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1. Introduction 
 

Over the past few years phytosterols (plant sterols) have become a focus of interest in 

science as well as in public due to their serum cholesterol lowering effect. According to 

literature a daily phytosterol uptake of 1.5-3 g can lower serum LDL cholesterol levels 

by 10-15 % (Katan et al., 2003), thus a protection against cardiovascular disease is 

assumed (Hendriks et al., 1999). Consequently, an increasing number of products 

fortified with plant sterols has been introduced to the international market during the 

last decade. However, besides their positive aspects concerns in terms of health are 

emerging. 

Due to their unsaturated ring structure, oxidation is the reaction of main concern. 

Similar to the structurally related cholesterol, phytosterols are susceptible to oxidation 

when exposed to heat, air, light or radiation (Dutta and Savage, 2002). Intense research 

has been performed on possible health implications induced by cholesterol oxidation 

products (COPs). Their mutagenic, carcinogenic, angiotoxic, cytotoxic and atherogenic 

properties can be considered as generally acknowledged (Guardiola et al., 1996; Osada, 

2002). 

In contrast, at present only limited information is available on the biological effects of 

phytosterol oxidation products (POPs) (Hovenkamp et al., 2008). However, in first 

studies on cytotoxicity similar patterns for phytosterol and cholesterol oxides were 

observed, although in general higher concentrations of POPs were needed for the same 

effect (Roussi et al., 2005; Roussi et al., 2007; Ryan et al., 2005). 

Due to the fact that standards of phytosterol oxidation products are not commercially 

available so far, in many investigations blends rather than individual oxides were used. 

Although based on former publications (Maguire et al., 2003; O'Sullivan A et al., 2005) 

it might be assumed that mixtures of sterol oxides and single compounds act in a 

different way. 

Since POPs have been detected in human plasma (Grandgirard et al., 2004b), more 

investigations to better understand their biological significance are necessary. 

Therefore the overall aims of the present thesis were: 

1. To scale up a method for the isolation of single phytosterol oxidation products, 

as for the subsequent toxicity assessment gram scale amounts of toxicologically 
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relevant oxides were needed. This part of the work was carried out in co-operation 

with the Department of Applied Chemistry and Microbiology, University of 

Helsinki under the supervision of Prof. Dr. Vieno Piironen.  

2. To investigate the biochemical potential of various isolated phytosterol 

oxidation products derived from β-sitosterol, namely 7-ketositosterol, 7- β -OH-

sitosterol, 7- α -OH-sitosterol, a mixture of 6-β-OH-3-keto-sitosterol/6-α-OH-3-

keto-sitosterol (ratio 4:3)  and a mixture of polar β-sitosterol oxidation products. 

Therefore the following in vitro tests were conducted: 

• Salmonella microsome assay (mutagenic/oxidative properties were analyzed 

using Salmonella thyphimurium strains TA98, TA100 and TA102 in different 

setups) 

• Cell culture assays using HepG2-cells 

o Viability assays (Trypan blue exclusion assay, MTT- assay) 

o Flow cytometric measurements (apoptosis versus necrosis, superoxide anion 

production (O2
•-)) 

o Measurement of lipid oxidation (MDA) 

o Comet assay (detection of DNA-strand breaks) 

o Quantification of the phytosterol oxide uptake in HepG2-cells, which was 

done at the Department of Applied Chemistry and Microbiology, University of 

Helsinki as well. 
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2. Review of Literature 

2.1 Phytosterols 

2.1.1 Chemical structure 

Phytosterols (plant sterols) as secondary plant metabolites are structural and biological 

counterparts of cholesterol, the main sterol in mammalian cells. Plant sterols are 

responsible for permeability and fluidity of cell membranes. Further they act as 

precursors of brassinosteroids, thus regulating storage and transport processes, and of 

numerous other metabolites such as glycoalkaloids and saponins (Piironen et al., 2000). 

 

To date over 250 different phytosterols and related compounds have been identified in 

plant and marine materials (Salo et al., 2003). The main important plant sterols are β-

sitosterol (24α-ethylcholest-5en-3β-ol), campesterol (24α-methyl-5-cholesten-3β-ol) 

and stigmasterol (5,22-cholestadien-24 α –ethyl-3β-ol), which represent about 45-95 %, 

30 % and 25 % of total sterols present in plants, respectively (Lutjohann, 2004). 

 

In general sterols are derived from squalen and consist of a tetracyclic 

cyclopenta[α]phenanthrene structure with a hydroxyl group at C-3 and a flexible side 

chain with 8-10 carbons at C-17 (Piironen et al., 2000). Plant sterols and cholesterol are 

structurally nearly similar, differing mainly in their side chain by an additional methyl 

or ethyl group at C-24 (figure 2.1). 

On structural and biosynthetic basis plant sterols can be divided into 4-desmethyl 

sterols, 4α-monomethyl sterols and 4,4-dimethyl sterols according to the number of 

methyl groups at C-4. 4α-monomethyl sterols and 4,4-dimethyl sterols are both 

precursors of the 4-desmethyl sterols and only found in trace amounts in plants. 4-

desmethyl sterols, with no methyl group at C-4, represent the major group of 

phytosterols. Depending on the position and number of double bonds in the B ring they 

can further be classified as Δ5-, Δ7- or Δ5,22-sterols, the former being the most 

common one (Moreau et al., 2002). 
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Phytostanols are saturated analogies of 4-desmethyl sterols with no double bond in their 

structure and occur in certain cereals (corn, wheat, rye, and rice), fruits and vegetables 

(figure 2.1). Concentrations are far lower than that of unsaturated plant sterols. 

 

In plants, sterols occur not only as free alcohols, but also as conjugated forms as steryl 

fatty acid esters, hydroxycinnamate steryl esters, steryl glycosides and esterified steryl 

glycosides (Moreau et al., 2002).  

 

Fig 2.1 Structures of main sterols. Numbering is according to the International Union of 

Pure and Applied Chemistry and International Union of Biochemistry (IUPAC-IUB) 

recommendations (Moss, 1989). 

 

 

2.1.2 Dietary sources of plant sterols 

Phytosterols are not synthesized by animals or humans. In a natural form they only 

occur in plants. Cereals, margarine, vegetables and vegetable oils contribute as main 

sources in the human diet (Piironen et al., 2004). Total levels of phytosterols in 

vegetable oils range between 1-5 g/kg, with corn oil, rice bran oil and sesame oil being 

the richest source. Through the refining process plant sterol amounts get reduced. 

Depending on the applied conditions losses of 10-70 % were observed (Piironen et al., 

2000).  
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For cereals total levels of 350-1200 mg/kg fresh weight were found, with rye (955 

mg/kg) and barley (761 mg/kg) being the richest sources (Piironen et al., 2004). 

Although levels are lower than those of vegetable oils cereals are the main contributors 

of plant sterol intakes as in general higher amounts of cereals than oils are consumed 

(Piironen et al., 2000). 

Also vegetables, fruits and berries are essential sources, accounting for 20-25 % of plant 

sterol consumption (Valsta et al., 2004). Among vegetables broccoli, Brussels sprout, 

cauliflower, green and black olives represent the richest sources with amounts over 300 

mg/kg fresh weight. Plant sterol levels in fruits were found to be between 116–228 

mg/kg. In berries contents ranging from 60–279 mg/kg were detected, whereas 

remarkable higher concentrations were measured in wild than in cultivated berries 

(Piironen et al., 2003). 

 

2.1.3 Estimated daily intakes 

The average daily intake of plant sterols from natural sources is estimated to range 

between 150-450 mg (Ostlund, 2002; Ellegard et al., 2000), depending on the respective 

country and the type of diet. For vegetarians intake levels of 1 g/day and more have 

been found (Piironen et al., 2000). Recent studies have shown intakes of 305 mg/d for 

men and 237 mg/d for women in Finland and 307.3 mg/d for men and 262.9 mg/d for 

women in the Netherlands (Valsta et al., 2004; Normen et al., 2001). Density of plant 

sterols in the diet (mg/1000kJ) was higher for women (34.9) than men (32.3) (Valsta et 

al., 2004). When analysing the amount of plant sterols in different US diets, a rise in 

phytosterol intake levels with increasing consumption of polyunsaturated fat has been 

observed, whereas the intake of saturated fat was inversely related to plant sterol 

contents in the diet (Phillips et al., 1999). In general plant sterol intakes are steadily 

increasing, reflecting the change from animal fat to vegetable oils, but also the 

increasing number of phytosterol enriched products on the market (Morton et al., 1995; 

Valsta et al., 2004).  
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2.1.4 Phytosterol metabolism 

While cholesterol absorption in humans varies from 30-60 % (Bosner et al., 1999), 

absorption of plant sterols is rather low. Observed levels for campesterol (9.4-14.8 %) 

are approximately 3 times higher than for sitosterol (3.1-4.5 %) and stigmasterol (~4 

%). Absorption of campestanol and sitostanol was shown to be even lower (0.1-2 %) 

(Miettinen et al., 2000; Piironen et al., 2000; Sanders et al., 2000). 

Differences in the absorption efficiency of sterols depend strongly on their molecular 

structure. The presence of a double bond between C5 and C6 has been shown to 

increase the absorption rate, whereas it decreased by increasing length of the side chain 

(Ostlund et al., 2002).  

Absorption of plant sterols occurs under the same conditions as that of cholesterol and 

other lipids (figure 2.2). They have to be emulsified and incorporated into mixed 

micelles to be absorbed from the lumen. For a long period a passive transfer into the 

enterocyte has been assumed. Recent studies suggest an involvement of a specific 

protein the Niemann-Pick C1-like protein (NPC1L1) in the brush border membrane in 

the uptake of sterols by the enterocyte (Jessup et al., 2008).  

The rather poor absorption of plant sterols compared to cholesterol could be due to the 

low affinity of acyl- CoA cholesterol acyltransferase (ACAT) for plant sterols (De Jong 

et al., 2004). After being taken up by the enterocytes both cholesterol and phytosterols 

have to be esterfied for transportation in chylomicrones by ACAT. Esterfication rate of 

plant sterols is however 60 times lower than that of cholesterol. Hence, only a small part 

of the absorbed phytosterols is esterfied in enterocytes and incorporated into 

chylomicrons. Therefore the absorption of phytosterols is mostly prevented. Adenosine 

triphosphate (ATP) – binding cassette (ABC) - half transporters ABCG5 and ABCG8 

are suggested to be responsible for the transportation of unesterfied sterols back in the 

intestinal lumen. Mutations in these two transporters lead to sitosterolemia, a plant 

sterol storage disease, which is characterised by increased serum levels of plant sterols 

(7-16% of total cholesterol concentration in plasma) and causes mainly premature 

atherosclerosis, coronary heart disease, tendon and tuberous xanthomas (Salen et al., 

1992). Yet the full mechanism is not completely understood. 
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Fig 2.2 Absorption of cholesterol (C) and phytosterols (PS) in the intestine (adopted 

from Chen et al. (2008)). 

 

Those parts of plant sterols taken up by the liver are incorporated into very low density 

lipoproteins (VLDL) or secreted via the biliary route (Plat and Mensink, 2005). Plant 

sterols have been shown to be stored in the cytoplasma or incorporated into the cell 

membrane. Labelled phytosterols were located in adrenal glands, ovary and testis of 

animals, which suggests similar metabolic pathways to cholesterol (Trautwein et al., 

2003). 

To date it is assumed that plant sterols are not metabolized into normal C24-bile acids 

but excreted as polar compounds, presumably di- and trihydroxylated C21-derivates 

(Boberg et al., 1990). Biliary excretion of phytosterols appears to be faster than that of 

cholesterol. This, together with the lower absorption rate, leads to serum levels (0.3-1.7 

mg/dl) far lower than that of cholesterol (140-320 mg/dl) (Piironen et al., 2000).  
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Cholesterol Plant sterols Plant stanols

Dietary intake 300-500 mg/d 150-450 mg/d 10-60 mg/d

meat, egg yolk, vegetable oils, cereals,
dairy products fruits, vegetables, berries

Endogenous
synthesis

Absorption 30-60 % 5-15 % 0.1-2 %

Plasma
concentration

Excretion 40-60 % 85-95 % >98 %

140-320 mg/dL 0.3-1.7 mg/dL 0.01 mg/dL

Dietary scources wheat, rye, corn

800-1200 mg/d not synthesized not synthesized

 
Tab 2.1 Summary of sterol metabolism (modified according to Salo et al. (2003)). 
 

2.1.5 Cholesterol lowering action of plant sterols 

2.1.5.1 Historical perspective 

As early as in 1951 Peterson (1951) for the first time observed the cholesterol lowering 

property of plant sterols when feeding soysterols to chicken on a high cholesterol diet. 

Shortly after, this effect has also been shown in humans after administration of 5-10 g 

sitosterol a day (Pollak, 1953). These findings were followed by a broad range of 

investigations. Knowledge on the poor absorption of plant sterols in their crystalline 

form led to the use of rather high doses (up to 20-30 g/d). 

In the late 1970s first studies with plant stanols were conducted and their better 

efficiency compared to sterols in reducing cholesterol levels was suggested (Sugano et 

al., 1976; Heinemann et al., 1986). Already small doses (1.5 g/day) resulted in a 

measurable decrease in cholesterol levels (Piironen et al., 2000). However, inconsistent 

data focused the research on the importance of their physical state (Katan et al., 2003). 

Finally esterfication of first plant stanols and later also sterols with fatty acids of 

vegetable oils was developed. Hereby their solubility was improved. Hence their 

application in a wide variety of food was facilitated and through their better dispersion 

in the intestine their efficiency in cholesterol reduction was enhanced as well (Katan et 

al., 2003). Soon, in the year 1995, the first plant stanol ester enriched commercial 
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application, Benecol® (Raisio Plc., Raisio, Finland) margarine was launched in Finland 

(Moreau, 2004). In 1999 Unilever’s Take Control® (also marketed under the brands 

Becel, Rama or Flora Pro activeTM), a phytosterol enriched margarine, was introduced 

to the US-market. Because of their simpler and less expensive production, Unilever had 

a distinctive marketing advantage especially since the effectiveness of both sterol and 

stanol esters was gradually accepted as equipollent (Moreau et al., 2002). 

To date two main sources for phytosterols exist: tall oil, a by-product of the pulp 

industry and deodorizer distillate of vegetable oils. Although phytosterols could in fact 

be isolated of most vegetable oils (for example corn, rape, peanut, corn fibre and rice 

bran oil) soybean oil is the most commonly used source. Composition of the obtained 

phytosterols differs between tall oil and soy oil. Whereas the former contains mainly 

sitosterol (92 %, 8 % campesterol) in the latter the ratio of sitosterol and campesterol is 

68:32 (w/w). However, it seems that statistically there is no difference in cholesterol-

lowering efficiency (Salo et al., 2003). For the production of stanols as an additional 

step catalytic hydrogenation for saturation of the ring structure is necessary. 

 

In recent years further strategies for the incorporation of plant sterols and stanols in food 

matrixes have been developed. In 2001 Christiansen et al. (2001b) investigated the 

effect of microcrystalline free phytosterols and found reduced total- and LDL - 

cholesterol levels after administration of only 1.5 g/day. This process is being 

commercialized under the name Diminicol® by the Finnish company Teriaka (Helsinki, 

Finland).  

Emulsification of phytosterols and stanols with lecithin or diacylglycerol reduces the 

required amount of sterols and enhances their solubility. Both methods seem to be 

promising approaches to a simpler and more effective cholesterol lowering effect (Salo 

et al., 2003; Ostlund et al., 1999). After having been marketed in Japan for several years 

a diacylglycerol rich oil fortified with phytosterols is now also approved in the 

European Union (EU) (see table2.2). 

Further Multibene, a product that combines phytosterols with various minerals as 

calcium, magnesium, and potassium or phytosterols esterfied with conjugated linoleic 

acid (CLA) and docosahexaenoic acid (DHA) has been developed. A further 

improvement of the health effects through these combinations is expected. 
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2.1.5.2 Current spectrum of plant sterol/-stanol enriched food 

After the start in Finland and the USA plant stanols and sterols enriched food is now 

being sold in over 20 countries all over the world (Moreau, 2004). The success of the 

first fortified applications have given rise to a number of other products, meanwhile 

varying form fruit juices to ice cream and snack bars. However, in the EU growth has 

been slow-going as the regulatory system is quite complicated (for detailed information 

see table 2.2).  

While Benecol spread was already approved in Finland as Foodstuff for Particular 

Nutritional Purposes (PARNUT) before the country became a member of the EU, 

Unilever’s Take Control had to pass a long approval process, since in the EU 

phytosterol and -stanol enriched products have to be applied as novel food or novel food 

ingredient according to the EC Regulation No. 258/97. However, the complicated 

regulatory application process can be simplified if a newly launched product is 

substantially equivalent to an existing food application 

(http://ec.europa.eu/food/food/biotechnology/novelfood). 

In the USA products enriched with plant sterol esters, plant stanol esters, plant sterols, 

plant stanols and microcrystalline phytosterols received GRAS (generally recognised as 

safe) status by the Food and Drug Administration (FDA). In the year 2000 FDA has 

authorised a health claim for reducing the risk of coronary heart disease for food 

products containing plant stanol and sterol esters. Stanol ester enriched spreads, salad 

dressings, snack bars and dietary supplement as well as spreads and salad dressings 

fortified with sterol ester were included in this regulation. Total fat has to be restricted 

to 13 g per serving or 50 g in the whole product. Spreads and salad dressings, however, 

were excluded from this regulation (Moreau, 2004). 

While in Japan, Australia and New Zealand plant sterol and stanol enriched food is also 

marketed, Canada withdrew the approval of Becel Pro-Active after only a few months 

in 2001, as health risks for certain groups are possible (Moreau, 2004). 

In Austria, currently only phytosterol enriched milk products are available. Unilever 

markets 3 Becel Pro-Active products: a low fat spread containing 7.5 g plant sterols / 

100 g, a low-fat yoghurt drink containing 2 g plant sterols / 100 g and a low fat milk 

containing 0.3 g plant sterols / 100 mL. Recently also Danone launched a low fat 
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phytosterol enriched yoghurt drink (1.6 g / 100 g) using the brand Danacol, which is 

also marketed in several but not all EU-countries.  

 

In general, spreads were the first phytosterol enriched commercial product available on 

the markets and still they are the most widespread application. Nearly all studies on the 

cholesterol lowering effect have been done with spreads (Berger et al., 2004). Their 

fatty food matrix provides optimal solubility of the added compounds. Furthermore 

spreads can be easily incorporated into the daily diet.  

Currently dairy food represents the steeply rising area of sterol enriched applications. 

Similar to spreads plant sterols can be incorporated into the fat-phase and low fat 

products are in general considered as part of a healthy diet (Salo et al., 2003). Especially 

yoghurt and milk based drinks can be used as convenient single servings. 
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2.1.5.3 Factors affecting the influence of plant sterol and stanol enrichment on 

cholesterol reduction 

 

Effective dose 

Numerous studies investigating the cholesterol lowering effect of plant sterols and 

stanols in a wide variety of subjects including normo- and hypercholesterolemic adults 

and children as well as patients with familiar hypercholesterolemia, type II diabetics on 

statin therapy or type II diabetic hypercholesterolemic subjects have been conducted 

(Berger et al., 2004). Administered amounts ranged from 0.8 to 3.8 g/day (Nguyen, 

1999). 

A meta-analysis of 41 randomized trails comparing the effects of plant sterol and stanol 

ester enriched products found that an average daily intake of 2 g of plant sterols and 

stanols induces a reduction of LDL-cholesterol levels by approximately 10 % (Katan et 

al., 2003). Hallikainen et al. (2000b) compared the effects of increasing concentrations 

of plant stanol esters (0, 0.8, 1.6, 2.3, 3.2 g/d) and found a dose dependent effect. The 

reduction at 2.3 and 3.2 g/d, however, didn’t really differ from that reached by an intake 

of 1.6 g/d. 

In general a reduction of 5-15 % in total cholesterol levels and 10-20 % in LDL-

cholesterol levels is achieved by an intake of 1.5-3 g plant sterols or stanols (Normen et 

al., 2004; Nguyen, 1999). Levels below 1.5 g/day were shown to exhibit no significant 

cholesterol lowering actions (Nguyen, 1999; Hallikainen et al., 2000b). Doses higher 

than 3 g/d should be avoided as - if at all - only a small improvement has been observed 

and negative side effects of large intakes can’t be absolutely excluded (Katan et al., 

2003). The cholesterol-lowering effect was already noted after two weeks of treatment 

(Wester, 2000). A stop in phytosterol or -stanol intake, however, leads to a return to 

cholesterol baseline levels within two weeks (Jones et al., 1997). 

 

Intake frequency 

From the very beginning it has been suggested that for achieving an optimal cholesterol 

lowering effect plant sterols or stanols have to be consumed together with meals. This 

theory was based on the assumption that plant sterols/stanols have to be present in the 

lumen for interference with cholesterol uptake (Katan et al., 2003). Plat et al. (2000) 



Literature                                                                                                                       14   
 

compared the effect of one single daily dose to 3 divided doses of stanol-ester enriched 

margarine and found similar efficiency in LDL-cholesterol reduction. This finding was 

confirmed by a second investigation (Matvienko et al., 2002). Hence, it seems that the 

number of phytosterol/-stanol doses per day is not important (Rozner and Garti, 2006) 

and that plant sterols and stanols exert a longer-lasting effect on cholesterol metabolism. 

Yet it seems that the time of intake affects the cholesterol lowering effect as this is more 

pronounced when the single dose is consumed with lunch or the principal meal than 

with or before breakfast (Doornbos et al., 2006). 

 

Plant sterols versus plant stanols 

Several intervention trials have shown that plant sterols and stanols consumption 

efficiently lower LDL cholesterol levels. Yet it was always assumed that phytostanol 

intake was the more effective option, although reliable comparison was not possible as 

conducted studies varied a lot regarding the administered dose, intervention periods and 

analysing methods (Moreau et al., 2002). With the performance of the first side-by-side 

comparisons (Weststrate and Meijer, 1998; Hallikainen et al., 2000a; Jones et al., 2000; 

Normen et al., 2000; Noakes et al., 2002) no significant difference in the plasma 

cholesterol reducing properties of both sterols and stanols was found.  

However, besides equal effectiveness of sterols and stanols in cholesterol reduction in 

the aforementioned short term studies, their effects in the quite limited number of long 

term studies (>1 year) doesn’t seem to be that certain. While consumption of a stanol 

enriched margarine led to significantly different serum cholesterol levels compared to 

the control group even after one year of treatment (Miettinen et al., 1995), spreads 

fortified with sterols showed only little long term effects (Hendriks et al., 2003). As it 

has been observed that cholesterol reduction has to last for at least one year before 

positive effects on the patient’s clinical manifestations of atheromatous arterial disease 

could be noted (Law et al., 1994), research on long term intervention studies has to be 

encouraged (Katan et al., 2003). 

 

Low-fat versus high-fat formulations 

As incorporation of plant sterols and stanols in high-fat products like margarine is 

contradictory to dietary recommendations for a healthier life style, the development of 
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low-fat and also not-fat alternatives was encouraged. In various studies (Mensink et al., 

2002; Volpe et al., 2001; Nestel et al., 2001; Korpela et al., 2006) reduction of LDL-

cholesterol (7-14 %) by low-fat applications was found to be comparable to that 

observed in investigations using high-fat spreads. Yet it has to be mentioned that the 

enriched low-fat products were consumed with meals. Already Doornbos et al. (2006) 

found cholesterol reduction by two yoghurt drinks (2.2 and 3.3 % fat) to be irrespective 

of the fat content, but a higher cholesterol lowering effect was found when the drink 

was consumed as part of a meal. 

On the other hand Jones et al. (2003) couldn’t find reductions in total and LDL-

cholesterol using low-fat and non-fat beverages enriched with unesterfied phytosterols. 

The authors concluded that solubility of the added compound is important for optimal 

efficacy. 

Similar Clifton et al. (Clifton et al., 2004) testing four types of phytosterol ester-

enriched low-fat food (bread, breakfast cereal, milk and yoghurt) found that they were 

all able to reduce cholesterol levels, low-fat milk, however, was almost three times more 

effective than bread or cereals. These findings may be due to phytosterol incorporation 

into the milk globule membrane, thus being easier available for the transport into 

micelles. 

It seems that for achieving the best possible action in cholesterol metabolism an 

accurate solubilisation in the food vehicle (independent of the fat content) is crucial. 

 

Impact of background diet 

The cholesterol lowering effect of plant sterols and stanols was found to be independent 

of the various background diets. As they reduce both bilary and dietary cholesterol 

absorption, this finding doesn’t really seem surprising (Berger et al., 2004). However, 

also lack of efficiency when combined with a low-cholesterol diet was reported (van 

Heyningen, 1999). Yet observed reduced activity may be due to solubility problems as 

sitosterol was administered in its unesterified, crystalline form. 

Since plant sterol and stanol enrichment lower cholesterol levels also in people not 

eating healthy diet, a certain risk of neglecting other recommendations for the 

prevention of CHD such as enhanced intake of dietary fiber, essential fatty acids, fruits 

and vegetables does exist. 
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2.1.5.4 Mechanism of action 

Dietary intake of plant sterols has shown to lower serum total cholesterol levels and 

LDL-cholesterol, without altering high density lipoprotein (HDL) cholesterol or 

triglycerides (Katan et al., 2003). Absorption of both dietary and endogenously 

synthesised cholesterol is decreased. Reduced absorption of cholesterol leads to 

suppressed feedback-regulation of enterohepatic cholesterol circulation, hence 

increasing the endogenous cholesterol synthesis. The net result is, however, a decreased 

serum cholesterol concentration. The exact mechanism is not yet completely 

understood, but several theories are being discussed. 

 

Co-crystallization of cholesterol and plant sterols 

Through co-crystallization of cholesterol and plant sterols in the gastrointestinal tract 

poorly absorbable mixed crystals are formed, leading to a reduced intestinal uptake of 

cholesterol.  A limited number of studies analysing this co-precipitation have confirmed 

this theory (Christiansen et al., 2001a), information on crystal formation in 

triacylglycerol oil or under in vivo conditions is, however, lacking (Trautwein et al., 

2003).  

Further for plant stanols, which proved to be as efficient as phytosterols in lowering 

cholesterol levels, no crystal formation was observed. Hence, reduced absorption may 

not solely depend on the formation of poorly soluble precipitations.  

 

Competition for incorporation into mixed micelles 

Cholesterol as virtually water insoluble compound has to be incorporated in mixed 

micelles for its transfer through the brush border membranes into the enterocyte. Also 

phytosterols require the micelle mediated transport for their absorption and as more 

hydrophobic compounds they even have a higher affinity to the micells (Ling and Jones, 

1995). Therefore it is believed that increased uptake of plant sterols leads to a reduced 

capacity to incorporate cholesterol.  

The fact that the cholesterol lowering effect showed to be the same regardless whether 

the whole dose of phytosterols was consumed at once or split into 3 doses over the day 

supports the assumption that several mechanism are involved in the 

hypocholesterolemic process. 
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Competition between cholesterol and plant sterols for esterase activity 

Before being absorbed cholesterol esters have to be hydrolysed by the pancreatic 

cholesterol-esterase. Due to their structural similarity also plant sterol esters could serve 

as substrates. This may lead to a reduction of cholesterol in its absorbable form or in 

case that the esterase activity is not sufficient enough remaining cholesterol esters could 

be transferred to more distal parts of the intestine, where absorption is not as efficient 

(Trautwein et al., 2003). 

 

Competition between cholesterol and plant sterols for cholesterol transporters 

It is assumed that uptake of sterols is facilitated by transporters as the Niemann Pick 

like 1 protein in the intestinal brush border membrane. Due to their similar structure 

plant sterols instead of cholesterol could be transported into the enterocyte, reducing the 

uptake of cholesterol. 

Plant sterols have been shown to upregulate ABCA1 gene expression, thus increasing 

the efflux of unesterified cholesterol back into the lumen. ABCA1 expression has been 

shown to be controlled by receptors like the liver X receptor (LXR) or the retinoid X 

receptor (RXR), to which plant sterols may act as ligands (Trautwein et al., 2003). 

However, further research on cholesterol transporters is necessary before the influence 

of plant sterols can be elucidated. 

 

Inhibition of the ACAT activity by plant sterols 

Once absorbed in the mucosal cell cholesterol is re-esterified by the intestinal ACAT. It 

has been shown that mainly esterified cholesterol is incorporated into chylomicrones, 

therefore the esterification step seems to be essential for cholesterol absorption (Salo et 

al., 2003). Esterification of plant sterols has been shown to occur to a lesser extent, 

causing suppressed activity of ACAT. As a possible consequence the uptake of 

cholesterol is reduced due to the higher concentration of intracellular free cholesterol. 

On the other hand in rabbits an enhanced induction of ACAT gene expression 

stimulated through the increasing concentration of free cholesterol has been observed 

(Trautwein et al., 2003). 
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Competition for the incorporation into chylomicrones  

As cholesterol and plant sterols have to be incorporated into chylomicrones to be 

transported from the enterocytes into the lymph a competition between both sterols 

might take place. It seems that the incorporation depends mainly on the esterification of 

the sterols as 70-80% of the transported cholesterol is present in its esterified form 

(Ikeda et al., 1988). As discussed above plant sterols are esterified to a far lesser extent 

than cholesterol. Therefore their ratio in chylomicrones is low. Up to now no studies 

exist suggesting that plant sterols in the cytoplasm could alter the uptake of 

cholesterolesters in chylomicrones. Also in patients with sitosterolemia plant sterol 

concentration in the lymph is lower than that of cholesterol (Salen et al., 1992). It seems 

that a decreased rate of cholesterol in chylomicrones could be only due to a lower 

absorption of cholesterol from the lumen. 

 

2.1.6 Safety  

Plant sterols and stanols have been in use as functional food components for many 

years. To date no distinct adverse health effects have been observed (Katan et al., 2003; 

Ling and Jones, 1995). Long term experience, however, is lacking. 

 

Hepburn and co-workers have performed a comprehensive safety evaluation of plant 

sterol and stanol esters. Although some earlier studies suggested their estrogenic effect, 

plant sterols were not found to bind to estrogen receptors in vitro using a recombinant 

yeast strain. In addition no indication for estrogenicity was observed by oral 

administration of up to 500 mg/kg body weight/day to immature female rats (Baker et 

al., 1999). In a two-generation reproduction study an intake of up to 8.1 % plant sterols 

esters in the diet (w/w) showed no effect on the development of pups, on reproduction 

and on sexual maturation. Also in a further 90 days feeding study on subchronic toxicity 

with rats using same plant sterol ester doses no treatment related changes were noticed. 

Therefore the highest applied dose of 8.1 % plant sterols esters in the diet (w/w) 

corresponding to 6 g/kg body weight/day was determined as no-observed-adverse-effect 

level (NOAEL). In a later study of Kim et al. (2002) an oral dose of 9 g/kg body 

weight/day of plant sterol esters led to decreased body weight gain in both sexes and 
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increased incidence of cardiomyopathy in male rats and was therefore considered as the 

absolute toxic dose. 

 

Plant sterols and their esters showed no genotoxic activity in various in vitro assays  

(bacterial mutation assay, chromosome aberration assay in human peripheral blood 

lymphocytes and mammalian cell gene mutation assay in L5178Y mouse lymphoma 

cells) and in vivo assays (rat bone marrow micronucleus assay and unscheduled DNA 

synthesis in rat liver) (Wolfreys and Hepburn, 2002). 

 

Similar results were obtained for stanol esters. No evidence for genotoxicity, estrogenic 

activity or adverse effects on reproduction were found in several toxicity studies 

(Turnbull et al., 1999b; Turnbull et al., 1999a; Whittaker et al., 1999).  Subchronic 

ingestion of stanol esters at levels up to 5 %, however, resulted in a decrease in liver 

weight, plasma levels of vitamin K1, E and D and hepatic levels of vitamin E and D in 

Wistar rats (Turnbull et al., 1999c). 

 

High amounts of phytosterol ester intake (8.6 g/day) were also investigated in humans. 

No effects on gut microflora and serum sex hormone levels in females were found 

(Ayesh et al., 1999). The significant reduction of progesterone levels in female subjects 

was considered to be of no importance (De Jong et al., 2004).  

So far only a few studies exist investigating the effects of high intake levels of 

phytosterols in humans. Usually no endpoints other than the reduction of cholesterol 

and fat soluble vitamins were included. Therefore to date detailed clinical information 

in humans on a daily consumption exceeding 8.6 g is lacking (Brufau et al., 2008).  

Based on the currently available data the European Food Safety Authority (EFSA) 

concluded that an intake of more than 3 g per day of added phytosterols should be 

avoided (EFSA, 2008).  

 

2.1.6.1 Possible negative side effects 

Several studies with animals, cell models and humans did not show any adverse effects 

of plant sterols and stanols. However, there exist some aspects that may require further 

attention. 
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2.1.6.1.1 Effect on plasma levels of fat soluble vitamins 

Besides their cholesterol lowering effect, the uptake of plant sterols and stanols also 

lead to a reduction in plasma concentrations of lipophilic hydrocarbon carotenoids. In a 

metaanalysis of 18 trails testing the impact of 1.5 g/d or more of plant sterols and 

stanols on the plasma levels of fat soluble vitamins a reduction of α-carotene by 9 %, β-

carotene by 28 % and lycopene by 7 % was found. As LDLs act as carrier molecules for 

carotenes, adjustment for their decrease after plant sterol or stanol consumption has to 

be done. After correction a statistically significant reduction in the plasma concentration 

was found for β-carotene (-12.1 %) only (Katan et al., 2003). 

 

As low levels of β-carotenoids have been associated with health risks such as 

cardiovascular disease and cancer, questions arose concerning a consequently higher 

potential risk of chronic diseases due to the lower amount of circulating lipid soluble 

antioxidants (Katan et al., 2003). 

However, observed β-carotene reduction remained within the seasonal changes noted in 

individuals (Ntanios and Duchateau, 2002).  

In 2000 the Scientific Committee on Food (SCF) concluded that no β-carotenoid 

fortification of phytosterol enriched products is necessary, but recommended the use of 

natural β-carotenoids sources to compensate the undesirable effects. For people with a 

higher requirement for vitamin A, as for example pregnant or lactating women and 

young children, β-carotene reduction should be considered with more caution (SCF, 

2000). 

2.1.6.1.2 Effects on membrane properties 

Plant sterols and stanols are easily incorporated into membranes, thus increasing 

membrane rigidity (De Jong et al., 2003). In stroke-prone spontaneously hypertensive 

rats high levels of plant sterols were shown to shorten life span, presumably due to the 

replacement of cholesterol in membranes (Ratnayake et al., 2000). Similar results were 

found for plant stanols, although different mechanisms seem to be responsible 

(Ratnayake et al., 2003). Whether these findings are relevant in humans as well has to 

be further explored. However, in patients with sitosterolemia episodes of hemolysis 

have been reported (Moghadasian, 2000). Conversely, De Jong et al. (2006) found no 
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modification of the osmotic fragility of erythrocytes after 16 weeks of phytosterol and -

stanol treatment in patients receiving statin therapy. 

 

2.1.6.1.3 Increasing serum levels of plant sterols  

Numerous intervention trails in humans have shown an increase in serum levels of plant 

sterols by 34 to 73 % after an intake of 1.5-3 g plant sterols per day, while plant stanols 

reduced both cholesterol and plant sterol serum levels but increased serum 

concentrations of stanols (Hallikainen et al., 2000a; Weststrate and Meijer, 1998; 

Fransen et al., 2007). The effects of this increase have not been elucidated yet.  

However, the rare disease sitosterolemia (less than 100 have been reported in literature 

worldwide (Lee et al., 2001)), which induces high serum levels of plant sterols mostly 

in absence of hypercholesterolemia and leads to premature atherosclerosis, suggests 

plant sterols to be an additional risk factor for coronary heart disease (Katan et al., 

2003). The fact that also patients with a positive family history for coronary heart 

disease were found to have increased serum levels of plant sterols supports this 

hypothesis (Jessup et al., 2008). Recently Weingärtner et al. (2008) found a significant 

correlation of plasma sitosterol and campesterol levels to their concentrations in tissue 

and aortic valve cusps in humans. Further an increase in plant sterol concentrations was 

also reported for people on statin medication.  

Numerous studies on a potential atherosclerotic effect of plant sterols have also been 

done in animal models. Very recently Weingärtner et al. (2008) found that an increase 

in serum plant sterol concentration worsens arterial function in normal and 

apolipoprotein-E-deficient mice. Yet animal studies demonstrating a reduction of 

atherosclerotic plaque formation have been published as well (Brufau et al., 2008). 

However, due to differences in the sterol metabolism of rodents and humans, these 

animal species may not present optimal models for the evaluation of possible negative 

effects of increased serum phytosterol levels (Jessup et al., 2008). 

Thus, the role of plant sterols in the progress of atherosclerosis is not known. More 

treatment studies including cardiovascular end points are necessary, especially since a 

combined intake of statins and enriched food products is suggested to improve 

cholesterol reduction.  

 



Literature                                                                                                                       22   
 

2.1.7 Impact of increasing levels of plant sterols and stanols in nutrition, 

long term efficiency  

After the introduction of their first phytosterol ester enriched product, Unilever started a 

post –launch monitoring programme, in order to elucidate among others if the product is 

used as recommended. There the authors concluded that the intake levels were even less 

than expected (Lea and Hepburn, 2006). However, although evidence existed that 

besides the phytosterol ester enriched margarine also stanol spreads and other enriched 

food were consumed only intake data of the Unilever product were included in the 

calculation.  

 

As the spectrum of plant sterol and stanol enriched food is further increasing, concern 

about the extent of their eventual intake is emerging. The recommended daily dose of 

1.5-3 g alone leads to a consumption of 8-12 times the amount obtained of natural 

sources (SCF, 2000). Two investigations of De Jong et al. (2004) and Raulio et al. 

(2001) estimated the extent of plant sterols and stanols intake in case more than one 

enriched product is consumed simultaneously. Both found similar results: replacement 

of 3-4 conventional products by their sterol enriched forms easily led to intake levels of 

more than 4 g/day in men and women. For men intakes of up to 9 g/d were noted as 

well. 

 

Further, although plant sterols and stanols seem equally effective in reducing 

cholesterol levels in short-term studies, only plant stanols have been shown to maintain 

their efficiency over longer periods (O'Neill et al., 2005).  

After a five year consumption of a phytosterol and -stanol enriched margarine total 

cholesterol levels had not significantly changed from baseline values (Wolfs et al., 

2006). Intake of plant stanol fortified margarine for one year yielded to an average 

reduction of 14.4 % in LDL-cholesterol (Miettinen et al., 1995), whereas Hendriks et al. 

(2003) only found a slight reduction of 6 % in LDL levels after one year of sterol ester 

spread consumption. In women, however, long-term treatment with plant sterols was 

reported to be ineffective (Miettinen and Gylling, 2004).  

As shown in a meta-analysis of Law et al. (1994) long term reduction (up to one year or 

longer) of cholesterol levels (10 %) is necessary in order to reduce the risk of ischaemic 
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heart disease. Based on the limited available data plant stanols seem to be the better 

option, as in addition to maintaining their cholesterol lowering ability they also reduce 

plant sterol levels. However, more long term investigations and head to head 

comparisons of plant sterols and stanols are of importance. 

Further one should bear in mind that the link between lower cholesterol levels and a 

reduction in clinical manifestations of heart disease is based on the assumption that 

persons with a lower cholesterol level are in general people with a healthier life style. 

The use of plant sterol or stanol enriched food will neither change fat or energy content 

of the diet nor increase vegetable, fruit, fibre intake and daily exercise levels. Additional 

targeted education at least on the fortified products would be necessary (Thurnham, 

1999). 

 

2.1.8 Formation of phytosterol oxidation products 

The increasing availability of products fortified with phytosterols rose questions 

concerning their stability and reactivity. Hereby their susceptibility towards oxidation is 

of main concern (Piironen et al., 2000). This is attributed to the presence of an 

unsaturated bond between C-5 and C-6 in the ring structure.  

 

The most common oxygen species involved in the oxidation of sterols is triplet oxygen 

(3O2), which is in general rather unreactive due to its small electrostatic energy (Frankel, 

1998). However, during processing and storage conditions sterol oxidation may be 

initiated by activating factors such as heat, light, air, metal ions and photosensitizers. 

 

Extensive research has been done on the oxidation mechanism of cholesterol. Useful 

information therefore was gained from earlier investigations conducted on fatty acid 

oxidation. Although studies on the oxidation mechanism of plant sterols are scarce, due 

to their structural similarity, it is assumed that oxidation of other Δ5-sterols than 

cholesterol follows the same reaction pathways (Piironen et al., 2000; Lercker and 

Rodriguez-Estrada, 2002).  
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Basically, sterols can be oxidized via the enzymatic and the non enzymatic pathway 

(Dutta, 2004), whereas the nonenzymatic pathway can further be divided into the free 

radical mechanism (i.e. autoxidation) and the nonradical mechanism (i.e. photo-

oxidation) (Lercker and Rodriguez-Estrada, 2002). This chapter will mainly focus on 

the autoxidation pathway, as the most common oxidation mechanism for sterols. 

Within the oxidation products two groups can be distinguished based on the polarity of 

the generated products (Dutta and Savage, 2002). The present work was done with 

oxidation products more polar than unoxidized sterols, therefore called polar oxidation 

products. The systematic and trivial names of the main polar secondary oxidation 

products of β-sitosterol are listed in table 2.3. Non-polar oxides, compounds less polar 

than unoxidized sterols, result from dehydration or dehydrogenation reactions occurring 

at high heating conditions. 

Abbreviation Trivial name Systematic name

sitosterol sitosterol (24R)-ethylcholest-5-en-3β-ol 
6α-OH-3-ketositosterol 6α-hydroxy-3-ketositosterol (24R)-ethylcholest-4-en-3-one-6α-ol 
6β-OH-3-ketositosterol 6β-hydroxy-3-ketositosterol (24R)-ethylcholest-4-en-3-one-6β-ol 
5α,6α-epoxysitosterol sitosterol-5α,6α-epoxide (24R)-5α,6α-epoxy-24-ethylcholestan-3β-ol 
5β,6β-epoxysitosterol sitosterol-5β,6β-epoxide (24R)-5β,6β-epoxy-24-ethylcholestan-3β-ol 
7-ketositosterol 7-ketositosterol (24R)-ethylcholest-5-en-3β-ol-7-one 
6β-OH-sitosterol 6β-hydroxysitosterol (24R)-ethylcholest-5-en-3β,6β-diol 
 7α-OH-sitosterol 7α-hydroxysitosterol (24R)-ethylcholest-5-en-3β,7α-diol 
7β-OH-sitosterol 7β-hydroxysitosterol (24R)-ethylcholest-5-en-3β,7β-diol 
sitostanetriol sitostanetriol (24R)-ethylcholestan-3β, 5α,6β-triol

 
Tab 2.3 Trivial and systemaic names and commonly used abbreviations of the main 

secondary polar oxidation products of β-sitosterol. 

 

2.1.8.1 Autoxidation 

Autoxidation, a free radical chain reaction, is the most common oxidation mechanism 

for sterols. It has been reported to follow the same pathway as monounsaturated fatty 

acids. The first free radical is formed by the abstraction of an allylic hydrogen form the 

double bond between C-5 and C-6 in the ring structure. Basically both C-4 and C-7 

seem to be equally susceptible to oxidative attack, allowing the reaction of molecular 

oxygen at the position 4, 5, 6 or 7. Yet abstraction occurs predominantly at C-7, since 

C-4 is stabilized by the hydroxyl group at C-3 and the tertiary C-5 (Smith, 1981).  

The free radical formed then reacts with molecular triplet oxygen, which leads to the 

formation of 7-peroxyl radicals. These radicals are stabilized by hydrogen abstraction, 
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forming the more stable 7-hydroperoxides (7-OOH) as primary oxidation products 

(Dutta, 2004; Tai et al., 1999; Lercker and Rodriguez-Estrada, 2002). 7α-OOH and 7β-

OOH further decompose to the more stable 7-hydroxysterols (7α-OH and 7β-OH). 7-

ketosterol, the most abundant oxidation product, is formed either through dehydration of 

7-OOH or dehydrogenation of 7-OH compounds.  

 

Another major oxidation route is the formation of epoxy-compounds, 5α,6α- and 5β,6β-

sterols, by a bimolecular reaction between hydroperoxides and intact sterol molecules 

(Lercker and Rodriguez-Estrada, 2002). It has been noted that the generation of the 

5β,6β-epimer is more favoured than 5α,6α-sterol. This may be explained by the steric 

hindrance of the hydroxyl-group at C-3 (Lercker and Rodriguez-Estrada, 2002). The 

hydration of both epimers of 5,6-epoxysterol in acidic environment leads to the 

formation of the same compound,  3β, 5α, 6β-triol. 

 

Also side chain oxidation products can be formed by oxygen attack of the tertiary 

carbons in the lateral chains. Degradation of the primary formed hydroperoxides results 

in the formation of the more stable hydroxides. In heating studies with plant sterols 24-

OH- and 25-OH-sterols were detected (Johnsson and Dutta, 2003; Johnsson et al., 

2003). In the case of cholesterol also 20-OH- and 26-OH-compounds were found 

(Lercker and Rodriguez-Estrada, 2002). For cholesterol, oxidation of the side chain was 

reported to occur only in solid state or crystalline form, not in solution or dispersion. 

Further it seems to be far less pronounced than oxidation at C-7. However, research of 

plant sterol side chain oxidation products is rather limited (Dutta, 2004; Tai et al., 

1999).  

The formation pathways of some β-sitosterol oxides are summarised in figure 2.3. 
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Fig 2.3 Autoxidation pathways of some β-sitosterol oxidation products (adapted from 

Tai et al. (1999)).  

 

2.1.8.2 Photo-oxidation 

In the photo-oxidation pathway singlet oxygen (1O2) instead of triplet oxygen (3O2) 

initiates the oxidation process. Photosensitizers (e.g. chlorophyll) absorb energy as 

radiation and transfer it to triplet oxygen to form singlet oxygen (Dutta, 2004; Min and 

Boff, 2002). 

 

Information on photo-oxidation of plant sterol oxides is rather scarce. However, it was 

already shown that the oxidation behaviour of plant sterols is similar to that of 

cholesterol (Bortolomeazzi et al., 1999; Säynäjoki et al., 2003).  

 

Singlet oxygen is highly reactive and can rapidly attack the double bond in ring B of 

sterols. This leads to the generation of mainly 5α-OOH-sterol with lower quantities of 

6α-OOH- and 6β-OOH-sterols. In non polar solvents 5α-OOH-sterol can be rearranged 
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to 7α-OOH-sterol which can further epimerize to 7α-OOH-sterol. The fact that the 

oxidation products formed by photo-oxidation differ qualitatively and quantitatively 

from those generated by autoxidation facilitates the identification of the occurring 

process (Lercker and Rodriguez-Estrada, 2002; Tai et al., 1999).  

 

2.1.8.3 Oxidation behaviour of sterols 

In general, sterols are rather stable molecules when heated in pure state. Osada et al. 

(1993) investigated the stability of cholesterol during heating and nearly no oxidation 

products could be detected after 24 hours at a temperature of 100 °C. This behaviour 

changed at heating conditions of 120 °C and above. When cholesterol was heated at 200 

°C total degradation was observed already after 6 hours of heating. 

Research on the oxidation behaviour of plant sterols has not been as extensive as that of 

cholesterol. However, the results obtained from the limited studies conducted on 

phytosterols support the assumption that observed reaction mechanisms could be valid 

for both cholesterol and plant sterols.  

Recently Zhang et al. (2005b) found similar results as Osada et al. (1993) for β-

sitosterol. After 30 min of heating at 100 °C no oxidation products could be found, 

whereas at temperatures of 150 and 200 °C all common secondary oxides, as 7α-

hydroxy, 7β-hydroxy, 5α,6α-epoxy, 5β,6β-epoxy, and 7-ketositosterol, were formed.  

Johnsson and Dutta (2003; 2005) also detected side chain oxidation products, 24-

hydroxy- and 25-hydroxy- compounds, triols as well as 6α-OH-3-keto- and  6β-OH-3-

ketosterol, oxides with medium polarity, after heat treatment of stigmasterol and a 

mixture of campesterol/sitosterol for 72 hours at 120 °C. Further oxidation products 

found include 6-hydroxy derivates, 6-keto derivates and 4-hydroxy-derivates 

(Grandgirard et al., 2004c). Formation of the various oxidation products were highly 

influenced by the oxidation conditions applied. Although always the same kind of 

oxidation products were formed, irrespective of the different heating temperatures, the 

amount of the single products differed (Kemmo et al., 2005).  

 

In contrast to oxidation studies carried out on pure sterols, in food numerous other 

factors such as the presence of lipids and water could affect the oxidation mechanism 

(Chien et al., 1998).  
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Lampi et al. (2002) investigated the oxidative stability of phytosterols in rapeseed oil or 

tripalmitin at various temperatures. While at heat treatments of 80 °C sterols showed to 

be rather stable, significant losses could be observed at 120 °C and above. When 

phytosterols were heated in different oils a greater variety of oxidation products was 

found at lower temperatures (100 °C and 150 °C) than after heating at 180 °C. At 

temperatures of 150 °C and 180 °C degradation of sterols occurred (Oehrl et al., 2001).  

Conflicting results were reported on the influence of the lipid matrix. On the one hand 

plant sterols seemed to be more stable in rapeseed oil than in tripalmitin when heated at 

180 °C (Lampi et al., 2002). On the other hand a greater amount of sterol losses was 

observed for sterols heated in canola and soybean oil instead of coconut and peanut oil, 

thus a higher ratio of polyunsaturated fatty acids could be linked to higher levels of 

oxidation (Oehrl et al., 2001). Recently Soupas et al. (2004a) found plant sterols to be 

more stable in unsaturated lipid matrices when heated at high temperatures, whereas at 

temperatures of 140 °C and beneath the situation seemed to be reverse.  

 

2.1.9 Content of POPs in food 

At the moment only little information is available on the content of plant sterol oxides 

in various food products. The lack of commercial standards, the great number of 

compounds with very similar structures and the fact that sterol oxides in food usually 

represent only trace components in a huge complex of interfering matrix compounds 

account for the complexity of the analysis of POPs (Guardiola et al., 2004). In contrast 

to food of animal origin containing only cholesterol oxides the number of different 

oxidation products found in plant based food is at least 3 times higher (Dutta, 2002), 

thus analysis is even more challenging. 

To date small amounts of plant sterol oxides have been detected in various food, 

including wheat flour (Nourooz-Zadeh and Appelqvist, 1992), potato chips, potato 

crisps and French fries fried in different oils as well as commercial samples (Dutta and 

Appelqvist, 1997; Dutta, 1997; Tabee et al., 2008a; Tabee et al., 2008b), a range of 

plant oils (Dutta, 1997; Bortolomeazzi et al., 2003; Zhang et al., 2005b; Johnsson and 

Dutta, 2006) plant sterol enriched and non-enriched spreads (Grandgirard et al., 2004c; 

Conchillo et al., 2005; Johnsson and Dutta, 2006), enriched milk and milk powder 
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(Soupas et al., 2006) and liquid infant food (García-Llatas et al., 2008) (for detailed 

information see table 2.4) . 

The main oxides detected were 7-OH and 7-keto derivatives, followed by 5,6-epoxy and 

triol compounds. In general detected plant sterol oxides resemble those commonly 

found in the analysis of COPs. Oxidation products of β-sitosterol dominated, but those 

of campesterol and brassicasterol were found as well. 

Total amounts of the quantified plant oxides seem to be low and not all the tested food 

may represent an important source of oxidation products. The increase in fortified 

products could, however, change this situation. Grandgirard et al. (2004c) found 68 µg 

plant sterol oxides /g enriched spread. In order to achieve the recommended daily dose 

of 1.5-3 g of plant sterols, an intake of 19-37 g of spread would be necessary, containing 

at the same time 1.3-2.6 mg of oxidation products. That is an amount quite close to the 

reported daily consumption of 2-4 mg of cholesterol oxides per day (Grandgirard, 2002; 

Dutta, 1999). 
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2.1.10  Absorption and metabolism of phytosterol oxidation products 

Information on the absorption mechanism and plasma levels of plant sterol oxidation 

products is still quite limited.  

Grandgirard et al. (1999b) investigated the lymphatic absorption of β-sitosterol and 

campesterol oxides (7-keto and 5, 6-epoxid derivates) in male Wistar rats. Absorption 

of 7-ketositosterol (1.5 %) and -campesterol (2.9 %) was quite low, although absorption 

rates of 7-ketositosterol were not significantly different from those of its parent sterol. 

For 5, 6-epoxy compounds a higher absorption rate (4.7 %) was found, whereas 5β,6β-

epoxysterols were more efficiently absorbed than 5α,6α-epoxysterols. In addition also 

stigmasteroltriol was detected in the lymph, although it hadn’t been administered to the 

animals, which indicates a possible in-vivo transformation of epoxides to triols.  

Corresponding results were found when the lymphatic absorption of 7α-OH, 7β-OH, 

5α,6α -epoxy, 5β,6β -epoxy, triols and 7-keto compounds of β-sitosterol or campesterol 

was analysed in Sprague-Dawley rats. Highest recovery was observed for 7-hydroxy 

derivates. Absorption rates of β-sitosterol oxides were lower than those of 

corresponding campesterol oxides. However, recovery of all oxidation products was 

higher than that of their parent sterols (Tomoyori et al., 2004). 

A dose dependency between the amount of oxysterols in the diet and their recovery in 

plasma, aorta, liver, kidneys and heart was found in Golden Syrian hamsters receiving a 

diet containing different levels (0.1, 0.5 or 0.25 % of the diet) of a mixture of β-

sitosterol and campesterol oxides. 7β-OH, 5β,6β -epoxy, triols and 7-keto compounds 

were found in noticeable amounts in all tissues after feeding with 0.25 % of oxidation 

products. 7α-hydroxysitosterol and 5α,6α-epoxysitosterol, however, were only detected 

in the plasma, which could be due to a better metabolism of these two oxides. The 

transformation of 5α,6α-epoxysitosterols to triols is also possible. In animals fed a diet 

containing 0.1 % of an oxidation mixture only sitostanetriol was found. Equally to 

previous studies cited above the amount of campesterol oxides recovered in the plasma 

was higher than provided in the diet, whereas amounts of β-sitosterol oxides were 

approximately the same. As already observed for non-oxidized phytosterols the length 

of the side chain could be responsible for different absorption degrees (Grandgirard et 

al., 2004a). 
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Information on in vivo metabolism of phytosterol oxides is missing. However, some 

investigations on their in vitro formation have been conducted. Conversion of β-

sitosterol to oxidized derivates (mainly 7α-OH, 7β-OH, 5,6-epoxide and triols) has been 

accomplished by the use of rat liver preparations (Aringer and Eneroth, 1973). Also the 

enzymatic oxidation of the side chain, probably induced by hydroxylases, has been 

determined. 26-OH and 29-OH products of β-sitosterol, sitostanol and campesterol were 

detected, whereas the hydroxylation of C-24 and C-25 seemed to be prevented by the 

additional ethyl or methyl group at C-24 (Hovenkamp et al., 2008). 

 

Excretion of plant sterol oxidation products does most likely proceed via the bile, 

whereas different excretion rates according to different oxides structures are assumed. 

For example, sitostanetriols were found to be slowly eliminated from the organism 

(Grandgirard et al., 2004d). Besides comparable absorption rates, 7α-OH-phytosterols 

seemed to be faster metabolized than 7β-OH-sitosterol. Their transformation in bile 

acids, similar to what was observed for 7α-OH-cholesterols, is possible (Tomoyori et 

al., 2004; Hovenkamp et al., 2008).  

 

Some studies on the plasma concentration of phytosterol oxides were conducted with 

humans. Grandgirard et al. (1999a) detected 7-ketositosterol, 5β,6β –epoxysitosterol and 

sitostanetriol in human plasma samples with a total concentration of 0.3 µg/mL.  

High amounts of phytosterol oxides were found in plasma of a patient with 

phytosterolaemia. Approximately 1.4 % of the amount of β-sitosterol in plasma was 

found in its oxidized form (7-keto, 7β-OH, 5α,6α –epoxid and 5β,6β –epoxid). In the 

same study no oxidized plant sterols were detected in a pooled plasma sample of 

healthy volunteers, presumably due to the relatively high detection limit of the method 

applied (Plat et al., 2001). 

On the contrary, oxyphytosterols in the range from 4.8 to 57.2 ng/mL were quantified in 

the plasma of 13 healthy volunteers (Grandgirard et al., 2004b). Oxides of β-sitosterol 

(7-keto, 5α,6α –epoxid, 5β,6β –epoxid and triol) dominated. However, compared to 

plasma levels of the main oxycholesterols (3-154 ng/mL) detected levels were 

comparable or lower (Hovenkamp et al., 2008). 
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2.1.11  Safety 

In recent years extensive research has been done on cholesterol oxidation products. 

Numerous in vitro studies have proven their mutagenic, carcinogenic, angiotoxic, 

cytotoxic and atherogenic potential. Further, COPs may play part in the onset and 

development of atherosclerosis (Guardiola et al., 1996; Osada, 2002). 

By contrast, data on phytosterol oxides are limited. Moreover a large part of the 

conducted studies was done with mixtures instead of single oxides, although different 

effects of mixtures and purified compounds have already been shown for COPs. 

However, due to their structural similarity with COPs, analogous functions and 

biological effects are expected. 

 

Meyer et al. (1998) investigated the influence of different β-sitosterol, stigmasterol and 

cholesterol oxides on the mortality of meal worms (Tenebrio molitor). The effects of 

phytosterol oxides were comparable to those of cholesterol oxides, especially triols 

showed toxic effects. However, tested phytosterol oxidation products were by a factor 

of five less active than oxycholesterols. 

 

As part of a comprehensive safety evaluation of plant sterols Lea et al. (2004) 

investigated a mixture of phytosterol oxides in a series of in vitro genotoxicity assays 

(bacterial mutation, chromosome aberration and micronucleus). No mutagenic effect on 

Salmonella typhimurium strains (TA98, TA100, TA102, TA1535 and TA1537) and no 

significant increase in chromosome aberrations or frequency of micronuclei were found. 

In addition, in a 90 days subchronic feeding study in Wistar rats (0.44-0.45% POPs in 

the diet) no evidence of a genotoxic potential was found.  

 

Likewise no genotoxic effects were found when a mixture of β-sitosterol oxidation 

products were investigated in the single-cell gel electrophoresis - and the sister 

chromatid exchange assay using U937 cells (Maguire et al., 2003). 

 

Very recently, an in vivo evaluation of the genotoxic potential of triol and epoxid 

compounds derived from β-sitosterol or campesterol using the micronucleus assay has 
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been conducted. In line with the previous mentioned investigations no significant 

effects were observed (Abramsson-Zetterberg et al., 2007). 

 

For the evaluation of cytotoxicity different cell lines were used. The activity of oxide 

mixtures of β-sitosterol (Maguire et al., 2003) and β-sitosterol/campesterol (Adcox et 

al., 2001) was evaluated using a human monocytic blood cell line (U937) and a 

cultured-derived macrophage cell line (C57BL/6), respectively. In the former study 

reduced cell viability, incidence of apoptotic cell death and decreased glutathione levels 

were observed, in the latter study cell viability, mitochondria dehydrogenase activity, 

lactate dehydrogenase (LDH) leakage and protein content were determined. In both 

investigations similar cell damage to that caused by COPs was found, although in 

general higher concentrations of POPs were needed. Non oxidized sterols showed no 

cytotoxic effects. Further Magurie et al. (2003) assumed that isolated phytosterol 

oxidation products might behave differently to individual compounds. 

 

Isolated oxidation products of β-sitosterol (7β-OH, 7-keto, sitostanetriol and a mixture 

of 5α, 6α-epoxide/5β, 6β-epoxide (6:1)) and their corresponding COPs were tested in a 

human monocytic cell line (U937), a colonic adenocarcinoma cell line (CaCo-2) and a 

hepatoma liver cell line (HepG2). While oxides caused apoptotic cell death in U937 

cells, necrosis was detected in CaCo-2 and HepG2-cells. 7-keto- and 7β-OH-sitosterol 

were found to be the most cytotoxic compounds, when cell viability, apoptitic cell death 

and DNA fragmentation was assayed, while 5α,6α-epoxysitosterol showed no toxicity at 

all. 7β-OH-sitosterol was the only β-sitosterol oxide that caused glutathion depletion 

(Ryan et al., 2005). As already observed for oxide mixtures, toxicity caused by POPs is 

similar but less severe compared to the corresponding COPs. 

 

Roussi et al. (2005) compared the antiproliferative effects of 7β-OH-sitosterol and 7β-

OH-cholesterol. In contrast to Ryan et al. (2005) for both compounds apoptotic cell 

death was observed in CaCo-2 cells. However, different apoptotic mechanisms may be 

involved as 7β-OH-sitosterol enhanced caspase-3 and -9 activities and DNA 

fragmentation, whereas for 7β-OH-cholesterol no activation of caspase-3 and a delay in 

the activation of caspase-9 and DNA fragmentation was observed. In a further study 



Literature                                                                                                                       37   
 

different modulators of apoptosis were assessed. Both 7β-OH-sitosterol and 7β-OH-

cholesterol caused apoptosis by mitochondrial membrane permeabilization, 

independently of Bcl-2 or Bax alterations. Endonuclease G expression was enhanced 

after exposure to both sterol oxides, although for 7β-OH-cholesterol a certain delay was 

observed. Enhanced endonuclease G expression and enhanced production of reactive 

oxygen species were detected in 7β-OH-cholesterol treated cells only. 7β-OH-sitosterol 

was more potent in increasing lysosomal membrane integrity (Roussi et al., 2007). 

 

2.1.12  Analysis of phytosterol oxidation products 

In the past research on the oxidation of sterols concentrated on cholesterol while 

phytosterol oxides remained rather disregarded. Consequently, to date analysis of POPs 

is mostly based on methods developed for oxycholesterols, which mainly consist of 

extraction of total lipids of the sample material, saponification of lipids (preferably at 

room temperature), purification and enrichment of oxidation products and 

chromatographic analysis. In general, high temperatures, exposure to oxygen and light 

should be avoided as this would lead to artefact formation and further reactions of the 

sterol oxides (Piironen et al., 2000). 

However, compared to the research of COPs, methods for the analysis of phytosterol 

oxides require higher selectivity and higher sensitivity, as the number of plant sterol 

oxides found in plants are 3 to 4 times higher than those of cholesterol oxidation 

products in animal based sources and therefore single oxides may be present in 

relatively low amounts (Dutta, 2002). 

Another challenge in the POP-analysis is the lack of pure phytosterol standards. To date 

only Δ5-stigmasterol (purity: 95%) and β-sitosterol (purity: ≥ 97% or ≥ 95%) are 

commercially available, the latter one in very small amounts and at an excessively high 

price (Zhang et al., 2005a). Hence, POPs standards are also not available and have to be 

laboratory-prepared.  

 

2.1.12.1  Formation of oxidation products 

Applied methods are manifold and depend on the respective oxides to be obtained. 

Basically at the moment no validated, internationally accepted methods for the 
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preparation of oxidation products exist. Distinction may be drawn between formation of 

oxides by irradiation (Bortolomeazzi et al., 1999; Säynäjoki et al., 2003), by chemical 

synthesis (Zhang et al., 2005a; Geoffroy et al., 2008; Julien-David et al., 2008) and by 

thermo-oxidation, whereas in this case preparation can further be divided in thermo-

oxidation in solid state (Daly et al., 1983; Lampi et al., 2002) or in aqueous dispersion 

(Dutta and Appelqvist, 1997; Conchillo et al., 2005). 

 

2.1.12.2 Purification and Enrichment of oxidation products 

Because of the small amount of oxides compared to the excess of native sterols and the 

complexity of the gained blend, cleanup and enrichment is essential before separation 

techniques to isolate single oxidation products are applied (Dutta, 2002). Thus co-

elutions of oxidized and non oxidized material may be prevented. 

In the sample clean up solid phase extraction (SPE) cartridges and preparative TLC are 

commonly employed (Guardiola et al., 2004; Piironen et al., 2000). For the purification 

of bigger sample amounts, column chromatography (CC) on alumina or silica is 

generally used (Dinan et al., 2001). Compared to SPE-columns self prepared glass 

columns offer a higher loading capacity. In both cases separation is achieved by a 

stepwise elution with increasing solvent polarity (Piironen et al., 2000). A mixture of n-

hexane/diethylether has proven to be the most effective combination, whereas for the 

elution of the oxidation products containing fraction acetone is commonly employed 

(Ulberth and Buchgraber, 2002).  

In TLC analysis polar eluent mixtures, n-heptane/ethyl ether and diethyl/cyclohexane, 

are generally used. Compared to SPE and CC, TLC offers the possibility to isolate less 

polar oxidation products as their own fraction (Piironen et al., 2000). 

 

2.1.12.3 Separation, Identification and Quantification of oxidation products 

2.1.12.3.1 Thin layer chromatography (TLC) 

Besides HPLC and GC, TLC is frequently used in the analysis of sterol oxides, 

especially when a rapid procedure is favoured. For compounds with a higher polarity 

than non-oxidized sterols good resolution was observed. However, its application is 



Literature                                                                                                                       39   
 

usually limited to the qualitative determination as quantitative results are not as reliable 

as other techniques (Lebovics, 2002). Identification is achieved by comparing the 

position of the sample spots with those of COP standard reference substances. 

Visualisation of the generated spots can easily be done by spraying with sulphuric acid 

and following heat treatment. Noteworthy to say that 7-ketosterols do not give a colour 

reaction, but can be detected using UV light (Lebovics, 2002). 

Nevertheless, in the preparative analysis TLC is rather appropriate for the processing of 

small sample amounts. In addition to its low loading capacity it also allows long 

exposure of the sample to air, which facilitates the possibility of artefact formation. 

Further it involves laborious scraping steps (Dutta and Appelqvist, 1997; Csallany et al., 

1989). 

 

2.1.12.3.2 High pressure liquid chromatography 

In the analysis of sterol oxides HPLC has become an alternative to GC methods. Due to 

its non destructive characteristic and its possibility to operate at room temperature 

HPLC is particularly suitable for the investigation of thermolabile compounds. Both 

normal- and reverse phase chromatography has already been successfully used for the 

analyses of cholesterol (Caboni et al., 1997; Chien et al., 1998; Mazalli et al., 2006) and 

plant sterol (Kemmo et al., 2007; Kemmo et al., 2005) oxidation products. In general 

normal phase chromatography is considered to be the more effective option. However, 

no full resolution over the entire polarity range of the oxidation products is possible 

under isocratic conditions (Maerker et al., 1988). In normal phase applications silica or 

cyano (CN) columns are most frequently used. As mobile phases binary systems 

consisting of usually heptane or hexane with varying percentages of polar modifiers, in 

most cases 2-propanol, are employed (Abidi, 2001). 

Further HPLC can be performed either as preparative or analytical technique and can be 

coupled to a wide range of detectors. Among all detection systems available UV 

detection is still the most frequently applied for sterol analyses. In general single sterol 

oxidation products have their maximum UV absorption at different wavelengths 

(Caboni et al., 1997; Osada et al., 1999). However, wavelengths between 205-210 nm 

are those commonly employed for oxysterol analysis (Rodriguez-Estrada and Caboni, 

2002). Compared to measuring the absorbance at one single wavelength photodiode 
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array detection (PDA) has the advantage to acquire a series of spectra over different UV 

wavelengths (Rodriguez-Estrada and Caboni, 2002). However, both UV and PDA 

detection possess limitations since products without double bonds as epoxy- epimers 

and triols do not respond to UV detection and are therefore not seen with this kind of 

detectors (Caboni et al., 1997; Moreau, 2005). 

By the use of refractive index (RI) detectors (Chen and Chen, 1994), light scattering 

detectors (LSD)(Caboni et al., 1997) or evaporative light scattering detectors (ELSD) 

(Lakritz and Jones, 1997) also those compounds which are transparent to UV detection 

can be included in the measurement. RI detection is approximately 1000 times less 

sensitive than UV detection (Chen and Chen, 1994). Further it is not suitable for 

gradient elution systems (Rodriguez-Estrada and Caboni, 2002). Regarding the 

sensitivity LSD is similar to UV detection, except in the case of 7-ketocholesterol, 

where far higher detection limits were observed (Caboni et al., 1997). In recent years 

ELSD has become more popular in the lipid analysis. For detection the analyte has to be 

more volatile than the mobile phase, the detector response is based on mass. ELSD 

works with isocratic and gradient elution systems. It has been shown to be more 

sensitive than RI, but less sensitive than UV (Rodriguez-Estrada and Caboni, 2002; 

Abidi, 2001). In addition it shows a limited range of linear response (Lakritz and Jones, 

1997).  

Recently also HPLC-MS has become more common in the analysis of sterol oxides 

(Kemmo et al., 2007; Mazalli et al., 2006; Razzazi-Fazeli et al., 2000). 

In HPLC analysis quantification with both internal and external standards is possible. 

Again COP reference solutions are commonly used in the POP analysis. In the more 

common external standard method the preparation of calibration curves for each oxide 

is necessary (Rodriguez-Estrada and Caboni, 2002). Similar to GC analysis 19-

hydroxycholesterol can be used as internal standard (Caboni et al., 1997).  

 

2.1.12.3.3 Gas chromatography 

To date GC is still the most common method used for the determination of sterol oxides 

(Guardiola et al., 2002). It is normally coupled to a flame ionization detector (FID) but 

also to mass spectrometry (MS) (Abidi, 2001).   
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Due to the high boiling points of sterols and their oxides, it is necessary to apply 

elevated temperatures in GC methods. In order to avoid degradation and artefact 

formation oxysterols are usually converted to trimethylsilyl ethers (TMSE). For 

derivatisation combinations of hexamethyldisilazane (HMDS) and trimethylchlorosilane 

(TMCS) (Johnsson and Dutta, 2006; Conchillo et al., 2005) or N,O-bis-

(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS (Lampi et al., 2002; Soupas et 

al., 2004b) are quite commonly used. Usually silulation is performed in pyridine at 

room temperature or accelerated at elevated temperatures. As water would compete with 

hydroxyl groups of sterol oxides an anhydrous condition is essential (Guardiola et al., 

2004). 

Compared to FID the use of MS for the detection of sterol oxides also allows the 

quantification and identification of overlapping peaks. Further its sensitivity was shown 

to be similar to or better than that of FID (Guardiola et al., 2004). Quantification of 

sterol oxidation products is generally done by the internal standard (ISTD) method. The 

use of 19-hydroxycholesterol has been proven to be the most effective option. As 

commercial standards of plant sterol oxidation products are not available, also in the 

analysis of phytosterol oxides oxycholesterols are used as standard compounds (Plat et 

al., 2001). 
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3. Material and Methods 

3.1 Production and isolation of phytosterol oxidation products 

3.1.1 Chemicals and Reagences 

Substance Supplier Product number

24β-Ethylcholest-5-en-3β-ol Fluka 85451
5-Cholesten-3β-ol Sigma S957623
Cholest-5-en-3β-ol-7-one Sigma C2394
Cholestan-5α,6α-epoxy-3β-ol Sigma C2773 
Cholest-5-en-3β,7β-diol Steraloids C6430-000
5-Cholesten-3β,19-ol Steraloids C6470-000

Acetone Rathburn Chemicals 
Bis(trimethylsilyl) trifluoroacetamide Merck 110255
Diethyl ether Merck 100921
Ethyl acetate Merck 100868
n -Heptane Rathburn Chemicals 
Methanol Rathburn Chemicals 
2-Propanol Rathburn Chemicals 
Pyridine Fluka 82703
Sulphuric acid Merck 112080
Trimethylchlorsilan Fluka 92360 

 
Tab 3.1 Chemicals and Reagences used for plant sterol oxide analysis 

 

3.1.2 Equipment  

Equipment Supplier Product number

Acrodisc Syringe Filters with 
GHP Membrane, 13 mm, 0.45 µm PALL 4563
Silica gel 60 ( 0.2-0.5mm) Merck 107733
TLC silica gel 60 aluminium sheets 
(0.5mm layer thickness) Merck 105553

 
Tab 3.2 Equipment used for plant sterol oxide analysis 
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Fig 3.1 Schematic overview of β–sitosterol oxides production  

 

3.1.3 Preparation of oxides by thermo-oxidation 

Commercial available β–sitosterol was used for the generation of phytosterol oxidation 

products. First its composition was determined by GC-FID and GC-MS. 

 
Tab 3.3 Composition of employed β–sitosterol 
 

POPs were formed by thermo-oxidation. Commercial available β–sitosterol was heated 

in open glass vials (300 mg, 25 mm, I.D.) in a ventilated oven. After the heating period 

the samples were cooled down in a dessicator, dissolved in 15 mL of n-heptane/diethyl-

ether (90/10, v/v), solubilised using a sonicator and finally stored in a freezer (- 20 °C). 

 

purity %
β-sitosterol 76
sitostanol 13
campesterol 9.5
campestanol 1.5
rest 1
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To determine the optimal conditions different temperatures and heating periods (130 

°C/24 h, 120 °C/48 h and 130 °C/48 h) were tested. Resulting oxidation mixtures were 

analysed using GC-FID and GC-MS.  

 

3.1.4 Purification and enrichment of phytosterol oxidation products by 

column chromatography (CC) 

The purification method used was based on former investigations by Lampi et al. (2002) 

and Apprich and Ulberth (2004).  

72 g silica gel was dry packed into a glass column and pre-wetted with 150 mL n-

heptane.  All oxides obtained of 300 mg heated β–sitosterol and diluted in 15 mL n-

heptane/diethyl-ether (90:10, v/v) were applied to the column. First nonoxidized sterols 

and apolar components were eluted with 150 mL n-heptane/diethyl-ether (90/10, v/v) 

followed by 450 mL n-heptane/diethyl-ether (50/50, v/v). Thereafter POPs were 

extracted with 150 mL acetone. The acetone fraction was evaporated to dryness. To get 

rid of the water ethanol was added during the evaporation step. Finally the residue was 

dissolved in 550 µL n-heptane/2-propanol (93/7, v/v).  

The yield of oxidation products was increased when the silica gel was loaded with 10 % 

distilled water. 

 

3.1.5 Confirmation of the purification by thin layer chromatography (TLC) 

100 µL of the purified sample were applied to silica gel G 60 TLC plates. As eluent n-

heptane/ethyl-acetat (50/50, v/v) was used. Components were visualized by spraying 

with 10 % sulphuric acid in methanol and a following heat treatment of a few minutes at 

100 °C. The identification of the single oxidation products was conducted using a 

cholesterol oxides standard solution (5α,6α-epoxy-, 7-hydroxy- and 7-ketocholesterol).  

 

3.1.6 Separation of single oxidation products by a NP-HPLC-UV system 

For the collection of single oxidation products a preparative normal–phase HPLC-

method was used. The method was based on papers published by Kemmo et al. (2005; 

Säynäjoki et al., 2003) with some modifications. 
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In pre-testes several mobile phase systems (90/10, 92/8, 93/7, 94/6, 95/5 and 97/3 n-

heptane/2-propanol, v/v) and flow rates (5, 7, 9.9, 15 and 17 mL/min) were examined. 

For the first tests a semi-preparative silica column (25 cm x 10 mm, 5µm, Supelcosil) 

was used. Good seperation was achieved with a mobile phase of n-heptane/2-propanol 

(92/8, v/v) and a flow rate of 9.9 mL/min, but obtained yields of oxidation products 

were rather low. Therefore a preparative silica column (25 cm x 21.1 mm, 12µm, 

Supelcosil) was used for the following HPLC runs. 

 

Tab 3.4 HPLC conditions used for the separation of POPs 

 

The performance of the separation was checked daily using a cholesterol oxide standard 

solution (7-ketocholesterol, 7β-hydroxycholesterol and 7α-hydroxycholesterol) by 

monitoring the retention times.  

 

3.1.7 Identification and quantification  

For identification and quantification of the collected fractions GC-mass spectrometry 

(GC-MS) and GC-flame ionization detection (GC-FID) were used, respectively. Both 

methods have been developed earlier by co-workers (Lampi et al., 2002; Soupas et al., 

2004b), are routinely used for analysing POPs and were implemented under supervision 

of the respective person responsible. 

Prior to the GC analysis the samples were converted to TMS-ether derivatives. 

Therefore 100 µL aliquots of each fraction and 1 mL of internal standard solution (19-

HPLC conditions

mobile phase n -heptane/2-propanol (93/7, v/v)

flow rate 17 mL/min 

injection volume 1.8 mL

detection UV-detection, 206 nm

Waters Delta Prep 3000, preparative HPLC - instrument (Walters, Milford, USA) 

HPLC system

Waters 484 UV detector (Walters, Milford, USA) 

Supelcosil silica column (25 cm x 21.1mm, 12µm) (Supelco, Bellefonte, PA, USA)
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OH-cholesterol, 18.55 µg/mL) were evaporated to dryness under nitrogen, dissolved in 

100 µL of pyridine and subjected to silylation by 100 µL BSTFA/TMCS (100 µL, 99/1, 

v/v) over night at room temperature. The reagent mixture was then evaporated and the 

residue was dissolved in 200 µL n-heptane before GC analysis. 

 

3.1.7.1 GC–MS analysis 

For identification of the collected oxidation products and verification of the purity of the 

fractions GC–MS analysis was done as described in Soupas et al. (2004b).  

Tab 3.5 GC-MS conditions used for the identification of POPs 

 

3.1.7.2 GC–FID analysis 

Quantification of the collected oxides was done by GC-FID as described by Lampi et al. 

(2002). 

 

carrier gas helium (>99.996%)

flow 1.2 mL/min (constant flow)

temperature programm 70°C (1 min)

40°C/min to 280°C (kept for 35 min)

interface temperature 280°C

ion source 230°C

ionization electron impact 70 eV

scan modus full scan mode, m/z 100-600

Rtx-5MS w/ Integra fused-silica capillary column 
(60m x 0.25mm i.d., crossbond 5% diphenyl – 95% dimethyl polysiloxane, 0.1µm film with 
10m Integra-Guard column; Restek, Bellefonte, PA, USA) 

Agilent 5973 mass spectrometer (Palo Alto, CA, USA)

GC-MS conditions

GC-MS system

Hewlett Packard 6890 Series gas chromatograph (Wilmington, PA, USA)
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Tab 3.6 GC-FID conditions used for the quantification of POPs 

 

3.2 Salmonella microsome assay 

The Salmonella microsome assay (Salmonella test; Ames test) is a short-term bacterial 

reverse mutation assay and a well established marker for the detection of a wide range 

of chemical substances that can produce genetic damage thus leading to gene mutations. 

The principle behind this assay is that the used Salmonella typhimurium strains need the 

amino acid histidine as a growth factor, which is a consequence of a pre-existing 

mutation. By adding a mutagenic substance this pre-existing mutation can be reverted 

(Göggelmann, 1993). The intensity of the increase in bacterial growth is an indicator for 

the mutagenic potential of a tested substance (Mortelmans and Zeiger, 2000).  

 

In this study the Salmonella strains TA98, TA100 and TA102 were used. TA98 gives an 

indication of frameshift mutations and TA100 gives information on base-pair 

substitutions. The strain TA102 was developed as a strain that, in contrast to the others, 

contain its mutant site at AT instead of GC base pairs. It is able to detect cross- linking 

agents and can be reverted by mutagens that cause oxidative damage (table 3.7). In 

carrier gas helium (>99.996%)

flow 1.4 mL/min (constant flow)

temperature programm 70°C (kept for 1 min)

60°C/min to 245°C (kept for 1 min)

3°C/min to 275°C (kept for 41 min)

detector temperature 300°C

flame ionization detector (Hewlett-Packard, Karlsruhe, Germany)

GC-FID system

GC-FID conditions

HP-7673 autosampler (Hewlett-Packard, Karlsruhe, Germany)

Hewlett Packard 6890 Series II gas chromatograph (Hewlett-Packard, Karlsruhe, Germany)

RTX-5w/ Integra fused-silica capillary column 
(crossbond 5% diphenyl - 95% dimethyl polysiloxane; with film thickness 0.10 μm, 60 m × 
0.32 mm i.d.) (Restek, Bellefonte, PA, USA) 
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order to detect mutagens acting via different kind of mechanisms experiments including 

different tester strains are necessary (Mortelsmann & Zeiger, 2000). 

Tab 3.7 Genotypes of Salmonella tester strains used in the Ames test 

 

3.2.1 Chemicals and Reagences  

Tab 3.8 Chemicals and Reagences used in the Salmonella microsome assay 

 

Allele Strains DNA target Reversion event

HisG46 TA 100 -G-G-G- Base-pair substitution

HisD3052 TA 98 -C-G-C-G-C-G-C-G- Frameshifts

HisG428 TA 102 -T-A-A- Transitions/transversions

Substance Supplier Product number

Agar nr. 1 Oxoid/ Bertoni LP011P
2-Aminofluorene Sigma A9031
Ampicillin trihydrat Sigma A6140
Citric acid monohydrate Sigma C1909
Crystal violet Sigma C3886-25G
D-Biotin Sigma B4639
Dimethylsulfoxid Sigma D5879
Dulbecco´s phosphate buffered saline PAA Laboratories H15002
D-(+)-Glucose Sigma G8270
D-Glucose 6-phosphate Sigma G7250
Hydrochloric acid Riedel-de Haën 30723
Hydrogen peroxide, 30% Riedel-de Haën 31642
L-Histidine.HCl Sigma H8125
Magnesium chloride Sigma M9272
Magnesium sulfate Sigma 434183
Nicotinamide adenine dinucleotide Sigma N0505
Nutrient broth nr. 2 Oxoid/ Bertoni CM 067B
Potassium chloride Sigma P5405
Potassium phosphate dibasic Sigma P3786
Rat liver homogenate Biomedica/ ICN 50412
Salmonella thyphimurium strains
TA98, TA100 and TA102 

Trinova Biochem GmbH
(Giessen, Germany)

Sodium ammonium phosphate Sigma S9506
Sodiumazide Sigma S8032
Sodium chloride Sigma S5886
Sodium hydroxide Sigma O6203
Tert-butylhydroperoxide Sigma B2633
Tetracycline hydrochloride Sigma T3383
2,4,7-trinitro-9-fluoren unknown unknown
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3.2.2 Equipment  

Tab 3.9 Equipment used in the Salmonella microsome assay 

 

3.2.3 Investigated samples 

Three individual oxidation products, 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-

sitosterol, a mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and 

a mixture of the polar oxidation products of β-sitosterol were investigated.  

 

3.2.4 Solubility experiments 

Solubility of the plant sterol oxidation products was determined in different solvents 

(H2O, DMSO, acetone (95 %, 100 %), hexane, EtOH (95 %) and 2-propanol). 

Unfortunately phytosterol oxides are not water-soluble therefore unpolar solvents had to 

be tested as well. These unpolar solvents are at the same time considered to be 

potentially toxic, thus maximal added concentrations had to be identified in pre-tests. 

However, either the oxides were not dissolved in the solvents, or the solvents were too 

toxic for the used bacteria. Therefore for dissolving the samples the emulsifier Tween80 

had to be used. 

 

 

Equipment Supplier Product number

Petri dishes Bertoni 101VR20
Diluting loops Semadeni 3224
Autoclavable bags Semadeni 2054
Autoclave band Semadeni 4343
Cryogenic tubes, 2 mL Semadeni 4190
Helipur disinfectant VWR-Merck 148F4124
Incubation tubes (100 x 16-mm) Dr. F. Bertoni 2775/14

Analytical balance ( LC 4801P Sartorius)
Incubator   ( Memmert Modell 500)
Water bath   ( GFL Müller und Scherr)
Vortexer   ( Heidolph Reax 2000)
Laminar flow   ( Holten LaminAir HB 2472)
Autoclaves   ( Melag Autoklav 23, Varioklav 500)
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3.2.5 Preparation of reaction mixtures 

In order to obtain appropriate dilutions, respective amounts of oxidation products 

(dissolved in 2-propanol) were evaporated with nitrogen and pre-dissolved in a mixture 

of acetone/Tween80 (3/1, v/v). Afterwards two parts of sterile, distilled water was 

added to keep the concentration of acetone as low as possible and to avoid potential 

toxic effects on the bacterial strains. This procedure was tested to be safe for the strains 

in pre-experiments. 

 

The concentrations range used was broad, from very low to non physiologically high 

concentrations, but all below the solubility range, which is recommended for this test 

procedure (Ames et al., 1973; Mortelmans and Zeiger, 2000). Considering the results of 

pre-tests, four concentrations (0.04, 0.2, 1.0 and 5.0 mg per plate (≈ %)) of each 

compound were prepared. 

 

Due to precipitation problems in the highest concentration of 7α-OH-sitosterol, only 3 

doses of this compound could be used (0.04 – 1 %). There were similar but minor 

solubility problems with the mixture of 6β-OH-3-keto-sitosterol/6-α-OH-3-keto-

sitosterol, therefore as highest concentration 2.5 mg/plate was tested. On the other hand 

the mixture of all oxidation products showed very good solubility, so a 10 mg/plate 

dilution could also be included in the experiments (table 3.10). 

 

Tab 3.10 Overview of the used concentrations of the reaction mixtures  

 

 

 

10% 5% 2.5% 1% 0.2% 0.04%

7-ketositosterol x x x x

7β-OH-sitosterol x x x x

7α-OH-sitosterol x x x

6α-OH-3-keto-/
6β-OH-3-keto-sitosterol x x x x

mixture x x x x x
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3.2.6 Metabolic activation 

Some carcinogenic chemicals such as aromatic amines or polycyclic aromatic 

hydrocarbons are biologically inactive unless they are metabolized to active forms. On 

the other hand some mutagens are active but are inactivated during metabolization. 

Bacteria do not have a cytochrome-based P450 metabolic oxidation system. In order to 

simulate in vivo conditions the oxidation products were treated with a rat liver enzyme 

mixture (S9, which mainly consists of phase I enzymes) for metabolic activation 

(Mortelmans and Zeiger, 2000). The S9 mix was prepared according to the recipes of 

Maron and Ames (1984). It was stored on ice throughout the whole experiment and 

discarded after 50 min. 

 

3.2.7 Experimental design 

The Salmonella microsome assay was performed according to Maron and Ames (1984). 

In order to allow a closer contact of the test compounds and the indicator strain as well 

as to detect short term reacting mutagens the preincubation assay with an incubation 

period of 25 min (37 °C) was chosen, as successfully applied prviousely (Wagner et al., 

2007). 

Because of the highly sensitive nature of plant sterol oxides, samples had to be prepared 

freshly for every test run. 

 

 
Fig 3.2 Scheme of the Salmonella microsome assay 

 

Briefly, 500 µL of PBS or S9 mix, 200 µL of reaction mixture and 100 µL of overnight 

bacterial culture were added to test tubes. The tubes were shortly vortexed and then 
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placed in an incubator on a rotary shaker and incubated for 25 min at 37 °C. Thereafter 

2 mL of molten top agar were added to each tube. The mixture was vortexed and poured 

on minimum glucose plates. As soon as the agar had solidified the plates were inverted 

and stored in an incubator for 48 h at 37 °C. Thereafter his+- revertants were counted 

manually (figure 3.2). 

 

To further investigate the anti-/pro-oxidative effects the pro-oxidant tertiary-butyl 

hydroperoxide (tBOOH, 0.7 mM) was used for challenge tests. The concentration of the 

oxidant was chosen in order to obtain suitable numbers of revertants on the plates. 

Therefore 720 µL of the test sample and 720 µL of tBOOH were first mixed and then 

400 µL of this mixture was added to 500 µL of PBS or S9 mix and 100 µL of overnight 

culture. Besides, these challenge tests were performed in the same way as without pro-

oxidative stressing. 

All test procedures were conducted with and without metabolic activation. 

 

For each compound and each concentration three plates were prepared and every test 

was repeated under the same conditions on another day. So, altogether 6 replicates of 

each test sample were produced. 

In addition, each test includes a positive control to confirm the reversion properties and 

specificity of each tester strain as well as a negative control, the sample solvent, for the 

assessment of the spontaneous revertants (Mortelmans and Zeiger, 2000). 

For the strains TA98 and TA102 2,4,7-Trinitro-9-fluorenone and for TA100 

Sodiumazide was used as positive controls for tests without metabolic activation, while 

for tests with metabolic activation 2-Aminofluorene was used for all strains.  

Detailed description of the test performance and solvent recipes can be found in other 

Master and PhD Theses that have been done at the Department of Nutritional Sciences, 

University of Vienna: e.g. ‘Wirkungen von Phytosterin-Oxidationsprodukten im Ames 

Test’, Cornelia Fritz-Ton, 2007.  

3.2.8 Statistical analysis and evaluation of the mutagenic experiments 

All data are expressed as mean ± SD (standard derivation). Obtained data (n = 6 for 

each concentration used) were analysed by one-way analysis of variance (ANOVA) and 
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the Student’s t-test since they were all normally distributed, using SPSS 15.0 for 

Windows. Statistical differences were considered significant at a value of p < 0.05. 

In addition to the statistical, a nonstatistical evaluation was carried out. According to 

Mortelmans and Zeiger (2000) a compound is considered as ‘mutagenic’ if the total 

number of his+- revertants per plate was at least twice as high as the negative control 

(200 %). Moreover a dose related increase of the number of his+- revertants has to be 

shown. 

3.3 Cell culture assays 

3.3.1 Solutions and Reagents 

Tab 3.11 Chemicals and Reagences used in the cell tests 

Substance Supplier Product number

Amino acids non essential PAA Laboratories M11-003
AnnexinV-PE detection kit I BD Biosciences 559763
Camptothecin Sigma C9911
Dimethylsulfoxid Sigma D5879
3-(4,5-Dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide Sigma M5655

Dulbecco´s phosphate buffered saline PAA Laboratories H15002
Ethanol Riedel-de Haën 32221
Ethylenediaminetetraacetic acid Sigma E6758-500G
Ethylenediaminetetraacetic acid 
disodium salt dihydrate VWR 443882G

Ethidium bromide aqueous solution Sigma E1510
Foetal Bovine Serum "GOLD" PAA Laboratories A15-151
Dihydroethidine Sigma 37291
Hydrogen peroxide, 30% Riedel-de Haën 31642
Hydrochloric acid Riedel-de Haën 30723
Low melting Agarose Invitrogen 15517014
Methanol Merck 106007
Minimal essential medium (MEM) 
with Earle's Salta with L-Glutamine PAA Laboratories E15-825

Sodiumhydroxide Riedel-de Haën 6203
Normal melting Agarose Invitrogen 15510019
Phosphoric acid, 85% Riedel-de Haën 30417
Potassium chloride Sigma P5405
Potassium dihydrogen phosphate Riedel-de Haën 30407
Sodium chloride Sigma S5886
Sodium hydroxide Sigma S5881
Sodium pyruvate Sigma P2256
1,1,3,3-Tetraethoxypropane Sigma T9889
2-Thiobarbituric acid Sigma T5500
Tris Sigma T1503
Triton X-100 Serva T8787
Trypsin/EDTA PAA Laboratories L11-659
Trypan blue solution Sigma T8154
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3.3.2 Equipment 

Tab 3.12 Equipment used in the cell tests 
 

 

3.3.3 Preparation of general solutions and reagents for cell tests 

 

Culture media (500 mL): 

445 mL Minimal Essential Medium Eagle (MEM) 

50 mL fetal bovine serum (FBS) 

5 mL non essential amino acids 

1 mL Sodium pyruvate (500 mM) 

Equipment Supplier Product number

Centrifuge tube, 15 mL Dr. F. Bertoni 15PPR
Centrifuge tube, 50 mL Dr. F. Bertoni 36050NPG
Coverslips  (24x50 mm) Dr. F. Bertoni 990
Disposable syringe, 10 mL Dr. F. Bertoni 309110
Disposable syringe, 20 mL Dr. F. Bertoni 309296
Electrophoresis chamber, horizontal VWR 730-1796
Frosted slices VWR 6311304
Gloves ( nitril) VWR 112-2220
Syringe filters (22μm) Dr. F. Bertoni 2052-025
Injection cannula
Terumo Neolus Nr 18,
26G x23, 0,45x 23mm

pharmacy Lot 0606023

Round-Bottom Tubes, 5mL VWR 734-0443
Tissue culture flasks, 25cm2 Dr. F. Bertoni 3103-025
Tissue culture flasks, 75cm2 Dr. F. Bertoni 3123-075
6 well plates Dr. F. Bertoni 3810-006
24 well plates Dr. F. Bertoni 3820-024
96 well plates Dr. F. Bertoni 3860-096

Incubator   ( Heraeus Instruments Function Line Typ BB16)
Water bath   ( GFL Müller und Scherr)
Analytical balance ( LC 4801P Sartorius)
FACSCalibur flow cytometer ( multicolor system, BD Biosciences)
BD CellQuest Pro Software ( BD Biosciences)

Fluorescence microscope (Axioskop 20, Zeiss)

Microscope ( Axioskop, Zeiss; Wilovert, Hund Wetzlar)

Rotary Shaker ( ELMI Ltd. laboratory equipment)
POWER Supply   (Peqlab)
Komet 5.5, image analysis system   (Kineting Imaging)

Fluostar Optima microplate reader   (BMG labtechnologies)
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NaCl –solution (0.9 %): 

0.9 g NaCl  

100 mL Aqua bidest.  

 

Sodium pyruvate (500 mM): 

1.1 g Sodium pyruvate 

20 mL NaCl- solution (0.9 %) 

 

Positive control: 

0.00375 % H2O2 in MEM (incubation time: 10 min) 

 

3.3.4 HepG2-cells 

For the following cell culture experiments human hepatoma cells (HepG2) were used. 

The cells were isolated from the liver tissue of a 15 year-old Caucasian male from 

Argentina in 1975. HepG2-cells are perpetual adherent, epithelial in morphology and 

routinely used for toxicology studies (Aden et al., 1979). 

 

3.3.5 Cell maintenance 

HepG2 were cultured as monolayers in MEM supplemented with 10 % (v/v) FBS, 2 

mM L-glutamine, 1 mM sodium pyruvate and 1 % (v/v) non-essential amino acids in a 

humidified atmosphere at 37 °C in 5 % CO2 in the absence of antibiotics. Cells were 

passaged weekly and the culture medium was changed every 3-4 days. Cultures were 

allowed to reach 80 % confluence before experiments were performed. 

 

3.3.6 Passage 

Subconfluent cells were washed with Dulbecco´s Phosphate-buffered saline (PBS), 

harvested with trypsin-EDTA solution (1.5 mL for T25-flasks, incubation time: 3 min) 

and gently centrifuged (5 min, 800 RPM). Thereafter the cell pellet was resuspended in 

10 mL pre-warmed culture medium and a single-cell suspension was prepared by 
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pressing the cell suspension through an injection cannula. 1/15 of the cells were seeded 

in a new flask.  

 

3.3.7 Investigated samples 

Three individual oxidation products, 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-

sitosterol, a mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and 

a mixture of the polar oxidation products of β-sitosterol were investigated.  

 

3.3.8 Sample preparation 

For delivery to the cells all compounds were dissolved in ethanol and added to reduced 

serum media (2.5 % (v/v) FBS). Within all experiments 3 different concentrations (30 

µM, 60 µM, 120 µM) and an incubation period of 24 hours were considered in order to 

guarantee uniformity and comparability. The final concentration of ethanol in cultures 

did not exceed 0.4 % (v/v) and did not affect cell proliferation. Equivalent quantities of 

ethanol were added to control cells. 

 

3.3.9 Cell treatment 

For treatment cells were cultured in different multiwell dishes depending on the 

respective experiment at a density of either 2x104 cells/well in 250 µL (96-well plates), 

2x105 cells/ well in 2 mL (24-well plates) or 1x 106 cells/ well in 3 mL (6-well plates) of 

complete medium. After 24 hours medium was removed and cells were incubated with 

the different β-sitosterol oxide samples. At the end of the incubation period, both 

floating and attached cells were collected for analysis. 

 

3.3.10  Trypan blue exclusion assay 

Trypan blue is an acid di-azo group dye. Its anions can bind to cell proteins, but as long 

as the cell membranes are intact it is not able to interact with the cells. Therefore, viable 

cells exclude the dye, whereas dead cells will be stained blue, thus can be easily counted 

using a light microscope.    
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3.3.10.1 Assay procedure 

At the end of the incubation period culture media was collected in order to include 

floating cells in the analysis. Cells were washed once with 1 mL pre-warmed PBS, 

harvested with trypsin/EDTA solution (100 µL, 4 min incubation), resuspended in 1 mL 

of complete media and mixed with the collected media containing the floating cells. 

With the help of an injection cannula a single cell suspension was prepared. 100 µL of 

this cell suspension were mixed with 100 µL of trypan blue solution and incubated for 3 

minutes. Thereafter 20 µL of this mixture were filled into the haemocytometer and the 

number of viable (bright cells) and non-viable cells (stained blue) were counted using a 

light-optical microscope. 

Results were presented as number of viable cells expressed as percentage (%) of 

negative control values. Additionally percentage of cell death was calculated according 

to the percentage of dead cells of the total cell population.  

Experiments were performed in triplicates. 

 

3.3.11  MTT (3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromid) 

assay 

In metabolically active cells the yellow, water soluble tetrazolium salt MTT (3,(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromid) is converted to purple, water 

insoluble formazan by dehydrogenase enzymes of the mitochondria (figure 3.3). The 

resulting intracellular formazan is directly proportional to the number of metabolically 

active cells. This colorimetric reaction can be measured spectrophotometrically 

(Mosmann, 1983). 

 

 

Fig 3.3 Reduction of yellow MTT to purple formazan. 
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3.3.11.1 Preparation of solutions and reagents 

MTT-solution (5 g/L): 

50 mg MTT 

10ml PBS 

MTT-solution was protected from light and stored at 4°C. For delivery to cells 20 µL 

MTT-solution was added to 180 µL media (final concentration 0.5 mg/mL). 

 

3.3.11.2 Assay procedure 

At the end of the incubation period culture medium was discarded and cells were 

washed with 200 µL of pre-warmed PBS. 200 μL of MTT in culture medium was added 

and incubated for 1 hour at 37°C. Thereafter the MTT containing media was carefully 

removed and cells were washed with 200 µL of pre-warmed PBS. 100 µL of DMSO 

was added and formazan crystals were dissolved under gentle shaking (30 min). 

Absorbance was read at 540 nm with a Fluostar Optima microplate reader 

Results were expressed as the number of viable cells as percentage (%) of control cells. 

Measurements were made in triplicates. 

 

3.3.12  Flow cytometric measurments 

With the help of flow cytometry it is possible to simultaneously examine multiple 

characteristics of single cells. Based on light scatter properties (forward scatter channel 

(FSC), side scatter channel (SSC)) it is possible to determine cell size and granularity. 

At the same time specific cell parameters can be analysed by labelling definite targets 

with special fluorescence markers. In most cases these markers are antibodies which are 

also bound to fluorescence groups. 

 

3.3.12.1 Detection of apoptosis 

During the early phase of apoptosis phosphatidylserine, which is normally located on 

the inner surface of the cell membrane, is translocated from the inner to the outer 

surface (Koopman et al., 1994). The expression of phosphatidylserine on the external 

surface is a universal event during apoptosis occurring before the loss of membrane 
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integrity arise, independent of the respective cell type. This loss of plasma membrane 

asymmetry is precedent for the recognition and removal of damaged cells by 

macrophages (van Engeland et al., 1998). 

AnnexinV, a phosphlipid binding protein, specifically binds to phosphatidylserine in a 

Ca2+ dependent reaction. Thus staining with fluorescent labelled AnnexinV-PE allows 

identifying cells in the early stage of apoptosis (figure  3.4).  

 

 
Fig 3.4 Schematic representation of the Annexin V assay (www.bdbiosciences.com). 
 

Annexin V is not an absolute marker of apoptosis, as phosphatidylserine translocations 

can also occur during the process of necrosis. Therefore in addition to Annexin V the 

dye 7-amino-actinomycin D (7-AAD) was used to mark necrotic cells. 7-AAD binds to 

nucleic acids inside the cell but is not able to diffuse intact cell membranes. Hence only 

those cells with damaged membranes, a condition commonly occurring in the later 

stages of apoptosis or in necrosis, are marked with 7-AAD (Vermes et al., 1995). 

AnnexinV positive/7-AAD negative cells were defined as early apoptotic, while 

AnnexinV positive/7-AAD positive cells were classified as late apoptotic or necrotic.  

 

3.3.12.1.1 Preparation of solutions and reagents 

 

AnnexinV-PE detection kit I: 

AnnexinV-PE 

7-AAD 

Binding buffer (0.1 M HEPES/NaOH (pH 7.4) 1.4 M NaCl, 25 mM CaCl2) 
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Positive control: 

Camptothecin  

Stock solution (1 mM) 

6.967 mg Camptothecin 

20 mL DMSO 

For delivery to cells 5 µL Camptothecin-solution was added to 12 mL media (24 h 

incubation). 

 

3.3.12.2 Assay procedure 

For detection of apoptosis an AnnexinV-PE detection kit (BD Pharmingen) was used 

and analysis was done following the manufacturer’s instructions.  

Briefly, at the end of the incubation period culture media was collected in order to 

include floating cells in the following analysis. Cells were washed with 1 mL pre-

warmed PBS and harvested with trypsin/EDTA solution (300 µL, 4 min incubation). 

After the incubation period 700 µL of complete media was added, mixed with the 

collected media of step 1 and centrifuged (5 min, 800 RPM). 

Resulting cell pellets were washed twice with cold PBS. Then cells were resuspended in 

binding buffer at a concentration of approximately 1 x 106 cells/mL. 100 µL of this 

suspension was transferred into 5 mL culture tubes and 5 µL of Annexin V-PE and 7-

ADD were added. Cells were incubated for 15 min at RT in the dark. Then 400 µL of 

binding buffer was added to each tube and samples were analysed by flow cytometry 

within one hour. 

For each sample 10.000 cells were acquired and data management was done with 

CellQuest Pro Software (FACScan, BD Biosciences, USA). Experiments were 

performed in triplicates.  

 

3.3.12.3  Intracellular Superoxide anion (O2
•-) generation 

Hydroethidine (HE) was used for the detection of O2•- in living cells. It is a non-

fluorescent compound, which diffuses easily through the cell membrane. Under the 

action of O2•- HE is dehydrogenated to ethidium bromide and intercalates DNA. The 
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red fluorescence of ethidium can be measured by flow cytometry (absorption/emission: 

518/605 nm) (Rothe and Valet, 1990).  

 

3.3.12.3.1  Preparation of solutions and reagents 

Stock solution (1 mM): 

5 mg Hydroethidine 

16 mL DMSO 

 

3.3.12.4 Assay procedure 

At the end of the incubation period culture media was collected in order to include 

floating cells in the analysis. Cells were washed with 1 mL pre-warmed PBS, harvested 

with trypsin/EDTA solution (300 µL, 4 min incubation) and then 700 µL of complete 

media was added.  Cells were mixed with the collected media of step 1, centrifuged (5 

min, 800 RPM) and cell pellets were resuspended in PBS at a concentration of 

approximately 1x 106 cells/mL. 5 µL of HE-solution in DMSO was added to 1 mL of 

cell suspension. Then cells were incubated for 10 min at 37 °C in the dark, then stored 

on ice and analysed as quickly as possible by flow cytometry. 

For each sample 10.000 cells were analysed and data management was done with 

CellQuest Pro Software (FACScan, BD Biosciences, USA). Experiments were 

performed in triplicates  

 

3.3.13  Measurement of Lipid Peroxidation  

To include a second maker for oxidative stress, malondialdehyde (MDA) was measured. 

MDA constitutes an end product of lipid peroxidation and was determined as described 

earlier (Ramel et al., 2004), with some modifications. 
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Tab 3.13 HPLC conditions used for MDA-determination 

 

3.3.13.1 Preparation of solutions and reagents 

Phosphoric acid (44 mM): 

3 mL orto-phosphoric acid (85%) 

ad 100 mL aqua bidest. 

 

Thiobarbituric acid (TBA): 

0.6 g TBA 

100 mL aqua bidest. 

 

Methanol/ NaOH (90/10, v/v): 

5 mL NaOH (1N) 

45 mL methanol (chromasolv) 

NaOH (1N) 

4 g NaOH 

100 mL aqua bidest. 

 

column: LichroCART 250-4 Lichrosher 100 RP-18.10 µm

pre-column: LichroCART 125-4 Lichrosher 100 RP-18.5 µm

Hitachi F-1050 flourescence detector

HPLC conditions

mobile phase phosphate buffer/ methanol (60/40, v/v)

flow rate 1 mL/min 

injection volume 20 µL

detection fluorescence (emission/excitation: 563/532 nm) 
sensitivity: 20

Hitachi D-7500 integrator

LaChrom Merck Hitachi chromatography system

Hitachi L-7100 pump 

HPLC system
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KCl (75 mM): 

5.592g KCl/1000 mL aqua bidest. 

 

Phosphate buffer (pH 6.8): 

6.8 g potassium dihydrogen phosphate 

ad 1L aqua bidest. 

 

Tab 3.14 Composition of standard solutions used for MDA-determination 

 

3.3.13.2 Assay procedure 

At the end of the incubation period culture media was collected (to include floating cells 

in the analysis). Cells were washed with 1 mL pre-warmed PBS, harvested with 

trypsin/EDTA solution (300 µL, 4 min incubation), media including floating cells were 

added and centrifuged (5 min, 800 RPM). Cell pellets were resuspended in 2 mL of 

media. A single cell suspension was prepared using an injection cannula and 100 µL 

thereof were used for the determination of cell numbers. The remaining cell suspensions 

were centrifuged (5 min, 800 RPM) again. 150 µL KCl, 400 µL aqua bidest., 700 µL 

phosphoric acid and 260 µL TBA was added to the cell pellets. At the same time 500 

µL aqua bidest., 700 µL phosphoric acid and 260 µL TBA were added to 50 µL of the 

standard solutions. Standards and cell samples were incubated in boiling water for 60 

minutes and then cooled on ice. 100 µL of the cell samples or standards were mixed 

with 100 µL of methanol/NaOH and centrifuged (3 min, 3000 RPM). Then 20 µL were 

injected into the HPLC and MDA was measured by fluorescence detector. 

stock-solution 2 (8.12 µM)

100 µL stock 1
ad 50 mL EtOH/ Aqua bidest. (40/60, v/v)

standard 1 (81.2 µM): 
standard 2 (40.6 µM): 50 µL stock1 + 4.95 mL aqua bidest.
standard 3 (20.3 µM): 1 mL standard 2 + 1 mL aqua bidest.
standard 4 (8.12 µM): = stock 2
standard 5 (4.06 µM): 1 mL stock 2 + 1 mL aqua bidest.
standard 6 (0.81 µM): 100 µL stock 2 + 900 µL aqua bidest.

stock-solution 1 (4.06 mM)

50 µL 2-Thiobarbituric acid 
ad 50 mL EtOH/ Aqua bidest. (40/60, v/v)

100 µL stock1 + 4.9 mL aqua bidest.

standard solutions
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Data was expressed as nanomoles per 109 cells. Experiments were performed in 

triplicates. 

 

3.3.14  Alkaline single cell gel electrophoresis (SCGE) assay 

The single cell gel electrophoresis assay (Comet assay) represents a rapid technique for 

the quantification of DNA damage in individual mammalian cells. The assay was 

designed by Ostling and Johanson (Ostling and Johanson, 1984) for the detection of 

double-strand breaks. Due to further developments (Singh et al., 1988; Olive, 1989) 

today various forms of DNA damage (e.g., single- and double-strand breaks, alkali 

labile sites, oxidative DNA base damage and DNA cross-linking with DNA or protein) 

can be confirmed. 

The principle of the assay is that cells embedded in agarose gel on microscope slides are 

lysed to remove all cellular proteins. Thereafter DNA is allowed to unwind under 

alkaline conditions and later electrophoresed. In the electric field broken DNA 

fragments (damaged DNA) migrates faster than undamaged DNA, as it remains mainly 

in the nucleus. The result looks like a comet with a ‘head’ of intact DNA and a ‘tail’ full 

of DNA fragments. The extent of DNA drifted away from the head of the comet was 

directly proportional to the DNA damage.  

 

 
Fig 3.5 Scheme of the alkaline single cell gel electrophoresis assay 
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3.3.14.1 Preparation of solutions and reagents  

 

Lysis solution 

2.5 M NaCl (146.1 g) 

100 mM Na2EDTA (37.2 g) 

10 mM Tris (1.2 g) 

in 1 L aqua bidest. 

PH was set to 10 by addition of NaOH (~ 8 g). 

Prior to use 1% Triton X 100 and 10% DMSO were added and the lysis solution was 

refrigerated for at least one hour. 

 

Electrophoresis buffer 

stock solutions: 

10 N NaOH (200 g/500 mL aqua bidest.) 

200 mM Na2EDTA (14.89 g/200 mL aqua bidest.) 

For 2200 mL of electrophoresis buffer (pH 13.6-13.7) 2130 mL aqua bidest., 59 mL 

NaOH and 11 mL Na2EDTA was mixed. Electrophoresis buffer should be cooled before 

use. 

 

Neutralising buffer 

0.4 M Tris (48.5 g/1000 mL aqua bidest.) 

pH was set to 7.5 with HCl solution (3.5 %). 

 

Low melting agarose (LMA) 

125 g LMA  

25 mL PBS  

For experiments LMA had to be heated in the microwave and stored at 37 °C in the 

waterbath. 

 

Normal melting agarose (NMA) 

1.5 g NMA  

100 mL PBS  
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NMA was heated in the microwave until near boiling. In order to pre-coate the slides 

they were dipped in hot agarose. On the underside the agarose was wipped off, slides 

were air dried and stored at room temperature until needed. 

 

Ethidium bromide (20 µg/mL) 

10 µL stock solution (10 mg/mL) 

5 mL aqua bidest. 

 

3.3.14.2 Assay procedure 

The SCGE assay (comet assay) was carried out according to the guidelines developed 

by Tice et al. (1990; 2000) and Singh et al. (1988). 
At the end of the incubation period culture media was collected to include also floating 

cells in the analysis. Cells were washed with 1 mL pre-warmed PBS, harvested with 

trypsin/EDTA solution (300 µL, 4 min incubation), mixed with floating cells and 

centrifuged (5 min, 800 RPM). Cell pellets were resuspended in 500 µL of media and a 

single cell suspension was prepared using an injection cannula. 100 µL of the cell 

suspension were mixed with 100 µL of trypan blue solution (incubated 3 min) and cell 

numbers were determined. Aliquotes of 1x105 cells were mixed with 80 µL of LMA and 

transferred to NMA-coated slides. Slides were covered with cover slips and placed on 

ice packs until the agarose has solidified. Then cover slips were removed, slides were 

placed in lysis solution and stored at 4 °C for 24 hours. 

After lysis slides were incubated in alkaline electrophoresis buffer (40 min) for DNA 

unwinding. Then electrophoresis was performed using a horizontal gel electrophoresis 

(25 V, 50 W, 300 mA, 20 min). Thereafter slides were rinsed 2 times with neutralization 

buffer and once with cold aqua bidest. Dried slides were stained with 5 µL ethidium 

bromide solution and analysed using a fluorescence microscope coupled with a 

computerized image analysis system (Komet 5.5, Kineting Imaging, Liverpool, UK). 

For each sample, three replicate gels were analysed and from each replicate slide 50 

cells were randomly selected. As parameter of DNA damage percentage of DNA in the 

tail (% DNA in tail) was determined.  Each experiment was done twice. 
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3.3.15  Statistical analysis of cell assays 

All data are expressed as mean ± SD (standard derivation). Obtained data were analysed 

by the Student’s t-test since they were all normally distributed, using SPSS 15.0 for 

Windows. Statistical differences were considered significant at a value of p < 0.05 and 

are reported as p < 0.05, p < 0.01 and p < 0.001. 

 

3.3.16  Measurement of the uptake of oxidation products in HepG2-cells 

3.3.16.1.1 Extraction of the oxidation products 

At the end of the incubation period culture media was removed and collected separately. 

Cells were harvested using trypsin/EDTA solution (1.5 mL, 4 min), centrifuged (800 

RPM, 5 min), washed twice with PBS and resuspended in 5 mL of KCl (incubation for 

20 min). Then the lipid fraction was extracted from cell and media samples. Therefore 5 

mL of diethyl ether was added and after centrifugation (1200 RPM, 10 min) the ether 

phase was collected. This extraction procedure was repeated 3 times. 

The ether phases of all samples were evaporated and dissolved in ethanol. Then the 

samples were sent to the Department of Applied Chemistry and Microbiology and there 

stored at -20 °C until measurement. 

 

3.3.16.1.2 Sample preparation for HPLC-analysis 

Extracted samples were evaporated again, dissolved in 1 mL of n-heptane/2-propanol 

(95/5, v/v) and filtered (0.45 µm GHP membrane filters) and stored at -20 °C until 

analysis. 

 

3.3.16.1.3 Quantification of the extracted oxidation products by a HPLC-UV-ELSD 

system 

For the separation of the extracted oxides a mobile phase system of n-heptane/2-

propanol (97/3, v/v) and a flow rate of 0.6 mL/min were used based on methods 

published by Kemmo et al. (2005; 2004).  
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In order to ascertain co-elutions of oxysterols and lipid extracts of the cell membrane 

standard solutions consisting of 7-ketocholesterol, 7β-OH-cholesterol, 7α-OH-

cholesterol, the laboratory prepared mixture of 6-β-OH-3-keto-sitosterol/6-α-OH-3-

keto-sitosterol (also used for incubation experiments) and cell lipid residues (derived as 

result of the extraction) were used. 

 

In several pre-testes ELSD conditions were examined with the help of cholesterol oxide 

standard solutions (7-ketocholesterol, 7α-OH-cholesterol and 7β-OH-cholesterol). The 

effect of various temperatures (50 °C/42 °C, 55 °C/42 °C, 60 °C/42 °C and 45 °C/36 °C 

for drift tube/nebulising temperature), nebuliser gas pressures ( 20, 30, 40  and 50 PSI) 

and injection volumes (5 and 10, 20 µL) were tested.  

 

Tab 3.15 HPLC conditions used for the detection of POPs 

 

3.3.16.1.4  Assessment of detection limits and linearity of UV and ELSD responses 

Detection limits and linearity were determined using standard solutions containing 7-

ketocholesterol, 7β-OH-cholesterol and 7α-OH-cholesterol.  

Waters pump (model 515)  (Walters, Milford, USA) 

Waters 996 Photodiode Array Detector  (Walters, Milford, USA) 

Waters 2420 ELS-detector  (Walters, Milford, USA) 

mobile phase n -heptane/2-propanol (97/3, v/v)

flow rate 0.6 mL/min 

injection volume 20 µL

detection UV-detection, 206 nm
ELSD-detection: nebulization temperature 42 ˚C
                           drift tube temperature 50 ˚C
                           pressurised air 20 PSI

HPLC conditions

Supelcosil silica column (250 mm x 2.1 mm i.d., 5 µm)  (Supelco, Bellefonte, PA, USA) 

HPLC system

Waters 717 plus Autosampler (Walters, Milford, USA) 
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Tab 3.16 Cholesterol oxide standard solutions 

 

Detection Limits (LOD) were calculated on the basis of a signal to noise ratio of 3. 

Standard solution 1 was diluted down to one hundred times and multiple injections on 

different days were performed. 

For assessment of linearity triplicate injections of 6 different volumes (5, 10, 20 and 30 

µL of solution 1; 10 and 15 µL of solution 2) of the standard solutions were processed.  

 

3.3.16.1.5 Quantification of sterol oxides 

Quantification was performed by PDA - and ELS - detection. The concentrations of the 

oxidation products were estimated by cholesterol standards of the corresponding 

cholesterol oxidation products, whereas 7-ketocholesterol was also used for the 

quantification of 6α-OH-3-keto-sitosterol and 6β-OH-3-keto-sitosterol. Concentration 

and purity of the standards was confirmed by GC–FID as described above. Standard 

curves were analysed at the beginning and at the end of each compound, concentration 

of the oxides was calculated using the mean standard curve.  

 

3.3.16.1.6 Statistical analysis 

The data was recorded as means ± standard deviations. Analysis was carried out by 

simple regression testing using Statgraphics 4.0 software (STCC Inc., Rockville, ML). 

µg/mL cholesterol oxides

solution 1 63.5 7-keto
79.9 7β-OH
61.9 7α-OH

solution 2 328.6 7-keto
395.6 7β-OH
305.6 7α-OH

standard solutions
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4. Results and Discussion 
 

4.1 Production and isolation of phytosterol oxidation products 

As already mentioned POPs are commercially not available. For the assessment of their 

potentially harmful effects in bacterial and cell culture assays individual oxides had to 

be laboratory-prepared. Various methods for the preparation of sterol oxidation products 

exist. However, most of them are designed for the collection of only small amounts of 

oxides. 

Therefore the initial target of this thesis was the development of a fast, simple and 

effective method for the isolation of common β-sitosterol oxides. 

 

4.1.1 Preparation of oxides by thermo-oxidation 

For the preparation of β-sitosterol oxidation products thermo-oxidation in solid state 

was conducted. Different heating conditions (130 °C/ 24 h, 130 °C/ 48 h and 120 °C/ 48 

h) were tested and generated amounts of oxysterols were estimated by GC-FID. As can 

be seen in figure 4.1 after heat treatment for 24 h at 130 °C highest amounts of the 

single oxides were formed. Longer heat exposure, however, decreased the total amount 

of oxidation products detected. This may be due to conversion reactions to other 

secondary oxidation products or further reactions such as polymerisation leading to non 

polar compounds, dimers and polymers (Soupas et al., 2005).  

Similar to our findings Kemmo et al. (2005) reported that heat treatments at different 

temperatures induced the formation of the same kind of oxidation products, yet the 

amount of the single oxides varied. Already Caboni et al. (1997) noticed that the ratios 

of the formed products were influenced by the oxidation conditions applied. 
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Fig 4.1 Proportion of collected β-sitosterol oxidation products (mg) after different 

oxidation conditions (130 °C/24 h, 120 °C/48 h and 130 °C/48 h) measured by GC-FID.  

 

The oxidation products observed in these experiments, 7-ketositosterol, 7β-OH-

sitosterol, 7α-OH-sitosterol, 5,6β-epoxy-sitosterol, 5,6α-epoxy-sitosterol, 6β-OH-3-

keto-sitosterol, 6α-OH-3-keto-sitosterol, 6β-OH-sitosterol and 6keto-sitosterol, were 

analogous to those commonly found in literature.  

Grandgirard et al. (2004c) generated 7α-OH-, 7β-OH-, 5,6α-epoxy, 5,6β-epoxy- 7keto- 

and triol-compounds of various plant sterols after heat-treatment at 135 °C for 24 h.  

Johnsson and Dutta (2003) heated plant sterols for 72 h at 120 °C and found 7α-OH-, 

7β-OH-, 5,6α-epoxy, 5,6β-epoxy- and 7keto- compounds. Additionally 24-OH-, 25-OH- 

as well as 6-OH-3-keto- compounds were detected. 

Same as (Daly et al., 1983; Apprich and Ulberth, 2004; Conchillo et al., 2005) no triols 

were observed in our experiments, presumably due to the lack of water (Zhang et al., 

2005b).  

The high amount of 7-ketositosterol and the generation of 7β-OH-sitosterol rather than 

7α-OH-sitosterol was in accordance with previous studies (Chien et al., 1998; Kemmo 

et al., 2005). 
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4.1.2 Purification and enrichment of phytosterol oxidation products  

After heat treatment of sterols a mixture of oxidation products, non oxidized material 

and several unknown by-products is formed. Because of the complexity of the gained 

blend usually a combination of different separation techniques is applied (Daly et al., 

1983). 

To exclude the main part of unknown and non oxidized compounds, column 

chromatography using silica gel was conducted. In recent years column chromatography 

and TLC have been gradually replaced by the use of disposable ready-to-use SPE 

cartridges (Guardiola et al., 2004). However, considering the great amount of samples to 

be purified, in our case CC with its higher loading capacity allowed a more efficient 

working procedure. 

Since our interest was focused on POPs with a higher polarity than non oxidized β-

sitosterol a stepwise elution order to remove apolar components up to free β-sitosterol 

was applied. Solvent mixtures of n-heptane/diethyl-ether with increasing polarity in 

combination with silica gel and a final elution of the oxidized components with acetone 

were already successfully employed by others (Apprich and Ulberth, 2004; Lampi et al., 

2002; Piironen et al., 2002).  

The activity of polar sorbents like silica gel depends strongly on the hydration of the 

silanol groups (Guardiola et al., 2004). Therefore, as parts of the oxidation products 

were obviously retained in the column, 10 % of water was added to the silica gel. 

 

Analytical TLC was used to confirm the separation process performed by CC (figure 

4.2). Products with a lower polarity than β-sitosterol were successfully removed. 

Although non oxidized β-sitosterol was still present in the purified samples a relevant 

reduction could be noted. 

Identification of the oxidation products was not only done by comparison of the 

respective Rf-values with those of the corresponding cholesterol oxides, but also by 

colour development after spraying with sulphuric acid and following heat treatment. In 

accordance with earlier publications (Daly et al., 1983; Bortolomeazzi et al., 1999) non 

oxidized sterols, β-sitosterol and cholesterol, turned reddish brown, epoxide epimeres 

yellow and 7α-OH- and 7β-OH-compounds blue. Under the conditions applied 

separation of 7-ketosterols and epoxy derivatives was not achieved. However, 7-
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ketosterols don’t show colour development but are detectable under UV light (Lebovics, 

2002; Daly et al., 1983). 

Fig 4.2 Oxidation products of β-sitosterol observed on silica TLC plates developed after 

spraying with 50% sulfuric acid and following heat treatment. 

 

4.1.3 Separation of single oxidation products by a NP-HPLC-UV system 

Due to the high sample amounts to be separated and in accordance with earlier 

publications (Daly et al., 1983; Ansari and Smith, 1979) the application of an HPLC 

method was more effective for the isolation of single oxidation products than more 

generally used TCL methods. Further in TLC analysis artefact formation due to the long 

exposure of the samples to air is possible (Rose-Sallin et al., 1995). 

In general both normal (Kemmo et al., 2007; Kemmo et al., 2008; Csallany et al., 1989; 

Chien et al., 1998) and reverse phase chromatography (Osada et al., 1999; Razzazi-

Fazeli et al., 2000; Manini et al., 1998) has already been successfully used for the 

analysis of cholesterol- and plant sterol oxidation products. Yet normal phase 

chromatography is considered to be the more effective option (Saldanha et al., 2006).  

Correspondingly the final separation of the oxidation products was achieved by a 

normal phase HPLC-UV system with a silica column. Based on investigations of 

Kemmo et al. (2007; 2005) different mobile phase systems with changing percentages 
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of n-heptane and 2-propanol were tested. Rapid separation within 20 min could be 

achieved in an isocratic system with a mobile phase of n-heptane/2-propanol (93:7, v/v). 

 

Fig 4.3 Separation of β-sitosterol oxidation products by NP-HPLC. 

 

 

Figure 4.3 shows the elution order in this system: 6β-OH-3-ketositosterol/6α-OH-3-

ketositosterol, 7-ketositosterol, 6β-OH-sitosterol, 7β-OH-sitosterol and 7α-OH-

sitosterol.  

Due to the high injection volume of purified samples 6β-OH-3-ketositosterol and 6α-

OH-3-ketositosterol co-eluted. However, our interest was focussed on the isolation of 

large amounts of the major oxidation products 7-ketositosterol, 7β-OH-sitosterol and 

7α-OH-sitosterol and good separation was achieved for them. Therefore the applied 

method was retained and 6-OH-3-keto - epimeres were collected in one fraction. 

Injection of 1.8 mL oxide sample (containing oxidation products derived from 

approximately 1000 mg β-sitosterol) led to yields in the range of several milligrams for 

the single fractions in one HPLC run (table 4.1). 
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compound retention time (min) mg/ injection overall collected amounts (mg)

6β-OH-3-keto-sitosterol 5.7 430.7
6α-OH-3-keto-sitosterol 4.34 315.7

7keto-sitosterol 11.09 16.9 1753.2

7β-OH-sitosterol 13.36 11.03 1044.4

7α-OH-sitosterol 14.82 6.12 592.6

7.82

 
Tab 4.1 Retention times and yields of single oxidation products (mg) within one HPLC- 

run or in total. 

 

Separation of the sterol oxides was monitored using UV detection at a wavelength of 

206 nm, which is the common wavelength employed for oxysterols (Csallany et al., 

1989). Therefore epoxy-compounds, although being formed during the oxidation 

process, couldn’t be isolated with this method, as in general products without double 

bonds do not absorb well at UV wavelengths (Moreau, 2005). 

 

4.1.4 Purity of the collected oxidation products 

For identification and quantification of the collected fractions GC-MS and GC-FID 

were used, respectively (Soupas et al., 2004b; Lampi et al., 2002).  

The applied commercial β-sitosterol was almost pure, but included approximately 10 % 

of campesterol. Therefore during the heating process campesterol oxides were formed 

too. In accordance with earlier investigations (Dutta and Appelqvist, 1997) it was not 

possible to separate campesterol oxides from their sitosterol counterparts during the 

HPLC run. On average 10 % campesterol oxidation products were present in the 

corresponding β-sitosterol oxides. However - considering the velocity of our method - 

we decided to put up with these impurities.  

Moreover, high proportions of 7-ketositosterol were found in the 6β-OH-sitosterol-

sample. Therefore 6β-OH-sitosterol was excluded from subsequent toxicology testing. 

Table 4.2 gives detailed information on the purity of the respective compounds. 
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Tab 4.2 Purity of the obtained oxidation products as measured by GC-FID.  

 

4.2 Salmonella microsome assay 

For the evaluation of the anti-/mutagenic and anti-/oxidative potential of the collected 

oxidation products, 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-sitosterol, a mixture of 

6β-OH-3-ketositosterol/6α-OH-3-ketositosterol (ratio 4:3) and a mixture containing 

polar β-sitosterol oxides, were tested in Salmonella typhimurium indicator strains 

TA98, TA100 and TA102 in the Ames test. The preincubation assay was applied for all 

test runs. According to the literature this is the most sensitive test form, since it allows a 

closer contact between test compounds and indicator strain, which is an advantage for 

detecting short- living mutagens (Mortelmans and Zeiger, 2000). 

To our knowledge single oxides of β-sitosterol have never been tested before on their 

effects towards Salmonella typhimurium strains. 

 

4.2.1 Mutagenicity testing 

Mutagenicity assays were performed with all three indicator strains (TA98, TA100, 

TA102) with and without metabolic activation. Results are shown in table 4.3 and 4.4, 

respectively.  

campesterol counterpart others

6β-OH-3-keto-sitosterol/
6α-OH-3-keto-sitosterol

7keto-sitosterol 82 10 8

7β-OH-sitosterol 90 10

7α-OH-sitosterol 70 10 20

fraction purity (%)
impurities (%)

88 12
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compound concentration TA 98  -S9 TA 98 +S9 TA 100 -S9 TA 100 +S9

(mg/plate)
revertants/ 

plate
revertants/ 

plate 
revertants/ 

plate 
revertants/

 plate 

negative control   22 ±5b)   50 ±11b)   205 ±65b) 199 ±10b)

7keto-sitosterol 5   22 ±5b)   46 ±4b)   236 ±62b) 192 ±12b)

1   27 ±5b)   52 ±13b)   276 ±40a)b) 191 ±22b)

0.2   25 ±3b)   46 ±7b)   237 ±72b) 187 ±14b)

0.04   22 ±5b)   49 ±7b)   210 ±60b) 175 ±20a)b)

7β-OH-sitosterol 5   21 ±4b)   53 ±6b)   202 ±31b) 212 ±10b)

1   23 ±3b)   48 ±4b)   197 ±43b) 183 ±18b)

0.2   24 ±8b)   46 ±5b)   195 ±51b) 175 ±3a)b)

0.04   24 ±3b)   47 ±7b)   195 ±36b) 182 ±16b)

7α-OH-sitosterol 1   17 ±3a)b)   56 ±3b)   220 ±17b) 187 ±48b)

0.2   19 ±3b)   50 ±9b)   209 ±28b) 163 ±6a)b)

0.04   16 ±8b)   46 ±12b)   202 ±45b) 176 ±8a)b)

6α-OH-3-keto/
6β-OH-3-keto
-sitosterol

2.5   25 ±3b)   46 ±3b)   204 ±38b) 179 ±9a)b)

1   24 ±4b)   54 ±6b)   212 ±55b) 180 ±33b)

0.2   23 ±9b)   54 ±9b)   217 ±66b) 175 ±5a)b)

0.04   21 ±4b)   49 ±9b)   240 ±57b) 142 ±26b)

mixture 10   22 ±5b)   37 ±5b)   200 ±56b) 174 ±4a)b)

5   20 ±2b)   44 ±3b)   202 ±44b) 182 ±13b)

1   22 ±8b)   56 ±3b)   216 ±59b) 168 ±11a)b)

0.2   22 ±4b)   48 ±5b)   204 ±71b) 173 ±9a)b)

0.04   22 ±6b)   46 ±4b)   213 ±63b) 173 ±3a)b)

positive control 211 ±15 965 ±74 2553 ±473 468 ±61

 
Tab 4.3 Overview on the data obtained in the preincubation assay with the strains TA98 

and TA100. Numbers of his+ - revertants are listed as means ± SD (a) p< 0.05 to 

negative control, b) p< 0.05 to positive control). In addition values significantly different 

to the negative control are coloured in orange. 

 

For all three strains the spontaneous mutation frequency was in accordance with the 

control levels published (Mortelmans and Zeiger, 2000) and the number of revertants of 

each sample was significantly lower than the positive control (p< 0.05). 



Results and Discussion                                                                                                  79   

 

In the preincubation assay using strain TA98 the number of his+- revertants of each 

sample was in the range of the negative control. Further no concentration dependency 

was observed. Therefore no mutagenic activity could be observed. 

 

In TA100 number of his+- revertants which significantly differed to that of the negative 

control were obtained for individual samples. In assays including metabolic activation, 

contrary to a rather expected mutagenic indication, a certain reduction of revertant 

numbers was observed. However, neither a twofold reduction nor a significant dose 

related decrease was induced. Thus no evidence for a mutagenic or protective effect of 

phytosterol oxides was seen. 

In accordance with Lea et al. (2004), who tested a mixture of oxidized and unoxidized 

products of β-sitosterol using different Salmonella strains (TA98, TA100, TA102, 

TA1535 and TA1537),  in the strains TA98 and TA100 β-sitosterol oxidation products 

were mutagenically not active. However, in the mentioned publication only an 

unspecific mixture containing 30% of phytosterol oxides was used. Differing results for 

individual oxides and mixtures have already been repeatedly documented (O'Sullivan A 

et al., 2005; Leonarduzzi et al., 2001). 

 

Also in TA102 none of the phytosterol oxidation products were able to increase the 

number of his+ - revertants beyond the doubled negative control, which was set as 

threshold for mutagenic activity. Yet for 7-ketositosterol, the mixture of 6β-OH-3-

ketositosterol/6α-OH-3-ketositosterol and the mixture of polar oxides a significant 

increase in revertant numbers was observed. Results for the two mixtures, however, 

were rather inconclusive as no dose relation was found.  

In the case of 7-ketositosterol also a concentration-dependent tendency was seen for the 

lower concentrations but not for the 5%- fraction, mainly due to its higher standard 

deviation. Moreover, in the test with metabolic activation the increase of 7-

ketositosterol (5%) was even more pronounced (figure 4.4).  

On the other hand 7β-OH-sitosterol was rather inactive in the normal preincubation 

assay. In the test approach with metabolic activation a significant reduction of the 
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number of revertants was detected for the highest concentration of 7β-OH-sitosterol 

(5%).  

Besides its capability of detecting cross-linking agents the indicator strain TA102 

additionally informs on oxidative stress (Grey and Adlercreutz, 2003; Mortelmans and 

Zeiger, 2000). Based on the latter, the increase in revertants induced by 7-ketositosterol 

(5%) could be an indication of a pro-oxidant tendency. On the other hand the decline in 

revertant numbers of 7β-OH-sitosterol (5%) could be interpreted as a marginal sign of 

antioxidative effects. However, it could also be the result of increased cytotoxicity 

(Mortelmans and Zeiger, 2000). 

 

Fig 4.4 Effects of 7-ketositosterol and 7β-OH-sitosterol in TA102 without (A) or with 

(B) metabolic activation. The dotted lines represent the doubled negative control. 

Results are expressed as mean + SD (* p < 0.05 to negative control). 
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Publications on the mutagenic properties of plant sterol oxides other than that of Lea et 

al. (2004) are lacking. However, some evidence exists that mixtures of COPs have 

mutagenic effects towards Salmonella typhimurium strains (Ansari et al., 1982; Smith et 

al., 1979). Due to the structural similarity of POPs and COPs analogues biological 

effects are assumed. 

Sevanian and Peterson (1986) investigated pure oxidation products of cholesterol and 

showed α-epoxide and β-epoxide to be mutagenic in V79 Chinese lung fibroblasts. Both 

epoxide epimers can be hydrolysed to triol which was not found to be mutagenic but 

highly cytotoxic. More recently Cheng et al. (2005) investigated three pure COPs, 7-

ketocholesterol, 5,6α-epoxy-cholesterol and triol compounds, in the Ames and in the 

chromosome aberration test. Contrary to the results cited above the mutagenic response 

of triol was clearly demonstrated, whereas 7-keto- and 5,6α-epoxy-cholesterol were not 

active. Similar to Smith et al. (1986) the authors suggested ROS to be involved in the 

mutagenic action since antioxidant enzymes diminished the mutagnic response.  
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compound concentration TA102 TA102 TA102+tBOOH TA102+tBOOH 

(mg/plate) revertants/
 plate -S9

revertants/ 
plate +S9

revertants/
 plate -S9

revertants/
 plate +S9

negative control   571 ±44b)   847 ±63b)   747 ±99b) 1589 ±349b)

7keto-sitosterol 5   701 ±82a)b) 1318 ±41a)b)   866 ±24a)b) 2038 ±239b)

1   685 ±16a)b)   926 ±28b)   936 ±66a)b) 1714 ±137b)

0.2   635 ±36a)b)   879 ±108b)   940 ±75a)b) 1891 ±334b)

0.04   575 ±45b)   846 ±81b)   963 ±52a)b) 1974 ±123b)

7β-OH-sitosterol 5   607 ±55b)   675 ±68a)b)   525 ±45a)b) 1374 ±60b)

1   589 ±79b)   853 ±32b)   776 ±58b) 1770 ±146b)

0.2   582 ±76b)   840 ±91b)   840 ±65b) 1679 ±146b)

0.04   606 ±74b)   793 ±37b)   804 ±71b) 1591 ±103b)

7α-OH-sitosterol 1   597 ±101b)   744 ±97b)   684 ±56b) 1222 ±156b)

0.2   510 ±27a)b)   802 ±16b)   812 ±36b) 1252 ±164b)

0.04   452 ±103a)b)   652 ±34a)b)   686 ±111b) 1317 ±93b)

6α-OH-3-keto/
6β-OH-3-keto-
sitosterol 2.5   684 ±88a)b)   1051 ±28a)b)   809 ±51b) 2119 ±90a)b)

1   644 ±51a)b)   979 ±12a)b) 1031 ±42a)b) 2082 ±32a)b)

0.2   609 ±40b)   990 ±29a)b)   801 ±121b) 2338 ±29a)b)

0.04   644 ±62a)b)   953 ±2a)b)   814 ±32b) 2065 ±70b)

mixture 10   713 ±60a)b)  1079 ±107a)b)   891 ±14a)b) 1501 ±35b)

5   648 ±94a)b)   1008 ±54a)b)   797 ±12b) 1879 ±158b)

1   598 ±55b)   967 ±82a)b)   842 ±102b) 1997 ±5a)b)

0.2   556 ±67b)   829 ±41b)   902 ±76a)b) 2003 ±19b)

0.04   625 ±27a)b)   731 ±143 b)   851 ±113b) 2057 ±175b)

positive control 2353 ±422 3480 ±165 2412 ±71 3780 ±271

 
Tab 4.4 Overview on the data obtained in the preincubation assay with the strain 

TA102. Numbers of his+ - revertants are listed as means ± SD (a) p< 0.05 to negative 

control, b) p< 0.05 to positive control). In addition values significantly different to the 

negative control are coloured in orange. 
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4.2.2 Antioxidant testing 

To strengthen the information on oxidative stress challenge tests with the pro- oxidant 

tertiary-butylhydroperoxide (tBOOH) and the strain TA102 were conducted. tBOOH is 

a known initiator of lipid peroxidation, where it leads to the formation of alkoxyl and 

alkyl radicals (figure 4.5). By the use of tBOOH a possible antioxidative action of the 

respective test compounds due to a radical scavenging mechanism is determined (Grey 

and Adlercreutz, 2003). Per definition a reduction of the revertant colony number below 

50% of the negative control level is necessary for an antioxidative effect (Mortelmans 

and Zeiger, 2000).   

Fig 4.5 Decomposition of tBOOH in the presence of Fe2+ (Halliwell and Gutteridge, 

1999a) 

 

After treatment with 7-ketositosterol number of his+ - revertants of all tested 

concentrations differed significantly from those obtained for the solvent control. Lowest 

number of revertants was obtained after incubation with the highest concentrated 

fraction (5%). However, since revertant numbers were still higher than the negative 

control no indication for an antioxidative effect was seen. In the test approach with 

metabolic activation an increase in the number of his+ - revertants for all concentrations 

of 7-ketositosterol, but in particular for the highest concentrated fraction (5%), was 

observed. Yet no significant results were obtained (figure 4.6). 

 

The significant reduction of the number of his+ - revertants of 7β-OH-sitosterol (5%) 

observed in the preincubation assay with TA102 was even more pronounced by the 

addition of tBOOH. However, no dose response was found. Therefore no antioxidative 

effect could be proven, even though an indication for a weak antioxidative behaviour 
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can be presumed. However, with the addition of S9 this antioxidative property was 

attenuated (figure 4.6). 

 

Results for 7α-OH-sitosterol, the mixture of 6β-OH-3-ketositosterol/6α-OH-3-

ketositosterol and the mixture containing polar β-sitosterol oxides were, despite some 

significantly increased values, rather inconclusive. 

 

Fig 4.6 Effects of 7-ketositosterol and 7β-OH-sitosterol in the challenge test using 

tBOOH and TA102 without (A) or with (B) metabolic activation. The dotted lines 

represent the doubled negative control. Results are expressed as mean + SD (* p < 0.05 

to negative control). 
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4.3 Cell culture assays 

Cytotoxicity of the phytosterol oxides 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-

sitosterol, a mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and 

a mixture of polar oxides was examined by the use of HepG2-cells. 3 different 

concentrations (30 µM, 60 µM und 120 µM) of each oxidation products as well as an 

incubation period of 24 hours were chosen for all experiments in order to guarantee 

uniformity and comparability.  

 

4.3.1 Viability assays 

For evaluation of cell viability after treatment with oxide samples the trypan blue 

exclusion assay and the MTT test were applied, respectively. Similar results for both 

test approaches were obtained. 

 

4.3.1.1 Trypan blue exclusion assay 

Using the trypan blue exclusion assay incubation with the test compounds resulted in a 

significant decrease in cell numbers relative to the negative control (p≤ 0.001, except 

7β-OH-sitosterol). Significant concentration dependencies were found for 7α-OH-

sitosterol (p ≤ 0.001), 7-ketositosterol (p ≤ 0.01) and the mixture (p ≤ 0.05). The order 

of cytotoxicity at the highest concentration tested (120 µM) was 7α-OH-sitosterol > 7-

ketositosterol > 6α-OH-3-keto/6β-OH-3-keto-sitosterol = mixture > 7β -OH-sitosterol 

(figure 4.7). 
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Fig 4.7  Cell numbers measured by the TB-assay after 24 h of incubation with β-

sitosterol oxides, expressed as percentage of negative control. Results are expressed as 

mean + SD (* p < 0.05; ** p≤ 0.01; *** p≤ 0.001 to negative control). 
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Fig 4.8 Percentage of cell death measured by the TB-assay after 24h of incubation with 

β-sitosterol oxides. Results are expressed as mean + SD (* p < 0.05; ** p≤ 0.01; *** p≤ 

0.001 to negative control). 
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When the percentage of cell death in control and treated cells was assessed a significant 

(p ≤ 0.001, for 7β -OH-sitosterol (30 µM): p ≤ 0.05) increase for all compounds, except 

for the mixture at 30 µM (p = 0.298), could be seen. Significant dose response was only 

observed for 7-ketositosterol (p≤ 0.01). At all three concentrations tested the increase in 

cell death was particularly pronounced for 7-keto-sitosterol and 7α-OH-sitosterol (figure 

4.8). 

 

4.3.1.2 MTT- assay 

Applying the MTT assay a significant reduction of metabolically active cells compared 

to the negative control was observed for all sterol oxides (p ≤ 0.001, for 7β -OH-

sitosterol p ≤ 0.01) tested (figure 4.9). Further concentration dependencies (p ≤ 0.001) 

were found for 7α-OH-sitosterol, 6α-OH-3-keto/6β-OH-3-keto-sitosterol and the 

mixture. Also for 7β -OH-sitosterol and 7-ketositosterol cell viability after treatment 

with 30 µM of the respective oxides differed significantly (p ≤ 0.001) from that 

obtained after incubation with concentrations of 60 µM or 120 µM. However, no 

significant differences were observed between the results of 60 µM and 120 µM 

treatment. 

Similar to the results of the trypan blue exclusion assay 7α-OH-sitosterol appeared to be 

the most toxic compound, followed by 6α-OH-3-keto/6β-OH-3-keto-sitosterol and 7-

ketositosterol. At the highest concentration tested (120 µM) 7α-OH-sitosterol reduced 

viability of the cells to 23 % of the control level. The order of cytotoxicity at this 

concentration was 7α-OH-sitosterol > 6α-OH-3-keto/6β-OH-3-keto-sitosterol > 7-

ketositosterol > mixture > 7β -OH-sitosterol. 
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Fig 4.9 Cell viability measured by the MTT-assay after 24h of incubation with β-

sitosterol oxides, expressed as percentage of negative control. Results are expressed as 

mean + SD (* p < 0.05; ** p≤ 0.01; *** p≤ 0.001 to negative control). 

 

Thus results of the trypan blue assay were consistent with those obtained by the MTT 

assay (7-ketositosterol: r = 0.609, p ≤ 0.001; 7β -OH-sitosterol: r = 0.389, p ≤ 0.001; 7α-

OH-sitosterol: r = 0.637, p ≤ 0.001; 6α-OH-3-keto/6β-OH-3-keto-sitosterol: r = 0.235, p 

≤ 0.05; mixture: r = 0.466, p ≤ 0.001). In both test approaches viability of the cells was 

significantly reduced after incubation with increasing concentrations of β-sitosterol 

oxides, which corresponds to earlier studies on phytosterol oxides (Maguire et al., 2003; 

Adcox et al., 2001; Ryan et al., 2005; Roussi et al., 2005). 

Ryan et al. (2005) investigated several β-sitosterol oxidation products (7β-OH, 7-keto, 

sitostanetriol, 5α, 6α-epoxide, 5β, 6β-epoxide and a mixture of 5α, 6α-epoxide/5β, 6β-

epoxide (6:1)) and their corresponding oxycholesterols in three cell lines including 

HepG2-cells. In contrast to our results none of the tested phytosterol oxides caused 
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ketositosterols turned out to be the compounds exerting the highest cytotoxicity.  
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Conversely, in the present study 7β-OH-sitosterol appeared to have the lowest effect on 

the viability of cells. This corresponds to the investigation of Roussi et al. (2005), who 

found a reduction in cell numbers through treatment with 7β-OH-sitosterol only after 

incubation periods longer than 24 h.  

Regarding both viability assays conducted the mixture had the second lowest impact on 

HepG2-cells. Based on several investigations on COPs (Leonarduzzi et al., 2001; 

Aupeix et al., 1995; Biasi et al., 2004), mixtures of oxysterols are thought to be less 

toxic towards cells than isolated oxides. 

No information on the cytotoxic properties of 6α-OH-3-keto- and 6β-OH-3-keto-

compound of phytosterols and cholesterol towards cell lines exist. Compared to the 

other oxides tested moderate inhibition of cell proliferation was observed. Due to the 

lack of comparative data no further conclusion can be drawn. 

Consistently 7-ketositosterol and 7α-OH-sitosterol emerged as those compounds 

exerting the strongest reduction of cell viability. The toxic potential of 7-ketositosterol, 

was already confirmed in various in vitro assays (Ryan et al., 2005), whereas so far data 

on 7α-OH-sitosterol is lacking. Contrary to the present findings its cholesterol 

counterpart was found to exhibit less than or equal toxicity to 7β-OH-cholesterol (Clare 

et al., 1995). However, individual 7α-OH-products of plant sterols have never been 

tested before. 

 

4.3.2 Detection of apoptosis  

To elucidate whether apoptosis was involved in the reduction of cell numbers flow 

cytometry was conducted. Apoptosis is characterised by morphological changes as 

shrunk cell volume, condensed chromatin and finally the formation of apoptotic bodies 

(Samali et al., 1999). These morphological alterations affect the light scattering 

properties of cells. Therefore the analysis of scattered signals as done by flow cytometry 

allows information on cell size and structure. Decreased forward scatter (cell size) and 

increased side scatter (granularity) are characteristic of apoptotic cells (Koopman et al., 

1994; Tuschl and Schwab, 2003). Such subpopulations were observed after treatment of 

cells with 60 and 120 µM of 7-ketositosterol, 7α-OH-sitosterol and 6α-OH-3-keto/6β-

OH-3-keto-sitosterol, thus indicating apoptotic cell death.  



Results and Discussion                                                                                                  90   

To further clarify the mode of cell death double staining with PE-labelled AnnexinV 

and 7-AAD was conducted. In the presence of Ca2+ ions Annexin V attaches 

specifically to phosphatidylserine, which is translocated from the inner to the outer cell 

surface during the early phase of apoptosis (Vermes et al., 2000). 

Of all tested compounds only 7-ketositosterol (30 µM) was able to increase (+ 45 %) 

the proportion of AnnexinV positive cells compared to the negative control (figure 

4.10). This increase, however, was not significant. Treatment with higher concentrations 

of 7-ketositosterol led to a reduction in AnnexinV positive cells. Also for all other 

oxides a decrease in the proportions of AnnexinV positive cells with increasing 

concentration of test samples was found. The present observation indicates chosen 

incubation conditions being too intense for detecting early apoptotic events. This 

corresponds to findings of Leonarduzzi et al. (2002) who observed that 7-

ketocholesterol induced apoptosis at low concentrations whereas at higher sample 

amounts necrosis was the predominate mode of cell death.  

At the time point investigated higher percentages of necrotic or late apoptotic than early 

apoptotic cells were detected. Therefore it could either be that apoptosis was already 

initialised at earlier timepoints and the detected results display post apoptotic necrosis 

or that tested oxides induced generally necrosis in HepG2-cells. 

 

0

50

100

150

200

250

300

30µM 60µM 120µM
7keto-

sitosterol

30µM 60µM 120µM
7β-OH-

sitosterol

30µM 60µM 120µM
7α-OH-

sitosterol

30µM 60µM 120µM
6α/β-OH-3-keto-

sitosterol

30µM 60µM 120µM
mixture

A
nn

ex
in

V
 p

os
./ 

7A
A

D
 n

eg
. c

el
ls

   
   

   
  

 ( 
%

 o
f n

eg
at

iv
e 

co
nt

ro
l) 

   
 

***
*********

**
*

***
*

 
Fig 4.10 Effects of β-sitosterol oxides on phosphatidlyserine externalization in HepG2-

cells. Values are mean ± SD of 3 separate experiments and expressed as percentage of 



Results and Discussion                                                                                                  91   

negative control (dotted line). Columns significantly different to control levels are 

marked with * for p≤ 0.05, ** for p≤ 0.01 or *** for p≤ 0.001. 

 

The induction of apoptosis by POPs has already been determined previously (Roussi et 

al., 2005; Ryan et al., 2005; Maguire et al., 2003). Increase of apoptotic cells, assessed 

by morphological analysis and determination of DNA fragmentation, was found for 7-

keto- and 7β-OH-sitosterol in U937 cells, while no signs of apoptosis were ascertained 

in HepG2 and CaCo2-cells, respectively (Ryan et al., 2005). 

In contrast, Roussi et al. (2005) observed apoptosis, as measured by caspase activation 

and DNA fragmentation, in CaCo2-cells after treatment with 7β-OH-sitosterol using 

same sample concentrations.  

In our study increase in apoptotic cells was observed only after incubation with 7-

ketositosterol, but not with 7β-OH-sitosterol. However, considering the different 

methods applied, no firm comparison can be drawn.  

Phosphatidylserine exposure has not been tested before with phytosterol oxides. 

Concerning cholesterol, 7-keto- and 7β-OH- and 5,6β-epoxy-cholesterol were found to 

induce an increase in AnnexinV positive cells (Lemaire-Ewing et al., 2005). In contrast 

to our study in the case of cholesterol oxides U937 cells were used. Differences in the 

toxicity of oxysterols according to the applied cell lines have already been reported 

before (Miguet et al., 2001). 

 

4.4 Detection of oxidative stress 

Oxidation products of cholesterol were found to rapidly increase O2
•- production 

(Monier et al., 2003; Miguet-Alfonsi et al., 2002; Lemaire-Ewing et al., 2005), which in 

general induces cell death. Therefore collected β-sitosterol oxides were tested for their 

oxidative properties. As O2
•- constitutes only one type of ROS the measurement of 

MDA as a second maker for oxidative stress was included. 
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4.4.1 Measurement of superoxide anions (O2
•-) production 

The generation of O2
•- was quantified by flow cytometry after staining with HE. For all 

tested compounds a significant overproduction of O2
•- was observed (figure 4.11). 

Highest activity, however, was assessed for 7-ketositosterol (+56 %) and the mixture 

(+54 %) at a concentration of 30 µM. No significant concentration dependency was 

found. 
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Fig 4.11 Effects of β-sitosterol oxides on superoxide anion production in HepG2-cells. 

Values are mean ± SD of 3 separate experiments and expressed as percentage of 

negative control (dotted line). Columns significantly different to control levels are 

marked with * for p≤ 0.05, ** for p≤ 0.01 or *** for p≤ 0.001. 

 

4.4.2 Measurement of lipid peroxidation (MDA)  

The effect of oxysterols on lipid peroxidation was investigated by HPLC-detection of 

MDA.  

A concentration dependent increase in MDA-levels was observed after treatment of 

cells with 7-ketositosterol, 7α-OH-sitosterol and 6α-OH-3-keto-/6β-OH-3-keto-

sitosterol (figure 4.12). At the highest concentration tested (120µM) MDA levels of 194 

% (7-ketositosterol), 298 % (7α-OH-sitosterol) and 140 % (6α-OH-3-keto/6β-OH-3-

keto-sitosterol) of the negative control were found. On the other hand 7β -OH-sitosterol 
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and the mixture had no effect on lipid peroxidation, as MDA levels in the range of the 

negative control were detected. 

 

0

50

100

150

200

250

300

350

400

450

500

30µM 60µM 120µM
7-keto

sitosterol

30µM 60µM 120µM
7β-OH-

sitosterol

30µM 60µM 120µM
7α-OH-

sitosterol

30µM 60µM 120µM
6α/β-OH-3-keto-

sitosterol

30µM 60µM 120µM
mixture

M
D

A
 ( 

%
 o

f n
eg

at
iv

e 
co

nt
ro

l)

*

 
Fig 4.12 Effects of β-sitosterol oxides on Malondialdehyde formation in HepG2-cells. 

Values are mean ± SD of 3 separate experiments and expressed as percentage of 

negative control (dottet line). Columns significantly different to control levels are 

marked with * for p≤ 0.05. 

 

Only limited data exist concerning the oxidative properties of plant sterol oxides. 

Depletion of glutathione levels, but no effect on catalase activity was found in U937 

cells after incubation with a mixture of β-sitosterol oxides (Maguire et al., 2003). 

Similar Ryan et al. (2005) observed a significant decrease in glutathione after treatment 

with 7β -OH-sitosterol (120 µM), but neither β-carotene nor α- and γ-tocopherol could 

protect against POP induced damage. Comparing the oxidative effects of 7β-OH- 

sitosterol and -cholesterol in CaCo2-cells, in contrast to the oxycholesterol the sitosterol 

derivate was found to diminish the intracellular production of reactive oxygen species 

(Roussi et al., 2005).  

Intracellular O2
•- production induced by phytosterol oxides has never been measured 

before. In line with previous results on cholesterol oxides (Lemaire-Ewing et al., 2005; 

Miguet-Alfonsi et al., 2002; Monier et al., 2003) all tested oxidation products showed a 

significant increase in O2
•- .  
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Data on lipid peroxidation caused by POPs are lacking. Concerning cholesterol oxides 

an increase in MDA levels was found for 7-keto- and 7β-OH-cholesterol, while 7α-OH-

cholesterol showed to be rather ineffective (Miguet-Alfonsi et al., 2002). In contrast to 

the mentioned publication and in order to improve the accuracy of the results in the 

present study MDA was detected by HPLC rather than by the more commonly used 

TBARS assay, which has already been criticized for insufficient specificity and validity 

(Halliwell and Whiteman, 2004). Nevertheless, the increase in MDA levels induced by 

7-ketocholesterol was in line with our results. Data for 7α-OH- and 7β-OH- sitosterol, 

however, differed from those observed for its cholesterol counterparts, as in our case 

7α-OH-sitosterol, in particular at a concentration of 120 µM, proved to strongly increase 

MDA levels. 

However, in line with earlier publications no correlation could be found between the 

increase in lipid peroxidation and the generation of O2
•- (Hall, 2006). O2

•-, contrary to 

many other ROS, seems to be relatively unreactive with lipids (Halliwell and 

Gutteridge, 1999b). 

Investigations on plant sterol and cholesterol oxides have shown that cytotoxicity was 

not necessarily associated with enhanced oxidative stress (Roussi et al., 2007; Lemaire-

Ewing et al., 2005). Also in our study differences in the cytotoxic effects of the single 

oxides couldn’t entirely be explained by their ability to induce oxidative stress. Yet 7-

keto- and 7α-OH-sitosterol, as those compounds displaying the strongest effect on cell 

viability could enhance both O2
•- and levels of lipid peroxidation. Though it is also 

possible that lipid peroxidation was induced through necrosis as a secondary event. 

  

4.5 Detection of DNA damage 

Since ROS have the potential to interact with cellular components including DNA the 

capability of phytosterol oxides to induce DNA strand breaks was also assessed using 

the alkaline single-cell gel electrophoresis assay.  

As presented in figure 4.13 applied oxidation products were rather inactive. For all 

compounds tested measured % DNA in tail were in the range of the negative control. 

Therefore no significant increase of DNA damage could be observed. Further standard 

derivations were found to be very high. Accordingly, in line with reports on the 
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genotoxic action of COPs (Maguire et al., 2003) no increased DNA damage was 

observed. 
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Fig 4.13 Effects of β-sitosterol oxides on DNA in HepG2-cells. Values are mean ± SD 

of 2 separate experiments. Dotted line represents the level of solvent control.  

 

 

4.6 Assessment of phytosterol oxidation products’ uptake in HepG2-

cells 

For a better discussion of the obtained results it was of utmost importance to know 

whether the employed oxidation products were absorped by the cells. A confirmation of 

their accumulation would substantiate the observed cytotoxic actions of the tested 

POPs. 

 

4.6.1 Extraction of phytosterol oxides 

Extraction of oxides from cells and media was done according to Tian et al. (2006). In 

our case, however, diethyl ether was used instead of chloroform/methanol. 

In agreement with Palozza et al. (2007) no time consuming sample pre-treatment other 

than dissolving and filtration was needed as no interfering peaks were present in the 

subsequent HPLC analysis. Hence, unwanted sample losses caused by several 

purification steps could be prevented (Abidi, 2001). 
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4.6.2 Optimization of the HPLC conditions for the separation of oxidized β-

sitosterol compounds 

Complete separation of sterol oxidation products and other cell lipid residues was 

achieved on a silica column by an isocratic elution system of n-heptane/2-propanol. 

Different mobile phase systems with changing percentages of 2-propanol were tested 

based on former investigations by Kemmo et al. (2005; 2007; Säynäjoki et al., 2003). 

Best resolution within 20 min was achieved with a mobile phase of n-heptane/2-

propanol (97/3, v/v) at a flow rate of 0.6 mL/min. Standard solutions of 7-

ketocholesterol, 7β-OH-cholesterol and 7α-OH-cholesterol were used since standards of 

β-sitosterol oxidation products do not exist. Their separation is given in figure 4.14. 

Fig 4.14 NP-HPLC chromatogram of cholesterol standards, 6β-OH-3-ketositosterol and 

6α-OH-3-ketositosterol with (A) UV detection at 206nm and (B) ELS-detection. 
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As neither cholesterol nor plant sterol 6β-OH-3-keto- and 6α-OH-3-ketoproducts are 

available, laboratory prepared sitosterol compounds, used for the cell incubation 

procedure, were employed. In order to ascertain coelutions of oxysterols and other lipids 

of the cell membrane, lipid extracts derived from HepG2-cells were injected together 

with standard solutions as well.   

The elution order in this system was as follows: 6β-OH-3-ketositosterol, 6α-OH-3-

ketositosterol, 7-ketocholesterol, 7β-OH-cholesterol and 7α-OH-cholesterol. 

  

4.6.3 UV-Detection 

Although for single oxysterols their maximum UV absorption was observed at different 

wavelengths (Osada et al., 1999; Kermasha et al., 1994), 206nm is the common 

wavelength employed for sterol oxidation products (Csallany et al., 1989). Therefore 

UV detection performed at 206nm was used for quantification of sterol oxides. 

To enable highly accurate results identification and quantification of the sample peaks 

was done with cholesterol standards of the corresponding oxidation products. As 6β-

OH-3-keto- and 6α-OH-3-ketocholesterol standards were not available amounts had to 

be estimated with the help of 7-ketocholesterol. In general UV absorption depends on 

the number of double bonds in the structure of the analyte. Hence, inaccuracies are 

possible when standards with a different number of double bonds are used (Kemmo et 

al., 2005). As β-sitosterol and cholesterol oxides contain the same number of double 

bonds, misinterpretations were prevented. 

 

4.6.4 ELS-Detection  

For optimal signal to noise ratio, both gas flow rate and drift tube temperature have to 

be adjusted on the respective analyte (Moreau, 2005). Therefore different gas pressures 

(20, 30, 40 and 50 PSI) and temperatures (45 °C/36 °C, 50 °C/42 °C, 55 °C/42 °C, 60 

°C/42 °C, 55 °C/48 °C and 60 °C/48 °C for drift tube/nebulising temperature) were 

tested. Lower gas pressures led to slightly bigger peak areas, but as too low pressures 

could cause contamination of the detector 20 PSI were chosen for the subsequent 

analysis. In accordance with Lakritz and Jones (1997) only minor changes were 
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observed by increasing the temperature. Therefore the initial adjustment, a nebulising 

temperature of 42 °C and a drift tube temperature of 50 °C, were maintained. 

For the analysis of cholesterol and its oxidation products also higher temperatures have 

been applied (Lakritz and Jones, 1997; Osada et al., 1999), but here mobile phases with 

higher proportions of polar solvents were used, which require higher evaporating 

temperatures (Nair et al., 2006). In general the lowest temperature that allows 

acceptable low noise baseline response and the detection of all analytes of interest 

should be chosen (Young and Dolan, 2004).  

 

4.6.5 Linearity of UV and ELSD responses 

For assessment of linearity triplicate injections of the standard solution containing 7-

ketocholesterol, 7β-OH-cholesterol and 7α-OH-cholesterol were processed. As shown 

in table 4.5 good linearity was observed for UV-detection with a determination 

coefficient (r2) between 0.996 and 0.998 at a concentration range of 0.3-9.4 µg (6 

calibration points).  

The response of the ELSD has previously been described as sigmoidal or exponential 

(Lakritz and Jones, 1997). Correspondingly, a non linear respond, especially at lower 

concentrations, was found for the here tested standard mixture. After log transformation 

of peak area versus standard concentration a linear respond of r2 = 0.997 - 0.998 was 

observed for the same concentration range as tested in UV mode (table 4.5). Described 

data transformation is well established in literature (Lakritz and Jones, 1997; Heron et 

al., 2004).  

 

4.6.6 Limits of detection  

LOD were calculated on the basis of a signal to noise ratio of 3 by the use of standard 

dilutions. With UV detection the LODs were in the range of 5-20.8 ng, with 7-

ketocholesterol being the most sensitive (Csallany et al., 1989). In accordance with 

earlier publications (Osada et al., 1999) ELS-detection was less sensitive. The LODs for 

the single oxysterols were found to be about 12 times higher, between 62.5 and 250 ng 

(table 4.5). 
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compounds retention times (min) linearity range (µg) determination coefficient (r2) LOD (ng)

UV 7-ketocholesterol 7.28 0.29 - 10.1 0.998 ± 0.002 5
7β-OH-cholesterol 16.28 0.35 - 11.9 0.998 ± 0.001 15.6
7α-OH-cholesterol 18.61 0.28 - 9.4 0.996 ± 0.001 20.8

ELSD 7-ketocholesterol 7.41 0.29 - 10.1 0.998 ± 0.001 62.5
7β-OH-cholesterol 16.4 0.35 - 11.9 0.998 ± 0.001 250
7α-OH-cholesterol 18.74 0.28 - 9.4 0.997 ± 0.002 250

 
Tab 4.5 Retention times, linearity ranges, determination coefficients and detection limits 

assessed for HPLC - UV and - ELS-detection. 

 

 

4.6.7 Detection and quantification of β-sitosterol oxides in cells and 

corresponding media 

Due to the higher sensitivity of UV detection and the relatively low concentration of 

oxidation products applied for cell assays only UV results were used for quantification. 

To our knowledge so far no information on the uptake of oxyphytosterols in cells is 

published, even though uptake data is necessary to support information on a dose-

response. However, similar to investigations on COPs (Biasi et al., 2004) a 

concentration dependent increase in sterol compounds inside the cells after incubation 

with increasing sample concentrations could be clearly demonstrated (figure 4.15). 
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Fig 4.15 HPLC-UV profiles of β-sitosterol oxidation products extracted from HepG2-

cells after incubation with 0, 30, 60 and 120 µM of 7-ketositosterol (A), 7β-OH-
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sitosterol (B), 7α-OH-sitosterol (C), 6α-OH-3-keto/6β-OH-3-keto-sitosterol (D) and the 

mixture of polar oxides (E). Peaks: 1=6β-OH-3-keto-sitosterol, 2=6α-OH-3-keto-

sitosterol, 3=7-ketositosterol, 4=7β-OH-sitosterol, 5=7α-OH-sitosterol. 

 

Further for 7-ketositosterol, 7β-OH-sitosterol and 7α-OH-sitosterol a significant (p ≤ 

0.05) raise in intracellular concentrations of the single oxidation products was found. 

Similar to Miguet et al. (2001) for oxycholesterols different absorption affinities of the 

single oxyphytosterols were observed. Considering the distribution pattern of the POPs 

between cell and media compartments corresponding trends could be found irrespective 

of the added concentration of the oxidation product. Whereas for 7-ketositosterol and 

7α-OH-sitosterol after 24 hours the majority of the detected oxides (~ 70 %) was found 

inside the cells, for 7β-OH-sitosterol no definite tendency was observed. For the 

mixture of 6α-OH-3-keto- and 6β-OH-3-keto-sitosterol only 30 % of the α-compound 

was detected inside the cells, whereas for the β-counterpart similarly 50 % were 

assessed in the cells and the media, respectively. Considering the combined uptake as a 

mixture of these two compounds, larger parts (55-60 %) of the oxidation products were 

located in the media (for details see figure 4.16).  

Interestingly, for those compounds exhibiting a higher reactivity in the various cell 

assays also higher amounts of oxidation products inside the cells than in the 

corresponding media were detected (7-keto- and 7α-OH-sitosterol), whereas for the 

rather inactive 7β-OH-sitosterol no specific uptake trend was observed.  

Due to the very small amount of the single oxides present in the mixture a precise 

quantification was not possible. 

 

Further the obtained uptake data correlates negatively with the outcomes of the MTT- (r 

= -0.667, p ≤ 0.05 for 7-ketositosterol; r = - 0.874, p ≤ 0.01 for 7β-OH-sitosterol; r = - 

0.781, p ≤ 0.01 for 7α-OH-sitosterol; r =-0.655, p ≤ 0.05 for 6α-OH-3-keto-/6β-OH-3-

keto-sitosterol) and the TB-test (r = -0.689, p ≤ 0.05 for 7-ketositosterol; r = - 0.823, p ≤ 

0.01 for 7α-OH-sitosterol), respectively. Accordingly, a link between differences in 

absorption levels of the single oxides and their diverse toxic effects may be possible. 
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Fig 4.16 Detected amounts (µg) of β-sitosterol oxides (7-ketositosterol, 7β-OH-

sitosterol, 7α-OH-sitosterol, 6α-OH-3-keto-sitosterol and 6β-OH-3-keto-sitosterol) in 

HepG2-cells and corresponding media after 24 hours of incubation.  
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5. Conclusion 
 

Since the variety of products fortified with phytosterols has increased rapidly during the 

last decade, investigations for a better understanding of the biological significance of 

their oxidation products are needed.  

However, POPs are not commercially available. Therefore the first objective of our 

project was to develop a method for the isolation of common phytosterol oxides. The 

method based on heat treatment (130°C, 24h) in a ventilated oven, purification steps and 

a preparative HPLC-UV system showed to be simple and effective for the isolation of 

four different oxide fractions (7-ketositosterol, 7β-OH-sitosterol, 7α-OH-sitosterol and a 

mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3)). In addition a 

mixture of all polar oxidation products was generated. Sufficient amounts of the single 

oxides could be obtained for the subsequent test approaches, as yields in the range of 

several milligrams per fraction were obtained by one single HPLC run.  

The following safety assessment was based on various bacterial and cell culture assays 

which are in accordance with the OECD guidelines. The Salmonella microsome assay 

was performed as preincubation method with and without metabolic activation using 

three different indicator strains (TA98, TA100 and TA102). The concentrations of the 

samples tested ranged from 0.04 to 5 mg/plate. To further investigate their anti-/pro-

oxidative effects, challenge tests with the pro-oxidant tBOOH were conducted. 

Especially in test setups using strain TA102 number of his+ - revertants significantly 

different to that of the solvent control were observed for individual oxides. However, in 

general none of the tested compounds could increase the revertant colony numbers 

beyond the doubled negative control, which was set as threshold for mutagenic activity. 

In addition no dose dependent increase could be observed. Since these two criteria must 

be fulfilled in order to identify a compound as a possible mutagen our tests showed no 

increased risk by the investigated POPs. 

Further the effects of the collected oxidation products towards HepG2-cells were 

investigated. To enable overall uniformity and comparability for all conducted cell 

culture applications 3 different concentrations (30 µM, 60 µM and 120 µM) of each 

oxidation product and an incubation period of 24 hours was chosen. Corresponding 

results were found when cell viability was evaluated using two different types of test 
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approaches. Whereas in the Typan blue exclusion assay the term vital cells refers to 

cells with intact cell membranes, in the MTT-assay metabolically active cells are 

determined. Incubation with increasing concentrations of oxide samples induced a 

significant (p<0.01) reduction of cell viability, for most oxides also in a concentration 

dependent way. 7-ketositosterol and 7α-OH-sitosterol were those compounds with the 

highest toxic potential, whereas cytotoxicity of 7β-OH-sitosterol was far less 

pronounced.  

The mode of cell death was assessed by flow cytometry using PE-labelled AnnexinV. It 

specifically binds to phosphatidylserine, which is translocated to the outer cell 

membrane during the early phase of apoptosis. 7-ketositosterol (30µM) was the only 

compound inducing an increase in apoptotic cells. However, as the proportion of 

AnnexinV positive cells decreased with increasing concentrations of oxidation products, 

the applied incubation conditions seemed to be too intense for detecting early events of 

apoptosis. At the time point investigated higher percentages of necrotic or late apoptotic 

than early apoptotic cells were detected.  

Intracellular generation of super oxide anions was significantly increased after treatment 

with all sample compounds, as measured by staining with hydroethidium. To include a 

second marker of oxidative stress malondialdehyde concentration, as an endproduct of 

lipid peroxidation, was assessed by HPLC. A concentration dependent increase was 

observed for 7keto-, 7αOH- and 6β-OH-3-keto-/6α-OH-3-keto-sitosterol. Similar to 

other publications (Hall, 2006) no correlation between O2•- and MDA concentrations 

was found. Apparently, differences in cytotoxicity of the single fractions do not 

necessarily depend on their ability to induce oxidative stress. 

When samples were investigated in the alkaline single-cell gel electrophoresis assay no 

increase in DNA strand breaks was observed. 

In order to estimate the outcomes of the toxicity assays it was of utmost importance to 

know whether the tested compounds were absorbed by the cell lines applied. Therefore 

the different oxidation products were extracted from both the cells and the 

corresponding media and analysed using an HPLC-UV-ELSD system. Due to the lower 

sensitivity of ELS-detection, only UV data were used for quantification of oxides. 

Uptake of all applied compounds could be clearly demonstrated. Obtained results 

correlated negatively with the outcomes of the MTT and TB assay. Accordingly, 
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differences in the levels of oxides accumulated in the cells seem to take a responsible 

part for their diverse toxic effects observed.
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6. Summary 
 

The aim of the present study was to assess the effects of common phytosterol oxidation 

products in various bacterial and cell culture assays.  

As POPs so far are not commercially available, the first challenge of this work was to 

scale up a method for the isolation of adequate amounts of different β-sitosterol oxides. 

Several milligrams of 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-sitosterol, a mixture of 

6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and a mixture of polar 

oxidation products were obtained after heat treatment of β-sitosterol (130 °C, 24 h) 

followed by chromatographic purification steps and preparative HPLC.  

Salmonella typhimurium strains TA98, TA100 and TA102 and the pro-oxidant tertiary-

butyl hydroperoxide (tBOOH) were used to examine the collected oxides in the 

Salmonella microsome assay. However, the samples showed no mutagenic or pro-

oxidative properties. 

Further their cytotoxic effects towards HepG2-cells were evaluated and particularly 7-

keto- and 7α-OH-sitosterol showed to be highly active. All tested oxides caused a 

significant reduction (p<0.05) in cell viability as determined by two different viability 

assays. Although treatment with 7-ketositosterol induced an increase in early apoptotic 

cells, at the time point investigated the prevailing mode of cell death was late apoptosis 

or necrosis. While a significant increase in intracellular superoxide anion concentration 

(O2•-) was detected, malondialdehyde (MDA) concentration was enhanced by 7-keto-, 

7α-OH- and 6β-OH-3-keto- /6α-OH-3-keto-sitosterol only. Therefore differences in the 

reduction of cell viability couldn’t entirely be explained by their ability to induce 

oxidative stress. Further no induction of DNA strand breaks was observed.  

The uptake of oxidation products in HepG2-cells could be clearly demonstrated. 

Different absorption affinities of the single oxyphytosterols were found. Accordingly, a 

link between different uptake levels and diverse cytotoxic effects may be possible. 

Although not being mutagnic towards Salmonella typhimurium strains, isolated oxids 

showed different cytotoxic effects in cell culture asssays using HepG2-cells. Varieties 

could be explained by their diverse uptake affinities into cells. While oxide mixtures are 

often thought to be less toxic than isolated compounds, in the present study 7β-OH-

sitosterol displayed the lowest reduction of cell viability.
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7. Zusammenfassung 
 

Ziel der vorliegenden Studie war es die Wirkung bekannter 

Phytosterinoxidationsprodukte (POPs) in verschiedenen Bakterien- und Zellversuchen 

zu bestimmen.  

Da POPs bislang kommerziell nicht erhältlich sind, war die erste Herausforderung 

dieser Arbeit die Hochskalierung einer Methode zur Isolierung einer ausreichenden 

Menge an verschiedenen β-Sitosterinoxiden. Mehrere Milligramm an 7-Ketositosterin, 

7β-OH-Sitosterin, 7α-OH-Sitosterin, einer Mischung aus 6β-OH-3-Keto-Sitosterin/6α-

OH-3-Keto-Sitosterin (Verhältnis 4:3) und einer Mischung polarer Oxidationsprodukte 

wurden durch Erhitzung von β-Sitosterin (130 °C, 24 h) gefolgt von 

chromatographischen Reinigungsschritten und präparativer HPLC isoliert. 

Die Salmonella typhimurium Stämme TA98, TA100 and TA102 sowie das Pro-Oxidant 

tertiär-Butyl-hydroperoxid (tBOOH) wurden zur Untersuchung der gesammelten POPs 

im Salmonella microsome assay eingesetzt. Allerdings zeigten die Probesubstanzen 

keine mutagenen oder pro-oxidativen Eigenschaften. 

Weiters wurden ihre zytotoxischen Effekte gegenüber HepG2-Zellen evaluiert und hier 

zeigten besonders 7-Ketositosterin und 7α-OH-Sitosterin hohe Aktivitäten. Alle 

getesteten Oxide führten zu einer signifikanten Reduktion (p<0.05) der Zellviabilität, 

was in zwei unterschiedlichen Viabilitätstests bestimmt wurde. Obwohl eine Belastung 

mit 7-Ketositosterin zu einem Anstieg an früh apoptotischen Zellen führte, war zum 

untersuchten Zeitpunkt späte Apoptose oder Nekrose die vorherrschende Art des 

Zelltods. Während eine signifikante Steigerung an intrazellulärer 

Superoxidanionenkonzentration (O2•-) festgestellt werden konnte, wurde die 

Malondialdehydkonzentration (MDA) nur durch 7-Keto-, 7α-OH- und 6β-OH-3-keto-

/6α-OH-3-keto-Sitosterin erhöht. Somit kann die unterschiedlich starke  Reduktion der 

Zellviabilität nicht ganzheitlich durch die Fähigkeit oxidativen Stress zu induzieren 

erklärt werden. Weiters wurde keine Induktion von DNA Strangbrüchen festgestellt. 

Die Aufnahme von Oxidationsprodukten in HepG2-Zellen konnte klar demonstriert 

werden. Unterschiedliche Absorptionsaffinitäten der einzelnen Phytosteroloxide 

konnten nachgewiesen werden. Demzufolge wäre ein Zusammenhang zwischen den 
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verschiedenen Aufnahmelevels und den unterschiedlichen zytotoxischen Effekten 

möglich. 

Obwohl die getesteten Oxidationsprodukte keine Mutagenität gegenüber Salmonella 

typhimurium Stämmen zeigten, konnten in Zellkulturversuchen mit HepG2-Zellen 

unterschiedliche zytotoxische Effekte der einzelnen isolierten Oxide beobachtet werden.  

Diese Unterschiede könnten durch ihre verschiedenen Aufnahmeaffinitäten in die 

Zellen erklärt werden. Während Mischungen an Oxidationsprodukten häufig für 

weniger toxisch als isolierte Einzelsubstanzen gehalten werden, zeigte in der 

vorliegenden Studie 7β-OH-Sitosterin die geringste Beeinträchtigung der Zellviabilität. 
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Abstract 

The recent increase in phytosterol-enriched functional food provokes questions 

concerning the safety of their oxidation products. However, most of the existing toxicity 

studies have been performed with mixtures instead of single compounds, a consequence 

of the lack of pure phytosterol oxidation product (POP)-standards.  

The objectives of this study were to take in use a method for the isolation of β-sitosterol 

oxidation products and to assess their mutagenic and pro-oxidative potential. Oxides 

were prepared by thermo-oxidation, purified by column chromatography and separated 

by a NP-HPLC-UV system. 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-sitosterol, a 

mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and a mixture of 

polar oxides were fractionated. Yields in the range of several milligrams per fraction 

were achieved within one HPLC-run. Identification and quantification was done by GC-

MS and GC-FID, respectively. 

In the Ames test the collected fractions failed to show a mutagenic activity towards 

Salmonella typhimurium strains TA98, TA100 and TA102.  

 

 

Key words: phytosterol oxidation products, HPLC, Salmonella microsome assay 
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Introduction 

Recently phytosterols (plant sterols) have become a focus of interest due to their serum 

cholesterol lowering effect and consequently their protection against cardiovascular 

diseases (Piironen, Lindsay, Miettinen, Toivo & Lampi, 2000). According to the 

literature an uptake of 1.5 to 3 g phytosterols per day is recommended in order to 

achieve a reduction of 10-15 % in serum LDL cholesterol (Katan, Grundy, Jones, Law, 

Miettinen & Paoletti, 2003). As the daily intake from natural sources is estimated to 

range from 150 to 440mg a day, a wide variety of products fortified with phytosterols 

has been introduced to the market in order to reach the advised uptake levels. However, 

besides their positive aspects concerns in terms of health are emerging.  

It is well known that during food preparation and storage cholesterol oxidation products 

(COPs) are formed from cholesterol through autoxidation, photoxidation and enzymatic 

oxidation (Boesinger, Luf & Brandl, 1993). Mutagenic, carcinogenic, angiotoxic, 

cytotoxic and atherogenic properties of the thereby generated COPs are generally 

accepted and have already been extensively documented (for review see Osada, 2002).  

Similar to cholesterol, phytosterols consist of a tetracyclic cyclopenta[α]phenanthrene 

ring, they mainly differ in their side chain (Piironen et al., 2000). Because of their 

structural similarities, phytosterols are expected to undergo analogous chemical 

reactions as cholesterol, including oxidation. But information on phytosterol oxidation 

products (POPs) is still rather limited. 

Existing knowledge on POPs is mainly concentrated on their quantification in food. In 

first studies concerning their absorption in vivo a significant uptake of POPs was proven 

(Grandgirard et al., 2004). 

Regarding their possible harmful effects only a few studies were conducted and most of 

them dealt with a potential cytotoxicity. Investigations with different cultured 

mammalian cells showed comparable damage to that caused by COPs, but higher 

concentrations of POPs were needed (Adcox, Boyd, Oehrl, Allen & Fenner, 2001; 

Maguire, Konoplyannikov, Ford, Maguire & O'Brien, 2003; Ryan, Chopra, McCarthy, 

Maguire & O'Brien, 2005). So far only Lea, Hepburn, Wolfreys and Baldrick (2004) 

investigated the mutagenic potential of POPs in the Ames test and reported no evidence 

of genotoxicity. However, in this investigation only a non specified mixture with 30 % 

of POPs was analysed. Due to the lack of commercial POP-standards in most cases a 
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blend instead of single oxidation products has been used for toxicity studies. But 

evidence exists that compared to mixtures individual POPs behave in a different way 

(Maguire et al., 2003). Therefore the biological and safety aspects of POPs remain 

rather unclear. 

Hence, the aim of the present study was to scale up a method for the isolation of single 

phytosterol oxidation products. ß-sitosterol served as the model compound as it is the 

most abundant plant sterol in nature. Gram scale amounts of toxicologically relevant 

oxidation products with sufficient purity were collected in order to undergo toxicity 

tests.  

The second objective of this study was to investigate the collected oxides regarding 

their possible mutagenic and pro-oxidative properties in the Ames test. Since it is 

assumed that the toxicity of oxidation products varies depending on their chemical 

structure (Osada, 2002) a hierarchy of toxicity of the isolated compounds would be 

essential. In addition a mixture of all oxidation products was prepared and analysed in 

the same way, to further investigate whether or not single isolated products react 

differently from mixtures. 

 

 

 

Materials and methods 

Chemicals 

24β-Ethylcholest-5-en-3β-ol (purity: β-sitosterol ~76 %, sitostanol ~13 %, campesterol~ 

8 %, campestanol~ 1 %) was purchased from Fluka Chemie (Buchs, Switzerland). 5-

Cholesten-3β-ol (cholesterol), Cholest-5-en-3β-ol-7-one (7-ketocholesterol) and 

Cholestan-5α,6α-epoxy-3β-ol (5α,6α-epoxycholesterol) were provided by Sigma 

Chemical Co (St.Louis. MO, USA). Cholest-5-en-3β,7α-diol (7α-hydroxycholesterol), 

Cholest-5-en-3β,7β-diol (7β-hydroxycholesterol) and 5-Cholesten-3β,19-ol (19-

hydroxycholesterol), the latter was used as an internal standard (ISTD) in GC- analysis, 

were obtained from Steraloids (Wilton, NH, USA). All the other cholesterol oxides 

were used as reference solutions in TLC and HPLC analysis, as standards of phytosterol 

oxides are not available. 
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Silica gel  60 (0.2–0.5 mm) for column chromatography and thin layer chromatography 

(TLC) plates (silica gel 60, 20 x 20 cm) were purchased from E. Merck (Darmstadt, 

Germany). Spots were visualized by staining with 10% sulphuric acid (H2SO4) (E. 

Merck) in methanol (Rathburn Chemicals Ltd., Walkerburn, Scotland). 

Bis(trimethylsilyl) trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) were 

obtained from E. Merck and Fluka Chemie respectively, and were used as a 99:1 (v/v) 

mixture for silylation of the oxidation products. Analytical grade pyridine (>99 %) from 

Sigma was also used. Ethyl acetate (E. Merck), diethyl ether (J.T.Baker, Deventer, The 

Netherlands), n-heptane and acetone (Rathburn Chemicals Ltd.), 99,5 % ethanol 

(Primalco, Rajamäki, Finland) and water (purified by Milli-Q Plus, Millipore, 

Molsheim, France) all of analytical grade, were used.  

All chemicals used for the Ames test were obtained from Sigma (Vienna, Austria), 

unless otherwise stated. The Salmonella thyphimurium strains TA98, TA100 and 

TA102 were obtained from Discovery Partners International (San Diego, USA) and 

from Trinova Biochem GmbH (Giessen, Germany). The S9 liver homogenate (from 

Sprague–Dawley rats induced with Aroclor 1254 prepared as a KCL homogenate) was 

obtained from MP Biomedicals (Illkirch, France). Agar no. 1 and Nutrient Broth were 

obtained from Oxoid/Bertoni (Vienna, Austria), Dulbecco's PBS was from PAA 

(Pasching, Austria). All mutagens and other reagents were of analytical reagent grade or 

higher and stored at – 80 °C if necessary.  

 

Production and isolation of phytosterol oxidation products 

Preparation of oxides by thermo-oxidation 

POPs were formed by thermo-oxidation. Commercial available β–sitosterol was heated 

in open glass vials (300 mg, 25 mm, I.D.) in a ventilated oven for 24 hours at 130 °C. 

Optimal heating conditions were evaluated in pre-tests. Different temperatures and time 

periods (130 °C/24 h, 120 °C/48 h and 130 °C/48 h) were tested and resulting oxidation 

mixtures were analysed using GC-FID and GC-MS. After the heating period the 

samples were cooled down in a dessicator, dissolved in 15 mL of n-heptane/diethyl-

ether (90:10, v/v), solubilised using a sonicator and finally stored in a freezer (-20 °C). 
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Purification and enrichment of phytosterol oxidation products by column 

chromatography (CC) 

The purification method used was based on former investigations by Lampi, Juntunen, 

Toivo and Piironen (2002) and Apprich and Ulberth (2004). Briefly, 72 g silica gel 

(loaded with 10 % distilled water) was dry packed into a glass column and pre-wetted 

with 150 mL n-heptane. The whole sample (300 mg heated β–sitosterol/15 mL n-

heptane/diethyl-ether (90:10, v/v)) was applied to the column and first nonoxidized 

sterols and apolar components were eluted with 150 mL n-heptane/diethyl-ether (90:10, 

v/v) followed by 450 mL n-heptane/diethyl-ether (50:50, v/v). Thereafter POPs were 

extracted with 150 mL acetone. The acetone fraction was evaporated to dryness. To get 

rid of the water ethanol was added during the evaporation step. The residue was 

dissolved in 550 µL n-heptane/2-propanol (93:7, v/v).  

 

To confirm the performance of the CC TLC was conducted. 100 µL of the purified 

sample were applied to silica gel G 60 TLC plates (0.5 mm layer thickness). The 

identification of the single oxidation products was done using a standard solution, which 

contained 5α,6α-epoxy-, 7-hydroxy- and 7-ketocholesterol. As eluent n-heptane/ethyl-

acetat (50:50, v/v) was used. Components were visualized by spraying with 10 % 

sulphuric acid in methanol followed by heating for a few minutes at 100 ˚C.  

 

Separation of single oxidation products by a NP-HPLC-UV system 

For the collection of single oxidation products a preparative normal-phase HPLC-

method was used. The method was based on papers published by Kemmo et al. 

(Kemmo, Soupas, Lampi & Piironen, 2005; Säynäjoki, Sundberg, Soupas, Lampi & 

Piironen, 2003) with some modifications. A preparative HPLC-instrument (Waters 

Delta Prep 3000, Milford, USA) equipped with a silica Supelcosil column (250 mm x 

21.1 mm, 12 µm; Supelco, Bellefonte, PA, USA) and a UV detector at 206 nm (Waters 

484 Milford, USA) was applied. Several mobile phase systems (90:10, 92:8, 93:7, 94:6, 

95:5 and 97: 3 n-heptane/2-propanol) and flow rates ( 5, 7, 9.9, 15 and 17 mL/min) were 

examined. Determination of purity levels and identification of the collected fractions 

was done by GC-MS. The best separation was achieved at room temperature under 

isocratic conditions using a mobile phase of n-heptane/2-propanol (93:7, v/v) with a 
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flow rate of 17 mL/min. The injection volume was 1.8 mL. The performance of the 

separation was checked daily using a cholesterol oxides standard solution (7-

ketocholesterol, 7β-hydroxycholesterol and 7α-hydroxycholesterol) by monitoring the 

retention times. For the generation of the mixture no HPLC separation was performed, 

therefore it includes all polar β-sitosterol oxidation products. 

 

Identification and quantification  

For identification and quantification of the collected fractions GC-mass spectrometry 

(GC-MS) and GC-flame ionization detection (GC-FID) were used, respectively. Both 

methods have been developed earlier by co-workers (Lampi et al., 2002; Soupas, 

Juntunen, Säynäjoki, Lampi & Piironen, 2004) and are routinely used for analysing 

POPs. 

Prior to the GC analysis the samples were converted to TMS-ether derivatives. 

Therefore 100 µL aliquots of each fraction and 1mL of internal standard solution (19-

OH-cholesterol, 18.55 µg/mL) were evaporated to dryness under nitrogen, dissolved in 

100 µL of pyridine and subjected to silylation by 100 µL BSTFA/TMCS (100 µL, 99:1, 

v/v) over night at room temperature. The reagent mixture was then evaporated and the 

residue was dissolved in 200 µL n-heptane before GC analysis. 

 

GC–MS analysis 

For identification of the collected oxidation products and verification of the purity of the 

fractions GC–MS was used as described in Soupas et al. (2004). The GC–MS 

equipment consisted of a Hewlett Packard 6890 Series gas chromatograph (Wilmington, 

PA, USA) including a Rtx-5MS w/Integra fused-silica capillary column (60 m x 0.25 

mm i.d., crossbond 5 % diphenyl – 95 % dimethyl polysiloxane, 0.1 µm film with 10 m 

Integra-Guard column; Restek, Bellefonte, PA, USA) and was coupled to an Agilent 

5973 mass spectrometer (Palo Alto, CA, USA). Helium was used as carrier gas at 240 

kPa. Initial oven temperature was 70 °C, after 1 min the temperature was raised to 280 

°C at 40 °C/ min and was then held at 280 °C for 35 min. Interface temperature and ion 

source were 280 °C and 230 °C, respectively. Spectra were scanned within the mass 

range of m/z 100-600 using the electron impact mode (70 eV).  
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GC–FID analysis 

The quantification was done by GC- FID measurements using a Hewlett Packard 6890 

Series II gas chromatograph equipped with an HP-7673 autosampler (Hewlett-Packard, 

Karlsruhe, Germany), an automated on-column injection system, a flame ionization 

detector (FID), ChemStation 3.1 software and a RTX-5w/Integra fused-silica capillary 

column (60 m x 0.32 mm i.d., 5 % diphenyl–95 % dimethyl polysiloxane, 0.1 µm film 

with 10m Integra-Guard column; Restek, Bellefonte, PA, USA).  Helium (99.996 % 

AGA, Espoo, Finland) was used as the carrier gas at a constant flow (110 kPa at 200 

°C). The initial temperature was 70 °C, which increased after 1min to 245 °C by 60 

°C/min. After 1min at 245 °C it raised by 3 °C/min to 275 °C and remained at this 

temperature for 41 min. The detector temperature was 300 °C. The concentrations of the 

POPs were quantified by the added internal standard (19-OH-cholesterol). 

 

Salmonella microsome assay 

Preparation of reaction mixtures 

Three individual oxidation products, 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-

sitosterol, a mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and 

a mixture of the polar oxidation products of β-sitosterol were investigated. Considering 

the results of pre-tests, four concentrations (0.04, 0.2, 1.0 and 5.0 mg per plate (≈ %)) of 

each compound were analysed. The concentrations range used was a broad spectrum 

from very low physiological to nonphysiologically high concentrations, all below the 

solubility range, which is recommended for this test procedure. 

Due to precipitation in the highest concentration of 7α-OH-sitosterol, only 3 doses of 

this compound could be used (0.04 – 1 %). There were similar but minor solubility 

problems with the mixture of 6β-OH-3-keto-sitosterol/6-α-OH-3-keto-sitosterol, 

therefore as highest concentration 2.5 mg/plate was tested. On the other hand the 

mixture of all oxidation products showed very good solubility, so a 10 mg/plate dilution 

could also be included in the experiments (Table1). 

In order to obtain appropriate dilutions, each sample was pre-dissolved in a mixture of 

acetone/tween80 (3:1, v/v). Afterwards two parts of sterile, distilled water was added to 

keep the concentration of acetone as low as possible and to avoid potential toxic effects 
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on the bacterial strains. This procedure was tested to be safe for the strains in pre-

experiments. 

 

Metabolic activation 

In order to simulate in vivo conditions the oxidation products were treated with a rat 

liver enzyme mixture (S9, which mainly consists of phase I enzymes) for metabolic 

activation. The S9 mix was prepared according to the recipes of Maron and Ames 

(1984) consisting of 19.75 mL destilled water, 25 mL of PBS buffer, 0.5 mL of MgCl2 

(0.85 M), 0.5 mL of KCl (1.65 M) and 2 mL of NaDP (90.8 mM), 250 µL of glucose-6-

phosphate (1.08 M), and 2 mL of S9. The reagent was stored on ice throughout the 

whole experiment and discarded after 50 min. 

 

Experimental design 

The Ames Salmonella/ microsome mutagenicity assay (Salmonella test, Ames test) was 

performed according to Maron and Ames (1984). The preincubation assay with an 

incubation period of 25 min (37 °C) was chosen, as reported earlier (Wagner, 

Reichhold, Koschutnig, Cheriot & Billaud, 2007). Briefly, 500 µL of PBS or S9 mix, 

200 µL of reaction mixture and 100 µL of overnight bacterial culture were added to test 

tubes. The tubes were shortly vortexed and then placed in an incubator on a rotary 

shaker and incubated for 25 min at 37 °C. After this period 2 mL of molten top agar 

were added to each tube. The mixture was vortexed and poured on minimum glucose 

plates. As soon as the agar had solidified the plates were inverted and stored in an 

incubator for 48 h at 37 °C. Thereafter his+- revertants were counted manually. 

In the present study three generally recommended tester strains (TA98, TA100 and 

TA102) were applied. TA98 gives information on frame-shift mutations, TA100 on 

base-pair substitutions and TA102 detects cross-linking agents, additionally it is 

specifically used to inform on oxidative stress. To further investigate the anti-/pro-

oxidative effects the pro-oxidant tertiary-butyl hydroperoxide (t-BOOH, 0.7 mM) was 

used for a challenge test. The concentration of the oxidant was chosen in order to obtain 

suitable numbers of revertants on the plates. This test was performed with and without 

metabolic activation. 
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Each experiment included a positive control (2,4,7-Trinitro-9-fluorenone, Sodiumazide 

or 2-Aminofluorene), which confirmed the reversion capacity of the bacterial strains as 

well as a negative control, the sample solvent. All concentrations and the positive 

control were tested in triplicate. For the negative control even six plates were prepared. 

Each test was done at least twice (n = 6 in total). 

 

Statistical analysis and evaluation of the mutagenic experiments 

All data are expressed as mean ± SD (standard derivation). Obtained data (n = 6 for 

each concentration used) were analysed by one-way analysis of variance (ANOVA) and 

the Student’s t-test since they were all normally distributed, using SPSS 15.0 for 

Windows. Statistical differences were considered significant at a value of p < 0.05. 

In addition to the statistical, a nonstatistical evaluation was carried out. According to 

Mortelmans and Zeiger (2000) a compound is considered as “mutagenic” if the total 

number of his+- revertants per plate was at least twice as high as the negative control 

(200 %). Moreover a dose related increase of the number of his+- revertants has to be 

shown. 

 

Results and Discussion 

As already mentioned POPs are not commercially available, so they have to be 

laboratory-prepared. Applied methods are based on chemical synthesis (Bortolomeazzi, 

De Zan, Pizzale & Conte, 1999; Zhang et al., 2005), thermo-oxidation in solid state 

(Lampi et al., 2002) or aqueous dispersion (Dutta & Appelqvist, 1997). Existing 

techniques are mostly very complex and time-consuming with the requirement of 

special equipment. Besides they are usually designed for the production of only small 

amounts of oxidation products. Therefore the initial target of this study was the 

development of a fast, simple and effective method for the isolation of common β-

sitosterol oxides.  

 

Performance of the method 

Preparation of the test compounds by thermo-oxidation 

In the present study thermo-oxidation in solid state was used for formation of oxides. 

Different temperatures and heating periods were tested and generated amounts of 
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oxysterols were estimated by GC-FID (Figure 1). Heat treatment for 24 h at 130 °C 

showed to be the best option, yielding to an oxidation rate of nearly 20 %. The total 

amount of oxidation products decreased throughout longer heat exposure, even at a 

lower temperature (120 °C compared to 130 °C). This observation can be explained by 

conversion reactions to other secondary oxidation products as well as further reactions 

such as polymerisation, leading to non polar compounds, dimers and polymers. The 

latter occurs further particularly at higher heating conditions. The oxidation products 

observed in the heating experiments were analogous to those cited in the literature, 

mainly 7-ketositosterol followed by 7β-OH-sitosterol, 7α-OH-sitosterol, 5,6β-epoxy-

sitosterol, 5,6α-epoxy-sitosterol, 6β-OH-3-keto-sitosterol, 6α-OH-3-keto-sitosterol, 6β-

OH-sitosterol and 6keto-sitosterol. Our findings supported those of Kemmo et al. 

(2005), who assessed that at different heating temperatures the same kind of oxidation 

products were formed, but the amount of the single products varied. Already Caboni, 

Costa, Rodriguez-Estrada and Lercker (1997) noticed that the ratios of the formed 

products were influenced by the oxidation conditions. 

The high amount of 7-keto-sitosterol and the generation of 7β-OH-sitosterol rather than 

7α-OH-sitosterol was in accordance with previous studies (Chien, Wang & Chen, 1998; 

Kemmo et al., 2005). 

 

Purification and enrichment of the test compounds 

When β-sitosterol is heated a mixture of oxidation products, non oxidized material and 

several unknown by-products is formed. Because of the complexity of the gained blend 

usually a combination of different separation techniques is applied to isolate single 

oxidation products. In this work CC was used for the first separation step. In contrast to 

the often employed solid-phase extraction (SPE) cartridges self prepared glass columns 

offer a higher loading capacity. Since our interest was focused on POPs with a higher 

polarity than non oxidized β-sitosterol a stepwise elution order to remove apolar 

components up to free sitosterol was applied. 

Solvent mixtures of n-heptane/diethyl-ether in combination with silica gel and a final 

elution of the desired components with acetone were already successfully applied by 

others (Apprich et al., 2004; Lampi et al., 2002; Piironen, Toivo & Lampi, 2002). TLC 

was used to confirm the separation process. No products with a lower polarity than β-
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sitosterol were detected. In addition a relevant reduction of non oxidized β-sitosterol 

could be noted. In other publications preparative TLC was also used to fractionate 

oxidation products. But this is only appropriate when small amounts of samples for 

analytical purpose are separated. In addition to its low loading capacity it also allows 

long exposure of the sample to air, which facilitates the possibility of artefact formation. 

 

Separation, Isolation and Fractionating of the oxidation products by NP-HPLC-

UV 

The final separation of the oxidation products was achieved by a NP-HPLC-UV system. 

Due to its mild characteristics preparative HPLC is particularly suitable for the isolation 

of oxides. Both normal- and reverse phase chromatography has already been 

successfully used for the analyses of cholesterol (Caboni et al., 1997; Chien et al., 1998; 

Csallany, Kindom, Addis & Lee, 1989; Mazalli, Sawaya, Eberlin & Bragagnolo, 2006) 

and plant sterol (Kemmo, Ollilainen, Lampi & Piironen, 2007; Kemmo et al., 2005) 

oxidation products. In general normal phase chromatography is considered to be the 

more effective option.  

Different mobile phase systems with changing percentages of IPA were tested based on 

former investigations by Kemmo et al. (2007; 2005; Säynäjoki et al., 2003). Best 

separation was achieved with a mobile phase of n-heptane /IPA (93:7, v/v). The same 

solvent system was already used earlier for the separation of COPs (Csallany et al., 

1989). The elution order in this system was as followes: 6β-OH-3-ketositosterol/6α-OH-

3-ketositosterol, 7-ketositosterol, 6β-OH-sitosterol, 7β-OH-sitosterol and 7α-OH-

sitosterol (Figure 2). A rapid separation in one single HPLC-run was achieved within 20 

minutes. The application of a big preparative silica column (25 cm x 21.2 mm, 12 µm) 

allowed an injection volume of 1.8 mL of the obtained oxidation mixture, containing the 

oxidation products derived from about 1000 mg unoxidized β-sitosterol (collected 

oxides of several purification steps by CC were combined). This led to yields in the 

range of several milligrams for the single fractions. Within one HPLC run, for example, 

15-20 mg of 7-ketositosterol could be collected. For detailed information see table 2. 

However, as already ascertained earlier no full resolution of the entire polarity range of 

the oxidation products is possible under isocratic conditions (Guardiola, Bou, Boatella 

& Codony, 2004). 6β-OH-3-ketositosterol and 6α-OH-3-ketositosterol co-eluted, so 
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they were collected in one fraction. When analysing the collected fractions with GC-

FID high proportions of 7-ketositosterol were found in the 6β-OH-sitosterol-sample. 

Therefore 6β-OH-sitosterol was excluded from subsequent toxicology tests. 

Moreover as already observed in earlier investigations (Dutta et al., 1997) it was not 

possible to separate campesterol oxides from their sitosterol counterparts. Since the 

applied commercial β-sitosterol included some amount of campesterol (~8 %) also a 

low amount of campesterol oxides (~10 %) was present in the oxidation mixture. 

Average values of the purity of the collected compounds are listed in table 3 and GC-

FID chromatograms of each isolated oxide fraction are given in figure 3. However, 

bearing in mind the velocity of our method we put up with these minor impurities. 

Among all detection systems available UV detection is still the most frequently applied 

for sterol analyses. Separation of the oxidation products was monitored using a 

wavelength of 206 nm. It is the common wavelength employed for oxysterols (Csallany 

et al., 1989). Since products without double bonds like epoxy- compounds and triols 

have poor UV absorption they were not included in collected oxides.  

 

Bacterial tests 

Although indications for adverse health effects exist, knowledge on biological 

properties of POPs is rather small. Further almost all of the so far conducted toxicology 

studies were done with cell lines, among others because of the small sample amounts 

needed for these assays. As data concerning the mutagenic potential of isolated POPs is 

lacking, the collected oxidation products were tested in Salmonella typhimurium strains 

TA98, TA100 and TA102 in the Ames test. To our knowledge it is the first time that 

single oxides of β-sitosterol are tested on their behaviour towards Salmonella 

typhimurium strains. 

 

Mutagenicity testing 

According to literature the here applied preincubation assay is the most sensitive form 

of the Ames test. It allows a closer contact of the test compounds and the indicator 

strain since the bacteria are able to react in a small volume, which is an advantage for 

detecting short- living mutagens (Mortelmans et al., 2000).  
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Throughout the whole test period the spontaneous mutation frequency of the strains was 

in accordance with the control levels published (Mortelmans et al., 2000) and each POP 

sample was significantly different to the positive control (p < 0.05). 

In strain TA98 no mutagenic activity could be seen; neither with nor without metabolic 

activation. Also in TA100 the number of his+- revertants remained in the range of the 

negative control and therefore were mutagenic not active (data not shown).  

These results were in accordance with those published recently by Lea et al. (2004) who 

tested a mixture of oxidized and unoxidized products of β-sitosterol by using different 

Salmonella strains (TA98, TA100, TA102, TA1535 and TA1537). However, the 

amount of oxidation products in their tested samples was only 30 %.  

It is already well known that oxide mixtures react differently from individual oxidation 

products (Maguire et al., 2003). Also additive, synergistic as well as inhibitory effects 

of single oxidation products in mixtures have been noted (O'Sullivan A, O'Callaghan Y 

& O'Brien N, 2005). Therefore, in contrast to our study, the results of Lea et al. (2004) 

allow no sufficient information about the safety aspects of single oxidation products.  

In the aforementioned publication also toxicity and precipitation problems during their 

work with TA102 were reported. Consequently in these experiments sample amounts 

had to be reduced. Throughout all of our research work no problems in this regard were 

observed. 

Although in the present study none of the oxidation products were able to increase the 

number of revertants beyond the doubled negative control, yet for some oxides a certain 

response was observed in strain TA102 (Table 4). In the preincubation test without 

metabolic activation the highest concentrated fraction of 7-keto-sitosterol (5 %) 

increased the number of his+ - revertants significantly, but not beyond twice of the 

negative control, which was set as threshold for mutagenic activity. Moreover a 

concentration- dependent tendency was seen for the lower concentrations but not for the 

5 %- fraction, mainly due to its higher standard deviation. With the addition of S9 the 

increase of 7-keto-sitosterol (5 %) was even more pronounced (p < 0.05). On the other 

hand the highest concentrated fraction of 7β-OH-sitosterol (5 %) reduced the number of 

his+-revertants significantly compared to its lower concentrated fractions (p < 0.05). 

The strain TA102 was chosen as besides its capability of detecting cross-linking agents 

it additionally informs on oxidative stress (Grey & Adlercreutz, 2003; Mortelmans et 
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al., 2000). Based on that, the increase in revertants induced by 7-keto-sitosterol (5 %) 

could be an indication of a pro-oxidant tendency. On the other hand the decline in 

revertant numbers of 7β-OH-sitosterol (5 %) could be interpreted as a marginal sign of 

antioxidative effects. However, it could also be the result of increased cytotoxicity 

(Mortelmans et al., 2000). 

To date no papers other than the one by Lea et al.(2004) had been published dealing 

with possible mutagenic actions of POPs. Hence, more information is available on 

mutagenic effects of COPs. Due to their structural similarity an analogous mode of 

action is expected. As early as in 1979 mixtures of COPs have been shown to possess 

mutagenic effects towards Salmonella typhimurium strains TA98, TA1535 and TA1537 

(Smith, Smart & Ansari, 1979). Several studies followed and in spite of contradictory 

results it seems that particularly epoxy and triol compounds of cholesterol possess 

mutagenic activity. Epoxy and triol compounds of β-sitosterol had never been tested 

before in regard of their mutagenicity and they were also not included in the present 

study. Oxysterols might in general possess rather cytotoxic properties whereas for 

epoxide epimeres and triols a mutagenic action could also be possible. For the 

mutagenic reactivity of COPs the authors also suggested ROS to be involved in the 

mutagenic action (Cheng, Kang, Shih, Lo & Wang, 2005; Smith et al., 1979), as 

antioxidant enzymes diminished the mutagenic response.  

 

Antioxidant testing 

To strengthen the information on oxidative stress challenge tests with the pro-oxidant t-

BOOH were included in our experiments. t-BOOH is commonly used in in vitro assays, 

as it is known as an initiator of lipid peroxidation, where it leads to the formation of 

alkoxyl and alkyl radicals (Grey et al., 2003). 

A prevention of the thereby caused mutagenicity would indicate possible antioxidant 

properties of the tested compounds. Per definition a reduction of the revertant colony 

number below 50 % of the negative control level is necessary for an anti-mutagenic 

effect (Mortelmans et al., 2000).  This was never seen in any of our conducted tests 

(Table 4). However, the addition of t-BOOH 7β-OH-sitosterol (5 %) caused a 

significant decrease in his+- revertants (p < 0.05); even though not lower than the 

threshold level. With the addition of S9 the number of his+-revertants was still lower 
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compared with the less concentrated fractions, but here this tendency was not significant 

(p = 0.196).  

 

Conclusion 

The applied method was proven to be a powerful tool for the collection of oxidation 

products, as yields in the range of several milligrams per fractions were achieved within 

only one HPLC-run. Thus the collection of oxysterols for a later application in toxicity 

tests was possible. 

The results of the Ames test demonstrated that the analysed common oxidation products 

of β-sitosterol were not mutagenic towards Salmonella typhimurium strains TA98, 

TA100 and TA102. Even though literature on the mutagenic response of COPs is 

conflicting, for some oxidation products a mutagenic action could be proved. In spite of 

their similar structure there could still be a difference in the mutagenic behaviour of 

cholesterol- and plant sterol oxidation products.  
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Figure1: Proportion of collected β-sitosterol secondary oxidation products (mg) after 

different oxidation conditions (130 °C/24 h, 120 °C/48 h and 130 °C/48 h) 

measured by a GC-FID system. Results are average values of at least two 

different heat treatments. 
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Table 1: Overview of the used concentrations of the sterol oxides in the study 

  10 % 5 % 2.5 % 1 % 0.2 % 0.04 % 

7-ketositosterol  x  x x x 

7β-OH-sitosterol  x  x x x 

7α-OH-sitosterol    x x x 
6α-OH-3-keto-/ 

6β-OH-3-keto-

sitosterol 

  x x x x 

mixture x x   x x x 
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Figure 2: Preparative NP-HPLC chromatogram of thermo-oxidized (130 °C/24 h) 

sitosterol with UV detection at 206 nm. 

 

 

 

 

Table 2:  Retention times and yield of single oxidation products (mg) within one HPLC- 

run (average values were obtained in over hundred HPLC-runs). 
      

compound retention time (min) mg/ injection 

6β-OH-3-keto-sitosterol 5.7 

6α-OH-3-keto-sitosterol 
7.62 

4.34 

7-ketositosterol 11.09 16.9 

7β-OH-sitosterol 13.36 11.03 

7α-OH-sitosterol 14.82 6.12 

 

 

Table 3: Purity of the obtained oxidation products as measured by GC-FID.  
        

fraction purity (%) campesterol counterpart (%) others (%)

6β-OH-3-keto-sitosterol/ 

6α-OH-3-keto-sitosterol 
88 12  

7-ketositosterol 82 10 8 

7β-OH-sitosterol 90 10  

7α-OH-sitosterol 70 10 20 

6β-OH-3-ketositosterol/
6α-OH-3-ketositosterol

7-ketositosterol

6β-OH-sitosterol

7β-OH-sitosterol

7α-OH-sitosterol

6β-OH-3-ketositosterol/
6α-OH-3-ketositosterol

7-ketositosterol

6β-OH-sitosterol

7β-OH-sitosterol

7α-OH-sitosterol
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Figure 3: GC-FID chromatograms of isolated β-sitosterol oxide fractions ((A) 7α-

hydroxysitosterol; (B) 7β-hydroxysitosterol; (C) 7-ketositosterol; (D) 6α-OH-3-keto-

sitosterol/6β-OH-3-keto-sitosterol) as TMS ether derivatives on a RTX-5w/Integra 

fused-silica capillary column (60m×0.25 mm i.d., 0.1 µm film). Analytical conditions 

are described in Material and Methods part. Peaks are identified as: (I) 19-

hydroxycholesterol (ISTD); (II) 7α-hydroxycampesterol; (III) 7α-hydroxysitosterol; 

(IV) 7β-hydroxysitosterol; (V) 7β-hydroxycampesterol; (VI) + (VII) unidentified 

compounds; (VIII) 7-ketocampesterol; (IX) 7-ketositosterol; (X) 6β-OH-3-keto-

campesterol; (XI) 6β-OH-3-keto-sitosterol; (XII) 6α-OH-3-keto-campesterol; (XIII) 6α-

OH-3-keto-sitosterol. 
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Table 4: Overview of all obtained data in the preincubation assay with the strain TA102.  
            

compound concentration TA102 TA102  TA102+tBOOH TA102+tBOOH  

  
(mg/plate) revertants/ 

 plate -S9 
revertants/ 
plate +S9 

revertants/ 
 plate -S9 

revertants/ 
 plate +S9 

      
negative 
control    571 ±44b)   847 ±63b)   747 ±99b) 1589 ±349b) 
      
7-
ketositosterol 5   701 ±82a)b) 1318 ±41a)b)   866 ±24a)b) 2038 ±239b) 

  1   685 ±16a)b)   926 ±28b)   936 ±66a)b) 1714 ±137b) 

  0.2   635 ±36a)b)   879 ±108b)   940 ±75a)b) 1891 ±334b) 

  0.04   575 ±45b)   846 ±81b)   963 ±52a)b) 1974 ±123b) 
      
7β-OH-
sitosterol 5   607 ±55b)   675 ±68a)b)   525 ±45a)b) 1374 ±60b) 

 1   589 ±79b)   853 ±32b)   776 ±58b) 1770 ±146b) 

 0.2   582 ±76b)   840 ±91b)   840 ±65b) 1679 ±146b) 

 0.04   606 ±74b)   793 ±37b)   804 ±71b) 1591 ±103b) 
      
7α-OH-
sitosterol 1   597 ±101b)   744 ±97b)   684 ±56b) 1222 ±156b) 

  0.2   510 ±27a)b)   802 ±16b)   812 ±36b) 1252 ±164b) 

  0.04   452±103a)b)   652 ±34a)b)   686 ±111b) 1317 ±93b) 
      

6α-OH-3-keto/ 
6β-OH-3-keto-
sitosterol 2.5   684 ±88a)b)   1051±28a)b)   809 ±51b) 2119 ±90a)b) 

 1   644 ±51a)b)   979 ±12a)b) 1031 ±42a)b) 2082 ±32a)b) 

 0.2   609 ±40b)   990 ±29a)b)   801 ±121b) 2338 ±29a)b) 

 0.04   644 ±62a)b)   953 ±2a)b)   814 ±32b) 2065 ±70b) 
      

mixture 10   713 ±60a)b) 
 

1079±107a)b)   891 ±14a)b) 1501 ±35b) 

  5   648 ±94a)b)   1008±54a)b)   797 ±12b) 1879 ±158b) 

  1   598 ±55b)   967 ±82a)b)   842 ±102b) 1997 ±5a)b) 

  0.2   556 ±67b)   829 ±41b)   902 ±76a)b) 2003 ±19b) 

  0.04   625 ±27a)b)   731 ±143 b)   851 ±113b) 2057 ±175b) 
      
positive 
control  2353 ±422 3480 ±165 2412 ±71 3780 ±271 
            

a) p < 0.05 to negative control, b) p < 0.05 to positive control; numbers of his+- revertants 

are mean ± SD 
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Abstract 

While health implications caused by cholesterol oxidation products (COPs) seem to be 

generally accepted, research on phytosterol oxidation products (POPs) is still limited. 

Since POPs are commercially not available knowledge on their toxic activities is mainly 

derived from blends instead of pure compounds. 

Therefore the aim of the present study was to examine the cytotoxicity of three 

individual oxidation products of β-sitosterol, 7-ketositosterol, 7β-OH-sitosterol, 7α-OH-

sitosterol, a mixture of 6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and 

a mixture of polar oxides towards HepG2-cells. All tested compounds were found to 

reduce cell viability in a significant and concentration dependent way, particularly 7-

keto- and 7α-OH-sitosterol showed to be highly active. Only for 7-ketositosterol an 

increase in early apoptotic cells was observed. Enhancement of O2
•- production was 

assessed for all oxides, whereas malondialdehyd (MDA) levels were increased by 7-

keto- and 7α-OH-sitosterol only. However, cell death didn’t appear to be necessarily 

dependent on the generation of oxidative stress. Further no DNA strand breaks were 

observed with the COMET assay. By assessing the accumulation of single oxidation 

products in the cells a link between higher proportions of oxides inside the cells and 

their cytotoxic potential could be found. 

 

Key words 

phytosterol oxidation products; HepG2; cytotoxicity; apoptosis; superoxide anions; 

MDA; COMET; cellular uptake 
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Introduction 

Due to their cholesterol lowering effects plant sterols have become important 

representatives of the broad range of functional foods in many countries. A daily intake 

of 1.5 to 3 g phytosterols is recommended in order to reduce serum LDL cholesterol 

levels at 10-15 % (Katan, et al., 2003). Added amounts of phytosterols to the increasing 

number of enriched products are far higher than in naturally sources. Since phytosterols 

are susceptible to oxidation, possible negative side-effects of elevated plant sterol 

consumption have recently started to attract attention (Oehrl and Boyd, 2004). 

Similar to cholesterol, their counterpart in animal cells, phytosterols are prone to 

oxidation during heat treatments and long time storing, thereby forming oxidation 

products analogous to those derived from cholesterol (Dutta and Savage, 2002). 

While health implications, including mutagenic, carcinogenic, angiotoxic, cytotoxic and 

atherogenic properties of COPs can be considered as generally acknowledged 

(extensively reviewed by Guardiola, et al., 1996, Osada, 2002), information on POPs is 

rather scarce. However, in the first reports cholesterol and phytosterol oxides were 

found to cause similar toxic effects, although in general higher concentrations of POPs 

were needed (Roussi, et al., 2005, Ryan, et al., 2005).  

The lack of commercially available POP-standards is one major reason for the limited 

research on plant sterol oxides but it also accounts for the use of blends rather than 

individual oxides in most investigations on their biological effects. Yet it was shown 

that mixtures of sterol oxidation products act in a different way compared to single 

purified compounds (Maguire, et al., 2003). Thus biological and safety aspects of POPs 

remain relatively unclear. 

Therefore, the objective of the present study was to investigate the effects of the main 

oxidation products of β-sitosterol, which represents the most important phytosterol 

structure, on HepG2 cells, a cell line which is commonly used for toxicity evaluations. 

In order to assess their toxicological potential, viability of cells as well as the generation 

of apoptotic cell death, production of superoxide anions (O2
•-), lipid peroxidation 

(MDA) and DNA damage (COMET assay) were determined and compared with the 

effects of a mixture containing polar β-sitosterol oxides. For the first time the uptake of 

the single oxides in cells was observed in order to establish whether different absorption 

affinities are responsible for diverse toxic effects. 
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Material & Methods 

Chemicals and reagents 

All chemicals were obtained from Sigma (Vienna, Austria), unless otherwise stated. 

Minimal Essential Medium Eagle (MEM), Dulbecco's PBS, MEM non-essential Amino 

Acids, fetal bovine serum (FBS), trypsin (0.05 %)-EDTA (0.02 %) and sodium 

bicarbonate (NaHCO3) were purchased from PAA (Pasching, Austria). Low melting 

agarose (LMA) and normal melting agarose (NMA) were taken from Invitrogen Life 

Technologies (Paisley, Scotland). Annexin V-FITC detection kit was from BD 

Biosciences (Becton Dickinson, Schwechat, Austria). Cholest-5-en-3β,7α-diol (7α-

hydroxycholesterol), Cholest-5-en-3β,7β-diol (7β-hydroxycholesterol) and 5-Cholesten-

3β,19-ol (19-hydroxycholesterol) were obtained from Steraloids (Wilton, NH, USA). 

Cholest-5-en-3β-ol-7-one (7-ketocholesterol) was provided by Sigma Chemical Co 

(St.Louis. MO, USA). All organic solvents used were HPLC grade and purchased from 

Rathburn Chemicals Ltd. (Walkerburn, UK). Tissue culture plastics were obtained from 

Dr. F.Bertoni GmbH (Vienna, Austria). 

 

Cell maintenance 

Human hepatoma cells (HepG2) cells were cultured as monolayers in MEM 

supplemented with 10 % (v/v) FBS, 2 mM L-glutamine, 1 mM sodium pyruvate and 1 

% (v/v) non-essential amino acids in a humidified atmosphere at 37 °C in 5 % CO2 in 

the absence of antibiotics. Cultures were allowed to reach 80 % confluence before 

experiments were performed. 

 

Production of β-sitosterol oxides 

Phytosterol oxidation products are not commercially available, so they had to be 

laboratory-prepared. Oxides were generated by thermo-oxidation of β-sitosterol (130 

°C, 24 h), purified by column chromatography and separated by a NP-HPLC-UV 

system, consisting of a preparative HPLC - instrument (Waters Delta Prep 3000, 

Milford, USA) equipped with a silica Supelcosil column (250 mm x 21.1 mm, 12 µm; 

Supelco, Bellefonte, PA, USA) and a UV detector at 206 nm (Waters 484 Milford, 

USA). Separation was achieved under isocratic conditions using a mobile phase of n-

heptane/2-propanol (93/7, v/v) and a flow rate of 17 mL/min. Three individual 
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oxidation products, 7-ketositosterol, 7β-OH-sitosterol 7α-OH-sitosterol, a mixture of 

6β-OH-3-keto-sitosterol/6α-OH-3-keto-sitosterol (ratio 4:3) and a mixture of polar 

oxides were fractionated. For identification and quantification of the collected fractions 

GC-mass spectrometry (GC-MS) and GC-flame ionization detection (GC-FID) were 

used, respectively (Lampi, et al., 2002, Soupas, et al., 2004). Purity of the respective 

compounds is given in table 1. 

 

Cell treatment 

For treatment cells were cultured in different multiwell dishes depending on the 

respective experiment at a density of either 2x104 cells/well in 250 µL (96-well), 2x105 

cells/ well in 2 mL (24-well) or 1x 106 cells/ well in 3 mL (6-well) of complete medium. 

After 24 hours medium was removed and cells were incubated with the different β-

sitosterol oxide samples. Within all experiments 3 different concentrations (30 µM, 60 

µM, 120 µM) and an incubation period of 24 hours were considered. For delivery to the 

cells all compounds were dissolved in ethanol and added to reduced serum media (2.5 

% (v/v) FBS). The final concentration of ethanol in cultures did not exceed 0.4 % (v/v) 

and did not affect cell proliferation. Equivalent quantities of ethanol were added to 

control cells. After incubation, both floating and attached cells were collected for 

analysis. 

 

Cytotoxicity 

MTT (3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromid) assay 

Cell viability was determined by using the MTT assay (Mosmann, 1983), which is 

based on a reaction catalysed by dehydrogenases of the mitochondria. With this assay 

the number of metabolic active cells can be established. Briefly, after incubation with 

sterol oxides the culture medium was discarded, cells were washed with PBS, 200 μL of 

MTT in culture medium (final concentration 0.5 mg/mL) was added and incubated for 1 

hour. The medium was carefully removed, cells were washed with PBS and the 

formazan crystals were dissolved in DMSO. Absorbance was read at 540 nm with a 

Fluostar Optima microplate reader (BMG labtechnologies, Germany) and expressed as 

the number of viable cells as percentage (%) of control cells. Measurements were made 

in triplicates. 
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Measurement of trypan blue exclusion  

At the end of the incubation period cells were harvested using trypsin/EDTA solution 

and aliquots of cell suspensions were mixed with equal amounts of trypan blue (0.1 % 

(v/v)).  

For the determination of cell numbers dead (blue) and living cells were counted within a 

haemocytometer and results were presented as number of viable cells expressed as 

percentage (%) of negative control. In addition the percentage of dead cells in the total 

cell population of control and treated cells was calculated. Experiments were performed 

in triplicates. 

 

Flow cytometric measurments 

Detection of apoptosis 

For detection of apoptosis an Annexin V-PE detection kit (BD Pharmingen) was used 

and analysis was done following the manufacturer’s instructions. After incubation cells 

were washed and harvested using trypsin/EDTA solution. Cells were centrifuged (800 

RPM, 5 min), washed twice with cold PBS and resuspended in binding buffer (0.1 M 

HEPES/NaOH (pH 7.4) 1.4 M NaCl, 25 mM CaCl2) at a concentration of 1x 106 

cells/mL. 100 µL of this suspension was transferred to 5 mL culture tubes and stained 

with 5 µL of Annexin V-PE and 7-ADD, respectively. After 15 min of incubation at RT 

in the dark 400 µL of binding buffer was added to each tube and cells were analysed by 

flow cytometry within one hour. For each sample 10.000 cells were acquired and data 

management was done with CellQuest Pro Software (FACScan, BD Biosciences, USA). 

Experiments were performed at least in triplicates. Annexin V positive/7-AAD negative 

cells were defined as early apoptotic, while Annexin V positive/7-AAD positive cells 

were classified as late apoptotic or necrotic.  

 

Intracellular Superoxide anion (O2
•-) generation 

The production of superoxide anions was determined by the use of hydroethidine (HE) 

(Rothe and Valet, 1990). HE is a nonfluorescent compound, which diffuses easily 

through the cell membrane. Under the action of O2
•- HE is dehydrogenated to ethidium 

bromide and intercalates DNA. The red fluorescence of ethidium can be measured by 

flow cytometry (absorption/emission: 518/605 nm). 
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Briefly, after incubation with oxide samples cells were harvested as described above, 

centrifuged (800 RPM, 5 min) and resuspended in PBS at a density of 1x106 cells/mL. 5 

µL of HE-solution in DMSO (20 µM) were added, cells were incubated at 37 °C for 10 

min and then stored on ice until measurement by FACSCalibur flow cytometer (BD 

Biosciences). For each sample 10.000 cells were analysed and data management was 

done with CellQuest Pro Software (FACScan, BD Biosciences, USA). 
 

Measurement of Lipid Peroxidation (MDA) 

Malondialdehyde (MDA) constitutes an end product of lipid peroxidation and was 

determined as described earlier (Wagner, et al., 2004), with some modifications. 

Briefly, at the end of the incubation period, cells were collected, washed with PBS and 

counted. Cells were centrifuged and resuspended in a mixture of 150 µL of potassium 

chloride solution (KCl, 75 mM), 700 µL phosphoric acid (44 mM), 250 µL TBA(60 

mg/L) and 400 µL acqua bidest. Suspensions were heated in boiling water for 60 min 

and after cooling, to 100 µL of the cell samples 100 µL of methanol/NaOH (90/10, v/v) 

was added. An aliquot of 20 µL was injected into the HPLC and MDA was measured by 

fluorescence detector (553 nm). Data was expressed as nanomoles per 109 cells.  

 

Alkaline single cell gel electrophoresis (SCGE) 

The SCGE assay (comet assay) was carried out according to the guidelines developed 

by Tice et al. (2000, 1990) and Singh et al. (1988). After the incubation period cells 

were harvested using trypsin/EDTA solution and counted by the trypan blue method. 

Aliquotes of 1x105 cells were mixed with 80 µL 0.5 % LMA and transferred to NMA-

coated slides. Slides were covered and cooled (4 °C). As soon as the agarose gel has 

solidified cover slides were removed and slides were transferred to a lysis buffer 

solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM Tris, 1 % Triton X, 10% DMSO, pH 

10.0) for ≥ 1 hour at 4 °C. After lysis the slides were incubated in alkaline 

electrophoresis buffer (300 mM NaOH, 1 mM Na2EDTA, pH ≥ 13) at 4 °C for 40 min 

for DNA unwinding. Electrophoresis was performed at 25 V and 300 mA for 20 min 

using a horizontal gel electrophoresis (VWR, Vienna, Austria). The slides were 

neutralized by rinsing them two times for 8 min with cold neutralization buffer (0.4 M 

trizma base, pH 7.5) and once with cold aqua bidest. Then they were dried at room 

temperature. For evaluation the slides were stained with 40 µL ethidium bromide 
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solution (20 µg/mL) and examined using a fluorescence microscope (Axioskop 20, 

Zeiss, Austria) coupled with a computerized image analysis system (Komet 5.5, 

Kineting Imaging, Liverpool, UK). For each sample, three replicate gels were analysed 

and from each replicate slide 50 randomly selected cells were analysed. As parameter of 

DNA damage percentage of DNA in the tail (% DNA in tail) was determined.  Each 

experiment was done twice. 

 

Measurement of the uptake of oxidation products in HepG2-cells 

Extraction of the oxidation products 

At the end of the incubation period media was removed and collected separately. Cells 

were harvested using trypsin/EDTA solution, centrifuged (800 RPM, 5 min), washed 

twice with PBS and resuspended in 5 mL of KCl (75 mM). After 20 min of incubation 

the lipid fraction was extracted 3 times from cells and media with 5 mL of diethyl ether. 

The ether phase was evaporated, extracts were dissolved in 1ml of n-heptane/ 

isopropanol (95/5, v/v), filtered through 0.45 µm GHP membrane filters (PALL, 

Gelman laboratory, USA) and stored in a freezer (-20 °C) until measurement. 

 

Quantification of the extracted oxidation products by a HPLC-UV-ELSD system 

For quantification of the extracted compounds an HPLC-UV-ELSD system was applied. 

The method used was based on papers by Kemmo et al. [(2005), (2004) and (Säynäjoki, 

et al., 2003)] with some modifications.  

The HPLC instrument consisted of an Waters 717 plus Autosampler (Milford, USA), a 

silica Supelcosil column (250 mm x 2.1 mm i.d., 5 µm; Supelco, Bellefonte, PA, USA), 

a Waters pump (model 515) and a Photodiode Array Detector (model Waters 996) as 

well as an ELS-detector (model Waters 2420, Milford, USA). The separation was 

achieved at room temperature with a mobile phase of n - heptane/ isopropanol (97/3, 

v/v) at a flow rate of 0.6 mL/min. The injection volume was 20 µL and each sample was 

injected twice. 

Detection was performed simultaneously by PDA detection at 206 nm and ELSD 

(nebulization temperature 42 ˚C, drift tube temperature 50 ˚C, pressurised air 20 psi), 

whereas quantification was done based on UV data only.  
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The concentrations of the oxidation products were estimated by cholesterol standards of 

the corresponding oxidation products (7-ketocholesterol, 7α-OH-cholesterol and 7β-

OH-cholesterol), whereas 7-ketocholesterol was also used for the quantification of 6α-

OH-3-keto-sitosterol and 6β-OH-3-keto-sitosterol. Concentration and purity of the 

standards was confirmed by gas chromatography–flame ionization detection (GC–FID) 

as described by Lampi et al. (2002). Standard curves were analysed at the beginning and 

at the end of each compound, concentration of the oxides was calculated using the mean 

standard curve. Detection Limits (LOD) were calculated on the basis of a signal to noise 

ratio of 3 by the use of standard dilutions and for UV detection they were 5, 15.6 and 

20.8 ng/injection for 7-ketocholesterol, 7β-OH-cholesterol and 7α-OH-cholesterol, 

respectively. 

 

Statistical analysis 

All data are expressed as mean ± SD (standard derivation). Obtained data were analysed 

by the Student’s t-test since they were all normally distributed, using SPSS 15.0 for 

Windows. Statistical differences were considered significant at a value of p < 0.05 and 

are reported as p < 0.05, p < 0.01 and p < 0.001. 

 

 

Results 

Cytotoxicity of β-sitosterol oxidation products on HepG2 cells 

Cytotoxicity of the tested compounds was determined using the MTT assay after 24 

hours of incubation. Viability of the control samples was set at 100 %. All sterol oxides 

induced a significant (p ≤ 0.001, for 7β -OH-sitosterol p ≤ 0.01) reduction of cell 

viability relative to the negative control (Fig 1A). In addition a significant concentration 

dependency (p ≤ 0.01) was observed for all samples except for 7β -OH-sitosterol and 7-

keto-sitosterol between the concentrations 60 and 120 µM. The most toxic agent was 

7α-OH-sitosterol reducing viability to 23 % of the control value at 120 µM. At the 

highest concentration tested the order of cytotoxicity was 7α-OH-sitosterol > 6α-OH-3-

keto/6β-OH-3-keto-sitosterol > 7-keto-sitosterol > mixture > 7β -OH-sitosterol. 

Similar results were obtained when counting viable cells in the Trypan blue exclusion 

assay (Fig 1B). A significant reduction in cell numbers compared to the negative control 
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(p≤ 0.01, except 7β-OH-sitosterol) was observed after treatment with the tested 

oxidation products. Concentration dependencies were found for 7α-OH-sitosterol (p ≤ 

0.001), 7-keto-sitosterol (p ≤ 0.01) and the mixture (p ≤ 0.05). Considering the 

percentage of cell death in control and treated cells a significant (p ≤ 0.001, for 7β -OH-

sitosterol at 30 µM p ≤ 0.05) increase for all compounds, except for the mixture at 30 

µM (p = 0.272), could be seen (Fig 1C). Only for 7-keto-sitosterol changes were based 

on the concentrations (p≤ 0.01). The increase in cell death was particularly pronounced 

for 7-keto-sitosterol and 7α-OH-sitosterol. 

 

Effect of β-sitosterol oxidation products on apoptosis  

To elucidate whether apoptosis was involved in the reduction of cell numbers flow 

cytometry was used. Decreased forward scatter (cell size) and increased side scatter 

(granularity) are typical signs for apoptotic cells (Koopman, et al., 1994, Tuschl and 

Schwab, 2003). Described subpopulations were observed in cells incubated with 7-

ketositosterol, 7α-OH-sitosterol and 6α-OH-3-keto/6β-OH-3-keto-sitosterol at 

concentrations of 60 and 120 µM indicating apoptotic cell death (data not shown). To 

further clarify the mode of cell death double staining with FITC-labeled Annexin V and 

7-AAD was conducted. As shown in figure 2A only 7-ketositosterol (30 µM) was able 

to increase (+ 45 %) the number of Annexin V positive/7AAD negative cells compared 

to the negative control, even though not in a significant way. For all compounds a 

decrease in the proportions of Annexin V positive/7AAD negative cells with increasing 

concentration of test samples was found.  

 

Generation of superoxide anions (O2
•-) and lipid peroxidation (MDA) by β-

sitosterol oxidation products 

The production of reactive oxygen species (ROS) and the resulting oxidative stress 

precedes cell death. Therefore the generation of O2
•- was quantified by flow cytometry 

after staining with HE. For all tested compounds a significant (p ≤ 0.05) overproduction 

of O2
•- could be noted (Fig 2B). No concentration dependency was found for the single 

oxides. 

The effect of oxysterols on cellular lipid peroxidation was investigated by HPLC-

detection of MDA. MDA concentration in control cells was found to be 3.35 nM/109 
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cells. Incubation with 7β -OH-sitosterol and the mixture appeared to have little effect on 

lipid peroxidation, as MDA levels were found to be in the range of the negative control. 

For 7-ketositosterol, 7α-OH-sitosterol and 6α-OH-3-keto-/6β-OH-3-keto-sitosterol to 

some extent a concentration dependent increase of MDA-levels in surviving cells was 

shown. At 120 µM a remarkable raise in MDA concentration to 194 % (7-

ketositosterol), 298 % (7α-OH-sitosterol) and 140 % (6α-OH-3-keto/6β-OH-3-keto-

sitosterol) of control levels was observed. However, none of these effects were 

significant (figure 2C). 

 

Effect of β-sitosterol oxidation products on DNA damage 

In order to detect the potential of β-sitosterol oxides to induce DNA-strand breaks the 

alkaline single-cell gel electrophoresis assay was conducted. Tested compounds showed 

to be quite inactive, measured % DNA in tail were in the range of the negative control 

(data not shown). Therefore no significant increase of DNA damage could be observed.  

 

Concentration dependent uptake of β-sitosterol oxidation products by HepG2-cells 

To assess the uptake of the individual oxidation products in HepG2 cells, lipid extracts 

of cell residues and corresponding media were analysed by a HPLC-UV-ELSD system. 

After incubation with increasing concentrations of sterol compounds amounts inside the 

cells were increased as a matter of concentration, whereas in control cells no plant sterol 

oxides were detected. 

The raise in the intracellular uptake of the single oxidation products was significant for 

7-ketositosterol, 7β-OH-sitosterol and 7α-OH-sitosterol (p ≤ 0.05) (Fig 3). Considering 

the distribution pattern of the POPs between cell and media compartments 

corresponding trends could be found irrespective of the added concentration of the 

oxidation product. Whereas for 7-ketositosterol and 7α-OH-sitosterol after 24 hours the 

majority of the detected oxides (~ 70 %) were found in the cell extracts, for 7β-OH-

sitosterol no definite tendency was observed. Regarding the mixture of 6α-OH-3-keto- 

and 6β-OH-3-keto-sitosterol only 30 % of the α-compound was detected inside the 

cells, whereas for the β-counterpart similarly 50 % were assessed in the cells and the 

media, respectively. Considering the combined uptake as a mixture of these two 

compounds larger parts (55-60 %) of the oxidation products were located in the media. 
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Further the obtained uptake data correlates negatively with the outcomes of the MTT- (r 

= -0.667, p ≤ 0.05 for 7-ketositosterol; r = - 0.874, p ≤ 0.001 for 7β-OH-sitosterol; r = - 

0.781, p ≤ 0.01 for 7α-OH-sitosterol; r =-0.783, p ≤ 0.01 for 6α-OH-3-keto-/6β-OH-3-

keto-sitosterol) and the TB-test (r = -0.868, p ≤ 0.001 for 7-ketositosterol; r = - 0.878, p 

≤ 0.001 for 7α-OH-sitosterol), respectively. 

 

 

Discussion 

Although consumption of plant sterols is steadily increasing little is known about the 

biological effects of their oxidation products. So far only a limited number of studies 

using pure phytosterol oxides had been published. However, to allow a comprehensive 

evaluation of their safety aspects more information on single oxides is essential. 

The present study clearly demonstrates the cytotoxic effect of β-sitosterol oxidation 

products towards HepG2 cells. In line with earlier results (Adcox, et al., 2001, Maguire, 

et al., 2003, Roussi, et al., 2005, Ryan, et al., 2005) viability of cells as measured by the 

trypan blue exclusion – and the MTT assay were significantly decreased by incubation 

with increasing concentrations of sterol oxides (Fig1). However, in contrast to others 

(Ryan, et al., 2005) in the present study cytotoxic effects were already observed at low 

sample concentrations of 30 µM.  

Consistently 7-ketositosterol and 7α-OH-sitosterol emerged as those compounds 

exerting the strongest reduction in cell viability. While the toxic potential of 7-

ketositosterol, as the most abundant oxyphytosterol, was already confirmed in various in 

vitro assays, data on 7α-OH-sitosterol is lacking. Contrary to the present findings its 

cholesterol counterpart was found to exhibit less than or equal toxicity to 7β-OH-

cholesterol (Clare, et al., 1995). However, individual 7α-OH-products of plant sterols 

have never been tested before. 

Interestingly it was 7β-OH-sitosterol that together with the mixture appeared to have 

little effect on the viability of cells. Whereas Ryan et al. (2005) investigating the impact 

of phytosterol oxides on various cell lines, including HepG2-cells, reported 7β-OH-

sitosterol to exhibit the strongest effects on cell viability. 

It is already well known that individual oxidation products and their mixtures react in a 

different way (Maguire, et al., 2003). Moreover, synergistic as well as inhibitory effects 
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of single sterol oxides in mixtures have been noted (O'Sullivan A, et al., 2005). In 

general a reduction of the toxic potential is the predominant effect (Aupeix, et al., 1995, 

Hall, 2006, Leonarduzzi, et al., 2002), which also contributes to our findings. 

To further elucidate the mode of cell death Annexin V binding was assessed. Annexin V 

attaches specifically to phosphatidylserine which is translocated from the inner to the 

outer cell surface during the early phase of apoptosis (Vermes, et al., 1995). Only 7-

ketositosterol (30 µM) was able to increase the proportion of Annexin V positive/7AAD 

negative cells relative to control levels (Fig 2A). For all other compounds early 

apoptotic cells were in the range of the negative control or lower. The reduction of the 

amount of Annexin V positive/7AAD negative cells with increasing concentrations of 

oxidation products indicates chosen incubation conditions being too intense for 

detecting early apoptotic events. This corresponds to findings of Leonarduzzi et 

al.(2002) who observed that 7-ketocholesterol induced apoptosis at low concentrations 

whereas at higher sample amounts necrosis was the predominate mode of cell death. At 

the time point investigated higher percentages of necrotic or late apoptotic than early 

apoptotic cells were detected. It may be that apoptosis occurred at an earlier time point, 

after 24 hours showing mainly late apoptotic cells. However, also necrosis as principal 

mode of cell death is possible. In order to fully exclude a β-sitosterol induced apoptotic 

cell death further experiments at earlier time points would be necessary. 

Apoptosis induced by POPs has already been observed previously (Ryan, et al., 2005) 

(Maguire, et al., 2003) (Roussi, et al., 2005). In contrast to our findings in the major part 

of studies investigating phytosterol and cholesterol oxidation products 7β-OH-

compounds appeared to be the highly potent inducers of apoptotic cell death. These 

diverse findings could be explained by the cell specific effect of oxysterols to induce 

apoptosis (Miguet, et al., 2001). While β-sitosterol oxides caused apoptosis in U937 

cells, no indication was found instead in HepG2 and CaCo2 cells (Ryan, et al., 2005). 

However, reports on the cell death mode of oxidation products seem to be conflicting, 

as in contrast to Ryan et al. (2005) Roussi et al. (2005) observed apoptosis for 7β-OH-

sitosterol in CaCo2 cells using same sample concentrations. In general induction of 

apoptosis was mainly analysed in non adherent cell lines (Wielkoszynski, et al., 2006). 

Oxysterols were found to rapidly increase O2
•- production (Lemaire-Ewing, et al., 2005, 

Miguet-Alfonsi, et al., 2002, Monier, et al., 2003), which in general induces cell death. 
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Also phytosterol oxides were reported to induce an upregulation of several antioxidant 

enzyme activities (Ryan, et al., 2005), POP induced intracellular O2
•- production 

however, has never been measured before. Consistently with previous results on COPs 

all tested oxidation products showed a significant increase in O2
•- (Fig 2B). 

Interestingly, although being not reactive in all other assays conducted, treatment with 

the mixture also resulted in a remarkable raise of HE positive cells. As O2
•- constitutes 

only one type of ROS the measurement of MDA as a second maker for oxidative stress 

was included. To improve the accuracy of the results in the present study MDA was 

detected by HPLC and not by the TBARS assay, which has already been criticized for 

insufficient specificity and validity (Halliwell and Whiteman, 2004). No information is 

available on lipid peroxidation caused by POPs and investigations on COPs are also 

rather limited. For 7-keto- and 7α-OH-sitosterol an increase in MDA levels was found 

(Fig 2C). Again results for 7α-OH-sitosterol differed from those observed for its 

cholesterol counterpart as 7α-OH-cholesterol appeared to possess only negligible effects 

on oxidative stress (Miguet-Alfonsi, et al., 2002). However, in line with earlier 

publications no correlation could be found between the levels of lipid peroxidation and 

the generation of O2
•- (Hall, 2006). O2

•-,contrary to many other ROS, seems to be 

relatively unreactive with lipids (Halliwell and Gutteridge, 1999). 

Previous investigations on plant sterol oxides reported that cytotoxicity was not 

necessarily associated with enhanced oxidative stress, which was true for 7β-OH-

sitosterol and the mixture. On the other hand enhanced levels of lipid peroxidation were 

found after incubation with 7-keto- and 7α-OH-sitosterol which also emerged as the 

most potent inducers of cell death. Though it is also possible that lipid peroxidation was 

induced through necrosis as a secondary event. 

As ROS have the potential to interact with cellular components including DNA their 

capability to induce DNA strand breaks was also assessed. In line with reports on the 

genotoxic action of COPs (Maguire, et al., 2003) no increased DNA damage was 

observed. 

Throughout the whole study differences in the cytotoxic potential of the single 

oxidation products, especially α- and β- hydroxy sterols, were prevailing. Considering 

the uptake of the individual β-sitosterol oxides in respect of their toxicity data may help 

to explain these differences. To date no information on the uptake of plant sterol oxides 
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in cell lines is available. Hence, similar to investigations on COPs (Biasi, et al., 2004) in 

the present study a concentration dependent accumulation of all oxidation products was 

confirmed (Fig 3).  

So far, in contrast to the present study concentration of oxides in the corresponding 

media remained disregarded. Interestingly, different affinities of the single oxidation 

products regarding their distribution between media and cell compartment could be 

found. Higher percentages of oxides incorporated into the cells were observed for those 

compounds (7-keto-, 7α-OH-sitosterol and 6α-OH-3-keto-/6β-OH-3-keto-sitosterol) 

exerting the highest reactivity, whereas for the rather inactive 7β-OH-sitosterol no 

specific uptake trend was found. Further uptake data in cells correlated negatively with 

the results of the viability assays indicating that different uptake tendencies seem to be 

responsible for their cytotoxic actions. Similar Miguet et al. (2001) found a twofold 

higher accumulation of 7α-OH-cholesterol than of 7-keto- and 7β-OH-cholesterol in 

U937 cells, however 7α-OH- cholesterol displayed no cytotoxic effects.  

In conclusion, the present study could demonstrate that individual oxidation products of 

β-sitosterol exhibit cytotoxic effects towards HepG2-cells. While 7-keto- and 7α -OH -

sitosterol proved to be highly active, treatment with 7β -OH -sitosterol and the mixture 

of polar oxides showed little effects. Reduction in cell viability was found to be 

significant and concentration dependent. Under the conditions tested only for 7-

ketositosterol an increase in early apoptotic cells was detected. Although a significant 

increase in O2
•- was assessed after treatment with all tested oxides MDA levels were 

insignificantly enhanced only by 7-keto- and 7α -OH -sitosterol. A link between cell 

death and oxidative stress didn’t seem to exist for all tested compounds. The different 

levels of oxide uptake in the cells seem to take a responsible part for the diverse toxic 

effects. 
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Table 1: Purity of the tested β-sitosterol oxidation products as measured by GC-FID. 

Campesterol counterpart represents the oxidation product of the respective fraction but 

derived from campesterol instead of sitosterol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Cell viability measured by the MTT-test (A) as well as number of viable cells 

(B) and percentage of cell death (C) measured by the TB-assay after 24h of incubation 

with β-sitosterol oxides. Values are mean ± SD of 3 separate experiments and are 

marked with * when significantly different to control levels (* p≤ 0.05; ** p≤ 0.01; *** 

p≤ 0.001).  

      
fraction purity (%) campesterol counterpart (%) others (%) 

    
6β-OH-3-keto-

sitosterol/ 
6α-OH-3-keto-

sitosterol 

88 12 

 
    

7keto-sitosterol 82 10 8 
    

7β-OH-sitosterol 90 10  
    

7α-OH-sitosterol 70 10 20 
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Figure 2: Effects of β-sitosterol oxides on phosphatidlyserine externalization (A), 

superoxide anion production (B) and Malondialdehyde (C) formation in HepG2-cells. 

Values are mean ± SD of 3 separate experiments and expressed as percentage of 

negative control. Columns significantly different to control levels are marked with * for 

p≤ 0.05, ** for p≤ 0.01 or *** for p≤ 0.001. 
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Figure 3: Detected amounts (µg) of β-sitosterol oxides (7-ketositosterol, 7β-OH-

sitosterol and 7α-OH-sitosterol) in HepG2-cells and corresponding media after 24 hours 

of incubation.  
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