
DISSERTATION

Titel der Dissertation

A service-oriented Grid environment
with on-demand QoS support

Verfasser

Mag. Gerhard Engelbrecht

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr.tech.)

Wien, 2009

Studienkennzahl lt. Studienblatt: A 786 175

Dissertationsgebiet lt. Studienblatt: Wirtschaftsinformatik

Betreuer: ao. Univ.Prof. Dipl.-Ing. Dr. Siegfried Benkner

A service-oriented Grid environment
with on-demand QoS support

Gerhard Engelbrecht

Abstract

Grid computing emerged as a vision for a new computing infrastructure that aims
to make computing resources available as easily as electric power through the power
grid. Enabling seamless access to globally distributed IT resources allows dispersed
users to tackle large-scale problems in science and engineering in unprecedented ways.

The rapid development of Grid computing also encouraged standardization, which
led to the adoption of a service-oriented paradigm and an increasing use of commercial
Web services technologies. Along these lines, service-level agreements and Quality of
Service are essential characteristics of the Grid and specifically mandatory for Grid-
enabling complex applications from certain domains such as the health sector.

This PhD thesis aims to contribute to the development of Grid technologies by
proposing a Grid environment with support for Quality of Service. The proposed
environment comprises a secure service-oriented Grid infrastructure based on stan-
dard Web services technologies which enables the on-demand provision of native HPC
applications as Grid services in an automated way and subject to user-defined QoS
constraints.

The Grid environment adopts a business-oriented approach and supports a client-
driven dynamic negotiation of service-level agreements on a case-by-case basis. Al-
though the design of the QoS support is generic, the implementation emphasizes
the specific requirements of compute-intensive and time-critical parallel applications,
which necessitate on-demand QoS guarantees such as execution time limits and price
constraints. Therefore, the QoS infrastructure relies on advance resource reservation,
application-specific resource capacity estimation, and resource pricing. An exper-
imental evaluation demonstrates the capabilities and rational behavior of the QoS
infrastructure.

The presented Grid infrastructure and in particular the QoS support has been
successfully applied and demonstrated in EU projects for various applications from
the medical and bio-medical domains. The EU projects GEMSS and Aneurist are
concerned with advanced e-health applications and globally distributed data sources,
which are virtualized by Grid services. Using Grid technology as enabling technology
in the health domain allows medical practitioners and researchers to utilize Grid
services in their clinical environment which ultimately results in improved healthcare.

i

ii

Eine service-orientierte Grid Umgebung
mit abrufbarer QoS Unterstüztung

Gerhard Engelbrecht

Kurzfassung

Grid Computing entstand aus der Vision für eine neuartige Recheninfrastruktur, wel-
che darauf abzielt, Rechenkapazität so einfach wie Elektrizität im Stromnetz (power
grid) verfügbar zu machen. Der entsprechende Zugriff auf global verteilte Rechenres-
sourcen versetzt Forscher rund um den Globus in die Lage, neuartige Herausforde-
rungen aus Wissenschaft und Technik in beispiellosem Ausmaß in Angriff zu nehmen.

Die rasanten Entwicklungen im Grid Computing begünstigten auch Standardi-
sierungsprozesse in Richtung Harmonisierung durch Service-orientierte Architekturen
und die Anwendung kommerzieller Web Services Technologien. In diesem Kontext
ist auch die Sicherung von Qualität bzw. entsprechende Vereinbarungen über die
Qualität eines Services (QoS) wichtig, da diese vor allem für komplexe Anwendungen
aus sensitiven Bereichen, wie der Medizin, unumgänglich sind.

Diese Dissertation versucht zur Entwicklung im Grid Computing beizutragen,
indem eine Grid Umgebung mit Unterstützung für QoS vorgestellt wird. Die vor-
geschlagene Grid Umgebung beinhaltet eine sichere Service-orientierte Infrastruktur,
welche auf Web Services Technologien basiert, sowie bedarfsorientiert und automati-
siert HPC Anwendungen als Grid Services bereitstellen kann.

Die Grid Umgebung zielt auf eine kommerzielle Nutzung ab und unterstützt ein
durch den Benutzer initiiertes, fallweises und dynamisches Verhandeln von Service-
verträgen (SLAs). Das Design der QoS Unterstützung ist generisch, jedoch berück-
sichtigt die Implementierung besonders die Anforderungen von rechenintensiven und
zeitkritischen parallelen Anwendungen, bzw. Garantien für deren Ausführungszeit
und Preis. Daher ist die QoS Unterstützung auf Reservierung, anwendungsspezifi-
sche Abschätzung und Preisfestsetzung von Ressourcen angewiesen. Eine entspre-
chende Evaluation demonstriert die Möglichkeiten und das rationale Verhalten der
QoS Infrastruktur.

Die Grid Infrastruktur und insbesondere die QoS Unterstützung wurde in
Forschungs- und Entwicklungsprojekten der EU eingesetzt, welche verschiedene An-
wendungen aus dem medizinischen und bio-medizinischen Bereich als Services zur
Verfügung stellen. Die EU Projekte GEMSS und Aneurist befassen sich mit fort-
schrittlichen HPC Anwendungen und global verteilten Daten aus dem Gesundheits-
bereich, welche durch Virtualisierungstechniken als Services angeboten werden. Die
Benutzung von Gridtechnologie als Basistechnologie im Gesundheitswesen ermöglicht
Forschern und Ärzten die Nutzung von Grid Services in deren Arbeitsumfeld, welche
letzten Endes zu einer Verbesserung der medizinischen Versorgung führt.

iii

iv

This PhD thesis is dedicated to my mother the late Christine Engelbrecht.

v

vi

Contents

Contents vii

List of Figures xi

List of Tables xiii

List of Listings xv

Acknowledgements xvii

1 Introduction 1

1.1 Grid computing . 1

1.2 Motivation . 2

1.3 Contribution . 3

1.4 Thesis organization . 3

2 Basic Technologies 5

2.1 Web Services . 6

2.1.1 SOAP . 9

2.1.2 WSDL . 12

2.1.3 UDDI . 14

2.2 Grid computing . 17

2.2.1 Definitions . 17

2.2.2 Characterization approaches 19

2.2.3 Layered architecture . 21

2.2.4 Service architecture . 22

vii

2.3 Quality of Service . 27

2.3.1 Network-level Quality of Service 28

2.3.2 Application-level Quality of Service 31

2.3.3 Service-level Quality of Service 33

2.4 Security . 35

2.4.1 Security facilities . 35

2.4.2 Public Key Infrastructures . 39

2.4.3 Transport Layer Security . 46

2.5 Summary . 47

3 Grid Environment 49

3.1 Architecture . 51

3.2 Service access model . 54

3.3 Service infrastructure . 55

3.3.1 Component model . 55

3.3.2 Service components . 57

3.3.3 Service hosting . 63

3.4 Client infrastructure . 64

3.4.1 High-level Client API . 65

3.4.2 Sample client . 66

3.4.3 Additional features . 67

3.5 Service provisioning . 68

3.5.1 Configuration . 70

3.5.2 Deployment . 72

3.6 Client provisioning . 75

3.7 Summary . 77

4 QoS Model 79

4.1 QoS Capability Model . 81

4.2 QoS Offer Generation . 84

5 QoS Support 87

5.1 Overall Scenario . 88

viii

5.2 Microscopic Quality of Service . 90

5.2.1 QoS Attributes, Parameters and Models 90

5.2.2 Performance Model . 94

5.2.3 Pricing Model . 97

5.2.4 Resource Model . 99

5.2.5 QoS Manager . 102

5.3 QoS Management Approaches . 103

5.3.1 Prime Time Approach . 105

5.3.2 Prime Price Approach . 107

5.3.3 Comparison . 108

5.4 Macroscopic Quality of Service . 109

5.4.1 Basic QoS Negotiation . 110

5.4.2 Advanced QoS Negotiation . 114

5.5 Security . 119

5.5.1 Overview . 120

5.5.2 Authentication and authorization 123

5.5.3 Encryption . 126

5.5.4 Logging . 128

5.6 Summary . 130

6 Projects 131

6.1 GEMSS - Grid-enabled medical simulation services 131

6.1.1 Scope and context . 132

6.1.2 Contribution . 136

6.2 Aneurist - Integrated biomedical informatics for the management of
cerebral aneurysms . 140

6.2.1 Scope and context . 141

6.2.2 Contribution . 144

7 Experimental Evaluation 145

7.1 SPECT application . 146

7.2 Micro QoS evaluation . 148

7.2.1 System setup . 148

ix

7.2.2 Results . 151

7.2.3 Analysis . 152

7.3 Macro QoS examination . 153

7.3.1 System setup . 153

7.3.2 Results . 155

7.3.3 Analysis . 156

7.4 Summary . 157

8 Related Work 159

9 Conclusion 165

Bibliography 167

Curriculum Vitae 179

x

List of Figures

1.1 Thesis organization . 4

2.1 Web service overview . 7

2.2 Publish-find-bind principle . 8

2.3 SOAP message structure . 10

2.4 WSDL document structure (adapted from [Merdy , 2008]) 13

2.5 Layered Grid architecture [Foster et al., 2001] 21

2.6 OGSA conceptual view [Foster et al., 2006] 23

2.7 OGSA services [Foster et al., 2006] 24

2.8 OGSA relations (extended from [Sotomayor , 2004]) 25

2.9 Grid and Web technology transition [Allcock , 2004] 26

2.10 Principle of a public key infrastructure 41

3.1 VGE high level architecture . 51

3.2 VGE Grid . 52

3.3 Layered VGE architecture . 53

3.4 Multi-phase VGE service access model 54

3.5 VGE service component model . 56

3.6 Sample VGE service components . 63

3.7 VGE service hosting . 64

3.8 VGE Client API . 66

3.9 VGE service provisioning . 69

3.10 VGE service component configuration 71

3.11 VGE hosting environment configuration 73

3.12 VGE client configuration . 76

xi

4.1 QoS Model Input-Output. 82

4.2 Multidimensional request and capability intersection. 85

5.1 QoS support scenario . 88

5.2 Micro QoS Management [Benkner and Engelbrecht , 2005] 90

5.3 QoS Descriptors . 91

5.4 QoS Descriptor example . 92

5.5 Performance Model Details . 94

5.6 Performance Model Input/Output . 95

5.7 Sample performance model input/output descriptors 96

5.8 Pricing Model Details . 97

5.9 Pricing Model Input/Output . 98

5.10 Resource Model Details . 100

5.11 Micro QoS management details [Benkner and Engelbrecht , 2006] . . . 102

5.12 Micro QoS management implementation 103

5.13 Prime time algorithm . 106

5.14 Prime price algorithm . 107

5.15 QoS management approaches [Benkner and Engelbrecht , 2005] 108

5.16 Basic QoS Negotiation [Benkner and Engelbrecht , 2005] 110

5.17 Advanced QoS Negotiation . 115

5.18 Security architecture . 120

5.19 Security protocol . 121

5.20 Security standards and software stack 122

5.21 Security handler chain . 123

6.1 GEMSS architecture [Benkner et al., 2004a] 135

6.2 Aneurist architecture . 143

7.1 SPECT parallelization speedups [Backfrieder et al., 2003a] 146

7.2 SPECT client interface . 147

7.3 Total revenue in Euro from each service provider [Middleton et al., 2007]156

7.4 Service provider job schedules [Middleton et al., 2007] 156

xii

List of Tables

5.1 QoS management approaches comparison 109

7.1 SPECT job characteristics . 148

7.2 Average SPECT job runtimes . 149

7.3 Micro QoS experiment summary . 151

xiii

xiv

Listings

2.1 X.509 sample certificate . 43

3.1 Sample VGE client application . 67

5.1 Sample SAML token . 126

5.2 Sample encrypted SOAP request message 127

xv

xvi

Acknowledgements

First of all, I would like to express my appreciation to Professor Siegfried Benkner for
being my supervisor over the past years. He constantly stretched my mind by pushing
me forward to learn about diverse domains and view similar topics from different
perspectives. Furthermore, I am very thankful for the opportunity to bring in my
experience in multiple international research projects to collaborate with scientists
on the leading edge of the e-science community. Above all that he helped me to stay
focused on my overall research direction and finally kept me motivated to accomplish
my thesis.

I am also very grateful to my second adviser Dr. Erwin Laure. He provided me
new insights to one of the major research efforts of the Grid community, the EGEE
project, and extended my view of Grid computing with a number of controversial
discussions.

I would also like to thank my current and former colleagues at the Institute of
Scientific Computing, University of Vienna, especially Rainer Schmidt and Ivona
Brandic. I enjoyed being part of the team and all the fruitful discussions we had.

I would like to express many thanks to Tina Csaicsich, who provided her superior
English skills as prospective interpreter to proofread this thesis.

Finally, I would like to express deeply my gratefulness for my brother Christian.
We both had a hard time upon the sudden death of our mother, but he helped me to
keep on track with my scientific work, while on the other hand he also motivated me
to have a go at new activities on leisure time like climbing or diving.

xvii

Chapter 1

Introduction

This chapter presents a high-level survey of this thesis. It comprises a brief in-
troduction to Grid computing and Quality of Service (QoS), derives therefrom the
motivation of this thesis and subsequently proposes an approach to address the situ-
ation. Finally, the organization of this thesis is being outlined.

1.1 Grid computing

Science and engineering are facing an increasing complexity of their research ques-
tions at hand. Grid computing is intended to support scientists to encounter these
challenges. The increasing scale of scientific applications, the growing number of
dispersed high-end computing facilities and the enormous quantities of information
available in globally distributed data sources constitute the motivating frame of Grid
computing. The Grid is projected to fill the existing gap and bring all these resources
together and provide scientists and engineers capabilities for seamless and transparent
access to this visionary infrastructure.

Grid Computing is considered as a major contribution to the ongoing evolution
of the Internet towards the vision of Internet computing. Distributed IT resources of
all kinds are being operated in a collaborative fashion en route to an integrated new
IT cyber-infrastructure, which supplies IT power and/or resources as easily and just
as required as electricity from the power grid.

Grid technologies are utilized in a wide range of domains, covering computational,
data and information as well as collaborative Grids. Computational Grid, such as
the US TeraGrid comprises a large number of interconnected super-computing centers
to offer superior computational capabilities. The aggregated computing power is far
beyond the limits of a single computing facility at one site and enables the execu-

1

tion of advanced high-performance and/or high-throughput applications. Data Grids,
like the EU EGEE Grid, rather focus on the management and sharing of enormous
amounts of data for a globally distributed scientific community. Finally collaborative
Grids, as for example the EU Virolab project, aim to create virtual laboratories to
accomplish a research and collaboration environment for scattered scientists, e.g. to
control remote equipment, sensors, and instruments.

1.2 Motivation

The research challenges linked to Grid computing can not be addressed by a
single comprehensive and generic approach, which can even be seen by the differen-
tiation of various kinds of Grids. The state of the art in Grid computing was and is
rather diverse with a shift towards the adoption of a service-oriented paradigm and an
increasing utilization of commercial Web services technologies. However, Grid infras-
tructures, even when following the latest trends in using Web services, usually address
a certain scientific domain such as life sciences, economics, or natural sciences, which
can also be concluded from the various Grid-powered projects in respective fields. But
most projects create domain-specific, rather proprietary solutions, which are hard to
migrate and reuse in other fields.

Besides the proprietary Grid middleware developments, a second even more es-
sential motivation for this thesis is the diverse or non-existent support for Quality of
Service. Most Grid projects have their origin in the academic domain, which share
their resources on a voluntary basis. This academic model is not well suited for QoS
and business purposes. If QoS can not be guaranteed in an economic context, the
industry is usually not interested in picking up a certain solution for later business
exploitation.

Given these circumstances, this thesis aims to contribute to the evolution of Grid
computing by comprehensively investigating the state of the art as well as propos-
ing a novel Web services-based Grid infrastructure supporting Quality of Service to
address the mentioned issues. QoS-aware Grid computing envisaged in this work
comprises on-demand provision of HPC applications as Grid services and negotiable
QoS guarantees for clients on a case-by-case basis.

The proposed approach rests upon the basic assumption, that large resource-
intensive applications from scientific and engineering domains essentially require
Quality of Service comprising real guarantees with respect to time and price in order
to be utilized in e-sciences and eventually improve the e-challenges at hand. The cur-
rent technology available does not address sufficiently this situation and hence this
thesis proposes a customized approach to guarantee QoS for Grid services.

2

1.3 Contribution

The main work in the context of this PhD thesis envisages an integrated Web
services-based Grid computing environment with support for dynamic and negotiable
Quality of Service. More precisely, this works comprises the following major contri-
butions:

• Design and implementation of a service-oriented Grid environment

• Quality of Service models for capabilities, requests and negotiation

• Secure Quality of Service support infrastructure

The first major contribution comprises the design and development of a proto-
type service-oriented Grid middleware based on Web services. The realized software
framework consists of a client and service infrastructure to conveniently set up and
maintain Grid services, which expose native applications or data as well as seamlessly
and transparently provide access to these services.

Towards the Quality of Service support generic models are being developed. The
models main purpose is to identify potential challenges and underpin the subsequently
presented practical solution theoretically.

Finally, the secure Quality of Service support represents the third major contribu-
tion of this thesis. The QoS infrastructure that has been designed and implemented,
constitutes as a key distinguishing feature in contrast to existing environments. The
realized QoS support emphasizes parallel HPC applications and aims to guarantee the
scheduled execution time and the price. The implementation relies on a reservation-
based approach and the basic assumption that performance requirements of a certain
parallel application are predicable by corresponding QoS models.

In addition to the negotiable QoS support a security infrastructure with state of
the art security solutions has been assembled in order to provide best practice security
for sensible data.

1.4 Thesis organization

The basic organization of this thesis is depicted in Figure 1.1 following a building-
style approach. The foundation is represented by the basic technologies which intro-
duce a number of further on required topics. Resting upon the basics, a number of
pillars constitute two major domains this thesis is concerned with, namely the basic

3

Grid environment and the QoS support. On top of these developments a practical
and experimental evaluation has been performed by the software appliance in projects
as well as by a number of experiments.

Experiments

Quality of
Service Security

Basic technologies

Projects

Web
Services

Grid
Computing

Application &
Evaluation

Support
Basic Grid QoS

Environment
Se

rv
ic

e
In

fr
as

tr
uc

tu
re

C
lie

nt
 I

nf
ra

st
ru

ct
ur

e

A
rc

hi
te

ct
ur

e

Pr
ov

is
io

ni
ng

Se
cu

ri
ty

 I
nf

ra
st

ru
ct

ur
e

Q
oS

 N
eg

ot
ia

tio
n

Q
oS

 M
od

el

Q
oS

 M
an

ag
em

en
t

Figure 1.1. Thesis organization

The basic technologies are discussed in Chapter 2, which consists of individual
sections for Web services, Grid computing, Quality of Service and Security. The basic
Grid environment is presented in Chapter 3, that builds upon its architecture, client
and service infrastructure and the provisioning environment. The QoS support rests
upon the QoS model introduced in Chapter 4, and the QoS implementation examined
in Chapter 5 comprising QoS management and negotiation as well as security as its
main pillars.

Under the roof of the thesis organization structure, projects and experiments
are presented in individual Chapters 6 and 7, respectively, to evaluate the proposed
solutions in a practical and experimental way.

Finally, related work is being discussed in Chapter 8. To round up this thesis an
according conclusion and future directions are briefly outlined in Chapter 9.

4

Chapter 2

Basic Technologies

This chapter constitutes the technical foundation of this thesis and the later on
presented work. Therefore, a wide range of diverse topics and their relations are
covered and each individual topic contributes pieces to the overall motivation of this
work towards a comprehensive approach for QoS-aware Grid computing.

The organization of this chapter is based on four separate sections, which are
concerned with the following topics:

• Web service

• Grid computing

• Quality of Service

• Security

Each section introduces its domain and attempts to survey potential contributions
to be achieved later on in this work. In particular, Web services are introduced
as an essential realization of a service-orientated architecture (SOA), which is most
commonly used in todays Internet applications. Grid computing is being outlined
with a general emphasis on its evolution and a particular focus to Grid architectures.
Finally, Quality of Service (QoS) and security round up this chapter. Both are closely
related with security being commonly referred to as subarea of QoS. However, Quality
of Service in this chapter is being introduced in a general way, while in the context
of security an overview of relevant issues and techniques is presented.

5

2.1 Web Services

This section introduces Web services as an essential realization of a service-
orientated architecture (SOA). Most modern information systems, that provide ser-
vices via the Internet adopt a SOA approach and utilize Web services technologies
for its implementation. The involved basic technologies and standards are outlined
following an initial definition and survey of Web services. More comprehensive in-
formation beyond the scope of this section can be obtained from the corresponding
book ”Web Services” by [Alonso et al., 2004].

The description of the technologies and standards comprise SOAP, WSDL and
UDDI. SOAP is also formerly known as the Simple Object Access Protocol, which
represents the communication protocol used with Web services. WSDL stands for
Web Services Description Language and serves to describe a Web service interface and
finally, UDDI abbreviates Universal Description, Discovery and Integration, which
provides publishing and searching capabilities for Web services in a registry.

Definitions

A generic and short definition of Web services is given in the book by [Alonso
et al., 2004] as follows:

”Web services are applications accessible to other applications over the
Web.”

More precisely the W3C defines a Web service in their term-glossary [Haas and
Brown, 2004] in this way:

”A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP-messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.”

These definitions encompass versatile systems, but the common understanding is
that clients and servers, which are actually hosting services, communicate over HTTP.
Two categories of Web services can be distinguished: Big or traditional Web services
and RESTful Web services.

Big or traditional Web services act more in pursuance of the initial W3C
definition by utilized XML messages following the SOAP standard as well as WSDL
in order to describe their interfaces in a machine-processable way. WSDL has not been
defined as a requirement to use Web services with SOAP, but it has been implemented

6

in many Java and .NET SOAP frameworks in order to automatically generate client-
side code. Even some industry organizations such as the Web Services interoperability
organization (WS-I)1 mandate WSDL as the defined language to describe Web service
interfaces.

RESTful Web services are Web services that follow representational state
transfer (REST) principles, which have been introduced by [Fielding , 2000]. REST
defines a set of principles how resources are defined and addressed using in particular
http and all its request methods (get, post, put and delete) as interface. RESTful
Web services regained popularity more recently due to their broader definition and
lower complexity. These Web services also fulfill the W3C definition, but do not
necessarily require complex XML messages or WSDL-based service-API-definitions.

The advantages and disadvantages of traditional and RESTful Web services are
also subject to many almost philosophical discussions as presented by [Weerawarana,
2007]. This PhD thesis focuses, if not stated otherwise, exclusively on traditional
Web services and thus, the term Web services refers only to traditional Web services.

Components and relations

In the context of Web services a number of ordinary terms are used, and in the
following these terms and their relations are outlined. Figure 2.1 serves as a starting
point by depicting the client- and service-side with all related components of a Web
service.

Web application

WS engine

W
S

en
gi

ne

St
ub

Client application

Service consumer

Internet

Service provider

Web service

Application container

Figure 2.1. Web service overview

Web services (WS) are offered by service providers (SP), mostly organizations,
which run an appropriate infrastructure to expose Web services. This infrastructure
typically includes a Web server with Web applications hosting capabilities, which
is then also referred to as (Web) application container. Web services are usually
realized as a special kind of Web applications (web-apps), which are extended using a

1http://www.ws-i.org/

7

Web service engine (usually available as part of a Web service framework) to support
provisioning and exposing of the Web service within a Web application. In summary,
to offer a Web service, an application container (special Web server) and a Web service
engine are required.

The access to a Web service is performed by Web service users, who are also
known as service consumers, service requesters or just clients. The actual connection
to a Web service is typically initiated by humans or other services, which utilize an
according infrastructure similar to the service-side. This typically comprises a Web
service client application, which internally utilizes a local representation of the remote
service, which is also referred to as a Stub. The client application may be incorporated
in all kinds of devices or programs and platforms. The only real requirement is
network access to establish a connection to the Web service based on HTTP as learned
from the initial Web services definitions.

An example for an application container software is Apache Tomcat2, which is
also commonly assembled in even more comprehensive development environments
such as the Java Enterprise Edition (J2EE). Examples for Web services frameworks
(also known as SOAP frameworks) are Apache Axis3 or Microsoft .NET4.

Publish-find-bind principle

The typical service provision and consumption follow the publish-find-bind prin-
ciple. It comprises the following actors: a service provider, a service consumer and a
service registry. The interaction among them is depicted in Figure 2.2.

bind
Service

Registry

find publish

Client

Figure 2.2. Publish-find-bind principle

First the service provider publishes the Web services (i.e. the service description)
with the service registry. The service registry follows a certain specification to organize
the published services. The service consumer contacts the service registry to find
descriptions of services, which fit certain search criteria (e.g. a business category or
name). Then the service consumer can select (if necessary) and bind a specific service,
as well as execute operations of the service as specified in its service description.

2http://tomcat.apache.org/
3http://ws.apache.org/axis/
4http://www.microsoft.com/NET/

8

This publish-find-bind principle also implements the concept of loose coupling by
dynamically binding clients to services at runtime. This comes with the benefit that
changes of the services can be made without notice of the client; only the description
has to be updated in the service registry.

2.1.1 SOAP

SOAP specifies an XML-based protocol for exchanging structured information
with Web services. It relies on XML for the message formatting and on other appli-
cation layer protocols such as the mostly used HTTP for message transmission. Orig-
inally, SOAP stood for simple object access protocol, but this acronym was dropped
with version 1.2 of the standard [Gudgin et al., 2007] which became a W3C recom-
mendation.

Generally, SOAP constitutes the foundation layer of the Web services protocol
stack, also referred to as WS-*, because it provides the underlying messaging frame-
work upon which all other layers are built.

The SOAP specification encompasses the following:

• Definition and syntax of SOAP messages

• Model for exchanging SOAP messages

• Framework for data representation in SOAP messages

• Guidelines for SOAP messages that uses HTTP as transport protocol

• Definition of SOAP messages used for remote procedure calls (RPCs)

From the basic topics of the SOAP specification the central element of SOAP is
being educed: a SOAP message. Subsequently SOAP messages are being detailed.

SOAP messages

A SOAP message is a structured XML-based document consisting of an envelope
as root element. The envelope consists of an optional header- and a mandatory body-
element, which may contain a fault-element. The SOAP message structure is shown
in Figure 2.3 and the individual elements are outlined in the following.

Envelope: The SOAP envelope specifies an XML document as a SOAP message
and encloses the entire SOAP message. Furthermore, the envelope is associated with
the XML schema for SOAP messages5 by an according namespace attribute, as well
as with other namespace declarations, as required (e.g. additional data types).

5http://www.w3.org/2003/05/soap-envelope

9

SOAP faultSOAP body

SOAP envelope

SOAP header

Figure 2.3. SOAP message structure

Header: The optional header-element is a child element of the SOAP envelope.
It comprises information such as security information (authentication signatures, keys
for encryption, etc.), session information (e.g. session identifiers) or routing informa-
tion, which typically follows an appropriate standard (e.g. security assertion markup
language - SAML).

Body: The mandatory body-element is also a child element of the SOAP envelope
and it contains the SOAP message itself. The SOAP body contains information about
a remote procedure call (RPC), in particular, which operation to invoke with the
according parameters (SOAP request) or the return of the RPC (SOAP response).

Fault: The optional fault element is a child element of the SOAP body and it
appears in case of an error comprising information about the error.

In general SOAP messages are created and processed by an according SOAP
framework (also known as Web services framework), which internally utilizes a cor-
responding XML parser to process the XML messages.

The SOAP specification consists of different message styles and message uses,
which both may be defined by an according attribute (i.e. style and use) in the WSDL
description. Both attributes affect the structure and the content of the SOAP body
element, as well as the representation of data therein. The style attribute is either
set to document for pure message-driven (also asynchronous) communication or to
rpc for the invocation of remote operations. The use attribute specifies the encoding
with either encoded which sets the encoding based on the SOAP specification or literal
which defines the encoding with XML schema types.

In theory there are four different attribute combinations of style and use, but only
three are commonly used according to [Cohen, 2003]:

• SOAP remote procedure call encoding (RPC-encoded) is also known as
Section 5 encoding as defined by the SOAP 1.1 specification. This was the orig-
inal style-use combination which is still applied as default by Apache Axis.
SOAP encoding relies on a set of rules which are based on XML Schema
datatype definitions in order to encode the data. The SOAP body itself does
not need to be conform to a particular XML schema.

10

• SOAP remote procedure call literal encoding (RPC-literal) uses RPC
methods to make calls but uses a literal XML encoding, i.e. the SOAP body
content has to be conform to a specific XML Schema. This mostly implies
individual marshaling of the data and thus, is rather rarely used.

• SOAP document-literal encoding is also known as message-style or
document-style encoding. This style-use combination is applied as default by
Microsoft .NET. Furthermore, this combination of style and use is recommended
by the Web services interoperability organization (WS-I)6.

All these mentioned style-use combinations are supported by most Web service
frameworks even though some have to be used on a low level API.

SOAP with attachments

SOAP messages are based on XML and thus, these are plain text messages. In
order to transfer binary data (e.g. graphics data) with SOAP, the data has to be
transformed into plain text. The data is then either integrated in the SOAP message
directly (inline) or attached to the SOAP message. The latter is referred to as SOAP
with attachments (SwA). It is more commonly used with an increasing data size as
well as due to the structuring of the SOAP message with an extra attachment vs. a
large SOAP message with included data.

The most commonly applied method to incorporate binary data in plain text is
the Base64 encoding, which is specified with respect to the use in XML messages in
the ITEF RFC 4648 [Josefsson, 2006]. It defines the transformation of 8-bit binary
data into 64 different characters (6-bit) of the ASCII character set, which eventually
results in an increase of the data volume of one third comparing the original binary
data with the transformed text data.

The inline-method of transferring binary data with SOAP by including the en-
coded binary data directly in SOAP messages is only feasible with fairly small data
sizes. An increasing size of the binary data will also expand the SOAP message and
accordingly the SOAP processing time, because it usually requires the XML parser
to load the entire SOAP message into the memory, before the actual content can be
processed. Moreover, the content of the binary data does not have an impact on the
actual SOAP processing (e.g. which operation to invoke). Due to this chain of effects
the use of SOAP attachments should be preferred with increasing data sizes.

SOAP with attachments follows one of the subsequently outlined standards. The
actual attachment is linked in the SOAP body using an according reference, such as
href with HTML-hyperlinks.

Multipurpose Internet mail extension (MIME): This standard origins from
Internet emailing and attaching information to emails. It specifies the format of mails

6http://www.ws-i.org/

11

with more than one part (multipart mails) and the separation of these parts using a
distinct sequence of characters, which is defined in the header of the MIME message.
Furthermore, the header comprises additional information about the content of each
part (e.g. content-type or content-encoding). This standard can be applied in a
similar way to SOAP messages as to email messages.

Direct Internet message encapsulation (DIME): This standard has been
developed by IBM and Microsoft and is fairly similar to MIME. DIME also specifies
a header with information on every attachment(-part), but it is encoded binary and
includes the length of the attachment part. Consequently, no separation characters
are required. With DIME the length of the attachment has to be determined in
advance by the sender, but is useful for the receiver, who knows knowing the length
of the attachment. Contrarily, the advantage of MIME is vice versa as the sender
benefits with no need to determine the length of the attachment. Additionally DIME
also supports chunking in order to separate the data into multiple blocks (chunks).

Message transmission optimization mechanism (MTOM): This standard
has been specified most recently and utilizes the W3C XML-binary optimized packag-
ing (XOP) mechanism [Gudgin et al., 2005]. MTOM associates and logically includes
attachments as components in the SOAP message, while XOP aims to serialize XML
more efficiently. Moreover, XOP supports direct streaming of binary data, which im-
proves the performance significantly compared to MIME or DIME as shown by [Cha
et al., 2007].

2.1.2 WSDL

The Web services description language (WSDL) is an XML-based language to
describe Web service interfaces in order to enable communication with them using
SOAP. SOAP provides a generic XML-based communication standard (i.e. protocol),
but it does not specify the concrete format of the inputs and outputs a Web service is
able to receive, process and return. Therefore, WSDL has been developed to provide
a language for documents that describe the input and output of Web services.

WSDL is currently used in two different versions. The most recent version is
2.0, which is endorsed by the W3C as recommendation [Chinnici et al., 2007]. This
version had been originally published as version 1.2, but was renamed to WSDL 2.0
because of substantial changes to its predecessor version 1.1 [Christensen et al., 2001].
WSDL 2.0 supports binding to all HTTP request methods, as opposed to version 1.1
which only defines binding to GET and POST, and thus it has improved the support
for RESTful Web services. Web services frameworks generally provide support rather
for WSDL 1.1 only, such as Apache Axis or Microsoft .NET, than for WSDL 2.0.

12

WSDL documents

A WSDL document is a concrete description of a Web service interface. Dependent
on the concretely used Web service framework the WSDL document of a certain Web
service can be retrieved via an URL and it is either generated dynamically upon
request or statically in advance to its setup.

The structure of a WSDL document is depicted in Figure 2.4 and it comprises the
following elements:

O1 O2 O

aPT bPT

3

Ba b

a b

Types

T2 T3T1

Operations

Port types

Bindings

Services

Ports

+ network address + network address

WSDL

Messages

2 3M M

+ protocol + protocol

P

B

M1

P

Figure 2.4. WSDL document structure (adapted from [Merdy , 2008])

Types: If additional complex data types are required, these can be defined in the
types-element in accordance to XML schema definitions.

Messages: This element defines messages and their content, which are exchanged
(e.g. upon a certain operation invocation). Typically, in case of an RPC-style Web
service a request and a response message are defined for each operation. Moreover,
optional parameters require a parts-element to define the name and type of the ar-
gument.

13

PortTypes: The actual interface of the Web service and in particular its op-
erations are defined in usually one or more unique portType-elements. For each
operation, the name and all required messages (input, output or fault) are enclosed
in separate operation-elements.

Bindings: This element defines the linking of the portTypes to protocols, such
as SOAP. In case of a SOAP binding the binding, furthermore, specifies the used
transport protocol such as http and the style of the SOAP message (rpc or document).

Services and ports: These elements define the endpoints of the Web service.
One service-element may contain multiple port-elements, each containing a name, a
URL-endpoint and a reference to a certain binding.

Documentation and imports: These are optional elements, which comprise
additional, perhaps human-readable documentation or comments, as well as addi-
tional other WSDL documents or XML schema definitions to be imported for a more
modular structuring of the WSDL definition.

In summary, WSDL enables the description of the interface to a Web service, while
SOAP specifies the actual access independently from the platform of programming
language.

2.1.3 UDDI

Universal description, discovery and integration (UDDI) is an XML-based registry
service that supports mechanisms to register and query businesses and their Web
services using SOAP. With respect to service oriented architectures UDDI realizes
the publishing and discovering part of the publish-find-bind principle as shown in
Figure 2.2.

UDDI has been developed by major industry players such as Microsoft, IBM and
SAP. The first specification was published in 2000. Now, UDDI is endorsed by OASIS
in its most recent version 3 specification [Clement et al., 2004]. UDDI has also been
integrated in the Web services interoperability (WS-I) standard.

Components

A UDDI registry comprises a set of three components similar to a telephone book:

• White Pages comprise the basic information about a service provider such as
a contact and an address.

• Yellow Pages consist of business-categories (branches) listing related service
providers and following a standard taxonomy.

14

• Green Pages contain technical information about the interface of each service
(i.e. the WSDL document) and its association with a service provider.

The purpose of these components is to improve service discovery by supporting
searches by basic information (white pages), via categories or with technical details
from the WSDL descriptions. On the other hand, the service providers have to publish
their businesses and services accordingly. The UDDI specification and corresponding
UDDI frameworks such as Sourceforge UDDI4J7 or Microsoft UDDI.Net8 provide
SOAP APIs to perform queries and to publish specific information in the white,
yellow and green pages. Additionally an appropriate XML representation of the data
model in the registry as well as a WSDL interface definition are specified.

UDDI servers can be distinguished according to their access-type (private, pro-
tected and public), which is also often related to the actual end-users’ requirements
[Garofalakis et al., 2004]:

• Public UDDI servers allow querying for all Web service consumers and thus
the UDDI registry is a Web service itself. Publishing is usually restricted to
a secure channel such as https. Such a system is also referred to as universal
business registry (UBR).

• Protected UDDI registries require trust between its collaborators (publishers
and consumers). Usually such registries are run in a closed environment and ac-
cessed either by the trusted collaborators or by selected and monitored external
users.

• Private UDDI servers are secure isolated systems in a fully closed environment.
Typically, such registries are domain specific and run in an internal network only
for internal usage.

In general, private and protected usage of UDDI servers prevails, because the
information gained in public services cannot be considered as up-to-date and because
major software vendors such as Microsoft or IBM have closed their publicly available
UDDI nodes. Private or protected UDDI registries usually provide only information
about the services hosted within a certain domain (e.g. a company) and hence the
maintenance to keep the UDDI registry consistent with the available services is better
manageable.

The problem of outdated information in a UDDI registry comes with the specifi-
cation of a passive collection of service information, i.e. a UDDI registry serves the
requests for service publishing, updating or discovery, but there is no defined verifi-
cation or continuous monitoring (e.g. about the availability of a published service).
Thus, discovering a certain service in a UDDI registry, does not necessarily mean,
that it is still up and running. By using a Web service crawler engine (WSCE) and

7http://uddi4j.sourceforge.net/
8http://www.microsoft.com/net/

15

publicly accessible UBRs [Al-Masri and Mahmoud , 2008] determined that only 63
percent of the available Web services on the Web can be considered as active.

Extensions

In order to address the issues related to outdated information in the registry exten-
sions of UDDI have been proposed. In particular [ShaikhAli et al., 2003] recommends
UDDIe and [Du et al., 2006] presents the Ad-UDDI system to meet these challenges.

UDDIe stands for UDDI-extensions and it is based on the UDDI specification
version 2. A prototype system has been developed in Java at Cardiff University. It
introduces extended features to UDDI by introducing additional blue pages as well
as a service-lease mechanism. The information provided in the blue pages consists of
additional service properties, such as QoS attributes. UDDIe allows service discovery
based upon these blue pages information. Furthermore, UDDIe supports a Java Jini-
like lease mechanisms, which requires the services to successively renew their lease in
the UDDI registry in order to be listed as an online service.

Ad-UDDI stands for active and distributed UDDI and it is based on the UDDI
specification version 3. A prototype has been developed at Beihang University. The
system performs an active monitoring of services by checking the state of the services
continuously. This active monitoring enables clients discovering services with Ad-
UDDI to receive up-to-date information about their preferred services.

Both systems provide interesting approaches, but so far, these have not been
picked up by the industry.

Summary

This section introduced Web services as an essential realization of a service-
orientated architecture (SOA) as well as mechanisms to implement the publish-find-
bind principle. SOAP, WSDL and UDDI have been described from the technical
point of view. SOAP serves as the communication protocol used with Web services.
WSDL enables the definition of a Web service interface and finally UDDI specifies
mechanisms for the publishing and discovering of Web services in a registry.

16

2.2 Grid computing

This section introduces Grid Computing as a vision of a new distributed comput-
ing infrastructure. Grid Computing and in particular the Grid was considered as a
next step on the evolutionary ladder of the Internet. Actually, even the term Grid as
a metaphor for making access to and use of computing power as easy as using elec-
tricity via the power grid was one of the buzz-words in information technology from
the late 1990s to the late 2000s. Also a huge amount of research and development
has been devoted to Grid Computing keeping the researchers busy for more then a
decade.

Most recently the interest in Grid computing seems to shift towards Cloud com-
puting, which is promoted by industry due to its pay-as-you-go approach. Contrarily,
Grids have their origin in academia and thus more likely provide free access to shared
resources. However, Cloud computing adopts Grid and Web technology and further-
more, a huge number of Grid systems which facilitate Cloud-like capabilities such as
virtualization, have been deployed and are still evolving. Perhaps further develop-
ments in both fields will feed into the next generations of cyber-infrastructures.

This section provides an overview of Grid computing, corresponding definitions
with respect to their historical background, technical characterizations and the vision
of an according service-oriented Grid architecture.

2.2.1 Definitions

Starting with a generic and short definition of Grid computing, which has been
taken from one of the largest users of Grid technology, CERN, and their Grid-Cafe9:

”Grid computing is a service for sharing computer power and data
storage capacity over the Internet.”

This definition immediately raises the issue of differentiating the Grid from the
Web: Grid computing uses the Internet to share computing resources, while the Web
uses the Internet for sharing information. A comparison of the Grid and the Internet
stated by Tom Hawk, the general manager of Grid computing at IBM, sounds similar:

”The Internet is about getting computers to talk together; Grid com-
puting is about getting computers to work together.”

The basic idea of Grid computing has roughly been outlined in these initial def-
initions. The real innovative vision has been introduced by Ian Foster, who is also
referred to as the ”father of the Grid” [Braverman, 2007] and his colleague Carl

9http://www.gridcafe.org/

17

Kesselman. They authored the book: ”The Grid: A Blueprint for a New Computing
Infrastructure” [Kesselman and Foster , 1998] and defined the Grid with a focus on
the computing aspect as follows:

”A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-
end computational capabilities.”

Subsequently, they contributed significantly to the evolvement of the Grid. Most
notable are the publications concerned with the anatomy [Foster et al., 2001] and
the physiology of the Grid [Foster et al., 2002]. The latter eventually resulted in the
OGSA vision [Foster et al., 2006], which will be discussed in further detail later in this
section. In the concourse of the Grid’s evolution its definition has been refined. Foster
and Kesselman identified resource sharing and related issues, in particular resource
coordination and negotiation of arrangements therein, as a key concept and noted
in the second edition of the book ”The Grid 2: A Blueprint for a New Computing
Infrastructure” [Foster and Kesselman, 2003]:

”The sharing that we are concerned with is not primarily file exchange
but rather direct access to computers, software, data, and other resources,
as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering. This
sharing is, necessarily, highly controlled, with resource providers and con-
sumers defining clearly and carefully just what is shared, who is allowed
to share, and the conditions under which sharing occurs. A set of individ-
uals and/or institutions defined by such sharing rules form what we call a
virtual organization.”

In the light of his own definitions Ian Foster wrote a column about the Grid for
the On-demand enterprise publications10, at that time known as GRIDtoday, that
captured the essential characteristics of a Grid in a three point checklist [Foster ,
2002]. A Grid with respect to this checklist is a system with the following primary
attributes:

1. The resources of a Grid are not subject to centralized administration.

2. A Grid uses standard, open, general-purpose protocols and interfaces.

3. Nontrivial Quality of Service is achieved in a Grid.

Furthermore, the article revisited the overall vision of a and the Grid in com-
parison to the Internet and the following essence can be summarized (note the dif-
ferentiation between the and a Grid): The Grid is actually the Intergrid, which is

10http://www.on-demandenterprise.com/

18

a collection of many Grids (i.e. the Grid is a Grid of Grids), like the Internet is a
network of networks.

Besides these mentioned definitions other notable researchers have made contri-
butions and adjustments to the Grid and its vision, which lead to diverse global
understanding. An approach to summarize the current view on the Grid has been
made by [Stockinger , 2007]. This article presents an empirical survey of attempts to
define the Grid by aggregating information gained in many interviews with leaders of
IT companies and researchers. The main conclusion drawn in this article was that a
common understanding about the Grid vision exists, even though many technological
changes and diverse advances have been made in the recent years.

2.2.2 Characterization approaches

The definition section showed that characterizing the Grid is a complex under-
taking, alike distinguishing types of Grids. The most commonly known categories of
Grids are based on their types of applications as well as on their size and distribution.
In the following, both categories are briefly introduced.

Application type Grids

This category differentiates Grids by the type of applications that is run within
these Grids. The following types of Grids are distinguished:

• Computational Grids: This is the most commonly used and classic form
of a Grid. Computational resources such as workstations, PCs or even PC
clusters are combined to form a virtual supercomputer, that provides far more
aggregated computing power then a single cluster or workstation. Typically
compute-intensive applications with a rather well scaling behavior prevail in
this kind of a Grid.

• Data Grids: This type of a Grid integrates different, mostly distributed and
heterogeneous data sources to a virtual database. Issues related to data access
and integration dominate in this kind of a Grid.

• Scavenging Grids: The idle CPU power of a single PC or workstation is
utilized by a scavenging Grid to compute tiny portions of complex operations.
The most commonly known examples are SETI@home11 and Folding@home 12.

• Semantic Grids: These Grids utilize semantically enriched services (e.g. com-
pute and data services with additional human-readable and machine-processable

11http://setiathome.berkeley.edu/
12http://folding.stanford.edu/

19

descriptions) to maximize the ease of use, sharing, automation and reuse. Fur-
thermore, a major focus has been put on the reuse of technologies invented in
the context of the semantic Web.

• Knowledge Grids: In this type of Grids focuses on the discovery of knowledge
from distributed sources (services) based on the approaches of semantic Grids.

This work mainly focuses on traditional computational Grids, while the other
types of Grids are mentioned for the sake of completeness. Thus, in the reminder of
this work a Grid refers to a computational Grid, if not explicitly stated otherwise.

Distribution and size of Grids

This category differentiates Grids by their size and distribution. This is com-
parable to the distinction of networks with respect to their size, such as local area
network (LAN), metropolitan area network (MAN), and wide area network (WAN).
The following types of Grids are distinguished:

• Cluster Grids: Clusters of PCs or workstations, most recently also of playsta-
tions, can represent small sized Grids if these systems are compliant with the
required Grid attributes. Such Grids are typically located within a room or its
components are even mounted within a rack. This often comes with the benefit
of high speed interconnection among the Grid nodes, which enables highly par-
allel utilization. On the downside with intensive utilization these systems reach
their boundaries quickly. Sometimes such systems are also referred to as de-
partmental Grids if located and used by a single department of an organization
or company.

• Enterprise Grids: This type of a Grid is usually referred to if a number of
cluster or departmental Grids are combined. In this case the nodes of this Grid
are distributed physically within the entire company or organization, but to
some degree the infrastructure is still homogeneous. However, security aspects,
such as authentication, authorization and accounting play an important role in
this kind of a Grid.

• Campus Grids: Similar to enterprise Grids this type of Grids refers to one
or similar organizations, such as universities. Typically, a university comprises
a lot of PCs in (student-)laboratories, which are capable of providing a huge
amount of idle CPU-time. Utilization of this CPU-time is targeted in this kind of
Grids. The nomenclature of this kind of Grids originated from the distribution
of laboratories that are spread over an entire campus of e.g. a university.

• Global Grids: Global Grids are the largest type of Grids and are comparable
to the Internet. Typically, organizations running enterprise or campus Grids

20

combine their resources on a global scale, mostly to address a certain global
research problem such as the EGEE Grid13. The global dimension of such a
Grid comes with huge challenges such as security, e.g. different types of users
and their authentication and authorization, heterogeneity or resources, etc. But
thereof in terms of research and development this kind of Grids also constitutes
the most interesting type of a Grid.

This work mainly focuses on solutions and in particular on software to address
the challenges of global-scale Grids.

2.2.3 Layered architecture

The initially introduced view at the architecture of the Grid has been described by
[Foster et al., 2001] in terms of layers. Each layer represents a functionality provided
based on the layers beneath. The top layers are typically focusing on the users require-
ments, while the layers towards the bottom increasingly deal with the hardware. The
middle-layers are also referred to as middleware(-layers) which provide abstractions
to hardware and enable interoperability of heterogeneous hard- and software.

Once again the Internet was an indication for design of an architecture for the
Grid. The Internet protocol architecture also commonly known as TCP/IP model
[Braden, 1989] consists of a set of communication protocols organized in a layered
fashion. In relation to TCP/IP model a layered Grid architecture has been proposed
by [Foster et al., 2001], which incorporates layers for: applications, collectives, re-
sources, connectivity and fabrics. The layered Grid architecture and its relation to
the TCP/IP model is shown in Figure 2.5.

Application

Internet

Link

Transport

Collective
Application

G
ri

d
Po

rt
al

 A
rc

hi
te

ct
ur

e

Resource

Connectivity

Fabric

In
te

rn
et

 P
ro

to
co

l A
rc

hi
te

ct
ur

e

Figure 2.5. Layered Grid architecture [Foster et al., 2001]

Furthermore, the proposed Grid architecture shows that the application layer
may access layers beneath at an abstraction level of its choice. The functionality

13http://www.eu-egee.org/

21

of a certain layer is defined by corresponding services and/or protocols and exposed
by appropriate application programming interfaces (APIs) and software development
kits (SDKs) in order to be accessed by development frameworks and languages. Sub-
sequently the Grid layers are outlined briefly from the bottom to the top.

• Fabric layer: This layer comprises the actual compute, storage and network
resources which are subject to be shared in the Grid. Furthermore, appropriate
uniform mechanisms and protocols are provided to access these resources to
enable seamless and collaborative usage in the higher layers.

• Connectivity layer: This layer consists of the core communication and au-
thentication protocols. Network communication based on the TCP/IP enables
data exchange among Fabric layer resources. Adopting according security mech-
anisms provides authentication including single sign on, delegation, integration
with local security solutions, and user-based trust relations.

• Resource layer: This layer provides protocols to obtain information about a
specific resource and to manipulate it. The resource layer is entirely concerned
with individual resources from the layers beneath.

• Collective layer: This layer focuses on the complex coordination of multiple
resources. Similar to the resource layer, which deals with a single resource,
this layer provides a similar functionality for collections of resources. This is
typically far more advanced than with a single resource.

• Application layer: The final layer comprises the user applications, which
utilize the functionality of the layers beneath at the abstraction layer of their
choice.

This layered view of a sample architecture for the Grid provides a high level of ab-
straction and thereof most Grid designs are compliant with this general architecture.
In particular the architecture was developed in accordance with the initial versions
(2.x) of the Globus toolkit, which was by that time a collection of almost independent
and diverse tools. The Globus software has been redesigned - almost reinvented - in
the recent years and it is now one of the most important Grid software infrastructures
available, e.g. as used in the EU EGEE Grid14 or the US caGrid15

2.2.4 Service architecture

The growing influence of service-oriented architectures was also also affecting the
Grid domain. Initially, Grid infrastructures were run by proprietary developments and
toolkits such as Globus, but the general tendency was to raise the level of abstraction

14EU Enabling Grids for E-sciencE, http://www.eu-egee.org/
15US cancer biomedical informatics Grid (caBIG), http://www.cagrid.org/

22

by adopting a SOA approach and, in particular, run Grid services based on Web
services technology. Some Grid projects like GEMSS16[Benkner et al., 2005a] and
GRIA17[Surridge et al., 2005] have been early adopters of pure Web services-based
Grid solutions.

The Open Grid Forum (OGF)18 formerly known as Global Grid Forum (GGF) is
a major community to drive standardizations in the Grid, also picked up the SOA
approach and developed the vision of an Open Grid Services Architecture (OGSA)
[Foster et al., 2006]. The OGSA specification outlines a framework with a compre-
hensive set of services for a Grid derived from a list of requirements. In the following,
the Open Grid Services Architecture, the proposed services therein, initial implemen-
tation attempts and the transition toward the Web services are introduced.

Open Grid Services Architecture

The Open Grid Service Architecture as proposed in [Foster et al., 2006] and sup-
ported by the OGF constitutes a vision of a service-oriented architecture for the Grid.
A major objective of OGSA is the specification of services for the seamless access and
management of distributed and heterogeneous resources. The utility to perform a
certain task with a service and its resource(s) is captured by a set of capabilities.
Figure 2.6 depicts some of these capabilities based on three logical and abstract tiers.

User/Usabilty

and optimized

Value−Add

Virtualizations
Services oriented

Standards based
Lower variability

Locally customized
Locally managed
High variability

focused

Business value

Macro (System level)
Quality of Service

Software

Hardware
Data

Storage

Software

Licenses

Networks

Sensors

Unified
Interface Grid

Infrastructure

O
G

SA
 F

ocus

O
G

SA
 R

elevance

Information
Management

Resource
Management

Application
Services Operating

Systems

Monitoring &
Analytics

Execution
Management

Security
Framework

Management

SLA

Optimization

User Domain
Applications

Management

Frameworks
User

Figure 2.6. OGSA conceptual view [Foster et al., 2006]

16Grid-enabled medical simulation services, http://www.gemss.de/
17Grid resources for industrial application, http://www.gria.org/
18Open Grid Forum (OGF), http://www.ogf.org/

23

Moreover, the conceptual view illustrated in Figure 2.6 shows the characteristics
of each tier, as well as their relevance to and the focus of OGSA. The logical and
physical resources can be found in the bottom tier, the capabilities are depicted in
the middle tier and the Grid applications are shown in the top tier.

OGSA Services

Logical and physical resources are represented in OGSA with basic services that
enable access and management of a single resource. The middle tier comprises the
OGSA capabilities that actually provide the Grid functionality based on virtualiza-
tion of one or more basic services (and their resources). These capabilities are the
main focus of OGSA and they are defined in terms of services, interfaces, associated
resources as well as their semantic behavior and their interactions. Figure 2.7 sketches
categories of OGSA services and outlines concrete services of these categories.

Context
Services

Context
Services

Info
Services

Infra
Services

Self Mgmt
Services

Services
Managment

Self

Security
Services

Boundry
Traversal

Resrc Mgmt
Services

Provisioning

Cataloging

Integration
Services

Data
VO

Mgmt

Policy

Access

Mgmtshouting
Trouble− Event

Discovery Logging

Information Services

WSN

Mgmt

NamingWSRF

Infrastructure Services

Heterogenity
Mgmt

Optimization

Service Level
Attainment

WSDM

Mgmt

Authentication

Authorization

Integrity

Services
Security

Provisioning
Deployment

QoS

Reservation

Exec Mgmt
Services

Data
Services

Configuration

Execution Managment Services

Resource Managment Services

Mgmt Planning
Execution Job

Mgmt
Workload

Mgmt
Workflow

Figure 2.7. OGSA services [Foster et al., 2006]

Concrete OGSA services are generally loosely coupled peers and realize capabili-
ties ideally by different implementations, complex composition, or interactions with
other services. The service categories distinguished in OGSA as shown in Figure 2.7
comprise the following:

24

• Infrastructure services

• Context services

• Data services

• Execution management services

• Resource management services

• Security services

• Self-Management services

• Information services

The OGSA specification [Foster et al., 2006] describes the architecture of a Grid
infrastructure with the potentially required Grid services and their capabilities, but it
is no technical specification to detail these services formally. In the following a brief
description of OGSA realization attempts is presented.

OGSA realizations

The first attempt to provide an infrastructure layer for OGSA was the Open Grid
Service Infrastructure (OGSI) [Tuecke et al., 2003], specified again by the OGF and
implemented by the Globus toolkit version 3 (GT3). OGSI and GT3 became obsolete
soon and have been replaced by the Web Services Resource Framework (WSRF) and
its implementations such as the Globus toolkit 4 (GT4). The relation of Web and
Grid services, OGSA, OGSI/GT3 and WSRF is shown in Figure 2.8.

specifies

specifiesextends

implements

implements

defines and
is based on

Grid
Services

OGSA OGSI

WSRF
WSRF*

Web services
(XML, WSDL, SOAP, ...)

WSRF.NET

GT4

GT3

Figure 2.8. OGSA relations (extended from [Sotomayor , 2004])

OGSI adopted a stateful Web services approach. OGSI basically extended Web
services and creates new services instances upon request to accommodate Grid ser-
vices that are transient and stateful. Due to maintaining individual states with service

25

instances and the resulting performance problems with many clients, OGSI was re-
placed by the WSRF soon.

WSRF is a set of OASIS specifications19 which are summarized in [Banks , 2006].
WSRF enables Web services to provide a set of operations to become stateful. In
particular, the a WSRF-compliant Web service incorporates its state through its
associated stateful resource. The access to and querying of this resource is also
specified in detail and performed through endpoint references (EPR) as defined by
WS-Addressing [Gudgin et al., 2006].

The history of Grid architectures and their potential realizations show a transition
of Web and Grid technologies towards the Web Services Resource Framework as
illustrated in Figure 2.9. Developments in both domains, the Grid and the Web
started far apart and have been converging with time.

Started
far apart
in apps
& tech

Have been
converging

Grid

Web

WSRF

GT1
GT2

OGSI

HTTP
WSDL,

 WS−*

WSDL 2,

 WSDM

Figure 2.9. Grid and Web technology transition [Allcock , 2004]

The incorporation of state in Web and/or Grid services in general and in particular
with respect to applying WSRF is being discussed controversial in both the Grid and
Web service community. The main criticism about WSRF is that it has limited
compatibility with the mainstream Web services interoperability (WS-I) architecture
as opposed to industry-driven approaches such as Web Services for Management (WS-
Management) standard [WSMgmt]. On the other hand these approaches are not
addressing Grid-related issues and thereof are not adopted by the Grid community.

Summary

A comprehensive summary about Grid architectures taking into account the con-
troversial discussion related to WSRF and its alternatives would go far beyond the
scope of this thesis. Given the survey presented in this section, the following char-
acteristics of a Grid are considered further on in this thesis: using service oriented
architectures, following a model for representation of state (such as defined in WSRF)
and adopting mainstream and stable Web services standards and technology. Further
related work in this context of Grid computing will be discussed in Chapter 8.

19OASIS WSRF version 1.2 comprises specifications of WS-Resource, WSRF-RP, WSRF-RL,
WSRF-SG and WSRF-BF available via http://www.oasis-open.org/

26

2.3 Quality of Service

This section comprises an overview of topics related to Quality of Service. The de-
scription deals almost entirely with technical issues and does not question the actual
applicability and potential implications of the presented QoS approaches. Quality
of Service is firstly defined in a general way, followed by a differentiation using dis-
tinct QoS levels. Mostly this section refers to QoS in the context of service oriented
architectures (SOA) as introduced in the context of Web and Grid services.

More comprehensive information far beyond this section can be found in the books
”Internet QoS” by [Zheng , 2001] mostly dealing with technical network-related QoS
issues as well as ”Technical, Commercial and Regulatory Challenges of QoS” by [Xiao,
2008] describing QoS besides the technical issues in the context of commercial and
social issues.

A generic description of Quality of Service (QoS) is the ability of a service to
guarantee a certain level of quality. This abstract definition of QoS can be applied in
different contexts, but also needs an appropriate refinement according to the specific
domain such as telecommunication or networking, in which the term QoS originated.
Thus the first step in this section is a survey of Quality of Service definitions. Follow-
ing these initial definitions a formal distinction of QoS levels is applied, which include
service-, application-, and networking-level QoS. All these QoS levels address differ-
ent issues and comprise distinct approaches and solutions, which will be discussed in
further detail.

Definitions

Quality of Service in the field of telephony has been defined in 1994 by the
Telecommunication Standardization Sector of the International Telecommunication
Union (ITU-T) in its recommendation E.800 [E.800]:

”The collective effect of service performance which determine the de-
gree of satisfaction of a user of the service.”

Furthermore, the definition has been refined by stating that a combination of
aspects actually characterize QoS, including: service support, service operability,
serveability, service security as well as other factors specific to each service. This
initially shows that QoS is fairly complex and addresses a number of issues.

Quality of Service in the field of data networking has been published 1998 by the
ITU-T in its Recommendation X.641 [X.641], which comprises the following definition
of QoS:

”A set of qualities related to the collective behavior of one or more
objects.”

27

Generally, the purpose of recommendation X.641 is to improve the development
and the enhancement of related standards and therefore, it provides appropriate con-
cepts and a terminology with respect to Quality of Service. This rather vague defini-
tion also addresses QoS as a set of aspects.

Also more recent work, such as [Zheng , 2001], define Quality of Service in the
context of the Internet as follows:

”The capability to provide resource assurance and service differentia-
tion in a network.”

These definitions are fairly similar by addressing QoS as a collection of assured
aspects indicating how a service or resource will behave. Furthermore, these defi-
nitions have been made in the context of traditional QoS research focusing on the
network-level, but they can also be applied in a broader scope concerning QoS in
Web and Grid computing. The range of QoS aspects to consider in order to assure
a certain quality just increases and networking may be one aspect while executing
Grid applications. A simplified example is assuring a certain network throughput
which can be achieved by bandwidth reservation, while guaranteeing the response
time of a Grid application may involve booking of networking-, storage-, computing-
and potentially other resources.

In summary, Quality of Service represents a collection of aspects indicating the
behavior of a service or resource in advance to or while consumption, whereas even a
single aspect to guarantee (e.g. response time) may result in a number of aspects to
consider. The aspects to guarantee are recorded in an agreement or contract, which
is usually subject to negotiation either in advance or while service consumption if the
service is adaptable.

In the following networking-, application-, and service-level QoS and approaches
therein are discussed. Even if security is usually mentioned in the context of QoS,
certain security-related QoS aspects, especially within the networking domain, are
not discussed here, but detailed in a separate section of this chapter.

2.3.1 Network-level Quality of Service

The emphasis of traditional QoS research is networking and, in particular, it
aims at providing alternatives to the best effort approach of the Internet. The main
achievements towards network-level QoS have been standardized in 1990s by inte-
grated and differentiated services. Integrated services address the best-effort-situation
by a resource reservation approach, while differentiated services adopt classification of
services linked with prioritizing. Subsequently, both approaches are outlined briefly.

28

Integrated Services

Integrated services, shortly referred to as IntServ, describe a system in which
elements exist that are able to guarantee a certain quality e.g. in order to enable
continuous video- or sound-transmission. The systems specifies a fine-grained QoS
approach in which every router in the system implements integrated services and every
application that requires QoS has to book all necessary resources. The underlying
mechanism to organize the reservations is the resource reservation protocol (RSVP) as
specified by the Internet Engineering Taskforce (IETF) in the request for comments
(RFC) 2205 [Braden et al., 1997].

The RSVP protocol is a transport layer protocol to reserve resources across a
certain path through a network. The protocol sets up receiver-initiated resource
reservations backwards hop by hop to the sender. This traces a path consisting of
routers and/or nodes (hops) backwards from the receiver to the sender and each node
or router along the path has to confirm the reservation. RSVP specifies exactly how
applications have to book and relinquish resources once not needed anymore.

The main obstacle of using integrated services and, in particular, with RSVP
comes with the many states that have to be stored in each network element, which
results in a poor scaling behavior opposed to the scaling requirements of the Internet.
As a consequence, IntServ is not very popular and RSVP is rarely deployed. A new
approach appeared from the field of traffic engineering, which provides an extension
of RSVP: RSVP-TE. It supports establishing MPLS20 label switched paths (LSPs),
which consider network constraints such as available bandwidth and explicit hops.
The protocol was developed in 2001 and recently revised in RFC 5151 [Farrel et al.,
2008].

Differentiated Services

In contrast to integrated services and their fine-grained QoS approach, differenti-
ated services or shortly referred to as DiffServ adopted a more coarse-grained solution
utilizing a system based on classification of services. DiffServ provide mechanisms for
classifying and managing network traffic to distinguish between certain classes of
network traffic in order to prioritize one service (e.g. for voice or video transmis-
sion), while simply applying best-effort guarantees to non-critical services. The IETF
specified an architecture for differentiated services in RFC 2475 [Blake et al., 1998].

The principle of DiffServ is traffic classification by associating each data packet
with a traffic class and treat each data packet according to its traffic class. This
enables each router to differentiate network traffic based on its class, while each
traffic class can be managed and configured independently. Given a certain traffic
class, a data packet can be treated with the associated priority to ensure e.g. a

20Multi Protocol Label Switching represents a data transport mechanism in packet-switched
networks.

29

high quality. The system does not specify any concrete type of traffic, which should
be given priority, it rather provides a framework to allow classification and thereof
differentiated treatment. Even though DiffServ recommends a standardized set of
traffic classes to improve interoperability.

The main advantage of differentiated services constitutes its full implementation
at the core of the Internet, such as routers and nodes, and no additional complexity
is associated with reservations, such as collecting states and even payment records.
Furthermore, it does not require an advanced setup or time-consuming end-to-end
reservation negotiation for each data flow as with RSVP.

DiffServ also come with disadvantages. The basic principle of using prioritization
does not provide any real guarantees, which then can be used for critical applications
and consequently it can’t be sold in such an environment. Another criticism of Diff-
Serv is that it leads to dropping of packets with low priority in case of insufficient
bandwidth, which firstly leads to waste of resources that have already been used to
carrying the packet so far. Secondly dropping of low-priority packets leads the clients
to increase the priority of their applications. The obvious result is, that eventually
the differentiation is lost and a pure best-effort network is established (again), due to
all packets having a high priority.

Differentiated Services are most commonly used by Internet Service Providers to-
day, to balance their fair use networks by differentiating Internet applications and/or
its customers. For example, peer-to-peer (P2P) network applications and protocols
may be given a low priority to generally reduce P2P-related network traffic, while
money making business costumers may be privileged with a high priority for their
entire network traffic.

Other approaches

Besides IntServ and DiffServ other approaches exist to enable network-level QoS
on the layers beneath the transport layer of the OSI model [X.200] such as IPv6,
the best-known example But these are not discussed in this context, because most
applied protocols on these layers are specific to a certain application domain such as
ATM [Joel , 1993]. Furthermore, to ensure bandwidth availability dedicated network
lines or systems are often used, such as bandwidth reservation for user work (BRUW)
[Hwang and Riddle, 2005] in the context of the Internet2 or advance multi-domain
provisioning system (AMDPS) [Patil et al., 2006] within the GEANT2 project21.

In summary, some approaches exist to ensure network-level Quality of Service
and the more promising are based on resource reservation, rather then prioritizing.
But in general increasing the network bandwidth overall is probably more practical
than developing QoS mechanisms in the existing infrastructure, as concluded by the
Internet2 QoS working group22.

21GEANT2, http://www.geant2.net/
22Internet2 QoS WG, http://qos.internet2.edu/wg/

30

Apart from the technical dimension the use of QoS mechanisms also has a social
dimension. The Internet is considered as neutral or net-neutral, which means simpli-
fied that all users and their traffic is treated equally (at least outside of the network
of their ISPs). This net-neutrality would be dismissed by allowing Internet service
providers to charge a QoS fee and prioritize the ones that pay more as outlined in
the big picture of [Xiao, 2008].

2.3.2 Application-level Quality of Service

The purpose of application-level QoS is - as the name states - quantifying and
assuring the behavior of an application with respect to application-specific charac-
teristics, such as performance, security, dependability, adaptability and many others.
Although the list of characteristics is rather long, the focus on performance and, in
particular, on execution-/response-time seems to be addressed most of all. According
to [Woodside and Menasce, 2006] application-level QoS gained increasing importance,
but also constitutes the Achilles’ heel of services offered over the Internet. Achieving
adequate QoS-support at the application-level is challenging.

Basically guaranteeing application runtimes requires comprehensive knowledge
about the application itself and the resources required for a specific task in advance, as
well as a mechanisms to pre-book the required resources. This is commonly referred
to as advance reservation [Smith et al., 2000]. These are critical prerequisites for
achieving application-level QoS and thereof are discussed subsequently.

Performance prediction

The prediction of the runtime (and potentially other factors) of an application in
advance to its actual execution is referred to as performance prediction. It is usually
a complex task, especially if applied for parallel and/or distributed programs as dis-
cussed in [Nudd et al., 2000] or [Pllana and Fahringer , 2005]. Typically, performance
prediction is conducted in the context of performance engineering and performance
analysis, which is more commonly known in software engineering as profiling.

Performance prediction can roughly be divided in three categories:

Simulation-based prediction obtains performance data from simulation sys-
tems, that simulate the execution of the application.

Profile-based prediction is the classic approach that divides a program into a
set of blocks in an execution path and the total execution time is the sum of execution
time of each block multiplied by its execution frequency.

Analytical modeling constitutes a mathematical approach to calculate the per-
formance with an analytical model using certain indicators especially about the job’s
input data.

31

Hybrid approaches such as proposed by [Pllana and Fahringer , 2005] combine
the mechanisms above and improve the prediction results for certain applications
significantly.

Other mechanisms may also be applied to estimate the performance in advance,
like gaining performance information from historical runs of an application as pre-
sented in [Smith et al., 1998]. All application executions are stored in a database
that expands with time and the number of application runs. Moreover, neural net-
works may be feasible for this task, but generally performance prediction and the
utilized approaches are highly dependent on a concrete application, the input data,
the execution infrastructure, etc.

In summary, there are mechanisms to predict the runtime and other factors of an
application in advance to an actual execution, which are essential to determine and
pre-book the required resources. Inaccurate estimations will either result in resource
bookings that waste resources, i.e. if an application runs faster than anticipated, or
the booking does not comprise enough resources to complete the application, which
is even more problematic, if the application can not continue e.g. due to other re-
source reservations. Hence a precise prediction of the required resources for a specific
application job is a strong prerequisite for accurate advance resource reservations.

Advance resource reservation

Applications or programs require resources to execute a specific job and in a
best-effort-based system usually application-jobs are queued until the resources are
available. Moreover, these resources are often not available exclusively, which prevents
proper prediction of their behavior, because different processes/tasks may interfere.
In order to guarantee a program execution within a certain time limit, the required
resources have to be reserved in advance (i.e. resource reservation). This reservation
will make sure that an application has access to the resources as required, e.g. exclu-
sively for a certain period of time. The required resources have to be pre-planned and
determined e.g. by performance prediction and a reservation has to be made with an
according advance resource reservation facility. Both constraints have to be fulfilled
to guarantee certain qualities of an application like runtime limits.

The actual advance resource reservation process is usually performed by an accord-
ing facility, e.g. in case of compute resources by a scheduling system, that manages
the booking procedure and the associated reservations. Thereof such facilities that
support advance reservation capabilities are required as well (c.f. Integrated Services
and the RSVP for network-level QoS). Compute resources like CPUs or even en-
tire machines in a cluster can be managed and assigned to tasks/jobs by scheduling
and/or queuing systems. Examples for such job scheduling systems, that support
advance reservation are the Sun Grid Engine [SGE]23, Maui [Jackson et al., 2001]
or Cosy [Cao and Zimmermann, 2004] on cluster systems or the scheduling systems

23http://gridengine.sunsource.net/

32

used in the ICENI [McGough et al., 2004] or Gridbus [Sulistio and Buyya, 2004] Grid.
Job allocation on a Grid- or cluster-scale may also be referred to as coarse-grained
scheduling.

Opposed to Grid- or cluster-scale, fine-grained job allocation and scheduling as
required to perform multitasking on the level of the operating system deals with
assigning threads, processes or data flows to system resources. This assignment pro-
cedure is usually performed according to a scheduling algorithm in order to load-
balance the system effectively and/or achieve a certain Quality of Service. The most
commonly known and simple algorithm used is the round-robin scheduling algorithm,
which assigns equally portioned time slices to each process in a cyclic order. This
fine-grained job scheduling is mentioned for the sake of completeness, but it is not
further discussed in this work.

Resulting requirements

In summary, to enable application-level Quality of Service two requirements have
to be fulfilled: a possibility to predict the performance of an application dynamically
dependent on different input data sets and varying machine configurations as well as
a facility to reserve resources in advance. Both issues and corresponding solutions
have been introduced briefly.

2.3.3 Service-level Quality of Service

Service-level Quality of Service is less defined, but in general it aims to ad-
dress issues arising with application- and network-level QoS as well as with other
QoS-related aspects of service-oriented architectures (SOA). Service-oriented systems
comprise services that are accessible via a network and perhaps expose native ap-
plications. Thus service-related QoS comprise generally a combination of network-
and application-level QoS. Furthermore, other aspects such as security (e.g. security
services for certificate issuance) are addressed by service-level QoS, which will be
discussed in Section 2.4.

Quality of Service discussed in the context of Web services typically addresses
either a single service, that expose a rather simple application or comprises non-
complex application logic accessing e.g. a single data source, or a collection of such
services alike. Hence QoS-related research dealing with a single services, like the
often referred stock quote services, concentrates on network-level QoS aspects, such as
availability, reliability, response time, etc. If a collection of services is addressed, like
in the typical travel agent scenario, aggregation of QoS aspects (e.g. total price) are
investigated and appropriate negotiation and aggregation mechanisms are developed.
A common aspect of service-level QoS is the establishment of an agreement about the

33

qualities of a service, mostly as a result of a negotiation process. Such an agreement
is also referred to as a service level agreement (SLA).

Service level agreements

A service level agreement (SLA) formally defines the level of service. Practically,
an SLA constitutes a negotiated agreement between two parties (mostly a provider
and a consumer) about the consumption/usage of one or more services. According
to the SLA information zone24 an SLA includes: a definition of the involved services,
according performance measurements, a problem management description, duties of
all parties, warranties, methods of recovery and the termination of the agreement. A
few specifications of standard SLAs for Web services exist, such as the Web Services
Level Agreement (WSLA) language specification [Heiko et al., 2003] and the Web Ser-
vices Agreement (WSA) specification [Andrieux et al., 2007], which are both subject
to further discussion on the concourse of this work and also comprise the mentioned
information.

The subject of an SLA is the final result of the service as perceived by the con-
sumer. The service provider has to deliver the service while the consumer has to
use the service, both as agreed in the SLA. This usually includes certain levels of
service such as level of performance, price, availability or other attributes. The level
of service may also be specified as a target in a defined range or minimum, all subject
to the commonly agreed understanding specified in the SLA. Furthermore, penalties
may be agreed if one of the involved parties does not act compliant with the SLA.

A special form of SLAs are mutual service level agreements of the same service,
which constitute a responsibility of the involved parties to deliver a service in the
same fashion and quality as the others do. Such mutual SLAs are often established
between Internet service providers which commit themself to route the traffic of the
other provider and vice versa. Often these agreements are also used in the context of
differentiated services to prioritize a certain traffic.

Summary and outline

In summary, the identified levels of Quality of Service have a certain focus and
come with distinct solutions, but no comprehensive approach, which incorporates
application-level QoS on the service-level based on according service level agreements,
can be identified so far. This work focuses on negotiable SLA-based Quality of Service
with Grid services exposing parallel HPC applications with varying execution times
depending on the input data sets and used machine configurations.

24http://www.sla-zone.co.uk/

34

2.4 Security

Security is a broad field of interest in information technology (IT) with very vary-
ing objectives, which may range from protection of information to the preservation of
service availability. This also comes with different implementations, which again may
range from physical limitations such as human access control using dedicated hard-
ware to the application of sophisticated security software and protocols. This section
emphasizes software-related security and in particular focuses on network-related se-
curity aspects, which also constitute a basic requirement in Grid computing.

Network security attempts to protect a computer network infrastructure by ap-
plying certain policies and mechanisms to prevent unauthorized access, to perform
traceable authentication, to run consistent and continuous monitoring and logging, as
well as to ensure confidential message and data exchange. Besides the secure message
and data exchange these issues are addressed by authentication, authorization and
accounting, which are commonly known as AAA. Moreover, when adding auditing
as well, it is referred to as AAAA. All mentioned issues (including encryption) are
referred to as security facilities and will be described in further detail subsequently.

A bunch of mechanisms and techniques is used in these security facilities which
ranges from cryptographic methods such as RSA to the use of logging and monitoring
systems. A basic foundation of network security is the usage of digital certificates,
which are organized and issued by a public key infrastructure (PKI). Following an
introduction to encryption and AAAA, this section comprises a detailed description
of PKIs and their application on the transport layer.

2.4.1 Security facilities

Subsequently encryption, authentication, authorization, accounting and auditing,
as well as related topics are introduced in order to present an overview of the terms
and technology used for the later description of PKIs and their application.

Encryption

Cryptography deals with the practice and study of hiding information, and en-
cryption is a fundamental tool to achieve this hiding of information. Encryption has
a long history starting with mainly military purposes to facilitate secret communica-
tion, but now it is used in many kinds of civilian systems, in particular, all kinds of
computer networks and the Internet, but it still serves the same purpose: confidential
communication [Kahn, 1967].

The main objective of encryption is to hide information. Therefore, a transforma-
tion of information into a different form is utilized to make the information unreadable

35

to anyone, except to those utilizing special knowledge. The process of transformation
is usually performed by an algorithm, which is also called cipher. The result is en-
crypted information, also known as ciphertext and the special knowledge is referred
to as a key. The reverse process of encryption is decryption, which makes encrypted
information readable again, but since encryption implies the possibility of decryption,
it is mostly not mentioned separately.

Basically encryption distinguishes two kinds of applied algorithms: symmetric and
asymmetric key algorithms [Goldreich, 2001]. The symmetric encryption requires
both the sender and receiver of a message to share the same key and as it should
only be known to both of them, it is also referred to as secret key. Asymmetric
key encryption was first introduced in 1976 and relies on a mathematically related
keypair, that is also referred to as public and private key [Diffie and Hellman, 1976].
A message can be encrypted with one of the keys and only decrypted with the other
one. As the name states, the public key can be freely distributed, while the private
key remains secret. The calculation of the private key only knowing the public key is
computationally infeasible. Both keys are generated as an interrelated pair.

Generally the usage of asymmetric key algorithms is more compute-intensive com-
pared to using symmetric key algorithms, but the latter has a main disadvantage in
the key-management. Hence, in practice mostly a hybrid approach is utilized, where
a secret key is generated ad hoc and exchanged using asymmetric key encryption (e.g.
as detailed in Section 2.4.3 with the transport layer security protocol).

Authentication

Authentication is commonly understood as establishing or confirming that some-
thing or someone (i.e. a subject) is authentic. This means that claims expressed by
or about a subject are genuine. Usually this involves the confirmation of the identity
of the person or the assuring that an IT-system or -service is trusted.

There are a number of procedures and mechanisms to ensure authenticity, which
are commonly referred to and grouped as authentication factors. Traditionally these
factors depend on:

• Something the user has (e.g. hardware tokens: smart card or mobile phone)

• Something the user is or does (e.g. voice or fingerprint)

• Something the user knows (e.g. password or PIN)

Most recently a fourth factor is also utilized in the IT-systems, which is the social
network of the user [Brainard et al., 2006] or in other words:

• Somebody the user knows (i.e. social network)

36

Additionally other authentication factors are considered with respect to the appli-
cation domain, such as location-based authentication (e.g. prevent use of credit card
in two places) or time-based authentication (e.g. to allow access only during office
hours).

In the context of information systems cryptographic methods are usually uti-
lized to establish authenticity. Digital signatures [Lysyanskaya, 2002] and challenge-
response authentication such as CHAP [Simpson, 1996] have been developed and so
far are considered as not spoofable as long as the originator’s private key has not
been compromised.

Authorization

Authorization describes the procedure to decide whether to grant access to a
certain IT resource or not. Access is only granted to those resource consumers that
have been permitted to use them. This permission is commissioned e.g. by access
control lists (ACLs), which are usually subject to be defined by the resource owners or
managers. IT resources contain all kinds of data (e.g. files, databases), applications,
devices or services, which are guarded by authorization. Typical consumers are either
users or other resources.

Authorization is often mixed up with authentication or even thought both handle
identical issues. Also many commonly adopted security protocols and standards are
based on this assumption, but actually authorization as deciding whether to grant
access is a different concept than authentication which verifies the identity. Even
though, authorization is usually dependent on authentication. The dependency gets
even more clear, when describing both concepts in further detail: authentication is the
verification process when a subject claims to be treated as if acting on behalf of a given
user or resource, while authorization is the verification process if an authenticated user
is privileged with the authority to perform a certain action.

A fairly familiar usage of authentication and authorization is access control in a
network of personal computers. The authentication is performed by logging in the
system e.g. with username and password or more sophisticated by using smartcards
or fingerprints. The authorization takes place on every access to or usage of a network
resource by deciding if the authenticated user has the authority to access or execute
a certain action on the resource. Usually the principle of least privilege is applied in
this context, which was first introduced by [Saltzer and Schroeder , 1975] and states
simplified that a subject should only be given those privileges required to complete
its task. Applying this principle to the authorization performed on every resource
access, the user should only be granted access (also distinguishing between read and
write access) to resources he really requires to do his job.

The authorization in the context of access control follows a certain model. Sub-
sequently different access control models are introduced briefly:

37

Discretionary access control (DAC) is an object-centric approach, by re-
stricting a subject’s access to a certain object. Generally this is applied to limit the
access of a user to a certain file. This type of access control has been introduced in
the [Orange Book 1985] and applied in UNIX operating systems since.

Mandatory access control (MAC) limits the abilities of a subject to access
(i.e. perform or grant some sort of operations on) an object as with DAC and also
keeps compliance with a general (e.g. organization-wide) policy, which is mandatory
to observe and maintained by a security policy administrator. This also enables
organizations to define a central policy according to minimum security restrictions or
legal regulations. MAC was also initially introduced in the [Orange Book 1985] and
refined in [Loscocco and Smalley , 2001] for the security-enhanced Linux (SELinux)

Role-based access control (RBAC) introduces an abstraction layer with the
concept of a role, which a user is assigned to and the access is granted based on the
role. In order to access a certain resource the user is required to be assigned to, a
role and the permission to access the resource has to be given for the role. RBAC is
considered to have a great flexibility as user-to-role and permission-to-role relations
are many-to-many. This means, that a user can have many roles and a role can be
assigned to many users; furthermore, a permission can be assigned to many roles, and
a role can have many permissions. RBAC has been introduced in [D.Ferraiolo and
Kuhn, 1992].

More sophisticated models to manage access control in distributed systems are
policy-based or attribute-based access control (PBAC or ABAC). Both appeared
most recently to manage complex authentication and authorization processes, which
are not subject to a single decision or a single property (such as being member of a
certain role). Furthermore, these models are built on and/or extend existing access
control models as introduced before. Further explanation of these models in the
context of service oriented architectures and identity management can be found in
[Li and Karp, 2007] but these are beyond the scope of this section.

Accounting

Accounting describes the procedure of tracking the utilization of a certain IT re-
source globally and also with respect to record each users consumption of a resource
individually. Typically, all subjects (users or resources) have accounts and the con-
sumption or usage is charged against these accounts. The gained information may be
used solitary or accumulated in management, marketing, planning, billing, or in other
purposes. The process of deriving knowledge or support decisions with the data from
accounting is also referred to as business intelligence [Luhn, 1958], which has a long
history; but it gained increasing interest with larger companies and more powerful
information technology.

Accounting can either be performed real-time or in batch-mode. Real-time ac-
counting is performed concurrently with the consumption of a resource, while batch

38

accounting refers to processing the usage information at a later time. The most
important use of accounting is billing and therefore, typically, the following data is
gathered: The authenticated user (identity), the authenticated resource or service, as
well as the begin- and end-time of the usage.

Accounting is generally a huge field of interest with manifold economic impacts,
but in this context the focus is rather on basic IT-requirements of the accounting,
which constitute the gathering and storing of the required accounting information.
More information can also be found in [de Laat et al., 2000].

Auditing

Auditing is related to accounting and with respect to IT-systems it is also closely
linked to logging and monitoring. Generally, auditing enables traceability of an orga-
nization, system, process, etc. with respect to ascertain the validity and reliability of
information, that is usually provided by accounting and/or logging information. Au-
diting can also provide a possibility to assess a system’s internal control mechanisms.
Also very closely related is provenance which aims to ascertain and document the
origin of computerized data to assess its genuineness at any point in time as targeted
in EU Provenance project25.

In the context of IT-systems accounting and logging subsystems are generally used
to supply necessary data to auditing purposes. Accounting is usually performed in a
domain-specific manner according to a defined protocol such as RADIUS [Nelson and
DeKok , 2007] for dial-in Internet service providers, while logging is subject to certain
guidelines provided by the used logging framework in order to ascertain important
events for later usage (e.g. auditing) and also for debugging. Furthermore, active log-
monitoring is performed by intrusion detection systems which aim to detect misuse
or anomalies in the system to provide an early warning or at least an after the
fact damage analysis. A comprehensive survey of security design guidelines for Web
services with respect to auditing and logging can be found in Chapter 3 of [Meier
et al., 2008].

In the following the technical realization in a PKI as well as a concrete implemen-
tation on the transport layer is being described.

2.4.2 Public Key Infrastructures

Public key infrastructures (PKIs) originate from the cryptographic domain to
provide digital certificates, which associate a public key with unique user attributes
(identity). Furthermore, a PKI defines policies and operational procedures which

25EU Provenance project, http://www.gridprovenance.org

39

constitute the foundation for the management of certificates and keys used by public
key-based security systems.

Certificates are issued and signed by a trusted third party named certification
authority (CA). These certificates enable users to authenticate each other using the
public key information in their certificates as well as to establish confidentiality and
message integrity without having to exchange a secret token in advance.

Components of a PKI

According to [Wiki-PKI] and [Xenitellis , 2000] a public key infrastructure com-
prises the following components:

Digital certificates: Digitally signed data to certify the authentication of a
certain object/user/service.

Certification authority (CA): A CA is an organization that acts as the trusted
third party to issue certificates by signing requests for certificates.

Registration authority (RA): A RA is an organization or a service that guides
or supervises the process of requesting a new certificate by an applicant with the CA.
Usually it verifies and signs the certificate request that is sent to the CA. This is
either done automatically by a service or supervised by a human registration authority
officer.

Validation authority (VA): A VA is a service or a local software component
that checks if a given certificate is still valid. The validation process relies on up to
date information given by the CA, such as according lists of certificates which are
rejected (certificate revocation lists). This is either done by a separate service or
software component according to a validation protocol.

Certificate revocation list (CRL): A CRL is a list of certificates, which have
lost their validity before they expire. Possible reasons are wrong certificate data
(attributes) or a compromised key. CRLs do also expire and hence these lists have to
be updated on a regular basis. Alternatively, an online verification can be performed
using a verification authority, which is usually used with online financial transfers.

Documentation: A PKI keeps a number of documents, that describe the prin-
ciples of the PKI such as the certificate issuance process, guidelines for the key man-
agement (handling and creation), optional legal documentation as well as operational
security procedures. Usually a CP (certificate policy), a CPS (certificate practice
statement) and a PDS (policy disclosure statement) are kept.

The principle of a public key infrastructure is shown in Figure 2.10. All major
roles as defined previously are illustrated as well as the important interactions and
procedures are depicted as follows:

First a user applies for a certificate. For this purpose the user generates a key-pair
and requests a certificate with a public key and according attributes at a registra-

40

i

i

i i

i

Service

Service

OK

OK

Service

Service

Service

CA

VA

RA

Figure 2.10. Principle of a public key infrastructure

tion authority (RA). The latter confirms the user’s identity by signing the certificate
request (c.f. OK-sign) for the certification authority (CA). Now the certificate au-
thority is able to issue a proper certificate. The user which is then privileged with
his own certificate, can then digitally sign a contract with a service using his certifi-
cate. The identity of the user can then be checked by the contracting service with a
validation authority (VA) which retrieves the information about all issued certificates
from the certification authority. The validation process may also be organized using
certification lists, such as certificate revocation lists.

X.509 Certificates

Digital certificates associate a public key with unique user attributes (identity)
in order to enable authentication, confidentiality and message integrity with other
users that are privileged with a digital certificate. Generally user attributes (e.g.
name + email + date of birth, etc.) constitute an individual identity, which are
unique at least within a single CA. In order to standardize certificates and PKIs in
general the Telecommunication Standardization Sector (ITU-T) developed the X.509
standard for public key infrastructures. It specifies formats for public key certificates,
attribute certificates, revocation lists and the certification validation.

41

An X.509-based public key infrastructure comprises one or more hierarchically
organized CAs, which issue certificates binding a public key to a distinguished name
(DN) or to an alternative name (e.g. e-mail address or DNS-entry, c.f. attributes).
This naming follows the X.500 series, which constitute a number of standards for
computer networking developed by the ITU-T and supported by the international or-
ganization for standardization (ISO). The most recent upgrade of the X.509 standard
is version 3 and it is specified in [Cooper et al., 2008].

The structure of an X.509 certificate in version 3 comprises the following, which
is usually encoded in one of the subsequent formats: distinguished encoding rules
(DER) [Dubuisson, 2008], Privacy Enhanced Mail (PEM) [Balenson et al., 1993],
Public Key Cryptography Standards (PKCS) #7 [Kaliski , 1998] or PKCS #12:

• Certificate

– Version

– Serial Number

– Algorithm ID

– Issuer

– Validity (Not Before and Not After)

– Subject

– Subject Public Key Info (Public Key Algorithm and Subject Public Key)

– Issuer Unique Identifier (Optional)

– Subject Unique Identifier (Optional)

– Extensions (Optional)

• Certificate Signature Algorithm

• Certificate Signature

The issuer information and the unique subject identifiers have been introduced in
version 2 and the optional extensions in version 3 of the X.509 standard.

Listing 2.1 captures a sample certificate containing all necessary information as
defined by the X.509 standard version 3. For the sake of simplicity the content of the
certificate has been simplified (e.g. validity) and the information about the subject
public key and certificate signature has been shortened.

The validation of a user certificate requires the issue certificate, which is usually a
CA certificate. In the example of Listing 2.1 the user certificate belongs to a fictional
character and the issuer is the certification authority of the department of Scientific
Computing at the University of Vienna. The actual validation procedure comprises
the use of the RSA public key of the CA certificate to decode the signature of the
user certificate to retrieve a hash value (using e.g. MD5/MD6 or SHA1), which is

42

Ce r t i f i c a t e :

Data :

Vers ion : 3 (0 x3)

S e r i a l Number : 0001 (0 x0001)

S ignature Algorithm : md5WithRSAEncryption

I s s u e r : C=AT, ST=Vienna , L=Vienna , O=Unive r s i ty o f Vienna ,

OU=S c i e n t i f i c Computing C e r t i f i c a t i o n Authority ,

CN=SC−UNIWIEN/ emailAddress=ca@par . un iv i e . ac . at

Va l i d i t y

Not Before : Jan 1 12 : 00 : 00 2008 CET

Not After : Jan 1 12 : 00 : 00 2009 CET

Subject : C=AT, ST=Vienna , L=Vienna , O=Unive r s i ty o f Vienna ,

OU=Department o f S c i e n t i f i c Computing ,

CN=Donald Duck/ emailAddress=dd@par . un iv i e . ac . at

Subject Publ ic Key In fo :

Publ ic Key Algorithm : rsaEncrypt ion

RSA Publ ic Key : (1024 b i t)

Modulus (1024 b i t) :

0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 :

[. . .]

0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0

Exponent : 000000 (0 x00000)

S ignature Algorithm : md5WithRSAEncryption

0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 :

[. . .]

00 :00

Listing 2.1. X.509 sample certificate

then compared to the actual hash computed over the rest of the user certificate. If
both obtained hash values match, it can be assured that a public key belongs to the
stated user (subject).

A CA certificate is a self-signed certificate, as issuer and subject are the same.
Furthermore, the CA certificate can be inspected by checking if a CA attribute is
present in the X.509v3 extensions section. Generally, there is no possibility to verify
a CA certificate, except by checking it against itself. Thereof CA certificates such as
of Thawte26 are recognized as trusted by all conventional Web browsers by default.
The private key belonging to such a long-lived, globally trusted certificate, which can
be used to sign other certificates has to be well-guarded and stored along the lines of
a corresponding policy.

Requesting and Issuing a certificate

The request- and issuance-process has been briefly outlined along the principle
of a PKI shown in Figure 2.10, which superficially comprises the user generating a
key-pair and requesting a certificate, which is signed by the RA and then used by

26Thawte Inc. https://www.thawte.com/

43

the CA to issue a certificate. In the following the certification issuance procedure is
described in further detail:

1. Key-pair generation: The first action to apply for a certificate is to gen-
erate a RSA key-pair using a certain software such as OpenSSL 27. An RSA-
keypair comprises a public and private key and their generation follows the
RSA-algorithm [Rivest et al., 1978]. The public key can be distributed to ev-
eryone and if used for encryption the encrypted message can only be decrypted
using the corresponding private key. If the private key is used for encryption,
the message can only be decrypted using the public key, whereas this simplified
process is referred to as signing a message.

2. Creation of a CSR: After the creation of the RSA-keypair a certificate signing
request (CSR) has to be created. The CSR links subject information attributes
to the public key of the RSA-keypair (c.f. second half of the data-section in the
sample certificate in Listing 2.1). The CSR is then signed with the public key
and transfered to the registration authority (RA). The details of this transfer
are subject to the applied operational procedure which is defined in the PKI
documentation. The transfer is either organized online using a secure transfer
protocol such as https, or an offline transfer is performed by exchanging a
physical data media such as a memory stick.

3. RA validation and signing: Assuming that the registration authority (RA)
got the certificate signing request in the defined fashion, the first action of the
RA is to verify the CSR. This includes the verification of the signature with the
public key of the requester as well as a check if the subject information attributes
are correct. Again, this could either be an online process just checking if the
subject information data is complete, or if a human acts as RA officer, the
subject information attributes are compared against the date of an official ID
card. Usually the RA officer knows the requesters as they are located in the
same organization, so the verification of the subject information data is self-
evident. Finally the RA confirms the correctness of the CSR by signing it with
the RA private key and transfers the RA-signed CSR to the certificate authority
(CA).

4. CA certificate issuance: The transfer of the RA-signed CSR from the regis-
tration authority to the certificate authority is usually performed online, which
is also detailed in the PKI documentation. The certificate authority performs
a CSR verification on each new CSR it receives, in particular, a verification of
the signatures, in order to ensure its authenticity. If the authenticity can be
proofed the CA creates a new certificate by signing the CSR with its private
key. The newly created certificate is then transfered to the requester, which
should then again verify the certificate before actively using it.

27OpenSSL is an open source software that implements SSL. http://www.openssl.org/

44

The operational procedure which determines all details of the certificate issuance
process is defined in the PKI documentation, which is usually distributed and main-
tained by the CA and comprises a certificate policy (CP), a certificate practice state-
ment (CPS) and a policy disclosure statement (PDS).

Besides the components and issuance of certificates in a PKI, the establishment
of trust among the participants of a PKI plays an important role, which is discussed
subsequently.

Trust models

A main foundation of utilizing digital certificates within a public key infrastructure
is trust. The exact establishment and level of trust is defined by a trust model. The
trust model defines how trust between an issuer of a certificate and the one that
verifies a certificate is established and maintained. Usually, the used trust model
of a PKI is subject to its application domain, but according to [Linn, 2000] the
following hierarchical and hybrid trust models as well as decentralized approaches
[Zimmermann, 1995] exist:

• Hierarchical PKI

• Cross certification and bridging

• Web of trust

Hierarchical PKI: A hierarchical public key infrastructure requires a root cer-
tification authority, which is trusted by all participants. In the real world, i.e. on the
global scale of the Internet, such a central root certification authority does not exist.
Thus countries, international companies or projects run hierarchical PKIs with their
own root certification authority. The background is mostly that these PKI operators
want to entirely control the rules in their PKI (e.g. issuance of a certificate) rather
then trust another certification authority.

Cross certification and bridging: One option to use certificates via multiple
hierarchical PKIs is cross-certification. Two certification authorities (mostly root
CAs) issue each other a (cross-)certificate in order to establish a trust relation between
all participants of both PKIs. The general problem of cross-certification is its scaling
behavior, because the number of cross-certificates required increases by square with
the number of root certificates. A potential solution is to introduce a neutral bridge-
CA, which exchanges cross-certificates with all participating CAs. Given this bridge-
CA all certificates of one PKI can establish a trust relation to certificates of another
PKI via their CA’s cross-certificates. The bridge-CA represents the center of trust in
this model and hence it is also known as hub-and-spoke trust model.

Web of trust: The web of trust represents a flat non-hierarchical concept to
ensure authenticity of the binding between a public key and the user. Alternatively

45

to hierarchical trust models, which rely on one or more certification authorities, this
trust model is decentralized by each user having its own network of other trusted
users, which also trusts others, a.s.o. The result is a web of trust with a user and
an associated certificate being a part of, or a link between multiple webs. This was
firstly formulated by Phil Zimmermann, the creator of the pretty good privacy (PGP)
system [Zimmermann, 1995].

2.4.3 Transport Layer Security

Transport Layer Security (TLS) is the successor of Secure Socket Layer (SSL) both
representing cryptographic protocols to enable secure communication in TCP/IP-
based networks. TLS and SSL are utilized in a number of applications such as for
web browsing, remote shell access, e-mailing or instant messaging. The protocols
encrypt the datagrams of the transport layer in order to establish an end-to-end secure
connection across the network. The most recent specification has been published by
the IETF in the RFC 5246 [TLS].

Generally the TLS protocol has been designed to prevent tampering, eavesdrop-
ping, and message forgery as well as to enable endpoint authentication and commu-
nication confidentiality using cryptographic methods. The authentication is usually
only provided for the server (i.e. only the identity of the server is ensured) and
the client remains unauthenticated, just to make sure with whom the client is com-
municating. If both communication parties should be authenticated TLS provides
a mechanism for mutual authentication, which requires a public key infrastructure
(PKI) in place unless transport layer security with pre-shared keys (TLS-PSK) [Ero-
nen and Tschofenig , 2005] or secure remote password (SRP) [Taylor et al., 2007]
protocols are used.

TLS handshake

The TLS handshake describes the process that two communication parties are per-
forming to establish a SSL/TLS-connection. Basically the TLS handshake comprises
three phases, starting with a negotiation for the algorithm support, continuing with
the key exchange and the authentication respectively; finally the symmetric cipher
encryption as well as the message authentication are preformed.

1. The TLS handshake starts with a negotiation phase which comprises the
selection of the used algorithms including the cipher suits, the key exchange- and
authentication algorithms as well as the message authentication codes (MACs).

2. The second phase is typically covered by public key algorithms unless pre-shared
keys are used (i.e. TLS-PSK protocol) to exchange a symmetric or shared
key and to ensure the authenticity of at least the server.

46

3. The final phase of the TLS handshake includes a message exchange between the
communication parties, whereas the message is authenticated and encrypted
using the public keys of the certificates as well as symmetric cipher encryption.

A more detailed explanation of the TLS handshake can be found in the TLS
specification [TLS], which exactly defines which messages (esp. their content) are
exchanged and which algorithms and standards are applied.

Mutual authentication

Usually authentication is only provided for the server while using TLS to commu-
nicate (e.g. if a client browses via https-based URLs). In this case the client remains
unauthenticated and the server is authenticated just to let the client be sure with
whom the communication is established. Authenticating both communication par-
ties requires a public key infrastructure (PKI) in place to issue certificates for both
parties. Assuming both certificates are issued by the same certification authority
(CA) the corresponding client- and server-software has to be setup in a way, that it
accepts the certificates from the common CA.

If a client is not privileged with an appropriate certificate, the SSL-connection
attempt (handshake) will fail. TLS with mutual authentication is often used in closed
systems, where the number of clients is limited and a high degree of protection of the
servers is required. This principle is also known as applying best practice security on
the transport layer.

In summary, this section presented an overview to security technologies and mech-
anisms related to Web and Grid computing. The security facilities as introduced in
this section are further used and applied in the context of the developed Grid environ-
ment and its security infrastructure, which constitutes a major contribution towards
establishing best practice security in Grid environments.

2.5 Summary

This chapter outlined the basic technologies required for the further on presented
work in this thesis. It presented a wide range of diverse topics including Web services,
Grid computing, Quality of Service and security. Web services are introduced as an
essential realization of a service-orientated architecture (SOA). Grid computing has
been outlined with a focus on its evolution and specifically with respect to architec-
tures. Finally, Quality of Service levels have been discussed and basic security aspects
have been presented.

47

48

Chapter 3

Grid Environment

This chapter encompasses a comprehensive description of the basic Grid environ-
ment which is also known and published as Vienna Grid Environment (VGE). It
constitutes an integral part of the work performed in the context of this thesis and
forms the basis of the QoS support presented in the subsequent chapters. The Vi-
enna Grid Environment is a software framework to expose native high performance
computing (HPC) applications and distributed heterogeneous data sources as Grid
services.

The description mainly focuses on technical aspects such as the architecture, in-
frastructure and implementation, which is also reflected in the structure of this chap-
ter. Initially a brief historical outline as well as a short overview are presented in
order to catch the scope of the Vienna Grid Environment in general and particularly
for this thesis.

The main content of this chapter has been initially published in [Benkner et al.,
2004b], followed by more specific emphasized work towards Quality of Service for
Grid computing in [Benkner et al., 2005c; Benkner and Engelbrecht , 2006], applying
Grid component frameworks in [Schmidt et al., 2005a, b, 2007] and Grid workflows
in [Brandic et al., 2005a, b]. Most recently VGE has been extended to provision
also distributed heterogeneous data sources as services, which has been presented in
[Benkner et al., 2008].

Brief history

The Vienna Grid Environment is being developed at the Institute of Scientific
Computing, University of Vienna. The developments started 2003 in the context
of Grid-enabling medical HPC applications of the EU GEMSS project [Jones et al.,

49

2004] as well as compute-intensive parallel applications of the AURORA project1

[Koch et al., 2003], [Benkner et al., 2005d].

The major initial design decision made for VGE was to develop the system in a
way to enable native HPC applications from science and engineering to be exposed
as services, i.e. realize a service oriented architecture. The second, maybe even
more important decision was to base all developments entirely on standard Web
services. Both have proven to be forward-looking, especially due to the proprietary
Grid software existing at that time, such as the collection of tools in the initial version
of the Globus toolkit or the Unicore system.

These basic decisions for the design of the VGE enabled the system to be applied
in Grid projects, such as GEMSS and Aneurist as described later in this thesis as well
as in other cooperations and research activities like CPAMSS2 [Ruckenbauer et al.,
2007] or AMADEUS3 [Brandic et al., 2008]. Moreover, VGE has been extended in
order to virtualize beside native HPC applications also scientific data sources as Grid
services in order to address data access and integration in the Grid via according data
services.

It should be noted that access to distributed heterogeneous data sources in the
Grid and especially the capabilities of VGE in this context are beyond the scope of
this thesis. The work performed with respect to data access, integration and semantic
mediation can be found in [Kumpf et al., 2007].

Brief overview

The Vienna Grid Environment is a service-oriented Grid infrastructure based on
standard Web services technologies. Concerning a service provider, who wants to offer
an application or data source, VGE enables the provision of native HPC applications
or data sources as Grid services in an automated way. For the client application
developer VGE offers a high-level client API to hide the complexity of the Grid and
to simplify the construction of Grid client applications based on Grid services.

A key distinguishing feature of VGE is the support for Quality of Service. VGE
provides a flexible QoS negotiation model to enable clients to dynamically negoti-
ate certain QoS guarantees such as execution time and price with potential service
providers on a case-by-case basis. The QoS approach including security will be dis-
cussed in depth separately as a further major contribution of this work in the next
chapters.

This chapter is organized as follows: The VGE architecture is outlined in the be-
ginning, followed by the VGE access model. Subsequently, introductions to the client
and service infrastructure are presented, which include details about the underlying

1Aurora, http://www.vcpc.univie.ac.at/aurora/
2CPAMMS, http://cpamms.univie.ac.at/
3Amadeus, http://www.infosys.tuwien.ac.at/Staff/ivona/amadeus/

50

service component model. Finally, the VGE provisioning is highlighted again in the
context of the client- and service-side.

3.1 Architecture

The Vienna Grid Environment (VGE) employs a service oriented architecture
to provide native HPC applications and distributed heterogeneous data sources as
Grid services. The high-level architecture comprises multiple Grid services, clients
and registries, following the publish-find-bind principle introduced in Section 2.1 and
generally applied in service oriented systems. In order to address security one or more
certificate authorities (CAs) are typically adduced in the context of the architecture
as well, even if a CA is usually not considered as a component of a service oriented
architecture. The mentioned components of the VGE high-level architecture are
depicted in Figure 3.1.

Client

CA

Registry

Service

Figure 3.1. VGE high level architecture

Services: VGE services encapsulate applications or data resources as services
distinguishing application and data services, respectively. Native HPC applications
available on PC clusters or other high performance computing hardware are incor-
porated and accessed via application services, while distributed heterogeneous data
sources are exposed by data services. The functionality of all VGE services is realized
by a set of generic service components, including implementations for the management
of application-jobs and data-queries, as well as for data transfer and staging, error
recovery, Quality of Service, and others. Each service component provides an individ-
ual service interface with an according WSDL document that is also included in the
composite WSDL of the entire VGE service. Details about the service infrastructure
and the service component model will be discussed in Section 3.3.

Clients: VGE clients are usually applications that run on PCs or workstations
as well as on mobile devices. These client applications utilize high-level client APIs
provided for different platforms by the VGE middleware to access VGE services via
the Internet. In order to give the client application developer more freedom but still
hide the complexity of the Grid, the client APIs support different local abstractions of
remote VGE services. Furthermore, client applications are responsible for the input

51

data generation or preparation, the QoS negotiation if necessary, as well as the post-
processing of the output data of a service. Details about the client infrastructure will
be discussed in Section 3.4.

Registries: VGE registries are comparable to basic information services. Reg-
istries in a VGE Grid are used to keep information about service providers and the
actual services they provide as well as to supply this information to clients upon
request. The underlying data consists of a set of arbitrary attributes (name/value
pairs) associated with a specific service. Such a facility enables service providers
to publish their services as well as clients to perform queries for potential services.
Clients typically use registries in the context of QoS negotiation to retrieve a list of
candidate services to negotiate with.

Certificate authorities: The foundation of security are digital certificates, which
are issued by an according certificate authority (CA) in an operational public key
infrastructure (PKI). At least one such CA is required to be trusted and privileged
to issue certificates in a VGE Grid. The certificates follow the X.509 standard as
introduced in Section 2.4 and enable authentication and authorization for clients and
services. Furthermore, certificates are used in the context of transport and message
layer security.

A VGE Grid

As already mentioned VGE distinguishes between application and data services.
Application services expose typically compute intensive native applications, while
data services provide access to data sources. Usually a VGE Grid, as shown in Figure
3.2, comprises a number of both types of services, multiple clients, as well as one or
more service registries.

Data
Service

Data
Service

Data
Service

Application
Service

Application
Service

Client

Client

Client

Client

DB

DB

DB

DB

Registry

Figure 3.2. VGE Grid

52

Furthermore, Figure 3.2 illustrates that application services are tightly coupled
to a specific machine and application. Data services are bound to one or more data
sources, whereas a data source is either a relational database, an XML DB, a flat
file or another data service. The tight coupling of applications to services and data
sources to services is depicted by a continuous line as opposed to the loose coupling
of clients with services and/or registries by a dashed line. Finally, another detail
is revealed by Figure 3.2: Service discovery with registries is optional and if used
services have to publish themselves in order to be found by clients.

Layered VGE architecture

The architecture of the Vienna Grid Environment is presented in a layered fashion
in Figure 3.3. Similar to other Grid architectures resources located at the bottom are
transparently accessed through middleware layers by applications at the top.

Staging OGSA−DQPOGSA−DAITransfer MonitoringRecovery
Error Data Data

Information
Systems

Application Services Data Services

Application
Client

Application
Client

Application
Client

Application
Client

Job Execution Quality of Service Query Execution Mediation

Basic Web Services Layer

Modeling Simulation Analysis Databases Files

VGE Client API

Compute Resources Storage Resources

Figure 3.3. Layered VGE architecture

In a top down approach the layered abstraction of the VGE architecture shown in
Figure 3.3 can by summarized as follows: Client applications are on top and use the
VGE client API to access application and data services. Both types of services are
composed out of a number of components realizing certain functionality but all are
based on common Web services technology. Application services are incorporating
typically native HPC codes dealing with simulation, analysis and modeling that run
on high-end computing resources. Data services are exposing data sources such as
databases, files or other information systems which all rely on storage resources.

It should be again noted that the emphasis of this work is rather depicted by the
left side of Figure 3.3 and, in particular, by the capabilities of the application services
to enable access to remote HPC applications on-demand and their support for Qual-
ity of Service. Data access and integration (DAI), mediation and distributed query

53

processing (DQP) are beyond the scope of this thesis. More information, especially
with respect to the entire architecture, can be found in [Benkner et al., 2008].

3.2 Service access model

VGE services may be accessed following a flexible, multi-phase access model com-
prising an initial selection phase, an administrative phase, a Quality of Service phase
and final job execution phase. The service access model also comprising further details
of each phase is depicted in Figure 3.4.

Services
Registries
Candidate Criteria

Upload input data
Start job
Monitor job
Download results

Quality of ServiceSelection Job executionAdministrative

Performance Estimation
Reservations
Agreement exchange

Authentication
Authorization
Select pricing model

QoS negotiation

Figure 3.4. Multi-phase VGE service access model

Subsequently each phase in the VGE service access model is outlined briefly.

1. The selection phase constitutes the actual pre-selection of one or more can-
didate services. The client opts out a specific service (category) and therefore,
a list of services is required or one or more registries with service attributes has
to be supplied to retrieve a list of service candidates. In any case the resulting
candidate services are used in the next phase.

2. The administrative phase comprises security and pricing issues. The security
includes authentication and authorization, i.e. the client has to be authenticated
and authorized to access a certain service including authorization on the client-
and service-side. Furthermore, an agreement on the used pricing model has
to be established, which just means that a specific pricing is selected and will
be applied later in the QoS phase. The support for flexible pricing models is
explicitly being discussed in Section 5.2.

3. The QoS phase consists of all QoS-related tasks. This basically includes a
QoS negotiation between the client and the candidate services. At each service
estimations and reservations are performed and possibly, in case of a successful
negotiation an exchange of an agreement. From the client’s perspective the
negotiation is typically performed with the candidate services retrieved from
the selection phase, while the exchange of an agreement is only conducted with
a single service. The details of this phase are comprehensively described in
Chapter 5.

54

4. The job execution phase includes all tasks required to perform a remote
execution of an application job with a single service the client has eventually
reached an agreement with. The job execution comprises uploading of input
data, starting the execution of the applications job, and finally downloading
the results.

VGE relies on a purely client driven service access, i.e. all interactions of a client
with a service are set up by the client via SOAP. This also implies that e.g. the status
of a remote job is queried iteratively (i.e. polling). Consequently, neither call-backs
nor notifications are required, which usually result in security compromises to tunnel
holes through site firewalls. Only a single port for SOAP communication via HTTP
(usually port 80) has to be open, which is mostly the case with service providers
running web servers. Thus VGE can be considered as firewall-friendly.

3.3 Service infrastructure

The VGE service infrastructure comprises a generic service provision framework,
which enables service providers to set up data and application services in a semi-
automatic way. A VGE service exposes either a compute-intensive application usually
available on an HPC system or distributed data sources. Services are hosted in an
according hosting environment and are securely accessed on-demand by clients over
the Internet.

3.3.1 Component model

VGE services adhere to a generic and open service component model for the
service composition. Consequently, a VGE service is composed out of generic service
components which can be selected and configured at the time of the service setup.
Furthermore, each component realizes a certain functionality and thus, services can
be set up with the desired or required functionality only. Generally, the service
components are provided for data transfers between clients and services, data staging
between services, job or query execution, monitoring, QoS management, and error
recovery.

WSRF influence

Conceptually the VGE service component model follows the Web Services Re-
sources Framework model, which states the following [Banks , 2006]:

55

”A generic and open framework for modeling and accessing stateful
resources using Web services including mechanisms to describe views on
the state, to support management of the state through properties associated
with the Web service, and to describe how these mechanisms are extensible
to groups of Web services.”

Service 3

Service 2

Service n

...

Service 1
Resource A

Resource B

Resource M

...

Services
(Components)

ResourcesComposite
WSDL

Figure 3.5. VGE service component model

The VGE service component model is illustrated in Figure 3.5, which indicates
that each service component represents an abstraction of a resource. A single resource
may be virtualized by more than one service component in different ways, but one
service component is only associated with a single resource. This implies that the
state of a service component is determined by a single resource only. Furthermore,
Figure 3.5 shows that the entire service is composed out of service components each
providing a separate WSDL document (interface specification). Thus, the overall
capabilities and operations of the VGE services are defined by the composite WSDL,
which is actually the union of all component WSDLs.

Component framework

In order to organize the communication between service components, the VGE
service component framework is a mandatory part of each VGE service. It provides
mechanisms to directly invoke operations of other service components utilizing local
method invocations instead of processing the entire SOAP stack. Furthermore, the
component framework supports listening and redirecting of client SOAP calls using
according request and response handlers. The listening capability allows to keep
service components informed of operation invocations on other service components.
Redirections enable SOAP calls to be intercepted and to synchronously perform ad-
ditional tasks. A typical consumer of the listening support is the monitoring facility,

56

which records all invoked operations. An example for utilizing redirections is the
support for Quality of Service, which checks if certain operations such as up- and
downloads are performed according to the exchanged agreement.

Another main functionality of the VGE service component framework constitutes
uniform session management for all service components. In oder to support multiple
clients accessing the same service, the component framework provides session man-
agement capabilities to distinguish among different clients utilizing technologies such
as WS-addressing. New sessions are automatically created for new clients or upon
request and old sessions are being released if not required anymore. Note that session
management is usually required by all service components and consequently is an
essential part of a service.

3.3.2 Service components

The integral part of the service component model are, literally, service compo-
nents. Each individual service component provides separate operations via its own
WSDL document and implements a certain capability of the overall VGE service.
Service components are provided by VGE for the following capabilities:

• Application execution to manage the execution of application jobs.

• Data transfer to transfer files between a client and a service.

• Data staging to facilitate direct data transfers between services.

• Data streaming to allow streaming of output data using just http (no SOAP).

• QoS management to dynamically negotiate certain qualities of a service.

• Error recovery to enable check-pointing and restarting of an application.

• Query execution to perform queries on virtualized data sources.

In accordance to the WSRF model, each service component is linked to a resource
and furthermore provides a certain abstraction of its associated resource. These
resources include disk space (directories), native applications, scheduling systems,
data bases and others, similar to the resources presented in layered VGE architecture
in Figure 3.3 at the bottom layers.

The overall VGE service is a composition of service components, which are selected
and configured at the time of deployment. The minimal required service components
for a VGE service comprise the application execution and the data transfer (or stag-
ing) service component, in case of an application service, or, the query execution
and data transfer (or staging) service component in case of a data service. Subse-
quently all mentioned service components, their relations and provided operations are
outlined briefly.

57

Application execution

The application execution service component provides the facility for the manage-
ment of remote application jobs and, in particular, their execution. The associated
resource of this service component is a pre-installed native application, which is ca-
pable of being executed in the working directory via a queuing or scheduling system.
This implies that the application can be started via according scripts and all file
access is performed in a relative manner (i.e. no fully qualified pathnames).

The application execution is being made secure by its design, because opposed
to other Grid environments like Globus no applications or scripts are submitted to a
service. The native applications, being resources in this context, are pre-installed by
the service providers, which have full control over the scripts and applications that
are executed on their systems.

The operations provided by the application execution service component are de-
fined as follows and include: starting the execution of an application job, monitoring
the status of a running job and killing a job if it does not terminate as expected.

start() : void

getStatus() : data

kill() : void

These operations are accessible via the service component’s WSDL. An invocation
of the start operation executes the configured start script in the defined working
directory. The operation getStatus similarly invokes a script, but this time it is a
status script and the operation returns arbitrary status information to the client,
which is again subject to be configured e.g. as a status file. Finally, the operation kill
initiates the execution of a pre-configured kill-script which terminates an application
job.

All configuration information of a VGE service is stored in its service description,
which comprises the XML application descriptor containing a reference to the manda-
tory start script, as well as optionally to a status-script, a status-file and a kill-script.
More details about the service description will be discussed in Section 3.5.

Data transfer

The data transfer service component enables the transmission of input data to
the service (upload) and output data back to the client (download). The actual
input and output data is stored or retrieved from the so-called working directory,
which actually constitutes the resource of this service component. The access to the
working directory occurs transparently to the user and is under full control of the
service provider. Usually, for each client a separate sub-directory is generated to

58

distinguish among clients. Furthermore, clients do not have access to other parts of
the service provider’s file system.

The corresponding operations provided by this service component are upload and
download, which are publicly accessible via WSDL and defined as follows:

upload(filename, input-data) : void

download(filename) : output-data

Usually the input- and output-data is transfered using files identified in the work-
ing directory by their filenames as specified by the operation’s arguments. It should
be noted that these filenames may be different from the client-side and again are
subject to configuration of the service provider. Moreover, the transfered files are
typically archives (e.g. zip or rar) in order to minimize the volume of the data and
the number of SOAP calls to process by transferring mostly just a single input and
a single output file. Multiple up- and downloads are supported as well e.g. in or-
der to download intermediate results or to refine the input while running interactive
applications.

The actual data transfers are performed by utilizing SOAP with attachments
(SwA) as introduced in Section 2.1. This also facilitates data transfers of volumes up
to two gigabytes for a single file. Generally, it should be noted that data transfers
utilizing SwA compared to common mechanisms such as FTP may incur considerable
performance drawbacks. More details about data transfers and their performance
issues are discussed in [Benkner et al., 2003a].

Data staging

The data staging service component supports pushing and pulling of input and
output data between two services. Opposed to the data transfer service component,
which passively stores and returns data upon request, this service component actively
establishes connections to other services, but again only upon a client request. The
data staging service component provides operations to push or pull data from (or to)
its local working directory to (or from) another service by using the data transfer
service component (upload or download) of this other service. This implies that the
data staging service component is required only on the service that initiates the data
staging (push or pull), while the data transfer service component has to be available
on the destination of the staging.

Internally, this service component also uses the working directory on the local file
system of the service provider as a resource and again the access to this directory
is performed transparently to the client and with full configured surveillance of the
service provider.

The actual operations of this service component are literally push and pull, which
are publicly accessible via WSDL and defined as follows:

59

push(final-EPR, final-filename, staging-filename) : void

pull(final-EPR, final-filename, staging-filename) : void

The arguments of both operations are identical, but internally different tasks are
performed. Commonly the final-* arguments refer to the service the data is finally
pushed to or pulled from, while the staging-filename parameter refers to the service
initiating the data staging. The final-EPR (endpoint reference) comprises a URL and
a session identifier, while all filename parameters are used to identify the files on the
final service and the staging service.

In case of the push operation, the data staging service component uses the file
identified by the staging filename argument from its local working directory and up-
loads it to the destination service. Contrarily, the pull operation performs a download
from the service identified with the final-EPR to the staging service using the given
filenames. Please note that both operations do not have any in- or output-data as
arguments, because the actual data transfer occurs only between the staging and the
final service.

Data streaming

The data streaming service component allows streaming of output data using
just http in order to provide an alternative output data download method. The main
purpose in this context is to improve performance as well as provide a direct download
option to be used in Web applications. It should be mentioned that this comes with
the drawback of bypassing the SOAP security, as direct downloads via http or https
do not use SOAP and its associated security mechanisms.

Alike the data transfer and data staging service component, this service compo-
nent internally uses the working directory as a resource with equal access constraints,
i.e. transparent access for clients and fully customizable by the service provider.

Opposed to the other data transmission service components, the actual transmis-
sion of data provided by this service component is performed directly on the transport
layer using a http or https channel. Therefore, the client requests a URL reference to
the output data via a regular SOAP operation. The returned URL points to a servlet,
which is part of this component, and also comprises an identifier of the output data.
The URL can only be used once and thereof is also referred to as a one-shot URL.
Given this URL the client is then able to download the output data directly via http
or https only.

The corresponding operation provided by this service component is literally down-
load and defined as follows:

download(filename) : output-data-url

60

The operation returns an URL, which actually comprises the address of the
streaming servlet and an immutable universally unique identifier (UUID) [Leach et al.,
2005] as link to the actual data. The servlet enforces that the URL is just used once
by removing the link (UUID) on the first access. Generally, accessing this URL occurs
in addition to the service operations provided via SOAP and just relies on the actual
transport protocol specified in the URL (http or https). Hence it should be noted
that the security mechanisms applied with this kind of data transmission is limited
to the transport layer’s capabilities only.

QoS management

The QoS management service component realizes the Quality of Service support.
In particular this service component provides a high-level QoS negotiation interface
to clients and utilizes a scheduling system as its resource. The QoS management
adopts a reservation-based approach; thus, the underlying scheduling system has to
support advance reservation.

The operations provided by the QoS management service component are defined
as follows:

requestQoSOffer(qos-request, request-descriptor) : qos-offer

cancelQoSOffer(qos-offer) : void

confirmQoSOffer(qos-offer) : void

From an abstract point of view these operations enable a client to negotiate certain
QoS attributes by requesting an offer based on certain constraints to cancel received
offers or to confirm a satisfying offer. The Quality of Service support will not be
detailed any further in this chapter, because the entire Chapter 5 is devoted to this
key distinguishing feature.

Error recovery

The error recovery service component enables support for application-level recov-
ery from errors using checkpointing and restarting. If a native application is able
to be re-started from a certain checkpoint, i.e. the application supports error recov-
ery, this service component provides appropriate operations to utilize this application
functionality by clients.

The operations defined in the WSDL of the error recovery service component
comprise the following:

checkpointUpload(filename, checkpoint-data) : void

checkpointDownload(filename) : checkpoint-data

restart() : void

61

The client can use these operations to upload or download checkpointing data
using an optional filename to specify a particular checkpoint. The checkpointDownload
is typically used upon a crash of an application job and the checkpointUpload is usually
used to migrate the checkpointed job to another service on a different machine. The
restart operation in fact restarts the application.

The actual data transmission linked to the checkpointUpload and checkpointDown-
load operations is realized by utilizing the data transfer service component. Conse-
quently, this also comes with the implications of the data transfer service component,
mainly by relying on SOAP with attachments (SwA).

Query execution

The query execution service component is essentially required for data services.
It provides capabilities to access different data sources such as relational databases,
XML databases or flat files. The operations required therefore, are identical to the
ones of the application execution service component. This implies that a data service
has the same access pattern as an application service by starting a query with the start
operation, monitoring the query execution with the getStatus operation or killing the
query-execution with the kill operation.

The configuration of the query execution service component includes how many
data sources are utilized, which public schema is exposed in case of data mediation as
well as which additional evaluation hosts are used by the distributed query processing
(DQP) support. As initially mentioned, the data access, integration and mediation
capabilities of VGE are beyond the scope of this work and the corresponding query
execution service component is outlined for the sake of completeness only.

Additional components

The VGE service infrastructure adopts, as mentioned in the beginning of this
section, an open component model approach. Consequently, new service components
can be realized and integrated to extend the functionality of VGE services. Similar to
the WSRF there are no specific requirements for the implementation of an additional
service component, except that it has to be implemented as Web service.

Subsequently, some of remaining the components are outlined briefly. Compared
to the described service components so far, these are less extensive in terms of their
functionality, their provided operations in the WSDL or their associated resource.

The monitoring service component provides an operation (getInfo) to retrieve
general status information about a service. This mainly comprises static service
information such as a name and other facts about the underlying data or application
resource, as well as dynamic information such as the service utilization.

62

The Web portal service component provides an administrative Web interface for
the service provider, mainly to adapt minor configuration details, examine deployment
issues or just check the logs. The information gained from the Web interface can be
retrieved by WSDL operations as well.

Security service components are typically realized as SOAP handlers implement-
ing a certain security facility (c.f. Section 2.4.1). Typically, these service components
use security credentials as their resources. More details about security and in partic-
ular its SOAP handlers will be discussed in Section 5.5.

Composite
WSDL

Services
(Components) Resources

Web portal

QoS management

Security facilities

Data staging

Data transfer

Monitoring

Data streaming

Application execution

Error recovery

Logging DB

Keystore
(certifcates and keys)

Scheduling system

Working directory
(file system)

Native application
(scripts and executables)

Figure 3.6. Sample VGE service components

The illustration in Figure 3.6 shows a complex application service with all men-
tioned service components (except obviously the query execution component) as well
as their associated resources.

3.3.3 Service hosting

VGE services are composed of service components which are embedded in the
VGE service component framework, which utilizes Apache Axis4 as Web services
framework. Furthermore, Apache Tomcat5 serves as a Web application hosting en-
vironment. The VGE software distributions comes with a preconfigured hosting en-
vironment, an integrated Axis version and, additionally, a graphical deployment tool

4Apache Axis, http://ws.apache.org/axis/
5Apache Tomcat, http://tomcat.apache.org/

63

to configure and deploy VGE services conveniently. The actual provisioning process
is detailed in Section 3.5.

A typical VGE service hosting scenario is illustrated in Figure 3.7 and comprises
a data service and an application service.

In
te

rn
et

Host D2Host D1

Apache Tomcat Cluster

Data server

DMZ Intranet

Fi
re

w
al

l

Fi
re

w
al

l Fi
re

w
al

l
Fi

re
w

al
lData

Service
Application

Service

A
pa

ch
e

W
eb

 s
er

ve
r

ConnectorJK Conn.

Scheduler

Figure 3.7. VGE service hosting

The data and application services are hosted in an appropriate service hosting
container such as Apache Tomcat, which is typically installed on a host in the de-
militarized zone (DMZ) of the service provider’s organization. Optionally, on a second
host in the DMZ, an Apache web server is used as an entrance point from the Internet
to access the VGE services via a Tomcat connector6 between the Apache web server
and the Tomcat server. The actual resources, which are located in the Intranet or
another private network, are utilized by the services through an according facility,
such as a scheduling system or database connector.

3.4 Client infrastructure

The companion piece to the VGE service infrastructure is the VGE client in-
frastructure. It constitutes a framework to simplify the development of Grid client
applications that access and interact with VGE services. The client infrastructure
supports the development of complex standalone applications as well as the integra-
tion in existing applications by relying on implementations and toolkits in several
programming languages.

Basically, client applications could be built entirely from scratch by only utilizing
the composite WSDL description of a VGE service, but this would constitute access
to VGE services on the lowest possible level. Furthermore, such a low-level interaction

6Apache Tomcat connector, http://tomcat.apache.org/connectors-doc/

64

with Web services is rather time-consuming with respect to its development, because
the client developer has to handle all the Web and Grid service details. Finally such
an approach typically results in complex and error-prone client applications. In order
to address this obstacle, the VGE client infrastructure provides different programming
toolkits for several programming languages such as Java, C# and C++. This enables
the client developer to access VGE service based on these toolkits and hides the
complexities of Grid and Web service technologies.

The VGE client infrastructure consists of the following main building blocks:

• Libraries

• Development environment

• Documentation

• Samples

The libraries are provided for several programming languages, such as Java, C++
or C# (.Net), whereas the Java implementation is used in the majority of cases. The
development environment supports the client developer to easily compile and execute
new code by having all the necessary libraries included and configuration options
already set accordingly. Finally, the documentation comprises detailed instructions
about the examples as well as guidelines for integration in existing applications.

3.4.1 High-level Client API

The construction of Grid client applications which access VGE data and/or ap-
plication services is supported by a high-level client API with bindings for Java, C#
and C++. The main purpose of the client API is to hide the details of interacting
with remote Grid services and their associated data sources or native applications.

Figure 3.8 depicts a layered view of the client API. The foundation of the client
API constitutes a transport and messaging protocol layer, which provides mechanisms
to generate and process (secured) messages according to protocols such as SOAP and
http. Built upon these low-level APIs, support for different programming language
is provided again by different levels of abstraction, i.e. Stub-level, Proxy-level and
Agent-level abstraction. Each abstraction consists of a set of classes to deal with
different aspects of the VGE middleware.

The agent-level forms the top abstraction layer, which comprises distinct compo-
nents that perform a sequence of remote invocations to complete an entire task in
an autonomous fashion and thus are referred to as agents. Agents are provided to
automatically process tasks such as the execution of an application job, to negotiate
QoS or to run a query at a remote data service. The proxy level abstraction consists

65

Stub Layer

Application Stub, QoS Stub, Streaming Stub, ...

Agent Layer

supporting

Transport Layer + Security

Message Layer + Security

Proxy Layer
Application Proxy, QoS Proxy

Application/Query execution, data transfer, staging & streaming,
monitoring, error recovery and QoS management

Application Agent, Data Agent, QoS Agent

Figure 3.8. VGE Client API

of an application and a QoS proxy. The Application-Proxy supports operations to
manage the application or query execution, to initiate data transfers or staging, to
do monitoring and to enable error recovery. The QoS proxy exposes operations to
perform a QoS negotiation. Opposed to agents, which execute their tasks automati-
cally, the proxies provide different operations and, as a consequence, interactions with
the user are supported. Finally, the Stub layer includes an application and a QoS
stub comprising the low level methods of the remote services including the details of
security and ID handling, which is hidden on the layers above.

3.4.2 Sample client

Given the different abstraction layers of the VGE client API, various methods for
discovering and selecting services are supported. The simplest method constitutes
the selection of a specific service by using its address (URL). More sophisticated
methods including service discovery via registries or performing a QoS negotiation
are provided by according agents and proxies. The service discovery requires to
specify a set of service attributes (e.g. an application category) which is then used to
query a VGE registry. As a result, the client retrieves a set of services, which match
the supplied attributes. The most sophisticated service selection is performed within
a QoS negotiation process, which is detailed in Chapter 5.

Listing 3.1 comprises a simple excerpt of a Java code, which connects to an appli-
cation service and uploads input data, starts the remote applications, polls the status
and finally downloads the results. For the sake of simplicity this example is kept very
simple and details, as for example the error handling, are set aside.

66

// Crea te s new a p p l i c a t i o n proxy based on c e r t a i n p r o p e r t i e s

Prope r t i e s props = new Prope r t i e s () ;

props . se tProperty (" c l i e n t . job . uri " , " h t t p :// l o c a l h o s t : 9 0 9 0 / H e l l o W o r l d / scs / ") ;

props . se tProperty (" c l i e n t . b a s e . p r o x y . e x c e p t i o n " , " t r u e ") ;

AppProxy someProxy = new AppProxyImpl (props) ;

// Uploads a l o c a l f i l e t o t h e remote s e r v i c e u s ing t h e proxy

someProxy . upload (new F i l e (" u p l o a d . dat ") , " i n p u t A B C ") ;

// S t a r t t h e r emote l y d ep l o y ed and con f i gu r ed , n a t i v e a p p l i c a t i o n

someProxy . s t a r t () ;

// Po l l i n g t h e s t a t u s o f t h e a p p l i c a t i o n

AppProxyState proxyStatus = AppProxyState .ERROR;

St r ing appStatus = null ;

while (proxyStatus != AppProxyState . FINISHED) {

// Obta ins s t a t u s in f o rma t i on o f t h e remote j o b

// and p r i n t s out proxy and app s t a t u s

appStatus = someProxy . ge tApp l i ca t i onSta tus () ;

System . out . p r i n t l n (" - - - - - > App s t a t u s i n f o : " + appStatus) ;

System . out . p r i n t l n (" - - - - - > P r o x y s t a t u s i n f o : " + proxyStatus) ;

}

// Crea te s f i l e h a n d l e r f o r download ing t h e r e s u l t

DataHandler data = (DataHandler) someProxy . download (" o u t p u t . dat ") ;

F i l e ou tF i l e = new F i l e (" o u t p u t . dat ") ;

FileOutputStream out = new FileOutputStream (outF i l e) ;

data . writeTo (out) ;

Listing 3.1. Sample VGE client application

An example that connects to a data service would look similar, except for the
fact that the input data comprises a query to the data source and the output would
contain the query result.

3.4.3 Additional features

The VGE system is used in miscellaneous contexts and thereof additional features
have been developed with respect to certain environments such as programming lan-
guage, interface or platform. In the following some of these additional features are
outlined briefly.

A command-line client has been realized in order to be used in script-based
client applications (also Web applications realized in PHP or Perl). Each operation of
the VGE services can be invoked separately using different command line parameters.
The output of each operation is stored in appropriate files to be further processed.

67

In contrast to the low-level command-line client, a high-level Web-based client
has been implemented based on Java servlets and Java server pages (JSP). This client
interface comprises a graphical user interface (GUI) in a Web browser, which supports
the management of multiple jobs remotely, i.e. the jobs are handled persistently in
this Web application, rather than in a local client application. Basically the GUI
supports ”drag’n’drop”-style user interaction to submit inputs, start jobs, obtain
status information and download outputs.

Finally, other client bindings should be mentioned as well. The .NET client API
realized in C# enables even Office applications to utilize VGE Grid services in cor-
responding macros. Typically, in spreadsheet processing (e.g. with Excel), as often
used in financial applications, compute intensive algorithms may be utilized via VGE
services. Also the integration of VGE services in C++ applications is supported by
utilizing the gSOAP Web services framework.

In summary, different VGE client interfaces exist to enable client application de-
velopers to make use of VGE services in a convenient way.

3.5 Service provisioning

Modern information technology employs the term provisioning to describe the
initialization of a part or an entire infrastructure and all involved tasks therein. This
usually comprises configuration, setup and instantiation of the required systems, and
the organization of all sorts of security related issues, in particular, user access to
resources.

The VGE service provisioning refers to the overall process of initializing a VGE
service starting with the construction of the service and its service component selec-
tion to the final instantiation of the service in its hosting environment. In order to
support this process, the VGE service infrastructure comprises an according provi-
sioning environment including the VGE deployment tool. This graphical tool auto-
mates the service provisioning as much as possible by guiding the user through the
entire service setup procedure. Furthermore, the graphical user interface of the VGE
deployment tool enables service providers to conveniently customize and setup VGE
services, without being burdened with the details of Grid and Web technology.

Basically, service provisioning is structured into a configuration and a deployment
phase. The configuration comprises the selection and customization of the service
components as well as the configuration of the targeted hosting environment. The
deployment consists of the service preparation, its incorporation in the hosting en-
vironment and finally the instantiation of the service. The latter, in particular the
entering of a prepared service in the application container, is also commonly referred
to as technical deployment, which is usually supported by appropriate tools of the
respective hosting environment.

68

...

Application
Container

+

+

+

Description

+

Selection and Customizing
Service Components

Se
rv

ic
e

D
ep

lo
ym

en
t

Hosting Environment
Selection and Customizing

...
Se

rv
ic

e
C

on
fi

gu
ra

tio
n

. . .

Instantiation Preparation

Service

WAR Deployment

Application

Descriptor

Service

Properties

Address
Host

Config

Scripts

Libraries

Host (machine)

VGE Service

Tomcat (hosting env)

Config N

Config A

ANT

Comp N

Component A

Comp A

Component N

Component B Config B

WAR
Web application

archive

Process
Autom.

Figure 3.9. VGE service provisioning

A comprehensive graphical representation of the service provisioning process is
captured in Figure 3.9. The figure also reveals further details of the configuration
and a deployment phase which are discussed subsequently.

The service configuration initially comprises the selection of the required func-
tionality of the service, which determines the required service components. Each
service component has to be configured with respect to its used resource, e.g. the
native application has to be specified. The second step of the configuration includes
the specification of the hosting environment for the newly constructed service by def-
inition of the host address or the location of helper-tools. The deployment tool stores
the entire configuration information supplied by the user in the service description.
Internally the service description distinguishes between application- or data-related
information required at runtime and service properties required for the preparation
and deployment.

The actual service deployment is performed fully automatically, as soon as
all required configuration information has been made available and stored in the

69

application- or data descriptor and service properties. The first part of the deploy-
ment is preparation, which actually creates a deployable Web application archive
(WAR). This rather extensive process is performed by ANT-scripts7 and comprises
the creation of the directory structure and the various configuration files, the selec-
tion of the required libraries as well as, eventually, the construction of an according
Web application archive. The technical deployment of the Web application archive
relies on helper tools of the Web application container which also trigger the final
instantiation of the service.

In the following the service configuration and deployment are discussed.

3.5.1 Configuration

The service configuration is performed individually for each service and constitutes
the first phase of the overall provisioning process, which is depicted in the upper part
of Figure 3.9. The configuration mainly consists of the selection and customizing of
the used service components (i.e. service construction) as well as the targeted hosting
environment.

The output of the service configuration phase is the service description, which
comprises all necessary information required in the service deployment phase. In
particular the configuration of the service components is stored in the application
descriptor (or data descriptor in case of a data service), while the hosting environment
configuration feeds into the service properties, respectively.

VGE services are configured in a static fashion which implies that changes of the
configuration can only be applied in the context of a re-deployment of the service. But
the entire configuration information is stored in the service description, which can be
loaded in the deployment tool on re-deployment, which also eases the configuration
of similar services.

Subsequently, the service configuration is further detailed comprising the service
component configuration and the hosting environment configuration.

Service component configuration

The service component configuration comprises the selection and customization
of the service components. The corresponding information is eventually stored in the
application or data descriptor. The minimal specification of service components for
a VGE application or data service requires the following service components:

Application service = Application execution + data transfer OR staging

Data service = Query execution + data transfer OR staging

7Apache Ant is a Java-based build tool, http://ant.apache.org/

70

(a) VGE Deploymenttool

<application>
 <info>
 <name>HelloWorld</name>
 </info>
 <configuration>
 <working−directory>
 <path>../services/HelloWorld</path>
 </working−directory>
 <input−files>
 <file> <name>inputFile</name> </file>
 </input−files>
 <output−files>
 <file> <name>outputFile</name> </file>
 </output−files>
 <job−script>
 <path>../../services/HelloWorld/config/startup.sh</path>
 </job−script>
 <finish−file>
 <name>finishFile</name>
 </finish−file>
 <status−info>
 <status−script>
 <path>
 ../../services/HelloWorld/config/status.sh
 </path>
 </status−script>
 <status−file>
 <name>status.txt</name>
 </status−file>
 </status−info>
 <kill−script>
 <path>
 ../../services/HelloWorld/config/kill.sh
 </path>
 </kill−script>
 </configuration>
</application>

(b) Application descriptor

Figure 3.10. VGE service component configuration

71

An according minimal application descriptor usually comprises the specification
of filenames or patterns for input-, output-, and status-files. Moreover, scripts have to
be defined in order to start and optionally kill the job execution as well as to obtain
status information. The corresponding data descriptor of a data service contains
information about the underlying data sources.

Figure 3.10(a) depicts a screenshot of the deployment tool showing all mentioned
scripts and files related to an exposed native application. This information is finally
stored in the application descriptor exemplified in Figure 3.10(b).

Hosting environment configuration

The hosting environment configuration comprises the selection and customization
of the targeted application container, in which the VGE service should be hosted. This
information is supplied by the user via the deployment tool and stored in the service
properties. The minimal specification of the hosting environment requires the host
address (URL) and user credentials, which grant authorization for the deployment
procedure.

Figure 3.11(a) depicts a screenshot of the deployment tool showing the mini-
mum specification of the targeted hosting environment (Tomcat). This information
is stored in the service properties exemplified in Figure 3.11(b).

3.5.2 Deployment

In contrast to the service configuration, the service deployment is a fully automatic
process, which finally results in a VGE service that is being setup and instantiated in a
running Web application container (hosting environment). The bottom half of Figure
3.9 depicts the structure of the service deployment with three phases: the prepara-
tion of the Web application archive (WAR), the actual WAR-deployment and the
instantiation of the VGE service. In the following these phases are further detailed.

Preparation

The preparation phase covers the entire creation process of the Web application
archive (WAR) and is performed automatically by a set of ANT-scripts. The WAR-
creation process is being customized by the service properties, which have been cre-
ated as a result of the service configuration. The Web application archive comprises
all necessary libraries and configuration files a VGE service requires. The preparation
process (i.e. the ANT scripts) firstly generates all configuration files and, secondly,
incorporates the configuration files and libraries as determined by the selected service
components in the WAR-file.

72

(a) VGE Deploymenttool

#HelloWorld sample service

service.name=HelloWorld

service.application.descriptor=

 ../../HelloWorld/config/HelloWorld.xml

service.config.dir=../../HelloWorld/config

service.tomcat.dir=

service.protocol=http

service.host=localhost

service.port=9090

service.manager.user=manager

service.manager.pwd=manager

service.remote.dist=

service.components=ApplicationService

(b) Service properties

Figure 3.11. VGE hosting environment configuration

The following configuration files have to be generated:

• Web application deployment descriptor (web.xml)

• Web service deployment descriptor (server-config.wsdd)

• Web service definition language (WSDL) documents for each component

• Web service-internal properties

All these files are created automatically according to the information supplied in
the service configuration and do not have to be written manually as with other Web
services frameworks.

73

The second part of the preparation phase is the actual buildup of the WAR-file
including the incorporation of the generated configuration files and the libraries. The
file-structure of the Web application archives follows the servlet specification8, which
also determines the exact location of all included files. The included libraries contain
external third party developments such as the used Web services framework Apache
Axis as well as the internal VGE libraries for each service component. Finally, the
created archive constitutes a deployable WAR-file.

WAR deployment

The actual Web-deployment of a WAR-file is usually performed by according
helper-tools of the targeted Web application container. In case of VGE Apache Tom-
cat is used as default Web application hosting container, mainly because it is a free
open-source Java hosting platform. Due to the flexible configuration of VGE other
hosting environments such as JBoss9 are supported as well. The only requirement
of the hosting environment is the support for hot deployment and undeployment of
Web applications (i.e. WAR-files) at runtime. The rationale of a hot deployment
approach is not to interfere with existing services running in the same container as
opposed to cold deployment, which requires a restart of the application container in
order to deploy new services.

Tomcat supports the live-incorporation of Web applications and encapsulates this
underlying complex process within its manager servlet, which is utilized by VGE
through ANT. More precisely, in order to deploy and also to undeploy or re-deploy
VGE services in running Tomcat servers, the provisioning environment comprises
ANT-scripts which contact the manager servlet of Tomcat to initiate the WAR-
deployment. The underlying complex procedure with the service entering the ap-
plication container and being made accessible is performed entirely automatically
and transparently to the user.

The main benefit of the WAR-file approach being used in VGE is the hot-
deployment possibility of the entire Web application which embeds the Web service
implementation and the Web service framework (WS-framework). Opposed to this
mechanism, Web services frameworks usually provide their own mechanisms to de-
ploy and undeploy services, which rely on their own implementations (such as the
Axis-Admin servlet). This usually comes with the drawback of less scalability due to
all services running in a single Web application and the dependency on a particular
WS-framework. VGE is also open and customizable with respect to the applied WS-
framework. Apache Axis is being used by default, but other WS-frameworks such as
Sun’s JAX-WS-RI10 are supported as well.

8http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
9JBoss, http://www.jboss.org/

10JAX-WS-RI, Java API for XML Web services - reference implementation, https://jax-ws.
dev.java.net/

74

Instantiation

The service instantiation is also an important characteristic of the VGE services
in comparison to other Web and Grid services. Usually Web services are instantiated
upon the first request which, in case of complex services, results in delayed responses
upon the first usage of a particular service. The instantiation of VGE services is
triggered by the deployment and consequently, there are no delays due to instantiation
upon the first request. This feature is especially important to enable elasticity of the
required services, i.e. if additional services are deployed upon heavy utilization of
other services and being stressed right after the deployment.

The instantiation of the VGE services is initiated internally by a Web application
listener, which is being informed of a deployment event by the application container.
The listener then simulates an internal status request, which requires all necessary
libraries and classes to be loaded and the configuration to be processed. This also
implies that potential misconfigurations or error-setups are being detected upon de-
ployment before the first actual client request arrives.

In summary, service provisioning is a complex process, comprising an interactive
configuration phase and an automatic deployment phase. Each phase is furthermore
structured into several steps, which are shown in Figure 3.9. The configuration phase
comprises the service component and hosting environment customization, while the
deployment phase is structured by the preparation, the WAR deployment and the
instantiation of the service.

3.6 Client provisioning

The VGE client infrastructure, as outlined in Section 3.4.1, comprises a high-level
client API for the development of individual Grid client applications. Besides this
development approach, VGE provides a generic Web-based Grid client application to
manage remote jobs via VGE services. This Web-client is also subject to an according
provisioning as described in the following.

The VGE Web client provisioning refers to the entire process performed in a VGE
client environment to set up and initialize a generic Web-based Grid client application.
The main purpose of this generic Grid client application is to enable users to interact
with VGE services and manage their jobs accordingly without installation, integration
or even development of client software. The VGE Web client can be accessed by a
Web browser and provides all necessary operations to manage remote jobs running
in VGE services.

In order to set up such a generic Web client in the VGE client environment,
an according Web application hosting environment such as Tomcat, as well as a
corresponding configuration are required. The deployment process is performed au-

75

tomatically by ANT-scripts in a similar fashion as presented for the service-side. It
comprises the following basic steps:

1. Creation of the required configuration (e.g. Web application deployment de-
scriptor) and properties

2. Buildup of the client Web application archive (client-WAR) including all nec-
essary configuration and Java libraries.

3. Deployment of the client WAR-file in the hosting environment

The Web client provisioning follows a structure similar to the VGE service provi-
sioning, except that it is less complicated.

Figure 3.12(a) shows a sample screenshot of the Web client and the according
configuration is exemplified in Figure 3.12(b).

(a) VGE Web client

Example client−specific properties file.
#

The client.name property indicates the client
context name and its prefix

client.name=gsclient
client.context.prefix=

The client.protocol + client.host + client.port
propterties specify an URL to the hosting env.
client.protocol=http
client.host=localhost
client.port=9090

Credentials required for the manager servlet of Tomcat
client.manager.user=manager
client.manager.pwd=manager

Client−components to deploy (only internally used yet)
client.components=ApplicationClient,FileJobManager

Optional Web client configuration, all having defaults!
client.upload.path=./tmp
client.services.path=./tmp
client.services.file=./tmp/services.dat
client.users.file=./tmp/myusers.dat
client.keystore.file=
client.jobstore.path=./tmp/jobstore

(b) Client properties

Figure 3.12. VGE client configuration

76

In contrast to the VGE service provisioning, the Web client configuration is less
complex and does not require a separate deployment tool. Moreover, the configura-
tion of such a Web client is usually performed by experienced administrators which
actually prefer editing text-files and executing ANT-scripts compared to entering
information in a graphical user interface.

3.7 Summary

This chapter presented a comprehensive overview of the Vienna Grid Environ-
ment. VGE is a secure service oriented Grid environment for the on-demand provi-
sioning of HPC applications and data sources as Grid services. The description com-
prised details of the architecture and the infrastructure on the client- and service-side.
A particular emphasis has been put on the service component model and all relevant
service components as well as on the complex provisioning and deployment process.

77

78

Chapter 4

QoS Model

This chapter describes the basic approach to model Quality of Service support for
Web and Grid Services. The motivation for Quality of Service support as introduced
in the previous chapters can be concluded from the requirements of specific application
domains which make QoS support mandatory. A representative example is the health
domain, where sensible compute-intensive applications aim to support patient-specific
and time-critical medical procedures (e.g. surgery). These applications necessitate
QoS support to be successfully applied in the daily practice of healthcare.

Initially an overview of the QoS support model is presented, including the basic
requirements and the used terminology. Subsequently the QoS support model is being
detailed with respect to the general capabilities of the QoS support as well as the QoS
offer generation in response to a QoS request. In particular, the components of the
QoS support model are identified and their interactions as well as the overall inputs
and outputs are discussed.

Requirements

The basic requirements of the QoS support can be drawn from a motivating
example-application in the health domain: a neurosurgery support application, which
utilizes compute-intensive non-linear image registration methods to simulate the
brain-shift phenomenon during surgery to coordinate surgical navigation. In order
to use such a computationally demanding application in practice, the availability of
sufficient resources to run the application and timely deliver results has to be guar-
anteed and contracted in advance. Sufficient resources are usually available on HPC
platforms provided by supercomputing centers, which substantiate the requirement
for exposing the native application as a service, being used remotely. Contracting the

79

service usage is typically subject to a business context (i.e. clients pay for the service
usage) and the contract is established by negotiating a service level agreement.

Given the mentioned representative neurosurgery support application from the
health domain, the basic requirements of the QoS support are guarantees of the re-
sponse time and price. The QoS support enables the establishment of a contract that
specifies guarantees about an application execution in terms of QoS attributes for the
response time and the price. The response time guarantees require according esti-
mations and pre-booking of resources. Prices are subject to negotiation and flexible
business models of service providers which expose native applications as services. As
a consequence the QoS support has to provide the following capabilities:

• Negotiation of QoS attributes (e.g. response time and price).

• Establishment of an according agreement between a client and a service (e.g.
SLA).

• Resource capacity estimation (e.g. runtime, CPUs, memory) in advance.

• Advance resource reservation (e.g. number of nodes/CPUs).

• Flexible pricing (e.g. pay-as-you-go).

Generally, the QoS support infrastructure has been designed for arbitrary QoS
attributes (e.g. a certain trust level or a minimum availability level), but the focus of
this work has been put on response time and price guarantees of HPC applications.
This is also a major distinguishing characteristic to existing work in the QoS domain.
Most related work such as [Menasce and Casalicchio, 2004] are concerned with rather
basic Web applications which exhibit almost constant response times in the range
of seconds. Contrarily, this work deals with heavily varying response times of HPC
(simulation) applications in the range of minutes, hours and even days, dependent on
the application-specific input parameters and utilized hardware infrastructure.

Terminology

The QoS model relies on similar notational conventions and terminology as used
in existing standards and specifications such as the Web Services Level Agreement
(WSLA) language specification [Heiko et al., 2003] and the Web Services Agreement
(WSA) specification [Andrieux et al., 2007]. The general objective of both specifi-
cations is to provide a standard for service level agreements (SLAs) used with Web
services. The concrete naming of many terms therein varies and thus, no common
terminology can be concluded. As a consequence, this model defines and uses the
following terms:

QoS parameters: A QoS parameter is defined as a QoS-relevant input param-
eter to the QoS model, which affects the performance of the underlying application.

80

Typically, QoS parameters comprise application-specific meta data to be used by the
QoS model for an accurate prediction of the QoS capabilities. The concept of a QoS
parameter is only barley defined in existing standards, but may be related to an
agreement creation constraint of the WSA specification.

QoS attributes: A QoS attribute is defined as a guaranteed quality the service is
capable to offer and it is determined by the QoS model. Opposed to QoS parameters,
which are the input to the QoS model, the QoS attributes are outputs of the QoS
model. For example, the service quality to assure may be the time or price of a
certain computation and the concrete value may be 10 minutes or 5 e. In the WSLA
specification a QoS attribute is referred to as SLA parameter and the concrete value
is formulated using a Service Level Objective, while the QoS attribute equivalent in
the WSA specification is named guarantee or guarantee term.

QoS capability model: The QoS capability model aims to determine a set of
QoS attributes (i.e. concrete values of these attributes) and, in particular, a range of
values for each QoS attribute that can be assured by the service, based on a set of
concrete QoS parameter values.

QoS offer generation: The QoS offer generation defines the behavior of the QoS
support when responding to the given client-inputs, which comprise QoS parameters
and requested QoS attributes. The output of the offer generation process is a set of
offered QoS attributes (i.e. values for these QoS attributes), that also fulfill the clients
request. The interaction of the client and the service in the context of potentially
repeated QoS offer generations is also referred to as QoS negotiation.

Neither the Web Services Level Agreement (WSLA) language specification nor
the Web Services Agreement (WSA) specification detail the actual procedure how
an agreement is established, i.e. how a potential negotiation is performed. As a
consequence, no equivalents to the QoS capability model or the QoS offer generation
exist in the WSLA or the WSA specifications.

4.1 QoS Capability Model

This section outlines the QoS capability model M , which aims to determine a
set of QoS attributes that can be assured by the service, based on a set of QoS
parameters. The QoS capability model is being presented along the lines of the
more complex model introduced in [Pattnik et al., 2003] in the context of autonomic
computing. The QoS capability model facilitates a mapping of QoS parameters P to
QoS attributes A, which is captured by the relation β as presented in 4.1.

M : β ⊆ P × A (4.1)

The relation β specifies valid input-output pairs or in other words: Valid input

81

QoS parameters to output QoS attribute mappings. In contrast to a function, the
relation β permits an output variability which is very common to most IT-systems
(i.e. for a given input p ∈ P diverse mappings to A exist). This very high-level
abstraction defines a generic functional behavior, which is also adhered to by the
implementation of the QoS capability model as presented in the next chapter.

p
1

p
s

Input

a 1

Output

a t
...

QoS Model

n1m m

QoS attributesQoS parameters

Figure 4.1. QoS Model Input-Output.

The inputs and outputs of the QoS model are also shown in Figure 4.1, which
specifies QoS parameters as inputs and QoS attributes as outputs. Equivalently to
Relation 4.1, Figure 4.1 shows an arbitrary number of QoS parameters (p1 ... ps) as
input to the QoS model and an also arbitrary number of QoS attributes (a1 ... at) as
output. The QoS capability model internally relates these inputs to outputs utilizing
an orchestration of QoS sub-models (m1 ... mn), which aim to reduce the overall
complexity of the implementation as outlined in Chapter 5.

Subsequently, the QoS capability model is being exemplified, using sample QoS
parameters and QoS attributes as well as QoS sub-models composed of mathematical
functions.

QoS capability example

The example describes the QoS capability model in the context of an HPC ap-
plication that solves a number of equations. The application is assumed to be able
to utilize parallel compute nodes with an efficient scaling behavior. Two input QoS
parameters (p1 and p2) are used: a resource measure (number of computing nodes,
e.g. on a cluster) and a computation effort measure (number of equations to solve).
The output of the QoS capability model in this example are two QoS attributes (a1

and a2) which represent the total computation time and the price for the computa-
tion. The QoS capability model itself comprises two sub-models (m1 and m2) which
interdependently calculate the QoS attributes with mathematical formulas based on
the QoS parameters.

Given this context an exact definition of the input QoS parameters (i.e. their
value ranges) as well as the functional behavior of the QoS capability sub-models are
outlined. Subsequently, the QoS capability model is applied to derive all capable sets
of QoS attributes.

82

The example assumes the following definitions related to the input QoS parameters
as well as two output QoS attributes:

P = {p1, p2}
p1 ∈ P1 . . . number of computing nodes

p2 ∈ P2 . . . number of equations to solve

P1 = {2, 4, 8}
P2 = {100, 200}

A = {a1, a2}
a1 . . . total computation time (in minutes)

a2 . . . price of the computation (in Cent)

These definitions assume that the application can be executed utilizing 2, 4 and
8 computing nodes as well as that it is able to solve 100 and 200 computations.
Besides the input QoS parameters, their ranges and the output QoS attributes, the
QoS capability sub-models are defined with simple functions that eventually calculate
(=predict) the runtime and price:

M = {m1, m2}
m1 . . . computation time prediction model

m2 . . . price prediction model

m1 =
p2

ln (p1) + 1
m2 = p1m1

The model functions assumed in this example represent simple functions for the
computation time prediction and the price prediction. The computation time is as-
sumed to scale with increasing resources in a logarithmic manner. The price calcu-
lation is based on a fixed pricing of the total amount of resources required (number
of CPUs times calculation time). The interdependency of the models in this example
is specified by the dependency of m2 on the result of m1, i.e. the price prediction is
dependent on the computation time prediction.

In the next step all model input combinations P c are calculated and based on this
complete set of inputs the total set of capable QoS attributes Ac is computed. Please
note that this illustrative example is not applicable for a general case with infinite
sets and/or arbitrary models. For the sake of simplicity this example only deals with
finite sets and simple mathematical models as follows:

83

P c = P1 × P2 = {〈2, 100〉 , 〈2, 200〉 , 〈4, 100〉 , 〈4, 200〉 , 〈8, 100〉 , 〈8, 200〉}
Ac = {〈59, 118〉 , 〈118, 236〉 , 〈42, 168〉 , 〈84, 336〉 , 〈32, 256〉 , 〈65, 520〉}

The set of all model input combinations P c is being calculated using all QoS pa-
rameter combinations (P1×P2), comprising a total of six different input combinations
(e.g. 2 computing nodes and 100 equations to solve as represented in the first element
of P c).

Subsequently, the set of all capable QoS attributes Ac is being calculated based on
the set of all model input combinations P c. Ac comprises all QoS attribute tuples that
the service is able to ensure. In particular, Ac contains six elements, each comprising
a tuple of computation time and the price for the computation. E.g. the first element
of Ac states that the computation can be performed within 59 minutes with a price
of 1.18 e.

4.2 QoS Offer Generation

This section outlines the QoS offer generation performed by the service in response
to a given client request. The input to this process is supplied by the client and
comprises QoS parameters as well as requested QoS attributes. The output of the
QoS offer generation is a set of offered QoS attributes. In other words, the offer
generation process responds to a given client request (input) with an appropriate
offer (output). The offered QoS attributes usually meet both conditions: the service
is capable to ensure them and they fulfill the client’s request.

The main objective of the QoS offer generation to provide certain QoS attributes
that satisfy the client’s request is accomplished by using basic set theory. More pre-
cisely, the QoS offer generation specifies that the offered QoS attributes are calculated
by the intersection of the capabilities of the service and the requested QoS attributes
of the client. The set of capabilities a service is able to ensure Ac is represented as set
of n-tuples as defined in the previous Section 4.1. The set of requested attributes Ar

is assumed to be represented also as set of n-tuples consisting of all QoS attributes
tuples that fulfill the client’s request.

The intersection of the client’s request and the service’s capabilities, as defined by
the QoS offer generation to determine the offered QoS attributes, can be formulated
as follows:

Ao = Ar ∩ Ac (4.2)

The equation 4.2 defines the intersection of the requested Ar and capable QoS

84

attributes Ac resulting in a set of QoS attributes Ao that the service actually offers.
Consequently, all offered QoS attribute tuples meet both: The request of the client
and the capabilities of the service to ensure these QoS attributes.

The set of capable QoS attributes is obtained from the QoS capability model
presented in Section 4.1, which indicates that the QoS offer generation is dependent
on the QoS capability model, but not vice versa, i.e. the QoS capability model is
independent from the QoS offer generation. The set of requested QoS attributes has
to be supplied by the client in the same format as the QoS capability model provides
the set of capable QoS attributes. The same format is required due to the intersection
of the requested and capable QoS attributes.

The following example illustrates the approach by modeling the QoS attributes as
distinct dimensions in a multidimensional space. Thus, a geometrical shape can be
derived for both sets of QoS attributes (requested and capable). Figure 4.2 illustrates
the approach with three dimensions (i.e. a set of three QoS attributes a1 to a3) for
the requested and the capable QoS attributes. Each QoS attribute has a minimum
and a maximum value, hence an according intersection of requested and capable QoS
attributes can be derived in order to compute the offered QoS attributes. For the
sake of simplicity all minimum values are set identically to 0.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

1

a r
max2a i min

c

a i min
r

a 3
c

max

r
max3a

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������
������
������
������
������
������

������
������
������
������
������
������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������
������
������
������
������

������
������
������
������
������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

a

a

1 max

a

c

r
max

a

1

2 max
a

c

3

2

QoS Request Cuboid

QoS Capability Cuboid

a

QoS Offer Cuboid

Figure 4.2. Multidimensional request and capability intersection.

85

This graphical example illustrates the set of all capable QoS attributes as QoS
capability cuboid and the set of requested QoS attributes as QoS request cuboid.
The QoS offer generation specifies that the intersection of these sets results in a set
of offered QoS attributes, which is depicted by the QoS offer cuboid.

QoS offer generation example

The explicatory example started in Section 4.1 is continued here. The derived
set of capable QoS attribute tuples Ac, which describe the total computation times
and prices, have been taken over, while the client’s request Ar is newly defined as
follows: The total computation time must not exceed 60 minutes and the price must
not exceed 2.5 e (= 250 Cents). Finally the corresponding intersection of Ac and Ar

is computed and the resulting set of offered QoS attribute tuples Ao can be concluded
as follows:

Ac = {〈59, 118〉 , 〈118, 236〉 , 〈42, 168〉 , 〈84, 336〉 , 〈32, 256〉 , 〈65, 520〉}
Ar = {〈ar

1, a
r
2〉 : 0 ≤ ar

1 ≤ 60 ∩ 0 ≤ ar
2 ≤ 250}

Ao = {〈59, 118〉 , 〈42, 168〉}

This illustrative example shows that given the client’s request1 the QoS offer gen-
eration (i.e. the intersection of the capable and the requested sets of QoS attributes)
can be applied to determine the offered QoS attributes.

1Note that the requested set of QoS attributes Ar actually comprises 15.311 tuples/combinations
if ar

i are natural numbers.

86

Chapter 5

QoS Support

This chapter describes the Quality of Service support proposed in this thesis.
Support for Quality of Service is a basic requirement of specific application domains
such as the health sector. Compute-intensive applications in the health domain target
support for time-critical medical procedures (e.g. surgery), which make QoS support
mandatory. This chapter addresses such applications and presents a comprehensive
description of the Quality of Service support infrastructure and its realization. The
main objective therein is to provide a proof of the concepts defined in the QoS support
model as introduced in Chapter 4 and to demonstrate that Quality of Service can be
established in a service-oriented environment.

The provision of native HPC applications as Grid services that also support Qual-
ity of Service accomplishes an added value for users and providers of these services.
Grid application users benefit by performing a negotiation and agree on certain QoS
guarantees in advance to the actual usage of a service on a case-by-case basis. Ser-
vice providers achieve an additional business value by providing offers and potentially
selling the usage of their services in a competitive market.

The QoS support addresses the special requirements of compute-intensive and
time-critical HPC applications, which necessitate guarantees on the execution time
and the price. Consequently, the focus besides security has been set on time and price
guarantees, which are represented by distinct negotiable QoS attributes and associ-
ated with appropriate QoS models; hence, the implemented QoS support infrastruc-
ture comprises QoS models for time and price. Another important requirement is a
facility to provide advance resource reservation in order to book a specific resource in
advance.

This chapter has been initially derived from [Benkner and Engelbrecht , 2005, 2006]
and from works focusing on generic QoS negotiation in the medical domain in [Mid-
dleton et al., 2007; Benkner et al., 2007].

87

This chapter is organized as follows: Initially, an overview of the basic QoS support
scenario is presented by outlining the QoS support within a single service, which is
referred to as micro QoS management, and the negotiation process between a client
and one or more services, which is referred to as macro QoS negotiation. Then a more
detailed description of the micro QoS management presents the framework for the
QoS models which predicts certain QoS attributes, the required resource reservation
capabilities as well as a discussion of the underlying QoS management strategies.
Subsequently, the macro QoS negotiation is presented including details about different
negotiation approaches. Finally, this chapter discusses the security infrastructure in
the context of Quality of Service.

5.1 Overall Scenario

The overall QoS support scenario comprises one client interacting with one or
more QoS-aware services in order to establish an agreement on certain qualities of
a service. According to [MacLaren, 2003] and existing standards such as the Web
Services Level Agreement (WSLA) language specification [Heiko et al., 2003] and the
Web Services Agreement (WSA) specification [Andrieux et al., 2007] this interaction
is defined as QoS support establishment phase and takes place in advance to the actual
service usage. Being more precise, the actual QoS support establishment phase in this
work is structured into a macro QoS negotiation, when a client interacts with one or
more services by exchanging requests and offers, and a micro QoS management, when
one service attempts to generate an offer in response to a client’s request.

Offer

Negotiation
QoS

Request

QoS
Managment

Macro
QoS Negotiation

Micro
QoS Management

Providers
ServiceClient

Application

Figure 5.1. QoS support scenario

Figure 5.1 illustrates the big picture of the QoS support scenario. On the left-
hand side the macro QoS negotiation is shown, where a client negotiates with one
or more service providers by exchanging requests and offers and finally, establishes a
QoS contract with one service provider. On the right-hand side the figure depicts the
micro QoS management with each service provider individually attempting to satisfy
the client’s request.

88

In the following, this section briefly outlines the micro QoS management and
macro QoS negotiation.

Micro QoS Management

In this thesis the process of generating a QoS offer upon a client’s request is re-
ferred to as ”microscopic” QoS management. A QoS-aware service internally relies
on a set of QoS models1 to provide a set of QoS guarantees, expressed by QoS at-
tributes. The QoS support provides QoS attributes for the price of the application
execution on a specific service as well as for the scheduled time of the application
execution (i.e. begin- and end-time). In order to ensure the on time execution of the
application the required resources have to be available and consequently pre-booked
using a reservation-based resource management system.

The reservation-based approach distinguishes significantly from other best-effort-
or priority-based approaches as targeted by most traditional QoS approaches [Zheng ,
2001], because it guarantees the exclusive availability of the required resources in ad-
vance. As a consequence, an appropriate resource management system that supports
advance reservation is required. Further details will be discussed in Section 5.2.

Macro QoS Negotiation

The process of requesting and generating offers with certain QoS guarantees is
initiated by a client with one or more service providers and takes place in advance
to the actual service usage. A client wishing to run an application has to choose a
service provider which will run the job. Obviously, the selection process is dependent
on the Quality of Service offered by each service. The QoS support infrastructure
enables clients to negotiate with multiple services before they choose a single service
provider to establish an agreement with. This negotiation process between a client
and the service provider(s) is referred to as ”macroscopic” QoS negotiation.

The negotiation approach opens a wide range of business options to clients and ser-
vice providers. As soon as a client starts a negotiation with multiple service providers
to run a specific job, a specific electronic market (e-market) is instantly created, where
the market participants (service providers) contest against each other about selling a
specific product, which in this case is the application execution for a specific job. The
economic implications of such electronic markets (c.f. eBay2) are subject to ongoing
intensive research [Nissanoff , 2006] and go far beyond the scope of this work, but
the technical details of the implementation as well as a brief economic analysis are
discussed in Section 5.4.

1QoS models in this chapter correspond to QoS sub-models introduced in Chapter 4.
2eBay, http://www.ebay.com/

89

5.2 Microscopic Quality of Service

This section presents the details of the microscopic Quality of Service management
(Micro QoS), which are mainly derived from [Benkner and Engelbrecht , 2006]. As
stated in the overview the micro QoS management concentrates on providing QoS
attributes to ensure guarantees for the scheduled time of the application execution (i.e.
begin- and end-time) and its price. Figure 5.2 illustrates the micro QoS management,
in particular, the used QoS models and the QoS manager as well as the overall inputs
and outputs.

Descriptor
Request

client

from

Request
QoS

Offer
QoS

Micro QoS Management

to

client

Resource
Model

Pricing
Model

Performance

QoS
Manager

Model

Figure 5.2. Micro QoS Management [Benkner and Engelbrecht , 2005]

The figure shows three QoS models for the estimation of the application’s runtime,
the resource allocation and the price calculation, which are depicted by the perfor-
mance model, the resource model and the pricing model, respectively. The resource
model interfaces a concrete resource management system to provide capabilities for
advance resource reservation. These components are utilized by the central QoS
manager, which organizes the orchestration and interaction of the QoS models.

The input and output of the micro QoS management, which is received from
and delivered to a client, shows the request in form of an application-specific request
descriptor and a QoS request. The request descriptor contains QoS parameters with
a information about the application job, and the QoS request specifies the requested
QoS attributes such as preferred execution time or maximum price. The client inputs
are processed by the micro QoS management, which usually responds to the client
with a QoS offer comprising appropriate QoS attributes as initially requested.

5.2.1 QoS Attributes, Parameters and Models

The micro QoS management relies on QoS models, QoS attributes and QoS param-
eters. Generally, QoS attributes and parameters are used as input and/or outputs
to QoS models, while the composition of all QoS models (plus the QoS manager)
constitute the overall micro QoS support. In the following all these QoS components
(QoS attributes, QoS parameters and QoS models) are described in further detail.

90

QoS Attributes

The QoS support focuses on guaranteeing a certain execution time and price for a
specific application. The actual execution time is defined with the begin- and end-time
of a specific application job. Consequently, the actual execution time comprises two
QoS attributes, which are subject to negotiation: begin-time and end-time. Usually
a client specifies the begin-time request for a certain job as the earliest possible point
in time, when the application can be launched. Typically this refers to the time when
all necessary input-data is available. The end-time specifies the latest possible point
in time, when the application should be finished and the results should be available
in the client’s working directory as introduced in Section 3.3. The price defines a
specific maximum double value in a defined currency (e.g. e), which must not be
exceeded.

Given the focus of the micro QoS management the following negotiable QoS at-
tributes are supported:

• begin time (point in time)

• end time (point in time)

• price

The supported QoS attributes feed into XML-based documents, which are passed
back and forth between client and service throughout the negotiation process. The
QoS request and the QoS offer are defined as QoS descriptors following the Web
Service Level Agreement (WSLA) specification by IBM [Heiko et al., 2003].

is a

Descriptor
QoS

QoS

QoS
Offer

Request

Contract
QoS

Figure 5.3. QoS Descriptors

A QoS descriptor represents a (potential) agreement on a single service usage
between a service consumer (client) and a service provider. Depending on the state
of a QoS negotiation, Figure 5.3 shows that a QoS descriptor is either a QoS request,
a QoS offer, or a QoS contract.

Web Service Level Agreements: A QoS descriptor as exemplified in Figure
5.4 consists of three main blocks: parties, service definition, and obligations. The

91

parties block comprises information about the signatory parties involved, the service
definition block specifies the subject matter of the agreement (i.e. details of the service
and SLA parameters) and the obligations block defines the objectives associated with
each parameter. Subsequently, each block of a QoS descriptor is being described in
further detail.

<SLA name="SPECT.SLA" xmlns="http://www.ibm.com/wsla">
 <Parties>
 <ServiceProvider name="CN=ISC/emailAddress=office@par.univie.ac.at"/>
 <ServiceConsumer name="CN=gerry/emailAddress=gerry@par.univie.ac.at"/>
 </Parties>
 <ServiceDefinition name="SPECTService">
 ...
 <Operation ... name="start" ...>
 <SLAParameter unit="GMT" type="time" name="beginTime"> ...
 <SLAParameter unit="GMT" type="time" name="endTime"> ...
 <SLAParameter unit="euro" type="double" name="price"> ...
 ...
 <SOAPOperationName>start</SOAPOperationName>
 </Operation>
 ...
 </ServiceDefinition>
 <Obligations>
 <ServiceLevelObjective name="priceObjective">
 <Obliged>provider</Obliged>
 <Validity>
 <Start>2009-01-01T12:00:00.000+00:00</Start>
 <End>2009-01-01T14:000:00.000+00:00</End>
 </Validity>
 <Expression>
 <Predicate xsi:type="Equal" ...>
 <SLAParameter>price</SLAParameter>
 <Value>12.5</Value>
 </Predicate>
 </Expression>
 ...
 </ServiceLevelObjective>
 ...
 <ServiceLevelObjective name="endTimeObjective">
 ...
 <Expression>
 <Predicate xsi:type="LessEqual" ...>
 <SLAParameter>endTime</SLAParameter>
 <Value>1230814800000</Value> <!-- ms since 01/01/1970 -->
 </Predicate>
 </Expression>
 ...
 </ServiceLevelObjective>
 ...
 </Obligations>
</SLA>

Pa
rt

ie
s

S
er

vi
ce

 D
ef

in
it

io
n

O
bl

ig
at

io
ns

 (
O

bj
ec

tiv
es

)

Figure 5.4. QoS Descriptor example

The parties block defines all contracting parties, which are usually extracted from
the security certificates of users and service providers (c.f. CN, common names in
the example). The service definition block defines all operations subject to the agree-
ment and a set of SLA parameters, which are defined through the supported QoS
attributes. The example QoS descriptor refers to a service named SPECTService
and defines three SLA parameters (beginTime, endTime and price) for the operation

92

start. Furthermore, the service definition block specifies the overall contract duration
as well as metrics and types for each parameter, which are neglected in the exam-
ple. The last block is concerned with obligations, which actually comprises a list of
objectives. Each objective is linked to an obliged party, has an according validity
and defines an expression that is associated with a defined SLA parameter. In the
example the SLA parameter price has to be equal to 12.5 e and the endTime of the
job execution must not exceed 01 Jan 2009, 14:00:00.000 GMT, which corresponds
to 1.230.814.800.000 milliseconds since 01 Jan 1970, 00:00:00.000 GMT.

Further details about the Web Service Level Agreement can be found in its lan-
guage specification [Heiko et al., 2003].

QoS Parameters

QoS parameters comprise meta information about the application job and the
used hardware. QoS parameters are used as inputs to the QoS models, which either
have to be supplied by the client (application-specific information) or by the service
provider (machine-related information). The respective QoS parameters are stored
in different descriptors: The machine descriptor comprises all hardware-related infor-
mation, while the request descriptor consists of application-specific meta information
about a concrete job.

QoS Models

A QoS model is usually associated with one or more QoS attributes and supports
the prediction of concrete values for these QoS attributes in advance. Moreover, a
QoS model may also just predict an intermediate internal QoS argument which is
then used as input to another QoS model. Such an internal QoS argument is neither
a QoS parameter nor a QoS attribute and it is not visible outside the QoS support
framework in the QoS offer. The QoS infrastructure utilizes three QoS models in
order to predict the application’s runtime (in particular the begin and end-time of a
certain job) and the price. Therefore, the following QoS models are supported:

• Performance Model

• Resource Model

• Pricing Model

In a nutshell: the performance model predicts the application’s runtime and cor-
responding resource requirements for a specific application job. The resource model
enables the booking of resources in advance and the pricing model calculates the price
of the specific service usage.

93

Implementations of these QoS models are dependent on the concrete application,
the service provider’s resource management and/or the business strategy. As a conse-
quence, the micro QoS management encapsulates the implementations of these QoS
models. The QoS manager just uses appropriate interfaces to interact with the QoS
models.

5.2.2 Performance Model

The main purpose of the performance model is the estimation of the applica-
tion’s runtime and other machine-relevant indicators such as memory or disk space
in advance to a potential job execution.

Modeling the performance of HPC applications is a complex undertaking, which
goes far beyond the scope of this work. The QoS support introduced in this chapter
is based on the assumption that it is possible to implement a performance model for
a particular application in order to estimate the application’s runtime for a specific
job in advance to a potential job execution.

Performance Model Implementation

The QoS support infrastructure does not prescribe the actual nature of perfor-
mance models, since each application is different. For many applications it might
be difficult to build a general analytical performance model. Thus, the micro QoS
support specifies only an abstract interface for performance models which defines a
single method to estimate the performance (c.f. Figure 5.5).

PerformanceModel
getPerformanceEstimate (RequestDesc, MachineDesc) : PerformanceDesc

PerfModelImpl
for App A
at Host X

PerfModelImpl

at Host Y

...

for App A

Figure 5.5. Performance Model Details

Figure 5.5 depicts the interface of the performance model and certain implemen-
tations for an application A running on different machines (X and Y).

94

Performance Model Input/Output

The major prerequisite for the advance runtime estimation of a specific application
job are appropriate performance model inputs. These comprise information about the
application job itself in the request descriptor, as well as about the hardware to use in
the machine descriptor. This meta information is also referred to as application- and
machine-specific QoS parameters which are supplied to the performance model by the
client (request descriptor) and the service provider (machine descriptor). The output
of the performance model is stored in the performance descriptor, which contains the
prediction of the actual runtime required for a specific job.

Descriptor
Request

Descriptor
Machine

Model
Performance

Service
Provider

Client
Performance
Descriptor

Figure 5.6. Performance Model Input/Output

As shown in Figure 5.6 the performance model takes a request descriptor and
a machine descriptor as input and returns a performance descriptor. The request
descriptor comprises application-specific QoS parameters which contains meta-data
about a specific service request that has to be supplied by a client during QoS nego-
tiation. For example, in the case of an image reconstruction service, QoS parameters
typically include image size and required accuracy.

The machine descriptor, supplied by the service provider via the QoS manager,
comprises machine-specific QoS parameters which specify the resources (number of
CPUs to use, available memory and disk space, etc.) that could be offered for an
application job.

The performance descriptor returned by the performance model usually contains
the estimated execution time and other parameters like the number of processors used
to execute a job, required memory, and required disk space.

Example: Parallel MPI application

An example set of descriptors which constitute the input and output of the per-
formance model implementation used in the experimental evaluation in Chapter 7 is
depicted in Figure 5.7. In this case a parallel MPI application has been used and
a corresponding performance model implementation has been provisioned in order
to estimate the runtime for specific jobs parameterized with the machine size (i.e.
number of used computing nodes of PC cluster).

95

<RequestDescriptor>
 <RequestInfo>
 <ServiceCategory>SPECT</ServiceCategory>
 </RequestInfo>
 <PerformanceParameters>
 <PerformanceParameter>
 <Name>resolution</Name>
 <Value>128</Value>
 </PerformanceParameter>
 <PerformanceParameter>
 <Name>projections</Name>
 <Value>60</Value>
 </PerformanceParameter>
 <PerformanceParameter>
 <Name>slices</Name>
 <Value>16</Value>
 </PerformanceParameter>
 ...
 </PerformanceParameters>
</RequestDescriptor>

<MachineDescriptor>

 <NumberOfNodes>4</NumberOfNodes>

 <DiscAvail>10000</DiscAvail>

 <MemoryAvail>2000</DiscAvail>

</MachineDescriptor>

<PerformanceDescriptor>

 <Runtime>562</Runtime> <!-- seconds -->

 <DiscRequirement>2500</DiscRequirement>

 <MemoryRequirement>1000</MemoryRequirement>

</PerformanceDescriptor>

Figure 5.7. Sample performance model input/output descriptors

Figure 5.7 exemplifies a request descriptor, a machine descriptor and a perfor-
mance descriptor. The request descriptor comprises all necessary meta data related
to the performance of a specific job. In this particular case the native application
utilizes a medical imaging reconstruction algorithm and its runtime and other perfor-
mance attributes are dependent on the following QoS parameters: image resolution,
number of projections, and number of slices. These parameters are specific to a
certain application, while the QoS framework supports arbitrary QoS parameters.

The machine descriptor, which is generated by the QoS manager, comprises the
number of computing nodes as well as available disk space and memory. The out-
put of the performance model is shown in the performance descriptor, comprising
the runtime of this particular application job as well as the required disc space and
memory.

The QoS manager may execute the performance model repeatedly with different
machine sizes (number of computing nodes in the machine descriptor) in order to
meet the constraints of the client. But this is subject to an algorithm applied in the
QoS manager, which will be discussed in Section 5.3.

The performance model implementation used in the example is based on an an-
alytical approach, which predicts the QoS attributes, such as the runtime, using a
formula. If the provision of an analytical performance model for a certain application
is not feasible, a performance model implementation may rest upon a database. In
this case the database is used to relate typical problem sizes (i.e. QoS parameters) to
resource needs like main memory, disk space and execution time (i.e. QoS attributes).
Initially, the database is populated with data from representative test cases and later
on, it may be expanded dynamically using the data from monitoring actual runs.

In summary, the first presented QoS model is used to estimate the performance
of a specific application. In particular the main purpose of the performance model

96

is to predict the application’s runtime in advance to a potential job execution based
on a set of QoS parameters. A performance model implementation is specific to an
application and a certain machine (hardware). Moreover, it has to implement an
abstract interface provided by the QoS infrastructure.

5.2.3 Pricing Model

The pricing model is a QoS model that is used to perform all calculations that
are subject to pricing the usage of a service. The price of using a service may be
dependent on different factors such as the required resources or a license needed to
run the underlying application. The emphasis of this QoS support has been to explore
the issues involved in creating a flexible approach with pricing models, in order to
enable service providers to individually determine the price of a service usage.

Pricing Model Implementation

Similar to the performance model, the QoS support does not prescribed the actual
implementation of the pricing model, since the business background of each service
provider may be different (e.g. industry vs. academia). Consequently, the QoS
support only defines an abstract interface for the pricing model in order to provide a
flexible pricing policy to be defined by each service provider.

...

Static
CPU Hour

Price Model

Dynamic
Utilization

Price Model

PriceModel
getPrice (QoSRequest, ResourceDesc) : PriceDesc
getPrice (QoSRequest, PriceDesc) : ResourceDesc

Figure 5.8. Pricing Model Details

Figure 5.8 shows the pricing model interface and the available pricing model imple-
mentations. The pricing model interface specifies two operations to determine either
the price based on a concrete resource allocation (i.e. resource descriptor) or poten-
tial resource allocations for a given price. The pricing model implementations follow
the utility computing model [Parkhill , 1966], which defines charging for computing
resources is based on the actual usage rather than on a flat-rate basis.

The QoS support system supports two pricing models: a fixed pricing model,
where an individual price for each service request is determined by the amount of
resources required (i.e. CPU-hour) as well as a dynamic pricing model, where the

97

price is obtained dynamically dependent on the required resources and their current
utilization. The first model applies a fixed rate on the actual resource consumption
similar as offered by the Amazon Elastic Compute Cloud (EC2) 3.

Both pricing model implementations as well as further implications are discussed
in the context of the experimental evaluation in Chapter 7.

Pricing Model Input/Output

The input and output of the pricing model are organized as follows: Typically,
parameters, which in this case affect the pricing, are used as inputs in order to com-
pute or estimate QoS attributes as outputs. Outputs from other QoS models may
also be used as inputs to this model.

Model Descriptor
Price

Descriptor
Pricing

Descriptor
Resource Pricing

Figure 5.9. Pricing Model Input/Output

As shown in Figure 5.9, the pricing model is a two-way model which means that it
can be used to calculate the price for a given resource allocation or feasible resource
allocations for a given price. In either way the pricing descriptor (not to confuse
with the price descriptor) comprises the service provider’s configuration related to
the pricing model (e.g. base price for a CPU hour in case of a fixed pricing model).

Price based on resource allocation: In this case the input to the pricing
model is a resource descriptor with an explicit resource allocation which is generated
on the fly by the resource model upon request of the QoS manager. The pricing model
returns a price descriptor with the concrete price for the given resource allocation.

Resources allocations based on price: In this case the input to the pricing
model is a price descriptor specifying the client’s time and price constraints as well as
the estimated runtime as obtained from the performance model. Given these inputs,
the pricing model identifies potential resource allocations, which meet the clients
price and time constraints. The main purpose is to reduce the number of resource
allocations to be checked with the resource model, if they can be made available, by
filtering potential resource allocations with prices that exceed the client’s constraints.

The invocation of the pricing model in either way is performed by the QoS manager
and is subject to a certain strategy as discussed in detail in Section 5.3.

3Amazon EC2, http://aws.amazon.com/ec2/

98

5.2.4 Resource Model

The resource model provides a uniform interface to the underlying scheduling sys-
tem. This interface provides all operations to model and manage resource allocations
for a certain job on a specific machine. Together with the performance model, which
estimates the runtime for a specific job, the resource model uses the runtime as ad-
ditional input to determine a concrete time slot for the job execution, i.e. the QoS
attributes for the begin- and end time of a specific job execution.

Two-Phase-Commit Protocol

Alike the other QoS models the resource model is utilized by the QoS manager
which in particular initiates queries for temporary resource reservations during the
QoS negotiation and potentially confirms these temporary reservations. This pro-
cess is also referred to as two-phase commit protocol in transaction-based distributed
systems [Skeen and Stonebraker , 1983].

In this case a two-phase commit protocol is applied while the QoS negotiation:
In the first phase the QoS manager queries for required resources and in case of
availability, the resource model temporarily books the resources. Then the scheduled
reservation is supplied to the client and only upon an explicit confirmation within
a certain short time period, the temporary reservation is being made permanent in
the second phase. The temporary reservation ensures that free resources are not
being reported to clients more than once (c.f. over-booking) and the expiration of
temporary reservations after a short period of time prevents unused reservations. A
more detailed discussion about the implications of advance resource reservations can
be found in [Snell et al., 2000].

The interaction involved in the resource reservation between the QoS manager
and the resource model corresponds to a dialog stated in the context of the two-phase
commit protocol in [MacLaren, 2003]:

User: "Can I have 32 processors at 2:00pm for 2 hours?"

System: "No, there are only 20 free"

User: "Can I have 16 processors at 1:00pm for 5 hours?"

System: "Yes, but confirm within 60 seconds if you want them"

User: "I’ll take them"

A realization of such a communication between a user and a system, which in
this case is comparable to the QoS manager using the resource model, is highly
sophisticated and obviously not possible in a generic way. But even if the system
answers the first question with a simple ”no”, the last part can can be referred to as
resource negotiation.

99

The resource model as defined in the context of the QoS infrastructure aims to
provide operations to interface a concrete scheduling system as well as to enable
resource negotiation and advance reservation following a two-phase commit protocol.

Resource Model Interface

The resource model interface provides mechanisms to obtain information about
the actual availability of computing resources (e.g. number of free processors on a
machine for a certain time period) as well as to book resources for specific jobs in
advance. Furthermore, operations for already booked jobs are provided in order to
acquire job status information or cancellation of jobs in order to free resources.

Figure 5.10 depicts the resource model interface and concrete implementations for
a concrete underlying scheduling system. The resource model interface specifies a set
of operations, which have to be implemented individually for each scheduling system.

getTemporaryReservation (QoSRequest, PerformanceDesc) : Ticket
getTemporaryReservation (QoSRequest, ResourceDesc) : Ticket

confirmReservation (Ticket)
cancelReservation (Ticket)

ResourceModel
...

Resource Model
Implementation

for COSY

Resource Model
Implementation

for MAUI

Figure 5.10. Resource Model Details

The operations of the ResourceModel interface include two kinds of retrieval/-
querying of a temporary resource reservation (getTemporaryReservation) as well as
a confirmation (confirmReservation) or cancellation (cancelReservation). Temporary
resource reservations are identified by a Ticket and may be retrieved based on the
client’s QoS constraints (QoSRequest) and either on the output of the performance
model (PerformanceDesc, first operation) or on the output of the pricing model (Re-
sourceDesc, second operation).

Generally, scheduling systems that support advance reservation can be distin-
guished by the granularity of their reservation support, i.e. resource- and time-based
(core-grained), user- and/or group-based and finally job-based (fine-grained) [Ma-
cLaren, 2003]. This QoS infrastructure relies on a fine-grained reservation support
and associates one reservation with exactly one job. As a consequence, an imple-
mentation of the resource model for a concrete scheduling system has to provide an
appropriate fine-grained reservation support. Typically, either the scheduler’s native
job-based reservation capabilities are utilized or a mapping of resource reservations
to jobs (i.e. map core-grained reservations to fine-grained reservations) has to be
implemented additionally.

100

As initially shown in Figure 5.10, resource model implementations for two schedul-
ing systems with support for advance reservations are provided: One resource model
implementation for the Maui scheduler from Cluster Resources Inc. [Jackson et al.,
2001] and one for the COSY scheduler from NEC [Cao and Zimmermann, 2004]. In
the following, both scheduling system and their linking to the resource model are
briefly outlined.

Interfacing with COSY

COSY is a lightweight implementation of a local job scheduling system that sup-
ports both queue scheduling and advance reservation. COSY queue scheduling uti-
lizes the well-known first-come-first-serve (FCFS) algorithm with aggressive back-
filling mechanisms and priority management. Advance reservations with COSY are
job-based supporting start and latest completion time. The actual booking of re-
sources for a specific job follows a two-phase-commit protocol as described earlier in
this section.

COSY has been implemented in C++ and provides a command-line interface as
well as a Java API library. This Java API library is utilized by the COSY specific
resource model implementation. Moreover, the mechanisms provided by the COSY
Java API support the querying and booking of resources in advance. If resources are
available at the requested time a ”ticket” for the requested time-slot is issued, which
has to be confirmed within a certain short time frame.

In summary, COSY suits well in this QoS support system because it requires
a job-based advance reservation that is requested and confirmed with a two-phase
commit protocol. COSY natively supports this two-phase commit protocol. More
information about COSY can be found in [Cao and Zimmermann, 2004].

Interfacing with MAUI

As a second scheduling system that is supported by this QoS system, Maui has
been selected. Maui is a wide-spread batch scheduling system with a rich range of
functions, including advance reservation.

Maui is a batch scheduling system that is well suited for different Linux-based high
performance computing platforms. It uses aggressive scheduling policies in order
to optimize resource utilization and minimize job response time. It allows a high
degree of configuration for reservation policies. Maui possesses an advance reservation
infrastructure allowing sites to control exactly when, how, and by whom resources
are used.

Due to the flexible configuration of Maui’s reservation infrastructure, it can be
utilized similar to COSY, except that reservations are booked immediately with a
single commit compared to the two-phase-commit of COSY. As a consequence, the

101

two phases have to be emulated by the Maui-specific resource model implementation.
If a resource reservation is not confirmed within a specific short time frame, the
resource model implementation has to cancel the reservation, which is also supported
by Maui.

In summary, Maui scheduling system provides more functionality than required,
but due to its flexible configuration, it suites well to be supported by this QoS infras-
tructure. More information about Maui can be found in [Jackson et al., 2001].

5.2.5 QoS Manager

The QoS manager is the central component of the service-side QoS infrastruc-
ture which interacts with all previously mentioned QoS models (performance model,
pricing model and resource model). The main objective of the QoS manager is to
generate a QoS offer given the client’s request. Subsequently, the overall picture of
the microscopic QoS management is being detailed with the information gained in
the recent sections.

Figure 5.11 sketches the complete picture of the microscopic QoS management,
its input/output and the internal interaction between the QoS models via the QoS
manager (i.e. performance model, pricing model and resource model). The QoS man-
agement receives a QoS request and a request descriptor from a client and generates
a QoS offer, which is eventually returned to the client.

client

from

Descriptor
Performance

Descriptor
Request

Descriptor
Resource

Model
Pricing

Manager
QoS

Descriptor
Machine

Price
Descriptor

QoS
Request

QoS
Offer

Resource

to client

Model

Model
Pricing
Policy

Performance

Management

client

from

QoS

Figure 5.11. Micro QoS management details [Benkner and Engelbrecht , 2006]

A QoS request contains the desired constraints for the QoS attributes, while the
request descriptor, which mainly serves as input to the performance estimation, com-
prises metadata about an application’s input data. Internally the QoS management
aims to determine whether the client’s QoS constraints can be fulfilled utilizing the
QoS models, i.e. the performance model to estimate the runtime, the resource model
to book resources and the pricing model to determine the price of a service usage.

102

Figure 5.12 sketches an architectural view of the QoS management including all
interactions of the QoS manager with the QoS models via their interfaces. The ac-
tual implementations of the QoS models are hidden as these are subject to a specific
application, machine and/or pricing strategy. The central QoS manager also provides
an interface, which consists of the basic QoS operations for a client (i.e. WSDL op-
erations). These operations include requesting a new QoS offer (requestQoS) and its
confirmation (confirmQoS) or cancellation (cancelQoS). The request for a new QoS
offer (QoSOffer) is based on the client’s constraints (QoSRequest) and the meta in-
formation about the application job (RequestDesc). All used descriptors are specified
by corresponding XML schemes.

QoS
requestQoS (QoSRequest, RequestDesc) : QoSOffer

confirmQoS (QoSOffer) : QoSContract
cancelQoS (QoSOffer)

QoS
Manager

Model
Resource

Implementation

Model
Impementation

Model
Impementation

Pricing

Performance

Schema

Descriptor

Performance

Descriptor

Schema

Descriptor

Schema

Descriptor

Schema Schema

Descriptor

Schema

Request

QoS

Machine

Resource

Descriptor

Price

Figure 5.12. Micro QoS management implementation

In order to achieve the overall objective to generate an appropriate offer to the
client, the QoS manager relies on heuristics that consider the outcome of all involved
QoS models. In this situation a heuristic is preferred to accomplish results (i.e. offers)
within a reasonable time and without consuming large amounts of computing power
as perhaps required with more generic methods. A concrete heuristic is referred to
as QoS management approach and specifies the orchestration of the QoS models and
their interactions with the QoS manager. This most challenging issue is addressed by
different QoS management approaches as discussed in detail in the next section.

5.3 QoS Management Approaches

This section describes approaches of the QoS manager to interact with all involved
QoS models to generate a QoS offer based on the given client constraints. The
presented approaches are being discussed in terms of individual algorithms, which are
executed by the QoS manager. Two distinct algorithms are proposed, each realizing
the offer generation in a customized fashion with a specific focus. This section has
mainly been derived from [Benkner and Engelbrecht , 2005].

103

In general, the QoS manager aims to perform a multiobjective optimization, which
is defined as the process of optimizing two or more conflicting objectives simultane-
ously [Sawaragi et al., 1985]. In case of the QoS management the client usually
specifies such conflicting objectives with constraints for the desired execution time
and its price. The QoS manager addresses this situation by applying customized
algorithms.

The QoS management approaches implement the main challenge in this context to
generate a QoS offer based on the client’s request. The offer generation process neces-
sitates an according orchestration of all involved QoS models as well as the handling
of appropriate interactions between these QoS models. This process is conducted
according to an algorithm, which basically specifies the sequence of interactions with
the following involved QoS models:

• Performance Model

• Pricing Model

• Resource model

The algorithms also consider the specific characteristics of parallel applications,
which are executable with different machine sizes. As a consequence, the interaction
sequence with the QoS models may be performed iteratively, parameterized with the
machine size (e.g. number of computing nodes on a cluster).

General Considerations

The QoS manager considers the outcome of the performance model, the avail-
ability of resources via the resource model, and the service provider’s pricing model
to decide whether the client’s QoS constraints can be fulfilled. If this is the case,
the QoS manager generates a corresponding QoS offer, which is then returned to
the client. Each interaction with a QoS model requires an invocation of a specific
operation of this QoS model, which affects the overall performance of QoS manager
algorithm. The impact on the overall performance is even more important in case of
parallel applications, which are executable with different machine sizes, because then,
a specific QoS model may be invoked several times for each machine size.

Consequently, the time consumption of invoking QoS models has been investigated
and the experiments presented in Chapter 7 have shown that operations invoked with
the resource model, which are actually executed in the underlying scheduling system,
tend to take significantly more time compared to operation invocations with the other
QoS models. Obviously the time consumption of a certain QoS model operation
invocation is dependent on a number of external factors, such as the machine load,
which are far beyond the scope of this work.

104

However, the invocation of a specific QoS model impacts the overall performance
of the micro QoS management and this will be taken into account in the subsequent
discussion of the different QoS manager approaches.

Primary Focus

In the following different approaches of the QoS manager to provide offers to clients
are discussed in detail by presenting the algorithms applied in the QoS manager. The
main distinguishing aspect of these algorithms is their primary focus on a certain client
constraint, which is either time or price. This leads to the following approaches:

• Prime time approach

• Prime price approach

The prime time approach, which in this context has nothing to do with the primary
viewing time in TV, indicates the primary focus on the client’s time constraints, while
the prime price approach puts the emphasis on the price constraint of the client. Both
approaches aim to meet all client constraints and their naming just indicates their
primary focus, which means that the primary client constraint is considered prior to
the other constraint(s) in a corresponding algorithm.

Subsequently, both approaches are being discussed in detail, mainly by presenting
corresponding algorithms, which are executed by the QoS manager. It should be
noted, that the terms ”QoS manager approach” and ”QoS manager algorithm” are
being used interchangeably, even if the approach rather describes the overall strat-
egy/concept of the QoS manager, with an algorithm being in place to execute the
strategy.

5.3.1 Prime Time Approach

The prime time approach focuses primarily on the client’s time constraints. To
fulfill the time constraints first, the QoS manager applies an algorithm that estimates
and books the required resources first. Only if a prediction of the required resources as
well as their availability can be ensured along the lines of the client’s time constraints,
the algorithm continues and checks if the price constraint can be met as well.

The applied algorithm of the prime time approach is depicted in Figure 5.13,
showing mainly the sequence of the invoked QoS models, the continuation criteria as
well as the overall iterative fashion in case of a parallel application.

105

Get maximum execution time t_max (max end time – min start time) as well as max
price p_max from QoS request.

Get machine sizes this application is executable with

Foreach machine size s do

(1) Performance model: Estimate execution time t for s

If (t > t_max): Continue with next machine size

(2) Resource model: Get temporary resource reservation r based on t

If (r = null): Continue with next machine size

(3) Pricing model: Get price p for r

If (p < p_max): Generate and return offer

EndForEach

Return no offer

Figure 5.13. Prime time algorithm

For each machine size the application is executable on, the prime time algorithm
guides the QoS manager as follows: (1) Firstly, the performance model is executed
to obtain the estimated execution time with the current machine size. If the exe-
cution time exceeds the maximum execution time from the client’s constraints the
algorithm starts over with the next machine size4. (2) If the time constraints can be
met, the QoS manager continues and contacts the resource model to check whether
the required resources (i.e. machine size) can be made available. If the resources can-
not be made available, the algorithm attempts the next machine size (if available).
Assuming the required resources are available, the QoS manager creates a temporary
resource reservation. (3) Finally, given the start- and end-time of the reservation, the
pricing model is invoked to obtain the price of the resource allocation. If the service
provider’s price also meets the client’s price constraint the QoS manager generates a
corresponding QoS offer, which is then returned to the client or cancels the temporary
resource reservation, if the price constraint of the client can not be met.

If any of the client’s constraints cannot be met given all available machine sizes,
the QoS manager may be configured to return the closest offer to the client or none.
In any case, the client has to confirm a QoS offer in order to establish a QoS contract.
The confirmation of a QoS offer is part of the QoS negotiation which is subject to
be discussed in Section 5.4. Moreover, the confirmation is required for the tempo-
rary resource reservation to become a permanent reservation (c.f. two phase commit
protocol described in Section 5.2.4).

4This is based on the assumption that the machine sizes are ordered ascending and that increasing
the machine size causes a reduction of the execution time

106

Get maximum execution time t_max (max end time – min start time) as well as max
price p_max from QoS request.

Get machine sizes this application is executable with

Foreach machine size s do

(1) Performance model: Estimate execution time t for s

If (t > t_max): Continue with next machine size

(2) Resource model: Get temporary resource reservation r based on t

If (r = null): Continue with next machine size

(3) Pricing model: Get price p for r

If (p < p_max): Generate and return offer

EndForEach

Return no offer

Figure 5.14. Prime price algorithm

5.3.2 Prime Price Approach

The prime price approach focuses primarily on the client’s price constraint. In
this case the QoS manager applies an algorithm that estimates the required resources
and identifies potential resource allocations that meet the price constraint first. Only
if a prediction of the required resources as well as resource allocations can be ensured
along the lines of the client’s price constraint, the algorithm continues and checks if
a resource allocation can be booked at all.

Analogue to the prime time approach, the algorithm applied in the prime price
approach is shown in Figure 5.14.

For each set of resources the prime price algorithm leads the QoS manager as
follows: (1) Firstly, the QoS manager executes the performance model equally to
the prime time algorithm and compares the estimated execution time with the max-
imum runtime derived by the time constraints of the client. (2) If the client’s time
constraints can be met, the QoS manager continues and executes the pricing model.
With the prime price algorithm the pricing model is supplied with the client’s price
constraints and the estimated runtime given in the performance descriptor. The pric-
ing model returns one or more possible resource allocations (i.e. time frames with
begin- and end-time) in which the application could be executed not exceeding the
specified price constraint. (3) Assuming that the pricing model returns one ore more
resource allocation time frames, the QoS manager checks with the resource model
if a concrete resource allocation can be made available. If this is the case, the QoS
manager generates a corresponding QoS offer, which is returned to the client.

107

The overall procedure if the client’s constraints cannot be met once or at all is
the same as with the prime time algorithm.

5.3.3 Comparison

The prime time and the prime price algorithms are depicted in Figure 5.15, which
also contrasts both approaches with their sequence of invoking the involved QoS
models enforced by the central QoS manager. The loops indicate again the option-
ally iterative nature of the algorithms in case of parallel applications, which may be
executed with different machine sizes.

Performance
Model

Pricing
Model

QoS

Manager

2

3

1

2

Resource
Model

1. Performance Model
2. Resource Manager
3. Pricing Model

1. Performance Model
2. Pricing Model
3. Resource Manager

1

3

Prime Time Prime Price

Figure 5.15. QoS management approaches [Benkner and Engelbrecht , 2005]

Both algorithms are subject to be configured individually with each service at the
time of the deployment; hence, it is up to each service provider to decide which ap-
proach will be used. Typically, a commercial service provider will prefer the approach
focusing on the pricing. While an academic service provider such as a University has
no commercial background and consequently less interest in pricing and thereof will
more likely prefer the prime time approach.

However, the applied algorithms of both approaches have been investigated with
respect to the time consumption of the involved models. Table 5.1 shows how much
time was consumed by the QoS models and the QoS manager while performing ac-
cording to the prime time and prime price algorithm.

The table mainly proves the assumption made in the beginning of this section
that most of the time with the prime time algorithm is consumed by the resource
model. In contrast, the prime price approach shows a more balanced time distribution.
However, the total absolute time required for the generation of an offer with the QoS

108

Prime time Prime price
Performance Model 25% 25%

Resource Model 40% 25%
Pricing Model 18% 30%
QoS Manager 17% 20%

Table 5.1. QoS management approaches comparison

management was not significantly differing between the applied algorithms; hence,
the overall time consumption gave no indication which algorithm should be preferred
in general.

Furthermore, this experiment showed that an offer generation can be conducted
(at all) using one of the presented algorithms, which eventually underpins the concept
of using different QoS models and the QoS manager to enforce a certain algorithm.

Summary

The QoS management approaches implement the main challenge of the micro-
scopic QoS support to generate a QoS offer for a given QoS request. This process
relies on an algorithm which basically specifies the sequence of the interactions with
the involved QoS models. Two such algorithms have been presented, each focusing
primarily on a certain aspect of the client’s constraints, i.e. time or price.

5.4 Macroscopic Quality of Service

This section details the macroscopic Quality of Service negotiation. The macro
QoS support describes to process of a client interacting with one or more services - all
exposing the same native application - in order to determine the best suited service
given its QoS constraints. In contrast to the Micro QoS support, which describes how
an offer is generated within a single service, the Macro QoS support is a client-driven
procedure, where a client tries to negotiate with one or more services in order to obtain
a suitable offer and optionally wrap up a deal. The potential service candidates are
usually located by utilizing a registry service as provided by the VGE system.

Clients may utilize sophisticated negotiation strategies, such as auctions in order
to invite service providers to underbid each other and finally reveal a fair price among
the auction participants. On the other hand service providers are able to follow a
certain pricing model in order maximize their profit.

This sections initially details the basic QoS negotiation process which follows the
request-offer model, which will be introduced in 5.4.1, and the client handling of

109

multiple offers, when negotiating with more than one service. Initially a single offer-
request attempt is discussed, followed by the description of a client requesting offers
in a round-based fashion guided by a certain negotiation strategy based on auctions.
Therefore, a number of auctions are discussed and their applicability in this context
is investigated.

5.4.1 Basic QoS Negotiation

The basic QoS negotiation can be outlined as the client’s attempt to establish a
QoS contract with a service provider. In this context, the client utilizes a negotiation
approach that follows a request-offer-model as outlined in Section 5.1 and discussed
in further detail subsequently.

The basic QoS negotiation scenario is shown in Figure 5.16. A client requests a
new offer from each candidate service with initially creating a request and passing
this request to each service. Each contacted service may return a QoS offer to the
client consecutively. The client then has to decide which offer is most suitable and
finally confirm this specific offer.

.....Client Service 1 Service n

request offers
QoS Request, Request Descriptor

QoS Offer

confirm offer

Signed QoS Contract (WSLA)

Figure 5.16. Basic QoS Negotiation [Benkner and Engelbrecht , 2005]

The details of this basic QoS negotiation process can be outlined as follows: Ini-
tially the client generates a request descriptor containing meta information of the
concrete application job as well as a QoS request following the WSLA specification
with the actual constraints for the SLA parameters (i.e. begin- and end-time as well
as the requested price). Please note that, SLA parameters in the context of the QoS
negotiation correspond to QoS attributes in the micro QoS management. The client
then requests a new offer from each service passing along the QoS request and the

110

request descriptor. The Micro QoS support on the service side individually tries to
achieve the client’s constraints and generates an appropriate QoS offer which is then
returned to the client.

Since clients usually negotiate with multiple services on a low level of trust, each
QoS offer has a short expiration time and finally, it is up to the client to confirm a
specific offer before it expires. If a QoS offer is confirmed by the client, a QoS contract
is established and signed by both parties. Alternatively, the client may not confirm
any of the offers and restart the negotiation with different parameters (i.e. with a
new QoS request). This is referred to as advanced QoS negotiation that consists of an
iterative offer requesting process, which will be discussed in further detail in Section
5.4.2.

Offer Assessment

Assuming the client negotiates with more than one service provider, the most
interesting issue in this context is the evaluation of the received offers. This can
either be an interactive process, when the final decision which service should be
confirmed is made by a human in front of a computer, or an automated process, when
a certain pre-defined assessment procedure decides which QoS offer is considered as
the best suitable. This work focuses on an automated offer-assessment process which
is also referred to as scoring. Each QoS offer is associated with a score in order to
automatically rank all QoS offers by their score. Contrarily to an interactive human
decision this is also feasible in the context of advanced negotiation strategies, which
rely on multiple rounds of offer-requests and -assessments.

An automated offer-quality evaluation or offer-scoring relies on the assessment
of the involved SLA parameters by comparing each SLA parameter from all offers
individually. For instance the begin-times of all offers are compared and assessed
against each other following the predicate defined in the initial request (c.f. QoS
requests and offers follow the WSLA specification as described in [Heiko et al., 2003]):
Scoring a begin-time of 01-01-08 12:15pm exceeds a begin-time of 01-01-08 12:10pm
if the initial request defines a begin time of 01-01-08 12:00pm with the predicate
”greater”. In general, comparing the price is more illustrative: The score of a more
favorable price exceeds a less favorable price (i.e. a low price is better than a high
price, except the unlikely case if the predicate is defined differently).

After the definition of the individual assessments of each SLA parameter, the
major question remains, how an accumulative assessment of all SLA parameters can
be addressed. The overall score of an offer Vi is a numeric value, where i is the
index of the offer. This overall score is generated by the sum of the individual scores
of each SLA parameter vj, where j is the index of the SLA parameter and n the
total number of SLA parameters. Consequently, the total scoring value is defined in
equation 5.4.1.

111

Vi =
n∑

j=0

vj (5.4.1)

The scoring values for each SLA parameter vj can either be defined following a
certain procedure, such as the percentage assessment, or by an individual formula.
Furthermore, an according weighting of each SLA parameter can be defined to specify
the preferences among the SLA parameters individually. E.g. if the price is more
important than the time, the weighting of the price would exceed the weighting of
the time. Subsequently, the assessment method performed in the context of the macro
QoS negotiation is specified as well as an illustrative example is presented.

Percentage assessment: This procedure foresees that for each SLA parameter
pj a score is determined whereas in general a more distant value pj from the requested
value preq

j results in a higher score. The most distant value corresponds 100% whilst
a very close value of pj to the requested one results in a very low score (towards
0%). In order to determine proportional scores the minimum and maximum has to
be determined in advance among the requested and received offers. Consequently,
a percentage assessment for an SLA parameter achieves the scoring value of vj as
defined in Equation 5.4.2.

vj =

∣∣∣∣ preq
j − pj

pjmax − pjmin

∣∣∣∣ (5.4.2)

A pure percentage assessment procedure implies that all involved SLA param-
eters have the same weight. A potential drawback of this approach could be that
large intervals between the minimum and maximum of one SLA parameter and small
intervals between the minimum and maximum of another SLA parameter may cause
unwanted side-effects on the total assessment. Thereof an extension of the initial total
scoring formula 5.4.1 with individual weighting factors is discussed in the following.

Weighted assessment: This assessment mechanism allows to specify the pref-
erences among the SLA parameters more precisely by associating a corresponding
individual weighting factor wj for each SLA parameter. The extended total scoring
is depicted in equation 5.4.3.

Vi =
n∑

j=0

wj vj (5.4.3)

In this case different weightings of the SLA parameters are considered by an
according weighting factor wj. Usually the sum of all weights is defined as 1.

In the following an example illustrates the QoS offer assessment.

112

Offer Assessment Example

The offer assessment example describes how the percentage assessment is applied
to different offers. The example assumes three SLA parameters (p1 to p3) for the
price, the begin time and the end time with corresponding predicates. These SLA
parameters are specified by the client in the QoS request.

p1 . . . price p2 . . . begin time p3 . . . end time

preq
1 ≤ 15 e preq

2 ≥ 12 : 00 preq
3 ≤ 14 : 00

The example furthermore assumes three service providers A, B and C, each gener-
ating an individual QoS offer containing certain values for all SLA parameters, which
fulfill the client’s request.

Offer a Offer b Offer c Offer d
p1a = 15 e p1b

= 7 e p1c = 13 e p1d
= 9 e

p2a = 12 : 00 p2b
= 12 : 15 p2c = 12 : 15 p2d

= 12 : 00
p3a = 13 : 30 p3b

= 13 : 00 p3c = 13 : 00 p3d
= 13 : 30

Given these offers and the request, it is obvious that Offer a will be the worst rated,
while Offer b is the best. The interesting offers are c and d due to their contrary SLA
parameters (i.e. Offer c represents the fast and expensive job execution and Offer d
states a cheap and long-lasting one). However, the minimum and maximum for all
SLA parameters can be derived as follows:

p1min
= 7 e p2min

= 12 : 00 p3min
= 13 : 00

p1max = 15 e p2max = 12 : 15 p3max = 14 : 00

Finally, the actual offer scoring can be conducted according to the formula in
Equation 5.4.2 as follows:

v1a = 0 v1b
= 1 v1c = 0.25 v1d

= 0.75
v2a = 0 v2b

= 1 v2c = 1 v2d
= 0

v3a = 0.5 v3b
= 1 v3c = 1 v3d

= 0.5

Va = 0.5 Vb = 3.0 Vc = 2.25 Vd = 1.25

In this example the offer of service provider b is clearly assessed as best offer,
following by c. This example does not explicitly use any weighting factors, i.e. an
equal weighting of the SLA parameters is assumed. In the following a weighting,
which favors the price is assumed as follows:

113

w1 = 0.7 w2 = 0.15 w3 = 0.15

V w
a = 0.075 V w

b = 1.0 V w
c = 0.475 V w

d = 0.6

In this case the offer of service provider b remains best scored, but the second best
scoring is achieved by service provider d. In any case the offer assessment is a central
issue in the decision process of the client which offer may be confirmed. In this work
only the mentioned strategies are discussed and applied, while generally even more
sophisticated approaches exist to assess multiple criteria as within a QoS offer.

5.4.2 Advanced QoS Negotiation

The advanced QoS negotiation adopts a customized approach following the round-
based request-offer model as briefly addressed in the previous section. This approach
follows a similar protocol as defined in the agent theory by the FIPA standards
[Raja et al., 2008]. Furthermore, the advanced QoS negotiation allows the adoption
of different auction models for single goods as specified in [Vickrey , 1961], which
actually have their origin in economic science.

The first step towards advanced QoS negotiation comprises an increase of potential
requests a client may pass to a service provider as specified in a single request-offer
model utilized in the basic QoS negotiation. With the advanced QoS negotiation a
client requests a new offer from all involved service providers for several times. On
each offer request the client assesses all received offers and creates a new request for the
next round based on this assessment. This process may be iteratively repeated until
a certain condition is fulfilled. The overall round-based advanced QoS negotiation is
depicted in Figure 5.17.

The actual number of bidding-rounds, the details of the offer assessment in each
round as well as the eventual termination conditions are subject to a concrete im-
plementation which follows a distinct auction model. In the following, general issues
related to auctions as well as their overall applicability in the context of the Grid are
discussed in further detail.

Grid Auctions

In general an auction is defined as the process of buying and selling items by
offering them up for bid, taking bids, and then selling it to the winning bidder. In
this context the item is the execution of a specific application job by a service and the
services are bidding for the execution of this job. The winning bidder is a service, and
a QoS contract is exchanged between the client and the winning bidder service. The

114

Request0

Service Z

OfferA1

2request offers

... repeat this n times ...

Client Service A Service B

Offer
1

.....
receive offers

assess offers

adapt new request

request offers

Request1

B Offer
1Z

Offer
receive offers

assess offers

B OfferZOfferAn n n

confirm an offer

Signed QoS Contract (WSLA)

Figure 5.17. Advanced QoS Negotiation

actual bidding-process is round-based and the number of rounds and consequently
the termination conditions are subject to a concrete auction model.

Contrarily to economic auctions which just consider the price to determine the
best bid, all qualities of a service are assessed in this context in order to score the bids.
A concrete job execution to be performed by a service is associated with a number of
qualities, such as the actual time of the job execution and its price. These qualities
may be assessed and scored along the lines of an according assessment strategy such
as the percentage assessment introduced in the previous section. In any case the bid
assessment is subject to a concrete auction model as outlined in the following.

Given this brief introduction to auction models, they appear applicable in the
context of advanced QoS negotiation as depicted in Figure 5.17. Subsequently, the
following auction models are discussed in further detail:

• First-Price Sealed-Bid auction

115

• English auction

• Dutch auction

• Vickrey auction

The description of these auction models comprises an overview of each model as
well as details about the applicability of a model in the context of the advanced QoS
negotiation. Furthermore, each auction model is examined with respect to the actual
number of bidding rounds, the corresponding termination condition, and the concrete
bid assessment.

First-Price Sealed-Bid auction

The First-Price Sealed-Bid auction constitutes an auction where bids can be sub-
mitted until a pre-defined deadline, but only one bid per bidder, which corresponds
to a single round of bidding, and the best bid, which is determined by the best price,
wins instantly. Bids are submitted in a sealed fashion, which implies that all bidders
create their bids without any knowledge of the other bids. Moreover, the winning
bidder has to fulfill exactly the conditions as specified in its bid (i.e. pay/charge the
specified price) as opposed to other auction models, where e.g. only the price of the
second best bid must be paid.

The main point of criticism in the context of this auction design as described by
[Ausubel , 2003] is the strategic behavior of the bidders utilizing the knowledge about
the number of auction participants. If the auction participants know the total number
of bidders the situation is as follows: The fewer bidders involved in such an auction
the lower overall price is achieved. A bidder simply assumes that given less bidders
the chances increase that a lower bid wins. This issue is often referred to as the main
obstacle to prevent the applicability of this auction model in a business context with
a known number of participants.

In the context of advanced negotiation the number of service providers is only
known to the client which initiates the auction and not to the auction participants,
which are in this case the bidders. Consequently, this issue does not have any effects
on the finally achieved contract.

In summary, the First-Price Sealed-bid auction can be applied for the advanced
QoS negotiation and it complies with the request-offer model, which is executed just
once. The involved service providers create their offers (bids) individually upon a
client request without any influence from other service providers or their concrete
bids. The client then assesses all bids according to a distinct assessment strategy and
declares the winner by exchanging a contract with the winning service provider.

116

Dutch auction

The name of the Dutch auction has its origin in its use on dutch flower markets.
This auction quickly arranges a price and thus it is well suited for many similar goods
or perishable goods. The actual auction starts with an exorbitant price, but the price
is decremented recurrently within constant timeframes. The first auction participant
which accepts the current price is the winner of the auction. The winner of the dutch
auction also has to pay the accepted price not as opposed to other auction models,
where e.g. the second best price has to be paid.

The Dutch auction is strategically equivalent to the First-Price Sealed-Bid auc-
tion, which means that the price achieved may depend on the number of auction
participants [Vickrey , 1961]. But as the number of participants is in general not
known to the participants themselves, this should not have any effects on the finally
achieved contract.

The applicability of this auction design in the context of the advanced QoS nego-
tiation is limited due to the fact that the only changing quality within the auction is
the recurrently decreasing price with time. This is also implied by the general focus
of this auction model, which is on similar goods, as opposed to the Grid, where a lot
of different goods (even similar jobs with varying quality of service) are sold. Thus,
it can be assumed that only a few auction participants exist for a concrete job and a
Dutch auction would eventually achieve a low price.

In summary, it can be concluded that the applicability of this auction model is
fairly limited and will not be further investigated. On the other hand it should be
noted, that the dutch auction may be a well suited model in a similar context to sell
compute cycles, as currently offered in the Amazon Elastic Compute Cloud (Amazon
EC2)5.

Vickrey auction

The Vickrey auction is also referred to as Second-Price Sealed-Bid auction. It
corresponds mainly to the first-price sealed-bid auction with the only difference that
the winner has to pay the second best price. The background of this auction model
is to elicit the participants’ true willingness to pay as well as to limit strategical
acting. Assume a participant’s bid exceeds his own willingness to pay, he is at risk
that another participant bids similar, and finally he may win and be forced to buy at
a loss. And vice-versa, if a participant underbids his own willingness to pay, he runs
the risk that another bidder wins and in the end buys the item at a lower price than
the amount this bidder would be willing to pay. Consequently, in this type of auction
it is in the participants’ best interest to submit a truthful bid [Vickrey , 1961].

5Amazon EC2, http://aws.amazon.com/ec2/

117

The basic procedure of the Vickrey auction is equivalent to the First-Price Sealed-
Bid auction and consequently, the implementation of this procedure is identically.
The only difference is that the winning participant just has to fulfill the second best
scored bid. As it might not be possible for the winner to meet certain qualities of
another bidder (e.g. due to different resource constraints) this auction model cannot
be applied in the context of the advanced QoS negotiation at all.

In order to exemplify this situation two service providers are assumed to bid up
for the execution of a job with a certain price at a given time. Service provider a
offers to run the job in 2 hours with a price of 0.2 e. Service provider b offers to run
the job in 1 hour with a price of 0.4 e. The client emphasizes a fair price more than
on the execution time and consequently assesses that service provider a has the best
offer. Given the auction design of the Vickrey auction, service provider a has now to
meet the second-best offer, which specifies less time for the execution of the job than
this service provider originally offered. Thus, service provider a might not be able to
meet the execution time e.g. due to limited resources.

In summary, this auction model is not applicable in the context of advanced QoS
negotiation and will not be subject to further investigation in the context of this work.

English auction

The English auction is probably the most well-known kind of auction. Auction
participants submit bids as long as a minimum of two competing bidders continue
to bid. As soon as no bidder is overbidding the last submitted bid, the bidder with
the final bid wins the auction. Moreover, the winning bidder has to fulfill exactly the
conditions as specified in its bid (i.e. pay/charge the specified price). Along this basic
definition of the English auction, there are a number of specific variants: auctions
with general time-limits (e.g. eBay) or time-limits per bid or auctions with closed or
open bids.

The English auction system has a number of advantages and disadvantages for all
parties concerned. The so called Winner’s curse may occur in such an auction due
to strong competition with inexperienced participants carried away in the heat of the
moment, which may favor the seller with a high price. On the other hand the item on
sale can be bought for much less than its value, if bidding is slow, and rings can take
advantage of the nature of English auctions. A general disadvantage for all involved
participants is the fact that everyone must be in communication over the course of
the auction, which can be expensive and difficult.

All the mentioned issues related to the English auction are negligible when ap-
plying this auction model in the context of the advanced QoS negotiation. The basic
procedure of the English auction follows a closed round-based approach, where bid-
ders submit bids in each round. Bids are submitted in a sealed or closed fashion,
which implies that all bidders create their bids without any knowledge of the other

118

bids. At the end of each round the highest bid is identified and the participants are
invited to submit bids that exceed this bid in the next round.

In summary, the applicability of the English auction model in the context of
the advanced QoS negotiation appears to be most promising. The auction-design
complies with the round-based request-offer model. The involved service providers
create their offers (bids) individually upon a client request without any influence
from other service providers or their concrete bids. The client then assesses all bids
according to a distinct assessment strategy and invites the service provider for another
bidding-round. As soon as no more bids are submitted, the winner is declared by the
client and finally a contract between the client and the winning service provider is
exchanged.

Summary

The analysis showed that only the first-price sealed-bid auction model and the
English auction model are applicable in the context of the advanced QoS negotiation,
with the English auction model to be more-suited due to its round-based fashion. As
a consequence, the advanced QoS negotiation support realized in the context of this
work fully applies the closed-bid English auction model.

5.5 Security

This section details the security issues related in the context of Quality of Service.
Usually security is considered as part of the QoS support, but it is realized separately
and independently of the previously described QoS components. However, the moti-
vation for a comprehensive security solution comes with applications that deal with
confidential data (e.g. health data). As a consequence, the objectives of the security
described here are to enable two network entities, which are usually a client and a
service, to communicate in a secure manner and protect the exchanged potentially
confidential information. This includes mechanisms for authentication, authorization
and privacy, which are generally referred to as security facilities. In order to real-
ize these facilities encryption algorithms, PKI (public key infrastructure) and TLS
(transport layer security) are required as introduced in Section 2.4. Furthermore,
compliance to Web services security standards is maintained.

In the following the security approach is described in further detail. This sections
starts with an overview that comprises the security architecture, the applied security
protocol as well as the used standards and software. Subsequently, further details
about the implementation of the security facilities are presented including authenti-
cation, authorization and encryption, as well as the mechanisms used therein.

119

5.5.1 Overview

The security overview outlines the security architecture, the security protocol, the
maintained standards and the used software, which all incorporate into the realization
of the SOAP message processing.

Security architecture

The security architecture is based on a X.509-compliant public key infrastructure
(PKI) in order to issue certificates for clients and services by different trusted cer-
tification authorities (CAs). The certificates are utilized to ensure transport layer
security as well as for authorization, authentication and privacy on the message layer
(WS Security). All these security facilities are implemented in distinct components,
which are used by according client- and service-side high-level APIs and its underlying
components.

Transport
Layer

Security

Transport
Layer

Security

AuthN &
En−/Decryption

WS−Security

Service
Certificate
& Keystore

Client
Certificate
& Keystore

CAEn−/Decryption
AuthN &

Public Key Infrastructure

WS−Security

Discovery, QoS Negotiation, Job Handling, ...

High−level Service API

WS−AuthZ

High−level Client API

WS−AuthZ
AuthZ

 QoS , Job Handling, Data Transfer, ...

AuthZ

Figure 5.18. Security architecture

Figure 5.18 illustrates the security architecture. A major objective of the archi-
tecture is to hide the complexity of the security mechanisms used from the client-user
and service provider. This objective is achieved by encapsulating the security facilities
in distinct components, which are utilized by a high-level API.

Security protocol

The security protocol comprises several levels of protection, representing again
the mentioned security facilities. Each client-to-service communication starts with

120

the authentication, continues with authorization, encrypts the message and finally
delivers it through a secure transport channel. On the service-side the message is
decrypted, authenticated and authorized, before the service is actually invoked.

Client
Application Application

Service

F
ire

w
al

l F
irew

all

Internet

Transport Security

En−/Decryption

Transport Security

En−/Decryption

Authentication

Authorization

Lo
gg

in
g Logging

Authentication

Authorization

Figure 5.19. Security protocol

Figure 5.19 illustrates the security protocol including the entire stack of activities
related to the security facilities involved in a secure communication between a client
and a service. As the entire communication is initiated by the client, no compromises
regarding service-side firewalls have to be made, because all mechanisms rely on
standard Internet-protocols such as https.

Security Standards and Software

The security facilities are in line with security specifications and meta-data ex-
change formats such as WS Security [WS-Security], WS Trust [WS-Trust], WS Pol-
icy [WS-Policy], WS SecureConversation [WS-SecureConversation], extensible ac-
cess control markup language [XACML] and the security assertion markup language
[SAML] as well as transport layer security [TLS]. All these specifications are imple-
mented by according software. The security standards and software stack is illustrated
in Figure 5.20. The WS-* specifications are still evolving and the software used in
this context is also under permanent development. Consequently, the entire security
solution is adapted consecutively in order to meet arising new specifications and their
standardization.

The security software includes RSM6 and E2E7, which are developments in the
context of EU projects, in order to implement the according security specifica-
tions. These developments rely on open source software including Apache XML secu-

6RSM is a relationship management software that enables attribute-based access control (ABAC)
with SAML tokens. It was developed in the context of the EU Aneurist project. http://www.
aneurist.org/

7E2E is an End-to-End message encryption software that enables secure message exchange. It
was developed in the context of the EU GEMSS project. http://www.gemss.de/

121

Authorization

Authentication

En−/Decryption

Lo
gg

in
g

WS Secure Conversation

WS Security

WS Trust WS Policy

Facilities Standards

RSM

E−2−E

ph
−

lo
c−

lo
gg

in
g

Transport Security https

Open SAML

WSS4J

XML Security

Software

TLS

XACML SAML

Figure 5.20. Security standards and software stack

rity implementing XML digital signatures and encryption [XML-Signatures] [XML-
Encryption], Apache Web services security 4 Java (WSS4J)8 and the open security
assertion markup language (OpenSAML)9 developed in the context of the Internet 2
project.

Apart from the handling of the security on certain levels the logging is also an
essential facility of the security solution. In order to monitor and audit a service
an appropriate logging system is required. In this security solution the Sourceforge
phloc-logging system is used. This also comes with the benefit of a GUI-based ad-
ministration.

Security Request-Response Processing

The processing of all the security facilities in the context of Web services is per-
formed by Web service handlers. Each SOAP request and response passes a chain of
handlers, which may modify the SOAP message according to its purpose. A SOAP
message handler is subject to a distinct implementation which is dependent on the
concrete Web services framework. In this case, the open-source Web services frame-
work Apache Axis10 is used. Each SOAP message handler realizes a certain function-
ality which processes an according security facility.

Figure 5.21 illustrates the security handler chain by distinguishing between incom-
ing and outgoing SOAP handlers for the request and response message. The request
creation is referred to as outgoing SOAP handler, the request processing as incom-
ing SOAP handler to the service, while the response creation is an outgoing SOAP
handler and the response processing at the client is an incoming SOAP handler. The
classification with incoming and outgoing SOAP handlers also refers to the flow of

8http://ws.apache.org/wss4j/
9http://www.opensaml.org/

10http://ws.apache.org/axis/

122

Internet

Handler
C

lie
nt

ServiceAuthN
Handler

Decryption Encryption

HandlerHandler
Encryption

HandlerHandler
Decryption

Verification Enforcement

SigningVerification

AuthN

Response Processing

Request Creation Request Processing

Response Creation

AuthZ IssueAuthN Sign

AuthN

AuthZ Policy

Figure 5.21. Security handler chain

the SOAP message, which may either be incoming or outgoing from/to a client or a
service.

To the alert eye it will become apparent that the authorization facility is realized in
handlers of the request-handling-chain only, because the response is associated explic-
itly to the request in RPC-based systems and does not need an extra authorization.
In case of asymmetric SOAP calls no response messages will occur.

5.5.2 Authentication and authorization

Authentication and authorization are very closely related security facilities as
introduced in Section 2.4.1, whereas a simplified definition of authentication is the
verification process of the identity and authorization represents the decision whether
to grant access to a resource or not. The basic approach of implementing both
facilities is based on the usage of a security token service (STS), which is able to issue
and verify signed security tokens with associated attributes. The signature of such a
token is used to prove the authenticity (authentication), while the attributes are used
in the context of attribute-based access control (ABAC, authorization).

In the following the security token service as well as the applied protocol in the
context of authentication and authorization are detailed.

Security token service

A security token service (STS) is a separate Web service entity with an associated
X.509 certificate that provides a WSDL-interface with operations to request and
verify SAML-compliant security tokens. The issuance and verification of these SAML
tokens is performed according to pre-defined trust relations to other STSes (i.e. their
certificates) and with respect to the given attributes for specific users and/or services.
The relations, attributes and certificates are stored in a LDAP directory service, such
as openDS11. Generally, two implementations of the STS exist, one simple Web service

11Open Source Java LDAP Directory Service, http://www.opends.org/

123

only prototype, developed in the context of this work with limited functionality, and
one full functional Web service implementation provided with the RSM software. The
latter also comprises a Web interface for the management of the relations of associated
users, services and their corresponding attributes, as well as its own trust relations
to other security token services.

Usually, one STS instance per virtual organization (VO) exists, which implies that
all users and services of the VO are managed in this STS, which is then run by an
STS administrator. The relation of one STS to another is subject to the applied trust
relation model and the used certificate (i.e. the issuing CA). The trust model can
be either web- or hierarchy-based and the certificates of the STSes can be issued by
the same or different CAs. In any way, the most common approach is, that either all
STSes have certificates from a single CA and implicitly trust each other (hierarchical
approach adopted in the simple STS implementation) or the certificates are issued by
different (non-bridged) CAs and each STS has to explicitly trust another STS (web
approach, adopted in the RSM STS). The latter approach comes with the advantage
of no implicit trust, but also with the disadvantage of an increasing complexity of the
relation-management as all STSes have to import certificates of all other STSes they
want to be considered as trusted.

The applied STS trust relation is subject to a concrete application domain, such as
the medical domain where certificates are issued by national e-health infrastructures
and thus, only web-based models can be applied. Contrarily for research purposes and
in closed projects, privileging all STSes with certificates from a single CA is sufficient
and reduces management complexity. The concept of security token services with
respect to federated authentication and authorization has been introduced in [Iacono
and Rajasekaran, 2008].

AA protocol

The AA protocol (authentication and authorization) describes the procedure per-
formed on each SOAP message delivered from a client to a service and vice versa.
The actual AA protocol is implemented using appropriate SOAP handlers at both
communication parties (c.f. request-response processing as introduced prior), which
then utilize security token services as required. In the following, the SOAP message
authentication and authorization are outlined:

1. Firstly the client requests a security token (i.e. a SAML token) from the STS
the client is associated with by signing the request to the STS with his own
certificate. This process assumes that the client is registered at the STS, i.e.
the STS considers the client’s certificate as trusted.

2. The client’s STS issues a SAML token with its own signature to assure the
authenticity and affiliation of the client to a certain relation. Furthermore, the

124

associated attributes (e.g. role) are confirmed by the STS and incorporated in
the security token.

3. The client incorporates the signature and the relation along with the corre-
sponding attributes of the STS in the outgoing SOAP request message header
in order to prove its identity to the destination service and to be authorized as
defined by the relation and the attributes.

4. The service receives the SOAP request message and firstly tries to verify the
incorporated signature of the client’s STS by requesting a verification of the
signature at the STS the service is associated with. This assumes that the
client and service belong to different security domains (i.e. different VOs).

5. The service’s STS verifies the signature, if - and only if - the client’s STS
certificate is known and considered as trusted, and acknowledges the verification
request of the service.

6. Given the service’s STS acknowledgment, the service can be sure that the given
SOAP request message is authentic and can be forwarded to the authorization.

7. The service-side authorization checks if the given relation and attributes (e.g.
role) are allowed to perform the action as defined in SOAP message, which is
actually the checking against a certain policy (policy enforcement). Only if this
is acknowledged, the SOAP request execution is continued.

A simplified example of a SAML token that is incorporated in a SOAP message
header is shown in Listing 5.1. In this example the SAML token states the holder-
of-key confirmation method defined in the SubjectConfirmation element, which in
general attaches constraints to an assertion. In this case the assertion is valid (within
its lifetime of 15 minutes) as long as the possession of the private key corresponding
to the public key certificate can be proved. This comes with the advantage that
the STS is not required to perform access control for the security token issuance.
Moreover, this implies that anyone can request a security token, but only the holder
of the private key can make use of it in order to authenticate and get authorized by
pairing the security token to the service request using the private key.

The usage of security token services for authentication and authorization comes
with the main benefit, that the communication parties do not have to know each
other in advance to be authenticated. Furthermore, both communication parties can
have certificates issued by different CAs and no bridging etc. is required, the STSes
only have to establish an implicit or explicit trust relation. The main benefit for the
authorization is that the management of the attributes and the policy enforcement is
subject to each VO and thus, no loss of access control occurs at each site. The entire
management of authentication and authorization is performed in an abstraction layer,
which is realized via the STSes of each organization.

125

<saml :As s e r t i on I s s u e r=" I n s t i t u t i o n - A ">

<saml :Condi t ions NotBefore=" 2009 -01 -01 T 1 2 : 0 0 : 0 0 "

NotOnOrAfter=" 2009 -02 -01 T 1 2 : 1 5 : 0 0 " />

<saml :Attr ibuteStatement>

<saml :Subjec t>

<saml :NameIdent i f i e r NameQuali f ier=" R e l a t i o n s h i p N a m e ">

< !−− Sample−Re l a t i on −−>

</ saml :NameIdent i f i e r>

<saml :SubjectConf i rmat ion>

<saml:ConfirmationMethod>

urn:oas i s :names : tc :SAML:1 . 0 :cm:ho lder−of−key

</ saml:ConfirmationMethod>

<ds :KeyInfo>

< !−− C e r t i f i c a t e o f t h e user −−>

</ ds :KeyInfo>

</ saml :SubjectConf i rmat ion>

</ saml :Sub jec t>

<saml :At t r ibute AttributeName=" R o l e ">

<saml :Attr ibuteValue>Researcher</ saml :Attr ibuteValue>

</ saml :At t r ibute>

<ds :S i gna tu r e>

< !−− S i gna tu r e o f t h e STS on " s a m l : A s s e r t i o n " −−>

</ ds :S i gna tu r e>

</ saml :As s e r t i on>

Listing 5.1. Sample SAML token

5.5.3 Encryption

Encryption represents an important security facility in order to establish confiden-
tiality on the message layer as introduced in Section 2.4. Generally, all data transfers
with SOAP messages between communication parties such as a client and a service
are considered to be highly confidential and have to be protected from eavesdropping
using end-to-end security mechanisms. This implies that sensitive data (i.e. at least
the SOAP message body) is encrypted all the way from SOAP message creation until
the processing on the service-side. Relying on transport layer security only cannot
ensure end-to-end security in case of intermediate hosts/servers.

Generally, hybrid encryption approaches are applied, which combine symmetric
and asymmetric mechanisms, similar to the transport layer security protocol. TLS
uses fast symmetric encryption for the communication and exchanges the secret key in
advance encrypted with public-key-methods (c.f. TLS handshake, Section 2.4). This
encrypted secret key exchange implies that the client has to know the destination
service, in particular has to be in possession of a verifiable public key, in advance.
This is true with TLS due to prior performed TLS handshake, but not in case of a
SOAP message exchange, if the certificates of both communication parties are issued
by different and unrelated CAs.

126

Similar to the implementation of the STS, two solutions are targeted in this con-
text: key exchange utilizing security token services (STS) or additional key exchange
operations (KEO).

Key exchange with STS

This approach assumes the presence of security token services with established
trust relations with all other STS instances (implicitly or explicitly). Upon issuing a
SAML token, the STS can add the certificate of the STS belonging to the targeted
domain to its token issue response. The client (implicitly using an according SOAP
message handler) generates a random secret key SK, encrypts the entire SOAP mes-
sage body using this secret key and finally encrypting SK with the public key from the
remote STS certificate. An example of a resulting SOAP request message is shown
in Listing 5.2

<soapenv:Envelope>

<soapenv:Header>

<wss e : S e cu r i t y>

<wsse :BinarySecur i tyToken>

< !−− C e r t i f i c a t e o f remote STS −−>

</wsse :BinarySecur i tyToken>

<xenc:EncryptedKey>

< !−− SK, enc ryp t ed f o r remote STS −−>

</xenc:EncryptedKey>

</ ws s e : S e cu r i t y>

</ soapenv:Header>

<soapenv:Body>

< !−− Se r v i c e r e que s t , enc ryp t ed w i th SK −−>

</ soapenv:Body>

</ soapenv:Envelope>

Listing 5.2. Sample encrypted SOAP request message

On the service-side the corresponding SOAP handler is not able to decrypt this
message on its own, and thus it requests an encryption of the secret key (SK) with
its STS. The remote STS is able to decrypt the secret key using its own private key
and eventually returns the SK to the service. Given the secret key, the service, its
SOAP handler respectively, is now able to decrypt the SOAP request message and
continue the service processing. The SOAP response message is also encrypted using
the secret key initially created by the client.

The major implication of this solution is that there is no ad-hoc security, because
it relies on security token services, their established trust relation and the knowledge
of the client’s targeted service (i.e. remote STS).

127

Key exchange with KEO

This approach assumes that no security token services are used and secret key
exchange is performed via additional key exchange operations (KEO) incorporated in
the services. Furthermore, this approach assumes, that both communication parties
have been issued with certificates from a single CA or CAs that have a direct trust-
relation (e.g. via a bridge-CA) in order to be able to verify the certificate of the
particular communication partner.

The additional functionality incorporated in the service comprises operations to
exchange and verify the public keys of both parties as well as exchanging a public-
key-encrypted secret key. The client (i.e. its SOAP handlers) firstly requests the
certificate from the destination service sending along its own certificate. As the
client’s certificate is issued by a trusted authority (either the same as the service
certificate or a CA with an explicit trust relation), the service is able to verify the
client’s certificate (authentication). A similar process occurs vice versa to enable the
client to verify the service’s certificate. Given the verified service certificate, the client
generates a random secret key (SK) and sends it encrypted using the public key of
the service’s certificate. Now both communication parties are able to encrypt the
entire SOAP message using the secret key. A reference implementation of the key
exchange operations (KEO) has been developed with the E2E software, which has
been successfully utilized in this context.

The main disadvantages of this approach are the limitations that both commu-
nication parties have to have certificates from the same or trusted CAs as well as
the priorly established handshake (certificate verification and key exchange), which
requires extra SOAP communication.

The used mechanism to enable encryption on the message layer is subject to
the application domain. Generally, the first approach with STSes is more flexible
(different VOs, enabling authentication and authorization), but comes with a complex
management. The KEO-approach is rather simple, but is limited to a single CA or
trusted CAs and provides authentication only.

5.5.4 Logging

Logging has been introduced in the context of auditing in Section 2.4 and it
refers to the process of generating log messages (also known as audit records, audit
trails, event-logs, etc.) of important events happening in IT-systems. The handling
of the gained logging data (mostly log-files) is also referred to as log management,
which aims to deal with large volumes of log messages by applying log collection,
aggregation, long-term retention and log analysis. Furthermore, log management
creates a foundation to enable accounting, auditing, intrusion detection or provenance,
which are not further discussed here. In practice, logging frameworks are used, which
support the logging itself and provide capabilities to improve the log management.

128

Web services are usually composed of a number of different components and 3rd
party software, which may use different logging frameworks, which may result in
a complicated log management. For example, determining the chain of events of a
particular user interacting with a number of services may get complex with inspecting
a number of different log-files at a single site, but also at different sites. Furthermore,
most logging frameworks follow the common log file format that several Web servers
use. The representation used in the common log file format is subject to configuration,
while the actual items are related to web content and have their origin in the Unix
operating system. The common log file format comprises the following information-
items:

• remotehost: Remote hostname (or IP address if DNS hostname is not avail-
able, or if DNSLookup is turned off).

• rfc931: The remote logname of the user (ident).

• authuser: The username as which the user has authenticated himself.

• date: Date and time of the request.

• request: The request line exactly as it came from the client.

• status: The HTTP status code returned to the client.

• bytes: The content-length of the document transfered.

These information items can also be used in the context of Web or Grid services,
but typically, more important context information such as user- or service information
is not available.

The issues related to both the distribution of services and the unavailability of
user- and/or service-context information are addressed in the logging subsystem used
in the context of this QoS system. The logging system has been designed and imple-
mented in order to support linking to other existing logging frameworks and to define
arbitrary contexts to enable user- or service-specific logging. Furthermore, the entire
logging system has been independently released as Sourceforge project phloc-logging12

[Helger , 2008].

In the context of the QoS system, the logging has been utilized with a separate
context for users and services. Furthermore, all other logging frameworks used such
as Log4J13, Commons Logging14 or plain Java Util Logging have been linked to the
phloc-logging system in order to provide aggregation of log messages based on users
and services. This enables improved log management and forms a basis for accounting
and other security facilities which are not discussed in this context.

12http://sourceforge.net/projects/phloc-logging
13http://logging.apache.org/log4j/
14http://commons.apache.org/logging/

129

5.6 Summary

This chapter presented a comprehensive overview of the Quality of Service support
proposed in this thesis. The QoS support enables the on-demand provision of native
HPC applications as QoS-aware Grid services, which constitutes an added value for
service providers by potentially selling their services and for consumers by negotiating
certain QoS guarantees in advance to the actual usage of a service on a case-by-case
basis.

The description of the QoS system detailed the QoS support within a single service
(micro QoS management) and the negotiation process between a client and one or
more services (macro QoS negotiation). As a separate but related issue, this chapter
also discussed the security infrastructure.

130

Chapter 6

Projects

This chapter highlights the practical use of the presented work by demonstrating
its application in two different research and development projects. These projects
have shown that the developed concepts and solutions can be applied in reality to
improve research or enable the use of high-performance applications on a large scale.

In the following, the EU projects GEMSS1 [Benkner et al., 2005a] and Aneurist2

[Arbona et al., 2007] are presented. GEMSS dealt with Grid-enabling of compute
intensive medical simulation applications by setting up a testbed with QoS-enabled
Grid services exposing these applications. Aneurist developed an IT infrastructure in
the biomedical domain, which similarly to GEMSS, aims to expose high performance
applications as Grid services, but also distributed medical data.

Each project is introduced by presenting the major objectives, its context and
related facts. Moreover, the contributions of this work to each project are described.

6.1 GEMSS - Grid-enabled medical simulation

services

The research project GEMSS (Grid-enabled medical simulation services) funded
by the European Commission has demonstrated the early adoption of Grid technol-
ogy in health science. One of the main achievements of the project has been the
provisioning of six medical prototype applications as Grid services in an according
testbed. A corresponding Grid infrastructure has been developed considering the

1EU GEMSS project, http://www.gemss.de/
2EU Aneurist project, http://www.aneurist.org/

131

specific requirements of using medical services in a Pan-European Grid testbed such
as legal constraints, business issues and Quality of Service.

The GEMSS project commenced in 2002 and successfully finished in 2005.
The GEMSS consortium comprised eleven partner organizations from industry and
academia including University clinics. The diverse medical prototype applications ad-
dress maxillo-facial surgery simulations, neuro-surgery support, radio-surgery plan-
ning, inhaled drug-delivery simulation, cardiovascular simulation and tomographic
image reconstruction [Jones et al., 2004].

Subsequently, the major objectives of the GEMSS project, its scope and context
as well as the major contributions of the presented work are discussed in further
detail. General achievements of the GEMSS project are presented in [Berti et al.,
2003; Benkner et al., 2004c].

Objectives

The main objective of the GEMSS project was to design and develop a secure
Grid middleware for the on-demand provisioning native applications, in particular
the mentioned six medical prototype applications, as Grid services. Moreover, en-
abling medical practitioners and researchers to use these Grid services in their clinical
environment demonstrated new prospects to improve healthcare.

The key features of the developed GEMSS middleware have been on-demand
provisioning of services, negotiable Quality of Service, flexible business models, and
security to ensure privacy of patient data as well as compliance to EU law.

6.1.1 Scope and context

The GEMSS project as stated in the main objective was about designing and
developing a Grid middleware addressing the health context, its specific requirements
including QoS, business and legal issues as well as its diverse applications and their
characteristics. This section briefly outlines the business context, the GEMSS appli-
cations, its legal constraints and the resulting required security.

Business Grid

The GEMSS project adopts a business Grid model, which corresponds to service
providers offer services in an economic context and clients consume these services
according to agreed market conditions. This implies that clients pay a certain price
for the service consumption, but also that service providers have to make sure that the
services behave according to a prior agreed contract (e.g. with respect to completion

132

time or availability). For example, a surgery support application has to be available
and deliver its results in an almost real-time during surgery.

Opposed to the business Grid approach, the traditional Grid model, which is also
known as academic model due to its origin in academia, shares resources freely with a
fair use policy. In the business Grid model, users do not provide resources in exchange
for participation in the Grid; they are expected to consume services from service
providers and pay for them. On the other hand, service providers are competitors,
which implies that they do not distribute information about the availability of their
resources, but wait upon client request to execute certain applications and propose a
corresponding service level agreement.

GEMSS applications

The GEMSS medical prototype applications include maxillo-facial surgery simu-
lations, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simula-
tion, cardiovascular simulation and tomographic image reconstruction. These appli-
cations typically comprise compute-intensive and parallel algorithms and tools, such
as parallel Finite Element Modeling (FEM), parallel Computational Fluid Dynamics
(CFD) and parallel Monte Carlo simulation.

The diverse GEMSS applications are targeting different challenges from distinct
medical sectors:

Maxillo-facial surgery planning comprised pre-operative treatment planning
of patients with in-born deformations of the mid-face. This application analyzes and
simulates the deformations created by special screws tightly fixed to the head with a
distraction device in advance to the maxillo facial surgery. The deformations become
visible as a result of a parallel finite element analysis.

Neuro-surgery support aimed to predict the brain-shift-phenomenon during
neuro-surgery. This is especially important to provide real-time coordinates for the
surgical navigation and/or radiation. The actual computation is based on a precise
parallel non-linear image registration algorithm.

Radio-surgery simulation addressed the treatment planning for cancer destruc-
tion considering different beam weighting and orientation. This approach differs from
conventional treatment analysis and shows better coverage by utilizing monte-carlo
simulation methods.

Inhaled drug delivery simulation dealt with virtual drug delivery to the lung.
It utilizes a combination of computational fluid dynamics (CFD) and one-dimensional
models to optimize delivery of inhaled drugs to the lung.

Cardio-vascular system simulation simulated the entire cardio-vascular sys-
tem for improved treatment plans and surgical procedures by encompassing a com-
partmental approach, coupled structural mechanics and fluid dynamics.

133

Advanced image reconstruction improved fully 3D iterative image reconstruc-
tion for SPECT and MRI imaging by utilizing a hybrid MPI and OpenMP parallel
OS-EM reconstruction algorithm. This application will be discussed in further detail
as it is also utilized in the context of the experimental evaluation in Chapter 7.

The GEMSS Grid testbed exposed the mentioned applications as Grid services,
which are hosted on HPC facilities such as PC clusters or other parallel computing
platforms to facilitate their computational requirements. The GEMSS applications
have varying requirements with respect to performance and QoS, but basically, a
rather small number of time-consuming jobs has been tackled by the GEMSS testbed.

Each GEMSS application can be separated in a local interactive client component
and a remote compute kernel, which can be executed in batch mode given according
input data. This is required to facilitate a service oriented architecture.

Security and legal issues

A considerable number of legal issues and security requirements are linked to using
new distributed Grid technology in healthcare. GEMSS aimed to examine both with
respect to European regulations and their impact on the overall GEMSS system.

In the context of studying legal issues patient specific data processing in a dis-
tributed environment such as a Pan-European Grid testbed turned out to have sig-
nificant impact. The investigations yielded that EU directive 95/46 applies to wholly
or partly automated processing of personal data [Herveg and Poullet , 2003], which is
the case in all six GEMSS applications.

The EU directive 95/46 defines among others a controller (legal representative, i.e.
client) as the one responsible for personal data and a processor (i.e. service provider).
The controller has to observe its associated personal data at all time and also has to
have a legal contract with all potential data processors (services). Furthermore, upon
each job an electronic agreement between the controller and the processor is required,
which proofs that a service provider has accepted prior agreed legal responsibilities
associated with processing of a certain computational job.

Technically, this situation implies the use of negotiable service level agreements
(SLAs), while the legal requirement for all involved participants (clients and service
providers) demands them to have a written and signed contract exchanged, before
the first digital contact is made.

According to EU directive 95/46 the level of technical security required is deter-
mined appropriate to the risks represented by the data processing and the nature of
the data. In order to address this, the state of the art and cost of implementation
should be considered. Due to the very sensitive nature of personal health data, the
level of security applied in the GEMSS system has been set to maximum given the
practical costs of its implementation. This is also referred to as best practice security
[Middleton et al., 2005].

134

The security infrastructure in GEMSS consisted of using SSL on the transport
layer (i.e. https) and Web services security (WS-Security) on the message layer.
Therefore, an X.509-compliant public key infrastructure has been set up to enable
authentication, authorization and encryption for users, code and services. The ac-
cording certificate policy and the certificate practice statement of the GEMSS CA
was in line with directive 1999/93EC, which specifies a community framework for
electronic signatures.

Authorization in GEMSS was enforced for each service based on access rights
that were associated with the individuals’ certified identity. These access rights had
been assigned prior in accordance to a specific business process and enforced on the
service-level by the dynamic access control module (c.f. GEMSS architecture).

An end-to-end (E2E) security protocol has been developed and implemented to
ensure message-level privacy, i.e. the message originator is authenticated and the
message itself has not been tampered. The E2E security mechanisms are based on
the Web service security specifications introduced in Section 5.5.

Architecture

The GEMSS middleware follows a service oriented architecture comprising mul-
tiple Grid clients and Grid service providers, one or more registries and a single
certificate authority. Grid clients usually load the GEMSS client software, which en-
ables them to use the GEMSS middleware, to interact with GEMSS services that are
provided by service providers.

Authorization

...

Certificate & key store

Accounts Service

Logginh &

Service n

Intrusion
detection

E
rror

recovery

C
om

pute resource m
anager

Service 1
Application

Session
Management

Service side GEMSS
hosting environmentcomponent framework

Client side plugable

Web
server

QoS
Negotiation

QoS
Management

Application

Service Proxy

Certificates &
key store

QoS
Negotiation

Service
Discovery

Logger

Business
Processes

Internet

H
igh−

level client A
P

I

C
lient A

pplication

S
cheduler

F
irew

all

W
S

 S
ecuirty

T
ransport and M

essaging

H
P

C
 hardw

are

S
ecure T

ransfer

F
irew

all

Figure 6.1. GEMSS architecture [Benkner et al., 2004a]

Client applications are responsible to handle the creation of the service input data
and present the service output data in a feasible way. On the other hand, service
providers expose compute-intensive medical application kernels on clusters or other
HPC hardware as Grid services to be consumed by Grid clients.

135

The GEMSS architecture is shown in Figure 6.1 comprising a client and a service
infrastructure. Subsequently, both are outlined briefly.

The client infrastructure is based on a component model supporting pluggable
GEMSS client components each realizing a certain functionality. On top of these
client components and the component framework a high-level client API is provided,
which is usually used by the Grid client application.

The service infrastructure exposes Web services that encapsulate native appli-
cations. Each application has to install its server-side application code and a set of
scripts to be run in batch mode. The provision of applications as services is based
on the concept of generic application services [Benkner et al., 2004a]. A generic
application service represents a customizable software component providing generic
operations for remote job management, error recovery, and QoS support.

The interaction between the client- and service-side is performed securely via
SOAP over https and with encrypted SOAP messages. The main processing to secure
SOAP is being accomplished by the transport and messaging on the client-side and
the Web Services security and secure transfer on the service-side.

6.1.2 Contribution

Certain contributions to GEMSS have their origin in the Vienna Grid Environ-
ment, but also vice versa. Major elements developed in the context of this work
have been applied in the Grid infrastructure utilized in the GEMSS project, but also
ideas and developments from GEMSS have been picked up in VGE. Generally, the
GEMSS developments have been more focused on the medical domain’s requirements
and their applications, while the VGE developments pursued a more generic policy
with no particular domain in the back.

The major contributions of this work presented in the previous chapters to the
GEMSS project can be grouped by following areas:

• Generic service infrastructure

• Quality of Service

• Client components

The most innovative features of the GEMSS system especially with respect to QoS
have been published in [Benkner et al., 2005b, 2006, 2007; Middleton et al., 2007].
Subsequently, the generic service infrastructure and the QoS support of GEMSS are
being described in further detail.

136

Service infrastructure

As initially mentioned, the GEMSS architecture has been heavily influenced by
the VGE architecture and vice versa. Consequently, GEMSS and VGE share common
components of their rather similar service-oriented architectures. The second main
influence of the GEMSS architecture mainly came from the GRIA project3[Surridge
et al., 2005], which was also an early adopter of a service-oriented architecture. The
architecture realization of GEMSS results in according infrastructures for the service-
and the client-side. This work rather emphasizes on contributions to the GEMSS
service infrastructure, while GRIA mainly affected the client-side.

The basic GEMSS service infrastructure has been adapted from corresponding
elements of VGE service infrastructure. This implies that GEMSS services are also
based purely on Web services technologies, which has proven to be forward-looking
at the time when the project and its architecture design started.

Concerning the actual development the entire hosting and provisioning environ-
ment including its deployment tool and the concept of the generic application services
have been adjusted to fit the requirements of the GEMSS services and its hosting.
Components developed exclusively in GEMSS such as the accounting service or se-
curity components have been incorporated by customizing the existing service infras-
tructure appropriately.

The GEMSS service infrastructure has been setup and demonstrated successfully
with a testbed running six different medical HPC applications as Grid service. Con-
sequently, the applicability of the presented service infrastructure has been proven in
the health domain.

Quality of Service

The Quality of Service support in GEMSS was required from the general setup of
the project, in particular due to the special requirements of the medical domain and
its involved applications. At the same time the QoS support was also one of the most
challenging design and development areas of the entire project.

The basic Grid model of GEMSS follows a business concept with service providers
offering services and clients consuming these services in a Grid market situation. This
implies that clients and service providers have to establish an agreement concerning
the actual service consumption and its linked conditions. As previously derived this
was also an essential requirement originating from legal constraints of the medical
sector.

In order to address the required QoS support in GEMSS the QoS support model
developed in the context of this work has been adopted. In particular, the microscopic
QoS management features including the entire service-side process of generating a QoS

3Grid resources for industrial application, http://www.gria.org/

137

offer and finally the confirmation which results in an according QoS contract have
been utilized in GEMSS. Furthermore, building upon the micro QoS the macroscopic
QoS negotiation relying on the English auction model has been extended with a client
agent to be used in a fully automated way.

The microscopic QoS management supports the generation of a QoS offer
based on initial constraints (QoS request) and request-specific information (request
descriptor) as well as the confirmation of a certain QoS offer to become a QoS contract.
Internally this process relies on advance reservation of resources, resource capacity
prediction and flexible resource pricing models as explained in detail in Chapter 5.
The reservation-based approach distinguishes significantly from other best-effort- or
priority-based approaches, but it is the only solution to ensure the exclusive availabil-
ity of the required resources in advance, which is strongly required by the GEMSS
applications and its usage in the medical context.

A particular emphasis has been put on performance modeling of the involved
applications to develop a feasible resource prediction of a specific job in advance to
its actual execution. The experimental results of these investigations are presented
in Chapter 7.

The macroscopic QoS negotiation represents a high-level client-to-service
provider negotiation. This process comprises a client to request for and services
to offer certain QoS guarantees in a competitive environment. Typically, a client
negotiates with a number of services to achieve the best deal. Therefore, the client
utilizes certain advanced strategies such an English auction. In a round-based fash-
ion potential service providers are invited to underbid each other and in the end the
winner of the auction is awarded with the execution of a certain application job. The
finally agreed terms and conditions are determined in an according Web service level
agreement (WSLA).

Given the general setup of the GEMSS project the overall QoS solution presented
in the context of this work was very well suited. Furthermore, no alternatives have
been available taking into account the special requirements of the diverse medical
applications in a business context.

Further contributions

A number of contributions with respect to separate developments and/or the reuse
of existing components to the GEMSS project can be found in the client infrastruc-
ture. The GEMSS client utilizes a service proxy component as basic abstraction of a
remote application service, which has been adapted from VGE to serve as a GEMSS
client component. Furthermore, other GEMSS client components realized certain
functionality that has been originally developed in the context of the VGE client, in-
cluding client components for service discovery, QoS negotiation, session management
and logging.

138

Finally, more contributions of this work to GEMSS are rather hidden in vari-
ous security-related developments. Generally, the entire security subsystem has been
incorporated in the service infrastructure and, in particular, in its provisioning envi-
ronment in order to integrate certain levels of protection as transparent to the user
as possible.

In summary, manifold contributions of this work, particularly the service infras-
tructure and the QoS support, have been successfully applied and demonstrated
within the GEMSS project, which serves as an essential proof of concept for these
developments.

139

6.2 Aneurist - Integrated biomedical informatics

for the management of cerebral aneurysms

The research project Aneurist funded by the European Commission has demon-
strated similarly to the GEMSS project the benefits of using a complex Grid-based
IT infrastructure on an even larger scale in the biomedical context. In particular,
Aneurist and its developments are concerned with all processes linked to research,
diagnosis and treatment of cerebral aneurysms. Although the focus of the project
with respect to the medical context is on a one specific disease, the basic technologies
are generic and transferable to other domains in healthcare [Arbona et al., 2006].

The Aneurist project is a four year project commenced in 2006. The Aneurist
consortium consists of 27 partner organizations in Europe and five collaborators from
the USA, Japan and New Zealand. The partner organizations are from industry
and academia including five clinical pilot centers supplying real patient data to the
consortium for medical research purposes.

In contrast to GEMSS, which highlights complex computing, the medical data and
its integration is emphasized in Aneurist. All medical data available in the Aneurist
project is exposed through the IT infrastructure and utilized by four different appli-
cation suites. The following capabilities are addressed by an individual application
suite: personalized aneurysm rupture risk assessment (@neuRisk), design of smart
implants to treat ruptured aneurysms (@neuEndo), knowledge discovery for linking
genetics to disease (@neuLink), as well as integration of modeling, simulation and
visualization of multimodal data (@neuFuse).

Subsequently, the major objectives of the Aneurist project, its scope and context
as well as the contributions of this work are discussed in further detail.

Objectives

The Aneurist project addresses the general problem in healthcare that the process
of disease diagnosis, treatment planning and development is compromised by the
lack and/or fragmentation of relevant medical data. Although Aneurist is mainly a
biomedical project, one major aspect to encounter this situation is utilizing state-of-
the-art information technology.

A main objective of Aneurist is the design and development of a comprehensive IT
system, which supports and consequently improves all processes linked to research,
diagnosis and treatment development for complex and multi-factorial diseases, such
as cerebral aneurysms. But the system is generic enough to be adapted to support
the treatment of other diseases as well.

The Aneurist IT infrastructure consolidates heterogeneous data, computing and
complex processing services in a distributed environment to be used across scientific

140

and organisational boundaries. The infrastructure is created in line with evolving
Grid and Web services standards and leverages existing developments from GEMSS
and Fura4 [Arbona et al., 2007].

6.2.1 Scope and context

The main objective of the Aneurist project as concerned in the context of this work
is the design and development of a generic IT infrastructure to support and improve
the mentioned problems in healthcare. Therefore, four integrative application suites
are selected to utilize and demonstrate the added value of the overall Aneurist system.

In the following these application suites are introduced with respect to their actual
purpose and implementations as well as their targeted domain.

Aneurist application suites

The Aneurist application suites span from individual treatment and its planning to
knowledge discovery based on population studies, but all share the common objective
to considerably improve the understanding and management of cerebral aneurysms.
In a more technical context, these applications have in common that they use the
Aneurist platforms, which provide support for computationally demanding tasks such
as complex modeling and simulation as well as access to health data distributed
geographically in public and/or protected databases.

The Aneurist application suites include @neuFuse, @neuLink, @neuRisk, and
@neuEndo, which rely on the Aneurist platforms comprising @neuCompute and
@neuInfo. In the following these application suites and platforms will be outlined
briefly:

@neuFuse provides an interactive open application framework for medical pro-
fessionals and/or bioengineers to work with multimodal patient-specific data. This
includes fusing diagnostic and modeling data into a coherent representation, visual-
izing different types of data using multiple display modalities and types, as well as
simulating and processing based on the available data according to defined clinical
processes. The underlying technology comprises compute-intensive image segmenta-
tion methods and multimodal registration algorithms, access to distributed sources
of patient-specific information and advanced visualization methods.

@neuLink comprises a framework for knowledge discovery in the context of link-
ing genetics to a certain disease such as cerebral aneurysms. For this purpose the
application suite supports the identification of candidate genes associated with the
disease phenotype as well as an integrated analysis of genetic epidemiology and clin-
ical data. Therefore, it relies on the integration of and access to structured and

4Grid Systems Fura, http://fura.sourceforge.net

141

unstructured data from heterogeneous distributed data sources. The gained infor-
mation is subject to advanced data and text mining in order to eventually identify
candidate genes that are relevant in the context of managing cerebral aneurysms
[Friedrich et al., 2008].

@neuRisk enables personalized risk assessment in a decision support system
which assists a clinician in assessing the rupture risk to determine if an aneurysm
should be treated or not. This application relies on the collection of relevant data,
including patient-specific data with @neuFuse and general data of similar patients
and risk factors with @neuLink. Moreover, compute intensive methods are applied to
calculate a personalized comprehensive risk associated to a specific aneurysm [Dunlop
et al., 2008].

@neuEndo supports the intervention planning and the design process with ad-
vanced computational tools towards the next generation of personalized smart flow-
correcting implants to finally improve treatment of ruptured aneurysms. Within
this application suite the planning and design of implantable devices is conducted
by simulation of the structural, haemodynamic and biological response to interven-
tion, considering patient specific characteristics. Hence according compute-intensive
simulation applications as well as access to patient specific data is required.

The manifold application suites of Aneurist target different domains in the
biomedical context, but as indicated in their individual outline, they depend on inten-
sive computation and access to distributed, heterogeneous data. In order to address
these requirements the Aneurist infrastructure comprises the platforms @neuCom-
pute and @neuInfo to support compute intensive applications as well as access and
integration of different data sources.

Aneurist platforms

Subsequently, the Aneurist platforms which constitute the essential components
of the basic Aneurist infrastructure are outlined briefly:

@neuCompute provides an environment to set up compute services exposing
native applications based on existing developments from GEMSS and Fura. Both
software systems rely on standard Web services technologies to allow compliance with
other Web services-based systems and to realize a service oriented Grid architecture.
A major achievement of the GEMSS infrastructure as mentioned earlier is the Quality
of Service support of complex HPC applications, while Fura comes with the benefit of
improved support for parametric sweep-type applications relying on an agent-worker
model.

@neuInfo supports accessing and integration of distributed heterogeneous data
sources. The @neuInfo platform provides a generic framework that supports the pro-
vision and deployment of data services exposing a variety of health data sources.
Internally, the platform is based on developments from OGSA data access and inte-

142

gration (OGSA-DAI)5and the Grid Data Mediation Service (GDMS) [Wöhrer et al.,
2005]. Furthermore, data services have the same interface as compute services in order
to realize transparent access for the client to Aneurist platform services in general.

In the following both platforms and their provided services will be described in
further detail in the context of the Aneurist architecture.

Architecture

A high-level layered view of the Aneurist architecture is shown in Figure 6.2. The
architecture focuses on three layers - application suites, middleware and resources.

Services
Data Staging

Services
Compute
Services

Data Staging
Services

@neuLink
Linking genetics

to desease
Virtual endovascular
treatment planning

@neuEndo
Integrative rupture

@neuRisk @neuFuse
Multimodal data

and risk assessment processing and fusion

Compute

Simulation
Applications

Genetics
Literature, etc.

Integrative Application Suites

Computing and Infostructure

Job and data handling interface

Computing and data transport services

@neuCompute

Job and data handling interface

@neuInfo

Distributed heterogeneous data access

Information and Computing Resources

Public Databases Hospital
Information

Systems

Private Databases
COTS stents,

coils, etc.

Modelling and

Core Grid middleware: GEMSS and Fura

Figure 6.2. Aneurist architecture

The top layer consists of the Aneurist application suites as outlined earlier, com-
prising multimodal data processing and image fusion with @neuFuse, linking genetics
to diseases by @neuLink, integrative rupture and risk assessment with @neuRisk and
virtual endovascular treatment planning by @neuEndo. Similar to other Grid ar-
chitectures the middle and also middleware layer exposes various kinds of resources
provided in the resource layer depicted at the bottom of Figure 6.2. The middleware
basically enables clients (i.e. application suites) to transparently access resources
without knowing the exact details of these resources (e.g. location). In the following
the middleware and resource layers are discussed briefly.

The middleware layer comprises a service-oriented Grid middleware with data
and compute services, exposing a variety of computation and information resources.

5OGSA-DAI, http://www.ogsadai.org

143

@neuInfo is basically concerned with providing abstractions to heterogeneous dis-
tributed data and @neuCompute provides computational Grid facilities to enable
advanced modeling and simulation tasks. Both @neuInfo and @neuCompute are also
referred to as @neuPlatforms, which provide the provisioning of Aneurist Grid ser-
vices based on standard Web services technologies, i.e. these service are defined by
the Web Services Description Language (WSDL) and securely accessed using SOAP.

The resource layer encompasses mainly computational and storage resources.
Typically, computational resources embrace miscellaneous hardware (e.g. HPC fa-
cilities, such as PC clusters) offered by service providers in order to execute com-
putationally demanding tasks, such as simulation or modeling algorithms. Storage
resources are usually utilized by databases comprising simulation or patient data of
various kinds including private and public data sources within and outside of Aneurist.
Moreover, the clinical pilot centers offer patient data through a dedicated component
of the Aneurist infrastructure named Biomedical Infostructure (BioIS). Internally, the
BioIS will make use of clinical information systems (CIS) of the participating clinical
pilot centers.

6.2.2 Contribution

The contributions to Aneurist gained from this work originated mainly from the
GEMSS middleware. Even tough the developments that started in GEMSS have been
extended and further improved, the main contributions of this work to GEMSS can be
applied equally to Aneurist. Consequently, the well-proved service infrastructure from
GEMSS with its key feature Quality of Service has been applied and demonstrated
in Aneurist on an even larger scale as well.

The most considerable new capability of the Aneurist middleware in comparison to
GEMSS is the incorporation of distributed heterogeneous data sources as data services
relying on OGSA-DAI and GDMS. The contribution of this work in the context of
data services was the adaptation of the existing application service infrastructure to
accomplish the requirements and provision of data services as well.

Generally, the Aneurist system architecture comprises various innovative facilities
besides the data and compute services and the most considerable issues have been
published in [Arbona et al., 2007]. Furthermore, the capabilities with respect to data
access, integration and semantic mediation are far beyond the scope of this thesis,
but can be found in [Kumpf et al., 2007].

144

Chapter 7

Experimental Evaluation

This chapter comprises an experimental evaluation of the developed system with
a particular focus on the Quality of Service support. A number of experiments have
been performed which are presented in the following. The main experiments con-
ducted address the micro QoS management and the macro QoS negotiation, both
targeting an investigation of the system’s behavior with respect to rationality and
robustness.

Besides the major evaluation of the QoS support, a lot of different less considerable
tests and investigations have been accomplished in the context of this work. These
examinations are either performed to underpin the use of specific technologies and/or
frameworks in advance to the actual implementation or to provide a proof of the
general applicability of a certain software with respect to performance or security.

The most notable work related to evaluation has been made in [Benkner et al.,
2003a] to conclude the general use of the open source Web services framework Apache
Axis due to performance and standards compliance, as well as in the evaluation
section of [Benkner et al., 2004b], which substantiates the applicability of Web services
security mechanisms. A detailed presentation of these topics is beyond the scope of
this chapter.

The experiments presented in this chapter have been published in [Benkner et al.,
2007] and [Middleton et al., 2007] emphasizing the micro and macro QoS respec-
tively. Therein the applicability and behavior of the QoS system is investigated with
experiments at different scales. All experiments make use of a specific QoS-aware
HPC application, which is presented in advance to the actual experiments. As a
consequence, this chapter is structured as follows: First the underlying QoS-aware
HPC application is presented, followed by the micro QoS management evaluation and
finally the examination of the macro QoS negotiation.

145

7.1 SPECT application

All QoS experiments rely on a specific HPC application from the GEMSS project,
which provides capabilities for advanced image reconstruction in the context of single
photon emission computed tomography (SPECT). The SPECT application supports
a fully 3D iterative image reconstruction algorithm for the whole image volume con-
sidering principal 3D effects of data acquisition. Internally a state of the art OS-EM
(Ordered Subsets - Maximum Likelihood) algorithm is utilized, which is based on
a stochastic model of Poisson-distributed generation and detection of photons. The
work in the context of this application has been initially presented in [Backfrieder
et al., 2001] and refined consecutively in [Benkner et al., 2002; Backfrieder et al.,
2002, 2003a, b].

Hybrid parallelism

Fully 3D iterative image reconstruction comes with the drawback of considerably
increased demand of computing power compared to traditional 2D image reconstruc-
tion algorithms. Moreover, a sequential processing of a 3D iterative algorithm is not
practical to be performed in a reasonable time and thus, a parallel approach has been
utilized. The reconstruction kernel has been parallelized for an SMP clusters and
achieved decent speedups as shown in Figure 7.1.

4 6 8 10 12 16 20 24
Number of Processors

0

5

10

15

20

sp
ee

d-
up

MPI/OpenMP (2 threads/process)
MPI/OpenMP (4 threads/process)
pure MPI
ideal speedup

Figure 7.1. SPECT parallelization speedups [Backfrieder et al., 2003a]

Please note that the SPECT parallelization strategy follows a hybrid approach
utilizing MPI1 and OpenMP2. Usually, MPI addresses communication between pro-
cesses typically run on separate computing nodes while OpenMP realizes parallelism
with threads and shared memory.

1Message passing interface, http://www-unix.mcs.anl.gov/mpi/
2Open multi processing, http://openmp.org/wp/

146

Application interface

The provision of this native HPC application as Grid service enables the use of
advanced 3D image reconstruction software remotely within a clinical environment
without relying on the operation and maintenance of according HPC hardware locally
[Benkner et al., 2003b]. Furthermore, this contributes to the long-term objective
towards improving healthcare by utilizing novel IT infrastructures.

Figure 7.2. SPECT client interface

The screenshot depicted in Figure 7.2 shows the SPECT application interface
from the client point of view (c.f. clinical environment).

Performance Modeling

Provisioning the SPECT application as QoS aware Grid service requires the avail-
ability of a performance model in order to predict the actual runtime of a SPECT
job in advance to its execution. As discussed in Section 5.2.2 due to the very diverse
characteristics of the native applications the QoS infrastructure does not prescribe
the actual nature of a performance model. For the performance modeling of the
SPECT application, an empirical approach is used to estimate the performance of
the reconstruction kernel.

The actual code of the reconstruction kernel has been firstly structured in sequen-
tial and parallel blocks. Then example runs have been measured with respect to the

147

required execution time down to each code block dependent on the input parameters
used as well as the supplied number of CPUs. Given the required CPU time and
the varying input parameters an according analytical model parameterized with the
number of CPUs has been derived. The developed SPECT performance model esti-
mated the total execution time for a specific SPECT job specified by its meta input
parameters dependent on the supplied number of CPUs. Further on this SPECT
performance model is used in all subsequent QoS experiments.

7.2 Micro QoS evaluation

The main objective of this experiment is to prove the rational behavior of micro
QoS management. For this purpose services that expose the previously explained
SPECT application are set up and stressed continuously by a number of clients over
a certain period of time. The entire experiment is monitored and analyzed afterwards
especially considering the individual components of the micro QoS management.

In the following the setup of the experiment, the used metrics and finally the
results are presented and discussed.

7.2.1 System setup

The experimental setup comprises three service providers each exposing the
SPECT application on a dedicated 16 CPU cluster. On the client-side ten differ-
ent workstations are used to concurrently run the SPECT client and penetrate the
available services. In order to cover a range of use-cases, these clients can select dif-
ferent SPECT jobs out of a pool of 24 jobs with varying job characteristics and input
data, as listed in Table 7.1.

Small Medium Large

Resolution 128 128–256 256

Projections 60 60–120 120

Slices 8–32 64–128 8–32

Iterations 5–25 5–25 5–25

Table 7.1. SPECT job characteristics

A SPECT job can be characterized by its resolution, the number of projections,
slices and iterations. The resolution defines the horizontal and vertical number of
pixels or dots per inch (DPI) of the projections (images) acquired from the CT or

148

MRI scanner. The concrete projections count is specified by the number of scans
taken, which is usually a proportion of 360 degrees due to the CT/MRI scanner
orbiting the compound. The slices determine the horizontal transsection to compute
and finally the iterations define the numbers of successive increments the algorithm
should execute. Furthermore, the jobs are grouped distinguishing small, medium and
large jobs to reflect their computational requirements.

The characteristics of a specific SPECT job are supplied by the client during the
QoS negotiation and then fed into the performance model as its main input. The
SPECT performance model as described in the beginning of this section is parame-
terized with this meta-information about the concrete job as well as the number of
CPUs. This implies that executing the performance model with varying numbers of
processors determines the required and/or feasible number of processors to execute a
certain SPECT job. The micro QoS management actually makes use of this possibil-
ity and eventually determines the number of processors that also meets the client’s
QoS constraints such as time and price. The concrete processing of the micro QoS
management is subject to a configurable strategy as detailed in Section 5.3, but in
the context of this experiment the prime time algorithm has been applied.

Nodes# Small Medium Large

2 13 40 130

4 8 21 80

8 5 12 53

16 4 8 41

Table 7.2. Average SPECT job runtimes

Table 7.2 shows a list of average runtimes in minutes, that has been measured for
all classes of SPECT jobs on 2, 4, 8, and 16 processors, respectively. The numbers also
indicate a considerable well scaling behavior when increasing the number of processors
the application is executed on.

Client tasks

The test infrastructure comprised three service providers and ten concurrently
running clients as initially mentioned. Each client iteratively requests the execution
of a random SPECT job subjected to a negotiated agreement until a total number of
400 jobs is exceeded. In particular, each client performs the following steps structured
in three phases: environment setup, QoS negotiation, and job execution:

1. Environment setup

149

• Randomly pick up a job set (from the jobs presented in Table 7.1).

• Randomly define QoS constraints following one of three types of prefer-
ences: fast job execution, medium time job execution or just the execution
with a long time constraint.

2. QoS negotiation

• Query a single registry to obtain a list of service endpoints, which actually
always returns all three available services.

• Sequentially request an offer from a service provider randomly picked up
from the list retrieved from the registry in order to equally distribute the
requests of the clients to the available service providers.

• Confirm the first matching offer to establish a QoS contract. If no of-
fer is returned from any of the service providers, start over with a new
environment setup.

3. Job execution (assuming a QoS contract has been established)

• Upload input data and initiate the start operation, which actually just
schedules the job according to the QoS contract.

• Wait until the agreed start time and query the status iteratively until the
application job runs

• Similarly wait until the agreed finish time as well as the retrieved status
indicates the job has been finished

• Finally download the results, store the statistics of this job execution and
start over with a new environment setup.

Each individual job run initiated by a client reflects user preferences with respect
to QoS and the used job. More precisely, the job selection and the QoS preferences
are determined in the environment setup of each client run. In order to cover a
wide range of users, jobs and preferences, this experiment comprises three different
test runs with clients randomly requesting small, medium and large jobs and also
randomly selecting QoS constraints. The job size is characterized in Table 7.1 while
the selected QoS constraints reflect three kinds of user groups: the first with a high
priority for a fast job execution, one group with medium time constraints, and finally
one group with no hard time constraints.

Given this setup, all ten clients have been started concurrently until a total number
of 400 jobs has been exceeded. In the following the measured metrics are defined
before the actual results are presented.

Metrics

The metrics used in the course of this experiment include robustness, throughput,
utilization, and performance model accuracy. The robustness has been determined

150

by the percentage of successfully run jobs and the throughput by the number of jobs
per hour. The utilization has been averaged using mechanisms from the scheduler
monitoring the utilization every 15 minutes. Finally, the performance model accuracy
has been recorded by comparing the estimates against the actual run time.

In summary, the following metrics have been measured in this experiment:

• Robustness = % of jobs successfully run

• Throughput = Jobs run per hour

• Utilization = Average % node use reported by the cluster

• Performance model accuracy = (estimated runtime - actual runtime) / actual
runtime

7.2.2 Results

The comprehensive results of this experiment are shown in Table 7.3 primarily
distinguishing between small, medium and large jobs. The first line represents the
total uptime of the test infrastructure to complete the number of requested jobs given
in hours. The second part of the table presents the actual numbers of jobs totally
requested, rejected, resulted in contracts or errors and finally succeeded. The bottom
part comprises statistical information as stipulated by the defined metrics.

Small jobs Medium jobs Large jobs

Uptime hours 8,4 25,7 21,4

Jobs requests 401 401 401

rejected 0 1 319

contracts 401 400 82

errors 5 3 4

successes 396 397 78

Stats Robustness 98.75% 99.25% 95.53%

Throughput (Jobs/h) 46.94 15.42 3.66

Av. utilization 60.01% 68.82% 88.84%

Av. PerfModel Acc. 97.28% 97.62% 97.57%

Table 7.3. Micro QoS experiment summary

151

7.2.3 Analysis

Generally, this experiment delivered excellent news with the system remaining
stable under heavy stress conditions over a longer period of time. The infrastructure
works considerably robust with handling most of the requests properly and transpar-
ently to the user. This includes coping with a number of errors related to general
network timeouts or failed negotiations, which have been compensated by retries or
balanced by other service providers respectively.

The very few unhandled issues that arose and eventually resulted in errors can
be classified in two kinds of problems. The first problem was related to network and
resource delays and consequently timeouts in a multithreaded environment when mul-
tiple clients tried to access the same resource. More precisely, this kind of malfunction
appeared when multiple threads were attempting to write on a certain resource (e.g.
resource model organizing the QoS offers and contracts), while other threads wanted
to read from this resource. As writing threads have priority, delayed reading threads
may finally cause network timeouts. A pragmatic solution would be the fine-tuning
of the timeout settings.

The second problem was related to a security issue on the client side. As presented
in Section 5.5 each client-to-service communication is encrypted using a security token
that is exchanged in advance. Each security token has a short validity and must
be renewed in the concourse of multiple invocations of service operations. This is
usually the case even a couple of times in the long lasting job handling phase (c.f.
setup). In the unlikely case that the security token expires during a specific invocation
of a service operation (e.g. on a considerably long lasting up- or download), the
client parses the actually regular response message from the service, but is under
the impression that the message is compromised. A potential solution to this would
be to accept expired security tokens on incoming SOAP responses if the associated
outgoing SOAP request has been within the security token validity.

Besides the robustness of the system the throughput has been measured, which is
obviously higher and consequently faster with smaller jobs compared to bigger jobs,
which demanded more time to complete. Furthermore, the average utilization has
been recorded, which fairly varies but correlates to the number of requested jobs and
the number of actually started jobs. In case of small jobs all requests have been
handled by the system and the total utilization stayed on a level below the high
utilization of the medium and large jobs. Especially in the large job case a lot of
requests have been rejected due to capacity reasons. In any way the throughput and
utilization also underpins the rational behavior of the system.

Finally, the accuracy of the SPECT performance has been recorded, which has
been considerably high, verifying that the SPECT application is very well suited
to this reservation-based QoS approach. Furthermore, the statistical significance is
proven by the standard deviation for these figures varying between 0.013 and 0.014
over the entire 1203 jobs.

152

Despite these very few problems the experiment proved a very satisfying behavior
of the overall system and provided evidence of its rationality and robustness.

7.3 Macro QoS examination

The main objective of this section is to investigate the system with respect to its
macro QoS negotiation capabilities by performing distinct tests. These tests should
provide an insight on how the system actually works on the macro QoS level with
a particular focus on the used pricing model. Due to the support of flexible pricing
models by the QoS infrastructure a Grid marketplace for a specific medical application
exposed via services can be simulated. The main implication in doing so is that service
providers create offers for using their services based on different pricing models.

Two separate tests have been devised considering the effects of pricing in an iso-
lated fashion as well as factoring in the actual execution time. In general it should be
noted, that various limiting assumptions have been made to keep track of complexity
while conducting these tests. Both tests are further on described with respect to their
setup and the applied metrics. Finally, the results are presented and discussed.

7.3.1 System setup

Similar to the tests performed in the context of the micro QoS evaluation the ex-
perimental setup comprises three different service providers each exposing the SPECT
application on a dedicated 16 CPU cluster. The client-side is slightly different by just
using a single client, which continuously drives the macro QoS negotiation as de-
scribed in Section 5.4 with all available service providers.

For the sake of simplicity, the client iteratively requests the same SPECT job
execution. This particular SPECT job lasted for 45 minutes using 16 CPUs (i.e. the
entire resources of one service provider) to finish and can be characterized as a large
type job as specified in Table 7.1. Furthermore, the client only submits a total of
nine jobs to keep track of the overall system within a reasonable time of 135 minutes.
An observation with extending the total time of the job executions would not deliver
any new insights and moreover, the uptime capabilities of the system being stressed
with a lot of jobs has already been demonstrated in the micro QoS evaluation.

General SPECT job attributes as well as SPECT performance modeling and its
implications have also been discussed and analyzed in the micro QoS evaluation and
eventually proved to be applicable. Hence this functionality is just utilized in this
experiment, even if certain capabilities such as how many CPUs should be used, are
practically turned off due to the use of constantly 16 CPUs. The main reason for this
limitation is to isolate the macro QoS negotiation in the best way.

153

Client tasks

Actually, two experiments are conducted for the macro QoS negotiation evaluation
differing from each other just in the way the client assesses the offers returned from
the services. More precisely, the client awards a specific service provider that wins
an auction and the winner is determined by different assessment strategies. One is
just considering the price and the other is factoring in the execution time as well. In
particular, the client performs the following steps:

1. Client environment setup (static job input and QoS constraints)

2. Invitation of all available service providers to participate in an auction about
the execution of the specified SPECT job

3. The auction is round-based driven by the client and as long as service providers
improve their bids according to the following assessment, the auction continues
and finally the best offer wins the auction.

a. Assess cheapest offer as best offer.

b. Assess all offers with equally considering price and time.

4. The winning offer of a single service provider is finally confirmed by the client.

5. Job execution is equally performed as with the test carried out for the micro
QoS evaluation.

These steps are performed consecutively with the client expressing its preferences
in the assessment of the service offers. The price-only assessment is achieved by
specifying the QoS constraints with a large time window; reflecting start and end
time constraints are irrelevant and analyze the pricing models and their impact on
the system’s behavior in an isolated fashion. In the second test the client sets up
the environment with QoS constraints that consider time and price. This allows the
service provider to schedule jobs where they see the best fit within the specified QoS
constraints.

Pricing models

The service providers in this setup used different pricing models including two
fixed pricing models and a dynamic pricing model considering the utilization. The
following pricing models have been used:

1. Price model A: Fixed price = e 0.6 per CPU hour (medium)

2. Price model B: Variable price = e 0.4 per CPU hour + e 10 * <system load>

154

3. Price model C: Fixed price = e 0.8 per CPU hour (high)

The system load in the context of this test is a fractional value, which is increased
by one third for each new job that is agreed to be executed by the service provider
following the dynamic pricing model. This simplification can be made due to the
total runtime for each test of 135 minutes, which corresponds to the execution of
nine jobs, whereat each service provider is able to handle three 45 minutes jobs and
consequently, each service provider’s load is increased by one third with each job.

Given this setup the client was started and kept running until a total number of
nine jobs was reached. In the following the measured metrics are defined before the
actual results are presented.

Metrics

The main metric considered in this experiment is the service provider’s revenue,
which sums up the agreed prices from the QoS contracts established between the
client and a particular service provider. The revenues of the service providers are
contrasted with respect to the different assessment strategies of the client. Following
the revenues, a mapping of the actual jobs to the service providers is also shown.

7.3.2 Results

The accumulated revenue for each service provider can be seen in Figure 7.3
distinguishing between different client offer assessments. Basically, both graphs show
the increase of the revenues in Euro of each service provider with each new job.
Furthermore, it can be seen how the different pricing models influence the revenues
and, in particular, how the dynamic pricing model is affected by the system load.

The left graph shown in Figure 7.3(a) presents the revenues with totally isolated
pricing, which means that the client always chooses the cheapest offer. This test aimed
to demonstrate that the client behaves rationally and always chooses the lowest price
first. As expected, the low price model grabs the early jobs, while given constant
demand, the clients are forced to pay higher prices later on. Furthermore, it can be
seen that the price of the variable model increases with the system load and becomes
less attractive.

The second test is presented in Figure 7.3(b). In this test the client factors in
the scheduled timeframe of the application execution equally weighted to the price in
the context of the offer assessment. The main objective of this test was to examine
potential differences to the first test with given resource limitations. The general
expectation is to see a more balanced load between the service providers. The first
jobs will be quick and cheap, but at a certain point the fast but expensive will outplay

155

1 2 3 4 5 6 7 8 9
Job number

0

5

10

15

20

25

30

E
ur

o

Medium fixed cost (service provider A)
Variable cost (service provider B)
High fixed cost (service provider C)

Price-only total revenue

(a) Offer assessment of price only

1 2 3 4 5 6 7 8 9
Job number

0

5

10

15

20

25

30

E
ur

o

Medium fixed cost (service provider A)
Variable cost (service provider B)
High fixed cost (service provider C)

Price-time total revenue

(b) Offer assessment of price and time

Figure 7.3. Total revenue in Euro from each service provider [Middleton et al.,
2007]

the slow and cheap offers, because the execution time is now equally considered as
the price in the client’s offer assessment.

135 mins

0 mins, start of test

45 mins

90 mins

Job 6

Job 7

Fixed price
(high)

Variable
price

Fixed price
(medium)

Job 8

Job 1

Job 5

Job 9

Service provider schedules

Job 3

Job 4

Job 2

(a) Offer assessment of price only

0 mins, start of test

45 mins

90 mins

135 mins

(medium)

Job 3

Job 6

Job 8

Job 1

Job 5

Job 9 Job 7

Job 4

Job 2

Fixed price
(high)

Variable
price

Fixed price

Service provider schedules

(b) Offer assessment of price and time

Figure 7.4. Service provider job schedules [Middleton et al., 2007]

Finally, the job schedules for all service providers distinguishing again both client
offer assessments are shown in Figure 7.4. This view of each service provider’s reser-
vation schedule can be concluded from Figure 7.3 as well, but it presents an explicit
schedule depicting the order of the jobs in each service provider.

7.3.3 Analysis

The basic results of the performed macro QoS negotiation tests indicate that the
system apparently follows rational behavior. The job offers with the lowest prices will
always be awarded first as long as no other factors such as end time of the job are
considered (c.f. price-only assessment). If the end time of a job is taken into account
it may significantly degrade the assessment and make the price overall less important
(c.f. price-time assessment).

156

The success a service provider achieves in terms of the best revenue is strongly
dependent on the level of demand. Given a low level of demand service providers will
be most successful with offers at a low price in order to obtain a sales volume at all.
This can be underpinned by the situation depicted in Figure 7.3(b), where even after
half of the jobs have been submitted, which is equivalent to a low demand, the high
price service provider finds itself with no jobs and no revenue so far, since the cheaper
providers are chosen first.

On the other hand, if the level of demand is high and clients have less choice due
to lack of free resources with the cheap providers, they have to use the remaining
service provider, which offer only high price jobs. This situation is shown by the
second half of the submitted jobs in Figure 7.3(b). The clients are forced to choose
the high price service providers and thus, charging such prices is sensible in a high
demand situation.

The macro QoS negotiation only considers the price deals with a low and high
demand condition as expected, which is also in line with the economic basics of supply
and demand.

The second test depicted in Figure 7.3(b), which limited the resource alloca-
tion with hard time constraints, showed a more balanced load between the service
providers. In this situation the clients actually acted similarly, but had to choose
the high pricing service providers earlier in order to achieve their time constraints.
Again, if a low demand for a certain time frame exists, low price providers will gain
profits first, but with increasing demand also a high pricing policy is feasible.

The key issue to success in different market situations is flexibility. The optimal
pricing model would be able to calculate the price based on the current demand, which
can be concluded from the systems’ utilization. The variable pricing model aims to
simulate such an adaptive price, which allows the service provider to be awarded with
some early cheap jobs to gain an initial utilization and exploit a potential increasing
demand with high prices later on.

In summary, a lot more complex pricing models and investigations are imaginable,
but for the sake of coping with the complexity of the system, these tests are kept rather
simple, but even on this level the basic economic rules of supply and demand can be
verified. Furthermore, this provides evidence for the proper and rational behavior of
the macro QoS negotiation.

7.4 Summary

This chapter presented an experimental evaluation of the developed system. The
Quality of Service support has been investigated by conducting different experiments
to address the micro QoS management and the macro QoS negotiation. All experi-
ments proved the robustness and rational behavior of the system. Moreover, from an

157

overall viewpoint the use of the micro and macro QoS appears to complement each
other well.

158

Chapter 8

Related Work

Manifold related research work has been presented in all the chapters so far,
focusing explicitly on the individual detail at hand. Contrarily, this chapter surveys
further general work mostly in terms of related projects that deal with similar aspects
as this work does or reside in the connatural life science domain as the presented
projects in Chapter 6. The main aim of this chapter is to extend the prospects to
research activities and projects relevant to this thesis, which have not been mentioned
or outlined so far.

This chapter is structured comprising the following parts, each highlighting rele-
vant research and/or projects as well as briefly addressing their objectives:

• Grid infrastructures

• Grids and business

• Medical Grids

• Quality of Service

Subsequently, each area is being detailed.

Grid infrastructures

The increasing number of production level Grid infrastructures utilize heteroge-
neous middleware, such as Globus, gLite, or UNICORE. Due to many standardization
efforts a common consensus has been achieved in the adoption of service-oriented ar-
chitectures and, in particular, the use of Web services technologies to interface differ-
ent middleware services. In the following the core infrastructures and their deployed
middleware is briefly outlined.

159

The Globus toolkit1 has been mentioned in Section 2.2 as an initial effort of
assembling a set of tools towards the vision of Grid computing [Foster et al., 2001].
The Globus toolkit has been promoted by the Open Grid Forum (OGF)2, which was
formerly known as Global Grid Forum (GGF). The OGF community also envisaged
the trend towards service oriented architectures and supported the transition of the
Globus toolkit to use Web services technologies recently. Globus also constitutes the
basis for more recent developments such as the gLite middleware.

The gLite middleware is used in the Enabling Grids for E-sciencE project (EGEE)3

[Laure et al., 2006], which is Europe’s leading research cyber-infrastructure project.
The gLite middleware follows a service oriented architecture and exposes five major
groups of services, including services for data and job management, security, infor-
mation and monitoring. These groups of services are similar to the vision of OGSA
as introduced in Section 2.2, which allows compliance and integration of other infras-
tructures built upon the same principles.

The UNICORE (Uniform Interface to Computing Resources)4 middleware is also
used in a number of Grid projects mentioned later in the context of medical Grid
projects. UNICORE also adopted Web services technologies and provides distributed
computing and data services as well as client access to these services in a seamless
and secure way.

Grids and business

The business aspect in Grid computing has been underestimated with respect to
the adoption of Grid solutions in industry. This has often been explained by the
academic world with the lack of standardization or similar issues, mostly reduced to
technical reasons, in comparison to the economic evolution of Web computing. This
also might have strived the advent of Cloud computing and its encouragement by
the major players in the IT industry at the end of the 2000s, which adopted a pay-
as-you-go approach. In contrast, Grid computing more likely employed an academic
model which foresees to contribute to a common pool of resources and then being
authorized to use the resource pool freely on a fair use policy.

A lot of research collaboration and projects have implemented the academic re-
source sharing model. The large US TeraGrid5 and the EU DataGrid [Laure,
2004] (with its successive already mentioned EGEE project) are just two major ex-
amples, which have their origin in the USA and EU respectively, but are globally
distributed today. A common ground of most of these academic Grids is the use of

1Globus, http://www.globus.org/
2Open Grid Forum (OGF), http://www.ogf.org/
3EU EGEE, http://www.eu-egee.org/
4UNICORE, http://www.unicore.eu/
5US TeraGrid, http://www.teragrid.org/

160

the Globus toolkit6 to share computing resources. On the other hand, several projects
have proposed economy-based Grid systems on top of these systems

Contrarily to the academic model, [Buyya, 2002] proposed a Grid Architecture
for Computational Economy (GRACE) with a distributed resource management
and scheduling for Grid computing following business principles. The developed sys-
tem provided management for resources controlled by the Nimrod-G resource broker
to be allocated with parametric sweeping applications based on price, time and avail-
ability of resources as well as allowing to fix either cost or time while optimising the
other. This work provided a major step forward by modeling resource allocations in
the Grid considering economic aspects. However, GRACE relies on centralized and
trusted components to collect information about the availability of the resources as
well as to allocate them which basically conflicts with the vision of the Grid.

Further business-oriented Grid projects, which rather follow an application service
provider (ASP) model, can be found with the GRIA and GRASP project. The
industry driven EU GRASP project7 [Dimitrakos et al., 2003] aimed to explore the
use of Grid services with respect to their service provision in enterprises. At the core
infrastructure of the GRASP project Web services have been utilized and basic service
level agreements have been investigated. The basic approach was to pool resources
of service providers and manage them by a virtual organization (VO) in order to
offer stronger service level guarantees or cheaper prices than a single service provider.
However, the members of the virtual organization have to trust the VO and cannot
easily compete against each other. As a consequence, the full benefits may not be
seen by customers.

The EU GRIA project8 [Surridge et al., 2004], which initially was an acronym
for Grid resources for industrial applications, aimed to make the Grid usable by in-
dustry. The basic approach of GRIA was to employ a business-to-business (B2B)
service provision model that connects consumers and providers directly. This client-
to-service link is also expressed in according service level agreements, which include
the service capability and its price, but no concrete guarantees about execution time.
The EU GEMSS project9, which has been introduced in Section 6.1 reuses some de-
velopments regarding security, but the applications and their requirements in GEMSS
differ substantially from the ones addressed in GRIA and thereof the business and
QoS model is also different.

Medical domain

Medical applications are considered as the potential ”killer applications” for the
Grid and thereof the life science domain gained an increasing importance to Grid

6Globus, http://www.globus.org/
7EU GRASP, http://eu-grasp.net/
8EU GRIA project, http://www.gria.org/
9EU GEMSS project, http://www.gemss.de/

161

computing in recent years. This situation is also reflected in the growing number of
research projects which deal with certain aspects in the field. In the following some
of these projects are outlined briefly.

The EU BioGrid project10 [Bala et al., 2002] aimed to develop a Grid infras-
tructure for biomolecular applications and databases utilizing HPC facilities. This
enables chemists and biologists to advance data-intensive and computational demand-
ing biotechnological procedures. The Grid infrastructure of the project is based on
the UNICORE middleware.

Also based on UNICORE is the EU OpenMolGrid project11 [Romberg et al.,
2007] which aimed to develop and utilize a Grid infrastructure to solve molecular
design and engineering tasks in chemistry, pharmacy and bioinformatics. A particular
emphasis in this context was the integration and access of distributed data sources.
The EU MammoGrid project12 [Warren et al., 2007] was also mainly concerned
with the data access and integration aspect in the Grid. Its emphasis was obtaining
and providing information about breast cancer via an according Pan-European Grid
data infrastructure.

The EU BioinfoGrid project13 [Milanesi , 2007] constituted a specific support
action (SSA) that fosters a collaboration of Bioinformatics with Grid infrastructures.
Therefore applications from molecular biology have been enabled to run on the EGEE
Grid infrastructure. The project focused on the investigation and evaluation of ge-
nomics, proteomics and molecular dynamics applications relying on EGEE Grid tech-
nology. A number of other projects are also based on the wide-spread EGEE cyber-
infrastructure, most notable for the medical field is the EU WISDOM initiative14

[Jacq et al., 2007]. This project utilized the EGEE Grid infrastructure to demon-
strate its capabilities in drug discovery for diseases like Malaria or avian influenza in
in-silico experiments.

The EU ViroLab project15 [Gubala et al., 2007] aimed to realize a virtual labo-
ratory for the study of infectious diseases such as HIV. Medical doctors may use the
virtual laboratory to understand individual drug resistance and tailor personalized
drug therapy for a specific patient, while virologists are supported in studying virus
trends on accumulated patient data. The software used in the virtual laboratory is
able to utilize different infrastructure services such as Web services or Globus-based
Grids.

The UK myGrid project16 [Pettifer et al., 2007] is a large initiative generally
concerned with the improvement of e-science by many kinds of tools and core infras-
tructures. With respect to a broader medical domain, myGrid provides support for

10EU BioGrid, http://biogrid.icm.edu.pl/
11EU OpenMolGrid, http://www.openmolgrid.org/
12EU MammoGrid, http://www.cems.uwe.ac.uk/cccs/project.php?name=mammogrid
13EU BioinfoGrid, http://www.bioinfogrid.eu/
14EU WISDOM initiative http://wisdom.eu-egee.fr/
15EU ViroLab, http://www.virolab.org/
16UK myGrid, http://www.mygrid.org.uk/

162

data intensive in silico experiments such as analysing protein sequences and struc-
tures. The core middleware of myGrid is based on Web services, which are accessed
for example using the workflow design and enactment environment Taverna or the
myExperiment research collaboration platform.

The US cancer Biomedical Information Grid (caBIG) project17 [Buetow ,
2005] provides a network for the cancer community to collaborate by sharing data and
knowledge via the IT infrastructure caGrid. This open cyberinfrastructure strives to
achieve computational and semantic interoperability by relying on a service oriented
architecture and building on existing technologies such as Web services and OGSA-
DAI, similar to the myGrid project.

The US Biomedical Informatics Research Network (BIRN)18 [Jovicich et al.,
2005] promotes a large virtual community with the major objective to advance diag-
nosis and treatment of diseases. The initiative is driven by the US National Institute
of Health providing a framework to foster the installation of an IT infrastructure,
which notably is a Grid of super-computers. This enables distributed collaboration
and computation on large-scale studies in biomedical sciences. The medical focus
lies on brain imaging of neurological disorders and thus, many different diseases are
addressed including depression, multiple sclerosis, brain cancer, Parkinson’s disease,
Tourette’s disorder or ADHD.

Most of the projects presented so far rather focus on the data management aspect
in the Grid, which is fairly similar to the further discussed AneurIST project in Section
6.2, but the computational feature constitutes also an important common ground,
which highly relates to the work performed in this thesis. The GEMSS project as
outlined in Section 6.1 and many other projects such as the Swiss BioOpera19 [Bausch
et al., 2002] or the Japanese BioGrid20 [Akiyama et al., 2005] emphasize compute
intensive applications and their Grid-enabling.

Quality of service

Related work in the field of Quality of Service has been investigated basically
in Section 2.3 covering individual QoS aspects on the network-, application- and
service-level. Contrarily to the presented rather traditional approaches and solutions
specifically focusing on the detail at hand this section emphasizes similar comprehen-
sive work as envisaged in this thesis. Quality of Service is closely related to business
approaches due to the market potential of a certain level of a service in contrast to the
common best effort situation in the Internet. As a consequence, projects highlighted
in the business domain usually have QoS implications as well.

From the medical domain it can be seen that a number of projects focus rather

17caBIG, http://cabig.cancer.gov/
18US BIRN, http://www.nbirn.net/
19Swiss BioOpera, http://www.iks.inf.ethz.ch/projects/projects/bioopera/
20Japanese BioGrid, www.biogrid.jp/

163

on data aspects and the presented QoS approach has not yet been investigated with
respect to data access and integration in the Grid. A pointer in this direction is
the work presented in [Braumandl et al., 2003], which focuses on QoS support for
distributed query processing, suggesting QoS management at every stage of a query
execution including planning, optimization and execution, in order to achieve signif-
icantly better results than in current systems based on a best-effort policy.

An introducing work of QoS in Grid computing has been presented in [Menasce
and Casalicchio, 2004] dealing in particular with a QoS-based Web services archi-
tecture. The work proposes Web services build upon QoS-aware components, which
support invocation via an according QoS negotiation protocol. The Web services con-
cerned are rather plain Web services with no underlying native applications or data
sources which e.g. require HPC hardware to be executed on, compared to the complex
application-based Web services dealt with in this work. However, the basic require-
ment of advance reservation in this context, as also proposed in this work, is also
discussed in [Sulistio and Buyya, 2004] and [Menasce, 2004]. The latter presented
the effects of resource allocation on service level agreements. Again, the underly-
ing applications are fundamentally different being typical enterprise applications as
opposed to this work.

Similar to [Menasce and Casalicchio, 2004] the work proposed in [Al-Ali et al.,
2003] follows a QoS-aware component architecture for Grid computing, but again it
rather emphasizes plain Web services. With respect to QoS-aware service discovery
the UDDIe system [ShaikhAli et al., 2003] introduced in Section 2.1 should be men-
tioned due to its support for QoS attributes. Similarly [Ran, 2003] proposes specific
QoS metrics to be integrated in UDDI. Basically both systems support arbitrary QoS
attributes, but do not specifically deal with response time and price guarantees, which
have to be provided by the registered Grid services and their underlying applications.

In summary, the field of Quality of Service in Grid computing comprises a number
of diverse and promising approaches, which this thesis also aims to contribute to.

164

Chapter 9

Conclusion

This chapter provides a brief wrap-up of this thesis comprising a short summary,
conclusions and future directions. The summary presents the discussed work with
respect to Grid computing and Quality of Service, while the concluding remarks dis-
cuss the work and its applicability. Finally, potential future directions are addressed
mainly pointing towards the upcoming Cloud computing developments.

Summary and contribution

Grid Computing and Quality of Service brought up enormous challenges for re-
search in recent years especially towards the creation of a new IT cyber-infrastructure.
This PhD thesis aimed to contribute to this development by proposing a Grid infras-
tructure supporting Quality of Service. QoS-aware Grid computing envisaged in this
work comprises on-demand provision of HPC applications as Grid services and ne-
gotiable QoS guarantees for multiple clients and furthermore follows standardized
protocols and implementations therein.

This complex undertaking has been accomplished by presenting a comprehensive
overview of relevant technology in Chapter 2, followed by the main contributions of
this work, each in a separate chapter:

• Design and development of a service-oriented Grid environment (Chapter 3)

• Quality of Service models for capabilities, requests and negotiation (Chapter 4)

• Secure Quality of Service support infrastructure (Chapter 5)

Each topic comprises an according design and implementation, which is finally
evaluated. This evaluation of the developments has been performed practically by

165

applying the middleware in different research projects as presented in Chapter 6 and
experimentally by conducting various experiments as outlined in Chapter 7.

Conclusion

The design and implementation of the Grid environment has proved to be forward-
looking by adopting a service-oriented approach and realizing a pure Web services-
based solution. This has been especially important due to the fact that the Grid
software market was dominated by the initial versions of the Globus toolkit at the
time of the development kick-off for the Grid environment. In the meantime the trend
towards service orientation has been globally accepted.

The presented Grid middleware and in particular the QoS support has been suc-
cessfully applied and demonstrated in EU projects in the medical and bio-medical
domains. Using Grid technology in these contexts enabled medical practitioners and
researchers to utilize Grid services in their clinical environment and eventually demon-
strate new prospects for improving healthcare.

Furthermore, in the concourse of this work an experimental evaluation of the
overall system has been performed. Various tests have been conducted ranging from
a low level stress tests to high level negotiation tests providing insights to the system
and the pleasant evidence for the system’s rational behavior and high robustness
when penetrated with a huge number of client requests.

Future directions

Even if many commercial Grid developments exist, Cloud computing is increas-
ingly promoted by the industry. Companies like Amazon, Google or IBM investigated
ways to make business with their enormous computing resources, which are only uti-
lized upon peak demand and the results are the nowadays broadly used Amazon
Elastic Compute Cloud (EC2), Google App Engine or IBM Enterprise Data Cen-
ter. The concept of virtualization is also envisaged in the Grid. Clouds are typically
accessible through (Web) services, i.e. the computing power is actually virtualized.
Furthermore, Cloud computing adopts concepts of the service science, which tar-
gets to make software, platforms or even hardware available as a service to elevate
virtualization to even higher layers.

However, Cloud computing is not intended to entirely replace Grid computing,
it rather enriches the Grid with further capabilities and increases scalability and
computing power, if Grids incorporate Clouds or Clouds incorporate Grids. Moreover,
economic aspects are considered with the pay-as-you-go concept and as soon as the
industry promotes a certain concept, a promising future for the next generations of
cyberinfrastructures can be expected.

166

Bibliography

Akiyama, T., et al., Scientific grid activities in Cybermedia Center, Osaka University,
Cluster Computing and the Grid, IEEE International Symposium on, 1, 463–470,
2005.

Al-Ali, R., A. Shaikhali, O. Rana, and D. Walker, Supporting QoS-based discovery
in service-oriented Grids, in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, 2003.

Al-Masri, E., and Q. H. Mahmoud, Investigating web services on the world wide web,
in WWW ’08: Proceeding of the 17th international conference on World Wide Web,
pp. 795–804, ACM, New York, NY, USA, 2008.

Allcock, B., The Globus Toolkit: Status and Plans, CrossGrid 2004, http://grid.
ucy.ac.cy/axgrids04/AxGrids/presentations/CrossGrids04.ppt, 2004.

Alonso, G., F. Casati, H. Kuno, and V. Machiraju, Web Services Concepts, Archi-
tectures and Applications, Springer, 2004.

Andrieux, A., et al., Web Service Agreement Specification (WS-Agreement), http:
//www.ogf.org/documents/GFD.107.pdf, 2007.

Arbona, A., S. Benkner, G. Engelbrecht, J. Fingberg, M. Hofmann, K. Kumpf,
G. Lonsdale, and A. Wöhrer, A Service-oriented Grid Infrastructure for Biomedi-
cal Data and Compute Services, in Proceedings of the International Workshop on
Network Tools and Applications in Biology, Santa Margherita di Pula, Italy, 2006.

Arbona, A., S. Benkner, G. Engelbrecht, J. Fingberg, M. Hofmann, K. Kumpf,
G. Lonsdale, and A. Wöhrer, A Service-oriented Grid Infrastructure for Biomedical
Data and Compute Services, IEEE Transactions on NanoBioscience, 2 (6), 2007.

Ausubel, L., Auction Theory for the New Economy - New Economy Handbook, Aca-
demic Press, 2003.

Backfrieder, W., S. Benkner, and G. Engelbrecht, Web-Based Parallel ML-EM Recon-
struction for SPECT on SMP Clusters, in Proceedings of the International Con-
ference on Mathematics and Engineering Techniques in Medicine and Biological
Sciences, CSREA Press, Las Vegas, USA, 2001.

167

Backfrieder, W., M. Forster, S. Benkner, G. Engelbrecht, N. Terziev, and A. Dim-
itrov, Accurate Attenuation Correction for A Fully 3D Reconstruction Service,
in Proceedings of the International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Sciences, CSREA Press, Las Vegas, USA,
2002.

Backfrieder, W., M. Forster, S. Benkner, and G. Engelbrecht, Locally Variant VOR
in Fully 3D SPECT within A Service Oriented Environment, in Proceedings of the
International Conference on Mathematics and Engineering Techniques in Medicine
and Biological Sciences, CSREA Press, Las Vegas, USA, 2003a.

Backfrieder, W., M. Forster, G. Engelbrecht, and S. Benkner, Optimized design of
VOR for 3D image reconstruction in SPECT in a service oriented parallel imple-
mentation, Nuclear Medicine Technology, 31 (2), 2003b.

Bala, P., et al., BioGRID - An European Grid for Molecular Biology, in Proceed-
ings of 11th International Symposium on High Performance Distributed Computing
(HPDC), pp. 412–417, IEEE Computer Society, Edinburgh, Scotland, 2002.

Balenson, D., B. Kaliski, S. Kent, and J. Linn, Privacy Enhancement for Internet
Electronic Mail: Part I to IV (RFC 1421, 1422, 1423, 1424), http://tools.ietf.
org/html/rfc1421|1422|1423|1424, 1993.

Banks, T., Web Services Resource Framework (WSRF) Primer v1.2, http://docs.
oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, 2006.

Bausch, W., C. Pautasso, R. Schaeppi, and G. Alonso, BioOpera: Cluster-Aware
Computing, in CLUSTER ’02: Proceedings of the IEEE International Conference
on Cluster Computing, p. 99, IEEE Computer Society, Washington, DC, USA,
2002.

Benkner, S., and G. Engelbrecht, Generic QoS Support for Application Web Services,
in International Symposium on Web Services and Applications, Las Vegas, USA,
2005.

Benkner, S., and G. Engelbrecht, A Generic QoS Infrastructure for Grid Web Services,
in Proceedings of the International Conference on Internet and Web Applications
and Services, IEEE Computer Society Press, Guadeloupe, French Caribbean, 2006.

Benkner, S., A. Dimitrov, G. Engelbrecht, R. Schmidt, and N. Terziev, Medical Image
Reconstruction in a Grid Environment, in Proceedings, 2nd Cracow Grid Workshop,
Cracow, Poland, 2002.

Benkner, S., I. Brandic, A. Dimitrov, G. Engelbrecht, R. Schmidt, and N. Terziev,
Performance of Java Web Services Implementations, in Proceedings International
Conference on Web Services, CSREA Press, Las Vegas, USA, 2003a.

168

Benkner, S., A. Dimitrov, G. Engelbrecht, R. Schmidt, and N. Terziev, A Service-
Oriented Framework for Parallel Medical Image Reconstruction, in Proceedings
International Conference on Computational Science, pp.612-621, Springer Verlag,
Melbourne, Australia, 2003b.

Benkner, S., G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. E. Middleton,
and R. Schmidt, GEMSS: Grid-infrastructure for Medical Service Provision, in In
Proceedings of HealthGRID 2004, Clermont-Ferrand, France, 2004a.

Benkner, S., I. Brandic, G. Engelbrecht, and R. Schmidt, VGE - A Service-Oriented
Grid Environment for On-Demand Supercomputings, in Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing (Grid 2004), IEEE, Pitts-
burgh, PA, USA, 2004b.

Benkner, S., G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. E. Middleton, and
R. Schmidt, GEMSS: Grid Infrastructure for Medical Service Provision, Methods
of Information in Medicine, 44, 2005a.

Benkner, S., I. Brandic, G. Engelbrecht, S. E. Middleton, and R. Schmidt,
Application-Level QoS Support for a Medical Grid Infrastructure, in Life Sciences
Grid Workshop, Grid Asia, Singapore, 2005b.

Benkner, S., I. Brandic, G. Engelbrecht, and R. Schmidt, VGE - A QoS-Enabled
Grid Computing Environment, in Proceedings 1st Austrian Grid Symposium, OCG
Verlag, Schloss Hagenberg, Austria, 2005c.

Benkner, S., K. F. Doerner, R. Hartl, G. Kiechle, and M. Lucka, Commutication
Strategies for Parallel Cooperative Ant Colony Optimization on Clusters and Grids,
in Proceedings PARA’04 Workshop on State-of-the-art in Scientific Computing,
edited by J. Dongarra, K. Madsen, and J. Wasniewski, pp. 3–12, Technical Univer-
sity of Denmark, Lyngby, 2005d.

Benkner, S., G. Engelbrecht, S. E. Middleton, and M. Surridge, Supporting SLA
Negotiation for Grid-based Medical Simulation Services, in Workshop on State-of-
the-Art in Scientific and Parallel Computing, Umea, Sweden, 2006.

Benkner, S., G. Engelbrecht, S. E. Middleton, I. Brandic, and R. Schmidt, End-
to-End QoS Support for a Medical Grid Service Infrastructure, New Generation
Computing, Computing Paradigms and Computational Intelligence, Special Issue
on Life Science Grid Computing, Ohmsha, Ltd. and Springer, 25 (4), 2007.

Benkner, S., G. Engelbrecht, M. Köhler, and A. Wöhrer, Virtualizing Scientific Appli-
cations and Data Sources as Grid Services, in Cyberinfrastructure Technologies and
Applications, edited by J. Cao, Nova Science Publishers, New York, USA, 2008.

Benkner, S., et al., Numerical Simulation for eHealth: Grid-enabled Medical Sim-
ulation Services, PARCO2003, Parallel Computing 2003, Dresden, Germany, in

169

Parallel Computing: Software Technology, Algorithms, Architectures and Applica-
tions, edited by G. Joubert, W. Nagel, F. Peters, and W. Walter, Advances in
Parallel Computing Elsevier, The Netherlands, 2004c.

Berti, G., S. Benkner, J. W. Fenner, J. Fingberg, G. Lonsdale, S. E. Middleton,
and M. Surridge, Medical Simulation Services via the Grid, in Proceedings of 1st
European HealthGRID Conference, pp. 248–259, Lyon, France, 2003.

Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Architecture
for Differentiated Services (RFC 2475), http://tools.ietf.org/html/rfc2475,
1998.

Braden, R., Requirements for Internet Hosts – Communication Layers (RFC 1122),
http://tools.ietf.org/html/rfc1122, 1989.

Braden, R., L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSerVation
Protocol (RSVP) (RFC 2205), http://tools.ietf.org/html/rfc2205, 1997.

Brainard, J., A. Juels, R. Rivest, M. Szydlo, and M. Yung, Fourth Factor Authenti-
cation: Somebody You Know, in In ACM CCS, pp. 168 – 178, 2006.

Brandic, I., S. Benkner, G. Engelbrecht, and R. Schmidt, Towards Quality of Service
Support for Grid Workflows, in Proceedings of the European Grid Conference 2005
(EGC2005), Springer Verlag, Amsterdam, The Netherlands, 2005a.

Brandic, I., S. Benkner, G. Engelbrecht, and R. Schmidt, QoS Support for Time-
Critical Grid Workflow Applications, in Proceedings 1st IEEE International Con-
ference on eScience and Grid Computing, Melbourne, Australia, 2005b.

Brandic, I., S. Pllana, and S. Benkner, Specification, planning, and execution of
QoS-aware Grid workflows within the Amadeus environment, Concurr. Comput. :
Pract. Exper., 20 (4), 331–345, 2008.

Braumandl, R., A. Kemper, and D. Kossmann, Quality of Serivce in an Information
Economy, ACM Transactions on Internet Technology, 3 (4), 291–333, 2003.

Braverman, A. M., Father of the Grid, http://magazine.uchicago.edu/0404/

features/index.shtml, 2007.

Buetow, K., Cyberinfrastructure: Empowering a ”Third Way” in Biomedical Re-
search, Science, 308 (5723), 821–824, 2005.

Buyya, R., Economic-based Distributed Resource Management and Scheduling for
Grid Computing, Ph.D. thesis, Monash University, Melbourne, Australia, 2002.

Cao, J., and F. Zimmermann, Queue Scheduling and Advance Reservations with
COSY, in Proceedings of the International Parallel and Distributed Processing Sym-
posium, Santa Fe, New Mexico, USA, 2004.

170

Cha, S.-J., Y.-Y. Hwang, Y.-S. Chang, K.-O. Kim, and K.-C. Lee, The Performance
Evaluations and Enhancements of GIS Web Services, in Proceedings of the 2007
International Conference on Multimedia and Ubiquitous Engineering, pp. 668–673,
IEEE Computer Society, Washington, DC, USA, 2007.

Chinnici, R., M. Gudgin, J.-J. Moreau, and S. Weerawarana, Web Services Descrip-
tion Language (WSDL) Version 2.0, http://www.w3.org/TR/wsdl20/, 2007.

Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana, Web Services De-
scription Language (WSDL) Version 1.1, http://www.w3.org/TR/wsdl, 2001.

Clement, L., A. Hately, C. von Riegen, and T. Rogers, UDDI Version 3.0.2, http:
//uddi.org/pubs/uddi v3.htm, 2004.

Cohen, F., Discover SOAP encoding’s impact on Web service performance, http:

//www.ibm.com/developerworks/webservices/library/ws-soapenc/, 2003.

Cooper, D., S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile (RFC 5280), http://tools.ietf.org/html/rfc5280, 2008.

de Laat, C., G. Gross, L. Gommans, J. Vollbrecht, and D. Spence, Generic AAA
Architecture (RFC 2903), http://tools.ietf.org/html/rfc2903, 2000.

D.Ferraiolo, and R. Kuhn, Role-based access controls, in In Proceedings of 15th NIST-
NCSC National Computer Security Conference, pp. 554–563, 1992.

Diffie, W., and M. Hellman, Multi-user cryptographic techniques, AFIPS Proceedings,
45, 109–112, 1976.

Dimitrakos, T., D. M. Randal, F. Yuan, M. Gaeta, G. Laria, P. Ritrovato, B. Ser-
han, S. Wesner, and K. Wulf, An Emerging Architecture Enabling Grid Based
Application Service Provision, in EDOC ’03: Proceedings of the 7th International
Conference on Enterprise Distributed Object Computing, p. 240, IEEE Computer
Society, Washington, DC, USA, 2003.

Du, Z., J. Huai, and Y. Liu, Ad-UDDI: An active and distributed service registry,
in VLDB International Workshop on Technologies for EServices, volume 3811 of
LNCS, pp. 58–71, Springer, 2006.

Dubuisson, O., ASN.1 Reference Book: ASN.1 - Communication between heteroge-
neous systems, Elsevier-Morgan Kaufmann, 2008.

Dunlop, R., et al., @neurIST - Chronic Disease Management through Integration of
Heterogeneous Data and Computer-interpretable Guideline Services, in Proceedings
of Healthgrid 2008, Chicago, USA, 2008.

E.800, Recommendation E.800: Terms and definitions related to quality of ser-
vice and network performance including dependability, http://www.itu.int/rec/
T-REC-E.800-199408-S/en, 1994.

171

Eronen, P., and H. Tschofenig, Pre-Shared Key Ciphersuites for Transport Layer
Security (RFC 4279), http://tools.ietf.org/html/rfc4279, 2005.

Farrel, A., A. Ayyangar, and J. Vasseur, Inter-Domain MPLS and GMPLS Traf-
fic Engineering – Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
Extensions (RFC 5151), http://tools.ietf.org/html/rfc5151, 2008.

Fielding, R. T., REST: Architectural Styles and the Design of Network-based Software
Architectures, Doctoral dissertation, University of California, Irvine, 2000.

Foster, I., What is the Grid? A Three Point Checklist, http://www-fp.mcs.anl.
gov/∼foster/Articles/WhatIsTheGrid.pdf, 2002.

Foster, I., and C. Kesselman, The Grid 2: Blueprint for a New Computing Infras-
tructure, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 15,
2001, 2001.

Foster, I., C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, , Global Grid
Forum, 2002.

Foster, I., et al., The Open Grid Services Architecture, Version 1.5, http://www.

ogf.org/documents/GFD.80.pdf, 2006.

Friedrich, C. M., H. Dach, T. Gattermayer, G. Engelbrecht, S. Benkner, and
M. Hofmann-Apitius, @neuLink: A Service-oriented Application for Biomedical
Knowledge Discovery, in Proceedings of Healthgrid 2008, Chicago, USA, 2008.

Garofalakis, J., Y. Panagis, and E. Sakkopoulos, Web Service Discovery mechanisms:
looking for a needle in a haystack, in In: International Workshop on Web Engi-
neering. (2004, 2004.

Goldreich, O., Foundations of Cryptography, Volume 1: Basic Tools, Cambridge Uni-
versity Press, 2001.

Gubala, T., et al., ViroLab Virtual Laboratory, in Kracow Grid Workshop 2007 Work-
shop Proceedings, pp. 35–40, 2007.

Gudgin, M., N. Mendelsohn, M. Nottingham, and H. Ruellan, XML-binary Optimized
Packaging, http://www.w3.org/TR/xop10/, 2005.

Gudgin, M., M. Hadley, and T. Rogers, Web Services Addressing 1.0 - Core, http:
//www.w3.org/TR/ws-addr-core/, 2006.

Gudgin, M., M. Hadley, N. Mendelsohn, J.-J. Moreau, F. F. Nielsen, A. Karmarkar,
and Y. Lafon, SOAP version 1.2, http://www.w3.org/TR/soap/, 2007.

172

Haas, H., and A. Brown, Web Services Glossary, W3C Working Group Note 11 Febru-
ary 2004, http://www.w3.org/TR/ws-gloss/, 2004.

Heiko, L., A. Keller, A. Dan, R. P. King, and R. Franck, Web Service Level Agreement
(WSLA) Language Specification, , IBM Corporation, 2003.

Helger, P., phloc-logging 1.2 - A generic Java Logging System, Sourceforge, http:

//sourceforge.net/projects/phloc-logging, 2008.

Herveg, J., and Y. Poullet, Directive 95/46 and the use of GRID technologies in
the healthcare sector : selected legal issues, in Proceedings of the 1st European
HealthGRID Conference, pp. 229–236, Lyon, France, 2003.

Hwang, S.-Y., and B. Riddle, BRUW: Bandwidth Reservation for User Work, in In
Proceedings of the TERENA Networking Conference 2005, Poznan, Poland, 2005.

Iacono, L. L., and H. Rajasekaran, Security Architecture for Distributed Medical
Information Systems, in GI Jahrestagung (1), pp. 110–116, 2008.

Jackson, D., Q. Snell, and M. Clement, Core Algorithms of the Maui Scheduler,
in Proceedings of the 7th Job Scheduling Stgrategies for Parallel Processing, ACM
SIGMETRICS, Cambridge, Massachusetts, USA, 2001.

Jacq, N., et al., Virtual screening on large scale grids, Parallel Computing, 33 (4–5),
289–301, 2007.

Joel, A. E. (Ed.), Asynchronous Transfer Mode Switching, IEEE, 1993.

Jones, D., J. Fenner, G. Berti, F. Kruggel, R. Mehrem, W. Backfrieder, B. Moore,
and A. Geltmeier, The GEMSS Grid: An Evolving HPC Environment for Medical
Applications, in Proceedings of HealthGrid 2004, Clermont-Ferrand, France, 2004.

Josefsson, S., The Base16, Base32, and Base64 Data Encodings (RFC 4648), http:
//tools.ietf.org/html/rfc4648, 2006.

Jovicich, J., M. F. Beg, S. Pieper, C. E. Priebe, M. I. Miller, R. L. Buckner, and
B. Rosen, Biomedical Informatics Research Network: Integrating Multi-Site Neu-
roimaging Data Acquisition, Data Sharing and Brain Morphometric Processing., in
Proceedings of Compuer-based Medical Systems (CBMS) 2005, pp. 288–293, IEEE
Computer Society, 2005.

Kahn, D., The Codebreakers - The Story of Secret Writing, Macmillan Pub Co, 1967.

Kaliski, B., PKCS #7: Cryptographic Message Syntax Version 1.5, http://tools.
ietf.org/html/rfc2315, 1998.

Kesselman, C., and I. Foster, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

173

Koch, O., W. Kreuzer, and A. Scrinzi, MCTDHF in Ultrafast Laser Dynamics, AU-
RORA TR-2003-29, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Tech-
nology, Austria, http://www.vcpc.univie.ac.at/aurora/publications/, 2003.

Kumpf, K., A. Wöhrer, S. Benkner, G. Engelbrecht, and J. Fingberg, A Semantic
Mediation Architecture for a Clinical Data Grid, in Grid Computing for Bioinfor-
matics and Computational Biology, edited by E.-G. Talbi and A. Zomaya, Wiley
Series in Bioinformatics, pp. 267–298, John Wiley & Sons, 2007.

Laure, E. (Ed.), The EU DataGrid Setting the Basis for Production Grids, Journal
of Grid Computing, vol. 2(4), Springer, 2004.

Laure, E., et al., Programming the Grid with gLite, Methods in Science and Technol-
ogy, 12 (1), 33–45, 2006.

Leach, P., M. Mealling, and R. Salz, A Universally Unique IDentifier (UUID) URN
Namespace (RFC 4122), http://tools.ietf.org/html/rfc4122, 2005.

Li, J., and A. Karp, Access control for the services oriented architecture, in SWS ’07:
Proceedings of the 2007 ACM workshop on Secure web services, pp. 9–17, ACM,
New York, NY, USA, 2007.

Linn, J., Trusts Model and Management in Public Key Infrastructures, , RSA Labo-
ratories, Bedford, MA, USA, 2000.

Loscocco, P., and S. Smalley, Meeting Critical Security Objectives with Security-
Enhanced Linux, in Proceedings of the 2001 Ottawa Linux Symposium, 2001.

Luhn, H. P., A business intelligence system, j-IBM-JRD, 2, 314–319, 1958.

Lysyanskaya, A., Signature Schemes and Applications to Cryptographic Protocol
Design, Ph.D. thesis, MIT, 2002.

MacLaren, J., Advance Reservations: State of the Art, , Open Grid Forum, 2003.

McGough, S., L. Young, A. Afzal, S. Newhouse, and J. Darlington, Workflow enact-
ment in ICENI, http://www.lesc.ic.ac.uk/events/ahm2004.jsp, 2004.

Meier, J., C. Farre, J. Taylor, P. Bansode, S. Gregersen, M. Sundararajan, and
R. Boucher, patterns & practices Improving Web Services Security Guide, Mi-
crosoft, http://www.codeplex.com/WCFSecurityGuide, 2008.

Menasce, D., QoS-Aware Software Components, In Internet Computing Online, Vol.
8, No. 2, pp.91-93, 2004.

Menasce, D., and E. Casalicchio, QoS in Grid Computing, IEEE Internet Computing,
8 (4), 85–87, 2004.

Merdy, E. L., A representation of concepts defined by a WSDL 1.1 document, http:
//en.wikipedia.org/wiki/Web Services Description Language, 2008.

174

Middleton, S., J. Herveg, F. Crazzolara, D. Marvin, and Y. Pullet, GEMSS: Privacy
and Security for a Medical Grid, Methods of Information in Medicine (2), 2005.

Middleton, S. E., M. Surridge, S. Benkner, and G. Engelbrecht, Quality of service
negotiation for commercial medical Grid services, Journal of Grid Computing,
Springer Verlag, ISSN 1570-7873, 5 (4), 429–447, 2007.

Milanesi, L., White paper: guidelines and recommendations for the scientific commu-
nity based on the experience and the results gained from the BioinfoGRID project,
http://www.bioinfogrid.eu/Documentation/bioinfogrid white paper, 2007.

Nelson, D., and A. DeKok, Common Remote Authentication Dial In User Ser-
vice (RADIUS) Implementation Issues and Suggested Fixes (RFC 5080), http:

//tools.ietf.org/html/rfc5080, 2007.

Nissanoff, D., FutureShop: How the New Auction Culture Will Revolutionize the Way
We Buy, Sell and Get the Things We Really Want, The Penguin Press, 2006.

Nudd, G. R., D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, and
D. V. Wilcox, Pace–A Toolset for the Performance Prediction of Parallel and Dis-
tributed Systems, International Journal of High Performance Computing Applica-
tions, 14 (3), 228–251, 2000.

Orange Book 1985, Department of Defense: Trusted Computer System Evaluation
Criteria, US Department of Defense, 1985.

Parkhill, D. F., The challenge of the computer utility, Reading, Mass., Addison-Wesley
Pub. Co., 1966.

Patil, A., B. Belter, A. Polyrakis, M. Przybylski, T. Rodwell, and M. Grammatikou,
GEANT2 Advance Multi-domain Provisioning System, in In Proceedings of the
TERENA Networking Conference 2006, Catania, Italy, 2006.

Pattnik, P., K. Ekanadham, and J. Jann, Autonomic computing and Grid, in Grid
Computing Making Global Infrastructure a reality, edited by F. Berman, G. Fox,
and A. J. G. Hey, pp. 351–362, John Wiley & Sons, 2003.

Pettifer, S., et al., myGrid and UTOPIA: An Integrated Approach to Enacting and
Visualising in Silico Experiments in the Life Sciences, in Data Integration in the
Life Sciences, pp. 59–70, Springer, 2007.

Pllana, S., and T. Fahringer, Performance Prophet: A Performance Modeling and
Prediction Tool for Parallel and Distributed Programs, in ICPP Workshops, pp.
509–516, 2005.

Raja, M. N., H. F. Ahmad, H. Suguri, P. Bloodsworth, and N. Khalid, SOA compliant
FIPA agent communication language, in Proceeedings of the first International Con-
ference of Applications of Digital Information and Web Technologies (ICADIWT)
2008, pp. 470–477, 2008.

175

Ran, S., A model for web services discovery with QoS, SIGecom Exch., 4 (1), 1–10,
2003.

Rivest, R., A.Shamir, and L. Adleman, A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, Communications of the ACM, 21 (2), 120–126,
1978.

Romberg, M., E. Benfenati, and W. Dubitzky, Open Computing Grid for Molecular
Sciences, in Grid Computing for Bioinformatics and Computational Biology, edited
by E.-G. Talbi and A. Zomaya, Wiley Series in Bioinformatics, pp. 1–22, John Wiley
& Sons, 2007.

Ruckenbauer, M., I. Brandic, S. Benkner, W. Gansterer, O. Gervasi, M. Barbatti,
and H. Lischka, Nonadiabatic Ab Initio Surface-Hopping Dynamics Calculation in
a Grid Environment - First Experiences, in Proceeedings of the 2007 International
Conference on Computational Science and Its Applications (ICCSA 2007), LNCS,
vol. 4705, pp. 281–294, Springer Verlag, Kuala Lumpur, Malaysia, 2007.

Saltzer, J., and M. Schroeder, The Protection of Information in Computer Systems,
Proceedings of the IEEE, 63 (9), 1278–1308, 1975.

SAML, Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V2.0, http://docs.oasis-open.org/security/saml/v2.0/

saml-core-2.0-os.pdf, 2005.

Sawaragi, Y., H. Nakayama, and T. Tanino, Theory of multiobjective optimization,
Academic Press, Orlando, Floria, USA, 1985.

Schmidt, R., S. Benkner, I. Brandic, and G. Engelbrecht, Applying a Compo-
nent Model to Grid Application Services, in Tenth International Workshop on
Component-Oriented Programming (WCOP 2005), Glasgow, Scotland, 2005a.

Schmidt, R., S. Benkner, I. Brandic, and G. Engelbrecht, Component based Applica-
tions Programming within a Service-Oriented Grid Environment, in Workshop on
Component Models and Frameworks in High Performance Computing (Compframe
2005), Atlanta, USA, 2005b.

Schmidt, R., S. Benkner, I. Brandic, and G. Engelbrecht, Component-Oriented Appli-
cation Construction for a Web Service Based Grid, Concurrency and Computation:
Practice and Experience, 19 (5), 637–650, 2007.

SGE, Beginner’s Guide to Sun Grid Engine 6.2 - Installation and Configuration -
White paper, Sun Microsystems, Inc., 2008.

ShaikhAli, A., O. Rana, R. Al-Ali, and D. Walker, UDDIe: an extended registry for
Web services, Applications and the Internet Workshops, 2003. Proceedings. 2003
Symposium on, pp. 85–89, 2003.

176

Simpson, W., CHAP - Challenge Handshake Authentication Protocol (RFC 1994),
http://tools.ietf.org/html/rfc1994, 1996.

Skeen, D., and M. Stonebraker, A Formal Model of Crash Recovery in a Distributed
System, Software Engineering, IEEE Transactions on, SE-9 (3), 219–228, 1983.

Smith, W., I. T. Foster, and V. E. Taylor, Predicting Application Run Times Using
Historical Information, in IPPS/SPDP ’98: Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing, pp. 122–142, Springer-Verlag, London,
UK, 1998.

Smith, W., I. Foster, and V. Taylor, Scheduling with Advanced Reservations, in
In Proceedings of International Parallel and Distributed Processing Symposium
(IPDPS00), pp. 127–132, Cancun, Mexico, 2000.

Snell, Q., M. J. Clement, D. B. Jackson, and C. Gregory, The Performance Impact
of Advance Reservation Meta-scheduling, in IPDPS ’00/JSSPP ’00: Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing, pp. 137–153,
Springer-Verlag, London, UK, 2000.

Sotomayor, B., The Globus Toolkit 3 Programmer’s Tutorial - Key con-
cepts: OGSA, OGSI, and GT3, http://gdp.globus.org/gt3-tutorial/

multiplehtml/ch01s01.html, 2004.

Stockinger, H., Defining the Grid: a snapshot on the current view, Journal of Super-
computing, 42 (1), 3–17, 2007.

Sulistio, A., and R. Buyya, A Grid Simulation Infrastructure Supporting Advance
Reservation, in Proceedings of the 16th International Conference on Parallel and
Distributed Computing and Systems 2004, ACTA Press, MIT Cambridge, Boston,
USA., 2004.

Surridge, M., S. Taylor, and D. Marvin, Grid Resources for Industrial Applications, in
Proceedings of 2004 IEEE International Conference on Web Services, pp. 402–409,
San Diego, USA, 2004.

Surridge, M., S. Taylor, D. D. Roure, and E. Zaluska, Experiences with GRIA - In-
dustrial applications on a web services Grid, in Proceedings of 1st IEEE Conference
on e-Science and Grid Computing, Melbourne, Australia, 2005.

Taylor, D., T. Wu, N. Mavrogiannopoulos, and T. Perrin, Using the Secure Remote
Password (SRP) Protocol for TLS Authentication (RFC 5054), http://tools.

ietf.org/html/rfc5054, 2007.

TLS, Transport Layer Security (TLS) Protocol Version 1.2 (RFC 5246), http://

tools.ietf.org/html/rfc5246, 2008.

Tuecke, S., et al., The Open Grid Services Infrastructure, Version 1.0, http://www.
ggf.org/documents/GFD.15.pdf, 2003.

177

Vickrey, W., Counter speculation, Auctions and Competitive Sealed Tenders, Journal
of Finance, 1 (16), 8–37, 1961.

Warren, R., et al., MammoGrid – a prototype distributed mammographic database
for Europe, Clinical Radiology, 62 (11), 1044–1051, 2007.

Weerawarana, S., WS-* vs. REST: Mashing up the Truth from Facts, Myths and
Lies, http://wso2.org/files/myths-facts-lies-apacheconus07.pdf, 2007.

Wiki-PKI, PKI - Public Key Infrastructure, http://en.wikipedia.org/wiki/

Public key infrastructure, 2008.

Wöhrer, A., P. Brezany, and A. M. Tjoa, Novel mediator architectures for Grid
information systems, FGCS, 21 (1), 107–114, 2005.

Woodside, M., and D. Menasce, Application-Level QoS, IEEE Internet Computing,
10 (3), 13–15, 2006.

WS-Policy, Web Services Policy Framework (WS-Policy) and Web Services Policy At-
tachment (WS-PolicyAttachment), http://schemas.xmlsoap.org/ws/2004/09/

policy/, 2004.

WS-SecureConversation, Web Services Secure Conversation Language (WS-
SecureConversation), http://download.boulder.ibm.com/ibmdl/pub/

software/dw/specs/ws-secon/ws-secureconversation.pdf, 2005.

WS-Security, Web Services Security, SOAP Message Security 1.1 (WS-Security 2004),
http://www.oasis-open.org/committees/download.php/16790/wss-v1.

1-spec-os-SOAPMessageSecurity.pdf, 2006.

WS-Trust, Web Services Trust 1.3, http://docs.oasis-open.org/ws-sx/

ws-trust/200512/ws-trust-1.3-os.pdf, 2005.

WSMgmt, Web Services for Management (WS-Management) Specification
(DSP0226), http://www.dmtf.org/standards/wsman/, 2008.

X.200, Recommendation X.641: Information technology - Open Systems Intercon-
nection - Basic Reference Model: The basic model, http://www.itu.int/rec/

T-REC-X.200-199407-I/en, 1994.

X.641, Recommendation X.641: Information technology - Quality of service: frame-
work, http://www.itu.int/rec/T-REC-X.641-199712-I/en/, 1998.

XACML, eXtensible Access Control Markup Language (XACML) Version 2.0, http:
//xml.coverpages.org/XACMLv20CD-CoreSpec.pdf, 2004.

Xenitellis, S., The Open-source PKI Book: A guide to PKIs and Open-source Imple-
mentations - version 2.4.6, Sourcefourge, http://ospkibook.sourceforge.net/,
2000.

178

Xiao, X., Technical, Commercial and Regulatory Challenges of QoS: An Internet
Service Model Perspective, Morgan Kaufmann, 2008.

XML-Encryption, XML Encryption Syntax and Processing - W3C Recommendation,
http://www.w3.org/TR/xmlenc-core/, 2002.

XML-Signatures, XML Signature Syntax and Processing (Second Edition) - W3C
Recommendation, http://www.w3.org/TR/xmldsig-core/, 2008.

Zheng, W., Internet QoS: Architectures and Mechanisms for Quality of Service, Mor-
gan Kaufmann, 2001.

Zimmermann, P., The Official PGP User’s Guide, MIT Press, 1995.

179

180

CURRICULUM VITAE

Name: Gerhard Engelbrecht

Title: Mag.

Date and Place of Birth: 16 October 1976, Salzburg, Austria

Nationality: Austria

Affiliation: Institute of Scientific Computing
University of Vienna
Nordbergstr. 15/C/3, A-1090 Vienna, Austria
Phone: +43-1-4277-39410
Fax: +43-1-4277-9394
E-mail: gerry@par.univie.ac.at

Education:

1996 High School Diploma (Matura)
2002 Industrial Computer Science at the Technical University of Vienna

Selected Project Experience:

2002 – 2007 Aurora Project 2, Prof. Zima
2002 – 2005 FP5 EU GEMSS Project
2006 – 2009 FP6 EU Aneurist Project

Publications:

More than 30 publications in refereed journals and conference proceedings.

181

