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1 ZUSAMMENFASSUNG 

Epidermaler Wachstumsfaktorrezeptor (EGFR)-defiziente Mäuse sterben in 

unterschiedlichen Stadien der embryonalen und frühen postnatalen Entwicklung 

und weisen verschiedene epitheliale Defekte sowie eine Neurodegeneration 

auf. Neben seiner Funktion in der Regulation der normalen Entwicklung von 

Astrozyten und Epithelzellen wird der EGFR in vielen humanen Karzinomen 

und Glioblastomen, welche Tumore epithelialen beziehungsweise glialen 

Ursprungs sind, überexprimiert. Transgene Mäuse, die eine aktivierte Form des 

Ras-Aktivators Son of Sevenless unter dem Epithel-spezifischen Keratin 5 

Promotor exprimieren (K5-SOS), entwickeln EGFR-abhängige Hauttumore. In 

diesen Tumoren stellt der EGFR ein essentielles Überlebenssignal für die 

Tumorzellen dar, was vermutlich durch die Aktivierung von Akt erfolgt. 

Deswegen ist es sehr wichtig, die physiologischen 

Signaltransduktionskaskaden des EGFR in Epithelzellen genau zu untersuchen, 

um besser zu verstehen, wie abweichende EGFR Signalisierung zur 

Tumorbildung und zum Tumorwachstum führen.  

Aufgrund der frühen postnatalen Letalität der EGFR-null Mäuse konnte die 

Funktion des EGFR während der Haut- und Haarfollikelentwicklung nicht 

untersucht werden. Deshalb wurden Mäuse mit konditionellen EGFR (floxed) 

Allelen mit der K5-Cre oder der Tamoxifen-induzierbaren K5-CreERT 

transgenen Linie gekreuzt, um Mäuse zu generieren, in denen der EGFR 

spezifisch in den basalen Schichten der Epidermis während der Embryogenese 

(EGFR∆ep) bzw. in adulten Mäusen (EGFR∆epER) deletiert werden kann. 

Überraschenderweise führte die Epidermis-spezifische Inaktivierung des EGFR 

während der Embryonalentwicklung oder der ersten postnatalen Tage zum 

frühen Tod. Die Deletion des EGFR in der Haut zu einem späteren Zeitpunkt 

verursachte hingegen nur geringe Anomalien der Haarfollikel, und die Mäuse 

waren überlebensfähig. Die Bildung der lebenswichtigen Hautbarriere war in 

EGFR-defizienten sowie EGFR∆ep Mäusen verzögert, wobei die Haut kurz nach 

der Geburt impermeabel wurde. 

Des Weiteren konnte ich zeigen, dass das Fehlen des EGFR in der Epidermis 

die Morphogenese der Haarfollikel sowie deren Eintritt in den Haarzyklus 

verzögert. Darüber hinaus spielt der EGFR offenbar eine Rolle in der 
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Immunantwort der Haut, da Langerhans Zellen, αβT-Zellen, dendritische Zellen, 

Granulozyten und Mastzellen die Haut von EGFR-mutanten Mäusen infiltrieren 

unabhängig davon, ob Haarfollikel vorhanden sind oder nicht. Meine Studien 

haben auch gezeigt, dass in der Abwesenheit des EGFR die Wundheilung 

verzögert ist, da die Reepithelialisierung und Wundkontraktion beeinträchtigt 

sind. 

Neben der essentiellen Funktion in der Entwicklung und Erhaltung der Haut und 

ihrer Anhänge ist der EGFR in die Hauttumorigenese involviert. Wie bereits 

erwähnt, stellt der EGFR im K5-SOS-abhängigen Tumormodell einen wichtigen 

Überlebensfaktor für Tumorzellen dar. Interessanterweise exprimieren 

epidermale Zellen von K5-SOS transgenen Mäusen große Mengen an 

Vaskular-Endothelialem Wachstumsfaktor (VEGF) und β1 Integrin, welche 

bedeutende Regulatoren der Tumorangiogenese bzw. Tumorzellmigration sind. 

Um die Mechanismen zu untersuchen, wie die Signale ausgehend von EGFR, 

VEGF oder β1 Integrin zur Tumorbildung und zum Tumorwachstum führen, 

wurden Mäuse generiert, in denen VEGF oder β1 Integrin spezifisch in der 

Epidermis deletiert werden können (VEGF∆ep und β1int∆ep), und mit K5-SOS 

Mäusen gekreuzt. K5-SOS transgene epidermale Zellen besitzen ein 

verstärktes Migrationspotenzial sowie weniger fokale Kontakte, was durch den 

Src-Kinase Inhibitor SU6656 aufgehoben werden kann. Interessanterweise 

entwickeln K5-SOS transgene Mäuse ohne β1 Integrin Expression in der 

Epidermis im Gegensatz zu Kontrollmäusen keine Tumore, und diese Tatsache 

konnte in Zusammenhang mit Signal-Effektoren von β1 Integrin und EGFR 

gebracht werden. Die Expression von K5-SOS in den Hautzellen von β1int∆ep 

Mäusen hat den Phänotyp dieser Mäuse dramatisch verschlechtert, was sich 

hauptsächlich durch eine verdickte, hyperproliferative Epidermis und 

degenerierende Haarfollikel zeigte. Weiters hat eine Epidermis-spezifische 

Deletion von β1 Integrin in Mäusen mit bereits bestehenden Tumoren das 

Tumorwachstum signifikant verzögert. Diese Ergebnisse demonstrieren eine 

entscheidende Funktion von β1 Integrin in der Krebsentstehung, 

Tumorhomeostase und –wachstum, und belegen eine Wechselwirkung 

zwischen EGFR und β1 Integrin in vivo. 

Die Epidermis-spezifische Deletion von VEGF hat ebenfalls das K5-SOS-

abhängige Hauttumorwachstum beeinträchtigt. Überraschenderweise hat das 
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Fehlen von VEGF in einem EGFR-mutanten (waved-2; wa2) Hintergrund die 

Tumorentwicklung komplett inhibiert, was darauf hinweist, dass VEGF und 

EGFR in neoplastischen Zellen zusammenarbeiten, um das Tumorwachstum zu 

fördern. Mechanistisch konnte ich zeigen, dass K5-SOS die Expression von 

VEGF und seinen Rezeptoren Flt1 und Neuropilin-1 in einer Erk-abhängigen 

Weise hochreguliert, wobei ein autokriner Proliferationskreis aktiviert wird. 

Währenddessen fungiert der EGFR als Überlebensfaktor für Tumorzellen. 

Darüber hinaus konnte ich zeigen, dass Flt1 in einer Vielzahl von humanen 

Plattenepithelkarzinomen exprimiert ist, und dass die Inhibierung von Flt1 in 

Plattenepithelkarzinom-Zelllinien deren Proliferation beeinträchtigt, was die 

medizinische Relevanz meiner Ergebnisse unterstreicht. Somit sollte VEGF 

neben seiner regulatorischen Funktion in der Angiogenese als sehr potenter 

Wachstumsfaktor für epidermale Tumore angesehen werden. 

Zusammenfassend demonstrieren meine Studien, dass der EGFR essentiell für 

die Hautentwicklung während der Embryogenese und der ersten Zeit nach der 

Geburt ist, um ein späteres Überleben zu gewährleisten. Weiters hat der EGFR 

eine Schlüsselfunktion in der Regulation des Haarfollikelzyklus und in den 

komplexen Prozessen der Wundheilung. Außerdem spielt der EGFR eine 

entscheidende Rolle in der Entstehung und dem Wachstum epithelialer 

Tumore. Im Wesentlichen demonstriert diese Studie zum ersten Mal, dass 

EGFR und VEGF in Tumorzellen kooperieren, und bietet eine molekulare 

Erklärung dafür, warum kombinierte anti-EGFR und anti-VEGFR Therapien viel 

effizienter als Einzeltherapien in der Behandlung von humanen Tumoren sind. 
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2 SUMMARY 

Epidermal growth factor receptor (EGFR) deficient mice die at different stages 

of embryonic and early postnatal development and develop epithelial 

phenotypes and a neurodegenerative disease. Besides controlling the normal 

development of astrocytes and epithelial cells, EGFR overexpression has been 

detected in many human carcinomas and glioblastomas, which are tumors of 

epithelial and glial origin, respectively. Transgenic mice expressing an activated 

form of the Ras activator Son of Sevenless from the epithelial-specific keratin 5 

promoter (K5-SOS) develop skin tumors in an EGFR-dependent manner. In 

these tumors the EGFR provides an essential survival signal to tumor cells most 

likely by activating Akt. The study of the physiological signaling pathways of the 

EGFR in epithelial cells is therefore of fundamental importance for 

understanding how aberrant EGFR signaling can lead to tumor formation and 

progression. 

Due to the early postnatal lethality of EGFR-null mice the role of EGFR 

signaling during skin and hair follicle development could not be studied. 

Therefore, mice carrying conditional EGFR (floxed) alleles were crossed with 

the K5-Cre or the tamoxifen-inducible K5-CreERT transgenic lines to generate 

mice which would allow EGFR deletion specifically in the basal layers of the 

epidermis both during embryogenesis (EGFR∆ep) and in adult mice 

(EGFR∆epER), respectively. Surprisingly, epidermis-specific EGFR inactivation 

during embryogenesis or within the first postnatal days resulted in early 

postnatal lethality. In contrast, EGFR deletion in the skin at later time points led 

only to mild derangements of hair follicles and mice were viable. The formation 

of the pivotal skin barrier was delayed in EGFR deficient as well as EGFR∆ep 

mice, but became impermeable shortly after birth. 

Moreover, I could demonstrate that the lack of EGFR in the epidermis and the 

outer root sheath of hair follicles delayed both hair follicle morphogenesis and 

the entry into the hair growth cycle. In addition, EGFR signaling is involved in 

the inflammatory response of the skin, as Langerhans cells, αβT-cells, DCs, 

granulocytes and mast cells infiltrate independently of the presence of hair 

follicles. Importantly, my studies also revealed that in the absence of EGFR 
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wound healing of full-thickness punch wounds is delayed by affecting 

reepithelialization and wound contraction. 

Besides its crucial role in the development and maintenance of the skin and its 

appendages, the EGFR has been shown to be implicated in skin tumorigenesis. 

As mentioned previously, in a K5-SOS-dependent tumor model EGFR was 

identified as a survival factor for tumor cells. Interestingly, epidermal cells 

isolated from K5-SOS transgenic mice expressed high levels of the vascular 

endothelial growth factor (VEGF) and β1 integrin, which are major regulators of 

tumor angiogenesis and tumor cell migration, respectively. To address the 

mechanisms by which signaling events downstream of EGFR and/or VEGF or 

β1 integrin lead to tumor formation and progression, mice in which VEGF or β1 

integrin could specifically be deleted in the epidermis (VEGF∆ep and β1int∆ep) 

were generated and crossed to K5-SOS mice. K5-SOS transgenic epidermal 

cells exhibited an enhanced migratory potential as well as reduced numbers of 

focal contacts, which could be reversed by the Src kinase-specific inhibitor 

SU6656. Interestingly, K5-SOS transgenic mice lacking β1 integrin in the 

epidermis did not develop any tumors when compared to littermate controls, 

and this phenotype could also be related to downstream signaling effectors of 

β1 integrin and the EGFR. Expression of K5-SOS in epidermal cells of β1int∆ep 

mice dramatically exacerbated the phenotype of these mice, which is mainly 

characterized by a thickened and hyperproliferative epidermis and regressing 

hair follicles. Furthermore, epidermis-specific deletion of β1 integrin in mice with 

already existing tumors significantly delayed tumor growth. These findings 

demonstrate a pivotal role for β1 integrin in tumor initiation as well as tumor 

maintenance and progression, and provide evidence for a crosstalk between 

the EGFR and β1 integrin in vivo. 

Epidermis-specific deletion of VEGF also delayed K5-SOS-dependent skin 

tumor growth. Surprisingly, complete inhibition of tumor development was found 

in the absence of VEGF in a mutant EGFR (waved-2; wa2) background, 

demonstrating that VEGFR and EGFR signaling synergize in neoplastic cells to 

promote tumor growth. Similar results were obtained with therapeutics inhibiting 

EGFR and VEGFR. Mechanistically, I could show that K5-SOS upregulates 

VEGF and its receptors Flt1 and Neuropilin-1 in an Erk-dependent manner 

thereby activating an autocrine proliferation loop, whereas EGFR acts as a 
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survival factor for tumor cells. Furthermore, Flt1 was found to be expressed in 

the majority of human squamous cell carcinomas (SCC) and its inhibition in 

human SCC cell lines impairs proliferation emphasizing the medical relevance 

of these findings. Thus, in addition to regulating angiogenesis, VEGF has to be 

considered as a potent growth factor for epidermal tumors. 

Taken together, my studies demonstrate that EGFR is indispensable for the 

development of the skin during embryogenesis and early postnatal life to 

guarantee later survival, and that it is a key player in regulating the hair cycle 

clock and the complex processes of wound repair. Moreover, EGFR plays a 

major role in the initiation and progression of epithelial cancer development. 

Importantly, this study represents the first demonstration of a synergistic action 

of EGFR and VEGF signaling in tumor cells and provides a molecular 

explanation why combined anti-EGFR and anti-VEGFR therapies might be 

more efficient than single therapies for the treatment of human cancer. 
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3 INTRODUCTION 

3.1 The skin and its appendages 

3.1.1 Skin development 

The skin is the interface of the body with the environment and it serves as a 

mechanical, chemical and immunological protective barrier against external 

environmental insults and loss of essential body fluids. To cope with the daily 

attacks of wounds, scratches, chemical carcinogens and UV light the skin 

epidermis undergoes continual self-renewal to repair injured tissue and replace 

old cells. The maintenance of tissue homeostasis depends on stem cells 

residing in the epidermis, the adult hair follicle and sebaceous gland (Fuchs, 

2007; Koster and Roop, 2007). 

The epidermis develops from a single layer of ectodermal cells. The majority of 

the cells in the basal layer are rapidly dividing progeny of stem cells, the transit-

amplifying cells, which undergo a limited number of divisions before they 

descend to terminal differentiation (Fuchs and Horsley, 2008). Epidermal 

differentiation results in an organized tissue in which morphologically 

distinguishable cells are arranged in discrete layers of basal, spinous, granular, 

and cornified cells. The first layer, the stratum basale, is attached to the dermo-

epidermal junction (basement membrane, BM) - which is rich in extracellular 

matrix and growth factors and provides proliferative stimuli to the basal layer of 

the epidermis - and by dividing supplies successors for the cells lost at the skin 

surface. Once cells leave the basal layer to enter the stratum spinosum, they 

loose the capacity to divide, they increase in size, flatten, and their water 

content diminishes. In parallel, proteins that are no longer used, nucleic acids, 

mitochondria and plasma membranes are successively destroyed. The ultimate 

product of keratinocyte differentiation, the corneocyte, consists essentially of the 

cornified envelope filled with keratin bundles and provides a mechanically 

resistant cell surface (Fig.1) (Fuchs, 1990, 2007; Reichert, 1993).  

Besides this remarkable proliferative potential, the epidermis is able to generate 

different appendages: hair follicles (HF) and their associated sebaceous glands 

(SG) as well as sweat glands in nonhaired regions (Fuchs and Horsley, 2008).  
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3.1.2 Hair follicle morphogenesis 

The hair follicle is a unique characteristic of mammals and the only organ that 

throughout life undergoes cyclic transformations. In mice, HF morphogenesis  

occurs in waves from embryonic day 12.5 to 18.5 and results in a number of 

different types of hair: primary or tylotrich (guard) HF, characterized by a large 

hair bulb, long straight hair, and two sebaceous glands, secondary or non-

tylotrich (awl, auchene, and zigzag) HFs with thinner and shorter hair shafts and 

one sebaceous gland, and Vibrissa HFs which have specialized sensory 

functions (Schmidt-Ullrich and Paus, 2005). 

HF morphogenesis starts with the condensation of specialized dermal cells 

beneath the epidermal layer which induce the formation of a focal thickening in 

the basal layer of the epidermis (hair germ or hair placode), and stimulate 

epidermal stem cells to grow downward and invaginate into the dermis. 

Thereby, the so called dermal papilla (DP) is formed, which drives further HF 

formation. As the follicle grows down it is encapsuled by the highly proliferative 

matrix cells at the leading edge. The inner layers of the HF differentiate into 

concentric cylinders and generate the inner root sheath (IRS) and the central 

hair shaft (HS). Once the HF reaches the bottom of the dermis, the HF 

becomes fully mature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The skin and its appendages. Cross-section through mammalian skin and a hair 
follicle (Fuchs and Raghavan, 2002).  
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However, the matrix cells continue dividing and their successors terminally 

differentiate to form the growing hair that exits the skin surface. In mouse back 

skin HF morphogenesis is completed between postnatal day 6 and 8 

(Botchkarev and Paus, 2003; Fuchs and Horsley, 2008; Schmidt-Ullrich and 

Paus, 2005). 

 

3.1.3 Hair follicle cycle 

Matrix cells are transit amplifying cells which undergo only a limited number of 

divisions before they differentiate. Therefore at some point of hair growth the 

supply of matrix cells declines. This is when HFs enter the so called HF cycle 

which starts with a degenerative phase called catagen. In mice, catagen occurs 

in waves starting from the head caudally towards the tail and laterally down the 

sides of the mouse. This usually happens between postnatal day 14 and 18 and 

lasts 3 to 4 days (Alonso and Fuchs, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The hair cycle. Hair follicles undergo cyclic transformations from stages of rapid 
growth (anagen) to apoptosis-driven regression (catagen) and back to anagen, via an 
interspersed period of relative quiescence (telogen) (Fuchs, 2007). 
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During catagen apoptosis of epithelial cells in the bulb and outer root sheath 

leads to a complete regression of the lower “cycling” portion of the HF (Fig. 2). 

This translocates the dermal papilla upward to rest below the permanent, non-

cycling upper follicle. 

After this destructive phase HFs enter a quiescent, resting stage called telogen, 

which lasts only 2 days in the first and more than 2 weeks in the second hair 

cycle. Once quiescent epidermal stem cells located in the lowest permanent 

portion of the HF, the bulge region (Fig. 1), are activated, they become transit-

amplifying cells and divide rapidly to regenerate the lower portion of the hair 

follicle in a phase called anagen which resembles HF morphogenesis (Fig. 2) 

(Alonso and Fuchs, 2006; Fuchs, 2007). 

The terminally differentiated cells of the sebaceous gland are sebocytes filled 

with lipids which burst and release their contents to lubricate the skin surface. 

In order to maintain skin homeostasis and to control hair follicle growth and 

regression, proliferation and differentiation of epidermal cells must be tightly 

regulated and coordinated. Too little proliferation leads to thinning of the skin 

and to loss of the skin’s barrier function, whereas too much proliferation may 

result in hyperproliferative diseases such as psoriasis or cancer (Fuchs, 2007; 

Lowes et al., 2007). We still know very little about the signaling pathways that 

are involved in skin development and the mechanisms that actively orchestrate 

epidermal cell fate. Studies over the past ten years have implicated several 

signaling pathways, including the Wnt, FGF, Notch, Bmp, SHH and TGFβ 

pathways in the development and homeostasis of the skin and its appendages. 

 

3.2 Wound repair 

Injury to the skin excites a complex cascade of events involving inflammation, 

new tissue formation and remodeling of new tissue, which ultimately results in 

at least partial reconstitution of the wounded skin (Schafer and Werner, 2007; 

Werner and Grose, 2003). 

Immediately after wounding the repair process is initiated by the release of 

soluble mediators such as growth factors, cytokines and low-molecular-weight 

compounds from degranulating platelets and from the serum of damaged blood 

vessels (Werner and Grose, 2003). Furthermore the injury of blood vessels 
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leads to the formation of the blood clot which serves as a first barrier against 

invading microorganisms, as a scaffold for invading cells and as a reservoir of 

growth factors essential in later stages of the repair process. Neutrophiles 

invade the wound within minutes after injury, and are accompanied by 

lymphocytes and monocytes, which differentiate into macrophages, within the 

next 2 or 3 days. These cells are involved in the clearance of microorganisms 

and phagocytosis of cell debris. Moreover, they release a multitude of cytokines 

which boost proliferation, migration, and survival of various cell types at the site 

of injury (Fig. 3A) (Werner and Grose, 2003). The second stage of wound 

repair, new tissue formation, is characterized by the migration of keratinocytes 

of the damaged epidermis and HFs over the injured dermis, followed by 

keratinocyte proliferation at the wound edge (Fig. 3B). After this process of 

reepithelialization keratinocytes differentiate to restore the barrier function. In 

addition, fibroblasts attracted from the wound edge or the bone marrow migrate 

and proliferate in order to repair the injured dermis. Some fibroblasts 

differentiate into myofibroblasts, contractile cells responsible for wound 

contraction. New blood vessels form and nerve sprouting occurs at the wound 

edge thereby replacing the fibrin matrix by the so called granulation tissue 

(Gurtner et al., 2008; Schafer and Werner, 2007). 2 to 3 weeks after injury the 

third stage of wound repair – remodeling – begins. This phase is characterized 

by synthesis and remodeling of the collagen matrix which is mainly achieved by 

matrix metalloproteinases sectreted by fibroblasts, endothelial cells, and 

macrophages.  

 

 

 

 

 

 

 

 

 

Finally, the processes initiated by the injury need to be terminated, and the 

majority of endothelial cells, macrophages, and myofibroblasts undergo 

Figure 3. Classical stages of wound repair. Injury to the skin initiates a complex cascade 
of events involving inflammation (A), new tissue formation (B) and remodeling (C) (Gurtner 
et al., 2008). 
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apoptosis or exit from the wound. The resulting scar lacks hair follicles, 

sebaceous and sweat glands and is mechanically insufficient and the tissue 

never retrieves the properties of healthy skin (Fig. 3C) (Gurtner et al., 2008; 

Schafer and Werner, 2007). Scarring can also be excessive and eventually 

leads to hypertrophic scars and keloids. 

Interestingly, in mammalian embryos wound healing results in a perfect repair 

without scarring, which suggests fundamental differences in the wound repair 

process between embryonic and adult mammals (Mackool et al., 1998; Martin, 

1997).  

 

3.3 Epidermal cancers 

The skin is subject to sustained environmental assaults. As a result, epidermal 

cells have a high risk of acquiring oncogenic mutations. However, proportionally 

few skin cancers develop since one mutation is not enough to cause cancer and 

the majority of cells with oncogenic mutations are lost through the natural 

process of terminal differentiation. Tumors usually arise clonally and an 

estimated number of 2 to 3 genetic lesions in rodents and 5 events in humans is 

essential to transform a cell (Owens and Watt, 2003). Thus, preferably stem 

cells, the long-term residents of the skin, are capable of accumulating enough 

oncogenic events to induce tumor growth. Nevertheless, even though stem cells 

are the primary target for the accumulation of oncogenic alterations, the 

differentiation fraction may also contribute to tumor formation. Besides the fact 

that transit-amplifying cells and also post-mitotic, terminally differentiating 

epidermal cells can proliferate extensively as a result of oncogenic 

transformation (Pelengaris et al., 1999), differentiated cells may influence the 

tumorigenic potential of a mutated stem cell by enhancing or inhibiting its clonal 

expansion for example by releasing growth factors or by changing the 

expression of cell adhesion molecules thereby affecting direct cell-cell contacts 

(Owens and Watt, 2003). 

Epidermal cancer comprises a variety of different tumor types, including basal 

cell carcinoma (BCC), squamous cell carcinoma (SCC), trichofolliculoma, 

pilomatricoma as well as sebaceous adenoma, with BCC and SCC (papilloma 

and SCC in mice) being the most common epithelial tumors of the skin in 
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humans. The diversity of epidermal cancers reflects the repertoire of 

differentiated cell types in healthy epidermis. Thus, the kind of tumor that arises 

essentially depends on the nature of the oncogenic alteration and the type of 

cell that acquired them (Owens and Watt, 2003). Many of the genes affected in 

epidermal cancers have been identified, such as p53, factors belonging to the 

WNT, SHH or Ras signaling pathways, just to mention a few of them. 

Substantial research is being done in order to find new targets for cancer 

therapy and to develop new and more effective drugs.  

 

3.4 Growth factors controlling skin physiology and pathology 

The development and homeostasis of the skin essentially depends on a variety 

of growth factors. By binding to the respective receptors on the cell surface, 

growth factors transduce extracellular signals through a complex network of 

signaling cascades (or directly through receptor translocation) to the nucleus, 

thereby controlling proliferation, differentiation, survival, migration or the fate of 

the respective cell. Besides, growth factors are necessary for cell-cell 

communication, which is absolutely required to accomplish the well 

orchestrated processes responsible for the development of organized tissues. 

Therefore, it stands to reason that upon injury secretion of different growth 

factors is accelerated in a well established sequence in order to initiate and 

succeed wound repair. Moreover, it is not surprising that tumors seize the same 

growth factors and signaling pathways that are implicated in wound repair to 

grow, to survive and to migrate. What was suggested already thirty years ago 

(Dvorak, 1986) was confirmed by DNA-microarrays only recently: highly 

malignant tumors and the tissue of healing skin wounds display a similar gene 

expression pattern (Cole et al., 2001; Cooper et al., 2005). Therefore, tumors 

are also called “wounds that do not heal” (Dvorak, 1986). Growth factors 

involved in both wound healing and skin cancer belong to different families: the 

platelet-derived growth factor (PDGF) family, fibroblast growth factor (FGF) 

family, epidermal growth factor (EGF) family, insulin-like growth factor (IGF) 

family, Transfoming growth factor β  (TGFβ) family, angiopoietins and the 

vascular endothelial growth factor (VEGF) family. While the VEGF family does 

not have a profound impact on skin development, it was shown that epidermal-
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specific deletion of VEGF delays wound healing and inhibits tumor formation 

due to impaired wound and tumor angiogenesis (Rossiter et al., 2004). 

Of the many growth factor receptor tyrosine kinases (RTK), the EGF family of 

RTKs is probably one of the most extensively studied for its function in skin 

development, physiology, and cancer. As described in detail below EGFR 

deficient mice display several skin and hair growth defects, EGFR has been 

implicated in different processes of wound repair, and it was shown to be 

involved in the formation and progression of many murine and human tumors of 

epithelial origin (Schneider et al., 2008b; Sibilia et al., 2007).  

Two decades of research have revealed that all stages of wound healing are 

controlled by a plethora of different growth factors and cytokines. For example, 

reepithelialization was shown to be positively regulated by members of the FGF, 

the EGF and the PDGF family, and by the hepatocyte growth factor (HGF). In 

contrast, TGFβ negatively regulates wound reepithelialization. The VEGF family 

of growth factors and angiopoietins are important for wound angiogenesis. In 

addition to growth factors several cytokines including MCP-1/CCL2, MIP-1α, 

GM-CSF or interleukins were identified as important players in wound repair 

(Gurtner et al., 2008; Werner and Grose, 2003). More recently transcription 

factors that modulate gene expression at the wound site have been brought into 

focus of researchers. AP-1, PPARβ/δ, c-Myc, Egr-1, E2F-1, HoxA3, and HoxD3, 

Smad2, Smad3, and Stat3 have been identified to regulate reepithelialization, 

whereas Grainy head transcription factors were shown to be involved in 

controlling the subsequent reestablishment of the epidermal barrier function. 

Inflammation at the wound site is modulated by Nrf2, Smad3 and nuclear 

receptors such as glucocorticoid, estrogen, androgen, and the PPARα 

receptors. Angiogenesis of the wound is induced by HoxA3, HoxD3, Egr-1, and 

CARP. Moreover, VEGF expression is controlled by HIF-1α and Sp1. Whereas 

glucocorticoids and HoxB13 reduce fibroplasia and scarring, Smad3, c-Myb, 

and β-catenin facilitate these processes (Schafer and Werner, 2007).  
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3.4.1 The Epidermal growth factor receptor (EGFR) 

3.4.1.1 EGFR signaling 

The epidermal growth factor receptor (EGFR), also known as ErbB1/HER1, is a 

member of a family of structurally related tyrosine kinase receptors that includes 

ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4 (Schlessinger, 2002). All 

four receptors have a common structure comprising an extracellular ligand-

binding domain, a single hydrophobic membrane-spanning region and a 

cytoplasmic tyrosine kinase domain flanked by a carboxy-terminal tail with 

tyrosine autophosphorylation sites (Citri and Yarden, 2006; Yarden and 

Sliwkowski, 2001). While EGFR and ErbB4 are functional autonomously, the 

other two receptors, ErbB2 and ErbB3 are non-autonomous as ErbB2 can not 

bind any ligands and ErbB3 is defective in its tyrosine kinase activity (Bublil and 

Yarden, 2007; Citri et al., 2003; Guy et al., 1994). 

To date seven ligands capable of binding EGFR have been identified: 

amphiregulin (AR), betacellulin (BTC), heparin-binding EGF-like growth factor 

(HB-EGF), transforming growth factor α (TGFα), epiregulin (EREG), epigen 

(EPGN), and epidermal growth factor (EGF) itself. A genome-wide screen using 

algorithms based on genomic and cDNA structures revealed that additional 

potential EGFR ligands are unlikely (Kochupurakkal et al., 2005). While EGF, 

TGFα, AR and EPGN bind exclusively to EGFR, HB-EGF, BTC and EREG can 

bind and activate ErbB4 as well (Fig. 4) (Beerli and Hynes, 1996; Harris et al., 

2003). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. ErbB receptors and their 
ligands. ErbB receptors are depicted 
as multilobular transmembrane 
structures. The highly homologous 
cytoplasmic regions contain a bilobular 
tyrosine kinase domain, flanked by a 
short transmembrane stretch and a 
long autophosphorylation tail. Note that 
the kinase domain of ErbB3 is 
catalytically inactive. The extracellular 
domains comprise two cysteine-rich 
domains (represented by loops), which 
mediate ligand-induced dimerisation. 
Eleven growth factors and their ErbB 
specificities are depicted. Adapted from 
(Marmor et al., 2004). 
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EGFR ligands share a conserved EGF motif that is flanked by an N-terminal 

extension and a C-terminal anchoring region, which keeps the ligand precursors 

attached to the cell membrane. The ligands are initially synthesized as 

transmembrane precursors which are subsequently cleaved (shedded) by cell 

surface proteases to release mature, soluble growth factors (Harris et al., 2003). 

Zinc-dependent membrane associated proteases called ADAM proteases (a 

disintegrin and metalloproteases) have been implicated in the shedding of most 

of the EGFR ligands (Blobel, 2005). Released ligands activate EGFR in an 

autocrine, paracrine or endocrine manner, that is on the cell of its origin, on 

neighboring cells or after systemic distribution on distant cells. Moreover, 

precursors of TGFα, HB-EGF and AR have been shown to act also in a 

juxtacrine mode by stimulating adjacent cells via cell-cell contacts, which likely 

results in distinct biological responses as compared with the signaling 

transduction induced by soluble growth factors (Singh and Harris, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The main downstream signaling pathways regulated by EGFR. Adapted from 

(Nyati et al., 2006) 
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Ligand binding induces receptor dimerization and activation of the intrinsic 

tyrosine kinase with subsequent autophosphorylation of key tyrosines located 

within the carboxy-terminal tail of the receptor (Schlessinger, 2002; Yarden and 

Sliwkowski, 2001). Phosphorylated tyrosine residues enable the recruitment 

and activation of proteins containing phosphotyrosine binding domains and Src-

homology 2 domains (SH2) such as Grb2, SHC and PLCγ which in turn activate 

complex downstream signal transduction pathways, thus transducing 

extracellular stimuli to the nucleus (Fig. 5) (Hynes and Lane, 2005; 

Schlessinger, 2002; Yarden and Sliwkowski, 2001).  

The identity and relative strength of the cellular response is thought to be 

determined by the ligand and the nature of the various signaling molecules 

recruited to the different sites of autophosphorylation of the receptor (Fig. 6). 

Furthermore, dimerisation of ErbBs can take place between two identical 

receptors (homodimerisation) or with any of the three other members of the 

ErbB family (heterodimerisation) depending on which receptor proteins are 

expressed in a given cell. This increases the number of signaling pathways that 

can be activated after EGFR stimulation thereby augmenting the signaling 

complexity needed to govern cell proliferation, differentiation, migration, and 

survival (Hynes and Lane, 2005; Schlessinger, 2002; Yarden and Sliwkowski, 

2001). 

The major pathways activated upon EGFR stimulation are the Ras-Raf-MEK-

ERK1/2, signal transducer and activator of transcription 1 (STAT1), STAT3 and 

STAT5 pathways controlling proliferation and differentiation, and the pro-

survival and anti-apoptotic PI3K-Akt-mTOR pathway (Fig. 5). In addition to 

ligand-mediated EGFR induction, the EGFR can also be transactivated by a 

multitude of G-protein-coupled receptors, integrins, and cytokine receptors 

(Cabodi et al., 2004; Hynes and Lane, 2005; Schlessinger, 2002; Yarden and 

Sliwkowski, 2001).  

Signal attenuation is predominantely achieved by the internalization of receptor-

ligand complexes through clathrin-coated invaginations of the cell membrane. 

Distinct sorting pathways either redirect the receptor back to the cell surface 

(receptor recycling) or upon ubiquitination to lysosomes for degradation 

(Husnjak and Dikic, 2006; Waterman and Yarden, 2001). In addition, a variety 

of suppressive mechanisms attenuates ligand-induced signaling, for example by 
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ligand depletion, dephosphorylation and kinase inactivation. Moreover, signal 

desensitization is induced by a plethora of transcriptional repressors and RNA-

binding proteins such as LRIG, ARGOS or RALT (Shilo, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAPK pathway 

One of the best characterized pathways downstream of the EGFR is the MAPK 

pathway (Fig. 5). Upon ligand-induced receptor dimerization and activation, the 

adapter protein Grb2 binds to phosphorylated tyrosines at the C-terminus of the 

receptor and interacts via its SH3 domain with the nucleotide exchange factor 

Son of Sevenless (SOS), thereby recruiting SOS to the plasma membrane 

(Schlessinger, 1994; Weiss et al., 1997). SOS catalyses the activation of Ras 

by facilitating GDP-GTP exchange. Activated, GTP-bound Ras binds to the 

cytoplasmic serine/threonine protein kinase Raf, which leads to its translocation 

to the plasma membrane and subsequently to its activation (Marais et al, 1995). 

Raf phosphorylates the MAPK/ERK kinase (MEK) proteins, which in turn 

activate the extracellular signal-regulated kinase (ERK) subgroup of mitogen-

activated protein (MAP) kinases. In the activated state ERKs translocate to the 

nucleus and induce expression of immediate early genes, such as c-fos. 

Transcriptional activation of AP-1 target genes by ERK is mediated via 

 
Figure 6. The main downstream signaling pathways regulated by EGFR. Ligand binding 
can induce homo- or heterodimerization, which subsequently activates many sites within the 
C terminus such as Y992, Y1045, Y1068, Y1086, Y1148 and Y1173 (shown in red). 
Elsewise SRC non-receptor kinase can phosphorylate Y845 and Y1101 (shown in purple). 
Adapted from Nyati et al., 2006. 
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phosphorylation and subsequent activation of TCF/Elk-1 (Schlessinger and 

Ullrich, 1992). 

 

PI3K/Akt pathway 

The phosphatidylinositol 3-kinase (PI3K)/Akt is another key signaling pathway 

activated by EGFR. However, EGFR lacks the motifs that allow direct binding to 

the p85 regulatory subunit of PI3K. These motifs are present in RTKs like ErbB3 

(Prigent and Gullick, 1994), and PDGF or in docking proteins such as IRS1 

(Insulin receptor substrate 1) and Gab1 (Lehr et al., 1999). Therefore, PI3K 

activation by EGFR most likely happens indirectly by heterodimerizing with 

ErbB3 or via adaptor proteins such as Gab1 (Prigent and Gullick, 1994; Soltoff 

et al., 1994). Phosphorylated, activated PI3K mediates the formation of 

phosphatidylinositol-3,4,5-triphosphate (PIP3), which transduce signals from the 

cell surface to the cytoplasm. PIP3 activates the 3-phosphoinositide-dependent 

protein kinase-1 (PDK1), which in turn activates the serine/threonine kinase Akt, 

also known as protein kinase B (PKB) (Citri et al., 2003; Dillon et al., 2007). 

Activated Akt has several effects, both in the cytoplasm and the nucleus. It 

promotes cell survival and blocks apoptosis by a variety of routes. For instance, 

Akt-mediated phosphorylation of BCL2 antagonist of cell death (Bad) blocks 

apoptotic activity to promote cell survival. Furthermore, phosphorylation of  pro-

caspase 9 or the Forkhead (FKHR) family of transcription factors (FOXO) by Akt 

inhibit the induction of apoptosis by these factors (Dillon et al., 2007).  In 

addition, phosphorylation of Ikappa-B kinase by Akt leads to activation of the 

transcription factor NF-kB that results in the expression of several prosurvival 

genes (Dillon et al., 2007). Moreover, Akt-mediated activation of mammalian 

target of rapamycin (mTOR) was shown to be important for stimulating cell 

proliferation. Importantly, the PI3K/Akt pathway also induces the expression of 

angiogenic factors such as VEGF or hypoxia inducible factor-1α(HIF1α) 

(Hennessy et al., 2005).  

 

STAT pathway 

Phosphorylated EGFR can also - directly or indirectly - activate signal 

transducer and activator of transcription 1 (STAT1), STAT3 and STAT5. Upon 

phosphorylation the activated STAT transcription factors translocate into the 
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nucleus and directly regulate gene expression crucial for cell survival, 

proliferation, transformation and oncogenesis (Bowman et al., 2000). 

 

Transactivation of EGFR 

As mentioned previously, in addition to ligand-mediated EGFR induction, the 

EGFR can also be transactivated by a multitude of G-protein-coupled receptors, 

integrins, and cytokine receptors (Cabodi et al., 2004; Hynes and Lane, 2005; 

Schlessinger, 2002; Yarden and Sliwkowski, 2001).  

Integrins are adhesive receptors, which are composed of α- and β-subunits, and 

are essential for the anchorage of extracellular matrix proteins to the actin 

cytoskeleton, thereby mediating adhesion and migration of epidermal cells 

(Brakebusch and Fassler, 2005). Integrins transduce signals in a bidirectional 

manner across the plasma membrane. Intracellular signals result in 

conformational changes in the integrin ectodomain leading to a ligand-

competent state of the receptors. Binding of extracellular ligands mediates, in 

turn, structural changes that transduce distinct signals inside the cell. They 

trigger a multitude of signaling pathways which affect cell migration, 

proliferation, differentiation, and survival, and the outcome of the signal 

depends on the differential expression of more than 20 different subunits of 

integrins and the specific localization of the receptors (Hynes, 2002). Due to the 

lack of an actin binding domain and enzymatic activity within the integrin 

molecules, integrin associated proteins such as α-actinin, talin, filamin, and 

integrin linked kinase (ILK), Rack1 or caveolin are required for the signal 

transduction (Brakebusch and Fassler, 2005). It has been demonstrated that 

integrins interact with various signal-transducing components of focal 

adhesions, particularly the focal adhesion kinase (FAK) and c-Src. FAK has 

been shown to bind the cytoplasmic tail of β1 integrin via its amino-terminal 

domain, and to bind the SH2 and SH3 domains of other focal adhesion proteins 

via its carboxy-terminal domain. Upon integrin-mediated activation FAK 

undergoes autophosphorylation, thereby creating a high affinity binding site for 

the SH2 domain of Src, which in turn triggers transphosphorylation of FAK at 

different tyrosine residues, rendering FAK a fully active kinase. Phosphorylated 

FAK can form a complex with Grb2 and SOS, and, thus, activates the MAPK 

pathway (Mitra et al., 2005; Schlaepfer and Hunter, 1997). 
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Many integrin-mediated signaling pathways are very similar to those triggered 

by growth factor receptors and are closely connected to them. In fact, it was 

demonstrated that many cellular responses to soluble growth factors, such as 

EGF or PDGF, essentially depend on the adherence of cells to a substrate via 

integrins (Hynes, 2002). It was shown that integrins and growth factor receptors 

form complexes at the cell membrane, and that integrin-dependent adhesion 

triggers ligand-independent activation of the EGFR signaling (Bill et al., 2004; 

Cabodi et al., 2004). 

Interestingly, mice lacking expression of β1 integrin in the skin have a similar 

phenotype like EGFR deficient mice (Brakebusch et al., 2000; Raghavan et al., 

2000). They display several epithelial defects including the failure to develop a 

normal hairy coat or they turn bald with time. Moreover, defects in wound 

healing have been demonstrated for these mutants, and β1 integrin has been 

implicated in the formation and progression of epithelial tumors (Brakebusch 

and Fassler, 2005; Grose et al., 2002). Thus, integrin and EGFR signaling might 

act on parallel signal transduction cascades and might need to synergize to 

reach a full biological response. 

 

3.4.1.2 EGFR in skin development 

A large body of evidence indicates that EGFR plays an important role in 

regulating the development of the epidermis and its appendages. In the skin, 

EGFR expression is most abundant in the basal layer of the epidermis and in 

the outer root sheath of the hair follicles, where the proliferating cells reside. As 

soon as keratinocytes withdraw from the cell cycle, differentiate and migrate to 

the suprabasal epidermal layers EGFR expression is downregulated (Sibilia and 

Wagner, 1995). A multitude of naturally occurring and experimentally induced 

mutant mice reveal that EGFR signaling has an impact on the physiological 

development of epithelia. Mice homozygous for a disrupted TGFα gene display 

severe derangements of hair follicles, resulting in a wavy coat and curly 

whiskers (Mann et al., 1993). The naturally occurring mouse mutant strains 

waved-1 and waved-2, which carry null mutations in the TGFα gene and 

hypomorphic mutations in the EGFR, respectively, have a similar phenotype 
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(Fowler et al., 1995; Luetteke et al., 1994; Luetteke et al., 1993). Comparably, 

EGFR-/- mice display strain-dependent defects in epidermal and hair follicle 

differentiation. They fail to develop a hairy coat, most likely because EGFR 

signaling is crucial for maintenance of hair follicle integrity (Hansen et al., 1997; 

Luetteke et al., 1994; Miettinen et al., 1995; Sibilia and Wagner, 1995; 

Threadgill et al., 1995). Due to the fact that EGFR-deficient mice have a 

lifespan of maximally 3 weeks, hair follicle development and cycling could not 

be carefully studied. Humanized hEGFRKI/KI mice, which express only very low 

levels of the human EGFR instead of the endogenous mouse receptor in the 

skin, proved to be extremely beneficial for this purpose and revealed that after 

hair follicle morphogenesis, EGFR-deficient hair follicles are unable to progress 

normally through anagen-to-catagen transition and remain in anagen. Hair 

follicles are progressively degraded, leading to massive infiltration of 

inflammatory cells, and hEGFRKI/KI mice are completely bald by the age of 6 

months (Sibilia et al., 2003). Similar skin and hair follicle malformations are 

observed in transgenic mice expressing a dominant-negative human EGFR 

(CD533) in the basal cells of the epidermis (Murillas et al., 1995). Interestingly, 

these mice also displayed a strong inflammation. This suggests that EGFR 

signaling may be of physiological relevance in protecting the hair follicle from 

immunological reactions (Schneider et al., 2008b). Together, these findings 

reveal that EGFR signaling is crucial for the regulation of hair cycle progression 

and for preserving hair follicle integrity by controlling the proliferation, 

differentiation, and survival of epithelial cells. 

However, EGFR signaling was also shown to have an inhibitory effect on the 

control of hair follicle induction. EGF treatment leads to inhibition of hair follicle 

initiation both in vivo and ex vivo (Adelson et al., 1997; du Cros, 1993; 

Kashiwagi et al., 1997). Transgenic mice overexpressing EGF receptor ligands, 

such as TGFα, amphiregulin, and EGF, in basal epidermal keratinocytes, show 

fewer hair follicles and retardation of hair follicle development (Mak and Chan, 

2003; Vassar and Fuchs, 1991).  

Another line of evidence that EGFR is important for the physiological 

homeostasis of the skin comes from cancer patients treated with EGFR 

inhibitors who frequently suffer from cutaneous toxicities. EGFR inhibition 

affects keratinocytes by inducing growth arrest and apoptosis, reducing cell 
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migration, advancing cell attachment and differentiation, and stimulating 

inflammation, all of which result in distinctive cutaneous manifestations. 

Papulopustular rash in the face and upper trunk (45–100%), dry and itchy skin 

(12–16%), abnormalities in hair growth (21%), particularly the scalp and 

eyelashes, and inflammation around the nails with tenderness (12–16%)  are 

the most common side effects (Lacouture, 2006). However, in many cases, 

there is a positive correlation between the occurrence of cutaneous side effects 

and tumor regression (Perez-Soler and Saltz, 2005). 

In summary, EGFR plays an important role in many aspects of cutaneous 

biology and pathology. EGFR affects proliferation and differentiation of 

interfollicular and follicular epidermal cells. Moreover, EGFR signaling 

modulates hair follicle morphogenesis and cycling, and may serve to protect the 

hair follicle from immunological reactions.  

 

3.4.1.3 EGFR in wound healing 

A series of clinical and experimental studies have demonstrated that EGFR 

signaling is involved in wound healing. One of the first indications that EGFR 

signaling might have a role in orchestrating the complex processes in wound 

repair comes from the fact that multiple EGFR ligands have been detected in 

wound fluid (Grotendorst et al., 1989; Marikovsky et al., 1993; Ono et al., 1995). 

In addition, upon injury EGFR expression is transiently increased (Stoscheck et 

al., 1992). Interestingly, it was shown that skin damage results in immediate 

shedding of EGFR ligands. Furthermore, it was demonstrated that inhibition of 

metalloproteinases, which cleave the ligand precursors, block keratinocyte 

migration and impair reepithelialization (Tokumaru et al., 2000). However, even 

though a large number of EGFR ligands is present at the wound site, not all of 

them display a strong phenotype in wound repair. Surprisingly, in TGFα knock-

out mice wound healing was reported to occur normally, and only on closer 

examination in an ear wound model where keratinocyte migration and, thus, 

reepithelialization are crucial, small differences were observed (Kim et al., 2001; 

Luetteke et al., 1993; Mann et al., 1993). In humans topical application of 

recombinant EGF resulted in enhanced healing of split-thickness wounds 

(Brown et al., 1989). A recent study employing transgenic mice that ubiquitously 
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overexpressed betacellulin, revealed that betacellulin does not affect wound 

repair, but accelerates wound angiogenesis (Schneider et al., 2008a). Targeted 

elimination of epiregulin did not affect wound healing. In contrast, epidermal-

specific deletion of HB-EGF, which is highly expressed immediately after injury, 

resulted in a severe delay in wound closure due to impaired keratinocyte 

migration (Shirakata et al., 2005). Taken together, these findings suggest that 

HB-EGF is the major and essential EGFR ligand in the process of the 

reepithelialization process. 

Importantly, wound healing studies in EGFR-null and wild-type skin grafts 

revealed that in incisional wounds EGFR signaling is involved in several early 

events in the complex process of wound repair including keratinocyte 

proliferation and migration, reepithelialization, inflammation, and wound 

angiogenesis (Repertinger et al., 2004). However, these skin grafting 

experiments were rather artificial. Therefore, it is unclear whether the phenotype 

seen was due to the grafting or the wound healing response. In addition, 

several transcription factors known to modulate EGFR expression such as AP-1 

or STAT3, were shown to be involved in wound closure (Schafer and Werner, 

2007). 

The fact that a large number of EGFR ligands is present at the wound site may 

indicate that there is functional redundancy and compensation in the skin to 

assure proper wound healing. Thus, to unravel how EGFR signaling accounts 

for the wound healing process, detailed wound repair studies will have to be 

performed in conditional EGFR mice, which would allow epidermis-specific 

deletion of the receptor. 

 

3.4.1.4 Role of EGFR during skin tumorigenesis 

Skin cancer is the third most common human malignancy, and its occurrence 

has been increasing rapidly over the past decades, with basal cell carcinoma 

(BCC), squamous cell carcinoma (SCC), and melanoma being the most 

common forms. An estimated number of 2–3 million non-melanoma skin cancer 

patients and 132,000 patients of melanoma are counted every year (World 

Health Organization). While in human SCCs amplification of the EGFR is very 

common (Maubec et al., 2005; Nicholson et al., 2001), focal amplification and/or 
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mutation of EGFR have not been reported in melanomas. However, late-stage 

melanomas frequently display EGFR overexpression in association with extra 

copies of chromosome 7, where the human EGFR gene is localized (Chin et al., 

2006). A huge number of studies in mouse models reveal that alterations in the 

EGFR pathways result in epithelial neoplasm including those induced by two-

stage carcinogenesis in mouse skin where activation of Ha-Ras is a critical 

event in papilloma formation (Frame et al., 1998). Topical administration of 

distinct tumor promoters on mouse skin causes elevated levels of EGFR and its 

ligands TGFα, AR, and HB-EGF in developing primary papillomas and SCC 

(Kiguchi et al., 1998). Interestingly, TGFα overexpression in basal or suprabasal 

epidermal cells results in thickening of the epidermis and papilloma 

development preferentially at sites exposed to mechanical irritation, and TGFα 

expression can bypass the need for chemically induced Ha-Ras mutations 

(Dominey et al., 1993; Vassar et al., 1992; Wang et al., 1994). Furthermore, 

overexpression of ErbB2 in the basal layer of the epidermis leads to the 

formation of spontaneous papillomas with the ability to convert to SCC within 

the first 6 weeks of age (Kiguchi et al., 2000). In addition, a reduction in the size 

of papillomas derived from EGFR null keratinocytes expressing v-rasHa in 

grafting experiments has been reported (Dlugosz et al., 1997). Constitutive 

expression of an activated form of Ha-Ras in suprabasal epidermal cells 

induces the development of benign papillomas in transgenic mice at sites of 

promotional stimuli (Bailleul et al., 1990). Moreover, transgenic mice expressing 

an activated Ras in the outer root sheaths of hair follicles develop spontaneous 

papilloma-like structures, which frequently convert to malignant SCC (Brown et 

al., 1998). On the contrary tamoxifen-inducible activation of a K14-Ras 

transgene in mice leads to massive cutaneous hyperplasia and suppressed 

differentiation that is reversible upon withdrawal of tamoxifen treatment 

(Tarutani et al., 2003). 

The analysis of transgenic mice expressing a constitutively active form of the 

Ras activator Son of Sevenless (SOS) in the basal cells of the epidermis (K5-

SOS mice) unraveled the role of EGFR especially in the early steps of skin 

tumor development. These mice develop skin papillomas at 100% penetrance 

in a wild-type EGFR background. However, tumor formation is severely 

impaired when these mice are bred into an EGFR hypomorphic background. 

25



K5-SOS transgenic keratinocytes and papillomas from EGFRwa2/wa2 mice are 

more differentiated and display reduced Akt phosphorylation and increased 

apoptosis, suggesting that the EGFR functions as a survival factor during 

oncogenic transformation by components of the Ras signaling pathway (Sibilia 

et al., 2000). Interestingly, a recent study revealed that survival of cancer cells 

may be maintained by EGFR independent of its kinase activity (Weihua et al., 

2008). Mice lacking c-Jun in the epidermis display reduced expression of EGFR 

in basal keratinocytes, and K5-SOS-dependent skin tumor formation is strongly 

reduced. This study clearly demonstrated that in the skin Jun regulates EGFR 

expression at the transcriptional level (Zenz et al., 2003). Interestingly, patients 

with dominant Hereditary Gingival Fibromatosis type 1 carry a frameshift 

mutation in the SOS1 gene, leading to a truncated SOS protein similar to the 

one expressed in K5-SOS mice (Hart et al., 2002). This highlights the relevance 

of K5-SOS transgenic mice as a model for human cancer and for anti-tumor 

therapies. 

Importantly, EGFR-null fibroblasts are also resistant to transformation by SOS 

and RasV12 (Sibilia et al., 2000). Furthermore, EGFR-deficient keratinocytes 

expressing v-rasHa develop smaller papillomas when grafted into 

immunodeficient mice (Dlugosz et al., 1997). Similar results were obtained with 

Ha-Ras transgenic animals expressing dominant-negative EGFR (K5.dnEGFR) 

in basal keratinocytes. Whereas tumor onset was similar in mice expressing 

dnEGFR and controls, tumor volumes were much smaller and had a pale 

appearance in K5.dnEGFR transgenic mice (Casanova et al., 2002). 

Interestingly, these papillomas show reduced Akt activity and increased 

numbers of apoptotic cells. Furthermore, abrogation of EGFR function was 

shown to result in a dramatic decrease in vascular endothelial growth factor 

(VEGF) expression and an altered angiogenic response unable to properly 

nourish and oxygenate tumor cells, which may thus account for the decline in 

cell survival. These findings provide compelling functional evidence that, in 

addition to the Ras/MAPK pathway, an EGFR-dependent pathway acting via 

Akt is essential for the transformation of mouse epidermal cells (Segrelles et al., 

2002). Whether a similar mechanism is acting in human SCC remains to be 

investigated. 
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Recent studies provide evidence that mitogen-inducible gene 6 (Mig6, also 

known as RALT) is a specific negative regulator of EGFR signaling in skin 

morphogenesis and a novel tumor suppressor of EGFR-dependent 

carcinogenesis. Its expression is downregulated in various human cancers 

(Ballaro et al., 2005; Ferby et al., 2006). Mice deficient for the gene encoding 

Mig6 (errfi1; ErbB receptor feedback inhibitor 1) display hyperactivation of 

endogenous EGFR resulting in hyperproliferation and impaired differentiation of 

epidermal cells. Furthermore, mice spontaneously develop tumors in various 

organs and are highly susceptible to chemically induced formation of skin 

tumors. Interestingly, breeding of Mig6 knock-out mice into an EGFR 

hypomorphic background or treatment with Gefitinib completely rescues the 

skin defects and tumor development is inhibited. Therefore, Mig6 acts as a 

tumor suppressor in EGFR-dependent carcinogenesis (Ballaro et al., 2005; 

Ferby et al., 2006). The transcription factor AP-2α is also often reduced in tumor 

cells and was recently shown to act as a tumor suppressor as well (Friedrichs et 

al., 2005). Deletion of AP-2α in mice recapitulates the phenotype of Mig6 knock-

out mice. AP-2α deficient epidermis exhibits elevated levels of EGFR 

expression and Akt activity in the differentiating layers, resulting in 

hyperproliferation and papilloma-like invaginations. These data indicate that AP-

2α controls epidermal cell proliferation and differentiation, and functions by 

repressing EGFR expression as keratinocytes exit the basal layer and commit 

to terminally differentiate (Wang et al., 2006b). 

Altogether these findings underscore the pivotal role of EGFR and its family 

members in epithelial tumor development and highlight the importance of EGFR 

and the upstream and downstream molecules of its complex signaling pathway 

as a target for therapeutic intervention in epithelial tumors.  

 

3.4.1.5 Targeted EGFR inhibitors 

The ErbB receptors were shown to be aberrantly activated in many human 

tumors, and therefore they are excellent targets for anti-cancer therapies. 

Currently, two types of ErbB inhibitors are in clinical or pre-clinical use: 

antibodies like Cetuximab (Erbitux) and Trastuzumab (Herceptin) directed 
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against EGFR and ErbB2, respectively, and small molecule tyrosine kinase 

inhibitors such as Erlotinib (Tarceva), or Lapatinib (Gschwind et al., 2004; 

Hynes and Lane, 2005). Treatment of tumors with these drugs had an impact 

on many of the intracellular signal transduction pathways involved in tumor 

formation and progression. In pre-clinical models as well as in tumors from 

cancer patients treatment with both ErbB-targeted tyrosine kinase inhibitors and 

antibodies affected PI3K–Akt, MAPK, Src and STAT signaling, and 

consequently tumor progression (Gschwind et al., 2004; Hynes and Lane, 2005; 

Wieduwilt and Moasser, 2008). However, since signaling mediated by the 

EGFR and its family members is also required for physiological processes, anti-

ErbB therapy is frequently associated with side effects. The most obvious ones 

are cutaneous toxicities such as papulopustular rash, dry and itchy skin and hair 

growth defects found in 45-100% of patients. The subsequent physical and 

psychological discomfort frequently leads to interruption of anti-cancer therapy 

(Lacouture, 2006). 

During the process of cancer development multiple genetic alterations arise in 

tumor cells which contribute to the metastatic phenotypes of fully malignant 

tumors. The ErbB family was shown to be involved in many of the processes 

leading from benign to malignant cancers. However, treatment with inhibitors 

targeting the ErbB receptors was not always successful. Tumor cells were often 

found to acquire resistances to EGFR-targeted tyrosine kinase inhibitors, for 

instance by gain-of-function mutations in the kinase domain or loss or mutation 

of the negative regulator of PI3 kinase PTEN (Hynes and Lane, 2005). 

Upregulation of c-Met and IGF1R were also reported in tumors resistant to anti-

EGFR therapies (Bean et al., 2007; Chakravarti et al., 2002; Engelman et al., 

2007). Therefore, a combination of inhibitors targeting different signaling 

pathways is probably the key to success in cancer therapy. 
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Figure 7. Schematic representation of the VEGF family of ligands and receptors (adapted 
from Sigma Aldrich). 

3.4.2 The vascular endothelial growth factor (VEGF) and its receptors in 

skin cancer 

Tumors and metastases usually arise as small avascular masses which 

subsequently induce neovascularization in order to acquire nutrients for 

continued growth and metastatic spread. Therefore, tumor cells secrete 

angiogenic factors, which induce the angiogenic switch, thereby allowing tumors 

to progress (Bergers and Benjamin, 2003; Hirakawa et al., 2005). One of the 

key regulators of tumor angiogenesis is the vascular endothelial growth factor A 

(VEGF). Many years of substantial research have implicated a major role of the 

VEGF family in orchestrating angiogenesis (Ferrara, 2002). VEGF (also referred 

to as VEGF-A) was originally termed vascular permeability factor (VPF) 

because of its ability to induce vascular leakage (Senger et al., 1983). It belongs 

to a gene family that includes placental growth factor (PlGF), VEGF-B, VEGF-C, 

VEGF-D and VEGF-E. Alternative exon splicing of VEGF results in different 

isoforms: 3 transcripts in mice (VEGF120, VEGF164, VEGF188; Fig. 7) and 9 

isoforms in humans (Ferrara et al., 2003; Takahashi and Shibuya, 2005). 
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While in mice VEGF120 diffuses freely in the surrounding extracellular matrix, the 

other isoforms show increased binding to the heparin-rich extracellular matrix 

(Carmeliet and Collen, 1999). VEGF binds to two related receptor tyrosine 

kinases, VEGFR1/Flt1 and VEGFR2/KDR/Flk1, both of which are primarily 

expressed on vascular endothelial cells (ECs; Fig. 7,8) and their expression is 

upregulated during angiogenic processes. VEGFR1/Flt1 and 

VEGFR2/Flk1/KDR comprise seven immunoglobulin-like domains in the 

extracellular domain, a single transmembrane region and a consensus tyrosine 

kinase sequence that is interrupted by a kinase insert domain (Shibuya et al., 

1990; Terman et al., 1991). Both receptors can transduce signals of other 

growth factors (Fig. 7) but only the VEGF isoforms are capable of binding to 

both VEGFR1 and VEGFR2 (Neufeld et al., 1999). Upon ligand binding the 

receptors undergo dimerization, which results in ligand-dependent 

autophosphorylation of different tyrosine residues located in the C-terminal 

region of the receptor. Moreover, VEGF interacts with a family of coreceptors, 

the neuropilins (Nrp), which were originally identified to be implicated in axonal 

guidance and have recently been shown to enhance VEGFR signaling (Ferrara 

et al., 2003) (Fig.7,8). Since the cytoplasmic domain of Nrp1 is short, it was 

originally suggested that Nrp1 is unable to transduce biological signals (He and 

Tessier-Lavigne, 1997). Now it is apparent that Nrp1-mediated angiogenesis 

occurs via G-protein signaling molecules (Murga et al., 2005; Wang et al., 

2006a). 

VEGF has been identified as a survival factor for endothelial cells and has been 

shown to be indispensable for embryonic angiogenesis and vasculogenesis 

(Gerber et al., 1999; Lee et al., 2007a). Disruption of both VEGF alleles in mice 

results in almost complete absence of a vasculature, and already the 

inactivation of one single VEGF allele is embryonic lethal due to abnormal 

vasculature (Carmeliet et al., 1996; Ferrara et al., 1996). Likewise, VEGFR1-/- 

and VEGFR2-/- mice die in utero due to abnormal vascular channels or early 

defects in the development of hematopoietic and endothelial cells, respectively 

(Fong et al., 1995; Shalaby et al., 1995). Conditional deletion of VEGF within 

the first postnatal weeks in various organs such as heart, kidney, liver, spleen, 

bone marrow, and brain results in severe vascular aberrances and lethality. On 

the contrary, VEGF inactivation in adult animals is much less traumatic 
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Figure 8. The VEGF isoforms and their interaction with VEGF receptors. In response to 
a variety of stimuli, the diffusible isoforms, VEGF120 and VEGF164, are released by normal 
and transformed cells and may bind to VEGFR1 and VEGFR2. VEGF164 also interacts with 
NRP1 and NRP2. This binding enhances the VEGFR signaling in endothelial cells. Following 
plasmin generation and ECM breakdown, VEGF188 is cleaved at the C-terminus, and the 
resulting 110aa N-terminal fragment is diffusible and bioactive (adapted from Ferrara, 2003). 

indicating that VEGF does not have a continuous maintenance function for most 

of the adult vasculature (Gerber et al., 1999). However, genetic deletion of 

VEGF in the endothelial lineage leads to progressive endothelial degeneration 

and sudden death in mutant mice by 25 weeks of age suggesting that autocrine 

VEGF signaling is essential for vascular homeostasis (Lee et al., 2007a).  

 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, overexpressing of VEGF120 in the suprabasal compartment of the 

epidermis via the keratin 6 promoter in mice resulted in skin swelling, erythema 

and edema subsequently leading to the disruption of skin architecture and early 

postnatal lethality (Larcher et al., 1998). Furthermore, VEGF overexpression in 

the skin of transgenic mice expressing Ha-ras resulted in accelerated tumor 

formation (Larcher et al., 1998). It is therefore evident that VEGF is a potent 

vascular regulator and that its dosage must be exquisitely regulated in a spatial, 

temporal and quantitative manner to avoid vascular disorders. 

VEGF overexpression is found in many human and murine tumors such as 

those of epithelial origin (Dvorak, 2002; Larcher et al., 1996). In tumors VEGF 

upregulation goes along with hypoxia and/or overexpression of a variety of 
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oncogenes including mutant ras, bcr-abl, ErbB2/Her2, and activated EGFR. The 

classical role for VEGF expressed by tumor cells is that it acts on neighboring 

endothelial cells thereby promoting tumor vascularization (Bergers and 

Benjamin, 2003; Ferrara et al., 2003; Ferrara and Kerbel, 2005). For instance, 

during two-stage skin chemical carcinogenesis in mice it could be demonstrated 

that EGFR signaling is responsible for Ha-ras-dependent VEGF upregulation 

and induction of the angiogenic switch necessary for tumor growth (Casanova 

et al., 2002). In this model, expression of dominant negative EGFR in tumors 

could inhibit blood vessel remodeling suggesting that a profound reduction of 

VEGF expression is the critical event responsible for angiogenesis and tumor 

growth suppression. Accordingly, deletion of VEGF in basal layers of the 

epidermis impaired carcinogen-induced papilloma formation (Rossiter et al., 

2004). Recent studies demonstrated expression of VEGFR1 and VEGFR2 as 

well as Nrp1 on tumor cells (Chung et al., 2006; Fakhari et al., 2002; Lee et al., 

2007b; Parikh et al., 2004). Although in vitro it could be shown that VEGFR 

signaling can mediate intracrine survival of tumor cell lines (Lee et al., 2007b), 

the expression and function of VEGFRs in tumors in vivo remains controversial. 
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4 GOALS OF THE THESIS 

The objectives of the research done during my PhD studies were to investigate 

the function of the EGFR in the skin, and to analyze whether EGFR mutant 

mice die as a consequence of epithelial defects such as impaired skin barrier 

function. Moreover, by employing conditional EGFR (floxed) mice, which allow 

epidermis-specific deletion of the receptor, I aimed to investigate how EGFR 

signaling affects hair follicle morphogenesis and hair follicle cycling, since a 

detailed analysis could not yet be performed due to the short lifetime of EGFR-

null mice. More importantly, these mice also allowed to study the impact of 

EGFR on wound healing. 

Another goal of the thesis was to examine the role of EGFR signaling during 

initiation and progression of SOS-dependent skin tumor development. 

Interestingly, epidermal cells isolated from K5-SOS transgenic mice express 

high levels of the vascular endothelial growth factor (VEGF) and β1 integrin, 

which are key players of tumor angiogenesis and tumor cell migration, 

respectively. There are several in vitro evidences for a crosstalk between EGFR 

and β1 integrin, but the in vivo relevance of this interaction has never been 

analyzed. Therefore I examined the impact of β1 integrin deletion on SOS-

dependent skin carcinogenesis and studied the cellular and molecular 

mechanisms by which signaling events downstream of EGFR and/or β1 integrin 

control the underlying biological processes. Furthermore, I investigated how 

conditional deletion of VEGF in epidermal cells, which are its major source in 

the skin, affects skin tumorigenesis, and whether EGFR and VEGF cooperate in 

tumor cells to promote epithelial cancers. 
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5 RESULTS AND DISCUSSION 

5.1 EGFR function in epithelial development and wound healing 

5.1.1 EGFR mutant mouse strains 

To address the role of EGFR in skin physiology and pathology I used different 

EGFR mutant mouse strains, which will be briefly described here. 

EGFR-/- mice display strain-dependent phenotypes with defects in neural and 

epithelial tissues and die at different stages of embryonic and early postnatal 

development depending on their genetic background (Miettinen et al., 1995; 

Sibilia et al., 2007; Sibilia et al., 1998; Sibilia and Wagner, 1995; Threadgill et 

al., 1995). 

In hEGFRKI/KI mice the endogenous mouse EGFR was replaced by the human 

receptor by a knock-in approach (Sibilia et al., 2003). Due to very low 

expression levels of EGFR in the skin, hEGFRKI/KI mice display severe epithelial 

defects which resemble those of EGFR null mice. However, in contrast to the 

very short lifespan seen in EGFR-/- mice, hEGFRKI/KI mice can live up to six 

months and die because of heart defects. 

Moreover, I made use of conditional EGFR mice, which were generated in our 

laboratory (Natarajan et al., 2007). These carried either floxed or flirt alleles. 

The flirt allele is actually a floxed EGFR allele that still harbors a Neo-cassette, 

which can be deleted by Flp-mediated recombination. Since both alleles behave 

the same and result in a delta (∆) allele lacking the promoter and exon 1 of 

EGFR upon Cre-mediated recombination, I do not discriminate between the two 

alleles and both are indicated as EGFRf/f hereafter. EGFRf/f were crossed to K5-

Cre (Tarutani et al., 1997) and K5-CreERT (Indra et al., 1999) transgenic lines to 

generate mice in which EGFR is constitutively deleted in the basal layers of the 

epidermis starting from embryonic day 14.5  (EGFR∆ep), or mice in which EGFR 

deletion could be induced by administration of tamoxifen (EGFR∆epER), 

respectively. 

Furthermore, EGFR∆ep and hEGFRKI/KI mice were crossed to hairless (hr/hr) and 

Rag2-/- mice. Hairless mice carry a mutation in the hairless (hr) gene and 

progressively loose hair becoming completely bald 3-4 weeks after birth 

(Brancaz et al., 2004). Very mild or no immunological defects have been 
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described for these mice. In contrast, Rag2-/- mice develop normal hair but are 

immunodeficient due to a lack of mature T- and B-cells (Shinkai et al., 1992). 

 

5.1.2 Mice lacking EGFR expression in the basal layer of the epidermis 

have a similar phenotype as EGFR-null mice 

EGFR knock-out mice exhibit severe epithelial defects and develop a 

progressive neurodegeneration, and die within the first postnatal days or 

already during embryogenesis depending on the genetic background. Recent 

results obtained in our laboratory show that transgenic expression of a 

constitutively active Ras (RasV12) in postmitotic neurons rescues the 

neurodegeneration of EGFR-/- mice but does not prolong their lifespan (Wagner 

et al., 2006). On the contrary, transgenic expression of a constitutively active 

form of the Ras nucleotide exchange factor Son of Sevenless from the keratin 5 

promoter (K5-SOS) which is active in all stratified epithelia such as skin and 

gastro-intestinal (GI)-tract rescues the lethality of EGFR-/- mice but the mice still 

develop the brain degeneration. These results suggest that the lethality of 

EGFR mutants is most likely due to epithelial rather than neural defects. 

To study the function of the EGFR in epithelia, mice lacking the EGFR in the 

basal layers of all stratified epithelia such as skin and gastrointestinal (GI)-tract 

(EGFR∆ep) were generated in our laboratory by crossing mice carrying 

conditional EGFR alleles (EGFRflox/flox, EGFRf/f) (Natarajan et al., 2007) with a 

K5-Cre transgenic line (Tarutani et al., 1997). Interestingly, these mice 

developed a phenotype similar to EGFR-/- mice (Fig. 9A-G). EGFR∆ep mutants 

were born at almost Mendelian ratio (21,5%), their eyes were open at birth (Fig. 

9A), they were growth retarded (Fig. 9C,G) and they failed to develop a hairy 

coat (Fig. 9B,C).  Morover, 90% of EGFR∆ep mutant mice did not survive longer 

than one month after birth (Fig. 9F). 

To rule out that EGFR is also deleted in other tissues in EGFR∆ep mice due to 

aberrant K5-Cre expression, EGFR deletion and expression were analyzed in 

different organs of EGFR∆ep mice and controls at the genomic and protein level, 

respectively. Southern blot analysis revealed that EGFR was deleted to more 

than 90% in total skin and tail biopsies, whereas no deletion could be detected 

in other tissues (Fig. 9D). While EGFR∆ep mice showed high EGFR protein 
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expression levels in various tissues such as brain, lung and liver, the expression 

was significantly reduced in the skin when compared to the expression levels in 

littermate controls (Fig. 9E). These results confirm that the EGFR was efficiently 

deleted in the epidermis. The remaining EGFR expression found in the skin 

most likely derives from dermal fibroblasts or immune cells present in the skin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At birth, EGFR∆ep mice had a similar body weight as their littermate controls. 

However, the weight gain was severely impaired later on and resulted in 

dramatic weight loss within the third and forth week (Fig. 9G). Since the K5 

promoter is also active in epithelial tissues of the intestine, the strong weight 

loss might be due to EGFR deletion in the GI-tract. These results suggest that 

EGFR∆ep mice die because of a functionally impaired intestine.  

Next I investigated if EGFR mutant mice suffer from a defect in the barrier 

function of the skin which would eventually lead to enormous water loss or 

sepsis by invading microbes. Usually, the skin barrier forms in a patterned 

manner starting around day 16 during embryogenesis (E16). Specific skin sites 

on both sides of the spinal column acquire impermeable characteristics, and 

Figure 9. Epidermis-specific deletion of EGFR leads to early postnatal lethality. (A,B,C) 
Phenotype of EGFR∆ep mutants (indicated by an asterisk) and control littermates at postnatal 
day 2 (P2; A), P10 (B) and P20 (C). (D) Southern blot analysis showing tissue-specific 
deletion of EGFR in EGFR∆ep mice. Upon Cre-mediated recombination the floxed or flirt - a 
floxed allele containing a Neo-cassette - alleles result in a ∆ allele. (E) Western blot analysis 
showing EGFR expression in various tissues of EGFR∆ep and control mice. (F) Kaplan-Meier 
curve showing reduced survival in EGFR mutants (n=28). (G) Body weight of EGFR∆ep mice 
is significantly reduced (n=8). Data represent mean  SEM. *** p≤0.0005. 
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then a moving front of impermeability spreads across the animal’s body 

(Hardman et al., 1998). A qualitative in situ assay for skin permeability revealed 

a delay in the skin barrier formation both in EGFR-/- (Fig. 10A-F) and EGFR∆ep 

mice (Fig. 10G-K).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While in EGFR wild-type mice the skin barrier started to form already at E16.5 

and was almost completed by E17.5, the skin of EGFR-/- fetuses was still 

completely permeable at these stages (Fig. 10A,B,D,E), and even after birth 

permeable areas persisted in the face (Fig. 10F). In EGFR∆ep mutants, a delay 

in skin barrier formation was also observed, but the phenotype was milder than 

in EGFR-null mice. Toluidine blue staining at E17 showed either no or only mild 

dorsal formation of the skin barrier in EGFR∆ep mice, while the skin of littermate 

controls was either completely impermeable or had only partial ventral staining 

 

Figure 10. EGFR mutant mice display a delay in skin barrier formation. Toluidine blue 
staining of EGFR-/- mutants (indicated by an asterisk) and control littermates at embryonic 
day E16.5 (A,D), E17.5 (B,E) and postnatal day P1 (C,F), and of EGFR∆ep mutants at E17 
(G-I) and P1 (J,K). EGFR∆ep mice (indicated by an asterisk) do not show a skin barrier defect 
after birth (P1) (J,K).
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(Fig. 10G-I). However, EGFR∆ep mutants did not show any skin barrier defects 

at postnatal day 1 (Fig. 10J,K). 

These results suggest that the lack of EGFR expression in the epidermis is 

lethal and EGFR mutant mice display derangements of the skin and hair 

follicles. Moreover, complete or epidermis-specific deletion of the receptor 

delays the formation of a skin barrier.  

 

5.1.3 Epidermis-specific deletion of EGFR in adults results in a mild 

phenotype 

To investigate whether the EGFR is essential in epithelia of adult mice, I 

generated mice in which the EGFR could be conditionally deleted in a temporal 

manner by employing the tamoxifen-inducible K5-Cre-ERT2 transgenic line 

(Indra et al., 1999). 

 

 

 

 

 

 

 

Interestingly, intraperitoneal tamoxifen injection before postnatal day 5 resulted 

not only in a failure to develop a hairy coat but also early lethality (Fig. 11A,F). 

However, conditional deletion of the EGFR after postnatal day 5 revealed only 

Figure 11. EGFR deletion in adult skin is not lethal. (A-D) Phenotype of EGFRf/f K5-Cre-
ERT2 (=EGFR∆epER) mice upon intraperitoneal tamoxifen administration starting at P2 (A) or 
P5 (B-D). Pictures were taken at P6 (A), P25 (C), P45 (D) and P130 (E); (C-D) represent the 
same mouse. (E) Western blot analysis of protein lysates from epidermis isolated from 
EGFR∆epER and control mice which were treated with tamoxifen from P2 to P10 (lanes 1 and 
2), or for several weeks starting from P8 (lanes 3-8). (F) Kaplan-Meier plot showing early 
lethality of EGFR∆epER mice upon tamoxifen treatment within the first 4 days after birth. *** 
p≤0.0005. 
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macroscopic changes of the skin, such as hair loss or a curly hair phenotype 

and mice were viable (Fig. 11B-D,F), suggesting that a functional EGFR is 

essential in epithelia in the first postnatal days. Animals which had turned bald 

developed a rudimentary hairy coat with reduced hair follicle numbers and wavy 

hair fibres later on. Analysis of primary keratinocytes isolated from EGFRf/f K5-

Cre-ERT2 (=EGFR∆epER) mice treated with tamoxifen at various time points 

revealed that even though the EGFR is efficiently deleted in the epidermis at the 

genomic level, the EGFR protein is very stable on the cell surface. However, 

approximately 10 days after treatment with tamoxifen EGFR protein expression 

could no longer be detected (Fig. 11E). 

These results suggest that the EGFR is required in the skin in the first postnatal 

days to guarantee later survival. In contrast, EGFR deletion in adult mice leads 

to hair growth defects but is not lethal. 

 

5.1.4 Lack of EGFR delays hair follicle morphogenesis and cycling 

EGFR mutant mice as well as mice lacking the expression of EGFR ligands or 

overexpressing them have suggested that EGFR signaling affects hair follicle 

morphogenesis and controls the entry into anagen-to-catagen transition. 

However, the early lethality of EGFR deficient mice made the investigation of 

the impact of EGFR signaling on HF cycling impossible. 

Histological analysis of paraffin-embedded skin samples from EGFR∆ep (and 

EGFR-/-) mice isolated at critical stages of HF morphogenesis and HF cycling 

showed a delay in HF cycling (Figure 12A-L). At P1 the morphology of EGFR∆ep 

skin was overtly normal but the number of epidermal layers was reduced when 

compared to littermate controls (Fig. 12A,G). At P8, when HF morphogenesis is 

completed, the normal skin morphology was altered and HF were diffusely 

distributed and disoriented within the dermal compartment (Fig. 12B,H). EGFR 

mutant hair shafts displayed increased pigmentation and the regular melanin 

pattern was lost (Fig. 12B,H,M-O). Furthermore, the shape of EGFR mutant hair 

shafts was irregular. That the diameter of hair shafts is not constant within a HF 

most probably results from the fact that the inner and outer root sheath (IRS 

and ORS) of the mutant HF are separating, thereby altering the stability that is 

necessary for proper hair shaft development (Fig. 12H,I; indicated by a blue  
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Figure 12. HF morphogenesis and entry into HFcycling is delayed in EGFR∆ep mice.
(A-P) Fontana-Masson staining of paraffin embedded skin samples from EGFR∆ep mice (G-
L) and littermate controls (A-F) at postnatal day P1 (A,G), P8 (B,H), P10 (C,I), P17 (D,J), P19 
(E,K), and P21 (F,L). EGFR∆ep mice show a delay in hair follicle morphogenesis. The reason 
for the irregular shape of EGFR∆ep hair follicles (HF) is most probably the separation of the 
inner and outer root sheaths indicated by the blue arrowheads (H,I). Mutant HF are more and 
irregularly pigmented (N,O) than control HF (M). At P25 normal skin morphology is distorted 
in EGFR∆ep mice and the skin shows high infiltrate of inflammatory cells. Arrowheads indicate 
melanin incontinence (P). 
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arrowhead). At later time points, the morphology of EGFR mutant skin was 

increasingly altered (Fig. 12I,J,K,L,P). Whereas wild-type HF had already 

entered telogen, EGFR mutant HF were still in early catagen at P17 (Fig. 12C, 

I) and entered telogen only 4 days later (Fig. 12L). Interestingly, EGFR mutant 

skin displayed melanin incontinence, which is never seen in healthy mouse skin 

(Fig. 12P; indicated by a black arrowhead). 

Next, I performed qualitative and quantitative analyses of HF at different stages 

of morphogenesis on Fontana-Masson stained paraffin sections of controls and 

EGFR∆ep and EGFR-/- skin samples. Interestingly, EGFR∆ep skin contained more 

HF in early morphogenesis stages than controls at P1. Whereas 63% of the HF 

in EGFR∆ep skin were in stages 2-4 and only 37% had reached the late stages 5 

and 6, 53% of wild-type HF had already entered stages 5 or 6 (Fig. 13A). This 

phenomenon was even more pronounced in EGFR-/- mice where 93% HF were 

still in early to mid morphogenesis stages (Fig. 13B,C). Staging of HF was 

impossible at later time points due to the irregular distribution and orientation of 

Figure 13. Delayed entry into HF cycling in EGFR mutant mice. (A-D) Quantitative 
analysis of HF morphogenesis stages from skin samples from EGFR∆ep (A) and EGFR-/- 
mutant mice (B) and their littermate controls isolated at postnatal day P1. The graph shows 
the percentage of HF in different morphogenesis stages. The average morphogenesis score 
(C) is calculated by multiplying the percentage of HF in a specific morphogenesis stage with 
the number of the stage (1-8). (D) Average length of HF from EGFR∆ep mutant and EGFRf/f 

mice at the indicated time points. Data represent mean  SEM. *** p≤0.0005. 
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HF. Therefore the average HF length was measured. Wild-type HF had fully 

developed until postnatal day 10 reaching their maximal length of approximately 

1000µm and underwent apoptosis-driven organ involution to enter the quiescent 

telogen phase around P17. In contrast, HF of EGFR∆ep mice - even though their 

morphogenesis was completed at P8 - remained stuck in their development 

after P8 and only slowly entered catagen between P17 and P19 (Fig. 13D). In 

addition, they never reached the size of wild-type HF. 

To study the effect of EGFR deletion after HF morphogenesis, I induced EGFR 

deletion by intraperitoneal tamoxifen injection starting from postnatal day 8 (end 

of HF morphogenesis) and isolated skin samples at postnatal days 17, 19, 21, 

28, 32, and 49, which are critical time points in the HF cycle. Moreover, HF 

cycling was induced by depilation in conditional EGFR mice after several weeks 

of tamoxifen treatment and skin samples were collected at different time points. 

The histomorphometric analysis of these skin biopsies is currently being 

performed and will bring new insights if and when EGFR signaling functions as 

a biological switch in the hair growth cycle. 

All together, the results obtained so far confirm that EGFR signaling delays HF 

morphogenesis as well as the entry into hair follicle cycling. Moreover, EGFR 

expression is essential for the development of a proper hair shaft and 

orchestrates the orientation and distribution of hair follicles. 

 

5.1.5 EGFR mutant mice display strong inflammation in the skin 

Histological analysis of skin samples revealed a strong infiltrate of inflammatory 

cells within the dermis of EGFR mutant skin (Fig. 12K,L,P). Giemsa staining of 

skin sections showed that the number of mast cells was increased in EGFR∆ep 

skin at distinct time points (P1, P10, P19 and P21; Fig.14A). Interestingly, these 

mast cells were highly degranulated ( 8 granuli), which indicates an activated 

state of these cells. So far the role of mast cells in the HF immune system is not 

completely understood. However, they could be involved in the regulation of HF 

cycling. To further characterize the inflammatory infiltrate in EGFR mutant skin I 

isolated epidermal and dermal cells as well as cells from thymus and skin-

draining lymph nodes. Flow-cytometric analysis of these cells revealed that 40% 

of keratinocytes isolated from EGFR∆ep skin express high levels of MHC II on 
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the cell surface, whereas only a negligible number of keratinocytes isolated 

from wild-type mice was MHC II+ (Fig. 14D). This indicates that EGFR mutant 

keratinocytes are in an activated state. Moreover, the percentage of CD45+ 

hematopoietic cells in the epidermal compartment of mutants was 5 times more 

compared to wild-type skin (Fig. 14E). In addition, the number of MHC II+ CD45+ 

cells, comprising mainly Langerhans cells, was significantly increased (Fig. 

14F). Also, the number of T-cells was higher in EGFR∆ep epidermis (Fig. 14G). 

Interestingly, reduced numbers of resident γδT-cells (CD3high) were detected in 

EGFR mutant epidermis, suggesting that the increase in T-cells was due to 

newly infiltrated CD3low αβT-cells (Fig. 14H and data not shown). Within this 

population a significantly increased number of cytotoxic T-cells (CD8α+) could  

also be detected (Fig. 14I). 

Similarly, in the dermal compartment of EGFR mutant skin a large number of 

activated, MHC II+ fibroblasts and endothelial cells (ECs) was detected (Fig. 

15A). Accordingly, the percentage of hematopoietic cells was significantly 

increased in the dermis of EGFR∆ep mice compared to the dermis of littermate 

controls, and out of these cells one third consisted of Dendritic Cells (DCs; MHC 

II+ CD45+) like in wild-type mice (Fig. 15B,C). Interestingly, a large number of 

granulocytes had infiltrated into the dermis of EGFR∆ep mice (Fig. 15D). The 

percentage of T-cells was only slightly increased in the dermal compartment of 

EGFR∆ep skin (Fig. 15E), and more CD8α+ cells were detected (Fig. 15F). Since 

the K5 promoter is also active in thymic epithelial cells I was also interested 

whether EGFR deletion in these cells would affect T-cell development. The 

analysis of the thymus and skin-draining lymph nodes did, however, not reveal 

prominent differences in the percentages of DCs, T-cells, granulocytes and 

macrophages between wild-type and EGFR∆ep mice. Surprisingly, the number of 

FoxP3+ CD25+ regulatory T-cells was elevated in skin-draining lymph nodes of 

EGFR∆ep mice (Fig. 15G). 

 

5.1.6 Hair follicles do not affect skin inflammation in EGFR mutant mice 

In mice humanized for the EGFR (hEGFRKI/KI), which show reduced expression 

of the EGFR in the skin, the hair follicles remain stuck at the anagen/catagen 

transition of the first hair cycle leading to loss/degeneration of the hair follicles. 
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These alterations lead to severe dermal fibrosis with massive infiltration of 

inflammatory cells and the mice are bald by the age of 3-4 months (Sibilia et al., 

2003). It is still unclear whether the inflammatory cells are attracted to the 

dermis as a consequence of hair follicle degeneration or whether deletion of 

EGFR in the epidermis perturbs the dermal microenvironment such that 

inflammatory cells are recruited to the skin and attack the hair follicles leading to 

their destruction. To clarify these issues, I started to cross EGFR∆ep mice and 

hEGFRKI/KI mice with hairless (hr/hr) mice or immunodeficient Rag2-/- mice. 

Hairless hr/hr mutant mice carry a mutation in the hairless (hr) gene and 

progressively loose hair becoming completely bald 3-4 weeks after birth 

(Brancaz et al., 2004). No immunological defects or skin inflammation have 

been described for these mice. In contrast, Rag2-/- mice develop normal hair but 

are immunodeficient due to a lack of mature T- and B-cells (Shinkai et al., 

1992). Histological and flow-cytometric analysis of skin sections of double 

mutant EGFR∆ep hr/hr and hEGFRKI/KI hr/hr as well as EGFR∆ep Rag2-/-  and 

hEGFRKI/KI Rag2-/- mice will allow me to discriminate whether the skin 

inflammation found in EGFR mutant mice is the cause or the consequence of 

the severe hair follicle degradation. Unfortunately, I have had only the 

opportunity to analyze EGFR∆ep hr/hr mice so far since the breeding 

performance was poor. The analysis of 3-week old double mutants by flow 

cytometry revealed that the quality and quantity of the inflammatory infiltrate 

was comparable to single EGFR∆ep mice (Fig. 14D-I; Fig. 15A-G). However, at 

the age of 3 weeks EGFR∆ep hr/hr still harbored many hair follicles in the skin 

even though their EGFRf/f hr/hr littermate controls were already bald. This might 

be due to the delay in HF morphogenesis and cycling in EGFR∆ep mice.  

Interestingly, the very few surviving EGFR∆ep and EGFR∆ep hr/hr mice which 

were almost bald at the age of 4 months showed a surprising difference: while 

macroscopically the skin of the EGFR∆ep mouse was strongly inflamed and 

necrotic, the skin of the EGFR∆ep hr/hr looked overtly normal and did not display 

any necrotic lesions (Fig. 14B,C). However, a detailed flow-cytometric analysis 

of the cells isolated from these mice and their littermate controls revealed that 

inflammation in the skin of 4 months old EGFR∆ep hr/hr mice is comparable to 

EGFR∆ep mice and resembles the inflammatory phenotype of 3.5 week-old mice 

(Fig. 14D-I; Fig. 15A-G and data not shown). Thus, we can conclude that the 
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strong inflammation found in EGFR deficient skin does not result from 

degenerating hair follicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, these results suggest that the lack of EGFR expression in the 

epidermis leads to a strong inflammation in the skin. It will be interesting to 

unravel if EGFR mutant HF loose their immune privilege by aberrant MHC I 

expression in the outer root sheath of HF. 

 

 
Figure 14. Lack of EGFR expression results in inflammation of the skin. (A) 
Quantitative analysis of Giemsa staining of skin samples from EGFR∆ep and wild-type mice 
isolated at various time points after birth reveals an increased number of (activated) mast 
cells in EGFR mutant skin (degranulated  8 granuli). Data represent mean  SEM (n = 3). * 
p≤0.05; ** p≤0.005; *** p≤0.0005. (B,C) Phenotype of 4 months old EGFR∆ep and EGFR∆ep 
hr/hr and control mice. Note that the back skin of EGFR∆ep hr/hr mice looks overtly normal, 
while the skin of EGFR∆ep mice displays necrotic lesions. (D-I) Flow cytometric analysis of 
epidermal cells isolated from mice with the indicated genotypes. Data represent mean  
SEM (n = 3). * p≤0.05; ** p≤0.005; *** p≤0.0005. 
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5.1.7 Wound healing is delayed in mice lacking EGFR expression in the 

skin 

Because of the short viability of EGFR-/- mice the function of EGFR in the 

complex processes of wound healing could not be addressed in these mice. 

However, incisional wounds in EGFR deficient skin grafts have implicated a role 

of EGFR in wound repair. In order to investigate the function of EGFR in wound 

healing I placed full thickness punch wounds at the back of adult tamoxifen-

treated EGFR∆epER mice and of hEGFRKI/KI mice, as well as of 3.5-week old 

EGFR∆ep mice and the respective littermate controls. Analysis of the wounds at 

 
Figure 15. Lack of EGFR expression results in inflammation of the skin. (A-F) Flow 
cytometric analysis of dermal cells isolated from mice with the indicated genotypes. Data 
represent mean  SEM (n = 3). * p≤0.05; ** p≤0.005; *** p≤0.0005. (G) Flow cytometric 
analysis of cells isolated from skin-draining lymph nodes of mice with the indicated 
genotypes. Cells were gated on CD4. 
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different time points after injury revealed that in all three experiments the lack of 

EGFR expression in the skin significantly delayed wound closure (Fig. 16A-C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preliminary data from the histological analysis of Hematoxylin and Eosin (H&E) 

stained sections of wounds isolated at day 5 upon injury from hEGFRKI/KI and 

their wild-type littermate controls (Fig. 16D) revealed that the lack of EGFR 

affects reepithelialization and wound contraction. The distance between the 

 
Figure 16. Lack of EGFR affects wound healing. (A-C) Relative wound area of full 
thickness punch wounds in mice of the indicated genotypes at different time points upon 
injury. Data represent mean  SEM (n = 5-9). * p≤0.05; ** p≤0.005. (D) H&E staining of 
sections from full thickness punch wounds of a hEGFRKI/KI mouse and a littermate control. 
Arrows point to the tips of epithelial tongues, arrow hards indicate wound edges of 
panniculus carnosus. d – dermis; e – epidermis; g – granulation tissue. (E,F) Distance 
between epithelial tips (E) and edges of panniculus carnosus (F) in wounds of hEGFRKI/KI 

mice and littermate controls (n = 2) 
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edges of the wounds, and the distance between the tips of the epithelial 

tongues as well was longer in wounds from hEGFRKI/KI compared to those of 

controls (Fig. 16E,F). These results suggest that the lack of EGFR in the 

epidermis delays the wound healing process by affecting both reepithelialization 

and wound contraction. However, these are only preliminary data and wound 

sections of more biopsies isolated at different time points need to be analyzed. 

Moreover, it should be examined if EGFR affects keratinocyte proliferation and 

wound angiogenesis, and if EGFR is involved in the recruitment of inflammatory 

cells to the wound site. 

 

5.1.8 Discussion and Outlook 

There is no doubt that the EGFR signaling pathway belongs to the most 

complex networks in an organism. Seven ligands bind with different affinities to 

4 different receptors of the EGFR family, which may homo- or heterodimerize 

upon ligand binding, thus, allowing multiple combinatorial possibilities of 

signaling. Besides, differential expression of ligand precursors and their 

activating proteinases complicate this multifaceted system even more. 

Therefore, it is conceptional that even though EGFR signaling has been in the 

focus of researchers for several decades, we are just beginning to understand 

the complex cellular processes controlled by EGFR. The analysis of mice 

genetically modified for the expression of EGFR or its ligands have disclosed 

that the EGFR regulates diverse processes in different tissues and cells. For 

instance, EGFR signaling was shown to be an important survival signal in 

epidermal tumors and cortical astrocytes, whereas in chondrocytes and 

osteoblasts EGFR seems to affect differentiation, and in hepatocytes 

proliferation and cell-cycle entry upon tissue injury (Sibilia et al., 2007). The 

mostly mild phenotypes of mice lacking a single EGFR ligand propose 

redundancy as the evolutionary strategy to assure proper development and 

tissue homeostasis even if a single ligand is missing. Only HB-EGF was shown 

to be essential for heart development and wound reepithelialization (Schneider 

et al., 2008b). 
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A multitude of studies in mice lacking the EGFR or its ligands or overexpressing 

them have demonstrated that the EGFR signaling network is crucial in epithelia. 

The results obtained in this study confirm once more that EGFR is an important 

player in the development and homeostasis of the skin and its appendages. 

What was unexpected and surprising, though, was the fact that epidermis-

specific deletion of EGFR is lethal. Since the K5 promoter is also active in 

epithelial tissues of the intestine the early postnatal lethality of EGFR∆ep mice 

might be due to EGFR deletion in the GI-tract and, thus, a functionally impaired 

intestine. However, unpublished results from our laboratory revealed that mice 

lacking EGFR expression only in intestinal epithelia (EGFRf/f Villin-Cre = 

EGFR∆int) (Egan et al., 2004) are viable and do not have any conspicuous 

phenotype (Rost et al., unpublished). Evidence that EGFR null mice might die 

because of epithelial defects already came from the analysis of EGFR null mice 

expressing a constitutive active form of the Ras activator son of sevenless (K5-

SOS) in the basal layers of the epidermis, which prolonged the lifespan of 

EGFR knock-out mice to about 6 months (Sibilia et al., 2000). Interestingly, 

tamoxifen-induced deletion of EGFR in the epidermis of neonatal mice was 

lethal, too, whereas EGFR deletion in adult mice did not affect the survival of 

the mice but led to mild derangements of hair follicles only. We could show that 

the formation of the pivotal skin barrier was delayed in EGFR mutant mice, but 

neonatal EGFR mutants did not have any defects in the skin barrier. However, 

we cannot exclude that the skin becomes permeable at a later time point, since 

the morphology of EGFR mutant skin gets worse with time. Therefore, skin 

permeability assays need to be performed in older animals. Thus, these results 

suggest that EGFR is indispensable during embryonic development of the skin 

and in the first postnatal days to assure later survival. It is possible that EGFR 

deficient epidermis does not secrete important systemically acting factors, 

which might essentially affect overall survival. Preliminary data have revealed 

that high levels of TNFα are found in the serum of both EGFR-/- and EGFR∆ep 

mice compared to their littermate controls. Sustained activation of TNFα 

signalling has been implicated in the pathogenesis of several human diseases, 

and was recapitulated in TNFα transgenic mice (Aggarwal, 2003; Butler et al., 

1997; Kontoyiannis et al., 1999). It is established that high levels of TNFα 

induce cachexia, which leads to an increased energy consumption and 
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subsequently to death. However, breeding of EGFR-/- or EGFR∆ep mice to TNFR 

knock-out mice did not rescue the early lethality of EGFR mutant mice (data not 

shown), thus, excluding that excess TNFα might be responsible for the lethal 

phenotype. 

Importantly, the analysis of full-thickness punch wounds in different EGFR 

mutant mice revealed that wound repair is significantly delayed upon EGFR 

deletion, but EGFR is not indispensable for wound healing. Preliminary 

histological investigations of wound biopsies have demonstrated that EGFR 

signaling accelerates both wound reepithelialization and wound contraction. 

This observation is consistent with the study of incisional wounds in EGFR null 

skin-grafts, where the EGFR was shown to be implicated in proliferation, 

migration, wound contraction, angiogenesis, and inflammation (Repertinger et 

al., 2004). The effect of EGFR signaling on keratinocyte proliferation, migration, 

on the myofibroblast compartment, on wound angiogenesis and induction of 

inflammatory responses need to be further examined. Moreover, wound repair 

(and skin and HF development) depends on epidermal stem cells. Therefore it 

would be interesting to investigate if the lack of EGFR affects the epidermal 

stem cell compartment. Label-retaining-cell assays in hEGFRKI/KI and 

EGFR∆epER mice may be very helpful to address this aspect. 

Furthermore, I could show that both HF morphogenesis and the entry into hair 

follicle cycling is delayed in EGFR∆ep mice. In addition, our results confirm that 

EGFR expression is essential for the development of a proper hair shaft and 

orchestrates the orientation and distribution of hair follicles. The analysis of skin 

biopsies from mice, in which EGFR was deleted after HF morphogenesis, and 

the study of depilation-induced HF cycle induction in EGFR∆epER mice will allow 

us to unravel whether EGFR functions as a biological switch to drive HF cycling. 

A very interesting finding was that EGFR mutant skin is strongly inflamed. Both 

the epidermis and the dermis displayed signs of inflammation: strong MHC II 

expression was found both on keratinocytes, and dermal fibroblasts and 

endothelial cells. The number of hematopoietic cells was increased several-fold 

in both skin compartments of EGFR∆ep mice compared to EGFR wild-type 

controls. A large number of Langerhans cells was found in the epidermis of 

EGFR deficient skin, which was accompanied by a high infiltrate of αβT-cells. 

The dermis was infiltrated by DCs, granulocytes and mast cells, and - similar to 
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the epidermis – by cytotoxic CD8α+ T-cells. There is increasing evidence that 

the EGFR pathway has an important impact on the inflammatory reactions of 

the skin, with the effort to enhance innate immune responses on the one hand, 

and to prevent over-activation of the pro-inflammatory function of epidermal 

cells on the other hand (Pastore et al., 2008). Keratinocytes express various 

Toll-like receptors (TLRs), which seem to be the primary sensors of innate 

immunity. It was shown that TGFα induces expression of TLR5 and TLR9 in 

keratinocytes and cooperates with these receptors to upregulate the expression 

of anti-microbial peptides (Pastore et al., 2008). Furthermore, accelerated 

expression of these peptides following skin injury depends on EGFR signaling 

rather than the presence of microbial components (Sorensen et al., 2006). A 

recent study showed that anti-microbial peptides stimulate keratinocyte 

proliferation and migration in an EGFR-dependent manner, and induce de novo 

expression of cytokines and T-cell chemoattractants (Niyonsaba et al., 2007), 

thereby promoting an adaptive immune response in the skin. Chronic 

inflammatory skin diseases, such as psoriasis, atopic dermatitis or allergic 

contact dermatitis are often accompanied by epidermal hyperplasia mediated by 

leukocyte-derived cytokines like TNFα or interferon γ (IFNγ), which are potent 

inducers of EGFR and its ligands and initiate a program leading to enhanced 

expression of inflammatory mediators (Pastore et al., 2008). Importantly, mice 

expressing a dominant-negative EGFR and also hEGFRKI/KI mice expressing 

very low levels of (human) EGFR in the skin display severe HF derangements, 

and hair follicles are eventually degraded, which is accompanied by a large 

infiltrate of inflammatory cells (Hansen et al., 1997; Murillas et al., 1995; Sibilia 

et al., 2003). If the inflammation found in EGFR deficient skin is the 

consequence of HF degeneration or whether EGFR deletion in the epidermis 

disrupts the dermal microenvironment such that inflammatory cells are recruited 

to the skin and attack the hair follicles leading to their degeneration, still needs 

to be elucidated. EGFR∆ep hr/hr and hEGFRKI/KI hr/hr as well as EGFR∆ep Rag2-

/- and hEGFRKI/KI Rag2-/- mice double mutants will be of great help for these 

investigations. Moreover, it should be clarified whether HF of EGFR mutant skin 

loose their immune privilege by aberrant MHC I expression in the outer root 

sheath of HF. 
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The need for a better understanding of the impact of EGFR signaling on skin 

inflammation has become urgent since anti-EGFR therapies for epithelial 

cancers have been introduced. A common, severe, and often therapy-limiting 

undesired treatment effect of anti-EGFR monoclonal antibodies and EGFR 

tyrosine kinase inhibitors, which are oncologically very attractive drugs, is the 

development of inflammatory rashes and abnormal hair growth. However, in 

many cancer patients the presence of cutaneous side effects is positively 

correlated with tumor regression or even survival (Hynes and Lane, 2005; 

Lacouture, 2006; Perez-Soler and Saltz, 2005). Thus, the skin offers an 

excellent read-out system for studying the complex EGFR signaling network, 

and for evaluating the efficacy of anti-EGFR therapies. Moreover, it raises the 

question whether the cutaneous side effects are even beneficial for the clinical 

outcome of EGFR-antagonistic treatment. 
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SUMMARY 

It is established that VEGF produced by tumor cells acts on neighboring endothelial 

cells to promote angiogenesis and tumor growth. Here we demonstrate that in a K5-

SOS-dependent mouse skin tumor model, autocrine VEGF is required for epithelial 

tumor cell proliferation in a cell-autonomous manner. VEGF is upregulated in SOS-

expressing tumors and genetic deletion specifically in epidermal cells delays tumor 

development. Surprisingly, complete inhibition of tumor development was found in the 

absence of VEGF in a mutant EGFR background, demonstrating that VEGFR and 

EGFR signaling synergize in neoplastic cells to promote tumor growth. Similar results 

were obtained with therapeutics inhibiting EGFR and VEGFR. Mechanistically, K5-SOS 

upregulates VEGF and its receptors Flt1 and Neuropilin-1 in an Erk-dependent manner 

thereby activating an autocrine proliferation loop, whereas EGFR acts as a survival 

factor for tumor cells. Moreover, Flt1 is expressed in the majority of human squamous 

cell carcinomas (SCC) and its inhibition in human SCC cell lines impairs proliferation 

emphasizing the medical relevance of our findings. Thus, in addition to regulating 

angiogenesis, VEGF has to be considered as a potent growth factor for epidermal 

tumors. 

 

 

 

54



INTRODUCTION 

The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTK) 

includes ErbB1/EGFR, ErbB2/Neu, ErbB3 and ErbB4 and is activated by ligand-

dependent homo- or heterodimerisation (Schlessinger, 2002). Genetic ablation 

experiments in mice revealed the importance of EGFR for the development of different 

organs like brain, bone, heart and several epithelial tissues (Sibilia et al., 2007). EGFR 

overexpression and mutations have been detected at high frequency in tumors of 

epithelial and glial origin, the same cell types affected also in mice lacking the EGFR 

(Olayioye et al., 2000; Sibilia et al., 2007). The cellular processes controlled by EGFR 

are complex and context-dependent. In the liver, the EGFR seems to control 

hepatocyte proliferation during liver regeneration, whereas in astrocytes it seems to act 

as a survival signal (Natarajan et al., 2007; Wagner et al., 2006). We have also shown 

that transgenic mice expressing a constitutively active form of the Ras activator Son of 

Sevenless from the keratin 5 promoter (K5-SOS mice) develop spontaneous skin 

papillomas at 100% penetrance in a wild-type EGFR background. However, in a 

hypomorphic EGFRwa2/wa2 or null background, K5-SOS-dependent tumor formation is 

severely impaired (Sibilia et al., 2000). In these mice the EGFR provides an essential 

survival signal to tumor cells by activating the anti-apoptotic Akt pathway (Sibilia et al., 

2000). 

Tumors and metastases usually arise as small avascular masses which subsequently 

induce neovascularization in order to acquire nutrients for continued growth and 

metastatic spread. This angiogenic switch is induced by angiogenic factors secreted by 

tumor cells (Bergers and Benjamin, 2003; Hirakawa et al., 2005). The vascular 

endothelial growth factor A (VEGF) is one such key regulator of tumor angiogenesis 

and the role of the VEGF family in the control of angiogenesis has been intensively 

investigated for more than a decade (Ferrara, 2002). VEGF is produced as different 

isoforms resulting from alternative exon splicing: 3 isoforms in mice (VEGF120, 

VEGF164, VEGF188) and 9 transcripts in humans (Ferrara et al., 2003; Takahashi and 
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Shibuya, 2005). While in mice VEGF120 diffuses freely in the surrounding extracellular 

matrix, the other isoforms show increased binding to the heparin-rich extracellular 

matrix (Carmeliet and Collen, 1999). VEGF binds to two related RTKs, VEGFR1/Flt1 

and VEGFR2/KDR/Flk1, both of which are primarily expressed on vascular endothelial 

cells and upregulated during angiogenic processes. In addition, VEGF interacts with a 

family of coreceptors, the neuropilins (Nrp), which were identified to be involved in axon 

guidance and are now known to enhance VEGFR signaling (Ferrara et al., 2003).  

VEGF has been shown to be a survival factor for endothelial cells and to play an 

essential role in embryonic vasculogenesis and angiogenesis (Gerber et al., 1999; Lee 

et al., 2007a). Disruption of one single VEGF allele is embryonic lethal due to abnormal 

vasculature (Carmeliet et al., 1996; Ferrara et al., 1996). Similarly, Flt1-/- and Flk1-/- 

mice die in utero due to early defects in the development of hematopoietic and 

endothelial cells, respectively (Fong et al., 1995; Shalaby et al., 1995). Conditional 

deletion of VEGF within the first postnatal weeks in various organs such as kidney, 

liver, spleen, bone marrow, heart and brain results in profound vascular anomalies and 

lethality. VEGF inactivation in older animals is much less traumatic suggesting that 

VEGF does not have a continuous maintenance function for the adult vasculature 

(Gerber et al., 1999). However, genetic deletion of VEGF in the endothelial lineage 

leads to progressive endothelial degeneration and sudden death in mutant mice by 25 

weeks of age suggesting that autocrine VEGF signaling is required for vascular 

homeostasis (Lee et al., 2007a). Interestingly, mice overexpressing VEGF120 in the 

suprabasal compartment of the epidermis via the keratin 6 promoter displayed skin 

swelling, erythema and edema subsequently leading to the disruption of skin 

architecture and early postnatal lethality (Larcher et al., 1998). It is therefore evident 

that VEGF is a potent vascular regulator and that its dosage must be exquisitely 

regulated in a spatial, temporal and quantitative manner to avoid vascular disorders. 

VEGF overexpression is found in many human and murine tumors such as those of 

epithelial origin (Dvorak, 2002; Larcher et al., 1996). VEGF upregulation in tumors is 
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linked to hypoxia and/or overexpression of a variety of oncogenes including mutant ras, 

erbB2/Her2, bcr-abl and activated EGFR. The classical role for VEGF produced by 

tumor cells is that it acts on neighboring endothelial cells thereby promoting tumor 

vascularization (Bergers and Benjamin, 2003; Ferrara et al., 2003; Ferrara and Kerbel, 

2005). For example during two-stage skin chemical carcinogenesis in mice it was 

shown that EGFR signaling is responsible for Ha-ras-dependent VEGF upregulation 

and induction of the angiogenic switch necessary for tumor growth (Casanova et al., 

2002). In this model, expression of dominant negative EGFR in tumors could abolish 

blood vessel remodeling suggesting that a severe reduction of VEGF expression is the 

critical event responsible for angiogenesis and tumor growth suppression. Accordingly, 

epidermis-specific deletion of VEGF impaired carcinogen-induced papilloma formation 

(Rossiter et al., 2004). Recent reports demonstrated expression of Flt1 and Flk1 as 

well as Nrp1 on tumor cells (Chung et al., 2006; Fakhari et al., 2002; Lee et al., 2007b; 

Parikh et al., 2004). Although in vitro it could be shown that VEGFR signaling can 

mediate intracrine survival of tumor cell lines (Lee et al., 2007b), the expression and 

function of VEGFRs in tumors in vivo remains controversial. 

By employing K5-SOS transgenic mice, we provide the first demonstration that VEGFR 

signaling is cell-autonomously required in skin tumor cells to stimulate their proliferation 

in an autocrine manner and that VEGFR and EGFR signaling synergize in neoplastic 

cells to promote tumor growth. We show that epidermal tumor cells of K5-SOS 

transgenic mice express high levels of VEGF and its receptors Flt1 and Nrp1 in an Erk-

dependent manner. Genetic deletion of VEGF in the epidermis of K5-SOS transgenic 

mice delays K5-SOS-dependent skin papilloma formation in a wild-type EGFR 

background and completely inhibits tumor development in a mutant EGFR background. 

Most importantly, Flt1 is upregulated in the majority of human squamous cell 

carcinomas (SCC), a common skin neoplasm frequently harboring activating Ras 

mutations, thereby highlighting the relevance of the murine findings for human 

epithelial tumor development. 
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RESULTS 

Epidermal-specific VEGF deletion delays K5-SOS-dependent tumor development  

Since EGFR signaling can induce expression of VEGF in keratinocytes (Casanova et 

al., 2002), we analyzed whether VEGF expression was affected in K5-SOS transgenic 

epidermis. VEGF mRNA expression and protein secretion could be detected in control 

keratinocytes, but was reduced by 40% in EGFRwa2/wa2 and EGFR-/- keratinocytes (Fig. 

1A,B). Interestingly, K5-SOS expression significantly increased the levels of VEGF 

mRNA and protein secretion in both EGFRwa2/+ as well as EGFRwa2/wa2 keratinocytes 

(Fig.1A,B). These results demonstrate that EGFR and SOS positively control VEGF 

expression.  

To investigate the effect of VEGF deletion during SOS-dependent skin tumor 

development, K5-SOS transgenic mice of EGFR wild-type and hypomorphic 

background were crossed with VEGFf/f mice (Gerber et al., 1999), and further bred with 

a K5-Cre transgenic line (Tarutani et al., 1997) to delete VEGF in basal epidermal cells 

(VEGF∆ep mice). Cre-mediated recombination of the VEGF gene was very efficient in 

epidermal cells and transcription of VEGF mRNA as well as secretion of VEGF protein 

could not be detected in keratinocytes isolated from VEGF∆ep mice (Fig. 1B, Suppl. Fig. 

1A,B). In contrast, VEGF expression in skin endothelial cells was not affected in these 

mice (Suppl. Fig. 1C,D). Deletion of both VEGF alleles in the epidermis significantly 

delayed the development of skin papillomas which started to appear only after 1.5 

months (Fig. 1C). The average tumor volume was also significantly smaller in K5-SOS 

tumors lacking VEGF (Fig. 1D). Even after 3 months only 18% of the tumors exceeded 

this volume (data not shown). Deletion of only one VEGF allele did not affect the onset 

of tumor development and the average tumor volume (data not shown). These results 

indicate that VEGF deletion in epidermal cells significantly impairs K5-SOS-dependent 

skin tumor development.  
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No tumor development in the absence of EGFR and VEGF 

K5-SOS-dependent skin tumor development is severely impaired in the hypomorphic 

EGFRwa2/wa2 background and papillomas develop very late and never reach the size of 

the tumors observed in an EGFR wild-type background (Sibilia et al., 2000) Fig. 1E,F). 

Inactivation of VEGF in the epidermis had a dramatic effect on K5-SOS-dependent 

tumor growth. When both VEGF alleles were deleted papilloma development was 

completely inhibited and 100% of EGFRwa2/wa2 VEGF∆ep K5-SOS mice remained tumor 

free for more than 1 year (Fig. 1E). Tumor incidence and the average tumor volume in 

the absence of one VEGF allele was slightly delayed compared to EGFRwa2/wa2 K5-SOS 

mice (Fig. 1E,F). These results show that no tumors develop in the absence of EGFR 

and VEGF signaling in K5-SOS transgenic mice. 

Wounding can induce and accelerate tumor formation in EGFRwa2/wa2 K5-SOS 

transgenic mice and skin papillomas start to appear two weeks after wounding (Fig. 

1G,H). To investigate if VEGF was responsible for wounding-induced tumors, small 

incisions were applied at the tip of one ear of EGFRwa2/wa2 K5-SOS mice lacking one or 

both VEGF alleles. In EGFRwa2/wa2 VEGFf/+ K5-Cre K5-SOS mice the increase in tumor 

volume was initially comparable to EGFRwa2/wa2 K5-SOS mice (Fig. 1G). However, from 

day 20 onwards tumor growth was delayed in the presence of only one functional 

VEGF allele and after 35 days tumors were significantly smaller (Fig. 1G-I). In contrast, 

after 35 days no tumors had developed in EGFRwa2/wa2 K5-SOS mice lacking both 

VEGF alleles and these mice remained tumor free for the remaining 12 months they 

were under observation (Fig. 1G,J). These results demonstrate that in a mutant EGFR 

background K5-SOS-dependent tumor growth after wounding is completely inhibited in 

mice lacking both VEGF alleles suggesting a synergistic effect of EGFR and VEGF 

signaling in tumor development. 

 

 

59



VEGF deletion dramatically affects tumor cell proliferation and blood vessel 

density 

We next examined whether the absence of VEGF affects the vascularization, 

differentiation or proliferation of spontaneous or wounding-induced skin papillomas. As 

previously described, papillomas of EGFRwa2/wa2 K5-SOS mice were more differentiated 

as evidenced by the higher number of K1 positive cells and this was not further 

affected by the absence of VEGF (Suppl. Fig. 2A, (Sibilia et al., 2000)). However, the 

average vessel area was much lower in skin papillomas from EGFRwa2/+ VEGF∆ep K5-

SOS mice compared to the respective control tumors and the average diameter of 

blood vessels was smaller (Fig. 2A,B). Deletion of only one VEGF allele did not affect 

vascularization in K5-SOS tumors from EGFR mutants (Fig. 2A,B). 

Interestingly, the absence of VEGF did not only reduce tumor angiogenesis but also 

dramatically decreased the number of proliferating tumor cells (Fig. 2A,C). Five times 

less Ki67 positive cells were detectable in skin papillomas derived from EGFRwa2/+ 

VEGF∆ep K5-SOS mice than in biopsies from EGFRwa2/+ K5-SOS controls. Furthermore, 

already the deletion of one VEGF allele resulted in significantly reduced cell 

proliferation in wounding-induced tumors of EGFRwa2/wa2 K5-SOS mice (Fig. 2C). Basal 

cell proliferation was also significantly reduced in healthy normal skin of EGFR wild-

type and hypomorphic mice upon VEGF deletion (Suppl. Fig. 1E). These results 

suggest that VEGF controls epidermal cell proliferation, which in combination with 

reduced angiogenesis leads to the complete inhibition of tumor formation in 

EGFRwa2/wa2 VEGF∆ep K5-SOS mice. 

 

EGFR signaling is required in epidermal cells to induce tumor formation 

In EGFRwa2/wa2 mice the EGFR is mutated in all cells including endothelial cells. To 

investigate whether functional EGFR signaling is required in a cell-autonomous manner 

in epidermal cells for tumor induction, we employed mice carrying conditional EGFR 

alleles (EGFRf/f) to delete the EGFR exclusively in the epidermis of K5-SOS VEGFf/f 
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mice (Natarajan et al., 2007). For temporal control of EGFR and VEGF deletion we 

employed the tamoxifen-inducible K5-CreERT transgenic line (Indra et al., 1999) 

allowing us to specifically delete the EGFR (EGFR∆epER) and VEGF (VEGF∆epER) in 

epidermal cells at different stages of tumor development. 

EGFRf/f VEGFf/f K5-CreERT K5-SOS and as comparison EGFRwa2/wa2 VEGFf/f K5-

CreERT K5-SOS mice with their respective littermate controls were injected with 

tamoxifen for 2 weeks to delete EGFR and/or VEGF and then tumor growth was 

induced by a small incision at the ear tip as outlined in Figure 3A (preventive trial). 

While tumor onset occurred approximately two weeks after wounding in all five groups, 

tumor volume was significantly reduced in mice lacking VEGF in the epidermis both in 

an EGFRwa2/wa2 and EGFR∆epER background (Fig. 3A). Interestingly, deletion of only one 

VEGF allele in EGFR∆epER mice was enough to severely reduce tumor growth. This was 

not observed in an EGFRwa2/wa2 background likely because the hypomorphic EGFR can 

still signal, even though at reduced levels compared to a wild-type EGFR. 

Immunofluoresent staining for EGFR on papilloma sections confirmed the absence of 

EGFR in EGFR∆epER tumors (Fig. 3C). Moreover, no or only extremely low levels of 

VEGF could be detected in VEGF∆epER keratinocytes (Fig. 3D). These results 

demonstrate that the lack of EGFR expression in the epidermis is sufficient to inhibit 

K5-SOS-dependent skin tumor formation in the absence of VEGF.  

We next investigated whether VEGF and EGFR are also required for tumor 

progression. After wounding-induced tumors had developed, mice were treated with 

tamoxifen to delete VEGF and/or EGFR as outlined in Figure 3B (therapeutic trial). 

While VEGF expressing tumors continued growing, deletion of VEGF in EGFRwa2/wa2 

K5-SOS tumors impaired further tumor growth and tumor sizes remained essentially 

unchanged throughout the entire treatment period (Fig. 3B). Similar results were 

obtained if the EGFR was deleted at the same time as VEGF (Fig. 3B). These results 

show that VEGF and EGFR are required both in the initial phase of tumor formation as 

well as during tumor progression. 
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Molecular analysis of tumor cells lacking EGFR and VEGF  

We next investigated the cellular and molecular mechanism underlying the lack of 

tumor development in K5-SOS transgenic mice in the absence of EGFR and VEGF. In 

particular, we examined whether the observed phenotypes were indirectly mediated by 

VEGF affecting tumor angiogenesis or if VEGF would have an autocrine effect directly 

on tumor cells. To discriminate between these possibilities, primary keratinocytes 

isolated from mice of various genotypes were analysed in culture. Western blot 

analysis revealed that the levels of Erk1/2 phosphorylation were always high in the 

presence of the K5-SOS transgene and were not affected by the presence of a 

hypomorphic EGFR and/or by VEGF deletion (Fig. 4A). Erk phosphorylation was also 

increased in K5-SOS expressing tumors irrespective of the status of EGFR and VEGF 

(Fig. 4E). In contrast, the phosphorylation of other MAP-kinases such as p38 and JNK 

was comparable among all genotypes and not affected by K5-SOS expression (Fig. 

4A). The phosphorylation of Akt was impaired in EGFRwa2/wa2 K5-SOS transgenic 

keratinocytes but not further affected by the additional deletion of VEGF (Sibilia et al., 

2000) and data not shown). These results demonstrate that SOS expression leads to 

increased Erk1/2 activation both in vivo and in vitro.  

In accordance with the in vivo results, BrdU labeling of primary keratinocytes revealed 

that K5-SOS expression significantly increased the proliferation of keratinocytes, which 

was prevented by the additional deletion of VEGF (Fig. 4B). Interestingly, VEGF 

deletion dramatically reduced the proliferation of EGFR wild-type as well as 

EGFRwa2/wa2 keratinocytes even in the absence of K5-SOS whereas reduced EGFR 

signaling alone did not affect keratinocyte proliferation (Fig. 4B). If both EGFR and 

VEGF were deleted proliferation was even more reduced (Fig. 4B). These results 

demonstrate that VEGF deletion reduces the proliferation of keratinocytes and K5-

SOS-transformed epidermal tumor cells in a cell-autonomous manner. The number of 

apoptotic cells was similar in keratinocytes of all genotypes and RNAse protection 

assays revealed that mRNA levels of various caspases were not affected in epidermal 
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cells neither by deletion of EGFR nor VEGF (data not shown). Several anti-apoptotic 

genes were highly upregulated in keratinocyte cultures when compared to epidermis 

(Suppl. Fig. 3A). Moreover, IL18 which is known to have an anti-apoptotic effect on 

keratinocytes, was highly induced in culture by the K5-SOS transgene (Suppl. Fig. 3B). 

These results might explain why EGFR mutant keratinocytes in vitro do not display 

increased apoptosis as EGFR mutant epidermal cells in vivo (Sibilia et al., 2000). 

From our results it seems that VEGF can stimulate keratinocyte proliferation. We 

therefore investigated whether VEGF receptors are expressed in primary keratinocytes 

and epidermal tumors. Interestingly, Flt1 and its coreceptor Nrp1 were expressed on 

keratinocytes, whereas Flk1 could not be detected (Fig. 4C,D and data not shown). 

While Flt1 expression was not affected by reduced EGFR signaling, Nrp1 levels were 

significantly lower in keratinocytes from EGFR mutant mice (Fig. 4C,D). Interestingly, 

the expression of both Nrp1 and Flt1 was highly upregulated by the K5-SOS transgene 

(Fig. 4C,D). However, K5-SOS-dependent Nrp1 induction was slightly reduced in 

EGFR mutant epidermal cells suggesting that Nrp1 expression is under the control of 

EGFR signaling (Fig. 4C,D). Importantly, also K5-SOS tumors from EGFR mutant mice 

expressed lower levels of Nrp1 protein, whereas Flt1 levels were high in all K5-SOS 

tumors (Fig. 4F,G) further showing that epidermal cells express Nrp1 and Flt1 which 

are highly upregulated in K5-SOS-transformed cells. Taken together, these results 

demonstrate that K5-SOS expression leads to upregulation of Flt1, Nrp1 and VEGF 

expression possibly via the Erk pathway resulting in increased VEGF-dependent 

epidermal cell proliferation.  

 

Autocrine VEGF-Flt1 stimulation controls tumor cell proliferation 

Next we examined if VEGF mediates its activity by activating Flt1. Interestingly, the 

levels of Flt1 phosphorylation were clearly higher in keratinocytes expressing K5-SOS, 

which showed high Flt1 and Nrp1 expression, than in wild-type cells (Fig. 5A). 

Moreover, compared to wild-type cells, low levels of Flt1 phosphorylation could be 
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detected already in starved K5-SOS keratinocytes, suggesting that VEGF produced by 

K5-SOS cells might be responsible for this effect (Fig. 5A). Furthermore, VEGF 

stimulation induced Flt1 phosphorylation in K5-SOS expressing cells, but not in wild-

type cells (Fig. 5A). Interestingly, also stimulation with EGF led to tyrosine 

phosphorylation of Flt1 already after 10 minutes and persisted for 4 hours suggesting 

an autocrine mechanism mediated by VEGF (Fig. 5A). In K5-SOS expressing 

epidermal cells stimulation with VEGF also significantly induced Akt and Erk1/2 

phosphorylation as well as cell proliferation (Fig. 5B,C). In contrast, K5-SOS negative 

keratinocytes expressing low levels of VEGFRs were only poorly stimulated by VEGF 

(Fig. 5C). These results show that VEGF acts via stimulation of Flt1 and that the ability 

of VEGF to stimulate downstream signaling pathways correlates with the levels of 

VEGFR expressed on epidermal cells.  

To further prove that autocrine VEGF-Flt1 signaling is responsible for tumor cell 

proliferation, we knocked-down (KD) both Flt1 and Nrp1 in epidermal cells. The KD of 

either Flt1 or Nrp1 resulted in a strong reduction in the number of proliferating cells 

further demonstrating that VEGF affects epidermal cell proliferation via activation of 

these receptors (Fig. 5D,E,F). Moreover, wild-type and K5-SOS transgenic epidermal 

cells were also treated with the intracellular VEGFR kinase inhibitors Sunitinib 

(Potapova et al., 2006; Zhou et al., 2008) and BI-1120 (Hilberg et al., 2008), and with 

the extracellular VEGFR inhibitors αVEGFR1 (neutralizing antibody) and Flt2-11 

(blocking peptide) (Tan et al., 2001). All approaches revealed that cell proliferation was 

decreased along with the secretion of VEGF (except for Flt2-11), the expression of Flt1 

(except for Flt2-11) and Nrp1 (Fig. 5G-J). This was associated with a moderate to strong 

inhibition of Erk activation (Suppl. Fig. 3E). The observation that the intracellular 

inhibitors had a stronger effect than the extracellular suppressors can be either due to 

the broader spectrum of inhibition by Sunitinib and BI-1120 or to intracellular VEGFR 

activation which is not inhibited by the extracellular suppressors. Together our data 
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suggest that autocrine epidermal cell proliferation via Flt1 can occur intracellularly as 

well as via secreted VEGF. 

K5-SOS expressing keratinocytes proliferate more and show increased Erk1/2 

activation as well as increased expression of VEGF and its receptors Flt1 and Nrp1. To 

investigate if the Erk1/2 pathway might control cell proliferation via the expression of 

VEGF and its receptors, keratinocytes were treated with the MEK inhibitors CI-

1040/PD-184352 (Bain et al., 2007; Liu et al., 2007; Lorusso et al., 2005; Lunghi et al., 

2008) and UO126 (Bain et al., 2007) which inhibited Erk1/2 phosphorylation (Suppl. 

Fig. 3C,D). Inhibition of Erk1/2 significantly affected keratinocyte proliferation and 

VEGF secretion even when K5-SOS was expressed (Fig. 5G,H). Similarly, the levels of 

Flt1 and Nrp1 were also significantly decreased after treatment with UO126 or CI-1040 

(Fig. 5I,J). Taken together these results demonstrate that K5-SOS expression leads to 

constitutive activation of Erk1/2 resulting in increased expression of VEGF and its 

receptors which in turn lead to increased tumor cell proliferation by strengthening the 

Erk pathway.   

 

Combined anti-VEGFR and anti-EGFR therapy impairs K5-SOS- and RasV12-

dependent tumorigenesis 

Anti-EGFR and anti-angiogenic therapies are being employed for the treatment of 

several human cancers (Ciardiello and Tortora, 2008; Ferrara, 2005). We next 

investigated whether pharmacological inhibition of EGFR and VEGF signaling has a 

synergistic effect on inhibiting tumor growth. A novel irreversible EGFR inhibitor (BI-

2992; Boehringer Ingelheim) (Eskens et al., 2008; Li et al., 2008; Riely, 2008) and a 

reversible VEGFR inhibitor (BI-1120; Boehringer Ingelheim)(Hilberg et al., 2008), which 

are currently in phase III clinical trials were tested in this study. K5-SOS transgenic 

mice which had already developed skin tumors were treated either with one or in 

combination with both classes of inhibitors. Whereas treatment with the VEGFR 

inhibitor only mildly inhibited tumor growth, the EGFR inhibitor significantly impaired 
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tumor growth and the tumor size remained unchanged throughout the entire treatment 

period (Fig. 6A). These findings were very similar to what observed with the respective 

genetic deletions (Fig. 3B and data not shown). Interestingly, combined therapy with 

the EGFR and VEGFR inhibitors BI-1120 and BI-2992 showed a synergistic inhibitory 

effect on tumor growth and some of the tumors showed complete regression (Fig. 6A). 

Importantly, when single EGFR inhibitor treatment was stopped tumors started to grow 

again and their volumes increased very fast. However, tumor re-growth was delayed in 

tumors treated with both EGFR and VEGFR inhibitors likely because 

neovascularization of the tumor tissue has to occur. These results show that 

pharmacological inhibition of the EGFR pathway effectively reduces tumor growth and 

that the combination therapy with EGFR and VEGFR inhibitors is more effective 

leading to almost complete tumor regression. 

Similarly to what was observed in the genetic experiments, immunohistochemical 

analysis of papilloma sections showed that tumors treated with the EGFR inhibitor were 

more differentiated whereas the VEGFR inhibitor did not affect tumor cell differentiation 

(Suppl. Fig. 2B and data not shown). Moreover, administration of EGFR or VEGFR 

inhibitors resulted in a significant reduction of blood vessel density (Fig. 6C,D). This 

effect was more pronounced in papillomas treated in combination with both BI-1120 

and BI-2992. Interestingly, therapy with both inhibitors dramatically decreased the 

number of proliferating tumor cells (Fig. 6C,E). Furthermore, pharmacological inhibition 

of EGFR signaling led to an increase in apoptosis and this effect was even more 

pronounced when tumors were additionally treated with the VEGFR inhibitor (Fig. 6C). 

These results demonstrate that pharmacological inhibition of EGFR and VEGFR 

signaling has a similar effect on tumor growth as genetic deletion of EGFR and VEGF 

(Sibilia et al., 2000) and data not shown). Both approaches led to a significant 

reduction in tumor cell proliferation suggesting that VEGF signaling cell-autonomously 

controls the proliferation of epidermal tumor cells. Furthermore, the increase in 
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apoptosis in tumors treated with EGFR inhibitors confirms that EGFR acts as a survival 

factor for tumor cells.  

Many tumors harbor activating mutations of the Ras oncogene. To investigate whether 

besides K5-SOS-dependent tumors, EGFR and VEGF inhibitors can also be employed 

to treat Ras-dependent tumors, we induced subcutaneous tumors in nude mice with 

RasV12- transformed NIH3T3 cells (Sibilia et al., 2000). After 10 days when 100% of 

the mice had developed tumors, mice were treated either with the VEGFR inhibitor BI-

1120 or the EGFR inhibitor BI-2992 alone or in combination. Similar to the results 

obtained in the K5-SOS tumor model, both inhibitors significantly impaired tumor 

development when compared to vehicle treatment (Fig. 6B). Also in this model, anti-

EGFR therapy was more efficient than the treatment with BI-1120 alone and the best 

tumor-inhibitory effect was observed when both compounds were used in combination 

(Fig. 6B). These results demonstrate that anti-EGFR or anti-angiogenic therapies alone 

or in combination can be efficiently employed to treat tumors harboring mutations in the 

Ras pathway. 

 

Human epidermal tumors and cell lines express Flt1 and its coreceptor Nrp1 

To determine the relevance of these findings to human epidermal cancer, we examined 

the expression of Flt1 and Nrp1 in human epidermal tumors. Sections from 194 basal 

cell carcinoma (BCC) and 163 squamous cell carcinoma (SCC) patients as well as 95 

normal skin samples were analysed by immunohistochemistry (Fig. 7A-E). In normal 

human skin, weak intracellular Flt1 staining was observed in 40% of the samples 

whereas the remaining 60% did not show any Flt1 expression (Fig. 7A,E). In BCC 

samples the pattern of Flt1 expression was similar to normal skin: 40% of the samples 

showed weak intracellular Flt1 staining, while in the remaining samples Flt1 expression 

was negligible (Fig. 7E). In contrast, 80% of SCC samples were positive for Flt1, 

whereas 20% did not express Flt1. Among the Flt1 positive SCC samples, 21% 

displayed strong cytoplasmic staining and weak intracellular expression was found in 
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60% of patient material (Fig. 7D,E). Overall, strong Flt1 staining at the cell membrane 

was observed in 18% of SCC samples whereas Flt1 membrane staining was observed 

only in 0.5% of BCC patients and normal skin was always negative (Fig. 7C,E). 

Moreover, we also isolated RNA from human SCC biopsies and qRT-PCR analysis 

revealed that Flt1 expression was increased in skin cancer biopsies compared to 

normal skin (Suppl. Fig 4A). Nrp1 expression was detectable in human normal skin, 

BCC and SCC but its expression levels did not correlate with the grade of malignancy 

(data not shown). These results show that Flt1 is upregulated in the majority of human 

SCC but not in BCC.  

To address the functional relevance of Flt1 upregulation in human SCC we analyzed 

Flt1 expression in 6 human SCC cell lines and found that 2 of them expressed low 

levels and 4 high levels of Flt1 (Suppl. Fig. 4B). Flt1 protein was also detectable in the 

4 high expressor lines (Suppl. Fig. 4C and data not shown) and VEGF stimulation of 

lines SCCO11 and SCC13 with the highest level of Flt1 expression led to receptor 

phosphorylation (Suppl. Fig. 4C). SCCO11 and SCC13 were treated with the 

intracellular VEGFR kinase inhibitors Sunitinib and BI-1120, and with the extracellular 

VEGFR inhibitors αVEGFR1 and Flt2-11. Similarly to what observed with mouse 

epidermal cells, all the compounds significantly reduced cell proliferation in both SCC 

cell lines except for αVEGFR1 in SCCO11 (Fig. 7F). Flt1 expression and activation was 

also inhibited by both the intracellular VEGFR kinase inhibitors but not by the 

extracellular suppressors (Fig. 7G, Suppl. Fig. 4C). In contrast, Nrp1 expression was 

not affected (Fig. 7H), which correlates with the results in human SCC biopsies, where 

Nrp1 was expressed but its levels did not correlate with the grade of malignancy. Also 

in human SCC, the effects of the intracellular kinase inhibitors were stronger than the 

extracellular suppressors suggesting that autocrine intracellular VEGFR signaling might 

contribute to the observed phenotypes. A moderate reduction in Erk activation was also 

detectable after treatment with VEGFR inhibitors (Suppl. Fig. 4D). In addition, similarly 

to what was observed with mouse tumor cells, treatment of the SCC cell lines with the 
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MEK inhibitors U0126 or CI-1040 resulted in significant reduction of proliferation, Flt1 

and Nrp1 expression (Fig. 7F-H, Suppl. Fig 4E,F) suggesting that also in human cells 

VEGFR expression and cell proliferation is controlled via the Erk pathway. These 

results demonstrate that autocrine VEGF-Flt1 signaling controls the proliferation of 

human SCC cells and might therefore be an attractive target for therapeutic 

intervention in SCC patients. 
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DISCUSSION 

It is accepted that VEGF is produced by tumor cells and acts on neighboring VEGFR 

expressing endothelial cells to promote neovascularization for continued tumor growth 

and metastatic spread (Bergers and Benjamin, 2003; Ferrara et al., 2003; Ferrara and 

Kerbel, 2005). Our results show a new function for VEGF besides its classical role as 

an angiogenic factor. We demonstrate that in vivo in a K5-SOS-dependent mouse skin 

tumor model autocrine VEGF is required for epithelial tumor cell proliferation in a cell-

autonomous manner. Indeed, K5-SOS expression leads to Erk-dependent upregulation 

of VEGF and its receptors Flt1 and Nrp1 in tumor cells. Therefore, epidermis-specific 

VEGF deletion results in reduction of K5-SOS-dependent tumor burden not only by 

regressing tumor vessels but also by affecting tumor cell proliferation. Surprisingly, 

tumor development was completely inhibited in the absence of epidermal VEGF and 

EGFR expression demonstrating a synergistic, tumor-promoting effect of EGFR and 

VEGF signaling in neoplastic cells. 

It had previously been shown that expression of dominant negative EGFR impaired Ha-

ras-dependent tumor growth by affecting tumor vessels which was likely due to 

reduced VEGF expression (Casanova et al., 2002). However, we did not observe 

differences in blood vessel density in K5-SOS transgenic tumors of wild-type and 

mutant EGFR background and VEGF expression was similar in both genotypes. It 

seems that the expression of an activated form of SOS can overcome the need for 

EGFR for efficient VEGF production. Only in the complete absence of VEGF 

expression in the epidermis, the number of blood vessels present in K5-SOS skin 

tumors was significantly reduced. Moreover, inducible deletion of VEGF in the 

epidermis at different stages of tumor development revealed that VEGF signaling is 

limiting tumor growth both during tumor initiation and progression. 

Interestingly, Nrp1 expression was reduced in EGFR mutant cells, even in the 

presence of the K5-SOS transgene, suggesting that Nrp1 expression is controlled by 

EGFR signaling. Indeed, several studies have shown that EGFR signaling modulates 
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the expression of Nrp1 by inhibiting the expression of the tumor repressor Neuron 

Restrictive Silencer Factor (NRSF), a transcriptional repressor of Nrp1 (Akagi et al., 

2003; Kurschat et al., 2006). However, NRSF expression was not affected in K5-SOS 

tumors suggesting a different Nrp1-regulating mechanism (data not shown). AP-1, Sp1 

and CCAAT elements are also present in the Nrp1 promoter (Rossignol et al., 2003). 

We exclude that EGFR signaling modulates Nrp1 expression via AP-1 transcription 

factors, since their expression was not affected in EGFR mutant cells (data not shown). 

Independent studies have shown that the expression of Nrp1 is also regulated by 

VEGF signaling (Oh et al., 2002). Therefore, EGFR signaling might affect Nrp1 

expression also indirectly by inducing VEGF production.  

We demonstrate that pharmacological inhibition of VEGFR in tumor bearing K5-SOS 

transgenic mice delays tumor growth whereas treatment with EGFR inhibitors 

significantly reduced tumor growth. Importantly, treatment with VEGFR and EGFR 

inhibitors together was more efficient and, in some cases, resulted in almost complete 

tumor regression demonstrating that combined therapies are more effective for curing 

cancer. In accordance with the results obtained with genetic VEGF deletion, 

pharmacological inhibition of VEGFR resulted in a striking reduction of proliferating 

cells within the tumors. The increase in apoptosis within the tumor tissue upon 

administration of EGFR inhibitors confirmed once more that EGFR provides a survival 

signal to epithelial tumor cells. Interestingly, inhibitor treatment had a similar inhibitory 

effect on RasV12-mediated tumors demonstrating that at least in the early stages of 

tumor development such therapies could also be effective to treat tumors with 

activating mutations in the Ras pathway.  

Both genetic as well as pharmacological inhibition of the VEGFR pathway in K5-SOS 

mice resulted in strongly impaired tumor cell proliferation. This could be a secondary 

effect resulting from reduced angiogenesis caused by impaired VEGF signaling which 

would prevent sufficient tumor nourishment. However, we observed that proliferation 

upon genetic VEGF deletion was also reduced in vitro suggesting that VEGF has an 
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additional cell-autonomous effect on epidermal cells. Indeed, we could demonstrate 

that wild-type as well as K5-SOS transgenic primary epidermal cells express the VEGF 

receptors Flt1 and Nrp1. Interestingly, K5-SOS highly upregulated the expression of 

these two receptors in an Erk-dependent manner. Indeed, this increase in expression 

of VEGF and its receptors could be blocked by inhibiting ERK1/2 phosphorylation, 

which was always elevated in the presence of K5-SOS. Moreover, pharmacological or 

siRNA-mediated inhibition of Flt1 and Nrp1 in epidermal cells greatly impaired their 

proliferation potential further demonstrating that autocrine VEGF-Flt1 signaling controls 

tumor cell proliferation independently of angiogenesis. Initially, VEGF receptors were 

thought to be expressed only on endothelial cells. However, recent studies have 

suggested that these receptors may also be expressed on tumor cells and epithelial 

cells (Bachelder et al., 2001; Chung et al., 2006; Fan et al., 2005; Lacal et al., 2000; 

Lee et al., 2007b; Mercurio et al., 2004; Parikh et al., 2004). Flt1 was detected in NHEK 

cells and in the epidermis of BALB/c mice (Wilgus et al., 2005). Nrp1 expression was 

found in human suprabasal epidermis (Kurschat et al., 2006). Furthermore, human 

melanocytes express Nrp1, Flt1 and Flk1 upon stimulation with the phorbol ester TPA 

and Flk1 was phosphorylated in these cells upon VEGF addition (Kim et al., 2005).  

Interestingly, previous studies have shown that an autocrine signaling loop for VEGF, 

which is mostly triggered inside the cell, is required for the survival of haematopoietic 

stem cells and endothelial cells (Gerber et al., 2002; Lee et al., 2007a). We could show 

that K5-SOS transgenic epidermal cells, which highly express VEGF and its receptors 

Flt1 and Nrp1, had increased levels of phosphorylated Flt1 compared to wild-type cells. 

Moreover, stimulation of K5-SOS epidermal cells with VEGF resulted in tyrosine 

phosphorylation of Flt1 as well as activation of Erk and increased proliferation. 

Interestingly, also stimulation with EGF led to Flt1 tyrosine phosphorylation in K5-SOS 

expressing cells suggesting an autocrine mechanism mediated by VEGF. In contrast, 

stimulation of wild-type epidermal cells with VEGF or EGF did not significantly induce 

any of these effects. Interestingly, in wild-type cells a significant reduction in cell 
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proliferation was only observed with intracellular VEGFR inhibitors suggesting that 

signaling may occur intracellularly. Also in K5-SOS cells the intracellular inhibitors had 

a stronger effect than the extracellular suppressors. This can be either due to the 

broader spectrum of inhibition by Sunitinib and BI-1120 or to intracellular VEGFR 

activation which is not inhibited by the extracellular suppressors. Together our data 

suggest that autocrine Flt1 activation occurs intracellularly as well as via VEGF 

secretion leading to epidermal cell proliferation.  

Several studies have reported Nrp1 expression on a variety of cancer cells and 

correlated its expression with poor prognosis (Bielenberg et al., 2006; Hansel et al., 

2004; Parikh et al., 2004). However, there were also studies showing the opposite 

illustrating the complex function of Nrp1 in tumors (Gray et al., 2005; Kamiya et al., 

2006). We found that Nrp1 was expressed in human BCC and SCC, but its expression 

did not correlate with the grade of malignancy. In BCC samples the pattern of Flt1 

expression was also similar to normal skin. However, we observed that 80% of SCC 

samples were positive for Flt1 and among those 18% had strong Flt1 staining at the 

cell membrane, while 21% showed highly increased cytoplasmic Flt1 expression. In 

accordance with our finding, Lee et al. reported that Flt1 is predominantly expressed 

intracellularly in breast cancer cell lines and primary breast cancer tumors (Lee et al., 

2007b). Moreover, they provided evidence that VEGF is an internal autocrine survival 

factor for breast cancer cells by binding to Flt1. Importantly, we could show that various 

human SCC cell lines express increased levels of Flt1 which is tyrosine phosphorylated 

upon VEGF stimulation. Moreover, treatment with VEGFR inhibitors resulted in a 

significant reduction of proliferation whereby intracellular inhibitors were more effective 

than extracellular suppressors. Therefore, our data demonstrate that, similarly to what 

observed in mouse tumor cells, also in human SCC autocrine cell proliferation 

controlled by Flt1 can occur intracellularly as well as by VEGF secretion. Thus, 

VEGFR1 inhibitors might be an attractive target for therapeutic intervention of different 

types of cancers.  
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In conclusion we demonstrate that constitutive active SOS activates the ERK pathway 

leading to high expression of VEGF and its receptors Flt1 and Nrp1. A similar 

mechanism might be utilized by human epithelial tumors harboring oncogenic Ras 

signaling. Increased VEGF-Flt1/Nrp1 induces tumor angiogenesis and potentiates cell-

autonomous tumor cell proliferation (Fig.7I). Therefore VEGF/VEGFR inhibition not 

only impairs angiogenesis but also tumor cell proliferation. Moreover, in K5-SOS mice 

lacking both epidermal EGFR and VEGF, cells undergo apoptosis due to reduced 

EGFR signaling and therefore papilloma formation is completely blocked (Fig.7I). This 

study represents the first demonstration of a synergistic action of EGFR and VEGF 

signaling in tumor cells and provides a molecular explanation why combined anti-EGFR 

and anti-VEGFR therapies might be more efficient than single treatments.  
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EXPERIMENTAL PROCEDURES 

Mice 

VEGFf/f (Gerber et al., 1999), K5-SOS (Sibilia et al., 2000), EGFRwa2/wa2 (Sibilia et al., 

2000), EGFRf/f (Natarajan et al., 2007), K5-Cre (Tarutani et al., 1997) and K5-CreERT 

(Indra et al., 1999) mice were previously described. For inducible VEGF and/or EGFR 

deletion adult mice were injected intraperitoneally with 1mg of tamoxifen (Sigma; 

sunflower seed oil/ethanol mixture (10:1) at 10mg/ml) per day according to the 

schemes indicated in the figures. Mice were kept in the animal facility of the Medical 

University of Vienna in accordance with institutional policies and federal guidelines. 

 

Pharmacological inhibition of tumor growth  

Inhibitors used in this study were kindly provided by Boehringer Ingelheim Austria. 

Inhibitors were applied orally to K5-SOS transgenic mice at the following 

concentrations: BI-1120 100mg/kg/day; BI-2992 20mg/kg/day; for combined therapy 

75mg/kg/day BI-1120 and 15mg/kg/day BI-2992. The carrier Natrosol was given to 

untreated control mice. To induce RasV12-dependent tumor formation, athymic nu/nu 

mice were subcutaneously inoculated in the flank area with 106 RasV12-transformed 

NIH3T3 cells (Sibilia et al., 2000). After tumors had developed, mice were treated with 

inhibitors as described above. 

 

Human SCC and mouse epidermal cell cultures, BrdU staining and inhibitor 

treatment  

Mouse epidermal cells were isolated as previously described and cultured on vitrogen-

fibronectin coated dishes in low calcium MEM medium (Sigma) containing 8% chelated 

FCS (Sibilia et al., 2000). The human SCC cell lines SCC4, SCC9 (ATCC) were kindly 

provided by Erwin Tschachler and the SCCO11, SCCO12, SCC13 and SCCO22 lines 

by Gian-Paolo Dotto and cultured as previously described (Lefort et al., 2007). Mouse 

or human cultures at 80% confluency were left untreated or stimulated with 20ng/mL 
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EGF (Roche) or 30ng/mL VEGF (R&DSystems) for 5 minutes and harvested for RNA 

or protein analysis. For VEGFR or ERK inhibition, 80% confluent cells were treated 

with the VEGFR inhibitors Sunitinib (1µM; Pfizer), BI-1120 (500nM; Boehringer 

Ingelheim), anti-VEGFR1 antibody AF471 (2,5µg/mL; R&D Systems), VEGF blocking-

peptide Flt2-11 (1µg/mL; Calbiochem), and the Erk inhibitors CI-1040 (500nM; Pfizer), 

U0126 (10µM; Promega) or DMSO (Fluka) alone for 12-48 hours before supernatants, 

protein or RNA lysates were harvested for further analyses. For proliferation analysis of 

mouse keratinocytes 80% confluent cells were incubated with the respective inhibitors 

or VEGF (100ng/mL; R&DSystems) for 48 hours before pulsing with 10µM BrdU 

(Roche) for 4 hours, fixation with 70% ethanol and immunofluorescent staining with an 

anti-BrdU antibody according to the manufacturer’s instructions (Becton Dickinson). 

BrdU+ cells from 6-10 randomly chosen fields of at least 3 independent samples were 

counted. For proliferation analysis in human SCC cell lines, 80% confluent cells were 

incubated with the respective inhibitors for 24 hours before pulsing with 20µM BrdU 

(BD Pharmingen) for 6 hours. Cells were trypsinized and stained with the APC BrdU 

Flow Kit (BD Pharmingen) and the number of proliferating cells was analyzed on a 

LSR-II Flow cytometer (BD Biosciences). 

 

Knock-down of Flt1 and Nrp1 in epidermal cells 

4 different miRNA oligos corresponding to Flt1 or Nrp1 and the non-target negative 

controls were purchased from Invitrogen and cloned into the pcDNATM6.2-GW/EmGFP-

miR vector (Invitrogen) containing an EGFP marker with the BLOCK-iTTM Pol II miR 

RNAi Expression Vector Kit according to the manufacturer’s instructions. The vectors 

were transfected into primary epidermal cells with Fugene HD (Roche). 24h after 

transfection keratinocytes were pulsed with 20µM BrdU for 6h. Transfection efficiencies 

were measured by the expression of EmGFP by flow cytometric analysis and ranged 

from 40 to 50%. To quantify proliferation cells were trypsinized and stained with the 

APC BrdU Flow Kit (BD Pharmingen). The percentage of proliferating transfected 
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(EGFP+/BrdU+) cells was analyzed with a LSR-II flow cytometer (BD Biosciences) using 

FACSDiva software (BD Biosciences). Proliferation rates were compared to the 

number of proliferating cells transfected with the negative control vector. Expression of 

Flt1 or Nrp1 upon miRNA knock-down was quantified by qRT-PCR. 

 

Isolation of skin endothelial cells 

Shaved dorsal and ventral skin was minced into pieces and incubated in collagenase 

(Wortington) for 60 min at 37°C. The resulting cell suspension was filtered and stained 

with anibodies against CD31, CD144 (BD Biosciences) and CD45 (Coulter). Cellular 

suspensions were washed and CD31+ CD144+ CD45- endothelial cells (ECs), CD31- 

CD144- CD45+ leukocytes and CD31- CD144- CD45- stromal cells and keratinocytes 

(E.K., unpublished observations) were sorted to a purity of > 95% on a FACSAria Cell 

Sorter (BD Biosciences). Sorted cells were lysed in TRI Reagent (Sigma) containing 

1% β-mercaptoethanol (MERCK) and RNA was isolated according to standard 

procedures. 

 

Histological analysis 

Mouse tissues were embedded in OCT (Sakura), 5 μm cryosections were cut and fixed 

in acetone or 1% PFA before processing. Epidermal ear sheets were prepared by 

separating epidermis from dermis with 3.5% ammoniumthiocyanate and fixed in 

acetone. For immunohistochemistry and immunofluorescent stainings the following 

antibodies were used: anti-mouse CD31/PECAM-1 (BD PharMingen), anti-Ki67 

(Novocastra), anti-EGFR (Santa Cruz), anti-keratin 1 and anti-keratin 14 (Babco), anti-

phospho-p44/42 (New England Biolabs), anti-Flt1 and anti-Nrp1 (Santa Cruz) and 

secondary antibodies purchased from Molecular Probes and Vector Laboratories. In 

order to investigate the average blood vessel density, a computer-assisted 

morphometric analysis was performed with the MetaMorph Imaging System. For 

antigen retrieval, paraffin embedded human tissue arrays were treated with Target 
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Retrieval Solution (Dako) and processed further according to the manufacturer’s 

recommendation. Isotype IgG from rabbit serum (Sigma) and biotinylated anti-rabbit 

IgG were used as controls (Vector Laboratories). 

 

Total RNA isolation, RT-PCR analysis and RNase Protection Assay (RPA) 

Total RNA from epidermis, cultured epidermal cells, SCC cell lines or biopsies were 

isolated with TRIzol Reagent (Invitrogen). RPAs were performed with the Multi-Probe 

RNase Protection Assay System (BD Biosciences) according to the manufacturer’s 

instructions. cDNA synthesis was performed with SuperScript First-Strand Synthesis 

System (Invitrogen) according to the manufacturer’s instructions. Primers used for 

semiquantitative RT-PCR analysis: gapdh 5’-CTCATGACCACAGTCCATGC-3’ and 5’-

CACATTGGGGGTAGGAACAC-3’, vegf 5’-

GCCCTGGAGTGCGTGCCCACGTCAGAGAGCA-3’ and 5’-

TGGCGATTTAGCAGCAGATA-3’. qRT-PCR was performed using the LightCycler 

FastStart DNA MasterPLUS SYBR Green I kit together with the LightCycler 2.0 System 

(Roche) with the following primers for murine genes: flt1 5’-

GAGGAGGATGAGGGTGTCTATAGGT-3’ and 5’-GTGATCAGCTCCAGGTTTGACTT-

3’; nrp1 5’-ACAAGGAGTGGATCCAGGTG-3’ and 5’-ACATCTGTGGGGTTGGTGTT-

3’. pbgd (internal standard) 5’-GCACTTTTCTCTGGCAAGGT-3’ and 5’-

GTCTCCTGCAGGCTCTATCG-3’; and for human genes: huvegf 5'-

ATCTTCAAGCCGTCCTGTGT-3' and 5'-GCATTCACATCTGCTGTGCT-3'; huflt1 5'-

ATCATTCCGAAGCAAGGTGTG-3' and 5'-AAACCCATTTGGCACATCTGT-3'; hunrp1 

5'-CCACAGTGGAACAGGTGATG-3' and 5'-GCACGTGATTGTCATGTTCC-3'; 

hugapdh (internal standard) 5'-GGAAGGTGAAGGTCGGAGTCA-3' and 5'-

GTCATTGATGGCAACAATATCCACT-3'.  
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Southern blot analysis 

Southern blot analysis was performed according to standard protocols. Genomic DNA 

isolated from keratinocytes was digested with AccI. Floxed and delta alleles of vegf 

were detected with a probe kindly provided by J. Haigh. 

 

Western blot analysis and immunoprecipitation 

Cells were starved for 24h in 0.5% FCS or serum-free medium prior to growth factor 

stimulation. Protein lysates were prepared as previously described (Sibilia et al., 2000). 

For immunoprecipitation, 1.5mg protein lysates were incubated with anti-Flt1 antibodies 

pre-coupled to Ultralink immobilised Sepharose beads (Pierce) according to the 

manufacturer’s recommendations and incubated overnight at 4°C. The bead-antibody-

protein complexes were collected by centrifugation, washed 3x in lysis buffer and 

resuspended in denaturing protein loading buffer. Proteins were separated by SDS-

PAGE and transferred to PVDF membranes (Millipore). Western blot analysis was 

performed as previously described (Sibilia et al., 2000) with antibodies detecting 

phospho-JNK, JNK, phospho-p38, p38 (Cell Signaling), phospho-p44/42 (New England 

Biolabs), ERK1/ERK2 (Santa Cruz), phospho-tyrosine (Cell Signaling), Flt1 (Abcam), 

actin and tubulin (Sigma). Membranes were reprobed after stripping in 62.5mM Tris-

HCl (pH 6.8), 2% SDS, 100mM β-mercaptoethanol at 55°C for 30min. 

 

ELISA 

Mouse VEGF Immunoassay (Quantikine, R&DSystems) was performed according to 

the manufacturer’s instructions with 48 hour-old supernatants collected from 80% 

confluent keratinocyte cultures or with 40µg protein of epidermal cell lysates.  
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Statistical methods 

All experiments were repeated at least twice and done in triplicates. Data were 

evaluated using a Student’s two-tailed t test. p < 0.05 was taken to be statistically 

significant. In Figures 1C and 1E data were analyzed by a Log-rank (Mantel-Cox) test.  
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FIGURE LEGENDS 

Figure 1. Effect of mutant EGFR and VEGF deletion on K5-SOS-dependent skin 

tumor formation  

(A) RNase protection assay showing mRNA expression levels of VEGF and GAPDH in 

keratinocytes isolated from mice of the indicated genotypes. (B) Representative ELISA 

showing secreted VEGF in supernatants of cultured keratinocytes of the indicated 

genotypes. No VEGF is detected in keratinocytes isolated from VEGFflf K5-Cre 

(VEGF∆ep) mice. (C,D) Tumor incidence (C) and volume measured at 2 months (D) in 

EGFRwa2/+ K5-SOS mice in the presence or absence of VEGF. (E,F) Tumor incidence 

(E) and volume at 12 months of age (F) in EGFRwa2/wa2 K5-SOS mice lacking one or 

both VEGF alleles in the epidermis. Only skin lesions ≥0.02 cm3 were scored as tumors 

in all groups. (G) Kinetic of tumor growth measured for 35 days after wounding the tip 

of the ear of EGFRwa2/wa2 K5-SOS (black circle) and EGFRwa2/wa2 VEGFf/+ K5-Cre K5-

SOS mice (grey triangle). No tumors developed in EGFRwa2/wa2 VEGF∆ep K5-SOS mice 

(white rectangle). (H-J) Macroscopic appearance of ears 35 days after wounding of 

EGFRwa2/wa2 K5-SOS (H), EGFRwa2/wa2 VEGFf/+ K5-Cre K5-SOS (I) and EGFRwa2/wa2 

VEGF∆ep K5-SOS (J) mice. Data represent mean  SEM. * p≤0.05; ** p≤0.005; *** 

p≤0.0005. 

  

Figure 2. Blood vessel density and epidermal cell proliferation in K5-SOS-

dependent papillomas lacking VEGF  

(A) Immunofluorescent staining with antibodies against CD31 and Ki67 of spontaneous 

papillomas from EGFRwa2/+ K5-SOS and EGFRwa2/+ K5-SOS VEGF∆ep mice and of 

wounding-induced tumors from EGFRwa2/wa2 K5-SOS and EGFRwa2/wa2 VEGFf/+ K5-Cre 

K5-SOS mice. (B) Computer-assisted morphometric analysis showing the average 

vessel area on αCD31-stained tumor sections isolated from mice indicated in A. Data 

represent the average vessel area  SEM. (C) Quantification of Ki67 positive cells on 
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sections from three independent tumors of mice indicated in A. Data represent mean  

SEM. * p≤0.05; *** p≤0.0005. 

 

Figure 3. Inducible deletion of EGFR and VEGF in K5-SOS transgenic mice 

(A) Kinetic of tumor growth measured in mice of the indicated genotypes for 38 days 

after wounding the tip of the ear. All mice had been treated with tamoxifen 12 times 

before wounding and afterwards twice a week for maintenance as indicated in the 

scheme (prevention trial). (B) Kinetic of tumor growth of established wounding-induced 

tumors of the indicated genotypes measured for two weeks. After tumors had 

developed, all mice were treated daily with tamoxifen as indicated in the scheme 

(therapeutic trial). (C) Immunofluorescent stainings for EGFR on tumor sections 

showing that EGFR was efficiently deleted in EGFR∆epER mice after tamoxifen 

treatment. (D) ELISA showing VEGF present in protein lysates of keratinocytes isolated 

from mice used in A and B. Data represent mean  SEM. * p≤0.05; ** p≤0.005. 

 

Figure 4. VEGFR expression and proliferation in epidermal cells and tumors 

(A) Western blot analysis showing phospho-Erk1/2, phospho-p38 and phospho-JNK 

levels in protein lysates from keratinocyte cultures isolated from mice of the indicated 

genotypes. (B) Quantification of proliferating, BrdU positive cells in keratinocyte 

cultures of the indicated genotypes. (C,D) qRT-PCR measuring the expression of 

VEGFR1/Flt1 (C) and Nrp1 mRNA (D) in cultured keratinocytes of the indicated 

genotypes. (E-G) Immunohistochemical analysis of phospho-ERK1/2 (E), Nrp1 (F) and 

Flt1 (G) on sections of spontaneous papillomas from EGFRwa2/+ K5-SOS and EGFRwa2/+ 

K5-SOS VEGF∆ep mice and of wounding-induced tumors from EGFRwa2/wa2 K5-SOS and 

EGFRwa2/wa2 VEGFf/+ K5-Cre K5-SOS mice. Note that Nrp1 expression is reduced in 

basal tumor cells of EGFR mutant mice (B, black arrows). The data in B, C and D 

represent mean  SEM. * p≤0.05; ** p≤0.005; *** p≤0.0005. 
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Figure 5. Inhibition of VEGFR and Erk affects proliferation and expression of 

VEGF and its receptors  

(A) Cultured keratinocytes were either left untreated (bulk) or starved for 24 hours prior 

stimulation with EGF or VEGF. Protein lysates were subjected to immunoprecipitation 

(IP) with anti-Flt1 antibodies. Proteins were resolved by SDS-PAGE and 

immunoblotted (IB) with the indicated antibodies. (B) Quantification of proliferating, 

BrdU positive cells in keratinocyte cultures of the indicated genotypes upon VEGF 

treatment. (C) Western blot analysis showing ERK phosphorylation in keratinocytes 

stimulated with EGF and VEGF. Numbers indicate the levels of Erk1/2 activation 

relative to the respective controls after correction with total ERK normalized to actin 

(loading control). (D) Quantification of proliferating keratinocytes after miRNA knock-

down of Flt1 and Nrp1. (E,F) Relative expression of Flt1 (B) and Nrp1(C) upon knock-

down with two different vectors. (G) Quantification of proliferating keratinocytes after 

treatment with the VEGFR inhibitors Sunitinib, BI-1120, anti(α)-VEGFR antibody, the 

VEGF blocking-peptide Flt2-11  and the Erk inhibitors CI-1040 and U0126. Shown 

asterisks (*) refer to comparisons with respective untreated controls; Following p values 

were obtained in comparisons between: EGFRwa/+: BI-1120 with αVEGFR, p=0.01; BI-

1120 with Flt2-11, p=0.02; Sunitinib with αVEGFR, p=0,04; EGFRwa2/+ K5-SOS: BI-1120 

with αVEGFR, p=0.02; BI-1120 with Flt2-11, p=0.05; Sunitinib with αVEGFR, p=0,02; 

Sunitinib with Flt2-11, p=0.05. (H,I,J) Treatment with the inhibitors indicated in (G) affects 

VEGF protein secretion after 48h measured by ELISA (H) and Flt1 (I) and Nrp1 (J) 

mRNA expression measured after 12h by qRT-PCR in cultured keratinocytes. Data 

represent mean  SEM. * p≤0.05; ** p≤0.005; *** p≤0.0005. 

 

Figure 6. Combined pharmacological inhibition of EGFR and VEGFR in K5-SOS 

transgenic mice 

(A) Relative tumor volume of K5-SOS transgenic mice treated with vehicle (Natrosol), 

EGFR inhibitor (BI-2992), VEGFR inhibitor (BI-1120) or combination therapy with B-
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1120 and BI-2992. Arrows indicate the time of termination of the respective treatment. 

(B) Kinetic of RasV12-mediated tumor growth upon treatment with vehicle (Natrosol), 

EGFR inhibitor (BI-2992), VEGFR inhibitor (BI-1120) or the combination of both. (C) 

TUNEL staining and immunofluorescent staining with antibodies against CD31 and 

Ki67 of papillomas treated with the indicated inhibitors. (D) Computer-assisted 

morphometric analysis measuring the average vessel area on αCD31-stained tumor 

sections of papillomas from mice treated with the indicated inhibitors. Data represent 

the average vessel area  SEM. (E) Quantification of Ki67 positive cells on sections 

from 3 independent tumors of mice treated with the indicated inhibitors. Data represent 

mean  SEM. * p≤0.05; ** p≤0.005; *** p≤0.0005. 

 

Figure 7. Flt1 is upregulated in human squamous cell carcinomas (SCC) 

(A-D) Immunohistochemical stainings with antibodies against Flt1 (A,C,D) and isotype 

control (B) showing Flt1 expression on human normal epidermis (A) and on human 

SCC (C,D). (E) Distribution of Flt1 protein expression on human normal epidermis 

(epi), basal cell carcinomas (BCC) and SCC. Samples were either negative for Flt1 

expression or showed a weak/strong intracellular or membrane Flt1 staining. (F) 

Quantification of proliferating SCC cells after treatment with the VEGFR inhibitors 

Sunitinib, BI-1120, αVEGFR antibody, the VEGF blocking-peptide Flt2-11 and the Erk 

inhibitors CI-1040 and U0126. Shown asterisks (*) refer to comparisons with respective 

untreated controls; Following p values were obtained in comparisons between: 

SCCO11: BI-1120 with αVEGFR, p=0.0197; BI-1120 with Flt2-11, p=0.0018; Sunitinib 

with αVEGFR, p=0,0029; SCC13: BI-1120 with αVEGFR, p=0.0037; BI-1120 with Flt2-

11, p=0.0015; Sunitinib with αVEGFR, p=0.0025; Sunitinib with Flt2-11, p=0.0004. (G,H) 

Treatment with the inhibitors indicated in (F) affects Flt1 and Nrp1 mRNA expression 

(measured by qRT-PCR) in SCC cell lines after 24h. (I) Model of SOS/EGFR-mediated 

tumorigenesis via ERK-dependent upregulation of Nrp1, Flt1 and VEGF expression 
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which leads to autocrine tumor cell proliferation. Data represent mean  SEM. * p≤0.05; 

** p≤0.005; *** p≤0.0005. 
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Supplementary Figure 1  

(A) Southern blot analysis of keratinocyte DNA isolated from mice of the indicated 

genotypes showing the non-recombined VEGF floxed allele and the cre-recombined ∆ 

allele. (B) Semiquantitative real-time PCR showing complete absence of mRNA 

transcription of all VEGF splicing isoforms in keratinocytes isolated from VEGF∆ep mice. 

(C) qRT-PCR measuring the expression of VEGF in FACS-sorted CD31+ CD144+ 

endothelial cells and double negative cells from wild-type and VEGF∆ep mice. (D) 

Representative Dotplot showing FACS-sorted CD31+ CD144+ endothelial cells. (E) 

Quantification of Ki67 positive cells on epidermal sheets isolated from mice of the 

indicated genotypes. Data represent mean  SEM of three independent samples. ** 

p≤0.005. 

 

Supplementary Figure 2 

(A) Immunofluorescent stainings with antibodies against keratin 14 and keratin 1 of 

sections of spontaneous papillomas from EGFRwa2/+ K5-SOS and EGFRwa2/+ K5-SOS 

VEGF∆ep mice and of wounding-induced tumors from EGFRwa2/wa2 K5-SOS and 

EGFRwa2/wa2 VEGFf/+ K5-Cre K5-SOS mice. (B) Immunofluorescent staining on sections 

of K5-SOS papillomas treated with the indicated inhibitors.  

 

Supplementary Figure 3  

(A,B) RNAse protection assay showing mRNA expression levels of the indicated 

genes. RNA was isolated from epidermis or from cultured primary keratinocytes of the 

indicated genotypes (C,D). Western blot analysis showing reduction of ERK 

phosphorylation in keratinocytes of the indicated genotypes after treatment with the 

ERK inhibitors CI-1040 and UO126. (E) Western blot analysis showing phospho-

ERK1/2 levels in keratinocytes after treatment with the VEGFR inhibitors Sunitinib 

(1µM), BI-1120 (500nM), an αVEGFR antibody (2,5µg/mL) and the VEGF blocking-
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peptide Flt2-11 (1µg/mL). Numbers indicate the levels of Erk1/2 activation relative to the 

respective controls after correction with total ERK normalized to actin (loading control). 

 

Supplementary Figure 4  

(A,B) qRT-PCR measuring the expression of Flt1 in human skin cancer biopsies (n=5) 

compared to healthy skin (n=3; A) and in different human SCC cell lines (B). (C) 

Western Blot analysis showing the levels on phosphorylated tyrosine in VEGF-

stimulated and bulk SCC cells treated with the VEGFR inhibitors Sunitinib (1µM), BI-

1120 (500nM), an αVEGFR antibody (2,5µg/mL) and the VEGF blocking-peptide Flt2-11 

(1µg/mL). (D) Western blot analysis showing phospho-ERK1/2 levels in SCCO11 and 

SCC13 cells after treatment with the indicated inhibitors. Numbers indicate the levels of 

Erk1/2 activation relative to the respective controls after correction with total ERK 

normalized to actin (loading control). (E,F) Western blot analysis showing reduced ERK 

phosphorylation in SCCO11 (E) and SCC13 (F) cells after treatment with the ERK 

inhibitors CI-1040 and UO126. 
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ABSTRACT 

There are several in vitro evidences for a crosstalk between the EGFR and 1 integrin, 

both of which are required for normal skin development and are also implicated in 

tumor formation. Transgenic mice expressing a dominant form of Son of Sevenless in 

basal keratinocytes (K5-SOS) develop spontaneous skin papillomas in the presence of 

a functional EGFR, but tumor formation is impaired in a hypomorphic (wa2) 

background. In this study we investigate the contribution of 1 integrin to SOS-induced 

tumors. Cultured keratinocytes isolated from K5-SOS transgenic mice exhibited 

elevated protein levels of Src and 1 integrin and showed enhanced migration and a 

reduced number of focal contacts after wounding. To examine whether high levels of 

1 integrin contribute to tumor formation, we crossed K5-SOS transgenic mice to mice 

carrying conditional 1 integrin alleles and deleted 1 integrin in basal keratinocytes via 

K5-Cre. Tumor formation in these mice is blocked and immunoblotting analysis of 

downstream signaling effectors of 1 integrin and the EGFR revealed reduced 

phosphorylation of the focal adhesion kinase (FAK) and MAP kinases. Using a 

tamoxifen-inducible K5-CreERT transgenic line we could also show delayed tumor 

growth upon tamoxifen treatment. These results suggest a crucial role for 1 integrin in 

tumor initiation as well as tumor progression and maintenance in vivo. 
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INTRODUCTION 

The epidermis is a stratified squamous epithelium which consists of multiple layers of 

keratinocytes. Proliferation of keratinocytes takes place in the basal layer of the 

epidermis. Cells that are commited to undergo terminal differentiation withdraw from 

the cell-cycle and migrate upward to the suprabasal layers. The outermost layers are 

exquisitely specialized keratinocytes forming a protective barrier between the body and 

the environment and are composed of anucleated dead squames that are continuously 

shed from the surface of the skin. Keratinocyte proliferation and differentiation are 

tightly coordinated processes which are regulated by many factors including the 

epidermal growth factor receptor (EGFR) and integrins.  

The EGFR/ErbB1/HER1 is the prototype of a family of receptor tyrosine kinases (RTK) 

consisting of four members, including ErbB2/Neu/HER2, ErbB3/HER3 and 

ErbB4/HER4. Binding of various ligands such as epidermal growth factor (EGF), 

transforming growth factor  (TGF), amphiregulin, heparin-binding EGF (HB-EGF), 

betacellulin, epigen and epiregulin induces receptor homo- or heterodimerization, 

activation of the intrinsic tyrosine kinase and autophosphorylation of key tyrosines at 

the carboxy-terminal tail of the receptor, which in turn act as docking sites for multiple 

signaling proteins containing Src homology 2 (SH2) domains. Signaling molecules 

which were shown to directly interact with the EGFR include PLC, Shc, GTPase-

activating protein (GAP) and growth factor receptor-bound protein (Grb2) (Fantl et al., 

1993; Pawson, 1994; Schlessinger, 1994). One of the best characterized pathways 

activated by the EGFR is the Ras pathway. The adaptor protein Grb2 binds 

phosphorylated tyrosines at the C-terminus of the activated receptor and interacts via 

its SH3 domain with the Ras nucleotide exchange factor Son of Sevenless (SOS), 

thereby recruiting SOS to the plasma membrane (Schlessinger, 1994; Weiss et al., 

1997). SOS facilitates GDP-GTP exchange and catalyses the activation of Ras, which 

in turn activates the cytoplasmic serine/threonine protein kinase Raf by recruiting it to 

the cell membrane (Marais et al., 1995). Raf phosphorylates the mitogen-activated 
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protein kinase/extracellular signal-regulated kinase (MAPK/ERK; MEK) proteins, and 

these activate the ERK subgroup of MAPKs. Activated ERKs translocate to the nucleus 

and lead to the induction of AP-1 target genes (Schlessinger and Ullrich, 1992). As 

shown previously, mice expressing an activated form of Son of Sevenless under the 

keratin 5 promoter (K5-SOS) develop skin papillomas at 100% penetrance in a wild-

type EGFR background, and papilloma formation is impaired but can be induced by 

wounding in a hypomorphic (waved-2; wa2) EGFR background. In this system the 

EGFR provides an essential survival signal to epidermal tumor cells (Sibilia et al., 

2000). The EGFR is overexpressed in a broad range of human cancers including 

glioblastoma and cancers of the breast, prostate, ovary, liver, bladder, esophagus, 

larynx, stomach, colon, lung and tumors of the head and neck (Nicholson et al., 2001; 

Salomon et al., 1995; Sharma et al., 2007; Sibilia et al., 2007). 

Integrins are heterodimeric cell surface receptors consisting of  and  subunits that 

mediate the attachment of cells to the extracellular matrix (ECM) at sites called focal 

adhesions. Epidermal keratinocytes express several integrin receptors, including 21, 

31 and 64. Integrin engagement and subsequent clustering of these receptors 

activates multiple signaling pathways that affect actin cytoskeleton organization, cell 

adhesion and migration, proliferation, programmed cell death, tissue organization and 

differentiation. Integrins have been shown to interact with various signal-transducing 

components of focal adhesions, particularly the focal adhesion kinase (FAK) and c-Src, 

and they are also capable of activating the MAP kinases Erk1 and Erk2. It has also 

been reported that 1 integrin and MAPK cooperate to maintain the epidermal stem cell 

compartment (Zhu et al., 1999).  FAK has been shown in vitro to bind the cytoplasmic 

tail of 1 integrin via its amino-terminal domain, and SH2 and SH3 domains of other 

focal adhesion proteins via its carboxy-terminal domain. Upon integrin-mediated 

activation FAK undergoes autophosphorylation at tyr397, creating a high affinity binding 

site for the SH2 domain of Src, which in turn triggers transphosphorylation of FAK at 
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tyr576, tyr577 and tyr925, rendering FAK a fully active kinase. Phosphorylation at tyr925 

allows interaction of FAK with the Grb2-SOS complex and subsequent activation of the 

MAPK pathway (Mitra et al., 2005; Schlaepfer and Hunter, 1997). Integrin engagement 

and clustering also leads to increased intracellular Ca2+ levels (Schwartz, 1993), 

intracellular pH (Schwartz et al., 1989; Schwartz et al., 1990), inositol lipid synthesis 

(McNamee et al., 1993) and expression of cyclins (Guadagno et al., 1993). Integrins 

are known to mediate invasion and metastasis (Guo and Giancotti, 2004), and a variety 

of human cancers have been linked to changes in expression and activation of 

integrins and integrin-coupled signaling effectors, including tumors of the skin, breast, 

colon, prostate and ovaries. Loss or upregulation of specific integrins can prevent 

squamous cell carcinoma (SCC) cells from undergoing apoptosis, and upregulation of 

integrin expression in differentiating keratinocytes can influence proliferation of stem 

cells in the underlying basal layer (Janes and Watt, 2006). 1 integrin expression has 

been shown to play an important role in the initiation and maintenance of mammary 

tumor growth as shown by disruption of 1 integrin function in the mammary epithelium 

of a transgenic mouse model of human breast cancer (White et al., 2004). FAK 

phosphorylation on tyr397 and tyr576 was found to be increased in aggressive uveal and 

cutaneous melanoma cells (Hess et al., 2005). Moreover, in a mouse skin 

carcinogenesis model ablation of FAK could reduce benign papilloma formation and 

inhibit progression to malignant squamous cell carcinoma (McLean et al., 2004). 

The EGFR and 1 integrin are both expressed in proliferating keratinocytes of the 

basal layer of the epidermis and in hair follicles. There are several in vitro evidences for 

a crosstalk between the EGFR and 1 integrins, which might be mediated by signaling 

molecules like  FAK, integrin-linked kinase (ILK), Shc, Src, and various adaptor 

proteins as well (Dedhar et al., 1999; Moro et al., 2002; Sieg et al., 2000). Integrins 

have been shown to associate with the EGFR and c-Src at cell membranes, thereby 

phosphorylating the EGFR (Moro et al., 2002). Similar to mice lacking 1 integrin in the 
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epidermis, mice deficient for the EGFR show defects in hair follicle development 

(Brakebusch et al., 2000; Sibilia et al., 2003; Sibilia and Wagner, 1995; Threadgill et 

al., 1995). In EGFR-deficient mice these defects can be partially rescued by epidermis-

specific expression of SOS (Sibilia et al., 2000). Interestingly, mice with epidermis-

specific deletion of 1 integrin display reduced expression of SOS in basal cells 

(unpublished data). Together, these results strongly suggest that a crosstalk between 

1 integrin and EGFR signaling pathways might occur during skin development and 

tumor formation. 

We have previously described the generation of transgenic mice expressing a 

dominant form of SOS (K5-SOS) under the control of a K5 promoter. In this study we 

demonstrate that keratinocytes isolated from K5-SOS transgenic mice express high 

levels of 1 integrin and Src and exhibit an enhanced migratory potential as well as a 

reduced number of focal contacts. To study the consequences of 1 integrin deletion in 

skin tumor initiation, maintenance and progression, we crossed K5-SOS transgenic 

mice to mice lacking 1 integrin expression in the epidermis generated either by 

crossing conditional 1 integrin mice to K5-Cre or tamoxifen-inducible K5-CreERT 

transgenic lines. We found that tumor formation was inhibited if 1 integrin was deleted 

before tumor initiation and delayed if 1 integrin deletion occurred after tumors had 

developed. Moreover, we could relate this phenotype to downstream signaling effectors 

of 1 integrin and the EGFR. These findings demonstrate a pivotal role for 1 integrin 

in tumor initiation as well as maintenance and progression.  Furthermore, they provide 

evidence for a crosstalk between the EGFR and 1 integrin in vivo. 
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RESULTS 

Increased 1 integrin and Src protein levels in K5-SOS expressing keratinocytes  

We have previously reported that transgenic mice expressing a dominant form of Son 

of Sevenless (K5-SOS) in basal keratinocytes develop skin papillomas at 100% 

penetrance. However, tumor formation is impaired in a hypomorphic EGFR (wa2) 

background (Sibilia et al., 2000). To investigate additional mechanisms leading to 

tumor formation primary keratinocytes from adult EGFRwa2/+, EGFRwa2/+ K5-SOS, 

EGFRwa2/-, and EGFRwa2/- K5-SOS mice were isolated and the expression of several 

potential target molecules was investigated. Interestingly, we found that the protein 

levels of 1 integrin and Src were strongly increased in K5-SOS expressing 

keratinocytes, whereas FAK expression was unaffected (Fig. 1A). Increased levels of 

1 integrin were also observed on the cell surface of K5-SOS expressing keratinocytes 

by flow cytometry (Fig. 1B).  

It is known that the cytosolic tyrosine kinase Src is regulated by tyrosine phoshorylation 

mainly on tyr418 in the catalytic domain and on tyr529 in the C-terminus of the protein. 

Interestingly, when we stimulated growth factor starved keratinocytes with increasing 

doses of EGF no striking differences in tyrosine phosphorylation of Src could be 

observed suggesting that EGF stimulation and/or K5-SOS expression did not affect Src 

activation (Suppl. Fig. 1). However, since total protein levels of Src are increased in K5-

SOS expressing epidermal cells but levels of pSrc [pY418] and pSrc [pY529] are 

comparable, these results might suggest that in K5-SOS transgenic keratinocytes the 

overall phosphorylation of Src is reduced compared to non-transgenic epidermal cells. 

Furthermore, we did not detect changes in the phosphorylation of tyr397 of FAK, a very 

important signaling molecule downstream of integrins which also recruits Src to sites of 

focal adhesions. These results show that K5-SOS expression in keratinocytes leads to 

increased 1 integrin and Src levels, which is independent of EGFR signaling. 
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K5-SOS transgenic epidermal cells display increased migration 

Since 1 integrin and Src are known to be important for the formation and the 

downstream signaling of focal adhesions in keratinocytes we addressed if the 

increased protein of levels 1 integrin and Src found in K5-SOS transgenic epidermal 

cells affect the migratory potential of primary keratinocytes in vitro. Therefore, scratch 

wounds were applied to mitomycin C-treated keratinocyte cultures. Interestingly, the 

wounding experiments revealed a significant increase in the migration of keratinocytes 

expressing K5-SOS compared to non-transgenic cells (Fig. 2A-H,M). Furthermore, cell 

migration after wounding was impaired in hypomorphic EGFRwa2/- keratinocytes 

compared to EGFRwa2/+ keratinocytes (Fig. 2E,G,M). K5-SOS expression could rescue 

the migration defect of EGFRwa2/- epidermal cells (Fig. 2G,H,M). However, the migration 

of EGFRwa2/- K5-SOS keratinocytes was delayed compared to EGFRwa2/+ K5-SOS 

epidermal cells (Fig. 2F,H,M). To examine whether the increased Src protein levels in 

K5-SOS expressing keratinocytes are responsible for the increased migration of these 

cells, wounded keratinocytes were treated with the Src inhibitor SU6656. Interestingly, 

Src inhibition reverted the increased migration observed in K5-SOS expressing 

keratinocytes, and reduced migration was observed in Src inhibitor-treated EGFRwa2/+ 

and EGFRwa2/- cells as well (Fig. 2E-M). These results demonstrate that K5-SOS 

transgenic keratinocytes display increased migration and that this occurs in a Src-

dependent manner. 

 

K5-SOS expressing keratinocytes display reduced numbers of focal contacts 

after wounding 

Next we investigated if K5-SOS expression leads to changes in the organization of the 

actin cytoskeleton and the formation of focal adhesions after wounding. 

Immunostaining of migrating keratinocytes in the in vitro wounding assay revealed that 

the number of focal contacts was significantly reduced in EGFRwa2/+ K5-SOS 

keratinocytes compared to wild-type controls, as evidenced by paxillin staining (Fig. 
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3A,B). In contrast, in EGFRwa2/- K5-SOS keratinocytes the reduction of focal contacts 

was not as strong compared to EGFRwa2/- cells (Fig. 3C,D). Moreover, a difference in 

the organization of actin in protrusive structures of the migrating keratinocytes could be 

detected. While we observed many filopodia in EGFRwa2/+ K5-SOS keratinocytes (Fig. 

3B), the number of these structures was clearly reduced in EGFRwa2/- K5-SOS 

keratinocytes (Fig. 3D), which was comparable to the phenotype of non-transgenic 

EGFRwa2/+ and EGFRwa2/- epidermal cells (Fig. 3A,C). As shown in figure 2, the Src 

kinase-specific inhibitor SU6656 significantly reduced the elevated migratory potential 

of K5-SOS transgenic primary keratinocytes. Interestingly, increased numbers of focal 

contacts were observed in these cells upon SU6656 treatment (Fig. 3F,H), thus, 

indicating that total levels of Src play a crucial role in focal adhesion turnover. 

Moreover, 1 integrin also co-localized with paxillin at the sites of focal contacts (Fig. 3 

I-P). However, we could not assess a difference in localization of 1 integrin within the 

cells of the investigated genotypes. These results demonstrate that the reduced 

number of focal contacts observed in EGFRwa2/+ K5-SOS transgenic keratinocytes 

correlates with their increased migratory potential. These effects, which seem to 

depend on EGFR signaling, can be reverted by Src inhibition. 

Since 1 integrin is upregulated in K5-SOS transgenic keratinocytes we investigated 

whether this might also have an impact on the adhesive capacity of these cells.  

Interestingly, we found reduced binding of hypomorphic EGFRwa2/- keratinocytes to 

collagen I, collagen IV and to laminin when compared to wild-type epidermal cells 

(Suppl. Fig. 2). While we found no difference in adhesion between EGFRwa2/+ and 

EGFRwa2/+ K5-SOS keratinocytes, K5-SOS expression could rescue the adhesion 

defect of keratinocytes in the hypomorphic EGFR background (Suppl. Fig. 2). 

Furthermore, only weak binding to fibronectin and vitronectin was observed in all 

keratinocytes (Suppl. Fig. 2). 
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Molecular analysis of signaling pathways 

Next we addressed the activation of downstream signaling pathways and cell cycle 

associated proteins. When we looked at the basal activation of MAPK and Ras, we 

found a significant increase in phosphorylation levels of Erk1 and Erk2 in K5-SOS 

transgenic keratinocytes compared to non-transgenic controls (Fig. 4A), but 

interestingly, not in Ras-GTP levels (Fig. 4C). This might indicate that K5-SOS leads to 

a constitutive activation of the MAPK pathway in these cells. Inhibition of Src via the 

inhibitor SU6656 did not affect Erk1/2 phosphorylation in any of the investigated 

genotypes. It has been reported that Erk5 signals downstream of Src (Abe et al., 1997; 

Scapoli et al., 2004). Given that SOS is a GEF for Ras and due to the finding that the 

expression of K5-SOS in primary keratinocytes leads to an increase in the Src protein 

level, we wanted to examine the effect of K5-SOS on EGF-dependent activation of 

Erk5. We found a strong increase in the phosphorylation of Erk5 in response to EGF 

stimulation both in EGFRwa2/+ and EGFRwa2/+ K5-SOS keratinocytes, but interestingly 

not in the EGFR hypomorphic background, neither in EGFRwa2/- nor in EGFRwa2/- K5-

SOS keratinocytes (Fig. 4B). The degree of Erk5 phosphorylation upon EGF 

stimulation was comparable between EGFRwa2/+ and EGFRwa2/+ K5-SOS keratinocytes, 

indicating that phosphorylation of Erk5 is independent of the expression of SOS but 

rather depends on the EGFR. Like Erk1/2, phosphorylation levels of Erk5 were also not 

affected by Src inhibition (data not shown), therefore excluding that phosphorylation of 

Erk proteins occurs in a Src-dependent manner. 

Interestingly, when we looked at cell cycle associated proteins EGFRwa2/- keratinocytes 

showed a clear reduction in the levels of Cdk1 and p27, and also to a lower extent of 

Cdk2, Cdk4 and Cyclin D1, which was completely rescued in EGFRwa2/- K5-SOS 

epidermal cells (Fig. 4D). However, the expression of Cdk1, Cdk2, Cdk4, p27 and 

Cyclin D1 was similiar in keratinocytes isolated from EGFRwa2/+, EGFRwa2/+ K5-SOS, 

and EGFRwa2/- K5-SOS mice. Expression levels of p21 remained unaffected in 

keratinocytes of the different genotypes. These results suggest that the K5-SOS 
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transgene affects migration of primary keratinocytes in a Src-dependent manner, most 

likely due to enhanced activation of Erk1/2 MAP kinases.  

 

Lack of 1 integrin impairs skin tumor development in K5-SOS transgenic mice 

Mice expressing the K5-SOS transgene under the K5 promoter form big tumors at 

100% penetrance in a wild-type EGFR background (Sibilia et al., 2000). To investigate 

whether 1 integrin deletion affects K5-SOS-dependent tumor formation, we crossed 

K5-SOS transgenic mice to mice carrying conditional (floxed) 1 integrin alleles (1intf/f) 

and deleted 1 integrin in the epidermis and tumors by employing K5-Cre transgenic 

mice (1intep). 

K5-SOS expression dramatically exacerbated the phenotype of 1intep mice (Fig. 5A-

C). Whereas in the first postnatal days the phenotype of EGFRwa2/+ 1intep K5-SOS 

mice was similar to the phenotype described for 1intep mice (Brakebusch et al., 

2000), around day 5 after birth EGFRwa2/+ 1intep K5-SOS were clearly distinguishable 

from 1intep littermates without transgene, and skin abnormalities developed much 

faster (Fig. 5A). Around postnatal day 13 EGFRwa2/+ 1intep K5-SOS transgenic mice 

displayed severe cachexia, completely stopped growing (Fig. 5E) and did not survive 

longer than 4 weeks. Interestingly, EGFRwa2/+ 1intep K5-SOS mice developed no 

tumors, whereas many of the EGFRwa2/+ K5-SOS mice had already developed tumors 

within the first 2 weeks as previously described (Fig. 5D,F) (Sibilia et al., 2000).  

From the above experiments we conclude that tumors can not develop in K5-SOS 

transgenic mice in the absence of 1 integrin, suggesting that 1 integrin is needed for 

tumor initiation. 

To investigate if 1 integrin is also needed for tumor maintenance and progression we 

crossed EGFRwa2/+ ß1intf/f K5-SOS mice with a tamoxifen-inducible K5-CreERT 

transgenic line. After tumors had developed, mice were treated with tamoxifen for 11 

days and tumor development was monitored. Interestingly, deletion of 1 integrin 
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significantly delayed tumor growth when compared to EGFRwa2/+ K5-SOS control mice 

(Fig. 5G). These results reveal that K5-SOS-induced tumors fail to form in 1intep mice 

and that tumor growth is delayed when 1 integrin is deleted in mice with existing 

tumors. Moreover, these findings provide evidence that 1 integrin is required for tumor 

initiation as well as tumor maintenance and progression. 

 

Hyperthickened epidermis and perturbed expression of keratins in K5-SOS 

transgenic mice lacking 1 integrin  

Upon deletion of ß1 integrin the architecture of the skin seems to undergo profound 

changes. It has previously been reported that the epidermis of 1intep mice is 

thickened and shows perturbed expression of keratins 1 and 14, as the proportion of 

suprabasal, terminally differentiating keratinocytes is increased from 20 to 40% (Fig. 

6A,B,I,J) (Brakebusch et al., 2000) probably because of reduced proliferation. This 

effect is even stronger in the presence of the K5-SOS transgene (Fig. 6B,D,J,L). 

Hematoxylin and Eosin staining on skin sections revealed that the epidermis of 

EGFRwa2/+ 1intep K5-SOS mice is more than twice as thick as the epidermis of 

EGFRwa2/+ 1intep littermates (Fig. 6B,D). However, this hyperplastic condition did not 

resemble the histological appearance of EGFRwa2/+ K5-SOS tumors, which display 

characteristic features of papillomas (Fig. 6C). Immunofluorescent stainings for K14 

and K1 on backskin of EGFRwa2/+ 1intep and EGFRwa2/+ 1intep K5-SOS mice showed 

that the basal, K14 expressing layer of the epidermis consists of multiple cell layers 

(Fig. 6E-H,M-P), and there is also an increase in the number of terminally 

differentiated, suprabasal cell layers expressing K1 (Fig. 6I-P) when compared to 

EGFRwa2/+ 1intep skin.  Staining for 1 integrin revealed that integrin expression is 

upregulated in EGFRwa2/+ K5-SOS tumors compared to expression levels in wild-type 

epidermis (Fig. 6Q-T). 
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Molecular analysis of K5-SOS transgenic epidermis lacking 1 integrin 

Western blot analysis revealed that the levels of 1 integrin were increased in protein 

lysates prepared from the epidermis of K5-SOS transgenic mice (Fig. 7A), which 

confirms the data obtained by immunofluorescent staining (Fig. 6S). Interestingly, at 

the mRNA level no increase in 1 integrin expression could be observed in K5-SOS 

transgenic epidermis compared to non-transgenic controls, suggesting that integrin 

turnover and degradation are negatively regulated by K5-SOS expression (Fig. 7B). At 

the age of 3 weeks, ß1 integrin is almost completely absent at the protein as well as 

mRNA level in EGFRwa2/+ 1intep and EGFRwa2/+ 1intep K5-SOS mice, demonstrating 

that K5-Cre-mediated deletion of 1 integrin is very efficient (Fig. 7A,B). 

An increase in the levels of total Src, as observed in plated keratinocytes, could not be 

seen in the epidermis of K5-SOS transgenic mice (Fig. 7A). Src levels were similar in 

epidermal lysates isolated from mice of all genotypes, indicating that Src upregulation 

most likely occurs exclusively in plated keratinocytes. Accordingly, the lack of ß1 

integrin had no impact on the phosphorylation of the main regulatory sites [pY418] and 

[pY529] as well as on the total levels of Src (Fig. 7A). 

Although the total protein levels of FAK remained unaffected in K5-SOS transgenic 

mice irrespective of 1 integrin expression, deletion of 1 integrin affects the 

phosphorylation of various tyrosine residues of FAK. Phosphorylation of tyrosines 397, 

407, 576 and 861 of FAK was clearly reduced in 1 integrin deficient epidermis (Fig. 

7C). Interestingly, also in epidermis isolated from EGFRwa2/+ 1intep K5-SOS mice, 

which do not develop papillomas, phosphorylation of tyr397 and tyr576 of FAK was clearly 

reduced compared to epidermis of wild-type or K5-SOS transgenic mice (Fig. 7A), 

suggesting that impaired FAK activation is responsible for the inhibition of tumor 

development in EGFRwa2/+ 1intep K5-SOS mice.  Next, we investigated MAP kinase 

activation in the epidermis. Although we could not detect a significant difference in 

levels of phospho-Erk5 in the epidermis of the indicated genotypes (Fig. 7A), 
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phosphorylation of Erk1/2 was clearly reduced in EGFRwa2/+ 1intep K5-SOS mice (Fig. 

7A). These results provide a mechanistic explanation that integrin-triggered activation 

of FAK and Erk1/2 is required for tumor formation. It seems that in the absence of 1 

integrin the complex interplay between FAK and Erk is disturbed, and since Erk1 and 2 

are not only implicated in the turnover of focal adhesions but also in the induction of 

cell proliferation, this might provide a second mechanism by which tumor initiation and 

maintenance are controlled. 
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DISCUSSION 

K5-SOS transgenic mice develop spontaneous skin papillomas in a wild-type EGFR 

background and tumor formation can be induced by wounding in a hypomorphic EGFR 

background (Sibilia et al., 2000). Primary keratinocytes isolated from K5-SOS 

transgenic mice and plated onto collagen/fibronectin coated culture dishes show 

elevated protein levels of 1 integrin and Src, but not of focal adhesion kinase (FAK), 

leading to the question whether the adhesive or migratory potential of these cells might 

be affected.  

Indeed, we could demonstrate that in K5-SOS transgenic keratinocytes migration is 

increased and the number of focal contacts is reduced upon wounding. In addition, 

treatment with the Src kinase-specific inhibitor SU6656 can revert this effect. While 

phosphorylation of the Src regulatory sites tyr418 and tyr529 was not altered in K5-SOS 

transgenic epidermal cells, the number of total Src molecules was increased. 

Moreover, in cultured keratinocytes phosphorylation of the FAK autophosphorylation 

site tyr397 was not affected by K5-SOS transgene expression.  

Cultured keratinocytes of K5-SOS transgenic mice also displayed enhanced 

phosphorylation of Erk1/2 MAP kinases. Interestingly, Ras-GTP levels were not 

constitutively elevated in K5-SOS transgenic epidermal cells. Thus, it remains largely 

unclear how Erk1/2 kinases are activated. Integrin signaling to Erk is thought to occur 

via 2 different pathways. The Shc pathway, activated by  subunits of some integrins, 

transduces signals via Grb2-SOS/ Ras/Raf-1/MEK, whereas the FAK pathway, which is 

activated by most integrins, signals through Src/CAS/Crk-C3G/Rap-1/B-Raf/MEK to 

activate Erk (Barberis et al., 2000). Since in K5-SOS transgenic keratinocytes Src and 

ß1 integrin levels, but not Ras-GTP levels are elevated, Erk is likely activated via this 

second pathway.  

Erk2 is known to play an important role in the formation and turnover of focal 

adhesions. Upon integrin engagement activated Erk2 is targeted to sites of focal 

assembly (Fincham et al., 2000) where it phosphorylates the myosin light chain kinase 
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(MLCK), thereby enhancing cellular migration (Klemke et al., 1997). Furthermore, Erk 

activation causes changes in gene expression that can promote migration. 

Furthermore, It has previously been reported that Erk2 is part of a regulatory cycle of 

FAK/Src activation. On the one hand, Erk2 activation can promote FAK 

phosphorylation at ser910, which subsequently leads to decreased paxillin binding to 

FAK and accelerated release of FAK from focal adhesions (Hunger-Glaser et al., 

2004). On the other hand, Erk2-mediated phosphorylation of paxillin can facilitate FAK 

binding to paxillin and enhance FAK activation (Ishibe et al., 2003; Liu et al., 2002). 

Moreover, Erk2 is also required for the establishment of a calpain2/FAK/Erk2 complex 

promoting the proteolysis of FAK, focal adhesion turnover and accelerated cell 

migration (Carragher et al., 2003). Expression of K5-SOS stimulates Erk1/2 activation 

and causes higher 1 integrin protein levels. Therefore, it is possible that integrins, 

SOS and Erk cooperate in a positive feedback loop of mutual activation. Taken 

together, this could result in a faster turnover of focal adhesions and an enhanced 

migratory potential of K5-SOS transgenic keratinocytes. 

In addition, we also found Erk5 activation in response to EGF-stimulation in cultured 

keratinocytes, but only in a wild-type EGFR background and independent of K5-SOS 

expression, which might suggest that the EGFR provides an essential stimulus for Erk5 

to be activated. However, we could not detect a difference in Erk5 phosphorylation in 

the epidermis, neither in a hypomorphic EGFR background, nor upon β1 integrin 

deletion. These data also provide evidence that Erk5 activation occurs independently of 

Erk1/2 activation as previously described (English et al., 1999).  

Interestingly, in a wild-type EGFR background the K5-SOS transgene had no effect on 

the adhesion capacity of keratinocytes to collagen I and collagen IV, as one would 

expect reduced adhesion as a result of a lowered number of focal contacts on these 

cells. It is possible that the increased levels of 1 integrin on the surface of K5-SOS 

transgenic keratinocytes compensate for this effect. EGFR hypomorphic keratinocytes 

displayed strongly reduced binding to collagen I and collagen IV compared to wild-type 
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cells. As previously reported, the EGFR inhibits keratinocyte differentiation and keeps 

basal cells in the proliferative compartment attached to the basal membrane (Sibilia et 

al., 2000). It seems that the lack of growth factor signaling induces cell detachment, 

probably because both, EGFR and integrin signaling are required for the maintenance 

of focal adhesions and the integrity of the actin cytoskeleton. 

Keratinocytes in a hypomorphic EGFR background display reduced levels of Cdk1 and 

p27, and to a lower extent also of Cdk2, Cdk4 and Cyclin D1, all of which are cell cycle-

associated proteins, and their expression was shown to be regulated by growth factors 

as well as by integrins. Expression of K5-SOS in EGFRwa2/- cells can rescue the 

reduced expression of these proteins, possibly by activating Erk. Activated Erk is 

known to induce the expression of Cyclin D1 and the Cdk inhibitory protein p21, which 

in turn inhibits the expression of cyclin E/Cdk2. However, sufficient Erk activation is 

only achieved when both, growth factor receptor and integrin signaling are fully active. 

Interestingly, growth factor signaling via RhoA is thought to inhibit expression of p27 

(Danen et al., 2000), whereas in our case ablation of EGFR signaling seems to block 

expression of p27. 

Interestingly, total levels of Src in freshly isolated epidermis of EGFRwa2/+, EGFRwa2/+ 

K5-SOS, EGFRwa2/- and EGFRwa2/- K5-SOS mice were comparable, indicating that 

elevated levels of Src protein in cultured keratinocytes isolated from K5-SOS 

transgenic mice are an in vitro stress response and do not contribute to the high 

tumorigenicity of these mice. However, 1 integrin levels remain elevated in epidermal 

protein lysates from K5-SOS transgenic mice. Therefore, it is likely that integrin 

signaling provides a potent stimulus for tumors to grow. However, since we did not 

detect a significant increase in 1 integrin mRNA transcription in the epidermis of K5-

SOS transgenic mice, we speculate that higher integrin levels might be caused by 

reduced internalization and degradation of these proteins. 
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Importantly, expression of the K5-SOS transgene in 1int∆ep mice exacerbates the 

phenotype of these animals. K5-SOS expression causes even more severe changes to 

the skin architecture resulting in a 3-fold hyperthickening of the epidermis compared to 

EGFRwa2/+ 1intep mice. The most striking finding was that even though EGFRwa2/+ 

1intep K5-SOS mice displayed enormous hyperthickening of the epidermis, they did 

not develop skin tumors. Moreover, tamoxifen–induced deletion of 1 integrin in mice 

that had already developed tumors, significantly delayed SOS-dependent tumor 

development, indicating that ß1 integrin is not only required for initiation of tumor 

growth, but also for their tumor maintenance and progression. 

Molecular analysis of the epidermis of EGFRwa2/+ ß1intep and EGFRwa2/+ 1intep K5-

SOS mice revealed a clear reduction in phosphorylation of FAK at various 

phosphorylation sites, including the autophosphorylation site tyr397 and the major 

activation site tyr576 , as well as a reduction in phospho-Erk1/2 levels. In contrast, 

phosphorylation of Src was not altered. It has previously been reported that an 

aggressive melanoma phenotype goes along with enhanced phosphorylation at these 

sites (Hess et al., 2005). FAK phosphorylation is reported to be altered in a variety of 

different  tumors (McLean et al., 2005), affecting adhesion and migration of tumor cells. 

Furthermore, FAK signaling through the Erk/MAPK pathway has also been proposed to 

maintain growth in different tumor cells (Aguirre Ghiso, 2002). Conditional deletion of 

1 integrin in mouse mammary epithelium dramatically impaired mammary 

tumorigenesis, and, interestingly, also in this model phosphorylation of FAK at 

tyrosines 397 and 576 was clearly reduced, whereas phosphorylation of Src remained 

unaffected (White et al., 2004). Moreover, epidermis-specific deletion of FAK 

suppressed chemically induced skin tumor formation (McLean et al., 2004). Since both 

FAK and Erk play important roles in the signaling network orchestrating migration, it is 

well possible that the reduced activity of these proteins following ablation of 1 integrin 

contributes to delayed or blocked tumor growth. Taken together, our findings 
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demonstrate a crucial role for 1 integrin in tumor initiation as well as maintenance and 

progression.  Furthermore, they provide evidence for a crosstalk between the EGFR 

and 1 integrin in vivo. 
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MATERIALS AND METHODS 

Generation of EGFRwa2/+ 1intep K5-SOS mice 

The generation of K5-SOS transgenic mice and of mice carrying a conditional ß1 

integrin gene was described previously (Potocnik et al., 2000; Sibilia et al., 2000). Mice 

carrying floxed ß1 integrin alleles (ß1intf/f mice) were crossed with either EGFRwa2/wa2 

K5-SOS transgenic mice or EGFRwa2/wa2 K5-Cre mice (Tarutani et al., 1997). Offspring 

of these mice were then crossed to generate EGFRwa2/+ ß1intf/f K5-Cre K5-SOS 

(EGFRwa2/+ ß1intep K5-SOS) mice in which ß1 integrin was deleted in the basal layers 

of the epidermis. For the temporal regulation of ß1 integrin deletion the tamoxifen-

inducible K5-CreERT transgenic line was employed (Indra et al., 1999). For inducible 

ß1 integrin deletion adult mice were injected intraperitoneally with 1mg of tamoxifen 

(Sigma; sunflower seed oil/ethanol mixture (10:1) at 10mg/mL) per day on 5 

consecutive days and then twice a week for maintenance. Mice were kept in the animal 

facility of the Medical University of Vienna in accordance with institutional policies and 

federal guidelines. 

 

Isolation and culture of mouse keratinocytes 

Mouse keratinocytes were isolated as previously described and cultured on vitrogen-

fibronectin-coated dishes in low calcium MEM medium containing 8% chelated FCS 

and grown at 32°C in a humidified 5% CO2 incubator (Sibilia et al., 2000). 

 

Migration and adhesion assay 

Confluent monolayers of keratinocytes grown on 10cm culture dishes were treated with 

1µg/mL Mitomycin C for 2 hours at 37°C and subsequently wounded with a yellow tip. 

Migration of cells was monitored in randomly determined fields over a period of 0-36h. 

Where indicated, Src-Inhibitor SU6656 was added at a concentration of 1µM. Cells 

which had migrated into the wound were counted at the indicated time-points. For the 
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adhesion assay, a Chemicon CytoMatrix Screening Kit was used according to the 

manufacturer’s recommendations. 

 

Immunofluorescence stainings 

Keratinocytes cultured in slide flasks were wounded and at the indicated time-points 

fixed in 4% PFA, permeabilized with 0,1% Triton X-100/0,1 % sodium citrate for 2 

minutes on ice, washed 2 times with PBS and blocked with 2% BSA/5% goat 

serum/PBS for 30 minutes at room temperature. Primary and secondary antibodies 

were diluted in 0,2% BSA/PBS, and applied according to standard procedures. The 

following antibodies were used: anti-1 integrin (Chemicon), anti-Paxillin (BD 

Transduction), Alexa594-conjugated Phalloidin (Molucular Probes), and secondary 

Alexa antibodies (Molecular Probes). For examination a Zeiss LSM-500 laser scanning 

microscope was used. 

 

Real-time PCR analysis 

cDNA was obtained from total RNA by reverse transcription with SUPERSCRIPTTM  

First-Strand Synthesis System (Invitrogen) according to the manufacturer’s 

instructions. qRT-PCR was performed using the LightCycler FastStart DNA MasterPLUS 

SYBR Green I kit together with the LightCycler 2.0 System (Roche) as previously 

described (Wagner et al., 2006) by employing the PBGD gene as an internal loading 

control. 

 

Preparation of epidermal protein lysates and Western Blot analysis 

Keratinocytes were isolated as described above. Protein lysates were prepared as 

previously described (Sibilia et al., 2000; Wagner et al., 2006). Proteins were separated 

by SDS-PAGE and transferred to PVDF membranes (Millipore). Western Blot analysis 

was performed according to standard procedures (Sibilia et al., 2000) using the 

following antibodies: anti-1 integrin (Transduction Laboratories), anti-phosphorylated 
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Erk1/2 (Bio Labs), anti-Erk1/2 (Santa Cruz), anti-phosphorylated Erk5 (Cell Signaling), 

anti-Erk5 (Cell Signaling), anti-phosphorylated Src (Bio Source), anti-Src (Bio Source), 

anti-phosphorylated FAK (Bio Source), anti-FAK (Neomarkers), anti-Cyclin D1 (Santa 

Cruz), anti-p21 (Santa Cruz), anti-Cdk1, anti-Cdk2, anti-Cdk4 and anti-p27, all from BD 

Transduction. 

 

Histology and Immunohistochemistry 

Mouse skin was dissected, fixed in 4% PFA and embedded in paraffin. For cryo 

sections skin was frozen in optimal cutting temperature compound (OCT). Sections of 

5µm thickness were cut and used for histochemistry or immunofluorescence stainings. 

Hematoxylin and Eosin staining was carried out following standard procedures 

(Natarajan et al., 2007). For immunohistochemistry cryo sections were fixed in 4% PFA 

for 20 minutes, permeabilized with 0,1% Triton X-100/0,1% sodium citrate for 5 minutes 

on ice and blocked with 3% BSA/5% goat serum/PBS. The primary and secondary 

antibodies were diluted in 1% BSA/PBS. The following antibodies were used: anti-1 

integrin (Chemicon), anti-K1 (Covance), anti-K14 (Covance),  and secondary Alexa 

antibodies (Molecular Probes). 

 

Statistical methods 

All experiments were repeated at least twice and done in triplicates. Data were 

evaluated using a Student’s two-tailed t test. p<0.05 was taken to be statistically 

significant. 
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FIGURE LEGENDS 

Figure 1. K5-SOS expressing primary keratinocytes show increased protein 

levels of 1 integrin and Src kinase 

(A) Keratinocytes of the indicated genotypes were used as continuously growing bulk 

cultures (b), or were serum- and growth factor-starved for 48 hr and stimulated with 

20ng/mL EGF for 5 min. Immunoblotting was performed with the indicated antibodies, 

and actin was used as a loading control. (B) FACS analysis of skin samples with 

antibodies detecting cell surface 1 integrin. GD25 cells lacking 1 integrin were used 

as a negative control. 

 

Figure 2. K5-SOS expression leads to increased migration of primary 

keratinocytes after wounding 

(A-H) Phase contrast photographs of the same microscopic field of wounded 

keratinocytes were taken at 0h and 36h time-points after wounding. Black lines indicate 

wound margins (I-L). The Src family kinase inhibitor SU6656 was added to the medium 

at the indicated concentration. (M) Migration of wounded keratinocytes of the indicated 

genotypes in the presence or absence of SU6656. Data represent mean  SEM of the 

number of cells which have migrated beyond the wound margins in 5-10 different fields 

of 3 independent experiments. * p≤0.05; ** p≤0.005; *** p≤0.0005. 

 

Figure 3. K5-SOS expressing keratinocytes display reduced number of focal 

contacts after wounding 

(A-H) Confocal photographs showing immunofluorescence staining of phalloidin 

binding to F-actin (red) and paxillin (green) in the absence (A-D) or presence of 

SU6656 (E-H) 36h after wounding. (I-P) Immunofluorescence staining of 1 integrin 

(red) and paxillin (green) in the absence (I-L) or presence of SU6656 (M-P). β1 integrin 
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co-localizes with paxillin at sites of focal adhesion. Focal contacts are depicted by white 

arrows. 

 

Figure 4. K5-SOS transgenic primary keratinocytes show constitutive activation 

of Erk1/2, but not of Ras 

(A) Cell lysates of SU6656-treated and untreated primary keratinocytes were subjected 

to immunoblotting analysis with antibodies against phospho-Erk1/2, Erk1/2 and tubulin. 

(B) Keratinocytes of the indicated genotypes were serum- and growth factor-starved for 

48 hr and stimulated with 20ng/mL EGF for 5 min, and subjected to immunoblotting 

with antibodies against phospho-Erk5, total Erk5 and actin. (C) Aliquots of the indicated 

cell lysates were subjected to pull-down with a GST fusion protein of the Ras binding 

domain of Raf (GST-RBD). Precipitated Ras protein (Ras-GTP) was visualized by 

immunoblotting with anti-Ras antibodies (upper panel). Total Ras levels in the cell 

lysates are shown in the lower panel. (D) Analysis of the indicated cell cycle proteins by 

Western blotting. Keratinocytes of the indicated genotypes were used as continuously 

growing bulk cultures (b) or were serum- and growth factor-starved for 48 hr and 

stimulated with 20ng/mL EGF for 5 min. Actin was used as loading control. 

 

Figure 5. Lack of 1 integrin in the epidermis and tumors affects K5-SOS-

dependent tumor development 

(A,B) Phenotype of a 2 weeks-old EGFRwa2/+ 1intep K5-SOS mouse (black arrow) 

compared with a EGFRwa2/+ 1intep (A) or a EGFRwa2/+ K5-SOS (B) mouse. (C) Tails of 

2 weeks-old EGFRwa2/+ 1intep, EGFRwa2/+ 1intep K5-SOS (black arrow), and 

EGFRwa2/+ K5-SOS (white arrow) transgenic mice. (D) Tails of 3 weeks-old EGFRwa2/+ 

1intep K5-SOS (black arrow) and EGFRwa2/+ K5-SOS (white arrow) transgenic mice 

showing absence of tumors in K5-SOS transgenic mice lacking 1 integrin. (E) Body 

weight of EGFRwa2/+ 1intep K5-SOS, EGFRwa2/+ 1intep, EGFRwa2/+, and EGFRwa2/+ 
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K5-SOS was determined during the indicated time. (F) EGFRwa2/+ 1intep K5-SOS mice 

display no papilloma formation, whereas EGFRwa2/+ K5-SOS mice develop papillomas 

at 100% penetrance. (G) EGFRwa2/+ ß1intf/f K5-CreERT K5-SOS mice (n=3) and 

EGFRwa2/+ K5-SOS 1intf/f control mice (n=4) were treated intraperitoneally with 

tamoxifen and tumor development was measured every 2-3 days. Data represent 

mean  SEM. *** p≤0.0005. 

 

Figure 6. Epidermis of 1intep K5-SOS mice is thickened and hyperproliferative 

and shows perturbed expression of keratins 1 and 14 

Skin or tumors biopsies of EGFRwa2/+, EGFRwa2/+ K5-SOS, EGFRwa2/+ 1intep, and 

EGFRwa2/+ 1intep K5-SOS mice were either stained with Hematoxylin and Eosin (A-D) 

or stained with antibodies against keratin 14 (E-H, M-P), keratin 1 (I-L, M-P) and 1 

integrin (Q-T). Arrows in A, B and D indicate the epidermis. 

 

Figure 7. Molecular analysis of K5-SOS transgenic epidermis lacking 1 integrin 

(A) Western blot analysis of protein lysates prepared from the epidermis of mice with 

the indicated genotypes. Tubulin was used as a loading control. (B) qRT-PCR for ß1 

integrin mRNA expression in the epidermis of mice with the indicated genotypes. Data 

indicate the relative expression of 1 integrin mRNA normalized to expression levels of 

EGFRwa2/+ epidermis. PBGD was used as an internal loading control. (C) Western blot 

analysis of protein lysates prepared from the epidermis of mice with the indicated 

genotypes. Tubulin was used as a loading control. 

 

Supplementary figure 1. The phosphorylation of the regulatory tyrosine sites of 

Src kinase and FAK is independent of EGFR signaling 

Cell lysates of primary keratinocytes stimulated for 5 min with the indicated 

concentrations of EGF were subjected to immunoblotting analysis with phosphorylation 
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site-specific antibodies against pSrc [pY418], pSrc [pY529], and pFAK [pY397]. The 

identity of the Src and FAK bands and the amounts of these proteins in the cell lysates 

were evaluated by subsequent stripping and reprobing the blots with anti-Src and anti-

FAK antibodies. Actin was used as a loading control. 

 

Supplementary figure 2. K5-SOS expression rescues the adhesion defect of 

EGFRwa2/- keratinocytes, but does not affect the adhesion capacity of EGFRwa2/+ 

keratinocytes 

Primary keratinocytes of the indicated genotypes were trypsinized, treated with soy 

bean trypsin inhibitor, washed and subsequently resuspended in serum free medium. 

Single cell suspensions (105 cells) were incubated for 1 hr at 37°C in collagen I, 

collagen IV, fibronectin, vitronectin, and laminin coated wells of a Chemicon 

CytoMatrix screen kit. Adherent cells were stained with crystal violet and the 

absorbances at 560 nm were determined. Data represent mean  SEM of 3 

independent samples. * p≤0.05; ** p≤0.005; *** p≤0.0005. 
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5.4 PUBLISHED REVIEW: The epidermal growth factor receptor: from 
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Abstract The epidermal growth factor receptor
(EGFR) is activated by many ligands and belongs to
a family of tyrosine kinase receptors, including ErbB2,
ErbB3, and ErbB4. These receptors are de-regulated in
many human tumors, and EGFR amplification,
overexpression, and mutations are detected at a high
frequency in carcinomas and glioblastomas, which are
tumors of epithelial and glial origin, respectively. From
the analysis of EGFR-deficient mice, it seems that the
cell types mostly affected by the absence of EGFR are
epithelial and glial cells, the same cell types where the
EGFR is found to be overexpressed in human tumors.
Therefore, it is important to define molecularly the
function of EGFR signaling in the development of these
cell types, because this knowledge will be of fundamen-
tal importance to understand how aberrant EGFR
signaling can lead to tumor formation and progression.
A molecular understanding of the pathways that con-
trol the development of a given tissue or cell type will
also provide the basis for developing better combina-
tion therapies targeting different key components of the
EGFR signaling network in the respective cancerous
cells. Here, we will review the current knowledge, most-
ly derived from the analysis of genetically modified mice
and cells, about the function of the EGFR in specific
organs and tissues and in sites where the EGFR is
found to be overexpressed in human tumors.

Key words epidermal growth factor receptor (EGFR)
� knock-out � transgenic � mouse development � lung,
liver, skin, bone, placenta, heart, human cancer

EGFR family members and signaling

The EGFR family consists of four transmembrane re-
ceptors belonging to the receptor tyrosine kinase (RTK)
super family and includes EGFR (also known as ErbB1/
HER-1), ErbB2/Neu/HER-2, ErbB3/HER-3, and
ErbB4/HER-4 (Schlessinger, 2002). The known ligands
for EGFR include epidermal growth factor (EGF),
transforming growth factor-a (TGF-a), amphiregulin
(AR), epiregulin (EREG), b-cellulin (BTC), and hep-
arin-binding EGF (HB-EGF). Ligand binding to ErbB
receptors induces the formation of receptor homo- and
heterodimers and the activation of the intrinsic kinase
domain, resulting in phosphorylation of specific
tyrosine residues within the cytoplasmic tail (Yarden
and Sliwkowski, 2001; Schlessinger, 2002). Phosphor-
ylated tyrosine residues act as binding sites for proteins
containing Src-homology 2 domains (SH2) such as
Grb2, SHC, and PLCg, which in turn activate complex
downstream signaling cascades, thus transducing extra-
cellular stimuli to the nucleus (Yarden and Sliwkowski,
2001; Schlessinger, 2002; Hynes and Lane, 2005). The
specificity of the cellular responses is thought to be
determined by the nature of the various signaling
molecules recruited to the phosphorylated receptor.
Together with the capacity of ErbB receptors to form
homo- and heterodimers, this increases the number of
signaling pathways that can be activated. Among the
main pathways activated downstream of ErbB receptors
are the Ras-Raf-MEK-ERK1/2, STAT3, and STAT5
pathways controlling mainly proliferation and differen-
tiation and the PI3K-Akt-mTOR cascade acting as a
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pro-survival and anti-apoptotic pathway (Yarden and
Sliwkowski, 2001; Schlessinger, 2002; Hynes and Lane,
2005).

The EGFR and its family members play a pivotal
role in tumor development and their expression strongly
affects the clinical outcome of cancer patients (Yarden,
2001b; Hynes and Lane, 2005). EGFR overexpression
in human cancer reaches 100% in tumors of the head
and neck, followed by pancreatic and renal cell carci-
nomas, colorectal, breast, ovarian, prostate, bladder,
non-small-cell lung cancer, and glioblastomas (Salomon
et al., 1995; Nicholson et al., 2001; Sharma et al., 2007).
In contrast, ErbB2 expression is more restricted, with
approximately 30% of human breast carcinomas
expressing this receptor (Hynes and Lane, 2005). In
breast cancer, ErbB2 expression is associated with a
poorer prognosis as compared with overexpression of
EGFR alone (Yarden, 2001a; Hynes and Lane, 2005).
Currently, two types of EGFR-family inhibitors are in
clinical or pre-clinical use: small molecule tyrosine kin-
ase inhibitors (TKIs) like Gefitinib (Iressa), Erlotinib
(Tarceva), or Lapatinib, and antibodies such as
Trastuzumab (Herceptin) and Cetuximab (Erbitux)
directed against ErbB2 and EGFR, respectively. As
this is not the major topic of our review, we refer to the
following references for further reading (Gschwind
et al., 2004; Hynes and Lane, 2005; Sharma et al., 2007).

Besides the information on EGFR expression in
human tumors, the physiological function of the EGFR
during organ development and function has been un-
clear for many years. Several attempts to overexpress
the EGFR in transgenic mice, in particular from broad-
ly expressed promoters, were unsuccessful, suggesting
that increased EGFR signaling might lead to lethality
during development (U. Burkert and E. F. Wagner,
personal communication). The most important results
on the in vivo functions of the EGFR were certainly
obtained from loss-of-function studies, which will be
described below (Fig. 1).

Phenotype of ErbB knock-out mice

Several groups generated mice lacking different mem-
bers of the ErbB receptors and their ligands (Table 1).
Mice lacking ErbB2 (Lee et al., 1995), ErbB3 (Rieth-
macher et al., 1997), ErbB4 (Gassmann et al., 1995), or
the ErbB3/4 ligand heregulin (Meyer and Birchmeier,
1995) are embryonic lethal and display heart defects and
abnormal development of the nervous system. In
ErbB2� /� fetuses, the development of cranial neural
crest-derived sensory ganglia is markedly affected and
the development of motor nerves is also compromised.
In contrast, ErbB4 knock-out mice display striking al-
terations in the innervations of the hindbrain and the
central nervous system (CNS). Mice lacking ErbB2 or

ErbB3 almost completely lack Schwann cells, which are
cells of glial origin that wrap the axons of postmitotic
neurons in the peripheral nervous system (Riethmacher
et al., 1997; Britsch et al., 1998; Lin et al., 2000). As a
consequence, motor and sensory neurons undergo cell
death in later stages of development. Expression of
erbB2 and erbB4 as transgenes specifically in the myo-
cardium of erbB2- and erbB4-deficient mice, respective-
ly, rescues the heart defects and prolongs their lifespan.
Rescued erbB2-deficient mice display peripheral
nervous system defects and completely lack Schwann
cells, whereas rescued erbB4 mutant mice show defects
in mammary gland development and display aberrant
cranial nerve architecture (Woldeyesus et al., 1999;
Tidcombe et al., 2003). Therefore, ErbB2, ErbB3, and
ErbB4 seem to work in a cell-autonomous way during
Schwann cell development and the degeneration of
neurons can be attributed to the lack of factors secreted
from Schwann cells.

The analysis of EGFR mutant mice revealed a complex
role for this receptor during embryonic and postnatal
development (Miettinen et al., 1995; Sibilia and Wagner,
1995; Threadgill et al., 1995). Mutant mice are growth
retarded and die at different stages of development
depending on their genetic background. In a 129/Sv back-
ground, EGFR mutant embryos die at day 11.5 of ges-
tation, whereas in other backgrounds mutant mice can
survive until birth (C57BL/6) or to postnatal day 20
(MF1, C3H). Death in utero likely results from a placental
defect, whereas at birth probably from lung immaturity.
All surviving mutant mice show abnormalities in the bone,
brain, heart, and various epithelia such as the skin, hair
follicles, and eyes (Fig. 1). (Miettinen et al., 1995; Sibilia
and Wagner, 1995; Threadgill et al., 1995; Kornblum
et al., 1998; Sibilia et al., 1998, 2003; Wang et al., 2004).

With the intention of studying the functional homo-
logies between the mouse and human EGFR in vivo, we
used a knock-in strategy to generate mice in which the
endogenous mouse EGFR gene was replaced by a
human EGFR cDNA (Sibilia et al., 2003). Homozygous
mice humanized for the EGFR (hEGFRKI/KI mice) are
growth retarded but can survive for up to 6 months after
birth and die from heart hypertrophy. Interestingly,
these mice develop tissue-specific hypomorphic pheno-
types, which correlate with the expression levels of the
hEGFRKI allele in various tissues. For reasons that are
still unclear, the expression of the hEGFRKI allele is
severely reduced in bone cells and epithelial tissues,
whereas the hEGFRKI allele is expressed at similar levels
as the endogenous mouse gene in the brain. As a con-
sequence, hEGFRKI/KI mice display bone, skin, and hair
growth defects similar to surviving EGFR� /� mice.
However, the neurodegeneration is fully rescued. More-
over, higher levels of expression of the hEGFRKI allele
are detected in the heart and are likely responsible for
the development of the heart hypertrophy. These results
demonstrate that mice humanized for EGFR display
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tissue-specific hypomorphic phenotypes, thereby uncov-
ering novel functions of the EGFR in bone and heart
development (Sibilia et al., 2003).

In contrast to the multiorgan defects observed in
EGFR mutant mice, deletion, or overexpression of
EGFR ligands such as TGF-a, EGF, and AR either
leads to no phenotype or to very mild defects in the
skin, hair, bone, and mammary gland, suggesting that
there is high redundancy among the ligands in the
different organs (Luetteke et al., 1993, 1999; Cook et al.,
1997; Chan and Wong, 2000; Wong et al., 2000).

EGFR in placental development

EGFR mutant placentas of all genetic backgrounds ex-
hibit a structurally comparable labyrinthine trophoblast

layer but a severely reduced spongiotrophoblast layer
when compared with controls (Figs. 2A–2F). In a 129/
Sv EGFR mutant background, this defect most likely
leads to lethality of 100% of the embryos whereas in a
C57BL/6, MF1, and C3H background 40%–50% of the
mutant fetuses can still survive until birth with the same
placental defect. When we compared wild-type (wt)
placentas from different mouse strains, we noticed that
129/Sv placentas were smaller in size and less robust
than those of other backgrounds (our unpublished ob-
servations). It is therefore possible that despite the
spongiotrophoblast defect, mutant placentas of C57BL/6,
MF1, and C3H can still provide sufficient mater-
nal-fetal adhesiveness and nutrition supply to allow
a certain fraction of embryos to survive longer than
midgestation. The 129/Sv embryonic lethality can be

Fig. 1 Function of the EGFR during the development of different mouse organs. EGFR, epidermal growth factor receptor.
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rescued by generating aggregation chimeras between
EGFR mutant and tetraploid wt embryos, the latter
contributing exclusively to the extraembryonic tissues.
When provided with a wt placenta, EGFR mutant mice
of pure 129/Sv genetic background survive up to post-
natal day 20 and show defects similar to those of
mutants of other backgrounds (Sibilia et al., 1998).
These results confirm that the placental defects are re-
sponsible for the embryonic lethality of 129/Sv EGFR
mutant embryos. The viability of EGFR mutant new-
borns can be improved by inducing lung maturation by
transplacental administration of dexamethasone, a hor-
mone known to promote lung maturation, demonstrat-
ing that lung immaturity is responsible for the high
perinatal mortality (Sibilia et al., 1998). All tetraploid
rescued 129/Sv and dexamethasone-treated EGFR mu-
tant mice surviving up to 20 days after birth are severely
growth retarded and develop the same defects as spon-
taneously surviving mice of MF1 and C3H back-
grounds (Sibilia et al., 1998). This demonstrates that
the postnatal phenotypes including the growth retarda-
tion occurs independently from the placental defects

and that the genetic background most likely influences
the development of extraembryonic tissues.

EGFR in heart development

A severe heart phenotype is observed in mice human-
ized for the EGFR. hEGFRKI/KI mice can survive up to
6 months after birth and develop a severe heart hyper-
trophy with dramatically increased thickness of the left
ventricular wall and the interventricular septum, which
becomes apparent 3 weeks after birth and progresses
with age (Sibilia et al., 2003). Interestingly, EGFR� /�

mice did not display signs of hypertrophy at the age of 3
weeks, suggesting that this phenotype was not due to
the lack of EGFR expression. As heart-specific expres-
sion of the hEGFRKI allele seemed to be higher than
the endogenous wt allele, it is likely that increased
EGFR signaling in cardiomyocytes is contributing to
the development of the heart hypertrophy.

hEGFRKI/KI mice also display semilunar valve de-
fects, which are known to induce aortic stenosis and
regurgitation, and as a consequence can lead to heart

Table 1 ErbB receptors and ligands: phenotype of genetically modified mice

Gene Alteration Phenotype References

EGFR Knock-out Die between mid-gestation and postnatal day
20 depending on the genetic background,
epithelial defects in skin, hair, eyes and lungs,
bone and heart abnormalities,
neurodegeneration, defect in cortical
astrocytes

Sibilia and Wagner (1995), Sibilia et al. (1998,
2003), Miettinen et al. (1995), Threadgill et al.
(1995), Kornblum et al. (1998), Wang et al.
(2004), Wagner et al. (2006)

Knock-in Hypomorphic phenotypes of skin, bone, and
heart

Sibilia et al. (2003)

wa2, spontaneous
mutation

Skin and hair abnormalities, impaired
lactation

Luetteke et al. (1994), Fowler et al. (1995)

ErbB2 Knock-out Embryonic lethal, neural, and cardiac defects,
Schwann cell defects

Lee et al. (1995), Lin et al. (2000)

ErbB3 Knock-out Embryonic lethal, lack of Schwann cell
precursors, degenerated peripheral nervous
system

Riethmacher et al. (1997)

ErbB4 Knock-out Embryonic lethal, cardiac and neural defects,
mammary gland defects

Gassmann et al. (1995), Tidcombe et al. (2003)

TGF-a Knock-out Abnormal skin architecture, hair follicle, and
eye abnormalities

Mann et al. (1993), Luetteke et al. (1993)

Overexpression Epithelial hyperplasia, mammary gland, and
pancreatic abnormalities, liver neoplasia

Sandgren et al. (1990), Jhappan et al. (1990)

wa1, spontaneous
mutation

Skin and hair abnormalities Luetteke et al. (1993)

EGF Knock-out No overt phenotype Luetteke et al. (1999)
Overexpression Infertile, growth retardation Chan and Wong (2000), Wong et al. (2000)

HB-EGF Knock-out Heart abnormalities Iwamoto et al. (2003)
AR Knock-out Mild phenotype in mammary glands Luetteke et al. (1999)

Overexpression Psoriasis-like phenotype Cook et al. (1997)
NRG1 Knock-out Embryonic lethal, heart malformation, lack of

Schwann cell precursors and cranial ganglia
Meyer and Birchmeier (1995)

TGF-a EGF AR Triple knock-out Hair abnormalities and eye defects, impaired
mammary gland function

Luetteke et al. (1999)

ErbB2
ErbB3
NRG1

Triple knock-out Embryonic lethal, severe hypoplasia of the
primary symphathetic ganglion chain

Britsch et al. (1998)

EGF, epidermal growth factor; EGFR, EGF-receptor; TGF, transforming growth factor; AR, amphiregulin; NRG, neuregulin; HB-EGF,
heparin binding EGF; wa1, waved-1; wa2, waved-2.
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hypertrophy. The pulmonary and aortic, but not the
atrioventricular valves of hEGFRKI/KI hearts were
thickened and hypercellular (Sibilia et al., 2003). Be-
cause the same phenotype was also observed in
EGFR� /� mice as well as in the naturally occurring
mouse mutant strain waved-2 (wa2), which carries a
point mutation in the EGFR gene leading to reduced
kinase activity, it is likely that the hEGFRKI allele is not
expressed in the developing valves (Luetteke et al., 1994;
Fowler et al., 1995; Sibilia et al., 2003). Similar cardiac
valve phenotypes are present in mice lacking HB-EGF,
a ligand for EGFR and ErbB4, suggesting that EGFR/
HB-EGF signaling is required for the differentiation of
valve mesenchymal cells within the valve leaflets (Fig. 1)
(Iwamoto et al., 2003; Sibilia et al., 2003).

As there are no signs of myocardial hypertrophy in
3-week-old EGFR� /� mice, it is likely that the severe

hypertrophy observed in hEGFRKI/KI mice results
from the malformations of the valves and from the
enhanced hypertrophic response of cardiomyocytes to
increased EGFR signaling, as the hEGFRKI allele is
expressed at higher levels in the myocardium (Sibilia et al.,
2003). These defects can lead to a severe heart condition,
which is probably responsible for the lethality of
hEGFRKI/KI mice, whereas the valve defects alone, as
seen in EGFRwa2/wa2 mice, do not seem to increase the
mortality of these mice.

EGFR in brain development and tumors

All EGFR family members are involved in neural de-
velopment as demonstrated by neural defects upon tar-
geted gene deletions (Table 1). Mice lacking the EGFR

Fig. 2 Histological sections of placentas isolated at E11.5 from
control (A, C, E) and EGFR� /� embryos (B, D, F) of 129/Sv
(A, B), C57BL/6 (C, D), and MF1 (E, F) genetic backgrounds.
Note that in mutant placentas of all three genetic backgrounds, the
spongiotrophoblast layer (sp, delimited with dotted lines) that is

localized between the maternal decidua (de)/embryonic giant cells
(arrows) and the labyrinthine trophoblast layer (la) is severely re-
duced in size. The labyrinthine trophoblast layer appears to be
structurally similar in all backgrounds and is comparable to the
controls. EGFR, epidermal growth factor receptor.
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develop a progressive neurodegeneration starting after
birth in the frontal cortex and olfactory bulb and there-
after extending to the thalamus, leading to wide-ranging
neuronal loss in the brain (Kornblum et al., 1998;
Sibilia et al., 1998). This degeneration is characterized
by massive apoptotic cell death that affects neurons and
glial cells, which comprise astrocytes and oligodendro-
cytes in the CNS. In addition, a migratory disorder is
detected in the hippocampus with nests of ectopic neu-
rons, which are also undergoing apoptosis. Because the
EGFR is expressed in the affected cell types, these re-
sults suggest that the EGFR controls the proliferation
and/or differentiation of astrocytes as well as the sur-
vival and migration of postmitotic neurons (Sibilia
et al., 1998).

In cerebral cortices of EGFR� /� mice, lower as-
trocyte numbers are observed and their expansion
in vitro is severely compromised (Kornblum et al., 1998;
Sibilia et al., 1998). Interestingly, a vigorous ‘‘reactive
astrogliosis’’ is observed in the thalamic regions of
EGFR mutant mice, indicating that astrocytes are not
impaired in this region (Sibilia et al., 1998). Biochemical
and functional differences have been reported among
astrocytes derived from anatomically distinct regions of
the brain and our laboratory could recently demon-
strate that in the absence of EGFR only cortical as-
trocytes are affected (Wagner et al., 2006). EGFR
signaling seems to play a key role in controlling corti-
cal neurodegeneration by regulating cortical astrocyte
apoptosis, thereby providing a mechanism for the
region-specific neurodegeneration in EGFR� /� mice.
Whereas EGFR� /� midbrain astrocytes are unaffect-
ed, mutant cortical astrocytes display increased apopto-
sis mediated by an Akt-caspase-dependent mechanism.
As a consequence, cortical EGFR� /� astrocytes are
unable to support neuronal survival while midbrain as-
trocytes are competent to keep neurons alive indepen-
dently of EGFR expression (Wagner et al., 2006). These
results suggest that neuronal loss occurs as a conse-
quence of increased astrocyte apoptosis. Interestingly,
neuron-specific expression of activated Ras can com-
pensate for the deficiency of EGFR� /� cortical as-
trocytes and prevent neuronal death. These results
identify two functionally distinct astrocyte populations,
which differentially depend on EGFR signaling for their
survival and also for their ability to support neuronal
survival (Wagner et al., 2006). Whether regional vari-
ations in glial function influence the pathology of differ-
ent human neurodegenerative diseases is a fascinating
hypothesis to be tested in future.

The findings about the astrocyte defects are intrigu-
ing in view of the fact that EGFR amplification or ac-
tivating mutations are observed at a very high
frequency in glioblastoma multiforme (GBM) patients.
Glioblastomas are among the most frequent brain tu-
mors derived from glial cells and despite neurosurgery,
chemo-, and radiotherapy, patient survival is very poor.

Gliomas are divided into four clinical grades (WHO
grade I–IV) based on histology and prognosis with
grade IV known as GBM (Kleihues et al., 2002). Two
different subtypes of GBM can be distinguished and
are classified as primary or secondary glioblastomas.
Primary glioblastomas appear to develop de novo,
occurring in older patients, causing 95% of GBM.
The majority of cases display overexpression, gene
amplification, and/or activating mutations of EGFR
whereas alterations in p53 are very rare. In contrast, in
secondary glioblastomas, which progress from low-
grade astrocytomas and occur in younger patients,
mutations of p53 are very frequent whereas alterations
of EGFR are rare. It seems, therefore, that p53 muta-
tions and EGFR amplification are mutually exclusive
in GBM (Watanabe et al., 1996). Hence, primary and
secondary glioblastomas might originate from two
different types of astrocytes and/or astrocyte progeni-
tors: one susceptible to aberrant EGFR signaling and
one not.

Several genomic rearrangements occur in human
glioblastomas. In the largest population-based study,
loss of heterozygosity (LOH) at 10q was identified to be
most common (69%), followed by EGFR gene ampli-
fication (34%), p53 mutations (31%), p16ink4a deletions
(31%), and PTEN mutations (24%) (Ohgaki et al.,
2004). In addition to EGFR amplification, alterations
in the EGFR gene structure such as deletions of parts
of the extracellular domain (EGFR vI–vV) are often
found in human GBM. A very frequent variant is the
EGFRvIII mutation, which carries an in-frame deletion
of exon 2–7 resulting in a constitutively active protein
that is less sensitive to degradation and capable of
phosphorylating downstream targets (Nicholas et al.,
2006). Altogether, alterations in EGFR signaling are
found in up to 63% of glioblastomas (Watanabe et al.,
1996). The role of EGFR in gliomagenesis has been
confirmed in various mouse models over the past few
years, although a transgenic model recapitulating
human disease is, unfortunately, still not available
(Table 2).

The first mouse model was using a retroviral
approach to target overexpression of the constitutively
active EGFRvIII in either nestin1 neuronal precursors
or GFAP1 astrocytes (Holland et al., 1998). EGFRvIII
expression induces glioma-like lesions only in ink4a-arf-
deficient mice, confirming that a combination of genetic
alterations is necessary for tumor development (Table
2). Similarly, implantation of either nestin1 or GFAP1

cells expressing either wt or mutant EGFRvIII do not
give rise to tumors in SCID mice unless ink4a/Arf is
additionally deleted. In this case, both nestin1 and
GFAP1 cells overexpressing mutant EGFR are able to
induce high-grade gliomas at 100% penetrance (Bachoo
et al., 2002). Another mouse model expressing
oncogenic Ras in GFAP1 cells (GFAP-V12 Ha-ras)
develops astrocytomas and additional expression

775

147



of EGFRvIII, but not wt EGFR, accelerates tumor
formation (Ding et al., 2003). The resulting tumors re-
semble oligodendrogliomas and a minority of them is
characterized as mixed oligoastrocytomas. Also in this
model the overexpression of either wt or mutant EGFR
alone in GFAP1 cells does not result in glioma forma-
tion and only an increase in astrocyte numbers is
observed (Table 2) (Ding et al., 2003).

About 5%–18% of gliomas are characterized as
oligodendrogliomas and are probably derived from
oligondendrocytes based on marker expression. Similar
to glioblastomas, about 50% of oligodendrogliomas
are reported to express high amounts of EGFR
(Reifenberger et al., 1996). Interestingly, mice express-
ing v-erbB, an oncogenic version of the EGFR, in
oligodendrocytes from the S100b promoter develop
oligodendrogliomas reflecting the pathology of the hu-
man disorder (Weiss et al., 2003). Additional alterations
like loss of p53 or ink4a/arf are necessary to induce a
transition from low- to high-grade tumors in these
transgenic animals (Table 2). Although S100b is also
expressed in astrocytes during early development, no
transformation of these cells is observed indicating cell

type-dependent differences in the transforming capacity
of the v-erbB oncogene.

Apart from gliomas, EGFR gene amplifications are
also detected in malignant peripheral nerve sheath tu-
mors (MPNST) (Perry et al., 2002). Neurofibromatosis
type 1 (NF1) patients are susceptible to MPNSTs and
Schwann cells play a key role in neurofibroma forma-
tion. NF1 patients have a loss of function of ne-
urofibromin (NF), a tumor suppressor inhibiting Ras.
Schwann cells normally do not express EGFR but only
ErbB2 and ErbB3. Nevertheless, aberrant expression of
EGFR is found in Schwann cell-derived tumors of NF1
patients (DeClue et al., 2000). In a mouse model, over-
expressing EGFR in Schwann cells (CNP-EGFR),
changes in nerve size are observed, reflecting the hall-
marks of human neurofibromas. However, tumor for-
mation is very rare and heterozygosity for NF1 does not
influence the result (Table 2) (Ling et al., 2005).

The different approaches discussed above to study
tumorigenesis in mice recapitulate to some extent both
genetic abnormalities and histologic features of human
brain tumors. Overexpression of wt EGFR is not suffi-
cient to initiate tumor formation but a second genetic

Table 2 Mouse models investigating the role of EGFR in tumor

Mouse model Phenotype References

Brain
EGFRvIII in nestin1/GFAP1 cells No tumors Holland et al. (1998)
EGFRvIII in nestin1 cells; ink4a-arf� /� Glioma-like lesions Holland et al. (1998)
EGFRvIII in GFAP1 cells; ink4a-arf� /� Glioma-like lesions Holland et al. (1998)
GFAP- V12Ha-ras; EGFRvIII High-grade oligodendrogliomas Ding et al. (2003)
S100b-v-erbB Low-grade oligodendrogliomas Weiss et al. (2003)
S100b-v-erbB; ink4a/arf1/� High-grade oligodendrogliomas Weiss et al. (2003)
S100b-v-erbB; p531/� High-grade oligodendrogliomas Weiss et al. (2003)
CNP-EGFR Enlarged nerves Ling et al. (2005)
CNP-EGFR; NF11/� Enlarged nerves, rare nerve tumors Ling et al. (2005)
NF11/� ; p531/� ; EGFRwa2/wa2 Less tumors compared with NF11/� ;

p531/�
Ling et al. (2005)

Skin
K5-dnEGFR (CD533) Skin and hair defects Murillas et al. (1995)
K5-dnEGFR, Ras Smaller skin papillomas, reduced

vascularization
Casanova et al. (2002)

K5-ErbB2 Papillomas, SCC Kiguchi et al. (2000)
K14-TGF-a Benign papillomas upon wounding Vassar and Fuchs (1991)
K1-TGF-a Spontaneous and inducible tumors Dominey et al. (1993), Wang et al. (1994)
K5-SOS-F Papillomas 100% penetrance Sibilia et al. (2000)
K5-SOS-F; EGFR� /� /EGFRwa2/wa2 Impaired tumor development Sibilia et al. (2000)
K5-SOS; c-junDep Smaller papillomas with low EGFR

expression
Zenz et al. (2003)

Mig6� /� Spontaneous tumors in various
organs

Ferby et al. (2006)

Mig6� /� ; EGFRwa2/wa2 Rescue Ferby et al. (2006)
Lung

EGFRL858R, inducible Adenocarcinomas Politi et al. (2006)
EGFRDL747� S752, inducible Adenocarcinomas Politi et al. (2006)

Liver
Metallothionein (MT)-TGF-a Liver, pancreas, mammary gland neoplasia Jhappan et al. (1990), Sandgren et al. (1990)
Alb-c-myc, MT-TGF-a Accelerated liver neoplasia Murakami et al. (1993), Sandgren et al.

(1993)

GFAP, glial fibrillary acidic protein; CNP, 20,30-cyclic nucleotide 30-phosphodiesterase; EGFR, epidermal growth factor receptor; TGF,
transforming growth factor.
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alteration such as deletion of the ink4a gene is neces-
sary. Overexpression of EGFR mutants normally does
not lead to tumor formation, except for the S100b-
driven expression of v-erbB initiating the development
of low-grade oligodendrogliomas. Based on these ob-
servations and also from human molecular clinical data,
one can speculate that alterations in EGFR expression
are rather relevant in glioma progression than initiation
(Ding et al., 2003).

A longstanding debate in neuro-oncology is ongoing
about the origin of the cells initiating glial tumor for-
mation. For high-grade malignant gliomas, it seems
that both astrocytes and neural stem cells can give rise

to tumors, demonstrating that genetic alteration rather
than the degree of cellular differentiation influences
tumor development (Bachoo et al., 2002). Other studies
have identified subpopulations of human brain cancer
cells displaying stem-cell characteristics and being re-
sponsible for tumor growth (Singh et al., 2003, 2004).
Evidence for cancer stem cells in brain tumors is pro-
vided by the p53;NF1 astrocytoma mouse model. In
mice mutant for both p53 and NF1 tumors initiate in
the stem cell harboring subventricular zone (SVZ) al-
though all brain cells are genetically altered (Zhu et al.,
2005). The identification of a tumor-initiating cell sub-
population expressing the neural precursor marker

Fig. 3 (A) Cross-section of an HF from an EGFR1/� mouse
showing EGFR expression (blue stain) by X-galactosidase staining.
(B–E) Fontana–Masson staining on skin samples from an EGFR� /

� mouse (C, E) and a littermate control (B, D) at postnatal day 10.
EGFR� /� mice show a delay in hair follicle morphogenesis. Mu-
tant hair follicles are irregularly and more intensively pigmented (C)
than control (B). The reason for the irregular shape of EGFR� /�

hair follicles is most probably the separation of the inner and outer
root sheaths indicated by the arrow (E). (F, G) Immunohistological
stainings showing EGFR expression in the basal cells of a K5-SOS-
induced skin papilloma (F) and chemically induced hepatocellular
carcinoma (G). EGFR, epidermal growth factor receptor; SOS, Son
of Sevenless.
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CD133 proves the existence of cancer stem cells in hu-
man brain tumors (Singh et al., 2004). The presence of
tumor stem cells enables additional therapeutic inter-
ventions and the combination of EGFR inhibition to-
gether with cancer stem cell elimination might help to
reduce cancer recurrence and improve the survival of
patients.

EGFR in skin development and tumors

EGFR has long been known to play an important role
in regulating the development of the epidermis and its
appendages. In the skin, EGFR is most abundantly ex-
pressed in the basal layer of the epidermis and in the
outer root sheath of the hair follicles (Fig. 3A), where
the proliferating cells reside. EGFR expression is down-
regulated as soon as keratinocytes differentiate and mi-
grate to the suprabasal epidermal layers (Sibilia and
Wagner, 1995). A number of naturally occurring and
experimentally induced mutant mice confirm that
EGFR signaling is of physiological relevance during
normal epithelial development. Mice homozygous for a
disrupted TGF-a gene have severe derangements of hair
follicles, resulting in a wavy coat and curly whiskers
(Table 1) (Mann et al., 1993). A similar phenotype is
found in the naturally occurring mouse mutant strains
wa1 and wa2, which carry null mutations in the TGF-a
gene and hypomorphic mutations in the EGFR,
respectively (Luetteke et al., 1994; Fowler et al.,
1995). Similarly, EGFR-deficient mice show strain-de-
pendent defects in epidermal as well as hair follicle
differentiation (Figs. 3B–3E) and fail to develop a hairy
coat, most likely because EGFR signaling is essential
for maintenance of hair follicle integrity (Luetteke et al.,
1994; Miettinen et al., 1995; Sibilia and Wagner, 1995;
Threadgill et al., 1995; Hansen et al., 1997). Because
EGFR� /� mice do not survive longer than 3 weeks,
hair follicle development and cycling could not be care-
fully analyzed. Mice humanized for the EGFR proved
to be extremely useful for this purpose and revealed
that after the first hair cycle, EGFR-deficient hair
follicles fail to enter into catagen and remain in a
berrant anagen. With time, the follicles are degraded,
leading to massive infiltration of inflammatory cells,
and hEGFRKI/KI mice are completely bald by the age of
6 months (Sibilia et al., 2003). Similar skin and hair
defects are observed in transgenic mice expressing a
dominant-negative human EGFR (CD533) in the basal
layers of the epidermis (Murillas et al., 1995). These
findings reveal that EGFR signaling is needed to reg-
ulate hair cycle progression and to preserve hair follicle
integrity by controlling the proliferation, differentia-
tion, and survival of epithelial cells.

Skin cancer is the third most common human malig-
nancy, and its incidence has been increasing at an

alarming rate over the past decades, with basal cell
carcinoma (BCC), squamous cell carcinoma (SCC), and
melanoma being the most common forms. Each year,
an estimated number of 2–3 million non-melanoma skin
cancer and 132,000 cases of melanoma occur (World
Health Organization). In human SCCs, amplification
of the EGFR is very common (Nicholson et al., 2001;
Maubec et al., 2005). On the contrary, focal amplifica-
tion and/or mutation of EGFR have not been reported
in melanomas. However, late-stage melanomas often
display EGFR overexpression in association with in-
creased copies of chromosome 7 on which the human
EGFR gene is localized (Chin et al., 2006).

Several studies in mouse models demonstrate that
alterations in the EGFR pathways lead to epithelial
neoplasm including those induced by two-stage carcin-
ogenesis in mouse skin where activation of Ha-Ras is a
critical event in papilloma formation (Frame et al.,
1998). Topical application of diverse tumor promoters
on mouse skin leads to elevated levels of EGFR and
its ligands TGF-a, HB-EGF, and AR in developing
primary papillomas and SCC (Kiguchi et al., 1998). In-
terestingly, overexpression of TGF-a in basal or supra-
basal keratinocytes leads to thickening of the epidermis
and papilloma development preferentially at sites ex-
posed to mechanical irritation, and TGF-a
expression can bypass the need for chemically induced
Ha-Ras mutations (Vassar et al., 1992; Dominey et al.,
1993; Wang et al., 1994). Furthermore, overexpression
of ErbB2 in basal cells of the epidermis results in the
formation of spontaneous papillomas capable of con-
verting to SCC within the first 6 weeks of age (Kiguchi
et al., 2000). Constitutive expression of an activated
form of Ha-Ras in the suprabasal layers of the epider-
mis induces the formation of benign papillomas in
transgenic mice at sites of promotional stimuli (Bailleul
et al., 1990). However, transgenic mice expressing an
activated Ras in the outer root sheaths of hair follicles
develop spontaneous papilloma-like structures, which
frequently undergo conversions to SCC (Brown et al.,
1998). In contrast, tamoxifen-inducible activation of
a K14-Ras transgene in mice results in massive cutane-
ous hyperplasia and suppressed differentiation that
is reversible upon cessation of tamoxifen treatment
(Tarutani et al., 2003).

An elegant in vivo demonstration on the role of
EGFR in the early steps of skin tumor development was
provided by the analysis of transgenic mice expressing
a constitutively active form of the Ras activator Son
of Sevenless (SOS) in the basal cells of the epidermis
(K5-SOS-F mice, Table 2). These mice develop skin
papillomas at 100% penetrance in a wt EGFR back-
ground (Fig. 3F). However, tumor formation is severely
impaired when these mice are bred into an EGFR mu-
tant background (Table 2). K5-SOS-F transgenic pap-
illomas and keratinocytes from wa2 mice are more
differentiated and display increased apoptosis as well as
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reduced Akt phosphorylation, suggesting that the
EGFR functions as a survival factor for oncogenic
transformation by components of the Ras signaling
pathway (Sibilia et al., 2000). In mice lacking c-Jun in
the epidermis, K5-SOS-F-dependent skin tumorigenesis
is strongly inhibited and accompanied by reduced ex-
pression of EGFR in basal keratinocytes (Table 2). In
this study, it could be shown that Jun regulates EGFR
expression at the transcriptional level (Zenz et al.,
2003). Recently, it was shown that patients with dom-
inant Hereditary Gingival Fibromatosis type 1 carry a
frameshift mutation in the SOS1 gene, leading to a
truncated SOS protein similar to the one expressed in
K5-SOS-F mice (Hart et al., 2002), highlighting the
relevance of K5-SOS-F transgenic mice as a model for
human cancer and for testing anti-tumor therapies.

Interestingly, EGFR-deficient fibroblasts are also re-
sistant to transformation by SOS-F and RasV12 (Sibilia
et al., 2000). An independent study demonstrates that
EGFR-deficient keratinocytes expressing v-rasHa devel-
op smaller papillomas when grafted into immunodefi-
cient mice (Dlugosz et al., 1997). Similar results were
obtained with Ha-Ras transgenic animals expressing
dominant-negative EGFR (K5-dnEGFR) in basal ker-
atinocytes. Whereas tumor onset is similar to controls
in mice expressing dnEGFR, tumors appear much paler
and their size is reduced (Casanova et al., 2002). Inter-
estingly, these papillomas show increased numbers of
apoptotic cells and reduced Akt activity. Furthermore,
abrogation of EGFR function results in a dramatic de-
crease in vascular endothelial growth factor (VEGF)
expression and impaired angiogenesis. As a conse-
quence, tumors cannot be properly nourished and ox-
ygenated, which may explain the poor cell survival.
These findings provide compelling functional evidence
that, in addition to the Ras/MAPK pathway, an
EGFR-dependent pathway acting via Akt is essential
for the transformation of mouse epidermal cells
(Segrelles et al., 2002). Whether a similar mechanism
is acting in human SCC needs to be investigated.

Recent studies show that mitogen-inducible gene 6
(Mig6, also known as RALT) is a specific negative reg-
ulator of EGFR signaling in skin morphogenesis. Mice
deficient for Mig6 display hyperactivation of endoge-
nous EGFR, resulting in overproliferation and im-
paired differentiation of epidermal keratinocytes (Table
2). Furthermore, Mig6� /� mice spontaneously develop
tumors in various organs and are highly susceptible to
chemically induced skin tumor formation. Interestingly,
breeding of Mig6 knock-out mice into an EGFR
hypomorphic background or treatment with Gefitinib
completely rescues the skin defects and tumor develop-
ment is prevented. Therefore, Mig6 acts as a tumor
suppressor in EGFR-dependent carcinogenesis and its
expression is downregulated in various human cancers
(Ballaro et al., 2005; Ferby et al., 2006). The transcrip-
tion factor AP-2a is also often reduced in tumor cells

and was recently shown to act as a tumor suppressor
(Friedrichs et al., 2005). Deletion of AP-2a in mice re-
sults in a similar phenotype as Mig6� /� mice. In the
absence of AP-2a, EGFR expression is up-regulated
and Akt activation is increased in the epidermis, re-
sulting in hyperproliferation and the formation of
papilloma-like invaginations. These data indicate that
AP-2a controls epidermal cell proliferation and differ-
entiation, and functions by repressing EGFR expres-
sion at the stage when keratinocytes exit the basal layer
and become committed to terminal differentiation (Wang
et al., 2006).

Altogether, these findings underscore the importance
of EGFR as a target for therapeutic intervention in
epithelial tumors. Because it has been shown that
EGFR signaling pathways are frequently deregulated in
human skin cancers by mutations of tumor suppressors
such as Mig6 and AP-2a, in the future it would be in-
teresting to consider these negative regulators as new
targets for therapeutic interventions.

EGFR in lung development and cancer

At birth, EGFR mutant mice have immature lungs re-
sembling a disease known as neonatal respiratory dis-
tress syndrome. This defect is most likely responsible for
the inability of the majority of mutants to initiate or
sustain respiration. Mutant mice display lung dysplasia
characterized by lung hypercellularity and thickened
alveolar septae, leading to reduced airspace in the lungs
(Miettinen et al., 1995, 1997; Sibilia and Wagner, 1995;
Sibilia et al., 1998). Lung branching morphogenesis is
defective in EGFR mutants, leading to deficient
alveolization and septation already during embryogen-
esis (Miettinen et al., 1997). EGFR is expressed on type
II pneumocytes and seems to regulate their maturation
by inducing the expression of surfactant protein C and
thyroid transcription factor-1 (Sibilia and Wagner,
1995; Miettinen et al., 1997). The lung defects can be
ameliorated by inducing lung maturation via dexameth-
asone administration, which also improves the early
postnatal survival of EGFR mutant mice. However, the
maximal lifespan of mutant mice is not increased and
there is also no amelioration of the other phenotypes
(Sibilia et al., 1998).

Lung tumors account for 1/3 of cancer deaths world-
wide and can be divided into two main groups: (1)
small-cell-lung cancer (SCLC), which originates from
neural crest cells and comprises about 20% of lung tu-
mors, and (2) non-small-cell lung cancer (NSCLC)
making up 80% of all lung cancers and deriving from
epithelial cells. Among the many different types of
NSCLC, one can distinguish adenocarcinomas originat-
ing most likely from pneumocytes type II and bronchiolo-
alveolar carcinomas, a subtype of adenocarcinoma with
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better prognosis derived either from bronchio-alveolar
stem cells or representing a more benign stage of inva-
sive adenocarcinomas (Sharma et al., 2007). The most
frequent mutations found in NSCLC affect K-Ras or
EGFR, both occurring in a mutually exclusive manner,
with EGFR mutations arising prevalently in non-smok-
ers (Pao et al., 2005b). EGFR ligands like TGF-a and
EGF are frequently expressed in NSCLC and EGFR
overexpression has been reported in over 60% of
NSCLC, correlating with a poor prognosis. The medi-
an survival time of patients is around 4–5 months and is
only modestly extended by standard combination che-
motherapy (Sharma et al., 2007).

A few years ago, the reversible EGFR inhibitors
Gefitinib (Iressa) and Erlotinib started to be used for
the treatment of NSCLC that had failed to respond to
conventional chemotherapy. It was found that a sub-
population of 10%–20% of patients responded very
well to the therapy with significant regression of the
tumors. Interestingly, 80% of these patients are carry-
ing somatic mutations within the EGFR kinase domain
in tumor cells, the most frequent being either deletion of
the conserved LREA motif within Exon 19 or a point
mutation in Exon 21 (L858R). Both these mutations are
gain-of-function mutations and occur more frequently
in females, Asians, and in non-smokers (Lynch et al.,
2004; Paez et al., 2004; Pao et al., 2004). It is intriguing
that these EGFR mutations are prevalently restricted to
NSCLC as they seem to occur only at a very low fre-
quency in other tumors such as head and neck, ovarian,
pancreatic, and colorectal cancers (Sharma et al., 2007).
In vitro studies with NSCLC cell lines carrying EGFR
kinase mutants reveal that the Akt, ERK, STAT 3, and
STAT 5 pathways are hyperactivated, resulting in in-
creased survival and reduced apoptosis of tumor cells.
These effects can be reversed by treatment with Gefitinib
or Erlotinib (Sordella et al., 2004; Sharma et al.,
2007).

The oncogenicity of these Gefitinib-sensitive EGFR
mutations was recently demonstrated in transgenic
mouse models. Mice expressing either form of the mu-
tated EGFR in a doxycycline-inducible manner in type
II pneumocytes develop invasive lung adenocarcino-
mas, recapitulating many common features to human
tumors (Ji et al., 2006; Politi et al., 2006). If mice are
withdrawn from doxycycline, EGFR levels rapidly de-
cline and established tumors disappear within 3 weeks,
showing a strong decrease in proliferation and an in-
crease in apoptosis. A significantly reduced tumor bur-
den was also observed after treatment with Erlotinib
and to a lesser extent with the EGFR-specific antibody
Cetuximab (Erbitux) (Ji et al., 2006; Politi et al., 2006).

These promising results obtained in mice do not
completely hold true when treating NSCLC patients.
Patients harboring TKI-sensitive EGFR mutations ini-
tially respond to Gefitinib and Erlotinib with stabiliza-
tion rather than shrinkage of the tumors. However,

resistance to TKI treatment usually occurs within 6–12
months therefore limiting the ability of these drugs to
improve the patient’s survival significantly. Tumors ac-
quire secondary resistance to both Gefitinib and Erloti-
nib by additional point mutations in the EGFR at
position 790 within the kinase domain (Kobayashi
et al., 2005; Pao et al., 2005a). Interestingly, this T790M
mutation weakens the interaction of the inhibitor with
the kinase and is analogous to other drug-resistance-
conferring mutations found in BCR-Abl, PDGFRa,
and c-Kit, suggesting that cancer cells depend on a
similar cellular pathway for survival or proliferation
(Sharma et al., 2006, 2007).

The overall survival rate of NSCLC patients is slight-
ly improved only under Erlotinib treatment, explaining
why Gefitinib has meanwhile been removed from the
market. New irreversible ErbB inhibitors such as HKI
272 and HKI 357 seem to be able to overcome the Ge-
finitib resistance conferred by the T790M mutation.
These specific inhibitors of EGFR and ErbB2 act by
covalently binding cysteine residues and can also be
more effective in some TKI-insensitive NSCLC. Inter-
estingly, this new class of inhibitors is also active against
the small fraction of NSCLC expressing the EGFRvIII
mutant, which is insensitive to Gefitinib and Erlotinib.
Moreover, the capacity of some of these inhibitors to
also target ErbB2 might additionally contribute to
overcome resistance to EGFR inhibitors and improve
the therapeutic outcome (Kwak et al., 2005; Sharma
et al., 2007).

EGFR in liver development and hepatocellular
carcinoma formation

Hepatocytes of the mature liver express high amounts
of EGFR when compared with other adult cells and
tissues, implying that EGFR plays an important role in
liver function. Moreover, EGFR ligands like EGF,
TGF-a, AR, and HB-EGF are potent mitogens for
cultured hepatocytes (Michalopoulos and DeFrances,
1997; Fausto, 2000) and significantly contribute to liver
regeneration after partial hepatectomy as demonstrated
in the corresponding knock-out mice (Russell et al.,
1996; Berasain et al., 2005; Mitchell et al., 2005). Also,
during acute and chronic liver damage like CCl4 intox-
ication and Fas-mediated liver injury, EGFR ligands
seem to have a hepatoprotective and regenerative po-
tential (Berasain et al., 2007). Studies from our labora-
tory using conditional knock-out mice show that
inducible deletion of the EGFR in all liver cell types
of adult mice does not lead to overt abnormalities. In
contrast, embryonic deletion of EGFR in hepatocytes
alone results in reduced body size and weight, which is
apparent from the third postnatal week. Moreover,
mice lacking EGFR in liver show impaired liver regen-
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eration after partial hepatectomy with reduced cyclin
D1 expression. These results demonstrate that EGFR is
a critical regulator of hepatocyte proliferation in the
initial phases of liver regeneration (Natarajan et al.,
2007).

Many growth factors and their receptors are dereg-
ulated in human hepatocellular carcinoma (HCC).
HCCs account for 83% of cases of liver cancer, which
include cholangiocarcinoma, hepatoblastoma, bile duct
cystadenocarcinoma, hemangiosarcoma, and epitheliod
hemangioendothelioma (Farazi and DePinho, 2006).
HCCs are complex heterogeneous neoplasms, with an
8.9% 5-year survival rate, therefore recording this ma-
lignancy as the second most lethal cancer following
pancreatic ductal adenocarcinoma (Breuhahn et al.,
2006; Farazi and DePinho, 2006). Various etiological
factors associated with the development of HCC in-
clude chronic hepatitis B and C viral infection, chronic
alcohol consumption, aflatoxin B1 in food, and virtu-
ally any other condition that leads to cirrhosis (Badvie,
2000). Among the key signaling systems believed to play
a prominent role in the development of HCCs are TGF-a
/EGFR, IGF/IGF-1R, and HGF/Met (Farazi and
DePinho, 2006). Most of these growth factors, recep-
tors, and signaling cascades are also involved in regen-
erative and protective natural responses of the liver
to acute tissue injury. However, when these growth fac-
tors are deregulated through a series of molecular
events, they can contribute to neoplastic transformation
(Thorgeirsson and Grisham, 2002; Berasain et al.,
2007). Other genes that have been reported to be mu-
tated and aberrantly expressed during HCC are p53,
p73, Rb, mdm2, APC, p16, c-myc, cyclin D1, E-cad-
herin, and gankyrin (Thorgeirsson and Grisham, 2002;
Farazi and DePinho, 2006; Laurent-Puig and Zucman-
Rossi, 2006).

Examination of the ErbB receptors in human HCCs
indicated that overexpression of EGFR occurs in 68%,
ErbB2 in 21%, ErbB3 in 84%, and ErbB4 in 61%
of HCCs (Breuhahn et al., 2006). Increased levels of
ErbB1 and ErbB3 expression have been associated with
aggressive tumors and poorly differentiated HCCs.
Metastasis and poor patient survival is correlated to
ErbB1 overexpression (Breuhahn et al., 2006). In addi-
tion, overexpression of EGFR ligands such as TGF-a,
BTC, HB-EGF, and AR is observed in human liver
tumor tissues (Breuhahn et al., 2006; Farazi and
DePinho, 2006).

Studies from transgenic mice provide strong evidence
for an involvement of the ErbB family of receptors and
its ligands in HCCs. The EGFR is highly expressed in
chemically induced HCCs in mice (Fig. 3G). Transgenic
mice expressing TGF-a from the mouse metal-
lothionein-1 (MT) promoter develop multifocal, well-
differentiated HCCs (Table 2) (Jhappan et al., 1990;
Sandgren et al., 1990). Treatment of these mice with
hepatocarcinogens accelerates the development of

HCC, whereas the same treatment only results in small
pre-neoplastic foci in TGF-a-deficient mice, highlight-
ing the importance of TGF-a in tumor progression
(Webber et al., 1994; Russell et al., 1996). Further ev-
idence that EGFR signaling is vital in HCC comes from
pharmacological studies. Inhibition of EGFR by
Gefitinib results in growth inhibition, cell cycle arrest,
and apoptosis of HCC cell lines and also shows activity
in a chemically induced model of HCC in rats (Schiffer
et al., 2005; Breuhahn et al., 2006). The anti-EGFR
antibody Cetuximab (Erbitux) is also effective in inhib-
iting cell cycle progression and inducing apoptosis in
HCC cells (Breuhahn et al., 2006).

Ectopic expression of the proto-oncogene c-Myc in
murine hepatocytes promotes liver tumor development
and targeted inactivation of c-Myc in mice results in
tumor regression (Shachaf et al., 2004). Co-expression
of TGF-a and c-Myc in murine liver accelerates tumor
development when compared with the respective single
transgenic mice (Table 2) (Jhappan et al., 1990;
Murakami et al., 1993). This synergistic effect on
HCC in double transgenic mice is due to the disrup-
tion of the E2F/pRB pathway and reduced apoptosis
(Santoni-Rugiu et al., 1998). Moreover, constitutive
nuclear translocation of NF-kB with aberrant activa-
tion of Akt and IKK complex is observed in HCCs
of TGF-a/c-Myc double transgenic mice, but not of
c-Myc single transgenic mice (Arsura and Cavin, 2005).
This study suggests that an anti-apoptotic mechanism
mediated via the TGF-a-Akt-IKK pathway contrib-
utes to survival and proliferation, thereby disabling the
apoptotic pathways induced by transforming oncogenes
such as Myc (Arsura and Cavin, 2005). Inactivation of
the AP1 transcription factor c-jun in the early stages of
liver tumor development results in reduced tumorigen-
esis, accompanied by increased levels of p53, which
leads to increased tumor cell apoptosis (Eferl et al.,
2003). Because c-Jun is known to regulate skin tumor
development by regulating EGFR expression (Zenz
et al., 2003), it would be interesting to investigate
whether c-Jun controls liver tumor development in a
similar manner.

Overexpression of the Met receptor and its ligand
HGF has been reported in advanced human HCC
(Thorgeirsson and Grisham, 2002; Breuhahn et al.,
2006). The role of Met signaling in HCC is further
confirmed by transgenic mice expressing HGF that de-
velop HCC (Sakata et al., 1996). Inducible Met trans-
gene expression in livers results in HCCs, and
inactivation of the transgene in advanced tumors leads
to tumor regression (Wang et al., 2001). Furthermore,
the association of c-Met with EGFR in HCC cells
facilitates the activation of c-Met in the absence of
HGF. Neutralizing antibodies against TGF-a or EGFR
abrogate c-Met phosphorylation, suggesting that
there is crosstalk between EGFR and c-Met in trans-
formed cells (Jo et al., 2000). Thus, anticancer therapies
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targeting EGFR components might be even more effi-
cacious in HCC treatment as they might also inhibit the
c-Met signaling pathway.

EGFR in bone development and bone cancer

Understanding the role of the EGFR in skeletal devel-
opment and bone cell differentiation is a pre-requisite
for understanding the influence of the EGFR in bone
cancer. Compelling evidence for the involvement of
EGFR in bone development is provided by the analysis
of mice lacking the EGFR and mice humanized for
the EGFR (Sibilia et al., 2003; Wang et al., 2004).
hEGFRKI/KI mice are significantly smaller than their
control littermates and the zone of hypertrophic
chondrocytes is increased within the growth plate of
their long bones, suggesting that EGFR signaling neg-
atively regulates the maturation of hypertrophic chon-
drocytes (Sibilia et al., 2003). This hypothesis is
supported by in vitro findings from cultures of me-
senchymal cells derived from chicken limb buds where
EGF inhibits chondrogenesis (Yoon et al., 2000). In
another study using EGFR-deficient mice, it was dem-
onstrated that insufficient vascularization and delayed
osteoclast recruitment into EGFR� /� cartilage during
embryonic development may be responsible for im-
paired endochondral bone formation (Wang et al.,
2004). EGFR expression on osteoclasts is controversial
and further studies are needed to determine whether
osteoclast formation depends directly on EGFR signal-
ing (Tanaka et al., 1998; Wang et al., 2004; Normanno
et al., 2005). In contrast to osteoclasts, there is general
agreement that the EGFR is expressed on mesenchymal
cells including osteoblasts and chondrocytes (Chien et
al., 2000; Sibilia et al., 2003; Wang et al., 2004). EGFR-
deficient osteoblasts have been shown to differentiate
much faster, thereby losing their ability to proliferate
(Sibilia et al., 2003). Although the molecular mecha-
nisms underlying this defect have not yet been deter-
mined, the defects of EGFR� /� osteoblasts observed
in vitro may also account for impaired bone formation
in vivo in mice. Most importantly, EGFR signaling in
human osteoblasts may play a central role in bone can-
cer and bone metastasis.

In human osteosarcomas, an increase in ErbB2 ex-
pression seems to correlate with a poor clinical out-
come. However, another report shows an association of
increased ErbB2 expression with improved patient sur-
vival (Wen et al., 2007). In contrast to ErbB2, only
limited data on EGFR expression in human osteosar-
comas are available. These studies show EGFR expres-
sion in 57%–81% of the analyzed tumors. (Oda et al.,
1995; Wen et al., 2007). It has long been known that
mice overexpressing c-fos develop osteosarcomas (Ruther
et al., 1989). A recent study shows that the growth

factor-regulated S6 kinase Rsk2 plays a central role in
Fos-dependent osteosarcomas, because mice overex-
pressing c-Fos, but lacking Rsk2 have significantly im-
paired tumor development (David et al., 2005).
Interestingly, EGFR signaling can induce the transcrip-
tion of the c-fos gene via Rsk2 (De Cesare et al., 1998).
Considering that osteosarcomas are tumors affecting
the osteoblastic lineage and knowing that the EGFR
controls osteoblast function, it seems reasonable to
speculate that there might be a direct relationship be-
tween EGFR signaling and c-Fos-mediated osteosarco-
ma development. Consequently, it is important to
determine whether EGFR and c-Fos indeed act in con-
cert in inducing and/or promoting osteosarcoma, and
whether this interaction may also occur in human
osteosarcomas or in other types of tumors. For exam-
ple, besides human osteosarcoma and osteosarcoma cell
lines, EGFR upregulation is observed in bone- and soft-
tissue tumors (Dobashi et al., 2007) and also in ame-
loblastoma, the most common epithelial odontogenic
tumor of the jawbones. In these tumors, which originate
from EGFR-expressing odontogenic epithelium, EGFR
protein expression is detected in all specimens analyzed
(Vered et al., 2003).

The role of EGFR in bone metastasis is worth in-
vestigating as EGFR expression has been reported in a
variety of tumors metastasizing to the bone and, among
them, prostate cancer is the best-studied example
(Choueiri et al., 2006). Forty percent to 80% of pros-
tate cancers express the EGFR correlating with de-
creased disease-free survival (Di Lorenzo et al., 2002;
Herbst and Langer, 2002). Prostate carcinoma cells
preferentially metastasize to bone where they typically
cause early osteoblastic and late osteolytic lesions
(Choueiri et al., 2006). The central role of osteoblasts
in the metastasis of prostate cancer may be linked to
EGFR expression, not only because prostate cancer
cells secrete EGF but also because osteoblast expression
of bone matrix proteins such as osteopontin, which
stimulate prostate cancer cells, seems to be EGFR de-
pendent (Soulitzis et al., 2006). Moreover, Gefitinib
treatment reduces the incidence of prostate cancer me-
tastases of highly metastatic prostate cancer cell lines in
nude mice by 81% (Angelucci et al., 2006). In addition,
EGFR inhibition with PKI166, a novel EGFR TKI,
also significantly reduces the incidence of bone metas-
tasis in nude mice (Kim et al., 2004). Other than pros-
tate cancer metastases, human renal cell carcinoma
bone metastases are also significantly reduced in nude
mice treated with PKI166 (Weber et al., 2003). Inter-
estingly, in a phase II trial of breast cancer patients with
bone metastases, administration of Gefitinib leads to
significant relief of bone pain (Normanno et al., 2005).
Because the main mechanism in bone destruction by
breast cancer cells is tumor-mediated stimulation of
osteoclastic bone resorption (Roodman, 2002), the
above mentioned controversy about EGFR expression
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on osteoclasts remains an issue important to be
addressed.

Conclusions and perspectives

From the analysis of mice genetically modified for
EGFR expression, it seems that the EGFR controls
different processes in different tissues and cells. In cor-
tical astrocytes and epidermal tumors, the EGFR seems
to act as a survival signal via inducing the anti-apopto-
tic Akt pathway. In the epidermis, EGFR signaling
probably also prevents premature differentiation of
keratinocytes as K5-SOS-F-dependent skin tumors are
more differentiated in the absence of EGFR. Similarly,
the EGFR also seems to negatively affect osteoblast and
chondrocyte differentiation, which inversely correlates
with the proliferation capacity of these cells. In con-
trast, the EGFR is required for efficient differentiation
of mesenchymal cells in the semilunar valves of the
heart and of type II pneumocytes in the lung whereas in
hepatocytes the EGFR is required for cell proliferation
and cell-cycle entry following tissue injury. Further-
more, the EGFR controls both proliferation and sur-
vival of tumor cells in lung adenocarcinomas induced
by transgenic expression of TKI-sensitive EGFR
mutants.

From these results, it is evident that the cellular pro-
cesses controlled by the EGFR are very complex and
that we are just starting to understand them. There are
many unanswered questions and the intricate EGFR-
dependent signaling network needs to be elucidated
further in every cell and organ to understand the phys-
iological function and pathways controlled by the
EGFR. This knowledge will be instrumental to gain
insights into the role of EGFR during tumor initiation,
progression, and metastasis. For example, it is still un-
clear whether EGFR overexpression or mutations play
any role in the early phases of malignant transformation
or whether EGFR alterations are rather secondary con-
sequences of a selection process leading to the growth
advantage of already established tumors. One addition-
al issue to clarify is whether EGFR mutations affect the
various stages of tumor development in a different way
than for example amplification or overexpression. This
knowledge will be essential to develop rational and
more effective therapies for the treatment of human
cancer.

We also need better mouse models where we can test
these concepts and perform relevant in vivo biological
and preclinical studies. Except for lung adenocarcino-
mas, there are not many good mouse models recapit-
ulating the hallmarks of the equivalent human cancer.
Although our K5-SOS-F transgenic mouse model
does not fully resemble the human disease, it allows
investigating the early events leading to epithelial cell

transformation. In this model, efficient cellular trans-
formation and tumor formation by components of the
Ras signaling pathway requires an intact EGFR sig-
naling pathway. These findings establish an important
role for EGFR in cell survival in the early phases of
oncogenic transformation and indicate that EGFR
inhibitors can not only be applied for the therapy of
tumors with EGFR alterations but also against tumors
carrying activating mutations of the Ras oncogene.
K5-SOS-F transgenic mice are extremely useful for
preclinical validations, because tumor incidence is
100% and occurs within the first 2 months after birth
in an immunocompetent environment. In addition,
tumor growth is fast and can be monitored very easily
without sacrificing the animals and without the need
for sophisticated imaging devices. For these reasons,
K5-SOS-F mice can be instrumental in identifying
additional genetic alterations that are responsible for
tumor formation and that represent specific targets for
therapeutic intervention.
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6 MATERIALS AND METHODS 

The materials and methods listed below belong to the results described in 5.1. 

More information can be found in the “Materials and methods” sections of the 

manuscripts “Autocrine VEGF signaling synergizes with EGFR in tumor cells to 

promote epithelial cancer development” and “Conditional deletion of β1 integrin 

impairs SOS-dependent skin tumor development in transgenic mice”, 

respectively. 

 

6.1 Mouse strains 

Conditional EGFR mice (EGFRf/f) (Natarajan et al., 2007) were crossed to K5-

Cre (Tarutani et al., 1997) and K5-CreERT (Indra et al., 1999) transgenic mice 

to generate mice in which EGFR is constitutively deleted in the basal layers of 

the epidermis starting from embryonic day 14.5  (EGFR∆ep), or mice in which 

EGFR deletion could be induced by administration of tamoxifen (EGFR∆epER), 

respectively. 

Hairless (hr/hr) mice were purchased from Harlan. EGFR-/- (Sibilia and Wagner, 

1995) and hEGFRKI/KI mice (Sibilia et al., 2003) were available in the laboratory. 

Mice were kept in the animal facility of the Medical University of Vienna in 

accordance with institutional policies and federal guidelines. 

 

6.2 Tamoxifen treatment 

To induce EGFR deletion K5-CreERT transgenic EGFRf/f mice were injected 

intraperitoneally with 1mg of tamoxifen per 25g body weight (Sigma; sunflower 

seed oil/ethanol mixture (10:1) at 10mg/ml) per day on 5 consecutive days and 

then twice a week for maintenance.  

For the wound healing assay, in addition to the i.p. injection of tamoxifen, 4 mg 

of 4-hydroxy-tamoxifen (Sigma) dissolved in 0.2 ml Acetone was applied to the 

backskin of EGFR∆epER and control mice every other day for a total of 2 weeks 

before full thickness punch wounds were made. Deletion efficiencies were 

analyzed by Southern and Western blot analysis. 
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6.3 Isolation of genomic DNA 

3-5 mm of mouse tail, small pieces of tissue or cell pellets were incubated 

overnight in 0.5 ml of lysis buffer (50mM Tris pH 7.4, 100mM EDTA, 100mM 

NaCl, 1% SDS and 0.5 mg/mL Proteinase K) at 55°C. 250μl of 6M NaCl were 

added, the suspension mixed and centrifuged for 5 minutes at full speed (13500 

rpm). The supernatant was transferred to a fresh tube and the DNA was 

precipitated with 0.5mL isopropanol and pelleted by centrifugation. After 

washing with 70% ethanol the DNA was resuspended in 0.4mL TE (10mM Tris 

pH 7.6, 1mMEDTA). 1μl and 49μl of this DNA solution were used for PCR and 

Southern blot analysis, respectively. 

 

6.4 Genotyping of transgenic mice by PCR 

1μl of genomic DNA solution was used to analyse the genotype of transgenic 

mice. The following primers were used: to distinguish wild-type, floxed and flirt 

EGFR alleles: FLIRT 2 5’-ATCAGCAGCCTCTGTTCCACATACAC-3’,  

FRT4 5’-CTATGCCTAAGAGGCGGAATA-3’, and FLIRT5 5’-

GACCATAGGAGGAACTGGACG; and to detect the K5-Cre or K5-CreERT 

transgenes: K5Cre1 5’-CATACCTGGAAAATGCTTCTGTCC-3’ and K5Cre2 5’-

CATCGCTCGACCAGTTTAGTTACC-3’. The EGFR flirt allele is a floxed allele 

containing a Neo-cassette. Since it behaves exactly like the EGFR floxed allele, 

both alleles were indicated as EGFRf/f for simplicity. 

 

6.5 Genotyping of transgenic mice by Southern blot analysis 

5 to 10 μg of genomic DNA were digested with 20U of Hind III restriction 

enzyme and separated by electrophoresis through a 0.8% agarose gel. The 

DNA was depurinated in 0.25M HCl, denatured in 0.5M NaOH/1.5M NaCl and 

transferred to a nylon membrane (Gene Screen, Du Pont). After the transfer, 

the membrane was washed in 50 mM Na-phosphate and UV crosslinked. 

Hybridizations with radioactive probe were performed at 65°C in Church buffer 

(0.5M Na-phosphate pH 7.2, 7% SDS) overnight. Thereafter, membranes were 

washed at 65°C twice for 30 minutes in 40mM Na-phosphate pH 7.2, 1% SDS 

and exposed to Kodak XAR films at -80°C using intensifying screens. 
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6.6 Western blot analysis 

Protein lysates were prepared as previously described (Sibilia et al., 2000) and 

proteins were separated by SDS-PAGE and transferred to PVDF membranes 

(Millipore). Western blot analysis was performed as previously described (Sibilia 

et al., 2000) with antibodies detecting EGFR (Upstate Biotechnology) and actin 

(Sigma). 

 

6.7 Isolation & culture of mouse keratinocytes 

Shaved mice were skinned and the subcutaneous tissue was scraped off. Small 

pieces of the skin were placed hairy side up onto 0.8% Trypsin/PBS (Invitrogen) 

and incubated 45 min at 37°C. Epidermis was separated from dermis and placed 

into low calcium medium (Sigma) containing 8% chelated FCS and 250µg/mL 

DNAse (Sigma). After 20 min shaking in a 37°C water bath, the suspension was 

filtered through a 70μm cell strainer (Becton Dickinson). Keratinocytes were 

seeded at a density of 6x106 cells/100mm dish onto vitrogen-fibronectin coated 

dishes in low calcium medium (Sigma) containing 8% chelated FCS and several 

other factors (Carroll et al., 1995) and incubated at 32°C, 5% CO2. 

 

6.8 Histological analysis 

Skin biopsies were fixed in 4% paraformaldehyde, embedded in paraffin and cut 

into 5µm sections. Prior to staining, sections were dewaxed in xylene and re-

hydrated through a series of ethanol dilution (100%, 95%, 90%, 80%, 70% and 

30%) and incubated in water for 10 minutes. Rehydrated sections were stained 

with Harris haematoxylin and eosin (H&E, Sigma) according to standard 

procedures. Giemsa and Fontana Masson stainings were also performed 

according to standard procedures. Images were obtained with a Nikon eclipse 

80i microscope; histomorphometric analysis was perfomed with Lucia software. 

Staging of hair follicles was performed according to the guide for the recognition 

and classification of distinct stages of hair follicle morphogenesis (Paus et al., 

1999). 
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6.9 Dye exclusion assay 

Embryos were incubated for 1 min in 25, 50, and 75% methanol in PBS, 

followed by a 1 min incubation in 100% methanol, and a descending series of 

incubations in 75, 50, and 25% methanol in PBS for 1 min. Embryos were then 

washed in PBS for 1 min and stained with 0.1% toluidine blue O (Sigma) for 10 

min. 

 

6.10 Wound healing assay 

To address the function of EGFR in wound healing, 5mm full thickness punch 

wounds were placed with sterile punching devices at the back of adult 

tamoxifen-treated EGFR∆epER mice and their littermate controls, and of 

hEGFRKI/KI and their wild-type littermates, as well as of 3.5-week old EGFR∆ep 

mice and their controls. Skin biopsies were isolated at different time points after 

injury and processed for histological analysis. 

 

6.11 Flow cytometric analysis 

Cell suspensions from epidermis and dermis were isolated as described above 

and filtered through a 70µm nylon mesh, counted and stained with mAbs for 30 

min in PBS + 5% FCS at 4°C after blocking with Fc-block (BD Pharmingen). 

The following mAbs were used: anti-CD3-PE (clone145-2C11), anti-CD11c-

FITC (clone HL3), anti-CD45-APC (clone 30F11), anti-MHCII-FITC (clone 2G9), 

all from BD Pharmingen; and anti-CD4-TC (clone RM4-5), anti-CD8α-Alexa 647 

(clone 5H10), anti-CD11b-FITC (clone M1/70.15) and anti-Ly6C/G (clone RB6-

8C5), all from CALTAG laboratories. Dead cells were excluded by adding 7AAD 

(Sigma) at a final concentration of 1µg/mL after the last washing step.  

Popliteal, inguinal, brachial, axillar and retroauricular lymph nodes were pooled, 

minced and filtered through a 70µm nylon mesh, counted and, after blocking, 

stained with the following antibodies: Anti-CD4-PE-Cy7 (clone RM4-5), anti-

CD25-biotinylated (clone PC61, both BD Biosciences) and anti-CD8α (clone 52-

6.7, Biolegend). Cells were washed twice with PBS/FCS and fixed in 2% 

paraformaldehyde over night. The next day cells were washed and the cell 

pellet was resuspended in 1x Perm/Wash (BD Biosciences), pelleted and again 
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resuspended in 500µLof 1x Perm/Wash. After 15 min of permeabilization at 

room temperature the cell suspension was centrifuged and cells were 

resuspended in 50µLPerm/Wash. For intracellular staining the following 

antibiodies were added: anti-FoxP3-A647 (clone150D, Biolegend) or mouse 

IgG1 (clone MOPC-21) as an isotype control. Cells were stained 30 minutes 

on ice and washed once in Perm/Wash and 2x in PBS/FCS before acquisition 

on the flow cytometer. Data were acquired on a LSR-II flow cytometer (BD 

Biosciences) and analyzed with CellQuest software (BD Biosciences). 

 

6.12 Statistical methods 

All experiments were repeated at least twice and done in triplicates. Data were 

evaluated using a Student’s two-tailed t test. p<0.05 was taken to be statistically 

significant. In Figures 9F and 11F data were analyzed by a Log-rank (Mantel-

Cox) test. 
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