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1 Abstract 

 
The human multidrug resistance P-glycoprotein (P-gp), the product of the MDR1 gene, 

is an ATP-binding cassette (ABC) protein that uses ATP to transport a variety of cyto-

toxic compounds without a common structure or intracellular target, out of the cell. The 

protein is clinically important since it contributes to the phenomenon of multidrug resis-

tance during chemotherapy of human cancers. It has two homologous halves that are 

joined by a linker. Each half consists of a hydrophobic transmembrane domain contain-

ing six transmembrane (TM) segments and a hydrophilic nucleotide-binding domain 

(NBD) containing the nucleotide binding site. 

The aim of this project was the identification and characterization of TMD1/TMD2 con-

tact interface residues, which are important for transport of solutes. Functional assays 

were performed with P-gp mutants, in which the TMD1/TMD2 contact interface resi-

dues were mutated to residues other than cysteine by site directed mutagenesis based on 

overlap extension polymerase chain reaction (OE-PCR). The mutational concept was 

guided by photoaffinity labeling, availability of protein homology models, in-silico im-

portance prediction of residues by real valued evolutionary trace and data-driven dock-

ing results based on previous site-directed mutagenesis data. Thus, hypothesis driven 

generation of P-gp mutants with amino acid residues that will be tolerated in the protein 

to obtain a high number of correctly targeted and functional transporters was performed. 

The glutamine residues Q132 (TM2) in the N-terminal half and Q773 (TM8) in the C-

terminal half of P-gp were found in predicted TM segments. Homology models of P-gp 

suggested that these Q-residues are located between highly photolabelled residues at the 

TM2/11 interface and the contralateral TM5/8 interface. In some species one of these Q 

residues is mutated to R or E, indicating that a charge is tolerated in this position of the 

protein. Thus, Q132 was mutated to Q132A, Q132E and Q132R, and Q773 was mutated 

to Q773A, Q773E and Q773R. In addition Q132A/Q773A, Q132E/Q773E and 

Q132R/Q773R double mutants were generated. Mutants were characterized using efflux 

studies, MRK16 staining and cytotoxicity assays. The Q773R mutant was deficient for 

rhodamine 123 transport, while the Q773E and Q773A mutants were active. Similarly 

the A, E and R mutants in position 132 showed unimpaired rhodamine 123 transports. 

The Q132R/Q773R double mutant was also transport deficient.  
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2 Introduction 

 

2.1 ABC transporters 

Transport proteins form 15% to 30% of membrane proteins in a cell (Sauna and Am-

budkar 2007). Decreased accumulation of natural product toxins in the cells improves 

the likelihood of an organism’s survival. Most of these cytotoxic compounds are lipo-

philic and thus able to enter cells by passive diffusion across the plasma membrane. 

This way of self-defence is aided by active efflux pumps, which intercept toxins at the 

level of the membrane and extrude them back to the cell exterior. These pumps are ei-

ther adenosine triphosphate (ATP)-dependent (primary active) or driven by proton or 

sodium motive force (secondary active). The first group of proteins belongs to the sub-

family of ATP-binding cassette (ABC) transporters (Hyde, Emsley et al. 1990). The 

ATP-binding cassette is found in a variety of prokaryotic and eukaryotic transporters 

(Pohl, Devaux et al. 2005) and thus the ABC protein family represents one of the largest 

and most diverse families of transport proteins.  

Based on the direction of the transport reaction, ABC transporters are separated into two 

subtypes. ABC importers require a binding protein that delivers captured substrates to 

the external face of the transporter. These transporters are only present in prokaryotes. 

(Hollenstein, Dawson et al. 2007) In contrast, ABC exporters capture their substrates 

directly from the cytoplasm or from the inner leaflet of the lipid bilayer (Locher 2004). 

While human cells express only ABC exporters, which facilitate the export of com-

pounds, in bacterial cells many ABC importers can be found, catalyzing the import of 

nutrients into the cell (Loo and Clarke 2008). 

Based on sequence similarities, the human ABC protein family is categorized into seven 

subfamilies, denoted ABC A-G, and consists of 49 members (Dean, Hamon et al. 2001; 

Loo and Clarke 2008), 17 of them are implicated in diseases (Sauna, Kim et al. 2007). 

The ABC transporters bind ATP and use the energy to drive the translocation of various 

substrates such as ions, lipids, peptides, metabolites, chemotherapeutic drugs and anti-

biotics across the plasma membrane as well as intracellular membranes of the endo-

plasmic reticulum (ER), peroxisome and mitochondria, and as such can be associated 

with many disorders in humans (examples are shown in Table 2.1 ). 

 

 



 

 4 

Protein Transport sub-

strate 

Disorder Species 

ABCA1 Cholesterol Tangier disease Human 

ABCA4 Retinal Stargardt disease Human 

P-gp (ABCB1) Hydrophobic drugs Multidrug resistance Human 

TAP1/2 

(ABCB2/3) 

Peptides Wegener’s granulomato-

sis 

Human 

MRP1 (ABCC1) Leukotrienes Multidrug resistance Human 

MRP2 (ABCC2) GSH conjugates Dubin-Johnson syndrome Human 

CFTR (ABCC7) Chloride channel Cystic fibrosis Human 

SUR1 (ABCC8) K+ channel regula-

tion 

PHHI Human 

BtuCD Vitamin B12  E. coli 

HisJQMP2 Histidine  S. typhimurium 

LmrA Hydrophobic drugs  L. lactis 

MalEFGK2 Maltose  E. coli 

MsbA Lipid A  E. coli,  

V. cholera 

Table 2.1: ABC transporters, transported substrates and associated disorders. 

 

Understanding how ABC transporters work to mediate directional transport of sub-

strates across lipid membranes has been a challenge since the first sequence of a com-

plete ABC transporter gene was published in 1982 (Higgins, Haag et al. 1982). 

 

2.1.1 Structural organisation of ABC transporters 

All ABC transporters are composed of four protein domains or subunits: two hydro-

philic nucleotide-binding domains (NBDs), also known as ATP-binding cassettes, and 

two hydrophobic transmembrane domains (TMDs) (Higgins, Hiles et al. 1986). These 

four core domains are both necessary and sufficient for transport. The NBDs, located in 

the cytoplasm, are the site of ATP binding and hydrolysis, providing the energy needed 

for solute translocation. Despite the high diversity of transport substrates, the sequences 

of the NDBs are remarkably well conserved among the ABC transporter family. These 

conserved motifs include the Walker A (or P-loop) and Walker B sequence, common to 

most proteins that bind nucleotide, and the ABC signature motif (also called LSGGQ 
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motif, linker peptide, or C motif) that contacts the nucleotide in the ATP-bound state. In 

addition, the NBDs of ABC transporters contain the A-loop, D-loop, H-loop, and Q-

loop. In contrast to the NBDs, the TMDs which form the transport pathway mediating 

accessibility to either side of the membrane have higher sequence diversity and vary in 

the total number of transmembrane (TM) helices, length, and architecture (reviewed in 

(Hollenstein, Dawson et al. 2007)). 

The TMDs and the NBDs are separate polypeptide chains in ABC importers. In bacte-

rial exporters a TMD is fused to an NBD, representing a so-called “half-transporter”, 

which as a homodimer or heterodimer forms the functional four-domain canonical 

structure of the ABC transporter (Saurin, Hofnung et al. 1999). In many eukaryotic 

ABC exporters all four domains are expressed as a single polypeptide chain. 

  

2.2 P-glycoprotein 

Mammalian P-glycoprotein is the most well characterized ABC transporter. P-

glycoprotein (P-gp) was discovered by Juliano and Ling (Juliano and Ling 1976) and is 

encoded by the human multidrug resistance (MDR1, ABCB1) gene (Ueda, Cornwell et 

al. 1986; Borst, Evers et al. 2000). Human MDR1 spans over 100 kb on human chromo-

some 7q21 (Yang, Wu et al. 2008). The MDR1 genome contains 29 exons that produce 

a 3843 bp sequence of transcripts encoding the 1280 amino acids P-gp protein with a 

molecular weight of 170 kDa (Yang, Wu et al. 2008).  

P-gp is an ideal model system for studying processes involved in folding and trafficking 

of ABC transporters because these processes can be manipulated by using specific 

chemical/pharmacological chaperones. Processing mutants can be rescued by expres-

sion in the presence of a chemical/pharmacological chaperone such as cyclosporin A 

(Loo, Bartlett et al. 2004). These chaperones also are substrates or modulators of P-gp 

(Loo and Clarke 1997). In many cases, such as ∆F508 in CFRT, the processing muta-

tions are located outside the critical functional domain of the protein so that the mutant 

protein remains functional, but does not traffick to its final destination at the plasma 

membrane (Denning, Anderson et al. 1992). 

P-gp was the first identified eukaryotic ABC transporter and is clinically important be-

cause of its role in conferring multidrug resistance (MDR) to cancer cells (Sauna and 

Ambudkar 2007). The overexpression of P-gp in human cancer cells can make the cells 

simultaneously resistant to a variety of chemically unrelated cytotoxic drugs due to its 

ability to transport these compounds out of the lipid bilayer of the cell.  
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2.3 A medical role in physiology and medicine 

The ability of a cell to protect itself against environmental toxins is an essential biologi-

cal function because many organisms produce toxins to repel ecological competitors, 

and plants rely on toxic secondary metabolites to make themselves unappetizing (Hig-

gins 2007). To survive, most organisms have evolved multidrug transporters to prevent 

cytotoxic molecules entering cells and to clear membranes of unwanted agents. 

 

2.3.1 Cancer chemotherapy 

Chemotherapy is a major form of treatment for many cancers. There are two forms for 

development of resistance to chemotherapy: (I) the single-agent resistance as a result of 

mutations to the target molecule of the chemotherapeutic drug, for example single 

amino acid changes in topoisomerase II result in epipodophyllotoxin resistance (Cam-

pain, Gottesman et al. 1994), and (II) a broad resistance to compounds of diverse struc-

ture and unrelated mechanism of action termed multidrug resistance (MDR) (Dano 

1973). Multidrug resistance is a serious medical problem and presents a major obstacle 

for effective chemotherapeutic treatment of malignant diseases. The remission of a tu-

mour during chemotherapy is successful in tumours that do not express endogenous P-

gp (Loo and Clarke 1999). Tumours that express endogenous P-gp usually compromise 

effectiveness of the chemotherapeutic regimen. First studies showed that P-gp expres-

sion was increased in tumours from colon, adrenal, pancreatic, mammary and renal tis-

sue, even prior to chemotherapy (Cordon-Cardo, O'Brien et al. 1989; van der Valk, van 

Kalken et al. 1990). 

There are many clinical problems associated with over- or underexpression of ATP-

binding cassette transporters on the cell surface (Loo, Bartlett et al. 2005). Overexpress-

sion of ABC multidrug transporters such as the multidrug resistance P-glycoprotein (P-

gp, also known as MDR1 or ABCB1), multidrug resistance-associated protein (MRP1, 

also known as ABCC1), or the breast cancer resistance protein (BCRP, MXR) interferes 

with drug delivery to target organs and/or contribute to the development of multidrug 

resistance of cancer cells by catalysing the extrusion of cytotoxic compounds during 

chemotherapy (Gottesman, Fojo et al. 2002). (Loo, Bartlett et al. 2005) 

Underexpression of mutant ABC transporters due to defective folding and trafficking to 

the cell surface as in the cystic fibrosis conductance regulator (CFTR) and the sulfony-

lurea receptor (SUR1) cause cystic fibrosis (Riordan, Rommens et al. 1989; Cheng, 
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Gregory et al. 1990) and persistent hyperinsulinemic hypoglycemia (Dunne, Kane et al. 

1997; Cartier, Conti et al. 2001). (Loo, Bartlett et al. 2005) 

Multispecific drug efflux pumps confer simultaneous resistance to several drugs (Hol-

land and Blight 1999) and frequently render human disease intractable. MDR presents a 

major challenge to the treatment of disease and the development of novel therapeutics 

(Chang and Roth 2001). 

 

In addition to its expression in cancer cells, P-gp is mainly localized in the apical mem-

brane of epithelial cells in the body, to transport P-gp substrates that are translocated 

from the basolateral to the apical side of the epithelium. Furthermore, P-gp can be found 

in the blood-brain barrier, blood-testis barrier, blood-nerve barrier and in the placenta 

(fetal-maternal barrier) (Smit, Huisman et al. 1999). 

P-gp reduces the intracellular concentrations of a wide range of drugs and xenobiotics 

(Bodor, Kelly et al. 2005). Drugs known to bind to P-gp include verapamil, vinblastine, 

daunorubicin, rhodamine and propafenone type compounds (Gottesman and Pastan 

1993; Schmid, Ecker et al. 1999). It seems to play a key role in the protection of cells 

and in the development of resistance to anticancer agents. Inhibition of P-gp by low 

molecular weight compounds, which themselves are non-toxic, was reported over the 

past decade. A number of clinical studies has been initiated to reverse drug resistance by 

inhibiting drug efflux (reviewed in (Fojo and Bates 2003; Polgar and Bates 2005)). But 

all inhibitors of P-gp entering clinical studies so far have failed. Thus it is important to 

understand the molecular principles of drug recognition and transport, and the predic-

tion of substrate properties of compounds has gained a lot of interest in the pharmaceu-

tical industry (Ecker, Stockner et al. 2008).  

 

2.4 Structure and molecular architecture of P-glycoprotein 

A number of techniques can be used to derive a protein structure. These techniques in-

cluding cryo-electron microscopy (cryo-EM), X-ray crystallography, nuclear magnetic 

resonance (NMR) spectroscopy, and bioinformatics-based approaches can help in eluci-

dation of the functional mechanism of a protein. 
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2.4.1 Topology of P-glycoprotein 

P-gp has the molecular architecture of an ABC protein, a core structure of four domains. 

It is a 170 kDa glycosylated plasma membrane protein and has 1280 amino acids which 

are organized as two homologous halves joined by a linker region of approximately 60 

amino acid residues (Chen, Chin et al. 1986). Each half begins with an amino-terminal 

hydrophobic transmembrane domain (TMD) containing six transmembrane (TM) seg-

ments followed by a carboxy-terminal hydrophilic nucleotide-binding domain (NBD). 

P-gp is made up of a single polypeptide containing all four domains in the order TMD-

NBD-TMD-NBD from N- to C-terminus. The N- and C-terminus are considered to have 

arisen by gene duplication and are 43% identical (Chen, Chin et al. 1986; Raymond and 

Gros 1989). The two TMD-NBD halves have diverged during evolution. The TMD and 

NBD are coupled by a series of intracellular loops (ICL) which extend into the NBDs 

(O'Mara and Tieleman 2007). The two TMDs have been shown to be responsible and 

sufficient for solute recognition (Loo and Clarke 1999). 

 

 

Figure 2.1: Topology of P-gp. P-gp has 12 transmembrane domains and two ATP-binding sites. 

 

2.4.2 Low resolution structures of P-glycoprotein 

At present no high-resolution structure of P-gp is available. The first three-dimensional 

structures for P-gp at low resolution obtained by cryo-electron-microscopy of two-

dimensional crystals were performed by Rosenberg et al. (Rosenberg, Callaghan et al. 

1997; Rosenberg, Mao et al. 2001; Rosenberg, Velarde et al. 2001; Rosenberg, Kamis et 

al. 2003; Rosenberg, Callaghan et al. 2005). The two-dimensional crystals were grown 

in the presence or absence of AMP-PNP, a non-hydrolysable analogue of ATP that is 

known to bind to the NBDs at the same site as ATP. Two-dimensional crystals of P-gp 

trapped at different steps of the transport cycle were correlated with functional changes. 

These data were interpreted to suggest that the transmembrane α–helices undergo dra-

matic conformational changes as a result of ATP binding, hydrolysis and substrate re-

lease. (Rosenberg, Kamis et al. 2003) The 8 Ångstrom (Å) resolution of the structure in 
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the presence of AMP-PNP was sufficiently high to confirm the existence of twelve 

transmembrane α–helices which span the membrane in two blocks of six. Five α–helices 

from each TMD exhibit a pseudo-2-fold symmetry, the sixth α–helices from each do-

main shows a less symmetrical relationship. The 8 Å resolution scan showed the same 

features already previously described in the three-dimensional structure of nucleotide-

free P-gp: the transmembrane α–helices form a central pore, which is exposed at the 

extracellular face and closed at the intracellular face of the membrane. In contrast to the 

nucleotide-free P-gp structure, the transmembrane α–helices of the AMP-PNP-bound P-

gp also enclose a central pore which is less closed at the intracellular face of the mem-

brane and, additionally, is open to the lipid phase along one side with a gap appearing 

between two domains. This access from the lipid bilayer to the central pore might allow 

transport of lipophilic substrates from the membrane. 

 

2.4.3 Protein homology models of P-glycoprotein  

In the absence of high resolution structural data for P-gp, an alternative is to generate a 

protein homology model that provides a three-dimensional map of a protein. The avail-

ability of structures of a target protein at the atomic level is a critical factor for struc-

ture-based drug design. Protein homology models are based on the assumption of struc-

tural homology between a structurally resolved protein, the template and a protein of 

unknown conformation, the target. Sequence homology and an identical number of pre-

dicted transmembrane spanning helices are important for the selection of templates for 

modelling of membrane proteins (Ecker, Stockner et al. 2008). The quality of a homol-

ogy model is determined by the accuracy of the sequence alignment between the protein 

of interest and the template protein, and the quality of the crystal structure used as the 

modelling template.  

 

2.4.3.1 Available template crystal structures for P-glycoprotein  

2.4.3.1.1 MsbA as template crystal structure  

Several groups, including our own, have generated models based on the MsbA struc-

tures of E. coli and V. cholerae (Chang and Roth 2001; Chang 2003; Seigneuret and 

Garnier-Suillerot 2003; Stenham, Campbell et al. 2003; Pleban, Kopp et al. 2005; Reyes 

and Chang 2005), which were the only available structures at this time. MsbA, the lipid 
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A flippase found in Gram-negative bacteria, was the first structure of a full length ABC-

transporter at 4.5 Å published in 2001 (Chang and Roth 2001). MsbA was crystallized 

as a homodimer of two monomers composed of an N-terminal TMD fused to a C-

terminal NBD. It shows an identical number of TM-helices and the protein sequence is 

36% and 32% identical to the N-terminal and C-terminal halves of human MDR1, re-

spectively (Altschul, Gish et al. 1990). The crystal structure was obtained in the absence 

of substrate and nucleotide, showed an inverted V-shape and was later referred to as the 

open apo structure. Subsequently, MsbA from V. cholerae was resolved to 3.8 Å 

(Chang 2003). In this structure the NBDs were much closer. Again this structure was 

obtained in the absence of solutes and nucleotide and termed closed apo structure. 

Availability of these structures seemed to open a path for protein homology modelling 

of P-gp (Ecker, Stockner et al. 2008). 

However, a homology model is an approximation of the structure and the exact posi-

tioning of the various domains may differ between template and target. 

 

2.4.3.1.2 Sav1866 as template crystal structure 

In September 2006 the crystal structure of a bacterial ABC transporter, Sav1866 from 

Staphylococcus aureus, was published (Dawson and Locher 2006). This first Sav1866 

structure has been resolved to 3.0 Å. The Sav1866 structure, as MsbA, is a 

homodimeric ABC transporter that is homologous to P-gp. Sav1866 was crystallized in 

the presence of two adenosine diphosphate (ADP) molecules bound at the interface of 

the NBDs, the P-loops and the ABC signature motifs of opposing subunits. The NBDs 

of the Sav1866 homodimer are similar in structure to those of other ABC transporters 

(Dawson and Locher 2006). These domains show conserved ATP-binding and -

hydolysis motifs at the shared interface in a head-to-tail arrangement (Schneider and 

Hunke 1998; Hopfner, Karcher et al. 2000; Smith, Karpowich et al. 2002). In 2007 the 

authors published the crystal structure of Sav1866 in complex with AMP-PNP (Dawson 

and Locher 2007). A comparison and superposition of both structures, the AMP-PNP-

bound Sav1866 and the ADP-bound Sav1866, indicated that these structures are essen-

tially identical and represent the ATP-bound state of the transporter. The apparently 

different structures of MsbA were indicated to be reconcilable with the Sav1866 when 

mirrored and under the assumption that the published topology of the MsbA structures 

was wrong. This consequently led to retraction of all three incorrect MsbA structures in 

the December 2006 issue of Science (Chang, Roth et al. 2006).  
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The overall architecture differs from the side-by-side arrangement of TMDs as observed 

for the ABC importers BtuCD (Locher, Lee et al. 2002), HI1470/1 (Pinkett, Lee et al. 

2007), ModB2C2 (Hollenstein, Frei et al. 2007), and MalFGK2 (Oldham, Khare et al. 

2007). In ABC exporters the TMDs interact with the helical domains of the NBDs 

through coupling helices that are located in the loops between TM helices (Rees, John-

son et al. 2009). One intracellular loop of each TMD makes contact with the contralat-

eral NBD. The coupling helices are domain swapped (Hollenstein, Dawson et al. 2007). 

The two subunits exhibit a considerable twist (Dawson and Locher 2006). 

The transmembrane helices of Sav1866 diverge into two discrete ‘wings’ which point 

away from one another towards the cell exterior of the membrane, providing what might 

be thought of as an outward-facing conformation. Helices from both TMDs contribute 

to form each of these two ‘wings’(Dawson and Locher 2006). The helix arrangement 

observed in Sav1866 is consistent, except for helices 6 and 12, with cross-linking stud-

ies which identified neighbouring TM helices in human P-gp (Dawson and Locher 

2006). Helices 6 and 12 are positioned closer to each other than in the Sav1866 crystal 

structure (Stockner, de Vries et al. 2009). The arrangement of the 12 canonical trans-

membrane helices observed for Sav1866 is in agreement with the ABC exporter topol-

ogy (Dawson and Locher 2006). Also, they are consistent with electron density maps of 

human P-gp and cross-linking restraints (Stenham, Campbell et al. 2003). The ATP-

bound state of the NBDs, with the two nucleotide-binding domains in close contact, is 

likely to be coupled to the outward-facing conformation of the TMDs. In this conforma-

tion the helices line a central cavity, which is open to the cell exterior.  

 

The three previously published structures from Escherichia coli (E. coli), Vibrio chol-

erae and Salmonella typhimurium were revised by the group of Chang. Now all models 

show the same topology as Sav1866 (Ward, Reyes et al. 2007). 

 

2.4.4 Architecture of the transmembrane subunits 

The crystal structures of five full ABC transporters have become available. Four of 

them are importers: The vitamin B12 transporter BtuCD from E. coli, the metal-chelate-

type transporter HI1470/1 from Haemophilus influenzae, the molybdate transporter 

ModBC from Archaeoglobus fulgidus in complex with its binding protein (ModA), and 

the maltose transporter MalFGK2 from E. coli in complex with the maltose-binding pro-

tein (MBP). ABC importers require a periplasmic or cell surface-associated substrate-
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binding protein that captures the substrates with high affinity and delivers them to the 

external face of the transporter (Quiocho and Ledvina 1996). Only the binding protein, 

not the transporter, binds the substrate. In contrast, ABC exporters recruit their sub-

strates directly from the cytoplasm or, in the case of very hydrophobic substrates, from 

the inner leaflet of the plasma membrane. After retraction of the incorrect MsbA struc-

tures, there are currently only two similar structures of ABC exporters, that of the mul-

tidrug transporter Sav1866 from S. aureus and that of the MsbA from V. cholerae.  

The E. coli BtuCD protein mediates vitamin B12 uptake. The BtuCD and the HI1470/1 

TMDs contain a total of 20 transmembrane α-helices (10 from each TMD) with the N 

and C termini located in the cytoplasm. This is in contrast to the 12 helices of P-gp. 

BtuCD shows a closed internal (cytoplasmic) gate which is formed by the intracellular 

loops between TM4 and TM5 of each BtuC subunit (Hollenstein, Dawson et al. 2007). 

In contrast, HI1470/1 consisting of two membrane-spanning HI1471 subunits and two 

nucleotide-binding HI1470 subunits reveals a closed external gate formed by the ex-

tracellular loops between TM5 and helix5a from each HI1471 subunit.  

The structure of ModBC shows a closed gate near the external side of the membrane. 

Each ModB subunit crosses the membrane 6 times for a total of 12 transmembrane 

segments in the transporter (Hollenstein, Dawson et al. 2007). The structure of the 

MalFGK2 shows five subunits: the two transmembrane subunits, MalF and MalG, com-

posing eight and six TM helices, the two nucleotide-binding MalK subunits, and MBP. 

The crystal structures of these transporters suggest at least two major states: an inward-

facing conformation with the substrate translocation pathway open to the cytoplasm, 

and an outward-facing with the translocation pathway facing the opposite side of the 

membrane (Oldham, Khare et al. 2007). While ModBC and HI1470/1 reveal inward-

facing conformations, BtuCD, MalFGK2 and Sav1866 adopt outward-facing states 

(Oldham, Khare et al. 2007). 

 

2.4.5 Transmission interface 

The NBD-TMD contact interface transmits critical conformational changes induced by 

binding and hydrolysis of ATP. These conformational changes are transmitted via non-

covalent interactions at the share interfaces. The region of the NBD that interacts with 

the TMD primarily involves the L loops (EAA sequence) of the TMDs (Mourez, Hof-

nung et al. 1997; Locher, Lee et al. 2002), and the Q loops (Smith, Karpowich et al. 

2002) and structurally diverse regions (Schmitt, Benabdelhak et al. 2003) of the NBDs, 
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that are in close proximity to each other and mediates the interactions between TMD 

and NBD. 

 

2.5 Mechanisms of transport 

There is no high-resolution crystal structure of a complete eukaryotic ABC exporter 

(complete structures of MalK and BtuCD have been published meanwhile). To gain a 

better understanding about domain-domain interactions in ABC transporters such as P-

gp, it will be necessary to obtain crystal structures of the protein in different conforma-

tions (Loo and Clarke 2008). A number of isolated nucleotide binding domains (NBDs) 

of ABC-transporters has been crystallized and studied in detail (Karpowich, Martsinke-

vich et al. 2001; Schmitt and Tampe 2002; Procko, Ferrin-O'Connell et al. 2006; Sauna 

and Ambudkar 2007). But to understand binding of solutes to the TMDs and the trans-

port process of multispecific drug efflux pumps remains a major scientific challenge. 

Drug binding to P-gp involves an induced-fit mechanism (Loo, Bartlett et al. 2003), 

such that binding of substrate or inhibitor may change the structure of P-gp and thus 

complicate the interpretation of crystallography studies. 

In early studies of bacterial ABC transporters many different groups have published the 

link between substrate transport and ATP-binding and hydrolysis at the NBDs (Hobson, 

Weatherwax et al. 1984; Higgins, Hiles et al. 1985; Bishop, Agbayani et al. 1989; 

Mimmack, Gallagher et al. 1989; Panagiotidis, Reyes et al. 1993). 

 

2.5.1 How is the transport process powered? 

The mechanism how transport is mediated is very complex. 

Binding of ATP flips the ABC transporters into an outward-facing conformation, 

whereas dissociation of the hydrolysis products ADP and phosphate returns them to an 

inward-facing conformation (reviewed in (Dawson, Hollenstein et al. 2007)). Confor-

mational changes in the NBDs, induced by binding and hydrolysis of ATP along the 

dimer interface are coupled to conformational changes in the TMDs that then mediate 

transport of substrate. 
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2.5.2 Motor domains NBDs 

The motor domains of ABC transporters, the NBDs, are between 200 and 300 amino 

acids in length and contain a number of conserved motifs (Schneider and Hunke 1998; 

Dawson, Hollenstein et al. 2007). The Walker A motif has a consensus sequence of 

GxxGxGKST, where x represents any amino acid; the Walker B motif consists of four 

hydrophobic amino acids followed by two negatively charged residues, aspartate and 

glutamate (Walker, Saraste et al. 1982). The Walker A motif binds the phosphate 

groups of the nucleotide. The aspartate residue of the Walker B motif coordinates the 

Mg2+ ion through H2O (Karpowich, Martsinkevich et al. 2001; Yuan, Blecker et al. 

2001; Verdon, Albers et al. 2003) and the glutamate residue of the Walker B motif 

binds to the attacking water and the Mg2+ ion (Moody, Millen et al. 2002; Smith, Kar-

powich et al. 2002). The ABC signature motif also contacts the nucleotide, but only in 

the ATP-bound state, and the Q-loop is in the contact interface with the TMD. Both, the 

general fold and the arrangement of the NBDs are conserved. The NBDs present these 

motifs at the shared interface. The arrangement of the NBDs is called head-to-tail or 

Rad50-like after the structure of the Rad50 protein in which it was first visualized 

(Hopfner, Karcher et al. 2000). They face each other across a dimer with the following 

orientation: two composite ATP binding sites are formed between the P-loop (Walker A 

motif) of one NBD and the LSGGQ motif (C-sequence) of the other and vice versa 

(Jones and George 1999). A number of isolated NBDs or subunits have been crystal-

lized (Diederichs, Diez et al. 2000; Hopfner, Karcher et al. 2000; Gaudet and Wiley 

2001; Karpowich, Martsinkevich et al. 2001; Yuan, Blecker et al. 2001; Smith, Kar-

powich et al. 2002; Chen, Lu et al. 2003; Lu, Westbrooks et al. 2005) since the first 

structure, the HisP protein from Salmonella typhimurium (Hung, Wang et al. 1998) was 

published. Many soluble ABCs have solute-independent ATPase activity when isolated 

from their cognate TM domains (Liu, Liu et al. 1999; Karpowich, Martsinkevich et al. 

2001), proposing that ATP interacts primarily with the NBDs. The structures of the 

ATP-bound state of isolated NBDs which include both importers and exporters have 

been reported. 

 

2.5.3 How are solutes transported 

P-gp transports substrates which passively diffuse across the lipid bilayer and enter the 

cytoplasm. 
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Various distinct mechanisms have been proposed in the literature for coupling of drug 

transport to ATP hydrolysis. 

Early studies of the mammalian multidrug resistance P-gp by Alan Senior’s group de-

fined the biochemistry of the ATPase cycle and proposed the alternating catalytic site 

model with drug transport linked to relaxation of a high-energy NBD conformation 

generated by ATP hydrolysis (Senior, al-Shawi et al. 1995). In addition, these studies 

showed that the two catalytic sites are both required for transport function (Figure 2.2).  

 

Figure 2.2: Alternating catalytic sites cycle of ATP hydrolysis by P-gp (adapted from (Senior, al-

Shawi et al. 1995)). Rectangels represent the two TMDs. Circels, squares and hexagon represent 

different conformations of the N- and C-catalytic sites of NBD1 and NBD2. ATP binding at the N-

site allows ATP hydrolysis at the C-site. 

 

Subsequently, several related models for transport appeared (Senior and Gadsby 1997; 

Nikaido and Ames 1999; van Veen, Margolles et al. 2000; Sauna and Ambudkar 2001) 

for other transporters. These models assumed that the two NBDs which hydrolyze ATP, 

thus supplying the energy for translocation, operate alternately and may therefore be 

coupled to distinct steps in the transport cycle (Higgins and Linton 2004).  

The recent availability of structural data in combination with biochemical and genetic 

studies of several ABC transporters have led to the ATP-switch model of function (Hig-

gins and Linton 2004; Linton and Higgins 2007). 
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2.5.4 The catalytic cycle of P-gp - The ATP-switch model  

The ATP-switch model involves communication via conformational changes in both 

directions, between the NBDs and TMDs (Higgins and Linton 2004). This model sug-

gests a switch between two principal conformations of the NBDs:  

• formation of a closed dimer formed by binding two ATP molecules at the dimer 

interface, and 

• dissociation of the closed dimer to an open dimer facilitated by ATP hydrolysis 

and release of Pi and ADP. 

Switching between the open and closed conformations of the dimer induces conforma-

tional changes in the TMDs necessary for transport of substrate across the membrane 

(Higgins and Linton 2004). 

The model consists of four steps (see also (Higgins and Linton 2004)) (Figure 2.3): 
 

Step one: Substrate binding to P-gp 

The basal state of P-gp has low affinity for ATP, and the NBDs are in the open dimer 

configuration. The binding site for the transport substrate on the TMDs is accessible 

from the cytoplasmic face of the membrane. Transport substrate binding to its high-

affinity binding site(s) on the TMDs of P-gp initiates the transport cycle. There are sev-

eral studies which appear to show that this is the first step in the transport cycle. 

Petronilli et al. (Petronilli and Ames 1991) and Davidson et al. (Davidson, Shuman et 

al. 1992) generated mutant proteins of bacterial ABC NBDs HisP and MalK in which 

the ATPase activity of the transporter is uncoupled from periplasmic protein binding, 

leading to futile cycles of ATP hydrolysis.  

Binding of the transport substrate induces a conformational change which is transmitted 

to the NBDs to initiate the ATP catalysis cycle. Several studies have shown substrate-

induced conformational changes in the NBDs of P-gp (Liu and Sharom 1996; Son-

veaux, Vigano et al. 1999), TAP (Neumann, Abele et al. 2002), MRP1 (Manciu, Chang 

et al. 2003), and the bacterial histidine (Kreimer, Chai et al. 2000) and maltose per-

meases (Mannering, Sharma et al. 2001). 

 

Step two: ATP binding to P-gp 

The second step in the transport cycle, the ATP binding, provides the energy input re-

quired for translocation of the drug from the inner leaflet of the membrane to the outside 
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of the cell. ATP binding induces closed NBD dimer formation and a major conforma-

tional change in the TMDs to initiate translocation. 

Martin and colleagues used radioligand-binding techniques to characterize vinblastine 

interaction sites on P-gp and determine how drug binding site parameters are altered 

during a catalytic cycle of P-gp (Martin, Berridge et al. 2000; Martin, Berridge et al. 

2000; Martin, Higgins et al. 2001). The authors showed that the binding capacity for 

vinblastine on P-gp decreased when the protein was incubated with the non-

hydrolyzable ATP analogues AMP-PNP (Martin, Higgins et al. 2001) and ATP-γ-S 

(Martin, Berridge et al. 2000). These data suggest that ATP binding, in the absence of 

ATP hydrolysis, causes the initial shift to a low-affinity conformation of the drug bind-

ing site. Studies by van Veen et al. showed the presence of two vinblastine binding sites 

in the bacterial LmrA transporter, a homolog of P-gp: A low-affinity binding site ex-

posed at the extracellular (outside) surface of the membrane and a high-affinity binding 

site exposed at the intracellular (inside) surface of the membrane (van Veen, Margolles 

et al. 2000). Only the low-affinity binding site is accessible for vinblastine in the 

ADP/vanadate-trapped LmrA protein which corresponds to a posthydrolysis situation. 

These data suggest that ATP binding or hydrolysis provides the conformational change 

by which the transport substrate is translocated to the outside of the cell. 

 

Step three: ATP hydolysis 

ATP hydrolysis, the trigger is unknown, initiates the transition of the NBD closed dimer 

to the open dimer and returns the transporter to its basal state (Higgins and Linton 

2004). Many groups used the technique of vanadate trapping with 8-azido-ATP or 8-

azido-ADP to obtain a posthydrolytic transition state when studying the catalytic sites 

of P-gp (Urbatsch, Sankaran et al. 1995; Urbatsch, Sankaran et al. 1995; Sharma and 

Davidson 2000; Payen, Gao et al. 2003; Urbatsch, Tyndall et al. 2003). The ATPase 

activity is inhibited by vanadate. 

 

Step four: Restore P-gp to the basal state 

Pi and then ADP are released and the protein is ready to initiate another transport cycle. 
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Figure 2.3: The ATP-switch model for the transport cycle of vinblastine by P-gp (adapted from 

(Linton and Higgins 2007)).  

 

2.5.5 Binding of solutes to TMDs 

2.5.5.1 Photolabelling of P-gp with substrate analogues 

In our group photolabelling of P-gp has been used in combination with high resolution 

mass spectrometry to identify helices involved in binding of propafenone analogues 

(Pleban, Kopp et al. 2005). Six photoaffinity ligands of different mass related to the 

compound propafenone were used to photolabel P-gp by irradiation at a wavelength of 

340-360nm. These compounds have previously been shown to be P-gp substrates and 

inhibitors (Chiba, Ecker et al. 1996; Schmid, Ecker et al. 1999). After irradiation, P-gp 

was purified by SDS-polyacrylamide gel electrophoresis and proteolytically degraded 

by chymotrypsin digestion. Ligand-labeled peptides were identified by matrix-assisted 

laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The mass 

spectrum shows masses corresponding to component peptide fragments with covalently 

bound ligand, which can be identified and aligned. Peptide fragments which are cova-

lently modified by the photoligand shift from their original position in the mass spec-

trum to an m/z position, which is increased by the ligand mass (Ecker, Pleban et al. 
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2004). The photoaffinity labelling allowed the identification of four TM helices, TMs 3, 

5, 8 and 11, indicating that these four TM segments are involved in the substrate-

binding event (Pleban, Kopp et al. 2005). These helices are located at the TMD/TMD 

interfaces. The highest labelling scores were observed for residues M197 in TM3 and 

F951 in TM11, and A311 in TM5 and T769 in TM8 for the TM 5/8 interface (Figure 

2.4). In addition, methionine residues which have been reported to show a preferred 

reaction with benzophenone-type ligands (Rihakova, Deraet et al. 2002) are shown as 

red crosses. A number of methionine residues were not labeled and thus inaccessible for 

the photoligands (Pleban, Kopp et al. 2005). The ability of benzophenones to react with 

aliphatic residues was reported by Dorman et al. (Dorman and Prestwich 2000). 

 

 

Figure 2.4 Frequency distribution analysis of photolabeling (adapted from (Pleban, Kopp et al. 

2005)). The number of labeled fragments in which each particular amino acid residue in the pri-

mary sequence of P-gp is found is plotted as a function of this amino acid position. Predicted TM 

segments are shown in magenta, and the remainder of the sequence is in black. For easier orienta-

tion, a schematic representation is shown below the graph. TMDs 1 and 2 represent the N-terminal 

and C-terminal transmembrane domains, and the motor domains NBD1 and NBD2 are shown in 

blue. The linker region is indicated in gray, and the C-terminal hexa-His tag is depicted in black. 

The positions of methionine residues are highlighted by red symbols (x). The highest labeling is 

observed for putative TMs 3, 5, 8, and 11. In addition, the loop region connecting TMs 9 and 10 

(extracellular loop 5) has a high labeling score. 

 

In our group a protein homology model of P-gp was generated to allow projection of 

labelling data on a 3 dimensional model of the protein using the crystal structure of V. 

cholerae MsbA as template (Pleban, Kopp et al. 2005). A side and top view of the ho-
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mology model of P-gp is shown in Figure 2.5. At this time the crystal structure of MsbA 

was the only available template structure. 

 

 

 

Figure 2.5 Side and top view of a P-gp homology model based on the V. cholerae MsbA structure 

(adapted from (Pleban, Kopp et al. 2005)). The N-terminal half of P-gp is depicted in dark blue, the 

C-terminal half is in cyan. Residues with the highest labelling are shown in yellow and red. Met197 

in TM3 and Phe951 in TM11 are depicted in yellow. These residues are located on different halves 

of P-gp and thus, helices 3 and 11 contribute to one of the two TMD/TMD interfaces. Ala311 in 

TM5 and Thr769 in TM8 are depicted in red and are located at the other TMD/TMD interface. 

 

These studies suggested the existence of two pseudosymmetric binding pockets at the 

two TMD/TMD interfaces. 

 

2.6 Objectives of the thesis 

An important goal in understanding the mechanism of drug transport has been to iden-

tify the locations of the drug-binding sites of P-gp. Presently, the location of the drug 

binding sites of multispecific drug efflux transporters is undefined because of the lack 

of high resolution structures of ABC-transporters with bound substrate. Thus, alterna-

tive approaches are needed to provide insight into the structure and function of P-gp.  
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The aim of this project was the identification and characterization of TMD1/TMD2 con-

tact interface residues, which are important for transport of solutes. Functional assays 

were performed with P-gp mutants, in which the TMD1/TMD2 contact interface resi-

dues were mutated to residues other than cysteine by site directed mutagenesis based on 

overlap extension polymerase chain reaction (OE-PCR). The mutational concept was 

guided by photoaffinity labelling, availability of protein homology models, in-silico 

importance prediction of residues by real valued evolutionary trace (JMB 2003) and 

data-driven docking results (JACS 2004, HADDOCK) based on previous site-directed 

mutagenesis data. Thus, hypothesis driven generation of P-gp mutants with amino acid 

residues that will be tolerated in the protein to obtain a high number of correctly tar-

geted and functional transporters was performed. 

Another aspect of this project was correction of protein folding in mutants by pharma-

cological chaperones. Mutations often result in folding abnormalities, which lead to the 

newly synthesized protein being retained at the endoplasmic reticulum (ER) by the ER 

quality control machinery. 

 

Objective 1: Identification of amino acid residues in the protein, which are important for 

transport. TMD1/TMD2 contact interface residues were mutated to residues other than 

cysteine. 

A large number of functionally important P-gp residues within the TMDs have previ-

ously been identified by systematic site directed mutagenesis experiments in both hu-

man and mouse P-gp. The group of David Clarke exchanged every single residue in 

predicted transmembrane segments of human P-gp to cysteine by using a site directed 

mutagenesis approach. The protein contains only seven endogenous cysteine residues, 

all of them were mutated to alanine (Loo and Clarke 1995) resulting in an active cys-

teine-less P-gp. Residues that line TMD1/TMD2 contact interfaces have been identified 

to impair function when mutated to cysteines and reacted with cysteine reactive sub-

strate molecules. A large number of those residues are known to participate in drug 

transport as demonstrated by mutagenesis and solute cross-linking experiments (Loo 

and Clarke 2005). 

 

Objective 2: Influence of pharmacological chaperones on protein folding. 

Many mutants do not correctly traffic to the plasma membrane. Proteins which are un-

able to adopt a stable conformation because of a specific mutation or aberrant glycosy-
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lation are trapped in the ER (Welch and Brown 1996). These proteins are targeted to a 

degradative pathway. Different chaperones interact with unfolded or misfolded proteins 

to allow the protein to pass the secretory pathway (Brown, Hong-Brown et al. 1996). 

Two glutamine residues (Q132 and Q773) of P-gp are located at the domain interfaces. 

It was considered possible that these glutamine residues if mutated to other amino acids 

cause the protein to be retained in the ER. The mutant protein would then be degraded 

rapidly. P-gp has been reported to be a good model system for the study of folding de-

fects and action of pharmacological chaperones. It is possible to monitor cell surface 

expression of the transporter using a P-gp-specific antibody and flow cytometry. 

  

2.6.1 Rational selection of residues 

Why glutamine residues? Is it rational to mutate the glutamine residues at the position 

132 and 773?  

The glutamine residues are:   

 a. highly conserved  

 b. located at the interfaces  

 c. predicted by in-silico docking to contribute highest energy to interaction with 

 propafenone analogues 

d. located in the vicinity of amino acids showing high labelling with photoaffin-

ity ligands  

 

Alignments of the N- and C-terminal half of P-gp  

Sequence alignments of the amino- and carboxy-terminal half of P-gp indicate two con-

served glutamine (Q) residues in positions 132 and 773 (shown in Figure 2.6). Q773 is 

the only residue in helix 8 other than G763 that is conserved between helix 2 and helix 

8.  

 

Figure 2.6: Partial sequence alignments of TMs 2 and 8 of the N- and C-terminal half of P-gp. The 

transmembrane segments are highlighted in turquoise. Glutamine residues at positions 132 and 773 

are shown in red. 
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Position of the glutamine resisdues at each of the TMD/TMD interfaces 

Position of the glutamine residues Q132 and Q773 at each of the TMD/TMD interfaces 

are shown in Figure 2.7. 

 

Figure 2.7: Top view (A) and side view (B) of the P-gp model (generated in our group with VMD 

1.85). TMDs are only shown (NBDs omitted). The N-terminal half of P-gp is depicted in yellow, the 

C-terminal half is in grey. Residues M197 (TM3), A311 (TM5), T769 (TM8), and F951 (TM11) have 

been shown to be highly accessible for photoaffinity ligands. Gludamine residues Q132 (TM2) and 

Q773 (TM8) are shown in red. The TM5/TM8 interface is highlighted by a yellow circle. 

 

Data-driven docking of propafenones to each of the interfaces 

To gain additional insights into the binding mechanism of drugs to P-gp, computational 

docking was used to generate structural models. High Ambiguity Driven DOCKing 

(HADDOCK) was initially developed as a protein-protein docking tool (Dominguez, 

Boelens et al. 2003). HADDOCK has been used in a large number of studies, including 

protein-protein docking (van Dijk, de Vries et al. 2005; van Dijk, Fushman et al. 2005; 

Volkov, Ferrari et al. 2005; de Vries, van Dijk et al. 2006), protein-peptide docking 

(Tzakos, Fuchs et al. 2004; Denisov, Chen et al. 2006), protein-DNA docking (van Dijk, 

van Dijk et al. 2006), protein-RNA docking (Volpon, D'Orso et al. 2005) and protein-

ligand docking (Schieborr, Vogtherr et al. 2005). The data-driven docking program 

HADDOCK, developed and performed by the group of Alexandre Bonvin, was used to 

study binding of propafenone analogues to P-gp. HADDOCK distinguishes between 

active and passive residues. Information derived from photoaffinity labelling and site 
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directed mutagenesis is complemented by data-driven docking. Protein-ligand contact 

profiles identified two glutamine residues, Q132 in TM2 and Q773 in TM8 adopting 

identical positions in sequence alignments of the amino- and carboxy-terminal half of P-

gp, at each of the interfaces as privileged interaction partners. 

 

 

Figure 2.8: TM 3/11 interface (generated by Sjoerd de Vries in Dr. Alexandre M.J.J. Bonvin’s 

group at Utrecht University): One pose of the most highly ranked cluster is shown. H-bonding con-

tacts with Q132 in TM2 are predicted. The most highly accessible residues for propafenone photo-

ligands (residues M197 in TM3 and F951 in TM11) are in close proximity of the ligand, though a 

bias for these residues is not introduced during the docking procedure. 
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Figure 2.9: TM 5/8 interface (generated by Sjoerd de Vries in Dr. Alexandre M.J.J. Bonvin’s group 

at Utrecht University): Two individual poses of the most highly ranked cluster are shown. The 

movements occurring during the flexible refinement stage of docking are illustrated by different 

backbone and rotamer positions. The two ligands are shown in different coloring. In both poses the 

ligand makes two H-bonding contacts with residue Q773 in TM8 and an aromatic stacking interac-

tion with residue Y307 in TM5. The photolabelled residues A311 in TM5 and T769 in TM8 are 

again in close proximity of the ligand. 

 

Determination of sequence variation 

Evolutionary variation in both, Q132 and Q773, positions is low as indicated by multi-

ple sequence alignments of P-gp sequences of different species using real valued evolu-

tionary trace (rvET) (Mihalek, Res et al. 2004) (http://mammoth.bcm.tmc.edu). Genera-

tion of mutants was guided by the mutational space explored by nature. 

 

 

The central objective of this work was to study the functional biology of P-glycoprotein 

by combining site directed mutagenesis and direct transport assays. The influence of the 

mutations on function was measured by drug accumulation assays in whole cells. 
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3 Materials and methods 

 

3.1 Chemicals and reagents 

10mM dNTP Mix (Fermentas, Cat. No. R0191) 

2mM dNTP Mix (Fermentas, Cat. No. R0241) 

Ampicillin (Sigma, Cat. No. A9518) 

C219 (Eubio, Austria, Cat. No. ALX 801002) 

Goat anti-mouse Ig FITC (BectonDickinson, Cat. No. 349031) 

Gateway® LR ClonaseTM Enzyme Mix (Invitrogen, 20 reactions Cat. No. 11791-019) 

GenEluteTM Plasmid Miniprep Kit (Sigma, Cat. No. PLN350) 

GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Cat. No. 27-

9602-01) 

Gentamicin (Invitrogen, Cat. No. 15750-060) 

HiSpeed® Plasmid Midi Kit (QIAGEN, Cat. No. 12643) 

Isopropyl-ß-thiogalactopyranoside (IPTG) (Invitrogen, Cat. No. 15529-019) 

Hygromycin B (Invitrogen, Cat. No. 10687-010) 

IgG2a (BectonDickinson, Cat. No. 340394) 

iScriptTMcDNA Synthesis Kit (BioRad, 25 reaction kit Cat. No. 170-8890) 

Kanamycin (Gibco, Cat. No. 11815-024) 

LipofectamineTM 2000 (Invitrogen, Cat. No. 11668-027) 

MRK 16, monoclonal antibody to P-glycoprotein, (Alexis Biochemicals, Cat. No. 801-

008-C150) 

PageRulerTM Prestained Protein Ladder (Fermentas, Cat. No. SM0679) 

Platinum Taq polymerase (5units/µl) (Invitrogen, Cat. No. 10966-018) 

Pfu DNA Polymerase, native and 10x PCR Buffer with MgSO4 (Fermentas, Cat. No. 

EP0571) 

Rapid DNA Ligation Kit (Fermentas, Cat. No. K1422) containing T4 DNA Ligase 

(5u/µl), 5x Rapid Ligation Buffer and water (nuclease-free) 

Restriction endonucleases (Fermentas): BamHI (Cat. No. ER0051) 

      SalI (Cat. No. ER0641) 

      XbaI (Cat. No. ER0685) 

      XhoI (Cat. No. ER0691) 

      EcoRI (Cat. No. ER0271) 
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Rhodamine 123 (Sigma, Cat. No. R8004) 

Tetracycline (Sigma, Cat. No. T3258) 

TRIzol® Reagent (Invitrogen, Cat. No. 15596-026) 

X-Gal (Sigma, Cat. No. B9146) 

 

3.2 Solutions 

Solutions were made using de-ionised or ultra-pure water. 

Sterilisation was carried out by autoclaving at 125°C for 20 minutes, or by filtration 

using a 0.2 µm filter (Millipore, SLGS03355). 

 

3.3 Chemical structures of compounds 

The following chemicals were used in this work: 
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Figure 3.1: Structure of Cyclosporin A. Formula: C62H111N11O12; Molecular Weight: 1202.61  
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Figure 3.2: Structure of GPV01. Formula: C21H27NO3; Molecular Weight: 341.44 
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Figure 3.3: Structure of GPV31. Formula: C28H31FN2O3; Molecular Weight: 462.56 

 

 

 

 

 



 

 30 

O

O

OH

N

CH3

CH3

 

Figure 3.4: Structure of GPV51. Formula: C20H25NO3; Molecular Weight: 327.42 
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Figure 3.5: Structure of rhodamine 123. Formula: C21H17ClN2O3; Molecular Weight: 380.82  
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Figure 3.6: Structure of verapamil. Formula: C27H38N2O4; Molecular Weight: 454.6. 

 
GPV01, GPV31 and GPV51 are propafenone analogues which were synthesized ac-

cording to published procedures (Chiba, Burghofer et al. 1995; Chiba, Ecker et al. 

1996). Stock solutions were prepared in pure DMSO and the final DMSO concentration 

did not exceed 0.2% (v/v). 
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3.4 Microbiology 

3.4.1 Bacterial strains 

One shot® TOP10, one shot® DB3.1, one shot® 
ccdB Survival T1 Phage-Resistant cells 

and MAX efficiency® DH10BacTM chemically competent E. coli cells were supplied by 

Invitrogen.  

 

Library Efficiency® DB3.1TM Chemically Competent E. coli Cells (Cat. No. 11782-018) 

Genotype 

F- gyrA463 endA1 ∆(sr1-recA) mrcB mrr hsdS20(rB
-, mB

-) supE44 ara14 galK2 lacY1 

proA2 rpsL20(Smr) xyl5 ∆leu mtl1 

 

One Shot® TOP10 Chemically Competent E. coli Cells (Cat. No. C4040-03) 

Genotype 

F- mrcA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara-

leu)7697 galU galK rpsL (StrR) endA1 nupG  

 

One shot® 
ccdB Survival T1 Phage-Resistant Chemically Competent E. coli Cells (Cat. 

No. C7510-03) 

Genotype 

F- mrcA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 ara ∆139 ∆(ara, 

leu)7697 galU galK rpsL (StrR) endA1 nupG tonA::Ptrc-ccdA 

 

MAX Efficiency® DH10BacTM Chemically Competent E. coli Cells (Cat. No. 10361-

012) 

Genotype 

F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 endA1 araD139 

∆(ara, 

leu)7697 galU galK λ- rpsL nupG/bMON14272/pMON7124 

 

The DB3.1 E. coli strain contains a gyrase mutation (gyrA643) that renders it resistant 

to CcdB effects and can support the propagation of plasmids containing the control of 

cell death (ccd)B gene (Bernard and Couturier 1992; Miki, Park et al. 1992; Bernard, 

Kezdy et al. 1993). The ccdB Survival T1 Phage-Resistant E. coli cells are also resistant 

to the CddB effects. 
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3.4.2 Bacterial culture medium, culture and storage 

Lysogeny broth (LB)-Bouillon: Peptone from casein 10 g/l, yeast extract 5.0 g/l, 

sodium chloride 10 g/l  (MERCK, Darm-

stadt, Germany, Cat. No. 1.10285.0500); stored at 

room temperature 

LB agar: Peptone from casein 10 g/l, yeast extract 5.0 g/l, 

sodium chloride 10.0 g/l, Agar-agar 12.0 g/l 

(MERCK, Darmstadt, Germany, Cat. No. 

1.10283.0500); stored at room temperature 

S.O.C. medium: 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM 

glucose (Invitrogen, Cat. No. 15544-034); stored at 

room temperature 

 

Selection media: 

Solid or liquid growth media were supplemented with kanamycin to a final concentra-

tion of 50µg/ml kanamycin or with ampicillin to a final concentration of 100µg/ml or 

with kanamycin (50 µg/ml), gentamicin (7 µg/ml), tetracycline (10 µg/ml), X-Gal (100 

µg/ml) and IPTG (40 µg/ml).  

 

LB agar plates containing the appropriate antibiotic to select for the vector were stored 

at 4°C for approximately 2 weeks, liquid selection media were always prepared fresh. 

Bacteria were grown in liquid media with shaking (300rpm), or on plates in an incuba-

tor, at 37°C. For long-term storage bacteria were frozen at -80°C in a mixture of 850 µl 

LB medium and 150 µl glycerol. 
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3.5 Moleculare Biology 

3.5.1 Plasmids 

All plasmids used in this study were purchased from Invitogen.  

Product Amount Catalog no. 

pEF5/FRT/V5-DEST GatewayTMVector 6 µg V6020-20 

pENTRTM4 10 µg 11818-010 

pDESTTM8 6 µg 11804-010 

pOG44 20 µg V6005-20 

pENTRTM/SD/D-TOPO® Cloning Kit 20 reactions K2420-20 

 

The entry vector, pENTR4 and both destination vectors, pEF5/FRT/V5-DEST and 

pDEST8, are components of the Gateway® Technology system (Invitrogen). The Gate-

way® Technology cloning method is based on the site-specific recombination properties 

of the bacteriophage lambda (Landy 1989) (Invitrogen 2003). The site-specific recom-

bination properties of this bacteriophage provide a rapid and efficient way of moving 

the coding sequence into multiple vector systems in a directional and specific way for 

functional analysis and protein expression (Hartley, Temple et al. 2000). The lambda 

site-specific recombination system facilitates integration of the lambda genome into the 

E. coli chromosome and switches between the lytic and lysogenic pathways (Invitrogen 

2003). The components of the lambda recombination system are modified to improve 

the specificity and efficiency of the system (Bushman, Thompson et al. 1985; Invitro-

gen 2003). 

 

The pENTR4 vector contains a multiple cloning site, rrnB transcription termination 

sequences preventing basal expression of the PCR product in E. coli, the kanamycin 

resistance gene for selection in E. coli, the pUC origin for high-copy replication and 

maintenance of the plasmid in E. coli, and a Kozak consensus sequence for efficient 

translation initiation in eukaryotic systems (Invitrogen 2004). In addition, the pENTR4 

vector has attachment (att) L sites (100 bps) and is used to clone restriction fragments, 

which do not contain att sites to generate entry clones. A ccdB gene is located between 

the two attL sites for negative selection (Invitrogen 2004). Before cloning, the pENTR4 

vector must be digested on each site of the ccdB gene for removing the ccdB gene. The 

att sites, attL1 and attL2, allow site-specific recombination of the entry clone with a 
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destination vector (pEF5). The destination vector contains attR sites (125 bps), attR1 

and attR2, and recombines with the entry clone in a LR reaction to generate an expres-

sion clone containing attB sites (25 bps). Therefore, attL1 sites react only with attR1 

sites and attL2 sites react only with attR2 sites (Invitrogen 2003). The recombination 

reaction is mediated by the LR ClonaseTM Enzyme Mix (Invitrogen, 20 reactions, Cat. 

No. 11791-019). The LR Clonase Enzyme Mix is a mixture of enzymes that bind to 

specific sequences (att sites), bring together the target sites, cleave them, and covalently 

attach the DNA using a lytic pathway (Invitrogen 2003). The lytic pathway is catalyzed 

by bacteriophage lambda Integrase (Int) and Excisionase (Xis) proteins, and the E. coli 

Integration Host Factor (HIF) protein (Invitrogen 2003).  

 

LR recombination reaction: 

Component Sample 

Entry clone (100-300 ng/reaction) 0.5-2 µl 

Destination vector (300 ng/reaction) 2 µl 

5x LR Clonase Reaction Buffer 2 µl 

TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA To 8 µl 

 

2 µl of the LR Clonase Enzyme Mix were added to each sample which was then vor-

texed briefly. The LR recombination reaction was incubated for 1 hour at 25°C. After 

incubation 1 µl Proteinase K was added and the samples reincubated for 10 minutes at 

37°C. Then 2 µl of each reaction were transformed into 50 µl of One Shot TOP10 

Chemically Competent Cells in an Eppendorf tube and incubated 30 minutes on ice. 

The cells were heat-shocked by incubating at 42°C for 30 seconds and placed on ice for 

approximately 2 minutes. After cooling, 250 µl S.O.C. medium was added and the tubes 

were incubated at 37°C for 1 hour at 300 rpm in a shaking thermoblock (Eppendorf 

Thermomixer comfort). Finally, the cells were spread on LB plates containing 100 

µg/ml Ampicillin and incubated overnight at 37°C. The generated clones were screened 

by size exclusion and restriction enzyme digestion. 

 

The first cloning experiments were done using the pENTR/SD/D-TOPO vector to clone 

PCR products containing no att sites to generate entry clones. The forward primer has to 

be designed in a manner that allows the ATG initiation codon of the PCR product to 

directly follow the CACC sequence being the prerequisite for directional cloning (Invi-
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trogen 2006). These 4 nucleotides pair with the overhang sequence GTGG in each 

pENTR TOPO vector (Invitrogen 2006). Mixing the PCR product and pENTR TOPO 

vector starts the TOPO Cloning Reaction resulting in an entry clone. Unfortunately, the 

insert always proofed to be either too short or in the reverse orientation.  

 

The pEF5 destination vector contains the following components (see also (Invitrogen 

2002)): 

• human EF-1alpha promoter for high-level expression of mammalian cells 

• T7 promoter 

• two recombination sites, attR1 and attR2 

• chloramphenicol resistance gene located between the two attR sites for coun-

terselection 

• ccdB gene between the two attR sites 

• bovine growth hormone (BGH) polyadenylation sequence for proper termination 

and processing of the recombinant transcript 

• FLP Recombination Target (FRT) for Flp recombinase-mediated integration of 

the vector into Flp-InTM host cell line 

• hygromycin resistance gene that lacks a promoter and an ATG initiation codon, 

therefore transfection of the pEF5 vector alone into mammalian host cells will 

not confer hygromycin resistance to the cells 

• pUC origin  

• the ampicillin (bla) resistance gene for selection in E. coli 

• SV40 early polyadenylation signal for efficient transcription termination and 

polyadenylation of mRNA 

 

The pEF5 vector allows high-level, constitutive expression of a coding sequence in a 

variety of mammalian hosts using the Flp-InTM system. 
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Figure 3.7: The map of the pENTR4 vector. Enzymes with unique restriction sites are shown, en-

zymes with two or more restriction sites are not shown. KanR: Kanamycin resistance gene, T1: 

rrnB T1 transcription termination sequence, T2: rrnB T2 transcription termination sequence 

 
 

 
Figure 3.8: The map of the pENTR4MDR1 vector. Enzymes with unique restriction sites are 

shown, enzymes with two or more restriction sites are not shown. KanR: Kanamycin resistance 

gene, T1: rrnB T1 transcription termination sequence, T2: rrnB T2 transcription termination se-

quence 
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Figure 3.9: The map of the pEF5 vector. Enzymes with unique restriction sites are shown, enzymes 

with two or more restriction sites are not shown. AmpR: Ampicillin resistance gene, BGH pA: Bo-

vine growth hormone polyadenylation sequence, CmR: Chloramphenicol resistance gene, FRT: 

FLP Recombination Target site, HygromycinR: Hygromycin resistance gene, PEF-1 alpha: EF-

1alpha promoter, SV40 pA: SV40 early polyadenylation signal 

 
Figure 3.10: The map of the pEF5MDR1 vector. Enzymes with unique restriction sites are shown, 

enzymes with two or more restriction sites are not shown. AmpR: Ampicillin resistance gene, BGH 

pA: Bovine growth hormone polyadenylation sequence, FRT: FLP Recombination Target site, 

HygromycinR: Hygromycin resistance gene, PEF-1 alpha: EF-1alpha promoter, SV40 pA: SV40 

early polyadenylation signal 
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Figure 3.11: The map of the pOG44 vector. Enzymes with unique restriction sites are shown, en-

zymes with two or more restriction sites are not shown. Amp: Ampicillin resistance gene, PCMV: 

human cytomegalovirus immediate-early enhancer/promoter, SV40 pA: SV40 late polyadenylation 

signal 

 

The pDESTTM8 vector has the following features (see also (Invitrogen 2004): 

• Polyhedrin gene promoter from Autographa californica multi nuclear polyhe-

drosis virus (AcMNPV) for high-level expression of the gene of interest (Possee 

and Howard 1987). 

• Mini-Tn7 elements for site-specific transposition into the bacmid DNA propa-

gated in E. coli (Luckow, Lee et al. 1993). 

•  Two recombinates sites, attR1 and attR2 

• Chloramphenicol resistance gene located between the two attR sites for coun-

terselection 

• ccdB gene between the two attR sites 

• The ampicillin (bla) resistance gene for selection in E. coli 

• The gentamicin resistance gene for selection of transformants containing recom-

binant bacmid DNA 

• SV40 early polyadenylation signal for efficient transcription termination and 

polyadenylation of mRNA 

• pUC origin  
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With the pDEST8 vector the gene of interest can be moved into a bac-to-bac baculovi-

rus expression system. The Bac-to-Bac baculovirus expression system is a rapid and 

efficient method to generate recombinant baculoviruses based on the site-specific trans-

position properties of the Tn7 transposon (Luckow, Lee et al. 1993) (Invitrogen 2004). 

The DH10BacTM E. coli host strain contains a baculovirus shuttle vector (bacmid) and a 

helper plasmid and allows generation of a recombinant baculovirus for high-level ex-

pression of the gene of interest in insect cells (Invitrogen 2004). The baculovirus shuttle 

vector propagates in the DH10Bac E. coli as a large plasmid which confers resistance to 

kanamycin and can complement a lacZ deletion present on the chromosome to form 

colonies which are blue (Lac+) in the presence of X-gal and the inducer IPTG (Invitro-

gen 2004). The helper plasmid encodes the transposase and confers resistance to tetra-

cycline.  

 

Figure 3.12: Generation of recombinant baculovirus and gene (MDR1) expression using the bac-to-

bac baculovirus expression system (adapted from (Invitrogen 2009)). 

 

1 ng of each pDEST8 construct was transformed into 50 µl of MAX Eficiency 

DH10Bac Chemically Competent Cells in an Eppendorf tube and incubated for 30 min-

utes on ice. The cells were heat-shocked by incubating at 42°C for 30 seconds and 

placed on ice for approximately 2 minutes. After cooling, 900 µl S.O.C. medium were 

added and the tubes were incubated at 37°C for 4 hours at 300 rpm in a shaking ther-
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moblock (Eppendorf thermomixer comfort). Finally, the cells were spread on LB plates 

containing 50 µg/ml kanamycin, 7 µg/ml gentamicin, 10 µg/ml tetracycline, 100 µg/ml 

X-gal, and 40 µg/ml IPTG. The plates were incubated for 48 hours at 37°C. White colo-

nies were picked for analysis because insertions of the mini-Tn7 into the mini-attTn7 

attachment site on the bacmid disrupt the expression of the LacZα peptide (blue/white 

selection). The bacmid was then isolated and purified. 

 

Analyzing recombinant bacmid DNA by PCR: 

PCR analysis was performed to verify the presence of the MDR1 gene in the recombi-

nant bacmid. The bacmid contains M13 forward and M13 reverse priming sites flanking 

the mini-attTn7 site (Invitrogen 2009). 

 

Reaction mix per sample: 

Recombinant bacmid DNA (100 ng) 0.5-1 µl 

10X PCR Buffer 2.5 µl 

10 mM dNTP Mix 0.5 µl 

50 mM MgCl2 0.75µl 

Primer_for (10 µM stock) 1 µl 

Primer_rev (10 µM stock) 1 µl 

ddH2O 18-18.5 µl 

Platinum Taq polymerase (5 units/µl) 0.25 µl 

Total Volume  25 µl 

 

 

Primer Nucleotide sequence (5’ → 3’) 

M13_for 5’-GTTTTCCCAGTCACGAC-3’ 

M13_rev 5’-CAGGAAACAGCTATGAC -3’ 

MDR1Hind_for 5’-GCCCAAGACAGAAAGCTTAGTACC-3’ 

MDR1Hind_rev 5’-GGTACTAAGCTTTCTGTCTTGGGC-3’ 

MDR1Q132R_for 5’-GCTGCTTACATTCGTGTTTCATTTTG-3’ 

MDR1Q132R_rev 5’-CAAAATGAAACACGAATGTAAGCAGC-3’ 

MDR1Q773R_for 5’-CATTTTTCCTTCGAGGTTTCACATTTG-3’ 

MDR1Q773R_rev 5’-CATTTTTCCTTCGAGGTTTCACATTTG-3’ 

Table 3.1: Oligonucleotides used for analyzing recombinant bacmid DNA. 
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The thermal cycling conditions were as following: 

Step Temperature, °C Time, min Number of Cycles 

Initial Denaturation 93 3 1 

Denaturation 94 0.75  

Annealing 55 0.75 35 

Extension 72 5  

Final Extension 72 7 1 
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If transposition was successful, bands with the following sizes should be visible on the 

agarose gel: 

Primerpair bps 

(approximately) 

Template 

M13_for ;  

M13_rev 

 

6278 G185V; G185V-Q132R; G185V-Q773R;  

G185V-Q132R/Q773R 

M13_for;  

MDR1Hind_rev 

 

3800 G185V; G185V-Q773R;  

G185V-Q132R/Q773R 

MDR1Hind_for;  

M13_rev 

 

2640 G185V; G185V-Q132R;  

G185V-Q132R/Q773R 

MDR1Q132R_for;  

MDR1Hind_rev 

 

1671 G185V; G185V-Q132R 

 

MDR1Q132R_for; 

M13_rev 

 

4285 G185V-Q132R 

MDR1Q132R_for; 

MDR1Q773R_rev 

 

1951 G185V-Q132R/Q773R 

M13_for;  

MDR1Q132R_rev 

 

2155 G185V-Q132R; G185V-Q132R/Q773R 

MDR1Q773R_for ; 

M13_rev 

 

2353 G185V-Q773R; G185V-Q132R/Q773R 

M13_for;  

MDR1Q773R_rev 

 

4077 G185V-Q773R 

MDR1Hind_for; 

MDR1Q773R_rev 

304 G185V-Q773R 

Table 3.2: PCR was performed to verify the presence of the mutated MDR1 gene in the recombi-

nant bacmid. The table shows the primerpairs, expected PCR products and templates which were 

used to amplify the mutated MDR1. 

 
After this procedure, the recombinant bacmids, containing P-gp mutants, were ready to 

transfect insect cells to produce recombinant baculovirus. 
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3.5.2 Preparation of plasmid DNA 

3.5.2.1 Small-scale plasmid DNA preparation 

The GenEluteTM Plasmid Miniprep Kit was used to generate small-scale plasmid DNA 

preparations as described by the manufacturer (Sigma-Aldrich 2006). The protocol is 

based on a modified alkine-SDS lysis procedure, which was first described by Birnboim 

and Doly (Birnboim and Doly 1979). All steps were carried out at room temperature. 

1.5 ml bacterial cells from a 5 ml overnight recombinant E. coli culture were harvested 

by centrifugation for 1 minute at 14,000 rpm in an Eppendorf 5415C centrifuge (Ep-

pendorf, Germany). The supernatant was discarded and the cell pellet was completely 

resuspended in 200 µl Resuspension Solution (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 

100 µg/ml RNase A). Resuspended cells were lysed by adding 200 µl Lysis Solution (2 

mM NaOH, 1% SDS), mixed by gentle inversion and incubated for 5 minutes. The alka-

line lysis procedure denatures plasmid DNA. After 5 minutes, 350 µl Neutraliza-

tion/Binding Solution (3.0 M Potassium acetate pH 5.5) was added and the tube gently 

inverted causing the precipitation of cell debris, proteins, lipids, SDS, and chromosomal 

DNA as a cloudy, viscous precipitate. The lysate was then centrifuged for 10 minutes at 

14,000 rpm. For maximized binding of DNA to the membrane, GenElute Miniprep 

Binding Columns were prepared by adding 500 µl Column Preparation Solution (750 

mM NaCl, 50 mM MOPS, 15% ethanol, 0.15% TritonX-100, pH 7.0) and centrifuged 

for 1 minute by 14,000 rpm. The flow-through liquid was discarded and the cleared lys-

ate was transferred to the prepared column and centrifuged for 1 minute at 14,000 rpm. 

As before, the flow-through liquid was discarded and the columns were washed with 

750 µl wash solution (1.0 M NaCl, 50 mM MOPS, 15% ethanol, pH 8.5) to remove 

contaminants followed by centrifugation for 1 minute at 14,000 rpm. The eluted wash 

solution was discarded and the columns were centrifuged as before to remove excess 

ethanol. After centrifugation, the column was transferred to a fresh collection tube and 

plasmid DNA was eluted by adding 50 µl ddH2O to the column followed by centrifuga-

tion for 1 minute at 14,000 rpm. Plasmid DNA was now ready for immediate use in 

restriction enzyme digestion or storage at -20 °C. 

 

3.5.2.2 Large-scale plasmid DNA preparation 

Large-scale plasmid DNA preparations were generated using the HiSpeed® Plasmid 

Midi Kit as described by the manufacturer (QIAGEN 2005). It is a similar protocol as 



 

 44 

the GenEluteTM Plasmid Miniprep Kit. Bacterial cells from 50 ml of an overnight cul-

ture were harvested by centrifugation at 3,500 rpm for 30 minutes at 4 °C in an Eppen-

dorf 5403 centrifuge (Eppendorf, Germany). The cell pellet was resuspended in 6 ml 

Resuspension Buffer (50 mM Tris-HCl pH 8.0; 10 mM EDTA; 100 µg/ml RNase A) 

and 6 µl LyseBlue, a color indicator which provides visual identification of optimum 

buffer mixing. Then 6 ml Lysis Buffer (200 mM NaOH, 1% SDS) were added, and the 

content of the tube mixed by inversion followed by 5 minutes incubation at room tem-

perature. The cell suspension was homogeneously blue after addition of Lysis Buffer. 

After incubation 6 ml Neutralization Buffer (3.0 M Potassium acetate pH 5.5) were 

added to the lysate and mixed by inversion. A white precipitate containing cell debris, 

proteins and genomic DNA became visible. The lysate was transferred into the barrel of 

the QIAfilter Cartridge which was capped and incubated for 10 minutes at room tem-

perature. During the incubation, a HiSpeed Midi Tip was equilibrated by adding 4 ml 

Equilibration Buffer (750 mM NaCl, 50 mM MOPS, 15% isopropanol, 0.15% TritonX-

100, pH 7.0). The column was allowed to empty by gravity flow. After incubation, the 

cap from the QIAfilter outlet nozzle was removed, and the plunger was gently inserted 

into the QIAfilter Cartridge and the lysate was filtered into the previously equilibrated 

HiSpeed Midi Tip. The cleared lysate was allowed to enter the resin by gravity flow. 

The HiSpeed Midi Tip was washed with 20 ml Wash Buffer (1.0 M NaCl, 50 mM 

MOPS, 15% isopropanol, pH 7.0) and the DNA was eluted with 5 ml Elution Buffer 

(1.25 M NaCl, 50 mM MOPS, 15% isopropanol, pH 8.5). The DNA was precipitated by 

adding 3.5 ml isopropanol to the eluted DNA, followed by mixing and incubatoin for 5 

minutes at room temperature. During the incubation, the plunger from a 20 ml syringe 

was removed and the QIAprecipitator Midi Module was attached onto the outlet nozzle. 

The elute/isopropanol mixture was then transferred into the 20 ml syringe, the plunger 

was inserted and the mixture was filtered through the QIAprecipitator using constant 

pressure. The QIAprecipitator was removed from the syringe, the plunger was pulled 

out, the QIAprecipitator, reattached to the syringe and 2 ml 70% ethanol was added to 

the syringe. The DNA was washed by inserting the plunger and pressing the ethanol 

through the QIAprecipitator using constant pressure. The last step was repeated twice 

without ethanol to dry the membrane by pressing air through the QIAprecipitator. The 

outlet nozzle of the QIAprecipitator was dried with absorbent paper to prevent ethanol 

carryover. The same procedure was used to elute DNA by pressing 500 µl ddH2O 

through the QIAprecipitator. (all: (QIAGEN 2005)) 
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The size, quality and recovery of DNA were determined by quantitative analysis on an 

1.6% agarose gel (1.6% agarose, 0.25 µg/ml ethidium bromide, in TAE buffer). 1 µl of 

DNA was mixed with 9 µl ddH20 and 1 µl loading buffer (0.25% bromophenol blue, 

0.25% xylene cyanol, 30% glycerol, in ddH20), loaded into sample wells and electro-

phoresed at 50 V. The recovery of DNA was compared with 10 µl MassRuler DNA 

LadderMix (Fermentas, Cat. No. SM0403). The DNA was visualised using UV screen 

and images were recorded. 

Plasmid DNA was now ready for immediate use in restriction enzyme digestion, clon-

ing, PCR, transfection and sequencing or storage at -20 °C. 

 

3.6 Generation of P-gp construct 

A full-length human MDRl cDNA coding for human P-gp with 6 tandem histidine resi-

dues at its carboxy-terminus (P-gpHis6), a gift from Suresh V. Ambudkar (Maryland, 

USA), was cloned as a BamHI to XhoI fragment into a pENTR4 vector to give 

pENTR4MDR1H6. The plasmid was linearized at the BamHI site and then blunt-ended 

with the Klenow fragment of DNA polymerase I disrupting the open reading frame with 

a second initiation codon. Nevertheless, there was a second Kozak sequence that is nec-

essary for efficient initiation of translation in eukaryotic cells at the NcoI restriction site. 

A Kozak sequence contains the ATG initiation codon, a A or G at position -3 and a G at 

position +4 (CCATGG). The NcoI restriction site is the first restriction site in the multi-

ple cloning site of the pENTR4 vector. Unfortunately, MDR1 cDNA contains this en-

zyme site too, and another restriction site was used for cloning generating a second ini-

tiation codon. As a precaution, a fragment of the pENTR4 vector containing an A to T 

mutation disrupting the initiation codon was created and introduced into the pENTR4 

vector (CCTTGG) by site-directed mutagenesis based on overlap extension polymerase 

chain reaction (OE-PCR). Then the pENTR4 vector was cut with SalI and XbaI and the 

MDR1 cDNA was subcloned as a SalI to XbaI fragment into the vector. Finally, the 

pENTR4MDR1H6 vector was used as template for generation of P-gp mutants by OE-

PCR. To generate a pENTR4 vector without the ccdB gene as a control, the entry vector 

was digested on each site of the ccdB gene with the double cutter EcoRI and recircular-

ized.  
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3.7 Generation of P-gp mutants 

Using site-directed mutagenesis based on OE-PCR mutated residues or nucleotides 

were introduced into the MDR1H6 gene. All construct sequences were ascertained by 

DNA sequencing (performed by IBL, Austria).  

 

3.7.1 Overlap extension PCR 

Overlap extension PCR was developed by Higuchi et al. (Higuchi, Krummel et al. 

1988) and by Ho and colleagues (Ho, Hunt et al. 1989) almost simultaneously. Outside 

primers, mutagenic complementary oligodeoxyribo-nucleotide (oligo) middle primers 

and the polymerase chain reaction (PCR) were used to generate two DNA fragments 

with overlapping ends and intended mutations, both of which were introduced by two 

mutagenic middle primers. These fragments were combined in a subsequent ‘fusion’ 

reaction in which the overlapping ends annealed, allowing the 3' overlap of each strand 

to serve as a primer for the 3' extension of the complementary strand (Ho, Hunt et al. 

1989). The resulting fusion product was amplified further by PCR using two outside 

primers. Specific alterations in the nucleotide (nt) sequence were introduced by incorpo-

rating nucleotide changes into the overlapping oligo primers (Opitz, Jenkins et al. 

1998). The human MDR1H6 DNA was used as the template DNA for the overlap ex-

tension PCR technique for generation of the P-gp mutants. The primers were designed 

with the software package Clone Manager v.8.0 (SciEd Software NC, USA). All four 

primers (outside_for, outside_rev, mutagenic_for and mutagenic_rev) were used for the 

first round of PCR. The second round of PCR using primers outside_for and out-

side_rev resulted in a fusion product that was purified. The cDNA was then restriction 

digested and subcloned into the the pENTR4 vector. The resulting DNA fragment was 

sequenced. 
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Amino acid 

change 

Primer out-

side_for 

Primer mutage-

nic_for 

Primer mutage-

nic_rev 

Primer out-

side_rev 

Q132A 

 

NcoImut_for MDR1Q132A_for MDR1Q132A_rev Hind_rev 

Q132E 

 

NcoImut_for MDR1Q132E_for MDR1Q132E_rev Hind_rev 

Q132R 

 

NcoImut_for MDR1Q132R_for MDR1Q132R_rev Hind_rev 

Q773A 

 

Hind_for MDR1Q773A_for MDR1Q773A_rev MDR1blunt_rev 

Q773E 

 

Hind_for MDR1Q773E_for MDR1Q773E_rev MDR1blunt_rev 

Q773R 

 

Hind_for MDR1Q773R_for MDR1Q773R_rev MDR1blunt_rev 

G185V 

 

NcoImut_for MDR1G185V_for MDR1G185V_rev Hind_rev 

Table 3.3: Primer for site-directed mutagenesis of P-gp using overlap extension PCR 

 
 
 

Primer Nucleotide sequence (5’ → 3’) 

 

MDR1Q132A_for 5’-CTGCTTACATTGCGGTTTCATTTTGG-3’ 

MDR1Q132A_rev 5’-CCAAAATGAAACCGCAATGTAAGCAG-3’ 

MDR1Q132E_for 5’-GGTTGCTGCTTACATTGAAGTTTCATTTTG-3’ 

MDR1Q132E_rev 5’-CAAAATGAAACTTCAATGTAAGCAGCAACC-3’ 

MDR1Q132R_for 5’-GCTGCTTACATTCGTGTTTCATTTTG-3’  

MDR1Q132R_rev 5’-CAAAATGAAACACGAATGTAAGCAGC-3’ 

MDR1Q773A_for 5’-CATTTTTCCTTGCGGGTTTCACATTTGGC-3’ 

MDR1Q773A_rev 5’-GCCAAATGTGAAACCCGCAAGGAAAAATG-3’ 

MDR1Q773E_for 5’-CATTTTTCCTTGAAGGTTTCACATTTG-3’ 

MDR1Q773E_rev 5’-CAAATGTGAAACCTTCAAGGAAAAATG-3’ 

MDR1Q773R_for 5’-CATTTTTCCTTCGAGGTTTCACATTTG-3’ 

MDR1Q773R_rev 5’-CATTTTTCCTTCGAGGTTTCACATTTG-3’ 

MDR1G185V_for 5’-GATTAATGAAGTTATTGGTGACAAAATTGG-3’ 

MDR1G185V_rev 5’-CCAATTTTGTCACCAATAACTTCATTAATC-3’ 

NcoImut_for 5’-CAGGCTCCACCTTGGGAACC-3’ 

Hind_for 5’-GCCCAAGACAGAAAGCTTAGTACC-3’ 

Hind_rev 5’-GGTACTAAGCTTTCTGTCTTGGGC-3’ 

MDR1blunt_rev 5’-ACAAATTGATAAGCAATGCTTTC-3’ 

NcoImut_rev 5’-GGTTCCCAAGGTGGAGCCTG-3’ 

Table 3.4: Oligonucleotides used for site-directed mutagenesis to generate P-gp mutants. Nucleo-

tides in bold and underline indicate the mutagenic nucleotides which differ from the wild-type se-

quence. Underlined nucleotides indicate the mutagenic nucleotides which disrupted the NcoI re-

striction site in the pENTR4 vector.  

 
Two rounds of PCR were necessary to generate mutations in the desired position of the 

MDR1 gene. MDR1 cDNA was divided into two halves, an N-terminal and a C-terminal 

half, resulting in an approximately 2000 bps long PCR product for each half. Q132 and 
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G185 were located in the N-terminal, and Q773 in the C-terminal half. The following 

protocol was used:  

 

First round of PCR:  

Plasmid pENTR4MDR1H6 (~5 ng) was used as the template for generation of 

pENTR4MDR1H6G185V. Two outside primers and two mutagenic middle primers 

(each containing mutated nucleotides) were used to generate PCR products 1 and 2 in 

separate reactions. The primers were designed in such a way that an overlap region in 

the two PCR fragments would be created. DNA polymerase Pfu (Fermentas, Cat. No. 

EP0572) was used to reduce the chance of getting undesired mutations during the PCR.  

Reaction mix per sample: 

ddH2O 16.75 µl 

10x Buffer 2.5 µl 

2 mM dNTP each 2.5 µl 

Template: pentry vector 1µl 

DNA polymerase Pfu 0.25 µl 

Primer_for (10 µM stock) 1 µl 

Primer_rev (10 µM stock) 1 µl 

Total volume 25 µl 
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The thermal cycling conditions were as following: 
 

Step Temperature, °C Time, min Number of Cycles 

Initial Denaturation 95 2 1 

Denaturation 95 0.5  

Annealing 45 0.5 5 

Extension 72 4  

Denaturation 95 0.5  

Annealing 50 0.5 25 

Extension 72 4  

Final Extension 72 5 1 

 
The first round PCR products were isolated by agarose gel electrophoresis. Gel frag-

ments were visualised using a UV screen, excised with a scalpel and purified using 

GFXTM PCR DNA and gel band purification kit (Amersham Biosciences, 27-9602-01).  

 

Second round of PCR:  

Purified PCR products 1 and 2 served as templates and were mixed in an equal volume. 

The two outside primers were used to amplify the full-length MDR1 product. Pfu DNA 

polymerase was used for 30 cycles of amplification. 

 

Reaction mix per sample: 

ddH2O 16.75 µl 

10x Buffer 2.5 µl 

2 mM dNTP each 2.5 µl 

Template: Mixture of PCR product 1 and 2 (equal volume) 1µl 

DNA polymerase Pfu 0.25 µl 

Primer_for 1 µl 

Primer_rev 1 µl 

Total volume 25 µl 
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The above PCR conditions were modified slightly:  

Step Temperature, °C Time, min Number of Cycles 

Initial Denaturation 95 2 1 

Denaturation 95 0.5  

Annealing 50 0.5 30 

Extension 72 4  

Final Extension 72 5 1 

 
 
The final products were cut with SalI (Fermentas, Cat. No. ER0641) and HindIII (Fer-

mentas, Cat. No. ER0501) or HindIII and XbaI (Fermentas, Cat. No. ER0682) restric-

tion enzymes, and the approximately 2.0-kbp fragments containing the half-length 

MDR1 gene were subcloned into SalI-HindIII-pENTR4MDR1H6 or HindIII-XhoI-

pENTR4MDR1H6 to create mutant versions of pENTR4MDR1H6. The ligation was 

carried out with the Rapid DNA Ligation Kit from Fermentas (Cat. No. K1422) contain-

ing the T4 DNA Ligase (5u/µl), 5x Rapid Ligation Buffer and water (nuclease-free).  

Reaction mix per sample: 

Insert X µl 

Vector X µl 

ddH2O Up to 19 

5x Rapid Ligation Buffer 4 µl 

T4 DNA Ligase (5u) 1 µl 

Total volume 20 µl 

 

5 µl of the ligation mixture were used for transformation 50 µl One Shot TOP10 

Chemically Competent Cells as before. The cells were spread onto LB agar plates with 

50 µg/ml kanamycin and incubated overnight at 37°C. 

 

3.7.2 Purification of DNA from solution or gel bands 

For purifying PCR products, restriction fragments and plasmid DNA, the GFX PCR 

DNA and Gel Band Purification Kit was used as described by the manufacturer (Amer-

shamBiosciences 2005). All steps were carried out at room temperature. 

Purification from solution: 
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The GFX column was placed in a collection tube and 500 µl capture buffer, containing 

acetate and chaotrope, were added to the GFX column. The DNA solution (up to 100 

µl) was transferred to the GFX column, mixed thoroughly by pipetting the sample up 

and down (4-6 times) causing denaturation of proteins and then centrifuged for 30 sec-

onds in an Eppendorf 5415C centrifuge (Eppendorf, Germany) at 14,000 rpm. Then the 

sample was passed through the GFX column to capture the DNA onto the glass fiber 

matrix. The flow-through was discarded and the GFX column was placed back inside 

the collection tube. Then the matrix-bound DNA was washed with 500 µl wash buffer 

(10 mM Tris-HCl pH 8.0, 1 mM EDTA, in 80% ethanol) to remove salts and other con-

taminants and centrifuged for 30 seconds at 14,000 rpm. After centrifugation, the GFX 

column was transferred to a fresh 1.5 ml eppendorf tube and the DNA eluted by adding 

50 µl ddH2O. After 1 minute incubation, the purified DNA was recovered by centrifuga-

tion for 1 minute at 14,000 rpm. (all: (AmershamBiosciences 2005)) 

 

Purification from gel bands:  

The gel slice of agarose containing the DNA band to be purified was carefully excised 

using a scalpel and a UV light box and was then cut into smaller pieces. The pieces 

were transferred to a preweighted empty 1.5 ml eppendorf tube. The eppendorf tube 

containing the agarose slice was weighed again to determine the approximate volume of 

the gel slice. For each 10 mg of gel slice 10 µl Capture Buffer were added. The tube 

was closed, mixed by vortexing and incubated at 60 °C for 15 minutes or until the gel 

was completely melted. During incubation, the GFX column was placed in a collection 

tube. After the agarose was completely dissolved, the eppendorf tube was briefly centri-

fuged to collect the sample at the bottom of the tube and the sample was transferred to 

the GFX column. After 1 minute incubation, the GFX column was centrifuged for 30 

seconds. Further steps were the same as before in the “purification from solution”. (all: 

(AmershamBiosciences 2005)) 

 

3.8 Agarose gel electrophoresis 

DNA fragments were separated by agarose gel electrophoresis (1.6% agarose, 0.25 

µg/ml ethidium bromide, in TAE). Samples were mixed with 10% of the loading buffer 

volume, loaded into sample wells, and electrophoresed at constant 50 V. The electro-

phoresis chamber was filled with 1xTAE containing 0.25 µg/ml ethidium bromide. One 
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lane on each gel was loaded with 10 µl Mass Ruler DNA Ladder Mix (Fermentas, Cat. 

No. SM0403). The DNA was visualised using a UV screen and images were recorded.  

 

10x TAE:  400 mM Tris base 

       10 mM EDTA 

       1.14% Acetic acid 

   Stored at 4°C 

Loading buffer: 0.25% bromophenol blue 

   0.25% xylene cyanol 

   30% glycerol 

   Stored at room temperature 

Ethidium bromide solution: 0.5 mg/ml in ddH2O, stored at room temperature 

    

3.9 Mammalian tissue culture 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Cat. No. 12800-116), 0.25% Trypsin-

EDTA (Cat. No. 25200), Lipofectamine 2000 (Cat. No. 11668027), Donor Bovine Se-

rum (DBS) (16030-074), Zeocin (Cat. No. R250-01) and Hygromycin B (Cat. No. 

10687-010) were purchased from Invitrogen. 

 

Human HEK 293 (FlpIn-293) cells and mouse NIH 3T3 fibroblasts (Flp-In-3T3), sup-

plied by Invitrogen, were grown as monolayers in a T75 tissue culture flask (VWR, Cat. 

No. 734-2167) and maintained by regular passage in DMEM supplemented with 4.5 g/l 

glucose, 2 mM L-glutamine, 1 mM sodium pyruvat and 10% DBS (vol/vol) under 5% 

CO2 at 37°C with a water vapour-saturated atmosphere.  

 

All manipulations were performed in a sterile environment with sterile plastics and 

glassware. 
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3.10 Generation of stable mammalian expression cell lines 

Cell lines and reagents were supplied from Invitrogen. 

Cell Line Amount Catalog No. 

Flp-In-293 3 x 106 cells, frozen R750-07 

Flp-In-3T3 3 x 106 cells, frozen R761-07 

 

 

 

Stable mammalian expression cell lines were generated using the Flp-InTM system de-

scribed by the manufacturer (Invitrogen 2002). With the Flp-In system it is possible to 

integrate and express a gene of interest in mammalian Flp-In cells at a specific genomic 

location (Invitrogen 2002). The Flp-In cell lines from Invitogen stably express the lacZ-

ZeocinTM fusion gene whose expression is controlled by the SV40 early promoter and 

contain a Flp Recombination Target (FRT) site which has been inserted just down-

stream of the ATG initiation codon of the lacZ-ZeocinTM fusion gene. The FRT site 

serves as the binding and cleavage site for the Flp recombinase (Invitrogen 2002). Flp-

In cell lines are Zeocin-resistant. An expression vector containing the gene of interest is 

then integrated into the genome via Flp recombinase-mediated DNA recombination at 

the FRT site (O'Gorman, Fox et al. 1991) (Invitrogen 2002). Expression of the gene is 

controlled by the human CMV promoter. Another component of the Flp-In System is 

the pOG44 plasmid which constitutively expresses the Flp recombinase (Broach and 

Hicks 1980; Broach, Guarascio et al. 1982; Buchholz, Ringrose et al. 1996) under the 

control of the human CMV promoter. (Invitrogen 2002) 

The pOG44 plasmid and the pEF5MDR1 vector were cotransfected into the Flp-In-3T3 

host cell line. Upon cotransfection, the Flp recombinase expressed from pOG44 medi-

ated a homologous recombination event between the FRT sites (integrated into the ge-

nome and on pEF5MDR1) such that the pEF5MDR1 construct was inserted into the 

genome at the integrated FRT site (Invitrogen 2002). Insertion of pEF5MDR1 into the 

genome at the FRT site brings the SV40 promoter and the ATG initiation codon (from 

pFRT/lacZeo) into proximity and frame with the hygromycin resistance gene (from 

pEF5MDR1 lacking the promoter and the ATG initiation codon), and inactivates the 

Reagent Catalog No. 

ZeocinTM R250-01 

Hygromycin B 10687-010 
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lacZ-Zeocin fusion gene (Invitrogen 2002). Thus, stable Flp-In expression cell lines 

could be selected for hygromycin resistance, Zeocin sensitivity, lack of β-galactosidase 

activity, and expression of the P-gp protein (Invitrogen 2002). 

 

3.10.1 Stable cell transfection using Lipofectamine 2000 

Human HEK 293 cells and mouse NIH 3T3 fibroblasts (Flp-In-3T3) were cultured in 

DMEM supplemented with 4.5 g/l glucose, 2mM L-glutamine, 1mM sodium pyruvat 

and 10% DBS at 37°C in 5% CO2. The cells were grown in presence of 100 µg/ml Zeo-

cin. One day prior to transfection, the cells were seeded onto six-well plates (Greiner 

bio one, Cat. No. 657160) in aliquots of 1 x 106 per well in the corresponding medium 

containing 10% DBS (1 ml medium/well) without Zeocin. After 24 hours, the growth 

medium of the cells was replaced with serum-/antibiotic-free medium (Opti-MEM) and 

the cells were treated with 2 µg/ml Lipofectamine 2000 complex in the corresponding 

Opti-MEM serum-/antibiotic-free medium (Invitrogen, Cat. No. 31985-047) according 

to the manufacturer’s instructions (Invitrogen 2006) for 2 hours at 37°C. The cells were 

stably transfected in 6-well plates with pEF5 vector (Invitrogen) or pEF5 vector con-

taining the human MDR1 gene. After 2 hours 2% donor bovine serum was added into 

the Opti-MEM. After 24 hours the cells were trypsinized and passaged at a 1:10 dilution 

into a T25 flask with fresh growth medium (DMEM containing 10% donor bovine se-

rum). The following day the cells were selected with 200 µg/ml hygromycin B (Invitro-

gen, Cat. No. 10687-010). Nontransfected cells were killed by hygromycin B. The me-

dium containing hygromycin B was exchanged every 3 to 4 days. 

 

3.10.1.1 Expression of mutants 

Human HEK 293 cells and mouse NIH 3T3 fibroblasts were transfected with the mu-

tated MDR1 cDNAs as described before. P-gp processing mutants expressed functional 

P-gp when they were kept in the presence of drug substrates or modulators of P-gp that 

correct the folding defect. To test for the effect of compounds on expression of P-gp 

processing mutants, cells were grown for 24h in Dulbecco’s modification of Ea-

gle’smedium (DMEM) with 10% (v/v) donor bovine serum at 37 °C in a 5% CO2 incu-

bator in the presence of 10 µM cyclosporin A (CsA). CsA is a substrate of P-gp and acts 

like a powerful chemical chaperone promoting maturation of P-gp (Loo and Clarke 

1997). Other compounds used as pharmacological chaperones were 50 µM  verapamil 
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and 50 µM GP51. Compounds were prepared as 500 X stocks in DMSO. Control cells 

were incubated in the presence of 0.2% (v/v) DMSO. Cells were harvested and prepared 

for the MRK16 staining. 

 

3.11 Western blot analysis 

3.11.1 Preparation of protein samples for SDS-Polyacrylamide gel electrophoresis 

(SDS-PAGE) 

Cells were seeded onto 6-well plates in aliquots of 1 x 106 cells per well in the corre-

sponding DMEM medium containing 10% DBS (2 ml medium/well) and in the pres-

ence of 10 µM CsA. Control cells were incubated in the presence of 0.2% (v/v) DMSO. 

After 24 hours, the cells were washed three times with ice-cold PBS and lysed directly 

in the wells by adding 60 µl of lysis buffer containing 1% of a protease inhibitor cock-

tail (Sigma, Cat. No. P8340) and incubated for 10 minutes. All steps were carried out on 

ice. After incubation, the cells were removed with a rubber policeman, transferred in an 

Eppendorf tube, broken with an ultrasonic stick for 2 seconds and incubated for 1 hour 

on ice. The samples were stored overnight at -20°C.  

 

PBS:      137 mM NaCl 

     2.7 mM KCl 

     1.5 mM KH2PO4 

     8.1 mM Na2HPO4.12H2O 

     Adjust to pH 7.4 

 

Lysis buffer (prepared fresh): 62.5 mM Tris base, pH 6,8 

8 M urea 

20 mM EDTA 

20 mM EGTA 

10% Glycerol 

1% SDS 

 

After 24 hours, the samples were thawed and centrifuged for 10 minutes at 14,000 rpm 

at 4°C. The supernatants were transferred into fresh Eppendorf tubes and vortexed. 
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3.11.2 Protein determination using Bradford protein assay 

The Bradford protein assay (Bio-Rad, Cat. No. 500-0006) is a dye-binding assay. The 

absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 dye 

shifts from 465 nm to 595 nm when binding to proteins occurs (BioRad 1994). Protein 

concentration was determined using the Bradford protein microassay by absorbance at 

595 nm. A protein standard curve was made using bovine serum albumin (BSA) 

(Sigma, Cat. No. A4503) with concentrations of 0, 1, 2, 4, 6, 8, 10, 15 and 20 µg/ml. 

 

BSA-Standard: 

Standard BSA (100 µg/ml) ddH2O Bio-Rad-Reagent 

0 µg/ml 0 µl 400 µl 100 µl 

1 µg/ml 5 µl 395 µl 100 µl 

2 µg/ml 10 µl 390 µl 100 µl 

4 µg/ml  20 µl 380 µl 100 µl 

6 µg/ml 30 µl 370 µl 100 µl 

8 µg/ml 40 µl 360 µl 100 µl 

10 µg/ml 50 µl 350 µl 100 µl 

15 µg/ml 75 µl 325 µl 100 µl 

20 µg/ml 100 µl 300 µl 100 µl 

 

Samples: 

Sample ddH2O Bio-Rad-Reagent 

2,5 µl 397,5 µl 100 µl 
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3.11.3 SDS-PAGE 

Proteins were separated by electropheresis through vertical 0.75 mm thick polyacryla-

mide gels (0.1% SDS, 8% acrylamide). The samples were diluted and made up to 10 µl 

with PBS to equal protein amounts. Then equal amounts of protein were mixed with the 

4x sample buffer in a 3:1 ratio and incubated for 30 minutes at 40°C in a water bath to 

denature the proteins. After cooling down, the samples were loaded onto the gel. 

 

4x sample buffer:   50% Glycerol 

     24% 0.5 M Tris-HCl (pH 6.8) 

     21% ddH2O 

     8% (w/v) SDS 

     A dash of bromophenol blue 

5% 2-Mercaptoethanol  

Prepared just before use  

 

10x running buffer:   250 mM Tris base 

     1.92 M Glycine 

     1% SDS 

     Stored at room temperature 

 

Polyacrylamide gel: per gel (0.75 mm thickness)  

 

Stacking gel (4% acrylamide): 

Reagent Volume 

ddH2O 1.54 ml 

30% Acrylamid:Bis-acrylamide mix (29.2:0.8) 340 µl 

3 M Tris-HCl, pH 8.45; 0.3% SDS 620 µl 

10% APS 20 µl 

TEMED 2 µl 

Total volume 2.522 ml 
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Separating gel (8% acrylamide) 

Reagent Volume 

ddH2O 2.4 ml 

30% Acrylamide:Bis-acrylamide mix (29.2:0.8) 1.6 ml 

3 M Tris-HCl, pH 8.45/0.3% SDS 2 ml 

10% APS 30 µl 

TEMED 3 µl 

Total volume 6.33 ml 

 

10% Ammonium Persulfate (APS) (Sigma, Cat. No. 248614): aliquots were stored at     

-20°C 

10% SDS: stored at room temperature 

 

3 M Tris-HCl, pH 8.45; 0.3% SDS:  3 M Tris-HCl 

      0.3% SDS 

      Adjust to pH 8.45 

      Stored at room temperature  

 

The solutions were prepared in 50 ml Falcon tubes. The polymerisation of the separat-

ing gel was initiated by the addition of N,N,N´,N´-teteramethylethane-1,2-diamine 

(TEMED) (Sigma, Cat. No. T9281) and filled in a Bio-Rad Mini Protean II gel cassette. 

Each gel was immediately overlaid with a thin layer of 30% isopropanol. After polym-

erisation, the overlay was removed and the gel surface was rinsed with ddH2O. TEMED 

was added to the stacking gel to initiate polymerisation and was overlaid onto the sepa-

rating gel. A 15-well comb was inserted. After polymerisation, the gel cassettes were 

put into the electrophoresis chamber according to the manufacturer’s instructions. The 

chamber was filled with 1x running buffer and after removing the comb, the wells were 

rinsed with 1x running buffer prior to loading samples. One lane was loaded onto each 

gel with 2 µl Page Ruler Prestained Protein Ladder (Fermentas, Cat. No. SM0671) to 

enable the subsequent determination of protein molecular weights. Slots without any 

protein sample were filled with sample buffer. Electrophoresis was performed at con-

stant 180V for 80 minutes at 4°C.  
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3.11.4 Detection of proteins by Western blotting 

Proteins, separated by SDS-PAGE, were then electroblotted onto nitrocellulose mem-

branes (Bio-Rad, Cat. No. 162-0115) using a Bio-Rad Mini Blotting apparatus, accord-

ing to the manufacturer’s instructions. Membrane, sponges and 3MM filter paper were 

prepared by soaking in western transfer buffer for 1 minute. The transfer components 

were put together as followed: 

White side of the cassette (facing positive electrode) 

Sponge 

Filter paper 

Nitrocellulose membrane 

Gel 

Filter paper 

Sponge  

Black side of the cassette (facing negative electrode) 

 

Air bubbles between gel and nitrocellulose membrane were removed by rolling a glass 

eprouvette over the filter paper. The sandwich was assembled together with an ice block 

for cooling the buffer into the blotting apparatus. Electroblotting was carried out in 

transfer buffer at 0.4 A (0.06 A/ gel) for 45 minutes at 4°C. 

 

Transfer buffer: 25 mM Tris base 

   192 mM Glycin 

   20% Methanol 

   1% SDS 

   Stored at 4°C and used again several times 

 

3.11.4.1 Detection of proteins by Ponceau S 

Total protein visualisation was carried out using the Ponceau S (Sigma, Cat. No. 78376) 

staining, immediately after SDS-PAGE to ensure complete transfer of proteins. The 

nitrocellulose membrane was placed in the Ponceau S solution for 5 minutes at room 

temperature. After visualisation of the proteins, the membrane was washed in ddH2O at 

room temperature for 5 minutes to destain the gel.  
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Ponceau S:   1% Ponceau 

    30% Trichloracetic acid 

    30% Sulfosalicylic acid 

 

3.11.4.2 Immunodetection 

10x TBS:   200 mM Tris base 

    1.45 M NaCl 

    Adjust to pH7.4 

 

Washing buffer (TBS-T): 1x TBS buffer 

    0.1% Tween 20 

 

Bloking solution:  5% (w/v) nonfat dry milk in TBS-T 

    Prepared just before use 

 

Primary antibody: 

Primary antibodies were attenuated in blocking solution at the recommended dilution. A 

dash of NaN3 was added to each antibody solution to avoid contamination. The primary 

antibodies were used again for several times and stored at 4°C. 

The P-gp specific monoclonal antibody C219 was obtained from Eubio, Austria (Cat. 

No. ALX801-002) and diluted 1:250 in 1% BSA in TBS-T. 

Anti-ß-Actin (Sigma, Cat. No. A2228) was diluted 1:5000 in 3% BSA in TBS-T. 

 

Secondary antibody: 

The secondary antibody goat anti-mouse IgG-HRP conjugate (Bio-Rad, Cat. No. 170-

6516) was diluted 1:10000 in blocking solution. 

 

After Ponceau S destaining, the membrane was cut according to the protein sizes. One 

membrane could be used to detect up proteins with different sizes: the upper part for P-

gp (170 kDa) and the lower part for ß-Actin loading control (42 kDa) detection. The 

membranes were washed with TBS-T for 10 minutes and treated with 5% nonfat dry 

milk in TBS-T overnight at 4°C on a belly dancer for blocking. On the next day the 

membranes were washed three times for 5 minutes with washing buffer and incubated 

with primary antibody for 1 hour at room temperature on the belly dancer. After 1 hour, 
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the antibodies were removed and stored in the fridge until next use. Subsequently, the 

blots were washed three times with TBS-T for 10 minutes on the belly dancer and incu-

bated for 1 hour at room temperature with a secondary antibody with shaking on the 

belly dancer. After incubation, the secondary antibody was discarded and the mem-

branes were washed three times as before. Finally, antibody labelled proteins were visu-

alized with ChemiGlowTM West (Alpha Innotech Corporation, CA, USA). The 

ChemiGlow West working solution was prepared prior to use by mixing the Lumi-

nol/Enhancer Solution and the Stable Peroxidase Solution in equal volumes. The mem-

branes were incubated for 5 minutes at room temperature and wrapped in plastic wrap. 

For detection a CCD camera in the ChemiImagerTM 4400 (Biozym) was used. Quantifi-

cation was performed using the AlphaEaseFC software. 

 

3.11.5 Determination of MDR1 gene expression levels by real -time quantitative 

RT-PCR 

Real-time reverse transcription (RT) - PCR was used to assess the influence of cyc-

losporine A (CsA) on an mRNA level. Cells incubated with DMSO served as control. 

 

3.11.5.1 Isolation of total RNA from cells 

Total cellular RNA was isolated with TRIzol reagent (Invitrogen, Cat. No. 15596-026) 

as recommended by the manufacturer (Invitrogen 2007). One day prior to homogeniza-

tion, the cells were seeded onto 6 cm diameter tissue culture dishes (Greiner Bio-One, 

Germany, Cat. No. 628160) in aliquots of 1x 106 per culture dish in the corresponding 

medium containing 10% DBS (5 ml medium/dish) and in the presence of 10 µM CsA. 

Control cells were incubated in the presence of 0.2% (v/v) DMSO. After 24 hours, the 

cells were washed and lysed directly in the culture dish by adding 800 µl of TRIzol re-

agent. The cell lysate was passed several times through a pipette, incubated for 1 minute 

at room temperature to permit the complete dissociation of nucleoprotein complexes 

and transferred to an eppendorf vial. The samples were stored at -80°C until RNA isola-

tion.  

The homogenized samples were briefly vortexed and centrifuged for 10 minutes at 

12,000 rpm at 4 °C. For phase separation, 150 µl of chloroform were added per 800 µl 

of TRIzol reagent, shaked by hand for 15 seconds and incubated at room temperature 

for 5 minutes. The samples were centrifuged at 12,000 x g for 10 minutes at 4°C. The 
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mixture separated into a lower red, phenol-chloroform phase, an interphase, and a color-

less upper aqueous phase containing the RNA. The aqueous phase (~400 µl) was trans-

ferred to a fresh tube, mixed with 400 µl isopropyl alcohol and incubated at room tem-

perature for 10 minutes. After centrifugation at 12,000 x g for 10 minutes at 4°C, the 

supernatant was removed and the RNA pellet washed with 750 µl of 70% ethanol. The 

samples were mixed by vortexing and centrifuged at 7,500 x g for 5 minutes at 4°C. 

After the washing step, the RNA pellet was dried (air-dry) for approximately 10 min-

utes and dissolved in 50 µl diethylpyrocarbonate (DEPC)/DNase by passing the solution 

a few times through a pipette tip. To remove remaining DNA contamination 1-2 u of 

TurboTM DNase from Ambion was added to each sample and incubated for 15 minutes 

at 37 °C. The the samples were incubated for 10 minutes at 85 °C to inactivate the en-

zyme.  

RNA concentration was determined by absorbance at 260 nm. 

E260nm x (dilution)-1 x e-1 = concentration µg/ml 

e-1 = 40 for single stranded RNA 

To ensure equal loading and integrity of the RNA, 2 µg RNA were diluted in 5 µl RNA 

sample buffer containing ethidium bromide and run on MOPS/EDTA agarose gels. The 

amount of loaded RNA was controlled by visualisation on an UV screen. 
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3.11.5.2 RNA separation on MOPS/EDTA agarose gels 

10x MOPS/EDTA: 

MOPS 200 mM 

Na-acetate 50 mM 

EDTA 10 mM 

Adjust to pH 7.0  

 

RNA sample buffer: 

Formamide 15 ml 

10x MOPS 3 ml 

37% Formaldehyde 4.8 ml 

RNase free H2O 2 ml 

Glycerol 2 ml 

10% (w/v) Bromophenol blue 1.6 ml 

Optional: 5 µl ethidium bromide (1 mg/ml)  

Storage at -20 °C  

 

MOPS/EDTA gel (1.2%): 

Total volume 50 ml 

Agarose 0.6 g 

H20 42.5 ml 

10x MOPS 5 ml 

37% Formaldehyde 2.5 ml 

 

The RNA samples supplemented with sample buffer were heated up to 65 °C for 3 min-

utes causing the resolution of secondary structures in the RNA. Then the RNA samples 

were cooled on ice and loaded on a 1.2% MOPS/EDTA gel. 

 

3.11.5.3 Reverse transcription 

For cDNA synthesis, 1 µg of total RNA was reverse transcribed with an iScript cDNA 

synthesis kit (Bio-Rad, Cat. No. 170-8890) containing a mixture of oligo d(T) primers 

and random hexamer nucleotides.  
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Reaction mix per sample: 

5x iScript reaction mix 4 µl 

iScript reverse transcriptase 1 µl 

Nuclease free H2O X µl 

RNA template 1 µg of total RNA X µl 

Total volume 20 µl 

 

Reaction condition: 

 

 

3.11.5.4 SYBER green real-time PCR analysis 

SYBER green real-time PCRs were performed with 0.5 µl of the RT reaction mixture 

by the iCycler iQ system (Bio-Rad) and Taq DNA Polymerase (recombinant) from 

Fermentas (Cat. No. EP0402) to quantify PCR assays. Reactions were performed in 

doublets. The RT reaction product was amplified in a 25 µl reaction with the MDR1 

specific forward and reverse primer. The samples were heated to 95°C for 3 minutes 

and then amplified for 40 cycles consisting of 95°C for 20 seconds, 60°C for 25 seconds 

and 72°C for 25 seconds. The mouse hypoxanthine-guanine phosphoribosyltransferase 

(HPRT) housekeeping gene was amplified as a control and used to normalise mRNA 

levels between different samples. 

 

Temperature, °C Time, min 

25 5 

42 30 

85 5 

4 ∞ 



 

 65

Reaction mix per sample: 

10x Taq buffer 2.5 µl 

10 mM dNTP each 0.5 µl 

25 mM MgCl2 2.5 µl 

TaqDNA polymerase (5U/µl) 0.2 µl 

Primer F (10 pmol/µl) 0.25 µl 

Primer R (10 pmol/µl) 0.25 µl 

FITC Flourescein Calibration Dye (1 µM) 0.9375 µl 

10x Syber Green (Bio-Rad) 1 µl 

DEPC 11.8625 µl 

Template 5.0 µl 

Total volume 25.0 µl 

 

Real-time PCR reaction: 

 

MC: melting curve 

AT: annealing temperature 

 

RT-HPRT primer: 

Primer Nucleotide sequence (5’ → 3’) 

RT-HPRT_for GCTGGTGAAAAGGACCTCT 

RT-HPRT_rev CACAGGACTAGAACACCTGC 

AT: 59°C 

 

Temperature, °C Time Number of Cycles 

95 3 min  

95 

AT 

72 

20 sec 

25 sec 

25 sec 

 

40x 

95 
MC 

 

60  

20 ∞  
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RT-MDR1 primer: 

Primer Nucleotide sequence (5’ → 3’) 

RT-MDR1_for CGAAGAGTGGGCACAAACCAG 

RT-MDR1_rev GTGGTGGCAAACAATACAGGTTCC 

AT: 60°C 

 

3.12 P-gp surface expression  

3.12.1 P-gp surface expression for efflux studies 

For the efflux assay, wild-type and mutant P-gp surface expression levels were com-

pared and determined by a flow cytometer (FACSCalibur, BectonDickinson). Cells 

were trypsinized and counted, 200,000 cells were washed once with PBS and incubated 

with 50 µl MRK16 anti-P-glycoprotein primary antibody in PBS (10 µg/ml) at room 

temperature for 30 minutes. The rest of the cells was used for the rhodamine 123 efflux 

assay. After the incubation period, the cells were washed twice with PBS and treated 

with 50 µl Goat Anti-mouse IgG FITC (GAM Ig FITC) (BectonDickinson) in PBS. 

Cells were protected from light and incubated 30 minutes on ice. After the incubation 

period, cells were washed again twice with PBS and then resuspended in 200 µl PBS. 

The binding of the FITC-labeled P-gp antibody was analyzed with a flow cytometer 

(FACSCalibur, Becton Dickinson). Fluorescence was measured by counting 5,000 

events with an excitation wavelenght of 488 nm. 

 

3.12.2 P-gp surface expression increase using pharmacological chaperones 

Mutations of amino acids are responsible for reduced levels or absence of functional 

proteins at a required location. These mutant proteins, synthesized in the endoplasmic 

reticulum, are defective in folding and trafficking (processing mutants). 

The expression of P-gp and P-gp mutants in HEK 293 and NIH 3T3 cells was proven by 

surface protein expression analysis using the selective monoclonal antibody MRK16 

and the FITC-labelled second antibody used in flow cytometry analysis. We tried dif-

ferent compounds as pharmacological chaperones, for example CsA, verapamil and 

GPV51. GPV51 is a propafenone which was designed in our group. The cells were pre-

treated for 24 hours with 10 µM CsA, 50 µM verapamil and 50 µM GPV51. After 24 

hours the cells were trypsinized and counted for MRK16 staining. The prodecure is the 

same as before. 
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3.13 Transport studies 

3.13.1 Rhodamine 123 zero trans efflux studies 

The rhodamine 123 efflux assay is a direct and accurate functional method to measure 

inhibition of P-gp mediated transmembrane transport (Chiba, Ecker et al. 1996; Chiba, 

Holzer et al. 1998). Rhodamine 123 is a fluorescent substrate for the P-glycoprotein 

efflux pump (Kang, Fisher et al. 2004). 

NIH 3T3 cells (7.5 x 105 at 37°C or 1.5 x 106 at 28°C) of each respective stable cell line 

were seeded into 9.4 cm diameter tissue culture dishes (Greiner Bio-One, Germany, Cat. 

No. 633171) using the corresponding medium containing 10% DBS and in the absence 

of hygromycin B. The cells were incubated at 37°C or 28°C depending on the P-gp mu-

tant. After 48 hours, the medium was removed by pipetting from the culture dish into 

the lid of the culture dish and the cells were trypsinized with 800 µl of trypsin (Gibco) 

for 2-3 min at room temperature. The reaction was stopped by addition of the medium 

from the lid back into the culture dish. Cells were transferred to a 50 ml Falcon tube, 

counted, and approximately 2 x 106 cells were pelleted for 6 minutes at 1,100 rpm at 4 

°C in an Eppendorf 5403 Centrifuge (Eppendorf, Germany). 

After centrifugation, the supernatant was removed through suction, and the cells were 

resuspended in 10 ml DMEM medium containing 10% DBS, 50 mM HEPES (Merck, 

Cat. No. 110110.0250) pH7.8 and rhodamine 123 (Rh123) (Sigma, Austria) at a final 

concentration of 0.2 µg/ml (0.53 µmol/L). The cell suspension was incubated for 30 

minutes using a gently shaking water bath at 37 °C, resulting in a steady state of rhoda-

mine 123 accumulation. After incubation, the tube was chilled on ice water and 9 ml of 

its content aliquoted and transferred to 9 FACS tubes (Becton Dickinson, Cat. No. 

352052). These tubes were centrifuged for 6 minutes at 1,100 rpm at 4 °C in an Eppen-

dorf 5415C Centrifuge (Eppendorf, Hamburg, Germany) and washed once with 1 ml ice 

cold DMEM medium to remove extracellular fluorochrome. The tubes were centrifuged 

and the supernatant removed as described before. The cell pellets were resuspended in 

900 µl DMEM medium containing either no modulator or modulator at various concen-

trations ranging from 164 nM to 100 µM (1:2.5 serial dilutions) depending on solubility 

and the expected potency for the modifier. The DMEM medium was prewarmed at       

37 °C in a water bath. The time dependent decrease in cellular mean fluorescence was 

determined in the presence of eight serial diluted concentrations (1:2.5) for the GPV01 

modulator. After 90, 180, 270 and 360 seconds, aliquots (200 µl) of the incubation mix-

ture were transferred to tubes containing an equal volume of ice-cold stop solution 
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(DMEM medium containing GPV31 at a final concentration of 10 µM). Samples were 

kept in an ice water bath until the measurement was performed within 1 hour with a 

Becton Dickinson FACSCalibur flow cytometer (Becton Dickinson, Vienna, Austria). 

Viable cells were gated on the basis of forward and side scatter (Chiba, Ecker et al. 

1996). To determine the mean fluorescence values the excitation and emission wave-

lengths were 488 nm and 534 nm, respectively and five thousand gated events were 

accumulated (Chiba, Ecker et al. 1996). 

 

3.13.2 Daunomycin steady state studies 

HEK 293 cells were cultured in DMEM medium containing 10% DBS and in the ab-

sence of hygromycin B. Cells were trypsinized for 2-3 min at room temperature and the 

reaction was stopped by addition of DMEM medium containing 10% DBS. Cells were 

transferred to a 50 ml Falcon tube, counted, and approximately 2 x 106 cells were pel-

leted for 6 minutes at 1,100 rpm at 4 °C in an Eppendorf 5403 Centrifuge (Eppendorf, 

Germany). 

After centrifugation, the supernatant was removed through suction, and the cells were 

resuspended in 10 ml DMEM medium containing 10% DBS, 50 mM HEPES, pH7.8 

and daunomycin (Sigma-Aldrich, Cat. No. D8809) at a final concentration of 3 µM. 10 

µl DMSO and different inhibitor concentrations were added to 990 µl aliquots of the 

mixture depending on the expected potency of the compounds. Tubes containing these 

aliquotes were incubated for 30 minutes using a gently shaking water bath at 37 °C. 

During this time every single tube was spun with a vortex for optimal agitation. After 

incubation the cells were chilled on ice, pelleted, washed once with 1 ml ice-cold 

DMEM medium containing 10% DBS. Cells were again pelleted and resuspended in 

200 µl ice-cold stop solution (DMEM medium containing GPV31 at a final concentra-

tion of 5 µM). Samples were kept in an ice water bath until the measurement was per-

formed. The prodecure is the same as before in section 3.13.1.  

 

3.13.3 Cytotoxicity of rhodamine 123 in FlpIn NIH 3T3 cells 

Cells (5 x 105) of each respective stable cell line were seeded into a 25-cm2 tissue cul-

ture flask without hygromycin B. After 48 hours, the medium was removed by suction 

from the subconfluent tissue culture flask, washed with 5ml PBS and trypsinized with 1 

ml of trypsin (Gibco) for 2-3 min (checked under microscope) at room temperature. The 
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reaction was stopped by addition of 13 ml DMEM/20%DBS and the cells were trans-

ferred to a 100 ml tissue culture glass flask with 56 ml of medium (this means 1:5 split 

from confluency). The cells were counted for 0 time points and seeded into 24 well 

plates (1 ml/well) in dupilcates for each day of a 3-day growth study. After 1 hour 1 ml 

of medium with varying concentrations of rhodamine 123 in ddH2O and lacking DBS 

was added into each well, resulting in a 1:2 serial dilution of rhodmamine 123 ranging 

from 2.34 mM to 150 mM. The first well was left without rhodamine 123 addition. 

Every 24 hours after the initial seed, the cell number from each plate was determined 

with a Casy cell counter (Innovatis AG, Germany). The medium was removed from the 

24-well plate by suction, washed with 1ml of PBS and trypsinized with 100µl of trypsin 

solution. The reaction was then stopped by addition of 120µl of medium and the total 

volume (220µl) was transferred to a count vial containing ~9.8ml of counter fluid and 

counted with a Casy cell counter to measure the number of surviving cells. During the 

study, the growth medium was not changed. 

 

3.13.4 Determination of first order rate constant (FORC) and IC50 values of 

modulators 

Rhodamine 123 zero trans efflux 

Cells were loaded with fluorescent substrate and efflux was determined in absence and 

presence of different inhibitor concentrations. At time point zero the extracellular con-

centration of the fluorochrome was zero and the intracellular concentration was high as 

compared to the extracellular concentration during the whole experiment. The effluxed 

fluorescent substrate did not reenter to any significant extent. Initial efflux in the zero 

trans efflux experiments was calculated from the time dependent exponential decrease 

in mean fluorescence by nonlinear regression analysis using least squares. First order 

rate constants (Vmax/Km) were calculated for each experiment. Dose response curves of 

modifier concentrations were calculated as the independent variable versus first order 

rate constants and were fitted according to follow equation: 
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v    first order rate constant as a function of modulator concentration  

Vmax the initial rate of efflux observed in the cell line in the absence of 

a modulator  

ME   modulator efficacy 

c    the modifier concentration 

n   Hill coefficient 

 

IC50 values of modulators were calculated from the dose response curves of the first 

order rate constant versus the modifier concentration. The IC50 value is the concentra-

tion of the modulator yielding a half-maximal effect. 

 

Daunomycin steady state  

In contrast, the steady state protocol evaluates steady state levels of fluorochrome inside 

the cell at different concentrations of pump inhibitors. The extracellular concentration is 

higher than the intracellular concentration and the fluorescent substrate enters the cells 

by diffusion along the concentration gradient. Two processes occur simultaneously: the 

transporter pumps solutes to the extracellular side and a concentration gradient depend-

ent diffusion of substrate occurs at the same time. Therefore, the steady state accumula-

tion levels of fluorochrome are a function of the pump activity and of diffusion rates of 

the compounds. 

In steady state experiments the mean fluorescence units of the starting inhibitor concen-

tration were calculated with the following equation: 
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MFUC0  Mean fluorescence unit of starting inhibitor concentration 

MFUCinf – C0 Mean fluorescence unit of inhibitor concentration after 30 min-

utes minus starting concentration 
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[S]   Substrate concentration 

n   Hill coefficient 

 

For comparing IC50 values of the steady state assay with those of the zero trans efflux 

experiment it was multiplied with the quotient C0/Cinf (beginning concentration divided 

through end concentration) (Stein 1997). 

 

3.13.5 Flow cytometer 

Flow cytometry was performed using a FACSCalibur flow cytometer (Becton Dickin-

son, Vienna, Austria). FACS flow sheath fluid (Cat. No. 342003) and 5 ml polypropyl-

ene FACS tubes (Cat. No. 352052) were purchased from BDBiosciences. 

Cells were cooled in an ice water bath and measured within 1 hour. Every tube after 

another was measured. 

It is possible to measure straylight and fluorescent signals with a flow cytometer. An 

argon-ion laser detects the single cells by forward scattered light (FSC) which is a 

measure for cell size and side scattered light (SCC) which stands in relation to cell 

structure (granularity of cells). Cells were shown in a correlated two-parameter dot plot: 

FSC against SSC. 

Cell data were evaluated after measurement, the viable population was differentiated 

from dead cells with an automatic attractor (BD-software package of BD flow cytome-

try). To determine the mean fluorescence values five thousand gated events were accu-

mulated. The cell population could be more differentiated from other cells with a subat-

tractor inside of the first gate. 
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4 Results 

 

4.1 Motivation for selection of mutated residues  

4.1.1 Which residues at the TMDs interfaces should be mutated? 

The high resolution structure of the Sav1866 transporter has a twisted topology. Evi-

dence for an analogous architecture of P-glycoprotein was presented by the group of 

Kenneth Linton in 2007 (Zolnerciks, Wooding et al. 2007). Using cross-linking analy-

sis, the authors showed that the intracellular loop (ICL) 4 within TMD2 forms an inter-

face with NBD1 of P-gp. In earlier studies by Loo and Clarke (Loo, Bartlett et al. 2004) 

and Stenham et al (Stenham, Campbell et al. 2003) in Linton’s group cysteines were 

introduced into both the extracellular end of transmembrane segments 2 and 11. These 

data showed that transmembrane helix 2 is close to transmembrane helix 11. Likewise, 

transmembrane helix 5 was shown to be close to transmembrane helix 8 (Stenham, 

Campbell et al. 2003; Loo, Bartlett et al. 2004). The equivalent transmembrane helices 

in the Sav1866 structure, helices 2, 5’ and 2’, 5 of the monomers, corresponding to heli-

ces 5/8 and 2/11 in P-gp, form the contact interfaces between the two TMDs. In addi-

tion, site directed mutagenesis studies by the group of David Clarke indicated that resi-

dues lining these interfaces impair the ability of the transporter to function properly 

when mutated to cysteines (Loo and Clarke 2005). Most of these residues cannot be 

protected by substrates from reacting with MTS-coupled verapamil or rhodamine 123. 

Alignments of the N- and C-terminal half of P-gp indicate two conserved glutamine 

residues which are predicted to be located in predicted transmembrane segments 2 and 8 

(Figure 4.1). Q132 in the N-terminal half and Q773 in the C-terminal half align. These 

two residues are the only non-glycine residues which are conserved between TM helices 

2 and 8 (Figure 4.1). 
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Figure 4.1: Sequence alignments of the N- and C-terminal half of P-gp using Clustal 2.0.8 multiple 

sequence alignment. The transmembrane segments are highlighted in turquoise. Glutamine resi-

dues which were mutated in this study are shown in red. For easier orientation, a partial sequence 

alignment of TMs 2 and 8 is shown above the alignment. 
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A total of 9 glutamine residues are found in predicted TM segments. Our homology 

model of P-gp suggests two of these glutamine residues to be located in between most 

highly photolabelled residues M197 and F951 (Q132) at the TM3/11 interface and 

A311 and T769 (Q773) at the TM5/8 interface. In addition, these residues are capable of 

forming H-bonds with solutes/inhibitors and are predicted in docking experiments to be 

involved in solute interaction. 

 

4.1.2 Which mutants should be generated? 

The next question was which mutants should be generated at the positions 132 and 773 

to yield fully functional transporters?  

To estimate the relative evolutionary pressure on residues in P-gp, our group used a 

method originally published in 2004 by Mihalek et al. (Mihalek, Res et al. 2004) . It is 

helpful to have an estimate of the relative importance of residues as a guide when a pro-

tein is intended to be mutated. When exploring the mutational space of nature a high 

number of correctly targeted and functional transporters is expected to be obtained. De-

termination of sequence variation which is based on multiple sequence alignments 

(MSAs) using the real valued evolutionary trace (rvET) was performed by Ivana Mi-

halek. The conservation patterns show that these two glutamine residues are not con-

served among P-gps of all species. At least one of these glutamines, however is con-

served in P-gps of species ranging from bacteria to humans. Glutamine residues are un-

charged polar residues, which were replaced by nonpolar alanine residues, a positively 

charged arginine or a negatively charged glutamic acid, individually or in combination. 

MSAs indicated that a charge might be tolerated in this position of the protein. In this 

study, the influence of replacement of glutamine by positively or negatively charged or 

by uncharged amino acid residues was investigated in order to characterize their possi-

ble role in the transport process. 

Importantly, a number of residues which had been identified as being critically involved 

in rhodamine 123 and verapamil binding, are located in vicinity of these residues in 

protein homology models of P-gp. 

 

4.2 Generation of expression vectors 

In this study the site directed mutagenesis experiments were guided by the mutational 

space explored and delineated by nature. We have created a series of constructs to be 



 

 76 

able to express mutants of P-gp. Q123 and Q773 were mutated to glutamic acid, argin-

ine and alanine, individually or in combination. Mutants were generated in the wt and in 

the G185V background in the entry vector using overlap extension PCR. After site di-

rected mutagenesis, the pEF5 vector encoding for P-gp or P-gp mutants were generated 

via LR recombination reaction. 

 

G185V background Wildtype background 

Q132A Q132A 

Q773A Q773A 

Q132A/Q773A Q132A/Q773A 

Q132E  

Q773E Q773E 

Q132E/Q773E  

Q132R  

Q773R Q773R 

Q132R/Q773R  

Table 4.1. Constructs of P-gp mutants. 

 

It was expected that a replacement leads to altered substrate binding and transport, 

which can be analysed by efflux assays of diverse substrates. 

 

4.3 Creation of stable cell lines expressing P-gp mutants 

To determine potential effects of the expression of Q132 and Q773 mutants, we carried 

out stable transfection in FlpIn HEK 293 and mouse FlpIn NIH 3T3 cell lines express-

ing the wt or mutant form of P-gp by using the vector pEF5. 

 

Expression and function of P-gp in FlpIn HEK 293 cells 

Stable transfectants were obtained by selection in 200 µg/ml hygromycin B and surviv-

ing clones were screened by flow cytometry using the MRK16 antibody, which detects 

P-gp on the cell surface recognizing an external epitope. We started with the transfec-

tion of HEK 293 cells with the vectors pEF5MDR1H6G185V and pEF5 as control. The 

P-gp G185V mutant was first isolated from highly colchicine-resistant cell lines (Choi, 

Chen et al. 1988). Cells expressing G185V P-gp had a decreased rate of colchicine up-

take when compared to cells with wild-type P-gp (Omote, Figler et al. 2004). It has 
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been shown that this mutation is responsible for high colchicine resistance. In addition, 

the G185V mutation near transmembrane domain 3 of human P-gp confers an increased 

resistance to etoposide and doxorubicin but a decreased resistance to vinblastine, Taxol 

and actinomycin D (Ruth, Stein et al. 2001). 

To estimate the amount of non-specific binding of mouse monoclonal antibodies to hu-

man cell-surface antigens a mouse IgG2a antibody was used as fluorescence control. 

This antibody reacts specifically with keyhole limpet hemocyanin (KLH), an antigen 

not expressed on human cells or human cell lines (BectonDickinson). The P-gp overex-

pressing human T-lymphoblast cell line CCRF-CEM VCR 1000, provided by V. Gek-

eler (Byk Gulden, Konstanz, Germany), served as a positive control and mock trans-

fected cells served as the negative control. The CCRFvcr 1000 cell line has been charac-

terized previously (Gekeler, Weger et al. 1990; Gekeler, Frese et al. 1992; Chiba, Ecker 

et al. 1996). Using goat anti-mouse Ig FITC (GAM Ig FITC) resulting mean fluores-

cence units (MFU) were measured by flow cytometry (Figure 4.2: MRK16 and IgG2a 

staining. Red bars refer to cells incubated with MRK16 and blue bars to those incubated 

with IgG2a control antibody.).  

 

Figure 4.2: MRK16 and IgG2a staining. T-lymphoblast cell line CCRF-CEM VCR 1000 (vcr1000), 

HEK 293 cells transfected with G185V P-gp (G185V) and mock transfected HEK 293 cells (Mock) 

are shown. Red boxes are cells incubated with MRK16 and blue boxes are cells incubated with 

IgG2a as control. 

 
To test the pump activity of the transfected cell lines, steady state experiments were 

performed. The pump activity of G185V P-gp was compared to mock transfected cells. 

In this protocol inhibitor and fluorochrome are added simultaneously and a steady state 

is reached after 30 minutes. In addition, inhibition of the pump increases intracellular 
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fluorochrome levels and therefore the pump activity. An example of such an experiment 

is given in Figure 4.3: Daunomycin steady state experiments with HEK 293 cells. By 

measuring cellular mean fluorescence units (MFU) in the absence and presence of 8 

different concentrations of the propafenone analogue GPV31, IC50 values were calcu-

lated using a hyperbolic curve fit. Left: HEK 293 cells transfected with G185V P-gp. 

Right: Mock transfected HEK 293 cells. The IC50 value for G185V P-gp was 0.21 µM.  

 

Figure 4.3: Daunomycin steady state experiments with HEK 293 cells. By measuring cellular mean 

fluorescence units (MFU) in the absence and presence of 8 different concentrations of the 

propafenone analogue GPV31, IC50 values were calculated using a hyperbolic curve fit. Left: HEK 

293 cells transfected with G185V P-gp. Right: Mock transfected HEK 293 cells.  

 

The P-gp clone positive for the G185V mutation was expanded for further study. We 

tested different compounds as inhibitors and compared the pump activity between 

G185V and mock transfected cells. The propafenone analogues which were used have 

different lipophilicity. Lipophilicity (calculated logP) is a main determinant for biologic 

activity of the compounds with respect to MDR inhibition (Chiba, Ecker et al. 1996; 

Schmid, Staudacher et al. 2003). LogP values of the compounds were calculated based 

on the incremental method described by Ghose et al. (Ghose and Crippen 1987). Highly 

lipophilic compounds have high potency (1/IC50 values) because in the membrane, the 

site of pharmacological action, lipophilic compounds accumulate. IC50 values for 

G185V P-gp expressing HEK 293 cells were determined by daunomycin steady state 

experiments using different propafenone analogues. Results are summarized in Table 

4.3. To compare IC50 values of the steady state assay with those of the zero trans efflux 

experiment they were multiplied with the quotient C0/Cinf (accumulation at an inhibitor 

concentration of zero divided by accumulation rate at infinite concentration of inhibitor 



 

 

(Stein 1997). In the example 

propafenone analogue GPV31 was 

in the zero trans efflux protocol

The corrected IC50 value was 

tained in the steady state protocol is that any inhibition of the transporter results in an 

increase of the intracellular concentration of solute and thus an increase

This partially antagonizes the

actual values. For the theory behind the correction term specified above the reader is 

referred to the work of Stein et al. 

Table 4.2: All used compounds listed 

of G185V P-gp expressed in HEK 293 cells and 

 

In a comparison of 24 compounds, the 

tained in these steady state experiments 

well with those obtained in the

CCRFvcr 1000 cells (Figure 

79

In the example illustrated in Figure 4.3 the apparent IC50

GPV31 was 0.21 µM. To compare it with the IC50 value

protocol it was multiplied by 0.718 (426.7 MFU/594.1

value was 0.15 µM. The rational for correction of IC

tained in the steady state protocol is that any inhibition of the transporter results in an 

increase of the intracellular concentration of solute and thus an increase

This partially antagonizes the inhibition leading to observed IC50 which are higher than 

actual values. For the theory behind the correction term specified above the reader is 

referred to the work of Stein et al.  

All used compounds listed with their calculated lipophilicity, IC50 values and log(1/

in HEK 293 cells and wt-P-gp in CCRFvcr 1000 cells. 

In a comparison of 24 compounds, the modulator log potency (log(1/IC50

tained in these steady state experiments of G185V P-gp HEK 293 cell line 

those obtained in the daunomycin zero trans efflux studies 

Figure 4.6).  

50 value of the 

value obtained 

0.718 (426.7 MFU/594.1 MFU). 

C50 values ob-

tained in the steady state protocol is that any inhibition of the transporter results in an 

increase of the intracellular concentration of solute and thus an increased pump rate. 

which are higher than 

actual values. For the theory behind the correction term specified above the reader is 

 

values and log(1/IC50) 

50) values) ob-

gp HEK 293 cell line correlated 

 performed in 
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Figure 4.4: Correlation between log potency values obtained for HEK 293 cell containing G185V P-

gp line in daunomycin steady state experiments and log potency values for the P-gp overexpressing 

human T-lymphoblast cell line CCRF-CEM VCR 1000 as determined by a zero trans efflux proto-

col. Results for a set of propafenone analogues are shown. The propafenone analogs are located 

close to the solid line which represents the ideal 1:1 correlation. Data points represent the mean of 

at least duplicate determinations. 

 

Mock transfected cells served as negative control and the effect of propafenone 

ananlogues observed in these cells was negligible for most compounds. An important 

observation however, was that the mock transfected cells did sometimes show some 

pump activity because of endogenously expressed human wt P-gp. In the representative 

experiment for compound GPV31 shown in Figure 4.3, the highest loading level at the 

highest compound concentration was 600 MFU/cell for G185V P-gp and 550 MFU/cell 

for mock transfected cells. To overcome the human endogenous P-gp expression in 

HEK 293 cells, we switched to the NIH 3T3 mouse cell line which is also compatible 

with the Flp-In system but expressing very much lower endogenous P-gp levels.  

 

Expression and functional characterization of P-gp in FlpIn3T3 cells 

Mutated membrane proteins with impaired folding often fail to reach the plasma mem-

brane (Loo, Bartlett et al. 2005). They are retained in an inactive form in the endoplas-

mic reticulum (ER) by the cell’s quality control mechanism and are rapidly degraded 

(Pind, Riordan et al. 1994; Chen, Bartlett et al. 2000; Loo, Bartlett et al. 2005). In publi-
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cations of Loo and Clarke a majority of mutants showed correct targeting to the plasma 

membrane in the presence of the pharmacological chaperone cyclosporine A (CsA). In 

order to correct the trafficking deficiency of mutant P-gp and study the transporter func-

tionally, the P-gp mutants were grown in the presence of 10 µM CsA as previously sug-

gested by Loo, Bartlett and Clarke. In fact, the P-gp expression level was higher in the 

presence of CsA which is shown in Figure 4.5 for the example of the G185V, G185V-

Q132R/Q773R P-gp. We tested two different incubation times for 10 µM CsA. How-

ever, incubation for 24 hours could rescue the double R mutant and increase the expres-

sion level of G185V P-gp. The mock transfected cells only showed a small stimulation. 

After 48 hours, the effect diminished except for the double R mutant in which it was 

identical. 

 
Figure 4.5: MRK16 and IgG2a staining. Red boxes are cells incubated with MRK16 and blue boxes 

are cells incubated with IgG2a as control.  

 

4.4 Characterization of P-gp expression at the protein level 

We investigated whether CsA could influence the P-gp expression level. For this pur-

pose, we performed Western blot analysis with the specific monoclonal C219 antibody 

which recognizes a highly conserved amino acid sequence found in the nucleotide bind-

ing domain of P-gp. We observed a significant increase of all P-gp mutant proteins in 

NIH 3T3 cells, which were preincubated with 10 µM CsA for 24 hours at 37°C. Control 

cells were incubated with DMSO only. The C219 antibody also recognized the mouse 

P-gp but the difference between mock transfected cells was negligible (Figure 4.6). 
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Figure 4.6: Effect of CsA on maturation of P-gp mutants. NIH3T3 cells expressing mutants were 

preincubated with 10 µM CsA (+) or DM SO only (-) for 24 hours at 37°C. Equivalent amounts of 

whole cell SDS extracts were then subjected to SDS-PAGE and Western blot analysis with the 

monoclonal anti-P-glycoprotein antibody C219. The positions of the mature form (170 kDa) of P-gp 

mutants are indicated. 

 

4.5 Effect of CsA on mRNA level 

SYBR green real-time reverse transcription PCR was used to asses the influence of CsA 

on mRNA level. The mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT) 

gene was used to normalise mRNA levels between different samples. CsA had no effect 

on mRNA level (Figure 4.7). 

 

Figure 4.7: SYBR green real-time RT-PCR analysis of P-gp mutants. Total RNA isolated from P-gp 

mutants NIH 3T3 cells was reverse transcribed, and PCR was performed with primers specific for 

cDNA of the MDR1 gene. Red boxes refer to cells incubated with 10 µM CsA for 24 hours and blue 

boxes refer to cells incubated with the solvent DMSO as control. Left: Gene expression levels were 

normalized to HPRT levels and shown as expression levels of P-gp mutants relative to those of the 

control. Right: Gene expression levels were normalized to HPRT levels and shown as expression 

levels of P-gp mutants relative to those of the control (arbitrarily set to 1). 
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4.6 Pharmacological chaperones 

We tested whether mutations introduced in TM segments 2 and 8 (forming part of the 

drug binding pocket) inhibit maturation of the protein. The presence of P-gp and P-gp 

mutant protein in HEK 293 and NIH 3T3 cells was detected by surface protein expres-

sion analysis using the selective monoclonal antibody MRK16 and the goat anti mouse 

FITC-labelled secondary antibody. The fluorescence intensity of some P-gp mutants 

was comparable to the background fluorescence intensity, thus the level of P-gp expres-

sion was negligible. Pharmacological chaperones such as cyclosporin A and  verapamil 

are predicted to promote maturation of P-gp processing mutants.  

 

4.6.1 Surface expression of P-gp in FlpIn NIH 3T3 fibroblasts 

We tried different compounds as pharmacological chaperones, for example CsA,  vera-

pamil and GPV51. These tests are useful, especially in terms of optimization of concen-

tration of substrates. Thus, the first step was to compare various concentration of the 

propafenone analogue GPV51 for the efficiency in promoting maturation of P-gp. For 

this, cells were incubated in the absence or presence of 10 different concentrations rang-

ing from 1.17 to 300 µM (1:2 serial dilution) of GPV51 for 24 hours to optimize the 

tolerable dosage of GPV51 to act as a pharmacological chaperone. Additionally, cyc-

losporin A at a concentration of 10 µM was used as a control. After a 24 hour incuba-

tion, the distribution pattern of the protein expression level was determined by immuno-

cytochemical staining using the monoclonal antibody MRK16 as described above. Fig-

ure 4.50 - Figure 4.54 represent the mean of two independently performed experiments. 

The arginine mutants were tested due to the comparability of the G185V-Q773R and 

G185V-Q132R/Q773R mutants’ expression levels to those of the mock transfected 

cells. The arginine mutants were compared to G185V P-gp and mock transfected cells. 

All arginine mutants showed a higher expression in the presence of CsA and GPV51 

compared to the control.  

 

The G185V P-gp and Q132R, Q773R and Q132R/Q773R P-gp mutants in the G185V 

background showed a concentration-dependent increase in the expression level of P-gp 

(Figure 4.8 - Figure 4.11). However, the mock transfected cells showed a similar pattern 

(see Figure 4.12). Incubation of all R mutants in the presence of GPV51 gave a similar 
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pattern. The propafenone analogue GPV51 was able to increase the expression level of 

all R mutants to a small extent (shown in Figure 4.9 - Figure 4.11).  

 

 

Figure 4.8: Distribution pattern of the protein expression level of G185V P-gp expressing NIH3T3 

cells. In the absence and presence of 10 different concentrations of the propafenone analogue 

GPV51, the tolerable dosage was tested. Incubation with 10 µM CsA served as control. 

 

 

 

Figure 4.9: Distribution pattern of the protein expression level of G185V-Q132R P-gp expressing 

NIH3T3 cells. In the absence and presence of 10 different concentrations of the propafenone ana-

logue GPV51, the tolerable dosage was tested. Incubation with 10 µM CsA served as control. 

 

 

 
Figure 4.10: Distribution pattern of the protein expression level of G185V-Q773R P-gp expressing 

NIH3T3 cells. In the absence and presence of 10 different concentrations of the propafenone ana-

logue GPV51, the tolerable dosage was tested. Incubation with 10 µM CsA served as control. 
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Figure 4.11: Distribution pattern of the protein expression level of G185V-Q132R/Q773R P-gp 

expressing NIH3T3 cells. In the absence and presence of 10 different concentrations of the 

propafenone analogue GPV51, the tolerable dosage was tested. Incubation with 10 µM CsA served 

as control. 

 

 

Figure 4.12: Distribution pattern of the protein expression level of mock transfected NIH3T3 cells. 

In the absence and presence of 10 different concentrations of the propafenone analogue GPV51, the 

tolerable dosage was tested. Incubation with 10 µM CsA served as control. 

 
The expression levels of the G185V P-gp and G185V P-gps mutants are increased by a 

24 hours pre-treatment with the pharmacological chaperone GPV51. 

We used 50 µM GPV51 for further experiments due to the fact that a more than 20% 

increase in endogenous mouse P-gp expression ensued from administration of higher 

concentrations (shown in Figure 4.12: Control: 100%, 75 µM GPV51: 179%). At 150 

and 300µM the effect was less pronounced than at 75µM.  

For compounds such as cyclosporin A and  verapamil which are predicted to promote 

maturation of P-gp processing mutants we used published concentrations: 10 µM cyc-

losporin A (CsA) and 50 µM  verapamil (Vera).  

The next step was to compare these compounds in their effect on P-gp mutants. The 

effect of CsA,  verapamil and GPV51 on P-gp expression level was determined by im-

munocytochemical staining using the monoclonal antibody MRK16 as described above. 
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DMSO was required at a final concentration of 0.2% to prepare CsA and GPV51 stocks.  

Verapamil was prepared in water. Therefore 0.2% final concentration of DMSO was 

added to control cells and cells that were incubated with  verapamil for 24 hours.  

 

Figure 4.13: MRK16 staining of G185V P-gp, Q132A, Q773A and Q132A/Q773A P-gp mutants in 

the G185V background, and mock transfected NIH 3T3 cells. All cell lines were preincubated for 

24 hours with 10 µM CsA, 50 µM Vera and 50 µM GPV51. Control cells were incubated with 

DMSO. 

 
Figure 4.14: MRK16 staining of G185V P-gp, Q132E, Q773E and Q132E/Q773E P-gp mutants in 

G185V background, and mock transfected NIH 3T3 cells. All cell lines were preincubated for 24 

hours with 10 µM CsA, 50 µM Vera and 50 µM GPV51. Control cells were incubated with DMSO. 
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Figure 4.15: MRK16 staining of G185V P-gp, Q132R, Q773R and Q132R/Q773R P-gp mutants in 

G185V background, and mock transfected NIH 3T3 cells. All cell lines were preincubated for 24 

hours with 10 µM CsA, 50 µM Vera and 50 µM GPV51. Control cells were incubated with DMSO. 

 

The expression level of all mutants was increased by a 24 hours pre-incubation with 

CsA,  verapamil and GPV51. The best effect was obtained with the chaperone CsA, 

followed by  verapamil. The propafenone analogue GPV51 only was able to increase 

the expression level of all mutants to a small extent. 

  

4.6.2 Surface expression of P-gp in FlpIn HEK 293 cells 

The effect of CsA,  verapamil and GPV51 on P-gp expression level also was tested in 

HEK 293 cells expressing G185V P-gp, G185V-Q773R and G185V-Q132R/Q773R 

mutants. 
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Figure 4.16: MRK16 staining of G185V P-gp, Q773R and Q132R/Q773R P-gp mutants in G185V 

background, and mock transfected HEK 293 cells. All cell lines were preincubated for 24 hours 

with 10 µM CsA, 50 µM Vera and 50 µM GPV51. Control cells were incubated with DMSO. 

 

The mock transfected HEK 293 control cells showed a higher background expression 

compared to mock transfected NIH 3T3 control cells based on the human endogenous 

P-gp. 

Apart from that, the expression pattern for the G185V P-gp, G185V-Q773R and double 

R mutant are similar in both human and mouse cell lines preincubated with CsA,  vera-

pamil and GPV51. 

 

4.7 Cytotoxicity of rhodamine 123 

The purpose of this experiment was to investigate the effect of rhodamine 123 on MDR 

and therefore the influence on cell growth in FlpIn NIH 3T3 transfected cell lines. The 

drug resistance of stable cells expressing MDR1 wild-type or MDR1 mutants was 

evaluated by measuring the cell viability after exposing them to a wide range of rhoda-

mine 123 concentrations. The cells were incubated in the absence or presence of various 

concentrations ranging from 2.34 µM to 150 µM (1:2 serial dilutions) of rhodamine 123 

for 24 hours, 48 hours and 72 hours. The cell number was determined with a Casy cell 

counter (Innovatis AG, Germany). At the beginning we compared G185V P-gp and wt 

P-gp. Mock transfected cells again served as negative control. All cytotoxicity experi-

ments were performed in duplicate, using cells obtained from independent experiments. 

Experimental data are presented as the mean ± standard deviation (S.D.). The cells ex-



 

 89

pressing G185V P-gp exhibit higher resistance to rhodamine 123, suggesting a gain of 

function phenotype (Figure 4.17 - Figure 4.19). The concentrations required for 50% 

cell death (half maximal effective concentration, IC50) after 72 hours incubation for wt 

P-gp, G185V P-gp and mock transfected cells were 104 µM, 306.3 µM and 32.5 µM. 

Thus, G185V P-gp was of great interest for mutant characterization. We used this 

G185V “gain-of-function” mutation in all of the mutants in order to be able to study 

them functionally by flow cytometry using rhodamine 123 as a substrate. 
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Figure 4.17: Cell growth as a percentage of control for G185V P-gp, wt P-gp and mock transfected 

NIH3T3 cells after 24 hours incubation with rhodamine 123 at 37°C. Each experiment was per-

formed in duplicate. 

 
Figure 4.18: Cell growth expressed as a percentage of control for G185V P-gp, wt P-gp and mock 

transfected NIH3T3 cells after 48 hours incubation with rhodamine 123 at 37°C. Each experiment 

was performed in duplicate. 
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Figure 4.19: Cell growth expressed as percentage of control for G185V P-gp, wt P-gp and mock 

transfected NIH3T3 cells after 72 hours incubation with rhodamine 123 at 37°C. Each experiment 

was performed in duplicate. 

 

All mutants were compared with G185V P-gp and mock transfected cells. Cell surface 

labelling of P-gp was carried out for all cell lines, in parallel with cytotoxicity experi-

ments. These additional studies confirmed the expression of all A mutants (shown in 

Figure 4.20) and E mutants (shown in Figure 4.22). The R mutants showed a different 

expression pattern (shown in Figure 4.24). The Q773R and Q132R/Q773R had an ex-

pression level which was similar to that of mock transfected cells, i.e. did not show traf-

ficking to the plasma membrane. The expression level was higher than in positive con-

trols in Q132E, Q132R and Q773A mutants. Both Q773A and Q132E showed a small 

increase, but expression of the Q132R mutant was significantly increased. 

As before, all cytotoxicity experiments were performed in duplicate using cells obtained 

from independent experiments with the same concentration of rhodamine 123. How-

ever, only the 72 hour time point is shown (Figure 4.21, Figure 4.23 andFigure 4.25). 

Experimental data are presented as the mean ± standard deviation (S.D.).  
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Figure 4.20: MRK16 staining of G185V P-gp, G185V A mutants and mock transfected cells. All 

mutants were expressed. Each experiment was performed in duplicate. 

 
 

 
Figure 4.21: Cell growth expressed as percentage of control for G185V P-gp, G185V A mutants and 

mock transfected NIH3T3 cells after 72 hours rhodamine 123 incubation at 37°C. Each experiment 

was performed in duplicate. 
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Figure 4.22: MRK16 staining of G185V P-gp, G185V E mutants and mock transfected cells. All 

mutants were expressed. Each experiment was performed in duplicate. 

 

 
Figure 4.23: Cell growth expressed as a percentage of control for G185V P-gp, G185V E mutants 

and mock transfected NIH3T3 cells after 72 hours rhodamine 123 incubation at 37°C. Each ex-

periment was performed in duplicate. 
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Figure 4.24: MRK16 staining of G185V P-gp, G185V R mutants and mock transfected cells. Q773R 

and Q132R/Q773R mutants were not expressed. Each experiment was performed in duplicate. 

 

 

Figure 4.25: Cell growth expressed as percentage of control for G185V P-gp, G185V E mutants and 

mock transfected NIH3T3 cells after 72 hours rhodamine 123 incubation at 37°C. Each experiment 

was performed in duplicate. 

 

The IC50 values after a 72 hour incubation with G185V P-gp, Q132A, Q773A and 

Q132A/Q773A in the G185V background, and mock transfected cells were 173 µM, 99 
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µM, 145 µM, 92 µM and 25 µM (shown in Figure 4.21). These results indicated that an 

alanine substitution at position 132 and 773, individually or in combination had little 

influence on the substrate properties of rhodamine 123 and therefore little influence on 

cell survival. 

The IC50 values after 72 hours incubation with G185V P-gp, Q132E, Q773E and 

Q132E/Q773E in the G185V background, and mock transfected cells were 238 µM, 958 

µM, 57 µM, 76 µM and 40 µM (shown in Figure 4.23). Surprisingly, we found that 

Q132E is a “gain of function” mutation because of the fourfold higher IC50 value (four-

fold higher resistance) as compared to the G185V background. 

The IC50 values after 72 hours incubation with G185V P-gp, Q132R, Q773R and 

Q132R/Q773R in the G185V background, and mock transfected cells were 283 µM, 

401 µM, 86 µM, 60 µM and 71 µM (shown in Figure 4.25). Although both the Q132R 

and the Q132E mutant showed a similar behaviour, the Q132R showed essentially iden-

tical resistance as compared to the G185V background. The Q132R/Q773R double mu-

tant essentially showed the same IC50 value as the mock tranfected cells. Similarly, the 

difference between IC50 values of Q773R and mock transfected cells was negligible. 

 

4.8 Rhodamine 123 zero trans efflux experiments 

The pump activity of the transfected cell lines were tested by zero trans efflux experi-

ments. To examine whether rhodamine 123 is recognized as substrate by P-gp mutants, 

we determined the transport of rhodamine 123 in NIH 3T3 cells stably expressing P-gp 

mutants’ compared to G185V P-gp and mock transfected cells. 

 

Because of the fact that the Q773R and Q132R/Q773R in the G185V background did 

not traffic to the plasma membrane, the first experiments were performed by adding 

CsA at a concentration of 10 µM at 37°C for 24 hours. All R mutants and both G185V 

P-gp and mock transfected cells were incubated with CsA serving as control. After 24 

hours the cells were washed three times with 90% DBS and 10% DMEM for 20 minutes 

at 37°C to remove CsA from the cultures. The time dependent efflux of rhodamine 123 

was followed over 6 minutes (time points 60, 120, 180, 240, 300 and 360 seconds). First 

order rate constants (FORCs) were obtained by simultaneous fit of duplicate datapoints 

by an exponential function and normalized for expression rates (Figure 4.27). 

We also examined the expression level for all cell lines by cell surface labelling of P-gp 

with MRK16 in parallel to the efflux experiment. Additionally, unstimulated cells 
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served as control. Thus we carried out seven stimulated and five unstimulated inde-

pendent MRK16 stainings for each cell line (shown in Figure 4.26). CsA incubation 

promoted expression of all mutant P-gps to levels observed for G185V P-gp. An exactly 

identical expression was not required, because FORCs are linearly dependent on protein 

expression rates in a zero trans efflux protocol. Experimental data are presented as the 

means ± S.D. 

  

 

Figure 4.26: MRK16 staining of G185V P-gp, Q132R, Q773R and Q132R/Q773R P-gp mutants in 

G185V background, and mock transfected cells. The values are expressed as percent of G185V set 

to 100%. The values are mean 
+ 

standard deviations. Left: unstimulated cells (N=5). Right: Cells 

were incubated with 10 µM CsA for 24 hours (N=7). 
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Figure 4.27: Rhodamine 123 zero trans efflux without modulator. The diagramme shows the trans-

port rate of rhodamine 123 of G185V P-gp, Q132R, Q773R and Q132R/Q773R P-gp mutants in 

G185V background. The slope obtaining through linear regression of FORC versus MFU values of 

all cell lines are calculated and indicated above the bar. Cells were preincubated with 10 µM CsA 

for 24 hours (N=7). 

 

To compare different flux rates in mutants to each other the transport rates have to be 

normalized for expression rate. The Q132R mutant showed 29% efflux rates of G185V 

control, Q773R and the double mutant showed 32% and 21%, respectively. The rhoda-

mine 123 transport rate for G185V P-gp showed high interexperimental variation, 

which we interpreted as possibly due to incomplete remove of CsA. To overcome the 

effect of potentially incomplete CsA removal, surface expression was increased by 

shifting to a growth temperature of 28°C. The expression level increased in all of the R 

mutants (Figure 4.55). 

Different compounds, GPV01, GPV02, GPV12, GPV31, GPV46, and GPV57, were 

tested for their modulating activity in the rhodamine 123 efflux assays for wt, G185V P-

gp and mock transfected cells (shown in Table 4.3). A time dependent efflux was used 

with either no modulator, or modulator at eight various concentrations depending on 

solubility and the expected potency for the modifier. The modulator concentrations for 
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GPV01 that were used for mutant characterization ranged from 164 nM to 100 µM 

(1:2.5 serial dilutions). For each concentration of the inhibitor, the time dependent ef-

flux of rhodamine 123 was followed over 6 minutes (time points 90, 180, 270 and 360 

seconds). From these data points the initial efflux rate was calculated by determining 

the slope of the tangent to the extrapolated 0 time point which was normalised to obtain 

the first order rate constant (FORC). The first order rate constants (Vmax/Km) were then 

plotted as a function of inhibitor concentration in a linear and a half-logarithmic plot 

(shown in Figure 4.28 - Figure 4.48). Hyperbolic curves were fitted to the data points 

using the solver add-in of the MS-office Excel computer program. G185V P-gp and wt 

P-gp expressing cells were loaded with the fluorescent dye rhodamine 123 and the time-

dependent decrease of cell-associated fluorescence in the presence of different concen-

trations of inhibitors was measured. Mock transfected cells served as negative control. 

Plotting the first order rate constants versus inhibitor concentration led to dose/response 

curves, which allowed calculation of the IC50 values. These IC50 values refer to those 

concentrations, which are required to inhibit efflux first order rate constants of rhoda-

mine 123 by 50%. IC50 values were determined by fitting a Hill equation onto data 

points by the method of nonlinear least-squares. A representative experiment for com-

pound GPV01 is shown in Figure 4.29 - Figure 4.31 and for GPV31 in Figure 4.32 - 

Figure 4.34. Cell surface labelling was carried out for all cell lines in parallel with the 

efflux experiment (Figure 4.28). 

 

Figure 4.28: MRK16 staining of wt P-gp, G185V P-gp and mock transfectd clells. Each experiment 

was performed in duplicate.  

 
The expression level for wt and G185V P-gp was similar. 
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Figure 4.29: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V P-gp expressing NIH3T3 cells. From measurements in the absence and pres-

ence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calculated 

using a hyperbolic curve fit. 

  

 
Figure 4.30: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in wt P-gp expressing NIH3T3 cells. From measurements in the absence and presence of 

8 different concentrations of the propafenone analogue GPV01, IC50 values were calculated using a 

hyperbolic curve fit.  
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Figure 4.31: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in mock transfected NIH3T3 cells in the absence and presence of 8 different concentra-

tions of the propafenone analogue GPV01. 

 

For all efflux experiments the IC50 values of GPV01 were 0.780 µM (95% CI: 0.49 µM 

– 1.07 µM, N=10) for G185V and 0.73 µM (95% CI: 0.62 µM – 0.84 µM, N=3) for wt 

cells. It was not possible to calculate an IC50 value for mock transfected cells.  

 

Figure 4.32: Dose-response curve for compound GPV31, showing the effect on the rhodamine 123 

efflux rate in G185V P-gp expressing NIH3T3 cells. From measurements in the absence and pres-

ence of 8 different concentrations of the propafenone analogue GPV31, IC50 values were calculated 

using a hyperbolic curve fit.  
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Figure 4.33: Dose-response curve for compound GPV31, showing the effect on the rhodamine 123 

efflux rate in wt P-gp expressing NIH3T3 cells. From measurements in the absence and presence of 

8 different concentrations of the propafenone analogue GPV31, IC50 values were calculated using a 

hyperbolic curve fit.  

 
 
 
 
 

 

Figure 4.34: Dose-response curve for the compound GPV31, showing the effect on rhodamine 123 

efflux rate in mock transfected NIH3T3 cells in the absence and presence of 8 different concentra-

tions of the propafenone analogue GPV31. 
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For all rhodamine 123 efflux inhibition experiments with GPV31 the IC50 values were 

0.18 µM (95% CI: 0.10 µM – 0.27 µM, N=3) for G185V P-gp and 0.27 µM (N=1) for 

wt P-gp. As before, no effect of GPV31 was observed in mock transfected cells, be-

cause of a lack of expression of P-gp. The rate constant observed in these cells corre-

sponds to rhodamine 123 diffusion rates. 

 

The IC50 values for all 6 propafenone analogues are reported in Table 4.3. It was not 

possible to calculate IC50 values for mock transfected cells for any of the propafenone 

analogues, because these cells do not express significant levels of P-gp. The most active 

compounds are GPV01, GPV02, and GPV31. For these three compounds comparably 

low inhibitor concentrations are needed to modulate activity. IC50 values of these com-

pounds are lower than those observed for GPV12, GPV46, and GPV57. The modulators 

GPV01, GPV02, GPV12, GPV31, GPV46 and GPV57 were tested once before the mu-

tants were characterized.  

 

Table 4.3: Different propafenone analogues and their respective IC50 values for inhibition of G185V 

P-gp and wt P-gp obtained in rhodamine 123 efflux experiments. It was not possible to calculate 

IC50 values for mock transfected cells. 

 

Because of generally low expression rates of stable transfectants, use of the G185V 

background was considered to increase the likelihood of being able to functionally char-

acterize mutant P-gp with reduced pump activity. Indeed, the G185V P-gp had higher 
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rhodamine 123 efflux rates as compared to wt P-gp. This observation is consistent with 

the cytotoxicity experiments where the G185V P-gp showed a higher resistance to rho-

damine 123 compared to wt P-gp. The FORCs for these 6 rhodamine 123 efflux ex-

periments of G185V P-gp, wt P-gp and mock transfected cells are shown in Figure 4.35.  

 

Figure 4.35: Transport rates (FORCs) of G185V P-gp, wt P-gp and mock transfected cells for rho-

damine 123. 

 

The mean of all rhodamine 123 zero trans efflux experiments resulted in a FORC of 

1.55 1/sec x 1000 (95% CI: 1.44 – 1.65, N=17) for G185V P-gp, 1.46 1/sec x 1000 

(95% CI: 1.33 – 1.59, N=8) for wt P-gp and 0.59 1/sec x 1000 (95% CI: 0.51 – 0.67, 

N=14) for mock transfected cells. These FORCs of G185V P-gp and wt P-gp have been 

normalized for expression rate to compare flux rates to each other (shown in Figure 

4.36). The slope of this relationship provided the pump activity. The slopes of the linear 

regressions are shown in Table 4.4. The pump activity for wt and G185V P-gp was 

similar. The mock transfected cells were close to the origin indicating that the rate con-

stant observed in these cells corresponds to rhodamine 123 diffusion rates. 
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Figure 4.36: Correlation (origin forced to 0) of surface expression (measured by MRK16 staining) 

and FORC for G185V P-gp and wt P-gp. 

 

 

Table 4.4: Pump activity of G185V P-gp and wt P-gp. The slopes were obtained through linear 

regression of FORC versus surface expression (MFU value). N: number of data points that were 

used, r: correlation coefficient, and p: significance 

 

The next step was to characterize the P-gp mutants. All three mutant combinations for 

example Q132A, Q773A and Q132A/Q773A in the G185V background were compared 

with G185V P-gp and mock transfected cells in rhodamine 123 efflux experiments on 

the same day. A representative experiment for each cell line for compound GPV01 is 

shown in Figure 4.38 - Figure 4.42; Figure 4.44 - Figure 4.48; Figure 4.50 - Figure 4.54; 

and Figure 4.56 - Figure 4.59. In general the rhodamine 123 zero trans efflux experi-

ments were performed in at least two independent experiments and cell surface labelling 

of P-gp was carried out for all cell lines in parallel in repeat determinations for each 

experiment (Figure 4.37, Figure 4.43, Figure 4.49, and Figure 4.55). 

We tested compound GPV01 as inhibitor for all P-gp mutants.  
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Figure 4.37: MRK16 staining of G185V P-gp, Q132A, Q773A and Q132A/Q773A P-gp mutants in 

G185V background, and mock transfected cells. Each experiment was performed in duplicate. 

 
 
 
 

 
Figure 4.38: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132A P-gp expressing NIH3T3 cells. From measurements in the absence and 

presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calcu-

lated using a hyperbolic curve fit. 
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Figure 4.39. Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q773A P-gp expressing NIH3T3 cells. From measurements in the absence and 

presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calcu-

lated using a hyperbolic curve fit. 

 

 
Figure 4.40: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132A/Q773A P-gp expressing NIH3T3 cells. From measurements in the 

absence and presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values 

were calculated using a hyperbolic curve fit. 
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Figure 4.41: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V P-gp expressing NIH3T3 cells. From measurements in the absence and pres-

ence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calculated 

using a hyperbolic curve fit. 

 
Figure 4.42: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in mock transfected NIH3T3 cells in the absence and presence of 8 different concentra-

tions of the propafenone analogue GPV01. 
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IC50 values for rhodamine 123 efflux inhibition with GPV01 were 0.66 µM (95% CI: 

0.52 µM – 0.81 µM, N=2) for G185V-Q132A, 0.57 µM (95% CI: 0.24 µM – 0.90 µM, 

N=2) for G185V-Q773A, and 1.64 µM (95% CI: -0.13 µM – 3.40 µM, N=2) for the 

double A mutant.  

Because of the fact that the G185V-Q132A/Q773A P-gp mutant had a very low expres-

sion level the experiments were performed again. To enhance expression of P-gp, the 

G185V, all alanine mutants in the G185V background as well as the mock transfected 

cells were shifted to a growth temperature of 28°C prior to assessing substrate flux. The 

expression level increased in all mutants (shown in Figure 4.43). 

 

 

Figure 4.43: MRK16 staining of G185V P-gp, Q132A, Q773A and Q132A/Q773A P-gp mutants in 

G185V background, and mock transfected cells. Comparison of incubation at 28°C (left) and 37°C 

(top-right, see Figure 4.37). The cells were shifted to a growth temperature of 28°C / 37°C prior to 

assessing substrate flux. Each experiment was performed in duplicate. 
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Figure 4.44: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132A P-gp expressing NIH3T3 cells. From measurements in the absence and 

presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calcu-

lated using a hyperbolic curve fit. The cells were shifted to a growth temperature of 28°C prior to 

assessing substrate flux. 

 

 

Figure 4.45: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q773A P-gp expressing NIH3T3 cells. From measurements in the absence and 

presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calcu-

lated using a hyperbolic curve fit. The cells were shifted to a growth temperature of 28°C prior to 

assessing substrate flux. 
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Figure 4.46: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132A/Q773A P-gp expressing NIH3T3 cells. From measurements in the 

absence and presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values 

were calculated using a hyperbolic curve fit. The cells were shifted to a growth temperature of 28°C 

prior to assessing substrate flux. 

 

 

Figure 4.47: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V P-gp expressing NIH3T3 cells. From measurements in the absence and pres-

ence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calculated 

using a hyperbolic curve fit. The cells were shifted to a growth temperature of 28°C prior to assess-

ing substrate flux. 
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Figure 4.48: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in mock transfected NIH3T3 cells in the absence and presence of 8 different concentra-

tions of the propafenone analogue GPV01. The cells were shifted to a growth temperature of 28°C 

prior to assessing substrate flux. 

 
After shifting the cells to a growth temperature of 28°C prior to assessing substrate flux, 

the IC50 values for rhodamine 123 efflux inhibition with GPV01 were 0.58 µM (95% 

CI: 0.20 µM – 0.95 µM, N=3 for G185V-Q132A, 0.24 µM (95% CI: 0.18 µM – 0.31 

µM, N=3) for G185V-Q773A, and 1.06 µM (95% CI: -0.19 µM – 2.31 µM, N=3) for 

the double A mutant. For G185V P-gp an IC50 value of 0.76 µM (95% CI: 0.62 µM – 

0.94 µM, N=6) was obtained. At both temperatures, 28°C and 37°C, the G185V-Q773A 

and G185V-Q132A mutants showed a better modulating activity for compound GPV01 

compared to G185V P-gp and wt P-gp, however confidence intervals indicate that this 

is not a significant difference. 

 

The next three mutant combinations Q132E, Q773E and Q132E/Q773E in the G185V 

background were tested and compared with G185V P-gp and mock transfected cells in 

rhodamine 123 efflux experiments on the same day. 
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Figure 4.49: MRK16 staining of G185V P-gp, Q132E, Q773E and Q132E/Q773E P-gp mutants in 

G185V background, and mock transfected cells. The cells grew at 37°C prior to assessing substrate 

flux. Each experiment was performed in duplicate. 

 
 

 
Figure 4.50: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132E P-gp expressing NIH3T3 cells. From measurements in the absence and 

presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calcu-

lated using a hyperbolic curve fit.  
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Figure 4.51: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q773E P-gp expressing NIH3T3 cells. From measurements in the absence and 

presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calcu-

lated using a hyperbolic curve fit.  

 

 
Figure 4.52: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132E/Q773E P-gp expressing NIH3T3 cells. From measurements in the ab-

sence and presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values 

were calculated using a hyperbolic curve fit.  
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Figure 4.53: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V P-gp expressing NIH3T3 cells. From measurements in the absence and pres-

ence of 8 different concentrations of the propafenone analogue GPV01, IC50 values were calculated 

using a hyperbolic curve fit.  

 
Figure 4.54: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in mock transfected NIH3T3 cells in the absence and presence of 8 different concentra-

tions of the propafenone analogue GPV01. 
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The IC50 values for Q132E and Q773E in the G185V background were 0.74 µM (95% 

CI: 0.40 µM – 1.08 µM, N=3) and 0.98 µM (95% CI: 0.78 µM – 1.19 µM, N=2). For 

the double E mutant the IC50 value was 0.98 µM (95% CI: 0.91 µM – 1.04 µM, N=2). 

All E mutants showed similar IC50 values compared to G185V and wt P-gp. 

 

The R mutants’ combination Q132R, Q773R and Q132R/Q773R in the G185V back-

ground were also tested and compared with G185V P-gp and mock transfected cells in 

the same rhodamine 123 efflux experiments. 

Because of the fact that the R mutants did not show trafficking to the plasma membrane 

the cells were shifted to a growth temperature of 28°C. Cells cultured at a growth tem-

perature of 37°C were analyzed in parallel. The expression level increased in all of the 

R mutants at 28°C (Figure 4.55). 

 

 
Figure 4.55: MRK16 staining of G185V P-gp, Q132R, Q773R and Q132R/Q773R P-gp mutants in 

G185V background, and mock transfected cells. The cells were shifted to a growth temperature of 

28°C prior to assessing substrate flux. In parallel, a growth temperature of 37°C was selected for 

comparison. Experiments in each cell line were performed in duplicate. 

 



 

 

Figure 4.56: Dose-response curve for compound GPV01, showing the effect on

efflux rate in G185V-Q132R P-gp expressing 

in the absence and presence of 8 different concent

values were calculated using a hyperbolic curve fit.

Figure 4.57: Dose-response curve for compound GPV01, showing the effect on 

efflux rate in G185V-Q773R P-gp expressing 

in the absence and presence of 8 different concentrations of t

values were calculated using a hyperbolic curve fit.
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response curve for compound GPV01, showing the effect on the rhodamine 123 

gp expressing NIH3T3 cells at 28°C and 37°C. From measurements 

the absence and presence of 8 different concentrations of the propafenone analogue GPV01, I

values were calculated using a hyperbolic curve fit. 

response curve for compound GPV01, showing the effect on the rhodamine 123 

gp expressing NIH3T3 cells at 28°C and 37°C. From measurements 

the absence and presence of 8 different concentrations of the propafenone analogue GPV01, I

values were calculated using a hyperbolic curve fit. 
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he propafenone analogue GPV01, IC50 
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Figure 4.58: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V-Q132R/Q773R P-gp expressing NIH3T3 cells at 28°C and 37°C. From meas-

urements in the absence and presence of 8 different concentrations of the propafenone analogue 

GPV01, IC50 values were calculated using a hyperbolic curve fit. 

 
Figure 4.59: Dose-response curve for compound GPV01, showing the effect on the rhodamine 123 

efflux rate in G185V P-gp expressing NIH3T3 cells at 28°C and 37°C. From measurements in the 

absence and presence of 8 different concentrations of the propafenone analogue GPV01, IC50 values 

were calculated using a hyperbolic curve fit. 
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At 37°C the IC50 values for Q132R and Q773R in the G185V background were 2.89 

µM (95% CI: 1.77 µM – 4.01 µM, N=2) and 1.10 µM. For the double mutant 

Q132R/Q773R the IC50 value was 1.59 µM. 

The IC50 values at 28°C for Q132R and Q773R in the G185V background were 1.30 

µM (95% CI: 1.30 µM – 1.30 µM, N=2) and 1.16 µM (95% CI: -0.42 µM – 2.74 µM, 

N=2). For the double R mutant the IC50 value was 2.20 µM. 

It was not possible to calculate IC50 values for all rhodamine 123 efflux experiments for 

the Q773R at 37°C and for the double R mutant at either temperature, 28°C or 37°C, in 

the G185V background, since some mutants showed a similar behaviour as the mock 

transfected cells – i.e. did not show a concentration dependent difference in flux rates. 

For compound GPV01 as an inhibitor, the IC50 values for G185V were 0.78 µM (95% 

CI: 0.49 µM – 1.07 µM, N=10) at 37°C and 0.78 µM (95% CI: 0.62 µM – 0.94 µM, 

N=6) at 28°C. Mock transfected cells did not show a concentration dependent difference 

in flux rates indicating that membrane diffusion is not changed by the inhibitor.  
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All rhodamine 123 zero trans experiments are summarized in Table 4.5. 

 

Table 4.5: IC50 and FORC values of the propafenone analogue GPV01 for G185V P-gp, wt P-gp, 

and P-gp mutants in the G185V and wt background. IC50 values for inhibition of P-gp and P-gp 

mutants were obtained in rhodamine 123 efflux experiments. It was not possible to calculate IC50 

values for mock transfected cells. In addition to the IC50 values, FORCs were calculated for P-gp, 

P-gp mutants and mock transfected cells. Values in parentheses brackets correspond to the 95% 

confidence interval (CI). 

 
Rhodamine 123 zero trans efflux analysis revealed that all mutants except G185V-

Q773R and G185V-Q132R/Q773R showed similar activity as compared to G185V 

cells. Each mutant in the G185V background was tested in at least two independent ex-

periments. IC50 values for G185V P-gp and P-gp mutants in the G185V background 

inhibition using GPV01 were compared. Wt P-gp and some P-gp mutants in the wt 

background were also tested. Table 4.5 summarizes the IC50 values for inhibition of P-

gp mediated rhodamine 123 efflux. Values in parentheses correspond to the 95% confi-

dence interval (CI). The transporters behaved differently with respect to inhibition by 

GPV01 resulting in different IC50 values for each mutant. GPV01 showed the strongest 

modulating activity for G185V-Q773A, followed by G185V-Q132A both at 37°C and 

28°C (see Table 4.5). The IC50 value for G185V-Q132A was 0.66 µM (95% CI: 0.52 

µM – 0.81 µM, N=2) at 37°C and 0.58 µM (95% CI: 0.20 µM – 0.95 µM, N=3) at 

28°C. The arginine mutants required expression at 28°C for maturation of P-gp. 
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Table 4.5 shows the non-normalized FORCs. The mock transfected cells showed a 

FORC of 0.59 1/sec x 1000 (95% CI: 0.51 – 0.67, N=14) at 37°C and 0.62 1/sec x 1000 

(95% CI: 0.42 – 0.83, N=4) at 28°C. These results showed that the temperature shift had 

no influence on flux (diffusion) rates in NIH 3T3 cells and that expression of endoge-

nous mouse P-gp was thus not detectable. To compare different flux rates in mutants to 

each other, transport rates have to be normalized for expression rates (shown in Figure 

4.60, Figure 4.61 and Figure 4.62). As noted before, the slope of this relationship is a 

reflection of the pump activity. The slopes of the linear regressions are summarized in 

Table 4.6. 

 

 
Figure 4.60: Correlation (origin forced to 0) of surface expression (measured by MRK16 staining) 

and FORC for G185V P-gp, Q132A, Q773A and Q132A/Q773A P-gp mutants in G185V back-

ground. The cells were shifted to a growth temperature of 28°C prior to performing the experi-

ments. 
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Figure 4.61: Correlation (origin forced to 0) of surface expression (measured by MRK16 staining) 

and FORC for G185V P-gp, Q132E, Q773E and Q132E/Q773E P-gp mutants in G185V back-

ground. 

 

 

Figure 4.62: Correlation (origin forced to 0) of surface expression (measured by MRK16 staining) 

and FORC for G185V P-gp, Q132R, Q773R and Q132R/Q773R P-gp mutants in G185V back-

ground. The cells were shifted to a growth temperature of 28°C prior to performing the experi-

ments. 
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Table 4.6: Pump activity of G185V P-gp and mutant P-gps. The slopes were obtained through li-

near regression of FORC versus surface expression (MFU value). N: number of data points that 

were used, r: correlation coefficient, and p: significance. 

 

The most active mutants in the G185V background were Q132A, Q132E and Q132R. 

The Q132A mutant showed 118% pump activity of G185V control, Q773A and the 

double A mutant showed 71% and 85%, respectively. The pump activity for the Q132E, 

Q773E and double E mutants were 106%, 71% and 75% of G185V control. The results 

for Q132R, Q773R and Q132R/Q773R mutants were 96%, 53% and 25%. The most A 

and R mutants at 37°C were not analyzed due to their poor efflux pump activity which 

was close to that of the mock transfected cells and as such not interpretable by linear 

regression. 
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5 Discussion 

 
The escape of cancer cells from chemotherapy through activation of MDR mechanisms 

is a major reason for treatment failure in systemic (metastasized) cancers. Since the dis-

covery of P-gp, many groups have focussed on understanding how a single protein is 

capable of transporting so many unrelated compounds. Due to the broad substrate rec-

ognition, it has been a challenge to predict effects of disrupting P-gp-mediated transport 

(Yang, Wu et al. 2008). 

During the course of this project, four structures for complete ABC transporters were 

published: the metal-chelate-type transporter HI1470/1 from Haemophilus influenzae 

(Pinkett, Lee et al. 2007), the molybdate transporter ModBC from Archaeoglobus ful-

gidus in complex with its binding protein (ModA) (Hollenstein, Frei et al. 2007), and 

two structures of Sav1866 (one bound to the nucleotide analogue AMP-PNP, and an-

other with ADP) (Dawson and Locher 2006; Dawson and Locher 2007). The recent 

publication of the high resolution crystal structure of Sav1866 was a significant advance 

in the understanding of the molecular mechanism of ABC transporter function (Zolner-

ciks, Wooding et al. 2007). Following publication of the Sav1866 structure several pre-

viously lower resolution MsbA structures were retracted. 

Upon issuing of this thesis, the x-ray structure of mouse P-gp (ABCB1), which has 87% 

sequence identity to human P-gp, was described by Aller et al. in Chang’s group (Aller, 

Yu et al. 2009). Chang’s group determined apo and drug-bound P-gp structures. The 

apo P-gp at 3.8 Å represents a nucleotide-free inward-facing conformation forming two 

bundles of six transmembrane helices (TMs 1, 2, 3, 6, 10, 11 and TMs 4, 5, 7, 8, 9, 12). 

This results in a large internal cavity of ~6000 Å open to both the cytoplasm and the 

inner leaflet, cubed with a 30 Å separation of the two nucleotide-binding domains. In 

addition, Chang’s group described two P-gp structures with cyclic peptide inhibitors, 

cyclic-tris-(R)-valineselenazole (QZ59-RRR) and cyclic-tris-(S)-valineselenazole 

(QZ59-SSS). These drug-bound P-gp structures reveal distinct drug-binding sites in the 

internal cavity. 

The Sav1866 structures represented good templates for the clinically relevant P-gp. This 

ABC-half transporter is a member of the MDR-class, and is homologous to both the N- 

and C-terminal halves of human P-gp. 

The ATP-switch model is the product of biochemical data interpreted in the light of 

advances in structure determination for several ABC transporters. Recently, Linton and 
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Higgins (Linton and Higgins 2007) postulated that the different conformations of P-gp 

might have different affinities for drug substrates. It is possible that conversion of dif-

ferent sites, from high- to low-affinity states, may take place during different stages of 

the reaction cycle (Loo, Bartlett et al. 2007). 

 

The aim of this project at initiation was to investigate the role of conserved amino acids 

in the molecular mechanism of the human multidrug transporter, P-glycoprotein. Identi-

fication of the drug-binding sites in P-gp would help to understand the mechanism of 

drug interaction and transport. Studies on the TMDs suggested that the drug-binding 

sites lie within the TMDs because the TMDs alone retain the ability to interact with a 

variety of drug substrates in the absence of both ATP-binding domains (Loo and Clarke 

1999). P-gp has been reported to contain multiple operationally defined drug-binding 

sites. It contains two distinct binding sites for rhodamine 123 (R-site) and Hoechst 

33342 (H-site) and a third site which binds prazosin and progesterone (Shapiro and Ling 

1997; Shapiro, Fox et al. 1999). The presence of at least four distinct drug interaction 

sites on P-gp was detected using radioligand binding studies (Martin, Berridge et al. 

2000). Mapping the residues that line the drug-binding sites has been a challenging task. 

P-gp can bind dozens of structurally unrelated compounds, multiple drug substrates can 

bind at the same time (Loo, Bartlett et al. 2003; Lugo and Sharom 2005), and binding of 

drug substrate may occur by an induced-fit mechanism (Loo, Bartlett et al. 2003). How-

ever, the mechanism of drug binding is complex. The group of David Clarke used cys-

teine mutagenesis and reaction with thiol-reactive drug substrates such as MTS-

verapamil (Loo and Clarke 2001; Loo, Bartlett et al. 2006; Loo, Bartlett et al. 2006) and 

MTS-rhodamine (Loo and Clarke 2002; Loo, Bartlett et al. 2007) to map the locations 

of the drug-binding sites. The generation of a cysteine-less P-gp mutant in which all 

cysteine residues were replaced with alanine was first described by Loo and Clarke 

(Loo and Clarke 1995). The removal of endogenous cysteine residues from P-gp has a 

minimal impact upon the function of the protein, thus the use of cysteine-less P-gp in 

cysteine mutagenesis and cross-linking studies is justified. For example, Blott et al. 

showed, that this cysteine-less P-gp transported the fluorescent dye rhodamine 123 with 

similar efficiency to wild-type protein (Blott, Higgins et al. 1999).  

The observation that TMD-NBD interactions are important for folding and activity has 

been reported for CFTR (Serohijos, Hegedus et al. 2008). 
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Our group showed the participation of multiple TM segments in mediating P-gp-drug 

interactions by photolabelling of P-gp with drug analogues, followed by analysis by 

MALDI-TOF mass spectrometry (Ecker, Csaszar et al. 2002; Pleban, Kopp et al. 2005). 

The initial homology model of P-gp generated by our group was generated based on the 

MsbA template structure, which was the only available structure at this time (Chang and 

Roth 2001; Chang 2003; Seigneuret and Garnier-Suillerot 2003; Stenham, Campbell et 

al. 2003; Pleban, Kopp et al. 2005; Reyes and Chang 2005). In the resulting homology 

model both amino acids Q132 (TM2) in the N-terminal half and Q773 (TM8) in the C-

terminal half were in close proximity to the binding sites that were detected using the 

photoaffinity labelling. These glutamine residues align with each other in alignments of 

the N- and C-terminal half of P-gp and were considered to be located between the most 

strongly photolabelled residues F951 and M197 at the TM3/TM11 interface, and A311 

and T769 at the TM5/TM8 interface. Q132 and Q773 were also predicted to form H-

bonds with propafenone type ligands in data driven docking experiments (Shown in 

Figure 2.8 and Figure 2.9). Studies in our lab were performed to clarify the P-gp-

mediated transport mechanisms by replacement of Q132 and Q773 by nonpolar alanine 

residues, positively charged arginine or negatively charged glutamic acid residue, indi-

vidually, or in combination. Results indicating that a charge is tolerated in this position 

of the protein were obtained. A replacement was expected to lead to altered substrate 

binding characteristics and transport. This was confirmed for rhodamine 123 efflux. P-

gp drug transport activity requires interactions between the two halves of the molecule, 

although they do not have to be covalently linked. A functional transporter could only 

be generated when the two half-molecules were co-expressed in the same cells (Loo and 

Clarke 1996; Loo and Clarke 1998). We expected that the substitution of Q132 and 

Q773 with alanine, individually or in combination, does not cause a change that is large 

enough to abolish binding of a drug completely, but if these residues would be close to 

the substrate recognition site, a substitution with arginine was expected to disrupt P-gp 

interactions with some drug substrates because of its relatively large and positively 

charged side chain. Initial studies on P-gp using arginine mutagenesis showed that in-

troduction of arginines at some positons in TM1 disrupts binding of some drugs (Ta-

guchi, Kino et al. 1997). For a negatively charged substitution glutamic acid was cho-

sen. 

To examine our hypothesis, nine P-gp mutants were generated in the pEF5 vector in 

order to examine their impact on P-gp cell surface expression and on P-gp function. 
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Using stable FlpIn HEK 293 or NIH 3T3 cell lines, expressing either MDR, wild-type or 

MDR1 mutants, we have characterised the functional differences between cells express-

ing wild-type and mutant P-gp. Expression and function were measured by FACS 

analysis using MRK16 staining, cytotoxicity assays and rhodamine 123 efflux in the 

presence of propafenone analogues. The mutants were generated in the wt and in the 

G185V background. The latter represents a gain of function mutation for the transport 

of rhodamine 123 and was thus expected to improve the signal to noise ratio for mutants 

with low expression levels of P-gp. The amino acid sequence of proteins is generally 

believed to determine protein expression, folding and function. Thus, mutations which 

alter the primary structure of a protein can affect these properties. Mutations that cause 

an amino acid change in a corresponding protein are often responsible for genetic 

changes known to cause disease. A common observation is, that mutant proteins synthe-

sized in the endoplasmatic reticulum are defective in folding and trafficking, leading to 

reduced levels or absence of functional protein at a required location, because most is 

degraded soon after synthesis in the endoplasmic reticulum. Maturation of processing 

mutants can be induced by chemical or pharmacological chaperones or by expression at 

low temperature. 

Because of the fact that our mutations are located at the TMD domain interface, not all 

mutants showed uncompromised trafficking to the plasma membrane. This was reme-

died by either adding cyclosporin A at a concentration of 10 µM for 24 hours or by 

shifting cells to a growth temperature of 28°C. Expression in the presence of drug sub-

strate CsA induced maturation of the P-gp mutants. Inducing maturation of P-gp mu-

tants by growth at lower temperatures also correctly targeted the protein to the mem-

brane. We found that CsA does not modify the expression of any of the MDR1 genes 

containing the mutation by SYBR green real-time reverse transcription PCR. Neverthe-

less, shifting the cells to a growth temperature of 28°C to induce maturation of process-

ing mutants was given preference, because it proved difficult to completely remove CsA 

from the cultures prior to assessing substrate efflux. 

The expression level of P-gp in different mutants was shown in comparison to wt P-gp, 

G185V P-gp and mock transfected cells. P-gp expression was similar for wt and G185V 

P-gp. The Q132E mutant in the G185V background showed a slightly higher expression 

level in comparison to G185V P-gp. The same effect was observed for the Q132R, the 

double R and Q773A mutants in the G185V background after a shift to a growth tem-

perature of 28°C. A temperature shift promoted expression of all mutant P-gps. The 
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expression level was similar for the Q132A and Q132A/Q773A mutants in the G185V 

background after a shift to a growth temperature of 28°C. At 37°C the double A mutant 

had a somewhat higher expression level than the mock transfected cells. Reducing the 

growth temperature of the cells expressing double A, Q773R or double R mutation be-

low 30°C resulted in a portion of the mutant protein trafficking to the plasma mem-

brane. The Q132A and double A mutants showed a somewhat decreased expression 

compared to the G185V P-gp. The same pattern was observed for the Q773R, Q773E 

and double E mutants in the G185V background. An exactly identical expression was 

not required, because first order rate constants of efflux were determined in a zero trans 

efflux protocol. These rate constants can directly be related to protein expression rates. 

In order to obtain evidence that the resulting protein products are indeed functionally 

expressed, rhodamine 123 zero trans efflux studies were used for mutant characterisa-

tion, because they yield first order rate constants which are directly related to transporter 

expression rates. Cells were preloaded with rhodamine 123 for 30 min; after this time a 

steady state of fluorophore accumulation was reached. Transport activities of mutated P-

gps were measured by determining the accumulation of rhodamine 123 in the absence 

and presence of different concentrations of the P-gp inhibitor GPV01. When cells were 

incubated at 37°C, there was a decrease in the fluorescence of cells due to P-gp-

mediated rhodamine 123 efflux, indicating that P-gp actively extruded rhodamine 123 

from the cells. 

 In contrast, in the presence of GPV01, rhodamine 123 fluorescence increased depend-

ing on the GPV01 concentration, indicative of inhibition of P-gp transport. IC50 values 

of GPV01 were calculated from dose-response curves of FORC (Vmax/Km) versus 

GPV01 concentration. Different IC50 values were observed for each kind of P-gp mutant 

indicating different modulating activity and interaction properties with those membrane 

pumps. 

All alanine single mutants were active. The Q773A and Q132A/Q773A showed only 

somewhat decreased pump activity as compared to wt and G185V P-gp. In contrast to 

the G185V background, the Q132A mutant showed an increased pump activity. This 

indicated that the glutamine residues are not directly involved in interaction with rho-

damine 123. The Q132E, showing a slightly increased pump activity, and Q132R mu-

tants also were fully functional. Compared to the G185V background, the Q773E mu-

tant showed a decreased pump activity, while the Q773R mutant showed a deficient 

pump activity compared to G185V P-gp. The Q132A/Q773A and Q132E/Q773E mu-
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tants also were functional, while the Q132R/Q773R mutant was dysfunctional, the latter 

apparently being impaired functionally by the Q773R mutation alone. 

The reduction in affinity of mutants Q773R and Q132R/Q773R in the G185V back-

ground for rhodamine at both 28°C and 37°C growth temperatures is consistent with the 

observation that they had reduced ability to confer resistance to rhodamine123 in cyto-

toxicity studies. The mock transfected cells showed a higher IC50 value than the 

Q132R/Q773R double mutant, suggesting that the negative effect of the Q773R muta-

tion could not be compensated by a Q132R mutation. The higher IC50 value of the 

Q132E/Q773E double mutant compared to the Q773E mutant in cytotoxicity assays 

may thus also be explained by a compensatory influence of the Q132E mutation. 

 

An explanation for the observation that the mutants Q773R had much lower and 

Q132R/Q773R had no transport activity may be explained by the fact that an arginine 

residue in position 773 appears to reduce P-gp interaction with rhodamine 123 because 

of its positively charged side chain. 

 

Like many P-gp substrates, rhodamine 123 is a protonatable compound, which, after 

entering the central water filled cavity, is likely to be present in a charged form. This 

indicates that charge repulsion might be responsible for the inability of the mutant to 

transport rhodamine 123. In addition, these results indicate that residue 773 but not resi-

due 132 may be close to the rhodamine binding site. 

Our data show that the nature of the amino acid side chain at position 132 and 773 

strongly influences the function of P-gp. Nevertheless, the majority of the mutants were 

capable of transporting rhodamine 123. Small side chains at these positions result in 

proteins with only modest changes in substrate specificity. One mutant, G185V-Q773R, 

did not transport rhodamine 123 well. Transmembrane segments can change their shape 

to accommodate structurally different compounds. Thus, slight rotational and/or lateral 

movement in any transmembrane segment could result in numerous permutations of 

residues contributing to the drug-binding site. A substrate with one structure would 

cause specific shifts in the different transmembrane segments responsible for its binding 

(induced-fit) (Rosenberg, Velarde et al. 2001). 

Several residues line the TMD/TMD contact interfaces in helices 2, 5, 8 and 11, indicat-

ing that mobility at these interfaces is required for function (Loo, Bartlett et al. 2004). 
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In summary our data indicate that residue 773 in P-gp plays an important role in the 

activity of the transporter, but may not be directly involved in the interaction between P-

gp and its substrates. During the transport cycle, P-gp displays different affinities for its 

substrates and alternates between high-affinity and low-affinity binding sites (Sauna and 

Ambudkar 2000; Higgins and Linton 2004). It is possible that the transport-deficient P-

gp Q773R mutant is unable to undergo conformational changes required for substrate 

transport. Substrate might be bound, but not released and therefore not be transported 

effectively. ABC transporters change conformations and affinities for substrates 

throughout the transport cycle. It is difficult to draw conclusions about the role this spe-

cific arginine residue may play in determining conformational changes, substrate inter-

actions and transport function of P-gp. These results are consistent with alanine-

scanning mutagenesis of P-gp which was not successful in mapping the drug-binding 

sites in P-gp (Loo and Clarke 1993) because most mutations either had no effect or 

caused only modest changes in substrate specificity. Initial studies on P-gp using argin-

ine mutagenesis showed that introduction of arginines at some positions appeared to 

disrupt P-gp interactions with some drug substrates (Taguchi, Kino et al. 1997). Based 

on these considerations, we propose that the amino acid replacements at these two sites 

affect the ability of a drug to enter the binding pocket or to make appropriate binding 

contacts that trigger hydrolysis of ATP and the subsequent efflux of the drug. 

The transfer of rhodamine 123 through the cell membrane from the inside to the outside 

involves both, passive diffusion and active transport by either P-gp or other transporters. 

To control for passive diffusion as well as the action of other transporters, FlpIn 3T3 

cells were transfected with the empty pEF5 vector. These mock transfected cells served 

as control. 

In particular, we hoped to determine whether the charged side chains participated in 

substrate recognition and binding. Mutations to A132, E132, R773 and R132/R773, 

substantially altered the ability of the protein to confer resistance to rhodamine 123. The 

R132 mutation had a surprisingly high level of activity. 

Further studies are necessary to clarify the role of these two glutamine residues. The 

present analyses have not yet reveiled changes in substrate specificity of P-gp because 

only a limited number of substrates and inhibitors was used. Therefore, investigating 

additional substrates and inhibitors will be necessary to demonstrate the relevance of 

these two amino acids. We also attempted to study mitoxantrone as a solute in steady 

state experiments. Here the endogenous P-gp was a handicap because no difference be-
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tween G185V P-gp and mock transfected cells was observed (data not shown). An ex-

planation for this observation may be that the expression level of the G185V P-gp is too 

low and/or mitoxantrone is not as good a P-gp substrate as rhodamine 123. 

 

Another objective of this work was to evaluate the influence of various specific P-gp 

substrates/ ligands as pharmacological chaperones in order to study the ability of the 

protein to bind these solutes by monitoring surface expression of trafficking deficient 

mutants. Several mutations lead to reduced levels or absence of functional protein at the 

plasma membrane. 

In these experiment, we tested whether mutations introduced in TM segments 2 and 8 

inhibit maturation of the protein. Surface expression of P-gp and P-gp mutants in HEK 

293 and NIH 3T3 cells was monitored by flow cytometry using the selective mono-

clonal antibody MRK16 and an FITC-labelled secondary antibody. The fluorescence 

intensity of some P-gp mutants was comparable to the background fluorescence inten-

sity, thus the level of P-gp expression was negligible. Pharmacological chaperones such 

as cyclosporin A and verapamil are predicted to promote maturation of P-gp processing 

mutants. In fact, most trafficking deficient P-gp mutants have been shown to be rescued 

by using CsA as a pharmacological chaperone (Loo, Bartlett et al. 2005). The binding 

sites for propafenones have previously been characterized by our group using photo-

labelling (Pleban, Kopp et al. 2005). These sites were suggested to be different from 

those for verapamil and cyclosporin A. This allowed a screening concept to be applied, 

which uses the property of specific P-glycoprotein ligands to act as pharmacological 

chaperones. When the mutants show impaired binding, surface expression of the protein 

is not altered. The minimal effect the pharmacological chaperones had on P-gp expres-

sion in mock transfected cells indicaed that the expression of endogenous mouse P-gp 

was low. 

We used 10 µM CsA, 50 µM verapamil and 50 µM GPV51 as pharmacological chaper-

ones. Interestingly, we noticed that higher GPV51 levels, especially the presence of 300 

µM GPV51, did not stimulate maturation of G185V P-gp to an extent that was observed 

with lower concentrations. The impact of GPV51 on the 773R mutant is higher than on 

the 132R mutant. This indicates preferential binding to the 2/11 interface. At a concen-

tration of 300 µM GPV51, an increased cell death rate in the mock transfected cell cul-

tures was observed (data not shown), this might be interpreted as a negative influence of 

GPV51 on protein assembly at this concentration. 
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 DMSO was required as a solvent to prepare solutions of the highly lipophilic com-

pounds CsA and GPV51 stocks. The solvent alone was shown not to have an influence 

on P-gp expression levels (data not shown). The G185V P-gp, and all mutants in the 

G185V background were stably expressed in NIH 3T3 fibroblasts. The expression lev-

els of the mutants were increased by a 24 hour pre-treatment with the pharmacological 

chaperones cyclosporine A, verapamil and GPV51, indicating that these chaperones are 

still able to bind to the protein. In the case of CsA, these results are consistent with 

those of Loo and Clarke. 

However, GPV51 did not have a considerable impact on P-gp expression in NIH 3T3 

cells. G185V P-gp, Q773R and the double mutant Q132R/Q773R in the G185V back-

ground were stably expressed in HEK 293 cells, too. The expression level of the 

132R/773R double mutant was increased by a 24 hour pre-treatment with CsA, indicat-

ing that CsA was still able to bind to the protein. Verapamil increased the expression 

level, too. As with the NIH 3T3 cell line, the propafenone analogue GPV51 did not 

have a major impact on the expression level, however relative expression gain was still 

higher than in the NIH 3T3 cell line. 

These observations support our hypothesis that propafenones might have a different 

binding site than the classical pharmacological chaperones CsA and verapamil, estab-

lishing the propafenones as a solitary class of P-gp chaperones. 

 

An understanding of multidrug resistance is of wide clinical importance. MDR1 is asso-

ciated with drug failure in various cancers. MDR1 is associated with drug resistance in 

malaria, too. The human malaria parasite Plasmodium falciparum possesses a P-gp 

homologue termed Pgh-1 (Foote, Thompson et al. 1989). Pgh-1 exhibits a domain struc-

ture typical of a P-gp-type ABC transporter. Both P-gp and Pgh-1 pump vinblastine 

(Sanchez, Rotmann et al. 2008). Analogies with P-gp may help explain the transport 

properties and substrate specificity of Pgh-1, possibly opening a window of opportunity 

for treatment of patients infected with highly drug resistant malaria parasites. 
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6 Conclusion 

 
In this study, mutational analyses of two conserved residues within the TMDs of P-gp 

have shown that the nature of the amino acid residues at position 132 and 773 affects 

the function of P-gp. These two residues were selected for substitution with alanine, 

glutamic acid and arginine, individually or in combination. Residue 773 is involved in 

the active rhodamine 123 efflux transport. The substitution of glutamine at position 773 

with arginine markedly decreased the active transport of rhodamine 123. These results 

indicate that residue 773 but not residue 132 is close to the rhodamine binding site. 
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7 Outlook 

 
In the present study, we have studied rhodamine 123 transport to evaluate functional 

changes associated with replacement at amino positions Q132 and Q773 by a nonpolar 

alanine residue, a positively charged arginine or a negatively charged glutamic acid 

residue, individually or in combination. Based on ATPase activity measurements of P-

gp, we will be able to gain insight into the impact of these replacements. The measure-

ment of drug-stimulated ATPase activity was widely used by different research groups 

to investigate the function of P-gp. The aim will be to establish whether the different 

effects described in the previous chapter correlate with ATPase activity. For the analysis 

of the ATPase activity of the wt and mutant proteins, insect cells are convenient expres-

sion systems to produce large quantities of proteins. Therefore, preparation of plasma 

membrane vesicles from insect cells should be performed. In our lab the preparation of 

plasma membrane vesicles was performed as described by Schlemmer and Sirotnak 

(Schlemmer and Sirotnak 1994; Schmid, Ecker et al. 1999). For high yield expression in 

Sf9 insect cells, the gene was inserted into a baculovirus destination vector, which is 

compatible with the entry vector. Baculovirus transfer vectors containing G185V, 

G185V-Q132R, G185V-Q773R, and G185V-Q132R/Q773R are presently ready for 

transfection of monolayers of Sf9 cells. 
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8 List of abbreviations 

 
ABC   ATP-binding cassette 

ADP   Adenosine diphosphate 

AMP-PNP  Adenosine 5’-(ß, γ-imido) triphosphate 

APS   Ammonium persulphate 

ATP   Adenosine triphosphate 

ATP-γ-S  Adenosine 5’-( γ-thio) triphosphate 

Å   Angstrom 

BCRP   Breast cancer resistance protein 

BSA   Bovine serum albumin 

bp   Base pair 

°C   Degree Celsius 

cDNA   Complementary DNA 

cryo-EM  Cryo-electron microscopy 

C-terminal  Carboxy-terminal 

DEPC   Diethylpyrocarbonate 

DMEM  Dulbecco’s modified Eagle’s medium 

DMSO   Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

DBS    Donor bovine serum 

EDTA    Ethylene diamine tetraacetic acid  

ER   Endoplasmic reticulum 

FACS   Fluorescence-activated cell sorting  

GAM Ig FITC  Goat anti-mouse Ig fluorescein isothiocyanate 

ICL   Intracellular loop 

HADDOCK  High Ambiguity Driven DOCKing  

HPRT    Hypoxanthine-guanine phosphoribosyltransferase  

hr   Hour 

ICL   Intracellular loop 

Km   Michaelis-Menten constant 

kb   Kilobase 
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M   Molarity 

MALDI-TOF  Matrix-assisted laser desorption/ionization time-of-flight 

MDR   Multidrug resistance 

MFU   Mean fluorescence units 

ml   Milligram 

min   Minute 

MOPS   3-(N-Morpholino)propanesulphonic acid 

MRP   Multidrug resistance-associated protein 

mRNA   Messenger Ribonucleic acid 

MSAs   Multiple sequence alignments 

NBD   Nucleotide-binding domain 

NMR   Nuclear magnetic resonance 

Nt   Nucleotide 

N-terminal  Amino-terminal 

OE-PCR  Overlap extension polymerase chain reaction 

PAGE   Polyacrylamide Gel Electrophoresis 

PBS   Phosphate-buffered saline 

PCR   Polymerase chain reaction 

P-gp   P-glycoprotein 

Real-time RT-PCR Real-time reverse transcription PCR 

Rh123   Rhodamine 123 

RNA   Ribonucleic acid 

RT   Room temperature 

rvET   Real valued evolutionary trace 

SDS   Sodium dodecyl sulphate 

sec   Second 

TAE   Tris-acetate EDTA buffer 

TEMED  N, N, N´ ,N´ -tetramethylethane-1, 2-diamine   
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Wt   Wild-type 

 

 

Symbols of amino acids 

 

A Ala  Alanine 

C Cys  Cysteine 

E Glu  Glutamic acid 

H His  Histidine 

Q Gln  Glutamine  

R Arg  Arginine 

V Val  Valine 
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9 Zusammenfassung 

 
Das humane „multidrug resistance“ P-Glycoprotein, welches durch das MDR1 Gen ko-

diert wird, gehört zu der Familie der ATP-binding cassette (ABC) Transporter, die unter 

ATP-Verbrauch zelltoxische, strukturell nicht näher verwandte Stoffe aus der Zelle 

pumpt. Dieses Protein hat klinisch eine große Bedeutung aufgrund des Phänomens der 

zellulären Resistenz gegen viele Wirkstoffe, auch „multidrug resistance“ genannt. Re-

sistenzen gegen verschiedene Medikamente sind eines der Hauptprobleme in der Be-

handlung von Krebs. Das P-Glycoprotein besteht aus zwei homologen Hälften, die 

durch einen Linker miteinander verbunden sind. Jede Hälfte besteht aus einer Trans-

membrandomäne, die sechs Transmembransegmente besitzt, und einer hydrophilen 

Nukleotidbindungsdomäne, der Nukleotidbindungsstelle. 

Ziel dieser Arbeit war die Identifizierung und Charakterisierung von TMD1/TMD2 

Kontakt-Interface-Aminosäurenresten, die eine wichtige Rolle beim Transport von lös-

lichen Substanzen spielen. Funktionelle Untersuchungen wurden mit P-gp Mutanten 

durchgeführt, deren TMD1/TMD2 Kontakt-Interface-Aminosäuren mittels zielgerichte-

ter Mutagenese zu anderen Resten außer Cystein mutiert wurden. Die zielgerichtete 

Mutagenese basierte auf „overlap extension“ Polymerase-Kettenreaktion (OE-PCR). 

Das Mutationskonzept wurde durch Photoaffinitätsmarkierung, vorhandene Proteinho-

mologiemodelle, in-silico Vorhersage von wichtigen Aminosäure-Resten mittels der 

„real valued evolutionary trace“ Methode und „data-driven docking“, basierend auf Da-

ten von vorhergegangenen zielgerichteten Mutationen, gesteuert. 

Diesen Erkenntnissen zufolge wurden P-gp Mutanten hergestellt, die Aminosäure-Reste 

besitzen, die vom Protein toleriert werden, um eine hohe Anzahl von richtig gefalteten 

und funktionellen Transportern zu erhalten. Die Glutaminreste Q132 (TM2) in der N-

terminalen Hälfte und Q773 (TM8) in der C-terminalen Hälfte wurden in Betracht ge-

zogen. P-gp Homologiemodelle zeigen, dass diese beiden Q-Reste in der Nähe von 

stark photomarkierten Resten im TM2/11 Interface und im contralateralen TM5/8 Inter-

face liegen. 

In einigen Tierarten ist einer der beiden Q-Reste zu R oder E mutiert, was darauf hin-

weist, dass eine Ladung in dieser Position im Protein toleriert wird. Deshalb wurde 

Q132 zu Q132A, Q132E und Q132R, und Q773 zu Q773A, Q773E und Q773R mutiert. 

Zusätzlich wurden die Doppelmutanten Q132A/Q773A, Q132E/Q773E und 

Q132R/Q773R generiert. Alle Mutanten wurden mittels Efflux-Studien, MRK16 Fär-
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bungen und Toxizitätstests charakterisiert. Die Q773R Mutante zeigte für das Substrat 

Rhodamin 123 einen mangelhaften Transport, während sowohl die Q773E Mutante als 

auch die Q773A Mutante einen aktiven Transport aufwiesen. Ein unbeeinträchtigten 

Rhodamin 123 Transport konnte für die A, E und R Mutanten in der Position 132 ge-

zeigt werden. Die Q132R/Q773R Doppelmutante war wenig aktiv. 
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