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Summary 

 

Epithelial-to-mesenchymal transition (EMT) is a multi-step process whereby 

polarized, adherent epithelial cells convert into non-polarized and migratory 

mesenchymal cells. An important step in cancer progression is the ability of primary 

tumor cells to disseminate and metastasize to distant organs. To date, a large 

amount of evidence indicates that EMT is central to these processes. Therefore, 

elucidating the molecular mechanisms that control EMT might unravel potential 

therapeutic targets. The dimeric transcription factor AP-1 (Fos/Jun) has been 

associated with oncogenic transformation and ectopic expression of c-Fos and to a 

lesser extent c-Jun have been reported to cause cellular depolarization reminiscent 

of EMT. More recently, the Fos protein Fra-1 has been shown to modulate the 

motility and invasiveness of human cancer cell lines. However, the molecular 

mechanisms and targets of AP-1 in EMT are still unknown.  

 

In this study I have addressed the role of Fra-1/AP-1 in EMT using a cellular model in 

vitro as well as transplantations in vivo. Ectopic expression of fra-1 in fully polarized, 

non-tumorigenic mouse mammary epithelial cells EpH4 and their HaRasV12-

transformed, tumorigenic but still polarized derivatives resulted in dramatic changes 

in cell morphology and behaviour. The major epithelial marker E-cadherin was 

downregulated, while mesenchymal markers such as fibronectin were upregulated 

suggesting that Fra-1 triggers EMT. Further in vitro characterization revealed 

increased proliferative, migratory and invasive potential of the Fra-1-expressing cells. 

Transient knock-down experiments indicated that the observed changes were Fra-1-

dependent. Most importantly, xenograft transplantation experiments revealed that the 

EpH4fra-1 cells are tumorigenic and metastatic in vivo, while Fra-1 overexpression 

increased the metastatic potential of EpRas cells. Gene expression profiling 

confirmed the loss of epithelial gene expression and the upregulation of several 

mesenchymal markers in the Fra-1-expressing cells. Furthermore, several genes 

previously associated with EMT, migration and invasiveness were found deregulated, 

among them AP-1 transcriptional targets such as matrix metalloproteases. 

Subsequent molecular analysis revealed that the transcription factors, E-cadherin 

repressors and EMT-associated ZEB1/2 proteins are novel direct Fra-1/AP-1 

transcriptional targets. Finally, transient knock-down experiments indicated that up-
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regulation of ZEB1 and/or ZEB2 is responsible for the induction of EMT in Fra-1-

overexpressing cells. In summary, this study revealed a new function of Fra-1/AP-1 

as an important inducer and regulator of EMT and unravelled a potential link between 

the AP-1 transcription factors and the E-cadherin transcriptional repressors ZEB1 

and ZEB2. 
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Zusammenfassung 

 

Die epithelial-mesenchymale Transition (EMT) ist ein mehrstufiger Prozess in 

welchem sich polarisierte, adhäsive, epitheliale Zellen zu nicht-polarisierten und 

wandernden mesenchymalen Zellen verändern. Ein wichtiger Schritt im 

Fortschreiten eines Tumors ist die Fähigkeit, in entfernte Organe zu metastasieren. 

In den letzten Jahren wurden eine große Zahl von Ergebnissen und Argumenten 

publiziert, dass EMT in diesen Prozessen eine zentrale Rolle spielt. Aus diesem 

Grund sollte die Erforschung der molekularen Mechanismen, welche die EMT 

kontrollieren, auch zu neuen Strategien für therapeutische Intervention führen. Der 

dimer-bildende Transkriptionfaktor AP-1 (Fos/Jun) ist mit onkogener 

Transformation assoziiert und viele Studien zeigten, dass die ektopische 

Expression von c-Fos, und zu einem geringerem Ausmaß auch von c-Jun, zelluläre 

Depolarisation und viele Eigenschaften von EMT hervorrufen. Vor kurzem konnte 

gezeigt werden, dass das Fos Protein Fra-1 die Motilität und die Invasivität von 

humanen Krebszell-Linien moduliert. Die molekularen Mechanismen hinsichtlich 

der Mitwirkung von AP-1 Proteinen bei EMT sind noch unbekannt. 

 

In dieser Arbeit befasse ich mich mit der Rolle von Fra-1/AP-1 in der EMT unter 

Verwendung eines zellulären in vitro Systems und in vivo Transplantation dieser 

Zellen in Mäuse. Die ektopische Expression von fra-1 in vollständig polarisierten, 

nicht-tumorigenen Maus-Brustepithelzellen (EpH4) und deren tumorigenen, aber 

noch polarisierten Derivat, den HaRasV12 Zellen (EpRas), hatte drastische 

Veränderungen von Morphologie und Verhalten der Zellen zur Folge. Der bekannte 

epitheliale Marker E-Cadherin wurde hinunter,- und mesenchymale Marker wie 

Fibronektin hinaufreguliert, was die Vermutung nahe legt, dass Fra-1 EMT 

auslösen kann.  Weitere in vitro Charakterisierungen ergaben ein erhöhtes 

proliferatives, migratorisches und invasives Potential von Fra-1-exprimierenden 

Zellen. Transiente Knock-down Experimente wiesen darauf hin, dass die 

beobachteten Veränderungen von Fra-1 abhängig sind. Von besonderer 

Bedeutung ist, dass sich in Xenograft-Experimenten herausstellte, dass EpH4fra-1 

Zellen tumorigen und metastasierend sind, während eine Überexpression von Fra-

1 das metastatische Potential der EpRas Zellen erhöhte. Das Genexpressionsprofil 

bestätigte den Verlust an Expression epithelialer Gene und die Hinaufregulierung 
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mehrerer mesenchymaler Marker in Fra-1-exprimierenden Zellen. Weiters konnten 

mehrere deregulierte Gene gefunden werden, die bereits mit EMT, Migration oder 

Invasivität assoziiert wurden unter ihnen AP-1 regulierte Gene wie Matrix-

Metalloproteasen. Eine nachfolgende molekulare Analyse ergab, dass die 

Transkriptionsfaktoren, E-Cadherin Repressoren und EMT-assoziierten ZEB 

Proteine neue, direkt von Fra-1/AP-1 regulierte Gene sind. Schließendlich zeigten 

transiente Knock-down Experimente, dass eine Hinaufregulation von ZEB1 

und/oder ZEB2 für die Induktion von EMT in Fra-1 überexprimierenden Zellen 

verantwortlich ist. Zusammenfassend zeigt diese Studie eine neue Funktion von 

Fra-1/AP-1 als wichtigen Auslöser und Regulator von EMT und eröffnet eine 

potentielle Verbindung zwischen AP-1 Transkriptionsfaktoren und den E-Cadherin 

Repressoren ZEB1 und ZEB2.  
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1. Introduction 

 

1.1 Epithelial to mesenchymal transition 

 

Epithelial to mesenchymal transition (EMT) is a process that was originally 

discovered during lens development and is considered by embryologists as a major 

embryological mechanism for tissue remodelling during gastrulation. If impaired, 

the process of embryogenesis can not proceed past the blastula state (Thiery and 

Sleeman, 2006). EMT is a multi-step process beginning with well polarized and 

adhesive epithelial cells that acquire fibroblast-like properties and show reduced 

intercellular adhesion and increased motility thereby producing non-polarized 

mesenchymal cells embedded in extracellular matrix (ECM) (Levayer and Lecuit, 

2008) (Figure 1 ).  

 

Figure 1. Schematic representation of events during EMT  (adapted from Thiery and Sleeman, 2006) 

 

Epithelial cells are characterized by a cuboidal or cobblestone morphology. They 

are organized as a sheet or layers of cells that are laterally tightly connected by 

specialized junction structures including tight junctions, adherens junctions, gap 

junctions and desmosomes (Yang and Weinberg, 2008). These tight connections 
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serve to ensure the mechanical integrity of the tissue. Epithelial cells have a well 

established apical-basal polarity with strong anchorage to the basement membrane 

(basal lamina) at their basal side. As a consequence of this anchorage they can 

only migrate laterally as a sheet of cells.  On the other hand, mesenchymal cells 

display either ameboid or spindle-like morphology. They rarely form direct contacts 

with neighbouring cells and form only transient contacts with the ECM. These 

contacts are mediated by focal adhesion complexes which facilitate cell migration. 

Mesenchymal cells are also characterized by anterior-posterior rather than lateral 

polarity, which allows them to migrate as single cells in a directional fashion.  

 

One important feature of EMT is that it is a strictly controlled process defined by 

several distinct steps that do not necessarily occur consecutively and are not all 

necessarily present in a given example of EMT (Levayer and Lecuit, 2008). The 

first step involves the disruption of cell-cell contacts. In order to successfully 

disseminate, epithelial cells first need to resolve intercellular contacts with 

neighbouring cells. This is accomplished by disassembly of tight junctions, 

adherens junctions, gap junctions and desmosomes (Zavadil and Böttinger, 2005; 

Baum et al., 2008; Levayer and Lecuit, 2008). In the second step, the released 

cells undergo concomitant change in cell shape and polarity establishing an 

anterior, leading end and the posterior, rear end.  Loss of apico-basolateral polarity 

and dissociation of intercellular junctions is accompanied by fundamental 

remodeling of the actin cytoskeleton from cortical actin to actin stress fibers, a 

hallmark of migratory, mesenchymal cells (Miettinen et al., 1994; Piek et al., 1999; 

Bakin et al., 2000; Zavadil et al., 2001; Zavadil and Böttinger, 2005). The final step 

involves secretion of matrix-degrading proteases that degrade the ECM enabling 

the cells to successfully migrate and invade the basement membrane.      

 

The process of EMT has so far been described in three major physiological and 

patho-physiological contexts. Besides being a fundamental process governing 

morphogenesis during development of the majority of multicellular organisms, it 

also plays an important role in tissue fibrosis and cancer progression and 

metastasis (Zavadil and Böttinger, 2005; Thiery, 2003).  
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1.1.1 EMT in development 

 

EMT was for the first time identified and described in the developmental context by 

Elisabeth Hay over four decades ago but it wasn’t till the early 1980s that it was 

recognized as a distinct process. During development, EMT plays a crucial role in 

formation of three germ layers (ectoderm, mesoderm and endoderm) in the process 

of gastrulation (Moustakas and Heldin, 2007). During early embryogenesis of most 

metazoans, mesenchymal cells arise from the primitive epithelium (primitive 

ectoderm) (Yang and Weinberg, 2008). In higher vertebrates (birds and mammals) 

EMT produces the primary mesenchyme that condenses to form definitive 

mesoderm and endoderm (Hay, 2005). During gastrulation the mesoderm is formed 

by ingression of cells from the medial region of epiblast (epithelial monolayer) 

called the primitive streak in higher vertebrates. Upon ingression these cells 

eventually fill out the space between epiblast and hypoblast giving rise to 

mesoderm and endoderm. This is regarded as the initial developmental EMT (Hugo 

et al., 2007). 

 

At a later stage of embryogenesis, the second example of EMT is the development 

of the neural crest (a defining tissue of vertebrates) that is regarded as a second 

gastrulation event in vertebrates (Duband et al., 1995; Moustakas and Heldin, 

2007; Yang and Weinberg, 2008). The neural crest develops at the boundary 

between the neural plate and the epidermal ectoderm where the epithelial cells 

from the neural tube in the dorsal side of the embryo undergo EMT and ingress to 

form a transient population of cells called neural crest cells (Thiery and Chopin, 

1999; Yang and Weinberg, 2008). These cells have the capacity to migrate over 

long distances in the embryo where they form the peripheral nervous system and 

differentiate into several new mesenchymal cell types such as melanocytes, 

somites, bone and chondrocytes (Moustakas and Heldin, 2007; Hugo et al., 2007). 

Both, the mesoderm formation and neural crest development, are the key EMT 

programs that occur during early embryonic development. The resulting 

mesenchymal and neural crest cells maintain oliogopotentiality that enables them 

to further differentiate into various cell types (Yang and Weinberg, 2008). 
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However, EMT is not restricted only to the earliest developmental events, but also 

takes part in later stages of development. It is involved in the heart valve 

development, male Müllerian duct regression and the secondary palate formation 

resulting in the separation of nasal and oral cavities (Fitchett and Hay, 1989; Hugo 

et al., 2007; Thiery and Sleeman, 2006). In addition, a partial EMT has been 

implicated in the branching morphogenesis that occurs during the formation of 

several organs including the trachea (Drosophila), the kidneys, and the mammary 

glands (reviewed by Yang and Weinberg, 2008). 

 

1.1.2 EMT in disease 

 

EMT plays essential roles during embryogenesis and tissue homeostasis (Shook 

and Keller, 2003). However, if deregulated, EMT can lead to disturbance of normal 

epithelial homeostasis, therefore contributing to the development and progression 

of pathological conditions such as fibrosis and cancer cell metastasis (Baum et al., 

2008).  

 

1.1.2.1  EMT in Fibrosis 

 

During tissue fibrosis the accumulation of fibroblasts and excessive deposition of 

collagen, and other extracellular matrix components, at sites of chronic 

inflammation leads to formation of scar tissue and progressive tissue injury (Lee et 

al., 2006). It is believed that these fibroblasts partially derive from the bone marrow, 

but also arise from EMT of epithelial cells at the site of injury (Kalluri and Neilson, 

2003; Neilson, 2005). The occurrence of EMT during fibrosis has so far been 

reported for the lung, kidney, liver, heart and eye, but it is so far best characterized 

in kidneys, where it is estimated that one third of renal interstitial fibroblasts, the 

main mediator of renal interstitial fibrosis, are derived from tubular epithelial cells 

via EMT (reviewed by Iwano et al., 2002; Kisseleva and Brenner, 2008).  

 

Inflammation normally precedes fibrosis since recruitment of inflammatory cells 

(neutrophils, macrophages) to sites of acute injury is part of normal wound healing 
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process. However, sustained injury and inflammation can lead to an imbalanced 

microenvironment and the onset of aberrant EMT due to the abundant production 

and secretion of growth factors and pro-inflammatory cytokines such as TGF-β1, 

PDGF, EGF, FGF-2 and IL1. These cytokines are produced by inflammatory cells, 

mainly macrophages, at the site of injury. This leads to activation of epithelial cells 

that undergo EMT generating activated fibroblasts - myofibroblasts. Myofibroblasts 

are characterized by expression of αSMA and are responsible for production and 

deposition of collagen and other extracellular matrix components. In addition, 

myofibroblasts secrete angiogenic and proinflammatory factors that stimulate the 

proliferation and invasion of epithelial cells (Radisky et al., 2007). The main 

mediator of EMT in fibrosis is the cytokine TGF-β1, which under normal conditions 

promotes wound healing and repair. However, under pathological conditions, it 

plays a key role in stimulating fibrosis. In normal conditions the injury repair process 

requires the degradation of provisional ECM and removal of myofibroblasts by 

apoptosis. However, sustained myofibroblast activation stimulates dysfunctional 

repair mechanisms, leading to accumulation of fibrotic ECM that is resistant to 

degradation and can stimulate epithelial cell proliferation (Thannickal et al., 2004; 

Radisky et al., 2007). This provides an environment that favours cancer formation 

and development. Therefore, the presence of fibrotic lesions significantly increases 

the risk of cancer in many tissues, including lung (Artinian and Kvale, 2004; Daniels 

and Jett, 2005), liver (Bissell, 2001; Bataller and Brenner, 2005), and breast (Boyd 

et al., 2002; Boyd et al., 2005; Radisky et al., 2007). 

 

1.1.2.2  EMT in cancer progression and metastasis 

 

Cancers of epithelial origin (carcinomas) are the most prevalent type of cancers in 

humans comprising over 90% of all malignancies (Baum et al., 2008). A fatal step 

in cancer progression is metastasis and the vast majority of patients actually die 

from metastasis rather than from primary tumors. In recent years there have been 

numerous reports that support the idea that EMT has a central role in cancer 

progression (reviewed by Thiery and Sleeman, 2006). There are several steps 

required for the progression from normal epithelium to invasive carcinoma and the 

subsequent establishment of metastasis to secondary organs (Tse and Kalluri, 
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2007). Schematic exemplification of tumor development and the role of EMT in 

metastatic progression of carcinoma is shown in Figure 2 .  

 

 
 
Figure 2 . Emergence and metastatic progression of carcinoma - the role of EMT (adapted from 
Thiery, 2002) 
 
 

Besides the initial step that involves uncontrolled local proliferation of normal 

epithelia that yields benign adenomas, additional genetic and epigenetic 

alternations are required for progression to carcinoma in situ. At this point the 

basement membrane that underlines the epithelium is still intact and the cells do 

not exhibit invasive behaviour. In order to become invasive, the carcinoma cells 

need to acquire motility and the ability to degrade or remodel the extracellular 

matrix (Moustakas and Heldin, 2007). It is believed that the migratory 

characteristics acquired by the transition to a mesenchymal-like state facilitate cell 

migration and enables the invasive capabilities of cancer cells (Tse and Kalluri, 

2007). Cancer cell invasiveness is therefore thought to be directly linked to the 

process of EMT (Moustakas and Heldin, 2007). 

 

In order to successfully establish the metastatic tumor, cells from the primary tumor 

need to access the circulatory system. This is aided by angiogenesis and 

remodelling of the basement membrane (Tse and Kalluri, 2007). Local 

dissemination enables the cells to intravasate into lymph or blood vessels allowing 
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their passive transport to distant organs. Upon reaching their metastatic sites, the 

cancer cells extravasate and either remain solitary forming micrometastasis or  

proliferate to form secondary tumors at the distant site, often undergoing the 

reverse process of mesenchymal-epithelial transition (MET) to regain an epitheloid 

phenotype and form organized tumorigenic nodules (Thiery, 2002; Moustakas and 

Heldin, 2007; Tse and Kalluri, 2007).    

 

However, not only highly metastatic but also non-metastatic, non-invasive 

carcinoma cell lines, and even nonneoplastic carcinoma-associated stroma cells 

undergo EMT and promote tumor growth (Tester et al., 2001; Prindull, 2005). 

Therefore, the EMT program can also affect the cells in the tumor 

microenvironment, such as cancer-associated stromal fibroblasts or myofibroblasts, 

immune cells and microvessels resulting in synergistic interactions between the 

cancer cells and tumor environment that directs the progression of metastasis 

(Prindull, 2005). 

 

1.1.3 Molecular hallmarks of EMT 

 

EMT is characterized by loss of proteins associated with polarized epithelial 

phenotype and de novo synthesis of proteins associated with mesenchymal, 

migratory morphology of transitioning cells (Zavadil and Böttinger, 2005). On the 

other hand, the acquisition of the ability to migrate and invade ECM as single cells 

is considered as a functional hallmark of the EMT program (Yang and Weinberg, 

2008). Epithelial cells are distinguished from mesenchymal cells by the expression 

of specific markers among which E-cadherin is regarded as the most important one 

(Berx et al., 2007) and functional loss of E-cadherin in epithelial cells is considered 

as the major hallmark of EMT (Yang and Weinberg, 2008).  

 

E-cadherin is the prototypic type I cadherin that is regarded as a central organizer 

of the epithelial phenotype (Thiery, 2002). It is a 120 kDa transmembrane 

glycoprotein that is the main component of adherens junctions where it mediates 

calcium-dependent homophilic interactions with E-cadherin molecules on adjacent 

cells. The cytoplasmic domain of E-cadherin is highly conserved among all 
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members of the cadherin family and interacts with cytosolic catenins (Christiansen 

and Rajasekaran, 2006; Kuphal and Behrens, 2006). The E-cadherin-catenin 

complex is composed of α-catenin (102 kDa), β-catenin (92 kDa) and γ-

catenin/plakoglobin (83 kDa) that bind to E-cadherin and each other in a specific 

manner (Kuphal and Behrens, 2006) providing a link with the actin cytoskeleton 

and hence strengthening adhesion (Cavallaro and Christofori, 2004; Connaci-

Sorrell et al., 2002).  

 

In vitro, there is a direct correlation between lack of E-cadherin and loss of the 

epithelial phenotype (Behrens at al., 1989). E-cadherin is frequently lost in 

carcinomas and correlates with susceptibility to EMT, acquisition of an invasive 

phenotype and generally poor prognosis (Thiery, 2002; Hugo et al., 2007; Yang 

and Weinberg, 2008). The loss of E-cadherin function during tumour progression 

can be caused by various genetic or epigenetic mechanisms. However, loss of E-

cadherin due to genetic mutations resulting either in complete loss of expression or 

the expression of a non-functional protein are rarely found in sporadic cancers 

(Berx et al., 1998) and the majority of cancers downregulate E-cadherin by 

epigenetic mechanisms that include direct transcriptional repression, promoter 

hypermethylation and posttranslational modifications (Berx and Van Roy, 2001; 

Hajra and Fearon, 2002a; Thiery, 2002; Berx et al., 2007).  

 

There are three transcription factors families that act as direct E-cadherin 

repressors by binding to E-box elements CAGGTG in the E-cadherin promoter 

(Peinado et al., 2004; Peinado et al., 2007). These include the zinc-finger protein 

members of Snail family Snail1, Snail2 (Slug), and Snail3 (Smuc) (Batlle et al., 

2000; Cano et al., 2000; Bolos et al., 2002; Nieto, 2002), the ZEB family 

(ZEB1/δEF-1 and ZEB2/SIP1) (Comijn et al., 2001; Eger et al., 2005) and the 

members of the basic-helix-loop-helix (bHLH) family the class l proteins E47/E12 

(alternative splicing products of the E2A gene (Perez-Moreno et al., 2001) and 

class ll proteins Twists (Twist1 and Twist2) (Yang et al., 2004; Peinado et al., 

2007). In addition, proteolytic degradation of E-cadherin by matrix metalloproteases 

(MMPs) yielding a soluble form of E-cadherin is another mechanism of E-cadherin 

downregulation. A soluble, 80 kDa, form of E-cadherin is frequently found in 

cultured tumor cell lines and in tumor biopsy samples where it promotes tumor cell 
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invasion by upregulating MMPs such as MMP2, MMP9 and MMP14 (Cavallaro and 

Christofori, 2004). 

 

Besides E-cadherin down-regulation responsible for the loss of cell-cell adhesion, 

further molecular hallmarks of EMT include: up-regulation of matrixdegrading 

proteases and mesenchymal-related proteins such as vimentin, fibronectin, α-SMA, 

FSP-1 and N-cadherin; actin cytoskeleton reorganization mediated by Rho small 

GTPases that activate the motility machinery; up-regulation and/or nuclear 

translocation of transcription factors regulating a large number of genes specific for 

EMT (Huber et al., 2005; Thiery and Sleeman, 2006; Guarino, 2007). 

 

De novo expression or upregulation of adhesion molecule N-cadherin, of the 

intermediate filament protein vimentin and other cytoskelatal proteins like α-SMA 

and FSP-1 correlates with E-cadherin downregulation and the epithelial cytokeratin 

switch promoting cell migration. The cytoskeletal protein vimentin and the adhesion 

molecule N-cadherin contribute to the metastatic potential of tumor cells by direct or 

indirect interactions with microfilaments and microtubules facilitating pseudopodia 

formation and cytoskeletal remodeling (Christiansen and Rajasekaran, 2006). FSP-

1/S100A4 is an intracellular calcium-binding protein that is also involved in 

modifying cytoskeletal-membrane interactions by its ability to influence levels of 

intracellular calcium and actin disassembly (Okada et al., 1997; Kalluri and Neilson, 

2003). These cytoskeletal rearrangements are aided by the activation of the small 

Rho GTPases Rho, Rac, and Cdc42. They are the key regulators of the 

cytoskeleton that regulate the formation of lamellipodial protrusions and filopodial 

extensions by activating the actin polymerization apparatus at these sites (Hall, 

1998; Bar-Sagi and Hall, 2000; Bhowmick et al., 2001; Etienne-Manneville and 

Hall, 2002).  

 

The production and deposition of ECM proteins such as fibronectin and collagens 

combined with upregulation of MMPs is involved in remodelling of the ECM that 

further enhances the motility and invasive capabilities of tumor cells undergoing 

EMT. Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that 

are upregulated in almost every type of cancer. They are capable of cleaving 

virtually every type of extracellular matrix components and molecules that mediate 
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cell-cell and cell-ECM interactions (Sternlicht and Werb, 2001). In addition, MMPs 

can cleave and activate growth factors and growth factor receptors thereby 

promoting invasion of the basement membrane, blood vessel penetration, 

angiogenesis and metastasis (McCawley and Matrisian, 2001; Radisky et al., 

2007). 

 

Despite our increasing understanding of molecular basis of the EMT program, it is 

currently only loosely defined by certain cell morphological changes, changes of 

differentiation markers from epithelial to mesenchymal patterns, and the functional 

changes required for cells to migrate and invade through ECM. However, loss of E-

cadherin (N-cadherin in the neural crest) seems to be the major consistently 

reported molecular change occurring during the various EMTs involved in both 

development and tumor metastasis (Yang and Weinberg, 2008). 

 

1.1.4 Signalling pathways in EMT 

 
Although the molecular mechanism of EMT have at most been partially elucidated, 

a rapidly increasing number of interconnected signalling pathways and signalling 

molecules potentially involved in the EMT program were identified during the last 

10 years. EMT is induced or regulated by various growth and differentiation factors 

and by multiple major signalling pathways involved in developmental EMT, the five 

major pathways being Wnt/β-catenin, TGFβ/BMP, Hedgehog, Notch and receptor 

tyrosine kinase (RTK) – Ras. These pathways are often deregulated in cancer 

where they cooperate with each other and frequently with oncogenic Ras to drive 

EMT (Hay, 2005; Huber et al., 2005; Thiery and Sleeman, 2006; Berx et al., 2007). 

 

As already mentioned in the context of tissue fibrosis, TGFβ is a very potent and 

one of the best studied EMT inducers. TGFβ signals via two distinct receptor 

serine/threonine kinases in a classical signalling cascade involving the 

phosphorylation and subsequent activation of cytoplasmic Smad proteins that 

translocate to the nucleus and promote transcription of target genes controlling cell 

proliferation, differentiation, apoptosis and cell migration (Derynck et al., 1998; Xu 

et al., 2009). In addition, TGFβ can exert its EMT-inducing properties via Smad-
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independent pathways through cooperation with oncogenic Ras and RTK signalling 

that results in activation of PI3K/Akt and MAPK (ERK, p38, JNK) signalling 

cascades, activation of small GTPases RhoA and Rac1, as well as through direct 

interaction with the polarity protein Par6 that leads to disassembly of tight junctions 

(Bakin et al., 2000; Bhowmick et al., 2001; Ozdamar et al., 2005; Huber et al., 

2005; Moustakas and Heldin, 2007; Xu et al., 2009). 

 

Wnt/β-catenin signalling pathway is another well characterized signalling pathway 

that is crucial for developmental EMT and often deregulated in cancer. The 

canonical Wnt signalling pathway is initialized by binding of Wnt proteins to their 

cognate receptor Frizzeld. This triggers a signalling cascade leading to the 

inhibition of glycerol synthase kinase 3β (GSK3β) - dependent phosphorylation of 

β-catenin that targets it for proteosomal degradation in the absence of Wnt. 

Stabilised, hypophosphorylated β-catenin translocates to the nucleus where it 

alters gene expression by interacting with the T cell factor/lymphocyte enhancer 

(TCF/LEF) complex (Willert and Nusse, 1998). In epithelial cells, β-catenin is a 

member of cadherin-catenin adherens junction complex where it is sequestered at 

the cell membrane by its interaction with E-cadhein. However, during EMT the 

downregulation of E-cadherin and disassembly of adherens junctions releases β-

catenin to the cytoplasm where it is free to translocate to the nucleus and regulate 

the expression of downstream target genes in a Wnt-independent manner. 

 

A role for Notch and Hedgehog-Patched-Gli signalling has been postulated both in 

developmental and neoplastic EMT. The activation of the trans-membrane receptor 

Notch by the Jagged ligand results in Notch nuclear translocation and activation of 

target genes including Hey1 that promotes E-cadherin down-regulation and EMT. 

TGFβ can also interact with the Notch pathway by inducing the expression of Hey1 

and Jagged ligand. The binding of Hedgehog ligands to their receptor Patched 

initiates the signalling cascade leading to the expression of the transcription factor 

Gli-1 resulting in E-cadherin downregulation (Huber et al., 2005; Thiery and 

Sleeman, 2006; Guarino, 2007) 

  

The receptor tyrosine kinase (RTK) signalling cascade is activated by numerous 

growth factors, such as EGF, FGF, HGF, IGF and PDGF that have been implicated 
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in induction and maintenance of EMT. They signal through their cognate receptor 

tyrosine kinases resulting in activation of downstream kinases such as Ras, Src, 

PI3K and MAPK. All of these RTK-induced signalling pathways converge at 

transcriptional and post-transcriptional induction of a number of EMT-linked 

transcription factors leading to E-cadherin down-regulation, expression of 

mesenchymal genes and/or to dynamic changes in the cytoskeleton (Huber et al., 

2005; Thiery and Sleeman, 2006; Guarino, 2007) revealing a complex and 

interconnected signalling network that governs the EMT program both in 

development and cancer progression. 

 

1.1.5 Studying EMT in vivo 

 

Apart from developmental studies most of our knowledge on molecular 

mechanisms involved in EMT comes from studies in in vitro cell systems.  Since 

EMT is a dynamic process, its transient nature renders it hard to study in vivo. 

While EMT seems relevant for cancer progression (Bhowmick et al., 2001; Janda et 

al., 2002; Tse and Kalluri, 2007) it has been difficult to establish an in vivo 

correlative of EMT induced metastasis. Standard histological analysis of tumors 

fails to reveal mesenchymal cells formed during EMT since they are 

indistinguishable from fibroblastoid tumor stroma cells. The major difficulty in 

demonstrating the role of EMT in pathological conditions such as fibrosis and 

cancer metastasis is in identifying the carcinoma cells that have passed through 

EMT in primary human tumor samples (Yang and Weinberg, 2008), as well as 

activated fibroblasts that arise due to EMT of epithelial cells at fibrotic sites. This is 

due to the lack of markers that are invariably specific of either the epithelial or 

mesenchymal phenotypes (Berx et al., 2007; Yang and Weinberg, 2008). It has 

been only recently that studies in transgenic mice provided an in vivo proof of 

principle that fibroblasts can form locally via EMT during renal and lung fibrosis as 

well as in cancer progression (see below). 

 

In the first study, transgenic mice that express LacZ in cortical tubular epithelium 

were subjected to unilateral ureteral obstruction (UUO) that produces experimental 

renal fibrosis. The LacZ positive epithelial cells were distinguished from renal 
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fibroblasts by lack of expression of the fibroblast marker FSP-1/S100A4. The 

identification of fibroblasts double positive for FSP-1 and LacZ clearly proved that 

these fibroblasts arise from tubular epithelial cells that underwent EMT (Iwano et 

al., 2002). In the second study, a similar approach was employed using transgenic 

mice in which lung epithelial cells were permanently tagged for expression of β-

galactosidase. The mice were subjected to induction of pulmonary fibrosis by TGFβ 

and revealed that the increases in myofibroblasts were largely due to 

transdifferentiation from epithelial cells (Kim et al., 2006; Radisky et al., 2007). 

 

FSP-1/S100A4 has also been used as an EMT marker in cancer progression 

studies. Mice transgenic for the FSP1/S100A4 promoter coupled to thymidine 

kinase (TK) as a suicide gene have elegantly provided evidence that EMT is indeed 

required for metastasis. The FSP1/TK reporter mice were crossed with PyV-MT 

mice that develop metastatic breast cancer. Treatment of these transgenic mice 

with gancyclovir suppressed metastasis formation, suggesting that those cells that 

contribute to metastasis formation are FSP-1-positive. Furthermore, PyV-MT/FSP-1 

deficient mice showed reduced metastasis formation as compared to PyV-MT mice, 

providing direct in vivo evidence that EMT is coupled to metastasis formation (Xue 

et al., 2003; Berx et al., 2007). 

 

In addition, the recent development of intravital multiphoton microscopy combined 

with new approaches in the use of fluorescent cell markers has enabled the in vivo 

analysis of the initial steps of tumor dissemination. Using this approach, the single 

carcinoma cells that have lost their epithelial polarity can be seen to migrate out of 

primary tumours thereby providing the first direct in vivo evidence of EMT at the 

initial stages of metastasis (Wang et al., 2002; Condeelis and Segal, 2003; Nieto, 

2008). The visualisation of these fluorescent cells disseminating from tumors has 

enabled their isolation, purification and subsequent molecular analysis (Nieto, 

2008).  
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1.1.5.1 The EpH4/EpRas in vitro/in vivo cell model  

 

The EpH4/EpRas cell system is one of the best characterized cellular models of 

EMT in vitro and in vivo (Figure3 ).   

 

 
 

Figure 3. EpH4/EpRas model of Epithelial-Mesenchymal transition . The parental EpH4 cells show 
typical epithelial cobblestone morphology when grown on plastic. Their Ha-RasV12 transformed 
derivatives-EpRas cells retain epithelial morphology, but upon TGFβ treatment undergo EMT yielding 
fibroblastoid EpRasXT cells (Oft et al., 1996). 
 

 

The parental EpH4 cells are spontaneously immortalized, non-tumorigenic and fully 

polarized murine mammary epithelial cells derived from the mammary glands of 

mid-pregnant BALB/c mice (Reichmann et al., 1989). They show a typical epithelial 

cobblestone morphology with tight cell-cell contacts and undergo cell cycle arrest 

and apoptosis, when treated with TGF-β1. EpRas cells were derived from EpH4 

cells upon stable transformation with oncogenic Ha-RasV12, which renders them 

tumorigenic (Oft et al., 1996; Janda et al., 2002). These cells have hyperactivated 

MAPK- and PI3K pathways and show increased proliferation, when compared to 

EpH4 cells. Although EpRas cells retain their epithelial morphology, the cells are no 

longer sensitive to TGF-β1-induced apoptosis and undergo complete EMT giving 

rise to EpRasXT cells with a spindle-like, fibroblastoid phenotype. This phenotype 

is further sustained by the establishment of a TGF-β1 autocrine loop that maintains 

EMT in the absence of exogenous TGFβ. 
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1.2 The AP-1 transcription factor complex 

 

Activator Protein 1 (AP-1) is a dimeric transcription factor complex composed of 

members of the Jun, Fos, ATF (activating transcription factor) and Maf 

(musculoaponeurotic fibrosarcoma) families of proteins (Chinenov and Kerppola, 

2001; Shaulian and Karin, 2001). It was first identified in HeLa cell extracts as the 

protein complex that binds in the enhancer regions of simian virus 40 (SV40) and 

human methallothionein llA (hMTllA) gene (Lee et al., 1987a). The AP-1 binding 

site was identified shortly after as a TPA response element (TRE) since it was 

strongly induced by the tumour promoter 12-O-tetradecanoylphorbol-13-acetate 

(TPA) (Lee et al., 1987b; Angel et al., 1987; Abate et al., 1990). This 

heptanucleotide palindromic TGA(C/G)TCA element is found in the promoter and 

enhancer regions of many cellular and viral genes. The binding affinity for a given 

TRE is determined by the different AP-1 dimer combinations and the context of the 

surrounding sequence. In addition, the Fos and Jun proteins bind to the symmetric 

octanucleotide (TGACGTCA) CRE (cAMP response element) sequence 

(Nakabeppu et al., 1988; Rauscher et al., 1988). Different dimer complexes of Fos 

and Jun proteins exhibit different in vitro transactivation properties resulting in 

positive or negative transcriptional modulation (Cohen et al., 1989; Angel and 

Karin, 1991; Ryseck and Bravo, 1991; De Cesare et al., 1995). Furthermore, AP-1 

is also capable of activating and repressing gene activity through protein-protein 

interactions with other transcription factors (Angel and Karin, 1991; Kerppola and 

Curran, 1991; Ransone and Verma, 1990; Bergers et al., 1995; Song et al., 2008). 

 

Numerous signalling pathways converge in activation of AP-1, which in turn 

modifies the expression of genes involved in a variety of biological processes. AP-1 

has been implicated in the control of many fundamental processes including cell 

proliferation, differentiation, apoptosis and oncogenic transformation. A vast 

number of extracellular stimuli, such as growth factors, cytokines, extracellular 

matrix components, and phorbol esters induce AP-1 activity at the end of signalling 

cascades. AP-1 activity is itself controlled at multiple levels and can be regulated by 

dimer composition, transcription, post-translational modification and interactions 

with other proteins (reviewed by Eferl and Wagner, 2003). 
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1.2.1  Fos and Jun proteins 

 

The best characterized AP-1 proteins in mammals are the members of Jun and Fos 

families (Eferl and Wagner, 2003). The Jun family consist of three members: c-Jun, 

JunB and JunD, while the Fos family has four members: c-Fos, FosB, Fra-1 and 

Fra-2. In addition, a splice form of FosB, ∆FosB (FosB2), with C-terminal truncation 

can naturally occur (Mumberg et al., 1991; Nakabeppu, and Nathans, 1991). The 

prototypes of each family, c-jun (cellular jun) and c-fos (cellular fos) are nuclear 

phosphoproteins that were first identified as cellular homologues of viral oncogenes 

v-jun and v-fos. Jun was identified as a novel retroviral insert of cellular origin in the 

genome of Avian Sarcoma Virus 17 (AVS17) (Maki et al. 1987), while fos was 

identified as a retroviral oncogene accountable for the induction of osteogenic 

sarcomas by the Finkel-Biskis-Jinkins Murine Sarcoma Virus (FBJ-MSV) (Curran et 

al., 1982; Curran and Teich, 1982). 

 

Screening of murine cDNA library for growth factor inducible immediate early genes 

using oligonucleotide probe derived from the C-terminal domain of c-jun resulted in 

identification of two additional jun family members: junB (Ryder et al., 1988) and 

junD (Hirai et al., 1989). The remaining three members of the fos family have also 

been identified and subsequently cloned due to sequence homology with c-fos. 

FosB was identified by screening a cDNA library with an oligonucleotide probe 

corresponding to DNA binding domain of the mouse c-fos gene (Zerial et al., 1989). 

Fos-related antigens fra-1 (Cohen and Curran, 1988) and fra-2 (Nishina et al., 

1990; Foletta et al., 1994) have been identified due to antigenic similarity of the 

protein to the peptide used for raising anti-c-Fos antibodies. 

 

Identification of c-Fos and c-Jun, the mammalian homologs of the retroviral 

oncoproteins v-fos and v-jun as well as the identification of other fos and jun family 

members as immediate early genes that are rapidly induced upon serum or growth 

factor stimulation immediately implicated the AP-1 in cell proliferation and growth 

control as well as in oncogenic transformation. 
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1.2.2 The AP-1 structure and dimer formation 

 

The AP-1 proteins belong to the basic-leucine zipper (bZip) family of proteins. They 

have an alpha helical structure and are characterized by a leucine zipper domain 

that enables them to dimerize and form a functional transcription factor complex 

(Angel and Karin, 1991). This domain is characterized by a periodic repetition of 

leucine residues at every seventh position. The two leucine zippers form a two-

stranded parallel coiled-coil where the two right handed α-helices are wrapped 

around one another with a slight left handed superhelical twist. Adjacent to the 

leucine zipper domain immediately to its N-terminal is the so-called basic region, 

formed by basic residues adjacent to leucines. The basic region is highly conserved 

among all Jun and Fos proteins and is necessary for DNA binding (Vogt and Bos, 

1990; Angel and Karin, 1991; Chinenov and Kerppola, 2001; Eferl and Wagner, 

2003). The structural organisation of Fos and Jun proteins is depicted in Figure 4 . 

 
 

 
 
 
Figure 4. Structural organization of Fos and Jun pro teins. Schematic representation of structural 
domains of Fos and Jun proteins. The basic DNA-binding domain is depicted in red box and the 
dimerization leucine zipper domain in green. The black boxes represent the transactivation domains 
located at the N-terminus in Jun protein and at the C-terminus in C-Fos and FosB. The grey boxes 
represent the regions of high sequence conservation among Fos proteins that influence transcriptional 
activation.  
 

 

Different members within the Jun or Fos families of proteins share a high degree of 

sequence homology. All Fos proteins have highly conserved bZip domains centrally 

located, while Jun proteins have them at their C terminus. Unlike the Jun proteins, 

who have three highly conserved transactivation domains (composed of clusters of 

negatively charged amino acids at their N-terminal part, among Fos proteins only c-

Fos and FosB harbour such domains at their C terminus (Angel and Karin, 1991; 

Chinenov and Kerppola, 2001). These domains are crucial for transcriptional 



PhD thesis            Ivana Ćustić                                                                                     Introduction 

 

 30 

activation and transforming activity. In line with this, the remaining two members of 

the Fos family, Fra-1 (Fos-related antigen 1) and Fra-2 (Fos -related antigen 2) that 

do not have potent transactivation domains exhibit weaker transforming activity 

both in vitro and in vivo when compared to c-Fos and FosB (Widson and Verma, 

1993).  

 

Dimer formation is a prerequisite for effective DNA binding and occurs by a parallel 

interaction of the leucine-zipper domains. Leucine side chains protrude from one 

side of the α-helix and form a hydrophobic surface that mediates dimerization 

(Landschultz et al., 1988). This brings the adjacent basic regions in close proximity 

and enables DNA binding. The X-ray structure of Jun/Fos dimers bound to DNA 

revealed that the binding affinity of two juxtaposed α-helices depends on the 

charge of amino acids in the two interacting proteins (Glover and Harrison, 1995) 

(Figure 5 ).  

 

 

 
Figure 5.   Schematic representation of a Jun/Fos heterodimer bo und to its DNA palindromic 
recognition sequence.  The structure of the bZIP domain of the Jun/Fos heterodimer bound to its DNA 
palindromic recognition sequence has been determined by X-ray crystallography (adapted from Glover 
and Harrison, 1995). 
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The binding of the dimer to the palindromic AP-1 site is described with the 

"scissors-grip" model where the two helices bifurcate beyond the leucine zipper 

region forming a Y-shaped structure that interacts with the DNA in the middle of the 

site (Vinson et al., 1989). The two arms of the "Y" interact with the two halves of the 

DNA recognition sequence in opposite directions along the major groove directly 

contacting the DNA (Abate et. al., 1990; Risse et al., 1989; Glover and Harrison, 

1995) (Figure 5 ).  

 

1.2.3 Dimerizing partners 

 

All Jun proteins can form functional homodimers as well as heterodimers with Fos 

proteins while Fos proteins can not homodimerize (Angel and Karin, 1991). 

However, Fos proteins can associate with any of the Jun proteins to generate 

stable heterodimers with higher DNA-binding activity than the Jun homodimers. 

This increased DNA-binding activity of Jun-Fos heterodimer is in part due to the 

increased thermostability in comparison to Jun-Jun homodimer. In addition, in Fos-

Jun homodimers only amino acids with opposite charge make contact while in the 

Jun-Jun homodimers, two residues with the same charge interact, making these 

dimers less stable. The inability of Fos proteins to form homodimers is due to the 

electrostatic repulsion between four residues of the same charge located in their 

leucine zipper region. Interestingly, these same negatively charged residues 

contribute to increased stability of Jun-Fos heterodimers by increasing the number 

of salt bridges between the two leucin zipper regions upon interaction with basic 

residues in the leucine zipper of Jun proteins (Angel and Karin, 1991; Glover and 

Harrison, 1995). 

 

In addition to cross-family dimerization Fos and Jun proteins can modulate gene 

expression by protein-protein interactions with structurally unrelated proteins such 

as members of the NFAT (Nuclear Factor of Activated T Cells) or Ets family of 

proteins as well as with other transcription factors, coactivators and chromatin 

remodelling factors. Interactions with Fos/Jun proteins have so far been reported 

for more than 50 different proteins (reviewed by Chinenov and Kerppola, 2001; 

Eferl and Wagner, 2003). Formation of these multiprotein transcription regulatory 



PhD thesis            Ivana Ćustić                                                                                     Introduction 

 

 32 

complexes greatly enhances transcriptional activity and together with the 

combinatorial diversity of AP-1 proteins influence how a specific cell type responds 

to a certain stimulus.  

  

1.2.4 Biological functions of AP-1 

 

Fos and Jun proteins were among the first identified mammalian transcription 

factors. Since they were originally discovered as cellular counterparts of viral 

oncogenes the first role attributed to AP-1 was involvement in oncogenic 

transformation (Hess et al., 2004). Since that time numerous studies, aimed at 

depicting the biological functions of AP-1, have implicated it in the regulation of a 

variety of cellular processes including cell proliferation and survival, differentiation, 

growth, apoptosis, cell migration, transformation and invasion (reviewed by Shaulin 

and Karin, 2001; Shaulin and Karin, 2002; Eferl and Wagner, 2003). Initial 

knowledge on the biological role of different AP-1 proteins was based on the in vitro 

studies done mainly in fibroblasts. However, more recent studies, utilizing 

genetically modified mice and primary cells derived from these mice have 

significantly increased our understanding of the function of AP-1 proteins in normal 

development and pathological conditions (Eferl and Wagner, 2003). These studies 

have also shown that the biological functions of Fos/Jun proteins depend on the 

specific cell type in which they are expressed. 

 

1.2.4.1  Functions of Jun proteins 

 

The Jun protein family has three members c-Jun, JunB and JunD. It is believed that 

all Jun proteins evolved from a common ancestor by gene duplications since they 

all share a similar genomic organization with no introns (Zhang et al., 1990). 

Nevertheless, they exhibit markedly different functions both in vitro and in vivo. In 

addition, the function of particular Jun protein depends on the specific cellular 

context. The prototype of the family, c-Jun was shown to be a positive regulator of 

cell proliferation while JunB and JunD negatively regulate cell cycle progression. 

This is mainly mediated by their dual effects on the expression of cyclin D1 (Bakiri 



PhD thesis            Ivana Ćustić                                                                                     Introduction 

 

 33 

et al., 2000; Wisdom et al., 1999) and p16 and p21 cdk inhibitors (Passegue and 

Wagner, 2000). However, in the case of JunD, the effect appears to be cell context 

dependent and at least in part mediated by the p19/Arf tumor suppressor since 

primary mouse embryonic fibroblasts (MEFs) lacking junD show reduced 

proliferation and increased p53-dependent senescence (Weitzman et al., 2000). 

While c-jun is regarded as a highly transforming oncogene whose overexpression 

alone is sufficient for transformation of immortalized rodent fibroblasts and causes 

density and anchorage independent growth in these cells (Schutte et al., 1989; 

Vogt, 2001), no transforming activity has been reported neither for JunB or JunD. 

Furthermore, both JunB and JunD can exert anti-oncogenic effects. Expression of 

c-Jun is stimulated by Ras signalling and c-Jun is required for Ras-induced 

transformation since it has been shown that the inhibition of c-Jun reverts the 

transformed phenotype in fibroblasts (Johnson et al., 1996; Lloyd et al., 1991; 

Suzuki et al., 1994). Unlike c-Jun that cooperates with Ras in transformation of 

fibroblasts, JunB and JunD are regarded as negative regulators of Ras-mediated 

transformation. The level of JunD strongly decreases in Ras-transformed 

fibroblasts and its overexpression partially suppresses transformation by oncogenic 

Ha-ras (Pfarr et al., 1994). Similarly, overexpression of junB in mouse fibroblasts 

significantly reduced transformation by v-ras or v-src (Passegue and Wagner, 

2000). Eleveted c-Jun levels are often found in tumors and many carcinoma cell 

lines and it has been shown that ectopic expression of c-Jun in human breast 

carcinoma cells MCF-7 enhances cell motility and invasion (Rinehart-Kim et al., 

2000). In addition, expression of an inducible JunER fusion protein in non-

transformed mouse mammary epithelial EpH4 cells, induced incomplete EMT 

characterized by the loss of cell polarity and a reversible change in cell 

morphology, but was not sufficient to promote in vivo invasiveness (Fialka et al., 

1996). 

 

Studies in genetically modified mice have further highlighted the role of Jun 

proteins in cell proliferation and transformation as well as their role in normal 

development. While c-Jun and JunB are essential for embryonic development, 

JunD is dispensable and only required postnatally (Thepot et al., 2000). 

Surprisingly, overexpression of both c-Jun and JunB in transgenic mice resulted in 

no overt phenotype (Grigoriadis et al., 1993). However, c-jun cooperates with c-fos 
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in the formation of osteosarcomas (Wang et al., 1995; Behrens et al., 2000) Mice 

lacking c-jun die between embryonic day E12.5 and E14.5 and show defects in 

heart morphogenesis and liver development (Hillberg et al., 1993; Eferl et al., 

1999). It was shown that the functions of c-Jun in embryonic development do not 

depend on N-terminal phosphorylation by JNK (Jun-amino-terminal kinase), since 

the mice carrying JNK-targeted serine residues (Ser63 and Ser73), replaced by 

alanines (JunA/A mice), are viable and develop normally (Behrens et al., 1999). 

Mouse embryonic fibroblasts (MEFs) lacking c-jun exhibit severe proliferation 

defect and enter premature senescence due to the increased levels of p53 and the 

cyclin-dependent kinase inhibitor (CKI) p21 (Schreiber et al., 1999). Conditional 

inactivation of c-jun in hepatocytes causes impaired liver regeneration following 

partial hepatectomy (Behrens et al., 2002). Additional deletion of p53, p21 or p38α 

was able to restore hepatocyte proliferation showing that c-Jun controls liver 

regeneration by repressing p53/p21 and p38 MAPK activity (Stepniak et al., 2006). 

Inactivation of c-Jun in chondrocytes results in a severe scoliosis due to the 

impaired formation of intervertebral discs and vertebral arches (Behrens et al., 

2003).  

 

JunB deficient mice die at E9.5 due to impaired vasculogenesis and angiogenesis 

in the extra-embryonic tissues (Schorpp-Kistner et al., 1999). Conditional deletion 

of junB in the embryo proper but not in the placenta using a MORE-Cre allele, 

rescues the lethality, but such junB∆/∆ mice develop severe osteopenia caused by 

cell-autonomous defects in osteoclasts and osteoblasts as well as a chronic 

myeloid leukemia (CML)-like disease (Kenner et al., 2004). On the other hand, junB 

transgenic mice that lack JunB expression specifically in the myeloid lineage also 

develop transplantable myeloproliferative disease that resembles human chronic 

myeloid leukemia (Passegue et al., 2001) supporting the anti-oncogenic role for 

JunB (Eferl and Wagner, 2003). Although junB-/- MEFs proliferate normally in 

culture, MEFs derived from junB transgenic mice show limited proliferation capacity 

that is directly linked to cyclin D1 repression and CKI p16 induction (Schorpp-

Kistner et al., 1999; Passegue and Wagner, 2000).  

 

Interestingly, using knock-in and transgene complementation approaches it was 

shown that JunB can substitute for c-Jun in mouse development and cell 
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proliferation in mice, where the entire c-jun coding region was removed and 

replaced by junB under the control of the endogenous c-jun promoter as well as in 

junB overexpressing mice in a c-jun null background (Passegue et al., 2002). 

Similarly, knock-in of JunD in the c-Jun locus was also able to rescue the lethality 

of c-jun-/- mice until birth (Eferl and Wagner, 2003), whereas double knock-out 

embryos lacking both c-Jun and JunD died earlier than c-jun-/- fetuses (Mechta-

Grigoriou et al., 2001). This revealed overlapping functions between c-Jun, JunB 

and JunD during development despite the described antagonism in cell proliferation 

and cell transformation and suggested that in the absence of c-Jun, JunB may 

function as a positive growth regulator (reviewed by Shaulian and Karin, 2002; Eferl 

and Wagner, 2003). In contrast to c-Jun and JunB, JunD knock-out mice are viable, 

although slightly growth retarded when compared to control mice and display age-

dependent male sterility due to impaired spermatogenesis with incomplete 

penetrance (Thepot et al., 2000).  

 

Further studies have shown that Jun proteins are key regulators of skin and liver 

biology and tumorigenesis. Although overexpression of c-jun in transgenic mice 

does not result in an overt phenotype (Grigoriadis et al., 1993), conditional 

inactivation of c-jun in the epidermis interfered with tumor formation in tumor-prone 

K5-SOS-F transgenic mice in an epidermal growth factor receptor (EGFR) 

dependent manner (Zenz et al., 2003). Keratinocytes from c-jun∆ep mice showed 

severe proliferation defect due to reduced levels of EGFR and its ligand heparin-

binding EGF (HB-EGF). In addition, transgenic mice expressing a c-Jun dominant-

negative mutant TAM67 (Brown et al., 1993) that lacks the transactivation domain 

of c-Jun are resistant to DMBA/TPA chemically-induced skin tumorigenesis and 

human papiloma virus-induced hyperplasia further supporting the role of AP-1 in 

tumorigenesis (Young et al., 1999; Young et al., 2002a).  

 

Conditional inactivation of junB using COL1A2-Cre transgenic mouse line results in 

delayed wound healing and epidermal hyperproliferation in these mice (Florin et al., 

2006). It was recently shown that mice with conditional inactivation of junB in the 

epidermis (JunB∆ep mice) develop severe skin ulcerations in the face at 2-3 months 

of age with 100% penetrance. In addition, these mice exhibit osteopenia, 

myeloproliferative disease and become moribund by 6 months and die at 8-10 
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months of age (Meixner et al., 2008). Furthermore, it has been shown that the loss 

of JunB activity enhances MMP-3 expression in an EMT model of mouse skin 

tumors (Hulboy et al., 2001). On the other hand, inducible deletion of both c-Jun 

and JunB in the epidermis results in the development of a psoriasis-like disease 

and arthritis that requires TNFα signalling and both B and T cells, since the deletion 

in a TNFR-1-/- or a Rag2-/- background resulted in a milder phenotype (Zenz et al., 

2005).  

 

1.2.4.2 Functions of Fos proteins 

 

The Fos family of proteins consists of four members; c-Fos, FosB, Fra-1 and Fra-2. 

In addition, a shorter form of FosB, i.e. ∆FosB (FosB2) can naturally occur due to 

alternative splicing (Mumberg et al., 1991; Nakabeppu and Nathans, 1991). Since 

all mammalian fos family genes share a similar organization with 4 exons it is 

believed that they also, like jun genes, originated from a common ancestor. 

Although all Fos proteins share the same affinity for the TRE sequence and 

dimerize with Jun proteins, they regulate different target genes and therefore have 

distinct biological functions in different mouse tissues and cell lines (reviewed by 

Tulchinsky 2000; Eferl and Wagner, 2003). Unlike the Jun proteins that exert 

specific roles in cell proliferation through regulation of the cell cycle progression, 

the absence of cell-autonomous proliferation defects in MEFs, lacking distinct Fos 

family members, suggests a possible functional redundancy between Fos proteins 

in normal cell-cycle control (Brown et al., 1998; Schreiber et al., 2000; Eferl et al., 

2004). Numerous in vitro studies, complemented with the in vivo analysis of 

genetically modified mice and primary cells derived thereof, have shown that the 

Fos proteins are major regulators of tumorigenesis and bone biology (reviewed by 

Eferl and Wagner, 2003; Wagner and Eferl, 2005; Zenz et al., 2008).  

 

Mice deficient in both c-Fos and FosB are viable and fertile showing that c-fos and 

fosB are dispensable for embryonic development. The fosB-/- mice do not show a 

major phenotype (Gruda et al., 1996), except for a behavioural phenotype observed 

only in one study (Brown et al., 1996). On the other hand, the c-fos-/- mice are 

growth retarded and display severe osteopetrosis due to a differentiation block in 
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bone resorbing cells, the osteoclasts (Wang et al., 1992; Johnson et al., 1992; 

Grigoriadis et al., 1994; Matsuo et al., 2000). Transgenic mice that ubiquitously 

express c-Fos develop bone tumors, osteosarcomas caused by transformed bone 

producing cells, the osteoblasts (Grigoriadis et al., 1993). In addition, c-jun was 

shown to cooperate with c-fos in induction of osteosarcomas, since double 

transgenic mice develop osteosarcomas at a higher frequency (Wang et al., 1995). 

The important role of c-Fos in malignant transformation was further supported in a 

skin carcinogenesis study using c-fos deficient mice in a transgenic model of 

oncogenic Ras. It was shown that these mice fail to undergo malignant progression 

of skin tumors characterized by the blocked progression of benign papillomas to 

malignant squamous cell carcinomas (Saez et al., 1995). Moreover, this role of c-

fos was confirmed in another study using skin-specific conditional expression of A-

fos transgene, a dominant-negative mutant of c-Fos that inhibits AP-1 DNA-binding. 

These mice failed to develop benign or malignant squamous cell lesions during 

chemically-induced skin carcinogenesis, but rather develop benign sebaceous 

adenomas with the mutation in H-ras oncogene (Gerdes et al., 2006). In addition, it 

was shown that conditional deletion of c-fos in the epidermal compartment reduces 

papilloma formation in tumor prone transgenic mice expressing a dominant form of 

Son of Sevenless (SOS-F) in basal keratinocytes (K5-SOS-F) (Durchdewald et al., 

2008). Furthermore, ectopic expression of an inducible c-Fos protein fused to the 

hormone-binding domain of human ER - FosER was shown to induce a full EMT in 

non-transformed mouse mammary epithelial cells (Reichmann et al., 1992). 

Although c-Fos possesses high transforming potential its expression at the 

transcriptional level is often inhibited in malignant cells probably due to its capability 

of repressing its own transcription (Lee et al., 1998). 

 

Interestingly, although described as a bona-fide oncogene, it was shown that c-Fos 

can also exert anti-oncogenic properties. Deletion of c-fos in a tumor suppressor 

trp53-deficient background resulted in the development of rhabdomyosarcomas 

(Fleischmann et al., 2003b). Reexpression of c-fos in trp53/fos mutant 

rhabdomyosarcoma cell lines increased the apoptosis of tumor cells proving the 

pro-apoptotic role and tumor-suppressive role of c-fos in this particular cellular 

context. In addition to its role as positive regulator of apoptosis indicated by in vivo 

studies with fos-lacZ reporter mice, where constitutive c-fos expression was found 
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in cell populations undergoing terminal differentiation and at sites of naturally 

occurring cell death (Smeyne et al., 1993a; Smeyne et al., 1993b), c-fos can also 

negatively regulate cell death, as it was shown that c-Fos-deficient fibroblasts are 

more susceptible to UV-induced cell death (Schreiber et al., 1995). 

 

Besides its role in bone biology and tumorigenesis, c-Fos participates in the 

regulation of rather diverse biological processes such as learning. Mice that 

specifically lack c-Fos in the CNS (c-fos∆CNS mice) have impairments in behavioural 

learning as shown in the Morris watermaze task and Pavlovian fear conditioning 

indicating a role of c-Fos in molecular processes underlying spatial and contextual 

learning (Fleischmann et al., 2003b). Even though FosB transgenic mice do not 

show an overt phenotype (Grigoriadis et al., 1993), a significant correlation of fosB 

expression and well-differentiated, estrogen/progesterone receptor positive status 

was reported for human breast tumors (Bamberger et al., 1999). Furthermore, 

overexpression of FosB splice variant -∆FosB in mice causes osteosclerosis and 

interferes with normal cell differentiation of osteoblasts and thymocytes (Carrozza 

et al., 1997; Sabatakos et al., 2000). 

 

Unlike c-Fos and FosB that are dispensable for embryonic development and 

postnatal survival, Fra-2 is required for pups survival beyond day 5 (Eferl et al., 

2007). These pups exhibit severe growth retardation, runted appearance and 

develop severe osteopenia characterized by giant osteoclasts as early as 

embryonic day E18.5 (Eferl et al., 2007; Bozec et al., 2008). In addition, the mutant 

pups exhibit heart, gut and cartilage defects (A. Bozec and R. Eferl pers.comm.; 

Karreth et al., 2004). Ectopic expression of Fra-2 in transgenic mice causes fibrosis 

in several organs, although it mainly affects the lung. Furthermore, these mice 

show increased bone mass and rare fibrosarcoma occurrence in head/neck region 

(Eferl et al., 2008).  

 

Although Fra-2 lacks the C-terminal transactivating domain present in c-Fos and 

FosB and consequently fails to transactivate artificial AP-1-responsive promoters in 

vitro (Wisdom and Verma, 1993; Tulchinsky, 2000), leading to lower transforming 

activity compared with c-Fos, several recent reports indicate that it might play an 

important role in vivo in the progression of various human tumors (Milde-Langosch, 
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2004; Milde-Langosch, 2005). Fra-2 expression level was found increased in a 

variety of transformed and neoplastic cells (Mechta et al., 1997; Murakami et al., 

1997) as well as in breast cancer cell lines and tumor tissues (Bamberger et al., 

1999; Milde-Langosch et al., 2008) suggesting a role for Fra-2 in breast cancer 

progression. 

 

1.2.4.2.1 Fra-1 structure and regulation 

 

The cellular immediate early gene fra-1 (Fos-related antigen 1; also termed fos-like 

1, fosl1) encodes the AP-1 protein Fra-1 which belongs to the fos gene family. It 

was originally identified due to the antigenic similarity of the protein to the peptide 

used for raising anti-c-Fos antibodies (Cohen and Curran, 1988). It shares a high 

degree of homology with other Fos proteins and it is positively regulated by AP-1 

activity itself via three AP-1-like binding sites in the first intron of the fra-1 gene 

(Brüsselbach et al., 1995: Bergers et al., 1995). It has been shown that fra-1 is a 

transcriptional target of c-fos, whose induction upon growth factor stimulation is 

delayed and prolonged compared to c-fos (Cohen and Curran, 1988; Bergers et al., 

1995; Schreiber et al., 1997; Matsuo et al., 2000). In addition, fra-1 can 

transactivate its own promoter and thereby influence its expression level by a 

positive autoregulatory mechanism in a RAS- and extracellular signal-regulated 

kinase (ERK)-dependent manner (Casalino et al., 2003). Although fra-1 does not 

harbour a potent transactivation domain and was originally proposed to act as 

transcriptional repressor, recent studies have shown that it is also able to positively 

regulate transcription, a feature that is not directly linked to the transactivation 

ability (Andersen et al., 2002; and reviewed in Young and Colburn, 2006). Even 

though Fra-1 only marginally induced the activity of the synthetic AP-1-responsive 

reporter, it successfully induced the transcription of several genes including uPA 

and thrombospondin-1 in murine epithelioid adenocarcinoma (CMSL0) cells. This 

feature of Fra-1 was proposed to be dependent on the context of natural enhancers 

and recruitment of other transcription factors different from Jun (Andersen et al., 

2002). In addition, the N-terminal domain of Fra-1 which is not conserved in the Fos 

proteins, and is more potent in Fra-1 than in the c-Fos protein (Matsuo et al., 2000), 

was proposed to be involved in such interactions. 
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Another study using neoplastic transformation resistant (ERK-deficient-P-) and 

transformation sensitive (ERK-sufficient-P+) JB6 mouse epidermal cell lines, has 

shown that the transactivation domain of Fra-1 can be activated. This Fra-1 

activation is ERK-dependent and requires Thr-231(Young et al., 2002b; Chalmers 

et al., 2007).  In addition, it has been shown that the increased ERK activity is 

required to prevent the proteasomal degradation of Fra-1 in human colon 

carcinoma cell lines expressing the K-RAS or B-RAF oncogenes (Hurd et al., 2002, 

Vial and Marshall, 2003). In a region highly homologous to c-Fos, Fra-1 contains a 

single C-terminal destabilizer that is targeted by ERK phosphorylation at two serine 

residues, Ser252 and Ser265. This phosphorylation increases the stability of Fra-1 

and inhibits its proteasome-dependent degradation in response to MEK pathway 

activators. In addition to phosphorylation by ERK1/2, it is speculated that Fra-1 

stability is controlled by other MAP kinases such as ERK5 (Young et al., 2002b; 

Terasawa et al., 2003). In addition, in a very recent study, it was shown that Fra-1 

expression is stimulated by RSK kinase both at the transcriptional and 

posttranscriptional levels (Doehn, et al., 2009). 

 

1.2.4.2.2 Biological function of Fra-1 

 

Although the initial studies reported that Fra-1 lacks a functional transactivation 

domain and was originally proposed to function as a negative regulator of AP-1 

activity (Suzuki et al., 1991; Wisdom and Verma, 1993; Yoshioka et al., 1995; 

Bergers et al., 1995), a number of in vitro and in vivo studies have shown that it is 

essential for embryonic development and involved in the regulation of cell 

proliferation, differentiation, apoptosis, cell motility and invasiveness (Schreiber et 

al., 2000; Jochum et al., 2000; Eferl et al., 2004; Kustikova et al., 1998; Belguise et 

al., 2005; Milde-Langosch, 2005). Conventional fra-1 knockout mice die in utero 

between embryonic day E10 and E10.5 due to defects in the vascularisation of the 

placenta. In addition, mutant fetuses are severely growth retarded. Interestingly, 

this growth retardation does not seem to be due to a cell-autonomous defect, since 

primary MEFs and ES cells have a normal proliferation rate in culture (Schreiber et 

al., 2000). The lethality can be rescued either by injection of fra1-/- ES cells into 

tetraploid wild-type blastocyts (Schreiber et al., 2000) or by MORE-Cre-mediated 
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embryo-specific deletion of fra-1 (Eferl et al., 2004). These fra1∆/∆ mice are viable 

but develop osteopenia, a low bone mass disease that is characterized by 

decreased production of extracellular bone matrix components, mainly collagen1a2 

and matrix Gla protein. Transgenic mice overexpressing fra-1 in a broad range of 

organs develop osteosclerosis due to accelerated differentiation of 

osteoprogenitors into mature bone forming osteoblasts (Jochum et al., 2000) as 

well as lung fibrosis. Interestingly, Fra-1 is a transcriptional target of c-Fos during 

osteoclast differentiation (Matsuo et al., 2000) and can functionally substitute for c-

Fos in bone development in a dosage-dependent manner (Fleischmann, et al., 

2000). Moreover, Fra-1 was able to substitute for c-Fos in light-induced 

photoreceptor apoptosis, but in contrast failed to substitute for c-Fos in inducing 

target genes in fibroblasts. Interestingly, Fra-1 was only partially able to replace c-

Fos functions in hippocampal synaptic plasticity and behavioural learning (Gass et 

al., 2004).  

 

1.2.4.2.3 Fra-1 in cancer development 

 

Although fra-1 transgenic mice do not show a cancer phenotype, and its expression 

seems to be dispensable for tumor induction and tumor-cell proliferation in a mouse 

model of chemically-induced colitis-associated cancer (CAC) (Hasselblatt et al., 

2008), recent reports have strongly implicated Fra-1 in cancer progression. The 

initial studies have shown that ectopic expression of Fra-1 in Rat-1 fibroblasts was 

sufficient for anchorage-independent growth in vitro and tumor formation in nude 

mice (Bergers et al., 1995). Furthermore, Fra-1 was found overexpressed and 

shown to be essential for the transformed phenotype in mouse fibroblasts and 

RAS-transformed thyroid cells (Mechta et al., 1997; Vallone et al., 1997). Screening 

for ras transformation targets identified fra-1 as one of the highly transcriptionally 

upregulated genes, supporting previous results that showed Fra-1 to be the major 

Fos family member expressed upon Ras transformation in mouse fibroblasts 

(Mechta et al., 1997; Zuber et al., 2000). Another study using two mouse mammary 

adenocarcinoma cell lines with distinct metastatic capabilities showed that Fra-1 

expression is elevated in highly metastatic line (CMSL 100), while almost absent in 

the non-metastatic (CSML0) cell line (Kustikova et al., 1998; Tkach et al., 2003). It 
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was shown that Fra-1 expression correlated with mesenchymal characteristics of 

the cells and that its ectopic expression in non-metastatic cell line caused 

morphological and molecular changes reminiscent to EMT accompanied by 

upregulation of several genes involved in cell migration, metastasis and 

angiogenesis (Kustikova et al., 1998). Several recent studies using highly 

metastatic and non-metastatic cancer cell lines combined with gene expression 

profiling have shown that Fra-1 regulates the expression of genes involved in 

cancer progression and correlates with the invasive potential of the cells (Ramos-

Nino et al., 2003; Song et al., 2005; Belguise et al., 2005; Debinski and Gibo, 2005; 

Chiappetta et al., 2007).  

 

In human, Fra-1 overexpression was found associated with a variety of epithelial 

tumors. These include thyroid, breast, lung, brain, nasopharyngeal, esophageal, 

endometrial, prostate, colon and head and neck squamous cell carcinomas, as well 

as glioblastomas and  mesotheliomas (Milde-Langosch, 2005; Young and Colburn, 

2006; Verde et al., 2007). Recently, the prognostic relevance of Fra-1 has been 

well documented for breast cancer, where it is regarded as a marker for the 

aggressive phenotype (Belguise et al., 2005; Giancotti 2006; Chiappetta et al., 

2007). Gene expression profiling of 22 human mammary epithelial cell lines 

revealed consistent overexpression of Fra-1 in highly aggressive cell lines 

(Zajchowski et al., 2001). In that study, among 588 studied genes potentially 

important in human cancer, only Fra-1 and vimentin were found to be consistently 

associated with highly aggressive phenotype. Besides this prognostic value, Fra-1 

also presents a potent anti-cancer therapeutic target as it was shown that an oral 

DNA vaccine encoding murine Fra-1 and coexpressing secretory murine interleukin 

18 induced an effective cellular immune response capable of eradicating 

established breast cancer metastasis in mice and induced long-lived T-cell memory 

against tumor recurrence (Luo et al., 2003; Luo et al., 2005).  

 

Taken together, there is a growing body of evidence that highlights the important 

role for Fra-1 in cancer progression, its role as a prognostic marker at least in some 

cancer types, as well as its role as a potential anti-cancer therapeutic target.   
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2. Aim of the thesis 

 

The aim of my PhD project was to investigate the role of Fra-1/AP-1 in induction 

and regulation of epithelial-mesenchymal transition (EMT) and carcinogenesis.   

 

Cancers of epithelial origin are the most prevalent type of cancer in humans. In 

recent years, it is becoming more evident that EMT plays a central role in late stage 

cancer progression and metastasis. Recent investigations have reported that there 

is a significant correlation between increased Fra-1 expression and the invasive 

behaviour of several cancer cell lines and human tumors. Since Fra-1 was 

implicated in the regulation of cell motility and invasiveness, I was interested to 

determine whether this might be directly linked to the induction of EMT. To address 

this, I employed the well characterized EpH4/EpRas cellular model of EMT, where 

it was previously shown that the prolonged activation of c-Fos, and to a lesser 

extend of c-Jun, is able to induce cellular depolarization with features of EMT. 

Based on the observation that Fra-1 expression correlates with EMT in this system, 

I have used in vitro gain-of-function and loss-of-function approaches combined with 

in vivo xenograft transplantation experiments to better define the specific aspects of 

Fra-1 function. Finally, I employed genome-wide gene expression profiling to 

identify potential direct transcriptional targets of Fra-1/AP-1.  
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3. Results 

PART I.    

Investigating the role of Fra-1 in EMT: generation and 

characterization of EpH4- fra1 and EpRas- fra1 cells 

 

3.1 Fra-1 expression level correlates with EMT in EpH4/EpRas 

cell system  

 

Initial analysis of the expression pattern of AP-1 members in EpH4/EpRas cell 

system revealed a significant increase in Fra-1 expression that correlates with EMT 

(Figure 6  A-B ). Detectable Fra-1 expression is low both on RNA and protein level 

in epithelial and non-tumorigenic EpH4 cells. 

 
Figure 6. Expression of AP-1 members in EpH4/EpRas cel l system . Expression of AP-1 members was 
analysed by RNase protection assay (RPA) (A) and Western blot (B). Bands corresponding to Fra-1 
transcript (A) or protein (B) are highlighted by red square box.     
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Interestingly, it is increased in both tumorigenic EpRas cells and mesenchymal 

EpRasXT cells (see above, Figure 6A-B ). EpRas cells were originally derived from 

EpH4 cells by stable overexpression of oncogenic Ha-RasV12 and-although still 

epithelial-undergo an EMT in vitro after treatment with TGF-β1 or in vivo upon 

orthotopic injections into immunocompromised mice (Oft et al., 1996). This 

observation is consistent with published studies that have reported increased Fra-1 

expression upon activation of Ras signalling (Mechta et al., 1997; Zajchowski et al., 

2001; Casalino et al., 2003). Further increase in Fra-1 transcript and protein levels 

was detected in the mesenchymal EpRasXT cells isolated from primary tumors 

formed by EpRas cells. These cells have undergone an EMT and show a 

mesenchymal phenotype sustained by a TGF-β1 autocrine loop and only partially 

reversible by TGF-RI kinase inhibitors (Oft et al., 1996). No other member of the 

AP-1 family showed such a striking correlation of their expression with EMT in this 

system. An increase in transcripts of all three Jun members was detected in 

EpRasXT cells although it was most prominent in the case of c-Jun (Figure 6A ). 

However, when compared with the total protein levels the corresponding increase 

could only be confirmed for JunB and JunD (Figure 6B ) suggesting that the 

expression of c-Jun in EpRasXT cells is most likely regulated at the 

posttranscriptional level. Although FosB transcript levels were unchanged, the 

protein level was slightly increased in EpRasXT cells (Figure 6A-B ). This suggests 

that the detected increase of FosB protein in EpRasXT cells is most likely due to 

increased protein stability rather than transcriptional upregulation. The expression 

of c-Fos and Fra-2 was also increased both at the mRNA- and protein level in 

EpRasXT cells when compared to EpH4 cells. However, an increase in c-Fos 

mRNA in EpRas cells did not correspond to the protein level that was decreased. 

This is most likely due to decreased protein stability. Interestingly, in the case of 

Fra-2 that was highly expressed in EpH4 cells a significant decrease in both 

transcript and protein levels was detected in EpRas cells followed by strong 

upregulation in EpRasXT cells. Furthermore, in EpH4 and EpRas cells, Fra-1 and 

Fra-2 showed an inverse correlation in their expression pattern both on mRNA and 

protein levels that might possibly reflect different functional roles for Fra-1 and Fra-

2 in normal and transformed cells. However, the expression of both genes was 

highly upregulated following EMT in EpRasXT cells, suggesting that they both 

might be involved in the maintenance of a mesenchymal phenotype. The observed, 
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overall increased expression of AP-1 members in mesenchymal EpRasXT cells 

clearly indicated that AP-1 plays a role in EMT. However, the strong correlation of 

Ras activation and EMT, and the matching increased expression detected only in 

the case of  Fra-1 suggested that Fra-1 might be the major Fos family member 

involved in both induction and maintenance of EMT in this system. 

 

3.2 Exogenous overexpression of Fra-1 in EpH4 and EpRas cells 

 

To investigate whether Fra-1 is able to induce EMT I stably overexpressed Fra-1 in 

EpH4 and EpRas cells. For this, cells were infected with retroviral vector pBabefra-

1-PURO or the control vector pBabe-PURO (Matsuo et al., 2000). Pools of infected 

cells were selected in the presence of puromycin for 14 days and single-cell clones 

were subsequently derived. Based on their altered, less epithelial appearance, I 

have selected several clones from each cell type and analysed them for Fra-1 

expression (data not shown). Following confirmation of increased Fra-1 expression, 

I have selected two highly expressing clones of each cell type for further 

characterization. The expression of Fra-1 was significantly increased in all selected 

clones both on mRNA and protein level (Figure 7A-B ), while it remained 

unchanged in the control cells. The clone with lower ectopic Fra-1 expression was 

designated as clone 1, while the higher Fra-1 expressing clone is referred to as 

clone 2. In EpH4 cells that normally express significantly lower levels of Fra-1 than 

EpRas or EpRasXT cells, I was able to increase Fra-1 protein expression by 4.7 

and 8.5 fold. However, in EpRas cells that already express an intermediate level of 

Fra-1, when compared to EpH4 and EpRasXT cells, I was able to further increase 

the expression of Fra-1 protein by 1.9 and 2.5 fold (Figure 7B ). Interestingly, in 

EpRas-fra1 and to a lesser extent in EpH4-fra1 cells, an increase in slower 

migrating protein, most probably corresponding to previously published 

hyperphosphorylated form of Fra-1 (Gruda et al., 1994; Vial and Marshall, 2003) 

was detected by Western blot (Figure 7B ).  

 

Several studies have reported that increased Fra-1-phosphorylation, mediated 

mainly by MAPK-ERK, increases Fra-1 protein stability and protects it from 

protesomal degradation (Casalino et al., 2003; Vial and Marshall, 2003). Therefore, 
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I have checked the protein levels of total and active ERK1/2 in these cells to 

determine whether the observed increase in slower migrating Fra-1 protein might 

be due to increased ERK activity (Figure 8 ). Although total ERK protein levels 

remained unchanged in EpH4-fra1 cells, I detected a marked increase in phospho-

ERK1/2 levels (Figure 8 , lane 1-3).  

 
 
 
Figure 7. Fra-1 overexpression in EpH4 and EpRas cel ls.  (A) Total RNA was isolated from cells and 
fra-1 expression was analysed by quantitative real-time RT-PCR (qPCR). All selected clones show a 
significant increase in fra-1 transcript when compared to respective control cells. (B) Fra-1 protein levels in 
nuclear extracts were determined by Western blot. HP-1 was used as the loading control. Quantification of 
bands after normalisation for loading is shown as fold change when compared to the respective control 
cells. Results are shown as mean values, error bars represent the standard deviation; p-values ≤ 0.05 
were considered significant (*). 

 

 
 
Figure 8. Increased ERK1/2 kinase activity upon Fra- 1 overexpression.  Total cell extracts were 
analysed by Western blot to detect the expression of total and phospho-ERK1/2. Expression levels of 
pERK1/2 were normalised to total ERK1/2 level. 
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Phosphorylation of ERK is necessary for its activation and translocation to the 

nucleus (Hill and Treisman, 1995; Lewis et al., 1998). Once in the nucleus, ERK1/2 

can phosphorylate and thereby activate a number of transcription factors, including 

Fra-1(Hurd et al., 2002; Young et al., 2002b; Yang et al., 2003). Interestingly, in 

EpRas-fra1 cells I have observed an increase in both total and active ERK1/2 

levels when compared to the control cells (Figure 8 , lane 4-6). The observed 

overall increase in active ERK1/2 is consistent with previously published results 

that have reported a positive correlation in Fra-1 expression and MAPK-ERK 

activity (Young et al., 2002b; Casalino et al., 2003; Vial and Marshall, 2003). 

Therefore, it is likely that the detected accumulation of slower migrating Fra-1 

protein might be due to its hyperphosphorylation mediated by ERK kinases. 

However, the exact link between increased activities of ERK kinases as a 

consequence of ectopic Fra-1 expression remains to be determined. 

 

Next, I have analysed the effect of ectopic Fra-1 expression on the expression of 

other AP-1 members by RNase protection assay (RPA) (Figure 9A-B ), quantitative 

real-time RT-PCR (qPCR) (Figure 9C ) and Western blot (Figure 10 ). RPA analysis 

did not reveal a strong effect of Fra-1 overexpression on the transcription of other 

AP-1 members. Even though I could observe a slight decrease in Fra-2 transcript 

levels in both EpH4-fra1 and EpRas-fra1 cells, the expression of c-Fos was not 

strongly affected and FosB transcript was not detectable by RPA in none of the 

cells. However, I could detect an increase in c-Jun and JunB transcript levels in all 

Fra-1 expressing cells by the same method. Interestingly, in contrast to the results 

obtained by the RPA, qPCR analysis revealed upregulaton of c-Fos, and to a lesser 

extent FosB mRNA in EpH4-fra1 cells. Similarly, in EpRas-fra1 cells, I detected 

transcriptional downregulation of c-Fos, FosB and Fra-2 by qPCR. In accordance 

with the results obtained by the RPA, qPCR analysis revealed upregulation of c-Jun 

and JunB mRNA in EpH4-fra1 cells (Figure 9C ). However, in contrast to the results 

obtained by the RPA, in EpRas-fra1 cells, no significant change in JunB mRNA 

(data not shown) and downregulation of c-Jun mRNA was detected by qPCR. 

These discrepancies, between the results obtained by these two methods, are most 

probably due to higher sensitivity of the qPCR method. In addition, the inability to 

detect FosB transcripts by the RPA in none of the cells, even though qPCR 
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analysis revealed its transcriptional regulation, might be due to low quality or 

specificity of the provided FosB probe used for the RPA analysis. 

 

 

Figure 9. Transcriptional regulation of AP-1 member s in EpH4- fra1 and EpRas- fra1 cells. The effect 
of Fra-1 overexpression on the expression of other AP-1 members was analysed by RNase protection 
assay (RPA) (A and B)  and qPCR (C). Data are presented as mean and error bars are indicated. 
 

 

Interestingly, when I compared the mRNA levels of AP-1 members with the 

corresponding protein levels, I have observed a stronger effect of Fra-1 expression 



PhD thesis               Ivana Ćustić                                                                               Results-Part I 

 

 50 

on the expression of other AP-1 members (Figure 10 ). Both Fra-2 and c-Fos 

protein levels were downregulated in all Fra-1 expressing cells. The downregulation 

of Fra-2 protein was most probably transcriptional in nature, since a similar 

decrease in its transcript levels was detected both by RPA and qPCR. However, 

unlike in the EpRas-fra1 cells, in which the decreased levels of c-Fos protein 

corresponded to the detected downregulation of c-Fos mRNA, the downregulation 

of c-Fos protein in EpH4-fra1 cells did not match with the level of transcript 

detected by qPCR. This result suggested that c-Fos expression was most likely 

modulated at the posttranscriptional level in these cells.  

 
 
Figure 10. Expression of AP-1 proteins in EpH4- fra1 and EpRas- fra1 cells.  Differential expression of 
AP-1 proteins following Fra-1 overexpression was determined by Western blot. Quantification of protein 
bands after normalisation for loading is shown as fold change when compared to the respective control 
cells. 
 

 

Furthermore, protein levels of all three Jun members were increased in all Fra-1 

expressing cells. Only in case of the EpH4-fra1.2 clone, a slight decrease in JunB 

and JunD levels was observed. There was a good correlation in increased levels of 

c-Jun and JunB mRNA and protein levels in EpH4-fra1 cells, suggesting their 

transcriptional regulation. However, even though JunD protein levels were 

increased in all Fra-1 expressing cells, no significant difference in mRNA levels 
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could be detected. This suggested that JunD expression is most likely regulated at 

the posttranscriptional level. The same was true for the expression of JunB in 

EpRas-fra1 cells (Figure 10 ). Similarly, even though I detected a slight 

downregulation of c-Jun mRNA by qPCR in EpRas-fra1 cells, its protein levels were 

increased, suggesting that c-Jun is also regulated at posttranscriptional level in 

EpRas-fra1 cells. 

 

To examine the effect of ectopic Fra-1 expression on the composition of AP-1 

complexes, I performed qualitative and quantitative analysis using colorimetric 

ELISA-based assay (Figure 11 ). Nuclear extracts were incubated in 96-well plates 

with immobilized synthetic oligonucleotides containing the TRE element. AP-1 

complexes bound to these oligonucleotides were detected by addition of antibodies 

specific for the different AP-1 protein, followed by incubation with horseradish-

peroxidase conjugated secondary antibody and colorimetric evaluation by 

spectrophotometry.  

 

 
 
Figure 11. Qualitative and quantitative analyses of  the TRE-bound AP-1 complexes. Nuclear extracts 
from EpH4-fra1 and  EpRas-fra1 cells were assayed using TransAm AP-1 Family transcription assay 
ELISA-based kit.  
 

 

In all Fra-1 expressing cells, an overall increase in AP-1 binding to the synthetic 

TRE-containing oligonucleotides was detected. However, qualitative and 

quantitative composition of TRE-bound AP-1 complexes did not significantly differ 
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between EpH4-fra1 and EpRas-fra1 cells. In EpH4 control cells, Fra-1, JunB and 

JunD were identified as major components of AP-1 complexes. Interestingly, upon 

ectopic Fra-1 expression, in addition to 2-3 fold increase in Fra-1 binding, 3-fold 

and 5-fold increase in c-Jun binding was detected. Similarly, roughly 3-fold and 5-

fold increase in JunB, and 1.5-fold and 2-fold increase in JunD binding was 

detected. However, no overall change in Fos proteins other than Fra-1 was 

detected. This indicated that the TRE-bound AP-1 complexes upon Fra-1 

overexpression are mainly composed of Fra-1, JunB, JunD and c-Jun (Figure 11 ). 

Similarly, in EpRas control cells, the major identified components of TRE-bound 

AP-1 complexes were again Fra-1, JunB and JunD. However, upon Fra-1 

overexpression, only c-Jun binding was significantly increased. No significant 

change in JunD and JunB binding as well as binding of other Fos members other 

than Fra-1, could be observed (Figure 11 ). This indicated that in EpRas-fra1 cells, 

just like in EpH4-fra1 cells, TRE-bound AP-1 complexes are mainly composed of c-

Jun, JunB, JunD and Fra-1.  

 

An unexpected finding was that in EpH4 control cells, Fra-1 seemed to be the 

predominant Fos member of the TRE-bound AP-1 complexes, even though EpH4 

control cells express very low detectable levels of Fra-1 protein. Furthermore, the 

involvement of Fra-2 in the formation of an AP-1 complex was rather low, even 

though much higher levels of Fra-2 protein were detected by Western blot using the 

same nuclear extracts. The most likely explanation for this discrepancy could be 

the low specificity and cross-reactivity of Fra-1 antibody which was provided with 

the kit. It is likely that, due to cross-reactivity of Fra-1 antibody with Fra-2 protein, a 

false readout was obtained. Other possible explanations could be that even though 

detectable Fra-1 protein levels are low in EpH4 cells, it actively participates in the 

formation of AP-1 complexes. Nevertheless, a good correlation between the levels 

of Jun proteins detected by Western blot and this assay was observed. This 

suggests that most likely the problem of the assay is low specificity of Fra 

antibodies provided with the kit. Taken together, I conclude that an increase in Fra-

1, c-Jun, JunB and JunD binding to synthetic TRE-containing oligonucleotides 

correlates with increased protein levels detected by Western blot. 
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3.3 Ectopic Fra-1 expression increases cell prolife ration 

and causes prominent morphological changes in EpH4 and 

EpRas cells 

 

As a next step, I examined the cells for their proliferation capacity and morphology. 

All Fra-1 expressing cells showed a significant increase in proliferation rate when 

compared to the respective control cells (Figure 12A-B ).  

 

Figure 12. Stable Fra-1 expression in EpH4 and EpRas c ells increases cell proliferation rate.  Growth 
curves of EpH4-fra1 (A) and EpRas-fra1 (B) cells show increased proliferation when compared to 
respective control cells. The cells were grown in standard growth medium and counted in 48h intervals.  
Mean cumulative cell number values determined in triplicate cultures are shown, plotted against time. 
 

This observation is consistent with recent reports that have identified Fra-1 as a 

positive regulator of cell proliferation (Belguise et al., 2005; Casalino et al., 2007; 

Song et al., 2007). In addition to increased proliferation rate, both EpH4-fra1 and 

EpRas-fra1 cells showed dramatic changes in cell shape (Figure 13A-B , upper 

panel). While the control cells retained a fully polarized epithelial morphology, Fra-1 

expressing cells acquired a fibroblastoid morphology. The cells became elongated 

and spindle-shaped forming long cellular protrusions. Furthermore, when grown at 

low densities, these cells no longer formed epithelial cell clusters but displayed a 

strong scattering phenotype. In addition, Fra-1 expressing cells have lost cell-

contact mediated growth inhibition and were able to grow in a multilayered fashion 

upon reaching confluence (data not shown). 
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Figure 13. Ectopic Fra-1 expression in epithelial EpH 4 and EpRas cells causes a conversion to 
fibroblastoid morphology.  Phase contrast images of EpH4-fra1 (A) and EpRas-fra1 (B) cells and their 
respective control cells are shown in the upper panels. Fra-1 protein expression and subcellular 
localisation was determined by immunofluorescence and is shown in the lower panels. Nuclei were 
counterstained with DAPI (blue). Scale bar, 20µM. 
 

 
To determine whether this apparent morphological switch corresponds to Fra-1 

expression, I have checked the expression and subcellular localization of Fra-1 by 

immunofluorescence. Immunofluorescence analysis revealed strong and 

exclusively nuclear signal in all Fra-1 expressing clones (Figure 13A-B; lower 

panel). This indicated that the exogenous protein is efficiently transported into the 

nucleus where it is transcriptionally active (Figure 13A-B; lower panel). 

Additionally, these results also suggested that the observed morphological switch 
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from epithelial to fibroblastoid morphology could be directly correlated to ectopic 

Fra-1 expression.  

 

To further investigate the effect of Fra-1 expression on the epithelial cell phenotype, 

I analysed the cells for actin cytoskeleton organization. Immunofluorescent 

analyses revealed extensive cytoskeletal rearrangements in all Fra-1 expressing 

cells (Figure 14 A-B ).  

 

 
 
 
Figure 14.  Cytoskeletal rearrangements in Fra-1ove rexpressing cells.  EpH4cells grown on porous 
support were stained with Alexa488-coupled phalloidin to visualize F-actin. Nuclei were counterstained 
with DAPI (blue). Magnification is 20X. Scale bar, 20µM. 
 

 

Both EpH4 and EpRas control cells showed strictly cortical actin distribution 

characteristic for polarized epithelial cells. However, all Fra-1 expressing clones 

formed extensive lamellipodia. In addition, the cells displayed strong accumulation 

of actin-rich structures forming membrane ruffles mainly located at the leading edge 

of numerous cellular protrusions. Such cytoskelatal organization is characteristic of 

highly motile fibroblastoid cells. These results clearly showed that Fra-1 expression 

was sufficient to induce an epithelial to fibroblastoid conversion of EpH4 and EpRas 

cells.  
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3.4 Fra-1 expressing cells show increased motility and 

invasiveness in vitro 

 

 
As fibroblastoid morphology is characteristic of highly motile and migratory cells, I 

have next examined the migration potential of EpH4-fra1 and EpRas-fra1 cells 

using two independent assays. An in vitro wound-healing assay clearly indicated 

that ectopic Fra-1 expression results in a significant increase in random motility of 

the cells. However, this effect was more pronounced in EpH4-fra1 cells (Figure 

15A). The cells no longer migrated in a form of a sheet but rather invaded the 

wound area as single cells. Furthermore, the overall migration capacity of both 

EpH4-fra1 and EpRas-fra1 cells was markedly increased as shown by accelerated 

wound closure (Figure 15 A-B ).  

 

To further confirm these findings and quantify the migration capacity of the cells, I 

performed direct transwell migration assays (Figure 15C ). This assay again 

revealed a significant increase in migration capacity of both EpH4-fra1 and EpRas-

fra1 cells. The overall migration of EpH4-fra-1 and EpRas-fra1 cells was increased 

roughly 5-fold and 2-3-fold, respectively. An additional feature of cells undergoing 

EMT is increased invasiveness that is in part linked to enhanced motility. To 

determine the invasive potential of Fra-1 expressing cells, I have performed 

Matrigel invasion assay. Both EpH4-fra1 and EpRas-fra1 cells exhibited a 

significant increase in invasive capacity as shown by increased ability to migrate 

through Matrigel layers when compared to control cells (Figure  15D).  
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Figure 15. Fra-1 expression enhances cell motility and invasiveness. An in vitro wound healing assay 
performed with EpH4-fra1 (A) and EpRas-fra1 (B) cells revealed an increase in cell motility and migration 
capacity. Significantly increased migration capacity was confirmed in Transwell migration assay (C). Both 
EpH4-fra1 and EpRas-fra1 cells display increased in vitro invasiveness as determined by Matrigel invasion 
assay (D). The results are presented as mean values, error bars representing standard deviation are 
shown. P values <0.05 were considered significant (*). 
 

 

These results clearly show that Fra-1 ectopic expression is sufficient to induce 

highly motile and invasive behaviour of EpH4 and EpRas cells. Furthermore, the 

effect of Fra-1 on cell migration and invasion appeared to be dosage-dependent 

since in both cases higher expressing clones showed a more pronounced 

phenotype. The obtained results are in accordance with previous investigations that 

have reported increased cell migration and invasiveness upon ectopic Fra-1 

expression in several murine and human cell lines (Kustikova et al., 1998; Tkach et 

al., 2003; Milde-Langosch et al., 2004; Andersen et al., 2005; Belguise et al., 2005; 

Debinski and Gibo, 2005). 
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3.5 Fra-1 triggers EMT in EpH4 and EpRas cells 

 

In addition to conversion from epithelial to fibroblastoid morphology, cells that 

undergo a full EMT are characterized at the molecular level by downregulation/loss 

of epithelial markers and upregulation/de novo expression of mesenchymal 

markers. To determine whether Fra-1 induces a full EMT in EpH4 and EpRas cells, 

I have analysed the expression of epithelial and mesenchymal marker proteins by 

Western blotting. Interestingly, I observed a striking downregulation of the major 

epithelial marker protein E-cadherin (Figure 16A ). Furthermore, the levels of 

adherens junction proteins α-, β-, γ-, and p120-catenin were also downregulated in 

all Fra-1 expressing cells (Figure 16A-C ). 

 

 
 
 
 
Figure 16. Ectopic Fra-1 expression downregulates ep ithelial markers and upregulates the 
mesenchymal  marker fibronectin.  Total cell lysates were analysed by Western blot for the expression of 
epithelial markers (A-C) and the mesenchymal marker fibronectin (D). Actin was used as a loading control. 
Quantification of protein bands after normalisation for loading is shown as fold change when compared to 
the respective control cells. 
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In EpH4-fra1 cells E-cadherin protein levels were too low to be detectable by 

Western blot. The levels of α-catenin were only barely detectable and the levels of 

β-catenin and γ-catenin were strongly decreased (Figure 16A-B ). However, in 

EpRas-fra1 cells, even though I could still detect E-cadherin, its level was strongly 

downregulated (Figure 16A ). Similarly, the levels of α-catenin and γ-catenin were 

also significantly decreased (Figure 16B ). In contrast to EpH4-fra1 cells that 

showed strong downregulation of β-catenin, only a moderate decrease was 

detected in EpRas-fra1 cells. Interestingly, besides apparent decrease, I have 

observed a dramatic change in the expression pattern of p120 catenin (p120ctn) in 

all Fra-1 expressing cells (Figure 16C ). In epithelial EpH4 and EpRas control cells, 

p120ctn was detected as a double band of approximate sizes of 120 kDa and 100 

kDa, the lower molecular weight band being more prominent than the higher 

molecular weight band. The sizes of the detected bands corresponded to published 

splicing isoforms 1 and 3 of p120ctn (Mo and Reynolds, 1996; Keirsebilck et al., 

1998). It has previously been published that motile cells, such as fibroblasts and 

macrophages preferentially express p120ctn isoform 1, while epithelial cells 

preferentially express isoform 3 (Mo and Reynolds, 1996; Keirsebilck et al., 1998). 

Interestingly, all Fra-1 expressing cells almost completely lost the 100kDA isoform 

3 of p120ctn, but retained significant levels of the p120ctn 120kDa isoform 1. This 

observation is in agreement with published studies that have reported p120ctn 

isoform 1 as the predominant protein form expressed in cells after EMT (Eger et al., 

2000; Ohkubo and Ozawa, 2004). Importantly, I also detected a marked increase in 

expression levels of the mesenchymal marker protein fibronectin in both EpH4-fra1 

and EpRas-fra1 cells (Figure 16D ). However, the expression of other 

mesenchymal marker proteins such as N-cadherin and vimentin were not 

detectable by Western blot (data not shown), suggesting that Fra-1-induced EMT 

differs from TGFβ-induced EMT in our model. 

 

To further confirm the observed marker switch indicative of an EMT phenotype, I 

have checked the expression and subcellular localisation of adherens junction 

proteins and mesenchymal markers by immunofluorescence (Figure 17 and 18 ). In 

both EpH4 and EpRas control cells all adherens junction proteins exhibited strong 

membranous staining localised at cell-cell contacts indicating a polarized cellular 

phenotype. As expected, immuofluorescent analyses of EpH4-fra1 cells revealed a 
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complete absence of E-cadherin and α-catenin (Figure 17 ). Furthermore, only a 

faint cytoplasmic staining for β-catenin and γ-catenin was detected. Similarly, the 

staining for p120ctn revealed an overall downregulation and relocalisation of the 

protein from cell-cell contact sites to the cytoplasm (Figure 17 ). Additionally, no 

apparent relocalisation of β-catenin or p120ctn to the nucleus was observed.  

Furthermore, I could detect a strong staining showing the accumulation of 

fibronectin in the cytoplasm of EpH4-fra1 cells that was completely absent in the 

EpH4 control cells. 

  

Immunofluoresecent analyses for adherens junction proteins in EpRas-fra1 cells 

revealed no complete loss of E-cadherin, but a significant decrease in E-cadherin 

levels and partial relocalisation to the cytoplasm (Figure 18 ). Similarly, the 

expression and localisation of γ-catenin and p120ctn was also altered. I could 

detect a strong downregulation and relocalisation of both proteins to the cytoplasm 

of Fra-1 expressing cells, even though a proportion of p120ctn could still be 

detected at cell-cell contacts. Furthermore, I could not detect any signal for α-

catenin. In line with the results obtained by Western blot, β-catenin staining was not 

significantly decreased in EpRas-fra1 cells and showed mainly membranous 

staining (Figure 18 ). Although EpRas control cells express a certain level of 

fibronectin, I could still detect a significant increase in its expression in the 

cytoplasm of EpRas-fra1 cells.  

 

Taken together, these results clearly show that Fra-1 expression is sufficient to 

induce epithelial dedifferentiation and hallmarks of EMT in both EpH4 and EpRas 

cells. Most strikingly, the effect of Fra-1 expression was more pronounced in EpH4- 

than in EpRas cells, suggesting that Fra-1 can induce EMT without the contribution 

of TGFβ.  
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Figure 17. Fra-1 induces EMT in EpH4 cells.  Immunofluorescence analyses for the expression and 
subcellular localization of epithelial markers and mesenchymal marker fibronectin in EpH4 control cells 
and Fra-1 expressing clones. Nuclei were counterstained with DAPI (blue). Scale bar, 20µM. 



PhD thesis               Ivana Ćustić                                                                               Results-Part I 

 

 62 

 
 
 
Figure 18. Fra-1 induces EMT in EpRas cells.  Immunofluorescence analyses for the expression and 
subcellular localization of epithelial markers and mesenchymal marker fibronectin in EpRas control cells 
and Fra-1 expressing clones. Nuclei were counterstained with DAPI (blue). Scale bar, 20µM. 
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3.6 Induction and maintenance of EMT by Fra-1 in 

EpH4/EpRas system is independent of TGF- β1 

 

Previous studies using EpH4/EpRas cell system have shown that EMT requires a 

cooperation of active Ras signalling and cytokine TGF-β1 (Oft et al., 1996). 

Furthermore, it was shown that the cells that have undergone EMT (EpRasXT 

cells) sustain the mesenchymal phenotype by an autoregulatory TGF-β1 loop (Oft 

et al., 1996; Oft et al., 1998). To determine whether this might be the mechanism 

by which Fra-1 elicits EMT, I have assayed the cells for TGF-β1 production (Figure 

19).  

 

Figure 19. Fra-1 expression does not induce TGF- β1 production.  Cells were grown in serum-free 
medium for 24h before assaying for TGF-β1 levels. Conditioned media was collected and concentrated 
prior to performing an ELISA assay. EpRasXT cells that produce and secrete high levels of TGF-β1 were 
used as a positive control. The results are shown as mean and error bars represent standard deviation. 
 

For this, cells were exposed to serum-free media for 24-48h prior to analysis. 

Conditioned media was collected, concentrated and assayed by ELISA using 

conditioned medium from EpRasXT cells-known to produce high levels of TGF-β1- 

as positive control. However, no increase in active TGF-β1 levels could be detected 

in any of the conditioned supernatants of Fra-1 expressing cells (Figure 19 ). These 

results indicated that Fra-1 does not require cooperation with TGF-β1 for induction 

of EMT and maintenance of the mesenchymal phenotype. 
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3.7 Fra-1 renders EpH4 cells tumorigenic and metastatic and 

increases the metastatic potential of EpRas cells  

 
To further address the relevance of the results obtained by the above in vitro 

assays, I have analysed the behaviour of these cell lines in vivo. It was previously 

shown that EpH4 cells are non-tumorigenic and non-metastatic in vivo, (i.e. EpH4 

cells at most forming small, regressing skin nodules (Reichman et al., 1989; Oft et 

al., 1996; Oft et al., 1998; Janda et al., 2002). Interestingly, I observed that 

orthotopic injection of EpH4-fra1 cells into mammary gland fat pads of 

immunocompromised mice resulted in formation of fast growing tumors, while the 

injected control cells only formed the previously reported small, regressing nodules 

(Oft et al., 1996; Figure  20A-B ).  

 
 
 
Figure 20. EpH4- fra1 cells are tumorigenic in vivo. (A) Photographs of representative mice injected with 
EpH4 control and EpH-fra1 cells. EpH4-fra1 cells formed tumors at all injection sites (n=3 mice per cell 
type after 14 days. (B) Photographs of isolated representative tumors prior to fixation. Tumors formed by 
EpH4-fra1 cells have significantly increased volume (C) and weight (D) when compared to tumors formed 
by control cells. Data are presented as mean (n=3) and error bars represent st. dev. P-values ≤0.05 were 
considered significant (*). Scale bar, 1cm. 
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Each mouse was injected with 1.5x105 cells into 2-4 mammary gland fat pads and 

monitored for tumor formation on a daily basis. Injection of EpH4-fra1 cells resulted 

in efficient tumor formation at all injection sites after 14 days, while the EpH4 

control cells formed only small tumor nodules at 50% frequency (Figure 20A-B ). I 

have also checked several organs for metastasis formation, but could not detect 

any signs of metastasis formation in the lungs, kidney or liver in these mice (data 

not shown). In addition to significantly increased tumor weight and volume (Figure 

20C-D), macroscopic inspection of isolated tumors revealed increased 

vascularisation of tumours formed by EpH4-fra1 cells (Figure 20B ). H&E staining 

of tumor sections confirmed this observation (Figure 21 ). In addition, the EpH4 

nodules had a sharp boundary and were surrounded by stroma, while the inner 

mass of the EpH4-fra1 tumors appeared necrotic, most likely due to extremely fast 

tumor growth.  

  

 

 

Figure 21. Histological analyses of tumors formed b y EpH4- fra1 cells.  H&E staining revealed 
increased vascularisation of tumors formed by EpH4-fra1 cells. Magnification is 5X and 20X, respectively. 
Scale bars are indicated. (n=3). 
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Ki67 staining revealed a significantly increased number of positive cells in the 

tumors formed by EpH4-fra1 cells that were mainly located at the outer regions of 

the tumors, while the EpH4 control tumors showed only low numbers of 

proliferating, Ki67 positive cells (Figure 22A-B ). 

 

 

Figure 22. Tumors formed by EpH4-fra1 cells are high ly proliferative. (A) Tumor cell proliferation was 
assessed by immunohistochemical detection of the proliferation marker Ki67. Magnification is 20X and 
scale bars are indicated. (B) Bar graph shows quantification of Ki67 positive cells performed by counting 
stained cells in 5 different fields using a 20X objective. Data are presented as mean (n=3) and error bars 
representing standard deviation are shown. P values ≤0.05 were considered significant (*). 
 

 

Due to the known limitations of the EpH4/EpRas model that fails to metastasize 

from orthotopic tumors (Janda et al., 2002), and the overall high proliferative 

capacity of tumors formed by EpH4-fra1 cells, I was not able to determine whether 

these cells acquired the ability to metastasize from orthotopic sites. To determine 
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the metastatic potential of the cells, I have performed lung colonisation assay by 

injecting 1.5x105 EpH4 cells or 1x105 EpRas cells and their respective Fra-1 

expressing clones into the tail vein of immunocompromised mice. The mice were 

observed on a daily basis and sacrificed when becoming moribund. Most strikingly, 

both EpH4-fra1 and EpRas-fra1 cells formed numerous metastases in the lungs of 

all experimental mice (n=4) 4 weeks after injection (Figure 23A and B ). 

 

 
 
Figure 23. Fra-1 expression renders EpH4 cells meta static and increases metastatic potential of 
EpRas cells.  (A) Photographs of representative lungs isolated from mice (n=4) injected with EpH4-fra1 or 
EpRas-fra1 cells (B) and their respective control cells. Arrows point to macroscopically visible metastatic 
nodules formed by EpH4-fra1 cells. Scale bar, 1cm. Quantification of metastatic nodules formed by EpH4-
fra1 (C) and EpRas-fra1 (D) cells was performed by counting visible nodules on the surface of isolated 
lungs. Note that EpH4 control cells did not form metastasis in the lung. 
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Importantly, there were no macroscopically detectable metastatic nodules seen on 

the surface of lungs injected with EpH4 control cells (Figure 23A ). EpRas cells 

were previously shown to form metastases upon tail vein injection into 

immunocompromised mice (Oft et al., 1996; Janda et al., 2002). Nevertheless, 

expression of Fra-1 significantly increased the number of macroscopically visible 

metastatic nodules (Figure 23B and D ). These observations were further 

confirmed by histological analysis of the lungs. H&E staining revealed numerous 

metastatic lesions in the lungs of mice injected with EpH4-fra1 cells that were 

absent in the lungs injected with control cells (Figure 24A ), as well as an increased 

number of metastatic nodules in lungs of mice injected with EpRas-fra1 cells 

(Figure 24B ).  

 

Immunostaining for the proliferation marker Ki67 revealed strong proliferation of 

cells within the nodules formed by EpH4-fra1 cells (Figure 25A ). However, as 

expected, there was no significant difference in the number of positive cells within 

the nodules formed by EpRas control and EpRas-fra1 cells, since nodule size was 

similar in the absence or presence of Fra-1 (Figure 25B ). Further 

immunohistochemical analysis revealed strong correlation in cell dedifferentiation 

and Fra-1 expression in metastatic lesions formed by both EpH4-fra1 and EpRas-

fra1 cells (Figure 26 and 27 ). In both cases, I could detect strong and mainly 

nuclear staining for Fra-1 only within the metastatic nodules (Figure26A and 27A ). 

Most importantly, the same regions were E-cadherin negative. I could only detect a 

weak cytoplasmic signal in a few random cells (Figure 26B  and 27B ). 

Furthermore, I detected strong cytoplasmic staining for fibronectin within the 

metastatic lesions that was completely absent from normal lung tissue in mice 

injected with EpH4 control cells (Figure 26C ). Similarly, even though fibronectin 

was present in metastatic nodules formed by EpRas control cells, the staining was 

much stronger in the nodules formed by EpRas-fra1 cells (Figure 27C ). In both 

cases, the staining appeared to be more pronounced at the outer edges of 

proliferating nodules.  
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These observations confirmed the results obtained by in vitro assays and clearly 

demonstrated that Fra-1 expression is sufficient to induce EMT of mammary 

epithelial cells. Moreover, the observed lack of E-cadherin expression and 

significant upregulation of fibronectin, correlated with Fra-1 expression in metastatic 

nodules further demonstrated the ability of Fra-1 expressing cells to undergo EMT 

in vivo. 

 

 
 
 
Figure 24. Pathological changes in lungs of mice inj ected with Fra-1 expressing EpH4 and EpRas 
cells.  H&E staining reveals formation of metastatic nodules in the lungs after tail vein injection of EpH4-
fra1 cells not present in the lungs of mice injected with EpH4 control cells (n=4) (A). Increased number of 
metatatic nodules in mice injected with EpRas-fra1 cells (B). Magnification is 5X (upper panels) and 20X 
(lower panels). Scale bars are shown. 
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Figure 25. Immunohistochemical analysis of cell pro liferation in metastatic nodules. (A)  
Immunohistochemical staining for the proliferation marker Ki67 shows strong cell proliferation in nodules 
formed by EpH4-fra1 cells. (B) Ki67 staining shows no major difference in cell proliferation within the 
metastatic nodules formed by EpRas control and EpRas-fra1 cells (n=4). Magnification is 5X (upper 
panels) and 20X (lower panels). Scale bars are indicated.  
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Figure 26. Cell dedifferentiation within metastatic  nodules formed by EpH4- fra1 cells correlates 
with Fra-1 expression.  Immunohistochemical staining for Fra-1 (A), the epithelial marker protein E-
cadherin (B) and the mesenchymal marker protein fibronectin (C) revealed a positive correlation in Fra-1 
expression and cell dedifferentiation in vivo (n=4). Magnification is 5X (upper panels) and 20X (lower 
panels). Scale bars are indicated. 
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Figure 27. Cell dedifferentiation within metastatic  nodules formed by EpRas- fra1 cells correlate 
with Fra-1 expression.  Immunohistochemical staining for Fra-1 (A), the epithelial marker protein E-
cadherin (B) and the mesenchymal marker protein fibronectin (C) revealed a positive correlation in Fra-1 
expression and cell dedifferentiation in vivo (n=4). Magnification is 5X (upper panels) and 20X (lower 
panels). Scale bars are indicated. 
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3.8 Summary and conclusions 

 

In the first part of this study, I have employed a gain-of-function approach to 

determine the role of Fra-1 in induction and maintenance of EMT using the in vitro 

EpH4/EpRas cellular model. I was able to show that ectopic expression of Fra-1 in 

epithelial EpH4 and EpRas cells results in epithelial to fibroblastoid conversion 

accompanied by profound cytoskeletal rearrangements. Furthermore, Fra-1 

expressing cells showed an increased proliferation rate, migratory and invasive 

potential in vitro. Molecular analyses revealed downregulation of epithelial marker 

proteins (E-cadherin, α-, β-, γ-catenin and p120 catenin) and upregulation of 

mesenchymal marker fibronectin.  Based on these results I conclude that Fra-1 

expression is sufficient to induce all hallmarks of EMT. Additionally, the effect of 

Fra-1 appeared to be dosage-dependent and did not require cooperation with TGF-

β1 signalling.  

 

Further in vivo characterization revealed that Fra-1 expression is sufficient for 

tumorigenic transformation of EpH4 cells, as shown by formation of fast growing 

tumors upon orthotopic injections into mammary gland fat pads of 

immunocompromised mice. Most strikingly, Fra-1 expression in EpH4 cells was 

sufficient to render these cells metastatic. Similarly, Fra-1 expression in EpRas 

cells further increased their metastatic potential. Immunohistochemical analyses 

revealed positive correlation between Fra-1 expression, increased cell proliferation 

and expression of mesenchymal marker protein fibronectin. In contrast, the 

expression of Fra-1 and the major epithelial marker protein E-cadherin showed 

strong inverse correlation. Taken together, these results are consistent with the 

idea that Fra-1/AP-1 plays a major role in induction of EMT both in vitro and in vivo. 
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PART II 

Mechanism of Fra-1 induced EMT: identification of F ra-

1/AP-1 targets 

 

3.9 Fra-1 induces transcriptional downregulation of  E-

cadherin 

 

The finding, that Fra-1 is able to induce EMT, promped me to address in more 

detail the molecular mechanism of Fra-1 action. E-cadherin downregulation is 

frequently observed in carcinomas and it is thought to be one of the most important 

events during carcinoma progression (Birchmeier and Behrens, 1994). 

Furthermore, downregulation/loss of E-cadherin is considered as a major step in 

induction of EMT (Thiery, 2002; Yang and Weinberg, 2008). Therefore, I focused 

my efforts on identifying the mechanism of Fra-1-dependent E-cadherin 

downregulation. To determine whether E-cadherin levels are transcriptionally 

regulated, I first determined E-cadherin mRNA levels. Quantitative real-time RT-

PCR (qPCR) analysis revealed that the observed E-cadherin downregulation 

occurs at the transcriptional level (Figure 28 ). 

 
 
Figure 28. Transcriptional downregulation of E-cadh erin in EpH4- fra1 and EpRas- fra1 cells.  Shown 
are quantitative real-time PCR (qPCR) analysis data, i.e. mean values and error bars. P -values <0.05 
were considered significant (*) 
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E-cadherin mRNA was almost completely undetectable by qPCR in EpH4-fra1 

cells. However, even though the level of E-cadherin transcript was strongly 

downregulated (roughly 3- fold and 4-fold, respectively), I could still detect it in 

EpRas-fra1 cells. These observations are in accordance with the results previously 

obtained by Western blot and immunofluorescence analysis and suggested that 

Fra-1 induces EMT by regulating E-cadherin transcription. To check whether this 

might be due to direct transcriptional repression by Fra-1, I analysed the E-cadherin 

promoter including a 4000 bp upstream region for potential AP-1 binding sites. 

Bioinformatics analysis identified two potential AP-1 sites located at -3493 and -

1278 upstream from the transcription start site. However, after performing 

chromatin immunoprecipitation (ChIP) experiment with Fra-1 specific antibody, I 

was not able to amplify those fragments by qPCR (data not shown). This result 

suggested that Fra-1 most likely does not repress E-cadherin transcription by direct 

binding to these sites in the E-cadhrin promoter. 

 

3.9.1 Transcriptional downregulation of E-cadherin in EpH4- fra1 

cells does not involve promoter hypermethylation or  histone 

acetylation 

 

Transcriptional downregulation of E-cadherin can occur as a consequence of 

anomalous promoter hypermethylation (Graff et al., 1995; Strathdee, 2002), histone 

H3 and H4 deacetylation (Koizume et al., 2002), or alternatively, can be due to 

direct transcriptional repression by the members of the Snail (Batlle et al., 2000; 

Cano et al., 2000), E47/E12- (Perez-Moreno et al., 2001) and ZEB- (Grooteclaes 

and Frisch, 2000; Comijn et al., 2001; Eger et al., 2005) families of transcription 

factors. It was recently shown that transcriptional repression of the E-cadherin gene 

by c-Fos involves hypermethylation of the E-cadherin promoter (Mejlvang et al., 

2007). Another study reported upregulation of DNA methytransferase-1(Dnmt1) 

upon v-FosFBR transformation (Bakin and Curran, 1999). Interestingly, treatment of 

cells with Dnmt inhibitor, 5-azadeoxycytidine (5-Aza-CdR), or histone acethylase 

inhibitor, trichostatin A (TSA), blocked v-Fos-mediated transformation (Bakin and 

Curran, 1999; McGarry et al., 2004). Likewise, it was recently published that Fra-1 

can repress the expression of the IL-8 gene through direct interaction with histone 
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deacetylase-1 (HDAC1) (Hoffman et al., 2005). It was suggested by the authors 

that Fra-1-mediated recruitment of HDAC1 to the IL-8 promoter might affect 

acetylation of individual lysines of histones H3 or H4, thereby leading to alteration 

of chromatin structure from open to closed conformation, resulting in transcriptional 

repression (Hoffman et al., 2005). To determine whether the observed strong E-

cadherin downregulation in EpH4-fra1 cells might be due to promoter 

hypermethylation, I have treated the cells with two different histone 

methyltransferase inhibitors, 5-Aza-2-deoxycytidine (5-Aza-CdR) and Zebularine, 

for up to 4 days. E-cadherin expression was analysed by qPCR (Figure 30 ) and 

immunofluorescence (Figure 29 ).  

 

 
 
Figure 29. Inhibition of DNA methyltransferase in Ep H4-fra1 cells does not restore E-cadherin 
expression. Phase-contrast images of EpH4-fra1 cells treated with 5-aza-2-deoxycytiine (5-Aza-CdR) or 
Zebularine for 72h show no change in cell morphology (upper panels) or E-cadherin expression following 
treatment as shown by immunofluorescent staining for E-cadherin (lower panels). Nuclei were 
counterstained with DAPI (blue). 
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Interestingly, inhibitor treatments had no effect on cell morphology suggesting that 

that the cells did not restore E-cadherin expression (Figure 29 ). However, I could 

observe reduced cell proliferation and increased number of dying cells during the 

treatment. This effect was more pronounced in cells treated with 5-Aza-CdR most 

probably due to the known growth inhibitory and toxic effect of the compound. 

Following treatment, the cells were further analysed by qPCR and 

immunofluorescence for reexpression of E-cadherin. However, I was not able to 

detected neither E-cadherin mRNA (amplification only in reaction cycle 33), nor 

protein expression (Figure 29 and Figure 30 ). Since histone methytransferase 

inhibitors alone had no effect on E-cadherin expression, I combined them with 

histone deacetylase inhibitor TSA. Likewise, combined treatment of the cells did not 

result in E-cadherin reexpression (data not shown). 

 

As a positive control of the assay, I have analysed the expression of p16ink4a tumor 

suppressor gene by qPCR (Figure 30 ). Expression of p16ink4a in carcinomas is 

often silenced by promoter methylation (Herman et al., 1995; Merlo et al., 1995) 

and it was previously shown that it can be re-expressed following treatment with 

either 5-Aza-CdR, or Zebularine (Bender et al., 1998; Cheng et al., 2004). 

Importantly, while could not detect a significant increase in E-cadherin expression, 

inhibitor treatments restored the expression of p16ink4a indicating that the assay 

worked technically (Figure 30 ). 

 

 
Figure 30. Expression of E-cadherin and  p16i nk4a tumor suppressor gene.  Bar graphs show no 
significant increase in E-cadherin expression, while the expression of p16 gene was strongly induced 
following DNA methyl transferase inhibitor treatments. The data is presented as mean and error bars are 
designated. 
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Thus, these results strongly indicated that methylation of E-cadherin promoter, or 

chromatin remodelling due to histone deacetylase activity, is not involved in 

mechanism of Fra-1-mediated transcriptional downregulation of E-cadherin in 

EpH4-fra1 cells. 

 
 

3.10 Gene expression profiling in EpH4- fra1 and EpRas-    

fra1 cells: Fra-1 modulates RNA expression of genes 

implicated in EMT 

 

To gain a more general overview of the genes affected by Fra-1 expression, and to 

further explore the molecular basis underlying Fra-1-mediated E-cadherin 

downregulation and subsequent induction of EMT, I performed genome-wide gene 

expression profiling. Total RNA isolated from EpH4-fra1 and EpRas-fra1 cells was 

hybridized to oligonucliotide microarray slides provided by the IMP microarray 

facility. Only annotated genes showing significant (p-value <0.05), at least 2-fold 

changes in expression and similarly regulated in both clones, were included in 

further analyses (Figure 31 ). Ectopic Fra-1 expression in EpH4 cells affected the 

expression of 660 genes, while 471 genes were affected in EpRas cells. Out of 660 

genes, 402 genes were upregulated and 239 genes downregulated in EpH4-fra1 

cells. In EpRas-fra1 cells, 258 genes were upregulated and 232 downregulated. 

Interestingly, among differentially regulated genes, I identified several known AP-1 

target genes, such as matrix matalloproteases (MMPs) that had previously been 

implicated in cancer progression and EMT. Furthermore, a number of known EMT 

related genes were also found to be regulated by Fra-1 expression (Table 1 and 

Table 2 ). Differentially expressed genes were clustered according to their 

functional annotation (Figure 32 and Figure 33 ). Interestingly, the majority of 

genes downregulated following Fra-1 expression, could functionally be assigned to 

epithelial and adhesion/junction clusters, followed by proteases, tumor suppression 

and chemokine/cytokine clusters (Figure 32 ). As expected, the majority of 

upregulated genes could be grouped in the mesenchymal/matrix/bone, growth 

factor, proteases, transcription factors and tumor/invasion/metastasis clusters 

(Figure 33 ).  
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Some interesting examples of upregulated genes in EpH4-fra1 cells include several 

proteases, such as MMP-2, -3, -13, -14 and Plat (member of the uPAR system) that 

are widely implicated in cancer progression and EMT (Egeblad and Werb, 2002; 

Sidenius and Blasi, 2003; Lagamba et al., 2005), and known EMT-inducers, such 

as chemokine Cxcl12/SDF-1α (Muller et al., 2001; Onoue et al., 2006), cytokine 

TGF-β2 (Nawshad et al., 2004; Timmerman et al., 2004), extracellular matrix 

protein SPARC/osteonectin (Framson and Sage, 2004; Robert et al., 2006; Sarrio 

et al., 2008) and a direct Fra-1 target gene, the matrix Gla protein (MGP) (Chen et 

al., 1990; Eferl et al., 2004; Yoshimura et al., 2009). Finally, transcription factors 

associated with cancer progression such as Stat1 and Stat3 (Yu and Jove, 2004; 

Jechlinger et al., 2003), hypoxia-induced HIF-1α (Bando et al., 2003; Pouyssegur 

et al., 2006; Yang et al., 2008; Sahlgren et al., 2008), as well as E-cadherin 

transcriptional repressors, transcription factors ZEB1 and ZEB2 (Comijn et al., 

2001; Vandewalle et al., 2005; Eger et al., 2005;  Peinado et al., 2007; Vandewalle 

et al., 2009) were found to be significantly upregulated (Table 1 ).  

 

Similarly, Fra-1 overexpression in EpRas cells resulted in upregulation of several 

invasion related proteases, such as ADAM8 and ADAM10, MMP-1, and MMP12 

(Egeblad and Werb, 2002; Maretzky et al., 2005;), adhesion molecules implicated 

in invasion/metastasis, such as N-cadherin (CDH2) and L1 CAM (Derycke and 

Bracke, 2004; Christofori, 2006; Shtutman et al., 2006; Raveh et al., 2009; 

Wheelock et al., 2008), as well as direct Fra-1 target genes, the hyaluronan 

receptor CD44 (Hoffman et al., 1993; Lamb et al., 1997; Zajchowski et al., 2001; 

Andersen et al., 2002; Ramos-Nino et al., 2003) and matrix Gla protein. Further 

examples include EMT-inducing zinc finger transcription factors KLF8 (Wang, et al., 

2007), Snai2/Slug (Hajra et al., 2002b; Bolos et al., 2003) and ZEB2 (Table 2 ). 

Consistently, genes typical of epithelial cells were strongly downregulated in both 

EpH4-fra1 and Ep-Ras-fra1 cells. Examples include components of desmosomes, 

such as desmoglein 2, tight junctions components, such as occludin and several 

claudins, as well as epithelial intermediate filaments, cytokeratins 8/18,  all of which 

are regarded as markers of epithelial phenotype and are downregulated during 

EMT (Miyoshi and Takai, 2005;  Lagamba et al., 2005; Thiery and Sleeman, 2006; 

De Wever et al., 2008). Most importantly, and in agreement with previous findings, 



PhD thesis               Ivana Ćustić                                                                              Results-Part II 

 

 80 

the array screen revealed a significant transcriptional downregulation of E-cadherin 

in both cell types (Table 1 and Table 2 ). 

 

 

 
 
Figure 31. Heat-map for differentially expressed ge nes following ectopic Fra-1 expression.  Only 
annotated genes with at least 2-fold change in expression and p-value<0.05 were considered as 
significant.  (A) In EpH4-fra1 cells, the expression of 660 genes was affected, while the expression of 471 
genes was affected in EpRas-fra1 cells (B). M value represents the log2 ratio of gene expression between 
the individual sample and average of all samples. 
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Figure 32. Gene cluster analysis of upregulated gen es. Schematic representation showing the major 
upregulated gene clusters in EpH4-fra1 and EpRas-fra1 cells. The genes were organised in clusters 
according to their functional annotation.  
 
 
 
 

 
 
 
Figure 33. Gene cluster analysis of downregulated g enes.  Schematic representation showing the 
major upregulated gene clusters in EpH4-fra1 and EpRas-fra1 cells. The genes were organised in clusters 
according to their functional annotation. 
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Table 1. Selection of genes deregulated in EpH4- fra1 cells previously implicated in cancer 
progression and EMT  

Fold change 
Gene ID Gene name 

EpH4fra1.1 EpH4fra1.2 

Functional 

assignment 

Mmp3 matrix metallopeptidase 3 80.1 33.2 Protease/Invasion 

Ecm1 extracellular matrix protein 1 20.3 14.0 Matrix/Invasion 

Zeb1 zinc finger E-box binding homeobox 1 12.6 11.2 Transcription factor 

Mmp13 matrix metallopeptidase 13 12.2 12.0 Protease/Invasion 

Mmp2 matrix metallopeptidase 2 9.4 44.5 Protease/Invasion 

Plat plasminogen activator, tissue 7.5 4.9 Protease/invasion 

Cxcl12 chemokine (C-X-C motif) ligand 12 7.0 4.9 Chemokine/Invasion 

Itga5 integrin alpha 5 (fibronectin receptor alpha) 5.0 5.2 Matrix/Invasion 

Sparc secreted acidic cysteine rich glycoprotein 4.7 5.9 Matrix/invasion 

Tgfb2 transforming growth factor, beta 2 4.4 13.1 Cytokine/invasion 

Mmp11 matrix metallopeptidase 11 3.9 3.8 Protease/Invasion 

Stat3 signal transducer and activator of transcription 3 3.9 3.8 Transcription factor 

Zeb2 zinc finger E-box binding homeobox 2 3.8 5.0 Transcription factor 

Mapk3 mitogen activated protein kinase 3 3.5 2.5 Signal transduction/Invasion 

Fgfr1 fibroblast growth factor receptor 1 3.4 4.1 Growth factor receptor 

Mmp14 matrix metallopeptidase 14 (membrane-inserted) 3.3 3.5 Protease/Invasion 

Fn1 fibronectin 1 2.9 5.4 Matrix/Invasion 

Rhob ras homolog gene family, member B 2.4 7.9 Cytoskeleton/Invasion 

Stat1 signal transducer and activator of transcription 1 2.3 13.3 Transcription factor 

Hif1a hypoxia inducible factor 1, alpha subunit 2.2 2.1 Hypoxia/Invasion 

Ctsb cathepsin B 2.1 3.2 Protease/Invasion 

Dsg2 desmoglein 2 -2.1 -3.3 Epithelial/Adhesion 

Wnt7a wingless-related MMTV integration site 7A -18.3 -18.6 Growth factor 

Tacstd1 tumor-associated calcium signal transducer 1 -11.3 -86.8 Epithelial/Adhesion 

Lama3 laminin, alpha 3 -8.9 -24.0 Epithelial/Adhesion 

St14 suppression of tumorigenicity 14  -7.6 -13.5 Tumor suppressor/Invasion  

Krt18 keratin 18 -7.2 -5.2 Epithelial 

Cldn3 claudin 3 -6.5 -8.2 Epithelial/Adhesion 

Cldn1 claudin 1 -5.5 -6.0 Epithelial/Adhesion 

Cst6 cystatin E/M -5.2 -4.0 Protease/Invasion 

Cdh1 cadherin 1 -4.3 -7.5 Epithelial/Adhesion 

Cldn7 claudin 7 -3.9 -3.3 Epithelial/Adhesion 

Tspan1 tetraspanin 1 -2.8 -2.8 Epithelial/Adhesion 

Krt8 keratin 8 -2.5 -2.1 Epithelial 

*Upregulated genes are represented by positive fold change values and downregulated genes by negative values. Only 
annotated genes were analysed and are listed alphabetically. 
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Table 2.  Selection of genes deregulated in EpRas- fra1 cells previously implicated in cancer 
progression and EMT 

*Upregulated genes are represented by positive fold change values and downregulated genes by negative values. Only 
annotated genes were analysed and are listed alphabetically. 

 

 

As exemplified above, Fra-1 overexpression in epithelial EpH4 and EpRas cells 

resulted in substantial upregulation of a number of genes that have previously been 

implicated either in induction of EMT or maintenance of the invasive phenotype. 

Accordingly, genes typical of epithelial cells, mainly involved in cell adhesion, as 

well as those involved in tumor suppression were found to be downregulated. 

However, not all of these genes showed common regulation in both cell types. 

Therefore, to reduce the number of candidate genes for further analysis, I divided 

the genes into two main groups. All genes that were commonly regulated in EpH4-

fra1 and EpRas-fra1 cells were assigned to one group. In the second group, I 

organized the genes that were directly related to commonly regulated genes, such 

as members of the same family, but were not differentially regulated in both cell 

types (Figure 34 ). The remaining genes with no relation to commonly regulated 

Fold change 
Gene ID Gene name 

EpRasfra1.1 EpRasfra1.2 

Functional 

assignment 

L1cam L1 cell adhesion molecule 5.4 5.1 Mesenchymal/Adhesion 

Mgp matrix Gla protein 3.9 13.8 Matrix 

Fgfr1 fibroblast growth factor receptor 1 3.2 2.8 Growth factor receptor 

Fn1 fibronectin 1 3.2 5.1 Matrix/Invasion 

Ctsb cathepsin B 3.1 5.5 Protease/invasion 

Adam10 a disintegrin and metallopeptidase domain 10 2.9 3.1 Protease/invasion 

Stat1 signal transducer and activator of transcription 1 2.7 3.8 Transcription factor 

Mmp1a matrix metallopeptidase 1a (interstitial collagenase) 2.4 4.8 Protease/invasion 

Cdh2 cadherin 2 2.3 2.5 Mesenchymal/Invasion 

Klf8 Kruppel-like factor 8 2.3 4.1 Transcription factor 

Snai2 snail homolog 2 (Drosophila) 2.3 4.3 Transcription factor 

Mmp12 matrix metallopeptidase 12 2.2 4.2 Protease/invasion 

Adam8 a disintegrin and metallopeptidase domain 8 2.1 3.1 Protease/invasion 

Cd44 CD44 antigen 2.1 5.0 Signaling/Invasion 

Ctnnb1 catenin (cadherin associated protein). beta 1 2.1 4.2 Transcription factor 

Mmp19 matrix metallopeptidase 19 2.1 2.7 Protease/invasion 

Wnt7a wingless-related MMTV integration site 7A -5.3 -11.6 Growth factor 

St14 suppression of tumorigenicity 14 -4.0 -6.4 Tumor suppressor/Invasion 

Zeb2 zinc finger E-box binding homeobox 2 -3.8 -5.0 Transcription factor 

Cldn6 claudin 6 -3.8 -8.0 Epithelial/Adhesion 

Ocln occludin -3.6 -5.9 Epithelial/Adhesion 

Cdh1 cadherin 1 -2.9 -6.5 Epithelial/Adhesion 

Cldn7 claudin 7 -2.5 -2.6 Epithelial/Adhesion 

Krt18 keratin 18 -2.5 -2.6 Epithelial/Adhesion 

Des desmin -2.1 -2.2 Epithelial/Adhesion 



PhD thesis               Ivana Ćustić                                                                              Results-Part II 

 

 84 

genes were excluded from further analysis. I found 51 commonly upregulated and 

60 commonly downregulated genes (Table 3 ). Additionally, I found 50 upregulated 

and 34 downregulated "related-common genes" in EpH4-fra1 cells, and 45 

upregulated and 26 downregulated "related-common" genes in EpRas-fra1 cells, 

respectively.  

 

 
 
Figure 34. Schematic representation of differentiall y regulated genes common in EpH4- fra1 and 
EpRas- fra1 cells.  Numbers in black represent total number of differentially regulated genes; numbers of 
strictly common regulated genes are depicted in red and the numbers of related-common genes in blue. 
 

 

 Table 3. List of commonly regulated genes in EpH4- fra1 and EpRas- fra1 cells 

FOLD CHANGE GENE 

ID 
GENE NAME 

EpH4fra1.1 EpH4fra1.1 EpRasfra1.1 EpRasfra1.2 

Mmp12 matrix metallopeptidase 12 37.5 13.1 2.2 4.2 

Msr1 macrophage scavenger receptor 1 21.9 16.9 2.6 2.2 

Pde2a phosphodiesterase 2A. cGMP-stimulated 17.2 26.6 7.9 10.3 

Cp ceruloplasmin 15.6 14.1 2.7 2.7 

Ppap2b phosphatidic acid phosphatase type 2B 14.5 24.7 2.7 2.2 

Lbp lipopolysaccharide binding protein 9.6 19.8 3.7 4.2 

Ncf4 neutrophil cytosolic factor 4 7.9 28.4 3.5 2.2 

Txnip thioredoxin interacting protein 6.6 21.7 4.3 2.9 

Mgp matrix Gla protein 6.5 25.7 3.9 13.8 

Cdh13 cadherin 13 6.1 5.0 2.0 3.4 

Slc41a2 solute carrier family 41. member 2 5.8 7.5 2.2 3.4 

Fkbp14 FK506 binding protein 14 5.6 6.3 3.2 7.2 

Sh3kbp1 SH3-domain kinase binding protein 1 5.3 3.6 2.5 5.0 

Tsc22d1 TSC22 domain family. member 1 5.1 6.9 2.5 2.6 

Sorbs1 sorbin and SH3 domain containing 1 4.3 4.6 2.6 2.5 

Sulf2 sulfatase 2 4.2 21.8 3.7 6.2 
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Pik3ip1 phosphoinositide-3-kinase interacting protein 1 3.8 12.1 2.6 2.4 

Zeb2 zinc finger E-box binding homeobox 2 3.8 5.0 3.0 3.7 

Iigp1 interferon inducible GTPase 1 3.7 33.5 3.6 2.2 

Casp12 caspase 12 3.5 6.2 5.6 10.5 

Fgfr1 fibroblast growth factor receptor 1 3.4 4.1 3.2 2.8 

Gja1 gap junction protein. alpha 1 3.4 3.1 2.1 6.0 

Krt39 keratin 39 3.4 3.9 2.1 2.1 

Pnrc1 proline-rich nuclear receptor coactivator 1 3.4 2.8 2.9 2.5 

Adcy9 adenylate cyclase 9 3.3 4.9 2.1 2.2 

Casp1 caspase 1 3.3 6.6 24.2 36.9 

Sgk serum/glucocorticoid regulated kinase 3.1 2.5 2.5 2.9 

Evi2a ecotropic viral integration site 2a 3.0 3.5 4.0 6.5 

Scara5 scavenger receptor class A. member 5 (putative) 2.9 2.9 3.6 6.7 

Fn1 fibronectin 1 2.9 5.4 3.2 5.1 

Cd47 CD47 antigen  2.8 4.2 2.1 2.0 

Lhfpl2 lipoma HMGIC fusion partner-like 2 2.8 5.0 2.1 3.1 

Ptprs protein tyrosine phosphatase. receptor type. S 2.8 3.7 2.5 3.0 

Col4a5 collagen type IV. alpha 5 2.7 3.1 2.8 4.0 

Fosl1 fos-like antigen 1 2.7 3.8 2.5 3.1 

Ypel2 yippee-like 2 (Drosophila) 2.7 4.9 2.2 3.3 

Col4a5 collagen type IV. alpha 5 2.7 3.1 2.8 4.0 

Mfge8 milk fat globule-EGF factor 8 protein 2.6 3.6 2.5 2.2 

Ifi202b interferon activated gene 202B 2.4 6.4 2.3 2.6 

Pink1 PTEN induced putative kinase 1 2.4 4.0 2.5 2.7 

Sepn1 selenoprotein N. 1 2.4 2.1 2.9 2.6 

Vim vimentin 2.4 3.8 -6.0 -6.2 

Grn granulin 2.3 6.5 2.3 2.9 

Il6st interleukin 6 signal transducer 2.3 3.3 2.2 3.5 

Mmp19 matrix metallopeptidase 19 2.3 2.4 2.1 2.7 

Rcn1 reticulocalbin 1 2.3 2.9 8.1 12.6 

Stat1 signal transducer and activator of transcription 1 2.3 13.3 2.7 3.8 

Ypel1 yippee-like 1 (Drosophila) 2.3 2.4 3.2 3.2 

Maged1 melanoma antigen. family D. 1 2.2 2.8 2.4 3.9 

Timp2 tissue inhibitor of metalloproteinase 2 2.2 3.1 2.2 2.3 

Ctsb cathepsin B 2.1 3.2 3.1 5.5 

Ifi203 interferon activated gene 203 2.1 7.3 4.1 3.3 

Sox4 SRY-box containing gene 4 2.1 2.9 2.1 2.2 

Wnt7a wingless-related MMTV integration site 7A -18.3 -18.7 -5.3 -11.6 

Mal myelin and lymphocyte protein. T-cell differentiation 
protein 

-18.0 -38.2 -3.4 -12.2 

Tmem54 transmembrane protein 54 -17.1 -31.4 -3.7 -13.5 

Psg30 pregnancy-specific glycoprotein 30 -16.7 -33.3 -4.6 -16.3 

Fgfbp1 fibroblast growth factor binding protein 1 -16.1 -43.1 -4.4 -16.7 

Krt7 keratin 7 -14.7 -26.5 -4.8 -12.7 

Rab25 RAB25. member RAS oncogene family -14.6 -52.2 -3.3 -46.6 

Mcpt8 mast cell protease 8 -13.2 -14.1 -5.9 -7.7 

Kcnk1 potassium channel. subfamily K. member 1 -12.8 -28.0 -2.8 -14.2 

Itm2a integral membrane protein 2A -12.0 -2.1 -2.1 -4.2 

Tacstd1 tumor-associated calcium signal transducer  -11.3 -86.8 -2.5 -57.4 

Gpr87 G protein-coupled receptor 87 -10.0 -18.9 -4.8 -5.6 

Lama3 laminin. alpha 3 -8.9 -8.9 -24.0 -24.0 

Ppbp pro-platelet basic protein -8.9 -49.6 -2.0 -2.6 

Ripk4 receptor-interacting serine-threonine kinase 4 -8.7 -25.1 -2.7 -18.5 
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Rbm35a RNA binding motif protein 35A -8.6 -12.5 -2.5 -8.8 

Wnt10a wingless related MMTV integration site 10a -8.3 -9.7 -3.1 -2.4 

St14 suppression of tumorigenicity 14 (colon carcinoma) -7.6 -13.5 -4.0 -6.4 

Tmem16j transmembrane protein 16J -7.6 -7.0 -2.5 -3.4 

Car7 carbonic anhydrase 7 -7.5 -9.9 -3.9 -9.4 

Grb7 growth factor receptor bound protein 7 -7.4 -14.0 -4.0 -8.1 

Krt18 keratin 18 -7.2 -5.2 -2.5 -2.6 

Cldn3 claudin 3 -6.5 -8.2 -2.9 -3.1 

Mpzl2 myelin protein zero-like 2 -6.5 -4.7 -2.8 -5.6 

Mal2 mal. T-cell differentiation protein 2 -5.3 -10.8 -2.7 -5.2 

Entpd3 ectonucleoside triphosphate diphosphohydrolase 3 -5.2 -3.9 -2.1 -2.7 

Epb4.1l5 erythrocyte protein band 4.1-like 5 -5.2 -6.9 -2.4 -4.2 

Ddah1 dimethylarginine dimethylaminohydrolase 1 -5.1 -13.1 -5.9 -6.0 

Nrarp Notch-regulated ankyrin repeat protein -5.1 -6.9 -4.1 -3.9 

Ankrd22 ankyrin repeat domain 22 -4.9 -9.0 -2.4 -3.6 

Nrg1 neuregulin 1 -4.5 -2.8 -2.2 -2.3 

Atp8b1 ATPase. class I. type 8B. member 1 -4.3 -5.9 -2.0 -3.6 

Cdh1 cadherin 1 -4.3 -7.5 -2.9 -6.5 

Lsr lipolysis stimulated lipoprotein receptor -4.2 -6.1 -2.3 -11.8 

Krt5 keratin 5 -4.1 -4.8 -2.1 -2.4 

Ovol2 ovo-like 2 (Drosophila) -4.1 -6.5 -2.4 -4.1 

Cldn6 claudin 6 -3.9 -3.7 -3.8 -8.0 

Cldn7 claudin 7 -3.9 -3.3 -2.5 -2.6 

Sigirr single immunoglobulin and toll-interleukin 1 receptor 
(TIR) domain 

-3.9 -3.7 -2.8 -3.8 

Rras2 related RAS viral (r-ras) oncogene homolog 2 -3.7 -3.9 -2.5 -2.5 

Odc1 ornithine decarboxylase. structural 1 -3.6 -4.6 -2.4 -2.1 

Ocln occludin -3.5 -6.5 -3.6 -5.9 

Csf3 colony stimulating factor 3 (granulocyte) -3.3 -7.8 -2.2 -5.5 

Prss16 protease. serine. 16 (thymus) -3.3 -2.7 -2.4 -3.9 

Krt76 keratin 76 -3.2 -3.4 -2.2 -2.2 

Tnc tenascin C -3.2 -5.3 -3.1 -5.6 

Aurka aurora kinase A -3.1 -4.4 -2.5 -2.4 

Dos downstream of Stk11 -3.1 -4.7 -2.0 -2.3 

Tspan1 tetraspanin 1 -2.8 -2.8 -2.8 -2.6 

Ctsw cathepsin W -2.7 -2.8 -3.9 -4.5 

Hs3st1 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 -2.7 -2.9 -2.6 -2.7 

Adamts5 a disintegrin-like and metallopeptidase (reprolysin 
type) with thrombospondin type 1 motif. 5  

-2.6 -2.3 -2.7 -8.5 

Mbnl3 muscleblind-like 3 (Drosophila) -2.5 -4.6 -2.8 -2.2 

Krt75 keratin 75 -2.3 -2.5 -2.1 -2.3 

Shmt1 serine hydroxymethyltransferase 1 (soluble) -2.1 -5.1 -2.7 -2.1 

Ccdc33 coiled-coil domain containing 33 -2.0 -2.5 -2.4 -2.1 

Ncaph non-SMC condensin I complex. subunit H -2.0 -5.0 -3.4 -2.6 

Pawr PRKC. apoptosis. WT1. regulator -2.0 -2.8 -2.1 -2.5 

Serpinb5 serine (or cysteine) peptidase inhibitor. clade B. 
member 5 

-2.0 -4.5 -7.6 -10.7 

*Upregulated genes are represented by positive fold change values and downregulated genes by negative values. Only 
annotated genes were analysed and are listed alphabetically. 
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Next, I have clustered commonly regulated genes according to their functional 

annotation and predominant expression pattern in epithelial vs mesenchymal cells 

(Figure 35 ). 

 

 

 
 
 
Figure 35. Gene cluster analysis of commonly regula ted genes in EpH4- fra1 and EpRas- fra1 cells.  
Genes were grouped in clusters according to their functional annotation. 
 

 

As expected, the majority of commonly upregulated genes were those encoding 

proteins typically found expressed in, and/or produced by mesenchymal cells. The 

second most abundant functional gene cluster was comprised of several growth 

factors, growth factor receptors and their interactors, followed by clusters of 

proteases, transcription factors and genes implicated in tumor invasion and 

metastasis. On the other hand, majority of downregulated genes were typical of 

epithelial cells and mainly involved in cell adhesion and tumor suppression. Thus, 

the overall gene expression signature of Fra-1 expressing cells was clearly shifted 

towards invasive, mesenchymal profile (Figure 35 ). Furthermore, there were a 

number of genes previously identified as expressed in metastatic derivatives of 

EpH4 cells modified with different oncogenes, which showed similar expression 

pattern in Fra-1 expressing cells (Jechlinger et al., 2002; Jechlinger et al., 2006).  
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Among those genes, zinc-finger transcription factor and direct E-cadherin repressor 

ZEB1 (ZFXH1a, TCF8, δEF1) and closely related ZEB2 (ZFXH1b, SIP1) that were 

significantly upregulated following Fra-1 overexpression, seemed like promising 

candidates for further analysis. In addition to E-cadherin repression, ZEB1 and 

ZEB2 are known to negatively regulate the expression of other EMT-related genes. 

Examples of EMT-related ZEB1 and ZEB2 target genes that were found to be 

downregulated in Fra-1 expressing cells include: laminin-alpha3 (Lama3), occludin 

(Ocln), claudin 7(Cldn7), connexin 26 (Gjb2), Crumbs homologue 3 (Drosophila) 

(Crb3), shroom (shrm), tetraspanin 1 (Tspan1), tumor-associated calcium signal 

transducer 1 and 2 (Tacstd1, Tacstd2) , Mal, T-cell differentiation protein 2 (Mal2) 

and cyclin D1 (Ccnd1) (Aigner et al., 2007; Vandewalle et al., 2005; Vandewalle et 

al., 2009). Additionally, genes that were previously found to be upregulated 

following ZEB1 or ZEB2 expression, such as cyclin G2 (Ccng2) and MMP-1, -2, 

and MT1-MMP (MMP-14) were also upregulated in Fra-1 expressing cells (Miyoshi 

et al., 2004; Chen et al., 2006). Taken together, these results strongly suggested 

that upregulation of ZEB1 and ZEB2 following Fra-1 overexpression might be an 

important downstream effect in induction of EMT. 

 

To further confirm these results, I have analysed the expression of several of these 

genes as well as several other interesting genes relevant for EMT by qPCR (Table  

4). The results obtained by the array and qPCR analysis for selected genes were in 

good overall correlation. However, while ZEB2 was consistently upregulated in both 

EpH4-fra1 and EpRas-fra1 cells, ZEB1 expression was found upregulated by the 

array only in EpH4-fra1 cells. Interestingly, ZEB1 target genes were, however, 

deregulated also in EpRas-fra1 cells. In addition, qPCR analysis revealed 

significant, roughly 2-fold and 3-fold induction of ZEB1 mRNA in EpRas-fra1 cells 

(Figure 36A ). 
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Table 4. QPCR verification of array results for sele cted genes.  

FOLD CHANGE (ARRAY / qPCR) 
GENE ID GENE NAME 

EpH4fra1.1 EpH4fra1.1 EpRasfra1.1 EpRasfra1.2 

Tnc tenascin C -3.2 / -1.3 -5.3 / -1.3 -3.1 / -1.1 -5.6 / -1.4 

Cd44 CD44 antigen n.s.  n.s.  2.1 / 3.2 5.0 / 8.4 

Cldn3 claudin 3 -6.5 / -4.2 -8.2 / -3.5 -2.9 / -2.0 -3.1 / -2.0 

Cldn6 claudin 6 -3.9 / -3.3 -3.7 / -3.5 -3.8 / -3.0 -8.0 / -3.5 

Cldn7 claudin 7 -3.9 / -2.8 -3.3 / -2.8 -2.5 / -2.2 -2.6 / -2.0 

Ctsb cathepsin B 2.1/ 2.5 3.2 / 2.6 3.1 / 2.8 5.5 / 3.4 

Krt18 keratin 18 -7.2 / -5.7 -5.2 / -6.0 -2.5 / -2.0 -2.6 / -2.0 

Lama3 laminin alpha 3 -8.9 / -4.4 -24 / -9.7 n.s./ -1.2 n.s./ -1.1 

Snai2 snail homolog 2 (Drosophila) n.s. n.s. 2.3 / 1.6 4.3 / 2.2 

Fgfr1 fibroblast growth factor receptor 1 3.4 / 2.9 4.1 / 2.7 3.2 / 2.9 2.8 / 2.3 

Sparc secreted acidic cysteine rich glycoprotein 4.7/ 1.4 5.9/ 2.3 n.s. n.s. 

Vim vimentin 2.4 / 2.0 3.8 / 4.0 -6.0 / -20.0 -6.2 / -19.4 

Wnt7a wingless-related MMTV integration site 7A -18.3 / -4.2 -18.7 / -4.0 -5.3 / -2.4 -11.6 / -3.7 

Zeb1 zinc finger E-box binding homeobox 1 12.6 / 7.2 11.2 / 9.1 n.s. / 2.2 n.s. / 3.1 

Zeb2 zinc finger E-box binding homeobox 2 3.2 / 5.2 4.9 / 7.1 3.0 / 4.1 3.7 / 8.3 

Tspan1 tetraspanin 1 -2.8 / -1.9 -2.8 / -1.7 -2.8 / -1.1 -2.6 / -1.0 

Stat1 signal transducer and activator of transcription 1 2.3 / 3.1 13.3 / 3.4 2.7 / 2.0 3.8 / 2.2 

Ocln occludin -3.5 / -3.2 -6.5 / -3.9 -3.6 / -3.1 -5.9 / -3.3 

* n.s., not significant. Fold downregulation (negative values) and fold upregulation (positive values) is shown. 

 

 

 

The elevated levels of ZEB1 protein were further confirmed both in EpH4-fra1 and 

EpRas-fra1 cells by Western blotting (Figure 36B ). Most likely, the reason for the 

obvious discrepancy in the expression pattern of ZEB1 in EpRas-fra1 cells detected 

by the microarray, qPCR and Western blot, is the fact that in the process of the 

array data analysis I decided to use very stringent filtering parameters. That way, 

any gene with less than two-fold change in expression was designated as not 

significantly deregulated. In addition, another possible explanation lies in the known 

technical limitations of the microarray as a genome-wide screening method. It 

happens quite often that due to insufficient probe labelling and/or weak 

hybridization, false-negative results for gene expression are obtained, further 

highlighting the necessity for additional verification of the obtained results by other 

methods such as qPCR or Northern blot. 



PhD thesis               Ivana Ćustić                                                                              Results-Part II 

 

 90 

 

 

Figure 36. Induction of ZEB1 and ZEB2 expression by F ra-1. (A)  Increased ZEB1 and ZEB2 
expression levels detected in the array were confirmed by qPCR analysis. Error bars are indicated and p-
values< 0.05 were considered significant (*). (B) ZEB1 protein level was additionally determined by 
Western blot.  
 

 

In line with the epithelial phenotype of both EpH4 and EpRas cells, these cells 

normally express comparable (EpRas cells show 0.2-fold higher ZEB1 expression) 

and only barely detectable levels of ZEB1 and ZEB2 mRNAs. Consistent with these 

results, in both EpH4 and EpRas cells, ZEB1 protein levels were not detectable by 

Western blot (Figure 36B , lanes 1 and 4). Unfortunately, however, after several 

attempts and using two different antibodies, I did not succeed in detecting ZEB2 

protein levels by Western blot or immunofluorescence. Since significantly increased 

levels of ZEB2 mRNA were detected by the microarray and subsequently verified 

by qPCR analysis, I could only conclude that the inability to detect the 

corresponding increase in protein levels was due to technical reasons, because of 
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the low quality of commercially available ZEB2 antibodies. However, even though it 

is well known that the anti-ZEB2 antibodies often fail to detect the ZEB2 protein (A. 

Eger, pers. comm.), I can not completely exclude the possibility that the ZEB2 

protein is not expressed in these cells even though high amounts of ZEB2 mRNA 

are present. Another possible explanation is that due to known high turn-over rate 

of the protein, the protein itself is expressed, but at very low levels that are beneath 

the detection threshold of the antibody. 

 
 

3.10.1 Transient silencing of ZEB1 and/or ZEB2 in E pH4-fra1 and 

EpRas- fra1 cells relieves transcriptional repression of E-

cadherin  

 

To further test whether E-cadherin transcriptional repression is mediated by Fra-1-

induced upregulation of ZEB1 and ZEB2, I used siRNA oligonucleotides to 

transiently knock-down ZEB1 and ZEB2 in EpH4-fra1 and EpRas-fra1 cells (Figure 

37). The cells were transfected with a pooled set of four different siRNA 

oligonucleotides complementary to the mRNAs of ZEB1, ZEB2, or both combined. 

As a negative control I used non-targeting siRNA. To ensure a maximal silencing 

effect, the cells were transfected with siRNAs, cultured for 96h, then re-plated and 

transfected again. Knock-down efficiency was examined by qPCR 96h after the 

second transfection. Transfection of cells with both ZEB1 and ZEB2 siRNAs 

resulted in significantly reduced (by 80-90%) corresponding mRNA levels (Figure 

37A).  

 

In addition, silencing ZEB1 had only minor (0.1-fold) and non significant effect on 

the expression of ZEB2, while ZEB2 silencing had no effect on the expression of 

ZEB1 mRNA (data not shown). Furthermore, silencing either ZEB1 or ZEB2 alone 

resulted in transcriptional upregulation of E-cadherin (Figure 37B ). However, ZEB1 

knock-down seemed to have a slightly stronger effect on E-cadherin reexpression 

in EpH4-fra1 cells, while ZEB2 knock-down had slightly stronger effect in EpRas 

cells. In both cell types, however, silencing both ZEB1 and ZEB2 had a cumulative 

effect and resulted in slightly higher re-expression of E-cadherin than seen by 

silencing either gene alone. 
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Figure 37. ZEB1 and ZEB2 knock-down relieves E-cadher in repression.  (A) ZEB1 and ZEB2 
expression was determined by qPCR analysis. (B) QPCR analysis showed reexpression of E-cadherin 
mRNA following transient knock-down of ZEB1 and/or ZEB2. Results are presented as mean and error 
bars are indicated. P-values <0.05 were considered significant (*). (C) Phase-contrast images (upper 
panels) and immunofluorescent staining for E-cadherin (lower panels) of one representative EpH4-fra1 
and EpRas-fra1 clone shows reversal of epithelial morphology and corresponding reexpression of E-
cadherin. Nuclei were counterstained with DAPI (blue). Scale bar, 20µM.  
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Consistent with E-cadherin reexpression, the cells regained epithelial morphology, 

even though the effect was more pronounced in EpH4 cells (Figure 37C ). 

Immunofluorescent staining confirmed reexpression and predominantly 

membranous localisation of E-cadherin in EpH4-fra1 cells. However, 

immunofluorescent staining revealed that even though EpRas-fra1 cells 

upregulated E-cadherin, it was still mainly localised to the cytoplasm and not 

strongly expressed in all cells. It was only by combined silencing of ZEB1 and 

ZEB2 that the cells restored E-cadherin expression comparable to that of EpRas 

cells. These results suggested that both ZEB1 and ZEB2 are necessary for both 

transcriptional downregulation of E-cadherin and induction of an EMT-like 

phenotype in Fra-1 expressing cells. 

 
 

3.10.2 Fra-1 binds to the ZEB1 promoter in vivo  

  

After confirming that ZEB1 and ZEB2 are responsible for transcriptional 

downregulation of E-cadherin in EpH4-fra1 and EpRas-fra1 cells, I further explored 

the possible link with Fra-1/AP-1. It has been only recently reported that in the 

human breast cancer cell line MDA-MB-231, bone morphogenic protein-6 (BMP6) 

negatively regulates ZEB1 transcription in an AP-1 dependent manner resulting in 

re-expression of E-cadherin. In that study, the authors have shown that BMP-6 

treatment repressed ZEB1 transcription by downregulating c-Fos and c-Jun protein 

levels resulting in significantly decreased binding of c-Fos/c-Jun to the endogenous 

ZEB1 promoter. In addition, mutation of the TRE element (TGAGGAA) located at 

position -254/-248 of the human ZEB1 promoter abolished the repressive effect of 

ZEB1 transcription by BMP-6 (Yang et al., 2009). However, the authors did not 

further explore the potential involvement of other AP-1 members in that context. 

 

To determine if ZEB1 is a direct transcriptional target of Fra-1/AP-1, I first searched 

for potential AP-1 binding sites within the mouse ZEB1 promoter region. . Promoter 

analysis revealed four TRE elements located within 2000 bp upstream of 

transcription initiation site (Figure 38A ). 
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Figure 38. Fra-1/AP-1 directly binds to ZEB1 promote r. (A)  Schematic representation of mouse ZEB1 
promoter including 2000bp region upstream from transcription start site. Relative positions of TRE 
elements (potential AP-1 binding sites) are depicted by black boxes. Red box represents partially 
conserved previously published functional AP-1 site in human breast cancer cell line MDA-MB-231. (B) 
End-point products of QPCR reactions performed on immunoprecipitated chromatin bound by Fra-1 with 
ZEB1 promoter specific primers shows direct binding of Fra-1 to the proximal TRE element. 
 

 

Interestingly, the previously published TRE element appeared to be partially 

conserved in the mouse ZEB1 promoter and located at position -267/-260 upstream 

from the transcription start site. Furthermore, I detected an additional TRE element 

(TGACTCG) located at position -33/-26 of the mouse ZEB1 promoter. To test if Fra-

1 directly binds to the ZEB1 promoter in vivo, I have performed ChIP experiments. 

Quantitative RT-PCR analysis with primers spanning the two proximal TRE 

elements revealed that immunoprecipitation of cross-linked chromatin from both 

EpH4-fra1 and EpRas-fra1 cells with Fra-1 specific antibody efficiently pulled down 

ZEB1 proximal promoter fragment (Figure 38B-C ). These results clearly suggest 

that Fra-1/AP-1 is able to directly bind to the ZEB1 promoter in EpH4 and EpRas 

cells. To further substantiate these findings, I am currently performing additional 

gene reporter assays using the proximal promoter region of ZEB1 harbouring wild-
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type and mutated TRE elements to determine whether and to what extent, binding 

of Fra-1 results in transcriptional activation of the ZEB1 promoter.  

 

3.10.3 ZEB2 as potential Fra-1/AP-1 target gene 

 

Since ZEB2 expression was also significantly upregulated in both EpH4-fra1 and 

EpRas-fra1 cells and its transient silencing resulted in E-cadherin reexpression, I 

suspected that in addition to ZEB1, Fra-1 might also directly regulate ZEB2 

expression. Besides its high structural similarity to the ZEB1 gene, recently 

published characterization of the mouse ZEB2 gene revealed that the gene is being 

alternatively transcribed from three TATA-less promoters; the most distal-P1, 

middle-P2 showing the highest in vitro activity, and the most proximal-P3 (Nelles et 

al., 2003). Interestingly, the authors have shown that the predominant activity of a 

given promoter is tissue/cell-type specific and that the most proximal P3 promoter 

seems to be predominantly active in mouse mammary epithelial NMuMG cells. 

Analysis of P3 promoter region mapped immediately upstream from exon 1 at -

551/-8 from transcriptional start site, revealed 3 TRE elements located within a 

stretch of roughly 140bp (Figure 39 ). 

 
 

 
 
Figure 39. Schematic representation of ZEB2 most pro ximal P3 promoter region.  Positions of the 
identified TRE elements relative to transcription start site are depicted in black boxes. 
 

 

This finding strongly suggested that the Fra-1-containing AP-1 complexes could 

potentially bind to the ZEB2 promoter and directly regulate its expression in vivo. 

Chromatin-immunoprecipitation experiments combined with gene reporter assays 

are currently being performed to test this hypothesis. 
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3.11 Summary and conclusions 

 

In the second part of my thesis, I focused my efforts on identifying potential EMT-

related Fra-1 target genes and on understanding the molecular mechanism of Fra-

1-mediated E-cadherin downregulation. I was able to show that E-cadherin is 

downregulated at the transcriptional level expression following ectopic Fra-1 

expression and that the downregulation is apparently not due to promoter 

hypermethylation. To gain insight into changes in signalling pathways relevant for 

EMT downstream of Fra-1/AP-1, I performed genome-wide gene expression 

profiling using EpH4-fra1 and EpRas-fra1 cells. Fra-1 overexpression in EpH4 cells 

resulted in upregulation of 402 genes and downregulation of 239 genes. In EpRas 

cells, 258 genes were found to be upregulated and 232 genes downregulated. 

Subsequent analysis and functional clustering of differentially regulated genes 

revealed overall downregulation of genes specific of epithelial cells and 

upregulation of genes specific of invasive, mesenchymal cells as well as several  

known AP-1 target genes, such as MMPs and MGP, implicated in EMT and cancer 

progression. In addition, gene expression profiling confirmed the observed E-

cadherin transcriptional downregulation and identified ZEB1 and ZEB2 as potential 

candidate genes downstream of Fra-1 that might directly be involved in E-cadherin 

transcriptional regulation.    

 

Using siRNAs directed against ZEB1 and/or ZEB2 I was able to show that Fra-1-

mediated upregulation of ZEB1 and ZEB2 is responsible for downregulation of E-

cadherin, since transient knock-down of ZEB1 and/or ZEB2 resulted in re-

expression of E-cadherin and reversal of the epithelial phenotype in Fra-1 

expressing cells. Furthermore, promoter analysis revealed several potential AP-1 

binding sites located within the ZEB1 promoter region suggesting a potential direct 

regulation by Fra-1. By performing ChIP experiments I was able to show that Fra-1 

directly binds to the ZEB1 promoter in vivo thereby identifying ZEB-1 as a novel, 

direct transcriptional target of Fra-1/AP-1. Whether Fra-1 binding to the ZEB-1 

promoter is sufficient for its transcriptional activation remains to be determined. To 

answer that question, gene reporter assays using the ZEB1 proximal promoter 

region harbouring original or mutated AP-1 sites are currently being performed.  
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In addition, analysis of the ZEB2 most proximal P3 promoter region that has been 

reported as predominantly active in mouse mammary epithelial NMuMG cells, 

revealed several potential AP-1 binding sites suggesting that in addition to ZEB1, 

ZEB2 might also be a direct Fra-1/AP-1 target gene. However, potential binding of 

Fra-1 to the ZEB2 promoter remains to be determined. 
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PART III 

Fra-1 expression is both necessary and sufficient f or 

EMT: Fra-1 knock-down by RNAi in EpRas and 

EpRasXT cells 

 

3.12 Effect of Fra-1 silencing on TGF- β1-induced EMT 

 
As the second approach to study the role of Fra-1 in EMT, I have attempted to 

stably knock-down the endogenous Fra-1 in EpRas and EpRasXT cells by RNA 

interference (RNAi). Since exogenous overexpression of Fra-1 resulted in induction 

of EMT in both EpH4 and EpRas cells, RNAi-mediated knock-down of endogenous 

Fra-1 in EpRas cells was expected to prevent TGFβ-induced EMT provided Fra-1 

is indeed a major player in induction and maintenance of EMT. More importantly, 

Fra-1 knock-down in EpRasXT cells should, at least partially, result in reversal of 

the EMT phenotype.To test that hypothesis, I took advantage of commercially 

available lentiviruses expressing siRNA knock-down constructs for the entire 

mouse genome. I employed a set of lentiviruses containing five different, validated 

constructs targeting Fra-1 mRNA and a non-targeting hairpin as a negative control. 

Following infection with these lentiviruses, the cells were selected for 14 days in the 

presence of puromycin and pools of infected cells were assayed for Fra-1 

expression levels by qPCR (data not shown). The control shRNA construct had no 

effect on Fra-1 transcript levels. However, only two out of five shRNA constructs 

resulted in significant knock-down of endogenous Fra-1 and were further used to 

derive single cell clones. Knock-down efficiency in several selected clones was 

examined by qPCR and Western blot analysis (Figure 40B-C ). All selected clones 

showed 80-90% reduction in Fra-1 mRNA and protein levels. Interestingly, 

silencing of ectopic Fra-1 in EpRas cells resulted in formation of monolayers with 

improved epithelial polarity, resembling those formed by EpH4 cells, suggesting 

that the effects of Ras on epithelial cell behaviour were due to Fra-1. I therefore 

selected two clones that showed the most prominent morphological change for 

further functional characterization (Figure 40A ). At the same time, there was no 
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significant change in mRNA expression of other Fos family members ruling out any 

off-targeting effect of the selected siRNA (Figure 40D ).  

 

 
 
 
Figure 40. Endogenous Fra-1 silencing in EpRas cells affects cell morphology.  (A) Phase-contrast 
images of two representative EpRas clones showing change in cell morphology following Fra-1 knock-
down. Efficient Fra-1 knock-down was confirmed in several clones by qPCR (B) and Western blot analysis 
(C). The shRNA construct targeting Fra-1 shows high specificity since no significant change in mRNA 
levels of other Fos members could be detected by qPCR (D). The results in bar graph are presented as 
mean and error bars are designated. P-values<0.05 were considered significant (*).Quantification of 
protein bands after normalisation for loading (HP-1) is shown as fold change when compared to the 
respective control cells. 
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As expected, when compared to EpRas control cells, these clones did not show 

any apparent differences in expression of E-cadherin, other adherens junction 

proteins (data not shown). Furthermore, silencing of endogenous Fra-1 levels had 

no significant effect on cell proliferation rate (Figure 41A ). Since EpRas cells do 

not proliferate much faster than EpH4 cells, this was again expected. Migration 

potential of EpRas-siRNAfra1 cells was evaluated independently by in vitro wound 

healing and direct transwell migration assays (Figure 41B-C ). As seen for 

proliferation, Fra-1 silencing did not further reduce the low, basal migratory and 

invasive ability of the epithelioid EpRas cells (Figure 41C-D ). Even though it was 

previously published that Fra-1 silencing negatively affects cell migration and 

invasion potential of human breast cancer cell lines (Belguise et al., 2005), the cells 

used in afore mentioned study were not of mouse origin and were not as epithelial 

as EpRas cells. Thus, these results suggested that the effect of Fra-1 on cell 

migration and invasiveness might be cell-type specific. 

 

Previously published results indicated that EpRas cells undergo EMT accompanied 

by downregulation of E-cadherin and induction of vimentin expression when treated 

with TGF-β1, (Janda et al., 2002). To determine whether endogenous Fra-1 

expression is necessary for TGF-β1-induced EMT of EpRas cells, I treated the cells 

with 5ng/ml TGF-β1 for 7 days. Surprisingly, TGF-β1 treatment induced not only 

the expected change from epithelial to fibroblastoid morphology in EpRas control 

cells, but also caused partial loss of epithelial morphology in Fra-1 knock-down 

cells (Figure 42A ). Although Fra-1 knock-down cells also acquired a somewhat 

fibroblastoid appearance, they did not efficiently scatter but remained in rather tight 

cell islands and formed long protrusions only at the island borders (Figure 42A , 

upper panel). To determine whether silencing of endogenous Fra-1 could inhibit the 

TGFβ-induced loss of E-cadherin and gain of vimentin, I analysed TGF-β1 treated 

cells by immunofluorescence (Figure 42B ). Interestingly, while TGF-β1 induced 

complete loss of Ecadherin and high vimentin expression in EpRas control cells, 

Fra-1 knock-down cells retained low, cytoplasmic E-cadherin expression (Figure 

42B, upper panels) and showed weaker vimentin expression in only part of the 

cells (Figure 42B , lower panels). These results suggested that Fra-1 knock-down 

only partially interfered with TGF-β1-mediated induction of EMT. 
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Figure 41. Endogenous Fra-1 knock-down does not affe ct proliferation, migration or invasive 
capacity of the epithelial EpRas cells.  (A) Growth curve of EpRas-siRNAfra1 cells shows no significant 
effect of Fra-1 knock-down on cell proliferation. The cells were grown in standard growth medium and 
counted in 48h intervals. The mean cell number values of triplicate cultures are shown plotted against 
time. (B) In vitro wound healing assay and direct transwell migration assay (C) showed no significant 
difference in cell motility or migration capacity following Fra-1 knock-down. (D) Matrigel invasion assay 
showed that Fra-1 knock-down in EpRas cells has no effect on cell invasion capability. The results are 
presented as mean and error bars are designated. 
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Figure 42. Endogenous silencing of Fra-1 in EpRas cel ls only partially affects the response to TGF-
β1 induced EMT. (A) Phase-contrast images of EpRas-siRNAfra1 cells treated and untreated with TGF-
β1 for 7 days. (B) immunofluorescence analysis of TGF-β1 treated cells for epithelial marker protein  E-
cadherin and mesenchymal marker protein vimentin. Nuclei were counterstained with DAPI (blue). Scale 
bar, 20µM.  
 

Since the effect of Fra-1 knock-down in EpRas cells was not as severe as I 

expected, I performed the same set of experiments with two additional clones that 

previously showed similar level of Fra-1 knock-down. However, the results did not 

differ significantly (data not shown). Therefore, I checked Fra-1 knock-down 

efficiency in several other clones by qPCR using previously characterized clones as 
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a positive control. Strikingly, qPCR analysis revealed that all previously 

characterized clones, that showed significant (80-90%) silencing of endogenous 

Fra-1 (Figure 40 ), again upregulated Fra-1 expression. Furthermore, Western blot 

analysis revealed significant reexpression of Fra-1 protein in these cells indicating 

that Fra-1 knock-down is unstable (Figure 43A-B ).  

 

Figure 43. Endougenous Fra-1 knock-down is not stabl e in EpRas cells.  (A) qPCR analysis revealed 
significant upregulation of Fra-1 transcript. Upregulation of Fra-1 in EpRas-siRNAfra1 cells was further 
confirmed by Western blot (B). Results in bar graph are presented as mean and error bars are indicated. 
Quantification of protein bands after normalisation for loading (HP-1) is shown as fold change when 
compared to the respective control cells. 
 

 

Since this reexpression occurred in the presence of puromycin, it could not be due 

to loss of the shRNA construct from the genome. However, after prolonged 

culturing, due to unknown compensatory mechanism the cells managed to 

overcome the inhibitory effect of shRNA. One possible explanation might be that a 

strong selective pressure existed for overcoming the siRNA-mediated expression 

block upon serial cultivation during expansion of the Fra-1 knock-down clones. A 

similar loss of an epithelial phenotype initially induced by RNAi-knock-down of 

EMT-inducing genes was observed for three other EMT-specific genes, which 

became reexpressed upon expansion of respective knock-down clones (S. 

Maschler and H. Beug, unpublished). Since it has previously been shown that Fra-1 

knock-down can negatively influence cell proliferation (Belguise et al., 2005), 
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reversal of Fra-1 knock-down could be simply due to negative selection of slow 

growing cells with low Fra-1 expression upon prolonged cultivation. Unfortunately, 

this unstable phenotype prevented us from further analysing the tumorigenic 

potential or metastatic abilities of these cells by in vivo xenograft transplantation 

assays. 

 

3.12.1 Silencing Fra-1 reverses morphological chang es and 

restores the expression of epithelial marker protei ns in EpH4-

fra1 cells 

 

To further analyse the effect of effective, siRNA-mediated Fra-1 knock-down on 

Fra-1-induced EMT, I attempted to revert the phenotype of EpH4-fra1 cells by 

silencing Fra-1 (Figure 44 ), since these cells essentially lack endogenous Fra-1 

(Figure 6B ). Interestingly, I could observe morphological changes in pools of 

infected cells as early as 48h post-infection. The cells started to regain an epithelial 

phenotype, finally showing a typical, cobblestone epithelial cell morphology (Figure 

44A). Western blot analysis revealed an 80-90%-complete downregulation of 

exogenous Fra-1 protein levels, suggesting effective silencing (Figure 44B ). Most 

importantly, reversal of the epithelial phenotype after Fra-1 silencing resulted in 

significant downregulation of ZEB1 and ZEB2 mRNA levels and corresponding 

upregulation of E-cadherin mRNA and protein levels (Figure 44C ). This result 

further supports previously obtained results suggesting that Fra-1 downregulates E-

cadherin expression and elicits EMT by positively regulating the expression of 

ZEB1 and ZEB2 genes. 

 

 Even though Fra-1 silencing had no effect on β-catenin protein levels (Figure 

44D), other two members of adherens junctions, α- and γ-catenin, that were 

strongly downregulated following Fra-1 overexpression, were also upregulated 

(Figure 44E ). These results suggest that exogenous Fra-1 expression is not only 

sufficient, but also essential for epithelial-fibroblastoid conversion of EpH4 cells in 

the Fra-1 overexpressing clones. Since these EpH4-fra1siRNAfra1 cells appear to 

be more stable than the above EpRas-siRNAfra1 cells, I plan to further analyse 

them for their in vivo tumorigenic and metastatic potential.  
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Figure 44. Silencing Fra-1 in EpH4- fra1 cells restores epithelial morphology and expressio n of 
adherens junction proteins. (A)  Phase-contrast images showing reversal of the phenotype after 
exogenous Fra-1 knock-down. Fra-1 protein levels were decresed 80-90% by shRNA (B) resulting in 
reexpression of E-cadherin (C). (D) Levels of β-catenin were not affected by Fra-1 knock-down while α-
catenin and γ-catenin protein levels were increased. Fra-1 silencing resulted in ZEB1 and ZEB2 mRNA 
downregulation and E-cadherin mRNA reexpression (F). Quantification of protein bands after 
normalization for loading is shown as fold change when compared to the respective control cells. The data 
presented in the bar graph are shown as mean and error bars are designated. 
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3.12.2 Fra-1 expression is needed for effective pro liferation of 

EpRasXT cells 

 

After confirming that Fra-1-shRNA constructs can efficiently silence exogenous Fra-

1 in EpH4-fra1 cells, I next attempted to silence the highly elevated, endogenous 

Fra-1 in EpRasXT cells. These cells have already performed complete EMT and 

maintain this phenotype by an autocrine TGFβ-loop. EMT in these cells can be 

completely reversed by a Ras-farnesylation inhibitor, while a TGFβRI-kinase 

inhibitor induced E-cadherin reexpression and loss of vimentin, but failed to alter 

the fibroblastoid morphology of EpRas-XT cells. To determine, to what extent 

knock-down of endogenous Fra-1 would alter the EMT phenotype of these cells, 

they were infected with the previously tested viruses and subjected to puromycin 

selection 48h after infection. Interestingly, I observed marked morphological 

changes in pools of cells infected with two out of five shRNA constructs (Figure 

45). While the cells infected with shRNA control construct (a) and the cells infected 

with shRNAfra-1 constructs 84 (c), 85 (d) and 87(f) remained spindle shaped 

showing no morphological change, cells infected with constructs 83 (b) and 86 (e) 

drastically changed their appearance. These cells acquired a more epithelial-like 

morphology and formed clusters. Interestingly, the same cells showed strongly 

reduced proliferation phenotype that was not observed either in control cells or in 

the cells with unaltered morphology. Even when cultured in medium containing 

15% FCS, they proliferated extremely slowly. This prevented me from further 

characterizing the behaviour of these cells in in vitro/in vivo assays. 

 

QPCR analysis of Fra-1 expression revealed that the altered morphology and 

reduced proliferation correlated with Fra-1 knock-down. In the cells that were 

proliferating normally and showed unaltered morphology, Fra-1 knock-down was 

not significant. However, low-proliferating, epithelial-like pools of cells showed 

roughly 70-80% reduction in Fra-1 mRNA. In addition, I observed increased 

numbers of dying cells in pools of cells infected with shRNA construct 85. Even 

though the overall silencing of Fra-1 in this pool of cells was only around 20%, one 

could speculate that the dying cells might have silenced Fra-1 to a higher extended 

causing them to undergo apoptosis. Thus, these preliminary results suggest that 



PhD thesis               Ivana Ćustić                                                                             Results-Part III 

 

 107  

Fra-1 might also be involved in the regulation of cell proliferation and/or survival of 

fully transformed EpRasXT cells. 

 
 
Figure 45. Endogenous Fra-1 knock-down in EpRasXT cel ls.  (A) Phase-contrast images showing 
pools of EpRasXT cells transfected with control shRNA construct (a), and five different shRNA constructs 
targeting Fra-1(b-f) . (B) qPCR analysis revealed significant silencing of endogenous Fra-1 by two out of 
five shRNA constructs. Data are presented as mean and error bars are designated. P-values <0.05 were 
considered significant (∗).  
 

A recent investigation that reported Fra-1 to promote growth and survival in Ras-

transformed thyroid cells by controlling cyclin A transcription is in favour of this 

hypothesis (Casalino et al., 2007).  
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3.13 Summary and conclusions  

 

In the third and last part of my study, I employed a loss-of-function approach to 

determine whether Fra-1 expression is necessary for maintenance of the EMT 

phenotype. To test whether Fra-1 is a major downstream effector of TGF-

β1signalling in EMT, I attempted to stably knock-down the expression of 

endogenous Fra-1 in EpRas and EpRasXT cells by RNAi.  Even though the initial 

analysis in EpRas cells transfected with shRNA targeting Fra-1 revealed significant 

decrease in endogenous Fra-1 mRNA and protein levels, this had no strong effects 

on cell proliferation, migration and invasive potential of the cells in vitro, causing 

however, a normalisation of the EpRas epithelial phenotype to that of oncogene-

free EpH4 cells. In addition, silencing Fra-1 in EpRas only partially inhibited EMT 

induction of the EpRas-siRNAfra1 cells upon exposure to TGF-β1. This was likely 

due to reexpression of Fra-1 in the knock-down cells after some time in culture, 

possibly due to selection against probably slower growing cells showing a complete 

resistance to EMT induction. Taking this into account, it remained unclear, to what 

extent the elevated levels of Fra-1 in EpRas cells are necessary for EMT induction.  

On the other hand, I was able to successfully knock-down Fra-1 in the EpH4-fra1 

cells. This resulted in strong downregulation of ZEB1 and ZEB2 gene expression 

and an almost complete reversal of the Fra-1-induced EMT to an epithelial 

phenotype.  

 

Thus, based on these experiments I conclude that the shRNA constructs are 

efficient in silencing Fra-1 in EpH4 cells and that Fra-1 is necessary and sufficient 

for EMT-induction in oncogene-free EpH4 cells. Silencing endogenous Fra-1 in 

EpRasXT cells further supports this idea, since the reversal of the mesenchymal 

phenotype in these cells could be correlated with Fra-1 knock-down. My preliminary 

observations also suggest that Fra-1 might be indispensable for effective 

proliferation of these cells.  However, further experiments are needed to confirm 

this data. In addition, the overall impact of Fra-1 knock-down on the expression of 

molecular markers and functional behaviour of these cells in vitro and in vivo 

remains to be analysed. 
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4. Discussion 

 

Epithelial-mesenchymal transition (EMT) is a fundamental multi-step process 

involved in normal embryonic development. However, in recent years it is becoming 

evident that deregulated EMT plays an important role in cancer progression. An 

important step in cancer progression is metastasis, the acquired ability of primary 

tumor cells to disseminate to distant organs. In fact, most cancer fatalities are 

actually due to carcinoma cell invasion and metastasis, rather than to the primary 

tumors (Sporn, 1996; Tse and Kalluri, 2007). It is believed that during this process, 

cancer cells transiently acquire mesenchymal properties by undergoing EMT. 

Therefore, understanding the molecular mechanisms that govern EMT and  the 

particular roles of individual genes involved in that process might unravel new 

prognostic markers and potential therapeutic targets. 

 

In this study, I have defined the role of Fra-1/AP-1 in EMT using the EpH4/EpRas 

cellular models of EMT (Reichman et al., 1989; Oft et al., 1996; Janda et al., 2002) 

combined with xenograft transplantation experiments. Previous studies have shown 

that an inducible form of c-Fos (FosER) is able to induce EMT, when ectopically 

expressed in non-transformed EpH4 mammary epithelial cells (Reichman et al., 

1992). In addition, inducible expression of another AP-1 member, c-Jun (JunER), in 

the same cells caused loss of cellular polarity and cell scattering, but failed to 

induce EMT (Fialka et al., 1996). However, specific roles of other AP-1 members in 

this context were not studied. Preliminary analysis of the expression pattern of all 

Fos and Jun family members revealed a strong correlation of increased Fra-1 

expression and an EMT phenotype implying that Fra-1 might be a major player in 

the induction and maintenance of EMT. By employing a gain-of-function approach, I 

was able to show that stable Fra-1 expression positively regulates cell proliferation 

and results in epithelial to fibroblastoid transition (EMT) of EpH4 and EpRas cells. 

This morphological switch was accompanied by profound cytoskeletal 

rearrangements characteristic of highly motile fibroblastic cells. Furthermore, cell 

motility as well as migration and invasion capacity of epithelial EpH4 and EpRas 

cells were significantly increased following ectopic Fra-1 expression in vitro. 

Another interesting observation was that Fra-1 seemed to affect the behaviour of 
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the cells in a dose-dependent manner, since the severity of the phenotypes 

detected correlated with Fra-1 levels. 

 

Molecular characterisation revealed that the cells have undergone EMT as 

characterized by downregulation of epithelial marker proteins (E-cadherin, p120 

catenin (p120ctn), α-, β- and γ-catenin) and upregulation of the mesenchymal 

marker protein fibronectin. However, the overall phenotype was more pronounced 

in EpH4 cells that completely lost the expression of major epithelial marker protein 

E-cadherin, as opposed to its strong downregulation and cytoplasmic relocalisation 

in EpRas cells. Similarly, the overall downregulation of β-catenin was more striking 

in EpH4 cells, even though no apparent relocalisation of β-catenin to the nucleus 

was observed in either cell type. In line with these results, an apparent switch in 

expression pattern of p120ctn isoforms was observed following Fra-1 

overexpression. It has previously been shown that epithelial cells predominantly 

express the 100kDa-p120ctn isoform 3, whereas mesenchymal cells express 

predominantly 120kDa-p120ctn isoform 1(Mo and Reynolds, 1996; Keirsebilick et 

al., 1998). Beside its downregulation, and unlike the control cells, which express 

the 100kDA-p120ctn isoform 3, both EpH4-fra1 and EpRas-fra1 cells predominantly 

expressed the mesenchyme-specific, p120ctn isoform 1. Several recent studies 

have implicated the expression of this isoform in EMT and tumor cell invasion (Eger 

et al., 2000; Ohkubo and Ozawa, 2004; Yanagisawa et al., 2008), further 

supporting the idea that Fra-1 expression is sufficient to induce EMT in these cells.  

 

Previous studies have shown that in the majority of epithelial cell types, 

requirements for EMT include cooperation of TGFβ-signalling with oncogenic Ras, 

receptor-tyrosine kinases (RTKs) or their downstream effectors (Huber et al., 2005; 

Zavadil and Bottinger, 2005;  Xu et al., 2009). However, this was not the case in 

Fra-1-mediated induction of EMT, as no increase in TGF-β1 production could be 

detected. Additionally, the fact that Fra-1 ectopic expression had stronger effect in 

non-transformed EpH4 cells suggested that Fra-1/AP-1 is able to elicit EMT by a 

novel, Ras and TGFβ-independent mechanism. Interestingly, a number of novel 

EMT-specific genes, which cause EMT by gain (ILEI, CREG) or loss of function 

(Annexin A1, m-Scribble) strictly require oncogenic Ras for EMT induction, but like 

Fra-1 act in a TGFβ-independent fashion (S. Maschler, A. Csiszar, M. Alacakaptan 
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and H. Beug, unpublished). The observation that Fra-1 requires neither oncogenic 

Ras nor TGFβ suggests that Fra-1 is unique among the rapidly increasing number 

of known, EMT-inducing proteins (Tanos and Rodriguez-Boulan, 2008).  

 

EMT in vitro is considered to be a faithful correlate of late stage tumor progression 

and metastasis (Oft et al., 1998; Lehmann et al., 2000; Janda et al., 2002). 

Therefore, the behaviour of these cells was further examined by xenograft 

transplantation assays. Interestingly, injection of EpH4-fra1 cells into mammary 

gland fat pads resulted in formation of fast growing, strongly vascularised tumors, 

while the control cells formed only tiny, encapsulated nodules at 50% frequency. 

This finding strongly argues that Fra-1 expression in epithelial non-transformed and 

oncogene-free EpH4 cells is sufficient for cellular transformation and in vivo tumor 

formation. Furthermore, this result is particularly interesting, since Fra-1 was 

originally proposed to have only limited transformation ability, when compared to c-

Fos (Widsom and Verma, 1993; Bergers et al., 1995). Intriguingly, it has been 

reported that FosER cells, even though being able to undergo EMT in vitro, remain 

non-tumorigenic in vivo (Reichmann et al., 1992; Eger et al., 2000). This strongly 

suggests that Fra-1, rather than c-Fos itself, might have a pivotal role in tumor 

progression. In line with this idea, several recent investigations have reported 

elevated levels of Fra-1 in numerous mouse and human cancer cell lines as well as 

clinical tumor samples (Kustikova et al., 1998; Chiappetta et al., 2000; Zoumpourlis 

et al., 2000; Zajchowski et al., 2001; Ramos-Nino et al., 2003; Belguise et al., 2005; 

Debinski and Gibo, 2005; Mangone et al., 2005; Milde-Langosch, 2005; Young and 

Colburn, 2006; Chiappetta et al., 2007).  

 

On the other hand, unlike the c-Fos transgenic mice that develop osteosarcomas 

(Grigoriadis et al., 1993), Fra-1 transgenic mice do not show a cancer phenotype 

(Jochum et al., 2002). In addition, even though increased expression of Fra-1 was 

observed in human colitis-associated cancer (CAC), fra-1 mRNA was hardly 

detectable and Fra-1 expression seemed to be dispensable for colitis-associated 

tumorigenesis in a mouse model of chemically-induced CAC, since tumor numbers 

and size were not altered in mice lacking fra-1 (fra-1∆/∆ mice) (Hasselblatt et al., 

2008). However, the same was true for single inactivation of all other Fos and Jun 

members. Therefore, it was suggested by the authors that not only the inhibition of 
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Fra-1, but the inhibition of a single AP-1 protein is not a limiting factor in CAC in 

mice. However, unlike in the case of CAC, Fra-1 expression was found elevated 

both in human and mouse breast cancer cell lines, as well as in clinical tumor 

samples, suggesting a more general role for Fra-1 in the course of progression of 

both human and mouse breast cancer (Milde-Langosch, 2005; Chiappetta et al., 

2007). Supporting that view and even more striking was the finding that upon tail 

vein injections, EpH4-fra1 cells successfully induced lung metastasis, while mice 

injected with EpH4 control cells developed no detectable pathological changes in 

their lungs. This result demonstrated that Fra-1 expression is sufficient to render 

non-transformed, non-tumorigenic EpH4 cells tumorigenic and metastatic. Similarly, 

Fra-1 expression significantly increased metastatic potential of tumorigenic and 

metastatic EpRas cells, as judged by increased overall numbers of macroscopically 

visible metastatic nodules present on the lung surface. Most importantly, 

immunohistochemical (IHC) analyses revealed a correlation between Fra-1 

expression and strong increase of cell proliferation, as determined by IHC-staining 

for the proliferation marker Ki67, and an induction of EMT in vivo, as indicated by 

loss of E-cadherin and strong fibronectin expression detected by IHC staining of the 

metastatic nodules. These findings strongly argue that Fra-1 expressing cells 

undergo EMT both in vitro and in vivo. 

 

One major hallmark of EMT is strong downregulation or even loss of the adhesion 

protein E-cadherin. Loss or downregulation of its expression has also been shown 

to inversely correlate with tumor grade and patient survival (Perl et al., 1998; 

Hirohashi, 1998; Van Aken et al., 2001). In recent years, several molecular 

mechanisms underlying E-cadherin downregulation have been discovered or 

suggested. In most carcinomas, direct transcriptional repression and aberrant 

promoter hypermethylation emerged as the main mechanisms of E-cadherin 

downregulation (Graff et al., 1995; Graff et al., 2000; Di Croce and Pellici, 2003). 

Interestingly, a recent study reported that ectopic expression of c-Fos causes 

methylation-dependent E-cadherin downregulation and EMT in mouse mammary 

adenocarcinoma cell lines (Mejlvang et al., 2007). However, the transcriptional 

downregulation of E-cadherin that was observed in Fra-1 expressing cells was not 

dependent on promoter methylation or histone acetylation, since treatment of the 

cells with two different DNA-methylase inhibitors and histone-acetylase inhibitor 
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failed to restore E-cadherin expression. In a further attempt to identify molecular 

mechanisms that may explain transcriptional repression of E-cadherin by Fra-1, 

and to identify new EMT-relevant target genes downstream of Fra-1/AP-1, I 

performed genome-wide gene expression profiling. Gene array analysis confirmed 

E-cadherin transcriptional downregulation in both cell types and revealed that the 

overall gene expression signature of Fra-1 expressing cells has shifted towards a 

mesenchymal profile. A number of genes upregulated by Fra-1 overexpression has 

been previously implicated in cancer progression and EMT.  

 

In addition to several proteases normally expressed by migratory and invasive 

mesenchymal cells, two two-handed zinc finger transcription factors and direct E-

cadherin repressors ZEB1 (ZFHX1A, δEF1, TCF8) and ZEB2 (ZFHX1B, SIP1) 

were found to be consistently upregulated following Fra-1 overexpression. 

Interestingly, ZEB1 was recently identified as a strictly EMT-specific gene in a 

polysome-bound mRNA screen employing multiple EpH4-based cell clones 

modified by different oncogenes and undergoing scattering or EMT (Jechlinger et 

al., 2002; Jechlinger et al., 2006). ZEB1 and ZEB2 are two closely related 

transcription factors that are essential during normal embryonic development and 

whose expression has been recently linked to the induction of EMT and cancer 

progression (Vandewalle et al., 2009). In addition to direct transcriptional 

repression of the E-cadherin gene, they can negatively regulate the expression of 

several other epithelial specific genes such as claudin, plakophilin, occludin as well 

as activate the expression of mesenchymal genes such as N-cadherin and several 

MMPs (Eger et al., 2005; Vandewalle et al., 2005; Aigner et al., 2007; Vandewalle 

et al., 2009). A number of these genes were also found to be deregulated in EpH4-

fra1 and EpRas-fra1 cells, further supporting the idea that ZEB1 and ZEB2 might 

be responsible for loss of the epithelial phenotype. By performing transient knock-

down experiments, I was able to demonstrate that this was indeed the case and 

that Fra-1-mediated induction of ZEB1 and ZEB2 was responsible for 

transcriptional downregulation of E-cadherin in EpH4 and EpRas cells. Even 

though ZEB genes have been intensively studied in the recent years, precise 

mechanisms of their transcriptional regulation are still largely obscure. Thus, they 

were perfect candidates for further characterisation with respect to their possible 

direct transcriptional regulation by Fra-1/AP-1.  



PhD thesis               Ivana Ćustić                                                                                   Discussion 

 

 114 

Promoter analysis revealed several potential AP-1 binding sites located within the 

mouse ZEB1 promoter region. Subsequent chromatin-immunoprecipitation 

experiments revealed that Fra-1 directly binds to ZEB1 promoter in vivo, thereby for 

the first time identifying ZEB1 as a direct Fra-1/AP-1 target gene. In addition, three 

potential AP-1 binding sites were also identified within the most proximal, P3 

promoter of the mouse ZEB2 gene. This promoter was reported as being the 

predominantly active one in mouse breast cancer cell line NMuMG, strongly 

suggesting that as ZEB1, ZEB2 might also be a direct target of Fra-1/AP-1 in 

mammary epithelial cells (Nelles et al., 2003). However, further chromatin-

immunoprecipitation experiments along with reporter assays are currently being 

performed to test that hypothesis and to determine what effect Fra-1 binding has on 

transcriptional regulation of these two genes. 

 

Interestingly, several attempts to ectopically express ZEB1 in oncogene-free EpH4 

cells resulted in cellular senescence and cell death (A. Eger pers. comm.). The 

effect was probably due to direct, ZEB1-mediated transcriptional repression of cell-

cycle progression genes such as cyclin D1. Even though Fra-1 expressing EpH4 

cells significantly upregulated the expression of both ZEB1 and ZEB2 genes 

(known to repress the expression of cell-cycle progression related cyclins D1 and 

D2, and activate the expression of cell-cycle arrest related cyclin G2), these cells 

did not show a proliferation defect. On the contrary, the cells have significantly 

increased their proliferation rate, when compared to EpH4 control cells. These 

results suggest that in the context of epithelial cell transformation and EMT, Fra-1 

plays an important role not only in the regulation of genes involved in cellular 

dedifferentiation and invasiveness, but also in regulating the expression of pro-

survival and cell cycle progression genes.  

 

In an effort to further define the extent of Fra-1 involvement in the maintenance of 

EMT, I employed a loss-of-function approach in EpRas, EpH4-fra1 and 

mesenchymal EpRasXT cells. The endogenous Fra-1 knock-down in EpRas cells 

improved the epithelial polarity of the cells, suggesting that the effects of Ras on 

epithelial cell behaviour were due to Fra-1. On the other hand, endogenous Fra-1 

knock-down did not have an apparent effect on proliferative, migratory and invasive 

capacity of the cells. Even though it was previously published that Fra-1 silencing 
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negatively affects cell migration and invasion potential of human breast cancer cell 

lines (Belguise et al., 2005), these results were not completely unexpected, since 

the cell lines used in the above mentioned study were of human origin and not as 

epithelial as EpRas cells. Unexpectedly, however, the treatment of EpRas-fra1 

knock-down cells with TGF-β1 caused only partial loss of epithelial morphology 

while it induced the expected change from epithelial to fibroblastoid morphology in 

EpRas control cells. Although Fra-1 knock-down cells acquired a somewhat 

fibroblastoid appearance, they did not efficiently scatter, but remained in rather tight 

cell islands and formed long protrusions only at the island borders. In addition, Fra-

1 knock-down only partially interfered with TGF-β1-mediated loss of E-cadherin 

and gain of vimentin expression. In a search of the possible explanation for this 

unexpected ability of RNAi-mediated Fra-1 knock-down to block TGF-β1-mediated 

EMT in EpRas cells, I discovered that the knock-down phenotype was unstable 

after prolonged cell cultivation. One possible explanation for the observed 

compensatory reexpression of Fra-1 mRNA and protein is that a strong selective 

pressure existed for overcoming the siRNA-mediated expression block upon serial 

cultivation during expansion of the Fra-1 knock-down clones. Since this 

reexpression occurred in the presence of puromycin, it could not be due to loss of 

the shRNA construct from the genome. Interestingly, a similar loss of an epithelial 

phenotype initially induced by RNAi-knock-down of EMT-inducing genes was 

observed for three other EMT-specific genes, which became reexpressed upon 

expansion of respective knock-down clones (S. Maschler and H. Beug, 

unpublished). Since it has previously been shown that Fra-1 knock-down can 

negatively influence cell proliferation (Belguise et al., 2005), reversal of Fra-1 

knock-down could be simply due to negative selection of slow growing cells with 

low Fra-1 expression upon prolonged cultivation. Unfortunately, this unstable 

phenotype prevented me from further analysing the tumorigenic potential or 

metastatic abilities of these cells by in vivo xenograft transplantation assays.  

 

On the other hand, my attempts to stably knock-down Fra-1 in EpH4-fra1 cells were 

successful, further ruling out any possible technical problems that might have been 

the cause of Fra-1 reexpression in EpRas-siRNAfra1 cells. More importantly, this 

experiment further proved that Fra-1 expression is indeed responsible for the 

observed EMT in these cells, since its knock-down resulted in transcriptional 
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downregulation of ZEB1 and ZEB2 genes, reexpression of E-cadherin, and reversal 

of the EMT-phenotype to an epithelial one. In addition, these results clearly showed 

that Fra-1 expression is not only sufficient, but also essential for epithelial-

fibroblastoid conversion of EpH4 cells. Since these EpH4-fra1.1siRNAfra1 cells 

appear to be more stable than the above EpRas-siRNAfra1 cells, it would be 

interesting to analyse these cells for their in vivo tumorigenic and metastatic 

potential. In addition, since Fra-1 knock-down resulted in correspondingly 

decreased transcriptional expression of ZEB1 and ZEB2 genes and reexpression of 

the E-cadherin gene, further analysis is needed to determine whether a 

corresponding correlation in the expression pattern of the above genes could be 

detected in human invasive breast cancer clinical samples. Interestingly, a recent 

study has reported elevated expression of ZEB1 in human invasive lobular breast 

carcinoma specimens (Aigner et al., 2007), while another study reported elevated 

Fra-1 expression in the same type of human breast cancer (Chiappetta et al., 

2007), suggesting that the results obtained in this study might have clinical 

relevance. 

 

Similarly to EpRas cells, an attempt to stably knock-down endogenous Fra-1 in 

mesenchymal EpRasXT cells caused strong reversal to an epithelial morphology, 

but also induced a strong proliferation defect, implying that Fra-1 expression is 

required for cell proliferation of these highla transformed cell lines. This observation 

is in accordance with a recently published study proposing Fra-1 to be essential for 

growth and survival of Ras-transformed thyroid cells (Casalino et al., 2007), and 

might point to a more general role of Fra-1 in regulating cell proliferation and 

survival in the context of a Ras-transformed background. However, this hypothesis 

remains to be tested and further molecular analyses are needed to address this 

question. Nevertheless, if this proves to be the case, targeting Fra-1 expression 

could provide a very promising therapeutic avenue for invasive cancers. 
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4.1 Summary and future perspectives 

 

In this study, I could demonstrate that Fra-1/AP-1 has a pivotal role in initiating and 

maintaining EMT. By employing an in vitro gain-of-function approach combined with 

in vivo xenograft transplantation experiments and genome-wide gene expression 

profiling, I was able to demonstrate that Fra-1 expression is sufficient to elicit EMT 

in non-transformed, mammary epithelial EpH4 cells and their Ras-transformed 

derivatives by a novel, TGF-β1-independent mechanism involving transcriptional 

upregulation of ZEB1 and ZEB2 genes (Figure 46 ). Chromatin immunoprecipitation 

experiments demonstrated that Fra-1 binds to the ZEB1 proximal promoter in vivo, 

thereby identifying ZEB1 as a new, direct Fra-1/AP-1 target gene. Furthermore, 

analysis of the mouse ZEB2 promoter revealed several potential AP-1 binding 

sites, suggesting a possible direct binding and regulation by Fra-1/AP-1.  

 

On the other hand, the loss-of-function experiments in epithelial EpRas cells 

resulted in improved epithelial polarity of the cells, suggesting that the effects of 

Ras-expression on epithelial cell behaviour are Fra-1-dependent. Furthermore, 

silencing Fra-1 in EpH4-fra1 cells resulted in corresponding transcriptional 

downregulation of ZEB1 and ZEB2 genes, transcriptional upregulation of E-

cadherin and reversal of the epithelial phenotype demonstrating that Fra-1 

expression is not only sufficient, but essential for the observed EMT phenotype. 

Similarly, knock-down of endogenous Fra-1 in mesenchymal EpRasXT cells 

resulted in reversal of the epithelial phenotype and suggested that besides its role 

in regulation of epithelial phenotype, Fra-1 plays an important role in cell 

proliferation and survival. 
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Figure 46. Proposed model of Fra-1-mediated inductio n of EMT.  In mouse mammary epithelial EpH4 
and EpRas cell lines, Fra-1 induces EMT by directly upregulating the expression of ZEB1 and ZEB2 
genes, that are responsible for transcriptional downregulation of E-cadherin and other epithelial specific 
genes, such as claudins and occludin, resulting in loss of the epithelial phenotype. At the same time, Fra-1 
and ZEB1-mediated upregulation of several proteases, such as MMPs and members of the uPAR system, 
along with several other mesenchymal-specific genes such as fibronectin, thrombospondin-1, and matrix 
Gla protein, increases in vitro the migratory and invasive potential of the cells and enables them to 
metastasise in vivo.  
 

 

Even though this study provided evidence for a new, yet unreported mechanism of 

EMT induction by Fra-1/AP-1, involving upregulation of ZEB genes, there are still 

several interesting questions that remain unanswered. For example, it would be 

interesting to identify the major Fra-1 dimerizing partner and its possible 

interactions with other transcription factors in activation/repression of EMT-related 

genes. For that purpose co-immunoprecipitation experiments combined with mass-

spectrometry analysis could be employed. Additionally, to identify the composition 

of Fra-1-containing dimers regulating the expression of specific genes, one could 

overexpress forced dimers of Fra-1 with each of the Jun proteins or several other 

bZIP proteins previously shown to interact with Fra-1, in EpH4 and/or EpRas cells 
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(Bakiri et al., 2002; Bakiri et al., 2007). Interestingly, a recent study reported that 

Fra-1 and Stat3 synergistically regulate the expression of the human MMP9 gene 

(Song et al., 2008). In that study, by employing co-immunoprecipitation 

experiments, the authors have shown that Stat3 can associate with Fra-1 and c-Jun 

in vivo. In line with the finding that two Stat family members, Stat1 and Stat3, were 

found upregulated in Fra-1 expressing cells, it would be interesting to investigate 

whether Jun/Fra-1/Stat1 or Jun/Fra-1/Stat3 complexes are present in Fra-1-

overexpressing cells and, if this is the case, to identify the genes whose expression 

is regulated by these complexes. 

 

To identify additional direct Fra-1/AP-1 target genes in the context of EMT and 

cancer cell metastasis, the obtained gene expression profiling results could be 

compared with additional chromatin immunoprecipitation experiments coupled to 

"deep sequencing" analysis. Several genes that were deregulated following Fra-1 

overexpression in EpH4 and EpRas cells are promising candidates for further 

characterization as they have previously been associated with tumor cell invasion 

and proposed as direct Fra-1 target genes. These include proteins of the ECM; 

such as matrix Gla protein and thrombospondin-1, as well as the cell surface 

receptor CD44, matrix-degrading proteases, such as MMPs and several members 

of the uPAR system (Andersen et al., 2002; Ramos-Nino et al., 2003; Eferl et al., 

2004). In addition, to address the contribution of a particular Fra-1 target gene or 

the combinatorial effect of several genes in the process of EMT and metastasis, 

siRNA-mediated silencing of candidate genes coupled to in vitro functional assays 

and in vivo xenograft experiments could be employed. Since elevated Fra-1 

expression was reported in a variety of human epithelial tumors and cancer cell 

lines, it would be interesting to correlate the expression of Fra-1 and its target 

genes with the invasive potential of these cell lines and human tumors on a wider 

scale. One possible approach would include transcriptomic profiling of clinical 

tumor samples at different stages of cancer progression, combined with tissue 

arrays using tumor samples of patients with known disease history. This approach 

might result in identification of new molecular markers with clinical prognostic value 

and/or potential therapeutic targets.  
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The generation of an inducible Fra-1 construct would enable us to study in more 

detail the kinetics of Fra-1-mediated induction of EMT, its role in cell growth and 

survival, as well as the contribution of Fra-1 in specific aspects of cancer cell 

metastasis. The process of metastasis comprises of several distinct steps. This 

invasion-metastasis cascade involves the initial acquisition of the migratory and 

invasive behaviour necessary for basement membrane degradation and 

intravasation into the circulatory system. However, once the cancer cells enter the 

blood or lymphatic stream, their survival is further dependent on the expression of 

additional pro-survival genes that enables these cells to overcome anoikis, as well 

as to successfully adhere to endothelial cells and subsequently extravasate to 

colonize targeted secondary organs. In this study I was able to demonstrate in vitro, 

that Fra-1 plays a major role in the initial step of breast cancer metastasis by 

eliciting an EMT program. However, due to the limitations of the cell system used 

(that fails to metastasise from orthotopic sites), direct in vivo role of Fra-1 in specific 

steps of invasion-metastasis cascade, namely intravasation, evasion of anoikis, 

extravasation and organ-specific metastasis remain unexplored. Nevertheless, the 

fact that Fra-1 expression rendered non-tumorigenic EpH4 cells metastatic and 

significantly increased the number of metastatic nodules formed by metastatic 

EpRas cells following tail vein injection, suggests that Fra-1 expression can provide 

anoikis resistance and positively influence the extravasation efficiency of these 

cells. To further explore this possibility, these cells can be tested in vitro for anoikis-

resistance and transendothelial migration. In addition, the use of other mouse 

and/or human breast cancer cell lines with the capability to metastasize from 

orthotopic sites could be employed. For example, the well characterized human 

MDA-MB 231 breast cancer cell line that expresses high levels of Fra-1 (Belguise 

et al., 2005) could be used for these studies. However, in this case the generation 

of cell clones expressing an inducible shRNA construct targeting Fra-1 would be 

required. Given the availability of several MDA-MB 231-derived cell clones showing 

organ-specific metastatic potential (bone vs lung) (Minn et al., 2005), the in vivo 

role of Fra-1 in regulation of tissue tropism could be addressed by employing 

xenograft mouse models. 
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Finally, to analyse the direct in vivo role of Fra-1 in breast cancer progression and 

EMT, transgenic mouse models could be employed. Up to date, a number of 

different transgenic mouse models of breast cancer metastasis have been 

generated (reviewed by Fantozzi and Christofori, 2006). The most widely used 

single-transgenic mouse models of breast cancer metastasis are MMTV-PyMT and 

MMTV-Neu transgenic mice with mammary gland-specific expression of PyMT 

(polyoma middle T antigen) or ErB2 (EGF receptor family member) under the 

control of the MMTV (mouse mammary tumor virus) promoter/enhancer. These 

mice develop mammary tumors with high incidence of lung metastasis. Therefore, it 

would be interesting to cross these mice with the conditional fra-1 knock-out mice 

(fra-1∆/∆ mice; Eferl et al., 2004) to determine whether the ablation of the fra-1 gene 

might delay or block tumor progression and metastasis. Another approach would 

be to generate double-transgenic mice by intercrossing fra-1 transgenic mice 

(Jochum et al., 2000) with MMTV-PyMT or MMTV-Neu transgenic mice to 

determine, whether these double-transgenic mice would show accelerated tumor 

progression. Alternatively, the generation of an inducible fra-1-transgenic mouse 

would allow tightly controlled overexpression of fra-1 in a tumor stage-specific 

and/or cell-/tissue-specific manner. This gain-of-function approach could then be 

complemented with the loss-of function approach by conditional ablation of fra-1 by 

intercrossing an inducible, mammary gland-specific Cre mouse line with mice 

carrying a conditional floxed allele of fra-1(fra-1f/f, Eferl et al., 2004). 

 

Taking advantage of these existing mice that ubiquitously overexpress fra-1 as well 

as conditional fra-1 knock-out mice (fra-1∆/∆ mice), a direct in vivo role of Fra-1 in 

EMT could be studied using for example the well established mouse skin two-step 

chemical carcinogenesis model. This model involves initial treatment of the skin 

with the carcinogen 7,12-dimethylbenzanthracebe (DMBA), which acts as a tumor 

initiator and causes an activating mutation in H-ras oncogene. Continuous 

treatment of the mice with a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate 

(TPA) causes the development of benign papillomas, which after some time 

convert to malignant and locally invasive squamous cell carcinoma. Finally, the 

tumor cells undergo EMT characterized by loss of differentiation and change to a 

metastatic spindle cell carcinoma. Interestingly, elevated levels of Fra-1 and 

phosphorylated Fra-1 have previously been reported in the squamous carcinoma 
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cell lines and especially in the metastatic spindle cell carcinoma cell lines obtained 

from tumors initiated in vivo by DMBA, suggesting that Fra-1 might play an 

important role in the progression of mouse skin tumors (Zoumpourlis et al., 2000). 

The use of the above described mouse skin carcinogenesis model would allow us 

to study the in vivo cooperation of activated H-ras and fra-1 during multistage skin 

carcinogenesis and EMT. However, due to the chemically induced origin of the 

papillomas and their chemically-driven progression to spindle cell carcinoma, this 

model has its limitations. In addition, unlike the K-ras mutational activation, 

activating mutations of H-ras oncogene are a relatively rare event in human 

cancers (rate of activating mutation being 22% and 3.7% for K-ras and H-ras, 

respectively). Therefore, to address the role of Fra-1 in cancer development in a 

situation that more accurately simulates the pathology of human disease, other 

transgenic mouse models could be employed.  

 

For example, the well characterized conditional K-rasLSLG12D or the K-rasV12 

transgenic mouse, widely used for modelling of lung cancer (Jackson et al., 2001; 

Guerra, et al., 2003) could be employed. The advantage of this transgenic mouse 

model is that the development and the progression of lung cancer closely mimic the 

situation in humans. The K-rasLSLG12D transgenic mouse strain harbours an 

activating mutation (G12D) encoded in exon 1 of K-ras oncogene that occurs in 25-

50% of human lung adenocarcinomas. This K-ras allele is functionally inactive due 

to the presence of a stop-cassette flanked by loxP sites (LSL) inserted in front of 

the exon 1. The expression of the mutated allele in the lung epithelia is activated 

following intranasal infection with adenovirus containing the Cre-recombinase 

(AdCre) or alternatively, by crossing these mice with the cell type-specific Cre 

mouse line. The AdCre-mediated removal of the stop-cassette enables the 

expression of the mutated allele at physiological levels, resulting in the 

development of lung tumors. This model was recently used to generate the 

compound conditional K-rasLSLG12D; p53 transgenic mouse, that revealed 

cooperation between loos of p53 function and activation of K-ras during lung cancer 

progression (Jackson et al., 2005). Given that in the lung epithelial cells, Fra-1 

expression was shown to be strongly induced by carcinogens such as asbestos 

and tobacco smoke (Ramos-Nino et al., 2003; Zhang et al., 2005), that it is highly 

expressed in lung cancer cell lines (Risse-Hackl et al., 1998), and that its ectopic 
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expression induces lung epithelial cell invasion (Adiseshaiah et al.,2007), the above 

model would be particularly useful to study the role of Fra-1 in the development and 

progression of lung cancer. One approach would include crossing the K-rasLSLG12D 

mice with fra-1f/f mice that carry a conditional floxed allele of fra-1. The Cre-

mediated recombination induced by intranasal infection with AdCre, or alternatively, 

by crossing these compound K-rasLSLG12D; fra-1f/f mice with lung epithelial cell-

specific Cre mouse line, would result in simultaneous K-ras activation and fra-1 

ablation that would answer the question whether Fra-1 is an essential downstream 

target of activated K-ras signalling in lung cancer development.  

 

 

In conclusion, this study has provided new evidence for the essential role of Fra-

1/AP-1 in the regulation of epithelial cell plasticity. The finding that Fra-1 expression 

is both necessary and sufficient for the induction of EMT and metastasis has 

opened new unexplored areas in the field of EMT and cancer research. However, 

further studies are required to more specifically define the exact steps of the 

invasion process that are dependent on Fra-1 expression, and to address the 

possibility that this is a general mechanism in the progression of different epithelial 

cancers in both mouse models and humans. Therefore, the afore mentioned 

experiments aimed to elucidate the molecular mechanisms by which Fra-1 

contributes to tumor cell metastasis, as well as the identification of Fra-1 target 

genes with prognostic relevance have important implications for future prevention 

and treatment of invasive cancers. 
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5. Materials and Methods 

 

5.1 Abbreviations 

 

5-Aza-CdR    - 5-aza-2’-deoxycytidine 

bp    -  base pairs 

BPE     - bovine pituitary extract  

BSA     -  bovine serum albumin 

°C     -  degree Celsius 

ChIP     -  chromatin immunoprecipitation 

conc     -  concentration 

DAPI     -  4, 6-diamidino-2-phenylindole 

DEPC    -  diethyl pyrocarbonate 

Dexa     -  dexamethason 

DMBA   -  7,12-dimethylbenz(a)anthracene 

DMEM   -  Dulbecco’s Modified Eagle’s Minimal Essential Medium 

DMSO    -  dimethylsulfoxide 

DNA     -  deoxyribonucleic acid 

dNTP    -  deoxyribonucleoside triphosphate 

dsDNA   - double-stranded DNA 

DTT     -  dithiothreitol 

ECM     -  extracellular matrix 

E. coli    -  Escherichia coli 

EDTA    -  ethylene-diamine-tetra-acetic acid 

EGTA    -  ethylene-glycol-bis(2-aminoethyl ether)-N.N.N'N'-tetra-acetic acid 

EMT     -  epithelial-mesenchymal transition 

et al     -  et altera 

EtOH    -  ethanol 

FCS     -  fetal calf serum 

g     -  gravity 

GAPDH    -  glyceraldehydes-3-phosphate dehydrogenase 

GF     -  growth factor 

h     -  hour 

HCl     -  hydrochloric acid 
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HEPES    -  4-(2-hydroxyethyl) piperazin-1-ethansulfonic acid 

HPRT    -  hypoxanthine-guanine phosphoribosyltransferase 

HRP     -  horseradish peroxidase 

HXM    - hypoxantine-xantine-mycophenolic acid 

IgG     -  immunoglobulins 

IP     - Isopropteriol 

kb     -  kilobase pairs 

kDa     -  kilodalton 

L     -  liter 

M     - molar 

mA    - miliamper 

max     -  maximum 

mg     -  miligram 

MgCl2    -  magnesium chloride 

min     -  minute 

mM     -  milimolar 

NaCl     -  sodium chloride 

NaF     -  sodium fluoride 

NaN3     -  sodium azide 

NaOH    -  sodium hydroxide 

Na3VO4    -  sodium orthovanadate 

ng     -  nanogram 

nm     -  nanometer 

nM     -  nanomolar 

NP-40    -  Nonidet P-40 

OD     -  optical density 

PBS     -  phosphate-buffered saline 

PBS-T    -  PBS-0.1% Tween 

PCR     -  polymerase chain reaction 

PFA     -  paraformaldehyde 

pH     -  potentia hydrogenii 

PMSF    -  phenylmethylsulfonylfluoride 

RNA     -  ribonucleic acid 

rpm     -  rotations per minute 

RT     -  room temperature 

s.d.     -  standard deviation 

SDS     -  sodium dodecyl sulfate 

SDS-PAGE   -  SDS-polyacrylamide gel electrophoresis 
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sec     -  second 

ssRNA    -  single-stranded RNA 

TAE     -  Tris-acetate-EDTA buffer 

TBS     -  Tris-buffered saline 

TBS-T    -  TBS-0.1% Twen 

TE     -  Tris-EDTA buffer 

TGFα    -  transforming growth factor alpha 

TGFβ    - transforming growth factor beta 

TPA     -  12-O-tetradecanoylphorbol-13-acetate 

TSA    -  Trichostatin A 

TRE     -  12-O-tetradecanoylphorbol-13-acetate-response element 

Tris-HCl   -  Tris hydrochloride 

TSA     -  trichostatin A 

UV     -  ultraviolet light 

V     -  voltage 

vs     -  versus 

Vol     -  volume 

w/v    - weight to volume 

µg     - microgram 

µl     -  microliter  

µM     -  micromolar 

 

 

5.2 Materials 

 

5.2.1 Chemicals and reagents 

 

All chemicals, reagents, antibodies, oligonucleotides and kits used for this study 

were purchased from the following companies: Abcam, Amersham Biosciences, BD 

Biosciences, BioRad, Cell Signaling, Epicentre Biotechnologies, Eppendorf 

International, Fermentas, Gibco, Invitrogen, MWG Biotech, Novocastra, Promega, 

Roche, Sigma-Aldrich, Santa Cruz, BD Transduction Laboratories, Upstate, 

Vectastain and Qiagen. 
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5.2.2 Media 

 

LB medium:  

In 500 ml H2O dissolve 5 g Bacto tryptone, 2.5 g Bacto yeast extract and 2.5 g 

NaCl, autoclave and store on room temperature. 

 

 HXM medium:  

To 450 ml of Dulbecco’s Modified Eagle Media (DME) add 50 ml newborn calf 

serum, 5 ml antibiotic (Pen-Strep), 0.75 ml of 10 mg/ml Hypoxantine (Sigma 

Aldrich; final conc. 15 µg/ml), 12.5 ml of 10 mg/ml Xanthine (Sigma Aldrich; final 

conc. 250 µg/ml), 1.25 ml 10mg/ml Mycophenolic acid (Sigma Aldrich; final conc. 

25 µg/ml) and 120 µl of concentrated HCl. Hypoxantine, Xanthine and 

Mycophenolic acid stock solutions were made in 0.1 N NaOH. 

 

Serum free cell culture medium: 

DMEM medium supplemented with 1% L-Glutamine, 1% Pen-Strep, 2% 1M 

HEPES pH 7.3 and 0.2% BSA. 

 

5.2.3 Antibodies used for Western Blotting and 

Immunohistochemistry 

 

Primary: 

 

Antigen   Host   Dilution             Supplier        

Actin    rabbit           1:5000           Sigma  

α-catenin   mouse          1:1000             Transduction Labs 

β-catenin   mouse          1:1000             Transduction Labs       

c- Fos   rabbit           1:1000            Santa Cruz        

c-Jun    mouse   1:1000             Transduction Labs  

E-cadherin  mouse          1:1000             Transduction Labs 

Fibronectin  rabbit   1:750          Sigma  

FosB    mouse          1:1000             Santa Cruz  

Fra-1   rabbit           1:1000            Santa Cruz  

Fra-2   rabbit           1:1000            Santa Cruz   

γ-catenin   mouse          1:1000                 Transduction Labs  
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HP-1α   mouse          1:500             Euromedex       

JunB   rabbit           1:1000            Santa Cruz       

JunD    rabbit   1:1000            Santa Cruz          

panERK  mouse  1:1000            Transduction Labs  

p-ERK1/2  mouse  1:300            Transduction Labs      

p120-catenin  mouse          1:1000           Transduction Labs 

Stat1   rabbit   1:750    Cell Signaling 

Stat3        mouse  1:1000   Cell Signaling  

Vimentin   mouse  1:1000   Sigma     

Zeb-1   goat           1:500             Santa Cruz 

        

 

Secondary: 

 

α-goat IgG HRP-linked (Jackson ImmunoResearch Laboratories); 1:5000 

α-rabbit IgG HRP-linked (GE Healthcare. Amersham Biosciences); 1:5000 

α-mouse IgG HRP-linked (GE Healthcare. Amersham Biosciences); 1:5000 

 

All antibody solutions used for Western blotting were supplemented with 0.02% 

NaN3 after first incubation and kept at 4°C for reuse.  

 

5.2.4 Antibodies used for Immunofluorescence 

 

Primary: 

 

For protein visualization and localization, the same primary E-cadherin, Fra-1, α-

catenin, β-catenin, γ-catenin, p120-catenin, fibronectin and vimentin antibodies 

were used as for Western blotting only at 1:200 dilutions. Additionally, for F-actin 

visualization, Alexa 488-Phalloidin coupled antibody (Invitrogen. A12379) was used 

at 1:250 dilution. 

 

Secondary: 

 

Alexa 488 - conjugated goat anti-mouse IgG (Jackson ImmunoResearch Laboratories) 

Alexa 488 - conjugated goat anti-rabbit IgG (Jackson ImmunoResearch Laboratories) 

Alexa 488 - conjugated donkey anti-goat IgG (Jackson ImmunoResearch Laboratories) 
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DyLight™ 549 - conjugated goat anti-mouse IgG (Pierce) 

DyLight™ 549 - conjugated goat anti-rabbit IgG (Pierce) 

 

All secondary antibodies were used at 1:250 dilutions. 

 

5.2.5 Antibodies used for Chromatin Immunoprecipita tion (ChIP) 

 

Antigen  Host   Supplier   Catalogue number  

Fra-1   rabbit   Santa Cruz  sc-183 (clone N-17) 

 

Each ChIP sample was immunoprecipitated with 5g of antibody. 

 

5.2.6 MISSION™ shRNA Library  

  

MISSION™ shRNA are sequence-verified shRNA lentiviral plasmids for gene 

silencing in mammalian cells. Parental vector pLKO.1-puro allows stable selection 

via Puromycin resistance. Two of the following target gene sets were used: 

 

MISSION™ TRC shRNA Target Set Fosl1 (Fra-1)  NM_010235 (Sigma Aldrich) 

Insert sequences: 

TRCN0000042683   

CCGGCGACAAATTGGAGGATGAGAACTCGAGTTCTCATCCTCCAATTTGTC GTTTTTG 

TRCN0000042684   

CCGGGCTCTCCTACACTCCTGGCTTCTCGAGAAGCCAGGAGTGTAGGAGAG CTTTTTG 

TRCN0000042685   

CCGGCCAGGAGTCATACGAGCCCTACTCGAGTAGGGCTCGTATGACTCCTG GTTTTTG 

TRCN0000042686   

CCGGCCTCCGCTCACCGAAAGAGTACTCGAGTACTCTTTCGGTGAGCGGAG GTTTTTG 

TRCN0000042687   

CCGGCCAGTGCCTTGCATCTCCCTTCTCGAGAAGGGAGATGCAAGGCACTG GTTTTTG 

 

 

MISSION®
 shRNA Non-Target shRNA Control Vector  (Sigma Aldrich. SHC002)  

This non-targeting shRNA vector is a useful negative control that activates RISC 

and the RNAi pathway but does not target any human or mouse gene. The short-
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hairpin sequence contains 5 base pair mismatches to any known human or mouse 

gene and allows the examination of the effects of shRNA transfection on gene 

expression. 

 
Insert sequence:   

CCGGCAACAAGATGAAGAGCACCAA CTCGAGTTGGTGCTCTTCATCTTGTTGTTTTT 

 

5.2.7 siRNA oligonucleotides 

 

For transient gene silencing experiments Dharmacon ON-TARGETplus 

SMARTpool siRNA double-stranded oligonucletides were used (Thermo Scientific-

Dharmacon, Inc.) according to the manufacturer’s protocols and recommendations. 

The following ON-TARGETplus SMARTpools were used: 

 

ON-TARGETplus SMARTpool L-051513-01-0005. Mouse ZFHX1A . NM_011546 

 

ON-TARGETplus SMARTpool siRNA J-051513-09. ZFHX1A 

Target sequence: UGUAGAUGGUAACGUAAUA 

ON-TARGETplus SMARTpool J-051513-10. ZFHX1A 

Target sequence: GAAAGAGCACUUACGGAUU 

ON-TARGETplus SMARTpool J-051513-11. ZFHX1A 

Target sequence: GCGCAAUAACGUUACAAAU 

ON-TARGETplus SMARTpool J-051513-12. ZFHX1A 

Target sequence: CGGCAUGGCUAGCAGUAUU 

 

ON-TARGETplus SMARTpool Non-targeting Pool D-001810-10-05 

 

ON-TARGETplus SMARTpool siRNA J-051513-09. ZFHX1A 

Target sequence: UGUAGAUGGUAACGUAAUA 

ON-TARGETplus SMARTpool J-051513-10. ZFHX1A 

Target sequence: GAAAGAGCACUUACGGAUU 

ON-TARGETplus SMARTpool J-051513-11. ZFHX1A 

Target sequence: GCGCAAUAACGUUACAAAU 

ON-TARGETplus SMARTpool J-051513-12. ZFHX1A 

Target sequence: CGGCAUGGCUAGCAGUAUU 
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siGENOME SMARTpool M-059671-01-0005. Mouse Zeb2 . NM_015753 

 

siGENOME SMARTpool siRNA D-059671-01,ZFHX1B 

Target sequence: GUAAAUGGCCGAAUGAGAA 

siGENOME SMARTpool siRNA D-059671-02,ZFHX1B 

Target sequence: GCGACACGGCCAUUAUUUA 

siGENOME SMARTpool siRNA D-059671-03,ZFHX1B 

Target sequence: GCAGGUAACCGCAAGUUCA 

siGENOME SMARTpool siRNA D-059671-04,ZFHX1B 

Target sequence: UAGAUUUGGUCACUGAUGA 

 

For transfection reactions Dharmacon transfection reagents 1 and 2 were used 

according to manufacturer’s instructions. 

 

5.3 Methods 

 

5.3.1 Transformation of E. coli with plasmid DNA 

 

Prior to transformation with plasmid DNA an aliquot of competent E. coli 

(DH5alpha) cells was thawn on ice. 100 µl of bacterial suspension was transferred 

to 1.5 ml eppendorf tube, mixed with 10 ng of target plasmid DNA and incubated on 

ice for 15 min. Bacterial suspension was heat-shocked in a waterbath at 37°C for 1 

min followed by 1 min incubation on ice. Next, 1 ml of fresh LB media without 

antibiotics was added and suspension further incubated for 1 h on a heating block 

at 37°C with shaking. After incubation, 100 µl of b acterial suspension was plated 

onto LB plate containing Ampicilin (100 µg/ml) and incubated overnight at 37°C in 

an incubator.  

 

5.3.2   Plasmid DNA preparation 

 

Plasmid DNA was isolated using QIAGEN Plasmid Maxi Kit according to the 

manufacturer’s instructions. For pLKO.1 lentiviral vectors plasmid DNA was 
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isolated using Promega PureYield™ Plasmid Midiprep System with endotoxine 

removal step according to the protocol provided with the kit. 

        

5.3.3 RNA isolation 

 

Total RNA was isolated from cells using TRIzol® Reagent (InvitrogenTM) according 

to manufacturer’s instructions. Briefly, cells were washed once with PBS, 

trypsinized and pelleted. Pellet was resuspended in 1ml of TRIzol® Reagent, 

incubated on room temperature for 5 min and centrifuged at 12.000 x g for 10 min 

(4°C). Supernatant was transferred to a new tube an d 0.2 ml of chloroform was 

added, homogenate vortexed, incubated at room temperature for 2-3 min and 

centrifuged for 15 min at 12.000 x g (4°C). The upp er aqueous phase was 

transferred to a new tube and RNA precipitated by adding 0.5 ml isopropanol for 10 

min at room temperature followed by centrifugation for 10 min at 12000 x g (4°C). 

Supernatant was removed and RNA pellet washed twice by adding 1 ml of 75% 

EtOH followed by centrifugation at 7.500 x g for 5 min (4°C). RNA pellet was air-

dried for 5-10 min, dissolved in DEPC-treated H2O and incubated for 10 min at 55-

60°C. Concentration was determined by UV spectropho tometry (OD260=1.0 equals 

40 µg/ml of ssRNA). RNA was stored at -80°C until furth er use. 

 

5.3.4   RNase Protection Assay (RPA) 

 

For each RPA reaction, 10 µg total RNA isolated from cells was used. RPA was 

performed using BD RiboQuant Multi-Probe RNase Protection Assay System (BD 

PharMingen) according to manufacturer’s instructions. Two following multi-probe 

template sets were used: mFos/Jun and mMMP-2.  

 

5.3.5   cDNA synthesis 

 

cDNA was synthesized from 2 µg of total RNA using “Ready-To-Go You-Prime 

First-Strand Beads” kit (Amersham Biosciences) and random primer 
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oligonucleotides (Invitrogen) according to the manufacturer’s instructions. 

Synthesized cDNA was stored at -20°C. 

 

5.3.6 Quantitative Real-time RT-PCR  

 

Quantitative real-time RT-PCR (qPCR) was performed to verify the results obtained 

by the cDNA microarray analysis, examine and quantify transcript levels of 

candidate genes.  

 

Primers were designed using Primer3 software or retrieved from the online 

PrimerBank database (http://pga.mgh.harvard.edu/primerbank/index.html). 1 µl of 

cDNA was used per reaction and reactions were performed using SYBR Green 

(Molecular Probes) on an Opticon2 Monitor Fluorescence Thermocycler (MJ 

Research) in a 25 µl reaction volume for 40 cycles using the following protocol:  

 

 

 

 

 

 

 

 

 

 

 

 

 
Comparative Ct (cycle threshold) method was used to quantify the amplified 

fragments and RNA expression levels were normalized to at least one 

housekeeping gene (actin, HPRT, GAPDH).  

 

Primers sequences are listed in the table bellow:  

 

 

Temperature Time 
Number of 

cycles 

94°C 50 sec 1 

94°C 15 sec 

57°C 35 sec 

72°C 45 sec 

40 

Melting curve 

64°C-94°C 

Read 

every 

0.4°C 

1 
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Gene Primer sequence Gene Primer sequence 

GAPDH forward ACCCAGAAGACTGTGGATGG 
 

vimentin forward GTGCGCCAGCAGTATGAAAG 

GAPDH reverse CACATTGGGGGTAGGAACAC 

 

vimentin reverse GCATCGTTGTTCCGGTTGG 

Cldn3 forward ACCAACTGCGTACAAGACGAG Wnt7a forward CCTTGTTGCGCTTGTTCTCC 

Cldn3 reverse CAGAGCCGCCAACAGGAAA Wnt7a reverse GGCGGGGCAATCCACATAG 

E.cadherin forward CAGCCTTCTTTTCGGAAGACT occludin forward TTGAAAGTCCACCTCCTTACAGA 

Ecadherin reverse GGTAGACAGCTCCCTATGACTG occludin reverse CCGGATAAAAAGAGTACGCTGG 

Fra-1 forward CAGCCTCATTTCCTGGGACC FosB forward TTTTCCCGGAGACTACGATC 

Fra-1 reverse CCTTTCTTCGGTTTCTGCACT FosB reverse GTGATTGCGGTGACCGTTG 

HPRT forward CTGGTGAAAAGGACCTCTCG MMP14 forward CAGTATGGCTACCTACCTCCAG 

HPRT reverse CACAGGACTAGAACACCTGC MMP14 reverse GCCTTGCCTGTCACTTGTAAA 

IL6 forward TAGTCCTTCCTACCCCAATTTCC SPARC forward GTGGAAATGGGAGAATTTGAGGA 

IL6 reverse TTGGTCCTTAGCCACTCCTTC SPARC reverse CTCACACACCTTGCCATGTTT 

KLF8 f orward GCAGCCATTCCTACTGTTCTC c-Jun forward CCTTCTACGACGATGCCCTC 

KLF8 reverse CATAGGCAAAGACTGGACCAC c-Jun reverse GGTTCAAGGTCATGCTCTGTTT 

Krt 18 forward GTCAGAGACTGGGGCCACTA CathepsinB forward TCCTTGATCCTTCTTTCTTGCC 

Krt18 reverse CTCTAAAGTCATCGGCGGCAA CathepsinB reverse ACAGTGCCACACAGCTTCTTC 

Krt8 fforward TGTCTACTCGGTCGGACTTCT c-Fos forward CGGGTTTCAACGCCGACTA 

Krt8 reverse GCTGCTACCTAGCTGACATGC c-Fos reverse TTGGCACTAGAGACGGACAGA 

Lama3 forward GTAAGGGTGAGATTGTCTGTGAG JunB forward TCACGACGACTCTTACGCAG 

Lama3 reverse ATATGGCTTCCGTTCCAGGAC JunB reverse CCTTGAGACCCCGATAGGGA 

MMP1 forward CTTCTTCTTGTTGAGCTGGACTC Fra-2 forward CCAGCAGAAGTTCCGGGTAG 

MMP1 reverse CTGTGGAGGTCACTGTAGACT fra-2 reverse GTAGGGATGTGAGCGTGGATA 

MMP12 forward GAGTCCAGCCACCAACATTAC JunD forward GAAACGCCCTTCTATGGCGA 

MMP12 reverse GCGAAGTGGGTCAAAGACAG Jund reverse CAGCGCGTCTTTCTTCAGC 

MMP2 forward GACCTTGACCAGAACACCATC CD44 forward CACCATTGCCTCAACTGTGC 

MMP2 reverse CATCCACGGTTTCAGGGTCC CD44 reverse TTGTGGGCTCCTGAGTCTGA 

Snai1 forward CACACGCTGCCTTGTGTCT Tnc forward GCATCCGTACCAAAACCATCA 

Snai1 reverse GGTCAGCAAAAGCACGGTT Tnc reverse AACCCGTAGGGATTAGTGTCG 

Snai2 forward CCTTGGGGCGTGTAAGTCC ZO1 forward CCGGCCAGCCACATATTTGTA 

Snai2 reverse TTCTCAGCTTCGATGGCATGG ZO1 reverse CGCTCATCTCTTTGCACTACCA 

ZEB1 forward GCTGGCAAGACAACGTGAAAG Stat1 forward CGGAGTCGGAGGCCCTAAT 

ZEB1 reverse GCCTCAGGATAAATGACGGC Stat1 reverse ACAGCAGGTGCTTCTTAATGAG 

ZEB2 forward CATGGCAGTATCCAGGCAGG Fgfr1 forward GGGAGTATGTGTGTAAGGTTTCC 

ZEB2 reverse AGTCTTCCACTAGCAGCCTTT Fgfr1 reverse CTTGGTGCCGCTCTTCATCTT 

p16 forward AACTCTTTCGGTCGTACCCC Tspan1 forward CTGTGGGAATCTGGGTGTCC 

p16 reverse GCGTGCTTGAGCTGAAGCTA Tspan1 reverse CACACTTGTTCTCAGAGTGAGC 

Cldn6 forward  ATGGCCTCTACTGGTCTGCAA Cldn7 forward GGCCTGATAGCGAGCACTG 

Cldn6 reverse GCCAACAGTGAGTCATACACCTT  Cldn7 reverse GTGACGCACTCCATCCAGA 

 

5.3.7 RNA preparation and microarray analysis 

 

For wide-range gene expression analysis an in-house printed oligonucleotide slides 

containing over 22500 oligonucliotide sequences were used. Total RNA was 

extracted from cells cultured to 70-80% confluence, using TRIzol® Reagent 

(InvitrogenTM) according to manufacturer’s instructions. Approximately 3µg of total 

RNA was synthesized into a double-stranded cDNA followed by an in vitro 

transcription reaction and labelling with reactive fluorescent dyes (Alexa 555 and 
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Alexa 647) and hybridized onto slides in triplicates. Hybridized slides were scanned 

on a fluorescent scanner Axon 4000B and the results were obtained as red and 

green images. These images were further analysed for spot and local background 

identification by GenePix Pro 6.0 software. The data generated by the image 

software analysis were further analysed using R (statistical programming 

language) and several packages from Bioconductor, mainly Limma, by 

subtracting the background from the foreground signal (background correction) and 

normalised (method: NormalizeWithinArray and NormalizeBetweenArray) to 

adjust the differences in labelling and detection deviations as well as differences in 

the amount of the input RNA. The obtained results included (log) fold changes, 

standard errors, t-statistics and p-values (p<0.05 was classified as significant). The 

basic statistic used for significance analysis was the moderated t-statistic, which 

was computed for each probe and for each contrast. The M-value (M) is the value 

of the contrast that represents a log2-fold change between two or more 

experimental conditions (control vs target sample). 

 

5.3.8 Chromatin Immunoprecipitation (ChIP)  

 

Sample preparation: 
 

Cells were cultured in 15 cm dishes to 80% confluence and approximately 6x107 

cells (two dishes) were used for each immunoprecipitation reaction. Proteins and 

DNA were cross-linked by addition of 1% formaldehyde strait to the cell culture 

media and incubated on a rocking platform with gentle agitation for 10 min at room 

temperature. The reaction was quenched by adding 125mM glycine for 5 min at 

room temperature, the cells were washed two times with PBS, scraped from the 

plates and lysed in 2 ml of freshly prepared Lysis buffer (1% SDS; 10mM EDTA; 

50mM Tris-HCl pH 8.1 and 1 complete Mini EDTA-free protease inhibitor tablet 

(Roche diagnostics) per 10 ml of buffer) for 30 min at 4°C. To shear chromatin, the 

samples were sonicated in de-ionized water bath using Covaris S2 machine to yield 

200-500 bp fragments. Number of pulses and length of sonication was determined 

for each sample by checking shearing efficiency. Briefly, 100 µl aliquots were taken 

after different sonication cycles and mixed with H2O to a volume of 500µl, 5 µl of 

RNase A (10 µg/µl) was added and the samples were incubated in a thermo block 
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for 30-60 min at 37°C. 5 µl Proteinase K (20 µg/µl)  was added and the samples 

were incubated in a thermo block for 30-60 min at 55°C with shaking (750 rpm) 

followed by reverse cross-linking at 65°C overnight  (or min 6h). DNA was isolated 

by phenol:chloroform:isoamyl-alcohol (25:24:1) extraction. Briefly, 1/1 volume of the 

organic solvent was added, the sample was vortexed, centrifuged for 10 min at 

13000 rpm and the water phase containing DNA was collected in a new tube. DNA 

was precipitated by adding 2-2.5 volumes of 100% ethanol, 1/10 volume 3M NaAc, 

2 µl glycogen (GycoBlue. 1.5µg/µl. Ambion) to better visualize the pellet, and 

incubated at -20°C for 2 h. The samples were centri fuged for 20 min at 13000 rpm 

(4°C), the supernatant was discarded and DNA-contai ning pellet washed with 1 ml 

of 70% EtOH, air dried and dissolved in 50 µl of TE buffer. Sheared DNA was 

subjected to electrophoresis in 2% TAE-agarose gels pre-mixed with ethidium 

bromide (0.5µg/ml) and visualised under UV light. Once the fragments of proper 

size were obtained, DNA concentration was determined by UV spectrophotometry 

(OD260 = 1.0 equals 50 µg/ml of dsDNA). If not used immediately, the lysates were 

stored at 4°C.  
 

Immunoprecipitation: 
 

For each immunoprecipitation reaction 200-400 µg of chromatin was used. 1/100 

volume of the sample was taken and used for input while the rest of the sample 

was 10 fold diluted with Dilution buffer (0.01% SDS; 1.1% Triton X-100; 1.2 mM 

EDTA; 16.7 mM Tris-HCl pH 8.1; 167 mM NaCl). Chromatin solution was pre-

cleared by adding 50 µl Protein A/G coated beads pre-incubated with 1%BSA for 

2h, and rotating the sample for 2 h (4°C), followed  by centrifugation at 2000 rpm for 

5 min (4°C). The supernatant was collected and divi ded into two equal samples. 

One sample was used for immunoprecipitation with antibody of interest and the 

other one used as a negative control (no antibody addition). The samples were 

further treated in the same way.  Immunoprecipitiation was done using 5 µg of Fra-

1 antibody and rotating the samples overnight at 4°C. The imune complexes were 

harvested by adding 50 µl of protein A/G coated beads, rotating the sample for 2h 

(4°C) and centrifuging at 2000 rpm for 5 min. The s upernatant was carefully 

discarded and the beads were washed by adding 1 ml of buffer, centrifuging at 

2000 rpm for 5 min and discarding the supernatant. The buffers were used in the 

following order: 1x Low Salt buffer (0.1% SDS; 1% Triton X-100; 1.2mM EDTA; 
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20mM Tris-HCl pH 8.1; 150mM NaCl). 1x High Salt buffer (0.1% SDS; 1% Triton X-

100; 1.2mM EDTA; 20mM Tris-HCl pH 8.1; 500mM NaCl). 1x LiCl buffer (0.25M 

LiCl; 1% NP-40; 1% deoxycholate; 1mM EDTA; 10mM Tris-HCl pH 8.1; 150mM 

NaCl) and 2x TE buffer. To elute the immune complexes, 250 µl of freshly prepared 

Elution buffer (1% SDS; 100mM NaHCO3) was added to the beads; the samples 

were briefly vortexed and incubated for 15 min at room temperature with shaking. 

Following centrifugation at 2000rpm for 2 min, the supernatant was collected in a 

new tube, elution step repeated and the eluates combined. 500µl of the Elution 

buffer was added to the input sample that was further on treated like an IP sample. 

16µl of 5M NaCl and 12.5 µl of 10µg/µl RNase A was added to every sample 

followed by 1h incubation at 37°C and overnight rev erse cross-linking at 65°C. 

Next, 16µl 1M Tris pH 6.5, 8 µl 0.5M EDTA and 12.5 µl of 20 µg/µl Proteinase K 

was added to each sample followed by 1-2h incubation at 45°C. DNA was 

recovered by performing 1xphenol:chloroform:isoamyl-alcohol (25:24:1) extraction 

and 1x chloroform extraction. Briefly, 1/1 volume of organic solvent was added, the 

samples were vortexed, centrifuged at 13000rpm for 10 min, and the water phase 

was collected. DNA was precipitated by adding 2-2.5 volumes of 100% EtOH, 1/10 

volume 3M Na-Acetate, 1µl of 20 µg/µl glycogen for better visualisation of the 

pellet, and incubated at -20°C for 4h or overnight.  The samples were centrifuged at 

13000rpm for 10 min, the supernatant was discarded, DNA pellet washed by 

adding 1ml of 70% EtOH and centrifuged again for 10 min at 13000rpm. 

Supernatant was discarded, pellet dried for 10 min at 37°C and dissolved in 50 µl of 

1xTE buffer. Chromatin was quantified using PicoGreen Assay and 1 µl  of each 

sample was used for quantitative real-time PCR analysis. 

 

For detection of AP-1 sites within the ZEB1 promoter, the following two primer sets 

were used with standard qPCR protocol:  

 

ChIP1 forward: GCCGCTAGGTGTTAGGAAGG  

ChIP1 reverse: CGCTTGTGTCTAAATGCTCG 

 

ChIP2 forward CAAAGTGCGCAACTCGTCT  

ChIP2 reverse: GGACGCTGCAGAGTTTGAAT 
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5.3.9 Nuclear extract preparation 

 

Cells were washed once with PBS, trypsinized, pelleted and lysed in 400 µl of ice 

cold Buffer A (10mM HEPES pH 7.9; 10mM KCl; 0.1mM EDTA; 0.1mM EGTA; 

1mM DTT; 0.5mM PMSF and 1 complete Mini EDTA-free protease inhibitor tablet 

(Roche diagnostics) per 10 ml of buffer) on ice for 15 min. Next, 40 µl of 10% NP40 

was added and the lysate was votexed. Homogenate was centrifuged at 2600 rpm / 

5 min and the supernatant containing the cytoplasmic fraction was discarded. Pellet 

containing the nuclei was than lysed by addition of 60 µl of ice cold Buffer B ( 

20mM HEPES pH 7.9; 1mM EDTA; 1mM EGTA; 1mM DTT; 1mM PMSF and 1 

complete Mini EDTA-free protease inhibitor tablet (Roche diagnostics) and 

incubated in a shaker for 10-15 min (4°C). Lysates were centrifuged at max speed 

for 5 min (4°C). Pellet was discarded and the super natant transferred to a new 

tube. Protein concentration was measured by spectrophotometry (absorption at 595 

nm) in Bradford protein assay using BioRad Protein Assay Dye Reagent according 

to manufacturer’s instructions. BSA aliquots of known concentrations were used as 

standards and the lysates were stored at -80°C. 

5.3.10 Total cell lysate preparation 

 

For total cell lysate, the cells were washed once with PBS, trypsinized, pelleted and 

lysed in 1 ml of ice cold modified RIPA (RadioImmunoPrecipitation Assay) buffer 

(50mM Tris-HCl pH 7.4; 150mM NaCl; 1mM EDTA; 1% NP-40; 1% Sodium-

deoxycholate; 1mM Na3VO4; 25mM NaF; 1mM PMSF; 1% 1M DTT; 1% β-glycerol 

phosphate; 10 µg/µl Aprotinin and 1 complete Mini EDTA-free protease inhibitor 

tablet (Roche diagnostics) per 10 ml of buffer) for 20 min on ice with repeated 

vortexing. Homogenate was centrifuged at max speed for 10 min (4°C). The pellet 

was discarded and the supernatant was transferred to a new tube. Protein 

concentration was measured by spectrophotometry (absorption at 595 nm) in 

Bradford protein assay using BioRad Protein Assay Dye Reagent according to 

manufacturer’s instructions. BSA aliquots of known concentrations were used as 

standards and the lysates were stored at -80°C. 
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5.3.11 Western blotting  

 

SDS-PAGE electrophoresis of proteins and Western blotting were performed using 

Mini-PROTEAN II and Mini Trans-Blot electrophoretic system (BioRad) according 

to manufacturer’s instructions. Briefly, 10 µg (nuclear extracts for AP-1 proteins) or 

30 µg (total cell lysates) of proteins were mixed with 2x Laemmli Loading Buffer 

(50mM Tris-HCl pH 6.8; 2% SDS; 0.1% Bromophenol Blue; 10% glycerol; 100mM 

DTT) in a 15 - 25 µl volume and denatured for 3-5 min at 95°C. Proteins were 

separated on 8%-15% SDS-polyacrylamide gel at 80-120 V for 1-2 h in 

electrophoresis buffer (0.25M Tris-HCl pH 8.3; 1.92M glycine; 5 g/L SDS) and 

electrophoretically transferred to Polyvinylidene difluoride (PVDF) membranes 

(Immobilion-P; Millipore Corp, Bedford, MA) pre-activated in methanol for 1 min, by 

semi-dry transfer at 95mA (1.2 mA/cm2) for 1 h 30 min in semi-dry transfer buffer 

(48mM Tris base; 39mM glycine; 0.037% SDS; 20% methanol). For detection of 

higher molecular weight proteins, the wet-transfer method onto a nitrocellulose 

membrane (BioRad) in Mini Trans-Blot electrophoretic system (BioRad) at 100 V 

(4°C) for 2h. 

 

5.3.12 Immunodetection of proteins 

 

To prevent non-specific binding of the antibodies, PVDF membranes were 

incubated for 1 h in blocking solution (5% non-fat dry milk/PBS-T) followed by 

washing 3x5 min in PBS-T and incubation with the primary antibody solution 

(antibody diluted in 1% BSA/PBS-T) overnight at 4°C . The membranes were 

washed 3x10 min in PBS-T and incubated with the secondary HRP-linked antibody 

solution (antibody diluted in blocking solution) for 1 h at room temperature followed 

by 3x10 min wash in PBS-T. All washing and incubation steps were performed with 

gentle agitation on a rocking platform. Immunoreactive bands were visualized using 

chemiluminiscent ECL reagent (Amersham Biosciences) according to 

manufacturer’s instructions, and exposed to HyperfilmTM ECL (Amersham 

Biosciences) for various time. For re-probing, the membranes were washed for 5 

min in PBS-T, stripped for 10-15 min in striping buffer (2% SDS; 62.5mM Tris-HCl 

pH 6.7 and 0.8 ml β-mercaptoethanol per 100 ml of buffer) at 50°C in a  waterbath 
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with gentle agitation, and extensively washed in PBS-T prior to blocking and re-

probing with different antibody. 

 

5.3.13 Immunofluorescence 

 

Cells grown on filters (# 353090, 0.4 µm pore size; Falcon, Becton Dickinson, 

Franklin Lakes, New Jersey, USA) were fixed in 4% PFA/PBS for 15 min at room 

temperature, washed once with PBS and incubated in 100nM Glycine/PBS for 20 

min at room temperature. Cells were washed once with PBS followed by a second 

fixation in Methanol at -20°C for 6 min and permeab ilization with 0.1% Triton X-100 

for 2 min at room temperature. After blocking in 1% BSA/PBS for 30 min at room 

temperature, the filters were cut into pieces. Each piece was incubated with primary 

antibody (dilution 1:200) diluted in 0.5% BSA/PBS for 1h 30 min in a humid 

chamber. After washing three times with PBS, the cells were incubated with the 

secondary fluorescent antibody (dilution 1:250) diluted in 0.5% BSA/PBS for 45 - 60 

min. For actin cytoskeleton staining, Alexa Fluor 488-Phalloidin (Invitrogen) diluted 

in 0.5% BSA/PBS (dilution 1:250) for 45 - 60 min was used. Cells were washed 

three times with PBS and costained for DNA using DAPI (1mg/ml stock diluted 

1:10000 in PBS) in a final washing step. Negative control staining was done in 

parallel using only the secondary fluorescent antibodies. Filter pieces were 

additionally washed two times with distilled H2O, mounted onto microscope glass 

slides (SuperFost®Plus; Menzel-Gläser) using Vectashield (Vector Laboratories 

Inc., Burlingame, CA), covered with coverslips and sealed at the edges with 

transparent nail polish. The slides were subjected to fluorescence microscopy on a 

Zeiss Axioplan 2 imaging microscope (Carl Zeiss. Oberkochen. Germany) 

equipped with Metamorph software. Images were captured using CoolSnap HQ 

camera (Photometrics).  

 

5.3.14 Cells and cell culture 

 

The origin of EpH4 mouse mammary epithelial cell and their Ha-RasV12 

transformed derivative EpRas has been described earlier (Reichmann et al., 1989; 
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Oft et al., 1996). Fra-1 overexpressing EpH4 and EpRas cells were generated by 

retroviral gene transfer. Fra-1-knock-down EpRas and EprasXT cells were 

generated using lentiviral shRNA.  

 

5.3.14.1 Culturing of cells 

 

EpH4 cells, EpRas cells, and their respective Fra-1 overexpressing and knock-

down clones were maintained in DMEM (Dulbecco’s Modified Eagle’s Minimal 

Essential Medium) containing 5% fetal calf serum (FCS; Sigma). 1% Pen-Strep, 1% 

L-Glutamine and 2% 1M HEPES pH 7.3; EpRasXT cells were maintained in 2:1 

ratio of DMEM media supplemented with 10x more nonessential amino acids, 15% 

FCS, 1% Pen-Strep, 1% L-Glutamine, and 2% 1M HEPES pH 7.3; and filtered 

conditioned media from the same cells. NIH 3T3 fibroblasts and HEK-293T cells 

were maintained in DMEM containing 10% FCS, 1% Pen-Strep, 1% L-Glutamine, 

and 2% 1M HEPES pH 7.3. GP+E 86 retroviral packaging cells (Markowitz et al. 

1988) were grown in HXM media to ensure optimal packaging of viral particles. All 

cells were grown in a tissue culture incubator at 37°C and 5% CO 2. 

 

5.3.14.2 Retroviral production 

 

Retroviral vectors pBabe-Puro and pBabe-puro-Fra1 have been described 

previously (Matsuo et al., 2000). GP+E 86 retroviral packaging cells were 

maintained in HXM media for a few days prior to transfection with plasmid DNA. 

One day before transfection, cells were splited, transferred to a 6-well Falcon cell 

culture plate (3x105 cells per well) and cultured overnight in DMEM supplemented 

with 10% FCS. Prior to transfection, cells were washed once with PBS and 800 µl 

of serum free media was added per well. The cells were transfected with plasmid 

DNA using PolyFect Transfection Reagent (QIAGEN Gmbh) according to 

manufacturer’s instructions. Briefly, for every well, 150 µl of serum free media was 

mixed with 1.5 µg target plasmid DNA, vortexed and left on room temperature for 1 

min. Next, 10 µl of PolyFect reagent was added, mixture was vortexed for 5 s and 

incubated on room temperature for 15 min prior to addition to the cells. The cells 
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were incubated with the mixture for 4 h, then 1ml of standard serum containing 

culture media was added and cells were left overnight in an incubator at 37°C and 

5% CO2. The next day, medium was changed and the supernatants containing viral 

particles were harvested in 48 h intervals. Aliquots were stored at -80°C until further 

use. 

 

5.3.14.3 Lentiviral production  

 

For lentiviral production, HEK-293T packaging cells were used. 2.5 x106 cells were 

plated in 10 cm cell culture dishes one day prior to transfection with plasmid DNA. 

The cells were co-transfected with target pLKO.1 constructs, psPAX2 packaging 

plasmid and pMD2.G envelope plasmid using Lipofectamine Plus reagent 

(Invitrogen) with the following protocol. In one eppendorf tube, 750 µl of DMEM 

medium containing 1% L-Glutamine (no antibiotics or FCS) was mixed with 3.33 µg 

of the target plasmid DNA, 2.5 µg of psPAX2 DNA, 1µg of pMD2.G DNA, and 20 µl 

of Plus reagent (Invitrogen). In a second tube, same volume of DMEM medium 

containing 1% L-Glutamine was mixed with 30µL of Lipofectamine (Invitrogen). 

Tubes were incubated for 15 min at room temperature in a cell culture hood. After 

the incubation, the suspensions were mixed and incubated for additional 15 min. 

HEK-293T packaging cells were washed with PBS and 5ml of DMEM containing 

1% L-Glutamine was added. Plasmid suspension was evenly distributed over the 

dish and subsequently incubated for 3-4 h at 37°C a nd 5% CO2 in a tissue culture 

incubator. Following incubation, the cells were washed with PBS and 10 ml of fresh 

DMEM media supplemented with 10% FCS, 1% L-Glutamine, 1% Pen-Strep and 

2% HEPES pH 7.3 was added. The supernatants containing viral particles were 

harvested in 48 h intervals, centrifuged for 5 min at 1500 rpm, aliquoted and stored 

at - 80°C until use. 

 

5.3.14.4 Retroviral and Lentiviral infection  

 

Cells were seeded in 6-well cell culture plates (3x105 cells per well) one day before 

infection. Cells were washed once with PBS and 2 ml of the viral supernatant 
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supplemented with 8mg/ml Polybrene was added per well, and cultured for the next 

24h. The cells were washed two times with PBS and the standard culture media 

containing 2.5 µg/ml Puromycin was added for selection of infected cells.  

 

5.3.14.5 Cell doubling time 

 

To determine cell doubling time, 5x105 cells were plated in 10 cm cell culture dish in 

triplicate and cultured in standard culture media for 48 - 96 h in a tissue culture 

incubator at 37°C and 5% CO 2. Cells were trypsinized, stained with trypan blue to 

exclude dead cells and counted using hemocytometer. Cell doubling time was 

calculated using following formulas:  

 

number of cells plated x 2n = number of cells after 48 or 96 h; where n = number of divisions 

cell doubling time = incubation time (h) / number of divisions 

 

5.3.14.6 Cell proliferation assay 

 

For the cell proliferation assays, 5x104 cells were plated in 10 cm cell culture dish in 

triplicates and cultured in the standard culture media. Every second day for the 

period of 6 consecutive days, the cells were trypsinized, stained with trypan blue 

dye for dead cell exclusion, counted using hemocytometer and replated. Triplicates 

were counted for each cell line and every time point. Proliferation curve was plotted 

as cell number vs. time. 

 

5.3.14.7 Cell migration assays 

 

Transwell (Boyden Chamber) migration assay 

 

Cell migration was determined using 24-well cell culture plate with 0.8 µm pore size 

filter inserts (Falcon BD, # 353097). Cells were serum-starved overnight; 

trypsinized, counted, and 5x104 cells were resuspended in 500 µl of the starvation 

media and added to the interior of the insert. Conditioned medium from NIH 3T3 
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fibroblasts was added to the lower chamber as chemoattractant and cells were 

incubated for 24 h at 37°C and 5% CO 2 in a tissue culture incubator. For 

comparison, the same number of control inserts with 0.4 µm pore size (Falcon BD. 

# 353095) was filled in the same way for proliferation control. After incubation, the 

cells in the upper chamber were removed with a cotton swab and the cells that had 

traversed the membrane and attached to the lower surface of the filter were fixed in 

4% PFA/PBS and stained with crystal violet (0.5% in 20% methanol). Inserts were 

washed in distilled H2O and left to air-dry. Filters were carefully excised from the 

inserts and mounted onto microscope glass slides. Cell migration was evaluated by 

counting cells under a phase-contrast microscope (Carl Zeiss, Oberkochen, 

Germany) at 20X magnification in five random fields per filter. The experiment was 

carried out in triplicates and repeated three times. 

 

Wound healing assay 

 

Cells were plated in 10 cm Falcon cell culture dishes and allowed to reach 

confluence. A scratch was introduced to the monolayer using p200 pipette tip, 

wound region was marked at the bottom of the plate using waterproof marker and  

the cells were washed two times with PBS to remove all debris and unattached 

cells. Starvation media was added, images of the wound region were captured 

immediately under a phase-contrast microscope at 4X magnification at various time 

points till wound closure. The experiment was carried out in triplicates and repeated 

two times. 

 

5.3.14.8 Cell Invasion assay 

 

The invasive potential of the cells was evaluated using CHEMICON Cell Invasion 

Assay Kit (24 well tissue culture plate with 12 cell culture inserts; Chemicon 

International, Inc.) according to the manufacturer’s instructions. Briefly, the cells 

were trypsinized, counted and resuspended in a serum free media. Equal number 

of cells (1.5x105) in 300 µl of serum free media was added to the interior of 

previously rehydrated inserts of the invasion assay and 500 µl of NIH 3T3 

fibroblasts conditioned media was added to the lower chamber as chemoattractant. 
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For comparison, the same number of control inserts without ECM gel (Falcon BD. # 

353095) was filled in the same way for proliferation control. All tests were done in 

parallel. The cells were incubated for 48 h at 37°C  and 5% CO2 in a tissue culture 

incubator. After incubation, non-invading cells and ECM gel was removed from the 

interior of the inserts with a cotton swab and invasive cells on the lower surface of 

the membrane were stained by dipping inserts in the staining solution supplied in 

the kit for 20 min. Inserts were washed in a beaker of water and left to air dry. 

Quantification was done by dissolving stained cells in 10% acetic acid (200µl/well) 

followed by colorimetric reading of OD at 560 nm using ELISA plate reader. 

5.3.14.9 Inhibitor treatments 

 

For methylase and acetylase inhibitor treatments, 1x105 cells were plated in 6-well 

cell culture plates and cell culture inserts filters (#353090, 0.4 µm pore size; Falcon, 

Becton Dickinson, Franklin Lakes, New Jersey, USA) treated in parallel with 

different concentrations of 5-Aza-CdR and zebularine alone or in combination with 

trichostatin A (TSA) dissolved in 1xPBS for up to 96h. Following treatment, the cells 

grown on filters were fixed with 4%PFA/PBS and subjected to 

immunofluorescentce staining for E-cadherin and the cells grown in cell culture 

plates were used for RNA preparation. 

5.3.14.10 TGF-β1 ELISA 

 

To measure TGF-β1 levels, the cells were grown in 10 cm cell culture dishes to 60-

70% confluence, washed three times with PBS and incubated with 5 ml of serum 

free media for 24-48 h. Conditioned media was collected, centrifuged for 5 min at 

1500 rpm to remove cell debris, concentrated and assayed using Quantikine 

Mouse/Rat/Porcine TGF-β1 Immunoassay Kit (# MB100, BD Bioscineces) 

according to manufacturer’s instructions. Conditioned media from EpRasXT cells -

known to produce high levels of TGF-β1-was used as a positive control. 
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5.3.15  Animal experiments and histological analysi s 

 

5.3.15.1 In vivo Tumorigenicity Assay 

 

Tumorigenic capacity of EpH4-fra1 cells was determined by orthotropic injections of 

the cells into mammary gland fat pads of 6-8 weeks old female NMRI nu/nu atymic 

mice. Briefly, the cells were washed with PBS, trypsinized, counted and 

resuspended in PBS. For each injection, 1x105 EpH4-fra1 cells or their respective 

control cells was resuspended in 25µl of PBS. The mice were weighted and 

anesthetised with mixture of Ketamine (5 mg/ml) and Xylazine (0.8 mg/ml) using 

0.2 ml/10g body weight administered by intraperitoneal injection. Cell suspension 

was injected at 2-4 injection sites per mouse by shallow injection into the nipple 

area and the mice were left on a heating block (37°C) to recover. At least 3 

experimental mice per each cell clone were used. Tumor formation was monitored 

every second day and after 14 days mice were killed by cervical dislocation, tumors 

were carefully excised without skin, photographed, tumor dimensions and tumor 

mass was measured and tumors were further processed for histologicaly analysis. 

Tumor volume was calculated using the formula: lenghtxwidth2/2. 

5.3.15.2 Metastasis induction 

 

To evaluate the metastatic potential of the cells, 1.5x105 cells (EpH4 cells and their 

clones) or 1x105 cells (EpRas and their clones) was injected into the tail vein of 6-8 

weeks old female NMRI nu/nu athymic mice (n=4 mice/cell type). The mice were 

warmed under a light bulb for 15-20 min to cause vasodilatation, immobilized in a 

restraining device and the cells were injected in a 100 µl volume into the lateral tail 

vein. Mice were sacrificed 4 weeks post-injection; lungs were dissected, checked 

macroscopically for metastasis formation, photographed and further processed for 

histological analysis. 
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5.3.15.3 Preparation of tissue samples for histolog ical analysis 

 

Tumors and lungs isolated from mice were fixed overnight in 4% PFA/PBS solution 

followed by dehydration in Tissue-Tek® VIPTM machine (Sakura, SANOVA) and 

embedded in hot paraffin for histological analysis. Solid paraffin blocks were cut on 

a microtome (MICROM) and 3-5µM thick serial tissue sections were mounted onto 

microscopic slides and incubated overnight or for min of 6h in an incubator at 50°C.  

 

5.3.15.4 Immunohistochemical staining procedures 

 

Hematoxylin and eosin staining (H&E): 

H&E stainig was performed on paraffin tissue sections under standard conditions, 

using fully automatic Veristain Gemini System (Histo Com). Slides were mounted 

with standard coverslips (Menzel-Gläser) using fully automatic Tissue-Tek®GLCTM 

(Sakura, SANOVA). 

Ki67, Fra-1, E-cadherin and Fibronectin staining: 

Ki67, Fra-1, E-cadherin and Fibronectin IHC were performed under standard 

conditions using fully automatic VENTANA Discovery System (Arizona, USA) 

according to the manufacturer’s instructions. The following antibodies were used: 

Ki67 (rabbit) from Novocastra (dilution 1:1000), Fra-1 (rabbit) from Santaa Cruz 

(dilution 1:100), E-cadherin (mouse) from Transduction Labs (dilution 1: 1000) and 

Fibronectin (rabbit) from Sigma (dilution 1:2000). Sections were counterstained for 

5 min with hematoxylin. Stained slides were automatically mounted with standard 

coverslips (Menzel-Gläser) (Tissue-Tek® GLCTM; Sakura, SANOVA). 

 
Statistical analysis:  

Data are presented as the mean± s.d. The significance of differences between 

means was evaluated by the Student’s t-test. P-values ≤0.05 were considered 

significant. All calculations were done using Microsoft Office Excel program 

(Microsoft Corp.. Redmond WA. USA).  

 
Quantification of Western blots: 

Intensity of bands was calculated using ImageJ program. Intensity of every band 

was normalised to respective background intensity and loading.
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