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“It's a magical world, Hobbes ol' buddy.  

Let's go exploring!” 
[Calvin and Hobbes] 
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Zusammenfassung 

Seichte Küstengewässer zählen durch anthropogene Eingriffe wie Überfischung, 

Eutrophierung oder Verbauung zu den meist gefährdetsten marinen Systemen [1] und 

könnten, sollte sich der Trend auch in Zukunft fortsetzen, einen massiven 

Biodiversitätsverlust erfahren [2]. Keine Umweltvariable von ökologischer Bedeutung hat 

sich während der letzten Jahrzehnte weltweit dramatischer verändert, als gelöster Sauerstoff 

[3]. “Todeszonen” am Meeresboden, verursacht durch Hypoxie (<2.0 ml O2 l-1) und Anoxie 

(kein Sauerstoff), stehen an der Spitze aufkommender Umweltprobleme [4], und könnten sich 

in den kommenden Jahren zunehmend verschärfen [5]. 

Die Nordadria, eines der anthropogen am stärksten beeinträchtigten Gebiete des Mittelmeeres 

[6, 7], weist aufgrund sommerlicher Stratifikation der Wassersäule eine lange Geschichte 

saisonaler Hypoxie/Anoxie auf [8]. Vermehrte Nährstoffzufuhr während der letzten 

Jahrzehnte hat auch hier die Häufigkeit und Schwere von Sauerstoffkrisen deutlich erhöht.  

Dennoch, obwohl Vorkommen und Ausdehnung von hypoxischen/anoxischen Gebieten 

weltweit zunehmen, bleiben Voraussagen über deren Beginn und Auftreten schwierig und 

gezielte Feldforschung somit nahezu unmöglich. Unsere Arbeitsgruppe löst diese Aufgabe 

durch den Einsatz eines Unterwasserinstrumentes, welches kleinflächig Sauerstoffkrisen im 

Feld erzeugt und aufzeichnet. Mit Hilfe dieses Gerätes können komplexe Prozesse und 

Interaktionen innerhalb der benthischen Lebensgemeinschaft umfassend im natürlichen 

Lebensraum dokumentiert werden. Dazu zählen unter anderem Verhaltenreaktionen, intra- 

und interspezifische Interaktionen sowie Mortalitätsabfolgen, welche in Bezug zu bestimmten 

Sauerstoffgrenzwerten gesetzt werden. 

Die Doktorarbeit umfasst vier Veröffentlichungen:  

 

B. Riedel et al., CIESM Workshop Monographs no°35 (in Druck) gibt einen Überblick über 

Sauerstoffkrisen in der Nordadria und mögliche Auswirkungen vom Art- bis zum 

Ökosystemniveau. Potentielle Verbindungen zwischen Klimawandel und Eutrophierung 

werden diskutiert [9]. 

 

M. Stachowitsch et al., Limnol. Oceanogr.: Methods 5, 344 (2007) geht speziell auf das 

technische Design unseres Unterwassergerätes (EAGU; Experimental Anoxia Generating 

Unit) und dessen Handhabung im Feld ein [10].  
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B. Riedel et al., J. Exp. Mar. Biol. Ecol. 367, 17 (2008) beschreibt ein Experiment, in dem ein 

zwischenzeitlicher Sauerstoffanstieg durch unvorhergesehenen Wasseraustausch zu einer “2-

Phasen-Hypoxie” führt. Alle initiierten Verhaltenreaktionen wurden während dieses 

Sauerstoffanstieges unterbrochen und erst bei hypoxischen Bedingungen wieder 

aufgenommen, womit die direkte Beziehung zwischen Sauerstoffwert und Verhalten 

demonstriert wird [11]. 

 

B. Riedel et al., Mar. Biol. 153, 1075 (2008) beschreibt zuvor nie beobachtete räuberische 

Beziehungen zwischen den Seeanemonen Cereus pedunculatus und Calliactis parasitica und 

dem Schlangenstern Ophiothrix quinquemaculata innerhalb eines knappen, fast-anoxischen 

Zeitfensters. Unsere Beobachtungen deuten darauf hin, dass Anoxie-tolerante Anemonen 

gegenüber empfindlicheren Ophiuriden einen Vorteil aus solchen kritischen Situation ziehen 

können [12].  

 

 

Summary 

In the marine environment, shallow coastal seas are the most endangered systems [1]. 

Through a series of impacts ranging from overfishing, eutrophication to coastal development, 

they are likely to experience the largest change in biodiversity should present trends in human 

activity continue [2]. No other crucial environmental variable has changed more drastically in 

shallow coastal marine ecosystems worldwide than dissolved oxygen (DO) [3]. So-called 

dead zones, extensive mortalities caused by hypoxia (DO <2.0 ml l-1) and anoxia (no oxygen) 

in bottom-water layers, top the list of emerging environmental challenges [4], and the problem 

is likely to escalate in the coming years [5]. 

The Northern Adriatic Sea, the most impacted system of the entire Mediterranean [6, 7], has a 

long history of seasonal hypoxia and anoxia due to water column stratification [8]. Over the 

last decades, increasing nutrient and organic loads have triggered considerable environmental 

changes, with an enhanced frequency and severity of benthic low DO events.  

Even though the frequency and extension of dead zones are increasing worldwide, their onset 

and extent remain difficult to predict and to study in the field. Our working group addresses 

this problem by deploying an underwater-chamber that artificially induces small-scale anoxia 

in situ. This approach fully documents the complex processes and interactions expected in a 
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community-level setting in the natural environment, e.g. behavioural reactions, intra- and 

interspecific interactions, and mortality sequences, all related to specific oxygen-thresholds.  

 

This thesis encompasses four publications: 

 

B. Riedel et al., CIESM Workshop Monographs no°35 (in press) provides a brief overview of 

hypoxia/anoxia in the Northern Adriatic and of responses from the species to the ecosystem 

level. The potential coupling between climate factors and coastal eutrophication is discussed 

[9]. 

 

M. Stachowitsch et al., Limnol. Oceanogr.: Methods 5, 344 (2007)  introduces the underlying 

issues of documenting oxygen crises and the Univ. of Vienna’s approach, specifies the 

technical design of our underwater-device and outlines the in situ procedures [10]. 

 

B. Riedel et al., J. Exp. Mar. Biol. Ecol. 367, 17 (2008) describes an experiment in which an 

intervening reoxygenation peak due to water intrusion created a two-phase oxygen decline. 

All initiated behaviours were interrupted during the reoxygenation and re-appeared in the 

second phase, demonstrating the direct relationship between oxygen levels and behaviour 

[11]. 

 

B. Riedel et al., Mar. Biol. 153, 1075 (2008) deals with previously unobserved predatory 

interactions between the sea anemones Cereus pedunculatus and Calliactis parasitica and the 

brittle star Ophiothrix quinquemaculata in a narrow, near-anoxic window. Our observations 

suggest that the highly resistant sea anemones benefit by taking advantage of ophiuroids that 

are more vulnerable to anoxic conditions [12]. 
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Abstract 

Shallow coastal seas are most endangered (Halpern et al., 2008) and, through a series of 

impacts ranging from overfishing, eutrophication to coastal development, they are likely to 

experience the largest change in biodiversity should present trends in human activity continue 

(Jenkins, 2003). No other crucial environmental variable has changed more drastically in 

shallow coastal marine ecosystems worldwide than dissolved oxygen (DO) (Diaz, 2001). 

“Dead zones”, caused by hypoxia (DO<2.0 ml l-1) and anoxia (no oxygen) in bottom-water 

layers, top the list of emerging environmental challenges (UNEP, 2004), and the problem is 

likely to become worse in the coming years (Wu, 2002; Selman et al, 2008).  

The Adriatic Sea is the most impacted system of the entire Mediterranean (Danovaro, 2003; 

Lotze et al., 2006). Over the last decades, increasing nutrient and organic loads have triggered 

considerable environmental changes, with an enhanced frequency and severity of benthic 

dystrophic events (Danovaro and Pusceddu, 2007). 

We provide here a brief overview of low DO events in the Northern Adriatic and responses 

from the species to the ecosystem level. The potential coupling between climate factors and 

coastal eutrophication is discussed. 

 

Northern Adriatic hypoxia 

The Northern Adriatic Sea is a recognized area for long-term decreases in DO concentration 

and associated benthic community changes and mortalities (Stachowitsch, 1984, 1991; Justić 

et al., 1987). It combines many features known to be associated with low DO events 

(Stachowitsch and Avcin, 1988): it is semi-enclosed, shallow (<50 m) and is characterized by 

soft bottoms, a high riverine input (mainly from the Po River), high productivity and long 

water residence times (Ott, 1992). As elsewhere in the northern hemisphere, this constellation 

can be associated with seasonal hypoxia and anoxia in late summer/early fall. Moreover, the 

combination of certain meteorological and hydrological conditions such as calm weather 
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and/or reduced current circulation (Franco and Michelato, 1992; Malej and Malačič, 1995) 

can trigger hypoxia/anoxia. 

Oxygen depletions, often associated with massive marine snow events, have been noted 

here periodically for centuries (Crema et al., 1991), but their frequency and severity have 

markedly increased during recent decades. High anthropogenic input of nutrients into the 

Northern Adriatic (Justić et al., 1995; Danovaro, 2003; Druon et al., 2004) has led to a higher 

production and deposition of organic matter than there is oxygen supply to allow its 

decomposition (Rabalais and Turner, 2001; Bishop et al., 2006). The average long-term 

decrease in water body transparency here over the 20th century, accompanied by decreasing 

bottom oxygen concentrations since the 1950s, has been convincingly outlined by Justić 

(Justić et al., 1987; Justić, 1988). Since the 1980s, severe oxygen deficiencies have been 

reported here on a regular basis (e.g. Fedra et al., 1976; Stachowitsch, 1984; Hrs-Brenko et 

al., 1994; Penna et al., 2004). The impacted areas range from restricted areas (several km²; 

Stachowitsch, 1992) to approx. 250 km² (Faganeli et al., 1985) to 4000 km² (Stefanon and 

Boldrin, 1982; D. Degobbis, pers. comm.), ultimately affecting every region (Fig. 1). 

The Northern Adriatic is therefore a case study for recurring perturbations involving anoxia 

and marine snow events and shows profound effects on the species to community level 

(Šimunović et al., 1999; Barmawidjaja et al., 1995; Benović et al., 2000; Kollmann and 

Stachowitsch, 2001).  

 

High-biomass suspension feeders and  benthic control 

Macroepifauna communities are widely distributed in the Northern Adriatic (Fedra, 1978; 

Zuschin et al., 1999) and largely consist of decimetre-scale, interspecific, high-biomass 

aggregations termed multi-species clumps (Fedra et al., 1976) or bioherms (Fig. 2): one or 

more shelly hard substrates provide the base for sessile, suspension-feeding colonizers 

(mostly sponges, ascidians, anemones or bivalves), which in turn serve as an elevated 

substrate for additional vagile and hemi-sessile organisms (mostly brittle stars and crabs) 

(Zuschin and Pervesler, 1996). The presence of a well-developed macroinfauna is expressed 

in the early designations (Schizaster chiajei-community) of the benthic communities here by 

Vatova (1949) and later authors (Gamulin-Brida, 1967; Orel and Menea, 1969; Orel et al., 

1987; Occhipinti-Ambrogi et al., 2002).  

The predominant, wide-ranging macroepibenthic community was named the ORM- 

community based on the biomass dominants, the brittle star Ophiothrix quinquemaculata, the 
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sponge Reniera sp. and the ascidians Microcosmus spp. The mean biomass, measured as wet 

weight, amounted to 370 (±73) g/m² (Fedra et al., 1976).  

 

In the shallow Northern Adriatic, the benthos is not merely a receiving compartment. Rather, 

complex feedback processes are in effect, with the benthic subsystem controlling and helping 

dampen oscillations in the pelagic subsystem (Ott, 1992). Ott and Fedra (1977) estimated that 

the suspension feeders here can remove all the suspended material in the water column every 

20 days. This is on the same order of magnitude as calculated for the Oosterschelde (Herman 

and Scholten, 1990), Swedish waters (Loo and Rosenberg, 1989), the USA (Cloern, 1982) 

and France (Hily, 1991). Such communities have therefore been termed a “natural 

eutrophication control” (Officer et al., 1982) and play a key role in the stability of the entire 

ecosystem.  

The repeated low DO events, coupled with commercial fishing activities during recent 

decades, however, have led to the destruction of epifauna-based benthic communities in many 

areas (Stachowitsch and Fuchs, 1995; Kollmann and Stachowitsch, 2001; Fig. 3). Their loss 

makes the system more sensitive to perturbations. Other key functional processes for the 

overall system, such as bioturbation and related sedimentary activities, may also be altered by 

hypoxia/anoxia and the corresponding loss of biodiversity (Snelgrove, 1998; Rosenberg, 

2001; Levin, 2002). The current status of the ORM-community makes it unlikely that it fully 

fulfils its pre-mortality regulatory capacity. 

 

Consequences on all levels  

The point at which benthic animals are affected by low oxygen concentrations varies, but first 

indications of stress generally begin to appear when oxygen drops below 2.0-3.0 mg l-1 (1.4-

2.1 ml l-1; Rabalais and Turner, 2001). Direct effects of exposure to hypoxia such as altered 

behaviour, physical inactivity and mass mortalities are well documented (Stachowitsch, 1984; 

Buzzelli et al., 2002; Montagna and Ritter, 2006). The larger, mobile benthos, for example, is 

often able to migrate out of the affected area, whereby the less mobile fauna – unable to 

escape or avoid hypoxic waters – exhibits a series of behavioural patterns in response to 

decreasing oxygen concentrations (Mistri, 2004). Infauna, for example, emerges from the 

sediment. Epifaunal organisms attempt to position themselves above the lowermost hypoxic 

bottom layer, either by moving onto higher substrates (Stachowitsch, 1991) or raising their 

bodies (i.e. arm-tipping brittle stars, siphon-stretching bivalves or tiptoeing crustaceans; 

reviewed by Diaz and Rosenberg, 1995).  

11



Tolerance to hypoxia/anoxia in itself, however, is a question of physiological capacity and 

adaptability, which varies from species to species (Hagerman, 1998). Two “strategies”, 

depending on duration and intensity of the low oxygen bout, are possible. The first is to  

maintain aerobic respiration (e.g. increase in respiration rate, number of red blood cells, flow 

of blood through respiratory surfaces, or more effective use of respiratory pigments) as long 

as possible. The second is to resort to anaerobic respiration and reduce overall metabolism 

(e.g. resting, inactivity, down regulation of protein synthesis and certain regulatory enzymes) 

if severe hypoxia or anoxia prevails (Hagerman, 1998; Burnett and Stickle, 2001; Wu, 2002).  

However, once anaerobic conditions and H2S develop, mass mortalities of nearly all 

organisms occur (Stachowitsch, 1984).  

Diaz and Rosenberg (1995) reviewed the effects of hypoxia on benthic organisms. In general, 

fishes are more sensitive than crustaceans and echinoderms, whereby polychaetes and 

bivalves are the most tolerant. Within each taxon, however, there is considerable variability, 

dependent on the respective life habits (Gray et al. 2002). 

In the Northern Adriatic, sea anemones are particularly tolerant to hypoxia due to a 

combination of physiological and behavioural adaptations (see Sassaman and Mangum, 1972; 

Shick, 1991). This is confirmed by other field and laboratory studies (Jørgensen, 1980; Wahl, 

1984). In the 1983 mortality, for example, one week after the onset of the event, survivors 

predominantly included individual anthozoans such as Ragactis pulchra, Cerianthus 

membranaceus and Epizoanthus erinaceus (Stachowitsch, 1984). In our recent, artificially 

induced anoxia experiments in situ, Cereus pedunculatus was among the most tolerant species 

and survived more than 83 hours of anoxia and a final H2S concentration of about 160 µM l-1 

(Riedel et al., in review). This information will be synthesized into a catalogue of behaviours, 

allowing indicator species to be defined and the status of benthic communities to be assessed.   

 

Hypoxia may severely alter community composition by killing sensitive species but favouring 

a few tolerant forms (Dauer, 1993), and decreasing recruitment and growth (Breitburg 1992; 

Miller et al. 2002; Stierhoff et al. 2006). This will impact both the apparent and the potential 

biodiversity, e.g. pelagic resting stages in the sediment – important agents of local re-

colonization – will also be decimated (Boero and Bonsdorff, 2007; Danovaro and Pusceddu, 

2007). Moreover, changes in functional types/groups (including ecosystem engineers; Crain 

and Bertness, 2006) occur along hypoxic gradients, influencing overall ecosystem properties 

(Pearson and Rosenberg, 1978; Diaz and Rosenberg, 1995): Suspension feeders might be 

replaced by deposit feeders, macrobenthos by meiobenthos, bioturbators may be lost, 
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phytoplankton communities can become dominated by nanoplankton and microflagellates. 

The result is an unbalanced community dynamics, altering both function and composition in 

unforeseen ways (Grall and Chauvaud, 2002). 

Beyond these direct effects, there is increasing evidence for indirect effects (Eby et al., 

2005). These include altered competition and predator–prey interactions, whereby predation 

rates increase or decrease depending on the relative tolerances of predator and prey to anoxia 

(Breitburg et al., 1994; Sagasti et al., 2001; Decker et al., 2004; Riedel et al., 2008). Thus, 

hypoxia also affects the trophodynamics of marine ecosystems. Wu (2002) suggests a general 

shift from K-selected to r-selected species, and from complex to simple food chains. 

 

Such scenarios, which are increasingly unfolding in shallow coastal waters around the world 

(Selman et al., 2008), represent undisputable worst-case situations for biodiversity and 

ecosystem function. The result is local extinction (Solan et al., 2004) and large-scale 

homogenization at the lowest possible level (Sala and Knowlton, 2006). The ultimate 

reflection will be a total loss of ecosystem services beyond the seas as navigational highways. 

 

Climate change – adding insult to injury?  

For the Mediterranean, many models predict a temperature increase by an average 3 °C until 

the end of the 21st century, with a larger warming in summer than the global average. Mean 

precipitation is expected to decrease, especially in summer, mainly due to the northward 

extension of the descending branch of the subtropical Hadley circulation (Li et al, 2006). 

However, future impacts on the coastal system will vary greatly at regional scales (Scavia et 

al., 2002). Clearly, the trends will be determined by complex interactions between 

temperature, precipitation, runoff, currents, salinity and wind.  

 

Climate change will influence hypoxia/anoxia both directly and indirectly. The mechanism 

involves changes in coastal eutrophication by two major pathways (Fig. 4):  

1) Temperature-related changes in atmospheric circulation patterns will alter hydrological 

cycles, leading to shifts in precipitation, evapotranspiration and subsequent changes in river 

quantity and quality regimes (Miller and Russell, 1992). Specifically, changes in the 

magnitude and seasonal patterns of freshwater and terrestrially derived nutrient inputs will 

profoundly affect coastal salinity, turbidity, water residence time and primary production 

(Justic et al., 2005; Harley et al. 2006). Prolonged residence times during low-flow conditions 

will promote algal blooms (Relexans et al. 1988), whereas storm-related high river flows 
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result in higher nutrient inputs and stronger vertical salinity gradients. Both conditions favour 

the development of hypoxia/anoxia in bottom waters (Paerl et al. 1998; Scavia et al. 2002). 

2) A warmer atmosphere leads to warmer water temperatures, which have a lower oxygen 

content available for respiration by aquatic organisms. Moreover, increased summertime 

surface temperatures, especially if coincident with reduced winds, will lead to more persistent 

stratification. This is a prerequisite for prolonged hypoxia/anoxia. (Justic et al. 2007; Thuiller, 

2007). Finally, both photosynthesis and respiration are temperature-dependent processes and 

thus the rates of production, decomposition, and nutrient cycling are likely to increase 

(Kennedy et al. 2002; Harley et al. 2006). 

 

In one of the few available models for the Northern Adriatic, Vichi et al (2003) predicted 

precisely such an overall enhancement of the water-column stratification on an annual basis, 

with stronger intensification during the summer. The diffusion of oxygen and nutrients 

between surface and bottom layers was reduced, and the transfer of organic matter through the 

food web shifted towards the smaller components of the microbial web. 

 

Benthic and pelagic species will therefore be exposed to unusual temperature, salinity, and 

oxygen conditions. These factors will take most of the fauna to their physiological limits. 

Such stressed organisms, coupled with hypoxia-related denuded areas, will provide little 

resistance to disease and the immigration of alien species (Harvell et al., 2002; Osovitz and 

Hofmann, 2007).   

 

Perspectives 

Ecosystem stability is a crucial topic in modern ecology. In the Northern Adriatic, instability 

has been introduced by the recurring perturbations involving anoxia and marine snow events 

along with intensive dredging and trawling activities. Currently, the frequency of such 

disturbances greatly exceeds the duration of recolonization process. The situation in the 

Northern Adriatic has been described as “rapid death, slow recovery” (Stachowitsch, 1991).  

Climate change is likely to affect hypoxia and anoxia in myriad ways and on different 

levels. Most of the anticipated changes will involve increased hypoxia/anoxia. Our current 

research (Stachowitsch et al., 2007) on artificially induce oxygen depletion events on the sea 

floor – including time-lapse documentation – provides a foretaste of what mass mortality, 

biodiversity loss and local extinction here will look like (www.marine-hypoxia.com).   
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Figure 1. Bottom anoxias in the Northern Adriatic between 1974 and 1989. Virtually no area 

is unaffected and the number of unnoticed events is probably much higher (from Ott, 1992). 
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Figure 2. Typical aspect of ORM-community at 24 m depth, Gulf of Trieste. a) Dense 

aggregation of suspension-feeding brittle star Ophiothrix quinquemaculata on the sponge 

Reniera sp.; b) Multi-species clump, consisting of the ascidians Phallusia mammilata and 

Microcosmus spp., the sea anemone Cereus pedunculatus, various sponges, the sea cucumber 

Ocnus planci and O. quinquemaculata. [Photos: M. Stachowitsch and A. Haselmair]. 
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Figure 3. Mortality scenario after anoxia. a) Decomposing sponge bioherm with mucus cover 

and entangled crabs (Pilumnus spinifer, Pisidia longicornis); b) Typical late aspect of mass 

mortality. Decomposing sea star Astropecten bispinosus and sipunculids. Note lighter 

sediment mounds. [Photos: M. Stachowitsch]. 
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Figure 4. Coupling between climate variables and eutrophication. Possible pathways for the 

development of hypoxia and anoxia in shallow coastal areas. Broken arrows indicate feedback 

control (adapted from Justić et al., 2001; 2007). 
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Running head: Continuous documentation of anoxia 

 

Abstract 

Oxygen depletion events and anoxia are a key threat to shallow marine coastal seas 

worldwide. The mortalities they trigger, however, are difficult to document in full. We 

developed an underwater device to experimentally induce hypoxia and anoxia on the seafloor. 

The EAGU (Experimental Anoxia Generating Unit) combines a time-lapse camera and flashes 

with an array of sensors and a datalogger. The unit was successfully deployed in 24 m depth in 

the Northern Adriatic Sea for 3 to 5 d and yielded detailed information on the behavior and 

sequence of mortality of macrobenthic organisms – both epi- and infauna – under decreasing 

oxygen and increasing H2S concentrations. This unit, designed as a chamber with an instrument 

lid, also can be deployed in an open configuration to document low dissolved oxygen (DO) 

events. The equipment can provide data for a catalog of behavioral patterns, define indicator 

species, help reconstruct past mortalities, and better gauge the stability and status of benthic 

communities. 

 

Introduction 

“Dead zones” in the world’s oceans are at the top of the list of emerging 

environmental challenges (UNEP 2004). The nearly 150 such zones that have been identified 

(Diaz 2001; Diaz et al. 2004) are caused by oxygen deficiency in bottom-water layers. Waters 

with oxygen concentration below 2.0 mL L–1 are termed hypoxic, with anoxia referring to 

oxygen-free conditions (Diaz and Rosenberg 1995). The Northern Adriatic Sea is one such 

zone and is a case study for long-term decrease in dissolved oxygen concentration and 

associated benthic community changes and mortalities (Stachowitsch 1984; 1991; Justic´ et 
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al. 1997). It combines many of the characteristics known to promote such events, such as 

relatively shallow waters, soft-bottoms, seasonal stratification and long water residence times 

(Ott 1992). Furthermore, it suffers from eutrophication, which is known to trigger and 

increase the severity of oxygen depletion events (Rabalais and Turner 2001; Grall and 

Chauvaud 2002; Gray et al. 2002). Finally, the Northern Adriatic has repeatedly experienced 

extensive and dense marine snow and so-called “mucilage” events, which are intimately 

related with eutrophication and benthic mortalities (Stachowitsch et al. 1990; Justic´ et al. 

1993; Degobbis et al. 1999; Koenig 2000). 

Benthic mortalities and marine snow events are known to have occurred here 

periodically for centuries (Crema et al. 1991). Even though the frequency and extension of 

benthic disturbances are increasing here and elsewhere (Justic´ 1991; Diaz and Rosenberg 

1995; Diaz 2001; Wu 2002; Harley et al. 2006), such disturbances are still difficult to 

document. A first photographically documented mortality event was discovered by chance 

using an underwater-TV camera sled (Fedra et al. 1976). A subsequent, large-scale anoxia in 

1977 was documented by Stefanon and Boldrin (1982). They relied on a large team of sport 

divers to record the extent of an ongoing oxygen depletion event. Additional benthic mortality 

events were also discovered in 1980, 1983, and 1989 during routine fieldwork (Stachowitsch 

1991). 

Although seasonal anoxia in the northern hemisphere occurs mostly in late 

summer/fall (Pearson and Rosenberg 1978; Stachowitsch and Avcin 1988; Druon et al. 2004), 

its actual timing is related to local weather conditions. The onset and extent of such 

disturbances are difficult to predict and tend to elude investigation in the field. Finally, 

mortality events often run their course within a few days (Stachowitsch 1984), further 

hindering their full documentation. 

Laboratory chamber/aquarium experiments on respiration and responses to decreasing 

oxygen concentrations typically involve individual specimens or species (Renaud 1986; de 

Zwaan 2001; Miller et al. 2002; Matozzo et al 2005; Shimps et al. 2005). Their results, while 

physiologically accurate, do not combine all the relevant information about actual behavioral 

responses, intra- and interspecific interactions, mortality sequences, and community-level 

processes in the natural environment. 

We addressed this dilemma by developing a device that can create and fully document 

small-scale experimental anoxia, in situ, as well as document the sequence of benthic 

mortalities. 
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This instrument combines photo-documentation with detailed chemo-physical analyses and 

allows the behaviors and mortalities of benthic organisms to be analyzed during an oxygen 

depletion event from the onset. The focus is on the macrofauna because macroepi- and 

infauna are widely used to detect and monitor community responses to environmental change. 

Here, as in the past, we refer to the macrofauna as those organisms that are visible in situ to 

the naked eye and to the camera, although in certain other habitats, e.g., the deep-sea benthos, 

such organisms may be referred to as megafauna. Many benthic organisms are sedentary and 

long-lived, and the community structure therefore reflects environmental conditions 

integrated over extended periods (Bilyard 1987; Gray et al. 1988; Bourget et al. 2003; Ragua-

Gil et al. 2004). Moreover, the benthos in the Northern Adriatic – via re-colonization and 

succession – can store information on prior disturbances over years or even decades and, 

therefore, can be regarded as a long-term memory of the overall system (Stachowitsch 1992). 

 

Materials and Procedures 

Design of the Experimental Anoxia Generating Unit (EAGU) − The EAGU (Fig. 1) 

creates anoxia by sealing a 50 × 50 × 50 cm volume of water off from the surrounding 

environment. The 

instrument lid is positioned atop two different bases. The first is the “open” configuration 

(hereafter referred to as “frame”), a 2 cm aluminum-profile frame, (L × W × H = 50 × 50 × 50 

cm) that is positioned over selected benthic organisms on the sediment surface. This 

configuration permits full water exchange and does not disrupt normal bottom-water currents. 

We observed no sediment accumulation or scouring of the seabed adjacent to the frame. This 

configuration is used to document animal behavior under normoxic conditions (as a control 

before reconfiguring to generate anoxia) or to record oxygen depletion events. 

The second, “closed” configuration (hereafter referred to as “chamber”) also consists 

of an aluminum-profile frame of the same size, but with 6-mm-thick plexiglass plates on its 

four vertical sides. This cube-like chamber is open above and below. The lower plexiglass 

edges are strengthened with sharpened aluminum elements. This chamber is pushed 

approximately 2 cm into the sediment to hinder water exchange through the substrate (Fig. 2). 

The watertight lid (simple rubber seal around upper edge of chamber) prevents exchange with 

the water column. This configuration is used to document behavioral responses to decreasing 

oxygen concentrations. The four lower corners of both configurations are equipped with 

removable 7-cm-long tapered metal tips that help stabilize the device in the sediment. The 

chamber is also 
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equipped with two 50-cm-long handles to facilitate transportation and manipulations. 

The lid consists of a 12-mm-thick plexiglass plate measuring 51 × 70 cm and bears the 

quipment described below. 

 

Camera equipment 

A digital camera (Canon EOS 30D) with a zoom lens (Canon EFS 10-22mm, f/3.5-4.5 

USM), mounted in an underwater carbon-fiber housing (Fig. 1) with a dome port (both 

Bruder). The camera’s number of effective pixels is 8.2 MP. The time-lapse function is 

effected by a Canon Timer Remote Controller (TC-80N3), and a 1 GB flashcard is used. The 

lens and its setting (14 mm) were chosen to provide an optimal combination of distortion-free 

images, a view of the entire 50 × 50 cm sediment area along with a portion of the vertical 

plexiglass walls, and to position the camera as close to the bottom as possible. This provided 

clearer images in turbid conditions (frame) and reduced the water volume in the chamber. 

Two underwater flashes (“midi analog,” series 11897; Subtronic). The flashes are 

modified to be adjusted manually (we used the 1/16 setting) and are attached to the lid by 

PVC-swivel arms on two adjoining sides (Fig. 1).  

Two external battery packs power both the camera and the flashes (akku-safe 9Ah 

Panasonic; Werner light power Unterwassertechnik). 

The camera housing is positioned such that it lies centrally over the frame or chamber. 

The camera housing port fits snugly into an O-ring-equipped opening, with the dome 

projecting 

below the lid. The housing is further attached to the lid with an L-shaped aluminum bracket. 

The housing has four sockets: two for the flashes and two for the battery packs. 

Available power is usually the limiting factor in stand-alone long-term measurements. 

A special electronic control circuit (Fig. 3) was developed in order to run the equipment for at 

least 72 h with sufficiently small and light external batteries in combination with a 

commercially available camera and flash. 

 

The circuit was built on a small board (12 × 3 cm) using standard CMOS integrated circuits 

for logic functions and transistors for switching. The following functions were implemented: 

(1) A monitoring circuit (ICL7665 + Power Transistor) interrupts the 12 V supply power 

when the voltage falls below 10.2 V to prevent damage to batteries and electronics; (2) A 

stabilizing circuit (LM 317) provides a constant 7.5 V to the Canon camera. The camera 

automatically switches itself off 1 min after each shot; (3) A charging circuit (resistor + 
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diode) constantly recharges the internal batteries in the flashes. These batteries are needed to 

provide the high current necessary to charge the flashes within a few seconds. With good 

tuning of the charging current, the internal flash batteries need not be changed; only the main 

external battery packs are exchanged between deployments; (4) The logic circuit controls the 

sequence of operation, which is initiated by a pulse from the separate Canon timer to a series 

of monostable multivibrators. First, the flashes are switched on and the camera receives a 

wake-up pulse. When both flashes are fully charged after a few seconds, their ready signal 

triggers the camera via its remote trigger input. The camera, in turn, triggers the flashes via its 

synchronized output. About 0.1 s after the shot, the flashes are turned off to save energy. 

After the camera switches off (automatically after 1 min), the system is ready for the next 

cycle. An additional timer turns off the flashes after 20 s should a malfunction interrupt the 

above sequence. 

The camera was timed to take one photograph every 6 min. The shot rate is set with 

the Canon timer. The 6-min interval was a compromise between available energy supply, 

desired experiment length, and flash card capacity. It allowed the full anoxia event to be 

documented; the overall duration of the experiment, 3–5 d, corresponded well with the rapid 

course of an earlier mortality here (Stachowitsch 1991). A lengthier interval would make it 

more difficult to reconstruct and attribute the movements of most mobile organisms to one 

and the same individual. We would also have missed many intra- and interspecific 

interactions. 

 

Sensor equipment 

Two oxygen microsensors (sensor type: OX-100, outside tip diameter 90–110 μm), 

one hydrogen sulfide microsensor (sensor type: H2S-50, outside tip diameter 40–60 μm), and 

one temperature microsensor (sensor type: TP-200, outside tip diameter 180–220 μm) 

(Unisense). 

A two-channel datalogger unit (PA3000UD, Unisense) with one compartment 

containing four amplifier circuits with displays and datalogger, and one compartment 

containing the battery and communication cable (Fig. 1). Each of the two-channel loggers in 

the PA3000UD has a memory capacity of 4000 samples per channel and each was 

programmed to log sensor data every minute. 

The sensors are positioned in plexiglass tubes (15 mm diameter; 40 cm length), and 

the tips are protected by factory-installed metal protector caps. The plexiglass tubes with the 

sensors 
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are pushed through O-ring-equipped sensor ports in the four corners of the lid during 

deployment (Fig. 1). For transport, all four sensors are pulled out and placed in a single 

plastic sheath on the lid (Fig. 2). The tips of the two oxygen sensors are positioned in different 

heights above the sediment (approx. 2 and 20 cm) in order to detect potential oxygen 

stratification in the water. The hydrogen sulfide sensor is positioned about 2 cm above the 

sediment, the temperature sensor at 20 cm. The datalogger is strapped to the part of the 

plexiglass-lid extending beyond the underlying frame or chamber (Fig. 1,2). 

An additional pH-sensor (WTW, TA 197-pH) was inserted into the chamber through 

an opening (2 cm diameter; sealed with a plastic stopper during regular operation) in one 

plexiglass panel of the closed configuration once a day during daily control dives (Fig. 5D). 

This sensor is connected to a datalogger (WTW, Multi 197i) on the dive boat by a 60 m cable. 

Temperature was initially recorded with a Unisense, TP-200 sensor, but values were 

subsequently taken from the adjoining oceanographic buoy. 

 

EAGU deployment—In a full deployment, the system is initially positioned in its open 

configuration over an aggregation of benthic organisms on the sediment for 24 h (Fig. 

4A,5A). Aggregations were selected based on the presence of a wide range of representative 

organisms. 

Minimizing diver disturbance during deployment is important, and appropriate 

precautions were taken. One diver positions the frame, while a second diver, positioned 

several meters above the bottom, suspends the fully equipped lid in the water. The second 

diver then carefully sets the lid down on the open frame and fastens it. The flashes are flipped 

down and fastened at the appropriate angle, the sensors removed from the sheath and inserted 

through the appropriate sensor ports to the predetermined depth, and the datalogger initiated 

with a magnetic 

trigger stick. Two U-shaped metal brackets on each side of the camera (Fig. 2) simplify 

handling and transport in the water. The brackets are connected with a sliding crossbar that 

bears a ring. This allows a short (ca. 1.5 m) holding rope to be attached with a carabiner: the 

diver swims a short distance above the lid and does not disturb the sediment. No diver ever 

needs to touch the bottom. We also attached three ca. 15-cmdiameter floats to the crossbar: 

with standard SCUBA gear (appropriately inflated buoyancy compensator); this provides 

neutral buoyancy during manipulations (Fig. 2). 

 After 24 h, the EAGU is switched to its closed configuration over the same 

assemblage for another 2–3 d. This requires removing the sensors and flipping up the flashes. 
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One diver then unfastens and briefly lifts the lid, while the second exchanges the frame for the 

chamber. The sensors and flashes are then repositioned as above. The course of oxygen 

depletion is not manipulated: oxygen is not stripped and no H2S is added.  

After each experiment, the lid is transported to the boat and serviced. Datalogger 

values and photos are downloaded, all batteries exchanged, and sensors recalibrated. Camera 

and flashes are reactivated on board, and the datalogger is reactivated underwater. 
 

Deployment site—The EAGU was deployed on a soft-bottom (poorly sorted silty 

sands) in 24 m depth in the Gulf of Trieste, Northern Adriatic Sea. We chose a site adjoining 

the oceanographic buoy of the Marine Biology Station, Piran, about 2 km offshore 

(45°32’55.6′′N, 13°33′1.89′′E), to avoid damage by commercial fisheries. The bottom here is 

dominated by macroepibenthic communities consisting largely of sponges, ascidians, and 

brittle stars. It has been described as the Ophiothrix-Reniera-Microcosmus (ORM) 

community based on the three dominant genera (Fedra et al. 1976). The organisms here are 

typically aggregated in so-called multi-species clumps – bioherms – consisting of a shelly 

base overgrown by sessile organisms, which in turn serve as a substrate for many mobile and 

semi-sessile species (Zuschin et al. 1999). Our first experiments also revealed a diverse 

infauna community with well-defined reactions to anoxia. 

 

Assessment  

EAGU-deployment—The EAGU system was deployed in September 2005 and from 

July–October 2006 for a total of 13 experiments. The frame and chamber were deposited on 

the bottom, exchanged as outlined above, and retrieved at the end of the experimental series. 

The lid was brought aboard and serviced after every experiment. Servicing the equipment on 

the lid and downloading the data took about 1 h, enabling us to immediately redeploy the 

system and obtain an uninterrupted series of experiments. 

The system always induced anoxia within 1–2 d. Oxygen depletion reflected natural 

respiration rates, and the device itself prevented any substantial re-supply of oxygen from 

outside. For example, the sediment and water along the lower inner walls of the chamber 

apparently were not better oxygenated than elsewhere inside because both the upper and 

lower oxygen sensors showed virtually the same values. Moreover, some infauna organisms 

emerged directly along the plexiglass wall. 

Each experiment was continued for an additional 1–2 d to document the reactions and 

mortalities of the enclosed epifauna and infauna. The generation of anoxia demonstrates that 

settling the lower edges of the chamber only 1–2 cm in the soft sediment was sufficient to 
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effectively seal off the fauna and hinder exchange with ambient water. An advantage of the 

chamber is that all the suspended particles sank to the bottom within a few hours, yielding 

clearer photographs than in the open configuration. The 1–2 d period was long enough to 

document the mortality of most, but not all species. The experiments were terminated when 

most organisms had died based on their body position and initial signs of decomposition, but 

usually before decomposition was too advanced to prohibit collection and identification of the 

organisms. At this point, the sediment has turned black and the enclosed water became more 

turbid (Fig. 4B,5C,D). 

After each experiment, the instrument lid was removed and as many organisms as 

possible collected. This was done by hand, initially using a wide-mouthed syringe and small 

sieve. Soft-bodied or decomposing and fragile organisms were placed separately in small 

plexiglass boxes. All collected organisms then were transferred to the laboratory and placed in 

shallow plastic trays or small aquaria with seawater. These were carefully observed to 

separate living from dead organisms. 

Images and image evaluation—Depending on deployment length, the experiments 

yielded between 636 (63 h 30 min deployment) and 1333 images (133 h, 12 min). They can 

be viewed individually, successively scrolled with a computer mouse, or processed into time-

lapse sequences (MPG files) using the Adobe Premiere 6.5 program. The unedited time-lapse 

sequence lasted between 14 and 40 s, but was extended by about 35% for better viewing using 

Adobe Premiere. 

The image sequence was analyzed image by image and the behavior of the organisms 

was recorded on data sheets containing numerous categories describing reactions to 

decreasing oxygen and increasing hydrogen sulfide concentrations. Such categories included 

emergence from the sediment (for infauna), locomotion and body movements, interactions, 

and mortality. General categories for all mobile species, for example, included major and 

minor movements (both horizontal and vertical), whereas species-specific categories included 

emergence from the shell (hermit crabs), arm-tipping (brittle stars), or detachment from the 

substrate (certain anemones). The camera set-up accurately depicted all these events. It also 

clearly documented color changes of the organisms and the sediment. Certain organisms (e.g., 

large gastropods) tended to climb up the plexiglass walls and were not visible for lengthy 

periods (the climbing activity itself, however, was a useful oxygen-related behavioral 

response). After a certain period of anoxia, these individuals fell from the lid and their 

subsequent behavior was documented. 
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The 6-min interval between images was retained for all experiments because it enabled 

the successive movements of the organisms to be traced in detail. In more rapidly moving 

animals (e.g., larger hermit crab, large gastropods), tracks on the soft sediment surface usually 

enabled the paths taken to be documented. This interval, however, cannot individually resolve 

rapid or rapidly repeated movements (e.g., body contractions of anemones and ascidians), but 

clearly captured key aspects of such movements. Moreover, lengthier phases of particular 

activities could be distinguished from inactive phases. 

Datalogger results—The datalogger provided a dense set of data at the 1 min interval. 

The oxygen sensors demonstrated the success of the concept: oxygen values began to fall 

immediately after the frame to chamber switch and every experiment yielded anoxic 

conditions (Fig. 6); anoxia always remained until the end of the experiment. The sensor 

values changed in parallel, confirming the overall process. Moreover, the values of the lower 

sensor tended to be somewhat lower than those of the upper one (Fig. 6), demonstrating 

gradients in the water, and helping to explain why many benthic organisms in our chamber 

(and during field oxygen depletion events) tried to reach higher substrates as oxygen values 

fell. 

The hydrogen sulfide electrode added a complementary set of information. In every 

case, hydrogen sulfide first appeared after about half a day of anoxia and values then tended 

to increase rapidly (Fig. 6). 

 

Discussion 

The EAGU system documented the detailed behavioral responses of benthic 

organisms to decreasing oxygen concentrations, from the onset of behavior modification to 

moribund states or mortality. Moreover, it allowed modified behavior to be defined by 

initially showing normal, pre-hypoxic behavior in exactly the same species and individuals (at 

least the sessile and hemi-sessile forms) subsequently subjected to experimentally reduced 

oxygen concentrations. 

The image analyses revealed individual behavior as well as interactions and 

community-level responses. Our initial evaluation confirms previously described basic 

responses such as the 

emergence of infauna from the sediment (Fig. 4B,5B:”sc”), and the upward movement of 

many species to higher levels on available substrates (Fig. 5:”cr”). This confirms that the 

EAGU recreated conditions experienced during low DO events. 
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EAGU also provided previously unknown detail. For example, the emergence pattern 

of infauna individuals became visible, as did the relative emergence times of different species. 

Moreover, the speed and distance of post-emergence movement can be quantified. The system 

also captured species (e.g., infaunal shrimp) whose in situ behavior has never been 

documented before, either under normoxic or anoxic conditions. On the community level, the 

complete range of parallel and successive responses is combined in a single experiment. 

Interspecific interactions become apparent, for example, unexpected predation of brittle stars 

by anemones (Riedel et al. pers. comm.). Anemones, less sensitive to anoxia, preyed on more 

sensitive brittle stars, providing insight into potential benefits of anoxia for certain species and 

yielding new interpretations of post-anoxia community structure. 

Finally, all these observations are directly correlated to dissolved oxygen and H2S 

levels, allowing biological and chemical analyses in the same experiment. EAGU therefore 

provides insight into the course and effect of oxygen depletion events in the Northern 

Adriatic. It also will provide a catalog of behavioral modifications, distinguish between 

sensitive and tolerant species, and help interpret post-anoxia community composition. 

The relatively small size and weight (40 kg) of our instrument – allowing deployment 

without larger vessels – as well as overall cost (ca. 30,000 €) and composition of readily 

available components and instrumentation should facilitate its deployment elsewhere. 

 

Comments and recommendations 

As in all newly developed underwater instruments, unexpected situations arose, 

setbacks were encountered, and modifications had to be made. For example, in some 

experiments the water was so (naturally) turbid that the open configuration would not have 

yielded useful images: in such cases, the experiments were started with the closed 

configuration (chamber), where the water quickly clears up (Fig. 5A,B). This particle 

settlement means that the EAGU chamber can be deployed even in very turbid waters. The 

sensors used in EAGU are basically designed for laboratory use and are the most sensitive 

components of the system. They are exposed to damage above and below water and have a 

limited life (even if only stored). Their cost (ca 400 € apiece) requires liberal replacement 

costs to be calculated for lengthier deployments. 

The post-experiment collection of the enclosed organisms entails a compromise 

between advanced decomposition and a duration in which even the most resistant species are 

moribund or dead. This critical interval can be missed if weather conditions delay termination 

of the experiment and lid retrieval.  
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If collection and identification of more fragile organisms are an issue, then removal 

before the end of the experiment is recommended. This would require a sealable port in one 

of the plexiglass side walls large enough either to insert a long forceps, gripper, syringe, or to 

manually remove the dead organisms. It should minimize excessive entry of oxygenated 

water during manipulations. 

A range of options exists for future deployments. One approach would be to place the 

EAGU over lebensspuren such as burrow openings of infaunal species or on undisturbed 

sediment rather than over visible macroepibenthic organisms. The device elicited clear and 

reproducible reactions in infaunal species, and the types of habitats in which they occur are 

often those affected by oxygen depletion in the Northern Adriatic Sea. Targeting the infauna 

would expand the range of species-specific behaviors already documented; it also would 

require taking sediment samples after the experiment to determine which species are resistant. 

Finally, the EAGU’s instrument package could be enlarged to include sensors that 

provide data on sediment chemistry. Such information would help interpret the anoxia 

process, in 

particular with regard to infaunal species. Ultimately, the meiofauna and microbial processes 

could be incorporated. 

Another option is to add a third phase to the current two-phase approach (open 

followed by closed configuration). Redeploying EAGU in the open configuration directly 

over the formerly enclosed quadrat after an experiment (but without collecting the organisms) 

would document post-mortality events. Such an additional 4–5 d deployment would yield 

information on the fate of dead organisms and decaying organic matter, the potential recovery 

of moribund or still active individuals, and on the return to the normal sediment coloration. 

Future deployments will deepen our understanding of sensitive coastal ecosystems and 

provide additional information for coastal managers and decision-makers. 
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Fig. 1. Experimental Anoxia Generating Unit (EAGU) with instrument lid positioned on top of 

plexiglass chamber. Here, only one sensor is connected to the datalogger and inserted through a sensor 

port. ch: camera housing, dl: datalogger, eb: external battery, fl: flashes, mb: metal brackets, os: 

oxygen sensor, pc: plexiglass chamber, sp: sensor port. 
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ig. 2. Test deployment of EAGU in shallow (12 m) depth. Crossbar (top center) between the two F

brackets serves to lift and transport the lid and as an attachment site for buoys to provide neutral 

buoyancy during manipulations. Tube on left serves as a sheath for sensors during transport. 
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ig. 3. Block diagram of control circuit built into camera housing. Numbers indicate sequence within F

cycle. Arrows show signal direction. For details see text. 
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ig. 4. Experiment 12. (A) open configuration (frame): 50 × 50 cm area contains the ascidians F

Phallusia mammilata (ph) and Microcosmus sp. (mi), the gastropod Hexaplex trunculus (he), brittle 

stars Ophiothrix quinquemaculata (op), serpulid tubeworms (se), sponges (sp), the sea urchin 

Psammechinus microtuberculatus (ps), the bivalve Chlamys varia (ch), and the fish Gobius niger (go). 

H2S- and lower oxygen sensor visible in lower left- and right-hand corner. (B) final image 72 h 54 

min after switch to closed configuration (chamber). Note dark color of enclosed versus outside 

sediment. Emerged infauna includes three irregular sea urchins (Schizaster canaliferus: sc) as well as 

polychaetes and a sipunculan worm. Note dead and overturned brittle stars, broadly gaping C. varia, 

retracted tube worms, and the sea cucumber Ocnus planci (oc) exposed on sediment surface. A hermit 

crab (Paguristes eremita: pa), which has emerged from its shell, is crawling up the lower left sensor.  
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Fig. 5. Experiment 11. (A) open configuration (frame). Note relatively turbid water as well as particles 

and mucus (marine snow) on sensors. Anemones (an). For other abbreviations see Fig. 4. (B) 30 h 12 

min after switch to closed configuration. The water rapidly becomes clear under chamber. Emerged 

infauna includes three S. canaliferus. Brittle stars overturned and dead, anemones extended upward, O. 

planci exposed on sediment surface, and three species of decapod crabs (cr) moving to elevated 

substrates. (C) 58 h 12 min after switch to closed configuration. Most organisms dead and 

decomposing. Exceptions: anemones, O. planci, Microcosmus sp., H. trunculus, and emerged P. 

eremita on Microcosmus opening (bottom right). Sediment has turned black and lowermost water 

layer becomes murky. (D) Final image 95 h 36 min after switch to closed configuration. pH-sensor 

inserted. Sediment and decaying organic matter 

have further darkened, the water has become even murkier. Accurate image analysis is no longer 

possible, but viewing the film in time-lapse mode reveals that certain organisms (e.g., anemones) are 

still alive. 
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Fig. 6. Sensor data from experiment 12 (10–14 Oct 2006). Every sixth value entered (corresponding to 

image intervals). Open arrow = switch from frame to chamber, closed arrow = final photographic 

image. Note consistently higher values of upper oxygen sensor (ox2), immediate and continuous drop 

in oxygen values after switch, and steadily rising H2S-values approximately half a day after 

attainment of anoxia. Separate internal batteries allow datalogger to continue to record after depleted 

battery packs shut camera system down. 
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Abstract 

The Northern Adriatic Sea experiences seasonal low dissolved oxygen (DO) events and 

mortality of benthic organisms. The onset and extent of such disturbances, however, are 

difficult to forecast and study in the field. We address this problem by deploying a device that 

artificially induces and documents small-scale anoxia on soft-bottom in 24 m depth. 

Behaviour changes and mortality sequences of the soft-bottom macroepi- and infauna over a 

5.5-day deployment were documented. An intervening oxygen peak created two phases of 

declining oxygen values. All initiated behaviours were interrupted during the reoxygenation 

and predictably re-appeared in the second phase, demonstrating the direct relationship 

between oxygen levels and behaviour. Beginning hypoxia (≤2.0 ml l-1 DO) elicited escape 

patterns such as increased horizontal and vertical locomotion. Moderate hypoxia (≤1.0 ml l-1 

DO) triggered species-specific sublethal effects such as arm-tipping in ophiuroids or 

extension from the sediment in sea anemones. At severe hypoxia (≤0.5 ml l-1 DO) infaunal 

organisms began to emerge and first mortalities occurred. The crustacean Macropodia sp., the 

sea urchin Psammechinus microtuberculatus and the brittle star Ophiothrix quinquemaculata 

were among the first to die; the sea anemone Cereus pedunculatus and the gastropod 

Hexaplex trunculus survived. Hydrogen sulphide (H2S) increased until the end of the 

deployment to 163 μM; temperature in the chamber remained nearly constant at 18.5 °C. This 

design provides insight into species and community-level processes and is an important step 

in identifying potential indicator species for low DO events in the Northern Adriatic and 

elsewhere. 

 

Keywords: Benthos; Epifauna; Hypoxia, Indicator; Infauna; Mediterranean 
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1. Introduction 

 

1.1. Northern Adriatic hypoxia  

 

The Northern Adriatic Sea combines many features associated with the development of low 

dissolved oxygen (DO): semi-enclosed water body, soft substrates, a high riverine input 

(mainly fromthe Po River), high productivity and long water residence times (Stachowitsch, 

1991; Ott, 1992). During late summer, hypoxia (defined here as DO levels ≤2ml l-1) and 

anoxia can develop through a combination of meteorological and hydrological conditions 

such as calm weather and water stratification (Franco and Michelato, 1992; Malej and 

Malačič, 1995). Low DO events and benthic mortalities have been noted here periodically for 

centuries (Crema et al., 1991), but their frequency and severity have markedly increased 

during recent decades. High anthropogenic input of nutrients into the Northern Adriatic 

(Justić et al., 1995; Danovaro, 2003; Druon et al., 2004) has led to a higher production and 

deposition of organic matter than there is oxygen supply to allowits decomposition (Rabalais 

and Turner, 2001; Bishop et al., 2006). The average long-term decrease in water body 

transparency here over the 20th century, accompanied by decreasing bottom oxygen 

concentrations since the 1950s, has been convincingly outlined by Justić (Justić et al., 1987; 

Justić,1988). Since the 1980s, severe oxygen deficiencies have been reported nearly every 

year (Fedra et al., 1976; Stachowitsch, 1984; Hrs-Brenko et al., 1994; Penna et al., 2004). 

Most such events impacted rather restricted zones, but in 1983, for example, the affected 

areameasured approx. 250 km2 (Faganeli et al., 1985), leading to large-scale loss of 

biodiversity with very slow recovery (Stachowitsch, 1991; Stachowitsch and Fuchs, 1995). 

The Northern Adriatic is therefore a case study for long-term eutrophication and shows 

profound effects on the species to community level (Šimunović et al., 1999; Barmawidjaja et 

al., 1995; Benović et al., 2000; Kollmann and Stachowitsch, 2001). 

 

1.2. Study species and objectives 

 

Macroepifauna communities are widely distributed in the Northern Adriatic (Fedra, 1978; 

Zuschin et al., 1999) and largely consist of decimetre-scale, interspecific, high-biomass 

aggregations termedmultispecies clumps (Fedra et al., 1976) or bioherms: one ormore shelly 

hard substrates provide the base for sessile, suspension-feeding colonizers (mostly sponges, 

ascidians, anemones or bivalves), which in turn serve as an elevated substrate for additional 
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vagile and hemi-sessile organisms (mostly brittle stars and crabs) (Zuschin and Pervesler, 

1996). The presence of a well-developed macroinfauna is expressed in the early designations 

(Schizaster chiajei-community) of the benthic communities here by Vatova (1949) and later 

authors (Gamulin-Brida, 1967; Orel and Mennea, 1969; Orel et al., 1987; Occhipinti-Ambrogi 

et al., 2002). Repeated low DO events, coupled with commercial fishing activities during 

recent decades, have severely and persistently changed the macroepifaunal community 

structure in the study area (Stachowitsch and Fuchs, 1995; Kollmann and Stachowitsch, 

2001). 

Even though the frequency and extension of hypoxic and anoxic zones are increasing 

worldwide (Diaz, 2001; Wu, 2002; Diaz and Rosenberg, 2008), their onset and extent remain 

difficult to predict. The quick course – within a few days – of benthic mortalities 

(Stachowitsch, 1984) further hinders full documentation. We therefore developed an 

underwater-chamber (EAGU, Experimental Anoxia Generating Unit) equipped with camera, 

flashes and a sensor array (Stachowitsch et al., 2007) to induce small-scale experimental 

anoxia in situ. This approach fully documents the complex processes and interactions 

expected in a community-level setting in the natural environment. This includes behavioural 

reactions on natural substrates, intra- and interspecific interactions (e.g. Riedel et al., 2008), 

and mortality sequences, all related to specific DO-thresholds. 

During the experiment an intervening reoxygenation peak due to water intrusion created a 

two-phase oxygen decline. This enabled us to evaluate faunal responses to two successive 

hypoxia events. The hypothesis is that specific responses are interrupted during reoxygenation 

and re-appear upon renewed oxygen decline. This approach is a key step forward in 

compiling a catalogue of sublethal behavior patterns corresponding to the severity of 

hypoxia/anoxia as well as in identifying indicator species for oxygen deficiencies here and 

elsewhere. 

 

2. Materials and methods 

 

2.1. Study site 

 

The experiment was conducted on a soft-bottom (poorly sorted silty sand) in 24 m depth in 

the Gulf of Trieste, Northern Adriatic Sea. The salinity was 38 ‰ and bottom water 

temperature averaged 18.5 °C. The deployment took place near the oceanographic buoy of the 
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Marine Biology Station, Piran (Slovenia), about 2 km offshore (45° 32′ 55.68″ N, 13° 33′ 

1.89″ E), to avoid damage by commercial fisheries. 

 

2.2. Experimental set-up and sampling 

 

The EAGU (Experimental Anoxia Generating Unit) is a specially developed 0.5 m3 

underwater device to artificially induce and document small-scale anoxia on the seafloor (see 

Stachowitsch et al., 2007 for detailed description). In short, the unit consists of two 

interchangeable bases (an open-sided aluminum frame and a plexiglass-chamber, both 

50×50×50 cm) and a separate lid that houses a time-lapse camera, two flashes and a sensor 

array (DO, H2S and temperature; Unisense®). Initially, the system documents behaviour 

during normoxic conditions: it is positioned for 24 h in its “open” configuration (aluminum 

frame plus instrument lid) over a macrobenthic assemblage (Appendix A, Fig. 2 a). In a 

second step, the frame is exchanged for a plexiglass chamber (“closed” configuration) and 

repositioned over the same assemblage for another 48-72 h. Here, the behavioural patterns of 

the animals at decreasing oxygen concentrations are documented. 

Oxygen and H2S sensors are Clark-type microsensors (outside tip diameter DO: 90-110 

μm; H2S: 40-60 μm) with a built-in reference and an internal guard cathode and anode, 

respectively. The temperature microsensor (outside tip diameter 180-220 μm) consists of a 

thermocouple within a tapered glass capillary. Oxygen and the temperature are measured 

approx. 20 cm above the sediment, H2S at 2 cm. Images are produced at 6-min intervals, 

sensor data are logged every minute. 

The EAGU was deployed for 5.5 days from 17-22 September 2005 over a benthic 

assemblage selected based on the presence of a wide range of representative organisms. Due 

to turbid water conditions only the closed configuration (plexiglass chamber) was used. DO 

fell continuously due the macrobenthic respiration, with an unexpected water intrusion 

leading to a temporary reoxygenation. 

After the experiment, all intact organisms (living and dead) and biogenic structures on or 

embedded in the soft bottom were collected by hand and preserved in a 4 % 

formaldehyde:seawater solution. Due to the lengthier deployment (poor weather prevented 

retrieval), many more fragile organisms (e.g. brittle stars) had decomposed and could not be 

recovered. 
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2.3. Behavioural analysis 

The experiment yielded a total of 1332 images (overall documentation time ca.133 h).We 

analysed image by image and further processed them into time-lapse sequences (MPG files) 

using the Adobe Premiere 6.5 program (film material available at http://www.marine-

hypoxia.com). Fifteen species were selected for analysis based on the following criteria: 

visibility in situ to the camera (epi- and infauna), wide distribution in the Adriatic Sea and 

representative spectrum of taxonomic groups and ecological categories (mobility, feeding 

types) (Table 1). 

We recorded whether the animals were visible/not visible (exposed, i.e. not hidden under/in 

a bioherm or in the sediment) and noted behaviours such as locomotion and body movements, 

interactions, and mortality. Species-specific categories included tentacle crown orientation 

(sea cucumbers), arm-tipping (brittle stars), presence of camouflage (regular echinoids) or 

body rotation (sea anemones). 

Some behaviours were further subdivided into different states: horizontal and vertical 

displacements (locomotion) or minor and major extensions from the sediment (anemones). 

The recordings were evaluated as long as the animal was in view and clearly identifiable, i.e. 

until decomposition created poor visibility or until mortality or predation. Mortality was taken 

as the last locomotion or body movement observed, in some species (Table 2) plus two hours 

to account for a potential moribund phase. 

Although we present only one deployment here, the initial evaluation of several other 

experiments confirms and strengthens the observation and conclusions made here. Moreover, 

we were able to observe several individuals of most species, the reoxygenation peak allowed 

us to observe virtually every behaviour twice, and the large number of photographs of each 

particular behaviour underlines the validity of the observed patterns. 

2.4. Data analysis 

 

Data were recorded as categories and analysed using the SPSS software package (version 

11.5). Data were assigned to five DO categories: normoxia (>2.0 ml O2 l-1), beginning 

hypoxia (≤2.0-1.01 ml O2 l-1), moderate (1.0-0.51 ml O2 l-1) and severe hypoxia (0.5-0.01 ml 

O2 l-1) and anoxia. Normal behaviours were those observed during normoxia or known from 

long-term observations in the study area. The Kruskal-Wallis test was used to determine if 

oxygen concentrations significantly changed behaviour. The Mann-Whitney-Wilcoxon test 

was chosen to compare the behavioural reactions between all oxygen categories. 
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3. Results 

 

3.1 Sensor data 

 

Immediately after deployment, DO concentrations continuously dropped from an initial 3.8 

ml l-1 – a value that is low but not unusual for the season – and reached beginning hypoxia 

within 8 h (Fig. 1). Moderate hypoxia occurred ~15 h, severe hypoxia ~19 h after deployment. 

Oxygen values then unexpectedly increased, quickly reaching normoxic conditions (2.6 ml l-1 

DO). Based on the suddenly turbid conditions inside the chamber, our explanation for this 

intervening peak is intruding water from the activity of a strongly ventilating burrowing 

organism (e.g. burrow restructuring by a thalassinidean shrimp). The oxygen values fell again 

until anoxic conditions were attained 51 h after deployment. In the following, we refer to the 

first phase of oxygen decline as “decline 1”, the second phase as “decline 2”. Once anoxia 

occurred, the H2S values increased for about 9.5 h from 0 to 0.6 μM then rose steadily up until 

the end of the deployment to 163.0 μM after 5.5 days. The temperature in the chamber 

remained nearly constant at 18.5 °C. 

 

3.2 Macrofauna responses  

 

Declining oxygen values elicited significant behavioural responses in every case (Kruskal-

Wallis test, Table 3). This included stress patterns such as initiation of movement or increased 

mobility, often directed towards higher substrates. The reactions to beginning and moderate 

hypoxia, interrupted during reoxygenation, re-appeared during the second decline (Fig. 1). 

Note that the values in the normoxic category (Fig. 3 a'-m') may be artificially elevated 

because they include behaviours recorded during the reoxygenation (i.e. residual responses 

from decline 1 and re-initiated responses during decline 2). 

Severe hypoxia and anoxia were reached in decline 2, with the first mortalities. After 9.5 h 

of anoxia, the sediment began to darken (Fig. 2), accompanied by increasing H2S. Some taxa, 

such as anemones or gastropods, survived until the end of the experiment. 

 

3.2. 1. Sessile epifauna  

Calliactis parasitica (Couch, 1842). These symbiotic sea anemones (Fig. 2, “ca”) inhabit 

hermit crab-occupied gastropod shells. Of five species-specific behaviours (Table 1), three – 
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tentacle crown habitus, orientation and body rotation – are presented here. Under normoxia 

the tentacle crowns typically faced down, sweeping the sediment as the crab walks about. At 

beginning hypoxia, this orientation changed: the number of upwardly facing crowns observed 

per hour began to increase until, at severe hypoxia (decline 1), they faced upward in half the 

observations (Fig. 3 a). During the intermediate oxygen peak the crowns returned to their 

downward position until DO fell again during decline 2. The renewed reaction was identical 

to that at decline 1. This upward-orientation was maintained until the animals became 

moribund at h 77 (~26 h after the onset of anoxia; H2S 51 μM), when they drooped to the side 

or faced downward. Between normoxia and severe hypoxia, the tentacle crowns were mostly 

open in all three C. parasitica (70-90% of observations; Fig. 3 a'). At anoxia this behaviour 

(<30% of observations) decreased significantly (Appendix A). The anemones also began to 

rotate (Fig. 3 b'), starting at moderate hypoxia and significantly increasing to 25% of 

observations at severe hypoxia and 30% at anoxia. One individual detached from the shell and 

fell to the sediment. All showed minor body movements until they died (see Table 2 and 

arrows in Fig. 3 a). 

Cereus pedunculatus (Pennant, 1777). Two of these anemones (Fig. 2, “ce”) were in the 

sediment with the tentacle crown on the sediment surface. Body contractions (Fig. 3 b) were 

observed throughout the experiment, but increased at moderate hypoxia during the initial 

decline. At the reoxygenation peak, values dropped again to normal levels. During decline 2, 

contractions temporarily ceased. The type of contraction differed in the 2 phases: the initial 

type involved retraction into the sediment, those after the peak severe constriction or inflation 

of column diameter. Constriction or inflation increased strongly, remaining at high levels 

from h 69 (H2S 18 μM) until the end. Tentacle crown closure (Fig. 3 c) paralleled that of 

contractions: it began at beginning hypoxia, ceased entirely at the intervening peak and 

reached higher values at anoxia. Rotation closely paralleled that of C. parasitica: it began at 

moderate hypoxia and increased significantly at severe hypoxia and anoxia (Fig. 3 b'). At the 

onset of hypoxia, Cereus pedunculatus extended from the sediment (Fig. 3 c'), beginning with 

minor extensions. As oxygen values dropped, minor, followed by major, extensions 

significantly increased. Both individuals survived. 

Microcosmus sulcatus (Coquebert, 1797). This ascidian, part of a multispecies clump 

consisting mainly of sponges, sea anemones and bivalves (Fig. 2, “mi”), began to contract at 

beginning hypoxia (decline 1). This behaviour ceased during the reoxygenation and re-

appeared during severe hypoxia at decline 2 (Fig. 3 d). It dropped off after anoxia and ceased 

when the animal became moribund at h 101 (H2S 142 μM). During normoxia the siphons 
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were either closed (nearly 40% in 168 observations; Fig. 3 d') or half opened. With beginning 

hypoxia, siphons opened (almost 80%; Fig. 3 d'), accompanied by occasional siphon 

extension. At moderate and severe hypoxia, siphons began to close again (~50% open at 

severe hypoxia and anoxia). 128 h after deployment, the siphons drooped, which was 

interpreted as mortality (Table 2). 

Phallusia mammilata (Cuvier, 1815). This ascidian (Fig. 2, “ph”), also part of the multi-

species clump, started contracting at severe hypoxia. This activity abruptly ceased at the 

reoxygenation peak and began again at corresponding oxygen level during decline 2 (Fig. 3 

e). At anoxia, contractions ended. The siphons were largely open under normoxia and 

beginning hypoxia (65 and 75%, respectively; Fig. 3 e'), and values dropped markedly at 

moderate hypoxia (50%; P<0.01; Appendix A) and severe hypoxia, reaching 30% at anoxia. 

79 h after deployment (H2S 56 μM) the siphons closed. At h 83, P. mammilata drooped and 

died (Table 2). 

 

3.2.2. Hemi-sessile epifauna 

Chlamys varia (Linnaeus, 1758). The mantle tissue of the two adjoining pectinid bivalves 

(on same bioherm as above, Fig. 2, “ch”) was visible from normoxia to moderate hypoxia and 

remained unchanged on the first oxygen decline and reoxygenation. At severe hypoxia (one 

individual) and anoxia (second individual) this tissue began to swell. At h 63 it was retracted 

and remained in this state until the individuals were no longer visible (Fig. 3 f). Both C. varia 

showed a normal (“open”) gape under normoxia and beginning hypoxia. Normal gapes 

significantly decreased at moderate hypoxia and again at anoxia (Appendix A; Fig. 3 f'). The 

sustained wide gape was interpreted as mortality at h 74 and 92 (Table 2). 

Ocnus planci (Brandt, 1835). This sea cucumber was attached to the lower side of the 

multi-species clump (Fig. 2, “oc”). It began to actively elongate at hypoxia (decline 1). This 

behaviour abruptly ceased and then re-appeared during moderate hypoxia in decline 2 and 

brieflyat anoxia (h 59 and 60; Fig. 3 g). During normoxia, O. planci usually remained in its 

sideward (horizontal) position with the tentacle crown half-closed or closed. With beginning 

hypoxia, upward-orientated crown positions increased markedly from ~30 to 75% (P<0.01; 

Appendix A), peaking at moderate hypoxia (Fig. 3 g'). Thereafter, this position changed 

dramatically and, at anoxia, the crown faced downward in nearly 90% of observations. On 

day 4 the animal became moribund and died after 79 h (Table 2); the animal was considerably 

more elongated than at the onset. 
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3.2.3. Mobile epifauna 

Hexaplex trunculus (Linnaeus, 1758). Locomotion and location of three individuals 

changed as oxygen values fell. Vertical locomotion to the chamber lid began at hypoxia 

(decline 1; Fig. 3 h), and horizontal movements on the sediment significantly decreased 

(Appendix A; Fig. 3 h'). Two H. trunculus fell from the lid during decline 1, but immediately 

moved to the top again. During the reoxygenation, two individuals were again visible on the 

sediment, but retreated upward at hypoxia in decline 2. At severe hypoxia (declines 1 and 2) 

all three individuals were out of view on top of the chamber (Fig. 3 h'). Finally, at anoxia 

(H2S 41 μM), two individuals again fell down: one remained moribund on the sediment, the 

second disappeared from view. All three gastropods survived.  

Paguristes eremita (Linnaeus, 1767). One of the three hermit crabs evaluated here was 

inside the symbiotic sponge Suberites domuncula, the remaining two inhabited Hexaplex spp. 

shells with either one or two C. parasitica as epibionts (Fig. 2, “pa”). Extension from the shell 

started at beginning hypoxia and intensified at the end of decline 1 (Fig. 3 i). This ceased 

during the reoxygenation and rapidly increased again during decline 2, peaking at anoxia 

(~80% in 777 observations; Fig. 3 i'). At h 85 (H2S 94 μM), one P. eremita left its shell, 

moved horizontally and disappeared from view (a fourth, smaller P. eremite was also detected 

outside its shell towards the end of the experiment). The other two remained extended until 

they became moribund and died (Table 2). 

Psammechinus microtuberculatus (Blainville, 1825). Until beginning hypoxia, all three sea 

urchins (Fig. 2, “ps”) were hidden under sponges. Two emerged during decline 1, the third 

shortly after the reoxygenation. Once emerged, all animals tended to keep moving – except 

during the intervening normoxia – until the onset of anoxia (Fig. 3 j). During the 

reoxygenation the two visible individuals hid again. Camouflaging behaviour, i.e. shell debris 

placed onto their upper, aboral surface, also changed: all urchins lost their camouflage, 

starting at moderate hypoxia and with significant decreases from moderate to severe hypoxia, 

and from severe hypoxia to anoxia (P<0.01; Fig. 3 j'). All P. microtuberculatus died on day 3 

at severe hypoxia and anoxia (Table 2). 

Ophiothrix quinquemaculata (Delle Chiaje, 1828). Initially, all brittle stars (Fig. 2, “op”) in 

the chamber were positioned on multi-species clumps and mostly stationary. Typical 

suspension-feeding behavior was rare (i.e. arms were on rather than elevated above the 

substrate). Beginning hypoxia elicited a change in arm-posture: the arms were increasingly 

directed upward. Moderate hypoxia, in contrast, triggered conspicuous arm-tipping in the four 
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evaluated individuals (Fig. 3 k; ~40% in 280 observations, Fig. 3 k'). This stress behaviour 

nearly ceased during the reoxygenation and started again during decline 2 but was less 

frequent (Fig. 3 k). At severe hypoxia, the brittle stars gradually became motionless, clinging 

moribund to the substrate or lying on the sediment. All individuals showed these sequences 

synchronously. They died at the onset of anoxia (Table 2), whereby one specimen was 

predated by an anemone (right-most arrow in Fig. 3 k; for details see Riedel et al., 2008). 

 

3.2.4. Mobile cryptic epifauna 

Macropodia sp. This decorator crab emerged from hiding at beginning hypoxia (Fig. 3 l) 

and actively moved (decline 1): it scrambled over the epibenthic faunal assemblage, 

contacting numerous ophiuroids and crustaceans. This activity markedly dropped during the 

reoxygenation, where the animal remained nearly immobile on the sediment next to a 

bioherm. Beginning hypoxia (decline 2) caused a second burst of activity,which ceased when 

Macropodia sp. became moribund at severe hypoxia. Fig. 3 l' shows an initial increase in 

locomotion, peaking at moderate hypoxia (~70% in 71 observations), followed by a gradual 

decrease, stopping entirely at anoxia. At h 46 the crab showed final leg movements and died 

onehour later (Table 2). This was the first mortality in the experiment. 

Pilumnus spinifer (H. Milne-Edwards, 1834). During normoxia this predatory crab mostly 

hid inside the above bioherm (Fig. 3 m, m'). It reacted to the oxygen decline by emerging 

during beginning hypoxia and moved mostly vertically on the ascidian P. mammilata (Fig. 3 

m). During reoxygenation the crab hid again and re-appeared at beginning hypoxia in decline 

2. The animal died shortly thereafter (h 54, Table 2). 

 

3.2.5. Mobile infauna 

Glycera sp. This infaunal polychaete (Fig. 2, “gl”) first became visible (head emerged) at h 

64 (H2S~0.5 μM; Fig. 3 n). For nearly 1 h its anterior end ploughed through the sediment 

surface in different directions before it fully emerged. The worm then remained coiled at the 

same position for nearly 8 h, but continued to show body movements. It died at h 73 (Table 

2). 

Schizaster canaliferus (Lamarck, 1816). This infaunal sea urchin (Fig. 2, “sc”) emerged 

from the sediment at h 50. It then moved horizontally across the sediment (Fig. 3 o) and, 12 h 

later, turned on its back (initial H2S increase). Weak body and spine movements were 

observed until mortality (Table 2). 
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Ophiura spp. Three brittle stars emerged from the sediment. The first emerged at beginning 

hypoxia (decline 1), moved at irregular intervals, and was ingested by the anemone C. 

parasitica (arrow; Fig. 3 p). The second Ophiura spp. emerged at severe hypoxia during 

decline 2 and remained largely immobile on the sediment for ca. 9 h before it hid under a 

bioherm (h 53; anoxia, H2S~0.6 μM). It then, along with a third individual, briefly re-

appeared before both disappeared from view (h 61). 

 

4. Discussion 

 

Oxygen-depleted dead zones are the most severe manifestation of ecosystem degradation in 

shallow coastal waters. Our knowledge about the behavioural responses and mortalities of 

macroepi- and infaunal organisms to oxygen depletion is not commensurate with the crucial 

role (e.g. filter- and suspension feeding, bioturbation) this fauna plays or with the impact of 

biodiversity lost. Our experimental approach provided results on the sequence of in situ 

reactions at both the species and community levels and related them to distinct oxygen 

concentrations. 

 

4.1. Critical oxygen levels and behavioural reactions 
 

Four types of reactions occurred: (1) increase or decrease in normal activities, (2) initiation 

of atypical behaviours, (3) emergence of cryptic and infaunal organisms, and (4) mortalities. 

These sequences reflect increasing response to declining oxygen values and/or to increasing 

duration of anoxia/H2S. 

The intermediate oxygen peak underscored and supported our hypothesis that responses are 

related to particular oxygen levels and that they would be interrupted during temporary re-

oxygenation. Virtually all organisms and behaviours showed a nearly identical symmetrical 

pattern of activity around the reoxygenation peak (compare Fig. 3 a-p). The responses were 

related to specific DO concentrations during both declines (Fig. 3 a'-m'). 

 

4.1.1. Beginning hypoxia (≤2 ml l-1 DO).  

The initiation of responses at 2 ml l-1 DO is in line with recognized thresholds for 

macrobenthic fauna (reviewed in Diaz and Rosenberg, 1995). Thus, bioherm-associated 

crustaceans such as Pilumnus spinifer and Macropodia sp. emerged from their hiding places 

at 1.5 and 1.7 ml l-1 DO, respectively. The infaunal Ophiura spp. appeared on the sediment 

surface at 1.5 ml l-1 DO. Hypoxia triggered increased activity: the ascidians Microcosmus 
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sulcatus and Phallusia mammilata both showed a maximum frequency of widely opened 

siphons, accompanied by siphon elongation in M. sulcatus. Atypical postures included the 

upwardly orientated tentacle crowns in Calliactis parasitica. All these responses can be 

interpreted as avoidance patterns aimed at optimizing oxygen consumption.  

The early emergence of bioherm-associated crustaceans and Ophiura spp. closely 

resembles that observed in the 1983 mortality event: the crabs Pilumnus spinifer or Pisidia 

longicornis, and Ophiura texturata individuals, first became visible on day 1 of that event 

(Stachowitsch, 1984). Elsewhere, Johansson (1997) observed increased swimming activity in 

the amphipods Monoporeia affinis and Pontoporeia femorata as oxygen concentrations fell. 

In crustaceans, a second factor might trigger emergence: death in bioherm components (e.g. 

sponges) no doubt accelerates stress behaviour of the associated fauna (Stachowitsch, 1991). 

Brittle star behaviour – initially increased mobility quickly followed by inactivity and a 

moribund state – parallels laboratory observations by Vistisen and Vismann (1997) for 

Ophiura albida. Our in situ community-level approach, however, demonstrated another lethal 

aspect of this behaviour: the compromised animal was predated by the anemone Calliactis 

parasitica. This sea anemone meets its oxygen requirements directly by uptake from the 

enteric water (vs. ectodermal uptake, with subsequent diffusion through the mesogloea; 

Brafield and Chapman, 1983). Consequently, upright crowns (vs. normal “sweeping” 

position) provide access to the better oxygenated water further above the sediment (Diaz and 

Rosenberg, 1995; Hagerman, 1998). The same holds true for siphon elongation in 

Microcosmus sulcatus, paralleling observations on Molgula manhattensis by Sagasti et al. 

(2001). 

 

4.1.2. Moderate hypoxia (≤1 ml l-1 DO).  

Chlamys varia first modified its behaviour at moderate hypoxia (alternatingly open and 

closed valves). Bivalves are generally resistant to hypoxia because they can reduce their 

metabolic activity and energy utilization (Widdows, 1987). Valve closure and lowered 

metabolism are initial strategies (Theede, 1973; Heinonen et al., 1997; Storey and Storey, 

2004) allowing certain species such as Corbula gibba or Arctica islandica to survive in 

repeatedly hypoxia-stressed areas (Rosenberg and Nilsson, 2005; Hrs-Brenko, 2006). C. varia 

tended to open rather than close its valves, potentially reflecting pectinid adaptations to brief 

functional hypoxia, for example during swimming or jumping movements (Grieshaber and 

Gäde, 1977; Grieshaber et al., 1994). This behaviour, however, might be insufficient to 

survive prolonged environmental hypoxia (Carroll and Wells, 1995). This would support 
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Nicholson and Morton's (2000) statement about “scallops being frequently absent from 

regions subjected to hypoxia”. As in Pilumnus spinifer, the death of key bioherm components 

will impact C. varia.  

Other behaviours initiated at moderate hypoxia include minor/major extension in Cereus 

pedunculatus, arm-tipping in Ophiothrix quinquemaculata, discarding of camouflage in 

Psammechinus microtuberculatus and body contraction in Phallusia mammilata. The body 

elongation and upward tentacle extension in C. pedunculatus parallels that observed for the 

same species in the 1983 mortality (Stachowitsch, 1984) as well as that for Diadumine 

leucolena in laboratory studies (Sagasti et al., 2001). Column and tentacle extension may 

maximize the surface area to volume ratio while minimizing diffusion distances within the 

tissues, improving oxygen delivery and consumption (Sassaman and Mangum, 1972; Shick, 

1991). In the community framework, this behaviour also resulted in anemone predation of 

ophiuroids. 

In the ophiuroid, arm-tipping and the accompanying uplifted disc are interpreted as an 

attempt to reach higher oxygen concentrations. Such humped postures have been recorded 

elsewhere during hypoxia in Ophiura texturata (Dethlefsen and von Westernhagen, 1983; 

Dries and Theede, 1974), O. albida (Baden et al., 1990), or Amphiura chiajei and A. filiformis 

(Rosenberg et al., 1991; Vistisen and Vismann, 1997).  

Camouflage behaviour protects echinoids from predation, desiccation or UV-radiation 

(Verling et al., 2004; Dumont et al., 2007). It may reduce the sea urchin's ability to move, 

creating a trade-off between “additional ballast” and reduced environmental stress (Dumont et 

al., 2007). The fact that P. microtuberculatus discarded its camouflage suggests that the cost 

of holding the material by its tube feet at moderate hypoxia is too cost-intensive. The two 

contraction phases of the ascidian P. mammilata at this concentration range have two 

potential explanations. Pyura praeputialis (Evans and Huntington, 1992) and P. mammilata 

(Fiala-Medioni, 1979) are known to increase ventilation by mantle wall contractions. By 

squirting, the ascidians expel hypoxic water from the branchial cavity and refill it with 

normoxic water (Evans and Huntington, 1992). In our experiment, contraction also coincided 

with a migration of dozens of bioherm associated crustaceans to the highest point (oral 

siphon) of the ascidian. This might also trigger contraction. Future evaluations of other P. 

mammilata individuals will provide more insight. 
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4.1.3. Severe hypoxia (≤0.5 ml l-1 DO) and anoxia.  

 

Some behaviours began at severe hypoxia, others at anoxia. Calliactis parasitica rotated 

much more at severe hypoxia, after a slight increase at moderate values (Fig. 3 b'). Cereus 

pedunculatus showed one peak of contraction activity at severe hypoxia during decline 1, but 

the second peak occurred after ~8 h following decline 2 after anoxia. In this species, the cause 

and the type of contraction differed: those prior to the reoxygenation (retraction into the 

sediment) reflected responses to passing mobile organisms, those after the peak (severe 

constriction or inflation) were anoxia induced. 

The infaunal Schizaster canaliferus emerged directly before anoxia, Glycera sp. 14 h later. 

Chlamys varia retracted its mantle tissue 12 h after anoxia. Infauna emergence and behaviour 

agree with previous studies from various estuarine and coastal areas (e.g. Jørgensen, 1980; 

Pihl et al., 1992; Nestlerode and Diaz, 1998). In laboratory studies (Nilsson and Rosenberg, 

1994), the echinoid Echinocardium cordatum emerged above 0.7 ml l-1. Echinocardium spp. 

are particularly sensitive to reduced oxygen concentrations (Baden et al., 1990). Whether the 

emergence of S. canaliferus at lower DO values (≤0.5 ml l-1) reflects a species-specific 

difference or the more natural habitat conditions will be determined based on additional 

deployments: these show bulging sediment prior to emergence, indicating an earlier onset of 

stress reactions. Post-emergence behaviour of the two genera is very similar: they crawl 

across the sediment and turn over on their backs before they die (Nilsson and Rosenberg, 

1994). 

Polychaetes are among the taxa considered to be tolerant. Llansò (1991), for example, 

reports that Streblospio benedicti can survive severe hypoxia for at least 2 weeks but dies 

within 55 h of anoxia. Malacoceros fuliginosus is also known to extend from the burrows and 

begin undulatory body movements as oxygen values drop below about 0.5 ml/l (Tyson and 

Pearson, 1991). Similar to the above species, Glycera sp. also showed undulatory movements 

(but fully emerged on the sediment) before activity ceased abruptly. It died 22 h after anoxia, 

but this may also reflect increasing H2S values at this point. The presence of sulphide shortens 

tolerance due to its toxic effects and varies from species to species (Hagerman, 1998). In 

laboratory experiments, Vismann (1990) exposed the polychaetes Nereis diversicolor and N. 

virens to either hypoxia or hypoxia combined with sulphide. In the latter combination, both 

species left the sediment in higher numbers and showed a higher mortality. 

Regardless of the onset of an atypical behaviour, its frequency tended to increase during the 

experiment. For example, hermit crabs increasingly extended from their shells. Major 
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extensions by Cereus pedunculatus increased steadily from moderate hypoxia to anoxia, as 

did the locomotion of Macropodia sp. from normoxia to moderate hypoxia. Such reactions 

decreased abruptly at some point, typically corresponding to a moribund state, to mortality, or 

to a new atypical behaviour. The latter includes Paguristes eremita, which left its shell and 

moved about fully exposed rather than merely extending out further. Another example is 

detachment from the hermit-crab shell by Calliactis parasitica. 

 

4.2. Mortality 

 

Atypical behaviours almost always ended in a moribund state or mortality, which, like 

behavioural responses, occurred at various stages. The first mortality was not a direct 

response to oxygen deficiency: one Ophiura spp. was predated by a Calliactis parasitica on 

emerging fromthe sediment (decline 1; 0.6 ml l-1 DO). This reflected a differential response to 

hypoxia by predator and prey. The same holds true for five Ophiothrix quinquemaculata 

individuals that were consumed by either C. parasitica or C. pedunculatus (Riedel et al., 

2008). 

The first organisms died at severe hypoxia: Macropodia sp. at h 47, the first Psammechinus 

microtuberculatus and Ophiothrix quinquemaculata individuals at h 49. At this point, H2S 

values had not yet begun to rise so that mortality can definitively be attributed to hypoxia. 

Under anoxia (beginning at h 51), the successive mortalities were: Pilumnus spinifer (h 54), 

Glycera sp. (h 73), Schizaster canaliferus (h 77), Ocnus planci (h 79), Phallusia mammilata 

(h 83), Calliactis parasitica (h 79 - 86), Chlamys varia (h 74 and 92), Paguristes eremita (h 

99 and 104) and Microcosmus sulcatus (h 128). H2S values had begun to increase steadily 

and therefore mortality cannot be attributed to oxygen values alone. Not all individuals of a 

particular species died at the same time: the first C. varia died ath 74, the second at h 92. The 

three P. microtuberculatus died at h 49, 54 and 58 – a 9 h time difference. Additional 

deployments will shed more light on this phenomenon.  

Anoxic conditions were present for the last 83 h and H2S had reached 163 μM by the end of 

the 5.5-day experiment. Two species survived to the end: the anemone Cereus pedunculatus 

and the gastropod Hexaplex trunculus. C. pedunculatus was still very active at the end and 

probably had emerged from the sediment entirely with its pedal disc. One H. trunculus was 

still on the lid, the remaining two fell to the sediment: one continued to extend its foot and/or 

head and tentacles until the end, the other presumably retreated again to the lid. 
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Previous field and laboratory studies identify anemones as particularly tolerant to hypoxia. 

In Limfjorden (Denmark), for example, they were the most resistant species (Jørgensen, 

1980). Wahl (1984) demonstrated the high tolerance of Metridium senile in laboratory 

experiments: 50% of the individuals tested survived up to 3 weeks of anoxia, and some were 

still alive after 40 days. In the 1983 mortality in the Adriatic, one week after the onset of the 

event, isolated anthozoan survivors included Ragactis pulchra, Cerianthus membranaceus 

and Epizoanthus erinaceus (Stachowitsch, 1984). Interestingly, all C. parasitica had died at 

this point, which corresponds with our present results. Sea anemones exhibit a number of 

adaptations for extended survival under hypoxia (Shick, 1991). This includes the use of 

anaerobic pathways and mechanisms for metabolic depression (Rutherford and Thuesen, 

2005). Finally, behaviours such as elongation and peristalsis may increase exposure to the sea 

water both through the body wall and the coelenteron (Sassaman and Mangum, 1972; Shick, 

1991). The lower survival rate of Calliactis parasitica versus Cereus pedunculatus might 

reflect different anaerobic pathways or the stiffer peripheral column mesogloea of the former, 

which may hinder oxygen diffusion (Brafield and Chapman,1983; Shick,1991).We attribute 

the survival of Hexaplex trunculus to its tolerance to low DO (e.g. field observations of 

surviving individuals in the 1983 event; Stachowitsch, 1984) and to its ability to crawl up to 

the plexiglass lid and take advantage of the potentially somewhat higher oxygen values. 

Biochemical pathways to sustain energy production anaerobically are well developed in 

molluscs (Gäde, 1983; Brooks et al., 1991). In contrast, Wu (1982) found a decrease in 

dominance and abundance of predatory gastropods (Murex trapa, Nassarius crematus, N. 

siguinjorensis, Turricula nelliae) along a hypoxic gradient in Tolo Harbour, Hong Kong, but 

this may reflect more stable, long-term gradients. 

Overall, this experiment demonstrated the success of the EAGU concept on 4 levels: (1) 

The sensor data showed rapidly declining oxygen values followed by increasing H2S values. 

(2) The behavioural response patterns of both benthic infauna and epifauna corresponded with 

previous field observations during a 1983 mortality event here, demonstrating that the 

experimental approach mimics more extensive oxygen crises (Stachowitsch,1984,1992). (3) 

The induced mortality was rapid, reflecting the course of the above event, in which N90% of 

the macroepifaunal biomass was lost within only 4 days. (4) The unexpected reoxygenation 

demonstrated that the observed behaviours – both within and among species - were related to 

specific, decreasing oxygen concentrations: all initiated behaviours were interrupted and then 

reappeared. The next step is to synthesize the results of this and additional deployments into a 

community-based scenario. This will ultimately allow us to draw conclusions on ambiental 
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oxygen conditions from behaviours observed in situ and will help to better determine the 

status of benthic systems exposed to hypoxia. 
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Table 1 

Selected behaviours evaluated during oxygen depletion.  

 

Life habit: epi = epifauna, in = infauna, cry = cryptic fauna. Feeding: susp = suspension 

feeder, carni = carnivore, omni = omnivore, depo = deposit feeder. Behaviour subdivisions: 
1open, half open, closed tentacle crown; 2up-, side-, downward orientated tentacle crown; 
3minor, major extension from sediment, 4horizontal, vertical locomotion; 5bottom (sediment), 

top (on top of chamber); 6retracted, extended foot; 7closed, half open, normal, widely gaping 

valves, 8normal, swollen, retracted mantle tissue; 9normal, extended, out from shell. No 

superscript: absent/present. 
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Table 2 

Criteria and time of death (surviving taxa omitted)* predated individual.  

 

- mortality not visible.  
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Table 3 

Kruskal-Wallis test for significant differences in the species-specific behaviours shown in Fig. 

3 during oxygen depletion.  

 

Bold numbers indicate statistically highly significant differences (P<0.01).  
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Fig. 1. Dissolved oxygen- (black line) and hydrogen sulphide concentrations (grey line) 

during the experiment (17 to 22 September 2005). Temperature remained nearly constant at 

about 18.5 °C (data not shown). Dashed lines: selected threshold values. 
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Fig. 2. Images taken on (a) day 1 of deployment (DO 2.6 ml l-1) and (b) day 3 (anoxia, H2S 29 

μM) of the 5.5-day experiment. (ca) sea anemone Calliactis parasitica with upward-

orientated tentacle crown, (ce) two anemones Cereus pedunculatus extended above sediment; 

(ch) two adjoining bivalves Chlamys varia widely gaped and with retracted mantle tissue; (gl) 

dead emerged polychaete Glycera spp. on sediment surface; (mi) ascidian Microcosmus 

sulcatus with extended siphons; (oc) holothurians Ocnus planci initially elongated then 

collapsed; (pa) hermit crab Paguristes eremita extended from shell, dead; (ph) ascidian 

Phallusia mammilata; (ps) echinoid Psammechinus microtuberculatus without camouflage; 

(op) brittle star Ophiothrix quinquemaculata and (sc) emerged irregular echinoid Schizaster 

canaliferus on sediment surface. 
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Fig. 3. Changes in species-specific behavioural responses during induced hypoxia and anoxia. 

Histograms (a-p) show the number of behaviours observed per hour in relation to oxygen 

curve (values averaged per hour); note different scales on second y-axis. Arrow(s): time of 

death. Error bar diagrams (a'-m') show course of selected behaviours during five oxygen 

categories; N = the number of photographs evaluated per oxygen category. Cer = Cereus, Call 

= Calliactis, maj = major, min = minor, norm = normal, hor = horizontal, ext = extended, 

camo = camouflaged, tip = arm-tipping, loco = locomotion, hidd = hidden. The proportions of 

behaviours per oxygen category do not necessarily total 100% because not all behavioural 

states are included (see Table 1). For details see text. 
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Appendix A. Supplementary data 

Mann-Whitney U test for significant differences in species-specific behaviour (Fig. 3) 

between the five oxygen categories. Numbers 1-5 under “comparison” refer to DO categories: 

normoxia, beginning (≤2.0 ml l-1 DO), moderate (≤1.0 ml l-1 DO) and severe hypoxia (≤0.5 

ml l-1 DO), and anoxia, respectively. Bold numbers: highly significant (P<0.01); underlined 

numbers: significant (P<0.05) differences. 

 
Taxon Variable Comparison Mann-Whitney U Wilcoxon W Z P -value

Calliactis crown open 1 vs. 2 35348.5 87351,5 -6.259 <0.001
1 vs. 3 26094.5 78097.5 -2.289 0.022
1 vs. 4 56266.0 108269.0 -5.599 <0.001
1 vs. 5 105109.0 787805.0 -14.657 <0.001
2 vs. 3 21994.0 38104.0 -3.406 0.001
2 vs. 4 55874.0 144284.0 -1.582 0.114
2 vs. 5 56872.5 739568.5 -19.962 <0.001
3 vs. 4 34832.0 50942.0 -2.268 0.023
3 vs. 5 48547.5 731243.5 -14.198 <0.001
4 vs. 5 95914.0 778610.0 -21.688 <0.001

crown half open 1 vs. 2 42277.0 80780.0 -2.113 0.035
1 vs. 3 28696.0 80699.0 -0.138 0.890
1 vs. 4 66304.0 154714.0 -0.829 0.407
1 vs. 5 104182.0 156185.0 -14.186 <0.001
2 vs. 3 23396.0 61899.0 -2.006 0.045
2 vs. 4 56276.0 94779.0 -1.456 0.145
2 vs. 5 81207.0 119710.0 -14.917 <0.001
3 vs. 4 36698.0 125108.0 -0.843 0.399
3 vs. 5 58361.0 74471.0 -11.005 <0.001
4 vs. 5 131116.0 219526.0 -16.448 <0.001

body rotation 1 vs. 2 44597.0 83100.0 0.000 1.000
1 vs. 3 27531.0 79534.0 -3.820 <0.001
1 vs. 4 51681.0 103684.0 -9.352 <0.001
1 vs. 5 130410.0 182413.0 -11.394 <0.001
2 vs. 3 23683.5 62186.5 -3.546 <0.001
2 vs. 4 44458.5 82961.5 -8.717 <0.001
2 vs. 5 112185.0 150688.0 -10.620 <0.001
3 vs. 4 30409.5 46519.5 -5.582 <0.001
3 vs. 5 77167.0 93277.0 -7.330 <0.001
4 vs. 5 227916.0 316326.0 -2.747 <0.01

Cereus body rotation 1 vs. 2 47040.0 86380.0 0.000 1.000
1 vs. 3 23688.0 80304.0 -1.538 0.124
1 vs. 4 40992.0 97608.0 -7.268 <0.001
1 vs. 5 205968.0 262584.0 -10.089 <0.001
2 vs. 3 19740.0 59080.0 -1.404 0.160
2 vs. 4 34160.0 73500.0 -6.659 <0.001
2 vs. 5 171640.0 210980.0 -9.244 <0.001
3 vs. 4 17467.0 27620.0 -4.525 <0.001
3 vs. 5 87855.0 98008.0 -6.452 <0.001
4 vs. 5 209296.0 250337.0 -3.545 <0.001  
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extension minor 1 vs. 2 45248.0 84588.0 -1.034 0.301
1 vs. 3 20320.0 76936.0 -3.094 <0.01
1 vs. 4 32680.0 89296.0 -7.975 <0.001
1 vs. 5 190880.0 1500651.0 -20.446 <0.001
2 vs. 3 16176.0 55516.0 -3.830 <0.001
2 vs. 4 25708.0 65048.0 -8.547 <0.001
2 vs. 5 167696.0 1477467.0 -18.395 <0.001
3 vs. 4 16821.0 26974.0 -3.375 0.001
3 vs. 5 63642.0 1373413.0 -23.896 <0.001
4 vs. 5 88471.0 1398242.0 -31.465 <0.001

extension major 1 vs. 2 47040.0 86380.0 0.000 1.000
1 vs. 3 23184.0 79800.0 -3.086 <0.01
1 vs. 4 32928.0 89544.0 -11.110 <0.001
1 vs. 5 3192.0 59808.0 -42.741 <0.001
2 vs. 3 19320.0 58660.0 -2.818 <0.01
2 vs. 4 27440.0 66780.0 -10.227 <0.001
2 vs. 5 2660.0 42000.0 -41.900 <0.001
3 vs. 4 14488.0 24641.0 -6.734 <0.001
3 vs. 5 4585.0 14738.0 -38.473 <0.001
4 vs. 5 75527.0 116568.0 -33.170 <0.001

Microcosmus siphon open 1 vs. 2 7798.0 17668.0 -6.9 <0.001
1 vs. 3 3992.5 6548.5 -5.1 <0.001
1 vs. 4 9632.5 19928.5 -3.8 <0.001
1 vs. 5 39472.0 271012.0 -10.4 <0.001
2 vs. 3 4938.5 14808.5 -0.2 0.845
2 vs. 4 8620.5 18490.5 -3.6 <0.001
2 vs. 5 46270.0 56140.0 -1.2 0.248
3 vs. 4 4404.0 6960.0 -2.6 0.010
3 vs. 5 23618.5 26174.5 -0.7 0.513
4 vs. 5 43229.5 274769.5 -4.1 <0.001

siphon closed 1 vs. 2 6790.0 20986.0 -7.4 <0.001
1 vs. 3 4097.5 18293.5 -4.4 <0.001
1 vs. 4 10829.5 25025.5 -1.8 0.079
1 vs. 5 50476.0 64672.0 -2.7 <0.01
2 vs. 3 4425.0 6981.0 -1.731 0.083
2 vs. 4 6765.0 17061.0 -5.6 <0.001
2 vs. 5 33020.0 264560.0 -6.6 <0.001
3 vs. 4 3987.5 14283.5 -3.0 <0.01
3 vs. 5 19393.0 250933.0 -3.1513 <0.01
4 vs. 5 47751.0 58047.0 -0.389 0.697

Phallusia siphon open 1 vs. 2 10920.0 25116.0 -1.375 0.169
1 vs. 3 4941.0 7497.0 -2.501 0.012
1 vs. 4 7977.0 18273.0 -5.902 <0.001
1 vs. 5 40623.0 352278.0 -9.488 <0.001
2 vs. 3 3762.5 6318.5 -3.533 <0.001
2 vs. 4 5932.5 16228.5 -6.867 <0.001
2 vs. 5 29907.5 341562.5 -10.406 <0.001
3 vs. 4 4242.0 14538.0 -2.309 0.021
3 vs. 5 21972.5 333627.5 -3.761 <0.001
4 vs. 5 53528.0 365183.0 -1.228 0.219

Chlamys valves gape normal 1 vs. 2 47040.0 86380.0 0.000 1.000
1 vs. 3 23520.0 33673.0 -2.178 0.029
1 vs. 4 43848.0 84889.0 -5.527 <0.001
1 vs. 5 43512.0 642477.0 -24.818 <0.001
2 vs. 3 19600.0 29753.0 -1.988 0.047
2 vs. 4 36540.0 77581.0 -5.056 <0.001
2 vs. 5 36260.0 635225.0 -23.332 <0.001
3 vs. 4 18817.0 59858.0 -2.935 <0.01
3 vs. 5 19483.0 618448.0 -17.956 <0.001
4 vs. 5 50712.0 649677.0 -20.993 <0.001  
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valves widely gaping 1 vs. 2 47040.0 86380.0 0.000 1.000
1 vs. 3 23520.0 80136.0 -2.178 0.029
1 vs. 4 46368.0 102984.0 -3.453 0.001
1 vs. 5 63504.0 120120.0 -20.979 <0.001
2 vs. 3 19600.0 58940.0 -1.988 0.047
2 vs. 4 38640.0 77980.0 -3.154 <0.01
2 vs. 5 52920.0 92260.0 -19.555 <0.001
3 vs. 4 19882.0 30035.0 -1.231 0.218
3 vs. 5 27932.0 38085.0 -14.545 <0.001
4 vs. 5 59524.0 100565.0 -18.675 <0.001

Ocnus crown orientation up 1 vs. 2 6062.0 20258.0 -8.454 <0.001
1 vs. 3 2844.5 17040.5 -7.438 <0.001
1 vs. 4 11065.0 25261.0 -1.367 0.172
1 vs. 5 58184.5 385829.5 -4.616 <0.001
2 vs. 3 4778.5 14648.5 -0.634 0.526
2 vs. 4 5843.0 15996.0 -6.954 <0.001
2 vs. 5 21048.5 348693.5 -16.336 <0.001
3 vs. 4 2769.0 12922.0 -6.187 <0.001
3 vs. 5 9568.0 337213.0 -13.732 <0.001
4 vs. 5 45024.0 372669.0 -6.347 <0.001

crown orientation down 1 vs. 2 11550.0 21420.0 -1.586 0.113
1 vs. 3 5857.5 8413.5 -1.131 0.258
1 vs. 4 11715.0 21868.0 -1.598 0.110
1 vs. 5 10453.5 24649.5 -22.181 <0.001
2 vs. 3 4970.0 7526.0 0.000 1.000
2 vs. 4 9940.0 20093.0 0.000 1.000
2 vs. 5 7700.0 17570.0 -21.417 <0.001
3 vs. 4 5041.0 15194.0 0.000 1.000
3 vs. 5 3905.0 6461.0 -17.260 <0.001
4 vs. 5 7810.0 17963.0 -21.507 <0.001

Hexaplex location top 1 vs. 2 85428.0 212688.0 -6.408 <0.001
1 vs. 3 36000.0 163260.0 -8.938 <0.001
1 vs. 4 67176.0 194436.0 -14.222 <0.001
1 vs. 5 289764.0 417024.0 -8.263 <0.001
2 vs. 3 38626.5 127036.5 -4.641 <0.001
2 vs. 4 73354.5 161764.5 -9.258 <0.001
2 vs. 5 293625.0 1288380.0 -0.380 0.704
3 vs. 4 43435.5 66226.5 -4.341 <0.001
3 vs. 5 128419.5 1123174.5 -5.155 <0.001
4 vs. 5 243733.5 1238488.5 -9.826 <0.001

locomotion horizontal 1 vs. 2 94584.0 182994.0 -5.721 <0.001
1 vs. 3 48198.0 70989.0 -4.078 <0.001
1 vs. 4 93522.0 185757.0 -7.897 <0.001
1 vs. 5 310152.0 1304907.0 -12.310 <0.001
2 vs. 3 44538.0 132948.0 -0.299 0.765
2 vs. 4 87516.0 179751.0 -3.524 <0.001
2 vs. 5 289950.0 1284705.0 -3.353 0.001
3 vs. 4 44187.0 136422.0 -3.773 <0.001
3 vs. 5 146401.5 1141156.5 -3.254 0.001
4 vs. 5 300085.5 392320.5 -1.834 0.067  
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Paguristes extension from shell 1 vs. 2 4547.0 9203.0 -5.345 <0.001
1 vs. 3 2021.0 6677.0 -8.749 <0.001
1 vs. 4 5436.0 10092.0 -11.747 <0.001
1 vs. 5 7449.0 12105.0 -16.714 <0.001
2 vs. 3 4589.5 13235.5 -4.660 <0.001
2 vs. 4 13729.0 22375.0 -7.870 <0.001
2 vs. 5 24256.0 32902.0 -12.717 <0.001
3 vs. 4 15967.0 21118.0 -1.725 0.084
3 vs. 5 30718.0 35869.0 -5.093 <0.001
4 vs. 5 118203.0 178929.0 -4.720 <0.001

out from shell 1 vs. 2 6288.0 14934.0 0.000 1.000
1 vs. 3 4848.0 9999.0 0.000 1.000
1 vs. 4 16656.0 21312.0 -0.5 0.599
1 vs. 5 32688.0 37344.0 -3.6 <0.001
2 vs. 3 6615.5 11766.5 0.0 1.000
2 vs. 4 22728.5 31374.5 -0.6 0.540
2 vs. 5 44605.5 53251.5 -4.3 <0.001
3 vs. 4 17523.5 22674.5 -0.5 0.590
3 vs. 5 34390.5 39541.5 -3.7 <0.001
4 vs. 5 118882.5 179608.5 -6.662 <0.001

Psammechinus camouflage 1 vs. 2 105420.0 193830.0 0.000 1.000
1 vs. 3 51957.0 74748.0 -3.774 <0.001
1 vs. 4 37901.0 129707.0 -21.499 <0.001
1 vs. 5 0.0 774390.0 -41.773 <0.001
2 vs. 3 43470.0 66261.0 -3.453 0.001
2 vs. 4 31710.0 123516.0 -20.080 <0.001
2 vs. 5 0.0 774390.0 -40.780 <0.001
3 vs. 4 17365.5 109171.5 -14.855 <0.001
3 vs. 5 3732.0 778122.0 -37.526 <0.001
4 vs. 5 172294.0 946684.0 -21.958 <0.001

Ophiothrix arm-tipping 1 vs. 2 187601.0 344121.0 -0.420 0.674
1 vs. 3 60088.0 286216.0 -16.275 <0.001
1 vs. 4 157132.0 383260.0 -10.524 <0.001
1 vs. 5 355548.0 581676.0 -2.020 0.043
2 vs. 3 49891.0 206411.0 -15.078 <0.001
2 vs. 4 130525.0 287045.0 -9.758 <0.001
2 vs. 5 295406.5 451926.5 -2.153 0.031
3 vs. 4 62084.0 216930.0 -6.563 <0.001
3 vs. 5 96872.0 667718.0 -18.767 <0.001
4 vs. 5 252458.0 823304.0 -11.741 <0.001

Macropodia locomotion 1 vs. 2 8792.0 22988.0 -4.431 <0.001
(horizontal + vertical) 1 vs. 3 4307.0 18503.0 -3.921 <0.001

1 vs. 4 11005.0 21301.0 -1.500 0.134
1 vs. 5 37929.0 363957.0 -19.603 <0.001
2 vs. 3 4843.5 14713.5 -0.381 0.703
2 vs. 4 6644.5 16940.5 -5.652 <0.001
2 vs. 5 17350.5 343378.5 -24.946 <0.001
3 vs. 4 3240.5 13536.5 -4.976 <0.001
3 vs. 5 8070.0 334098.0 -24.794 <0.001
4 vs. 5 37122.0 363150.0 -17.430 <0.001  
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Pilumnus exposure (hidden) 1 vs. 2 5698.0 19894.0 -10.061 <0.001
1 vs. 3 1088.5 15284.5 -12.773 <0.001
1 vs. 4 5708.5 19904.5 -10.223 <0.001
1 vs. 5 65215.5 391243.5 -4.439 <0.001
2 vs. 3 3469.0 13339.0 -4.362 <0.001
2 vs. 4 9917.0 19787.0 -0.157 0.875
2 vs. 5 25227.0 351255.0 -21.602 <0.001
3 vs. 4 3590.5 13886.5 -4.257 <0.001
3 vs. 5 4141.5 330169.5 -26.568 <0.001
4 vs. 5 25231.5 351259.5 -21.834 <0.001  
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Abstract During oxygen crises, benthic faunas exhibit a series of behavioural patterns that 

refect the duration and severity of the event. During artificially induced oxygen defciencies at 

24 m depth in the Northern Adriatic Sea, we photographically documented predation by the 

sea anemones Cereus pedunculatus (Pennant, 1777) and Calliactis parasitica (Couch, 1842) 

on the brittle star Ophiothrix quinquemaculata (DelleChiaje, 1828). Five predatory events 

were recorded with four anemones during nine deployments totalling 817 h of observation. 

Under near-anoxic conditions, individuals of both actinians made contact with, pulled in and 

consumed the brittle stars. The duration of each predatory event was 1.5–7.5 h. In three of the 

five events, brittle star remains were regurgitated after an additional 2.0–12.5 h of digestion 

by the anemones. Our time-lapse sequences demonstrate that oxygen deficiency, beyond 

eliciting a series of specific behaviours in members of each species, also promotes previously 

unobserved interspecific interactions. Our results show that sea anemones are not only highly 

resistant to anoxia, but may also benefit by taking advantage of prey that are more vulnerable 

to anoxic conditions. 
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Introduction 

 

The level of dissolved oxygen is a crucial environmental variable that has changed drastically 

in shallow coastal marine ecosystems worldwide (Diaz and Rosenberg 1995). “Dead zones”, 

caused by hypoxia (oxygen concentrations <2.0 ml l-1) and anoxia (no oxygen) in bottom-

water layers, top the list of emerging environmental challenges (UNEP 2004), and the 

problem is likely to become worse in the coming years (Wu 2002). 

The point at which benthic animals are affected by low oxygen concentrations varies, but 

first indications of stress generally begin to appear when oxygen drops below 2.0–3.0 mg l-1 

(1.4–2.1 ml l-1; Rabalais and Turner 2001). Direct effects of exposure to hypoxia such as 

migration, physical inactivity and mass mortalities are well documented (Stachowitsch 1984; 

Buzzelli et al. 2002; Montagna and Ritter 2006). Reproduction and growth may also be 

affected (Breitburg 1992; Miller et al. 2002; Stierhoff et al. 2006). Beyond these direct 

effects, there is increasing evidence for indirect effects (Eby et al. 2005) such as changes in 

competition and predation (Brante and Hughes 2001; Sagasti et al. 2001; Decker et al. 2004). 

Although mobile benthos are able to migrate out of the affected area, the less mobile fauna—

unable to escape or avoid hypoxic waters—exhibit a series of behavioural patterns in response 

to decreasing oxygen concentrations (Mistri 2004). Infauna, for example, emerge from the 

sediment surface. Epifaunal organisms attempt to raise themselves above the hypoxic bottom 

layer, either by moving onto higher substrates (Stachowitsch 1991) or raising their bodies (i.e. 

arm-tipping brittle stars, siphon-stretching bivalves or tiptoeing crustaceans; reviewed by 

Diaz and Rosenberg 1995). These hypoxia-induced behaviours, however, may render the 

animals more vulnerable to predation (Wu 2002). They may also alter predator–prey 

interactions, whereby predation rates increase or decrease (e.g. the Xounder Platichthys 

flesus: Tallqvist et al. 1999) depending on the relative tolerances of predator and prey to 

anoxia (Breitburg et al. 1994). Some marine predators even switch their prey items to 

optimally exploit the prey most sensitive to low oxygen concentrations (Sandberg 1994). For 

example, with decreasing oxygen concentrations the diet of demersal fish in the York River, 

Chesapeake Bay (Virginia) shifts from crustaceans to deep-burrowing infaunal organisms 

lying moribund on the sediment surface (Pihl et al. 1992). 

The Northern Adriatic, a shallow (mean depth 35 m), semi-enclosed sea, has a long history 

of seasonal hypoxia and anoxia due to water column stratification (Justic 1987). 

Anthropogenically induced long-term eutrophication (Marchetti et al. 1989; Barmawidjaja et 

al. 1995) has increased the frequency, duration and severity of oxygen stress during recent 
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decades (Danovaro 2003; Lotze et al. 2006). Today, the Northern Adriatic is a case study for 

eutrophication with the full range of typical symptoms such as oxygen depletion, altered 

behaviour and mortality of benthic organisms, as well as marine snow events. Macroepifauna 

communities are widely distributed in the Gulf of Trieste (Fedra 1978; Zuschin et al. 1999). 

The community on the fine-sediment substrates at ~24 m depth largely consists of 

interspecific aggregations termed multi-species clumps (Fedra et al. 1976) or bioherms. The 

brittle star Ophiothrix quinquemaculata is one of the three designating species in this benthic 

community (Ophiothrix-Reniera-Microcosmus community) and is found almost exclusively 

on sponges and ascidians, with its arms extending upward in a suspension-feeding position. 

The sea anemones Cereus pedunculatus and Calliactis parasitica also are prominent members 

of this community. Cereus pedunculatus lives partially buried in the sediment with the 

tentacle crown on the sediment surface, although some are “integrated” into epifaunal 

aggregations. Calliactis parasitica shows a different life habit as a common mutualistic 

symbiont on gastropod shells occupied by hermit crabs, and as an epibiont on living 

gastropods (Stachowitsch 1980; Caruso et al. 2003). Little information is available on the 

prey composition of these two particularly abundant anemone species in the Mediterranean. 

Chintiroglou and Koukouras (1991, 1992), who studied the diet of both anemones, showed 

that Calliactis parasitica is a non-selective omnivorous suspension feeder, but also can 

remove food particles from the sediment through tactile tentacle motion. It preys upon a wide 

spectrum of organisms, particularly gastropods and crustaceans (Chintiroglou and Koukouras 

1991). Cereus pedunculatus is an opportunistic omnivorous suspension feeder; due to its 

relatively short tentacles; this anemone cannot actively search for prey. It feeds almost 

exclusively on organic detritus and on motile prey that blunder into its tentacles. Cereus also 

feeds almost exclusively on crustaceans, mainly amphipods and decapods (Chiniroglou and 

Koukouras 1992); echinoderms have never been identified as prey items. Conversely, studies 

on predators of ophiuroids in shallow-water habitats have focused on demersal fish (Witman 

and Sebens 1992; Rosenberg and Selander 2000), various crabs and shrimps (Wurzian 1977; 

Aronson 1987; Makra and Keegan 1999), the Norwegian lobster (Baden et al. 1990a) and 

asteroids (Sloan 1980; Gaymer et al. 2002), but have never included actinians. 

During 2005 and 2006, we artificially induced small-scale oxygen deficiencies in situ in the 

North Adriatic to study the effects of hypoxia and anoxia on the structure and behaviour of 

the macrobenthic fauna. This study, involving time-lapse photography and sensor 

measurements, is the first to document a unique predatory interaction between sea anemones 

and brittle stars. 
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Materials and methods 

 

The fieldwork was carried out from mid-September to mid-October 2005, and July to mid-

October 2006, using SCUBA diving techniques. The study site was approximately 2 km off 

Piran (Slovenia, Northern Adriatic Sea; 45°32.69`N 13°34.94`E) on muddy sand bottom at a 

depth of 24 m. Both years of fieldwork yielded a total of 10 complete deployments. All were 

conducted with the Experimental Anoxia Generating Unit (EAGU), a specially designed and 

constructed state-of-the-art underwater benthic chamber which artificially induces oxygen 

deficiencies in situ (Stachowitsch et al. 2007). 

 

Experimental set-up  

 

The EAGU was deployed for up to 4 days at a time, in two different configurations, to 

autonomously generate oxygen crises and quantify benthic responses. Initially the system was 

positioned for 24 h in its “open” configuration (50 × 50 × 50 cm open-sided aluminum frame 

plus instrument lid) over a selected macrobenthic assemblage to document behaviour during 

normoxic conditions. Assemblages were selected based on the presence of a wide range of 

representative organisms. In a second step, the aluminum frame was exchanged for a 

plexiglass chamber (“closed” configuration), open on the bottom and top and of the same size 

as the frame and repositioned over the same assemblage for another 48–72 h. Here, the 

behavioural patterns of the animals at decreasing oxygen concentrations were documented. 

The lid housed a digital underwater camera with time-lapse function and two flashes. It also 

accommodated two oxygen-, one hydrogen sulphide- and one temperature sensor, and the 

datalogger. The two oxygen sensors were mounted at different heights (2 and 20 cm, 

respectively) above the sediment in order to detect potential oxygen gradients in the enclosed 

water body. The hydrogen sulphide sensor was fixed at 2 cm height, and the temperature 

sensor at 20 cm height above the sediment. The camera was adjusted to produce a series of 

images at 6-min intervals, whereas the sensor values were logged every minute (Stachowitsch 

et al. 2007). 

After each deployment, as many organisms and biogenic structures as possible on or 

embedded in the soft bottom were collected by hand. In many deployments, however, the 

decomposition was advanced, and/or the animals were no longer visible because of an 

amorphous black organic layer (see Fig. 5D in Stachowitsch et al. 2007); smaller or more 

fragile organisms such as brittle stars were often missed. In the case of the sea anemones, 
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some retracted deep into the sediment and could not be retrieved. The collected samples were 

carefully examined for surviving organisms in the laboratory and then were preserved in a 4% 

formalin: seawater solution.  

Both sea anemones and brittle stars were common faunal elements enclosed by EAGU. The 

10 deployments contained a total of 38 sea anemones (no individuals in deployment 9), of 

which we collected 29 individuals (Fig. 1a). They also contained at least 381 brittle stars (211 

individuals were collected; Fig. 1b). The maximum density of the former was seven 

individuals/0.25 m2 (surface enclosed by EAGU), the latter 65 individuals/0.25 m2. We 

measured the largest column diameter, height and wet weight of all preserved (contracted) sea 

anemones. We also measured the expanded tentacle crown diameters of each individual in the 

films. The size (disc diameter and arm-tip to arm-tip length) and wet weights of the brittle 

stars were measured based on 40 individuals collected in deployment no. 7, which was ended 

before they started to decompose. We used these values for a representative size frequency 

distribution. Because fewer individuals were always collected than those visible in the 

images, we also counted all brittle stars based on individual frames of each film. Three 

randomly chosen frames were evaluated in the closed configuration. At least one of the 

evaluated frames was from the hypoxic phase, when more individuals were typically visible 

on the surface of sponges and other organisms. The highest number counted was chosen. 

Finally, we measured the disc and overall diameters of the five predated ophiuroids based on 

the images. 

 

Data analyses 

 

Sea anemones were present in 9 out of 10 deployments conducted in 2005 and 2006. The total 

documentation time in these 9 deployments was 817 h 6 min. Of a total of 8,290 images, 

1,115 images were taken during the open, and 7,175 images during the closed EAGU 

configuration.  

We viewed all time-lapse sequences to detect predatory events and then examined every 

image from the start to finish of such interactions. The predatory interactions were interpreted 

in the framework of the oxygen and hydrogen sulphide concentrations provided by the 

sensors. Dissolved oxygen (DO) concentrations during open EAGU configuration generally 

varied from 3.0–5.0 ml l-1 (with occasional peaks after storm conditions). In all deployments, 

the closed chamber created hypoxic conditions within 24 h, and anoxic conditions in about 2 

days. Dead organisms were not removed during the deployment; this simulated natural 
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mortality events and avoided disturbing the experimental set-up. It also promoted hydrogen 

sulphide (H2S) formation in the chamber within 1 day of anoxic conditions. Temperature 

remained steady from start to finish in the early deployments (17–19°C), and thus was not 

measured in subsequent deployments. Time-lapse movies were produced from the still image 

series using the Adobe Premier 6.5 program. Statistical analyses were performed using the 

software package SPSS 15. 

 

Anemone feeding behaviour  

 

Anemone behaviour was recorded in categories that described reactions to decreasing oxygen 

and increasing hydrogen sulphide concentrations. For Cereus, behavioural categories 

included: 

 

• tentacle crown habitus—tentacle crown either open (all tentacles fully expanded) or 

closed (animal retracted so that no tentacles visible). 

• Extension—tentacle crown, normally expanded on the sediment surface, is elevated to 

different degrees above the surface (minor: slightly above the sediment; major: far 

above the sediment, with part of column clearly visible). 

• body contraction—column diameter of extended animals severely constricted or 

strongly inflated at some level above the sediment. 

• body rotation—rotating or swaying movement of highly extended individual. 

• mouth and pharynx protrusion—mouth “puckered” or part of pharynx protruded (after 

McFarlane 1975). 

 

For Calliactis, the above categories were modified: extension was deleted and tentacle crown 

orientation (i.e. away from or towards the sediment), as well as detachment from the 

substratum (a hermit-crab-occupied snail shell in the predation event recorded here), was 

added. Predation involved a clear sequence of events: feeding, digestion and regurgitation. 

The feeding response involved contact, pulling in of the prey, transfer to the mouth and 

ingestion itself. After contact was made, the captured food was held on the tentacles and 

moved to the mouth by ingestive movements, i.e. the tentacles shortened and bent, and the 

tentacle crown margin folded over toward the mouth. Feeding was completed when the last 

remnants of the brittle star arms were no longer visible and the anemones’ mouth was closed. 

Digestion (McFarlane 1975) or retention (Shick 1991) comprised the time between mouth 
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closure and the beginning of regurgitation. Regurgitation was complete when the remains of 

the brittle stars were ejected fully and the mouth closed again. 

 

Results  

 

Behaviour during normal oxygen concentrations 

 

The percent areal coverage by individual anemone crowns as measured from the images 

ranged from 0.11 to 3.14% (Fig. 2a). This corresponds to an average crown 

diameter/anemone of 67.0 mm (range: 19–100 mm). The wet weights of the collected 

individuals ranged from 0.14 g in deployment 3 (one individual) to 24.73 g in deployment 5 

(three individuals). 

In all open EAGU configurations, we observed that the sea anemones Cereus pedunculatus 

or Calliactis parasitica contacted potential prey items such as small crabs. Anemones also 

contacted Ophiothrix individuals under normal oxygen conditions, but this never developed 

into predatory interactions. When Cereus pedunculatus contacted crabs or brittle stars, the 

tentacle crown mostly remained open, and the touched part sometimes slightly undulated. If 

the anemones retracted into the sediment, this lasted for only a few minutes. Contact with 

large, moving organisms such as the gastropod Hexaplex trunculus or hermit crabs caused 

prompt retraction—sometimes completely and for several hours—into the sediment. 

Calliactis parasitica reacted quickly, although less sensitively, to contact with other 

organisms: the crown undulated or retracted slightly. Complete contraction was observed only 

when the hermit crab that carried the anemones forced its way between closely adjoining 

multi-species clumps. One scenario was visible in all images: brittle stars, clinging to sponges 

or ascidians, generally maintained a safety distance of at least 1.0–2.0 cm from nearby 

anemones. If contact was made with an anemone, the ophiuroids immediately retracted their 

arms and typically moved a few centimetres away.  

 

Behaviour during decreasing oxygen concentrations 

 

Declining oxygen concentrations after the chamber was sealed elicited a clear change in the 

behaviour of ophiuroids towards sea anemones: contact with either anemone species no 

longer caused the brittle stars to flee. Some extended their arms to within millimetres of the 
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anemones. If touched, however, the anemones never showed any feeding patterns in these 

situations, but kept their tentacle crowns wide opened. 

As oxygen values approached near-anoxia, a total of five predatory interactions (13% of the 

38 sea anemones recorded) were observed in 3 out of 9 deployments. Four took place between 

Cereus pedunculatus and Ophiothrix quinquemaculata, and one between Calliactis parasitica 

and the brittle star (Table 1). Except during predation event 1 (deployment 1), hydrogen 

sulphide was absent. Predated brittle stars were significantly larger than a representative 

ophiuroid assemblage of one of the deployments (Fig. 2b; Mann–Whitney U test, Z = –2.132, 

P = 0.033). The average 

individual wet weight was 1.31 g, range 0.10–2.48 g. 

Predation events also tended to involve the largest sea anemones (Fig. 2a). 

At the onset of each predation event, the anemones showed typical behavioural responses to 

oxygen stress, such as extension and rotation (Fig. 3a, b), swaying, or “mouth puckering”. 

These behaviours increased significantly at near-anoxic conditions (·0.5 ml l¡1) in both 

species (Fig. 3, Table 2). 

Most brittle stars initially responded to decreasing oxygen concentrations by arm-tipping 

(i.e. elevating their discs above the substrate and standing only on their arm-tips), but had 

already become motionless and either clung lethargically to the substrate or lay moribund on 

the sediment surface at the time of the predatory events. 

All anemones that fed on brittle stars survived until the end of each deployment, whereas 

all the brittle stars died. In two deployments, a total of four Calliactis parasitica died, three of 

them in the longest one (depl. 1; 133 h 6 min closed configuration, retrieval delayed due to 

bad weather). No Cereus mortality occurred. 

 

Predation event 1—Cereus pedunculatus and Ophiothrix quinquemaculata 

 

The anemone raised its tentacle crown and began rotating in response to anoxia (Fig. 4a). It 

first caught one, then a second arm of the brittle star, which resisted being pulled in by 

clinging to its sponge perch about 10 cm away (42 min; Fig. 4b). Its detachment (Fig. 4c) and 

transport to the mouth occurred from one image to the next (6 min; Fig. 4d, e). The complete 

feeding phase (7 h 42 min; Table 1) was the longest documented. This was followed 2 h 6 

min later by regurgitation of the mucus-enclosed remains (Fig. 4f), which fell onto the 

sediment. The anemone, showing extreme pharynx protrusion, continued to move its tentacles 
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crown until the end of the deployment 2.5 days later, despite anoxia and increasing hydrogen 

sulphide concentrations. 

 

Predation events 2 and 3—Cereus pedunculatus and two Ophiothrix quinquema-culata 

 

Both brittle stars had made contact with the anemone prior to the actual predation event: one 

was pulled from a sponge and remained attached to the anemone column for 90 min before 

fleeing onto its original sponge. The latter individual (event 2) was pulled from another 

sponge, contact was then interrupted and it remained on the sediment. Almost 2 h after lying 

motionless, it made a slight move. In the next image, the anemone swayed its column, bent its 

tentacle crown down and pulled in the brittle star. Body rotations and tentacle movements 

transported the prey towards its mouth. Feeding took more than 2 h (Table 1). 

About 42 min after this predation event, the same anemone recaptured the other brittle star 

(event 3), which in the meantime had left the sponge and lay moribund on the sediment 

surface. Feeding (1 h 42 min) involved the same patterns as in event 2. Moreover, the 

anemone briefly touched an arm of a third Ophiothrix while it devoured the second 

individual. The anemone moved until the end of this deployment (ca. 3 days later; ~104 µMol 

l-1 H2S), but no regurgitation was observed. 

 

Predation event 4—Calliactis parasitica and Ophiothrix quinquemaculata 

 

This sea anemone was attached to a shell inhabited by the hermit crab Pagurus cuanensis, 

which already was overturned and largely inactive. Thus, the anemone had a considerably 

reduced radius of activity compared to the large areas it “sweeps” when the crab normally 

walks across the bottom. The brittle star lay moribund on an adjoining ascidian about 8 cm 

away. It was missing one arm, perhaps because a few images earlier it briefly (2 images long, 

i.e. 12 min) touched another Calliactis specimen on the same shell. 

Although initial contact was not visible, the anemone pulled the brittle star from the 

ascidian onto the sediment, where it landed upside-down, two arms already attached to the 

tentacle crown. The anemone then raised its crown and pulled the brittle star in. The 

ophiurid’s central disc was devoured in only 12 min; the remaining, projecting arms took 

another 4 h 42 min. Mucus-covered remains (disc and attached arm stubs) were regurgitated 

after 6 h. The anemone continued to move until the end of the deployment approximately 1.5 

days later. 
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Predation event 5—Cereus pedunculatus and Ophiothrix quinquemaculata 

 

This event was concurrent with predation event 4. The extended anemone touched one arm of 

a moribund ophiuroid on the sediment. This 36 min contact elicitated no visible predatory 

reaction: the anemone retracted partly into the sediment and undulated its crown. It then 

pulled the brittle star onto its tentacle crown and consumed it within 2 h. Half a day later, 

remnants were regurgitated in mucus and fell onto the sediment. The anemone moved until 

the end of the deployment (1.5 days later). 

 

Discussion and conclusions 

 

The sea anemones and brittle stars in our experimentally induced oxygen deficiencies 

repeatedly showed a series of distinctive, predictable sublethal and lethal responses that 

paralleled those observed in earlier benthic mortalities in the Northern Adriatic Sea 

(Stachowitsch 1984, 1991). All anemones responded similarly with elongation, expanded 

tentacle crowns, rotation, swaying and contraction. Calliactis parasitica additionally detached 

from their hermit-crab occupied shell. Ophiothrix quinquemaculata responded with arm-

tipping and movement to higher substrates such as atop sponges and ascidians. Rising a few 

centimeters above the sediment surface has been observed in other studies (Baden et al. 

1990b; Rosenberg et al. 1991; Sagasti et al. 2001) and is interpreted as an attempt to avoid 

low oxygen concentrations near the sediment surface. 

With ongoing oxygen stress, however, the ophiuroids became less active and most 

ultimately left their perches. Most echinoderms are intolerant of low oxygen concentrations 

(Gray et al. 2002; Levin 2003), and our results confirm that O. quinquemaculata is a hypoxia-

sensitive species in the Northern Adriatic Sea. All died long before the end of the 

deployments. 

In contrast, all C. pedunculatus and six of ten C. parasitica individuals survived until the 

end of the deployments. This observation confirms in situ and laboratory studies that 

demonstrate that sea anemones are particularly tolerant to hypoxia and also can survive 

extended periods of anoxia (Jørgensen 1980; Wahl 1984; Stachowitsch 1991). 

They can sustain their energy production when confronted with hypoxia by switching from 

aerobic to anaerobic pathways (e.g. opine and more efficient fermentations such as glucose-

succinate or aspartate-succinate pathways; Shick 1991, p. 127). Moreover, sea anemones, like 

other cnidarians (scypho- and hydromedusae: Rutherford and Thuesen 2005), exhibit 
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metabolic depression—a down regulation of metabolic demand under hypoxic conditions. 

Finally, behaviours such as elongation and peristalsis may increase exposure to the sea water 

both through the body wall and the coelenteron (Shick 1991). The lower survival rate of the 

epifaunal Calliactis parasitica versus the infaunal Cereus pedunculatus could reflect a 

potentially different anaerobic pathway or the stiffer peripheral column mesoglea of the 

former, which may be a stronger barrier for oxygen diffusion (Shick 1991). Note that C. 

pedunculatus is zooxanthellate (Davy et al. 1997; Visram et al. 2006) and that symbiotic 

anemones even inhabit depths where irradiance is greatly reduced (Muller-Parker and Davy 

2001). However, the potential role of this symbiosis in the eutrophic, 24 m depth here remains 

unknown. 

While sublethal behavioural responses to declining oxygen concentrations are 

advantageous for surviving or avoiding hypoxic layers, they may be inappropriate for 

avoiding predation (Diaz and Rosenberg 1995). Large foragers can migrate into and out of 

hypoxic areas and thus increase their predation efficiency (Pihl et al. 1992). If, however, both 

predators and prey are affected, then relative tolerance will govern predation efficiency 

(Breitburg et al. 1994). Nestlerode and Diaz (1998) suggested that relative hypoxia tolerance 

might lead to selective predation on certain taxa, whereby the most intolerant prey will be 

exploited (Sandberg 1994). 

Our results for C. pedunculatus and C. parasitica are in situ proof of this: by exploiting 

moribund ophiuroids, anemones switched to an alternative prey item apparently absent from 

their normal diet elsewhere in the Mediterranean (Greece: Chintiroglou and Koukouras 1991, 

1992). This makes O. quinquemaculata—a highly abundant species in this community—an 

unexpected but potentially important secondary food source for Cereus and Calliactis during 

periods of oxygen stress. Our observations suggest that the anemones were able to take 

advantage of stressed ophiuroids only within a narrow range of low oxygen concentrations, 

and that the number of contacts under all other conditions was not indicative of successful 

predatory interactions. In the Northern Adriatic, we never observed predatory interactions 

between anemones and ophiuroids during normal oxygen conditions, neither in our current 

EAGU experiments nor in earlier 16 mm time-lapse camera films (Fedra 1974). Those early 

films revealed that brittle stars actively and successfully avoided potential mobile predators, 

such as the sea star Astropecten aurantiacus and the hermit crab Paguristes eremita, fleeing 

before contact and maintaining a constant distance (Stachowitsch 1979). The brittle stars did 

not flee from all larger mobile epifauna: they climbed atop holothurians and used them as 

transportation. Here, we show that brittle stars, under normoxic conditions, avoided 

 

109



encounters with anemones as well and maintained a safe distance of at least 1–2 cm. If they 

did make contact, they either retracted their arms and/or moved out of reach. If contact was 

made under normoxia or in the early phases of hypoxia, predation never 

occurred: all predation events took place during nearanoxia (Table 1). The activity of the 

anemones coupled with the moribund brittle stars increased predatory feeding efficiency and 

reduced prey escape. In one case (event 3), a still-active brittle star initially was able to escape 

an anemone. In predation event 1 (Fig. 4), the anemone also required 48 min to pull in the 

living prey from its sponge perch. Moribund brittle stars, however, were pulled in without 

resistance: they were no longer able to use well-known post-contact avoidance strategies such 

as active flight or arm-autotomy (Wilkie 1978; Drolet et al. 2004). Our results showed that the 

anemones which successfully consumed brittle stars were the largest within the respective 

deployments (Fig. 2a), and that the predated brittle stars were typically in the larger size 

categories 

(Fig. 2b). The combined reach of large, rotating anemones and the overall diameters of larger 

brittle stars is one explanation for this correlation. Otherwise, there was no apparent 

correlation between number of anemones and number of brittle stars. We attribute this in part 

to benthic topography. The location of the anemones on the sediment, combined with the 

position of the brittle stars on the multispecies clumps, will play a role in determining 

predation events. Nonetheless, the fact that brittle stars tended to leave aggregations during 

hypoxia means that the configuration and size of the multi-species clumps themselves (we 

tended to choose larger aggregations) are less important. Accordingly, our observations do not 

reflect a “worst case scenario”. 

Beyond mechanical stimuli, chemical stimuli are also generally required to elicit a 

complete feeding response in most cnidarians (Nagai and Nagai 1973; Elliott and Cook 1989; 

McFarlane and Lawn 1991). Chemical cues, emitted from damaged or dead individuals, can 

cause marine predators to act as opportunistic scavengers in lieu of their normal predatory 

role (Brewer and Konar 2005). Our study provides the first direct proof of this strategy in sea 

anemones. The combination of stimuli needed for attack, along with the normal resistance 

ability of the prey, could explain the relatively narrow oxygen concentration window for 

successful predation. Moreover, an ‘aerobic shutdown’ before switching to anaerobic 

metabolism (Shick 1991) may explain why the anemones fed on the ophiuroids only after a 

lengthier severe hypoxia. 

The duration and extent of many behaviours are altered by stress (Abrams 1982). During 

hypoxia, for example, behaviour related to respiration can increase (siphon activity of 
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bivalves; Rosenberg et al. 1991), and those not related to respiration can decrease (the 

duration of amphipod swimming activity; Johansson 1997). This also pertains to prey-

handling times, which take longer under hypoxic conditions (shore crab Carcinus maenas; 

Brante and Hughes 2001). In the present study, prey handling and consumption also appeared 

to be prolonged by anoxia. The feeding time of the Cereus pedunculatus individual that 

experienced the highest H2S-concentrations and the longest anoxia (Table 1: predation event 

1) was much longer than in the other individuals. The regurgitation itself also was nearly as 

twice as long. In contrast, the period between ingestion and regurgitation under anoxia was 

several times more rapid than in anemones under normoxic conditions, i.e. 1–2 days (Nagai 

and Nagai 1973; McFarlane 1975). Finally, anoxia also alters optimal foraging strategies, 

allowing the consumption of prey that would normally require longer handling and digestion 

times (Beddingfield and McClintock 1993).  

In conclusion, our in situ experimental approach revealed a previously unreported predator–

prey interaction. Considering the frequency of oxygen crises in the Northern 

Adriatic Sea, this type of predation may be a common event. Such predation reflects the 

different tolerances and behaviours of the species experiencing oxygen deficiency: the prey’s 

moribund condition and the predator’s tolerance favour these events. This, combined with the 

anemones’ considerable extension and body rotation in all directions, increases their chances 

to contact prey. Even though the window of opportunity is relatively narrow (i.e. after brittle 

stars reduce their activity but before they begin to decompose), it is apparently long enough to 

afford the anemones an advantage in these unstable environmental conditions. This may help 

explain why anemones are often a dominant element in the composition of post-mass 

mortality benthic communities in the Northern Adriatic Sea. 
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Table 1 Predatory interactions between the two anemone species and the brittle star 

Ophiothrix quinquemaculata  

 

 
 

Predation events 2 and 3: same anemone individual. All times are based on 6-min time-lapse 

intervals. Top DO and H2S-concentrations refer to values at onset of feeding, bottom 

concentrations to onset of regurgitation 

Dash no regurgitation observed  
a Initial contact to complete regurgitation 
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Table 2 Results of the Mann–Whitney U test for differences in the number of major 

extensions (Fig. 3a) and body rotations (Fig. 3b) in the five oxygen categories in deployment 

1 and 10 

 
 

Numbers 1–5 under “comparison” refer to oxygen categories >2.0–0 ml l-1 DO, respectively. 

Bold numbers indicate highly significant (P < 0.01); underlined numbers 

indicate significant (P < 0.05) differences 
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Fig. 1 Number of a sea anemones and b ophiuroids per deployment (area: 0.25 m²; Ce = 

Cereus pedunculatus, Ca = Calliactis parasitica). Shaded area represents number of collected 

specimens, open area total number of individuals visible in film. Asterisks indicate 

deployments with predation events 

 

 

 

 

 

 

119



 
 

Fig. 2 a Percent areal coverage by crowns of all 38 sea anemones documented in the Wlms 

(tentacle crown diameter: average 67 mm, range: 19–100 mm). Solid dots represent predatory 

individuals, and numbers refer to predation events listed in Table 1. b Representative size–

frequency distribution of adult Ophiothrix quinquemaculata based on 40 individuals collected 

in deployment 7. Asterisks indicate size class of the five predatory individuals in deployments 

1, 8 and 10 
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Fig. 3 Changes in sea anemone behaviour during the course of oxygen depletion in 

deployments 1 and 10 (the two evaluated entirely for all anemone behaviour). a Major 

extensions of four Cereus pedunculatus individuals from the sediment (two in each 

deployment). b Body rotations of six Calliactis parasitica individuals (three in each 

deployment). Numbers above error bars refer to number of photographs taken 

and evaluated per oxygen category 
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Fig. 4  Predation by Cereus pedunculatus on Ophiothrix quinquemaculata (predation event 

1). a Overview of enclosed macroepifauna. Cereus (top arrow) with elevated tentacle crown 

and Ophiothrix (bottom arrow) on sponge about 10 cm away. b Anemone catches arm of 

brittle star, which holds onto sponge with one arm. c Brittle star pulled on to tentacle crown. d 

Anemone begins to ingest the prey. e End phase of feeding with arms still protruding from 

mouth. f Regurgitation of brittle star remains; note extension of anemone from sediment 
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