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Abstract

A well-known result in commutative Banach algebra theory states that two
locally compact spacesX and Y are homeomorphic if and only if the C∗-algebras
of continuous functions C0(X) and C0(Y ) are algebraically isomorphic. Our aim
is to construct a similar theory for algebras of smooth functions and Colombeau
generalized functions. The underlying topological spaces are finite-dimensional
smooth manifolds X and Y which are Hausdorff and second countable. We
find that the non-zero multiplicative linear functions on C∞(X) and G(X)
can be identified with the points in X and the compactly supported gener-
alized points X̃c, respectively. Moreover, we prove that algebra isomorphisms
C∞(X) → C∞(Y ) are characterized by diffeomorphisms from Y to X , a fact
that holds even for manifolds that are not second countable. The same question
for Colombeau algebras leads to c-bounded generalized functions G[Y,X ] which
again completely determine the algebra isomorphisms G(X)→ G(Y ).

Zusammenfassung

Ein bekanntes Resultat in der Theorie kommutativer Banachalgebren be-
sagt, dass zwei lokal kompakte Räume X und Y genau dann homöomorph
sind, wenn die C∗-Algebren der stetigen Abbildungen C0(X) und C0(Y ) al-
gebraisch isomorph sind. Es ist unser Ziel, analoge Aussagen auch für Al-
gebren glatter Abbildungen bzw. Colombeaualgebren zu zeigen. Die zugrun-
deliegenden topologischen Räume werden in diesem Fall endlich-dimensionale
glatte Mannigfaltigkeiten X und Y sein, die Hausdorff sind und das zweite
Abzählbarkeitsaxiom erfüllen. Wir werden sehen, dass nichttriviale multip-
likative lineare Funktionale auf C∞(X) bzw. G(X) mit Punkten in X bzw.

kompakt getragenen verallgemeinerten Punkten X̃c identifiziert werden können.
Zudem werden wir beweisen, dass Algebraisomorphismen C∞(X) → C∞(Y )
bereits durch Diffeomorphismen von Y nach X charakterisiert sind. Letzteres
gilt sogar für Mannigfaltigkeiten, die das zweite Abzählbarkeitsaxiom nicht
erfüllen. Im Zusammenhang mit Colombeau verallgemeinerten Funktionen führt
uns diese Fragestellung zu kompakt beschränkten verallgemeinerten Funktionen
G[Y,X ], welche die Algebraisomorphismen G(X) → G(Y ) wiederum komplett
beschreiben.
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Chapter 0

Introduction

0.1 Historical background

The historical background for this thesis can be seen in classical Banach algebra
theory, a field that was initiated by I. M. Gelfand in 1939. A Banach algebra
A is a Banach space (over C) and an algebra such that ‖ab‖ ≤ ‖a‖‖b‖ holds for
all a, b ∈ A. The carrier space Â of A is the space of non-zero multiplicative
linear functionals A → C. For a commutative Banach algebra A we have that
Â is Hausdorff and locally compact (resp. compact if A is unital) with respect
to the weak-∗ topology.

For unital and commutative Banach algebras, there is a 1-1 correspondence
between elements in Â and maximal ideals in A, given by

Â → maximal ideals of A
ϕ 7→ kerϕ.

This is basically due to the fact that for maximal ideals M in A, the quotient
space A/M is a commutative and unital Banach algebra over C such that every
element is invertible, and hence by the Gelfand-Mazur theorem isomorphic to
C.

Both sets, Â and the set of maximal ideals on A, are called the spectrum of
the algebra A, denoted by ΩA. For non-unital commutative Banach algebras
the elements in Â correspond to so-called maximal modular ideals.

Moreover, we can consider the Gelfand transformation ΓA, which transforms
elements in a commutative Banach algebra A into continuous functions. It is
defined by

ΓA : A → bounded functions on ΩA

a 7→ â,

where the elements a in A are identified with bounded functions â, where
â(ϕ) := ϕ(a) for ϕ ∈ Â. For commutative Banach algebras, ΓA is mapped
to C0(ΩA). For algebras which in addition are unital, the range is C(ΩA).
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Chapter 0. Introduction

If we consider different classes of commutative Banach algebras, then the
Gelfand transformation will take a different form. For example, the Gelfand
transformation of L1(Rn) can be viewed as the Fourier transform.

For the algebra C(X), with X a compact and Hausdorff topological space,

the Gelfand transformation is simply the identity since Ĉ(X) is homeomorphic
to X . Similarly, this also holds for the algebra C0(X) for X locally compact and
Hausdorff. This is due to the identification

point p in X ←→ maximal ideal in C0(X),

where the ideal corresponds to functions vanishing at p. Moreover, the algebras
C0(X) and C0(Y ) are algebraically isomorphic (equivalently even isometrically
isomorphic) if and only if X and Y are homeomorphic. The same result of
course holds for compact and Hausdorff spaces X and Y and continuous func-
tions C(X) and C(Y ).

In general, we may consider a commutative C∗-algebra A, i.e. a Banach
algebra with an involution ∗ that satisfies ‖a∗a‖ = ‖a‖2 ∀a ∈ A. The Gelfand
transformation ΓA on a C∗-algebra is not only an algebra homomorphism but
an isometric ∗-isomorphism, i.e. A ∼= C0(ΩA). This is the famous Gelfand-
Naimark theorem. An immediate consequence is the equivalence of the following
statements:

(i) The commutative C∗-algebras A and B are algebraically isomorphic.

(ii) A and B are isometrically isomorphic.

(iii) Â and B̂ are homeomorphic.

While the equivalence of (i) and (iii) can be shown directly also for commutative
Banach algebras, the equivalence with (ii) is due to the C∗-identity.

Hence there is a strong connection between algebraic properties of A and
topological and geometrical properties of Â. From a categorial point of view this
means that the category of commutative C∗-algebras (with homomorphisms)
and the category of Hausdorff and locally compact spaces (with proper maps,
i.e. continuous maps such that the preimages of compact sets are compact) are
equivalent.

For further reading on classical Banach algebra theory see for example
[Lar73], [Hel93] and [Dav96]. The idea of representing spaces with algebras has

had a remarkable impact on topology as well as analysis. Banach C̃-algebras
and Colombeau C∗-algebras have recently been investigated in [Ver08].

0.2 Recent surveys

The same paradigm as mentioned above extends to algebras of smooth functions
C∞(X) and Colombeau algebras G(X) on a manifold X . Colombeau algebras
are algebras of generalized functions which have been developed to bypass the
non-multiplicativity of distributions in order to be able to study non-linear par-
tial differential equations. The basic theory on special Colombeau algebras on
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0.3. Outline

manifolds necessary for our investigations is provided in chapter 5.

It is the aim of this thesis to present the following new results and discuss
different approaches. Firstly, we will see that for finite-dimensional and smooth
manifolds X and Y (Hausdorff and second countable)

(i) a non-zero multiplicative C-linear functional C∞(X)→ C is the evaluation
evp for a unique point p ∈ X .

(ii) a non-zero multiplicative C̃-linear functional G(X)→ C̃ is the evaluation
evp̃ for a unique c-bounded generalized point p̃ ∈ X .

In particular, these investigations lead to the ‘spectral’ space X̃c for the Colom-
beau algebra G(X) similar to the space Â in the context of Banach algebras.

The main results again correspond to the ones in Banach algebra theory
and show that the algebras of smooth resp. generalized functions recover the
geometry of the respective spaces of points:

(i) Algebra isomorphisms C∞(X)→ C∞(Y ) are characterized as pullbacks by
diffeomorphisms from Y to X .

(ii) Algebra ismorphisms G(X) → G(Y ) are characterized as pullbacks by
invertible c-bounded generalized functions from Y to X .

The generalization of (i) to manifolds that are not second-countable is a
recent result due to Janez Mrčun [Mrč05] and Janusz Grabowski [Gra05]. A
preprint by Hans Vernaeve [Ver06] deals with (ii) in the case of non-smooth
dependence on ε. We will treat (ii) in the case of generalized functions with
smooth dependence on ε. This leads to somewhat nicer and simpler algebraic
results (i.e. that Gld[X,Y ] = G[X,Y ]), but requires more work. For a thorough
discussion of the disparities see section 6.5.

In addition, there are also general advantages in considering smooth depen-
dence on ε. In [KSV09] it is proved that G[ ., Y ] is a sheaf of sets (theorem 2.3)
and that the continuous functions C(X,Y ) can be embedded in G[X,Y ] (theorem
3.1) in this setting. Moreover, proposition 12.2 in [Obe92] shows that non-zero

polynomials P in one variable with complex coefficients satisfy P (C) = 0 in C̃
(with continuous dependence on ε) if and only if C is identical to a classical root
of P . Besides, smooth dependence occurs naturally if we obtain regularization
of distributions via convolution. In the diffeomorphism invariant full Colombeau
algebra, smooth dependence is always given, to mention a few advantages.

0.3 Outline

For smooth manifolds X and Y and an algebra isomorphism Ψ : A(X)→ A(Y )
the main steps will be the same in both the smooth and generalized functions
setting:

• Identify points in the manifoldsX resp. Y via algebraic properties inA(X)
resp. A(Y ). This will be non-zero multiplicative linear functionals resp.
characteristic sequences.

3



Chapter 0. Introduction

• Pick a point q in the second manifold Y and look at its algebraic equivalent
on A(Y ).

• Use the algebra isomorphism to create a unique analogue on A(X).

• Identify this algebraic construction on A(X) again with a point p in X .

• Prove that the map ψ : Y → X obtained by doing this for every point in
Y resp. X really is bijective and unique, characterizes Ψ and respects the
algebraic and differential structure (i.e. that the map ψ is a diffeomorphism
resp. a c-bounded generalized function).

In chapter 1 we recall algebraic definitions and in chapter 2 our basic geomet-
rical setting, i.e. finite-dimensional and smooth manifolds which are Hausdorff
and second countable.

In chapter 3 we treat the case of algebras of smooth functions by following
two different approaches – the classical one using maximal ideals in C∞(X)
and a new approach by Janez Mrčun using so-called characteristic sequences of
functions. It turns out that algebra isomorphisms between algebras of smooth
functions are characterized as compositions with unique diffeomorphisms.

In chapter 4 we provide results in Riemannian geometry with a special focus
on submanifolds in Rn. Moreover, we show that the (squared) Riemannian
distance is smooth in a neighborhood of the diagonal.

In chapter 5 we introduce the theory of Colombeau algebras on manifolds and
discuss basic properties such as point value characterizations and invertibility
of c-bounded generalized functions.

Finally, in chapter 6 we prove that algebra isomorphisms on Colombeau al-
gebras are simply pullbacks by invertible c-bounded generalized functions. We
follow Hans Vernaeve’s approach in [Ver06] in a different setting. The main

problem here is that we work in a function algebra over the ring C̃ of general-
ized numbers, which is not a field.

At the beginning of each chapter, a short summary introduces its content.
The bibliography, a list of notation and an index are provided at the end.

4



Chapter 1

Algebras

Our main objects of interest are the function algebras C∞(X) and G(X) on
manifoldsX and the algebra isomorphisms between them. We begin by recalling
some basic definitions and terminology. For more details see, e.g., [Bou98].

1.1 Algebras over rings

The structure of an algebra is induced by a module and by a bilinear operation:

Definition 1.1.1. Let R be a commutative and unital ring andA a module over
R, where the addition is denoted by +. ThenA is called anR-algebra (or algebra
over R) if it is equipped with an additional bilinear operation · : A × A → A
(the so-called multiplication), such that the following compatibility conditions
hold for all a, b, c ∈ A, λ, µ ∈ R:

(a+ b) · c = a · c+ b · c
c · (a+ b) = c · a+ c · b
(λa) · (µb) = (λµ)(a · b)

The algebra A is called unital if

∃1 ∈ A : 1 · a = a · 1 = a,

associative if

(a · b) · c = a · (b · c)
and commutative if

a · b = b · a.
Remark 1.1.2 (Algebras over fields). If R = K is a field, then A in the above
definition is a vector space over K.

Definition 1.1.3. Let A be an R-algebra. It is called a differential R-algebra
if a so-called derivation ∂ : A → A satisfies for all a, b ∈ A, λ ∈ R:

∂(λa) = λ∂(a)

∂(a+ b) = ∂(a) + ∂(b)

∂(a · b) = ∂(a) · b+ a · ∂(b)

5



Chapter 1. Algebras

Example 1.1.4. LetX be a manifold. The space of smooth functions C∞(X) =
C∞(X,C) (or C∞(X,R)) equipped with the usual pointwise operations of func-
tions is a unital, associative and commutative algebra over C (resp. R). It is
even a differential algebra.

A Colombeau algebra G(X) over a manifold X (see definition 5.1.1) is a uni-

tal, associative, commutative and differential C̃-algebra. See [GKOS01], section
1.2, for more details.

1.2 Algebra homomorphisms and isomorphisms

We wish to consider maps that preserve the algebra structure.

Definition 1.2.1. Let A1 and A2 be two R-algebras and Ψ : A1 → A2 a map
that satisfies for all a, b ∈ A1, λ ∈ R:

Ψ(λa) = λΨ(a)

Ψ(a+ b) = Ψ(a) + Ψ(b)

Ψ(a · b) = Ψ(a) ·Ψ(b).

Then Ψ is called an algebra homomorphism. If Ψ is bijective, then it is called
an algebra isomorphism.

Note that even for unital algebras we do not necessarily assume that an
algebra homomorphism satisfies Ψ(1) = 1.

1.3 Ideals

Since each algebra A is also a ring (A,+, ·), it is sufficient to consider ideals in
rings R.

Definition 1.3.1. An additive subgroup I ⊆ R of a ring R is called (two-sided)
ideal if RI ⊆ I and IR ⊆ I. We denote this by I ⊳R.

An ideal J of a ring R is called maximal ideal if J 6= R and for all ideals I
of R with J ⊆ I either J = I or I = R holds.

Hence a maximal ideal is not contained in any other proper ideal.

Example 1.3.2. The kernel kerΨ of an algebra homomorphism Ψ : A1 → A2

is a maximal ideal in A1.

6



Chapter 2

Smooth Manifolds

The underlying topological and geometrical structures for our analysis are
smooth manifolds of finite dimension. Locally these are diffeomorphic to the
Euclidean space Rn. In order to make the transition from local structures to
global structures, we use so-called partitions of unity. For a Hausdorff space
their existence is equivalent to paracompactness.

In chapter 4 we will furthermore consider smooth manifolds that are equipped
with a Riemannian metric.

2.1 General definitions

2.1.1 Smooth manifolds

Manifolds are topological spaces that are locally homeomorphic to the Euclidean
space. Charts describe this property.

Definition 2.1.1. Let X be a set. A chart (u, U) is a bijective map u from a
domain U in X to an open set u(U) in Rn. Two charts (u, U) and (v, V ) are
called compatible if the sets u(U ∩ V ) and v(U ∩ V ) are open in Rn and u ◦ v−1

is a C∞-diffeomorphism.
An atlas of X is a family A = {(uα, Uα)|α ∈ A} of pairwise compatible

charts that cover X , i.e. X =
⋃
α∈A Uα. Two atlases are called equivalent if

their union is again an atlas.

Definition 2.1.2. A differentiable manifold X is a set X furnished with an
equivalence class of atlases, the so-called differentiable structure of X .

It can be shown that each atlas is contained in a unique maximal atlas (max-
imal w.r.t. the inclusion). Therefore we can assume that X is equipped with a
maximal atlas A and equip X with the natural topology induced by A.

We will simply use the term manifolds for differentiable manifolds that do
not necessarily fulfill further topological properties. But since we mainly use
the following type of manifolds, we also define:

Definition 2.1.3. A manifold X is called a smooth manifold if it is finite
dimensional, smooth, second countable and Hausdorff.

7



Chapter 2. Smooth Manifolds

Recall that a topological space X is called second countable if X has a count-
able basis. It is Hausdorff (or T2, the second axiom of separation) if for two
distinct points x, y ∈ X there exist open sets U, V in X such that x ∈ U , y ∈ V
and U ∩ V = ∅.

Unless stated otherwise, e.g. as in section 3.2 where we do not require second
countable, we will always work with smooth manifolds in the sense of the above
definition. Generally they are denoted by X and Y .

All essential definitions are provided along the way. For further reading on
differential geometry see [BC70], [Spi79] or [Mic08].

2.1.2 Tangent and cotangent spaces

For a manifold X and a point p ∈ X , the tangent space of X at p is denoted by
TpX .

Let Y be another manifold and f : X → Y a smooth function. The tangent
map of f at p is denoted by Tpf : TpX → Tf(p)Y .

Let the set { ∂
∂x1

∣∣
p
, ..., ∂

∂xn

∣∣
p
} denote the basis of the tangent space TpX

w.r.t. a given chart (u = (x1, ..., xn), U) at p in X . If ei is the i-th standard
unit vector of Rn, then

∂

∂xi

∣∣∣∣
p

:= (Tpu)
−1(ei) ∈ TpX ∀1 ≤ i ≤ n.

The cotangent space of a manifold X at p ∈ X is the dual of the tangent
space, i.e. (TpX)∗.

Similarly, the basis of (TpX)∗ w.r.t. a given chart (u = (x1, ..., xn), U) is de-
noted by {dx1

∣∣
p
, ..., dxn|p}, which is the dual basis of { ∂

∂x1

∣∣
p
, ..., ∂

∂xn

∣∣
p
} above.

2.1.3 Vector bundles and smooth sections

Vector bundles are used in many constructions. They are defined by:

Definition 2.1.4. Let E and B be two manifolds. The triple (E,B, π) is called
a vector bundle if π : E → B is smooth surjection such that for all b ∈ B the
following holds:

(i) The fiber π−1(b) is a vector space.

(ii) There exists an open neighborhood V of b and a diffeomorphism Φ :
π−1(V )→ V ×F ′, which is fiberwise linear (i.e. Φ|π−1(b) is linear ∀b ∈ V ),
such that the following diagram commutes:

π−1(V )

π

��

Φ
// V × F ′

pr1

��

V
id

// V

8



2.1. General definitions

Definition 2.1.5. Let (E,B, π) be a vector bundle. A section of E is a map
X : B → E that satisfies π ◦X = id.

The set of smooth sections of E is denoted by Γ(B,E), or simply by Γ(E).

2.1.4 Tensors and tensor fields

Some vector bundles occur naturally on manifolds:

Definition 2.1.6. For a manifold X and TpX the tangent space of X at p ∈ X ,
the tangent bundle of X is defined by

TX :=
⊔

p∈X
TpX =

⋃

p∈X
{p} × TpX.

In accordance with definition 2.1.4, (TX,X, πX) is a vector bundle for the
canonical projection πX : TX → X , (p, v) 7→ p.

If f : X → Y is a smooth map between manifolds, then the tangent map
Tf : TX → TX is defined by Tf(p, v) := (f(p), Tpf(v)) for all p ∈ X , v ∈ TpX .

Definition 2.1.7. Let X be a manifold and let (TpX)∗ be the cotangent space
at p ∈ X . The cotangent bundle is defined by

T ∗X :=
⊔

p∈X
(TpX)∗ =

⋃

p∈X
{p} × (TpX)∗.

Generally we can consider the space of
(
r
s

)
-tensors on any vector space:

Definition 2.1.8. The space of
(
r
s

)
-tensors on a vector space E consists of

(r + s)-linear mappings of the form

T rs (E) := Lr+s(E∗, ..., E∗
︸ ︷︷ ︸

r

, E, ..., E︸ ︷︷ ︸
s

; R).

On manifolds X we will write T rsX instead of T rs (TX) throughout. In par-
ticular, TX = T 1

0X and T ∗X = T 0
1X .

Definition 2.1.9. For t1 ∈ T r1s1 (E) and t2 ∈ T r2s2 (E), the tensor product t1⊗t2 ∈
T r1+r2s1+s2 (E) is defined by

t1 ⊗ t2(β1, ..., βr1 , γ1, ..., γr2 , f1, ..., fs1 , g1, ..., gs2)

:= t1(β
1, ..., βr1 , f1, ..., fs1) · t2(γ1, ..., γr2 , g1, ..., gs2)

for all βi, γi ∈ E∗ and all fj , gj ∈ E.

Definition 2.1.10. Let X be a manifold. Smooth sections of T rsX are the
(
r
s

)
-

tensor fields . The space of such sections is denoted by T rs (X) = Γ(X,T rsX).

In particular, the smooth vector fields X → TX are smooth sections of TX ,
i.e. X(X) = Γ(TX) = T 1

0 (X), and the space of one-forms is Ω1(X) = Γ(T ∗X) =
T 0

1 (X).

9



Chapter 2. Smooth Manifolds

2.2 Partitions of unity

Partitions of unity are a convenient tool to globalize local properties. Generally,
they can be defined for topological manifolds. However, since we only work with
smooth manifolds, we will require, in addition, that the functions are smooth.

A partition of unity is defined on an open cover U of a manifold X . That is
a family of open sets U = (Uα)α∈A such that X =

⋃
α∈A Uα.

Definition 2.2.1. Let X be a manifold and U an open cover of X . A partition
of unity subordinate to U is a family (χα)α∈A of smooth functions χα : X → R+

such that

(i) (suppχα)α∈A is locally finite

(ii) ∀α ∈ A∃U ∈ U such that suppχα ⊆ U
(iii) ∀p ∈ X :

∑
α∈A χα(p) = 1.

It is possible to have partitions of unity that are subordinate to a given cover
(i.e. the functions χα have the same index as the sets in the open cover) or to
have compactly supported functions χα. Generally it is not possible to fulfill
both properties, although on compact spaces it is.

Recall the following statements about the existence of smooth partitions of
unity on manifolds. Both proofs may be found in [BC70], chapter 3.4.

Theorem 2.2.2 (Countable partition of unity). Let X be a smooth manifold
and U an open cover of X. Then there exists a subordinate partition of unity
(χn)n∈N such that each suppχn is compact and contained in a chart neighbor-
hood.

If a countable partition of unity is not required, it is enough to have a
paracompact manifold.

Definition 2.2.3. A topological spaceX is called paracompact if it is Hausdorff
and every open cover of X admits a locally finite open refinement.

Theorem 2.2.4 (Subordinate partition of unity). Let X be a paracompact man-
ifold and U = (Uα)α∈A an open cover of X. Then there exists a partition of
unity (χα)α∈A such that suppχα ⊆ Uα for all α ∈ A.

Remark 2.2.5. It can be shown that a Hausdorff manifold is second countable
if and only if it is paracompact and consists of countably many connected com-
ponents (see [Hal06]). Thus theorem 2.2.4 is also true for smooth manifolds and
may even be derived from theorem 2.2.2. On the other hand, theorem 2.2.2 can-
not be extended to paracompact manifolds with uncountably many connected
components.

Corollary 2.2.6. Let X be a paracompact manifold, X ⊇ U open and U ⊇ V
closed. There exists a smooth bump function χ : X → R such that χ|V ≡ 1 and
χ|X\U ≡ 0.

Proof. The family (U,X \ V ) forms an open cover of X . By 2.2.4 there exists a
subordinate partition of unity (χU , χX\V ). The function χ := χU satisfies the
required conditions.

10



Chapter 3

Isomorphisms of Algebras
of Smooth Functions

Throughout, C∞(X) denotes the associative and commutative algebra of smooth
and complex-valued functions on X . It is, however, clear that all proofs also
work for real-valued functions.

The aim of this chapter is to prove that, for certain finite-dimensional dif-
ferentiable manifolds X and Y , any algebra isomorphism Ψ : C∞(X)→ C∞(Y )
is given by composition with a unique diffeomorphism ψ : Y → X , i.e. that
Ψ(f) = f ◦ ψ for all f ∈ C∞(X).

The classical approach to this question was inspired by the work of Gelfand
and Kolmogorov in [GK37] for continuous functions on compact sets. The idea
is to identify non-zero multiplicative linear functionals on the algebra C∞(X)
with the points in X . However, this requires X and Y to be Hausdorff and
second-countable, since it strongly uses partitions of unity. This approach is
the topic of section 3.1.

A different proof of this result has recently been given by Janez Mrčun
[Mrč05]. He characterizes the points of X by so-called characteristic sequences
of (complex-valued) smooth functions on X . This approach merely requires that
X and Y be smooth Hausdorff manifolds. It will be discussed in section 3.2.

3.1 On Hausdorff and second countable

manifolds

In [MS74], p. 11f, problem 1-C states that the real-valued smooth functions
C∞(X) on a smooth manifold X can be made into a ring and that every point
p ∈ X determines a ring homomorphism C∞(X) → R (point evaluation) and
hence a maximal ideal in C∞(X). If there is a countable basis for the topology
of X , then every ring homomorphism C∞(X)→ R is obtained in this way. Due
to its originator this result is often referred to as Milnor’s exercise.

11



Chapter 3. Isomorphisms of Algebras of Smooth Functions

Our aim in subsection 3.1.1 is to prove Milnor’s exercise for second countable
manifolds following some ideas in [AMR88], supplement 4.2C, and – with some
restrictions – also for paracompact manifolds in subsection 3.1.2.

This result is then used in subsection 3.1.3 to define a map ψ : Y → X from
an algebra isomorphism Ψ : C∞(X)→ C∞(Y ) such that Ψ is given as pullback
under ψ.

3.1.1 Multiplicative linear functionals on smooth
manifolds

We consider the functionals

evp : C∞(X) → C

f 7→ f(p)

for any differentiable manifold X , p ∈ X . It is obvious that these are non-zero
algebra homomorphisms since the multiplication and addition of functions are
defined pointwise.

We now show that the converse is also true for Hausdorff and second count-
able manifolds.

Theorem 3.1.1. Let X be a smooth manifold and ϕ : C∞(X) → C be a non-
zero algebra homomorphism. Then there exists a unique point p ∈ X such that

ϕ(f) = f(p) ∀f ∈ C∞(X).

Proof of uniqueness. For any two points p1, p2 ∈ X , p1 6= p2 there exits a bump
function f ∈ C∞(X) which separates them:

The manifold X is locally compact, so there exists an open set U and a
compact set V ⊂⊂ U such that p1 ∈ V and p2 /∈ U . The bump function
f : X → R of corollary 2.2.6 fulfills the requirements since it is smooth and
f(p1) = f |V (p1) = 1 but f(p2) = f |X\U (p2) = 0.

Hence p must be unique if it exists.

It remains to show that such a p exists for every non-zero algebra homomor-
phisms ϕ. To this end we will first derive some algebraic properties of algebra
homomorphisms C∞(X)→ C.

Lemma 3.1.2. Let X be a manifold, p ∈ X and ϕ : C∞(X)→ C be a non-zero
algebra homomorphism. Then

(i) ϕ(1) = 1 and ϕ(c) = c ∀c ∈ C.

(ii) kerϕ is a maximal ideal in C∞(X).

Proof. (i) Since ϕ is multiplicative, ϕ(1) = ϕ(12) = ϕ(1)2 implies that ϕ(1) = 0
or ϕ(1) = 1. If ϕ(1) = 0 then ϕ(f) = ϕ(1 · f) = ϕ(1) · ϕ(f) = 0 ∀f ∈ C∞(X)
which contradicts ϕ being non-zero. Hence ϕ(1) = 1 and by multiplicativity
also ϕ(c) = c for all constant functionals c.

(ii) If f ∈ kerϕ, g ∈ C∞(X) then fg ∈ kerϕ, too, hence kerϕ is an ideal. Let
I be an ideal of C∞(X) such that kerϕ ⊆ I. Since ϕ is a ring homomorphism
ϕ(I) is an ideal in the field C, thus

either ϕ(I) = {0} or ϕ(I) = C.

12



3.1. On Hausdorff and second countable manifolds

If ϕ(I) = {0} = ϕ(kerϕ) then I ⊆ kerϕ, hence I = kerϕ. If ϕ(I) = C =
ϕ(C∞(X)) then for every f ∈ C∞(X) there exists a g ∈ I such that ϕ(f) =
ϕ(g) ∈ C and therefore f − g ∈ kerϕ ⊂ I, i.e. f ∈ g + I ⊆ I. This implies that
I = C∞(X). Thus kerϕ is a maximal ideal.

Proof of existence in theorem 3.1.1. First of all, note that it is enough to show
the existence of a p ∈ X such that kerϕ = ker evp:

Clearly, if ϕ(f) = f(p) for some p then kerϕ = ker evp. Conversely, if
kerϕ = ker evp for some p ∈ X then ϕ = evp: For f ∈ C∞(X) we have that
ϕ(f) = c = ϕ(c) by lemma 3.1.2 (i), and therefore f − c ∈ kerϕ = ker evp.
Hence evp(f) = f(p) = c = ϕ(f).

It remains to be proved that

kerϕ = ker evp for some p ∈ X. (3.1)

Assume that kerϕ 6= ker evp for all p ∈ X . By lemma 3.1.2 (ii) both sets are
maximal ideals in C∞(X). Hence neither of them can be included in the other
one. For every p ∈ X we can therefore find an fp ∈ kerϕ such that fp(p) > 0,
even a relatively compact open neighborhood Vp of p such that fp|Vp

> 0.
Let (χn)n∈N be a locally finite partition of unity subordinate to the cover

(Vp)p∈X as in theorem 2.2.2. For all n ∈ N choose p(n) such that suppχn ⊆
Vp(n). We will write Vn := Vp(n) and fn := fp(n).

The next step is to show that 1 ∈ kerϕ. Since kerϕ is an ideal this will
imply that f = 1 · f ∈ kerϕ ∀f ∈ C∞(X), contradicting ϕ 6≡ 0.

Consider

f :=

∞∑

n=1

anχnfn.

This function is in C∞(X) since the χn are locally finite. If, in addition,

0 < an <
1

n2‖χnfn‖∞
,

then the series defining f converges uniformly (being majorized by
∑

1
n2 ). Since

for any p ∈ X there exists an n0 ∈ N such that χn0(p) > 0, we have that
p ∈ suppχn0 ⊆ Vn0 and therefore also fn0(p) > 0. In particular f > 0 on X .

To show that ϕ(f) = 0 and hence conclude 1 = 1
f
· f ∈ kerϕ, we need to

interchange ϕ with the summation.
This is done by a so-called g-estimate: Let g ∈ C∞(X). Either g is un-

bounded or we consider λ > ‖g‖∞. Since ϕ(λ) = λ by lemma 3.1.2 (i) and
λ ± g 6= 0 (vanishes nowhere) are both invertible functions on X we obtain
λ± ϕ(g) = ϕ(λ± g) 6= 0. Thus ±ϕ(g) 6= λ for all such λ, hence

|ϕ(g)| ≤ ‖g‖∞.
Finally we apply this to f to conclude that f ∈ kerϕ. By uniform conver-

gence and boundedness of all functions involved we obtain

|ϕ(f)| =

∣∣∣∣∣ϕ(f)−
N∑

n=1

ϕ(anχnfn)

∣∣∣∣∣ =

∣∣∣∣∣ϕ
(
f −

N∑

n=1

anχnfn

)∣∣∣∣∣

≤
∥∥∥∥∥f −

N∑

n=1

anχnfn

∥∥∥∥∥
∞

→ 0

as N →∞.
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Chapter 3. Isomorphisms of Algebras of Smooth Functions

3.1.2 Multiplicative linear functionals on paracompact
manifolds

Although we cannot extend the above proof to paracompact manifolds with
uncountably many connected components (cf. remark 2.2.5), we are able to
decompose the multiplicative linear functionals on such a paracompact manifold
X into their restrictions to the connected components Xι of X and use theorem
3.1.1 there.

Definition 3.1.3 (Restrictions ϕι). Let X be a manifold and Xι, ι ∈ I, be
the (possibly uncountably many) connected components of X . First of all we
decompose ϕ : C∞(X)→ C into (possibly zero) multiplicative linear functionals

ϕι : C∞(Xι) → C

fι 7→ ϕ(f ι),

where

f ι(x) :=

{
fι(x) x ∈ Xι

0 else
.

Obviously, each f ∈ C∞(X) can be written uniquely as a sum f =
∑

ι∈I f
ι,

where fι := f |Xι
in the above definition of f ι. We may write

C∞(X) =
⊕

ι∈I
C∞(Xι)

and will not distinguish between fι ∈ C∞(Xι) and f ι ∈ C∞(X) in the following.

To simplify the proof we first verify the following lemmas.

Lemma 3.1.4. Let X be a paracompact manifold and ϕ be a multiplicative
linear functional on C∞(X) with ϕ|C∞

c (X) ≡ evp for a p ∈ X. Then ϕ ≡ evp
everywhere.

Proof. Let χ be a bump function at p (which exists by corollary 2.2.6 since
X is locally compact), i.e. χ ∈ C∞c (X), χ(p) = 1. For f ∈ C∞(X) we have
χ · f ∈ C∞c (X). Hence

ϕ(f) = 1 · ϕ(f) = χ(p) · ϕ(f) = ϕ(χ) · ϕ(f) = ϕ(χ · f)

= evp(χ · f) = χ(p) · f(p) = 1 · f(p) = f(p)

and therefore ϕ ≡ evp on C∞(X).

Lemma 3.1.5. Let X be a manifold and ϕ : C∞(X)→ C a multiplicative linear
functional. The following statements are equivalent:

(i) ϕι ≡ 0 ∀ι ∈ I

(ii) ϕ|C∞
c (X) ≡ 0

Proof. (i ⇒ ii) If ϕι ≡ 0 for all ι ∈ I, then obviously ϕ|C∞
c (X) ≡ 0:

ϕ(f) = ϕ

(
∑

ι∈H
f ι

)
!
=
∑

ι∈H
ϕι(fι) = 0

14



3.1. On Hausdorff and second countable manifolds

since f =
∑
ι∈H f

ι ∈ C∞c (X) is a finite sum because the compact support of f
may be covered by finitely many Xι, ι ∈ H ⊆ I finite.

(ii ⇒ i) Suppose that ϕ|C∞
c (X) ≡ 0 but that there exists an ι ∈ I such

that ϕι is non-zero. Hence ϕι ≡ evpι
for some pι ∈ Xι by theorem 3.1.1. Let

χι ∈ C∞c (Xι) be a bump function around pι. Then 1 = ϕι(χι) = ϕ(χι) 6= 0, a
contradiction.

Corollary 3.1.6. Let X be a paracompact manifold and ϕ : C∞(X) → C be a
multiplicative linear functional which is non-zero on C∞c (X). Then there exists
a unique point p ∈ X such that

ϕ(f) = f(p) ∀f ∈ C∞(X).

Proof. LetXι, ι ∈ I, be the (possibly uncountably many) connected components
of X and ϕι, fι etc. as in definition 3.1.3.

By theorem 3.1.1 either ϕι ≡ evpι
for some pι ∈ Xι or ϕι ≡ 0. We will prove

that there is exactly one ϕι ≡ evpι
and all the others are zero:

Uniqueness: Suppose there exist ι 6= κ ∈ I such that ϕι ≡ evpι
for pι ∈ Xι

and ϕκ ≡ evpκ
for pκ ∈ Xκ. Let χι ∈ C∞c (Xι) be a bump function around pι

as in corollary 2.2.6, then ϕ(χι) = ϕι(χι) = χι(pι) = 1. Define χκ ∈ C∞c (Xκ)
analogously. Then 0 = ϕ(0) = ϕ(χι · χκ) = ϕ(χι) · ϕ(χκ) = 1 · 1 = 1, a
contradiction.

Existence: Since ϕ is non-zero on C∞c (X) there exists a ϕκ 6≡ 0 by lemma
3.1.5, and by theorem 3.1.1 ϕκ ≡ evpκ

for some pκ ∈ Xκ. Due to lemma 3.1.4
it remains to show that ϕ|C∞

c (X) ≡ evp for p = pκ ∈ X . To this end consider
f ∈ C∞c (X), i.e. f =

∑
ι∈H f

ι for a finite set H ⊆ I (assume w.l.o.g. that
κ ∈ H):

ϕ(f) = ϕ

(
∑

ι∈H
f ι

)
!
=
∑

ι∈H
ϕ(f ι) =

∑

ι∈H
ϕι(fι) = ϕκ(fκ) = f(p),

because for all ι 6= κ we have that ϕι ≡ 0 by uniqueness.

Remark 3.1.7. Note that the assumption ‘non-zero on C∞c (X)’ is much stronger
than simply ‘non-zero on C∞(X)’ as in theorem 3.1.1.

3.1.3 Algebra isomorphisms

Algebra isomorphisms are pullbacks by diffeomorphisms:

Theorem 3.1.8. Let X and Y be smooth manifolds and Ψ : C∞(X)→ C∞(Y )
an algebra isomorphism. Then Ψ is the pullback by a unique diffeomorphism
ψ : Y → X, i.e.

Ψ(f) = f ◦ ψ ∀f ∈ C∞(X).

Moreover, dimX = dimY .

Proof. Existence: For each q ∈ Y define the algebra homomorphisms ϕq :
C∞(X) → C by ϕq(f) := Ψ(f)(q). Since Ψ is non-zero we conclude that
Ψ(1) = 1 as in lemma 3.1.2 (i), thus ϕq is non-zero. By theorem 3.1.1 there
exists a unique point p ∈ X such that ϕq = evp. We shall see that

ψ : Y → X

q 7→ p

15



Chapter 3. Isomorphisms of Algebras of Smooth Functions

is the required diffeomorphism. Since Ψ(f)(q) = ϕq(f) = evψ(q)(f) = (f ◦
ψ)(q) = ψ∗f(q) for all f ∈ C∞(X) and all q ∈ Y , Ψ is the pullback via ψ.

Define σ : X → Y analogously via Ψ−1, i.e. Ψ−1(g)(p) = evσ(p)(g) =
(g ◦ σ)(p) = σ∗g(p) for all g ∈ C∞(Y ) and all p ∈ X . Since g = (Ψ ◦Ψ−1)(g) =
Ψ(g ◦ σ) = g ◦ σ ◦ ψ, we conclude that σ ◦ ψ = idY . Analogously ψ ◦ σ = idX .
Thus ψ is bijective.

Both ψ and ψ−1 are smooth by proposition 3.1.9 (see below), since the
smoothness of functions is preserved under the composition with ψ as well as
with ψ−1. Thus ψ is also a diffeomorphism.

Uniqueness: Suppose ψ and ρ are both such diffeomorphisms with p1 =
ψ(q) 6= ρ(q) = p2 for some q ∈ Y . As in the proof of uniqueness of theorem
3.1.1 there exists an f ∈ C∞(X) such that f(p1) 6= f(p2). Therefore (f ◦ψ)(q) =
f(p1) 6= f(p2) = (f ◦ρ)(q) which means that ψ and ρ cannot belong to the same
Ψ.

It remains to be shown that dimX = dim Y . By differentiating ψ◦ψ−1 = idX
at any p ∈ X we obtain Tψ−1(p)ψ ◦ Tpψ−1 = Tp idX = idTpX . Thus

dimX = dimTpX = rk(idTpX) = rk(Tψ−1(p)ψ ◦ Tpψ−1)

≤ rk(Tpψ
−1) = dim (im Tpψ

−1) ≤ dimTψ−1(p)Y = dimY.

Similarly dimY ≤ dimX . Hence we have equality.

Proposition 3.1.9. Let X, Y be manifolds and ψ : Y → X. Then ψ ∈
C∞(Y,X) if and only if for all f ∈ C∞(X) : f ◦ ψ ∈ C∞(Y ).

Proof. (⇒) holds since the composition of smooth mappings is smooth.
(⇐) It remains to be shown that u ◦ψ ∈ C∞(ψ−1(U),Rm) for a chart (u, U)

at any p ∈ X , i.e. ui ◦ψ ∈ C∞(ψ−1(U),R) for all i = 1, ...,m. By corollary 2.2.6
there exits a bump function χ ∈ C∞(X) such that χ(p) = 1 and χ|X\U ≡ 0. The
assumption implies that ui ◦ ψ = (ui · χ) ◦ ψ ∈ C∞(Y ) for all i = 1, ...,m.

Remark 3.1.10. Unfortunately we cannot prove theorem 3.1.8 for paracompact
manifolds in the same way because we had to strengthen our assumptions in
corollary 3.1.6 (non-zero on C∞c (X) instead of non-zero) as already pointed out
in remark 3.1.7.

However, in the next section we will provide a theory which leads to the
same result about algebra isomorphisms on smooth functions without assuming
that X is paracompact.

3.2 On Hausdorff manifolds

In the previous section we strongly used the fact that the manifolds are sec-
ond countable in order to identify the points of such manifolds with non-zero
multiplicative linear functionals on the algebra of smooth functionals.

At the ‘International Euroschool on Poisson Geometry, Deformation Quan-
tisation and Group Representations’ in Brussels in June 2003, Alan Weinstein
posed the question of whether an analogous result on algebra ismorphisms of
smooth functions holds true in a more general setting.

Janez Mrčun showed in [Mrč05] that also the isomorphisms between algebras
of smooth functions on Hausdorff manifolds, which are not necessarily second
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3.2. On Hausdorff manifolds

countable, paracompact or connected, are induced by diffeomorphisms of the
underlying manifolds. He works with so-called characteristic sequences and we
will discuss his approach in the following.

Shortly after Mrčun’s paper Janusz Grabowski independently proved the
same result by using so-called distinguished ideals. He follows some ideas of
[GK37]. For more details on Grabowski’s approach see [Gra05].

3.2.1 Characteristic sequences of smooth functionals

First of all we define the main object of this section:

Definition 3.2.1. Let X be a manifold, p ∈ X and (fn)n∈N a sequence of
smooth functions fn : X → C. (fn)n is called a characteristic sequence of
functions on X at p if

(i) fnfn+1 = fn+1 for all n ∈ N and

(ii) the sequence of supports (supp fn)n is a fundamental system of neighbor-
hoods of p ∈ X .

Recall the definition of a fundamental system of neighborhoods:

Definition 3.2.2. Let X be a topological space, x ∈ X and Ux a neighborhood
system of x, i.e. Ux := {U |U is neighborhood of x}. A subsystem Wx ⊆ Ux is
called fundamental system of neighborhoods of x if

∀U ∈ Ux ∃W ∈ Wx : (x ∈)W ⊆ U.

For T1 topological spaces (e.g., manifolds) only x is contained in the inter-
section of all such neighborhoods:

Proposition 3.2.3. Let X be a T1 topological space, x ∈ X and Wx a funda-
mental system of neighborhoods of x. Then

⋂

W∈Wx

W = {x} .

Proof. (⊇) Since allW ∈ Wx are neighborhoods of x it is obvious that x ∈ ⋂W .
(⊆) Conversely, suppose there exists y 6= x in the intersection. Since X is T1

there exists a neighborhood U of x such that y 6∈ U . Hence by 3.2.2 there must
be a W ∈ Wx such that W ⊆ U . In particular, y 6∈ W and therefore y 6∈ ⋂W ,
a contradiction.

We are now ready to prove some basic properties of characteristic sequences
of functions.

Proposition 3.2.4. Let X be a manifold and (fn)n a characteristic sequence
of functions on X at p ∈ X. Then

(i) fn|supp fn+1 ≡ 1, in particular supp fn+1 ⊆ int(supp fn) ∀n ∈ N

(ii) fn(p) = 1 ∀n ∈ N

(iii) For any p ∈ X there exists a characteristic sequence of functions.
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Proof. (i) holds since property (i) of definition 3.2.1 implies that fn(q) = 1
whenever fn+1 is non-zero. Moreover, fn(q) = 1 for all q ∈ supp fn+1, since
f−1
n ({1}) has to be closed in X .

(ii) follows by the argument in (i) and property (ii) of definition 3.2.1, since
p ∈ supp fn ∀n ∈ N.

(iii) Let (u, U) be a chart of X at p ∈ X , and w.l.o.g. assume that u(p) = 0
and B2(0) ⊆ u(U) ⊆ Rk. We are going to construct a characteristic sequence of
functions on Rk at 0, and will then pull it up to X via u−1:

By corollary 2.2.6 there exists a smooth bump function χ : Rk → R such
that χ|

B1(0)
≡ 1 and suppχ ⊆ B2(0) ⊆ u(U). Define the sequence (χn)n by

χn(x) := χ(2nx).

Then clearly χn|B 1
2n

(0) ≡ 1 and supp(χn) ⊆ B 1

2n−1
(0). Now let

fn : X → R ⊆ C

q 7→
{

(χn ◦ u)(q) q ∈ U
0 otherwise

.

Since χn and u are smooth and suppχn ⊆ u(U), fn is a smooth function. It
remains to prove (i) and (ii) of definition 3.2.1:

(i) By the above, fn(q) = χn(u(q)) = 1 if q ∈ u−1(B 1
2n

(0)). On the other

hand supp fn+1 = u−1(suppχn+1) ⊆ u−1(B 1
2n

(0)) since u is a homeo-
morphism. Thus fn ≡ 1 on supp fn+1, and fnfn+1 = fn+1 holds for all
n ∈ N.

(ii) Since u−1(B 1
2n

(0)) is open and contained in supp fn, supp fn is a neigh-

borhood of p = u−1(0). Let V be any neighborhood of p. Then the set
u(U ∩ V ) is a neighborhood of 0 ∈ Rk, hence there exists an m ∈ N such
that B 1

2m−1
(0) ⊆ u(U∩V ). Finally, supp fm ⊆ u−1(B 1

2m−1
(0)) ⊆ U ∩V ⊆

V and we are done.

For Hausdorff manifolds (i.e. differentiable manifolds that are Hausdorff) we
may rewrite (ii) of definition 3.2.1 in the following way.

Lemma 3.2.5 (Characterization of characteristic sequences). Let X be a Haus-
dorff manifold and (fn)n a sequence of complex-valued smooth functions on X
satisfying fnfn+1 = fn+1 for all n ∈ N. Then (fn)n is a characterstic sequence
of functions at p ∈ X if and only if

(i)
⋂∞
n=1 supp fn = {p} and

(ii) ∃m ∈ N : supp fm is compact

are satisfied.

Proof. (⇒) Since X is locally compact there exists a compact neighborhood K
of p. By (ii) of 3.2.1 (supp fn)n is a fundamental system of neighborhoods of p,
hence there exists an m ∈ N such that supp fm ⊆ K. Thus supp fm is compact
itself and (ii) is fulfilled. Property (i) is proposition 3.2.3.
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3.2. On Hausdorff manifolds

(⇐) Let U be any open neighborhood of p and assume that no supp fn,
n ∈ N, is contained in U . Suppose w.l.o.g. that supp f1 is compact. By our
assumptions and proposition 3.2.4 (i) (which only requires fnfn+1 = fn+1) the
family F = (supp fn \ U)n∈N has the finite intersection property (see definition
3.2.6 below). On the other hand

∅ = {p} \ U (i)
= (

⋂

n∈N

supp fn) \ U =
⋂

n∈N

supp fn \ U,

which contradicts theorem 3.2.7 below.

In the last paragraph we used theorem 3.1.1 of [Eng77] which characterizes
compact Hausdorff spaces via the finite intersection property:

Definition 3.2.6. A family F = (Fs)s∈S of subsets of a set X has the finite
intersection property if F 6= ∅ and

⋂
s∈T Fs 6= ∅ for every finite set T ⊆ S.

Theorem 3.2.7. A Hausdorff space X is compact if and only if every family
of closed subsets of X which has the finite intersection property has non-empty
intersection.

3.2.2 Algebra isomorphisms

We have seen that we can construct a characteristic sequence of functions at
each point of a manifold. The aim of the next (quite fundamental) lemma is to
prove that characteristic sequences are compatible with algebra isomorphisms.
In particular, the image of a characteristic sequence is again a characteristic
sequence and points are preserved in a sense specified below. This is then
used to define a map between the two manifolds which will be the desired
diffeomorphism.

Lemma 3.2.8 (Compatibility of characteristic sequences with algebra isomor-
phisms). Let X and Y be Hausdorff manifolds and Ψ : C∞(X) → C∞(Y ) an
algebra isomorphism. Then:

(i) If (fn)n is a characteristic sequence of functions on X at p ∈ X, then
(Ψ(fn))n is a characteristic sequence of functions on Y at a unique point
q ∈ Y .

(ii) If (fn)n and (f ′
n)n are two characteristic sequences of functions on X at

the same point p ∈ X, then (Ψ(fn))n and (Ψ(f ′
n))n are characteristic

sequences of functions on Y at the same point q ∈ Y .

Proof of (i). Let gn, n ∈ N, denote the smooth functions Ψ(fn) : Y → C.
Obviously gngn+1 = Ψ(fn)Ψ(fn+1) = Ψ(fnfn+1) = Ψ(fn+1) = gn+1 since Ψ is
algebra isomorphism and (fn)n a characteristic sequence of functions. Thus by
the proof of 3.2.4 (i)

gn|supp gn+1 ≡ 1 and supp gn+1 ⊆ int(supp gn) for all n ∈ N. (3.2)

Note that each gn is non-zero: Otherwise fk ≡ 0 ∀k ≥ n since Ψ is injective, and
the sets supp fn = ∅, k ≥ n, would not be neighborhoods of p, a contradiction
to 3.2.1 (ii).
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We are going to prove that (gn)n is a characteristic sequence of functions on
Y at a point q ∈ Y using the characterization of lemma 3.2.5.

Let

K :=

∞⋂

n=1

supp gn.

We have to prove that K = {q} for some q ∈ Y . The first step is to show
that K is not empty: Assume that K is empty. Since each gn is non-zero (i.e.
supp gn 6= ∅) and supp gk ⊆ int(supp gn) ∀k > n by (3.2) we may find a strictly
increasing subsequence (ik)k∈N of N such that supp gik \ supp gik+1

6= ∅ for all
k ∈ N. Then the sets

Vk := int(supp gik) \ supp gik+1
(6= ∅)

are open and disjoint subsets of Y . They are nonempty because ∅ = ∅ = Vk =
int(supp gik) \ supp gik+1 = supp gik \ int(supp gik+1) ⊇ supp gik \ supp gik+1 6=
∅, which is a contradiction. Furthermore, the family (Vk)k is locally finite in Y :
Assume that there exists a q′ ∈ Y such that each neighborhood of q′ intersects
infinitely many Vk. Then each neighborhood of q′ intersects infinitely many
supp gik , and hence all of the sets supp gi (due to ik → ∞ and (3.2)). Thus
q′ ∈ K, a contradiction to K being empty.

The next idea is to construct an f ∈ C∞(X) and a converging sequence (pk)k
of points in X such that limk→∞ f(pk) does not exist (hence contradicting the
fact that f is continuous):

Since Vk 6= ∅ there exists a qk ∈ Vk for each k ∈ N. By proposition 3.2.9
we can find hk, vk ∈ C∞(Y ) such that supp vk is a non-empty and compact
subset of Vk, supphk ⊆ Vk and for each l ∈ N0 we have h2l|supp v2l

≡ 1 and
h2l+1|supp v2l+1

≡ 0 (let c2l := 1 and c2l+1 := 0). As the Vk are disjoint and
locally finite and supphk ⊆ Vk for all k, the function

g : Y → R ⊆ C

q 7→
{
hk(q) q ∈ Vk
0 else

is well-defined and smooth on Y . Furthermore we have

gv2k ≡ v2k and gv2k+1 ≡ 0. (3.3)

Moreover,
gikvk 6≡ 0 (3.4)

for all k ∈ N, since ∅ 6= supp vk ⊆ Vk ⊆ supp gik . Let

f := Ψ−1(g) and uk := Ψ−1(vk).

Since Ψ−1 is an algebra isomorphism, we have fikuk = Ψ−1(gikvk) 6≡ 0 by (3.4).
Therefore we can find a pk ∈ X for each k ∈ N such that

(fikuk)(pk) 6= 0. (3.5)

Thus pk ∈ supp fik , which implies that (pk)k converges to p ∈ X since (fn)n
is a characteristic sequence of functions at p. On the other hand, fu2l ≡ u2l
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and fu2l+1 ≡ 0 by (3.3). By (3.5), uk(pk) 6= 0 ∀k ∈ N, hence f(p2l) = 1 and
f(p2l+1) = 0, a contradiction to the continuity of f . Hence K 6= ∅.

Take a point q ∈ K. We shall see that K = {q} and that (gn)n is a
characteristic sequence of functions on Y at q. Let V be an open neighborhood
of q in Y . Choose a characteristic sequence of functions (βn)n on Y at q (this
exists by proposition 3.2.4 (iii)) such that suppβ1 ⊆ V . Set αn := Ψ−1(βn) and

γn := αnfn.

We have
γnγn+1 = γn+1 (3.6)

since γnγn+1 = αnfnαn+1fn+1 = αnαn+1fnfn+1 = Ψ−1(βnβn+1)fnfn+1 =
Ψ−1(βn+1)fn+1 = αn+1fn+1 = γn+1. Furthermore,

βn(q)
3.2.4 (ii)

= 1
(3.2)
= gn(q) ⇒ γn = αnfn = Ψ−1(βngn) 6≡ 0

for all n ∈ N. These properties imply that (supp γn)n is a descending sequence
of non-empty sets. Using lemma 3.2.5 we will see that (γn)n actually is a
characteristic sequence of functions: As (fn)n is a characteristic sequence, there
exists an m ∈ N such that supp fn is compact for all n ≥ m by 3.2.4 (i) and
3.2.5 (ii). Thus

supp γn is compact for all n ≥ m, (3.7)

since supp γn ⊆ supp fn by the definition of γn. Furthermore we may apply the-
orem 3.2.7 to (supp γn)n which has the finite intersection property, and therefore

conclude that ∅ 6= ⋂n∈N
supp γn ⊆

⋂
n∈N

supp fn
3.2.5 (i)

= {p}, i.e.

⋂

n∈N

supp γn = {p} . (3.8)

Now (3.6)–(3.8) and lemma 3.2.5 imply that (γn)n is a characteristic sequence
of functions at p in X . In particular, supp γ2 is a neighborhood of p. Since
(fn)n is a characteristic sequence of functions we can choose a j ≥ 2 such that
supp fj ⊆ supp γ2, which implies γ1fj = fj because γ1|suppγ2 ≡ 1 by 3.2.4 (i).

Hence β1gj
(3.2)
= β1g1gj = Ψ(α1f1)Ψ(fj) = Ψ(γ1fj) = Ψ(fj) = gj and therefore

supp gj ⊆ suppβ1 ⊆ V for all j ≥ 2.

This shows that (supp gn)n∈N is a fundamental system of neighborhoods at q in
Y . Thus (gn)n = (Ψ(fn))n is a characteristic sequence of functions on Y at q.
In particular K = {q} by lemma 3.2.5 (i), which implies uniqueness of q.

In the previous proof of part (i) we have used the following bump functions:

Proposition 3.2.9. Let Y be a Hausdorff manifold, Y ⊇ V open, q ∈ V and
c ∈ R. Then there exist h, v ∈ C∞(Y ) such that

(i) v(q) > 0 (hence v non-zero) and supp v is a compact subset of V

(ii) h|supp v ≡ c and supph ⊆ V .

21



Chapter 3. Isomorphisms of Algebras of Smooth Functions

Proof. Let (w,W ) be a chart neighborhood of q such that w(W ) ⊆ V . By corol-
lary 2.2.6 (Rn is a paracompact manifold) there exist two auxiliary functions
f1, f2 : Rn → R such that f1(w(q)) = 1, supp f1 is a compact subset of w(W ),
f2|supp f1 ≡ 1 and supp f2 ⊆ w(W ). Finally,

v : Y → R+
0

y 7→
{

(f1 ◦ w)(y) y ∈W
0 y ∈ Y \ w−1(supp f1)

and

h : Y → R

y 7→
{
c · (f2 ◦ w)(y) y ∈ W
0 y ∈ Y \ w−1(supp f2)

are the required smooth functions on Y . The support of v is compact because
w is a homeomorphism.

Finally, it remains to prove 3.2.8 (ii).

Proof of (ii). As in (i) we write gn := Ψ(fn) and g′n := Ψ(f ′
n) for all n ∈ N.

Part (i) implies that (gn)n and (g′n)n are characteristic sequences on Y at points
q and q′ of Y . Assume that q 6= q′. Since Y is Hausdorff and by definition 3.2.1
(ii) we can choose an m ∈ N such that supp gm ∩ supp g′m = ∅, hence gmg

′
m ≡ 0.

This implies that fmf
′
m = Ψ−1(gmg

′
m) ≡ 0, a contradiction to 3.2.4 (ii), i.e.

fm(p)f ′
m(p) = 1.

Remark 3.2.10. Note that lemma 3.2.8 implies that an equivalence class of
characteristic sequences at a point in X maps under an algebra isomorphism
to an equivalence class of characterstic sequences at a point in Y . As such,
we can identify points in X and Y with equivalence classes of characteristic
sequences, and such an identification is compatible with the action of algebra
isomorphisms.

Again we can prove that algebra isomorphisms are pullbacks by diffeomor-
phisms in the case of smooth functions on Hausdorff manifolds:

Theorem 3.2.11. Let X and Y be Hausdorff manifolds and Ψ : C∞(X) →
C∞(Y ) an algebra isomorphism. Then Ψ is given by composition with a unique
diffeomorphism ψ : Y → X, i.e.

Ψ(f) = f ◦ ψ ∀f ∈ C∞(X).

Moreover, dimX = dimY in this case.

Proof. For any q ∈ Y , we may choose a characteristic sequence (gn)n of func-
tions on Y at q using proposition 3.2.4 (iii). By lemma 3.2.8 (i) we know that
(Ψ−1(gn))n then is a characteristic sequence of functions on X at a point p ∈ X .
By 3.2.8 (ii), p is independent of the choice of (gn)n, thus by defining ψ(q) := p
we obtain a map

ψ : Y → X.

We shall see that ψ meets the demands. First of all, Ψ is is given by the
composition with ψ, i.e. Ψ(f)(q) = f(ψ(q)) for all f ∈ C∞(X) and all q ∈ Y :
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We observe a simpler case first. Let h ∈ C∞(X) such that Ψ(h)(q) = 0,
then also h(ψ(q)) = 0: Suppose h(ψ(q)) 6= 0, then h|V is vanishing nowhere
on an open neighborhood V of ψ(q) in X . Since (Ψ−1(gn))n is a characteristic
sequence of functions at ψ(q) = p, we can choosem ∈ N such that supp Ψ−1(gm)
is a compact subset of V and define the smooth function

f : X → C

x 7→
{

Ψ−1(gm)(x)
h(x) x ∈ V

0 x ∈ X \ supp Ψ−1(gm)
.

This implies 1
3.2.4 (ii)

= gm(q) = Ψ(Ψ−1(gm))(q) = Ψ(hf)(q) = Ψ(h)(q)Ψ(f)(q),
a contradiction to Ψ(h)(q) = 0.

For the general case take any f ∈ C∞(X). We have

Ψ(f −Ψ(f)(q)1)(q) = Ψ(f)(q)−Ψ(f)(q) = 0

as Ψ(1) = 1 for any algebra isomorphism. By the previous argument this yields
(f −Ψ(f)(q)1)(ψ(q)) = 0. Thus

Ψ(f)(q) = f(ψ(q)).

Uniqueness of ψ follows as in the proof of theorem 3.1.8 (using that X is
Hausdorff and a bump function of proposition 3.2.9).

Analogously, Ψ−1 is given by a composition with a map σ : X → Y . In
particular, g = Ψ(Ψ−1(g)) = Ψ(g ◦ σ) = g ◦ σ ◦ ψ for all g ∈ C∞(Y ), hence
σ ◦ ψ = idY . Analogously, ψ ◦ σ = idX . Thus σ = ψ−1.

Both, ψ and ψ−1 are smooth by proposition 3.1.9, again as in the proof of
3.1.8. Therefore ψ is the required diffeomorphism.

That dimX = dimY is also shown as in the proof of theorem 3.1.8.

Obviously, this last proof is quite similar to the proof of theorem 3.1.8,
although it uses characteristic sequences instead of non-zero multiplicative linear
functionals to interpret the points in the manifolds.

Remark 3.2.12. Note that we may use R instead of C following the same
proofs. Furthermore, an analogous result holds true for algebra isomorphisms
of smooth functions with compact support. See [Mrč05] for more details.

Mrčun and Šemrl further showed in [MŠ07] that a similar result holds for
differentiable instead of smooth functions. More precisely, they proved that any
multiplicative bijection between algebras of differentiable functions (defined on
differentiable manifolds of positive dimension) is automatically an algebra iso-
morphism, which again is given by composition with a unique diffeomorphism:

Theorem 3.2.13. Let X and Y be Hausdorff Cr-manifolds of positive dimen-
sion, 1 ≤ r < ∞. Then for any multiplicative bijection B : Cr(X) → Cr(Y )
there exists a unique Cr-diffeomorphism β : Y → X such that

B(f) = f ◦ β ∀f ∈ Cr(X).

In particular, the map B is an algebra isomorphism.

They also mention, without further comment, that their method used in
[MŠ07] does not work for r =∞.
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Chapter 4

Some (Semi-)Riemannian
Geometry

In what follows, we will discuss the geometrical and topological setting of the
chapters to come, namely finite dimensional, smooth, second countable and
Hausdorff manifolds which are equipped with a Riemannian metric. Readers
who are familiar with the exponential map, normal and convex neighborhoods,
normal coordinates etc. may omit section 4.1 in this summary and only come
back to it later if necessary. For a general introduction to semi-Riemannian
geometry see e.g. [O’N83].

Besides the short introduction to Riemannian geometry in 4.1, we will prove
in section 4.2 that the square of any Riemannian distance function on a manifold
X is smooth in both variables on a neighborhood of the diagonal △X ⊆ X×X .
This is a remarkable result in its own right, although not fundamental in what
follows.

Rather fundamental for the proofs to come is section 4.3 where we inves-
tigate the link between the Riemannian and the Euclidean metric for smooth
submanifolds X of Rn. This is interesting because the Whitney embedding the-
orem in section 4.4 states that any finite dimensional manifold (in particular
any Riemannian manifold) can be viewed as a submanifold of Rm.

4.1 (Semi-)Riemannian manifolds

4.1.1 Metric tensors

In order to be able to investigate intrinsic properties of a smooth manifold as
defined in 2.1.3, e.g. curvature and length, we have to equip a smooth manifold
X with a scalar product on the tangent space:

Recall that a bilinear form b : V × V → R on a finite dimensional vector
space V is called non-degenerate if

b(v, w) = 0 ∀w ∈ V ⇒ v = 0.
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and positive resp. negative definite if

b(v, v) > 0 resp. b(v, v) < 0 ∀v ∈ V, v 6= 0.

It is furthermore called symmetric if

b(v, w) = b(w, v) ∀v, w ∈ V.

The index of a symmetric bilinear form b on V is defined by

ν := max {dimW |W is a subspace of V such that b|W is negative definite}.

Definition 4.1.1. Let X be a smooth manifold. A metric tensor g on X is a
symmetric and non-degenerate smooth

(
0
2

)
-tensor field with constant index.

This means that g ∈ T 0
2 (X), and g(p) : TpX × TpX → R is symmetric and

non-degenerate for all p ∈ X .

Note that we will use Einstein’s summation convention throughout. It says
that if an index appears twice, as a lower and an upper index, then we sum over
all its possible values.

Recall that, w.r.t. a given chart (u = (x1, ..., xn), U) at p in X , the set
{ ∂
∂x1

∣∣
p
, ..., ∂

∂xn

∣∣
p
} denotes the basis of the tangent space TpX and {dx1

∣∣
p
, ...,

dxn|p} the basis of the dual (TpX)∗.

Moreover, ⊗ is the tensor product as defined in 2.1.9.

Remark 4.1.2 (Notation). Often we will write 〈 ., .〉 for g(p) to emphasize
that it is a scalar product on TpX . Also vector fields can be inserted in g, i.e.
g(V,W ) = 〈V,W 〉 ∈ C∞(X,R) for V,W ∈ X(X).

For a chart (u, U) of X , u = (x1, ..., xn), the components gij of g w.r.t. this
chart are given by gij := 〈 ∂

∂xi ,
∂
∂xj 〉. Thus for V = V i ∂

∂xi ,W = W j ∂
∂xj ∈ X(X)

we have that

g(V,W ) = 〈V,W 〉 = V iW jgij

g|U = gij dx
i ⊗ dxj .

The matrix of g(p) w.r.t. an orthonormal basis {e1, ..., en} in TpX is diagonal
and invertible, since g is non-degenerate. We have that

g(p)(ei, ej) = δijεi,

where δij is the Kronecker delta and εi = g(p)(ei, ei) = ±1. W.l.o.g. we assume
that {e1, ..., en} is ordered in a way such that the signature (ε1, ..., εn) starts
with the minus signs.

Definition 4.1.3. The norm of a vector v ∈ TpX is defined as

|v| := |g(p)(v, v)| 12 .
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Semi-Riemannian manifolds are now defined as follows:

Definition 4.1.4. A semi-Riemannian manifold is a smooth manifold X en-
dowed with a metric tensor g.

It is called Riemannian manifold if ν = 0 and Lorentzian manifold if ν = 1
and n ≥ 2.

We will denote a semi-Riemannian manifold by either X or (X, g) in the
following.

Remark 4.1.5. Using a partition of unity, it is easy to prove that every smooth
manifold (second countable and Hausdorff) admits a Riemannian metric tensor,
cf. [O’N83], lemma 5.25. In particular, every such manifold is metrizable by
[O’N83], proposition 5.18.

4.1.2 Riemannian distance

On a Riemannian manifold we can measure the distance of two points via curve
length on the manifold:

Definition 4.1.6. Let (X, g) be a semi-Riemannian manifold and c : [a, b]→ X
a piecewise smooth curve on X . The arc length of c is defined by

L(c) :=

∫ b

a

|〈c′(t), c′(t)〉| 12

with |〈c′(t), c′(t)〉| 12 =
∣∣∣
∑n
i,j=1 gij(c(t))

d(xi◦c)
dt

(t)d(x
j◦c)
dt

(t)
∣∣∣
1
2

where (x1, ..., xn)

denotes a chart.

Definition 4.1.7. Let (X, g) be a connected Riemannian manifold, p, q ∈ X
and Ω(p, q) the set of piecewise smooth curves from p to q. Then the Riemannian
distance dg(p, q) from p to q is defined as

dg(p, q) := inf
c∈Ω(p,q)

L(c).

It can be shown that dg is a metric onX that is compatible with the topology,
cf. [O’N83], proposition 5.18. Moreover, two Riemannian distances are locally
equivalent:

Lemma 4.1.8. Let X be a smooth manifold and g, h two Riemannian metrics
that induce the respective Riemannian distances dg, dh. Then

∀K,L ⊂⊂ X ∃C > 0 such that dh(p, q) ≤ Cdg(p, q)∀p ∈ K, q ∈ L.

Proof. See [GKOS01], lemma 3.2.5, or [Nig06], lemma 3.13.

4.1.3 The Levi-Civita connection

The Levi-Civita connection on a semi-Riemannian manifold X is denoted by
∇ : X(X) × X(X) → X(X), where X(X) := Γ(X,TX) is the set of smooth
vector fields on X . It exists and is uniquely determined by the properties (∇1)–
(∇5) for U, V,W ∈ X(X), see e.g. [O’N83], theorem 3.11:
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(∇1) ∇UV is C∞(X)-linear in U

(∇2) ∇UV is R-linear in V

(∇3) ∇U (fV ) = U(f)V + f∇UV for all f ∈ C∞(X)

(∇4) [U, V ] = ∇UV −∇V U
(∇5) W 〈U, V 〉 = 〈∇WU, V 〉+ 〈U,∇WV 〉.

If a map ∇ just satisfies (∇1)–(∇3) it is called a (linear) connection on the
manifold X . The vector field ∇UV is called covariant derivative of V w.r.t. U
for the connection ∇.

4.1.4 Christoffel symbols

Definition 4.1.9. Let X be a semi-Riemannian manifold and (u, U) a chart of
X , u = (x1, ..., xn). The Christoffel symbols w.r.t. u are the smooth functions
uΓkij : U → R that satisfy

∇ ∂

∂xi

∂

∂xj
= uΓkij

∂

∂xk
∀1 ≤ i, j ≤ n. (4.1)

Remark 4.1.10 (Basic properties of uΓkij).

(i) Property (∇4) implies that ∇ ∂

∂xi

∂
∂xj = 0 for all 1 ≤ i, j ≤ n, hence

uΓkij = uΓkji for all 1 ≤ i, j, k ≤ n.

(ii) The Christoffel symbols are not the components of a tensor field w.r.t.
the local coordinate system and so do not transform like a tensor under
coordinate transformations.

(iii) If pw = (pw1, ..., pwn) denotes a normal coordinate system at p ∈ X (see
remark 4.1.18 below), then

pwΓkij(p) = 0 ∀1 ≤ i, j, k ≤ n,
cf. [O’N83], proposition 3.33.

4.1.5 Geodesics

There is a special type of curve on a semi-Riemannian manifold X that is
fundamental for the geometry of X :

Definition 4.1.11. Let X be a semi-Riemannian manifold and I ⊆ R an in-
terval. A geodesic is a curve γ : I → X , whose tangent vector field γ′ is parallel
along γ, i.e. γ′′ := ∇γ′γ′ = 0.

A geodesic is uniquely determined by an ordinary differential equation of
second order, and hence by its initial conditions c(0) = p and c′(0) = v:

Proposition 4.1.12 (Geodesic equation). Let X be a semi-Riemannian man-
ifold and (u = (x1, ..., xn), U) a chart of X. A curve c : I → U is a geodesic of
X if and only if its local coordinate functions xi ◦c satisfy the following geodesic
equation

d2(xk ◦ c)
dt2

+

n∑

i,j=1

uΓkij(c)
d(xi ◦ c)

dt

d(xj ◦ c)
dt

= 0

for 1 ≤ k ≤ n.
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Proof. See [O’N83], corollary 3.21.

As we will see later, geodesics describe locally the shortest curve between two
points. They are very important for many applications, e.g. general relativity.

4.1.6 The exponential map

The exponential map is defined as follows.

Definition 4.1.13. Let X be a semi-Riemannian manifold, p ∈ X and

Dp := {v ∈ TpX | the geodesic cv with initial conditions

cv(0) = p and c′v(0) = v is defined on [0, 1]}.

The exponential map of X at p is defined as

expp : TpX ⊇ Dp → X

v 7→ cv(1).

A well-known result in semi-Riemannian geometry states that expp is a local
diffeomorphism:

Theorem 4.1.14. Let X be a semi-Riemannian manifold and p ∈ X. Then
there exists a neighborhood V of 0 in TpX and a neighborhood U of p in X such
that expp : V → U is a diffeomorphism.

Proof. See [O’N83], proposition 3.30.

The exponential maps expp at different points p ∈ X can also be put together
nicely:

Definition 4.1.15. Let X be a semi-Riemannian manifold. Then

D := {v ∈ TX | cv exists at least on [0, 1]},

i.e. Dp = D∩ TpX for each p ∈ X . The map E is defined via the footpoint map
π : TX → X (v ∈ TpX is mapped to π(v) = p) by

E : TX ⊇ D → X ×X
v 7→ (π(v), expπ(v)(v)).

Obviously, D is the maximal domain of E. It can be shown that D is open
in TX and that Dp is open and star-shaped at 0 ∈ TpX for all p ∈ X . If X is
geodesically complete then D = TX . Moreover, E is a local diffeomorphism:

Theorem 4.1.16. Let X be a semi-Riemannian manifold. Then the map E :
V → U is a diffeomorphism of a neighborhood V of (TX)0 in TX onto some
neighborhood U of △X in X ×X.

Here, △X := {(p, p) | p ∈ X} is called the diagonal of X , and (TX)0 :=
{0p | p ∈ X} the zero section of TX .

Proof. See [O’N83], lemma 5.6 and the remark thereafter, or [Kun06], theorem
2.4.6.
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4.1.7 Normal neighborhoods

Definition 4.1.17. Let X , U and V be as in theorem 4.1.14 and suppose
furthermore that V is star-shaped around 0. Then U is called a normal neigh-
borhood of p.

Remark 4.1.18. On a normal neighborhood U of p ∈ X there exists a dis-
tinguished type of coordinates, so-called normal coordinates , which, as we shall
see, are useful for many calculations. A normal coordinate system is induced
by the exponential map expp : V → U which is a diffeomorphism by theorem
4.1.14. To each q ∈ U we assign the coordinates of exp−1

p (q) ∈ V ⊆ TpX w.r.t.
an orthonormal basis {e1, ..., en} of TpX . More precisely,

exp−1
p (q) =

n∑

i=1

pwi(q)ei ∀q ∈ V,

where pw = (pw1, ..., pwn) denote the normal coordinate system at p.

Definition 4.1.19. Let (X, g) be a semi-Riemannian manifold, p ∈ X and U
a normal neighborhood of p. Then the function

r : U → R+

q 7→ r(q) := | exp−1
p (q)|

is called radius function on U of p. Recall that |v| := |g(p)(v, v)| 12 .

In terms of normal coordinates (pw1, ..., pwn), the radius function r at p is
given by

r =

∣∣∣∣∣−
ν∑

i=1

(pwi)2 +

n∑

i=ν+1

(pwi)2

∣∣∣∣∣

1
2

,

where ν denotes the index of (X, g). In particular, r is smooth whereever it is
non-zero, i.e. everywhere except at p and the local null-cone.

Proposition 4.1.20. Let X be a semi-Riemannian manifold. If U is a normal
neighborhood of p ∈ X, then for each point q ∈ U there exists a unique geodesic
γpq : [0, 1]→ U from p to q in U . Furthermore, γ′pq(0) = exp−1

p (q) and

L(γpq) = r(q) = | exp−1
p (q)|,

where r denotes the radius function on U of p. This curve γpq is called a radial
geodesic.

Proof. See [O’N83], proposition 3.31 and lemma 5.13.

An even stronger result holds for Riemannian manifolds:

Proposition 4.1.21. Let (X, g) be a Riemannian manifold and p ∈ X.

(i) For sufficiently small ε > 0, the ε-neighborhood

Uε(p) := {q ∈ X | dg(p, q) < ε}

is normal.
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(ii) For a normal ε-neighborhood Uε(p) the radial geodesic γpq from p to q ∈
Uε(p) is the unique shortest curve in X from p to q. In particular

L(γpq) = r(q) = | exp−1
p (q)| = d(p, q).

Sketch of proof. We may assume for a moment that there exists a normal (even
convex) neighborhood U of p in X , a fact which will be proved explicitly later
in theorem 4.2.4. Then for ε > 0 sufficiently small the neighborhood

Vε(p) := {v ∈ TpX | |v| < ε}, (4.2)

with |v| = |g(p)(v, v)| 12 , of 0 in TpX is contained in V = exp−1
p (U). It can be

shown that Uε(p) as in (i) is the image of such a Vε(p) under the exponential map
expp, thus obviously a normal neighborhood of p. Furthermore it can be shown
that (ii) holds for these ε. See [O’N83], proposition 5.16, for more details.

4.1.8 Convex neighborhoods

Definition 4.1.22. An open subset U of a semi-Riemannian manifold X is
called geodesically convex if U is a normal neighborhood of each of its points.

We will see in theorem 4.2.4 below that every point p of a semi-Riemannian
manifold X possesses a base of convex neighborhoods. See also [O’N83], propo-
sition 5.7.

Remark 4.1.23 (Definition of convexity). Be aware, that different authors use
different notions for convexity. For example in [GKM68], section 5.2, a convex
set U is an open subset of a connected Riemannian manifold, such that for any
two points p, q ∈ G there exists a geodesic γpq with L(γpq) = dg(p, q) that lies
entirely in G (not necessarily unique though).

On the other hand, e.g. in [dC92], theorem 3.7 resp. remark 3.8, geodesically
convex sets as in definition 4.1.22 are called totally normal.

We mainly follow the terminology of [O’N83]. Additional definitions of con-
vexity are introduced in the following section 4.2 where needed.

4.2 Smoothness of the Riemannian distance

In this section we will prove that the Riemannian distance dg on a Riemannian
manifold (X, g) is smooth on a neighborhood U of the diagonal △X except on
the diagonal itself (because

√
is not smooth in 0), and that dg

2 is smooth on
all of U .

The proofs strongly rely on normal coordinates on convex neighborhoods as
introduced in remark 4.1.18 and definition 4.1.22. In order to show that ev-
ery point in a semi-Riemannian manifold possesses a base of convex neighbor-
hoods and that all subsets of a certain type are also convex, we will require cer-
tain smoothness properties of Christoffel symbols and normal coordinate charts.
Therefore we begin by investigating a few of their properties.

Coming back to Riemannian manifolds, it follows that sufficiently small balls
Br(p) ⊆ X (and also those contained in them) are even strongly convex – a con-
cept that is defined in 4.2.6. As each point has a strongly convex neighborhood
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we can define a strictly positive and also continuous so-called convexity radius
κ on X . This finally allows us to define an open neighborhood on which the
Riemannian distance is smooth in the sense mentioned before.

Be aware that both terms, strongly convex and convexity radius, are used
differently by some authors.

4.2.1 Christoffel symbols with respect to normal
coordinates

The following lemma shows how the Christoffel symbols transform for different
charts.

Lemma 4.2.1. Let X be a semi-Riemannian manifold and (u = (x1, ..., xn), U)
and (v = (y1, ..., yn), V ) different charts of X at p ∈ U ∩ V . Then for all
1 ≤ i, j, k ≤ n,

uΓkij(p) =
∂xk

∂yl

∣∣∣∣
p

(
∂2yl

∂xi∂xj

∣∣∣∣
p

+ vΓlrs(p)
∂yr

∂xi

∣∣∣∣
p

∂ys

∂xj

∣∣∣∣
p

)
. (4.3)

Proof. By [O’N83], lemma 1.14, ∂
∂xm = ∂yr

∂xm
∂
∂yr for all 1 ≤ m ≤ n. Thus by

definition 4.1.9,

uΓmij
∂yl

∂xm
∂

∂yl
(4.1)
= ∇ ∂yr

∂xi
∂

∂yr

∂ys

∂xj
∂

∂ys
(∇1)
=

∂yr

∂xi
∇ ∂

∂yr

∂ys

∂xj
∂

∂ys
. (4.4)

On the other hand, also ∂
∂yr = ∂xh

∂yr
∂
∂xh for all 1 ≤ r ≤ n, hence

uΓmij
∂yl

∂xm
∂

∂yl
(4.4),(∇3)

=
∂yr

∂xi

(
∂xh

∂yr
∂2ys

∂xj∂xh
∂

∂ys
+
∂ys

∂xj
∇ ∂

∂yr

∂

∂ys

)

(4.1)
=

∂yr

∂xi

(
∂xh

∂yr
∂2ys

∂xj∂xh
∂

∂ys
+
∂ys

∂xj
vΓlrs

∂

∂yl

)

=

(
∂yr

∂xi
∂xh

∂yr
∂2yl

∂xj∂xh
+
∂yr

∂xi
∂ys

∂xj
vΓlrs

)
∂

∂yl
. (4.5)

In particular, since the ∂
∂yl form a basis in the tangent space,

∂yl

∂xm
uΓmij

(4.5)
=

∂yr

∂xi
∂xh

∂yr︸ ︷︷ ︸
=δih

∂2yl

∂xj∂xh
+
∂yr

∂xi
∂ys

∂xj
vΓlrs

=
∂2yl

∂xj∂xi
+
∂yr

∂xi
∂ys

∂xj
vΓlrs, (4.6)

which by multiplication with ∂xk

∂yl and summation over l finally leads to

uΓkij =
∂xk

∂yl
∂yl

∂xm︸ ︷︷ ︸
=δkm

uΓmij
(4.6)
=

∂xk

∂yl

(
∂2yl

∂xj∂xi
+ vΓlrs

∂yr

∂xi
∂ys

∂xj

)
.
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Remark 4.2.2 (Orthonormal frame fields). Let X be a semi-Riemannian man-
ifold of dimension n and o ∈ X . An orthonormal basis {e1, ..., en} of ToX is
called a frame on X at o. A frame field {E1, ..., En} consists of smooth or-
thonormal vector fields Ei ∈ X(X), 1 ≤ i ≤ n, and hence assigns a frame
{E1|o , ..., En|o} to each point o ∈ X .

Frame fields may not exist globally on X . However, locally on a (normal)
neighborhood U of o ∈ X , they may be constructed by parallel transport along
geodesics by [O’N83], corollary 3.46. Any vector field W ∈ X(X) can be written
as a sum

W =

n∑

i=1

εi〈W,Ei〉Ei,

where εi := 〈Ei, Ei〉.
For any p ∈ U we denote the normal coordinates on a neighborhood Wp of

p w.r.t. the orthonormal frame field E1, ..., En by pw = (pw1, ..., pwn). Since
exp−1

p (q) = pwi(q) Ei|p ∈ TpX for any q ∈Wp, we have that

pw(q) :=
(
εi〈exp−1

p (q), Ei|p〉
)n
i=1

= (pw1(q), ..., pwn(q))). (4.7)

By theorem 4.1.16, the exponential map E : V → U , E(vp) := (p, expp(v)),
is a diffeomorphism from a neighborhood V of TX0 in TX onto a neighborhood
U of △X in X ×X . For p ∈ X let

U(p) := {q ∈ X | (p, q) ∈ U} ⊆ X.

For Christoffel symbols w.r.t. normal coordinates additional properties hold:

Lemma 4.2.3. Let X be a semi-Riemannian manifold, o ∈ X and {E1, ..., En}
a local frame field on a neighborhood Ũ of o such that Ũ×Ũ ⊆ U (U as in 4.1.16).

Let U be a neighborhood of o with U ⊂⊂ Ũ . Then the following properties hold:

(i) The normal coordinate charts pw are defined on Ũ for all p ∈ Ũ .

(ii) The map (p, q) 7→ pw(q), Ũ × Ũ → Rn is smooth.

(iii) There exists a neighborhood V of 0 in Rn, such that the map

f : U × U × V → Rn

(p, q, r) 7→ fpq(r) := (pw ◦ (qw)−1)(r)

is smooth.

(iv) There exists a neighborhood W ⊆ U of o, such that

pwΓkij(q) = Dlf
k
po

∣∣
ow(q)

(
Dijf

l
op

∣∣
pw(q)

+
owΓlrs(q) Dif

r
op

∣∣
pw(q)

Djf
s
op

∣∣
pw(q)

)

for all p, q ∈ W .

(v) For each ε > 0 there exists a neighborhood Uε ⊆ U of o, such that
∣∣∣

pwΓkij(q)−
owΓkij(o)

∣∣∣ < ε

for all p, q ∈ Uε and all 1 ≤ i, j, k ≤ n.
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Proof. (i) First note that such a local frame {E1, ..., En} on some neighborhood

Ũ of o exists by remark 4.2.2. As Ũ × Ũ ⊆ U by assumption, we have that
Ũ ⊆ U(p) for all p ∈ Ũ . In particular, the inverse of the exponential map E

exists on Ũ × Ũ and for all p ∈ Ũ we have

E−1
∣∣
{p}×U(p)

= exp−1
p (4.8)

on U(p) ⊇ Ũ by theorem 4.1.16. Thus the charts pw are defined on Ũ .

(ii) By the definition (4.7) of pw in remark 4.2.2, (i) implies that

pw(q) =
(
εi〈exp−1

p (q), Ei|p〉
)n
i=1

(4.8)
=
(
εi〈E−1(p, q), Ei|p〉

)n
i=1

is smooth on Ũ × Ũ .

(iii) Since by assumption all Ei, 1 ≤ i ≤ n, are smooth vector fields on

Ũ , the map τ : Ũ × Rn → TX defined by τ(q, r) :=
∑n

i=1 r
i Ei|q is smooth,

too. Moreover, τ(U × {0}) ⊆ V . Thus τ−1(V) is an open neighborhood of the
compact set U × {0} by continuity of τ . In particular, there is a neighborhood
V of 0 in Rn that satisfies τ(U × V ) ⊆ V . Finally, f is well-defined and smooth
on U × U × V , since

fpq(r) = (pw ◦ (qw)−1)(r)

= pw

(
expq

(
n∑

i=1

ri Ei|q

))

= pw ((pr2 ◦E ◦τ) (q, r))

is smooth by (ii) and the fact that pr2, E and τ are smooth.

(iv) Let V be a neighborhood of 0 ∈ Rn as in (iii). Obviously, ow(o) = 0 ∈ V .
Thus by continuity in both variables by (ii) there exist neighborhoods W1 and
W2 of o such that pw(q) ∈ V ∀p ∈ W1 ∀q ∈ W2. Let W be the neighborhood

W := W1 ∩W2 ⊆ U

of o. SinceW is contained in the domains of all charts xw (x ∈ U), the Christoffel
symbols

pwΓkij(q) and
owΓlrs(q) exist for all p, q ∈ W . Moreover, pw(q), ow(q) ∈

V by the above construction. Hence we may apply lemma 4.2.1 and (iii) to
(p, o, ow(q)) and (o, p, pw(q)) to finally obtain

pwΓkij(q)
(4.3)
=

∂ pwk

∂ owl

∣∣∣∣
q

(
∂2 owl

∂ pwi ∂ pwj

∣∣∣∣
q

+
owΓlrs(q)

∂ owr

∂ pwi

∣∣∣∣
q

∂ ows

∂ pwj

∣∣∣∣
q

)

(iii)
= Dlf

k
po

∣∣
ow(q)

(
Dijf

l
op

∣∣
pw(q)

+
owΓlrs(q) Dif

r
op

∣∣
pw(q)

Djf
s
op

∣∣
pw(q)

)

for all p, q ∈W .

(v) Let V as in (iii) and W as in (iv). Again, fop and fpo are smooth on
W ×W × V . Moreover, foo(r) = (ow ◦ (ow)−1)(r) = r for all r ∈ V . Thus

Dlf
k
oo = δkl and Dijf

l
oo = 0 ∀1 ≤ i, j, k, l ≤ n.

34



4.2. Smoothness of the Riemannian distance

Obviously,
pwΓkij(q),

owΓkij(q) and all terms in (iv) are well-defined for p, q ∈ W .
By smoothness of f , we conclude that

pwΓkij(q)
(iv)
= Dlf

k
po

∣∣
ow(q)︸ ︷︷ ︸

→δlm

(
Dijf

l
op

∣∣
pw(q)︸ ︷︷ ︸

→0

+
owΓlrs(q) Dif

r
op

∣∣
pw(q)︸ ︷︷ ︸

→δir

Djf
s
op

∣∣
pw(q)︸ ︷︷ ︸

→δjs

)
.

→ owΓkij(q)

for p → o and q ∈ W . Since the Christoffel symbols are smooth maps, we also
have that

owΓkij(q)→
owΓkij(o). Thus for each ε > 0 there exists a neighborhood

Uε of o such that ∣∣∣
pwΓkij(q)−

owΓkij(o)
∣∣∣ < ε

for all p, q ∈ Uε and all 1 ≤ i, j, k ≤ n.

4.2.2 Convex neighborhoods with respect to normal
coordinates

Again, let (pw = (pw1, ..., pwn),Wp) denote a chart in normal coordinates at
p, cf. remark 4.2.2. We are now going to investigate certain ε-balls at p ∈ X ,
defined by

Nε(p) := {q ∈Wp |Np(q) < ε} , (4.9)

where Np(q) :=
∑n
i=1

pwi(q)
2

is the squared Euclidean radius of pw(q) (even
for semi-Riemannian manifolds).

Theorem 4.2.4. Let X be a semi-Riemannian manifold and let o ∈ X. Then
there exists some ε0 > 0 such that for each ε ∈ (0, ε0] the following holds:

(i) The subset Nε(o) of X is geodesically convex. In particular, o has a basis
of convex neighborhoods.

(ii) For all p ∈ Nε(o) and all δ > 0 with Nδ(p) ⊆ Nε(o), Nδ(p) is also
geodesically convex.

Proof. (Modified version of [O’N83], proposition 5.7). By theorem 4.1.16, the
map E : V → U , E(vp) := (p, expp(v)), is a diffeomorphism from a neighborhood
V of the zero section TX0 in TX onto a neighborhood U of the diagonal △X
in X ×X . Let U be a neighborhood of o ∈ X as in lemma 4.2.3, in particular
U × U ⊆ U .

For each p ∈ U we define a (symmetric) tensor field pB ∈ T 0
2 (U) by its

components

pBij(q) := δij −
n∑

k=1

pwΓkij(q) · pwk(q) (4.10)

for any q ∈ U . This is well-defined by 4.2.3 (i). Recall that
owΓkij(o) = 0 for a

normal coordinate system by remark 4.1.10 (iii), so oBij(o) = δij . Furthermore,
(p, q) 7→ pw(q) is smooth and

pwΓkij(q)→
owΓkij(o) by lemma 4.2.3 (ii) and (v).

Hence we may suppose w.l.o.g. that U is so small that pB(q) is positive definite
for all p, q ∈ U .
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For ε′ > 0 sufficiently small we have that Nε′ (o) ⊆ U since these sets are dif-
feomorphic to open balls B√

ε′(0) in Rn under normal coordinates (hence form a
basis of neighborhoods of o in X). Since by the above E is a diffeomorphism on
U ×U ⊆ U , there exists an open neighborhood Vε′ of 0 ∈ ToX in TX such that
E : Vε′ → Nε′(o)×Nε′ (o) is a diffeomorphism. We may choose an open neighbor-

hood Ṽε′ of 0o in TX such that [0, 1] · Ṽε′ ⊆ Ṽε′ ⊆ Vε′ where the multiplication is

only applied to the vector component (e.g. let Ṽε′ := (T ow)−1(Br1(0)×Br2(0))

for r1, r2 > 0 sufficiently small), i.e. Ṽε′ is star-shaped in the vector component.

Let ε0 ∈ (0, ε′) such that Nε0(o) × Nε0(o) ⊆ E(Ṽε′ ). For ε ∈ (0, ε0] we also

have that Nε(o)×Nε(o) ⊆ Nε0(o) ×Nε0(o) ⊆ E(Ṽε′). We set

Wε := E−1(Nε(o) ×Nε(o)) ⊆ Ṽε′ ⊆ Vε′ ⊆ V . (4.11)

Then obviously E : Wε → Nε(o)×Nε(o) is a diffeomorphism and

E([0, 1] ·Wε) ⊆ U × U ⊆ U (4.12)

since

E([0, 1] ·Wε) ⊆ E([0, 1] · Ṽε′) ⊆ E(Ṽε′) ⊆ E(Vε′)

= Nε′(o)×Nε′(o) ⊆ U × U ⊆ U

(again, the multiplication is only done in the vector component). Moreover,
Nε(o) ⊆ Nε′(o) ⊆ U since ε < ε′ and ε′ was chosen sufficiently small before.

It remains to be proved that (i) and (ii) hold for all ε ∈ (0, ε0].

(i) Let ε ∈ (0, ε0] and p ∈ Nε(o). For

Wε(p) := Wε ∩ TpX. (4.13)

we obtain
E(Wε(p)) = {p} × Nε(o). (4.14)

Here, the inclusion (⊆) is obvious because of the definition (4.11) of Wε. To
show that also (⊇) holds, let (p, r) ∈ {p} × Nε(o). Again by (4.11) there exists
w ∈Wε with (p, r) = E(w) = (π(w), expπ(w)(w)). In particular, π(w) = p, thus
w ∈ TpX and (p, r) = E(w) ∈ E(Wε ∩ TpX) = E(Wε(p)).

Hence E |Wε(p) is a diffeomorphism onto {p} × Nε(o), i.e. expp : Wε(p) →
Nε(o) is also a diffeomorphism. To see that Nε(o) is a normal neighborhood
of p it remains to be shown that Wε(p) is star-shaped around 0 ∈ TpX . Since
p ∈ Nε(o) was arbitrary it then follows by definition 4.1.22 thatNε(o) is actually
convex which proves (i).

Let 0 6= v ∈ Wε(p). Then v is of the form E−1(p, q) = exp−1
p (q) for some

p 6= q ∈ Nε(o) by (4.14). By the definition of expp in 4.1.13, cv : [0, 1]→ X is a
geodesic from p to q. Moreover, cv(t) = expp(tv) ∀t ∈ [0, 1] since a geodesic is
uniquely determined by its initial data. By (4.12) and the fact that Wε(p) ⊆Wε

we have that cv(t) = expp(tv) ∈ U for all t ∈ [0, 1].
Suppose for a moment that cv lies entirely in Nε(o). Then tv ∈Wε(p) for all

t ∈ [0, 1]: Suppose not, then choose s ∈ [0, 1] such that w := sv /∈ Wε(p). For
s0 := sup{t ∈ [0, 1] | tw ∈ Wε(p)} we get that s0w ∈ ∂Wε(p). By assumption,

(exp−1
p ◦ cv)([0, 1]) ⊂⊂ exp−1

p (Nε(o))
(4.14)
= Wε(p). Therefore there exists some
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t0 < s0 with t0w ∈Wε(p) \ (exp−1
p ◦ cv)([0, 1]). On the other hand we have that

exp−1
p ◦ cv = t 7→ tv by the above. Thus t0w = t0sv ∈ [0, 1]v and therefore

(exp−1
p ◦ cv)(t0s) ∈ (exp−1

p ◦ cv)([0, 1]), a contradiction.
Now it only remains to be proved that cv([0, 1]) ⊆ Nε(o): Suppose to the

contrary that cv actually leaves Nε(o). By definition (4.9) we then have a
t ∈ (0, 1) with No(cv(t)) ≥ ε. Since p, q ∈ Nε(o) we have that No(p), No(q) < ε.
As No◦cv : [0, 1]→ R is continuous on a compact set it must attain a maximum
at some tmax ∈ (0, 1). Furthermore, No ◦ cv is smooth, so we should obtain that
d
dt

(No ◦ cv)(tmax) = 0 and d2

dt2
(No ◦ cv)(tmax) < 0:

d2

dt2
(No ◦ cv) = 2

n∑

i=1

[(
d ociv
dt

)2

+ ociv
d2 ociv
dt2︸ ︷︷ ︸

(∗)
= −owΓi

rs(cv)
d ocr

v

dt

d ocs
v

dt

]

= 2

n∑

i,j=1

(
δij −

n∑

k=1

owΓkij(cv)
ockv

)
d ociv
dt

d ocjv
dt

(4.10)
= 2

n∑

i,j=1

oBij(cv)
d ociv
dt

d ocjv
dt

where ocv := ow ◦ cv and (∗) is the geodesic equation 4.1.12. Hence 0 <
d2

dt2
(No ◦ cv)(tmax) = 2 oB(cv(tmax))(

ocv
′(tmax),

ocv
′(tmax)), a contradiction to

the positive definiteness of oB(cv(tmax)) (recall that cv(tmax) ∈ U by the above).
Since v ∈Wε(p) was arbitrary, Wε(p) is indeed star-shaped.

(ii) Let p ∈ Nε(o) and δ > 0 such that Nδ(p) ⊆ Nε(o). Let p′ ∈ Nδ(p) and
Wε(p

′) for ε ∈ (0, ε0] as in (4.13). As in (i) we have that expp′ : Wε(p
′)→ Nε(o)

is a diffeomorphism. Since p′ ∈ Nδ(p) ⊆ Nε(o), therefore there exists a subset
Wp′ ⊆Wε(p

′) such that expp′ : Wp′ → Nδ(p) is also a diffeomorphism.
It remains to be shown that Wp′ is star-shaped around 0 ∈ Tp′X . Thus

take any v ∈ Wp′ . Then v = exp−1
p′ (q′) for some q′ ∈ Nδ(p) ⊆ Nε(o). In (i)

we have seen that cv is a geodesic from p′ to q′ with cv(t) = expp′(tv) that lies
entirely in Nε(o) ⊆ U (simply replace p, q there with p′, q′). Again as in (i),
it follows that cv lies entirely in Nδ(p) and that therefore Wq is star-shaped
(replace o, p, ε,Wε(p) by p, q, δ,Wq).

4.2.3 The distance on Riemannian manifolds

We now consider a Riemannian manifold (X, g). In this case, the proof of 4.1.21
implies that for sufficiently small ε

Nε(p)
(4.9)
= expp(V

√
ε(p))

proof of
4.1.21= U√

ε(p)
4.1.21
= {q ∈ X | dg(p, q) <

√
ε} =: B√

ε(p),

where dg denotes the Riemannian distance induced by the Riemannian metric
g on X . Thus we may replace all Nε(p) in theorem 4.2.4 by some Br(p) in this
case. We therefore have:

Corollary 4.2.5. Let X be a Riemannian manifold and let o ∈ X. Then there
exists some r0 > 0 such that for all r ∈ (0, r0] we have:
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(i) Br(o) is geodesically convex. In particular, every point o has a base of
convex balls.

(ii) Bs(p) is geodesically convex whenever Bs(p) ⊆ Br(o).

In order to show that the Riemannian distance d2
g is smooth on a certain

neighborhood of the diagonal we need to introduce a new type of neighborhoods
and find a continuous function that will describe the boundary of open balls
later.

Definition 4.2.6. Let X be a Riemannian manifold. An open subset U of X
is called strongly convex if U itself and any open ball contained in U is convex.

Note that each ball Br(o) with r ∈ (0, r0] is strongly convex by corollary
4.2.5. Thus we actually proved the existence of strongly convex neighborhoods
for each point of the Riemannian manifold.

Definition 4.2.7. Let X be a Riemannian manifold and let p ∈ X . The
convexity radius κ : X → R+ is defined by

κ(p) := sup{r ≥ 0 |Br(p) is strongly convex}

Remark 4.2.8 (Properties of Br(p) and κ).

(i) Note that, by corollary 4.2.5,

κ(p) > 0 ∀p ∈ X.

(ii) Moreover, if Br(p) is strongly convex, then also Bs(q) ⊆ Br(p) is, because
every ball contained in Bs(q) is also contained in Br(p) and hence convex.

Remark 4.2.9 (Similar notions). As already mentioned in remark 4.1.23, con-
vexity e.g. in the sense of [GKM68] is defined differently from in [O’N83] which
we used as a basis. Those authors also use a different notion of strong convexity.
Namely, they define a subset G to be strongly convex if it is convex (in their
sense), all open balls contained in G are also convex (in their sense) and if all
points p, q ∈ G can be joined by a unique geodesic. It is shown in [GKM68],
section 5.2, that each point in the Riemannian manifold has a strongly convex
neighborhood.

The definition of the convexity radius r in [GKM68] is the same as ours
using, however, their notion of strong convexity.

Since their definition of strong convexity is weaker, it is obvious that κ(p) ≤
r(p) for all p ∈ X . In [GKM68] it is also shown that r is smaller than the
injectivity radius inj. Thus

κ(p) ≤ r(p) ≤ inj(p) ∀p ∈ X.

Lemma 4.2.10. Let (X, g) be a Riemannian manifold. Then the convexity
radius κ is (uniformly) continuous on X.

Proof. Let p, q ∈ X . We distinguish two cases:
If q ∈ Bκ(p)(p) then by definition of κ(p) and strong convexity we have that

Br(q) ⊆ Bκ(p)(p) is convex for all r < κ(p)− dg(p, q), (4.15)
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since dg(x, p) ≤ dg(x, q) + dg(p, q) ≤ κ(p) must hold for all x ∈ Br(q). Such
Br(q) are even strongly convex by 4.2.8 (ii). In particular, r ≤ κ(q) and therefore
by (4.15) (since this holds for all such r) κ(q) ≥ κ(p)− dg(p, q), hence

κ(p)− κ(q) ≤ dg(p, q).

If q /∈ Bκ(p)(p) then dg(p, q) ≥ κ(p) ≥ κ(p)− κ(q).
Thus by symmetry in p and q we have that

|κ(p)− κ(q)| ≤ dg(p, q) ∀p, q ∈ X,

hence κ is uniformly continuous on X .

Theorem 4.2.11 (Smoothness of the Riemannian distance). Let (X, g) be a
Riemannian manifold and dg the Riemannian distance. Then there exists a
neighborhood U of the diagonal △X ⊆ X ×X such that

(i) (p, q) 7→ dg(p, q) is smooth on U \ △X

(ii) (p, q) 7→ dg(p, q)
2 is smooth on U .

Proof. By theorem 4.1.16 the map E : V → U , E(vp) := (p, expp(v)), is a
diffeomorphism. Set

U := U ∩ {(p, q) ∈ X | dg(p, q) < κ(p)}

Since κ is continuous on X by lemma 4.2.10 and κ > 0 by remark 4.2.8 (i), U
is an open neighborhood of the diagonal △X in X ×X .

Let (p0, q0) ∈ U , so that q0 ∈ Bκ(p0)(p0). By remark 4.2.2 there exists an
orthonormal frame field {E1, ..., En} on a neighborhood W ⊆ Bκ(p0)(p0) of p0.
Thus for all (p, q) ∈W ×Bκ(p0)(p0) we have that

dg(p, q)
2 4.1.21

= | exp−1
p (q)|2TpX

= |E−1(p, q)|2TpX
=

n∑

i=1

〈E−1(p, q), Ei|p 〉2,

where 〈. , .〉 denotes the Riemannian metric g(p). Since this expression is smooth,
we have that (ii) holds. As the square root is smooth away from zero, (i) is also
true.

Remark 4.2.12. It is easier to prove that q 7→ dg(p, q)
2 is smooth on each

normal neighborhood U of p. This is due to the fact that we can write the
Riemannian distance in normal coordinates (pw1, ..., pwn) as

d2
g(p, q) =

n∑

i=1

pwi(q)
2
.

We even see that q 7→ dg(p, q) is smooth on U \ {p}. This conclusion may also
be found in [Pet06], theorem 29, p. 177.
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4.3 The Riemannian distance on submanifolds

In this section we assume that X is a smooth submanifold of Rn. If we equip
X with the Riemannian metric induced by the Euclidean metric in Rn we ob-
tain some additional structure. First, let us recall a well-known theorem from
topology:

Theorem 4.3.1 (Lebesgue covering theorem). Let X be a compact metric space
and U an open cover of X. Then there exists a δ > 0, the so-called Lebesgue
number of U , such that for all x ∈ X there exists U ∈ U such that Bδ(x) ⊆ U .

Proof. See for example [Eng77], theorem 4.3.31, or [Kri04], theorem 5.1.5.

This result will only be used later in connection with local properties given
on an open cover of a compact subset of a submanifold, like the following.

Lemma 4.3.2 (Riemannian vs. Euclidean metric). Let X be a smooth and
connected submanifold of Rn and K ⊂⊂ X. Let g be the Riemannian metric on
X induced by the Euclidean metric in Rn. Then

∃C > 0 ∀p, q ∈ K : |p− q| ≤ dg(p, q) ≤ C|p− q|. (4.16)

First proof. By definition,

dg(p, q) := inf{L(c) | c a piecewise smooth curve in X from p to q}

is the Riemannian distance from p to q, where L(c) denotes the arc length of c.
Thus |p− q| ≤ dg(p, q).

It remains to be shown that dg(p, q) ≤ C|p − q| for some C > 0 and
p, q ∈ K ⊂⊂ X . We start this by proving that the inclusion of X in Rn is
locally Lipschitz continuous. Let o ∈ X . By the proof of 4.2.11, there exists a
neighborhood W of o in X such that for all p, q ∈W we have that

dg(p, q) = |E−1(p, q)|TpX = |E−1(p, q)|, (4.17)

where | . | denotes the Euclidean norm (recall that g is induced by the Euclidean
metric in Rn). As E−1 is smooth (E is a diffeomorphism), there exists an open

neighborhood V of o in Rn and a smooth map e : V × V → TX ⊆ Rn
2

such
that e|(V×V )∩(X×X) = E−1 |(V×V )∩(X×X). W.l.o.g. we may assume that V
is relatively compact and convex, and that W is contained in V ∩ X . Since
e(p, p) = E−1(p, p) = exp−1

p (p) = 0 for any p ∈ W we have that

dg(p, q)
(4.17)
= |E−1(p, q)| = |e(p, q)− e(p, p)|

≤ |p− q|
∫ 1

0

|(D2e)(p+ t(q − p))|dt ≤ |p− q| · ‖D2e‖L∞(V )

for all p, q ∈ V . In the last line the mean value theorem was applied using the
fact that V is convex. Thus dg(p, q) ≤ C|p − q| holds locally for p, q ∈ W and
C := ‖D2e‖L∞(V ).

Suppose now that (4.16) is false. Thus for each m ∈ N there exist points
pm, qm ∈ X such that dg(pm, qm) > m|pm− qm| ≥ 0. Since K is compact in X ,
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4.3. The Riemannian distance on submanifolds

there exists a subsequence (mk)k such that pmk
→ p ∈ K and qmk

→ q ∈ K.
Hence p = q, because for any ε > 0 and k sufficiently large we have

|p− q| ≤ |p− pmk
|+ |pmk

− qmk
|+ |q − qmk

|
≤ dg(p, pmk

) + 1
mk
dg(pmk

, qmk
) + dg(q, qmk

)

≤ (1 + 1
mk

)
︸ ︷︷ ︸

≤2

dg(p, pmk
)︸ ︷︷ ︸

≤ε

+ 1
mk
dg(p, q)︸ ︷︷ ︸
≤ε

+ (1 + 1
mk

)
︸ ︷︷ ︸

≤2

dg(q, qmk
)︸ ︷︷ ︸

≤ε

≤ 5ε.

On the other hand, there exists a neighborhood U of p as above, such that
dg(pmk

, qmk
) ≤ C|pmk

− qmk
| for some C > 0 and k sufficiently large. Thus

0 < dg(pmk
, qmk

) ≤ C|pmk
− qmk

| ≤ C
mk
dg(pmk

, qmk
),

a contradiction for mk > C. Thus we also have that there exists some C > 0
such that for p, q ∈ K

dg(p, q) ≤ C|p− q|.

Remark 4.3.3. The limiting value of C in 4.3.2 can be computed as follows.
By using a so-called tubular neighborhood U of X ×X (which exists for every
submanifold M of Rn without boundary by [Hir76], theorem 4.5.1) with smooth
retraction r = (exp⊥)−1 : U → X ×X (i.e. r|X×X = idX×X), it can be shown
that C → 1 for p, q → o: In this case we can additionally assume that V ×V ⊆ U
and explicitly write e : V ×V → TX as e = E−1 ◦ r. For p, q → o one can obtain
that

D2e(p, q)→ D2e(o, o) = D2(E
−1 ◦ r)(o, o) = idToX ,

using the properties of E and r. Thus

C = ‖D2e‖L∞(V ) → ‖D2e(o, o)‖ = ‖ idToX ‖ = 1.

There is an alternative approach for the proof of lemma 4.3.2 by Hans Ver-
naeve [Ver09] that shows the second inequality in (4.16) locally without using
the map E:

Second proof. Again, we will show the inequality locally around some o ∈ X
first. By corollary 4.2.5, there exists a geodesically convex and relatively com-
pact neighborhood Br(o) of o in X w.r.t. the induced Riemannian metric g.
W.l.o.g. let (u, U = B r

4
(o)) be a chart in normal coordinates at o in X . Thus

for any p, q ∈ U we have that

dg(p, q) ≤ dg(p, o) + dg(q, o) ≤
r

4
+
r

4
=
r

2
,

hence in particular that q ∈ B r
2
(p) ⊆ Br(o). By proposition 4.1.21 we further-

more have that

dg(p, q) = L(γpq) =

∫ 1

0

|γ′pq(t)|dt,

where γpq : [0, 1]→ Br(o) denotes the radial geodesic from p to q. Thus
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|u(p)− u(q)| ≤
∫ 1

0

|(u ◦ γpq)′(t)|dt

≤
∫ 1

0

‖Tγpq(t)u‖|γ′pq(t)|dt

≤ Ldg(p, q) (4.18)

for L := supt∈[0,1] ‖Tγpq(t)u‖ > 0 and all p, q ∈ U , since u is a diffeomorphism

on Br(o) and U ⊂ Br(o).
Now let 0 < ε < 1

2L and choose δ > 0 such that Bδ(o) ⊆ U and

‖Txu−1 − Tou−1‖ < ε

2
∀x ∈ Bδ(o), (4.19)

which is again possible because u−1 : ToX ⊇ u(U) → X is smooth. Since we
use normal coordinates, we have that u(Bδ(o)) = Vδ(o) = {v ∈ ToX | |v| < δ}
as in (4.2). This implies that the curve

c : [0, 1] → u(Bδ(o)) ⊆ Rk

t 7→ u(p) + t(u(q)− u(p))
and hence also the curve u−1 ◦ c in Bδ(o) ⊆ U are well-defined and smooth.
Moreover, since the tangential maps can be viewed as linear maps Tc(t)u

−1 :

Rk → Rk, we have that

|(u−1 ◦ c)′(t)− (u−1 ◦ c)′(0)| = |Tc(t)u−1 · c′(t)− Tc(0)u−1 · c′(0)|
= |(Tc(t)u−1 − Tc(0)u−1)(u(q)− u(p))|
≤ ‖Tc(t)u−1 − Tc(0)u−1‖|u(q)− u(p)|

(4.19)
< ε|u(q)− u(p)|. (4.20)

as ‖Tc(t)u−1 − Tc(0)u
−1‖ ≤ ‖Tc(t)u−1 − Tou−1‖ + ‖Tou−1 − Tc(0)u−1‖ by the

triangle inequality. Thus

|(u−1 ◦ c)′(t)| ≤ |(u−1 ◦ c)′(t)− (u−1 ◦ c)′(0)|+ |(u−1 ◦ c)′(0)|
(4.20)
< ε|u(q)− u(p)|+ |(u−1 ◦ c)′(0)|, (4.21)

and therefore

dg(p, q) ≤
∫ 1

0

|(u−1 ◦ c)′(t)|
(4.21)
< ε|u(q)− u(p)|+ |(u−1 ◦ c)′(0)| (4.22)

for all p, q ∈ Bδ(o). On the other hand, by the fundamental theorem of calculus
for curves (see e.g. [Kri04], theorem 5.5.18), and again the triangle inequality,

|p− q| = |(u−1 ◦ c)(1)− (u−1 ◦ c)(0)|

=

∣∣∣∣
∫ 1

0

(u−1 ◦ c)′(t)dt
∣∣∣∣

=

∣∣∣∣
∫ 1

0

(u−1 ◦ c)′(t)− (u−1 ◦ c)′(0)dt+ (u−1 ◦ c)′(0)

∣∣∣∣

≥ |(u−1 ◦ c)′(0)| −
∫ 1

0

|(u−1 ◦ c)′(t)− (u−1 ◦ c)′(0)|dt

(4.20)
> |(u−1 ◦ c)′(0)| − ε|u(q)− u(p)|. (4.23)
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Finally we can combine (4.22) and (4.23) to obtain

dg(p, q)
(4.22)
< ε|u(q)− u(p)|+ |(u−1 ◦ c)′(0)|

(4.23)
< |p− q|+ 2ε|u(q)− u(p)|

(4.18)

≤ |p− q|+ 2Lε dg(p, q)

for p, q ∈ Bδ(o). As we had set ε < 1
2L , we have that for p, q ∈ Bδ(o)

dg(p, q) <
1

1− 2Lε
|p− q|

with C := 1
1−2Lε > 1. We have that C → 1 for U → {o} (via appropriate

choices of ε and δ).
The global result on a compact set K is proved by contradiction as in the

first proof of lemma 4.3.2.

Remark 4.3.4. Note that different Riemannian distances are always equivalent
by lemma 4.1.8. Thus (4.16) holds for any other Riemannian distance on X as
well, and not just for the one induced by the Euclidean metric on Rn.

Remark 4.3.5 (Metric structure). It is of general interest to study the length
structure on a (path) metric space by comparing the distances in terms of the
metric and an induced length metric. For a submanifold X of Rn the length
metric may be the Riemannian one induced by the Euclidean metric in Rn, i.e.
dg as in 4.3.2. In particular, if we look at

distort(X) = sup
(length dist)|X

dist|X
,

some interesting results follow. For example, if distort(X) < π
2 for a compact

subset X of Rn, then X is simply connected. See e.g. [Gro99] for a further
discussion of metric structures for (non-)Riemannian spaces.

4.4 The Whitney embedding theorem

Many theorems are easier to prove in the setting of smooth submanifolds of Rn

with the additional structure of the Euclidean metric and global coordinates. In
order to generalize such results to smooth manifolds, we require the following
theorem.

Theorem 4.4.1 (Whitney embedding theorem). Every n-dimensional smooth
manifold embeds smoothly in R2n+1.

Proof. See for example [GP74], p. 53, for a proof of this earlier version from
1936. In 1944 Whitney improved this result by one dimension using the so-
called Whitney trick, showing that every n-dimensional manifold embeds in
R2n.

There is another embedding theorem by John Nash which states that every
n-dimensional Riemannian manifold can be isometrically embedded in an Rm.
For further reading see e.g. [HH06].

43





Chapter 5

Colombeau Generalized
Functions on Manifolds

In this chapter the main definitions and results of special Colombeau algebras on
smooth manifolds X (in the sense of chapter 4) are recalled. In section 5.1 the

basic definitions for the spaces of generalized numbers C̃, generalized functions
G(X) and compactly supported points X̃c are summarized. For further reading
see [GKOS01] and [Nig06], but note that we always assume smooth dependence
on the index ε.

The relevant point value characterizations are given in section 5.2, and in
section 5.3 the sharp topology is introduced in a way suitable for its later use
in chapter 6.

Compactly bounded generalized functions G[X,Y ] between smooth mani-
folds X and Y are defined in section 5.4. Here, the case of smooth submanifolds
of Rm resp. Rn is treated separately. We can reduce our final investigations of
algebra isomorphisms to this case by Whitney’s embedding theorem 4.4.1, as
mentioned earlier. Most of the ideas for these proofs (although for non-smooth
dependence on ε) are adapted from [Ver06]. Moreover, the intrinsic characteri-
zations of G[X,Y ] as provided in [KSV03] are recalled.

Finally, section 5.5 deals with the composition and invertibility of compactly
bounded generalized functions.

5.1 General definitions

The theory of distributions, one of the first generalizations of classical functions,
is widely used to treat linear partial differential equations. However, due to the
famous impossibility result of Laurent Schwartz in [Sch54], distributions cannot
be multiplied in a way that preserves the classical pointwise multiplication of
continuous functions. This is clearly a significant restriction and therefore there
arose a need to develop algebras of generalized functions that should contain
the space of distributions.
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The theory of generalized functions initiated by Jean-François Colombeau in
[Col84] and [Col85] resolves the problem of non-multiplicativity of distributions
by embedding the space of distributions in an associative and commutative
differential algebra, only demanding that the pointwise multiplication of smooth
functions to be preserved.

More precisely, this is achieved by looking at nets of smooth functions with
certain asymptotic estimates. We will only consider the case of the special
Colombeau algebra here, using the terminology introduced in [GKOS01]. In
contrast to [GKOS01], however, we will adopt smooth dependence on the index
ε.

The theory of Colombeau generalized functions has numerous applications
in mathematics and physics. Among others, they are e.g. useful in the study of
non-linear partial differential equations, non-smooth differential geometry and
the theory of relativity.

5.1.1 Colombeau generalized functions

Let Ω ⊆ Rn be open. The definition of generalized functions arises somewhat
naturally from the wish to embed the space of distributions D′(Ω) via regular-
ization into a differential algebra that consists of nets of smooth functions. For
a thorough discussion see [GKOS01], section 1.2.1.

Assuming that the reader is familiar with these concepts, we will immedi-
ately jump at our subject of interest – the algebra of generalized functions on
smooth manifolds.

Let X be a smooth manifold. Recall that Γ(X,E) is the space of smooth
sections of a vector bundle (X,E, π), cf. definition 2.1.5. In what follows, the
set of linear differential operators P : Γ(X,E) → Γ(X,E) for E = X × R is
denoted by P(X) = P(X,E).

As before, the set C∞([0, 1)×X) denotes the set of smooth functions [0, 1)×
X → C (smooth in both variables). Note that we could, however, replace C by
R everywhere.

The Landau notation (or Big-Oh) is used to describe the asymptotic behavior
of functions:

f = O(g) as x→ x0 :⇔ ∃C : |f(x)| ≤ |Cg(x)| for all x sufficiently close to x0.

Definition 5.1.1. Let X be a smooth manifold. The spaces of moderate func-
tions , EM (X), and negligible functions, N (X), are defined by

EM (X) := {(uε)ε ∈ C∞((0, 1]×X) | ∀K ⊂⊂ X ∀P ∈ P(X)∃N ∈ N :

sup
x∈K
|Puε(x)| = O(ε−N ) as ε→ 0}

N (X) := {(uε)ε ∈ EM (X) | ∀K ⊂⊂ X ∀m ∈ N :

sup
x∈K
|uε(x)| = O(εm) as ε→ 0}

The special Colombeau algebra on X is defined as the quotient of EM (X) and
N (X), i.e.

G(X) := EM (X)/N (X).
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The equivalence classes in G(X) are the generalized functions on X , denoted by
u = [(uε)ε].

Remark 5.1.2 (Basic properties). By applying Peetre’s theorem it can be
shown that instead of using P(X) above, EM (X) can be described via Lie deriva-
tives or charts and EM (Ω). Moreover, because EM (X) and N (X) are invariant
under the action of P ∈ P(X), all Pu, u ∈ G(X), are well-defined elements of
G(X). See [GKOS01], section 3.2.1, for more details.

Remark 5.1.3 (Embeddings). For a given atlas A of a smooth manifold X ,
ιA : D′(X)→ G(X), defined via a smooth partition of unity subordinate to the
open cover consisting of the chart domains in A and a fixed mollifier ρ ∈ S(Rn),
is a linear embedding that coincides with the constant embedding σ on C∞(X).
See [GKOS01], theorem 3.2.10.

5.1.2 Generalized numbers

The scalars in this theory cannot simply be complex numbers. By inserting
points in generalized functions, we obtain so-called generalized numbers.

Definition 5.1.4.

EM := {(rε)ε ∈ C∞((0, 1]) | ∃N ∈ N : |rε| = O(ε−N ) as ε→ 0}
N := {(rε)ε ∈ C∞((0, 1]) | ∀m ∈ N : |rε| = O(εm) as ε→ 0}

The ring of generalized numbers is defined by

C̃ := EM/N
and its elements are denoted by r = [(rε)ε].

Remark 5.1.5 (C̃ is only a ring). C̃ is not a field although C is. Consider
rε := sin

(
1
ε

)
for ε ∈ (0, 1]. Clearly, (rε)ε ∈ EM since | sin | is bounded by

1. Since rεn
= 1 for εn = 2

(2n+1)π (n ∈ N ∪ {0}) and εn ց 0, we have that

(rε)ε /∈ N .
On the other hand, rεk

= 0 for εk = 1
kπ
∀k ∈ N, thus rεk

vanishes for

infinitely many εk that converge to 0. Suppose that there exists s = [(sε)ε] ∈ C̃
such that r · s = 1, i.e. rεsε +nε = 0 for (nε)ε ∈ N . Then obviously nεk

= 1 for
all k ∈ N. Thus (nε)ε /∈ N , a contradiction.

5.1.3 Compactly supported generalized points

Although we can simply insert points p ∈ X into generalized functions [(uε)ε]
to obtain generalized numbers [(uε(p))ε], this is not sufficient to characterize
generalized functions. The analogue of generalized points resolves this problem.

Definition 5.1.6. Let (X, g) be a Riemannian manifold with induced Rieman-
nian distance dg. The set of compactly supported generalized points on X is
defined by

X̃c := {(pε)ε ∈ C∞((0, 1], X) | ∃K ⊂⊂ X ∃ε0 > 0 ∀ε < ε0 : pε ∈ K}/∼
where two nets (pε)ε and (qε)ε are called equivalent, i.e. (pε)ε ∼ (qε)ε, if

(pε)ε ∼ (qε)ε :⇐⇒ dg(pε, qε) = O(εm)∀m ∈ N as ε→ 0.
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Note that this latter definition is independent of the choice of g since two
Riemannian distances are equivalent on any compact set of X , cf. lemma 4.1.8.
Furthermore it makes sense to write (d2

g(pε, qε))ε ∈ N rather than dg(pε, qε) =
O(εm) ∀m ∈ N, because for small distances the (squared) Riemannian distance
is smooth by theorem 4.2.11.

In some cases, we will single out a compact set K that satisfies pε ∈ K for
ε < ε0 and p̃ = [(pε)ε] ∈ X̃c by Kp̃ and call it a compact support of p̃.

If we focus our interest on smooth submanifolds X of Rn (which is always

possible by the Whitney embedding theorem 4.4.1), we can determine how X̃c

is embedded in R̃n = R̃n.

Proposition 5.1.7 (X̃c →֒ R̃n). Let X be a smooth submanifold of Rn and g
the Riemannian metric induced by the Euclidean metric. Then the compactly
supported points X̃c are in 1-1 correspondence with the elements of R̃n that
have a representative that consists of elements of K, for some K ⊂⊂ X. The
injection is given by the identity map on the representatives.

Proof. By definition, two compactly supported points (pε)ε, (qε)ε on X repre-

sent the same generalized point p̃ ∈ X̃c if and only if

dg(pε, qε) = O(εm) for all m ∈ N. (5.1)

Let K ⊂⊂ X be a compact support of (pε)ε. We may cover K by the con-
nected components of X . By the Lebesgue covering theorem 4.3.1 there exists
a Lebesgue number δ > 0 of this cover. Thus for sufficiently small but fixed ε
we have that pε and qε lie in the same connected component of X . According
to lemma 4.3.2 this implies that (5.1) is equivalent to

|pε − qε| = O(εm) for all m ∈ N. (5.2)

Thus (pε)ε and (qε)ε also represent the same element p̃ in R̃n, which has a
representative (pε)ε that consists of elements of a compact set K ⊂⊂ X . This
map is injective due to the fact that two compactly supported points (pε)ε, (qε)ε
on X that satisfy (5.2) also represent the same element in X̃c, again by lemma
4.3.2.

5.2 Point value characterizations

In [GKOS01], theorems 1.2.46 and 3.2.8, the generalized functions on open sets
Ω ⊆ Rn resp. smooth manifolds X are characterized via the compactly sup-
ported generalized points Ω̃c resp. X̃c, i.e. every element in G(Ω) resp. G(X) is
characterized by its point values.

Compared to the above definitions 5.1.1 and 5.1.4, the smooth dependence
on ε was not required in [GKOS01]. In the following, however, we will deduce
the same results for our definitions.

First we must show that u(x̃), x̃ ∈ Ω̃c, is a well-defined generalized number:
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Proposition 5.2.1. Let Ω ⊆ Rn be open, u ∈ G(Ω) and x̃ ∈ Ω̃c. Then the
generalized point value of u at x̃ = [(xε)ε],

u(x̃) := [(uε(xε))ε],

is a well-defined element of C̃.

Proof. Let (uε)ε ∈ EM (Ω) be a representative of u and (xε)ε a representative of

x̃. By definition of Ω̃c we know that there exist K ⊂⊂ Ω and ε0 > 0 such that
xε ∈ K for ε < ε0. Since (uε)ε ∈ EM (Ω) implies that

|uε(xε)| ≤ sup
x∈K
|uε(x)| < ε−N

for some N ∈ N and sufficiently small ε, we know that (uε(xε))ε ∈ EM . If we
let (vε)ε ∈ N (Ω), then

|vε(xε)| ≤ sup
x∈K
|vε(x)| < εm

for all m ∈ N and small ε. Hence (vε(xε))ε is also negligible. This proves that

different representatives of u ∈ G(X) lead to the same element u(x̃) in C̃.
It remains to be shown that if we choose another representative (yε)ε of x̃,

i.e. (xε)ε ∼ (yε)ε, then [u((xε)ε)] = [u((yε)ε)] in C̃. Since both (xε)ε and (yε)ε
are compactly supported and xε − yε tends to 0, there exists some ε′0 > 0 such
that for all ε < ε′0 we have that {xε+ t(yε−xε) | t ∈ [0, 1]} remains in a compact
subset L of Ω. For fixed ε < ε′0 we obtain by the mean value theorem that

|uε(xε)− uε(yε)| ≤ |xε − yε|
∫ 1

0

|(Duε)(xε + t(yε − xε))|dt.

Here, (xε)ε ∼ (yε)ε implies that |xε − yε| < εm for all m ∈ N and suffi-
ciently small ε. Since u ∈ G(Ω) we also have that |(Duε)(xε + t(yε − xε))| ≤
supz∈L |Duε(z)| < ε−N for some N > 0. Hence |uε(xε) − uε(yε| = O(εm

′

) for
all m′ ∈ N and sufficiently small ε, i.e. (uε(xε)− uε(yε))ε ∈ N .

Theorem 5.2.2 (Point value characterization in G(Ω)). Let Ω ⊆ Rn be open
and u ∈ G(Ω). Then

u = 0 in G(Ω)⇐⇒ u(x̃) = 0 in C̃ for all x̃ ∈ Ω̃c.

Proof. (⇒) By proposition 5.2.1, u(x̃) = [(uε(xε))ε] is a well-defined element of

C̃. Since x̃ = [(xε)ε] ∈ Ω̃c, there exist K ⊂⊂ Ω and ε0 > 0 such that xε ∈ K for
ε < ε0. The assumption u = 0 now implies that

|uε(xε)| 6 sup
x∈K
|uε(x)| < εm

is true for all m ∈ N and sufficiently small ε, i.e. u(x̃) = 0 in C̃.
(⇐) Suppose that u 6= 0 in G(Ω). By definition of N (Ω) there exist K ⊂⊂ Ω,

εk ց 0, M ∈ N and xεk
∈ K such that

|uεk
(xεk

)| > εMk . (5.3)
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Since K is compact, we may assume that (xεk
)k converges towards some x in

K. By again extracting a subsequence, this convergence may assumed to be
fast, i.e. such that for each n ∈ N the sequence kn(xεk

− x) is bounded (e.g.
choose xεk

such that |xεk
− x| < k−k for all k ∈ N). Let (xεkm

)m be the final
subsequence.

The special curve lemma 5.2.6 ensures the existence of a continuous curve
c̃ : [0, 1]→ Rn that is smooth on (0, 1] and satisfies c̃(εkm

) = xεkm
and c̃(0) = x.

Since Ω is open, we have that Br(x) ⊂ Ω for some r > 0. Due to the continuity
of c̃ at 0 we have that xε := c̃(ε) ∈ Br(x) for ε sufficiently small. Hence

x̃ = [(xε)ε] ∈ Ω̃c, and (5.3) implies that u(x̃) 6= 0 in C̃, a contradiction to the
assumption.

The proof of theorem 5.2.2 (⇐) required the special curve lemma, which can
be found in [KM97], section 2, p. 18:

Definition 5.2.3. Let E be a locally convex space and let (xn)n a sequence in
E. Then xn converges fast to x ∈ E if for each k ∈ N the sequence nk(xn − x)
is bounded.

Lemma 5.2.4 (Special curve lemma). Let E be a locally convex space and let
(xn)n be a sequence which converges fast to x in E. Then the infinite polygon
through xn can be parametrized as a smooth curve c : R→ E such that

c( 1
n
) = xn and c(0) = x.

Proof. We are going to define c piecewise and need a smooth map χ to smooth
out the polygon that connects the points xn ∈ E. Let ρ : R→ R be the map

ρ(t) :=

{
e
− 1

1−t2 t ∈ (−1, 1)
0 else

and ρ(t) = ρ(t)
R

∞

−∞
ρ(s)ds

the respective normed bump. Obviously, ρ and hence ρ

are smooth with k-th derivatives ρ(k)(0) = ρ(k)(1) = 0. Then χ : R→ [0, 1],

χ(t) :=

∫ t

−∞
2ρ(2s− 1)ds,

is a well-defined and smooth map that satisfies χ|(−∞,0] = 0, χ|[1,∞) = 1 and

χ(k)(0) = χ(k)(1) = 0 for all k ∈ N. Finally, c : R→ E is defined by

c(t) :=





x t ≤ 0

xn+1 + χ
(
t− 1

n+1
1
n
− 1

n+1

)
(xn − xn+1)

1
n+1 ≤ t ≤ 1

n

x1 t ≥ 1

.

Obviously, c(0) = x and c( 1
n
) = xn+1 + χ

( 1
n
− 1

n+1
1
n
− 1

n+1

)
(xn − xn+1) = xn+1 +

1 · (xn − xn+1) = xn.

It remains to be shown that c is smooth. Firstly, it is evident that c is
continuous everywhere and smooth on each of the subintervals (−∞, 0), (1,∞)
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and all ( 1
n+1 ,

1
n
), n ∈ N. The k-th derivative in t ∈ ( 1

n+1 ,
1
n
) can easily be

computed using the chain rule:

c(k)(t) = χ(k)

(
t− 1

n+1
1
n
− 1

n+1

)
(n(n+ 1))k(xn − xn+1).

Since χ(k)(0) = χ(k)(1) = 0 by the above, we have that c(k)(t) → 0 for t → 1
n

∀k, n ∈ N. Thus by lemma 5.2.5 below, c(k)( 1
n
) = 0 ∀k, n ∈ N.

By assumption, xn converges fast towards x in E. If (pα)α∈A is a family
of seminorms that generates the topology on E, then by the binomial theorem
and the triangle inequality

pα((n(n+ 1))k(xn − xn+1)) = nk
k∑

l=0

(
k

l

)
nlpα(xn − xn+1)

≤
k∑

l=0

(
k

l

)
nk+l (pα(xn − x) + pα(xn+1 − x))

converges to 0 for all α ∈ A, k ∈ N. Moreover, χ(k) has compact support for
k > 0 and hence is bounded globally. Thus c(k)(t)→ 0 for t→ 0 and c is smooth
on R, again by lemma 5.2.5.

Lemma 5.2.5. Let I ⊆ R be an interval that contains 0 and let c : I → E be
continuous and differentiable on I \ {0}. Assume that c′ : I \ {0} → E has a
continuous extension to R. Then c is differentiable at 0 and c′(0) = limt→0 c

′(t).

Proof. Let a := limt→0 c
′(t) and letA be the closed and convex hull of {c′(s) | 0 6=

s ∈ I}. By the generalized mean value theorem (cf. [KM97], 1.4, p. 10) we have

that c(t) − c(0) ∈ tA, i.e. c(t)−c(0)
t

∈ A. Let U be any closed and convex 0-
neighborhood. Since c′ is continuously extendable, there exists δ > 0 such that

c′(t) ∈ a+ U ∀0 < |t| ≤ δ. Thus c(t)−c(0)
t

− a ∈ U , i.e. c′(0) = a.

In our case we have to generalize the zero sequence ( 1
n
)n to any sequence

(εn)n with εn ց 0:

Corollary 5.2.6 (Special curve lemma for any decreasing sequence). Let E be
a locally convex space, (εn)n such that εn ց 0 and let (xεn

)n be a sequence
which converges fast to x in E. Then the infinite polygon through xεn

can be
parametrized as a continuous curve c̃ : [0, 1]→ E such that c̃ is smooth on (0, 1],

c̃(εn) = xεn
and c̃(0) = x.

Proof. We will construct a continuous function f : [0, 1] → R that satisfies
f(εn) = 1

n
and f(0) = 0 and is smooth on (0, 1], and then compose it with the

curve c of lemma 5.2.4 to obtain the required c̃.
Define an open cover U = (Un)n∈N of (0, 1] such that Un := (εn+1, εn−1)

for n > 1, U1 := (ε2, 1]. By theorem 2.2.4 there exists a smooth partition of

unity (χn)n∈N subordinate to U . Because χ
(k)
n (ε) = 0 for ε < εn+1 and any

k ∈ N∪{0}, each χn can be extended smoothly to ε = 0 by defining χn(0) := 0.
Let f : [0, 1]→ R be defined by

f(ε) :=

∞∑

n=1

1

n
χn(ε).
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Obviously, f is smooth on (0, 1]. Moreover,

|f(ε)| =
∣∣∣∣∣

∞∑

n=1

1

n
χn(ε)

∣∣∣∣∣ ≤
∞∑

n=m

1

n
χn(ε) ≤ 1

m

∞∑

n=m

χn(ε)

︸ ︷︷ ︸
≤1

≤ 1

m
(5.4)

for ε ≤ εm. Thus limε→0 f(ε) = 0 = f(0) and f is continuous on [0, 1]. This
implies that c̃ = c ◦ f is continuous on [0, 1], smooth on (0, 1] and satisfies

c̃(0) = c(0)
5.2.4
= x.

Furthermore, f(εn) = 1
n

because χn(εn) = 1 for each n ∈ N. This implies

c̃(εn) = (c ◦ f)(εn) = c
(

1
n

) 5.2.4
= xεn

.

Remark 5.2.7 (c̃ is not smooth at 0). Generally it is not possible to have that
f is smooth at 0. Let

εn := e−n.

By definition of f and (5.4) we have that 0 ≤ f(ε) ≤ 1
m

for ε ∈ [0, e−m]. In
particular, f(εm) = 1

m
since χm is the only non-zero summand at εm by the

definition of U . By the mean value theorem there exists an element ξm ∈ [0, e−m]
such that

f ′(ξm) =
f(εm)− f(0)

εm
=

1
m

e−m
=
em

m
.

Thus f ′(ξm)→∞ for m→∞ and f is not even differentiable at 0.
In some cases, however, c̃ of course may be smooth on all of [0, 1], e.g. if

εn = 1
n

as in the original special curve lemma 5.2.4.

Theorem 5.2.2 pertains to the local theory on Rn. An analogous result
holds true on a smooth manifold X by restricting to geodesically convex chart
neighborhoods and applying 5.2.2 there:

Theorem 5.2.8 (Point value characterization in G(X)). Let u ∈ G(X). Then

u = 0 in G(X)⇐⇒ u(p̃) = 0 in C̃ for all p̃ ∈ X̃c.

Proof. By [Nig06], proposition 3.16, we know that u(p̃) := [(uε(pε))ε] is a well-

defined element of C̃. For the proof of 5.2.8 see also [Nig06], theorem 3.17.

5.3 Continuity in G(X)

Sharp topologies give a means of endowing spaces of Colombeau generalized
functions with the structure of locally convex C̃-modules. For an in-depth treat-
ment of this theory we refer to [Gar05b] and [Gar05a]. We shall only make use
of the following particular result.

Proposition 5.3.1 (Continuity in the sharp topology). Let X be a smooth
submanifold of Rm, u ∈ G(X) and K ⊂⊂ X. Then

∀l ∈N ∃n ∈ N ∃ε0 > 0 ∀ε ≤ ε0 ∀p, q ∈ K :

|p− q| ≤ εn ⇒ |uε(p)− uε(q)| ≤ εl.
(5.5)
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Proof. First, let Ω be an open subset of Rk, w ∈ G(Ω) and L ⊂⊂ Ω. As
in corollary 2.2.6 there exists a smooth bump function χ : Rk → [0, 1] such
that χ|L = 1 and χ|Rk\Ω = 0. Consider w := [(wε)ε] ∈ G(Rk) defined by

wε := wε · χ : Rk → C. If we denote the closed convex hull of L by ch(L), then
we obtain for x, y ∈ L by the mean value theorem that

|wε(x)− wε(y)| = |wε(x)− wε(y)|

≤ |x− y| ·
∫ 1

0

|Dwε(x + t(y − x))|dt

≤ |x− y| · ‖Dwε‖L∞(ch(L)). (5.6)

Since (wε)ε ∈ EM (Rk) we know that ‖Dwε‖L∞(ch(L)) ≤ ε−N for some N ∈ N
and ε smaller than a certain ε0 > 0. Given l ∈ N, we set n := l+N and conclude
that

|wε(x)− wε(y)|
(5.6)

≤ ‖Dwε‖L∞(ch(L))|x− y| ≤ ε−Nεn = εl

for ε < ε0 and |x− y| ≤ εn. Thus (5.5) holds in this case.

Now let X be a smooth submanifold of Rm and K ⊂⊂ X . Let g be the
Riemannian metric on X induced by the Euclidean metric on Rm. For each
p ∈ K there exists a geodesically convex neighborhood Wp such that Wp ⊂⊂ Vp
for a chart (vp, Vp) at p, by theorem 4.2.4. Since K is compact, it may be
covered by finitely many such sets Wi, i = 1, ..., k. The respective charts are
also denoted by (vi, Vi), i = 1, ..., k. By the Lebesgue covering theorem 4.3.1,
there exists a Lebesgue number δ > 0 such that for each p ∈ K there exists
some i ∈ {1, ..., k} with Bδ(p) ⊆ Wi. W.l.o.g. we can assume that ε0 < δ < 1.
Thus if |p− q| ≤ εn ≤ εn0 < δ, then p and q belong to the same set Wi ⊆ Vi and
we can restrict to this case.

Consider ui := u ◦ v−1
i ∈ G(vi(Vi)). Since vi(Vi) is an open subset of Rd, we

may apply (5.5) by the above and obtain that

∀l ∈ N ∃hi ∈ N ∃εi > 0 ∀ε ≤ εi ∀p, q ∈Wi :

|vi(p)− vi(q)| ≤ εhi ⇒ |uε(p)− uε(q)| ≤ εl.
(5.7)

By [GKOS01], proof of lemma 3.2.6, there exists a constant C1 > 0 such that
|vi(p) − vi(q)| ≤ C1dg(p, q) for all p, q ∈ Wi. Moreover, by lemma 4.3.2, there
exists a constant C2 > 0 such that dg(p, q) ≤ C2|p− q| for all p, q ∈Wi. Thus

∃C1, C > 0 ∀p, q ∈Wi : |vi(p)− vi(q)| ≤ C1dg(p, q) ≤ C|p− q|

if we set C := C1C2 > 0. Therefore, by (5.7),

∀l ∈ N ∃ni ∈ N ∃εi > 0 ∀ε ≤ εi ∀p, q ∈ Wi :

|p− q| ≤ εni ⇒ |uε(p)− uε(q)| ≤ εl,

where ni = hi + s with s ∈ N such that C < ε−si (this ensures that |vi(p) −
vi(q)| ≤ C|p − q| ≤ ε−si εni ≤ εhi for ε < εi). Finally, given l ∈ N, set ε0 :=
min1≤i≤k εi and n := max1≤i≤k ni. This gives (5.5).
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5.4 Manifold-valued generalized functions

In the previous sections we considered generalized functions G(X) with values
in C. Now we will introduce and analyze generalized functions G[X,Y ] with
values in a smooth manifold Y . The following is based on [KSV03] and [Nig06],
chapter 4, which may also be consulted for further reading.

5.4.1 C-bounded generalized functions

While EM (X), N (X) and G(X) in section 5.1 were defined intrinsically without
reference to the notion of charts, this is not possible for c-bounded generalized
functions where the range space is a smooth manifold Y . In particular, G[X,Y ]
cannot be defined as a quotient of moderate and negligible maps, since these
are not well-defined once we leave the vector space setting – charts, Riemannian
distances and an equivalence relation must be used instead.

However, simpler intrinsic characterizations for moderateness etc. are also
available in this setting, see subsection 5.4.2 below.

In the case of smooth submanifolds X ⊆ Rn and Y ⊆ Rm we can simply
consider G(X)n. This will be examined in section 5.4.3.

Definition 5.4.1. Let X and Y be smooth manifolds. The space EM [X,Y ] of
compactly bounded (c-bounded) moderate maps from X to Y is defined as the
set of all (uε)ε ∈ C∞((0, 1]×X,Y ) which satisfy the following properties:

(i) ∀K ⊂⊂ X ∃K ′ ⊂⊂ Y ∃ε0 > 0 such that ∀ε < ε0 : uε(K) ⊆ K ′.

(ii) ∀k ∈ N0 ∀ charts (a,A) in X ∀ charts (b, B) in Y ∀L ⊂⊂ A∀L′ ⊂⊂ B
∃N ∈ N such that

sup
x∈L∩u−1

ε (L′)

|D(k)(b ◦ uε ◦ a−1)(a(x))| = O(ε−N ) as ε→ 0.

Property (i) in definition 5.4.1 is called c-boundedness .

In the absence of a linear structure, the concept of a set of negligible elements
N [X,Y ] similar to N (X) makes no sense. The equivalence relation on EM [X,Y ]
must be defined directly:

Definition 5.4.2. Let X and Y be smooth manifolds. Two elements (uε)ε and
(vε)ε in EM [X,Y ] are called equivalent , (uε)ε ∼ (vε)ε, if

(i) ∀K ⊂⊂ X and one (hence any) Riemannian metric h on Y :

sup
p∈K

dh(uε(p), vε(p))→ 0 as ε→ 0.

(ii) ∀k ∈ N0 ∀m ∈ N ∀ charts (a,A) in X ∀ charts (b, B) in Y ∀L ⊂⊂ A
∀L′ ⊂⊂ B we have that

sup
x∈L∩u−1

ε (L′)∩v−1
ε (L′)

|D(k)(b ◦ uε ◦ a−1 − b ◦ vε ◦ a−1)(a(x))| = O(εm) as ε→ 0.
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The above definition is independent of the choice of the Riemannian metric
h on Y as shown in [Nig06], proposition 3.35. Furthermore, ∼ really defines an
equivalence relation on EM [X,Y ], cf. [Nig06], proposition 3.36.

Finally, the c-bounded generalized functions are defined as the quotient:

Definition 5.4.3. Let X and Y be smooth manifolds. The space of compactly
bounded (c-bounded) generalized functions from X to Y is defined as

G[X,Y ] := EM [X,Y ]/∼.

5.4.2 Intrinsic characterizations

The definitions of EM [X,Y ] and G[X,Y ] were given in terms of charts. As in sec-
tion 5.2 for elements in G(X), we will now provide point value characterizations
for c-boundedness and intrinsic characterizations for moderate and negligible
elements. See [KSV03], section 3, or [Nig06], chapter 4, for the proofs.

Proposition 5.4.4. Let X and Y be smooth manifolds, (uε)ε ∈ C∞((0, 1] ×
X,Y ). Then the following are equivalent:

(i) (uε)ε is c-bounded

(ii) (uε(pε))ε ∈ Ỹc for all p̃ = [(pε)ε] ∈ X̃c.

Proof. See [KSV03], proposition 3.1 (i)⇔(iv).

Proposition 5.4.5. Let X and Y be smooth manifolds, (uε)ε ∈ C∞((0, 1] ×
X,Y ). Then the following are equivalent:

(i) (uε)ε ∈ EM [X,Y ] (cf. definition 5.4.1)

(ii) (f ◦ uε)ε ∈ EM (X) for all f ∈ C∞(Y ).

Proof. See [KSV03], proposition 3.2 (a)⇔(c).

Proposition 5.4.6. Let X and Y be smooth manifolds, (uε)ε, (vε)ε ∈ EM [X,Y ].
Then the following are equivalent:

(i) (uε)ε ∼ (vε)ε (cf. definition 5.4.2)

(ii) For every Riemannian metric h on Y , every m ∈ N and every K ⊂⊂ X
we have

sup
p∈K

dh(uε(p), vε(p)) = O(εm) as ε→ 0.

(iii) (f ◦ uε − f ◦ vε)ε ∈ N (X) for all f ∈ C∞(Y ).

Proof. See [KSV03], proposition 3.3 (i)⇔(iii)⇔(v).

A point value characterization is obtained from the above theorem and the
following proposition:
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Proposition 5.4.7. Let X and Y be smooth manifolds, u ∈ G[X,Y ] and p̃ ∈
X̃c. Then the point value of u at p̃,

u(p̃) := [(uε(pε))ε],

is a well-defined element of Ỹc.

Proof. See [Nig06], proposition 4.8.

Corollary 5.4.8 (Point value characterization in G[X,Y ]). Let X and Y be
smooth manifolds, u, v ∈ G[X,Y ]. Then

u = v in G[X,Y ]⇐⇒ u(p̃) = v(p̃) in Ỹc for all p̃ ∈ X̃c.

Proof. See [Nig06], proposition 4.9, or [KSV03], theorem 3.5.

5.4.3 C-bounded generalized functions on submanifolds

Let X ⊆ Rm and Y ⊆ Rn be smooth submanifolds. Of course we can consider
elements in G[X,Y ] using the definitions in 5.4.1. Alternatively, given a sur-
rounding space, we can also study functions in G(X)n and ask when they are
elements in G[X,Y ]. This is done in the following.

As above, an element u ∈ G(X)n is called c-bounded into Y if there exists a
representative (uε)ε of u such that

∀K ⊂⊂ X ∃K ′ ⊂⊂ Y ∃ε0 > 0 such that ∀ε < ε0 : uε(K) ⊆ K ′.

We make use of an increasing sequence of compact sets which always exists
on a manifold with a countable basis:

Definition 5.4.9. Let X be a manifold. Then (Kn)n∈N is called an exhaustion
of X by compact sets if Kn ⊆ int(Kn+1) for all n ∈ N and

⋃
n∈N

Kn = X .

Remark 5.4.10 (Construction of compact exhaustion). Let X be a Hausdorff
and second countable manifold. In particular, X is locally compact, hence there
exists an open cover U = (Up)p∈X of X such that all Up are compact. Since X
is second countable we may choose a countable sub-cover (Un)n∈N of U . The
exhaustion by compact sets is now constructed inductively. First, let K1 := U1.
Assume that we have already defined Kn ⊂⊂ X . As Kn is compact we may

find n+ 1 ≤ kn+1 ∈ N such that Kn ⊆
⋃kn+1

j=1 Uj. Define

Kn+1 :=

kn+1⋃

j=1

Uj.

We have that Kn+1 ⊂⊂ X , Kn ⊆ int(Kn+1) and
⋃∞
n=1Kn ⊇

⋃∞
n=1 Un = X .

Proposition 5.4.11. Let X ⊆ Rm and Y ⊆ Rn be smooth submanifolds, u ∈
G(X)n. Then the following are equivalent:

(i) u is c-bounded into Y .
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(ii) u(X̃c) ⊆ Ỹc as a pointwise function on compactly supported generalized
points.

(iii) For one (hence any) representative (uε)ε of u we have that

∀K ⊂⊂ X ∃K ′ ⊂⊂ Y ∀l ∈ N : sup
p∈K

d(uε(p),K
′) = O(εl) as ε→ 0,

where d denotes the Euclidean metric in Rn.

Proof. (i ⇒ ii) Let (pε)ε be a representative of p̃ ∈ X̃c. There exists a compact
set K ⊂⊂ X and ε1 > 0 such that pε ∈ K for all ε < ε1. Since u ∈ G(X)n is
c-bounded into Y we furthermore have a representative (uε)ε of u, K ′ ⊂⊂ Y
and ε2 > 0 such that uε(K) ⊆ K ′ for ε < ε2. Thus for all ε < ε0 := min(ε1, ε2)

we have that uε(pε) ∈ K ′, i.e. u(p̃) ∈ Ỹc.

(ii ⇒ iii) Suppose to the contrary that

∃K ⊂⊂ X ∀K ′ ⊂⊂ Y ∃l ∈ N ∃(εk)k, εk ց 0 ∃p ∈ K :

d(uεk
(p),K ′) ≥ εlk.

(5.8)

Consider (rε)ε ∈ C(0,1], defined by

rε := sup
p∈K

d(uε(p), Y ).

In general, rε will not be smooth in ε. Nevertheless, we may speak of moder-
ateness and negligibility for (rε)ε. There are two distinct cases to consider in

order to construct p̃ ∈ X̃c that satisfies u(p̃) /∈ Ỹc:

• (rε)ε is not negligible: Hence there exists a sequence (εk)k, εk ց 0, such
that rεk

≥ εlk for some l ∈ N. In particular, we have points pεk
∈ K such

that d(uεk
(pεk

), Y ) ≥ εlk, meaning that (5.8) also holds for Y instead of
K ′ ⊂⊂ Y . In particular, (uεk

(pεk
))k does not approach Y sufficiently fast.

We are going to extend the sequence (pεk
)k to an element p̃ = [(pε)ε] ∈ X̃c.

Since K is compact we may assume that (pεk
)k converges towards some

p ∈ K. Let (v, V ) be a chart of X at p such that V ⊂⊂ X and v(V )
is convex. W.l.o.g. we have that pεk

∈ V for all k ∈ N. As in the proof
of theorem 5.2.2 we may assume that (v(pεk

))k converges fast towards
v(p) ∈ v(V ) ⊆ Rd. Thus by the special curve lemma 5.2.6 we can extend
(v(pεk

))k to a smooth net (v(pε))ε by setting v(pε) := c̃(ε). Finally,

pε := v−1(c̃(ε))

defines a compactly supported point p̃ in X̃c. The values pεk
stayed the

same. Since d(uεk
(pεk

), Y ) ≥ εlk for some l ∈ N as above, we have that

u(p̃) /∈ Ỹc, a contradiction to (ii).

• (rε)ε is negligible: Let (Kj)j∈N be an exhaustion of Y by compact sets with
Kj ⊆ int(Kj+1) for all j ∈ N. Such a (Kj)j exists by remark 5.4.10. By

(5.8) we have l1 ∈ N, ε1 > 0 and pε1 ∈ K such that d(uε1(pε1),K1) ≥ εl11 .
Since, by assumption, (rε)ε is negligible, we may assume w.l.o.g. that
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d(uε1(pε1), Y ) ≤ supp∈K d(uε1(p), Y ) = rε1 < εl11 (this can be achieved
possibly by decreasing ε1). Inductively this can be done for all j ∈ N,
again by (5.8) – we obtain lj ∈ N, εj > 0 and pεj

∈ K such that

d(uεj
(pεj

),Kj) ≥ ε
lj
j > rεj

. W.l.o.g. we may assume that lj > j and

εj < min{εj−1,
1
j
} (for εj just pick an element of (εk)k w.r.t. Kj in (5.8)

sufficiently small). Thus we obtain sequences (εj)j , εj ց 0, (lj)j in N and
(pεj

)j in K such that

d(uεj
(pεj

), Y ) ≤ rεj
< ε

lj
j ≤ d(uεj

(pεj
),Kj).

In particular, there exists qj ∈ Y \Kj such that

d(uεj
(pεj

), qj) ≤ εljj ≤ εjj , (5.9)

because d(uεj
(pεj

), Y ) = infq∈Y d(uεj
(pεj

), q). As in the first case, we

can extend (pεj
)j to an element p̃ = [(pε)ε] ∈ X̃c. By (ii), u(p̃) ∈ Ỹc.

Then there exists a compact set K ′ ⊂⊂ Y such that uε(pε) ∈ K ′ for all
ε sufficiently small. Since (Kj)j∈N is a compact exhaustion, there exists
M ∈ N such that K ′ ⊆ KM . For j > M we have that KM ⊆ int(Kj)
and d(qj ,KM ) ≥ d(Y \ Kj ,KM ) ≥ d(Y \ KM+1,KM ) = δ > 0. The
sequence (εj)j converges strictly monotonically to zero, thus there exists

N ∈ N such that for all j ≥ N we have that εjj ≤ εNN < δ. Putting this
information together, we obtain that for j sufficiently large we have that
uεj

(pεj
) /∈ KM , because

d(uεj
(pεj

),KM ) ≥ d(qj ,KM )− d(uεj
(pεj

), qj)
(5.9)

≥ δ − εjj > 0.

Thus u(p̃) /∈ Ỹc, again a contradiction to (ii).

(iii ⇒ i) Let (uε)ε be any representative of u ∈ G(X)n. Since Y is a smooth
submanifold of Rn there exists a normal tubular neighborhood V of Y in Rn

with an associated smooth retraction r : V → Y such that the unique closest
point of q ∈ V in Y is r(q) by [Hir76], section 4.5. Moreover, u is c-bounded into
V by (iii). Thus first of all, r ◦ u ∈ G(X)n is c-bounded into Y . Let K ⊂⊂ X
and p ∈ K. For ε sufficiently small we have that uε(p) ∈ V and therefore
(r ◦ uε)(p) ∈ Y is the closest point in Y to uε(p). Hence (iii) implies that for
some K ′ ⊂⊂ Y , all l ∈ N and ε sufficiently small,

sup
p∈K
|(r ◦ uε)(p)− uε(p)| = sup

p∈K
d(uε(p), Y ) ≤ sup

p∈K
d(uε(p),K

′) = O(εl).

Thus u = r ◦ u ∈ G(X)n and is therefore c-bounded into Y itself.

Now, given a c-bounded function in G(X)n we have:

Proposition 5.4.12. Let X ⊆ Rm, Y ⊆ Rn be smooth submanifolds. Then
every element u ∈ G(X)n which is c-bounded into Y ⊆ Rn defines a unique
element in G[X,Y ].

We show this by following the arguments in [KSV09], remark 2.4. A compact
exhaustion is used to construct another representative of u with the required
property.
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Lemma 5.4.13. Let X be a smooth manifold and (Kn)n∈N an exhaustion of
X by compact sets. Suppose we are given a decreasing, positive sequence (εn)n.
Then there exists a smooth function η : X → R such that

0 < η(p) ≤ εn

for all p ∈ Kn \ int(Kn−1) and all n ∈ N (set K0 := ∅).

Proof. Set Un := int(Kn) \Kn−2 for n ≥ 2 (recall that K0 := ∅) and U1 := ∅.
Then U = (Un)n∈N is an open cover of X and by theorem 2.2.4 there exists a
subordinate partition of unity (χn)n∈N. For p ∈ X we define

η(p) :=

∞∑

n=1

εnχn(p). (5.10)

The functions χn are smooth and the sum is locally finite, hence η is smooth
on X .

Let p ∈ Kn \ int(Kn−1). By assumption, int(Kn−1) ⊇ int(Ki) ⊇ Ui for

i ≤ n− 1, thus p /∈ ⋃n−1
i=1 Ui. Furthermore, Kn ∩ Ui = Kn ∩ (int(Ki) \Ki−2) ⊆

Kn ∩ ∁Ki−2 = ∅ for i ≥ n+ 2, hence p /∈ ⋃∞
i=n+2 Ui. Thus altogether we obtain

that

p ∈ Kn \ int(Kn−1) ⊆
∞⋃

i=1

Ui \
⋃

i≤n−1
i≥n+2

Ui ⊆ (Un ∪ Un+1) \
⋃

i6=n,n+1

Ui

This implies that χn(p) + χn+1(p) = 1 and therefore

η(p)
(5.10)
= εnχn(p) + εn+1χn+1(p).

By the assumptions on (εn)n this leads to 0 < εn+1 = εn+1(χn(p)+χn+1(p)) ≤
εnχn(p) + εn+1χn+1(p) = η(p) ≤ εn(χn(p) + χn+1(p)) = εn.

Now we are ready to prove the proposition mentioned in the beginning:

Proof of 5.4.12. Let (uε)ε be any representative of the c-bounded function u ∈
G(X)n. Thus we have that

∀K ⊂⊂ X ∃K ′ ⊂⊂ Y ∃ε0 > 0 such that ∀ε < ε0 : uε(K) ⊆ K ′. (5.11)

We want to show that there exists a representative (vε)ε of u such that vε(p) ∈ Y
∀p ∈ X ∀ε ∈ (0, 1]. To this end, let (Kj)j∈N be an exhaustion of X ⊆ Rm by
compact sets (cf. remark 5.4.10). By (5.11) there exist K ′

j ⊂⊂ Y and εj > 0
such that

uε(Kj) ⊆ K ′
j (5.12)

for all ε ≤ εj . W.l.o.g. assume that εj+1 ≤ εj for all j ∈ N. Then there exists a
smooth function η : X → R such that

0 < η(p) ≤ εj for all p ∈ Kj \ int(Kj−1) (5.13)

by lemma 5.4.13. This function η will later guarantee that (vε)ε always ends
up in Y . Moreover, we need to ensure that (vε)ε is a representative of the same
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generalized function u. Therefore we need another smooth function ν : R+
0 →

[0, 1] that satisfies ν(x) ≤ x for all x ∈ R+ and

ν(x) =

{
x 0 ≤ x ≤ 1

2
1 x ≥ 3

2

. (5.14)

To construct ν we consider the open cover U of R+
0 that consists of the sets

U1 := [0, 1), U2 := (1
2 ,

3
2 ) and U3 := (1,∞). By theorem 2.2.4 there exists a

subordinate smooth partition of unity (χ1, χ2, χ3) such that suppχi ⊆ Ui and∑3
i=1 χi = 1. Then ν(x) := x · χ1(x) + 1

2 · χ2(x) + χ3(x) meets all conditions
mentioned before:

x ∈ [0, 1
2 ] : ν(x) = xχ1(x) = x

x ∈ (1
2 , 1] : ν(x) = xχ1(x) + 1

2χ2(x) ≤ x(χ1(x) + χ2(x)) = x
x ∈ (1, 3

2 ] : ν(x) = 1
2χ2(x) + χ3(x) ≤ χ2(x) + χ3(x) = 1 ≤ x

x ∈ (3
2 ,∞) : ν(x) = χ3(x) = 1 ≤ x

Finally, let µ be the smooth function

µ : (0, 1]×X → (0, 1]

(ε, p) 7→ η(p) ν

(
ε

η(p)

)

and set
vε(p) := uµ(ε,p)(p)

for ε ∈ (0, 1] and p ∈ X . Obviously, (vε)ε ∈ C∞((0, 1]×X,Rn). It remains to be
shown that (vε)ε is another representative of u ∈ G(X)n and (vε)ε ∈ EM [X,Y ].

So let K ⊂⊂ X . Then µ(ε, p) = η(p) ε
η(p) = ε for p ∈ K and ε <

minq∈K η(q)
2

by (5.14). Thus finally vε = uε on every K ⊂⊂ X , hence (vε)ε ∈ [(uε)ε].
Now let p be an arbitrary point inX . SinceX =

⋃∞
i=1Ki there exists a j ∈ N

such that p ∈ Kj \ int(Kj−1). Therefore, for any ε > 0, µ(ε, p) ≤ η(p) ·1 ≤ εj by
(5.13), which by (5.12) implies that vε(p) ∈ vε(Kj) = uµ(ε,p)(Kj) ⊆ K ′

j ⊂⊂ Y .
Altogether this ensures that (vε)ε is an element of EM [X,Y ].

Uniqueness is obvious, because each [(wε)ε] ∈ G[X,Y ] with this property
has to satisfy (wε)ε ∈ [(uε)ε] and is therefore equivalent to the constructed
(vε)ε.

5.5 Composition of generalized functions

The composition in the sense G(Y ) ◦ G[X,Y ] ⊆ G(X) is well-defined:

Proposition 5.5.1. Let X and Y be smooth manifolds, u = [(uε)ε] ∈ G[X,Y ]
and v = [(vε)ε] ∈ G(Y ). Then the composition v ◦ u, defined by

v ◦ u := [(vε ◦ uε)ε],

is a well-defined generalized function in G(X).

Proof. See [Nig06], theorem 5.3.

The composition with smooth functions is also possible:
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Proposition 5.5.2. Let X, Y and Z be smooth manifolds, u = [(uε)ε] ∈
G[X,Y ], i ∈ C∞(Y, Z) and j ∈ C∞(Z,X). Then

(i) i ◦ u := [(i ◦ uε)ε] is a well-defined element in G[X,Z]

(ii) u ◦ j := [(uε ◦ j)ε] is a well-defined element in G[Z, Y ].

Proof. See [Nig06], corollary 5.2.

Remark 5.5.3. It is also possible to define the composition of two c-bounded
generalized functions. Let X , Y and Z be smooth manifolds, u = [(uε)ε] ∈
G[X,Y ] and v = [(vε)ε] ∈ G[Y, Z]. Then the composition v ◦ u is defined by

v ◦ u := [(vε ◦ uε)ε].

By [Nig06], theorem 5.1, v ◦ u is a well-defined element in G[X,Z].

5.5.1 Invertibility in G[X, Y ]

Now we are also able to define invertibility for compactly bounded generalized
functions in G[X,Y ]. Of course, we require an identity map first:

Definition 5.5.4. Let X be a smooth manifold. Then id ∈ G[X,X ], defined
by

id := [(id)ε],

is called the identity in G[X,X ].

In order to distinguish the identities of different underlying manifolds, we
may also write idG[X,X] = [(idX)ε] for the identity in G[X,X ].

Definition 5.5.5. Let X and Y be smooth manifolds, u ∈ G[X,Y ]. Then u is
called invertible if there exists v ∈ G[Y,X ] such that

u ◦ v = idG[Y,Y ] and v ◦ u = idG[X,X] .

Remark 5.5.6 (Existence of (local) inverse).

(i) The inverse v of u may be denoted by u−1 although usually vε 6= u−1
ε . In

general, we do not know whether the uε’s in C∞(X,Y ) are diffeomorphisms
or even bijective. However, for sufficiently small ε the latter has to be the
case – at least locally around some point p ∈ X – by the chain rule and
the classical inverse function theorem.

(ii) The question arises of when a generalized function G[X,Y ] is actually
invertible. Suppose u = [(uε)ε] ∈ G[X,Y ], uε are diffeomorphisms for
sufficiently small ε and (u−1

ε )ε ∈ EM [Y,X ]. This obviously implies that u
is invertible with inverse v := [(u−1

ε )ε]. The converse, however, may not
hold.

(iii) For a thorough discussion of (local) invertibility of generalized functions
u ∈ G[Ω,Rn], Ω an open subset of Rn, see [Erl07]. Local invertibility there,
for example, follows from additional assumptions such as so-called ca-
injectivity, ca-surjectivity and that detDu is strictly non-zero, cf. theorem
3.37 there.
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Chapter 6

Isomorphisms of Algebras
of Generalized Functions

As in the case of algebras of smooth functions in chapter 3, our aim is to prove
that any algebra isomorphism Ψ : G(X)→ G(Y ) between the special Colombeau
algebras defined on smooth manifolds is given by the pullback under a c-bounded
generalized function ψ ∈ G[X,Y ], i.e. that Ψ(u) = u ◦ ψ for all u ∈ G(X).

Our approach is based on the algebraic properties of non-zero multiplicative
linear functionals ϕ : G(X) → C̃. As in section 3.1 we will identify the com-
pactly supported generalized points with the ideals kerϕ. However, as will be
shown in section 6.1, C̃ is not a field and kerϕ is not a maximal ideal. Thus
some adaptions are required.

The main ideas for these modifications are taken from [Ver06], where Hans
Vernaeve proved a similar result for Colombeau algebras with non-smooth de-
pendence on the index ε. In section 6.2 we discuss extensively the main changes
required: invertibility and strictly non-zero w.r.t. so-called characterstic sets,
and maximal ideals I w.r.t. the property I ∩ C̃1 = {0}.

The proofs in section 6.3 and section 6.4 roughly follow the smooth case as
presented in section 3.1, but of course are more involved in order to handle the
algebraic peculiarities mentioned above.

Finally, a comparison between the definitions and proofs of [Ver06] and this
chapter, i.e. between the smooth and non-smooth dependence of generalized
functions on ε, is drawn.

6.1 General approach and problems

A fundamental ingredient of the proofs in section 3.1, in particular theorem
3.1.1, was that kerϕ is a maximal ideal for non-zero multiplicative linear func-
tionals ϕ : C∞(X) → R. For obvious reasons, it is an ideal. It is maximal
because the co-domain of ϕ, namely R, is a field – as seen in lemma 3.1.2 (ii).
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6.1.1 Surjectivity of multiplicative C̃-linear maps

For arbitrary commutative C̃-algebras with unit, the image of an idempotent
under algebra homomorphisms reveal some of their structure:

Definition 6.1.1. An element e of a ring R resp. an algebra A is called an
idempotent if e2 = e. To exclude the trivial cases we assume that e 6= 0 and
e 6= 1.

Lemma 6.1.2. Let A and B be commutative C̃-algebras with 1. Then the
following holds:

(i) If a multiplicative C̃-linear map Ψ : A → B is surjective, then Ψ(1) = 1.

(ii) A multiplicative C̃-linear functional ϕ : A → C̃ is surjective if and only if
ϕ(1) = 1.

Proof. (i) By multiplicativity we have that Ψ(1) = Ψ(1 · 1) = Ψ(1)Ψ(1), hence
either Ψ(1) = 0, Ψ(1) = 1 or Ψ(1) = e for e an idempotent of B. If Ψ(1) =
0, then Ψ ≡ 0 is not surjective because 0 6= 1 ∈ B, a contradiction to the
assumption. Suppose that Ψ(1) = e. Since Ψ is surjective we have for all
b ∈ B that b = Ψ(a) = Ψ(a)e = be, thus e = 1 because the unit is unique. In
particular, Ψ(1) = 1.

(ii) If we set B = C̃, then ϕ(1) = 1 by (i). On the other hand, let r =

[(rε)ε] ∈ C̃. Hence r1 ∈ A and ϕ(r1) = rϕ(1) = r ∈ C̃ due to C̃-linearity. Thus
ϕ is surjective.

Our algebras C̃ and G(X) have different intrinsic properties though, which
also have an impact on algebra homomorphisms:

Proposition 6.1.3. There are no idempotents in C̃.

Proof. Suppose that (rε)ε ∈ EM satisfies rεrε = rε + nε for (nε)ε ∈ N . There
are two possible solutions for the quadratic equation:

rε,1 =
1

2
+

√
1

4
+ nε and rε,2 =

1

2
−
√

1

4
+ nε. (6.1)

Since (nε)ε is negligible, there exists ε0 > 0 such that |nε| < 1
8 ∀ε < ε0. Assume

w.l.o.g. that there exists ε′ ∈ (0, ε0] such that rε′ = rε′,1. Thus by continuity of
(rε)ε in ε and the fact that the solutions in (6.1) for ε < ε0 are separated by a
neighborhood around 1

2 , we have that rε = rε,1 in a neighborhood of ε′.
Let U1 := {ε ∈ (0, ε0] | rε = rε,1} and U2 := {ε ∈ (0, ε0] | rε = rε,2}. By the

above, both sets are open (and therefore also closed), disjoint and U1 ∪ U2 =
(0, ε0]. Thus by connectedness of (0, ε0] and the assumption that U1 is non-
empty, we have that U1 = (0, ε0].

Hence,

|rε − 1| =
∣∣∣∣∣
1

2
+

√
1

4
+ nε − 1

∣∣∣∣∣ =
∣∣∣∣∣

√
1

4
+ nε −

1

2

∣∣∣∣∣ ≤
√

1

4
+
√
|nε| −

1

2
< εm,

for any m ∈ N and ε sufficiently small. Thus r = [(rε)ε] = 1 is not an idempo-
tent.
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This also holds true in G(X):

Proposition 6.1.4. Let X be a connected smooth manifold. Then there are no
idempotents in G(X).

Proof. Let u = [(uε)ε] ∈ G(X) such that uε·uε = uε+nε for some (nε)ε ∈ N (X).
Let q ∈ U . We first consider an open, relatively compact and connected

neighborhood U of q in X . There are two possible solutions for the quadratic
equation uε(p) · uε(p) = uε(p) + nε(p):

uε,1(p) =
1

2
+

√
1

4
+ nε(p) and uε,2(p) =

1

2
−
√

1

4
+ nε(p). (6.2)

As (nε)ε is negligible, there exists ε0 > 0 such that |nε(p)| < 1
8 for all ε < ε0

and all p ∈ U . The set (0, ε0]× U is again connected.
By continuity of u in ε and p, both of the sets

U1 := {(ε, p) ∈ (0, ε0]× U |uε(p) = uε,1(p)}
U2 := {(ε, p) ∈ (0, ε0]× U |uε(p) = uε,2(p)}

are open and, as they represent a disjoint union of (0, ε0] × U , also closed in
(0, ε0] × U . Since the latter is connected we have that either U1 = (0, ε0] × U
or U2 = (0, ε0]× U . W.l.o.g. we may assume that it is U1. Thus for any p ∈ U ,
any m ∈ N and sufficiently small ε we obtain that

|uε(p)− 1| =
∣∣∣∣∣
1

2
+

√
1

4
+ nε(p)− 1

∣∣∣∣∣ =
∣∣∣∣∣

√
1

4
+ nε(p)−

1

2

∣∣∣∣∣

≤
√

1

4
+
√
|nε(p)| −

1

2
< εm.

Therefore u|U = 1 in G(U). In the case U2 = (0, ε0]× U we have that u|U = 0.
Now consider

X1 := {p ∈ X | ∃ neighborhood V of p such that u|V = 1}
X2 := {p ∈ X | ∃ neighborhood V of p such that u|V = 0}.

Both sets are obviously open. Moreover, by the above, each p ∈ X is either in
X1 or X2. Thus X = X1 ∪X2 is a disjoint union. Connectedness of X implies
that either X = X1 or X = X2, i.e. u is either 1 or 0 and therefore not an
idempotent in G(X).

Remark 6.1.5 (Non-zero vs. surjective).

(i) As there are no idempotents in C̃ by proposition 6.1.3, lemma 6.1.2 (ii)

implies that the non-zero multiplicative C̃-linear functionals ϕ : G(X)→ C̃
are exactly the surjective ones. In particular, ϕ(1) = 1 for ϕ non-zero.

(ii) Let Y be a connected manifold. By proposition 6.1.4 and lemma 6.1.2 (i)
then this is also true for non-zero algebra homomorphisms Ψ : G(X) →
G(Y ).

In the case of non-connected manifolds, however, there exist idempotents
in G(Y ) which are 0 and 1 on different components. Hence, in general,
non-zero is not enough to obtain Ψ(1) = 1.
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In order to have that 1 is mapped to 1 we will therefore only consider sur-
jective algebra homomorphisms ϕ and Ψ in what follows. As an alternative we
could also have restricted our investigations to connected manifolds.

6.1.2 ker ϕ is not a maximal ideal

Unfortunately, C̃ is only a ring but not a field by remark 5.1.5. This implies
that the kernels of multiplicative, C̃-linear functionals ϕ on C̃-algebras A (e.g.
G(X)) are not maximal ideals:

Proposition 6.1.6. Let A be a commutative C̃-algebra with unit and ϕ : A → C̃
a non-zero multiplicative C̃-linear functional. Then kerϕ is not a maximal ideal.

Proof. Since C̃ is not a field by the above, there exists a non-invertible element
0 6= r 6= 1 in C̃ (e.g. r as in remark 5.1.5). As ϕ is non-zero we have that ϕ(1) = 1
by remark 6.1.5 (i). Therefore ϕ(r1) = rϕ(1) = r 6= 0, i.e. 0 6= r1 /∈ kerϕ.
Obviously, rA is a non-trivial ideal in A. Since kerϕ is an ideal and the sum of
ideals is again an ideal (cf. [Bou98], III, §1, 2.), we have that

I := kerϕ+ rA = {a+ rb | a ∈ kerϕ, b ∈ A}

is an ideal in A. By r1 ∈ I \ kerϕ it follows that I is strictly bigger than kerϕ.
Furthermore, suppose 1 = a + rb ∈ I. Then 1 = ϕ(1) = ϕ(a + rb) =

ϕ(rb) = rϕ(b) would imply that r is invertible in C̃ with inverse ϕ(b) ∈ C̃,
a contradiction. Thus there exists an ideal I in A such that kerϕ ( I ( A.
Hence, by definition 1.3.1, kerϕ is not a maximal ideal.

Thus we cannot simply proceed as we did in subsection 3.1.1. In order
to proceed, we first require suitable modifications of invertibility and maximal
ideals.

6.2 The new maximal ideals and invertibility

The following definitions are taken from or modified from those in [Ver06]. They
shall ensure that we can proceed with our approach as in the setting of algebras
of smooth functions.

As we will see in subsection 6.2.2, it is essentially clear from the proof of
6.1.6 above how the maximal ideals should be chosen.

The new definition of invertibility was originally inspired by concepts from
Non-Standard Analysis1. Alternatively, however, we can view it as being mo-
tivated by corollary 6.2.8, where we show that by using the new invertibility C̃
retains certain properties of a field.

6.2.1 Invertibility with respect to a characteristic set

Characteristic sets and invertibility w.r.t. characteristic sets are defined as fol-
lows:

1as communicated by Hans Vernaeve at the ‘Workshop on Generalized Functions and

PDEs’ in Innsbruck, February 2009
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Definition 6.2.1. A set S ⊆ (0, 1] is called characteristic if there exists a
sequence εk ց 0 such that S = {εk|k ∈ N}.

Definition 6.2.2. Let A be a commutative C̃-algebra with unit 1 and S a
characteristic set. Then u ∈ A is called invertible with respect to S (or S-

invertible) if there exist v ∈ A and r = [(rε)ε] ∈ C̃ such that

uv = r1 in A and r|S = 1 in C̃.

Here r|S = 1 means that for a representative (rε)ε ∈ EM of r and some
n = (nε)ε ∈ N we have that rεk

= 1 + nεk
∀εk ∈ S. Note also that v is not

necessarily unique. Nevertheless we will refer to it as an S-inverse of u.

Note that the definition of invertibility w.r.t. S is slightly different in [Ver06].
For more details, see subsection 6.5.1.

In [GKOS01], theorem 1.2.38, it was shown that invertibility in C̃ is equiv-
alent to being strictly non-zero. We are going to derive a similar result for
S-invertibility. Hence we first have to define what S-strictly non-zero should
mean.

Definition 6.2.3. Let S be a characteristic set. Then r ∈ C̃ is called S-strictly
non-zero in C̃ if there exists a representative (rε)ε such that

∃k0 ∈ N ∃m ∈ N such that ∀k > k0 : |rεk
| > εmk . (6.3)

Remark 6.2.4. Definition 6.2.3 implies that if a generalized number is S-
strictly non-zero, then this holds for any representative.

This can be seen by the following argument: Let S = {εk|k ∈ N} be a

characteristic set, r = [(rε)ε] ∈ C̃ S-strictly non-zero and let (sε)ε be another
representative of r. In particular we have for m as in (6.3), some ε0 > 0 and all
ε < ε0 that

|rε − sε| < ε2m.

Then

|sεk
| ≥ |rεk

| − |rεk
− sεk

| > εmk − ε2mk > ε2mk (ε−mk − 1) > ε2mk

for εk < ε0 and ε−mk > 2, hence for k sufficiently large. Thus (6.3) holds for
(sε)ε as well.

Proposition 6.2.5. Let r ∈ C̃ and let S be a characteristic set. Then

r is S-invertible⇐⇒ r is S-strictly non-zero.

Proof. (⇒) Since r = [(rε)ε] is S-invertible there exist (sε)ε ∈ EM and (nε)ε ∈ N
such that rεk

sεk
= 1 + nεk

for all k ∈ N. Now choose N, k0 ∈ N such that
0 < |sεk

| < ε−Nk and |nεk
| < 1

2 for all k > k0. Then

|rεk
| =

∣∣∣∣
1 + nεk

sεk

∣∣∣∣ ≥
1

|sεk
| (1− |nεk

|) > 1

2
εNk

for all k > k0.
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(⇐) Suppose (rε)ε is strictly non-zero on S, i.e. there exist k0,m ∈ N such
that for all k > k0 we have that |rεk

| > εmk . For each k > k0 + 1 choose
ε′k ∈ (εk, εk−1) such that

ε′k
−m

+ 1 ≥ ε−mk (6.4)

For each k > k0 + 1 define Uk := (εk+1, ε
′
k) and Uk0+1 := (εk0+2, 1]. Hence

U = (Uk)k>k0 is an open cover of (0, 1]. By theorem 2.2.4 there exists a subor-
dinate partition of unity (χk)k>k0 to U . We furthermore have that

χk(εj) = δjk ∀j, k > k0.

since suppχk ⊆ Uk ⊆ (εk+1, εk−1).

By setting

sε :=

∞∑

k=k0+1

1

rεk

χk(ε) (6.5)

we obtain a well-defined smooth function s : (0, 1] → C which satisfies rs =
1 on S. It remains to be shows that s ∈ EM :

|sε| ≤
1

|rεk−1
| +

1

|rεk
| < ε−mk−1 + ε−mk

(6.4)

≤ ε−mk−1 + ε′k
−m

+ 1 < 2ε−m + 1

for ε ∈ [ε′k+1, ε
′
k], k > k0 + 1, hence |sε| = O(ε−m) as ε→ 0.
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Remark 6.2.6. Note that in general it is not enough to drop the ε′k’s and to
simply define Uk := (εk+1, εk−1) in the previous proof. Although we would still
be able to obtain |sεk

| < ε−mk for all k ∈ N, we do not have any control on the
ε’s in between. The following example shows that something could go badly
wrong here if we choose a rather fast converging sequence (εk)k and bad bump
functions.

Example 6.2.7 (Moderate sequences are not enough). For all k ∈ N and any
m ∈ N fixed (in particular m > 0) let

εk := e−k
k

and sεk
:= ε−mk .

Let Uk := (εk+1, εk−1) for k > 1 and U1 := (ε2, 1]. Furthermore, let (χk)k∈N

be a partition of unity subordinate to the open cover U = (Uk)k∈N, such that

χk ≡ 1 on [εk, e
−kk−1

] for k > 1. This may be achieved by actually selecting a

partition of unity subordinate to V = (Vk)k∈N for Vk := (e−(k+1)k

, εk−1) ⊂ Uk,
V1 := U1. As in (6.5) we define

sε :=

∞∑

k=1

sεk
χk(ε),

hence |sεk
| = ε−mk for all k ∈ N. Suppose that |sε| = O(ε−l) for some l ∈ N.

Then we should have

emk
k

= ε−mk = |sδk
| ≤ δ−lk = elk

k−1

for small δk = e−k
k−1

, k ∈ N. By taking the logarithm of this inequality we see
that this implies mk ≤ l. For all k > l

m
this is a contradiction, thus (sε)ε /∈ EM .

This shows that it actually depends on the partition of unity whether the
join is moderate or not. By the ε′k’s in the proof of 6.2.5 we can control the
partition of unity in such a way that we can connect any sequence of moderate
values to a moderate number (sε)ε with the same rate of convergence.

Corollary 6.2.8. Let r ∈ C̃. Then

r 6= 0⇐⇒ ∃ characteristic set S such that r is invertible w.r.t. S.

Proof. (⇒) By definition of N there exists some M ∈ N and a sequence (εk)k
in (0, 1] such that εk ց 0 and

|rεk
| > εMk .

Hence r is strictly non-zero w.r.t. S := {εk|k ∈ N}. Proposition 6.2.5 implies
that r is S-invertible.

(⇐) Suppose that r = 0. Then for any representative (rε)ε of r we have that
|rε| = O(εm) for all m ∈ N. This is a contradiction to r being strictly non-zero
on some characteristic set S (since 0 ∈ S). Hence again by proposition 6.2.5 we
know that r cannot be S-invertible for any characteristic set S, a contradiction
to the assumption.

Remark 6.2.9 (C̃ is nearly a field). The previous result shows that by using
S-invertibility, all elements 6= 0 are invertible in a certain sense. Hence it is a
construction that allows us to retain certain properties of a field.
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The aim of the next proposition is to prove the same result as in 6.2.5 for C̃
in the case of generalized functions, following the same ideas:

Definition 6.2.10. Let X be a smooth manifold and S a characteristic set.
An element u ∈ G(X) is called S-strictly non-zero in G(X) if there exists a
representative (uε)ε such that

∀K ⊂⊂ X ∃k0 ∈ N ∃m ∈ N such that ∀k > k0 : inf
p∈K
|uεk

(p)| > εmk . (6.6)

Again, it is enough that (6.6) holds for one representative as that it then
holds for all, cf. remark 6.2.4.

Proposition 6.2.11. Let X be a smooth manifold. Let u ∈ G(X) and let S be
a characteristic set. Then

u is S-invertible⇐⇒ u is S-strictly non-zero.

Proof. (⇒) Let u = [(uε)ε] ∈ G(X) be S-invertible, i.e. there exist (vε)ε ∈
EM (X), (nε)ε ∈ N (X) such that

uεk
vεk

= 1 + nεk
for all k ∈ N. (6.7)

Let K ⊂⊂ X and choose N ∈ N and k0 ∈ N so that for all k > k0 we have
supp∈K |nεk

(p)| < 1
2 and supp∈K |vεk

(p)| < ε−Nk . Note that (6.7) then implies
that for p ∈ K and k > k0 |vεk

(p)| > 0. Thus we have

|uεk
(p)| =

∣∣∣∣
1 + nεk

(p)

vεk
(p)

∣∣∣∣ ≥
1

|vεk
(p)| (1− |nεk

(p)|) > 1

2
εNk ,

in particular infp∈K |uεk
(p)| ≥ 1

2ε
N
k for k > k0. By definition 6.2.10, u is S-

strictly non-zero.
(⇐) We will first show that for any open set Ω with Ω ⊂⊂ X an S-inverse

of u|Ω ∈ G(Ω) exists. Afterwards, we construct a global S-inverse by glueing
together all S-inverses of an open cover (Ωm)m of X .

So let Ω as above. Since u is S-strictly non-zero there exist k0,m ∈ N such
that for k > k0 infp∈Ω |uεk

(p)| > εmk . Let (χk)k>k0 and ε′k as in the proof of
proposition 6.2.5. For p ∈ Ω we define

vε(p) :=

∞∑

k=k0+1

1

uεk
(p)

χk(ε). (6.8)

Hence uv = 1 on S. Furthermore,

|vε(p)| ≤
1

|uεk−1
(p)| +

1

|uεk
(p)| < ε−mk−1 + ε−mk ≤ 2ε−m + 1,

for ε ∈ [ε′k+1, ε
′
k], k > k0 + 1, again as in the proof of 6.2.5. A similar statement

holds true for any derivative of (vε)ε since supp∈Ω |Puε(p)| = O(ε−NP ) for all
P ∈ P(X) as ε→ 0. Thus v is an S-inverse of u on Ω.

Since X is locally compact and second countable, there exists a countable
open cover (Ωm)m∈N by relatively compact open subsets of X . By theorem 2.2.4
we may choose a subordinate partition of unity (ζm)m∈N such that supp ζm ⊆
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Ωm for all m ∈ N. Obviously, if u ∈ G(X) is S-strictly non-zero, then all
u|Ωm

∈ G(Ωm) are S-strictly non-zero as well. Hence, as defined in (6.8), let
vm = [(vm,ε)ε] ∈ G(Ωm) be an S-inverse of u|Ωm

for each m ∈ N. We shall see
that

v :=

∞∑

m=1

ζmvm

is a global S-inverse of u. First of all, v ∈ G(X) since any compact set K ⊂⊂ X
may be covered by finitely many Ωm’s and all [(ζmvm,ε)ε] ∈ G(X). Choose
m0 ∈ N such that

∑m0

m=1 ζm = 1 on K. Then

(vεk
uεk

)(p) =

m0∑

m=1

ζm(p)uεk
(p)vm,εk

(p) = 1

for all p ∈ K and all k ∈ N as vm,εk
is the S-inverse of uεk

on Ωm ⊇ supp ζm.
Hence v is an S-inverse of u.

By making use of the point value characterization of generalized functions in
section 5.2 we obtain a characterization of S-invertibility in terms of compactly
supported points X̃c.

Theorem 6.2.12 (Characterization of S-invertibility in G(X)). Let X be a
smooth manifold and S a characteristic set. Let u ∈ G(X). Then the following
are equivalent:

(i) u is invertible w.r.t. S (in G(X))

(ii) u(p̃) is invertible w.r.t. S for all p̃ ∈ X̃c (in C̃)

Proof. (i ⇒ ii) Let v = [(vε)ε] be an S-inverse of u = [(uε)ε] in G(X), i.e.

uv = r1 for some r ∈ C̃ with r|S = 1. For p̃ = [(pε)ε] ∈ X̃c this implies that

uε(pε)vε(pε) = rε +nε for some n = (nε)ε ∈ N . Hence u(p̃)v(p̃) = r in C̃ which

by definition 6.2.2 means that u(p̃) is S-invertible in C̃.
(ii ⇒ i) Suppose u ∈ G(X) is not invertible w.r.t. S. Then, by proposition

6.2.11, u is not S-strictly non-zero. In particular (by setting k0 = m in the
negation of (6.6))

∃K ⊂⊂ X ∀m ∈ N ∃km > m ∃pεkm
∈ K : |uεkm

(pεkm
)| ≤ εmkm

. (6.9)

Since K is compact, we may assume w.l.o.g. that (pεkm
)m converges towards

some p ∈ K w.r.t. a (hence any) Riemannian distance dh. Let (v, V ) be a
chart of X at p ∈ X such that V ⊂⊂ X and w.l.o.g. all pεkm

∈ V . As in
the proof of theorem 5.2.2 we may assume that (v(pεkm

))m converges fast to
v(p) in v(V ) ⊆ Rn. The special curve lemma 5.2.6 ensures the existence of a
continuous curve c̃ : [0, 1]→ Rn such that c̃ is smooth on (0, 1], c̃(εkm

) = v(pεkm
)

and c̃(0) = v(p). Hence
pε := v−1(c̃(ε))

defines a compactly supported point p̃ = [(pε)ε] ∈ X̃c. In view of definition
6.2.3 take any k′0,m

′ ∈ N and let M := max{k′0,m′}. By (6.9) there exists a
kM > M ≥ k′0 such that

|uεkM
(pεkM

)| ≤ εMkM
≤ εm′

kM
.
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Hence u(p̃) is not S-strictly non-zero in C̃, since by remark 6.2.4 it is enough
to show this property for just one representative of u(p̃). Thus, by proposition

6.2.5, u(p̃) ∈ C̃ is not invertible w.r.t. S, a contradiction.

6.2.2 Maximal ideals with respect to C̃1

Let A be a commutative C̃-algebra with unit 1 and ϕ : A → C̃ a non-zero
multiplicative C̃-linear functional. In the beginning of this chapter we have seen
that – since C̃ is not a field – kerϕ is not a maximal ideal in A. We proved this
by extending kerϕ to a bigger but still non-trivial ideal I, using a non-invertible
element 0 6= r ∈ C̃. In particular, I ∩ C̃1 ⊇ 〈r1〉 6= {0}, where 〈r1〉 denotes the
linear subspace of A generated by r1. In order to prevent the possibility of
such constructions, it is therefore reasonable to restrict to ideals that satisfy
I ∩ C̃1 = {0}:

Definition 6.2.13. Let A be a C̃-algebra. An ideal I ⊳ A is called maximal
w.r.t. C̃1 (or C̃1-maximal ideal) if it is maximal w.r.t. the property I∩C̃1 = {0},
i.e. if any other ideal J ⊳A with I ⊆ J and J ∩ C̃1 = {0} equals I.

This definition makes sense for our problem because kerϕ is a maximal ideal
w.r.t. that property:

Proposition 6.2.14. Let ϕ : A → C̃ be a non-zero multiplicative C̃-linear
functional on a commutative C̃-algebra A with unit 1. Then kerϕ is an ideal
maximal w.r.t. C̃1.

Proof. Obviously, kerϕ is an ideal.
Furthermore, kerϕ ∩ C̃1 = {0}: Suppose to the contrary that there exists a

u ∈ kerϕ such that u = r1 with 0 6= r ∈ C̃. Since ϕ is non-zero, remark 6.1.5
(i) implies that ϕ(1) = 1. Hence by C̃-linearity 0 = ϕ(u) = rϕ(1) = r 6= 0, a
contradiction.

Finally, kerϕ is maximal w.r.t. this property: Suppose there exists an ideal
J ⊳ A with J ∩ C̃1 = {0} and kerϕ ( J , i.e. we have a v ∈ J such that

ϕ(v) =: r 6= 0 in C̃. Since ϕ(r1) = r this implies that ϕ(v − r1) = 0, hence
v − r1 ∈ kerϕ ( J . But this also means that r1 = v − (v − r1) ∈ J , a

contradiction to J ∩ C̃1 = {0}.

Although kerϕ is not a maximal ideal we have just proved that it is maximal
w.r.t. C̃1. This was the main motivation for considering such ideals and also for
introducing the notion of S-invertibility, since we have seen in subsection 3.1
that maximal ideals play an important role when working with multiplicative
linear functionals and algebra isomorphisms.

The next result shows the first connection between S-invertibility and C̃1-
maximal ideals. Further results will follow in section 6.3.

Lemma 6.2.15. Let A be a commutative C̃-algebra with unit 1 and I⊳A. The
following are equivalent:

(i) I ∩ C̃1 = {0}
(ii) For all characteristic sets S we have that if u ∈ A is invertible w.r.t. S

then u /∈ I.
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Proof. (i⇒ ii) Suppose that u ∈ A is invertible w.r.t. S but u ∈ I. This implies
that uv = r1 ∈ I for r 6= 0, a contradiction to (i).

(ii ⇒ i) Let u ∈ I such that u = r1, r 6= 0. By corollary 6.2.8 there exists
an S-inverse s of r. Then v := s1 is an S-inverse of u, hence u /∈ I by (ii), a
contradiction.

6.3 Multiplicative C̃-linear functionals

By the results in subsection 6.1.1 we know that surjective (or rather non-zero)

multiplicative C̃-linear functionals ϕ : A → C̃ satisfy ϕ(1) = 1 and vice versa.
In the previous subsection we derived that kerϕ is a certain maximal ideal.

We will now establish more properties of these functionals ϕ for A = G(X).
We also prove a similar result to theorem 3.1.1 by following the same strategy.

Lemma 6.3.1. Let X be a smooth submanifold of Rm and I ⊳ G(X) an ideal.
If

∀p̃ ∈ X̃c ∃up̃ ∈ I such that up̃(p̃) 6= 0, (6.10)

then I 6= kerϕ for all non-zero multiplicative C̃-linear functionals ϕ : G(X)→ C̃.

Proof. Assume by contradiction that I is the kernel of such a functional ϕ. By
proposition 6.2.14 we know that

I ∩ C̃1 = {0}, (6.11)

and by the homomorphism theorem for algebras (cf. [Bou98], III, §1, 2.) that

G(X)/I = G(X)/ kerϕ ∼= imϕ = C̃, i.e.

I + C̃1 = G(X). (6.12)

In particular we consider the coordinate functions xi ∈ G(X) for i = 1, ...,m.

By (6.12) there exist λi ∈ C̃ such that xi − λi1 ∈ I for i = 1, ...,m. We define
the generalized function v = [(vε)ε] by

v := |x− λ|2 :=

m∑

i=1

(xi − λi1)(xi − λi1) ∈ I, (6.13)

where λ = (λ1, ..., λm) ∈ C̃m. We will show that for any such λ, this leads to
a contradiction to lemma 6.2.15, more precisely that (ii) there is not satisfied
although (i) is, by (6.11). To this end we distinguish three cases:

(i) λ ∈ X̃c ⊆ R̃m

(ii) λ ∈ X̃ \ X̃c ⊆ R̃m

(iii) λ ∈ C̃m \ X̃

(i) λ ∈ X̃c ⊆ R̃m: Recall that the last inclusion holds by proposition 5.1.7.
Assumption (6.10) ensures the existence of a uλ = [(uλ,ε)ε] ∈ I such that
uλ(λ) 6= 0. We have that |x − λ|2 + |uλ|2 ∈ I since both summands are.
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Furthermore, since uλ(λ) 6= 0 in C̃, there exists a characteristic set S := {εk|k ∈
N} and some M ∈ N such that

|uλ,εk
(λεk

)| ≥ εMk . (6.14)

We will show that |x− λ|2 + |uλ|2 ∈ I is S-strictly non-zero.
Continuity of uλ ∈ G(X) in the sharp topology means that

∀K ⊂⊂X ∀l ∈ N ∃n ∈ N ∃ε0 > 0 ∀ε ≤ ε0 ∀p, q ∈ K :

|p− q| ≤ εn ⇒ |uλ,ε(p)− uλ,ε(q)| ≤ εl,
(6.15)

cf. proposition 5.3.1. Consider l > M fixed. Let p̃ = [(pε)ε] ∈ X̃c and Kp̃ a

compact support of p̃. If Kλ is a compact support of λ ∈ X̃c then let K := Kp̃∪
Kλ be the compact set in (6.15). Furthermore, assume w.l.o.g. that pε, λε ∈ K
for ε ≤ ε0 ≤ 1

2 . It then follows by (6.15) that

∃n ∈ N ∃ε0 ∈ (0,
1

2
] ∀εk ≤ ε0 :

|pεk
− λεk

| ≤ εnk ⇒ |uλ,εk
(pεk

)− uλ,εk
(λεk

)| ≤ εlk
(6.16)

By eliminating the term uλ,εk
(λεk

), we shall see that |x−λ|2 + |uλ|2 is invertible
w.r.t. S. First of all, (6.14) and (6.16) imply that

|uλ,εk
(pεk

)| ≥ |uλ,εk
(λεk

)| − |uλ,εk
(pεk

)− uλ,εk
(λεk

)|
≥ εMk − εlk = εMk (1− εl−Mk ) ≥ εMk ε

l−M
k = εlk

for the above l > M , εk ≤ ε0 ≤ 1
2 and |pεk

− λεk
| ≤ εnk . Altogether we obtain

that

∃ε0 > 0 ∀εk ≤ ε0 :

|pεk
− λεk

|2 + |uλ,εk
(pεk

)|2 ≥
{
ε2lk if |pεk

− λεk
| ≤ εmk

ε2mk if |pεk
− λεk

| ≥ εmk
for some l, n ∈ N. Thus (|pε − λε|2 + |uλ,ε(pε)|2)ε is strictly-nonzero w.r.t. S,

hence by 6.2.5 S-invertible in C̃.
Since p̃ ∈ X̃c was arbitrary we conclude by theorem 6.2.12 that

|x− λ|2 + |uλ|2 is invertible in G(X) w.r.t. S, (6.17)

a contradiction to lemma 6.2.15 (ii) because |x−λ|2 + |uλ|2 ∈ I as shown above.

(ii) λ ∈ X̃ \ X̃c ⊆ R̃m where

X̃ := {p̃ ∈ R̃m | ∃ representative (pε)ε of p̃ such that ∀ε : pε ∈ X} :

Let (Kk)k∈N be an exhaustion of X by compact sets with Kk ⊆ int(Kk+1) for
all k ∈ N w.r.t. the trace topology of Rm on X (see remark 5.4.10 for a general

construction of a compact exhaustion). We assumed that λ ∈ X̃ , hence we may
choose a representative (λε)ε of λ such that all λε ∈ X . Consider the generalized
function v = [(vε)ε] ∈ I defined by (6.13), i.e.

vε(pε) = |pε − λε|2
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6.3. Multiplicative C̃-linear functionals

for p̃ = [(pε)ε] ∈ X̃c. Let K ⊂⊂ X such that pε ∈ K for all ε < ε0. There exists
an N ∈ N such that K ⊆ KN .

Since λ /∈ X̃c there exists a characteristic set S := {εk|k ∈ N} such that

λεk
∈ X \Kk for all k ∈ N.

Let ε′0 be the minimum of ε0 and the Euclidean distance d(X \KN+1,KN) > 0.
Hence for εk < ε′0 we have that pεk

∈ KN and for k > N that λεk
∈ X \Kk ⊆

X \KN+1, i.e.

|pεk
− λεk

|2 ≥ d(X \KN+1,KN)2 ≥ ε′0
2
> ε2k.

Thus v(p̃) is S-strictly non-zero by definition 6.2.3 (set m = 2 and k0 > N such
that εk0 ≤ ε′0).

The compactly supported point p̃ was arbitrary and therefore, again by
proposition 6.2.5 and theorem 6.2.12, we know that v ∈ I is S-invertible in
G(X). This contradicts lemma 6.2.15 (ii).

(iii) λ ∈ C̃m \ X̃: The assumption λ /∈ X̃ implies that for any representative
(λε)ε of λ we have that

(d(λε, X))ε is not negligible in C̃.

Hence by corollary 6.2.8 there exists a characteristic set S := {εk|k ∈ N} such

that v(p̃) is invertible w.r.t. to S for all p̃ ∈ X̃c ⊆ X̃ (we even have for any
representative (pε)ε of p̃ that pε ∈ X ∀ε). This again contradicts lemma 6.2.15
(ii).

Remark 6.3.2. Compare lemma 6.3.1 to the proof of existence in theorem
3.1.1, in particular where we proved (3.1), i.e. that

kerϕ = ker evp for some p ∈ X

if ϕ : C∞(X) → R is a non-zero multiplicative linear functional. The previous
result is a contrapositive analogue of this. The next proof makes use of the
same idea as that of theorem 3.1.1. In order to apply lemma 6.3.1 we need to
be able to reduce the general case to submanifolds of Rm, which is achieved by
Whitney’s embedding theorem 4.4.1.

Obviously, for each p̃ ∈ X̃c, evp̃ is a multiplicative C̃-linear functional on
G(X). For surjective functionals the converse is also true:

Theorem 6.3.3. Let X be a smooth manifold and let ϕ : G(X)→ C̃ be a non-

zero multiplicative C̃-linear functional. Then there exists a unique p̃ ∈ X̃c such
that

ϕ(u) = u(p̃) ∀u ∈ G(X).

Proof. First, consider X to be a smooth submanifold of R2m+1. Then by lemma
6.3.1, there exists a q̃ ∈ X̃c such that

u(q̃) = 0 ∀u ∈ kerϕ.
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Obviously, kerϕ ⊆ ker evq̃. Furthermore, ker evq̃ ∩ C̃1 = {0} and kerϕ ∩ C̃1 =
{0}, and both ideals are maximal w.r.t. that property by proposition 6.2.14.
Thus

kerϕ = ker evq̃.

It remains to be shown that this already implies that ϕ = evq̃. For any u ∈ G(X)
we have that u − u(q̃) ∈ ker evq̃ = kerϕ. Hence ϕ(u) = ϕ(u − u(q̃) + u(q̃)) =
ϕ(u− u(q̃)) + ϕ(u(q̃)) = 0 + ϕ(u(q̃)) = u(q̃) since ϕ(1) = 1.

Now let X be any smooth manifold. By Whitney’s embedding theorem
4.4.1 there exists a smooth embedding j : X → j(X) ⊆ R2m+1. The map j
may be interpreted as a generalized function j = [(j)ε] ∈ G[X, j(X)]. Then, by

proposition 5.5.1, ũ ◦ j ∈ G(X) for all ũ ∈ G(j(X)). Moreover, ϕ̃ : G(j(X))→ C̃
defined by

ϕ̃(ũ) := ϕ(ũ ◦ j) = ϕ(j∗(ũ)), (6.18)

is a non-zero multiplicative linear functional, since ϕ is and j∗ : G(j(X))→ G(X)

is an algebra isomorphism. Hence by the above there exists q̃ ∈ j̃(X)c such that

ϕ̃(ũ) = ũ(q̃) ∀ũ ∈ G(j(X)). (6.19)

Let p̃ := j−1(q̃). Since j−1 ∈ G[j(X), X ] we have that p̃ ∈ X̃c by proposition
5.4.7. Furthermore, by proposition 5.5.1, u ◦ j−1 ∈ G(j(X)) for any u ∈ G(X).
Putting all this together we obtain that

ϕ(u)
(6.18)
= ϕ̃(u ◦ j−1)

(6.19)
= u(j−1(q̃)) = u(p̃).

It remains to be proved that p̃ = [(pε)ε] ∈ X̃c is uniquely determined by ϕ.

Suppose there exists p̃ 6= z̃ = [(zε)ε] ∈ X̃c with u(p̃) = u(z̃) for all u ∈ G(X).
Thus we have that (dg(pε, zε))ε /∈ N for one (hence any) Riemannian metric g
on X . This means that there exists a characteristic set S := {εk|k ∈ N} and
N ∈ N so that

dg(pεk
, zεk

) > εNk ∀k ∈ N. (6.20)

By theorem 4.2.11, d2
g is smooth on some neighborhood U of △X ⊆ X × X .

W.l.o.g. we may assume that pεk
converges to some p in X . Let K be a compact

neighborhood of p such that K ×K ⊆ U . Assume that pεk
∈ K for all k ∈ N.

Regarding (zεk
)k we can distinguish two cases:

• zεk
/∈ K for sufficiently large k: As p is contained in the interior of K we

have an open neighborhood V of p such that V ⊂⊂ int(K). By corollary
2.2.6 there exists a smooth bump function χ1 : X → R such that χ1|V ≡ 1
and χ1|X\K ≡ 0. Let

v := [(χ1)ε] ∈ G(X).

Obviously, for k sufficiently large, vεk
(pεk

) = 1 and vεk
(zεk

) = 0, a con-
tradiction to v(p̃) = v(z̃).

• zεk
∈ K for a subsequence of (zεk

)k: W.l.o.g. we may assume that zεk
∈ K

for all k ∈ N. Again, by corollary 2.2.6, there exists a smooth bump
function χ2 : X × X → R such that χ2|K×K ≡ 1 and χ2|(X×X)\U ≡ 0.
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We may assume that suppχ2 is compact and contained in U . Consider
w = [(wε)ε] defined by

wε(x) := χ2(pε, x) · d2
g(pε, x)

Obviously, (wε)ε ∈ C∞((0, 1]×X). Moreover,

sup
x∈X
|wε(x)| ≤ ‖χ2‖∞ · sup

x∈X s.t.
(pε,x)∈suppχ2

|d2
g(pε, x)|

≤ ‖χ2‖∞ · sup
(y,x)∈suppχ2

|d2
g(y, x)| <∞,

since suppχ2 ⊆ U is compact. A similar computation can be done for all
(Pwε)ε, P ∈ P(X). Thus (wε)ε ∈ EM (X).

In addition, since χ2(pεk
, pεk

) = χ2(pεk
, zεk

) = 1 for all k ∈ N,

wεk
(pεk

) = d2
g(pεk

, pεk
) = 0

and

wεk
(zεk

) = d2
g(pεk

, zεk
)

(6.20)
> ε2Nk .

Hence w(p̃) 6= w(z̃), a contradiction.

6.4 Algebra homomorphisms and isomorphisms

Again, we will first restrict to the case of smooth submanifolds and show the
general result later using the Whitney embedding theorem.

Theorem 6.4.1. Let X ⊆ Rm and Y ⊆ Rn be smooth submanifolds and
Ψ : G(X)→ G(Y ).

(i) If Ψ is a surjective homomorphism of Colombeau algebras, then there exists
a unique ψ ∈ G[Y,X ] such that

Ψ(u) = u ◦ ψ ∀u ∈ G(X).

(ii) If Ψ is an algebra isomorphism then ψ ∈ G[Y,X ] as in (i) is invertible (cf.
5.5.5) with inverse ψ−1 and

Ψ−1(v) = v ◦ ψ−1 ∀v ∈ G(Y ).

In this case, dimX = dim Y .

Note that if we only consider unital algebra homomorphisms, i.e. assume
that Ψ(1) = 1, then we can drop the term ‘surjective’ in (i). Alternatively we
could also restrict to connected manifolds Y , cf. remark 6.1.5 (ii).

Proof of (i). Let q̃ ∈ Ỹc. The map ϕq̃ := evq̃ ◦Ψ : G(X) → C̃ is multiplicative

and C̃-linear. Since Ψ is surjective we have by lemma 6.1.2 (i) that Ψ(1) = 1
and therefore also ϕq̃(1) = (evq̃ ◦Ψ)(1) = evq̃(1) = 1. Thus ϕq̃ is surjective by

lemma 6.1.2 (ii). By theorem 6.3.3 there exists a (unique) p̃ ∈ X̃c such that

ϕq̃ = evq̃ ◦Ψ = evp̃ .
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We join these compactly supported points by the map

ψ̃ : Ỹc → X̃c

q̃ 7→ p̃

which we will extend to a function ψ ∈ G[Y,X ] with the same properties.
So far we have shown that

∀u ∈ G(X)∀q̃ ∈ Ỹc : (Ψ(u))(q̃) = ϕq̃(u) = u(ψ̃(q̃)). (6.21)

Applied to the coordinate functions xi ∈ G(X), xi(p) = pi, i = 1, ...,m, this
implies that

ψ := (Ψ(x1), ...,Ψ(xm)) ∈ G(Y )m (6.22)

coincides with (x1, ..., xm) ◦ ψ̃ = ψ̃ at the generalized points in Ỹc. Since any
generalized function is uniquely determined by its values on the compactly sup-
ported points by theorem 5.2.8, we know that ψ is the unique generalized func-
tion that coincides with ψ̃. Thus, by ψ(Ỹc) ⊆ X̃c and proposition 5.4.11 (i)⇔(ii),
ψ is c-bounded into X . Hence by proposition 5.4.12, ψ ∈ G[Y,X ] and therefore
u ◦ ψ ∈ G(Y )∀u ∈ G(X) by proposition 5.5.1. By (6.21) and again theorem
5.2.8, we have that

∀u ∈ G(X) : Ψ(u) = u ◦ ψ in G(Y ). (6.23)

Furthermore, suppose there exists ψ 6= σ ∈ G[Y,X ] which also satisfies
Ψ(u) = u ◦ σ for all u ∈ G(X). Since C∞(X) is embedded in G(X), we have
that f ◦ ψ = Ψ(f) = f ◦ σ for all f ∈ C∞(X). This is equivalent to ψ = σ by
proposition 5.4.6, a contradiction. Hence ψ ∈ G[Y,X ] is unique.

Remark 6.4.2. Uniqueness in the previous result also follows by corollary 5.4.8,
since ψ equals ψ̃ on Ỹc and ψ̃ is uniquely determined by theorem 6.3.3 above.

It is also possible to just use the coordinate functions xi as above (and not all
smooth functions) – ψ is already completely determined by ψi = xi ◦ψ = Ψ(xi),
i = 1, ...,m.

Remark 6.4.3 (Smooth functions suffice). From the above uniqueness argu-
ment we see that an algebra homomorphism Ψ : G(X) → G(Y ) is uniquely
determined by its values on the space of smooth functions C∞(X).

Proof of 6.4.1 (ii). By (i) we may also find ϕ ∈ G[X,Y ] such that

∀v ∈ G(Y ) : Ψ−1(v) = v ◦ ϕ in G(X). (6.24)

For ψi := xi ◦ ψ, xi the coordinate functions as above, we have that

ψ ◦ ϕ = (ψ1 ◦ ϕ, ..., ψm ◦ ϕ)

(6.24)
= (Ψ−1(ψ1), ...,Ψ

−1(ψm))

(6.23)
= (Ψ−1(Ψ(x1)), ...,Ψ−1(Ψ(xm)))

= (x1, ..., xm)

= idG[X,X], (6.25)
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and similarly

ϕ ◦ ψ = idG[Y,Y ],

which yields ϕ = ψ−1 (cf. definition 5.5.5).

It remains to be shown that dimX = dimY . The equation ψ ◦ϕ = idG[X,X]

in G[X,X ] may also be viewed as i ◦ ψ ◦ ϕ = i ◦ idG[X,X] in G(X)m, where
i : X →֒ Rm denotes the embedding of the submanifold X into its surrounding
space Rm (the composition is well-defined by proposition 5.5.2). Thus there
exists (nε)ε ∈ N (X)m such that

i ◦ ψε ◦ ϕε = i ◦ idX +nε = i+ nε (6.26)

for each ε ∈ (0, 1]. Let p ∈ X be fixed. By differentiating (6.26) and making
use of the chain rule, cf. lemma 1.15, [O’N83], we obtain that

T(ψε◦ϕε)(p)i ◦ Tϕε(p)ψε ◦ Tpϕε = Tp(i ◦ ψε ◦ ϕε)
(6.26)
= Tpi+ Tpnε (6.27)

in L(TpX,Rm). Since i is an embedding we have that Tpi is regular, i.e. the
rank rk(Tpi) is maximal and equals dimTpX = dimX ≤ m. For sufficiently
small ε we also have that rk(Tpi + Tpnε) = dimX . Concerning the left-hand
side, we use some basic results from linear algebra to obtain

dimX = rk(Tpi+ Tpnε)

(6.27)
= rk(T(ψε◦ϕε)(p)i ◦ Tϕε(p)ψε ◦ Tpϕε)
≤ min{rk(T(ψε◦ϕε)(p)i), rk(Tϕε(p)ψε), rk(Tpϕε)}
≤ rk(Tϕε(p)ψε)

= dim(imTϕε(p)ψε)

≤ dim Tϕε(p)Y

= dim Y

for small ε. By symmetry in ψε and ϕε, we also get that dimX ≥ dimY . Thus
dimX = dimY and we are done.

Finally, by making use of the Whitney embedding theorem, we obtain the
same result for smooth manifolds X and Y :

Corollary 6.4.4. Let X and Y be smooth manifolds and Ψ : G(X)→ G(Y ).

(i) If Ψ is a surjective homomorphism of Colombeau algebras, then there exists
a unique ψ ∈ G[Y,X ] such that

Ψ(u) = u ◦ ψ ∀u ∈ G(X).

(ii) If Ψ is an algebra isomorphism then ψ ∈ G[Y,X ] as in (i) is invertible
with inverse ψ−1 and

Ψ−1(v) = v ◦ ψ−1 ∀v ∈ G(Y ).

In this case, dimX = dim Y .
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Proof. By the Whitney embedding theorem 4.4.1 there exist smooth embeddings
i : X → i(X) ⊆ Rm and j : Y → j(Y ) ⊆ Rn for some m,n ∈ N.

(i) We consider the respective submanifold-version of Ψ,

Ψ̃ : G(i(X)) → G(j(Y ))
ũ 7→ Ψ(ũ ◦ i) ◦ j−1,

(6.28)

which obviously is multiplicative, C̃-linear and satisfies Ψ̃(1) = Ψ(1 ◦ i) ◦ j−1 =
Ψ(1) ◦ j−1 = 1 ◦ j−1 = 1. By the previous theorem 6.4.1 (i) there exists some

ψ̃ ∈ G[j(Y ), i(X)] such that

∀ũ ∈ G(i(X)) : Ψ̃(ũ) = ũ ◦ ψ̃ in G(j(Y )). (6.29)

By proposition 5.5.2,

ψ := i−1 ◦ ψ̃ ◦ j (6.30)

is a well-defined element in G[Y,X ]. Furthermore, for any u ∈ G(X),

Ψ(u)
(6.28)
= Ψ̃(u ◦ i−1) ◦ j (6.29)

= (u ◦ i−1 ◦ ψ̃) ◦ j (6.30)
= u ◦ ψ

holds in G(Y ). Uniqueness follows as in the proof of theorem 6.4.1 (i) by using
proposition 5.4.6.

(ii) Again, for Ψ̃−1 : G(j(Y ))→ G(i(X)), defined by

Ψ̃−1(ṽ) := Ψ−1(v ◦ j) ◦ i−1

for ṽ ∈ G(j(Y )), we find ψ̃−1 ∈ G[i(X), j(Y )] resp.

ϕ := j−1 ◦ ψ̃−1 ◦ i ∈ G[X,Y ] (6.31)

by theorem 6.4.1 (ii) and proposition 5.5.2. Thus,

ψ ◦ ϕ (6.30),(6.31)
= (i−1 ◦ ψ̃ ◦ j) ◦ (j−1 ◦ ψ̃−1 ◦ i)
= i−1 ◦ idG[i(X),i(X)] ◦ i

5.5.2
= idG[X,X],

and similarly

ϕ ◦ ψ = idG[Y,Y ] .

This yields ϕ = ψ−1, hence ψ ∈ G[Y,X ] is invertible.

By theorem 6.4.1 we have that dim i(X) = dim j(Y ). Since i and j are
diffeomorphisms this implies that dimX = dimY .

Remark 6.4.5. Note that proof 6.4.1 about Colombeau algebra isomorphisms
on smooth submanifolds is a generalization of the smooth version, i.e. theorem
3.1.8 and 3.2.11. This is in accordance with the general outline mentioned in
the introduction.
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Remark 6.4.6 (Second countability). In section 3.2 we have seen that Mrčun’s
approach via characteristic sequences eliminates the need for the Hausdorff man-
ifolds X and Y to be second countable in the case of algebra isomorphisms
C∞(X)→ C∞(Y ).

So far, second-countability of the manifolds X and Y cannot be omitted
in the Colombeau setting as it is required for the existence of exhaustions by
compact sets, see subsection 5.4.3 and the proof of lemma 6.3.1. Moreover,
a countable partition of unity is used in the proof of proposition 6.2.11. On
the other hand, it is easy to see that the majority of the results also holds for
paracompact manifolds. It is conceivable that another approach could be more
successful in showing that corollary 6.4.4 is also true on paracompact manifolds.

6.5 Differences between smooth and non-smooth

dependence on ε

As already mentioned at the beginning of this chapter, the main ideas for the
treatment of the algebra isomorphism problem in the Colombeau setting are
taken from [Ver06]. In Vernaeve’s paper, however, smooth dependence on the
index ε as in the definitions of section 5.1 is not required. It is the aim of this
section to point out the differences and overlaps, both in the results and proofs.

6.5.1 Idempotents in C̃

By [AJOS08], theorem 4.1, the idempotents in C̃ (or R̃) are characteristic func-
tions in the non-smooth setting. More precisely, if χT denotes the characterstic
function on T ⊆ R (i.e. χ|T ≡ 1 and χ|∁T ≡ 0), then eS = [(χS)ε] for a set
S ⊆ (0, 1], 0 ∈ S. On the other hand, each such eS obviously is an idempotent

element of C̃.
In the smooth setting there exist no idempotents in C̃. This already leads to

the difference that, by remark 6.1.5 (i), all non-zero multiplicative linear func-

tionals ϕ : G(X) → C̃ are exactly the surjective ones, while in the non-smooth
setting surjectivity is equivalent to ϕ(1) = 1 (in general, ϕ(1) might only be an
idempotent).

The definition of C̃1-maximal ideals is the same in both cases. In contrast,
understanding invertibility w.r.t. S in the smooth setting is slightly more in-
volved. In the non-smooth case, an element u of a commutative C̃-algebra is
called invertible w.r.t. S – here S can be any subset of (0, 1] with 0 ∈ S – iff
there exists v ∈ A such that uv = eS . Recall that in our definition 6.2.1 of a
characteristic set, S has to be smaller, i.e. only a strictly decreasing 0-sequence
is allowed. This is due to the fact that in the smooth setting it is much more
difficult to find an S-inverse for elements in C̃. While in the non-smooth case
this can simply be achieved by setting it equal to 0 on ∁S ∩ (0, 1], a smooth
inverse is much harder to find – we even had to introduce the additional defini-
tion of S-strictly non-zero.

In the non-smooth case one can easily switch between S-invertibility and
classical invertibility, cf. [Ver06], lemma 4.2:
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Lemma 6.5.1. Let A be a commutative C̃-algebra with unit 1. Let u ∈ A and
S ⊆ (0, 1] with 0 ∈ S. Then

u is invertible w.r.t. S ⇐⇒ ueS + eSc is invertible,

where Sc := ∁S ∩ (0, 1] resp. eSc = 1− eS.

Proof. (⇒) As u is S-invertible there exists some v ∈ A with uv = eS . Then

(ueS + eSc)(veS + eSc) = uv︸︷︷︸
eS

e2S︸︷︷︸
eS︸ ︷︷ ︸

eS

+(u+ v) eSeSc︸ ︷︷ ︸
0

+ e2Sc︸︷︷︸
eSc

= 1. (6.32)

(⇐) Suppose v is the inverse of ueS+eSc . Then veS is an S-inverse of u because
(ueS + eSc)v · eS = 1 · eS = eS.

Although we can define something similar to eS also in the smooth case (as
done in definition 6.2.2) to obtain a bump function ēS similar to a characteristic
function, the calculation (6.32) still does not work because ēS ēSc 6= 0. With this
result at hand, however, the characterization of S-invertibility in G(X) w.r.t.
point values is straightforward and immediately follows from the classical in-
vertibility result in Colombeau theory. In the smooth case we proved theorem
6.2.12 directly on smooth manifolds.

Furthermore, the form of the multiplicative C̃-linear functionals ϕ : G(X)→
C̃ is considerably more complicated in the non-smooth setting as we always have
to drag along idempotents. In particular, if ϕ is not surjective but still non-
zero, then ϕ = e · evp̃ for some idempotent e ∈ R̃ and some p̃ ∈ X̃c, cf. [Ver06],
theorem 4.5. The proofs in section 6.3 are exactly the same as in [Ver06].

6.5.2 Locally defined c-bounded generalized functions

The final results in section 6.4 are obtained in basically the same way as in
[Ver06]. The results, however, differ. To understand this, the following definition
is needed.

Definition 6.5.2. For smooth manifolds X and Y a locally defined c-bounded
generalized function is an equivalence class u = [(uε)ε] whose representative
(uε)ε is a net of smooth functions X ⊇ Xε → Y such that

∀K ⊂⊂ X ∃ε0 > 0 ∀ε < ε0 : K ⊆ Xε

and satisfies the usual c-boundedness condition and moderateness (cf. definition
5.4.1). The equivalence relation is defined as in 5.4.2. The set of locally defined
c-bounded generalized functions from X to Y is denoted by Gld[X,Y ].

Obviously, G[X,Y ] ⊆ Gld[X,Y ]. The converse inclusion may in general not
hold and is still an open question. For some special cases, however, e.g. X com-
pact, it can be proved that G[X,Y ] = Gld[X,Y ].

The final result in [Ver06] is:
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Theorem 6.5.3. Let X, Y be smooth manifolds.

(i) Let Ψ : G(X) → G(Y ) be a morphism of algebras. Then there exists
ψ ∈ Gld[Y,X ] and e ∈ G(Y ) an idempotent such that

Ψ(u) = e · (u ◦ ψ) ∀u ∈ G(X).

If Ψ(1) = 1, then e = 1 and ψ is uniquely determined.

(ii) If Ψ : G(X) → G(Y ) is an isomorphism of algebras, then the map ψ has
an inverse ψ−1 ∈ Gld[X,Y ] such that Ψ−1 is given by composition with

ψ−1. As a map X̃c → Ỹc, ψ is bijective. In this case, dimX = dim Y .

Here, ψ is an element of the larger space Gld[Y,X ] rather than G[Y,X ] as
in corollary 6.4.4. This is due to our stronger proposition 5.4.12, which in the
smooth case implies that on submanifoldsX and Y , generalized functions G(X)n

that are c-bounded into Y ⊆ Rn already define a unique element in G[X,Y ].
This proof does not work in the non-smooth case as in general (vε)ε is not an
element of C∞(X)(0,1] there.

If G[Y,X ] ( Gld[Y,X ] in the non-smooth setting, then a characterization of
algebra homomorphisms Ψ : G(X) → G(Y ) as composition with elements in
G[Y,X ] is not possible as each element in Gld[Y,X ] also defines such an algebra
homomorphism.
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Notation

This list includes short descriptions for commonly used symbols in the text.
The page numbers refer to either their definition or the first appearance in the
text.

〈 ., .〉 the scalar product g(p) on the tangent space TpX of the semi-
Riemannian manifold (X, g), p. 26

∼ an equivalence relation

⊳ ideal, p. 6

∇ the Levi-Civita connection on a semi-Riemannian manifold, p. 27

⊗ tensor product, p. 9

⊆ subset

⊂,( proper subset

V ⊂⊂ U V ⊆ V ⊆ U and V is compact
⊕

direct sum of sets, p. 14

△X the diagonal in X ×X , p. 29

U the closure of the set U

[U, V ] the Lie bracket of the vector fields U and V

‖f‖∞ the supremum norm of the function f , ‖f‖∞ = supx∈X |f(x)|
|v| the norm of the vector v, e.g. p. 26

A an algebra, p. 5

Â the carrier space of the algebra A, p. 1

A(X) an algebra on the manifold X , p. 3

Br(p) the open ball at p with radius r

C the set of complex numbers

C(0,1] the set of nets of complex numbers on the directed set (0, 1], p. 57

C̃ the ring of generalized complex numbers, p. 47

∁U the complement of the set U
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Notation

ch(U) the closed and convex hull of the set U , p. 53

C(X) the set of continuous functions on the topological space X , p. 1

C0(X) the set of continuous functions on the topological space X that
vanish at infinity, p. 1

C∞((0, 1]) the set of smooth functions (0, 1]→ C, p. 47

C∞((0, 1]×X) the set of smooth functions (0, 1]×X → C, p. 46

C∞(X) the set of smooth functions X → C, p. 11

C∞(X)(0,1] the set of nets of smooth functions X → C on the directed set (0, 1]
(only smooth in X), p. 83

C∞c (X) the set of compactly supported smooth functions X → C, p. 14

cv the geodesic with initial velocity v, p. 29

d the Euclidean metric on Rn

D the domain of the exponential map E, ⊆ TX , p. 29

δij the Kronecker delta

df
dt

= f ′ the differential of f w.r.t. t

∂f
∂x

= Dxf the partial derivative of f w.r.t. x

dg the Riemannian distance on a Riemannian manifold (X, g), p. 27

dimE the dimension of the vector space E

distort(X) the distortion of a Riemannian manifold X , p. 43

D(k)f the total derivative of f of order k, p. 54

D′(Ω) the set of distributions on the open set Ω ⊆ Rn, p. 46

Dp the domain of the exponential map expp, ⊆ TpX , p. 29

E the global exponential map on a semi-Riemannian manifold, p. 29

(E,B, π) the vector bundle with π : E → B, p. 8

EM the set of moderate numbers, p. 47

EM (Ω) the set of moderate functions on an open set Ω ⊆ Rn

EM (X) the set of moderate functions on a manifold X , p. 46

EM [X,Y ] the set of c-bounded moderate functions from X to Y , p. 54

eS an idempotent in C̃, p. 81

evp the evaluation mapping at the (generalized) point p

expp the exponential map on a semi-Riemannian manifold at the point
p, p. 29

ΓA the Gelfand transformation on the Banach algebra A, p. 1
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uΓkij the Christoffel symbols w.r.t. the chart (u, U), p. 28

γpq the radial geodesic from p to q, p. 30

Γ(E) = Γ(B,E) the set of smooth sections of a vector bundle (E,B, π), p. 9

g, h metric tensors of semi-Riemannian manifolds, p. 26

G(X) the special Colombeau algebra on a manifold X , p. 47

G(X)n the set of generalized functions from X to Cn resp. Rn, p. 56

G[X,Y ] the set of c-bounded generalized functions from X to Y , p. 55

Gld[X,Y ] the set of locally defined c-bounded generalized functions from X
to Y , p. 82

idG[X,X] the generalized identity on the space G[X,X ], p. 61

idX the identity map on a manifold X , id(p) = p ∀p ∈ X
imϕ the image of the function ϕ

inj the injectivity radius of a Riemannian manifold, p. 38

int(U) the interior of the set U

κ the convexity radius of a Riemannian manifold, p. 38

kerϕ the kernel of the function ϕ

Kp̃ a compact support of a generalized point p̃, p. 48

L(c) the arc length of the curve c, p. 27

L∞(Ω) the set of essentially bounded functions on Ω

N the set of positive integers

N the set of negligible numbers, p. 47

N (Ω) the set of negligible functions on an open set Ω ⊆ Rn

N (X) the set of negligible functions on a manifold X , p. 46

Nε(p) the neighborhood at p in Wp with radius Np < ε, p. 35

Np(q) the squared Euclidean radius of pw(q), p. 35

ν the index of a symmetric bilinear form resp. metric tensor, p. 26

O(.) Big-Oh, Landau symbol, p. 46

Ω an open set in Rn

Ω1(X) = Γ(T ∗X) the set of one-forms on the manifold X , p. 9

Ω̃c the set of compactly supported generalized points on an open set
Ω ⊆ Rn, p. 48

ϕ a multiplicative linear functional on an algebra

pri the projection in the i-th direction
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Ψ an algebra homomorphism or isomorphism, p. 6

P(X) the set of linear differential operators on a manifold X , p. 46

r the radius function at a point p on a semi-Riemannian manifold,
p. 30

R the set of real numbers

R+ the set of positive real numbers, i.e. (0,∞)

R+
0 the set of positive real numbers including 0, i.e. [0,∞)

R̃ the ring of generalized real numbers

rk(A) the rank of the matrix A

S a characteristic set, p. 67

supp f the support of the function f

Tf the tangent map of a smooth function f , p. 9

Tpf the tangent map of a smooth function f at p, p. 8

TpX the tangent space of a manifold X at p ∈ X , p. 8

(TpX)∗ the cotangent space of a manifold X at p ∈ X , p. 8

T rs (E) the set of
(
r
s

)
-tensors on a vector space E, p. 9

T rsX the set of
(
r
s

)
-tensors on the tangent bundle TX of a manifold X ,

p. 9

T rs (X) the set of
(
r
s

)
-tensor fields on a manifold X , p. 9

TX the tangent bundle of a manifold X , p. 9

T ∗X the cotangent bundle of a manifold X , p. 9

(TX)0 the zero section of TX , p. 29

U an open cover of a manifold, p. 10

Uε(p) the normal ε-neighborhood at p in a Riemannian manifold, p. 30

(u, U) a chart u : X ⊇ U → Rn defined on the open set U , p. 7

Vε(p) the ε-neighborhood at 0 in the tangent space TpX , p. 31

(pw,Wp) a normal coordinate chart at the point p, p. 33

X̃c the set of compactly supported generalized points on a manifold
X , p. 47

(X, g) a semi-Riemannian manifold X with metric tensor g, p. 27

X(X) = Γ(TX) the set of smooth vector fields on the manifold X , p. 9

X,Y manifolds, p. 7
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Index

algebra
over a field, 5
over a ring, 5

algebra homomorphism, 6
algebra isomorphism, 6, 15, 22, 80
arc length, 27, 31
associative, 5
atlas, 7

Banach algebra, 1
bilinear form, 25
bump function, 10, 21, 82

C∗-algebra, 2
c-bounded generalized function, 55, 77,

79
locally defined, 82

c-bounded moderate maps, 54, 55
c-boundedness, 54, 55, 56, 58
C̃1-maximal ideal, see maximal ideal

w.r.t. C̃1
carrier space, 1
chain rule, 61, 79
characteristic function, 81
characteristic sequence of functions, 17,

17, 18, 19
characteristic set, 67, 67, 70–72, 81
chart, 7
Christoffel symbols, 28, 32–35
Colombeau algebra, 6, 46
commutative, 5
commutative C̃-algebra with unit, 64
compact exhaustion, see exhaustion by

compact sets
compact metric space, 40
compact support of p̃, 48
compactly supported generalized points,

47, 49, 52, 55–57
composition of generalized functions,

60, 61
connection, 28

convex
strongly, see strongly convex

convex hull, 51, 53
convex neighborhood, 31, 35–37
convexity radius, 38, 38
cotangent bundle, 9
cotangent space, 8
covariant derivative, 28
cover, see open cover

diagonal, 29, 39
diffeomorphism, 15, 22, 23
differentiable function, 23
differential algebra, 5
differential operator, 46
distribution, 45, 46

embedding, 43, 47
equivalence in EM [X,Y ], 54, 55
Euclidean metric, 40, 43, 57
evaluation mapping, 12, 14, 15, 75
exhaustion by compact sets, 56, 57, 59,

74, 81
exponential map, 29, 33, 35, 37

fast convergence, 50
finite intersection property, 19
footpoint map, 29
frame, 33
frame field, 33
fundamental system of neighborhoods,

17
fundamental theorem of calculus, 42

Gelfand transformation, 1
Gelfand-Mazur theorem, 1
Gelfand-Naimark theorem, 2
generalized function, 47

compactly bounded, see c-bounded
generalized function

generalized number, 47, 64, 67, 69
generalized point value, 49, 56
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Index

geodesic, 28
geodesic equation, 28, 37
geodesically convex, see convex neigh-

borhood

Hausdorff, 8, 10, 18, 56
Hausdorff manifold, 18, 22, 23, 81

ideal, 6, 73
maximal, see maximal ideal

idempotent, 64, 81
identity w.r.t. composition, 61
index, 26, 30
injectivity radius, 38
inverse function theorem, 61
invertibility

in G[X,Y ], 61, 77, 79
w.r.t. S, see S-invertible

involution, 2

K-algebra, see algebra
kernel, 6, 12, 66, 72, 73

Landau symbol, 46
Lebesgue covering theorem, 40, 48, 53
Lebesgue number, 40
Levi-Civita connection, 27
Lie derivative, 47
locally convex space, 50
locally defined c-bounded generalized

function, 82
Lorentzian manifold, 27

manifold, 7
maximal ideal, 1, 6, 12, 66

w.r.t. C̃1, 72, 81
mean value theorem, 40, 49, 51–53
metric tensor, 26
Milnor’s exercise, 11
moderate function, 46
module, 5
multiplication, 5
multiplicative linear functional, 12, 64,

73, 75, 81

Nash embedding theorem, 43
negative definite, 26
negligible function, 46
neighborhood

convex, 31
normal, 30

strongly convex, 38
totally normal, 31

non-degenerate, 25
norm, 26
normal coordinates, 30, 33–37, 39
normal neighborhood, 30
normal tubular neighborhood, 58

one-form, 9
open cover, 10

paracompact, 10, 14, 15, 81
partition of unity, 10

countable, 10
point value characterization

in G(Ω), 49
in G(X), 52
in G[X,Y ], 56

positive definite, 26
proper map, 2

R-algebra, see algebra
radial geodesic, 30
radius function, 30
retraction, 41, 58
Riemannian distance, 27, 39, 40, 47,

54, 76
Riemannian manifold, 27, 30–31, 37–

39, 47
Riemannian metric, see metric tensor
ring, 5

S-inverse, 67
S-invertible, 67, 72, 81, 82

in C̃, 67, 69, 71
in G(X), 70, 71

S-strictly non-zero, 81
in C̃, 67, 67
in G(X), 70

second countable, 8, 56, 81
section of a vector bundle, 9, 46
semi-Riemannian manifold, 27
sharp topology, 52, 74
signature, 26
smooth function, 6, 11
smooth manifold, 7, 15, 79
smooth submanifold, 39–43, 48, 52, 56–

60, 77
special Colombeau algebra, see Colombeau

algebra
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Index

special curve lemma, 50, 57, 71
spectrum, 1
strictly non-zero w.r.t. S, see S-strictly

non-zero
strongly convex neighborhood, 38
summation convention, 26
symmetric, 26

tangent bundle, 9
tangent map, 8, 9
tangent space, 8
tensor, 9
tensor field, 9, 26
tensor product, 9, 26
test function, 14–16, 23
totally normal neighborhood, 31
tubular neighborhood, 41, 58

vector bundle, 8
vector field, 9

Whitney embedding theorem, 43, 45,
76, 80

zero section, 29
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