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Am I content? 

 

No, and I hope I never will be. 

The day you wake up and everything’s perfect – what’s left? What direction is 

there to go? Much better to wake every morning to matters, which worry you a 

bit, affairs that demand your attention and work you feel must get done. These 

are the things that keep me going. I love to search for solutions, to solve things. 

I guess you could even say that … Problems make me happy. 

 

Renzo Rosso – Founder and Owner of Diesel 
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Zusammenfassung 
 

Die Wahrnehmung und korrekte Interpretation von Signalen aus der 

Umwelt ist entscheidend für das Überleben jedes Organismus. Es ist eine grosse 

Herausforderung die Aufnahme und Weiterleitung von sensorischer 

Information zu studieren, speziell in den komplexen Nervensystemen höherer 

Organismen. Der Rundwurm C. elegans besitzt ein relativ simples 

Nervensystem aus 302 Neuronen. 60 davon haben Cilien (haar-ähnliche, 

sensorische Fortsätze) und sind somit die wichtigste Aufnahmequelle externer, 

sensorischer Information. Die Verhaltensmuster von C. elegans sind zahlreich, 

was den Rundwurm zu einem idealen Modellorganismus macht, in dem man die 

Funktion von sensorischen Neuronen studieren kann. 

RFX Transkriptionsfaktoren sind essentiell für die Bildung von Cilien 

in vielen Organismen, unter anderem in Mäusen und Menschen. Das Fehlen 

von DAF-19, dem einzigen RFX Protein in C. elegans führt zum Fehlen aller 

Cilien und somit zur Unfähigkeit sensorische Information aufnehmen zu 

können. In Paper I beschreiben und charakterisieren wir drei Isoformen von 

DAF-19. Isoform DAF-19C ist spezifisch für Neuronen mit Cilien. Der Zusatz 

von DAF-19C genügt alle Cilien-bedingten Phänotypen in daf-19 Mutanten 

wiederherzustellen. DAF-19A/B kommen in allen nicht-ciliierten Neuronen vor 

und regulieren dort synaptische Funktionen. Unsere Arbeit beschreibt zum 

ersten Mal, dass RFX Proteine nicht nur für die Aufnahme, sondern auch für die 

Weiterleitung von Signalen notwendig sind. 

In Paper II untersuchen wir mögliche zell-autonome Funktionen von 

DAF-19 in ciliierten Neuronen. Wir etablieren und testen ein genetisches 

„Reparatur“ Verfahren, welches in vivo die Analyse einzelner ciliierter 

Neuronen sowohl auf dem Zell- als auch auf dem Organismus-Niveau erlaubt. 

Durch Wiederherstellung der Funktion von DAF-19C nur in bestimmten, 

einzelnen sensorischen Neuronen (in daf-19 genetischen Mutanten) kreieren wir 

Tiere mit nur einem einzelnen, isolierten, jedoch funktionsfähigen ciliierten 

Neuron, wohingegen jedwede anderweitige sensorische Signale von diesen 

Tieren nicht aufgenommen werden können. Dieses experimentelle System kann  
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dazu benutzt werden spezifische sensorische Fragen in Bezug auf ciliierte 

Neuronen oder Schritte der frühen Cilienentwicklung zu studieren. 

In Paper III untersuchen wir die mögliche übergeordnete Rolle von 

DAF-19 in der Entwicklung von Cilien. Wir exprimieren DAF-19C in 

verschiedenen Zelltypen und versuchen so die Bildung von Cilien in nicht-

ciliierten Zellen zu induzieren. Dabei entdecken wir ein wahrscheinlich 

regulatorisches Netzwerk, welches festlegt, in welchen Zellen Cilien gebildet 

werden können und in welchen nicht. Wir nehmen an, dass isoform-spezifische 

Suppressoren von DAF-19 das für jeweils verschiede Zelltypen spezifische 

Aktivierungspotential regulieren. 



 III 

Summary 
 

The detection and correct interpretation of environmental signals is 

crucial for the survival of every organism. Studying mechanisms of sensory 

perception and signal transmission is a challenging task, especially in organisms 

with complex neuronal networks. The nematode C. elegans possesses a rather 

simple neuronal network of 302 neurons. 60 of them have cilia (hair-like 

surface structures), which are the main source of external sensory input. C. 

elegans executes a large number of different behaviors and is therefore an 

excellent model organism in which to study sensory neuron function. 

RFX transcription factors are essential for cilia formation in many 

organisms including mice and humans. Lack of the C. elegans RFX 

transcription factor DAF-19 leads to the complete absence of cilia and 

consequently of sensory input. In Paper I we describe and functionally 

characterize three different isoforms of DAF-19. We find that the short isoform 

DAF-19C is specifically expressed in ciliated sensory neurons and sufficient to 

rescue all cilia-related phenotypes of daf-19 mutants. The long isoforms DAF-

19A/B function in all non-ciliated neurons, where they are required to maintain 

synaptic functions. Thus, we show for the first time that an RFX protein is not 

only required for signal detection, but also for signal transmission. 

In Paper II we explore cell-autonomous functions of DAF-19 in 

ciliated sensory neurons (CSNs). We establish and test a genetic rescue system 

that allows the in vivo analysis of isolated CSNs at both cellular and systemic 

levels. Using daf-19 mutants and cell-specific rescue of DAF-19 function we 

generate animals with single, functional CSNs, which otherwise are completely 

devoid of any environmental input through cilia. This system can be used to 

study specific sensory issues concerning CSNs or early steps of ciliogenesis. 

Finally, in Paper III we explore a potential master regulatory role of 

DAF-19. We attempt to induce ectopic cilia in C. elegans by expressing DAF-

19C in various non-ciliated cell types and discover a likely regulatory network 

that governs in which cell types cilia can be made. We hypothesize that 

isoform-specific suppressors of DAF-19 regulate this cell-type-specific 

ciliogenic potential. 
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Introduction 
 

 

 

 

Organ systems, such as the nervous system or the systems responsible 

for respiration or blood circulation, are considered the largest functional units of 

a living organism. Organ systems are, in turn built from interconnected organs, 

such as the heart, blood vessels and the lung. The correct development, 

integration, and functioning of organ systems and their respective components 

are not only essential for survival, but also for interactions with the environment 

and other individuals. 

Our nervous system receives external input via the five external senses: 

vision, hearing, smell, taste, and touch. In addition, it is also required to sense 

the internal status of the body. Sensory information is then usually passed on to 

the central processing unit, the brain, which integrates all information and sends 

commands to executing organs, for example, the muscles. 

The mammalian nervous system is large, highly complex, and 

inaccessible. The brain alone is built from billions of nerve cells (neurons) of 

various types that need to be precisely wired in order to function correctly. It is 

difficult to investigate circuits or even single neurons in the mammalian brain. 

However, neuronal building blocks are highly conserved across organisms at 

the cellular, subcellular, and molecular level. Therefore, studying the molecular 

basis of nervous system development and function is greatly facilitated through 

the use of simpler model organisms such as the nematode roundworm C. 

elegans. 
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THE MODEL SYSTEM CAENORHABDITIS ELEGANS 
 

C. elegans is a free-living, bacteriovore soil nematode, also called 

roundworm. It was introduced as a model organism for scientific research by 

Sydney Brenner more than 30 years ago (Brenner, 1974). Adult worms are 

about one millimeter in length and color-less and can be either males or self-

fertilizing hermaphrodites. A single hermaphrodite is fertile for three to four 

days and in this time gives rise to 300 – 350 progeny. Embryos are laid several 

hours after fertilization and they complete development outside the mother 

worm. After embryonic development, worms progress through four distinct 

larval stages to adulthood (Figure 1). Each stage ends with a period of molting, 

replacing the old cuticle with an underlying new one, thereby giving the 

growing worm sufficient space. The length of the C. elegans life cycle varies 

depending on environmental conditions, such as temperature: at 20 °C it is 

approximately three to four days. 

 

 
 

Figure 1: The C. elegans life cycle at 22 °C (Artwork by Altun and Hall, adapted from 
www.wormatlas.org) 

 

 

A unique feature of C. elegans is its ability to overcome harsh 

environmental conditions by entering a special developmental stage, called the 

dauer larva. The decision to develop into a dauer larva is made at the early L2 
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stage and is triggered by a pheromone produced constitutively by every worm 

(Fielenbach and Antebi, 2008). A high concentration of pheromone is a result 

of high population density and therefore is a signal of a potential shortage of 

food. In addition to high levels of pheromone, food abundance and extreme 

temperatures can modulate the interpretation of the pheromone signal. Upon 

entering the dauer stage, cellular, metabolic and morphological transformations 

create a worm that does not feed, typically does not move and that is resistant to 

outside influences (e.g. extreme [both high and low] temperatures). This dauer 

stage is reversible. Improvement of the same conditions that trigger dauer 

formation (lower pheromone concentrations and temperature or increased 

abundance of food) can induce the worm to leave the dauer stage and resume 

reproductive development by progressing into the L4 larval stage. 

C. elegans is now a well established model organism thanks to a large 

number of available techniques and tools. Transgenic animals can be generated 

efficiently and faster than in most other model organisms. Screens to identify 

gene deletions can be performed in large-scale set ups and have been recently 

complemented by RNAi knock-down strategies (Bargmann, 2001). The fact 

that RNAi has only limited effects in neurons was overcome by the generation 

of special sensitized backgrounds (Kennedy et al., 2004; Simmer et al., 2002; 

Wang et al., 2005). In addition, animals are amenable to molecular, genetic, and 

biochemical analyses, allowing the identification of protein interactions and the 

precise dissection of genetic pathways. Finally, the experimental work with C. 

elegans is greatly facilitated by world wide shared core facilities that provide 

researchers with access to information in online databases (www.wormbase.org, 

www.wormatlas.org), and material (for example transgenic worm strains, gene 

knock outs, RNAi and cDNA libraries). 

C. elegans is color-less and transparent, which provides several 

advantages for the worm’s use in biomedical research. In particular, the 

development of the worm from the one-cell-embryo stage to the fully-grown 

adult can be observed at the cellular level under the light microscope. In this 

way, the lineage of all 959 somatic cells in the hermaphrodite have been traced 

and were found to be invariant during development (Sulston et al., 1983). 

Individual cells in any part of the body can thus be followed and analyzed from 

the time they are born in mutant and wild-type animals. When using a light 
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microscope, this requires identification of cells based on structural features and 

their position within the organism. Alternatively, cells can be labeled with 

fluorescent markers, expressing fluorophores from cell-specific promoters. 

Either way, single cells or structures within the worm can thus be followed and 

analyzed during development. 

In addition to being used to investigate developmental processes, C. 

elegans is now more frequently used as a disease model, e.g. for complex 

neurological disorders like Alzheimer’s, Huntington’s and Parkinson’s Disease 

or Duchenne muscular dystrophy (Bessou et al., 1998; Levitan et al., 1996; 

Wittenburg et al., 2000). In 1998 C. elegans was the first multicellular organism 

whose genome had been completely sequenced (Caenorhabditis elegans 

Sequencing Consortium, 1998). Although it is a rather simple organism, a 

surprising 65% of human disease genes have a counterpart in the worm 

(Sonnhammer and Durbin, 1997). These genes can be manipulated easily in C. 

elegans and investigated in over-expression studies or ectopic expression 

experiments. Exceptional effort is also invested into the generation of gene 

deletions, providing a large, publicly available arsenal of mutants 

(www.shigen.nig.ac.jp/c.elegans/index.jsp; www.celeganskoconsortium.omrf. 

org/). Finally, behavioral studies on mutants or wild-type worms that have been 

exposed to pharmacological substances also provide valuable insight into 

disease mechanisms. These findings can subsequently be used as a basis for 

studies in higher animals. 

 

 

OVERVIEW OVER THE C. ELEGANS NERVOUS SYSTEM 
 

In contrast to vertebrate neurons, which typically develop only one 

axon that receives, and several branched dendrites that transmit signals, the 

majority of C. elegans neurons are mono- or bipolar. This means that every 

neuronal cell body sends out only one or two processes. Since neurons in the 

worm have synapses on (and thus receive and transmit signals from) both 

neurites (White, 1986), the distinction into axons and dendrites, as it is known, 

for example, from mice or Drosophila, is not entirely clear for all neurons. 
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The C. elegans nervous system is composed of neurons located in 

three major areas of the body: the head, the tail, and the ventral side of the 

body. These areas can be further subdivided into clusters (Figure 2). Head 

neurons group into anterior, dorsal, ventral, lateral, and retro-vesicular 

ganglions. In the tail the pre-anal, dorso-rectal and two lateral symmetric 

lumbar ganglions can be distinguished. A row of cell bodies, the ventral nerve 

cord, runs along the ventral mid line between the retro-vesicular ganglion and 

the pre-anal ganglion. These ganglia are connected by nerve processes sent out 

from the cell bodies, which form bundles running along the longitudinal axis of 

the animal. The majority of neurites target and meet in the circumpharyngeal 

nerve ring in the head, which is considered the “brain” of the worm. 

 

 

 
Figure 2: Schematic of the neuronal network of C. elegans. Neurons cluster in the head and 
tail of the worm, their neurites run in longitudinal nerve bundles from anterior to posterior or 
vice versa. In addition, these nerve bundles themselves are connected via commissures. The 
ring ganglia in the head are: the anterior, dorsal, ventral and the lateral ganglion. (adapted 
from Wormatlas on www.wormbook.org) 
 

 

The neuronal network of C. elegans has been mapped with amazing 

precision based on the reconstruction of serial section electron micrographs 

(White, 1986). Based on the recently revised and detailed work of John White 

and colleagues, we know the invariant number of neurons and their positions 

within the body (Chen et al., 2006a; White, 1986). The hermaphrodite nervous 

system consists of only 302 neurons that are interconnected through around 

5000 synapses. An additional 2000 synapses are established to muscles. Male 

worms possess additional neurons that are required for the execution of the 

male mating behavior. The majority of those neurons is located in the male tail, 

while a few can be found in the head. In addition to the location of the neuronal 

cell bodies, the wiring network has been described to the level of single 
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neuronal contact points – the synapses. Each neuron establishes contacts to 

several other neurons and many times a particular neuron makes several 

synapses to each of its partner neurons. Intriguingly, the synapse number of 

particular neurons is fairly consistent between individual animals. Synapses in 

C. elegans are formed en passant, meaning that synaptic boutons are formed 

along the neurite shafts of neighboring parallel nerve processes or nerve 

processes and muscle arms (White, 1986). Because of this detailed knowledge, 

the C. elegans nervous system is increasingly used to study the formation, 

positioning, and maintenance of individual synapses as well as the identification 

of novel molecules involved in these processes. 

 

 

From environmental signals to behavior 
 

Neurons in C. elegans fall into one of three functional groups: sensory 

neurons, interneurons, or motorneurons. In this sequence, they are responsible 

for the perception of environmental signals, their transmission to other neurons 

(higher order “brain” structures or motorneurons) and finally to muscles, where 

appropriate muscle contraction patterns are executed. Alternatively, the final 

destination of an environmental signal can trigger specific developmental 

programs, for example the dauer formation program. 

The constant integration of multiple stimuli into a specific reaction or 

behavioral pattern is vital for the survival and reproduction of the worm. 

Sensory cues that are recognized by the worm include chemical, mechanical, 

olfactory and thermal stimuli, for example, light or harsh touch to the body or 

nose and the worm-specific dauer pheromone. The specificity of single sensory 

neurons for specific substances has been determined by laser ablation studies 

(Bargmann and Horvitz, 1991). Recently, also the detection of light by specific 

neurons has been demonstrated (Edwards et al., 2008; Ward et al., 2008). In 

addition to sensing external cues, the worm is also able to assess its internal 

status. Despite the relatively simple organization of its neuronal network, C. 

elegans possesses a large repertoire of complex behaviors, such as complicated 

patterns of movement during food search (Gray et al., 2005) and mating (Liu 
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and Sternberg, 1995), and different forms of associative learning (Morrison and 

van der Kooy, 1997; Morrison and van der Kooy, 2001; Morrison et al., 1999; 

Wen et al., 1997). These behaviors enable the worm to locate food sources and 

potential mates and to avoid harmful environments. 

However, detection of environmental signals alone is not sufficient to 

elicit an appropriate behavior. In addition, neurons have to establish and 

maintain a correct wiring pattern and communication system. Only then can 

sensory information be propagated and translated into action. On the following 

pages, two morphological neuronal features essential for signal detection and 

transmission will be discussed in detail: (1) synapses, neuronal contact points 

through which signals are passed on, and (2) cilia, specialized sensory 

structures through which sensory neurons detect signals. 

 

 

NEURONAL SUB-CELLULAR STRUCTURES: SYNAPSES 
 

Synapse structure and function 
 

Synapses are sites of cell-cell contact between neurons or neurons and 

muscles (so-called neuromuscular junctions), which serve to transmit signals. 

Synapses can be divided into chemical and electrical synapses. Chemical 

synapses transmit signals through a vesicle-mediated release of 

neurotransmitters (Table 1) or small peptides, e.g. insulin. Electrical synapses 

function through the direct coupling of membranes between two neurites. They 

are usually less abundant but seem to be associated with chemical synapses on 

the same neurite. 

The worm offers an ideal opportunity to study all aspects of synapse 

formation, structure and function in vivo in a relatively simple organism for 

several reasons. First, the majority of synaptic components are highly conserved 

among species (Table 2). Also, most of the common vertebrate 

neurotransmitters are found in the worm (Table 1). These two facts allow fairly 

direct comparisons to be made between the worm and vertebrate species. 
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Finally, for many synaptic genes, mutant alleles in C. elegans are available and 

most of them are viable, allowing genetic dissection of pathways and functions. 

Each synapse consists of two opposing counterparts, a pre-synaptic 

and a post-synaptic varicosity aligned at the synaptic cleft. The pre-synaptic 

terminal is characterized by the accumulation of neurotransmitter-filled 

synaptic vesicles around electron-dense membrane specializations (also called 

the pre-synaptic density or active zone; Figure 3). The post-synaptic site 

harbors various neurotransmitter receptors, ion channels, and signal 

transduction molecules. In chemical synapses, signals are transmitted through 

different neurotransmitters or neuropeptides (Table 2). Neurotransmitters have 

been assigned to single neurons, but whether individual synapses are 

neurotransmitter-specific is not known. Signaling molecules are packed and 

transported in synaptic vesicles to the active site of the synapse, where the 

vesicles fuse with the plasma membrane in a multi-step process that includes 

docking, priming, calcium sensing, membrane fusion (reviewed in (Richmond, 

2005)) that leads to the release of neurotransmitter molecules into the synaptic 

cleft. Neurotransmitters then bind to their respective receptors at the 

postsynaptic terminal and thereby activate the “downstream” or receiving 

neuron. 

 
1 This information is derived from experiments using in vitro muscle preparations to measure 
responses. ‘direct’ or ‘indirect’ indicates whether the effect is due to a direct action on the 
muscle, or indirect through a neuronal circuit. 

 

 

Both vesicle proteins as well as membrane are retrieved from the 

presynaptic terminal by a clathrin-mediated endocytosis process. Clathrin 

adaptors AP2 and AP180 localize to the vesicle membrane through direct 

Table 1: Neurotransmitter in C. elegans 
Neurotransmitter Conservation in Action on C. elegans muscles1 

Acetylcholine Mammals direct-excitatory 
GABA (gamma-aminobutyric acid) Mammals weak inhibitory 
Glutamate Mammals direct-inhibitory 
Serotonin Mammals direct/indirect-excitatory 
Dopamine Mammals Excitatory 
Octopamine Invertebrates only indirect-inhibitory 
Tyramine Invertebrates only Inhibitory 
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interaction with vesicle-associated proteins (e.g. synaptobrevin or 

synaptotagmin) (Fukuda et al., 1995; Haucke and De Camilli, 1999; Haucke et 

al., 2000; Zhang et al., 1994). The role of synaptotagmin has been demonstrated 

by a genetic approach in C. elegans. In C. elegans synaptotagmin snt-1 mutants 

synaptic transmission is reduced, and synaptobrevin snb-1 accumulates in the 

membrane (Nonet et al., 1993). At the ultrastructural level, a reduction of 

synaptic vesicles at pre-synaptic terminals was found in these mutants 

(Jorgensen et al., 1995), further supporting the interpretation that snt-1 is 

required for vesicle recycling. Consequently snt-1 mutants cannot move 

properly and display an uncoordinated (Unc) phenotype. Upon binding to the 

membrane, clathrin adaptors then recruit clathrin molecules. They adapt a 

conformation, which facilitates curvature of the membrane during the early 

budding step. Completion of budding and fission finally generates vesicles that 

are sorted and re-filled with neurotransmitter molecules (Figure 3). This 

synaptic vesicle cycle is crucial for the maintenance of a functional synapse. 

 

 

 
 
Figure 3: The synaptic vesicle cycle. Synaptic vesicles contain transporters that load vesicles 
with neurotransmitter. Mobilized vesicles translocate to the terminal plasma membrane where 
they selectively dock close to the active zone. Docked vesicles then undergo a priming step, 
during which they become fusion competent. A rise in intracellular calcium binds to sensors 
triggering vesicle fusion and release of neurotransmitter into the synaptic cleft. 
Neurotransmittors can then bind and activate receptors on the post-synaptic membrane. 
Following full-fusion, vesicle proteins and membrane are retrieved by clathrin-mediated 
endocytosis. (adapted from (Richmond, 2005)). 
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As the example above demonstrates, C. elegans has proven to be a 

powerful genetic model system in which to study the molecular basis of 

synapse structure, function, formation, and location. Several genetic screens 

have been conducted using behavioral or pharmacological criteria as well as 

fluorescent reporters to isolate synapse mutants. Subsequent modifier screens 

aim to uncover molecules interacting or functioning in the same pathway. 

Behavioral and pharmacological criteria select worms based on their aberrant 

movement or behavioral patterns under standard conditions (e.g. 

UNCoordinated, Unc mutants) or upon exposure to neuromodulatory, toxic 

substances such as Levamisole or Aldicarb (Lewis et al., 1980; Mahoney et al., 

2006; Martin et al., 2005). Aldicarb is an acetylcholine esterase inhibitor, 

leading to the accumulation of acetylcholine (AcCh) in the synaptic cleft, while 

Levamisole, an AcCh analog, constitutively activates AcCh receptors. Both 

interfere with synaptic transmission and cause paralysis in wild-type worms 

while synapse mutants are either resistant or hypersensitive to these agents to 

various degrees. 

Genetic screens used to isolate synapse mutants made use of synaptic 

vesicle clusters (that usually accumulate around synaptic terminals) marked 

with SNB-1::GFP in different subtypes of neurons. Abnormal accumulation of 

the labeled protein in mutant worms was used to identify genes involved in 

synapse formation.  These screens identified overlapping sets of synapse genes, 

named sad (synapses of amphids defective), sam (synapse abnormal 

morphology), syd (synapse defective) and syg (synapse gone) (Crump et al., 

2001; Schaefer et al., 2000; Shen and Bargmann, 2003; Zhen and Jin, 1999). 

In addition to classical/conventional screens, new tools to study 

synapses in C. elegans have been developed. These tools include calcium-

indicators for the study of calcium dynamics in neurons and muscles (Kerr et 

al., 2000), styryl dyes such as FM1-43 to study vesicle cycling in sectioned 

worms (Kay et al., 1999), and electrophysiological methods that allow 

recordings at single neuromuscular junctions (Richmond et al., 1999; Richmond 

and Jorgensen, 1999). The development of new sample preparation protocols 

for transmission electron microscopy (EM) allows a more detailed analysis of 

morphological synaptic phenotypes (Rostaing et al., 2004). Furthermore, new 

immuno-EM techniques increase the resolution of studying protein localization 
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within the synapse (Bosher et al., 2003). These developments are essential for 

neurobiology research in C. elegans to remain competitive and to continue to 

contribute at the forefront to our understanding of the molecular and structural 

basis of synapse function. 

 

 

 

Synapse maintenance 
 

The process of synapse maintenance has two different aspects (1) 

synapse maintenance during development (establishing and strengthening of 

preliminary synapses) and (2) synapse maintenance during adulthood (recycling 

of synaptic vesicles and maintaining a constant supply of synaptic proteins). 

Studying synapse development in the vertebrate central nervous system 

has led to a detailed understanding of the earliest events of synapse formation. 

A multi-step process is required, beginning with an initial contact between 

axons and dendrites to the induction and subsequent differentiation of synapses. 

The induction step of synapse formation is believed to involve several bi-

directional signaling events between pre- and postsynaptic fields utilizing 

several classes of cell adhesion molecules (Craig et al., 2006; Waites et al., 

2005). This initial phase of synapse formation is then followed by a period of 

Table 2: Selected synaptic proteins in C. elegans and their homologues in mammals 

C. elegans protein Function Mammalian 
homolog 

SNB-1 (Synaptobrevin, v-SNARE) vesicle fusion Synaptobrevin-
1/VAMP-1 

SNG-1 (Synaptogyrin) Ca2+-dependent exocytosis Synaptogyrin-1 

SNT-1 (Synaptotagmin) Ca2+-sensor in exocytosis, AP2-
binding partner in endocytosis Synaptotagmin-1 

UNC-10 (Rim, rab interacting 
protein) priming Rim1 

UNC-13 (Phorbol ester binding 
protein) 

priming, promoting open 
syntaxin Munc-13 

UNC-17 (Vesicular AcCh 
transporter) 

loading AcCh into synaptic 
vesicles VAChT 

UNC-18 (Syntaxin binding protein) implicated in docking priming 
and fusion Sec1 homolog 

UNC-43 (CaM kinaseII) regulation of synaptic density CaM kinase II 
gamma chain 

UNC-64 (Syntaxin) vesicle fusion Syntaxin-1A 
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structural and functional maturation. The process of synaptic maturation leads 

to increased stability of the junction and a certain resistance to disassembly. 

Not all synapses made during development remain present in the 

mature adult nervous system. Pruning, the selective removal of synapses, is an 

important part of neuronal circuit refinement. Development of the human brain 

is the most impressive example of pruning; around 40 % of all synapses made 

during the postnatal period are removed until adulthood (Huttenlocher and de 

Courten, 1987). Recently a molecular model for selective synapse removal was 

presented based on data from the C. elegans HSN neuron. Ding and co-workers 

demonstrated that the SCF (Skp1-Cullin-F-box) ubiquitin ligase complex is 

necessary to establish the stereotypic synaptic pattern found in adults by 

selectively removing synapses at larval stages (Ding et al., 2007). They also 

identified the immunoglobulin membrane protein syg-1, shown earlier to direct 

the assembly of synapses, as a local inhibitor of SCF complex activity (Shen 

and Bargmann, 2003; Shen et al., 2004). Another example of synapse removal 

during the development of C. elegans involves the DD-type motor neurons. 

These neurons initially synapse onto ventral muscle cells. At the end of the L1 

stage, these ventral synapses are removed and new ones are established with 

dorsal muscles (Hallam and Jin, 1998). As for synapses on HSN neurons, the 

synaptic pattern of DD-type motor neurons in adults is stereotypic. However, 

whether the same mechanism or complex is required for the establishment of 

this pattern is not clear. 

Mature, established synapses are maintained via recycling of synaptic 

vesicles. This process is vital for the functionality of synapses in the adult 

nervous system. A large amount of data from studies in C. elegans on vesicle 

fusion, recycling, and transport is available (Jin, 2005; Richmond, 2005). 

However, a certain imprecision of the recycling machinery requires also a 

constant supply of newly formed synaptic vesicles. In the worm, UNC-104 is 

required for the transport of synaptic vesicles from cell bodies to synapses 

(Zhou et al., 2001). Upstream steps of this process, for example, how synaptic 

protein expression itself is regulated, and how vesicles are formed in the cell 

body, are not well understood, however. 
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Synapse positioning and patterning in C. elegans 
 

As described above, classical views on synapse formation describe the 

direct pairing of synaptic partners across the synaptic cleft via adhesive 

molecules. However, several studies in C. elegans have recently demonstrated 

an alternative way – the use of guidepost cells. These are (non-neuronal) cells 

that first specify the pre-synaptic area in an adjacent neuron. In a subsequent 

second step, the post-synaptic partner is guided to this site. Examples for such 

guidepost cells are the primary vulval epithelial cells. They express syg-2, 

which recruits and interacts with the above-mentioned syg-1, expressed in the 

neuron HSNL. In such a way, the guidepost molecule SYG-2 defines pre-

synaptic sites in HSNL. Glia-like sheath cells in the head of the worm also act 

as guideposts, coordinating the formation of synapses between AIY and RIA, 

two neurons in the thermosensory circuit (Colon-Ramos et al., 2007). These 

glia cells secrete the diffusible molecule UNC-6/Netrin, which binds to its 

receptor UNC-40/DCC expressed in both neurons. However, RIA and AIY 

respond in different ways to UNC-6. While the Netrin-DCC interaction feeds 

into the axon guidance pathway in RIA, it specifies the pre-synaptic site in AIY. 

How these different programs are activated downstream of UNC-40/DCC is not 

known. In another recent study by Klassen and co-workers, the role of Wnt 

signaling in guidepost cell-guided synapse formation was demonstrated 

(Klassen and Shen, 2007). Tail hypodermis cells act as guideposts by secreting 

LIN-44/Wnt, which binds to the LIN-17/Frizzled receptor present on the axon 

of the DA9 neuron. In contrast to the previous examples, this interaction does 

not promote, but instead inhibits, synapse formation in this area. Thus, 

guidepost cells can sculpt neuronal activity in two ways, supportive and/or 

inhibitory. The concept of guidepost is not unique to C. elegans, but can also be 

found in vertebrates (Del Rio et al., 1997; Ghosh et al., 1990). Therefore 

findings made in the worm may in the future also be important for other 

species, including humans. 

 

 



 14 

NEURONAL SUB-CELLULAR STRUCTURES: CILIA 
 

The general structure of cilia 
 

Cilia and the structurally and functionally related flagella are ancient 

organelles that are found in many eukaryotic species - while Arabidopsis 

thaliana, Saccharomyces cerevisiae and Dictyostelium discoideum are some of 

the few species that lack these structures (Cavalier-Smith, 2002). Cilia are 

cellular extensions comprised of two main building blocks: a rod-like core, 

called the axoneme, consisting of 9 outer microtubule-doublets (and in some 

cases also a central pair) and a ciliary membrane that isolates the axoneme from 

the extra-cellular space. They are found singly or in groups and can be assigned 

to three major categories: motile, primary, or nodal cilia. Motile cilia are 

defined by their ability to move. Solitary or organized in groups, they beat in a 

wave-like fashion, thereby transporting extracellular fluids or small particles 

(e.g. mucus in the lung or cerebrospinal fluid in the brain) or generating force 

for cell movement (e.g. sperm cells) (Davenport and Yoder, 2005). The ability 

to generate force is achieved by the presence of a central microtubule pair in the 

axoneme, resulting in a so-called 9+2 pattern. Primary cilia are solitary 

organelles that display a 9+0 pattern and are consequently non-motile (Davis et 

al., 2006). Their function on most cells remains to be elucidated, however. In 

the vertebrate kidney and also in C. elegans (as will be discussed later) they 

serve sensory purposes. The third category, nodal cilia, is found on the node of 

gastrulation-stage mammalian embryos. Their axonemes display a 9+0 pattern, 

nevertheless they can move - although in a propeller like fashion. This 

movement is vital to generate a morphogenetic gradient that sets up the left-

right asymmetry in mammals. 

Despite the growing interest of researchers in ciliogenesis in recent 

years, we still have only a rudimentary understanding of cilium formation. 

Cilium formation begins with the formation of a basal body, which is derived 

from the centriole, a structure that organizes and arranges the microtubular 

spindle during cell division. In non-dividing cells, one centriole is positioned 

close to the membrane and it serves as a microtubule-organizing center for the 
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ciliary axoneme. Cilia in all organisms are constructed through a conserved 

process called Intra Flagellar Transport (IFT) (Rosenbaum and Witman, 2002). 

IFT is characterized by the bipolar movement of particles along the axoneme, 

more precisely between the outer microtubule doublets and the membrane. This 

movement is facilitated through two classes of motor proteins: kinesins are 

required for the transport from the proximal to the distal end of the cilium and 

dyneins move particles from the distal to the proximal end. One can distinguish 

two different groups of IFT components: complex A particles and complex B 

particles. Pioneering biochemical work in Chlamydomonas purified and 

identified a large number of complex A and B components (Luck et al., 1977). 

The absence of a single component results in drastic shortening of cilia, 

indicating that IFT components are also essential for cilium formation. This is 

not surprising. Since cilia do not harbor ribosomes, they are highly dependent 

on IFT as a supply-mechanism for structural and functional components 

(Mukhopadhyay et al., 2007; Ou et al., 2007; Pan et al., 2006). 

 

 

 

Cilia and flagella are found on nearly every mammalian cell type. For 

a comprehensive list of all cell types that have been reported to have primary or 

other types of cilia, visit the following web sites: http://members.global2000.net 

/browser/cilialist.html or http://www.bowserlab.org/primarycilia/ciliumpage2. 

html. Structurally impaired cilia have in recent years been associated with 

severe diseases and syndromes in humans, indicated that their diverse functions 

are vital for most organs (Table 3). Molecular investigations to determine the 

underlying causes for these diseases even in mouse models are not always 

possible or, at least, are very time consuming. Therefore simple animals like C. 

elegans are the models of choice to study cilia defects in vivo. 

Table 3: Prominent examples of human cilia-related diseases 

Polycystic kidney disease (PKD) 
Bardet Biedl Syndrome (BBS)  
Kartagener Syndrome or Primary Ciliary Dyskinesia (PCD) 
Jeune asphyxiating thoracic dystrophy (JATD) 
Meckel Syndrome (MKS) 
Alström Syndrome (AS) 
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Cilia in C. elegans 
 

In contrast to the widespread distribution of cilia in mammals, in C. 

elegans cilia are restricted to 60 neurons located mainly in the head and the tail 

of the animal. These 60 neurons define a subset of sensory neurons in C. 

elegans, the ciliated sensory neurons (CSNs). Their precise positions within the 

body as well as their functions are well described. Most CSNs in the head are 

part of two lateral-symmetric sensilla, specialized sense organs called the 

amphids (Figure 4). Those in the tail are part of the phasmids. Amphids as well 

as phasmids consist of CSNs and two support cells (one socket and one sheath 

cell) that form a channel and connect the sensillum to the hypodermis. Cell 

ablation studies have identified numerous volatile and soluble chemical 

compounds that can be sensed by C. elegans and have assigned those 

compounds to the sensory function of single neurons (Table 4). Typically, 

Table 4: Amphid ciliated sensory neurons and their specificity 

Neuron Cilium Sensory specificity Function Dye filling 

ASE single rod Na+, Cl-, K+, cAMP, 
biotin, lysine Water-soluble chemotaxis no 

ASG single rod Na+, Cl-, cAMP, biotin, 
lysine 

Dauer formation, Lifespan, 
Chemotaxis no 

ASH single rod Cd2+, Cu2+, 1-octanol Nociception, Social 
feeding 

FITC, DiI, 
DiO 

ASI single rod Na+, Cl-, K+, cAMP, 
biotin, lysine 

Dauer formation, 
Chemotaxis 

FITC, DiI, 
DiO 

ASJ single rod dauer pheromone Dauer formation/recovery, 
Chemotaxis, Lifespan 

FITC, DiI, 
DiO 

ASK single rod lysine Avoidance, Chemotaxis, 
Lifespan 

FITC, DiI, 
DiO 

ADF double rod Na+, Cl-, cAMP, biotin Dauer formation, 
Chemotaxis FITC 

ADL double rod Cd2+, Cu2+, 1-octanol Avoidance, Social feeding FITC, DiI, 
DiO 

AWA wing-like diacetyl, pyrazine, 
trimethylthiazole 

Volatile chemotaxis, 
Lifespan no 

AWB wing-like 2-nonanone, 1-octanol Volatile avoidance DiI, DiO 

AWC wing-like benzaldehyde, butanone, 
isoamylalcohol, … 

Volatile chemotaxis, 
Lifespan no 

AFD microvillae temperature Thermosensation no 
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several neurons are able to detect one particular substance. One neuron is a 

primary sensor while the others have minor roles in detection. 

 

 
Figure 4: Schematic of amphid cilia. The amphids, a pair of lateral sensilla in the head, are 
the principal chemosensory organs of nematodes. Each amphid is comprised of the ciliated 
dendrites of 12 sensory neurons. These cilia can have different shapes (single or double rod-
like, wing-like or with numerous microvillae) and locations (projecting through a pore with 
direct contact to the environment, or remaining within the amphid pocket). (adapted from 
(Perkins et al., 1986)) 

 

 

Several screens performed in C. elegans have generated a large 

number of mutants that have structurally or functionally impaired cilia 

(Bargmann et al., 1993; Culotti and Russell, 1978; Efimenko et al., 2005; 

Emery et al., 1996b; Malone and Thomas, 1994; Ou et al., 2007; Perkins et al., 

1986; Starich et al., 1995). These mutants were categorized and named based on 

their phenotypes: daf (dauer formation affected), che (chemotaxis response 

defective), osm (osmotic avoidance defective), odr (odorant response 

defective) or dyf (dye-filling defective). Dye-filling mutants are characterized 

by the inability of CSNs to take up lipophilic dyes such as DiI, DiO or FITC. 

This uptake is facilitated in wild-type worms by cilia. After an incubation time 

of about one hour the entire CSN is saturated and visible under the UV 
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microscope. Mutants with structurally defective cilia do not incorporate dye in 

their CSNs and are therefore dye-filling defective. 

 

 

RFX TRANSCRIPTION FACTORS 
 

RFX proteins belong to the winged-helix family of transcription factors. They 

are defined by a 76 amino acid DNA-binding domain and are present in many 

eukaryotes. S. cerevisiae, S. pombe, and C. elegans each contain one RFX gene, 

the Drosophila genome encodes two, and seven have been identified in mice 

and humans (Aftab et al., 2008). Certain individual RFX proteins have been 

implicated in the regulation of single genes (Iwama et al., 1999; Wolfe et al., 

2006). Other RFX proteins regulate similar processes in several species, such as 

the cell cycle, brain development, and cilium formation. The RFX transcription 

factors in S. pombe, S. cerevisiae and Drosophila dRFX2 are implicated in the 

regulation of cell cycle check points (Huang et al., 1998; Otsuki et al., 2004; 

Wu and McLeod, 1995). Neuron-specific functions have been described for 

mammalian RFX1 and RFX4. RFX1 was recently identified as a regulator of 

the EAAT3 neuronal glutamate transporter, which suggests a possible role in 

the regulation of neurotransmitters (Ma et al., 2006). Several isoforms of RFX4 

have been isolated, one transcript of which, RFX4_v3, is implicated in early 

brain development (Zhang et al., 2006). Mammalian RFX3 functions mainly in 

cilia. During embryogenesis, it is responsible for nodal cilium development, the 

specification of left-right asymmetry, and the differentiation of ciliated 

ependymal cells in the brain (Baas et al., 2006; Bonnafe et al., 2004). Similarly, 

Drosophila RFX, dRFX, is expressed in the peripheral nervous system, where it 

is essential for proper signaling in ciliated type I sensory organs (Dubruille et 

al., 2002). The regulation of cilium formation is so far the only process 

regulated by RFX proteins that is conserved across species. 

RFX proteins are characterized through two functional domains, a 

highly conserved DNA binding domain (DBD) and a dimerization domain 

(DIM). The DBD recognizes and binds to a short DNA sequence motif, the x-

box, present in the promoter region of direct target genes. A consensus 

sequence for mammalian RFX proteins and the single C. elegans RFX protein 
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have been defined based on in vitro binding studies and in vivo gene expression 

studies, respectively (Efimenko et al., 2005; Emery et al., 1996b). 

 

 

THE ROLE OF DAF-19 DURING CILIOGENESIS 
 

The C. elegans genome encodes a single RFX transcription factor, 

DAF-19. It was the first transcription factor shown to be essential for 

ciliogenesis. DAF-19 was also the first member of the RFX transcription factor 

family identified as part of cilium development (Swoboda et al., 2000). 

Subsequently a conserved role for RFX proteins in ciliogenesis was also 

discovered in other organisms (Baas et al., 2006; Bonnafe et al., 2004; 

Dubruille et al., 2002). The gene daf-19 is expressed in all CSNs (Swoboda et 

al., 2000). These neurons enable the worm to sense cues from the environment 

through the cilium. The cilia of those sensory neurons are therefore the major 

source of input for environmental signals for the worm. Mutations in daf-19 

result in animals completely devoid of any ciliated structure. Such worms are 

therefore unable to respond to environmental signals like food, dauer 

pheromone, or nose touch (Perkins et al., 1986). daf-19 mutant worms display a 

highly penetrant dauer formation phenotype, with over 90 % of worms 

activating the dauer formation program. Nevertheless, in the laboratory daf-19 

mutants are viable and thus a suitable model to study ciliogenesis. Several labs 

have identified a large number of direct DAF-19 target genes based on the 

presence of the x-box promoter sequence motif, the binding site for DAF-19. 

The expression of these genes is dependent on DAF-19 and the cis-acting x-

box; these genes are specifically expressed in CSNs, and they are frequently 

directly involved in cilia structure and function (Blacque et al., 2005; Chen et 

al., 2006b; Efimenko et al., 2005). 
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THE CONCEPT OF ECTOPIC EXPRESSION 
 

Necessity and Sufficiency – two related genetic concepts 
 

Studying the function of a particular gene can be attempted in several 

ways. A loss-of-function (LOF) mutation of the gene of interest can be targeted 

by homologous recombination in yeast, flies, or mice. Random mutagenesis in 

flies or worms can also result in the deletion of the gene product. The resulting 

phenotype reveals the process or program for which the gene is required. In 

other words, a null or LOF mutation of a gene will determine its necessity. 

Another approach to studying gene function is the over-expression of the gene 

of interest in a wild type organism (gain-of-function, GOF). This is particularly 

useful if deletion of the gene does not result in a phenotype, e.g. because of 

functional redundancy of several genes. GOF experiments can be carried out in 

the cells that the gene is usually expressed or in other, unrelated, cell types. 

Gene expression in unrelated cell types can lead to surprising results that can 

indicate the sufficiency of a gene to induce a certain function or developmental 

program. The genetic concepts of necessity and sufficiency are especially 

important with respect to developmental events. Gene products that can induce 

an entire developmental program have been identified and are called “master 

regulators” or “master switch genes.” These genes can lead to reprogramming 

of cell fates and transformation of cell types. 

 

 

Master regulators 
 

eyeless – ectopic eye formation in Drosophila melanogaster 

 

eyeless, the Drosophila homolog of the paired transcription factor 

Pax6, was one of the first genes found to induce a developmental program and 

therefore was labeled a “master regulatory gene”. LOF mutations in eyeless 

generate, as the name suggests, flies without eyes. Conversely, ectopic 

activation of eyeless induces the formation of this complex organ consisting of 
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many different cell types (Halder et al., 1995). The first intriguing pictures of 

compound eyes growing on antennae and legs of the fly were followed by the 

identification of other genes required for eye development. Many of them are 

also able to induce ectopic eye development. To date, PAX6, EYA (Eyes 

absent), SO (sine occulis) and DAC (Dachshund) form the key members of the 

retinal determination gene network, which directs eye development in 

Drosophila. These genes, even though they can be placed into a hierarchical 

structure, regulate each other through feedback loops, and some of them even 

interact physically. In addition, TOY (Twin of eyeless) was found to act 

upstream of eyeless. OPTIX and EYG (Eyes gone) function independently from 

the other members in proper eye development. Thus, eyeless, despite its 

necessity and apparent sufficiency for eye development in Drosophila, is not 

the sole determining factor for this process. Instead, it is embedded in a 

complex determination cascade consisting of several master switch genes. 

 

 

MyoD – induction of a muscle specific developmental program 

 

In tissue culture experiments MyoD (myoblast determination 1; (Davis 

et al., 1987)) was found to transform a variety of cell types (e.g. nerve cells, fat 

cells, fibroblasts, and liver cells) into muscle-like cells that express muscle-

specific genes like desmin, myosin heavy chain, muscle specific receptors, and 

membrane molecules (Weintraub et al., 1989). These experiments showed that 

MyoD is sufficient to induce a muscle-specific developmental program. 

Surprisingly, in MyoD knock out mice muscles still form, indicating that MyoD 

is not required (necessary) for this developmental program (Wang et al., 1996). 

This was due to the redundancy of MyoD and Myf, a MyoD-like gene that also 

has the potential to induce muscle-specific gene expression. Muscles develop 

normally without either MyoD or Myf. However, simultaneous deletion of both 

genes leads to the absence of muscle development (Rudnicki et al., 1993). 

These results indicate that MyoD and Myf are master regulatory genes that are 

sufficient for skeletal muscle development, but individually they are not 

necessary. In addition to MyoD and Myf, several other genes important for 

muscle development were identified as belonging to the myogenic bHLH 
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protein family: myogenin, Myf5, and Mrf4, all of which have a key role in 

muscle cell specification and differentiation (Buckingham et al., 2003; 

Molkentin and Olson, 1996; Perry et al., 2001; Pownall et al., 2002; Puri and 

Sartorelli, 2000). 

 

 

What defines a master regulator? 
 

Approaching to explain the term “master regulator” from an unbiased 

point of view, one would describe it as a protein that is the one and only inducer 

of the start of a (developmental) expression cascade. Furthermore, this master 

regulator should ideally be both necessary and sufficient to trigger a certain 

developmental process, activating this cascade wherever and whenever 

expressed. However, looking at the examples of master regulators identified, 

two facts become apparent: (1) there are not many master regulators reported 

and (2) the situation is usually more complex than outlined above. Two 

examples of master regulatory genes were presented in the previous section - 

their range of action is, however, very different. MyoD induces the identity of a 

specific cell type and is sufficient for this process. Eyeless on the other hand, 

induces several different cell types that are ultimately arranged into a functional 

organ. In contrast to MyoD, Eyeless is both necessary and sufficient for 

inducing a particular developmental program. However, in both cases these 

genes were first identified as THE master regulator. Subsequent studies then 

discovered redundant proteins with identical functions, epistatic genes in the 

same pathway, or parallel pathways with similar activation potential. 

Thus, one can state that a real master regulator actually does not exist. 

Genes act in networks and important pathways are often backed up by (other) 

genes, which can exert the same function. In this sense, the term ‘key regulator’ 

would be more appropriate. 
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Thesis Aim 
 

 

 

 

ast and present efforts in the Swoboda lab and several other labs focus 

mainly on the identification and characterization of genes required for 

cilia formation (Blacque et al., 2005; Chen et al., 2006b; Efimenko et 

al., 2005). Such genes can be direct or indirect target genes of the RFX 

transcription factor DAF-19, depending on their method of identification. The 

role of DAF-19 in ciliated sensory neurons and during ciliogenesis is therefore 

being extensively studied. 

However, preliminary results suggested that DAF-19 may also be 

expressed in cells other than ciliated sensory neurons (Swoboda et al., 2000). 

The function of the transcription factor in these cells remained largely 

unexamined. The work presented in this thesis aims to investigate novel 

functions of DAF-19. It also explores the transcription factors’ potential to 

induce cilia during development in different cell types. In particular this work 

tries to answer the following questions: 

 

• Does DAF-19 have a function in other neurons or cell types in C. elegans? 

• Can DAF-19 be used to generate a novel tool to study all aspects of sensory 

neuron function from sensory input to behavior in vivo? 

• Is DAF-19 a master regulator of ciliogenesis and thus sufficient to induce 

cilia formation in different cell types? 

P 
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Results and Discussion 
 

 

 

 

his section presents and discusses all findings that are part of this 

thesis, based on the specific aims presented in the section “Thesis 

Aims”. Paper I is included as published in the journal, while Paper II 

and III are written in manuscript form. Thus Paper I follows its own page 

numbering. 

 

T 
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Paper I 
 

 

 

 

DISTINCT ISOFORMS OF THE RFX TRANSCRIPTION 
FACTOR DAF-19 REGULATE CILIOGENESIS AND 
MAINTENANCE OF SYNAPTIC ACTIVITY 
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Neurons form elaborate subcellular structures such as dendrites, axons, cilia, and synapses to receive signals from their
environment and to transmit them to the respective target cells. In the worm Caenorhabditis elegans, lack of the RFX
transcription factor DAF-19 leads to the absence of cilia normally found on 60 sensory neurons. We now describe and
functionally characterize three different isoforms of DAF-19. The short isoform DAF-19C is specifically expressed in
ciliated sensory neurons and sufficient to rescue all cilia-related phenotypes of daf-19 mutants. In contrast, the long
isoforms DAF-19A/B function in basically all nonciliated neurons. We discovered behavioral and cellular phenotypes in
daf-19 mutants that depend on the isoforms daf-19a/b. These novel synaptic maintenance phenotypes are reminiscent of
synaptic decline seen in many human neurodegenerative disorders. The C. elegans daf-19 mutant worms can thus serve
as a molecular model for the mechanisms of functional neuronal decline.

INTRODUCTION

RFX proteins belong to the winged-helix family of transcrip-
tion factors. They are defined by a 76-amino acid DNA-
binding domain and are present in many eukaryotes. The
genomes of Saccharomyces cerevisiae, Schizosaccharomyces
pombe, and Caenorhabditis elegans each harbor one RFX gene,
Drosophila contains two, and five have been identified in
mice and humans. Individual RFX proteins regulate related
processes in several species, such as the cell cycle (Wu and
McLeod, 1995; Huang et al., 1998; Otsuki et al., 2004), brain
development and neuronal functions (Ma et al., 2006; Zhang
et al., 2006), and ciliogenesis. Cilia develop as specialized
subcellular structures with sensory or motile functions that
project off many different cell types. Their structure and
function have been investigated in mammals, Drosophila,
and C. elegans. Initially, the characterization of the single C.
elegans RFX transcription factor, DAF-19, had established for
the first time a connection between RFX transcription factors
and cilia development (Swoboda et al., 2000) and provided a
basis for subsequent studies in other species. Drosophila
dRFX is expressed in the peripheral nervous system, where
it is essential for the proper function of ciliated type I sen-
sory organs (Dubruille et al., 2002; Laurencon et al., 2007).
Mammalian RFX3 is responsible for nodal cilia develop-
ment, the specification of left-right asymmetry and the dif-
ferentiation of ciliated ependymal cells in the brain (Bonnafe
et al., 2004; Baas et al., 2006). Thus, the role of RFX transcrip-
tions factors in ciliogenesis is conserved across species. In C.
elegans, the gene daf-19 is expressed in ciliated sensory neu-
rons mostly located in the head and tail of the worm (Swo-

boda et al., 2000). These neurons are the major source of
input for environmental signals for the worm. daf-19 mutant
worms are completely devoid of ciliated structures and are
consequently unable to respond to environmental signals
such as food, dauer pheromone, or nose touch (Perkins et al.,
1986). Nevertheless, in the laboratory daf-19 mutants are
viable and thus a suitable model to study ciliogenesis. We
and others have identified a large number of direct DAF-19
target genes based on the presence of the x-box promoter
sequence motif, the binding site for DAF-19. Their expres-
sion in ciliated sensory neurons was dependent on both
daf-19 and the promoter x-box, and many of them are re-
quired for cilia structure and function (Blacque et al., 2005;
Efimenko et al., 2005; Chen et al., 2006).

In the present study, we show that DAF-19 not only
regulates the formation of cilia in sensory neurons but also is
required for the maintenance of synaptic functions in the
remainder of the nervous system. The hermaphrodite C.
elegans nervous system consists of 302 neurons (60 of which
are ciliated) that are connected via �7000 chemical synapses
and 700 gap junctions (White et al., 1986). Chemical synapses
are established either between neurons or between neurons
and muscle cells, at the so-called neuromuscular junctions.
Each synapse consists of three major areas: 1) the synaptic
vesicle pool, made up of vesicles at various stages of the
recycling process or ready for neurotransmitter release; 2)
the presynaptic terminal, where synaptic vesicles fuse in a
multistep process and release neurotransmitters into the
synaptic cleft; and 3) the postsynaptic target area in the
receiving neuron, the receptive field, in which neurotrans-
mitter receptors cluster. The isolation of a large number of C.
elegans synapse mutants has provided us with detailed
knowledge about the function of the synapse, especially the
life cycle of synaptic vesicles. Recent work addressed the
hierarchical assembly of the presynaptic terminal, providing
detailed insight into the interdependence of assembly steps
at a molecular level (Dai et al., 2006; Patel et al., 2006).

This article was published online ahead of print in MBC in Press
(http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E08–04–0416)
on October 8, 2008.
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However, how the expression of individual synaptic com-
ponents is regulated after their initial establishment and
how their constant supplies are maintained, remains largely
unknown.

Here, we present a detailed analysis of three different
daf-19 transcripts. We show that the short isoform daf-19c is
expressed in all ciliated sensory neurons and is sufficient to
rescue ciliogenesis phenotypes of daf-19 mutants. The two
long isoforms daf-19a/b are expressed in basically all noncili-
ated neurons. We describe novel behavioral and cellular
phenotypes of daf-19. In particular, we demonstrate that
DAF-19A/B are necessary to maintain expression levels of
several synaptic proteins, which assigns DAF-19 a function
in neurotransmission. Surprisingly, this reduced synaptic
protein expression is rather mild at larval stages but declines
progressively as adult daf-19 mutants age. Therefore, our
study for the first time establishes a member of the RFX
transcription factor family as a regulator of synaptic main-
tenance. Intriguingly, the synaptic defects in daf-19 mutants
display strong parallels to the synaptic decline observed in
human neurodegenerative disorders, suggesting that similar
mechanisms may be affected.

MATERIALS AND METHODS

Strains and Culture Methods
Culture of C. elegans strains was carried out as described previously (Brenner,
1974). The strains and transgenes used in this work are summarized in
Supplemental Table 4. All strains were grown at 20°C. At this temperature,
daf-19 mutants display a highly penetrant Daf-c phenotype. However, �10%
of the population does not activate the dauer formation program and can be
used for experiments (Swoboda et al., 2000). Worms were picked singly at
larval stage 4 (L4) before behavioral and paralysis assays that required a small
number of worms (�50 animals/assay). Antibody stainings of mixed stage
populations were performed on large batches of daf-19 worms. For all exper-
iments that required large populations of staged worms (Western blot, quan-
titative polymerase chain reaction [PCR], and antibody stainings) or that
involved the analysis of nonrescuing transgenes (transcriptional gfp fusions of
x-box candidate genes, intron-gfp fusions, translational gfp fusions of synaptic
genes), we used the daf-12 (sa204) background. The daf-12 mutation sup-
presses the Daf-c phenotype of daf-19 and prevents dauer formation.

Injection Constructs, Germ Line Transformation, and
Green Fluorescent Protein (GFP) Expression Analyses
pGG20 and pGG21 contain the last 250 base pairs of daf-19 intron 3 and daf-19
intron 4 fused to gfp, respectively. The daf-19 rescue and deletion constructs
pTJ803, pGG14, and pGG18 (see Figure 2) were derived from pTJ786 (daf-19
genomic plus 2.9-kb promoter). pGG67 is a genomic/cDNA fusion rescue
construct specific for daf-19a (see Figure 4). Transcriptional gfp fusions of
daf-19 were injected at 100 ng/�l and daf-19 rescue constructs were injected at
10 ng/�l. Synaptic markers and promoter gfp fusions were injected at 50–70
ng/�l. Adult hermaphrodites were transformed using standard techniques
(Mello et al., 1991).

Behavioral Assays
Paralysis assays were performed on nematode growth medium agar plates
containing 500 �M aldicarb or 100 �M levamisole. In addition, the resistance
of daf-19 mutants to levamisole was confirmed at concentrations up to 1 mM
(data not shown). At least 25–30 1-d-old adult worms were examined for each
strain. Worms were classified as paralyzed when they did not move upon
prodding with a pick three times in a row.

For dwelling/roaming assays, 1-d-old adult worms were transferred singly
to fresh plates with a bacterial lawn of standardized size. After 1 h, worms
were removed, each plate was put on a transparency with a grid (5 � 5 mm),
and the number of squares that were filled with worm tracks was counted
(Figure 4A). Each assay was repeated at least twice, with two independent
lines for each transgene. More than 30 worms were examined in paralysis and
dwelling/roaming assays.

DiI Staining, Microscopy, and Fluorescence Imaging
Fluorescent dye-filling assays with DiI were performed as described previ-
ously (Starich et al., 1995). For live imaging of GFP expression, worms were
anesthetized in 0.1% sodium azide in M9 buffer and immobilized on a 2% agar
pad. Differential interference contrast and fluorescence pictures were taken on
an Axioplan 2 microscope (Carl Zeiss, Jena, Germany). We also used the

microscope together with the OpenLab software (Improvision, Coventry,
United Kingdom) for the analysis of expression levels of synaptic proteins
(antibody stainings). Pictures of the comarker UNC-10 (unchanged between
wild type and daf-19) and the synaptic protein under investigation were taken
at fixed exposure times (optimized for the UNC-10 staining intensity). The
intensity of the signal for the synaptic protein under these conditions was
classified as “strong” when the picture was overexposed and as “weak” when
the picture was underexposed (cf. Figures 6 and 7 and Supplemental Table 2).

Northern Blot Analysis and RNase Protection Assay
Embryos were isolated from gravid wild-type adults grown on egg medium
by hypochlorite treatment. Embryonic total RNA was extracted using TRIzol
(Invitrogen, Paisley, United Kingdom). For Northern blot, radioactive probes
were prepared using the Prime-It random labeling kit (Stratagene, La Jolla,
CA) and purified over ProbeQant G50 columns (GE Healthcare, Little Chal-
font, Buckinghamshire, United Kingdom). RNase protection assay: Radioac-
tive probes were prepared according to the manufacturer’s instructions
(MAXIscript kit; Ambion, Austin, TX), and hybridization to 20 �g total RNA
was carried out according to the instructions in the manual for the RPA III kit
(Ambion).

Quantitative Real-Time PCR
We used TRIzol and the RNeasy kit (QIAGEN, Dorking, Surrey, United
Kingdom) to extract total RNA from staged 2-d-old adult worms. All samples
were checked for RNA integrity (Agilent 2100 Bioanalyzer; Agilent Technol-
ogies, Santa Clara, CA) and subjected to DNase digestion and single-strand
cDNA synthesis (iScript; Bio-Rad, Hemel Hempstead, United Kingdom).
Expression levels of selected genes were analyzed in an Applied Biosystems
7300 thermocycler (Applied Biosystems, Foster City, CA) by using actin as a
reference gene. Each reaction was run in triplicates on two independent
biological samples for each strain. All primers had a melting temperature of
58–60°C and produced a single amplicon. Data were analyzed using the Fast
SDS software 1.3.1 (Applied Biosystems).

Antibody Production
cDNA fragments corresponding to DAF-19 amino acids 2–212 (for
AbDAF19N) and 340–513 (for AbDAF19C), respectively, were expressed in
BL21 (DE3) bacterial cells. Immunization of rabbits was carried out at Gram-
sch Laboratories (Schwabhausen, Germany). On Western blots, AbDAF19N
detected a specific band of 120 kDa, by using wild-type protein extracts,
corresponding to DAF-19A/B. This band was absent from protein extracts
from daf-19 mutant worms (Supplemental Figure 1A). AbDAF19C was not
suitable for Western blot analysis. On worm whole-mount stainings, both
antibodies detected a signal in neuronal nuclei at all stages (Supplemental
Figure 1, B and D). Aside from that, DAF-19 was also detectable in hypoder-
mal cells at larval stages (data not shown).

Western Blot Analysis
Worms were staged by hypochlorite treatment of gravid adults. Western blots
were incubated with AbDAF19N (1:250), anti-tubulin (YOL 1/34; 1:100),
anti-UNC-17 (1:200), anti-SNB-1 (SN1; 1:200), horseradish peroxidase (HRP)
anti-rat (1:10,000), and HRP anti-mouse (1:5000).

Antibody Staining
Staining with antibodies against UNC-29 and UNC-49 required permeabili-
zation through freeze-fracture (Gally and Bessereau, 2003). For all other
antibodies, whole-mount fixation and permeabilization were carried out as
described previously (Finney et al., 1988). Worms were incubated with a 1:400
dilution of affinity-purified anti-DAF-19 antibodies. Other antibodies used
were anti-OSM-5 (1:200), anti-SNB-1 (Ab1092; 1:2000), anti-SNB-1 (SN1;
1:200), anti-SNT-1 (R558; 1:100), anti-UNC-10 (RIM; 1:200), anti-UNC-13 (1:
800), anti-UNC-17 (1:1000), anti-UNC-18 (G247; 1:100), anti-UNC-29 (1:200),
anti-UNC-31 (1:200), anti-UNC-49 (1:800), anti-UNC-64 (Ab940; 1:5000), Al-
exa488 and Alexa546 (1:250: Jackson ImmunoResearch Laboratories, West
Grove, PA), and Cy5 (1:1000; Rockland Immunochemicals, Gilbertsville, PA).
The SN1 and RIM antibodies were obtained from the Developmental Studies
Hybridoma Bank (University of Iowa, Iowa City, IA). For all antibodies, we
investigated the entire nervous system. However, for reasons of equal com-
parisons, we mainly focused on the head region/nerve ring. Confocal pic-
tures of antibody stainings were taken on a TCS SP microscope (Leica,
Wetzlar, Germany).

DNA Sequence Motif Searches
DNA sequences of C. elegans and Caenorhabditis briggsae synapse genes (3-kb
promoter, the entire coding region and 1-kb downstream of the stop codon)
were scanned for possible matches to an x-box consensus sequence
RYYNYY(N)1-3RRNRRY with VectorNTI (Invitrogen). Candidate motifs were
analyzed for 1) motifs that are conserved between both species and occur in
several genes, or 2) motifs that occur in several C. elegans genes, in case the
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candidate motif lacked conservation in other nematodes species. Candidate
motifs conserved between C. elegans and C. briggsae were not found.

To identify conserved motifs unrelated to the x-box, we searched 1.5 kb
upstream of the ATG of the same genes. We scanned for motifs of 5–10, 8–14,
and 10–16 nucleotides length using MEME (http://meme.sdsc.edu).

RESULTS

Evidence for a New daf-19 Transcript
To study the subcellular localization and developmental
dynamics of DAF-19, we generated antibodies against N-
and C-terminal epitopes AbDAF19N and AbDAF19C, re-
spectively. In wild-type worms, these two antibodies de-
tected different DAF-19 expression patterns (see below),
which suggested the existence of different DAF-19 isoforms.
To determine the corresponding transcripts, we performed
Northern blot experiments (Figure 1A). A probe specific for
exons 1-3 hybridized to a single 2.9-kb band. This band
corresponds to the two known transcripts, the long iso-
forms daf-19a/b, which differ only by the small, alterna-
tively spliced exon 4 (Swoboda et al., 2000). In addition to
the 2.9-kb band, probes specific for the remaining exons
also detected a 2.4-kb transcript, which we termed short
isoform daf-19c. To visualize all three isoforms daf-19a/b/c
in one experiment, we conducted an RNase protection
assay. A cDNA probe against exons 3– 4 protected frag-
ments of three different sizes, corresponding to the tran-
scripts daf-19a (containing only exon 3), daf-19b (contain-
ing exons 3 and 4), and daf-19c (containing only exon 4)
(Figure 1, B and C). Using 5�-rapid amplification of cDNA
ends, we amplified a fragment that includes daf-19c exon
4 fused to the SL1 splice leader (data not shown). This is
consistent with a trans-splice at the beginning of exon 4
followed by an ATG at position �9, in-frame with the
remainder of the daf-19 transcript. In summary, these
results show that in addition to the known long isoforms
daf-19a/b, a third short isoform daf-19c exists that com-
prises SL1-spliced exons 4 –12.

DAF-19C Is Specifically Expressed in Ciliated Sensory
Neurons and Regulates Ciliogenesis
A full-length genomic translational gfp fusion was shown to
be sufficient to rescue the major cilia-related phenotypes of
daf-19, dye-filling defective (Dyf) and dauer formation con-
stitutive (Daf-c) (Swoboda et al., 2000). The identification of
daf-19c raised the question about the functional significance

of each transcript. To test for isoform-specific functions, we
generated genomic deletion constructs and introduced them
into a daf-19 mutant background (Figure 2A). Fragments of
daf-19 lacking the promoter and the region up to intron 3
were still able to express DAF-19, as determined by staining
with AbDAF19C (Supplemental Figure 2F). The expression
was restricted to a small set of neurons in the head and the
tail, a pattern reminiscent of ciliated sensory neurons. Con-
sistent with the expression pattern, these constructs were
sufficient to activate the expression of osm-5 and bbs-7, two
well characterized, direct daf-19 target genes that are ex-
pressed in ciliated sensory neurons and function in cilia
formation (Figure 2B and Supplemental Figure 2, A� and A�)
(Haycraft et al., 2001; Blacque et al., 2004). As expected, these
daf-19 deletion constructs also rescued the Dyf and Daf-c
phenotypes of daf-19 mutants (Figure 2, A and C; data not
shown). By contrast, DNA constructs starting downstream
of exon 4 failed to rescue (Figure 2, A, D, and E). We also
expressed either daf-19a or daf-19c cDNAs from the gpa-13
promoter in a daf-19 mutant background. gpa-13 drives ex-
pression in five ciliated sensory neurons: ADF, ASH, AWC,
PHA, and PHB (Jansen et al., 1999), out of which ASH (in the
head) and PHA and PHB (in the tail) can be stained with the
fluorescent dye DiI (Hedgecock et al., 1985). We found that
gpa-13(p)::daf-19c, but not gpa-13(p)::daf-19a was sufficient to
rescue cilia formation in sensory neurons as visualized by
fluorescent dye DiI filling (Figure 2, F–I).

That a 5�-deleted genomic daf-19 fragment was able to
express daf-19c and rescue ciliogenesis suggests that an
internal promoter drives its expression. We generated gfp
fusions to intronic sequences flanking exon 4 to investi-
gate their expression patterns. A 250-base pair fragment
upstream of exon 4 (Figure 2, J and K) and intron 4 (Figure
2, L and M) were sufficient to drive gfp expression in
ciliated sensory neurons from the mid-embryonic stage to
hatching and from the mid-embryo to adult stage, respec-
tively. Intron 5 was unable to drive gfp expression (data
not shown). We conclude that introns 3 and 4 contain
promoter elements that are sufficient to initiate and main-
tain the expression of daf-19c. In summary, the novel
isoform DAF-19C is specifically expressed in ciliated sen-
sory neurons from its own promoter within the gene.
daf-19c, in contrast to daf-19a, is sufficient to rescue the
major, cilia-related phenotypes of daf-19 mutants.

Figure 1. Identification of a third, novel daf-19 tran-
script, daf-19c. (A) Northern blot analysis of total
wild-type RNA. Probes against specific daf-19 exons
(depicted above each lane) detect a novel daf-19 tran-
script of 2.4 kb. The two previously described tran-
scripts daf-19a/b (Swoboda et al., 2000) differ only by
�70 nt and run as one band of 2.9 kb. (B) RNase
protection assay using an exons 3–4 probe visualizes
all three daf-19 transcripts, which differ in the com-
position of exons 3 and 4 (lane 1, unspecific tRNA;
lane 2, total RNA from wild-type worms). (C)
Genomic organization of the three daf-19 transcripts.
The arrows indicate the three daf-19 mutant alleles
investigated. The RNA probe used for the RNase
protection assay is indicated below. DBD, DNA-
binding domain; DIM, dimerization domain.
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DAF-19A/B Are Expressed in Nonciliated Neurons
To elucidate the functions of DAF-19A/B, we analyzed their
expression patterns in detail, by using antibodies against the
N- and C-terminal regions of DAF-19, AbDAF19N, and
AbDAF19C, respectively. Although the N-terminal antibody
AbDAF19N recognizes epitopes unique to the long isoforms
DAF-19A/B, the C-terminal antibody AbDAF19C recog-
nizes the same epitopes common to isoforms DAF-19A/B/C
(Figure 3A). To prove that AbDAF19N specifically detects
DAF-19A/B and not C, we compared both antibodies on
transgenic rescue lines expressing only DAF-19A or DAF-
19C, respectively. As expected, we could detect DAF-19A
with the N- and C-terminal antibodies, but DAF-19C only
with the C-terminal antibody (Supplemental Figure 2, A–F).

Stainings of wild-type worms with both antibodies detected
DAF-19 in the majority of neuronal nuclei in the head and tail
ganglia and in the ventral nerve cord. This signal was absent in
all daf-19 mutant alleles tested (m86, m334, m407, rh1024, sa190,
and sa232 affect all three isoforms equally; Swoboda et al.,
2000), proving the specificity of both antibodies (Supplemental
Figure 1, B–E). Although the AbDAF19N and AbDAF19C
staining patterns overlapped in large parts, they were not
identical. Posterior to the nerve ring, where the cell bodies of
the amphid ciliated sensory neurons are located, we observed
a group of cells, which stained only with AbDAF19C, but not
with AbDAF19N (Supplemental Figure 1, B and D).

Our analysis revealed that DAF-19A/B are expressed in a
larger number of neurons than DAF-19C, which is restricted

Figure 2. daf-19c is transcribed from an internal promoter and regulates cilia formation. (A) Genomic organization of daf-19 and different
deletion constructs. (B–E) daf-19 worms expressing pGG14 are rescued for the expression of the direct DAF-19 target cilia gene bbs-7::gfp and
DiI fluorescent dye filling. daf-19 worms expressing pGG18 are not rescued. (F and G) daf-19 worms expressing daf-19c from the gpa-13
promoter are rescued for the expression of bbs-7::gfp and DiI fluorescent dye filling. The arrowhead depicts ASH; the other neuron in F is
AWC. (H and I) Expression of daf-19a from the same promoter does not rescue. (J–M) Intron 3 (pGG20) and intron 4 (pGG21) contain
regulatory elements driving gfp expression in ciliated sensory neurons in the embryo (J and K) and at all developmental stages (L),
respectively. gfp expressing neurons were identified as ciliated sensory neurons by DiI fluorescent dye filling (M).
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to ciliated sensory neurons. From a rough cell count of all
neurons that stained with AbDAF19N in the adult hermaph-
rodite, we estimate that DAF-19A/B are expressed in �200–
240 neurons (data not shown). To understand where DAF-
19A/B may exert their functions, we determined their
expression patterns in detail. We stained gfp reporter lines,
which mark subgroups of neurons, with anti-GFP and with
AbDAF19N antibodies to determine whether they label the
same neurons. Using nine different markers, we tested
nearly half of all 302 neurons in the adult hermaphrodite,
corresponding to �60 different classes of neurons (Figure 3H
and Supplemental Table 1). We found that DAF-19A/B were
expressed only in nonciliated neurons and not in ciliated
sensory neurons (Figure 3). For example, ceh-23::gfp is ex-
pressed in many ciliated sensory neurons and the noncili-
ated neurons AIY and CAN. DAF-19A/B were detected in
AIY and CAN but not in ciliated sensory neurons (Figure 3B;
data not shown). Similarly, the nonciliated neurons marked
with nmr-1::gfp stained with AbDAF-19N and therefore ex-
press DAF-19A/B (Figure 3, D and E). Thus, DAF-19C is
specific for ciliated sensory neurons, and DAF-19A/B are
specific for nonciliated neurons. In total, we found in 86 of
92 tested nonciliated neurons expression of DAF-19A/B,
representing many different neuronal classes. In summary,
DAF-19A/B are expressed in 200–240 nonciliated neurons
and DAF-19C is expressed in 60 ciliated sensory neurons,

which adds up to a basically pan-neuronal expression pat-
tern of DAF-19 in the C. elegans hermaphrodite.

Dwelling/Roaming Behavior Depends on Multiple daf-19
Isoforms
Mutations in genes with broad neuronal expression often
lead to the impaired movement of worms (UNCoordinated
phenotype). daf-19 mutants move in a wild-type like manner
and show no obvious Unc phenotype. We also tested daf-19
mutants in body bend assays to determine their movement
speed, and we found that they can move as fast as wild type
(data not shown). More specific aspects of C. elegans behav-
ior (mating, feeding, egg laying, or patterns of movement)
are usually dependent on or influenced by sensory abilities
of the worm and thus depend on daf-19c. We did not identify
a specific behavior that exclusively required nonciliated neu-
rons or DAF-19A/B (data not shown). However, when per-
forming body bend assays, we observed in daf-19 mutants
severe defects in their dwelling/roaming behavior, which
was dependent on all three DAF-19 isoforms. When put on
a fresh plate seeded with bacteria, a single wild-type worm
covers the entire bacterial lawn with tracks within a short
time (dwelling/roaming) (Figure 4, A and B). In contrast,
daf-19 mutants (we tested m86, rh1024, and sa232) move only
for a short time and then start feeding locally (Figure 4D;
data not shown). A similar behavior is observed in many

Figure 3. An antibody specific for DAF-19A/B detects DAF-19 in all nonciliated neurons. (A) DAF-19 epitopes recognized by two different
antibodies. Antibody AbDAF19N is specific for the long isoforms DAF-19A/B, whereas antibody AbDAF19C recognizes all three isoforms
DAF-19A/B/C. (B–G) gfp reporter lines stained with antibodies against DAF-19. AbDAF19N detects DAF-19A/B only in nonciliated neurons
(D and E) and not in ciliated sensory neurons (csn) (B and C). Ciliated sensory neurons express only DAF-19C. Because ciliated sensory
neurons do not express DAF-19A/B, DAF-19C can be visualized by AbDAF19C (F and G). ceh-23::gfp marks ciliated sensory neurons,
tph-1::gfp marks the serotonergic neuron ADF (ciliated), and nmr-1::gfp marks interneurons (nonciliated); see Supplemental Table 1 for details.
(H) Schematic summary of all neurons investigated in the head region (blue, AbDAF19N; yellow, AbDAF19C; white, not determined
neurons; and gray, no DAF-19 expression detected).
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cilia mutants, in which genes that are expressed exclusively
in ciliated sensory neurons are mutated (e.g., che-13; Hay-
craft et al., 2003) and che-11 (Bell et al., 2006; Figure 4C; data
not shown). To test the functions of the different DAF-19
isoforms in the dwelling/roaming behavior, we generated
isoform-specific rescue constructs (Figure 4I). The dwelling/
roaming phenotype of daf-19 mutants could partially be
rescued by daf-19a or daf-19c (Figure 4, F and G). Complete
rescue occurs only when all isoforms were present via a
full-length genomic daf-19 construct (Figure 4, E and H).
From these behavioral experiments, we conclude that the
dwelling/roaming phenotype of daf-19 mutants is not
merely caused by the lack of cilia, because the function of
both the long and the short daf-19 isoforms are required.

daf-19 Mutants Are Resistant to Aldicarb and Levamisole
DAF-19C regulates cilia formation in ciliated sensory neu-
rons. Do DAF-19A/B regulate an analogous, common func-
tion in nonciliated neurons? Neurons must establish synap-
tic connections to multiple partners to guarantee the correct
wiring and function of the neuronal network. To test for
connectivity, we visualized the nervous system with the
pan-neuronal marker unc-104::gfp and other markers. daf-19
mutants develop a grossly normal neuronal network that
includes all the required neurons and processes (data not
shown). To examine the efficiency of synaptic transmission,
we exposed wild type and daf-19 mutants to the pharmaco-
logical substances aldicarb and levamisole. Aldicarb, an ace-
tylcholine esterase inhibitor, leads to the accumulation of
acetylcholine in the synaptic cleft and the paralysis of wild-
type animals. daf-19 mutants (m86, rh1024, and sa232)
showed moderate, but statistically significant, resistance to
aldicarb compared with wild-type worms (Figure 5A; data
not shown). This resistance could be the result of a presyn-

aptic defect (synthesis or release of acetylcholine [ACh]), or
a postsynaptic defect (response to ACh). To determine

Figure 4. DAF-19A and DAF-19C are required for complete rescue of the dwelling/roaming phenotype of daf-19 mutants. (A) Schematic visualizing
the method for analyzing the dwelling/roaming assay. (B–G) Representative pictures of worm tracks on a bacterial lawn after 1 h (dwelling/roaming).
Black lines visualize the worm tracks. (H) Quantification of the dwelling/roaming phenotype. Error bars show SEM values; ***p � 0.001, as detected by
two-sample t test. (I) Genomic organization of the isoform-specific rescue constructs. Arrows mark the beginning of the three isoforms, respectively.

Figure 5. Paralysis assays on aldicarb and levamisole. daf-19 mu-
tants show resistance to aldicarb (A) and levamisole (B) in paralysis
assays. daf-19a rescues to a similar extent as a genomic full-length
fragment. Error bars show SEM values.
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whether daf-19 mutants had any postsynaptic deficiencies,
we tested daf-19 mutants on levamisole, an acetylcholine
receptor agonist, which activates cholinergic receptors inde-
pendent of presynaptic input. Strikingly, daf-19 mutants
(m86, rh1024, and sa232) were also resistant to levamisole
compared with wild type (Figure 5B; data not shown). To
exclude that these phenotypes are caused by the lack of cilia,
we performed paralysis assays on the cilia mutants che-11,
che-13, and osm-5. None of them showed the same pheno-
type as daf-19 mutants; rather, they behaved similar to wild
type (Supplemental Figure 3A; data not shown). Further-
more, the resistance of daf-19 to both aldicarb and levamisole
was rescued by a genomic daf-19 fragment or by daf-19a
alone (Figure 5). This directly demonstrates that the long
isoform DAF-19A is required to regulate synaptic transmis-
sion. Finally, because levamisole is thought to mainly act on
postsynaptic acetylcholine receptors at neuromuscular junc-
tions, we tested the function of DAF-19A in body wall
muscles. Ectopic expression of daf-19a in muscle tissue did
not alter the resistance of daf-19 mutants to levamisole (Sup-
plemental Figure 3B). Together, our experiments uncover a
hitherto undescribed neuronal function of daf-19a in synap-
tic signal transmission.

Diminished Expression of Synaptic Vesicle Proteins in
daf-19 Mutants
To elucidate the reason for the reduced synaptic transmis-
sion efficiency in daf-19 mutants, we investigated the expres-
sion and localization of several types of neuronal proteins
that may explain the aldicarb and levamisole phenotypes of
daf-19 mutants (Table 1). The expression of general neuronal
proteins (JNK-1 and UNC-104) and pre- and postsynaptic
proteins (SYD-1, UNC-10, UNC-13, UNC-18, UNC-31,
GLR-1, UNC-29, UNC-43, and UNC-49) did not differ be-
tween wild type and daf-19 mutants. These results suggest

that the overall abundance of synapses and synaptic pro-
teins is not affected in daf-19 mutants.

However, we also found proteins whose abundance was
reduced in daf-19 mutants. Of all pre- and postsynaptic
proteins tested only one component of the presynaptic ter-
minal, UNC-64/syntaxin, was reduced in daf-19 mutants
compared with wild type (Figure 6B and Supplemental Table
2). UNC-64 is a plasma membrane receptor for intracellular
vesicles and part of the core synaptic vesicle fusion machin-
ery, involved in the release of neurotransmitters. Among the
synaptic vesicle markers investigated, all with the exception
of SNG-1/synaptogyrin were reduced in daf-19 mutants:
IDA-1 (tyrosine phosphatase-like receptor that interacts
with UNC-31 and UNC-64), UNC-17 (acetylcholine trans-
porter), SNB-1 (synaptobrevin, v-SNARE/vesicular soluble
N-ethylmaleimide-sensitive factor attachment protein recep-
tor), and SNT-1 (calcium-dependent phospholipid-binding
protein) (Figure 6, A, C–H; Table 1; and Supplemental Table
2). To ensure that these observations were not a result of
staining artifacts, we analyzed in each individual animal in
parallel the expression of UNC-10, which remained un-
changed between wild type and daf-19. Thus, our analysis
discovered a so far undescribed daf-19 phenotype, the re-
duced expression of selective synaptic components. Interest-
ingly, the analysis of mixed stage populations revealed that
this reduction was prominent, particularly at adult stages.
To analyze this observation in detail, we performed the
same analysis on staged worms at different times during
adulthood. Intriguingly, the difference of SNB-1 and
UNC-64 levels between wild type and daf-19 became stronger
as they progressed through adulthood (Figure 7, A and B).
Corroborating evidence for the gradual reduction of synap-
tic proteins in the absence of DAF-19 was obtained by West-
ern blot analysis. Protein extract from daf-19 (�) worms
contained less SNB-1 and UNC-17 compared with daf-19 (�)

Table 1. Comparison of general neuronal and synaptic markers for their expression in wild-type and daf-19 mutant adult worms

Protein Molecular function or similarity Detection method daf-19 (m86) vs. wild type

General neuronal proteins
JNK-1 Serine/threonine kinase gfp reporter No change
UNC-104 Kinesin-like protein gfp reporter No change

Pre- and postsynaptic proteins
SYD-1 PDZ and rhoGAP domain gfp reporter No change

protein
UNC-10 Rim1 homologue Antibody No change
UNC-13 Neurotransmitter release Antibody No change

regulator
UNC-18 Sec1 homologue Antibody No change
UNC-31 PH-domain protein Antibody No change
GLR-1 Glutamate receptor gfp reporter No change
UNC-29 Acetylcholine receptor Antibody No change
UNC-43 CaM kinase II gfp reporter No change
UNC-49 GABA receptor Antibody No change
UNC-64 Syntaxin Antibody Reduced

Synaptic vesicle proteins
IDA-1 Tyr phosphatase-like gfp reporter Reduced

receptor
SNB-1 Synaptobrevin, Antibody, gfp Reduced

v-SNARE reporter
SNG-1 Synaptogyrin gfp reporter No change
SNT-1 Synaptotagmin Antibody Reduced
UNC-17 Vesicular acetylcholine Antibody Reduced

transporter

All GFP reporters are translational fusions to gfp.
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worms and this difference increased dramatically with the
age of the worms (Figure 7C). We were interested in
whether this stage-related observation correlated with be-
havioral phenotypes, and we compared L4 larvae and adults
in dwelling/roaming and aldicarb assays. In both experi-
ments, daf-19 mutant adult worms showed stronger pheno-
types than L4 larvae (data not shown). Reduced neuronal
expression of SNB-1 and UNC-64 could be rescued by a
full-length genomic daf-19 rescue fragment that expresses all
three isoforms as well as by isoform-specific rescue for daf-
19a alone (Figure 6, A and B; data not shown). These results
support those obtained in the paralysis assays (Figure 5), in
which DAF-19A could rescue the resistance of daf-19 mu-
tants to aldicarb and levamisole. Furthermore, the rescue by
DAF-19A alone indicates that the reduction of SNB-1 and
UNC-64 in nonciliated neurons is not merely a result of the
lack of cilia and consequently the lack of environmental
stimuli. To support this notion, we investigated SNB-1 and
UNC-64 expression in the cilia mutants che-11 and che-13

and we found that protein levels were similar to wild type
(Supplemental Table 2). Therefore, we conclude that the
reduced SNB-1 and UNC-64 levels seen in daf-19 mutant
adults are not caused by the lack of cilia or lack of sensory
input but are a consequence of the absence of DAF-19A/B.

In summary, these experiments show that daf-19 mutants
have reduced levels of several synaptic proteins (e.g., SNB-1
and UNC-64). snb-1 and unc-64 mutants are resistant to
aldicarb and levamisole, suggesting that their gradual loss in
daf-19 mutants directly causes changes in synaptic transmis-
sion. Interestingly, the reduced expression of synaptic pro-
teins in daf-19 mutants affects mostly components of the
synaptic vesicle pool and is increasingly evident at adult
stages, whereas larval stages are not or only mildly affected.
Thus, the synaptic defects seen in daf-19 mutants are likely
not caused by early developmental deficiencies. We specu-
late that they are the consequence of a problem arising
during the maintenance of synaptic protein expression in the
aging adult.

Figure 6. Mutations in daf-19 result in the down-regulation of the synaptic vesicle proteins SNB-1 and UNC-64 (cf. Table 1). (A and B)
Quantification of SNB-1 (A) and UNC-64 (B) antibody stainings in mixed stage populations of wild type, daf-19, and rescued worms (see
Supplemental Table 2). The unchanged UNC-10 staining was used as a reference. At least 40 animals were scored for each genotype and stage.
(C–H) Confocal micrographs of adult worms stained with antibodies against SNB-1 (C, E, G, and H) and UNC-10 (D and F–H). C–F show
the nerve ring in the head; G and H show a magnification of the ventral nerve cord. Genotypes are indicated above the panels. Representative
pictures show SNB-1 staining classified as strong in wild type and weak in daf-19, both with regard to the unchanged UNC-10 signal.
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DAF-19A/B Regulate Synaptic Protein Expression
Indirectly
DAF-19C regulates target cilia genes directly through a con-
served promoter motif, the x-box. Are synaptic genes regu-
lated by DAF-19A/B in a similar manner? Because all
DAF-19 isoforms contain the same DNA binding domain
(Figures 1C and 3A), we reasoned that they could bind to
overall very similar DNA sequence motifs and that direct
target genes for DAF-19A/B are included in published lists
of predicted x-box genes (Blacque et al., 2005; Efimenko et al.,
2005; Chen et al., 2006). We filtered those lists for all genes
with functions at synapses or in vesicle formation/transport
(Supplemental Table 3). ida-1, snb-1, snt-1, unc-17, and unc-64
were not among them. In addition, we searched those five
genes for degenerated, x-box-like or other conserved se-
quence motifs. None of these searches revealed any common
motifs (data not shown), suggesting that they do not harbor
a binding site for DAF-19A/B. To search for other possible
direct DAF-19A/B targets, we checked the expression of
multiple candidates from the above-mentioned lists for their
dependence on the transcription factor. None of them was
affected in daf-19 mutants (Supplemental Table 3). To finally
test whether snb-1, unc-17, and unc-64 are directly or indi-
rectly regulated at the transcript level, we compared their
expression levels by quantitative real-time PCR. We did not
detect any difference between wild type and daf-19 mutants in
transcript levels of these three genes (Figure 7D). Thus, we
conclude that DAF-19A/B do not regulate synaptic genes at
the transcriptional level. We speculate that DAF-19A/B

maintain synaptic protein expression in nonciliated neurons
via an indirect mechanism, yet to be discovered (Figure 8).

DISCUSSION

Different DAF-19 Isoforms Have Distinct Functions in
Subsets of Neurons
C. elegans DAF-19 was shown to regulate the expression of
genes required for the structure and function of cilia (Swo-

Figure 7. Mutations in daf-19 result in the down-regulation of the synaptic vesicle proteins SNB-1, UNC-17, and UNC-64 but not of their
transcripts. (A and B) Quantification of SNB-1 (A) and UNC-64 (B) antibody staining in staged adult daf-12 and daf-19; daf-12 worms. The
unchanged UNC-10 staining was used as a reference. At least 40 animals were scored for each genotype and stage. (C) Western blots
comparing SNB-1 and UNC-17 levels in protein extracts of staged daf-12 (�) and daf-19; daf-12 (�) worms. Within each developmental stage,
proteins were isolated from an equal number of worms (note: this number varies for the different stages); 1 day and 3 day denote adults
grown for 1 and 3 d after reaching L4, respectively. (D) Quantification of transcript levels of synaptic vesicle genes in daf-12 and daf-19; daf-12
adults by quantitative real-time PCR.

Figure 8. DAF-19A/B and DAF-19C execute distinct functions in
synapses and cilia, respectively.
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boda et al., 2000). Here, we identified a novel short transcript
daf-19c that lacks exons 1-3. This short isoform DAF-19C is
specifically expressed in ciliated sensory neurons from an
internal promoter, and it is sufficient to rescue all cilia-
related phenotypes of daf-19 mutants (Dyf, Daf-c, expression
of cilia-specific, direct target genes). In contrast, the long
isoforms DAF-19A/B are expressed from a different pro-
moter in almost all nonciliated neurons, resulting in a basi-
cally pan-neuronal expression pattern of DAF-19. This ex-
pression of multiple isoforms via the so-called two-promoter
system is common to many genes in C. elegans and crucial
for the execution of their isoform-specific functions (Choi
and Newman, 2006). We discovered that daf-19 mutants are
resistant to the pharmacological substances aldicarb and
levamisole, both of which modulate cholinergic synaptic
transmission and lead to paralysis. The reason for this resis-
tance was found in strongly reduced levels of synaptic ves-
icle proteins that were observed in adult but not juvenile
animals. In addition, the lack of DAF-19 results in impaired
dwelling/roaming behavior of the worm. These phenotypes
can be rescued by the long isoform DAF-19A and therefore
implicate a novel role of DAF-19 in the maintenance of
synaptic neurotransmission.

How Do the Different DAF-19 Isoforms Activate Different
Groups of Target Genes?
A large number of direct target genes has been identified for
the cilia-specific short isoform DAF-19C. All those genes
have in common that they 1) are expressed and function in
ciliated sensory neurons and 2) contain an x-box promoter
motif. Direct target genes of DAF-19A/B in nonciliated neu-
rons currently remain unidentified. Furthermore, DAF-19A
is not sufficient to replace DAF-19C in ciliated sensory neu-
rons, indicating that these isoforms activate different target
genes. Therefore, what determines the respective functions
of the different isoforms?

First, the x-box DNA sequence motifs bound by DAF-
19A/B could vary slightly but significantly from the motifs
bound by DAF-19C. In C. elegans, the consensus in cilia-
specific x-box genes contains a defined spacer of two central
nucleotides (Efimenko et al., 2005), whereas the consensus
sequence for hRFX has a variable spacer of zero to three
nucleotides (Emery et al., 1996; Gajiwala et al., 2000). It is
possible that the larger DAF-19A/B also could bind a con-
sensus sequence with no or three spacer nucleotides, like
hRFX proteins do. Alternatively, DAF-19A/B could act on
x-box motifs in positions different from hitherto proven
x-box motifs (i.e., �250 base pairs upstream of the ATG or
within introns).

In another scenario, DAF-19–interacting proteins could
decide which genes can be transcribed. DAF-19A/B contain
an N-terminal part encoded by exons 1-3 lacking in DAF-
19C. This N-terminal extension might serve as a site for
protein interactions through which isoform-specific binding
partners regulate the affinity to synaptic x-box genes instead
of cilia x-box genes. Interestingly, RFX genes in all eu-
karyotes encode proteins of a size similar to the long iso-
forms DAF-19A/B, having a long N-terminal part upstream
of the DNA binding domain. In addition, for some RFX
genes, such as daf-19, alternative splicing of different iso-
forms has been demonstrated (e.g., Zhang et al., 2006). How-
ever, the protein part encoded by daf-19 exons 1-3 is not
highly conserved at the amino acid level across species.
Conservation between RFX proteins of different organisms
could thus exist at a structural level. We assume that the
N-terminal part of the protein, despite the lack of any as-
signed conserved domains, is important for the specific

function of DAF-19A/B and other RFX proteins. It will thus
be essential to characterize the function of the protein do-
mains encoded by exons 1-3.

DAF-19A/B Are Required for Pre- and Postsynaptic
Functions in Neurons
We discovered novel daf-19 mutant phenotypes that are
caused by the lack of DAF-19A/B and suggest pre- and
postsynaptic maintenance defects in neurotransmission. In
agreement with these defects, we found that the abundance
of several synaptic proteins, especially SNB-1, UNC-17, and
UNC-64, was gradually reduced during adulthood. Three
characteristics set the synaptic defects of daf-19 apart from all
other synapse mutants identified so far: 1) Intriguingly, the
decline of synaptic protein levels was most prominently
seen in adult worms, whereas larval stages were hardly
affected. 2) In neurons both pre- and postsynaptic functions
are affected. 3) Because DAF-19A/B are expressed in neu-
rons but not in muscles, it is likely that muscular postsyn-
aptic terminals are intact. The absence of DAF-19 in muscu-
lar tissue indicates that the protein does not have a function
in muscle cells. This explains why ectopic expression of
daf-19 in body wall muscles does not rescue the levamisole-
induced paralysis phenotype of daf-19 mutants. The facts
listed above also help explain why daf-19 mutants do not
have a severe Unc phenotype and are only moderately re-
sistant to paralyzing substances such as aldicarb and levami-
sole as opposed to the complete resistance seen, for example,
in the Unc mutants unc-29, unc-64, or snb-1 (Nonet et al.,
1998; Saifee et al., 1998).

Although our paralysis experiments using levamisole re-
vealed deficiencies at postsynaptic terminals in daf-19 mu-
tants, we currently do not know their cause. All postsynaptic
proteins checked were unchanged in daf-19 mutants. It is
unlikely that the presynaptic effects found induce an indirect
postsynaptic defect (resistance to levamisole) through a
feedback mechanism. In that case, daf-19 mutants should on
levamisole phenocopy other presynaptic mutants, such as
snb-1. We therefore hypothesize that in addition to the pre-
synaptic proteins we describe, so far unidentified postsyn-
aptic molecules are also affected by the lack of DAF-19.

Maintaining Synaptic Protein Expression: A Novel Role
for DAF-19A/B
Several screens have been performed that used SNB-1::GFP
as synaptic vesicle marker (Zhen and Jin, 1999; Schaefer et
al., 2000; Zhen et al., 2000; Crump et al., 2001; Shen and
Bargmann, 2003). Others investigated genes with predicted
roles in synaptic functions (Sieburth et al., 2005), synaptic
vesicle recycling and transport (Koushika et al., 2004; Ditt-
man and Kaplan, 2006). These screens uncovered genes
required for the localization of SNB-1::GFP at the synapse
but not for the maintenance of SNB-1 function. Therefore,
daf-19 is the first C. elegans mutant that shows a strong
reduction of several synaptic proteins, especially during the
later phases of adulthood. This suggests that DAF-19A/B
are required for the maintenance of synaptic components
rather than for their expression during development.

We identified several synaptic vesicle proteins that are
reduced upon loss of daf-19. Two possible scenarios could
explain these findings: 1) DAF-19A/B have an influence on
synaptic vesicle biogenesis/recycling, or 2) DAF-19A/B reg-
ulate a neuronal gene or process that is required for synaptic
vesicle protein expression or maintenance. If a general re-
duction of synaptic vesicles was taking place, one would
expect all vesicle proteins to be reduced to similar extents.
Although we formally cannot rule out this possibility, the
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various degrees of reduction between different vesicle pro-
teins (strong reduction of SNB-1 and UNC-64, mild reduc-
tion of UNC-17, and no reduction of SNG-1) argue against a
general vesicle problem and indicate that these proteins are
regulated differentially. Work from mammalian systems
supports the notion of individual regulation of synapse com-
ponents (Shimohama et al., 1998). Furthermore, the increase
of synaptic proteins during neuronal development is not
due to the increase of the transcriptional rate, but it is
regulated at the level of protein stability (Daly and Ziff,
1997). Because most synaptic proteins are highly conserved,
it is very likely that also in C. elegans the expression, main-
tenance, or both of synaptic proteins is individually regu-
lated. We hypothesize that if DAF-19A/B regulate synaptic
protein expression, they execute this function indirectly at a
posttranscriptional level, because transcript abundance of
the corresponding genes in daf-19 mutants were similar to
wild type (Figure 8).

Cilia development is an essential process regulated by
RFX transcription factors across species. Is it similar with
regard to the functional maintenance of synapses? Although
brain defects have been reported for Rfx3- and Rfx4_v3-
deficient mice (Baas et al., 2006; Zhang et al., 2006), embry-
onic lethality precluded the analysis of late brain defects.
Our analysis of daf-19 mutants suggests that the specific
investigation of synapse-related functions of RFX transcrip-
tion factors in other organisms is relevant to synaptic main-
tenance.

The C. elegans daf-19 Mutant: A New Disease Model for
Functional Synaptic Decline?
Deregulation of synaptic proteins has been described for
several neurological diseases, such as Huntington’s disease
(Morton et al., 2001) or Alzheimer’s disease (Sze et al., 2000;
Reddy et al., 2005). Research concerning neurodegeneration
nowadays increasingly focuses on the loss of synaptic pro-
teins, which is thought to trigger synaptic loss (Selkoe, 2002).
The phenotypes seen in daf-19 mutants show parallels to the
loss of synaptic proteins described for neurodegenerative
diseases. RFX transcription factors as well as the majority of
synaptic proteins in C. elegans are highly conserved, which
suggests that synaptic protein stability in different organ-
isms may be similarly regulated. Therefore, C. elegans and
the daf-19 mutant in particular may in the future prove to be
a useful model system to experimentally dissect the mech-
anisms that maintain synaptic function.
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PAPER I – APPENDIX 
 

We found that levels of synaptic vesicle proteins were reduced in daf-19 

mutants. This reduction could be caused by defects during protein expression. 

Alternatively, the number of synaptic vesicles themselves could be affected. To 

investigate these possibilities further, we performed EM experiments on daf-19 

mutants. 

 

 
 

 

Two-day old adults were used to determine the number of synaptic vesicles in 

the pre-synaptic terminals of motor neurons in the ventral nerve cord. (A) 

Synapses of daf-19; daf-12 mutants contain considerably less clear synaptic 

vesicles as compared to daf-12 mutants. The number of dense core vesicles is 

similar between both genotypes. (B) Synaptic profile of a daf-12 mutant. (C) 

Synaptic profile of a daf-19; daf-12 mutant. The error bars in the graph show 

s.e.m. The dashed lines in B and C outline the border of a single synapse; black 

arrows mark clear vesicles and white arrows mark dense core vesicles. The 

scale bar marks 2 µm. These preliminary data suggest that the loss of DAF-19 

causes a decrease in synaptic vesicles. 

 

 

Sample preparation: Animals were transferred into ice-cold fixative 

containing 1% formaldehyde/2% glutaraldehyde. Heads and tails of the worms 

were removed with a syringe to ensure proper penetration of the fixative into 

the worm and conservation of the tissue. Fixed specimens were once more 



 30 

transferred into fresh ice-cold fixative and stored over night at 4°C. All 

subsequent steps of sample preparation and sectioning were performed 

according to standard procedures by the staff of Kjell Hultenby at the local EM 

facility (Karolinska Hospital, Huddinge, Sweden). 

 

Data collection and analysis: Sections (50 nm thick) of animals were collected 

and profiles containing a pre-synaptic density were chosen for analysis. For daf-

12 mutants (control) three profiles from three worms (coming from two 

independent sample preparations) were analyzed. For daf-19; daf-12 mutants 

three profiles from three worms (coming from one sample preparation) were 

analyzed. Table 1 shows in detail the numbers for each genotype that also 

summarized in panel A. 

 

 
Table 1: Vesicle number in single synapse profiles (three per genotype) 

Genotype Clear vesicles Dense core vesicles 

daf-12 30/26/24 3/2/2 

daf-12; daf-19 8/7/4 1/6/2 
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ABSTRACT 

 

The detection and correct interpretation of environmental signals is 

crucial for the survival of every organism. Studying mechanisms of sensory 

perception is a challenging task, especially in organisms with complex neuronal 

networks. The nematode C. elegans possesses a rather simple neuronal network 

of 302 neurons, including 60 ciliated sensory neurons (CSNs), which are the 

main source of external sensory input. In spite of this simplicity, C. elegans 

executes a large number of different behaviors and is therefore an excellent 

model organism in which to study sensory neuron function. We have generated 

a genetic rescue system – FRISSC (Functional Rescue In Single Sensory Cilia) 

– that for the first time allows the in vivo analysis of isolated CSNs at both a 

cellular and systemic level. FRISSC makes use of the RFX transcription factor 

DAF-19, a key regulator of a large number of cilia genes and, therefore, of cilia 

formation. Mutations in daf-19 result in the complete absence of all sensory 

cilia and therefore of external sensory input. We use daf-19 mutants and cell-

specific rescue of DAF-19 function in only selected neurons. This generates 

animals with single, fully functional CSNs. Otherwise and elsewhere these 

animals are completely devoid of any environmental input through cilia. We 

show that the rescue of cilia formation in single sensory neurons is sufficient to 

restore their function, and is cell-autonomous and cell-specific. The high 

penetrance of rescue makes FRISSC an excellent tool to study behaviors 

triggered by sensory input in single animals as well as in populations of worms. 

FRISSC can easily be adapted to any CSN. It can be used to study DAF-19 

related developmental aspects, specific sensory issues concerning CSNs or early 

steps of ciliogenesis. 
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INTRODUCTION 

 

The detection of environmental cues is essential for the survival of 

every organism. These cues trigger and modulate essential behaviors like the 

search for food, avoidance of harmful conditions, or reproduction. Sensory 

perception in humans and animals relies on several different modalities 

including vision, touch, hearing, taste, and smell. Input via several or all of 

these senses is received simultaneously through sensory neurons. They transmit 

their signals to the brain, where all the information is integrated and processed, 

resulting in behavioral responses. As a consequence, studying sensory behavior 

in higher organisms is a very challenging task. 

The nematode C. elegans responds to most sensory input except for 

hearing. It responds to a wide variety of environmental signals and executes a 

large number of different behaviors. C. elegans possesses a simple, well-

described, and invariantly wired neuronal network of only 302 neurons (White, 

1986). It is therefore an excellent model organism in which to study the 

underlying neuronal logic that determines behavior. To sense environmental 

and internal cues, C. elegans possesses a rather small number of sensory 

neurons. Some of them are located throughout the body, where they are 

responsible for sensing body touch (Bounoutas and Chalfie, 2007). The 

majority is located in the head and tail of the worm and has access to the 

environment. Best described and most studied is a subgroup of ciliated sensory 

neurons (CSNs) organized in two symmetric lateral sense organs – the amphids 

in the head and the phasmids in the tail (Perkins et al., 1986). All amphid and 

phasmid neurons are bipolar neurons that extend two processes from the cell 

body, one dendrite and one axon. At their tips, some amphid CSN dendrites 

project a small process, a cilium, with access to environmental cues, through a 

pore in the cuticle of the worm. Cilia function as compartments to localize 

receptors and downstream signaling molecules that are necessary to receive 

environmental input. Each CSN is unique in its expression of receptors; these 

determine its sensory spectrum and trigger distinct behaviors in the worm 

(Figure 1A). 

Several techniques have been developed to study the sensory function 

of individual CSNs. One strategy is based on the elimination of individual 
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CSNs with a focused laser beam (Bargmann and Avery, 1995; Bargmann and 

Horvitz, 1991). In this technique, a single CSN or combinations of CSNs are 

deleted in individual animals, which are later tested for their behavioral 

response to distinct sensory cues. Genetic ablation of single CSNs can also be 

achieved by expressing cytotoxic genes (e.g. ced-4 or mec-4(d)) from a cell-

specific promoter. Targeted cell ablation can also be induced by cell-specific 

expression of caspases, cysteine proteases that are key regulators of induced cell 

death (Chelur and Chalfie, 2007; Harbinder et al., 1997; Shaham and Horvitz, 

1996). However, all cell ablation methods reach limitations when complex or 

redundant sensory functions are studied. Such redundancies are only uncovered 

if, by chance, the right combination of sensory neurons is eliminated. 

Furthermore, these techniques only allow a certain cue to be matched to a 

specific behavior. Analyzing sensory perception inside the CSN under 

investigation itself is not possible (Figure 1B). 

Another recent development used to investigate sensory neuron 

function is optical imaging using fluorescent reporters. These molecules, e.g. 

cameleon, are used to measure neuronal activity when single neurons are 

exposed to sensory cues (Figure 1C; (Kerr et al., 2000)). In contrast to ablation 

methods, neuronal activity imaging is used to study sensory functions of single 

neurons, both in wild type as well as in mutant animals. However, the 

experimental imaging procedure requires immobilization of the animal. Thus, 

direct correlation between sensory input and behavioral output is not possible in 

most cases. 

In summary, the methods described above are used very successfully 

to determine the requirement of single CSNs for the detection of a specific 

sensory cue. However, they do not allow the examination of sufficiency of 

single CSNs isolated from all other sensory input. Neither do any of the 

available methods cover all aspects of a sensory cue/perception/neuron/behavior 

system. This issue could be solved by an in vivo system that relies on the 

presence and function of only a single or a small number of selected ciliated 

neurons in an otherwise cilia-free background. In one possible approach, a heat 

shock system that has been adapted for cell- and stage-specific expression of 

transgenes was tested in CSNs (Bacaj and Shaham, 2007). This tool was 

successfully used to extend short and partially defective cilia structures to their 
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full length in a small number of neurons. However, it remains unclear how the 

acute exposure to heat shock temperatures affects the stability of cilia extension, 

cilia functionality, as well as behavioral outputs. 

In our current work we use the C. elegans daf-19 mutant as a tool with 

which sensory input through a single, fully functional cilium can be assayed in 

the background of a transgenic animal that is otherwise fully defective with 

regard to sensory input through cilia (Figure 1D). daf-19 encodes an RFX 

transcription factor that in CSNs directly controls the expression of a large 

number of structural and functional cilia genes (Efimenko et al., 2005). In daf-

19 mutants no cilia are formed and the animals are completely sensory 

defective. However, even though sensory cilia are entirely absent, the remainder 

of the neurons (cell body, dendrite, axon) is intact and properly localized 

(Swoboda et al., 2000). We recently identified the relevant daf-19 transcript, 

daf-19c, which controls the development of structurally and functionally intact 

cilia (Senti and Swoboda, 2008). This transcript now enables us – for the first 

time – to specifically and fully rescue functional cilia development. We have 

developed a genetic rescue system, FRISSC (Functional Rescue In Single 

Sensory Cilia), in which we restore single cilia by expressing daf-19c from 

specific neuron-specific promoters in a daf-19 mutant background. We show 

that restored single cilia are structurally as well as functionally complete and are 

sufficient to trigger correct behavioral responses. Thus, FRISSC allows one to 

assay in vivo the function of a single CSN, isolated from any other sensory 

input through cilia. Sensory perception through this CSN can be analyzed at a 

cellular level, as can its contribution to behavior at a systemic level. The 

heritable nature of the system allows the analysis of a large number of animals, 

making it also optimal to investigate even subtle phenotypes or redundant 

functions. FRISSC can also be adapted to dissect the signal reception and 

transduction machinery localized to cilia in C. elegans. By inducing 

heterologous expression of neuronal proteins from other organisms the 

relevance of this tool can be extended beyond the worm. 
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MATERIALS AND METHODS 

 

Strains and culture methods 

Growth and culture of C. elegans strains were carried out as described 

(Brenner, 1974). All strains were grown at 20 °C unless stated otherwise. 

Strains used for this study were: CB3323 [che-13 (e1805)], JT204 [daf-12 

(sa204)], JT5010 (wild-type N2 Bristol), JT6924 [daf-19 (m86); daf-12 

(sa204)], MT3665 [osm-9 (n1601)]. The extra-chromosomal array transgenes 

used in this work are summarized in Supplementary Table 1. All of them were 

injected into JT6924. 

 

Injection constructs, germ line transformation and GFP expression analyses 

Transcriptional fusions to fluorescent reporters were injected at 20 to 

60 ng/µl and daf-19c rescue constructs were injected at 50 ng/µl. Promoters of 

the following genes were selected to drive daf-19c expression: gcy-5 (encoding 

a guanylyl cyclase), gpa-13 (encoding a G protein alpha), dat-1 (encoding a 

dopamine transporter), gpa-11 (encoding a G protein alpha), trx-1 (encoding a 

thioredoxin). Adult hermaphrodites were transformed using standard techniques 

(Mello et al., 1991). Transgenic extra-chromosomal arrays were analyzed in a 

daf-19; daf-12 mutant background (JT6924). The daf-12 mutation completely 

suppresses the Daf-c phenotype of daf-19 and prevents dauer formation. 

 

Behavioral assays 

To assess avoidance behavior, drop assays were performed as 

described (Hilliard et al., 2002). For each assay 30 worms were picked as L4 

larvae and examined 24 hours later (one-day-old adults). The animals were 

tested for their avoidance behavior to 3-5 consecutive drops of 0.1 % SDS or 1 

M glycerol. Each assay was repeated at least twice and data were pooled for 

statistical analysis. The avoidance index (a.i.) was determined as the number of 

correct responses to a drop of repellent (backward movement) divided by the 

total number of drops applied. Staged young adults (obtained by growing up the 

progeny of bleached gravid adults) were used for chemotaxis assays. Attraction 

to 10 mM NaCl was assessed in quadrant assays, as previously described 

(Jansen et al., 2002; Wicks et al., 2000). Each strain was tested in at least three 
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independent assays. A chemotaxis index (c.i.) was calculated as (A-C)/(A+C), 

where A is the number of worms in quadrants with NaCl and C the number of 

worms in quadrants without the attractant. 

 

DiI staining, microscopy and fluorescence imaging 
Fluorescent dye filling assays with DiI or FITC were performed as 

previously described (Starich et al., 1995). For the investigation of GFP 

expression and dye filling, worms were anesthetized in 0.1 % sodium azide in 

M9 buffer and immobilized on a 2.0 % agar pad. Analyses were performed on a 

Zeiss Axioplan 2 microscope with OpenLab software. The data presented in 

Tables 1-3 are based on the analysis of at least 30 transgenic adult animals per 

line. Frequencies of reporter gene expression, rescue of dye filling, and cilia 

formation were confirmed in larvae and found to be very similar to adults (data 

not shown). Confocal micrographs of anesthetized worms were taken on an 

LSM 510 META laser-scanning microscope (Zeiss) equipped with an Argon 

2/488 nm and a HeNe 543 nm laser. 

 

Antibody staining 

Staining with antibodies against DAF-19C, OSM-5, and GFP was 

carried out as described (Senti and Swoboda, 2008). The secondary antibodies 

Alexa488 and Alexa546 (Jackson Immunoresearch) were used 1:250, Cy3 was 

used 1:1000. Incubations with primary antibodies were performed overnight at 

4 °C and incubations with secondary antibodies were for three hours at room 

temperature. 
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RESULTS 

 

Rescue of cilia on selected, single ciliated sensory neurons (CSNs) 

DAF-19 is required in all CSNs to activate the cilia formation program. 

daf-19 mutants fail to activate direct target cilia genes and completely lack all 

ciliated structures. Expression of daf-19c, the CSN-specific isoform of daf-19, 

in a daf-19 mutant background rescues cilia formation and all cilia-related 

phenotypes, thereby restoring all sensory functions (Figure 2B; (Senti and 

Swoboda, 2008)). In this work we asked whether we could use a modified 

rescue strategy to generate worms with cilia on only a few selected or even 

single CSNs in a worm that otherwise completely lacks sensory, environmental 

input through cilia. In such an experimental setup, we would be able to 

investigate the cell-autonomy of cilia formation and of sensory behavior at the 

level of single CSNs. 

To assess the rescue potential of DAF-19C in a single CSN, we 

initially chose the gcy-5 promoter to express daf-19c and consequently generate 

only a single cilium in a daf-19 mutant background. gcy-5 encodes a guanylyl 

cyclase and its promoter drives expression exclusively in a single CSN, the 

neuron ASER (Figure 2A). To facilitate the identification of ASER in 

transgenic worms, we co-transformed the reporter gene gcy-5::gfp together with 

the rescue construct. When stained with an antibody against DAF-19C, we 

detected only one nucleus expressing DAF-19C in these rescue lines. This 

nucleus always resided in the gfp-marked ASER neuron (data not shown). 

DAF-19C expression in ASER was observed from embryonic to adult stages - 

expression dynamics that followed the expression pattern of the gcy-5::gfp 

reporter. By contrast, daf-19c expressed from its own promoter restored direct 

target cilia gene expression as well as cilia formation in all CSNs in the head 

and tail of the worm (Figure 2B and data not shown). To demonstrate that DAF-

19C expressed from a heterologous promoter was functional, we investigated 

the expression of reporter constructs (promoter fusions to gfp or DsRed) of 

established direct DAF-19C target cilia genes (x-box genes) (Blacque et al., 

2004; Haycraft et al., 2003; Haycraft et al., 2001). Expression of DAF-19C in 

the single ASER neuron activated bbs-7::gfp, che-13::DsRed and OSM-5 

expression, tested by antibody staining, in the neuron (Figure 2, C vs. D, and E; 
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and data not shown). These results demonstrate that daf-19c under the control 

of a heterologous promoter is able to induce cilia-specific gene expression in 

selected, single neurons. 

Several features can be used to verify that a particular cilium or CSN is 

structurally and functionally complete. One method is visual inspection of cilia 

morphology. We investigated visually the rescue of cilia structures in the gcy-5 

rescued lines and found that ASER neurons formed cilia at the tip of their 

dendrites. By contrast, cilia were never found on ASER neurons in daf-19 

mutants (Figure 2, F vs. G). Some CSNs are characterized by their direct 

contact to the environment. Consequently, when wild-type worms are exposed 

to fluorescent lipophilic dyes (DiI, DiO, FITC, etc.), 12 out of 60 CSNs take up 

the dye through their cilia and fluorescent labeling occurs throughout the cell 

body and both neurites. Structurally impaired, short, or missing cilia lead to a 

phenotype described as dye filling defective, Dyf (Perkins et al., 1986; Starich 

et al., 1995). To confirm the structural integrity of rescued single cilia by dye 

filling, we generated another rescue line, using the gpa-13 promoter. This 

promoter drives daf-19c expression in the following CSNs: ADF, ASH, AWC 

in the head and PHA/B in the tail (Figure 3 A, B). Again we confirmed the 

expected expression pattern of DAF-19C and the activation of its direct target 

cilia genes bbs-7::gfp, che-13::DsRed (Figure 3, C to E; and data not shown). 

gpa-13 activates expression in two neuron pairs, ASH and ADF, which can be 

labeled with the lipophilic dyes DiI and FITC, respectively. daf-19 mutants are 

completely dye filling defective. However, when daf-19c is expressed in those 

mutants from the gpa-13 promoter, ASH neurons expressing DAF-19C regain 

their ability to fill with DiI and ADF neurons fill with FITC (Figure 3E). These 

results show that expression of DAF-19C in selected CSNs can restore not only 

cilia gene expression, but also structurally complete cilia. 

 

Quantitative evaluation of the rescue system 

Since we can restore cilia structures on single CSNs in daf-19 mutants, 

we asked if we could establish a tool that allows the functional investigation of 

any single CSN. One pre-requisite would be that the rescue works efficiently 

from a large variety of CSN-specific promoters. Thus, we quantified the rescue 
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efficiency of DAF-19C expressed from promoters that are active in different 

sets of CSNs (Table 1). 

We ensured that all promoters tested, gcy-5, gpa-13, dat-1, gpa-11, and 

trx-1, are active at late embryonic stages, the time period when cilia develop in 

C. elegans. The onset of promoter activity was monitored by transcriptional gfp 

fusions. Consistent with the gfp expression profile of the promoters, all were 

able to induce DAF-19C expression from the late embryonic to adult stages as 

confirmed by immunofluorescent staining with antibodies against DAF-19C 

(data not shown). We detected DAF-19C expression exclusively in those 

neurons where the promoters were expected to be active. 

All transgenes were studied in the worm as extra-chromosomal arrays. 

As a consequence of not being integrated into the genome, extra-chromosomal 

arrays are occasionally lost in certain cells during mitosis. Thus, to mark 

transgenic, DAF-19C expressing, and therefore potentially rescued neurons we 

used cell-specific promoter::gfp fusions. To then quantify the expression of 

DAF-19C in those neurons we co-expressed a transcriptional DsRed fusion of 

the direct DAF-19C target cilia gene che-13. Each transgenic, gfp positive 

neuron was then scored for the induction of che-13::DsRed. We found that in 

all transgenic rescue lines the induction of cilia gene expression in transgenic 

neurons was above 80 %, that is, exceptionally high (Table 2). Transgenic lines 

expressing daf-19c from the gpa-13 promoter did not contain a gfp marker for 

neurons harboring the extra-chromosomal expression array. Thus, we were not 

able to analyze specifically only transgenic neurons. Instead we assumed that all 

neurons were transgenic. In such a scenario, the efficiency of DAF-19C to 

activate direct target cilia genes in those CSNs where gpa-13 was active was 

above 65 %. However, since extra-chromosomal arrays are never transmitted to 

all cells, the number of actual transgenic neurons is unknown. The fraction of 

gpa-13 expressing neurons, therefore, is necessarily a conservative (under-) 

estimate. 

Next we asked how the efficiency to induce (direct DAF-19C target) 

cilia genes corresponded to the structural formation of complete cilia. We 

examined single transgenic neurons marked with bbs-7::gfp by visual 

inspection for the presence of cilia at the tip of their dendrites (Table 3). 

Typically more than half, in some cases up to 80 % of all transgenic, gfp 
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positive neurons in the various rescue lines formed cilia compared to the 

complete absence of cilia in daf-19 mutants (Table 3). When applicable, dye 

filling assays were performed to demonstrate that the structural rescue of cilia 

was indeed complete. As expected, rescued cilia also facilitated fluorescent dye 

filling with lipophilic dyes in most neurons (Table 3). We did not observe dye 

filling in rescued ASJ neurons, which is likely due to misshaped or short cilia. 

Also the phasmid CSNs PHA/B did not fill with DiI. In summary, using five 

different promoters to control daf-19c expression we examined 11 different 

classes of CSNs: ADE, ADF, ADL, ASE, ASH, ASJ, AWC, CEP, PDE, PHA, 

and PHB. In 11/11 CSNs (100 %) we were able to induce expression of direct 

DAF-19 target cilia genes and in 7/7 examined CSN types (100 %) the 

morphological rescue of cilia. Testing the structural integrity of those cilia by 

dye filling was successful in 3/6 (50 %) cases. 

Finally, to ensure that the rescue of functional cilia was specific for the 

rescued CSN, we analyzed all lines for non-specific induction of cilia reporter 

genes bbs-7::gfp and che-13::DsRed. We did not find activation of cilia genes 

in non-transgenic neurons (data not shown). In addition, we did not find 

neurons that were rescued for their Dyf phenotype, except for those sensory 

neurons in which we intentionally expressed DAF-19C (data not shown). In 

summary, we conclude that the expression of daf-19c from CSN-specific 

promoters in daf-19 mutants restores cilia-specific gene expression and cilia 

structure only in those CSNs in which the promoter is active. This rescue is 

specific for the rescued CSN and cell-autonomous as it does not lead to rescue 

in other, neighboring neurons. Thus, this rescue system, which we call FRISSC 

(Functional Rescue In Single Sensory Cilia), can easily be adapted to any CSN. 

 

Applying the daf-19c rescue system to test the autonomous function of single 

CSNs 

The highly efficient rescue of cilia structures on selected neurons 

prompted us to test whether sensory functions of these cilia were restored to a 

similar extent. In such a case our rescue system would be suitable to investigate 

behaviors mediated by single neurons in a population of transgenic worms. As 

proof of principle, we used two different assays that investigate sensory 
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behaviors either at the level of single worms or at the level of a population of 

worms. 

First, we used the gpa-13 rescued lines to investigate the sensory 

function of rescued ASH neurons in a drop test. This test was established to 

investigate the aversive behavior of the worm to water-soluble repellents 

(Hilliard et al., 2002). Aversion to these substances is mediated mainly by ASH 

and to a minor extent also by ASK or ADL, depending on the nature of the 

repellent. We performed drop assays using 0.1 % SDS and 1 M glycerol (Figure 

4, A and B). In these assays, daf-19; daf-12 mutants and the control strains che-

13 and osm-9, which are defective in the detection of repellents, had very low 

aversion indices (a.i.) – less than 0.1 for SDS and 0.2 for glycerol – compared 

to an a.i. of 0.96 (p < 0.001) and 0.95 (p < 0.001) in wild type or daf-12 

mutants, respectively. As expected, expression of daf-19c from the gpa-13 

promoter in ASH substantially improved the avoidance behavior. We obtained 

an a.i. of 0.5 (p < 0.001) and 0.6 (p < 0.001) for the two rescue lines tested 

(Figure 4A). Intriguingly, this 50 – 60 % increase in the avoidance behavior 

matched the 50 – 60 % morphological rescue of ASH cilia in the two rescue 

lines (compare Figure 4A and Table 3). These results suggest that the rescue of 

cilia structure and sensory behavior is tightly correlated. We repeated the drop 

assay and followed it with a dye filling assay for each individual worm 

analyzed. Indeed, we saw a strong correlation between the rescue of cilia 

structure and aversion. All worms in which cilia formation on ASH neurons 

was rescued and dye filling restored responded correctly to the aversive 

stimulus, resulting in an a.i. higher than 0.9 (p < 0.001) for the rescue lines 

(Figure 4B). As a negative control, we included the gcy-5 rescue lines in our 

assays; these lines show functional rescue only in ASER neurons (Figure 4A). 

These CSNs are required for detection of the attractant NaCl, but not for 

repelling compounds. As expected, rescue of cilium structure on ASER did not 

restore aversion, resulting in an a.i. below 0.1. 

To specifically test the rescue of sensory functions in ASER, we 

performed quadrant assays that investigate the attraction to NaCl (Figure 4C). 

The attraction to salt is mediated by several CSNs, among others the bilateral 

neuron pairs ASEL/R and ADFL/R. Wild-type worms, daf-12 mutants, as well 

as osm-9 mutants, which are defective in the detection of repellents, but not of 
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NaCl, scored chemotaxis indices (c.i.) of 0.8 and higher. Mutations in daf-19 

lead to a very low c.i. of 0.09 (p < 0.001). As expected, based on their sensory 

capacity, worms with rescued cilia on either ASER (in gcy-5 rescue lines) or 

ADF (in gpa-13 rescue lines) were able to detect NaCl correctly. Their c.i. 

increased to 0.32 and 0.47 (p < 0.05) in gcy-5 rescue lines and 0.45 (p < 0.1) in 

gpa-13 rescue lines, respectively. The partial rescue observed in all lines most 

likely uncovers the redundant functions of several CSNs in the attraction to 

NaCl sensory behavior. In addition to transgenic, rescued animals (“trans”) we 

also analyzed non-transgenic (“non-trans”), mutant worms of each strain in the 

very same experiments. As expected for this internal control, non-transgenic 

worms were not rescued for their ability to detect NaCl. In summary our results 

show that the expression of daf-19c in single CSNs is highly penetrant and 

sufficient to functionally restore the sensory capacity of a single CSN and its 

associated behaviors. 
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DISCUSSION 

 

FRISSC – a new tool to analyze CSN-specific sensory function 

Formation of cilia is dependent on DAF-19C, a recently discovered 

novel isoform of the RFX transcription factor DAF-19 (Senti and Swoboda, 

2008). While all other cilia structure mutants show short or misshaped cilia, 

daf-19 mutant animals are completely devoid of cilia structures. Therefore, daf-

19 mutants are guaranteed to be free from all sensory input through cilia. 

FRISSC uses this mutant to generate single functional CSN on demand by 

expressing daf-19c from CSN-specific promoters. Thus, FRISSC 

experimentally introduces a simple morphological change from ”without 

cilium” to “with cilium” on an otherwise structurally intact neuron. This results 

in the transformation of the sensory status of the animal from “no input” to 

“input”. 

FRISSC is not only “clean” with regard to the sensory ability before 

and after the rescue, it is also cell-autonomous. We tested FRISSC with regard 

to cilia gene expression, cilia morphology, and cilia sensory function. We 

observed rescue of cilia morphology and sensory behavior only in those 

neurons where we intentionally expressed DAF-19C, but never in other CSNs. 

This strictly neuron-specific cilia rescue by DAF-19C is crucial for the analysis 

and correct interpretation of single CSN functions and their respective 

contributions to neuronal networks and sensory behaviors. Furthermore, we 

found that the rescue potential of the different promoter::daf-19 transgenes is 

highly efficient and penetrant. Thus, FRISSC fulfills all requirements as a tool 

to study the autonomous function of single CSNs without sensory input from 

other CSNs. 

 

Noteworthy features of FRISSC 

Three protein isoforms are expressed from the gene daf-19: DAF-19A, 

B, and C. DAF-19A/B, which are not expressed in CSNs, are required for the 

maintenance of synaptic vesicle proteins at later stages of the C. elegans life 

cycle (Senti and Swoboda, 2008). All daf-19 mutant alleles currently available 

affect all three isoforms equally. This may be a concern when using FRISSC to 

conduct behavioral studies in daf-19 mutants. However, we have shown that the 
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synaptic defects in daf-19 mutants affect adult worms only as they age (Senti 

and Swoboda, 2008). The defects do not affect larvae or young adults that are 

typically used for behavior assays. Thus, late synaptic defects due to the loss of 

daf-19A/B are not problematic, as is apparent from the behavioral assays we 

performed in this study. 

Furthermore, we performed our analyses in a daf-19; daf-12 double 

mutant background to suppress the Daf-c (Dauer formation constitutive) 

phenotype of daf-19. In all behavioral tests we performed, daf-12 single 

mutants did not exhibit any sensory defects. Therefore, we conclude that 

mutations in daf-12 do not interfere with our behavioral analyses. However, in 

some instances a pure daf-19 mutant background might be advantageous, e.g. 

for dauer-related CSN functions. In that case, the genetic background can be 

easily changed. 

 

Expanding the versatility of FRISSC 

Several methods are available to study sensory functions and related 

behaviors of CSNs. Some of them are based on the elimination of the neuron in 

question (cell ablation techniques using a laser beam or expression of cytotoxic 

molecules). Other techniques focus on isolated investigation in an environment 

where all other CSNs are also functional (neuronal activity imaging). Each of 

these methods has specific advantages; choosing one method over another is 

typically based on experimental circumstances. 

A unique feature of FRISSC is the isolation under which a particular 

sensory event can be studied. All currently available cilia structure mutants 

have cilia remnants of various lengths, categorized as likely non-functional 

(Haycraft et al., 2003; Haycraft et al., 2001; Perkins et al., 1986). However, 

when studying these mutants, residual function, especially for sensing volatile 

chemicals (cues), cannot be excluded. daf-19 mutants are currently unique, as 

they are completely devoid of any cilia structures and therefore lack any 

sensory input via cilia. 

Another strong advantage of FRISSC is its heritability. Transgenic 

worms can be generated easily and the rescuing transgenes are then maintained 

as extra-chromosomal arrays (Mello et al., 1991). In contrast, laser ablation 

experiments yield only a limited number of manipulated animals and require 
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specific technical equipment and skills (Bargmann and Avery, 1995; Bargmann 

and Horvitz, 1991). We have shown that FRISSC is sufficiently quantitative as 

well as efficient for analyzing a particular behavior even in a population of 

transgenic worms. Thus, the constant supply of a large number of transgenic 

animals allows for the examination of even subtle phenotypes that otherwise 

might be missed. Though possibly advantageous, it is therefore not necessary to 

integrate into the genome extra-chromosomal arrays prior to behavioral 

analyses. In contrast, as demonstrated in drop and quadrant assays, non-

transgenic or mosaic animals can serve as important internal negative controls. 

We developed FRISSC with the aim of studying the functions of single 

CSNs. Although the list of promoters specific for single CSNs is long, some 

CSNs share specific promoters with at least one other or more types of CSNs. 

In that case, the use of transgenes as extra-chromosomal arrays, which are 

occasionally lost during mitosis, can be exploited. Since extra-chromosomal 

arrays give rise to a heterogeneous population that does not express the 

transgene in every target cell, mosaic analysis can be applied. Alternatively, our 

rescue system can be combined with a tool that superimposes second level 

expression-control (both spatial and temporal), e.g. the FLP recombinase 

system (Davis et al., 2008). 

 

Future applications 

FRISSC allows the creation and in vivo analysis of single functional 

CSNs independent of any other sensory input through cilia on other neurons. 

We envision three major areas of applications for this tool. First, FRISSC will 

facilitate the investigation of single cilia and CSN function from the cellular 

level to isolated sensory circuits and finally to isolated behaviors. It will be the 

tool of choice when sensory redundancies need to be understood. The 

investigation of the role of selected interneurons, which typically receive input 

from multiple CSNs, in a particular sensory behavior will be possible with 

FRISSC. Second, single isolated cilia can also be used in a gain-of-function or 

sufficiency approach, by expressing and analyzing individual molecular 

components of the signal reception and transduction machinery in different 

types of CSNs. The function and effect of these proteins can subsequently 

evaluated from cellular to organismal level in vivo in transgenic animals. 
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Finally, FRISSC combined with other methods creates a powerful tool to study 

questions concerning the development of functional cilia as such. Adding time-

control to the spatial expression of DAF-19, e.g. by adapting the hsf-1 model 

(Bacaj and Shaham, 2007), or the FLP-recombinase system (Davis et al., 2008), 

allows the precise initiation of ciliogenesis. Thus, one could investigate the 

potential of DAF-19 induced ciliogenesis at different developmental stages, or 

could focus on the early steps of cilia assembly. The latter application will be 

made considerably easier, as not all cilia develop at the same time or in the 

same manner (Sulston and Horvitz, 1977; Sulston et al., 1983). Being able to 

selectively focus on only one cilium will help to solve time-related aspects of 

ciliogenesis, including when and how sensory cilia attain their signal reception 

and transduction capacities. Overall, FRISSC will allow to answer questions 

regarding sensory neuron development and sensory mechanisms from a new 

angle. It will therefore provide a valuable addition to the toolbox for sensory 

behavior analysis. 
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Table 1. Rescue of cilia formation and sensory function by expressing daf-19c 

from different ciliated sensory neuron-specific promoters. 

 
  rescue of 

promoter 
start of 
expression 

site of 
expression 

che-
13::DsRed / 
bbs-7::gfp 

cilia 
length 

dye 
filling 

sensory 
behavior 

gcy-5 embryo ASER yes / yes yes n.a. yes 

gpa-13 embryo ADF, ASH, 
AWC, PHA/B yes / yes yes yes2 yes 

dat-1 embryo 
(PDE in L1) 

ADE, CEPs, 
PDE yes / yes yes n.a. n.d. 

gpa-11 embryo ADL, ASH yes / yes yes yes n.d. 

trx-1 embryo ASJ yes / yes yes1 no n.d. 

 
n.a. ….. not applicable; n.d. ….. not determined; 1 cilia appeared shorter than wild-type cilia; 2 

analyzed in ADF and ASH 



 58 

Table 2. Rescue efficiency of cilia gene expression in single neurons that 

express daf-19c from ciliated sensory neuron-specific promoters. Transgenic 

neurons were marked with gfp and scored for the activation of the direct DAF-

19C target che-13::DsRed. 

 

promoter cell type transgenic line 
transgenic neurons expressing 

che-13::DsRed (%) 
gcy-5 ASER line 1 100 
  line 2 100 
gpa-13* ADF L/R line 1 > 68 
  line 2 > 73 
 ASH L/R line 1 > 72 
  line 2 > 80 
 AWC L/R line 1 > 72 
  line 2 > 78 
 PHA/B L/R line 1 > 65 
  line 2 > 78 
dat-1 ADE L/R line 1 100 
  line 2 100 
 PDE L/R line 1 100 
  line 2 83 
 CEPs line 1 98 
  line 2 98 
gpa-11 ADL L/R line 1 98 
  line 2 93 
 ASH L/R line 1 100 
  line 2 100 
trx-1 ASJ L/R line 1 87 
  line 2 95 

 
* The gpa-13 lines do not contain a gfp marker for transgenic neurons. Therefore, the % 

calculations are based on the assumption that all neurons carry the extra-chromosomal array 

transgene. Since extra-chromosomal arrays can be lost during mitosis, these numbers are 

therefore an underestimate. 
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Table 3. Rescue efficiency of cilia structures in single neurons that express daf-19c 

from ciliated sensory neuron-specific promoters. Transgenic neurons were marked 

with bbs-7::gfp. 

 

promoter cell type transgenic line 
transgenic neurons 

with rescued cilium (%) 

rescue confirmed by 
dye filling (d) or 

visibility of cilium (c) 
gcy-5 ASER line 1 71 c 
  line 2 82 c 
gpa-13 ADF L/R line 1 yes d 
  line 2 yes d 
 ASH L/R line 1 67 d 
  line 2 54 d 
 AWC L/R line 1 yes c 
  line 2 yes c 
 PHA/B L/R line 1 0 c 
  line 2 0 c 
dat-1 ADE L/R line 1 n.d. n.d. 
  line 2 n.d. n.d. 
 PDE L/R line 1 n.d. n.d. 
  line 2 n.d. n.d. 
 CEPs line 1 59 c 
  line 2 56 c 
gpa-11 ADL L/R line 1 35 d 
  line 2 57 d 
 ASH L/R line 1 48 d 
  line 2 54 d 
trx-1 ASJ L/R line 1 15 c 
  line 2 33 c 

 
n.d. … not determined; yes … representative spot-checks were done 



 60 

 

Supplementary Table 1. Strains and extra-chromosomal arrays analyzed in JT6924 [daf-19 (m86); daf-12 (sa204)]. 

 
 
 
strain transgene presence of DAF-19 direct DAF-19 target gene visualization of neuron of interest transgenesis marker 
 
 
gcy-5 promoter constructs 
OE3761 ofEx559  che-13::DsRed gcy-5::gfp elt-2::mCherry 
OE3762 ofEx560   che-13::DsRed gcy-5::gfp elt-2::mCherry 
OE3791 ofEx590 gcy-5::daf-19c che-13::DsRed gcy-5::gfp elt-2::mCherry 
OE3792 ofEx591  gcy-5::daf-19c che-13::DsRed gcy-5::gfp elt-2::mCherry 
OE3798 ofEx597 gcy-5::daf-19c bbs-7::gfp  elt-2::mCherry 
OE3799 ofEx598  gcy-5::daf-19c bbs-7::gfp  elt-2::mCherry 
 
gpa-13 promoter constructs 
OE3773 ofEx570 gpa-13::daf-19c che-13::DsRed  unc-122::gfp 
OE3774 ofEx571  gpa-13::daf-19c che-13::DsRed  unc-122::gfp 
OE3200 ofEx160 gpa-13::daf-19c bbs-7::gfp  unc-122::gfp 
OE3203 ofEx166  gpa-13::daf-19c bbs-7::gfp  unc-122::gfp 
OE3789 ofEx588 gpa-13::daf-19c   unc-122::gfp 
OE3790 ofEx589  gpa-13::daf-19c   unc-122::gfp 
OE3847 ofEx620 gpa-13::daf-19c  gcy-5::gfp elt-2::mCherry 
OE3848 ofEx621  gpa-13::daf-19c  gcy-5::gfp elt-2::mCherry 
OE3849 ofEx622  gpa-13::daf-19c  gcy-5::gfp elt-2::mCherry 
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dat-1 promoter constructs 
OE3518 ofEx367 dat-1::daf-19c che-13::DsRed dat-1::YC2.3 elt-2::mCherry 
OE3519 ofEx368 dat-1::daf-19c che-13::DsRed dat-1::YC2.3 elt-2::mCherry 
OE3793 ofEx592 dat-1::daf-19c bbs-7::gfp  elt-2::mCherry 
OE3794 ofEx593 dat-1::daf-19c bbs-7::gfp  elt-2::mCherry 
 
gpa-11 promoter constructs 
OE3765 ofEx563  che-13::DsRed gpa-11::gfp elt-2::mCherry 
OE3766  ofEx564  che-13::DsRed gpa-11::gfp elt-2::mCherry 
OE3796 ofEx595 gpa-11::daf-19c che-13::DsRed gpa-11::gfp elt-2::mCherry 
OE3797 ofEx596  gpa-11::daf-19c che-13::DsRed gpa-11::gfp elt-2::mCherry 
OE3828 ofEx601 gpa-11::daf-19c bbs-7::gfp  elt-2::mCherry 
OE3830 ofEx603  gpa-11::daf-19c bbs-7::gfp  elt-2::mCherry 
 
trx-1 promoter constructs 
OE3769 ofEx567  che-13::DsRed trx-1::gfp elt-2::mCherry 
OE3770 ofEx568   che-13::DsRed trx-1::gfp elt-2::mCherry 
OE3777 ofEx574 trx-1::daf-19c che-13::DsRed trx-1::gfp elt-2::mCherry 
OE3778 ofEx576  trx-1::daf-19c che-13::DsRed trx-1::gfp elt-2::mCherry 
OE3795 ofEx594 trx-1::daf-19c bbs-7::gfp  elt-2::mCherry 
OE3523 ofEx372  trx-1::daf-19c bbs-7::gfp  elt-2::mCherry 
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ABSTRACT 

 

Master regulators are developmental switch molecules that govern the 

formation of an organ or differentiation of a specific cell type. Their most 

important feature is the ability to transform different types of tissue or cells into 

a particular differentiated state. A few master regulators that act during 

invertebrate and vertebrate development have so far been described. eyeless, 

which induces the formation of the Drosophila compound eye, and MyoD, 

which induces differentiation of muscle tissue in mammals, are two such 

examples. In this study we investigated whether the RFX transcription factor 

DAF-19 can act as a master regulator of cilia formation in C. elegans. Cilia are 

the main sensory structures in the worm, found on 60 ciliated sensory neurons 

(CSNs) in the head and tail. The isoform specific for CSNs, DAF-19C, induces 

cilia formation in these sensory neurons by activating a large number of cilia 

genes that confer structure and function to the sensory organ. In this work we 

attempted to induce ectopic cilia in C. elegans by expressing DAF-19C in 

various non-ciliated cell types. We find that ectopic expression of DAF-19C can 

induce target genes in muscle and hypodermis cells, but not in non-ciliated 

neurons. Surprisingly, DAF-19A, which specifically functions in synapse 

maintenance in non-ciliated neurons, can also activate cilia genes when 

expressed ectopically in muscle or hypodermis cells. We hypothesize that 

isoform-specific suppressors regulate the cell-type-specific activation potential 

in of different DAF-19 isoforms. Whether the activation of cilia genes in 

muscles and hypodermis leads to the formation of cilia remains to be shown by 

more detailed experiments. 
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MATERIAL AND METHODS 

 

Strains and culture methods 

Growth and culture of C. elegans strains were carried out as described (Brenner, 

1974). All strains were grown at 20 °C unless noted otherwise. Strains used for 

this study were: JT6924 [daf-19 (m86); daf-12 (sa204)], JT8651 [daf-19 

(m86)/mnC1; lin-15 (n765 ts)]. The extra-chromosomal arrays used in this work 

are summarized in Table 3. 

 

Injection constructs, germ line transformation, and GFP expression analyses 

Transcriptional fusions to fluorescent reporters were injected at 20 to 60 ng/µl 

and daf-19c ectopic expression constructs were injected at 50 ng/µl. Adult 

hermaphrodites were transformed using standard techniques (Mello et al., 

1991). Transgenic arrays were analyzed in a daf-19;daf-12 mutant background, 

except for some lin-44 and mec-7 lines, which were analyzed in the strain 

JT8651. For each transgene typically three independent lines were generated, of 

which two were analyzed in detail (see Table 3). For each line more than 30 

transgenic animals of all different larval stages as well as adults were looked at. 

 

Microscopy and fluorescence imaging 

For the investigation of GFP and DsRed expression, worms were anesthetized 

in 0.1% sodium azide in M9 buffer, and immobilized on a 2% agar pad. The 

analysis was performed on a Zeiss Axioplan 2 microscope connected to a 

computer running OpenLab software. 

 

Antibody staining 

Staining with antibodies against DAF-19 and GFP were carried out as described 

(Senti and Swoboda, 2008). The secondary antibodies Alexa488 and Alexa546 

(Jackson Immunoresearch) were used 1:250, Cy3 was used 1:1000. Incubations 

with primary antibodies were performed overnight at 4°C and incubations with 

secondary antibodies for 3 hours at room temperature. 
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INTRODUCTION 

 

Cilia are hair-like cellular extensions that are structurally conserved in 

most eukaryotic organisms. In mammals they occur on many different cell types 

where they fulfill vital functions. Motile cilia are required for the movement of 

extracellular fluids (clearing the lungs of mucus, generation of the nodal flow in 

early embryogenesis, etc.) while non-motile cilia typically have sensory 

functions. Loss or malformations of cilia are associated with severe diseases or 

syndromes and can in some cases even be fatal in humans (Bisgrove and Yost, 

2006; Eley et al., 2005; Ibanez-Tallon et al., 2003; Pazour, 2004; Satir, 2008; 

Yoder, 2007). RFX transcription factors have been associated to cilia formation 

in many different organisms (Bonnafe et al., 2004; Dubruille et al., 2002; 

Swoboda et al., 2000). They recognize and bind a short DNA sequence motif, 

the x-box, in the promoter of their target genes, which leads to the activation of 

transcription (Emery et al., 1996a). 

In C. elegans, cilia are restricted to 60 ciliated sensory neurons 

(CSNs), mostly located in the head and tail of the animal. All of them are non-

motile cilia and have sensory functions (Inglis et al., 2007; Perkins et al., 1986). 

Loss of these cilia does not affect the viability of the animal. While several 

RFX genes are found in, for example, mice and flies, there is only one such 

family member, DAF-19, encoded in the genome of C. elegans. Several 

isoforms of this RFX transcription factor have been identified (Senti and 

Swoboda, 2008; Swoboda et al., 2000). The short isoform, DAF-19C, is a key 

regulator of ciliogenesis in the worm. It activates a large number of cilia genes 

including structural and functional components (Efimenko et al., 2005; Senti 

and Swoboda, 2008). Mutations in the gene daf-19 deplete worms of all ciliated 

structures, abolishing all cilia-mediated sensory perception (Perkins et al., 

1986). DAF-19C re-expression in CSNs of daf-19 null mutant animals is 

sufficient to rescue all cilia-related phenotypes such as cilia structure, sensory 

function, and behavior (Senti and Swoboda, 2008). 

Since DAF-19C has such a central function in cilia formation, we 

wondered if it functions as a master regulator of this process. We hypothesized 

that ectopic expression of DAF-19C in originally non-ciliated cells could induce 

target gene expression or eventually lead to the assembly of cilia.



 69 

RESULTS AND DISCUSSION 

 

To test this hypothesis, we conducted a pilot study whereby we 

expressed daf-19c in non-ciliated cells. We generated several constructs that 

drive daf-19c expression from cell-specific promoters. DAF-19C may not be 

able to activate cilia gene expression in all different cell types. Therefore we 

chose promoters active in non-ciliated neurons as well as non-neuronal tissue 

(Table 1). We expected that a pre-set neuronal environment in non-ciliated 

neurons would be more advantageous for ectopic cilia formation than non-

neuronal environments. Promoters directing expression in non-ciliated neuronal 

cell types were mec-7 (in touch sensory neurons) and unc-30 (in D-type motor 

neurons). For non-neuronal cell types we chose myo-2 (in the pharynx muscle), 

unc-54 (in body wall muscles), and lin-44 (in tail hypodermis cells) (Table 3). 

Details for those five promoters and genes are available at www.wormbase.org. 

Each promoter was cloned upstream of the daf-19c cDNA. To monitor the 

specificity of DAF-19C function, we generated similar constructs with the long 

isoform DAF-19A (Table 3). In wild-type worms DAF-19A is expressed in 

non-ciliated neurons where it is required for the maintenance of synaptic 

function. Importantly, it is not able to replace the function of DAF-19C in CSNs 

(Senti and Swoboda, 2008). 

All constructs were injected together with marker DNA to generate 

transgenic over-expression strains. Mammalian RFX transcription factors can 

form heterodimers via their dimerization domain (Emery et al., 1996a; Emery et 

al., 1996b). To avoid any dimerization and possible interference of the different 

DAF-19 isoforms in neurons, we used a daf-19 null mutant strain for all daf-19 

isoforms. Ectopic expression of DAF-19C in all lines was visualized by 

antibody staining (Figure 2). To monitor the activity of the transcription factor, 

we co-injected fluorescent reporters of direct DAF-19C cilia target genes (bbs-

7::gfp, bbs-2::gfp and che-13::DsRed; Table 3). 

myo-2: Expression of DAF-19A in the pharynx muscle (myo-2 

promoter) induced severe malformations, most likely through structural changes 

in the muscle cells (Figure 1). These malformations caused the impairment of 

feeding and consequently death at various larval stages. It was not possible to 
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propagate and analyze these lines. We therefore eliminated both myo-2 

constructs from our study. 

mec-7 and unc-30: Expression of DAF-19C from the mec-7 and unc-

30 promoters did not activate direct DAF-19 target genes bbs-7::gfp and che-

13::DsRed in non-ciliated neurons (Table 1 and 2). For the analysis of all D-

type motorneurons in the ventral nerve cord (unc-30 promoter) and the touch 

sensory neurons in the head, body and tail of the worm (mec-7 promoter) were 

looked at. Importantly, however, unc-30 is also expressed in one ciliated 

sensory neuron, ASG (Jin et al., 1994). Thus, we expected unc-30-driven 

expression of DAF-19C to induce target gene expression and cilia formation in 

ASG. Unlike the case in non-ciliated D-type motorneurons, we detected clear 

reporter gene expression in ASG (Table 1). In addition, the formation of a 

cilium on its dendrite was also fully restored (data not shown). From this 

internal control we conclude that the DAF-19C expression system itself was 

functional, but that target genes were activated only in ciliated but not in non-

ciliated neurons. We conclude that DAF-19C is not able to induce cilia 

formation when ectopically expressed in non-ciliated neurons. As expected 

DAF-19A expression from the same promoters did not activate cilia gene 

expression in both ciliated and non-ciliated neurons, either (Table 1). 

unc-54 and lin-44: In contrast to the lack of apparent DAF-19C 

function in non-ciliated neurons, DAF-19C was able to activate target genes in 

body wall muscle cells when expressed from the unc-54 promoter and in 

hypodermal cells when expressed using the lin-44 promoter (Table 1). In body 

wall muscles, apart from the induction of cilia genes, we detected no further 

effect on cell structure or identity. Animals that activated cilia genes in their 

body wall muscles were viable and healthy and did not appear different from 

their non-transgenic siblings. When using the lin-44 promoter, we saw 

activation of bbs-7::gfp and bbs-2::gfp in hypodermal cells of the tail and 

occasionally observed severe deformations of the tail (Figure 2). 

Intriguingly, we saw more substantial effects when DAF-19C was 

expressed in non-neuronal tissue than in non-ciliated neurons. To test if this 

activation of cilia genes was specific for DAF-19C, we investigated the effect 

of DAF-19A isoform expression in body wall muscle and tail hypodermis cells. 

Surprisingly, DAF-19A expression from the unc-54 promoter was also able to 
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trigger DAF-19C cilia target gene expression in body wall muscles. 

Furthermore, ectopic expression of DAF-19A from the lin-44 promoter in the 

tail hypodermis generated similar and even more frequent tail deformation 

phenotypes than did similar expression of DAF-19C (Table 1 and Figure 1). 

We saw in these lines activation of bbs-7::gfp and observed in more than 50% 

of transgenic animals severe deformations of the tail, including complete loss of 

the tail. We also observed constipated, sick L1 larvae with severe tail 

deformations (data not shown). This is likely du to the fact that expression of 

the different DAF-19 isoforms in the posterior most hypodermis cells interferes 

with their proper differentiation. Consequently the anus, which is built by these 

hypodermis cells, is structurally deformed or missing and the defecation 

program cannot be executed properly. Those larvae did not develop any further, 

frequently disintegrated at the posterior end, and consequently died. 

In summary, we can state that neither DAF-19C nor DAF-19A are able 

to induce cilia gene expression in non-ciliated neurons. In CSNs DAF-19C but 

not DAF-19A can activate cilia target genes. Surprisingly, both isoforms, DAF-

19A and DAF-19C, were able to induce cilia gene expression in non-neuronal 

cell types (Table 2). 

 

Although DAF-19C is essential for cilia formation, we did not find that 

it is sufficient to induce ectopic cilia gene expression in any given cell type. 

This suggests that the activity of DAF-19 is strongly dependent on cellular 

context. Furthermore, we suspect that the potential to ectopically activate cilia 

genes is regulated differentially for the two isoforms, DAF-19A and C. 

Interestingly none of the isoforms can activate cilia genes in non-ciliated 

neurons. Only isoform C in CSNs and both isoforms A and C can activate cilia 

genes in non-neuronal cells (Table 2). How is this context-dependent activity of 

DAF-19A and C regulated? Based on our results we hypothesize that 

ciliogenesis in non-ciliated neurons is actively suppressed. This scenario is 

especially attractive since isoforms DAF-19A/B are expressed in all non-

ciliated neurons, where they are required for the maintenance of synaptic 

function (Senti and Swoboda, 2008). All DAF-19 isoforms contain the same 

DNA binding domain and therefore should recognize the same x-box DNA 

sequence motif leading to the activation of cilia genes. Thus, a suppressor of 
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DAF-19 (A and C) in non-ciliated neurons could prevent the transcription factor 

from activating cilia genes. 

This suppressor theory assumes that all DAF-19 isoforms have the 

potential to activate cilia genes. However, only DAF-19C, not isoform A, is 

able to rescue cilia formation in CSNs in daf-19 mutants. This was shown by 

expression of either isoform in ASG in our current work, as well as in our 

previous work on the molecular characterization of the three DAF-19 isoforms 

(Senti and Swoboda, 2008). We thus further speculate that suppression of DAF-

19A also takes place in CSNs. However, in this cell type, suppression would 

target only DAF-19A without affecting the transcriptional activity of DAF-19C. 

Alternatively, DAF-19C may require another protein X to fully induce the 

ciliogenic program in CSNs. This factor should only be present in CSNs. It 

needs to be pointed though out that although many screens for cilia mutants 

yielded a large number of mutants, none of them show the same profound cilia 

phenotype as daf-19. We therefore hypothesize that a protein X that acts 

together with or upstream of DAF-19 would have to have multiple, maybe even 

essential, functions. Mutations in gene X would be lethal and therefore would 

not be found in a screen for cilia mutants. Finally, in non-neuronal cell types, 

suppressors or regulators of DAF-19 are not required since the transcription 

factor is originally not expressed in these cells (Senti and Swoboda, 2008). 

Consequently ectopic expression of either DAF-19 isoform is able to activate 

cilia target genes in these cell types. 

We detected substantial activation of cilia target genes in muscle and 

hypodermis cells upon ectopic expression of DAF-19A and C. Was this 

activation of the cilia transcriptional cascade followed by the assembly of 

ectopic cilia? It is possible that cilia or rudimentary ciliary structures were 

formed. However with the analysis we performed so far, we were not able to 

detect them. Experiments using fluorescently tagged proteins that localize to the 

basal body, transition zone, or the cilium itself could visualize ectopic cilia on 

muscles or hypodermis cells. Alternatively, immunofluorescent staining against 

acetylated tubulin could answer this question. 

How are cilia formation and the activity of RFX proteins regulated in 

other species? Recently, a number of studies have identified genes that function 

upstream of RFX transcription factors in mice, zebrafish, and Xenopus (Beckers 
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et al., 2007; Stubbs et al., 2008; Yu et al., 2008). In the zebrafish pronephros the 

Jagged 2/Notch signaling pathway suppresses rfx2, thereby regulating the 

number of multi-ciliated versus transporting epithelial cells (Liu et al., 2007). 

Mouse Foxj1 (also known as HFH-4) has previously been associated with cilia 

formation. Beckers and colleagues found that the homeobox gene noto is an 

essential regulator of node morphogenesis and ciliogenesis in the posterior 

notochord and acts upstream of foxj1 and rfx3 (Beckers et al., 2007). Recent 

studies in zebrafish now demonstrate that foxj1 is a target of the Hedgehog 

signaling pathway, transcriptionally activating genes essential for motile cilia 

formation. Intriguingly, these studies also demonstrate a master regulatory 

switch function of Foxj1 in cilia formation. Ectopic expression in non-ciliated 

tissue results in the assembly of motile cilia. Molecularly, Foxj1 can be placed 

upstream of Rfx2. However, whereas embryos deficient for Foxj1 display a lack 

of motile cilia, Rfx2 function is associated with primary (non-motile) cilia. The 

precise mode of interaction between Foxj1 and Rfx2 in zebrafish remains, 

therefore, unclear. However, C. elegans does not develop motile cilia, neither 

does its genome encode a clear Foxj1 homolog. Proteins that function together 

with, or have regulatory functions upstream of DAF-19C, remain, therefore, to 

be identified. Their discovery may be essential to induce ectopic sensory cilia in 

C. elegans. 
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Figure 1: Ectopic expression of DAF-19A in pharynx muscle causes the 

deformation of the pharynx. (A, B) Heads of (A) wild-type and (B) transgenic 

(F1 generation) adult worms. (C-E) Transgenic L1 larvae (F2 generation). In all 

animals the pharynx is visualized by DsRed being expressed from the myo-2 

promoter. Ectopic expression causes a severe deformation of the pharynx in all 

transgenic worms and larval lethality in the F2 generation. 
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Figure 2: Ectopic expression of DAF-19A in the tail hypodermis. (A-C) 

Comma stage embryo and (D-F) 3-fold stage embryo expressing DAF-19A in 

the tail. (A, D) Cartoons: h marks the head, t the tail region, and red dots 

represent nuclear DAF-19A (B, E) DIC image and (C, F) fluorescent image 

where DAF-19A is visualized by a DAF-19 specific antibody. (G) Tail of a 

wild-type worm. (H-J) Tails are missing (H) or deformed (I, J) in worms 

ectopically expressing DAF-19A in the tail hypodermis. J is a magnification of 

I. Arrows in G and H mark the location of the anus. 
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Table 1. Ectopic expression of the DAF-19 isoforms C or A from different promoters. Induction of cilia gene expression, of cilia, and of 

phenotypes caused by ectopic expression results are marked in red. Fields marked in blue describe results where no effects were observed. 
 

 Induction of 

DAF-19 
Isoform Promoter Start of 

Expression 
Site of 
Expression 

che-13::DsRed / 
bbs-7::gfp Cilia Abnormalities 

DAF-19C no / no n.d. n.d. 

DAF-19A 
mec-7 embryo touch neurons in the body 

(ALM, AVM, PLM, PVM) no / no n.d. n.d. 

DAF-19C yes (ASG) / n.d. yes (ASG) n.d. 

DAF-19A 
unc-30 embryo D-type motorneurons, ASG 

n.d. / no n.d. n.d. 

DAF-19C n.d. / yes n.d. tail morphology 

DAF-19A 
lin-44 embryo tail hypodermis (hyp 8-11) 

n.d. / yes n.d. tail morphology 

DAF-19C yes / yes n.d. n.d. 

DAF-19A 
unc-54 embryo body wall muscle 

n.d. / yes n.d. n.d. 
n.d. ….. not done 
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Table 2. Potential of DAF-19A and C to activate cilia gene expression in different 

cell types 

 

 Promoter DAF-19 
isoform 

Target gene 
activation 

Rescue/formation 
of cilia 

C YES YES Ciliated 
sensory 
neurons 

gpa-13# 
unc-30* 

A NO  NO 

C NO NO Non-ciliated 
neurons 

mec-7 
unc-30** A NO NO 

C YES N.D. Non-neuronal 
cells 

unc-54 
lin-44 A YES N.D. 

 

# … shown in (Senti and Swoboda, 2008); * … in ASG; ** … in motorneurons, N.D. … not done 
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Table 3. Strains and extra-chromosomal arrays analyzed in JT6924 [daf-12 (sa204); daf-19 (m86)] and JT8651 [daf-19 (m86)/mnC1; lin-
15 (n765 ts)] 
 
 
strain transgene presence of DAF-19 direct DAF-19 target gene  cellular marker transgenesis marker 
 
 
mec-7 promoter constructs 
OE3514 ofEx363 mec-7::daf-19c bbs-7::gfp, che-13::DsRed  myo-2::DsRed 
OE3515 ofEx364  mec-7::daf-19c bbs-7::gfp, che-13::DsRed  myo-2::DsRed 
OE3647 ofEx495 mec-7::daf-19c che-13::DsRed mec-4::gfp (zdIs5) elt-2::mCherry, lin-15 
OE3648 ofEx496 mec-7::daf-19c che-13::DsRed mec-4::gfp (zdIs5) elt-2::mCherry, lin-15 
OE3189 ofEx153 mec-7::daf-19c che-13::DsRed mec-4::gfp (zdIs5) lin-15 
OE3190 ofEx154 mec-7::daf-19c che-13::DsRed mec-4::gfp (zdIs5) lin-15 
 
OE3044 ofEx32 mec-7::daf-19a bbs-7::gfp  lin-15 
OE3045 ofEx33 mec-7::daf-19a bbs-7::gfp  lin-15 
OE3046 ofEx34 mec-7::daf-19a bbs-7::gfp  lin-15 
OE3191 ofEx155 mec-7::daf-19a bbs-7::gfp  lin-15 
OE3187 ofEx151 mec-7::daf-19a che-13::DsRed mec-4::gfp (zdIs5) lin-15 
OE3188 ofEx152 mec-7::daf-19a che-13::DsRed mec-4::gfp (zdIs5) lin-15 
 
unc-30 promoter constructs 
OE3771 ofEx569   unc-30::gfp elt-2::mCherry 
OE3779 ofEx577  che-13::DsRed  unc-30::gfp elt-2::mCherry 
OE3780 ofEx578  che-13::DsRed  unc-30::gfp elt-2::mCherry 
 
OE3772 ofEx581 unc-30::daf-19c  unc-30::gfp 
OE3781 ofEx579 unc-30::daf-19c che-13::DsRed  unc-30::gfp elt-2::mCherry 
OE3782 ofEx580 unc-30::daf-19c che-13::DsRed  unc-30::gfp elt-2::mCherry 
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lin-44 promoter constructs 
OE3512 ofEx361 lin-44::daf-19c bbs-2::gfp  myo-2::DsRed 
OE3513 ofEx362 lin-44::daf-19c bbs-2::gfp  myo-2::DsRed 
OE3186 ofEx149 lin-44::daf-19c bbs-7::gfp  lin-15 
 
OE3185 ofEx150 lin-44::daf-19a bbs-7::gfp  lin-15 
OE3184 ofEx148 lin-44::daf-19a bbs-7::gfp  lin-15 
 
unc-54 promoter constructs 
OE3775 ofEx572 unc-54::daf-19c bbs-7::gfp  elt-2::mCherry 
OE3776 ofEx573 unc-54::daf-19c bbs-7::gfp  elt-2::mCherry 
 
OE3786 ofEx585 unc-54::daf-19a bbs-7::gfp  elt-2::mCherry 
OE3787 ofEx586 unc-54::daf-19a bbs-7::gfp  elt-2::mCherry 
OE3788 ofEx587 unc-54::daf-19a bbs-7::gfp  elt-2::mCherry 
 
gpa-13 promoter constructs 
OE3773 ofEx570 gpa-13::daf-19c che-13::DsRed  unc-122::gfp 
OE3774 ofEx571  gpa-13::daf-19c che-13::DsRed  unc-122::gfp 
OE3200 ofEx160 gpa-13::daf-19c bbs-7::gfp  unc-122::gfp 
OE3203 ofEx166  gpa-13::daf-19c bbs-7::gfp  unc-122::gfp 
 
OE3217 ofEx171 gpa-13::daf-19a bbs-7::gfp  unc-122::gfp 
OE3218 ofEx172  gpa-13::daf-19a bbs-7::gfp  unc-122::gfp 
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Conclusions 
 

 

 

 

From these studies, the following conclusions can be drawn based on the 

specific aims of the thesis: 

• Several isoforms are expressed from the daf-19 gene. DAF-19C is specific 

for ciliated sensory neurons (CSNs) and activates genes essential for cilia 

structure and function. DAF-19A/B are required for synaptic functions in 

non-ciliated neurons. Loss of DAF-19A/B results in reduced levels of 

synaptic vesicle proteins, a condition that becomes increasingly prominent 

in aging adult worms. Thus DAF-19A/B are not essential for synapse 

development, but are essential for synapse maintenance in the mature 

nervous system. 

• FRISSC is a novel tool to study cilia function in C. elegans that uses 

animals with only a single functional cilium. In contrast to all other tools 

available to study sensory cilia, FRISSC allows investigation of all aspects 

of cilia function in vivo: the cilium itself, the sensory neuron, the neuronal 

circuit it participates in and the evoked behavioral response. Thus FRISSC 

animals represent a unique experimental model to study the effect of 

isolated sensory input at the cellular and organism level. 

• The different isoforms of DAF-19 (A/B and C) have distinct potentials to 

activate cilia genes in cell types. This potential is strongly dependent on the 

cellular context in which they are expressed and may be due to a repressor 

system that differentially regulates DAF-19A/B, and C. If DAF-19 

expression in non-neuronal cells can lead to the assembly of cilia needs 

further and more detailed experiments. 
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Concluding Remarks and 
Future Perspectives 
 

 

 

 

ith the novel findings presented in this thesis, new questions arise 

and follow-up projects can be designed. This chapter is dedicated 

to suggesting and outlining the most interesting and immediate 

lines of investigation that could be followed. 

 

 

THE EFFECTS OF DAF-19 ACTIVITY ON LEARNING AND 
MEMORY 
 

We analyzed the functions of the long DAF-19 isoforms A/B (Paper I). 

They are expressed in the entire nervous system (except for CSNs) and loss of 

DAF-19A/B impairs synaptic functions. However, in daf-19 mutants we never 

observed severe behavioral phenotypes, for example movement defects that one 

would expect from this expression pattern. This could be explained by the fact 

that (a) the reduced levels of synaptic proteins occur rather late at adult stages 

and/or (b) that levels are only reduced, but not eliminated. Either way, these 

mild defects might require the search for more subtle phenotypes. 

By employing classic learning and conditioning experiments, it has 

been shown that C. elegans is capable of learning (Rankin et al., 1990). In 

addition, a variety of behavioral assays are now standard that allow testing the 

function of groups of neurons or even single neurons in C. elegans. Associative 

learning has been demonstrated in experiments in which chemicals, to which C. 

W 



 84 

elegans is not attracted, are paired with food, followed by testing attraction to 

the chemicals alone (Wen et al., 1997). More recent studies of C. elegans 

learning and memory have shown that acquisition of knowledge can be 

differentiated from recall of learned information (Atkinson-Leadbeater et al., 

2004). Interestingly, even aging has an influence on learning and memory C. 

elegans (Murakami, 2007). 

Synaptic activity is not only required for the transmission of signals. 

During nervous system development, increased synaptic activity is required to 

stabilize synapses. In the mature nervous system on the other hand, high levels 

of synaptic activity are implicated in positive feedback loops that ultimately 

lead to the process of learning and memory. Thus it would be interesting to 

investigate whether the loss of DAF-19A/B causes learning defects in daf-19 

mutants. Employing assays for learning and memory on daf-19 mutant worms 

of various ages could give an insight into this matter. 

 

 

EVOLUTIONARY ASPECTS ON THE DEVELOPMENT OF THE 
DIFFERENT DAF-19 ISOFORMS 
 

Cilia in all organisms rely on an intraflagellar transport (IFT) 

mechanism for their assembly and maintenance. In recent years two major 

theories on how cilia and IFT developed in these organisms were established. 

The symbiontic scenario proposed by Margulis and co-workers suggests that the 

merge of a Spirochete with the host cell is the origin of the cilium (Bermudes 

and Margulis, 1987; Margulis et al., 2006). However, several facts argue that 

this might not be the case (summarized in (Satir et al., 2007)). 

Autogenous scenarios on the other hand support that cilia were 

founded by the duplication and subsequent divergence of pre-existing 

components of the eukaryotic cell (Cavalier-Smith, 2002). According to this 

theory, IFT evolved as a specialized form of coated vesicle transport from the 

protocoatomer complex, a prototypic membrane-curving module present in a 

pre-karyotic cell. Consequently IFT shares common ancestry with other 

protocoatomer derivates like COPI and II, clathrin coats, and the nuclear pore 

complex. Today this relationship is reflected by the similarity of sequence and 
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structures of IFT, COPI, and clathrin-vesicle components, as most of these 

proteins have several N-terminal WD40 repeats and C-terminal TRP motifs. 

Interestingly, in C. elegans the transport of membrane receptors to the base of 

the cilium is dependent on the AP-1 clathrin adaptor complex (Bae et al., 2006; 

Dwyer et al., 2001). In another study, Vieira and co-workers demonstrated a 

link between vesicle trafficking in the Golgi apparatus and cilium formation in 

vertebrates (Vieira et al., 2006). Therefore not only cilia function, but also cilia 

formation seems to be dependent on clathrin-mediated processes. It should be 

noted that although the theory of the autogenous evolution of cilia is well 

supported, it does not account for the origin of the centriole, the precursor of the 

basal body that serves as the base and template of the cilium. Satir and co-

workers suggest that a self-assembly RNA enveloped virus formed the basis of 

the cilia origin – a theory that complements the autogenous evolution of cilia 

theory developed by Cavalier-Smith and his colleagues (Satir et al., 2007). 

In light of the theories presented above, it is possible that the different 

isoforms of DAF-19 co-evolved with the formation and generation of the IFT 

transport system and/or other vesicular transport systems. In Paper I we 

demonstrate that DAF-19C is essential for the expression of cilia genes, 

including IFT components. Strikingly we found a connection between DAF-

19A/B and synaptic vesicle proteins. The recycling of synaptic vesicles proteins 

is highly dependent on clathrin-coats (as outlined in the section Synapse 

structure and function). Thus, it is believed that IFT and COPI-clathrin like 

vesicle coats diverged from an ancestral vesicular transport mechanism 

(Cavalier-Smith, 2002). It is possible that this separation was induced, or maybe 

even preceded by, the differential expression of the proteins specific for each 

process. We speculate that in the ancestral ciliated prokaryote, one single RFX 

transcription factor activated all necessary vesicle proteins. As IFT evolved 

from the ancient vesicular process, gene modifications gave rise to two different 

RFX transcription factor isoforms necessary to specifically regulate two 

different processes: one that activates synaptic vesicle genes (DAF-19A/B in C. 

elegans), and one that activates genes involved in the cilia transport system 

(DAF-19C in C. elegans). A careful analysis and comparison of all RFX 

transcription factors and their different isoforms in ciliated and non-ciliated 

organisms could shed more light on these speculations. 
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THE ROLE OF DAF-19 IN SYNAPTIC MAINTENANCE 
 

We have successfully demonstrated that DAF-19 regulates also a 

second process in addition to cilium formation, the maintenance of synaptic 

vesicle proteins (Paper I). Based on our current knowledge, we conclude that 

DAF-19 very likely regulates the maintenance of individual synaptic vesicle 

proteins or synaptic vesicles (biogenesis or recycling) themselves. Despite the 

detailed description of the progressive loss of synaptic components and the 

behavioral consequences in daf-19 mutants, we are still missing the direct 

molecular link between DAF-19 and the maintenance of synaptic function. The 

maintenance of the mature C. elegans nervous system has so far not been 

studied in detail. Therefore, genes or mechanisms required for this process are 

not known. Clearly, a set of direct and indirect target genes of DAF-19A/B 

would immensely increase our understanding of the processes required for the 

continued function of a fully developed neuronal network. An unbiased 

approach for the isolation of direct and indirect target genes of DAF-19A/B 

could include gene expression profiling using microarray technology or tiling 

arrays. DAF-19A/B are indirectly required for the maintenance of synaptic 

vesicle protein levels (Paper I). Based on this knowledge, we would expect to 

isolate genes encoding transmembrane or membrane-associated proteins, genes 

involved in vesicular processes like vesicle formation or recovery, endo- and 

exocytosis, but also mRNA decay or protein degradation, which - as recently 

demonstrated - can also impact synaptic functions (Ding et al., 2007; Wang et 

al., 2006). 

Our analysis of the synaptic defects in daf-19 mutants revealed a rather 

unique phenotype. While no defects are seen in daf-19 larvae, synaptic protein 

levels decrease in adults as they age. Reports about the loss of synaptic 

maintenance during aging have so far not been made in C. elegans or in other 

model organisms. However, we performed transmission electron microscopy to 

investigate whether the loss of synaptic vesicle proteins was caused by a 

reduced number of synaptic vesicles. Indeed, we have now preliminary results 

that the number of synaptic vesicles in synapses of daf-19 mutants is strongly 

reduced compared to wild type (see Appendix to Paper I). A similar observation 

was made in C. elegans clathrin mutants (Erik Jorgensen, personal 
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communication; (Sato et al., 2009). Interestingly, Drosophila clathrin heavy 

chain (chc) mutants display a dramatic defect in neurotransmission maintenance 

during intense synaptic activity. A condition caused by a defect in synaptic 

vesicle recycling (Kasprowicz et al., 2008). Very recently Gu and co-workers 

presented their findings on apm-2 (adaptor protein medium subunit 2), an AP2 

subunit that functions in clathrin-mediated endocytosis. Intriguingly, apm-2 

mutants show only mild synaptic defects, which suggests that the gene is not 

essential, but that it facilitates synaptic vesicle recycling (Gu et al., 2008). 

Although not completely identical, these defects remind us of those seen in daf-

19 mutants and thus strengthen the hypothesis that DAF-19A/B target genes 

could participate in synaptic vesicle endocytosis. Based on these observations, it 

is tempting to speculate that DAF-19 may regulate one or more components of 

the clathrin-mediated endocytic process. It is a particularly attractive theory in 

the light of the previously described models of cilia evolution. A focused 

approach that directly investigates genes required for synaptic vesicle recycling 

in a daf-19 mutant background – for example by quantitative real-time PCR – 

could complement the unbiased attempt to identify DAF-19 target genes. 

 

 

THE DAF-19 MUTANT – A NEW MODEL FOR 
NEURODEGENERATIVE DISEASES? 
 

A large number of vertebrate and invertebrate disease models for 

Alzheimer’s disease (AD), Huntington’s disease (HD) and other 

neurodegenerative diseases are nowadays available. They mainly focus on the 

few genes/proteins that were shown to induce pathologies in humans, for 

example the Huntingtin protein or the β-amyloid peptide (Aβ) and the 

microtubule-associated protein tau, which are the primary components of senile 

plaques and intracellular neurofibrillary tangles, respectively. Vertebrate and 

invertebrate disease models analyze the function of these proteins by 

overexpressing the corresponding human genes in neuronal or muscle cells and 

are to large extents able to reproduce certain aspects of human pathologies 

(Driscoll and Gerstbrein, 2003; Link, 2005; Link, 2006; McGowan et al., 2006). 

However, the cellular and molecular mechanisms underlying the toxicity of 



 88 

these proteins, e.g. Aβ, are still debated. Although senile plaques and 

neurofibrillary tangles count as hallmarks of AD pathology, they can – 

however, less frequently – also be found in humans who did not show any signs 

of dementia. On the other hand, senile plaques and neurofibrillary tangles have 

never been detected in unmodified (wild-type) rodents, resulting in ‘natural’ AD 

models. Therefore, modified transgenic animals are currently the system of 

choice to investigate neurodegenerative diseases such as AD. Finally, it is 

important to note, that most cases of AD are sporadic and do not involve 

modifications of known disease genes. This suggests that many other disease 

genes causing neurodegeneration remain to be discovered. 

The cause of AD is far from being defined. Clearly, senile plaques and 

neurofibrillary tangles are late stage symptoms associated with AD, but the 

ultimate sequence of events that leads to those neuronal changes is still 

unknown. In recent years, increasing attention is being paid to the role of 

synapses in neurodegenerative diseases. Deregulation of SNAREs (soluble NSF 

attachment receptors) and other synaptic proteins has been described for a 

number of neurological diseases, such as HD (Morton et al., 2001), 

schizophrenia (Halim et al., 2003) or AD (Reddy et al., 2005; Sze et al., 2000). 

In AD, synaptic loss is the earliest and strongest correlating feature to and 

therefore likely a major reason for cognitive decline (Masliah et al., 1989; Terry 

et al., 1991). Increasing focus is now put on the loss of synaptic proteins, 

thought to trigger synaptic loss (Selkoe, 2002). AD is associated with a 

reduction of different synaptic proteins to various degrees (Reddy et al., 2005; 

Shimohama et al., 1997; Sze et al., 2000), where levels of synaptobrevin are 

usually affected more severely compared to other synaptic proteins. The 

molecular phenotypes seen in daf-19 mutants are very similar, suggesting that 

daf-19 may regulate a mechanism that – when defective – can lead to synaptic 

decline. 

Although this is still highly speculative, a connection between RFX 

proteins and synaptic decline may even exist in humans. Recently, a novel locus 

for late-onset AD has been identified (Wijsman et al., 2004), that maps to a 

locus that includes hRFX2, one of the closest human daf-19 homologs. In 

another study, hRFX2 was found to be a candidate for regulating the expression 

of amyloid beta peptides, which form the plaques that are characteristic of late 
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AD stages (Lahiri et al., 2005). Since both RFX transcription factors and the 

majority of synaptic proteins in C. elegans are highly conserved, parallels in the 

regulation of synaptic protein expression in different organisms, including 

humans, are very likely. Therefore, the C. elegans daf-19 mutant may prove to 

be a useful model organism to dissect experimentally the mechanisms that 

maintain synaptic function. It may ultimately also help us to better understand 

the process of neurodegeneration that is associated with human diseases. 

 

FRISSC – A NOVEL TOOL TO STUDY CILIATED NEURON 
FUNCTION 
 

Because of its simple nervous system and invariant number of CSNs, 

C. elegans is an exceptionally well-suited model organism in which to study 

sensory neuron function. Initially, the assignment of sensory specificity was 

investigated by laser ablation of single neurons or combinations thereof 

(Bargmann and Horvitz, 1991). The molecular dissection of sensory neuron 

pathways can also be achieved via mutant analysis (if such mutants are 

available). Recently, a number of techniques were added to the toolbox for 

sensory neuron analysis, significantly extending our experimental possibilities: 

heat-shock inducible expression systems, laser ablation of individual neurons, 

control of expression in time and space via the FLP recombinase system and 

optical imaging methods (Bacaj and Shaham, 2007; Bargmann and Horvitz, 

1991; Davis et al., 2008; Kerr et al., 2000). Each of these methods offers unique 

advantages and possibilities for investigating specific aspects of CSN function. 

However, none of them allows the study of a single CSN isolated from any 

other sensory input. This might be desirable in the case of redundant functions, 

shared downstream circuits, or integration of several sensory modalities into 

one behavior. Furthermore, the above listed methods have shortcomings in that 

they do not allow analysis of all aspects of sensory perception (detection of the 

cue, physiological aspects in the neuron, resulting behavior in the worm). In 

Paper II we present FRISSC (Functional Rescue In Single Sensory Cilia), a 

novel in vivo tool for the analysis of CSN function that makes all of this 

possible. By rescuing cilia formation in a daf-19 mutant background in specific 

CSNs, we generate worms with only a single structurally and functionally intact 
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cilium. We demonstrate that the full cascade from signal detection to behavioral 

analysis can be carried out with this system. Thus, FRISSC is a valuable 

addition to the tools for studying CSN function. In Paper II we also suggest 

novel experimental paths that FRISSC enables one to explore and we suggest 

ways to combine it with other experimental approaches to further improve its 

versatility (Bacaj and Shaham, 2007; Davis et al., 2008). 

 

 

THE DEVELOPMENTAL ROLE AND POTENTIAL OF THE RFX 
TRANSCRIPTION FACTOR DAF-19 
 

In Paper III we conducted a pilot study with the aim to investigate 

whether DAF-19 functions as a master regulator of ciliogenesis. We expected 

that ectopic expression of DAF-19C, which activates cilia genes in CSNs, 

would lead to cilia formation in originally non-ciliated cell types (neurons, 

hypodermal cells and muscle cells). Surprisingly, both DAF-19 isoforms A and 

C can activate cilia genes. However, the potential to do so is dependent on the 

cellular context. In CSNs it is only DAF-19C that is active, while in non-ciliated 

neurons neither of the isoforms can activate cilia genes. Surprisingly, both 

isoforms can activate cilia genes in non-neuronal cells. We hypothesize that one 

or more isoform-specific repressors could regulate the ability of DAF-19A or C 

to induce cilia genes. Such repressors could be identified in screens for mutants 

that activate cilia genes in non-ciliated neurons. 

Alternatively, although in a less straightforward scenario, non-ciliated 

neurons could lack a co-regulator of ciliogenesis. Recent studies on motile cilia 

in zebrafish demonstrated that Foxj1a acts upstream of Rfx2 (the DAF-19 

homolog in zebrafish) and is required for the expression of components specific 

for motile cilia (Stubbs et al., 2008; Yu et al., 2008). C. elegans does not have 

motile cilia, neither does its genome encode a clear Foxj1 homolog that shows 

overlapping expression with DAF-19. Nevertheless, in analogy, co-activators 

for cilia gene expression could be needed in addition to DAF-19 for a successful 

induction of non-motile cilia in originally non-ciliated cell types. However, the 

search for such regulators might turn out to be difficult. Several screens for cilia 

mutants in C. elegans failed to uncover any key regulators other than DAF-19 
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(Bargmann et al., 1993; Culotti and Russell, 1978; Malone and Thomas, 1994; 

Perkins et al., 1986; Starich et al., 1995). Consequently, the daf-19 mutant is, to 

date, the only one mutant that does not develop cilia at all; all other cilia 

mutants have at least short cilia remnants. A co-regulator that induces cilia in 

concert with DAF-19, if it exists, might have additional phenotypes or even be 

lethal when mutated, and thus would not appear in a genetic screen for cilia 

defects. 
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