7.4.4 Model Navigator
	7.4.5 Path Reminder
	7.4.6 Metamodel Polymorphic Rules
	7.4.7 Test and Evaluation

	8 Integration and Deployment (by Clemens Blamauer)
	8.1 Integration of single Model Transformation Steps
	8.1.1 Transformation Workflow
	8.1.2 Workflow Component Adapters

	8.2 Transformation Deployment
	8.2.1 Web Service Deployment
	8.2.2 Sembiz Process Deployment process

	9 Evaluation (by Clemens Blamauer and Daniel Lintner)
	9.1 Evaluation of the practical transformation task
	9.1.1 Mapping the Process Setup
	9.1.2 Mapping the Process Start and End
	9.1.3 Mapping Atomic Processes
	9.1.4 Mapping Atomic Process Invariants
	9.1.5 Mapping Composite Processes
	9.1.6 Mapping Conditional Branches
	9.1.7 Mapping Fault- and Compensationhandling

	9.2 Open Issues and future Work

	10 Conclusion (by Clemens Blamauer and Daniel Linter)
	A Zusammenfassung auf Deutsch
	B Lebenslauf Clemens Blamauer
	C Lebenslauf Daniel Lintner

