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ABSTRACT 

 

Conversion of PtdIns-4,5-biphosphate (PIP2) to PtdIns-3, 4,5-triphosphate (PIP3) by 

Phosphoinositide 3-kinases (PI3K) is crucial in various diverse cellular processes 

such as metabolism, growth, survival and migration. Phosphatase and tensin 

homologue deleted on chromosome 10 (PTEN) is the most famous opponent of PI3K 

activity. Knockout of PTEN and thus hyperactive PI3K signaling was shown to limit 

immune responses and excessive host tissue damage. We hypothesized that myeloid 

specific deletion of PTEN modulates inflammatory responses in murine models of 

chronic inflammation. 

In atherosclerosis, myeloid specific PTEN knockout led to increased foam cell 

formation in vitro independent of scavenger receptor expression. Atherosclerotic 

plaque formation was not significantly altered in mice aged 16 weeks, but an effect is 

expected to be seen in older mice. 

In rheumatoid arthritis, PTEN deficiency in myeloid cells was demonstrated to be 

beneficial for mice suffering from Collagen-induced arthritis (CIA). In this model of 

non-infectious exacerbated immune response, mice with sustained PI3K activation 

had a significantly lower or no response at all. Histology revealed less inflammation 

and bone erosion in synovial joints of PTEN -/- mice and additionally, plasma cytokine 

release was diminished. 

PTEN deficient bone-marrow derived dendritic cells also demonstrated anti-

inflammatory properties, such as reduced IL-6 production and release. Important to 

mention in this context are the diminished IL-12 and IL-23 levels, which are important 

in T helper cell differentiation. 

To sum up, PI3K signaling was shown to act anti-inflammatory and inhibition of PTEN 

might be a potent target for treatment of various autoimmune diseases such as 

rheumatoid arthritis and possibly also multiple sclerosis. 
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ZUSAMMENFASSUNG 

 

Umwandlung von PtdIns-4,5-biphosphat (PIP2) zu PtdIns-3, 4,5-triphosphat (PIP3) 

durch Phosphoinositid 3-kinasen (PI3K) ist essentiell in verschiedenen zellulären 

Prozessen wie z. B. Metabolismus, Wachstum, Überleben und Chemotaxis. 

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) ist der 

bekannteste Gegenspieler zur PI3K Aktivität. Durch Knockout von PTEN und dadurch 

Verstärkung des PI3K Signalweges wurde bereits gezeigt, dass die Immunantwort 

und auch übermäßiger Gewebsschaden vermindert war. Daraufhin stellten wir die 

Hypothese auf, dass Defizienz von PTEN einen bedeutenden Einfluss auf die 

Immunantwort in Mausmodellen für chronische Entzündung hat. 

Im Modell für Atherosklerose führte PTEN Knockout in myeloiden Zellen zu 

verstärkter Bildung von Schaumzellen in einem Prozess unabhängig von der 

Expression von Scavenger Receptors. Die Bildung von atherosklerotischen Plaques 

war allerdings nicht signifikant verändert in 16 Wochen alten Mäusen. Wir erwarten 

aber, dass ältere PTEN Knockout Mäuse sehr wohl unterschiedlich reagieren. 

Diese Diplomarbeit zeigt, dass PTEN Defizienz in myeloiden Zellen sich günstig 

auswirkt auf KOllagen-induzierte Arthritis. In diesem Mausmodell für rheumatoide 

Arthritis zeigten Mäuse mit einer verstärkten PI3K Aktivierung signifikant reduzierte 

oder sogar keine Krankheitszeichen. In histologischen Gelenksschnitten von PTEN -/- 

Mäusen wurde verminderte Entzündung und Knochenerosion beobachtet. Außerdem 

war die Freisetzung von Zytokinen ins Plasma vermindert. 

In vitro wurden PTEN defiziente dendritische Zellen aus Knochenmark gezüchtet, 

welche auch die oben beschriebenen anti-inflammatorischen Eigenschaften, wie 

verminderte IL-6 Produktion und Freisetzung zeigten. Wichtig dabei ist auch die 

Verringerung der IL-12 und IL-23 Level, die wichtig in der T Helfer Zell 

Differenzierung wichtig sind.  

Zusammenfassend wurde gezeigt, dass der PI3K Signalweg anti-inflammatorisch 

wirkt und dass PTEN ein potentielles Zielgen zur Behandlung von 

Autoimmunkrankheiten wie rheumatoider Arthritis darstellen kann.
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1. INTRODUCTION 

1.1 Signaling via the PI3K/PTEN pathway 

 

1.1.1 The Phosphoinositide 3-kinase family 

 

Phosphoinositide 3-kinases, abbreviated PI3K, are signal-transducing lipid kinases 

that are defined as catalysing the phosphoylation of phosphoinositide PtdIns-4,5-

biphosphate (PIP2) on the D3 carbon of the inositol ring to produce PtdIns-3,4,5-

triphosphate (PIP3). (Figure 1.1)  

 

 
Figure 1.1: Schematic representation of the activation of different class 1 PI3-kinases. Class 1 A PI3K 

is activated by RTKs and consists of catalytic subunit p110α, p110β or p110δ associated with 

regulatory subunit p85α or p85β. Class 1 B PI3K is activated by GPCRs and consists of catalytic 
p110γ and regulatory p101. Both subclasses generate PI(3,4,5)P3 out of PI(4,5)P2. PTEN as a PI3K 

antagonist dephosphoylates PIP3 at position 3. (modified from (Gunzl and Schabbauer, 2008)) 
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PI3Ks have been quite early correlated with viral oncoproteins (Whitman et al., 1985) 

and are since then seen as important players in human cancer. (Marone et al., 2008) 

Only recently, PI3K has shown to be implicated in the pathogenesis of inflammatory 

diseases, with effects being more or less independent form originally found PI3K 

functions such as cell growth, proliferation and survival.(Fruman et al., 1999) 

According to Domin & Waterfield, 3 main classes of PI3K were defined based on 

structure and regulation. (Domin and Waterfield, 1997) (Figure 1.2) The probably 

most important one and thus the best understood is Class I. It can be subdivided into 

class IA and class IB.  

 

 

 

Figure 1.2:  The 3 different classes of PI3-Kinases as defined by Domin & Waterfield. ((Domin and 

Waterfield, 1997)) 

 

 

Class 1A enzymes consist of a catalytic domain (p110α, p110β or p110δ) associated 

with regulatory subunits (p85α, p85β, p55α, p50α or p55γ).(Fruman et al., 2000) 



  9 

Class 1B consists of p110γ as a catalytic subunit and p101 as regulatory 

domain.(Carpenter et al., 1990) 

 

1.1.2 Activation of PI3 kinases 

 

PI3Kinases can be activated upon a plethora of stimuli including growth factors, 

cytokines, hormones and neurotransmitters. In terms of activation, there are some 

major differences between class 1A and class 1B PI3K. Whereas the first becomes 

mainly activated by receptor tyrosine kinases and ligands such as insulin or growth 

factors, the latter is stimulated by G-protein coupled receptors, which are influenced 

mainly by chemokines.(Figures 1.1 and 1.3) 

 

 
 

Figure 1.3: Simplified scheme for activation and downstream effects of PI3K.(Marone et al., 2008) 
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1.1.3 Cellular processes upon PI3K activation 

 

 

 

 

Figure 1.4:  Summary of the PI3K-Akt signalling pathway (by Cell Signaling technologies) 

 

The formation of PIP3 leads to the activation of downstream targets containing a 

pleckstring homology (PH) domain. The most important in this context is Akt, also 

known as protein kinase B (PKB), which is a serine/threonine protein kinase 
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discovered in 1995.(Franke et al., 1995) Burgering and Coffer first suggested a role 

for Akt/PKB in PI3K signal transduction by inhibiting PI3K with Wortmannin and PI3K 

silencing. (Burgering and Coffer, 1995) 

Akt has now been reported to be involved in many cellular processes, notably cell 

proliferation and survival. Today there are 3 isoforms of Akt described: AKT1/PKBα, 

AKT2/PKBβ and AKT3/PKBγ, which are all highly homologous in terms of peptide 

sequence. (Manning and Cantley, 2007) Through binding to PIP3, Akt is 

phosphoylated at Thr308 and Ser473, mainly by PDK1 (phosphoinositide dependent 

kinase 1) and mTORC2 (mammalian target of rapamycin complex 2).  

 

Phosphoylated Akt then influences a variety of downstream genes depicted in figure 

1.4, for example inhibition of GSK-3 and Bad, which are responsible for the anti-

apoptotic effects of PI3K. Akt is considered as a classical oncogene, as many 

regulated genes influence cell growth, proliferation and survival. 

 

Negative regulation of Akt signaling can happen directly via dephosphoylation by 

PHLPP or indirectly through inhibition of PI3K signaling. 

 

 

1.1.4 PTEN and negative regulation of PI3K signalin g 

 

A negative regulator of the PI3K pathway is the phosphatase and tensin homologue 

deleted on chromosome 10, abbreviated PTEN. PTEN antagonizes PI3K by removing 

a phosphate group from PI(3,4,5)P3 to generate PI(4,5)P2. It has originally been 

found as an important tumour suppressor gene, as it stops PI3K-mediated 

proliferation and survival, but is now also seen as important in inflammatory context. 

(Li et al., 1997; Suzuki et al., 2001) It is a dual-specificity phosphatase and hydrolyzes 

ester bonds on thyrosine and serine/threonine residues of lipid substrates. (Myers et 

al., 1997) 
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Regulation of PTEN takes place at multiple levels, the most prominent one being 

probably phosphoylation and thus inactivation by casein kinase II. (Gericke et al., 

2006) 

Another inositol phosphatase family is SHIP (Src homology 2-containing-inositol 5'-

phosphatase).(Kalesnikoff et al., 2003) 

 

 

1.1.5 PI3K/PTEN in innate immune reactions 
 

It is still a controversially debated issue in research whether the PI3K/PTEN pathway 

acts predominantly pro- or anti-inflammatory. Using pharmacologic inhibition of PI3K 

signalling by the fungal metabolite Wortmannin or by the synthetic inhibitor 

LY294002, different studies found proofs for reduced as well as enhanced pro-

inflammatory gene expression. These contradictory effects might be explained by 

non-specific inhibition of targets other than PI3K. (Gunzl and Schabbauer, 2008) 

Using genetically modified mice, a clearer picture of the involvement of PI3K in innate 

immune responses can be drawn. In p85 alpha deficient cells, IL-12 expression upon 

TLR stimulation has been shown to be elevated. (Fukao et al., 2002) Yu et al. 

demonstrated that flagellin induced activation of PI3K via TLR5 and that chemical 

inhibition of PI3K as well as PI3K knockout in mice induced MAPK activation followed 

by enhanced expression of proinflammatory genes such as IL-6 and KC. (Yu et al., 

2006) In complete PI3K knockout mice generated by L. Cantley and in PTEN deficient 

cells it was shown that the PI3K-Akt pathway inhibits MAPK activation upon LPS 

stimulation, but that the NF-kappaB pathway was only marginally affected. (Luyendyk 

et al., 2008) Contrary to this are findings made by Artin et al. who claim that AKT and 

GSK3b have a direct effect on NF-kappaB activity. (Martin et al., 2005)  

In terms of inflammatory modulators, reduction in PI3K signalling leads to elevated 

TNF-alpha and IL-6 levels. (Luyendyk et al., 2008) In animal models of sepsis it has 

been shown that inhibition of PI3K by Wortmannin leads to increased cytokine 

production and reduced survival time in endotoxemia or cecal ligation and puncture-

induced polymicrobial sepsis. (Schabbauer et al., 2004; Williams et al., 2004) 
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PTEN has also recently become of interest in migration of neutrophils, where it 

functions as a discriminator that prioritizes responses to different chemoattractant 

signals. (Heit et al., 2008) This migratory defect has also been observed in our 

studies using flPTEN LysMcre mice in pneumonia. (Matt et al., manuscript in 

preparation) 

Recent data obtained in our laboratory suggest that the anti-inflammatory properties 

of the PI3K pathway are at least in part mediated by IL10/DUSP regulation. (Günzl et 

al., manuscript in preparation) Figure 1.5 depicts our current working hypothesis. 

 

LPS

T
IR

T
IR

D
D

MyD88

TLR4

D
D

IRAK

IKKp38 ERK JNK

AP-1 EGR-1 NF-κB
IL-6 IL-10

TF TNF

DUSP1

PI3K
PTEN

DUSP1

P

IL-10

IL-10R

LPS

T
IR

T
IR

D
D

MyD88

TLR4

D
D

IRAK

IKKp38 ERK JNK

AP-1 EGR-1 NF-κB
IL-6 IL-10

TF TNF

DUSP1

PI3K
PTEN

DUSP1

P

IL-10

IL-10R

 
 

Figure 1.5:  PI3K negatively regulates TLR signalling by dampening the MAP-Kinase response through 

regulation of DUSP1 on mRNA and protein level. (Günzl et al., manuscript in preparation) 

 

 

1.1.6 Knockout mice available to study the PI3K/PTE N pathway 

In this diploma thesis, different types of knockout mice were used. To study PTEN 

function, a complete knockout mouse has been designed by Cristofano et al. (Di 

Cristofano et al., 1998) As it shows embryonic lethality at approximately day 7.5, 
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conditional PTEN knockout mice using the cre-loxP system have been developed. To 

study the function of myeloid cells in immune function, we used PTEN fl/fl LysMcre 

mice in which the PTEN gene is excised after induction of the Lysozyme M promoter. 

(Clausen et al., 1999)  

Another mouse strain using cre recombinase is the ap2cre flPTEN mouse, where 

PTEN is specifically excised in adipose tissue. (Kurlawalla-Martinez et al., 2005) 

Recent results obtained using conditional PTEN knockout mice have been reviewed 

by Suzuki et al. (Suzuki et al., 2008) 

For PI3K itself, many different strains are available. Of particular interest for our 

research purposes was the PI3K class 1A subunit p85α, for which two different 

knockout strains have been developed in the past. The first, published by L. Cantley 

(Fruman et al., 2000), lacks all isoforms (p85 alpha, p55 alpha and p50 alpha) and 

shows perinatal lethality with only a fraction of animals surviving the first weeks 

postnataly. One of the most obvious phenotypes of this mouse is excessive liver 

necrosis. The second available p85α-deficient mouse strain, developed by S. 

KOyasu, still expresses the smaller variants of p85α, namely p50α and p55α, leading 

to a quite normal phenotype. It can thus be concluded that these isoforms can at least 

partially compensate for the deletion of the full gene product. (Terauchi et al., 1999) 

 

 

1.2 The innate immune system 

 

1.2.1 Inflammation  

 

Inflammation (Latin: inflammo – to set on fire) is the reaction of the body to noxious 

stimuli and conditions such as infections and tissue injury. (Medzhitov, 2008) Its 

primary goal is to remove potentially dangerous substances and allow tissue 

regeneration.  

Inflammation can be subdivided into acute and chronic forms. Acute inflammation 

represents the immediate answer of the body to invading pathogens or tissue injury 
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and is usually cleared within a period of a few days. If however the inflammatory 

stimulus, e.g. allergens, bacteria or chemicals, persists, the inflammation cannot be 

resolved. This situation is then called chronic inflammation. Another example of a 

pathological situation is dysregulated inflammation as it is the case in septic patients. 

 

1.2.2 The human immune system 

The human immune system with its two arms, innate and adaptive, has to fulfil the 3 

basal principles to help its host survive: (Beutler, 2004) 

• Recognition of pathogens (as many as possible) 

• Kill pathogens upon recognition 

• Establish self-tolerance 

In this system, mechanisms and cells of innate immunity provide initial defense and 

act within hours upon infection. It consists mainly of physical barriers, phagocytes, 

complement, NK cells and its respective receptors and will be discussed in greater 

detail later on. As a contrast, adaptive immune responses are more specific and act 

later on in the time course of infection. The respective cells are T and B cells, but also 

antibodies as the humoral part. (Medzhitov and Janeway, 1998) As our research 

mainly focused on innate innate immune responses and T helper cell activation, the 

other components of the adaptive immune system will not further be described. 

 

 

1.2.3 The innate immune system - receptors 

 

1.2.3.1 Pattern recognition receptors 

Pattern recognition receptors (PRRs) are receptors of the innate immune system that 

recognize pathogen-associated molecular patterns (PAMPs) and trigger antimicrobial 

functions of leukocytes. (Medzhitov, 2001) These receptors can either be membrane-

bound, cytoplasmatic or secreted components. Examples for such receptors are toll-

like receptors (TLRs), scavenger receptors and NOD-like receptors (NLRs). 

(Medzhitov, 2008) 
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1.2.3.2 Toll-like receptors 

TLRs have been first described by Medzhitov et al. in 1997 as human homologues of 

the Drosophila melanogaster protein toll and were shown to activate the NF-kappaB 

pathway and subsequently adaptive immune system. (Medzhitov et al., 1997) 

Probably the most prominent example for a PRR-PAMP interaction is the recognition 

of the bacterial endotoxin lipopolysaccharide (LPS) by TLR-4, first described by B. 

Beutler’s group in 1998. (Poltorak et al., 1998) For correct recognition of LPS, 

accessory molecules like LBP (LPS binding protein), CD14 and MD-2 are necessary. 

(Medzhitov, 2001) TLR-2 recognizes a wide variety of microbial surface products as 

summarized in figure 1.6. This is possible due to interaction with TLR1 and TLR6. 

TLR-3 is predominantly expressed in dendritic cells and has been shown to recognize 

dsRNA. (Alexopoulou et al., 2001) TLR-5 is a sensor for bacterial flagellin which in 

turn activates the NF-kappaB pathway and thus TNF-alpha. (Hayashi et al., 2001) 

Another innate immune receptor is TLR-9 which recognizes unmethylated CpG DNA. 

(Hemmi et al., 2000) 

 
Figure 1.6:  Toll-like receptors recognize a variety of pathogens, for example microbial surface proteins 

such as LPS, Flagellin or PGN. (Medzhitov, 2001) 
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Signalling downstream of TLRs is often shared and requires MyD88, TOLLIP (Toll-

interacting protein), IRAK (IL-1R associated kinase) and TRAF-6 (TNF-receptor 

associated factor 6). Toll-like receptors are also seen as important activators of 

adaptive immunity as summarized in figure 1.7. 

 

 
Figure 1.7:  TLRs expressed on dendritic cells (DCs) are important stimulators of the adaptive immune 

system. Pathogens bind to Pathogen Recognition Receptors (PRRs)/TLRs on DCs and stimulate naïve 

T cells through direct interaction or release of cytokines. As a consequence, T cells differentiate into 

different subtypes such as Th1 or Th2.  (Medzhitov, 2001) 

 

 

1.2.3.3 Scavenger receptors 

Scavenger receptors (SRs) are a six subgroups comprising family of glycoproteins 

present on the cell surface that were originally defined by binding modified low 

density lipoproteins (mLDL). SRs play important roles in atherogenesis but also more 
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general in innate immune regulation by macrophages. (Peiser and Gordon, 2001) The 

principal receptors responsible for uptake of modified LDL into macrophages and 

subsequent foam cell formation are SR-A and CD36. (Kunjathoor et al., 2002) 

According to Peiser and Gordon, SRs not only play a role in endocytosis of mLDL, but 

also in adhesion, phagocytosis and pattern recognition. (Peiser and Gordon, 2001) 

Oxidized phospholipids, especially four oxidized 1-palmitoyl-2-arachidonyl-

phosphatidylcholine (oxPAPC) species, have been shown to serve as ligands for SR 

CD36 and are enriched in atherosclerotic lesions. (Podrez et al., 2002a; Podrez et al., 

2002b)  

 

 

1.2.4 The innate immune system – cells of the (inna te) immune system 

 

1.2.4.1 Macrophages 

Macrophages are mononuclear phagocytes derived from blood monocytes that 

belong to the myeloid lineage of leukocytes. They are present all over the body and 

appear as diverse species in different organs, for example brain microglial cells or 

Kupffer cells present in the liver. (Beutler, 2004) Also for research purposes, different 

macrophage lineages have to be considered, like alveolar, bone-marrow-derived, 

thioglycollate-elicited, or osteoclasts. 

Macrophages as well as dendritic cells play an essential role in the initial phase of 

inflammation as they recruit polymorphonuclear leukocytes (neutrophils, basophils, 

eosinophils) to the site of infection. (Beutler, 2004) Macrophages are also able to 

engulf and kill cells, but the more specialized cells to do this task are neutrophils, 

which are short-lived cells present in high numbers in conditions of severe infection. 

In terms of activation of the adaptive immune response, myeloid cells of the innate 

immune system play a vital role as antigen presenting cells (APCs) and in producing 

pro-inflammatory cytokines such as IL-12, CD40L, IL-1, type I interferons, and TNF. 

(Beutler, 2004) 
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1.2.4.2 Dendritic cells 

Dendritic cells are cells of myeloid or lymphoid origin that were first described in 1973 

as cells similar to macrophages present in small numbers lymphoid organs. 

(Steinman and Cohn, 1973) Dendritic cells (DC) are now known to influence many 

different classes of lymphocytes (T, B, NK cells) and many types of T cell responses 

(Th1/Th2/Th17, regulatory T cells, peripheral T cell deletion). (Lebre and Tak, 2008) 

In their function as professional antigen presenting cells, they migrate to the T cell 

zones in lymphoid organs and activate T cells to respond to antigen by secreting 

cytokines and by direct cell-cell contact via B7 receptor (on DC) – CD28 (on 

lymphocyte) interaction. (Guermonprez et al., 2002) 

 

1.2.4.3 T helper cells  

T cells are divided into CD8 positive cytotoxic and CD4 positive T helper cells. It has 

long been established, that T helper cells can further be separated into Th1 and Th2 

subsets. In this respect, IL-12 is an important cytokine that drives CD4 positive T cells 

into Th1 helper cell differentiation, which then produce IFN-gamma. The Th1 driven 

immune response is cell-mediated, B-cells mainly produce opsonising IgG antibodies, 

pathogens are immediately destroyed with the side effect of massive tissue 

destruction. (Szabo et al., 2003) There is no evidence for a Th2-inducing cytokine in 

dendritic cells that induce Th2 differentiation, but it is assumed, that indirect effects 

such as inhibition of IL-12 production by IL-10 favour a Th2 response. (Moser and 

Murphy, 2000) Th2 cells are important in humoral immunity and are thought to play a 

role in allergy pathogenesis. 

Only recently, a new subtype of Th cells has been described. Its main characteristic is 

that it produces IL-17 and is thus called Th17. Originally described in 2005, 

development and function of Th17 cells now provide a fast-evolving area of research. 

(Harrington et al., 2005) The main stimulus for Th17 cell development seems to be IL-

6, but also mediated at least in part by TGF-beta and IL-1. IL-23 is thought to be 

essential in final steps of Th17 differentiation. (Dong, 2008) 

The process of differentiation is summed up in figure 1.8. 
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Figure 1.8:  Differentiation of naïve CD4 positive T cells to T helper cell subsets. (Dong, 2008) 

 

 

 

 

1.3 Atherosclerosis 

 

1.3.1 Atherosclerosis - epidemiology 

 

Cardiovascular disease (CVD) is still the single most common cause of death in 

Western countries. (Heald et al., 2006) As an example, 38% of all deaths in the 

United States in 2001 were due to CVD. (Murray et al., 2006) Among these, coronary 

heart disease and stroke account for the major part. Ischaemic heart disease and 

cerebrovascular disease are the leading causes of death in low- as well as high-

income countries. (Figure 1.9) 
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Figure 1.9:  Death rates by disease group and region in 1990 and 2001 for adults aged 15–59 years. 

The red areas represent cardiovascular diseases, which are the most common cause of death in 

Europe and Central Asia. (Lopez et al., 2006) 

 

Most important risk factors for these diseases are high arterial blood pressure, 

elevated cholesterol and glucose levels and cigarette smoking. (Devereux and 

Alderman, 1993) As the number of risk factors increases, so does the severity of 

atherosclerosis, even in young people. (Berenson et al., 1998) 

Atherosclerosis as a disease affecting the blood vessels is seen as the main 

physiological contributor to CVD. The relationship between hypercholesteraemia and 

atheroma formation has been established for a long time. A more recent approach is 

the association of inflammatory processes and atherogenesis. (Libby, 2002) 

 

1.3.2 Vessel wall anatomy 
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Atherosclerosis is a disease caused by accumulation of lipids and fibrous elements in 

the large arteries. (Libby, 2002) To further describe formation of these lesions, known 

as atherosclerotic plaques, basic microscopic anatomy of the arterial wall is 

necessary. 

Directly surrounding the arterial lumen is the intima, which consists of a single 

epithelial layer and a basement membrane. The middle layer, called media, contains 

mainly smooth muscle cells embedded in extracellular matrix. The outermost layer is 

the tunica externa, also known as adventitia, composed of connective tissue. The 

layers are separated by internal and external elastic laminae.  (Figure 1.10) 

 

 

Figure 1.10:  Anatomy of a healthy vessel wall: Surrounding the vessel lumen are Intima, Media and 

Adventitia, each separated by elastic laminae. (Picture from http://radiopaedia.org/articles/histology-of-

blood-vessels)  

 

 

In pathological situations, different inflammatory cells, dead cells and cholesterol 

accumulate in the arterial intima and thus form an atherosclerotic plaque. A schematic 

view of an advanced atherosclerotic plaque is depicted in figure 1.11. 
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Figure 1.11:  Content of an atherosclerotic plaque. Accumulation of lipid loaden foam cells and 

macrophages in the arterial intima is the main characteristic of an atherosclerotic plaque. In late 

lesions, cellular debris and cholesterol accumulate in the necrotic core. (Hansson and Libby, 2006) 

 

1.3.3 Atherogenesis 

 

Atherosclerotic plaque formation starts with expression of vascular cell-adhesion 

molecule 1 (VCAM-1) on endothelial cells, caused by intimal cholesterol 

accumulation. (Cybulsky et al., 2001) VCAM-1 is the main contributor to attract 

monocytes and later also T lymphocytes to the endothelium. After adhering to the 

endothelium, monocytes start entering the intima. Responsible for this process is 

mainly the chemokine macrophage chemotactic protein-1 (MCP-1). (Gu et al., 1998)  

Macrophage colony-stimulating factor (M-CSF) then allows intimal monocytes to 

differentiate into mature macrophages. This is accompanied by enhanced expression 

of scavenger receptor A (SRA) and CD36. Through these cell surface receptors, 

macrophages are able to take up lipids from the periphery and form so-called foam 

cells, named after their characteristic lipid-laden cytoplasmatic droplets. In advanced 

lesions, death of foam cells and resulting cell debris leads to further inflammation 

which worsens the outcome.  

Figure 1.12 nicely summarises the role of mononuclear phagocytes in atherogenesis. 
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Figure 1.12:  The role of macrophages in atherosclerotic plaque development: Blood monocytes are 

recruited to the arterial intima by VCAM-1. MCP-1 then drives migration of monocytes into the intima. 

Monocytes then differentiate into macrophages and take up modified lipoprotein particles via 

scavenger receptors, forming foam cells. (Libby, 2002) 

 

Histologically, different stages of plaque formation can be distinguished: The initial 

lesion with only isolated foam cells is present in almost every individual. Also the 

slightly advanced fatty streaks are no major problem in terms of CVD risk. It starts 

getting dangerous in the conversion of early to advanced atheromas, which is mainly 

characterized by thinning of the fibrous cap. Thin fibrous caps are prone to rupture, 

resulting in thrombosis and its possible clinical complications, mainly myocardial 

infarction. (Libby, 2002) 

In all these processes, immune responses, innate as well as adaptive mechanisms, 

are involved. (Libby et al., 2002) 

 

1.3.4 Experimental systems to study atherosclerosis  in mice 

 

Up to now, two different animals have proven to be particularly useful to mimic 

atherosclerotic processes in mice. Knockout of the gene for apolipoprotein E (ApoE), 
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a key component of the cholesterol metabolism in mice leads to development of 

spontaneous hypercholesteraemia and atherosclerotic disease patterns. (Plump et 

al., 1992) Feeding mice an atherogenic, Western-type diet further enhances this 

process. Another model is deficiency for the low-density-lipoprotein receptor (LDLR) 

which is usually intensified by feeding of a high fat diet to develop sufficient 

hypercholesteraemia and atherosclerotic plaques. (Hansson and Libby, 2006) In this 

context it is important to mention that, contrary to humans, cardiovascular events are 

not observed in dyslipidemic mice because mice usually keep their thick fibrous cap. 

To assess the effect of possible atherosclerosis-related genes, cross-breeding with 

ApoE -/- mice or bone marrow transplantation in LDLR -/- mice can offer important 

insights.  

 

 

1.3.5 A potential role for PI3K/PTEN in atheroscler osis 

 

Biwa et al. showed that stimulation of macrophages with oxidized LDL leads to 

activation of the PI3K signalling axis and that this further induces proliferation of 

macrophages using the pharmacologic PI3K inhibitor Wortmannin. (Biwa et al., 2000) 

Also Joe Witztum showed activation of PI3K and downstream AKT signaling by 

minimally oxidized LDL. (Miller et al., 2005; Miller et al., 2003)  

Also clinically efficient lipid lowering drugs, the HMG-CoA reductase inhibitors, known 

as statins were shown to activate PI3K signalling. (Dimmeler et al., 2001)  

In terms of in vivo studies, L. Cantley’s group demonstrated that deletion of the gene 

for PI3K subunit p110 gamma attenuates murine atherosclerosis. (Chang et al., 2007)  

In terms of the PI3K signalling regulator, no effect on atheroma development in ApoE 

-/- PTEN haplodeficient mice could be seen. (Andres et al., 2006) But as PTEN 

heterozygosity does not always show an effect, full PTEN knockout mice have to be 

studied. 
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1.4 Arthritis 

 

1.4.1 Rheumatoid arthritis, an overview 

 

Arthritis (Greek for joint inflammation) is one of the leading causes of disability in 

people aged over 55 years. Different forms of this disease are described, subdivided 

by the main cause of joint destruction. The most common type is osteoarthritis, which 

is usually caused by trauma of the joint, joint infection or age. Examples for other 

primary forms of arthritis are rheumatoid arthritis (RA), gout and septic arthritis.  

Parts of this diploma thesis focus on rheumatoid arthritis, which is described as a 

chronic autoimmune disorder and affects about 1% of the Western population. (Lebre 

and Tak, 2008) Clinical symptoms of rheumatoid arthritis are pain, swelling, stiffness 

and loss of function of the joints. Areas that are most often impaired by RA are higher 

extremities, especially joints of the hands and fingers, but as the disease progresses, 

also other joints of the body can be inflamed. Epidemiologically, women are 3 times 

more affected than men and in contrast to osteoarthritis, also younger individuals are 

subjects to RA. 

Current therapy focuses to alleviate symptoms, reduce joint destruction and prevent 

disease onset. Disease modifying antirheumatic drugs (DMARDs) are defined as 

useful drugs to slow down rheumatoid arthritis disease progression. The most 

important ones currently in use are methotrexate and different TNF inhibitors. 

To study physiological processes in RA, the animal model of collagen induced 

arthritis (CIA) is probably most useful to provide new insights into disease 

progression. In this model, collagen II is injected into mice aged 4-12 weeks together 

with complete Freund’s adjuvant (CFA) and Mycobacterium tuberculosis. (Luross and 

Williams, 2001) Using this model, effects of gene knockout can be studied in greater 

detail. It is also clinically relevant as collagen type II antibodies are present in patient 

samples and also reflect inflammatory activity measured by TNF-alpha and IL-6 levels 

in these individuals. (Cook et al., 1996; Kim et al., 2000) 
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1.4.2 Potential role for the PTEN/PI3K pathway in r heumatoid 

arthritis 

 

L-12, which is composed of p40 and p35 subunits seems to have an important role in 

the development and establishment of CIA and thus RA. (Joosten et al., 1997) IL12 is 

a cytokine that classically drives the Th1 type of inflammatory response, which is 

characterized by excessive IFN-gamma production. A consequence of this 

predominant Th1 response is massive tissue destruction as it is present in RA. 

IL-12 production has been shown to be suppressed by PI3K. Furthermore, production 

of Th2 cytokines, namely IL-4 and IL-5 has been shown to be reduced in PI3K 

knockout mice. (Fukao et al., 2002) Fukao et al. also state, that differentially regulated 

p38 in PI3K knockout cells might account for the different IL-12 levels. (Fukao et al., 

2002) In PTEN deficient cells, the opposite was observed, namely they produce less 

IL-12 and TNF, but more IL-10. (Kuroda et al., 2008) 

A Swiss group demonstrated that PI3K p110 gamma knockout mice are protected in 

animal models of rheumatoid arthritis. Also, a specific PI3K gamma inhibitor 

suppresses disease progression. They claim that the effect is caused by decreased 

neutrophil influx in the -/- mice. (Camps et al., 2005) 

Somewhat contradictory to their findings are the obervations made in the neutrophil 

specific (Ela2cre) PTEN knockout mouse which was found to be protected in a 

serum-transfer model of arthritis. They also demonstrate reduced neutrophil influx 

due to impaired chemotaxis in PTEN KO animals. (Heit et al., 2008)  

Another group investigated adenovirus-mediated PTEN transfer into rats and found 

amelioration of CIA symptoms. (Wang et al., 2008) 
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2. OBJECTIVES 

 

The aim of this thesis was to further elucidate the beneficial role of the PI3K-PTEN 

pathway in different experimental settings. In order to ensure relevance of this issue 

in vivo and not only in the cell culture dish, different animal models have been 

applied. 

PTEN has already been studied in various cancer-related contexts, but has only 

recently attracted the attention of immunologists. (Suzuki et al., 2001) It was shown to 

be important in neutrophil chemotaxis,(Heit et al., 2008) but also in limiting the 

cytokine release upon endotoxin challenge. (Luyendyk et al., 2008)  

Inflammation plays an important role in the pathology of atherosclerosis. (Glass and 

Witztum, 2001; Libby, 2002) An important process in atherogenesis is the influx of 

macrophages in the arterial intima and subsequent foam cell formation. As our PTEN 

deficient macrophages showed decreased inflammatory response in various 

experimental settings, we speculated that PTEN deficiency might also influence the 

outcome in an animal model of atherosclerosis. We thus used in vivo as well as in 

vitro methods to determine the outcome of macrophage specific PTEN knockout on 

atherosclerotic processes. 

 

Another animal model where an overwhelming inflammatory response is detrimental 

is the collagen-induced arthritis model for autoimmunity. In this context, Fukao et al. 

nicely demonstrated that disruption of the PI3K signalling pathway leads to enhanced 

IL-12 production and, as a consequence, a dominant Th1 driven immune response. 

(Fukao et al., 2002) As knockout of PTEN enhances PI3K dependent signalling, we 

speculated that in our animal model of rheumatoid arthritis, PTEN might play a 

beneficial role by limiting pro-inflammatory T helper cell responses. We thus used 

myeloid specific PTEN knockout mice to study the role of this gene in the interplay 

between innate and adaptive immunity. 



  29 

3. MATERIALS AND METHODS 

 

3.1 Materials 

 

Lysis buffer  (ready to use) for genotyping of mice contains:       

Tris-Cl 100mM (pH 8.0)   12.11g/100ml  

EDTA 5mM (pH 8.0)        18.61g/100ml  

SDS 0.2%                 20g/100ml  

NaCl 200mM                 11.69g/100ml  

 

TAE (50X) (Tris, Acetic Acid, EDTA) 

 900ml dH2O 

 242g Tris Base  

 57,1ml Glacial Acetic Acid  

 18,6 g EDTA  

 dH2O up to 1 liter 

 

PBS (10x) (Phosphate Buffered Saline) 

 800ml dH2O 

 80g NaCl 

 2.0g KCl 

 14,4g Na2HPO4 

 2,0g KH2PO4 

 adjust pH to 7,4 (with NaOH) 

 dH2O up to 1 liter 

 

PBST (Phosphate Buffered Saline Tween) 

 100ml PBS (10x) 

 5g Tween-20  
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dH2O up to 1 liter 

 

RPMI-1640 full medium  contains: 

 RPMI-1640 (Invitrogen, Karlsruhe, D) 

 10% FBS (Invitrogen, Karlsruhe, D) 

1% PSF (100U/ml penicillin, 100g/ml streptomycin, 0.25g/ml amphotericin) 

(Invitrogen, Karlsruhe, D) 

 1% L-Glutamine (Invitrogen, Karlsruhe, D) 

 

 

3.2 Mice experiments 

 

3.2.1 Mice handling 

 

PTEN fl/fl mice were obtained by T.W. Mak (Suzuki et al., 2001), LysM cre transgenic 

mice were kindly provided by R. Johnson. (Peyssonnaux et al., 2005) ApoE 

transgenic mice were a kind gift of C.J. Binder. 

Mice were bred in the basement facility of our institute in compliance with Austrian 

laboratory animal law and institutional guidelines. The health status of our mice was 

regularly checked. 

A convenient surrounding for mice was provided by continuous ventilation, constant 

temperature (20-22°C) and a 12h day/night light-cyc le. Breeding cages usually 

consisted of 1 male and 2-3 females. Pups were weaned at 3-4 weeks of age 

according to sex and genotype. At approximately 5 weeks of age, mice were 

genotyped. 

Some mice were kept on a high fat diet (Western Diet; SNIFF, Soest, Germany) to 

enhance lesion formation in atherosclerotic mice. 

Experiments were always performed with age-matched littermate controls. All mice 

were backcrossed onto a C57BL/6 background for at least 6 generations. 



  31 

3.2.2 Anaesthesia of mice 

For short time sedation, the inhalational anesthetic Forane® was used. Its huge 

advantage is that it does not interfere with inflammatory pathways and that it acts 

immediately and thus it is perfect for short procedures such as drawing blood. 

A mixture of Ketamine as a dissociative anesthetic and Xylazine as a powerful 

sedative/analgesic was used to anesthesize mice for longer periods of time. Usually 

we took 10% Ketaminol® and 5% Xylasol® diluted in sterile Ringer’s Solution and 

injected 10 times the bodyweight of a mouse (in µl) for up to two hours of anesthesia.  

 

3.2.3 Induction of collagen induced arthritis in mi ce 

 

According to materials and methods by Kai et al., 200µg of chicken type II collagen in 

0.05 M acetic acid together with an equal volume of complete Freund’s adjuvant 

(CFA) and heat-killed Mycobacterium tuberculosis were injected intradermally at the 

tail base of mice. (Kai et al., 2006) To ensure that effects are not caused by the 

adjuvant, a CFA-only control was used. A second injection (boost) was performed 3 

weeks later, and this day was designated as day 0.  

Mice were expected to develop severe hind paw arthritis 5 to 10 weeks after the 

second boost. Clinical scores of mice affected by arthritis were done on a regular 

basis. Mice were scored as described previously by assessing joint swelling and grip 

strength. (Redlich et al., 2002)  

 

Swelling was judged in all four paws by using a semi quantitative score:  

0  no swelling 

1  mild swelling of toes and ankle 

2 moderate swelling of toes and ankle 

3  severe swelling of toes and ankle 
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Grip was similarly assessed:  

0 normal grip strength 

–1  mildly reduced grip strength 

–2  severely reduced grip strength 

–3  no grip at all 

 

Both scores were then combined and are indicated as arthritis score. All assessments 

were performed in blinded fashion. 

Animals were killed 2 to 5 weeks after the boost. Histology of hind paws was 

performed by Birgit Niederreiter to visualize signs of arthritis such as cellular 

infiltrations, hyperplasia of synovial tissue and bone erosions. (Redlich et al., 2002) 

Histological TRAP stainings were then analysed by OsteoMeasure Analysis System 

(OsteoMetrics). 

Autoantibody levels were also kindly determined by members of the Division of 

Rheumatology, MUW. (Redlich et al., 2002) 

 

3.2.4 Genotyping mice 

 

3.2.4.1 Tissue preparation 

Mice were earmarked using an ear-tag punch (Fisher Scientific) according to the 

following scheme (Figure 3.2). Punched tissue or pieces of the tail were put into a 1.5 

Eppendorf tube.  

 

 

 

 

 

 

 

 

Figure 3.1:  Scheme for earmarking of mice 
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To lyse cells, 95µL lysis buffer (Tris-Cl 100mM, EDTA, SDS 0.2%, NaCl 200mM) and 

5 µL Proteinase K 10mg/mL, recombinant, PCR Grade (Roche Diagnostics, 

Mannheim, D) were added to each tissue sample. After at least 3 hours incubation 

(55°C, 650rpm), Proteinase K was diluted using 1 mL  ddH2O. In a centrifugation step 

(5 min, RT, 13 krpm) unlysed tissue was pelleted. Proteinase K was then finally 

inactivated through heat (10 min, 99°C, 650 rpm). S amples were spinned down and 

cooled. 

 

Polymerase chain reaction 

For amplification of the isolated mouse DNA, Polymerase chain reaction (PCR) was 

performed using the following mastermix: 

 5 µL  5x buffer (containing 1.5 mM MgCl2) 

 2.5 µL  dNTPs (2 mM) 

 1µL  Primer (10 pm/µL each) 

 1 µL   DNA lysate 

 0.125 µL GoTaq™ DNA Polymerase (Promega, Madison, WI, USA, 5u/µL) 

 15.375 µL ddH2O 

 

Primers: 

ApoE 

ApoE forward 1:10 5’-GCC TAG CCG AGG GAG AGC CG-3’ 

ApoE revers 1:20 5’-TGT GAC TTG GGA GCT CTG CAG C-3’ 

ApoE revers mut 1:20 5’-GCC GCC CCG ACT GCA TCT-3’ 

 

PTEN  

PTEN forward 1:10 5’-CTC CTC TAC TCC ATT CTT CCC-3’ 

PTEN revers 1:10 5’-ACT CCC ACC AAT GAA CAA AC-3’ 

 

Cre  

Cre forward 1:10 5’-TCG CGA TTA TCT TCT ATA TCT TCA G-3’ 

Cre revers 1:10 5’-GCT CGA CCA GTT TAG TTA CCC-3’ 
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PCR programs: 

 

PTEN / Cre 

94° 3:00    

94° 0:45    

60° 0:45      35x  

72° 1:00 

72° 5:00 

15° 4ever 

Expected bands:  WT (PTEN) band: 228bp  

KO (floxed) band: 335bp 

   Cre band: 500bp 

 

ApoE 

94° 3:00    

94° 0:20    

68° 0:40      30x   

72° 2:00 

72° 5:00 

15° 4ever 

Expected bands:  WT band: 155bp 

KO band: 245bp 

 

PCR samples were applied on a 2% Agarose gel (5g Agarose in 250 mL 1x TAE-

buffer) containing EtBr (1:10000). 

 

3.2.5 Collection of blood 

 

Blood was either collected from the inferior vena cava or from the retroorbital sinus of 

anesthetized mice. Blood was mixed with sodium citrate (3.2% wt/vol) at a ratio of 
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10:1. To obtain plasma samples, whole blood was centrifuged (10min, 8 krpm) and 

the supernatant in different dilutions could be used for ELISA analysis. 

 

3.3 In vitro experiments 

 

3.3.1 Isolation of peritoneal macrophages 

 

2mL of Thioglycollate (4% in dH2O) were injected peritoneally to elicit the recruitment 

of macrophages into the peritoneum. After 3 days, mice were anesthetized with 

approximately 10x bodyweight (in µL) of a solution containing Ketamine and Xylazine. 

A peritoneal lavage was performed with 5 mL of RPMI -1640 media to obtain 

thioglycollate elicited macrophages. The cells were then centrifuged (5’, 1500rpm) 

and diluted in RPMI containing 10% Fetal Calf Serum, glutamine and antibiotics for a 

final concentration of 10^6 cells per mL. 

 

3.3.2 Isolation of bone marrow and differentiation of dendritic cells 

 

Mice were sacrificed either on dry ice or through cervical dislocation. Skin and 

muscles were removed from the long bones of the hind paws. Femur and tibia were 

flushed with pure RPMI-1640 medium to obtain murine bone marrow which then 

could be used to differentiate BM-derived dendritic cells.  

Dendritic cells were generated using RPMI full medium containing 10 to 15 µg/mL 

GM-CSF. After 7-9 days, cells in the supernatant were harvested and plated to use in 

experiments. 

BM-derived DCs were then analyzed by Stefan Blüml using standard FACS 

procedures to ensure proper differentiation. 
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3.3.3 Stimulation of macrophages 

 

Cells with a concentration of 106 /mL were plated on 12 well dishes. After 

approximately 2 hours incubation, the incubation medium was changed to remove 

non-adhering cells. On the following day, stimuli were added in the following final 

concentrations: 

LPS (Invitrogen Corp., Carlsbad, CA, USA): 1µg/mL 

OxLDL (see protocol for oxidation of LDL): 50µg/mL  

CpG: (Invivogen Corp., Carlsbad, CA, USA): 1-5 µM 

oxPAPC (see protocol for OxPL use): 20µg/mL 

 

3.3.4 Staining of foam cells using Oil Red O 

 

Medium was removed from the cells and fixative (IHC zinc fixative, BD) was added to 

the cells for at least 15 minutes at room temperature. After removing the fixative, the 

wells were washed once with 60% isopropanol. Then Oil Red O working solution (see 

instructions) was added to the dry wells. After 10 minutes, Oil Red O was removed 

and the wells were washed 5 times under running tap water. 

In order to elute Oil Red O, cells were washed with 30% isopropanol and then the 

stain was eluted with 100% isopropanol. Flourescence could be measured in a Bio-

Tek EL808 Ultra Microplate Reader (Bio-Tek Instruments, Winooski, VT, USA) at 

500nm. To counterstain the nuclei, cells were incubated with hematoxylin for 10 

seconds and washed again with water. 

 

3.3.5 Oxidation of LDL 

 

After determination of protein concentration using Bradford assay, LDL (kindly 

provided by V. Botchkov) was dialyzed against 3 litres of PBS at 4°C. After 6 to 8 

hours, the buffer was changed and dialysis continued overnight. On the next day, 

possible volume changes were noted and a small aliquot was taken as unoxidized 
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control. This aliquot was mixed with 0,01% BHT (butylated hydroxytoluene) and 200 

µM EDTA to avoid further oxidation. Remaining dialysed LDL was oxidized overnight 

at 37°C by adding 10mM CuSO4 to a final concentrati on of 10 µM. As a control for 

the oxidation process, conjugated dienes of oxidized and native LDL were measured 

by determining the optical density of a 20 µg/ml dilution at 235 nm. 

200 µM EDTA was then added to the oxidized LDL and further dialysis at 4°C 

overnight against 3 litres of PBS including 200 µM EDTA was done to stop the 

oxidation process. To remove precipitated proteins for long time storage, oxLDL was 

then centrifuged at 500 rpm for 20 min at 4°C. To a ssure purity, oxLDL was then 

sterile filtered (0,2 µm filter). To determine the exact protein concentration, a common 

used Bradford was performed. 

This oxidation was performed according to (Wang et al., 2008) and (Uda et al., 2006). 

 

3.3.6 Preparation of oxidized phospholipids for use  in cell culture 

 

Phospholipids dissolved in chloroform (10 mg/mL) and stored at -80°C were kindly 

provided by Olga Oskolkova. Phospholipid suspensions were prepared freshly for 

each experiment. Phospholipids were transferred into Falcon tubes and chloroform 

was evaporated under a stream of argon. Dried phospholipids were resuspended in 

prewarmed RPMI-1640 full (37°C) by vortexing at max imal speed for 30 seconds, 

incubating for 5 min at 37°C and again vortexing fo r 1 min. 

 

3.4 Isolation and staining of mouse aorta 

 

3.4.1 Isolation 

 

Mice were sacrificed on dry ice to prevent vascular damage of larger vessels. Blood 

was drawn from vena cava (heparinised 1mL syringe, 27G needle). Then, the vena 

cava was cut to allow perfusion with 10-20mL of 1x PBS to remove blood. To fix 
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tissue and plaques, the aorta was then perfused with 4% PFA in PBS. Then, organs, 

except for heart and kidney could be removed. Finally the aorta was dissected. Fat 

and the adventitia were removed to allow better staining. Then the aorta was opened 

longitudinally. During this procedure, the aorta and the heart / kidneys were still 

associated. After incubating the aorta in fixative for 3 days, they it could be pinned 

onto a black wax dissection pan. 

 

3.4.2 Staining of aorta 

 

Pinned aortas were incubated in 0.5% Sudan IV solution in 70% ethanol/acetone 

(1:1) for 15 minutes. Sudan IV was removed and 80% ethanol was added to the 

aortas 2-5 minutes until normal aortic regions containing no plaques appeared white. 

Ethanol was removed by washing the aortas 15 minutes under running tap water. 

Pictures were taken to allow quantification by Image J. 

 

3.5 Analysis methods 

 

3.5.2 ELISA enzyme-linked immunosorbent assay - Mea surement of 

Cytokines/Chemokines 

 

Blood samples (0.1 mL) were collected from the retro-orbital sinus. Plasma 

concentrations of TNF-alpha, IL-6, IL-10, E-selectin were measured using commercial 

DuoSet ELISA kits (R&D Systems, Minneapolis, MN, USA).  

 

3.6.2 Real-Time Polymerase Chain Reaction 

 

Total RNA was isolated from lysed cells using 0.8 mL of Trizol (Invitrogen). Samples 

were then used to synthesize cDNA using the SuperScript First-Strand Synthesis kit 
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(Invitrogen). To quantitate the levels of the desired mRNA, PCR primers were used at 

a final concentration of 900 nM and the probe at a final concentration of 900 ng per 

reaction under standard thermocycling conditions using a Fast SYBR Green 

Mastermix (Applied Biosystems, Foster City, CA, USA) and StepOne Real-Time PCR 

System (Applied Biosystems, Foster City, CA, USA). The melting curve was analysed 

after all SYBR runs to ensure that only a single PCR product is formed. Samples 

were normalized to levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

mRNA. Sequences of used primers are summed up in table 3.1 

 

Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

GAPDH GGTCGTATTGGGCGCCTGGTCACC CACACCCATGACGAACATGGGGGC 

IL-6 TGCAAGTGCATCATCGTTGTTC CCACGGCCTTCCCTACTTCA 

IL-10 TGGCCCAGAAATCAAGGAGC CAGCAGACTCAATACACACT 

PTEN ACACCGCCAAATTTAACTGC TACACCAGTCCGTCCCTTTC 

IL12p40 ACAGCACCAGCTTC-TTCATCAG CCTCACCCTCGGCATCCAGCAGC 

IL12p35 CCAAGGTCAGCGTTCCAACA AGAGGAGGTAGCGTGATTGACA 

IL23p19 TGGCTGTGCCTAGGAGTAGCA TTCATCCTCTTCTTCTCTTAGTAGATTCATA 

CD36 GGAGCAACTGGTGGATGGTT TTGAGACTCTGAAAGGATCAGCA 

SR-A3 GCTTCAGAAGATGCTGCTAGCC TGACTGCTTCTGGTGGAGAGC 

SR-B1 ACGGCCAGAAGCCAGTAGTC CGGTGTCGTTGTCATTGAAG 

SR-B2 GGTGTTGAACATCAGCATCTGC AACGAACTTCTCGTCGGCTTG 

CD36 GGAGCAACTGGTGGATGGTT TTGAGACTCTGAAAGGATCAGCA 

CD68 TGGCGCAGAATTCATCTCTTC GGTCAAGGTGAACAGCTGGAG 

MARCO TGATGCGACTGTCTTCTGTCG CATTGTCCAGCCAGATGTTCC 

SR-A3 GCTTCAGAAGATGCTGCTAGCC TGACTGCTTCTGGTGGAGAGC 

SR-B1 ACGGCCAGAAGCCAGTAGTC CGGTGTCGTTGTCATTGAAG 

SR-B2 GGTGTTGAACATCAGCATCTGC AACGAACTTCTCGTCGGCTTG 

 
Table 3.1: Oligonucleotides for cDNAs analysis by semi quantitative real-time PCR 

 

3.6.3 Western Blotting 

For visualization of different proteins on Western blot, stimulated macrophages were 

harvested and lysed in Laemmli buffer, denatured (96°C, 10min) and separated by 
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SDS-PAGE (10%). Proteins were then blotted to a polyvinylidene fluoride membrane 

(Immobilion PVDF Transfer Membrane; Millipore, Bedford, MA, USA), blocked in 5% 

milk in PBST for at least 20 min, probed overnight with primary antibody, then washed 

3 times with PBST and incubated with horseradish peroxidase-coupled secondary 

antibody (GE Healthcare UK Limited, Buckinhamshire, GB) for at least 2 hours. 

Membranes were developed using the chemiluminescence reagent assay 

SuperSignal® West Femto (Pierce Biotechnology, Rockford, IL, USA) and exposed in 

chemiluminescence-imager FluorChem HD2. 

For normalization, membranes were incubated in stripping buffer for 30 min at 37°C, 

washed 3 times with PBST and then reprobing was performed as described earlier. 

 

Primary antibodies used (all Cell Signaling Technology, Beverly, MA) 

• PTEN 

• phospho-ERK 

• ERK 

• p38 

• phospho p38  

• Actin 

• pGSK3 beta (Ser9) 

• phospho-Akt (Thr308)  

 

Statistical analysis 

 

Data are given as mean ± standard deviation. Values were compared by using the 

unpaired two-tailed Student's t test. Significance is indicated by � (p<0.05). Statistical 

analysis was performed using Microsoft Excel and GraphPad Prism. 
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4. RESULTS 

 

4.1 PTEN in Atherosclerosis 

 

4.1.1 Knockout of PTEN in LysMcre macrophages was s hown on protein 

as well as mRNA level 

 

Mice were routinely checked for their genotypes using earmarks or pieces of the tail. 

Standard PCR was performed on the cre and on the floxed allele. A representative 

genotyping picture is depicted in figure 4.1.A 

We also wanted to investigate whether the floxed allele is actually excised in 

macrophages. Thus thioglycollate-elicited macrophages were harvested from 

LysMcre positive or negative fl/flPTEN mice and 27 cycles of the same PCR protocol 

as used above revealed that the floxed band disappeared in LysMcre positive 

samples while the cre-band was still present. (Figure 4.1.B) 

Also real-time PCR performed on the same samples showed highly significant 

downregulation of PTEN mRNA. (Figure 4.1.C) 

On protein level, determined by Western blot analysis, it was even more obvious that 

PTEN is almost completely absent. (Figure 4.1.D) 

To allow atherosclerosis research, mice were crossed into an ApoE -/- background. A 

representative picture showing +/-, +/+ and -/- is shown in figure 4.1.E. For correct 

atherosclerosis studies, only ApoE -/- animals were taken into consideration. 
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Figure 4.1: PTEN is efficiently deleted in LysMcre PTEN fl/fl on DNA, mRNA and Protein 

level. (A) Pieces of mouse tissue were subjected to genotypic analysis. (B) PTEN alleles 

are successfully excised in PTEN -/-macrophages which are positive for LysMcre 

recombinase. (C) PTEN mRNA expression normalized to GAPDH is significantly reduced in 

LysMcre PTEN fl/fl thioglycollate-elicited macrophages. (D) PTEN protein is absent in 

Western blots of PTEN -/- peritoneal macrophages. (E)  Representative picture of 

routinely performed ApoE genotyping. Only ApoE -/- animals were used for in vivo 

atherosclerosis studies. 
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4.1.2 PTEN deficiency in macrophages results in enh anced intracellular 

levels of modified lipoprotein particles and enhanc ed foam cell formation

  

Thioglycollate-elicited macrophages from LysMcre flPTEN ApoE double deficient 

mice were isolated and plated. After fixation, they were stained with Oil Red O and 

Hematoxylin as a counterstain. A microscopic picture of stained foam cells was taken 

(Figure 4.2.A) and the number of positive stained cells per field was counted (Figure 

4.2.B, right graph). A tendency to more positively stained foam cells in PTEN 

knockouts was visible.  

Additionally, an essay for in vitro foam cell formation was used. Thioglycollate-elicited 

macrophages from LysMcre fl/fl PTEN mice were incubated with or without oxLDL 

o/n. Lipid-loaden foam cells were stained with the method previously described. 

Figure 4.2.C confirms the data obtained with in vivo generated foam cells by showing 

more staining in PTEN -/- wells. Counterstain was performed using hematoxylin to 

ensure that equal cell numbers were used. (Data not shown)  

Figure 4.2.B (left graph) shows the optical density of Oil Red O eluted by Isopropanol 

and measured in an ELISA plate reader in in vitro generated foam cells. 
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Figure 4.2:  Foam cell formation in LysMcre PTEN fl/fl mice (A) Microscopic picture of lipid laden foam 

cells, isolated from ApoE -/- PTEN KO and WT mice. (B) Quantification of in vitro generated foam cells 

by Oil Red O elution (left) and percentage of positively stained in vivo generated foam cells per 

microscopic field. (n = 3 mice per group). (C) Macroscopic picture of wells with in vitro generated foam 

cells staine with Oil Red O. 
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4.1.3 Effects of PTEN knockout in macrophages in at herosclerosis 

associated signalling 

 

Thioglycollate-elicited macrophages of PTEN -/- and +/+ mice were stimulated with 

oxidized low-density-lipoprotein (oxLDL) or Oxidized-1-palmitoyl-2-arachidonyl-sn-

glycerol-3-phosphocholine (oxPAPC) over night. Cells were harvested in SDS-PAGE 

sample buffer and subjected to Western blot analysis. Incubation with phospho AKT 

antibody in comparison to total AKT revealed that PI3K dependent phosphoylation of 

AKT is induced by oxLDL and oxPAPC. (Figure 4.3.A) 

One of the hypotheses we wanted to test was, whether expression of scavenger 

expression is different in PTEN knockout macrophages. We thus took thioglycollate-

elicited macrophages from LysMcre PTEN fl/fl mice and WT control mice and isolated 

RNA. Real time PCR nicely demonstrated that expression of scavenger receptors 

SR-AIII, CD36, SR-BI, CD68, SR-BII in PTEN deficient macrophages does not differ 

from wildtype controls. (Figure 4.3.B) Therefore we concluded that differential SR 

expression is not responsible for enhanced foam cell formation. 
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Figure 4.3: Activation of PI3K signaling by oxLDL and oxPAPC and comparison of scavenger receptor 

expression in unstimulated PTEN deficient peritoneal macrophages (A) Enhanced levels of phospho-

AKT compared to total AKT levels upon stimulation of WT macrophages with oxLDL or oxPAPC o/n. 

(B) Enhanced foam cell formation of PTEN deficient peritoneal macrophages is not caused by 

differential expression of scavenger receptors SR-AIII, CD36, SR-BI, CD68, SR-BII and MARCO (n=4 

mice per group). Target genes were normalized to GAPDH, results are not efficiency corrected.  



  47 

4.1.4 Analysis of atherosclerotic plaques in en fac e preparations of aortas 

of LysMcre flPTEN mice  

 

LysMcre fl/fl PTEN mice were kept on a normal diet for 16 weeks after birth and then 

sacrificed on dry ice. Weight was determined and aortae of mice were harvested and 

stained with Sudan IV. A representative picture of stained aortae pinned on a black 

wax dissection pan is shown in figure 4.4.A. Red stained lesion areas were quantified 

by ImageJ and are given as percentage of total aortic area. Group 1 (Figure 4.4.B) 

gives the result of 12 mice, shown separately for males and females. Only in males a 

difference between WT and KO could be shown. Fitting to the data on foam cell 

formation, lesion area in PTEN -/- mice was enhanced. 

To allow better statistics, a second group (10 mice) was analysed. To our surprise, 

this time WT mice had more stained areas than compared to KO. (Figure 4.4.C) 

Overall, the analysis of aortic plaques did not give us statistically significant results. 

The main reason might be that the mice were still too young and should have been 

kept on an additional high fat diet to see more effects. The conclusion was to analyse 

mice aged 24 weeks or older because there the lesion area will be at least above 1% 

and we also expect genotype differences to be enhanced. 
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Figure 4.4: Analysis of atherosclerotic plaques in ApoE -/- LysMcre PTEN fl/fl mice. (A) 

Representative picture of en face preparations of ApoE -/- PTEN WT and KO murine aortae. In these 

animals, which were part of the first group analysed, the difference is mainly in the abdominal section. 

Quantification of lesion area of group 1 (n=12) (B), and group 2 (n=10) (C) with ImageJ analysis 

software, separated by gender and genotype. 
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4.2 PTEN in Rheumatoid Arthritis 

 

4.2.1 Mice deficient for PTEN in myeloid cells show  significantly 

decreased symptoms for arthritis than wildtype cont rol mice 

 

CIA was induced in LysMcre PTEN fl/fl (PTEN KO) mice using type II collagen and 

CFA containing M. tuberculosis as described in the material and methods section.  

Clinical score was assessed weekly and 2 weeks after the second boost, first 

symptoms were visible in the wildtype control mice. At this time point, no significant 

joint arthritis could be detected in PTEN KO mice, whereas WT mice were already 

affected. (Figure 4.5.A and C) In a time course until 6 weeks after boost, this effect 

persisted. KO mice only developed mild arthritis in comparison to CFA-control, but in 

wildtype mice disease severity as indicated by arthritis score increased. (Figure 4.5.A) 

Figure 4.5.B shows the phenotype of PTEN WT and KO hind paws, which are mostly 

affected in this model of CIA because they are closest to the tail base where collagen 

is injected. 

Histology was then performed by Birgit Niederreiter on synovial joints of KO and WT 

control mice to distinguish inflamed pathological tissue from the respective normal 

one. (Figure 4.5.D) Using a TRAP stain and the analysis software OsteoMeasure, 

detailed comparison of different parameters of histological sections was possible. 

What we found is that joint inflammation and bone erosion in KO tissue samples was 

significantly reduced in comparison to wild-type mice and almost resembled the CFA-

control. (Figure 4.8.D) 
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Figure 4.5: Symptoms for arthritis are reduced in LysMcre PTEN fl/fl mice. (A) Significant lower 

arthritis score in PTEN -/- mice. (B) Phenotype of arthritis affected hind paws of 2 representative PTEN 

WT and KO pairs. (C) Arthritis score dot plot of CIA-mice hind paws, 2 weeks after the second boost. 

(D) Histology of synovial joints of CIA-mice hind paws. (OsteoMeasure analysis depicted in Fig. 4.7.D) 

Arthritis score includes swelling and grip strength. 



  51 

4.2.2 Reduction of inflammatory markers in plasmas of PTEN KO CIA 

mice but no effect on collagen autoantibodies level  

 

Blood samples of PTEN WT and KO mice at day 0 and 3, 4 and 5 weeks after CIA 

boost were collected. (See scheme in figure 4.6) Plasma levels of IL-6, KC and 

soluble E-selectin were measured by ELISA. Consistent with previous data obtained 

by our group and others, levels of different proinflammatory cytokines were reduced 

in PTEN KO mice. Only 5 weeks upon challenge, protein levels of IL-6 and KC were 

similar, so one can assume that the effect of PTEN is already present in early 

arthritis. (Figure 4.7.A, B and C) 

Autoantibody levels to type II collagen in plasma samples were also measured to 

check if different antibody titers might correspond with the effect seen in vivo. 

Surprisingly only 3 weeks after the second boost, antibody levels were slightly 

decreased in PTEN knockout mice subjected to CIA, but at all the other timepoints, 

no significant difference could be detected. (Figure 4.7.D) 

 

 

0               1               2              3              4 5

blood draw

collagen challenge/boost harvest
tissue

 
Figure 4.6: Scheme for Collagen-induced arthritis: Blood was collected 0, 3, 4 and 5 weeks after the 

first collagen challenge. 5 weeks after CIA induction, histology samples were collected. 
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Figure 4.7: Reduced proinflammatory cytokines, but similar autoantibody levels in PTEN -/- CIA mice. 

(A, B and C)  Levels of IL-6, KC and soluble E-selectin in plasmas of arthritic mice, determined by 

ELISA. (D) Anti-Chicken IgG in arthritic mice, ELISA. 
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4.2.3 Generation of bone-marrow derived dendritic c ells which showed 

the expected PTEN knockout phenotype 

 

To test the hypothesis whether the Lysozyme M specific knockout of PTEN also 

affects other cells of the myeloid lineage different from macrophages, bone marrow 

(BM) of LysMcre fl/fl PTEN mice was isolated and differentiated with GM-CSF to 

obtain in vitro generated BM-derived dendritic cells (DCs). These cells are usually 

non-adherent and were thus isolated from the supernatant. In order to see a potential 

PTEN knockout in DCs, samples for RNA and protein analysis were taken. Another 

aliquot of the cells was taken to check for expression of DC-specific surface markers 

in FACS analysis.  

Real-time PCR results nicely demonstrated that PTEN mRNA levels are significantly 

reduced in LysMcre + fl/flPTEN dendritic cells. (Figure 4.8.A) The remaining 10% of 

PTEN mRNA might be due to contamination by other, non-myeloid cells such as 

fibroblasts or B-cells.  

DCs harvested in Laemmli sample buffer were applied on a SDS-polyacrylamid-gel. 

Western blots were developed for total AKT, phospho-AKT (Thr 308) and phospho-

GSK3beta (Ser9). As expected, levels of phospho-AKT, which is the most important 

downstream signalling component of the PI3K/PTEN pathway, were enhanced in 

PTEN -/- cells whereas total AKT levels are equal in WT and KO samples. 

Additionally, pGSK3beta as the probably most important downstream target of 

AKT/PKB is also enhanced in PTEN -/- cells. (Figure 4.8.B) 

Analysis of BM-derived DCs in flow cytometry revealed equal expression of surface 

markers in WT and KO cells. Furthermore, correct differentiation into DCs was 

confirmed by measuring mean fluorescence intensity of CD80, CD86 and CD40. 

(Figure 4.8.C) 

Also in LPS-stimulated DCs 2, 4 and 6 hours after stimulation, the knockout effect on 

PTEN was present. (Figure 4.8.D) 
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Figure 4.8: Generation of DC containing the expected PTEN KO phenotype was confirmed. (A) PTEN 

mRNA measured in real-time PCR is markedly reduced in LysMcre PTEN fl/fl mice. (B) Levels of 

phospho-AKT and phospho-GSK3beta are enhanced due to hyperactive PI3K signalling. (C) Flow 

cytometry data on PTEN WT and KO dendritic cells. (D) Also in LPS stimulated cells, PTEN mRNA is 

reduced in KO dendritic cells. (E and F)  Quantification of joint inflammation and bone erosion for 

histologic pictures as depicted in figure 4.5.D. 
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4.2.4 Inflammatory cytokines are reduced in in vitr o generated BM-

derived PTEN -/- dendritic cells  

 

Dendritic cells were differentiated out of bone marrow as described previously. 

Thereafter, they were stimulated with different PAMPs o/n and samples for RNA and 

ELISA analysis were prepared. 

Figure 4.9.A shows effects of LPS, PGN and the Triacyl-lipopeptide Pam3Cys on 

induction of IL-6 and IL-10 mRNA induction. Pam3Cys, which stimulates TLR-2 

shows the smallest effects on mRNA induction. The effects of peptidoglycan and 

lipopolysaccharide are more pronounced. In these samples a clear difference 

between WT and KO can be seen. As already demonstrated in macrophages, KO of 

PTEN in DCs also leads to downregulation of proinflammatory IL-6 mRNA.  

Contrary to this is the finding that IL-10, which is assumed to be anti-inflammatory, is 

reduced in KO samples, but it was shown in several independent experiments. 

Interestingly, macrophages show the opposite effect, namely upregulation of IL-10 in 

the PTEN -/- cells. 

Additionally, protein levels in supernatants of LPS, PGN, Pam3Cys and CpG DNA 

stimulated PTEN +/+ and -/- cells were measured by ELISA. These effects further 

supported the data obtained by real-time PCR. IL-6 as well as IL-10 protein levels 

were always profoundly reduced in KO in comparison to WT. 

Figure 4.9.B depicts a timecourse of IL-6 and IL-10 mRNA induction upon LPS 

challenge. Not only after o/n stimulation, but also 2, 4 and 6 hours after stimulation 

the above mentioned effect was present. IL-6 and IL-10 levels were always reduced 

in KO samples, even though the reduction was not always statistically significant.  
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Figure 4.9: Reduced inflammatory cytokine production in PTEN -/- BM-derived DCs. (A) IL-6 and IL-10 

mRNA measured in real-time PCR is reduced in LysMcre PTEN fl/fl mice, stimulated with LPS, PGN 

and Pam3Cys (left panels). Also, IL-6 and IL-10 protein levels go in line with the data obtained on 

mRNA level (right panels) (B) IL-6 and IL-10 mRNA levels 2, 4 and 6 hours after LPS stimulation are 

reduced in PTEN KO BM-derived DCs. 
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4.2.5 Reduced levels of all subunits of IL-12 may a ccount for the anti-

inflammatory effect of the PTEN knockout 

 

In vitro generated BM-derived dendritic cells were stimulated with LPS for 2, 4 and 6 

hours. RNA was isolated of the respective samples and real-time PCR was 

performed. Figure 4.10 depicts the outcome on mRNA induction of IL-12 subunits. It 

could be demonstrated, that all IL-12 subunits were reduced in PTEN -/- cells in 

comparison to wt. The p19 subunit, which forms active IL-12 together with p40, shows 

the most prominent reduction. (Figure 4.10.A) Subunit p35, a component of IL-23, is 

also markedly reduced in PTEN KO. (Figure 4.10.B) Surprisingly, also subunit p40, 

which was previously assumed not to be affected by PTEN, was slightly 

downregulated. (Figure 4.10.C) 

These results perfectly fit to the data obtained by Fukao et al. which showed the 

opposite effect in PI3K knockout cells. (Fukao et al., 2002) 
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Figure 4.10: Subunits of IL-12 and IL-23 less abundant in PTEN KO BM-derived DCs. (A) IL-23 

subunit p19, (B) IL-12 and IL-23 common subunit p40 and (C) IL-12 subunit p35 are reduced on mRNA 

level 2, 4 and 6 hours after LPS stimulation.  
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4.2.6 Differential regulation of MAPK signalling mi ght account for the 

downregulatory effects on cytokine levels by enhanc ed PI3K signalling 

 

MAPK signalling plays an essential role in the regulation of cytokine production in 

inflammatory conditions. We wanted to test the hypothesis whether enhanced levels 

of PIP3 as present in our PTEN KO DCs influence phosphoylation of MAPK and thus 

account for the reduced cytokine production. 

Thus in vitro differentiated BM-derived DCs were stimulated with LPS for 10, 20 and 

30 minutes. Samples were harvested in Laemmli buffer and then subjected to 

Western blot analysis. Development with phospho-ERK1/2 antibody revealed that 

levels of phosphoylated protein are reduced in PTEN -/- DCs whereas total ERK1/2 

levels did not differ. (Figure 4.11.A) Normalization to Actin confirmed loading of equal 

amounts of protein.  

As expected, levels of phospho-GSK3beta were enhanced in PTEN KO due to 

excessive PI3K signalling. Only slight changes in GSK3beta phosphoylation upon 

LPS stimulation can be seen (Figure 4.11.A)  

Even more important, reduced p38 MAPK phosphoylation was found in BM-derived 

PTEN deficient DCs upon stimulation with CpG DNA or LPS. (Figure 4.11.B) 
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Figure 4.11: Reduced phosphoylation of MAPK p38 and ERK1/2 in PTEN -/- DCs. (A) Western blot of 

BM-derived DCs stimulated with LPS for 10, 20 and 30 minutes with phospho ERK1/2, total ERK, 

phospho GSK3beta and Actin. (B) Phospho p38 and total p38 Western blot of PTEN WT and KO BM-

DCs stimulated with LPS and CpG. 
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5. DISCUSSION 

 

In this diploma thesis, genetically modified mice were used to dissect the PI3K/PTEN 

pathway in different animal models of human diseases. Our group focuses mainly on 

anti-inflammatory properties PI3K as described already by Luyendyk and others. 

(Luyendyk et al., 2008) We therefore utilised two different animal models of chronic 

inflammation. In rheumatoid arthritis, which is mainly an autoimmune disease, 

excessive immune activation is detrimental. Peter Libby has recently reviewed the 

common link between RA and atherosclerosis, which is expression of 

proinflammatory cytokines such as IL-1, IL-6 and TNF-alpha. (Libby, 2008) 

 

5.1 Atherosclerosis 

 

Formation of atherosclerotic plaques in mice as well as in humans is nowadays seen 

as a process of chronic inflammation. By knocking out genes for important 

inflammatory mediators such as MCP-1 or VCAM-1, mice are protected from 

atherosclerosis. In this thesis, I evaluated a possible effect of the PTEN gene, which 

has already been described as a regulator of inflammatory processes, in the 

formation of foam cells and atherosclerotic plaques. 

It could be shown in vitro as well as in vivo, that in PTEN fl/fl LysMcre+ mice, the 

PTEN gene expression shown on mRNA level is markedly reduced. Proper excision 

of the PTEN fl allele was observed in semi-quantitative PCR. On protein level, PTEN 

cannot be detected in significant amounts in LysMcre+ cells. 

To assess the effects of PTEN on foam cell formation, the first step was to get a clue 

whether PTEN KO enhances or reduces accumulation of intracellular lipids in 

comparison to wildtype control. I found increased lipid accumulation on microscopic 

as well as macroscopic scale in in vivo as well as in vitro generated foam cells 

stained by Oil Red O. 

We then hypothesized, that this effect might be due to differential expression of 

scavenger receptors, which are described as being important in lipid uptake by 
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macrophages. To our surprise, SR expression was not significantly different in PTEN 

KO cells, so this factor can be excluded. 

Indicating a role for the PI3K/PTEN pathway in atherosclerotic processes is the fact, 

that treatment of cells with oxLDL and oxPAPC increases AKT phosphoylation, which 

is the most important mediator downstream of PI3K. Additionally supporting our view 

that PI3K signalling plays a role in atherogenesis is the finding, that minimally 

modified LDL activated PI3K as well as Akt and led to phosphoylation of extracellular 

signal-regulated kinase ½ (ERK1/2).(Miller et al., 2005) 

 

A parallel approach was the analysis of in vivo effects on atherosclerotic plaque 

formation. For this purpose, PTEN fl/fl LysMcre+ were backcrossed onto an ApoE 

deficient background and analyzed for aortic lesion areas. So far, no precise 

conclusion can be drawn on basis of the data presented in this thesis. In the first 

group analysed, a tendency to more lesion formation was present, whereas in the 

second group, the opposite was the case. We assumed, that the reason for the large 

variation in the actual numbers was that the lesion area of mice was generally less 

than 1%, which is far too less to allow adequate analysis.  

The future plan is to isolate aortas of mice aged 24 weeks or older which are 

expected to develop more advanced lesions. Additionally, further data on mRNA 

induction upon oxLDL stimulation has to be collected to evaluate possible changes in 

gene expression in PTEN knockout mice that are relevant in atherosclerotic 

processes. 

Another approach to study PTEN function in atherosclerosis is the use of inducible 

conditional cre recombinase systems. As we failed to induce sufficient knockout in the 

tamoxifen-inducible estrogen-receptor cre mouse (Zhang et al., 1996), we are 

currently crossing PTEN fl/fl mice to a Mx-cre mouse, which is inducible upon polyI-

polyC injection. (Kuhn et al., 1995) Using this system, we try to address other cells 

important in atherosclerosis, such as endothelial cells. 
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5.2 Arthritis 

 

Autoimmune diseases such as rheumatoid arthritis are largely caused by excessive 

immune activation and reduced anti-inflammatory signals. RA is characterized by an 

infiltration of the synovia of multiple joints by inflammatory cells such as 

monocytes/macrophages, neutrophils and B-cells. Heit et al. already demonstrated a 

role for neutrophil specific (Ela2cre) knockout of PTEN in a K/BxN serum-transfer 

model of arthritis. (Heit et al., 2008) In this model, joint inflammation and degree of 

hindpaw swelling in Ela2cre PTEN fl/fl mice were significantly lower than in littermate 

control mice. They argue that differential neutrophil chemotaxis is primarily 

responsible for this effect. Nevertheless, it was demonstrated by Camps et al. that 

mice deficient in the class 1B PI3K subunit p110 gamma, which is responsible for 

transduction of G-protein coupled receptors, neutrophil infiltrates are reduced 

compared to wildtype. (Camps et al., 2005) 

As a starting point for studying RA in PTENfl/flLysMcre+ mice, we hypothesised that 

the anti-inflammatory properties of a hyperactive PI3K signalling axis, which were 

already described by our group and others in various projects, (Luyendyk et al., 2008; 

Yu et al., 2006) might also play a role in the pathogenesis of the disease. Cytokines 

are important in coordinating immune responses to resolve pathogenic infections, but 

play a detrimental role if their production is dysregulated. Thus, we focussed on 

differences in cytokine production and subsequent physiological consequences in CIA 

mice. 

 

In first in vivo studies, a clear protective effect in knockout mice of the PTEN gene in 

comparison to wt littermate control mice subjected to CIA could be observed. PTEN -

/- mice showed significantly decreased paw swelling and grip strength scores, but 

similar anti-collagen II antibody titers. These data indicate that reduced anti-collagen 

response through impaired dendritic cell migration may not play an important role, 

(Del Prete et al., 2004) because activation of antigen-specific B-cells takes place.  

We then decided to do histology on synovial joints of arthritic mice to get a clearer 

picture of the actual disease region. Evaluation of TRAP stains revealed significant 
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decrease in joint erosion and inflammation in PTEN -/- synovial joints which goes in 

line with the above described arthritic score. 

To evaluate whether the signs of this local inflammation are also present on a 

systemic level, pro-inflammatory cytokine production was measured in murine blood 

after CIA induction. IL-6, KC and E-selectin were found to be profoundly reduced in 

PTEN KO plasmas. To confirm this in vivo effect on a cell-based in vitro system, bone 

marrow-derived dendritic cells were stimulated with PAMPs and again, similar 

differences in cytokine levels were detected. This goes in line with previous data 

obtained on macrophages that were shown to produce less IL-6 and TNF-alpha after 

stimulation with the TLR ligands LPS, CPG and PGN. (Kuroda et al., 2008) 

Additionally, our group gained similar results, in vitro as well as in vivo in 

thioglycollate-elicited peritoneal macrophages (unpublished data). 

What was surprising is that IL-10 production also seemed to be reduced in LysMcre 

fl/fl PTEN dendritic cells, which is contrary to the findings in macrophages made by A. 

Suzuki and us (unpublished data) in macrophages. (Kuroda et al., 2008) 

Of particular interest is the expression of IL-12 cytokine family members, namely IL-

12 and IL-23, which are key players in the regulation of T cell responses. (Gee et al., 

2009) These cytokines are mainly produced by monocytes, macrophages and 

dendritic cells as a response to infection. IL-12 and IL-23 share the common p40 

subunit, but differ in their small components, p35 and p19, respectively. Although they 

are quite similar in terms of receptor and subsequent JAK/STAT signalling activation, 

they fulfil highly specific roles in immune regulation. Whereas Il-12 is important in 

production of IFN-gamma and subsequent Th1 cell differentiation, IL-23 has a key 

role in Th17 cell development. (Gee et al., 2009) Concerning the role of the 

PI3K/PTEN pathway in T helper cell development, it has already been demonstrated 

that p85 PI3K knockout mice are resistant to Leishmania infection due to DC 

overproduction of IL-12 and thus excessive Th1 polarization. (Fukao et al., 2002) This 

finding has also been confirmed in the opposite direction as LysMcre PTEN fl/fl mice 

show increased susceptibility and delayed healing as response to Leishmania 

infection.(Kuroda et al., 2008) 
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Due to their important role in T helper cell activation and thus also in autoimmunity, a 

neutralising antibody to IL-12 subunit p40 has been developed for use in multiple 

sclerosis, an autoimmune disease similar to rheumatoid arthritis in terms of inducing 

agents. (Longbrake and Racke, 2009) Subunit p40 antibodies proved to prevent 

autoimmune encephalomyelitis in murine models,(Leonard et al., 1995) but so far, 

Phase II clinical trials failed, probably because only very early disease stages can be 

addressed by the antibody. (Longbrake and Racke, 2009) 

In our myeloid-cell specific PTEN knockout system, mice were also protected from 

RA and in vitro cytokine levels for IL-12 and IL-23 were found to be reduced in BM-

derived DCs. Thus it can be speculated, that there is an effect on T helper cell 

differentiation in PTEN -/- mice.  

As the reduction in IL-12 levels was found to support the view of Fukao et al., who 

show increased IL-12 levels in PI3K p85 alpha knockout mice, we also tried to find 

differences in MAPK signalling which are supposed to be responsible for regulation of 

IL-12 expression. (Fukao et al., 2002) We found reduced levels of phospho p38 as 

well as phospho ERK1/2 upon LPS as well as CpG stimulation. These effects 

demonstrate that hyperactive PI3K signalling leads to decreased levels of mitogen-

activated protein kinases and thus reduced cytokine mRNA induction. (Lu et al., 

1999) 

 

We now conclude that myeloid cell specific PTEN knockout reduces phosphoylation 

of MAPK and as a consequence also reduces proinflammatory cytokine production in 

antigen presenting cells. This presumably results in markedly reduced numbers of 

auto-inflammatory Th1/Th17 cells and thus a better clinical outcome in collagen-

induced arthritis and possibly other immune diseases such as experimental 

autoimmune encephalomyelitis (EAE). 

 

Further projects will now aim to investigate the T helper cell response in PTEN 

knockout animals. On the one hand, if Th17 cells are less abundant, related cytokines 

such as IL-17, IL-21 and IL-22 should also be present in lower amounts in draining 

lymph nodes.  On the other hand, Th2 or Treg cytokine levels such as IL-4 and IL-5 
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might be elevated. Figure 5.1 demonstrates our current view how hyperactive PI3K 

signalling in PTEN deficient myeloid cells regulates adaptive immune responses. 

 

 

Th2
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Th0

PI3K

IL-23
IL-6

IL-12

IL-4

TGFbeta
IL-2

PI3K

 
Figure 5.1: Differentiation of CD4 positive naïve T cells to Th1 and autoinflammatory Th17 cells is 

reduced in PTEN deficient mice whereas Th2 and probably also regulatory T cells are more abundant. 

This happens due to reduced MAPK signalling and subsequent diminished release of proinflammatory 

IL-6, IL-23 and IL-12. (modified from (La Cava, 2009)) 
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