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Abstract 
 

The intracellular non-receptor tyrosine kinase c-Src is crucially involved in the 

regulation of physiologic as well as pathologic processes including migration, 

proliferation, adhesion and angiogenesis. Of particular interest thereby is the 

participation of c-Src in PDGF-induced signalling, causing abnormal VSMC 

proliferation and subsequent neointima formation in the development of 

atherosclerosis. Possible future therapeutic approaches are therefore focusing on 

inhibition of abnormal VSMC proliferation by application of antiprolferative 

compounds. 

Our main goal in this study therefore was to elicit an inhibitory effect of  

indirubin-3‟-monoxime (I3MO), a red coloured indigo isomer used in TCM against 

leukaemias, on c-Src kinase as the responsible mechanism for the inhibition of 

PDGF-induced VSMC proliferation by I3MO. 

In our first experiments we were able to reproduce the results already shown in 

earlier studies, when measuring the PDGF-dependent activation of the MAPK- and 

PI3K-pathway in the presence and absence of I3MO, whereas both signalling 

pathways were not affected by prior I3MO treatment. Subsequent performed 

measurements focusing on the PDGF-R and STAT3, a downstream target of c-Src 

kinase, exhibited a reduction of PDGF-R overall phosphorylation and suppression of 

PDGF-dependent STAT3 phosphorylation on Y705 under I3MO treatment of VSMCs 

at a 3 µM concentration, whereas regulatory phosphorylation sites of c-Src kinase 

(Y418 and Y529) remained unaffected. An afterwards, in cell free environment 

performed in vitro tyrosine kinase assay with recombinant human c-Src showed 

decrease in c-Src kinase activity of 50 % on average. 

The received resultsnindicate, that I3MO deploys an inhibitory effect onc-Src kinase, 

al least under in vitro conditions. The definite molecular mechanism causing this 

inhibition as well as I3MOs properties, concerning inhibition of c-Src, under cellular 

and in vivo conditions remain elusive at the moment. 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 

Zusammenfassung 
 

Die intrazelluläre non-receptor Tyrosin Kinase c-Src ist entscheidend in die 

Regulation von physiologischen und pathologischen Prozessen wie Migration, 

Adhäsion, Proliferation und Angiogenese involviert. Von besonderem Interesse ist 

dabei die Teilnahme von c-Src an PDGF-induzierten Signalwegen, welche eine 

übermäßige Proliferation von glatten Gefäßmuskelzellen und die anschließende 

Bildung einer Neointima im Rahmen der Entstehung von Atherosklerose 

hervorrufen. 

Zukünftige therapeutische Ansätze zur Behandlung der Atherosklerose 

konzentrieren sich deshalb vermehrt auf die Hemmung der übermäßigen 

Proliferation glatter Gefäßmuskelzellen durch lokale Verabreichung von 

antiproliferativ wirkenden Verbindungen. 

Hauptanliegen dieser Arbeit  war deshalb die Hemmung der c-Src Kinase durch 

Indirubin-3„-monoxim (I3MO), ein rot gefärbtes Indigo Isomer welches in der TCM 

zur Behandlung von Leukämien verwendet wird, als verantwortlichen Mechanismus 

für die Hemmung der PDGF-induzierten Proliferation von glatten Gefäßmuskelzellen 

durch I3MO zu identifizieren. 

Durch unsere ersten Experimente waren wir in der Lage die Resultate früherer 

Studien zu bestätigen, indem wir die Aktivierung des MAPK- und PI3K-Signalweges 

in Gegenwart und Abwesenheit von I3MO bestimmten, wobei keiner der 

beobachteten Signalwege durch vorherige Behandlung mit I3MO beeinflußt wurde. 

In nachfolgenden Messungen konzentrierten wir uns auf den PDGF-Rezeptor 

(PDGF-R) und STAT3, ein sogenanntes „downstream target“ der c-Src Kinase. 

Dabei zeigte sich nicht nur eine Reduktion der Gesamtphosphorylierung des  

PDGF-R, sondern auch eine Hemmung der Phosphorylierung von STAT3 an Y705 

durch I3MO in einer Konzentration von 3 µM, während regulative 

Phosphorylierungsstellen der Kinase (Y418 und Y529) unbeeinflußt blieben. Ein 

anschließend, mit rekombinanter menschlicher c-Src, durchgeführter in vitro Tyrosin 

Kinase Assay zeigte eine durchschnitttliche Reduktion der Aktivität von c-Src um 

etwa 50 %. 



Insgesamt weisen die erzielten Resultate darauf hin, dass I3MO zumindest in vitro 

einen hemmenden Effekt auf die c-Src Kinase ausübt. Der genaue molekulare 

Mechanismus dieser Hemmung, sowie die Eigenschaften von I3MO unter in vivo 

Bedngungen und im Zellmodel verbleiben zu diesem Zeitpunkt jedoch unbekannt. 
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B INTRODUCTION 

 

1. Background 

 

1.1. Arterial blood vessels 

Except from local adaptations, arterial blood vessels throughout the whole 

cardiovascular system share common wall architecture. The vessel wall consists of 

three concentric arranged layers: intima, media and adventitia, formed by their main 

cellular components: endothelial cells, smooth muscle cells and extracellular matrix 

(ECM), including collagen, elastin and glycosoaminoglycanes. Its innermost layer, 

the intima, is composed of a single layer of endothelial cells (endothelium), serving 

as a semipermeable membrane which allows selective transfer of small and large 

molecules from the lumen across the vascular wall, and minimal underlying 

subendothelial connective tissue. Following the intima and only separated from it by 

a thin membrane, the internal elastic lamina, multiple layers of alternating smooth 

muscle cells and connective tissue form the media. While inner parts of the media 

are provided with oxygen and nutrients via diffusion across the intima and the 

internal elastic lamina, diffusion would be insufficient for outer parts. Therefore the 

outer half or two third of the media are provided with oxygen via small aterioles, 

originating outside the vessels, the vasa vasorum. Finally, the adventitia completes 

the cross section of the vascular wall. It consists of connective tissue with nerve 

fibers, houses the vasa vasorum and is separated from the media by the external 

elastic lamina.25 

 

 

Figure 1: Schematic cross section of the vascular wall 

Adapted from Kumar, V., Abbas, A.K. & Fausto, N. Pathologic basis of disease. 7
th

 Edition, 511 - 24 (2005)
25
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Based on size and structural differences, three types of aterial blood vessels can be 

defined: 

 large/elastic arteries (e.g. aorta, pulmonary arteries) 

 medium-sized/muscular arteries (e.g. coronary and renal arteries) 

 small arteries and arterioles in tissue and organs 

The structural differences of the various types are based on amount and 

configuration of the different components, mostly in media and ECM, depending on 

functional requirements of the arterial system.25 

 

1.2. VSMCs in the cardiovascular system 

Vascular smooth muscle cells (VSMCs) fulfil a broad variety of functions inside the 

cardiovascular system. Partially controlled by the autonomic nervous system, local 

metabolic factors and cellular interactions they regulate local blood flow and blood 

pressure by changing lumen size of muscular arteries and arterioles via vasodilation 

or vasoconstriction. VSMCs also participate in the physiologic healing process after 

vascular intimal injury. In response to acute EC loss, chronic endothelial injury and 

dysfunction VSMCs dedifferentiate while migrating from the media into the intima, 

allowing them to proliferate and synthesize ECM, causing intimal thickening by 

neointima formation. They return to a nonproliferative state, as soon as the EC layer 

is operable again or the level of proliferative stimuli decrease. Beside inhibitors like 

NO and TGF-ß, a great number of promotors like PDGF, endothellin-1, thrombin, 

FGF, IL-1 and IFN-γ are involved in regulating the proliferative and migratory 

activities of VSMCs.25 
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2. Atherosclerosis 

 

2.1. Epidemiology and risk factors 

Atherosclerosis is a common disease in developed countries with less prevalence in 

Central and South America, Asia and Afrika. In westerned societies atherosclerosis 

and its caused complications are suspected to be the reason for 50 % of all deaths. 

Atherosclerotic plaques preferentially develop in elastic and large – medium-sized 

muscular arteries supplying the heart, brain, kidneys and lower extremities. The 

most observed complications of atherosclerosis seem to be myocardial infarction, 

cerebral infarction, aortic aneurysms, peripheral vascular disease, sudden cardiac 

death, ischemic encephalopathy and chronic ischemic heart disease (IHD). In the 

last 50 years epidemiological studies were able to identify numerous risk factors with 

genetic or environmental background, promoting the development and progression 

of atherosclerosis.25,28 

 

Risk factor  

High-fat/high-cholesterol 

diet 

Appears to be the most important factor, strongly associated with the 

lifestyle; usually required to develop atherosclerosis in experimental 

animals 

Smoking Association observed in epidemiological studies; one pack or more per 

day over years increases death rate from IHD by 200 %; clinical studies 

show benefit of stopping smoking 

Low antioxidant levels Results from trials not conclusive; fat soluble antioxidants protective in 

experimental animals 

Lack of exercise Associated with coronary heart disease (CHD) 

Infections Epidemiological studies suggest association with various infectious 

agents like Chlamydia pneumoniae 

Table 1: Environmentally caused risk factors for development of atherosclerosis 

Adapted from: Kumar, V., Abbas, A.K. & Fausto, N.
25

 and Lusis, A.J.
28 
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Risk factor  

Elevated LDL/VLDL-levels Chronic hyperlipidemia impairs EC function via production of 

oxygen free radicals which deactivate NO; oxidized LDL is 

ingested by macrophages forming foam cells, stimulates 

release of growth factors and cytokines, is cytotoxic to ECs 

and VSMCs 

Reduced HDL-level HDL physiologically mobilizes cholesterol from existing and 

developing atheromas and transports it to the liver for 

excretion 

Elevated lipoprotein(a) Altered LDL form; correlation between increased blood 

levels and coronary disease 

Hypertension Epidemiological studies identified it as a major risk; 

associated with increased risk of stroke; antihypertensive 

treatment reduces incidence of IHD and stroke 

Homocystinuria Causes low folate and vitamin B6 intake, which may 

increase incidence of cardiovascular disease 

Diabetes mellitus, type II Induces hypercholesterolemia; increased predisposition for 

atherosclerosis has been shown in animal models, also 

increased risk for stroke and gangrene 

Elevated levels of haemostatic factors Increased fibrinogen, plasminogen activator inhibitor type 1 

levels and platelet reactivity are predictors for 

atherosclerotic events like stroke or myocardial infarction 

Depression Associations observed in population studies 

Gender Male below 60 develop CHD twice often than women, 

postmenopausal women show increased incidence of 

atherosclerosis related diseases 

Metabolic syndrome Insulin resistance as central feature of metabolic 

disturbances 

Table 2: Risk factors of atherosclerosis following from disease or genetic component 

Adapted from: Kumar, V., Abbas, A.K. & Fausto, N. 
25

 and Lusis, A.J. 
28 
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2.2. Pathogenesis 

The current understanding of the development of athersclerosis involves interaction 

of inflammatory and proliferative processes as response to endothelial injury. An 

intact endothelium is the prerequisite for maintaining vascular wall homeostasis and 

circulatory functions. Chronic or repetitive endothelial injury by hemodynamic forces, 

immune reactions, toxins, viruses, chemicals or risk factors like smoking, 

hypertension and hyperlipidemia lead to endothelial dysfunction, chracterized by 

impaired vasoreactivity, increased EC permeability and a cellular surface adhesive 

for inflammatory factors after expression of adhesion molecules.11 Injured EC 

express VCAM-1, ICAM-1, PCAM-1, P-selectin, E-selectin and secrete MCP-1 into 

the vessel lumen, initially causing increased adhesion of monocytes and later on 

lymphocyte adhesion.11,25,28 Due to increased endothelial permeability and 

stimulated by MCP-1 and other chemokines monocytes migrate into the intima, 

where they differentiate into macrophages and start to incorporate lipoproteins, 

mostly oxidized LDL, thereby becoming foam cells. Transformed intimal 

macrophages secrete several chemokines, growth factors and toxic oxygen species, 

causing other cell types to participate in the development of atherosclerotic 

lesions.11 

Attracted and activated by IL-1, MCP-1 and TNF, CD4+- and CD8+-T-lymphocytes 

migrate into the intima, where they start to release cytokines like IFN-γ, TNF-α, 

TNF-ß and lymphotoxin in response to the encountered signals, resulting in 

activation of humoral and cellular immune mechanisms via cross-talk between 

macrophages and T-cells.11 Generated oxygen species cause oxidation of LDL, 

which diffuses passively into the developing atherosclerotic lesion because of an 

increased endothelial permeability11 and is accumulated there by apolipoprotein B – 

proteoglycan interactions.28 After incorporated by intimal macrophages it causes 

their transformation into foam cells. Growth factors like PDGF, also released by 

macrophages, cause migration of VSMCs into the intima, followed by proliferation as 

intimal VSMCs and deposition of ECM in the atherosclerotic lesion causing intimal 

thickening and lesion formation. Further accumulation of foam cells, macrophages 

and proliferation of VSMCs accelerates progression of the initial lesion to fatty 

streaks and intermediate lesions and via atheroma and fibroatheroma to the final 

complicated lesion. Among the complications like rupture, ulceration, erosion of the 
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luminal surface of atheromatous plaques tresulting in thrombosis, the superimposed 

thrombosis and ruptured aneurysma are the most feared ones. Superimposed 

thrombosis occurs after thrombi are reincorporated into the neointima and occlude 

the vessel lumen partially or completely. Rupture of an aneurysm is the result of 

media weakening, caused by media atrophy and the loss of elastic tissue.25 

 

Lesion type Histology Growth mechanism 

Initial lesion (type I) Isolated macrophage foam cells 

Mainly by lipid accumulation 

Fatty streak (type II) Intracellular lipid accumulation 

Intermediate lesion (type III) Mainly type II with small 

extrcellular lipid pools 

Atheroma lesion (type IV) Mainly type II with core of 

extracellular lipid 

Fibroatheroma lesion (type V) Lipid core and fibrotic layer, or 

multiple lipid cores and fibrotic 

layers, or mainly calcific, or 

mainly fibrotic 

Accelerated smooth muscle 

cell proliferation and collagen 

increase 

Complicated lesion (type VI) Surface defect, hematoma-

hemorhage, thrombus 
Thrombosis, hematoma 

Table 3: Classification of human atherosclerotic lesions according to the American Heart Association 

Adapted from: Kumar, V., Abbas, A.K. & Fausto, N. 
25 

 

 

2.3. VSMCs in atherosclerosis 

The true importance of VSMCs for the development and progression of 

atherosclerosis is still not finally determined yet. They seem to contribute to vascular 

wall inflammation as well as to lipoprotein accumulation11 and serve as cellular 

components for the fibrous cap and the necrotic core of atherosclerotic plaques.25 

Stimulated by growth factors like PDGF, secreted by macrophages, ECs, platelets 

and VSMCs themselves, and others (such as FGF, TGF-α) VSMC migrate into the 

intima, start to proliferate after dedifferentiation and synthesize ECM. Intimal VSMCs 

are also involved in maintaining the immune reaction, causing the inflammatory 

response necessary for progression of atherosclerotic lesions by releasing growth 
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factors, cytokines and chemokines (such as PDGF, bFGF, EGF, IGF-1,TGF-ß). The 

resulting cross talk of ECs, macrophages, T-cells and VSMCs is mainly responsible 

for recruitment of further inflammatory cells and VSMCs, as well as for their further 

paracrine activation.11,25,28 

As cellular components of atherosclerotic plaques VSMCs are found inside the 

fibrous cap, together with ECM, giving the plaque necessary stability. Even in the 

lipid laden, necrotic core foam cells of SMC origin are found, releasing the 

incorporated lipids after apoptosis induced by inflammatory cells.25 

In response to vascular injury as consequence of therapies like bypass surgery or 

stent implantation, VSMC undergo a proliferative response leading to in-stent 

restenosis, vein bypass graft failure or transplant vasculopathy. Between 30 and 40 

% of patients receiving percutaneous balloon angioplasty develop restenosis within 

6 months. After deployment of stents, the incidence is about 20 %, while ranging 

from 10 – 30 % per year after bypass surgery.11 
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3. Platelet derived growth factor 

 

3.1. Isoforms 

Originally identified as a mitogenic compound for SMCs, fibroblasts and other cell 

types in whole blood serum and purified from α-granules of platelets more than 2 

decades ago19,33, the today common known PDGF/VEGF family consists of 5 

dimeric PDGF isoforms, 4 homodimeric (PDGF-AA, -BB, -CC, -DD) and 1 

heterodimeric (PDGF-AB)4,17, known to be synthesized and secreted by various cell 

types like VSMCs, fibroblasts, macrophages, leydig cells, kidney mesangial cells, 

ECs, T-cells and others.19 Each of the five members is formed by disulphide-linking 

from 2 of the four known, from 4 different genes encoded PDGF polypeptide chains 

(PDGF-A, -B, -C, -D).17,48 

 

3.2. Structure 

The PDGF chains, forming the dimeric isoforms are polypeptides of different length; 

depending on splicing PDGF-A is between 196 and 211 amino acids, PDGF-B 241, 

PDGF-C 345 and PDGF-D 370 amino acids long.17,48 

Except PDGF-D, all other PDGFs share a common growth factor domain of about 

100 amino acids length48, the so called PDGF/VEGF growth factor homology 

domain, also found in other growth factors like VEGF, TGF-ß and neural growth 

factor.17 This domain contains a highly conserved pattern of 8 cysteine residues, the 

cysteine knot motif, involved in inter- (cysteine residue 2 and 4) and intramolecular 

disulphide bondings. PDGF-DD misses the 5th cysteine residue of the knot motif, 

while 4 additional cysteine residues were identified in PDGF-CC. Compared among 

each other the PDGF chains show about 25 % sequence identity, while showing 50 

% sequence identity when only comparing PDGF-A and –B or PDGF-C and –D.17 

Short N-terminal extensions, which undergo proteolytic procession for biological 

activation are found in the „classical‟ PDGF- A and -B. In the „novel‟ PDGF-C and -D 

the CUB-domain is found as part of their N-terminal extensions.17 Deletion of the 

CUB-domain is necessary for biological activation, otherwise the domain sterically 

blocks the receptor binding site of the growth factor domain, not allowing full-length 

peptides to bind their receptors until proteolytic removal of the domain.17,48 C-termini 
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of the „classical‟ PDGFs contain mainly basic sequences involved in matrix binding,  

while PDGF-C and –D lack amino acid sequence extensions.17 

 

3.3. Biosynthesis and secretion 

Synthesized already as dimers, but inactive precursors in the endoplasmic 

reticulum, the four PDGFs undergo proteolytic processing for biological activation. 

While the „classical‟ PDGFs are processed and activated during their exocytic 

pathway, extracellular processing and activation is required for the „novel‟ 

PDGFs.4,17 

PDGF-A and –B, after dimerization in the ER of producing cells, are cleaved in the 

trans-Golgi network for protein maturation. The enzyme responsible for maturation 

of pro-PDGF-A has been identified as the dibasic specific proprotein convertase 

(PC) furin. The enzyme converting pro-PDGF-B into PDGF-B has not been identified 

yet, but a related PC is supposed to be involved.17 

PDGF-CC and –DD homodimers are secreted as inactive precursors and undergo 

limited extracellular proteolysis by removing the CUB-domain. Plasmin was 

identified to be capable to cleave off these domains in both homodimeric isoforms. 

Tissue plasminogen activator (tPA) on the other hand only seems to process PDGF-

CC homodimers.4,17 

 

3.4. PDGF receptors 

The five dimeric PDGFs, as extracellular stimuli, elicit cellular responses via 

activation of two cell surface related receptor tyrosine kinases, PDGFR-α (α-

receptors) and PDGFR-ß (ß-receptors).18,48 Each of the receptors contains five 

extracellular immunoglobulin-like domains, the three outermost of them involved in 

ligand binding via loop formation, a transmembrane domain, a juxtamembrane 

domain, a splitted tyrosine kinase domain with the kinase insert domain located 

inbetween the two sequences of the tyrosine kinase domain, and a cytoplasmatic 

tail.19,48 

Due to the dimeric character of PDGFs, each isoform is able to bind two PDGF-R at 

the same time. Caused by ligand binding-induced dimerization and depending on 

binding specifities, three dimeric PDGF-R isoforms can be formed: PDGFR-αα, 
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PDGFR-αß and PDGFR-ßß. Binding of the five PDGF isoforms leads to formation of 

various PDGFR isoforms. PDGF-AA is only able to activate PDGFR-αα, PDGF-AB 

can activate PDGFR-αα or PDGFR-αß, while PDGF-BB can activate all three 

dimeric PDGF-R isoforms. The „novel‟ PDGF-CC can activate PDGFR-αα or 

PDGFR-αß, while PDGF-DD only activates PDGFR-ßß. 4,48 

 

 

Figure 2: Interactions between the PDGF dimer and PDGFR 

Each chain of the PDGF dimer interacts with a different receptor subunit. Receptor configuration is therefore 

depending on the ligand configuration. 

Adapted from: Fredriksson, L. et al. 
17 

 

 

The kind of cellular response, caused by PDGF stimulation, is therefore not only 

depending on the PDGF isoform acting as stimulus but also on the type of PDGF-R 

expressed on the cell surface. While classic target cells for PDGF, SMCs and 

fibroblasts express α- and ß-receptors with a generally higher amount of ß-

receptors, other cells like human platelets or O-2A glial precursor cells only express 

α-receptors.19 

Additional to varying PDGF-R expression in different cells types, the level of PDGF-

R expression is not constant. For example, PDGFR-ß expression of connective 

tissue increases under inflammation, while expression of both receptors is increased 

under estrogen treatment. Stimulation with bFGF on the other hand causes 

increased expression of PDGFR-α in VSMCs. Decreased expression of PDGFR-α 



Introduction 

13 
 

can be observed under the influence of IL-1 in osteoblastic cells or in fibroblasts and 

mesothelial cells after TGF-ß stimulation.19 

 

Cell Type α-receptor ß-receptor 

Fibroblasts + + 

Kidney mesangial cells + + 

Leydig cells + + 

Itoh cells of the liver  + 

Liver sinusoidal endothelial cells +  

Myoblasts  + 

VSMCs + + 

Capillary endothelial cells  + 

Pericytes +  

Astrocytes +  

Neurons + + 

Schwann cells + + 

Mammary epithelial cells  + 

Retinal pigment epithelial cells +  

Platelets/Megakaryocytes +  

T-cells  + 

Myeloid hematopoetic cells  + 

Macrophages  + 

Table 4: Expression pattern of different PDGF-R in different cell types 

Adapted from: Heldin, C.H., & Westermark, B.  
19 

 

 

3.5. PDGF signalling 

A multitude of different signalling pathways and signalling molecules is involved in 

mediating PDGF signals from the cellular surface into the nucleus to activate PDGF-

induced cellular processes, such as cell migration, cell proliferation and 

transformation, by stimulating the expression of a set of intermediate early genes. 
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3.5.1. PDGF-R autophosphorylation 

Binding of PDGF isoforms causes receptor activation by initial dimerization and 

adjacent autophosphorylation of the receptor complex. Phosphorylation of the 

receptor molecules that rather seems to occur between the dimerized receptor 

molecules than within each molecule (trans-phosphorylation), serves two vital 

purposes. While phosphorylation of Y857 (corresponding to Y849 in PDGFR-α) inside 

the kinase domain of PDGFR-ß is necessary to develop full kinase activity of the 

receptor, phosphorylation of other tyrosine residues outside of the kinase domain 

leads to creation of binding sites for SH2-domain-containing signalling/adaptor 

molecules. Eleven such autophosphorylation sites have already been identified 

inside the intracellular parts of the PDGFR-ß.4,19 

Dephosphorylation of these critical tyrosine residues is a central mechanism to 

regulate PDGF-induced signalling. Different protein tyrosine phosphatases have 

been identified of being capable to dephosphorylate tyrosine residues after binding 

to the activated PDGF-R.19 The best known representatives are the tyrosine 

phosphatases SHP-1 and SHP-2, both having two SH2 domains located in their N-

termini. SHP-2 binds Y1009 of PDGFR-ß with high affinity and Y763 with lower affinity, 

resulting in increased phosphatase activity. For full activation both SH2 domains of 

the phosphatase have to be occupied. Due to its capacity as tyrosine phosphatase, 

SHP-2 can modulate PDGF signalling in a negative way by dephosphorylating the 

autophosphorylated PDGF-R and its substrates.18 
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Figure 3: Identified autophosphorylation sites of PDGFR-ß 

So far, 11 autophosphorylation sites of PDGFR-ß have been identified, allowing the association of SH2 domain-

containing adaptor proteins or signalling molecules.  Less intensively investigated, fewer autophosphorylation sites 

are known for PDGFR-α. 

Adapted from: Heldin, C.H. et al. 
19 

 

 

3.5.2. PI3K pathway 

Phosphatidylinositol-3-kinase is a heterodimeric enzyme, consisting of a regulatory 

p85 and a catalytic p110 subunit10,14 that can be activated by receptor tyrosine 

kinases as well as by non-receptor tyrosine kinases.22 In response to PDGF 

stimulation the SH2 domain inside the regulatory subunit of PI3K binds to 

phosphorylated Y740 and Y751 of the PDGF-R leading to increased enzymatic activity 

due to conformational changes inside the p85 subunit and translocation of PI3K to 

the plasma membrane.22 Additional direct interactions of Ras with the p110 subunit 

seem to be necessary to reach full enzymatic activity of PI3K.7 Activated PI3K 

phosphorylates PI(4,5)P2 and creates PI(3,4,5)P3, which can in turn bind a number 



Introduction 

16 
 

of downstream targets containing pleckstrin-homology domains.7,22 The major 

downstream target of PI3K is the serine/threonine kinase Akt. Binding of Akt to 

PI(3,4,5)P3 recruits the kinase to the plasma membrane, where it becomes 

phosphorylated at T308 by PDK1 and at S473 by PDK2 to achieve full activation.7,22 

After translocation to the cytosol activated Akt phosphorylates a number of 

downstream targets, mostly causing their inactivation.  

Phosphorylation of the Forkhead family of transcription factors (FOXO) and the 

apoptosis-inducing proteins BAD creates binding sites for 14-3-3 proteins. The 

complex of Forkhead-related transcription factor and 14-3-3 protein is therefore 

retained in the cytosol blocking transcription of pro-apoptotic proteins like FasL and 

Bim as well as cell-cycle inhibitors like p27Kip1. On the other hand Akt is capable of 

inhibiting p27Kip1 by direct phosphorylation. Complex formation of BAD and 14-3-3 

proteins prevents BAD from binding the Bcl-2 family members Bcl-2 and Bcl-XL, 

releasing them for cell survival responses.14,22 

Another target of Akt is GSK3, a kinase necessary to keep proteins like glycogen 

synthase, c-Myc and cyclin D in an inactive state. Phosphorylation of GSK3 

interrupts the catalytic activity of the enzyme, resulting in activation of pathways 

normally suppressed by active GSK3.7,22 

Suppression of PI3K-mediated signalling is performed by SHP-1, SHP-2 and PTEN, 

phosphatases that dephosphorylate PI(3,4,5)P3 at different positions of the inositol 

ring, thereby creating PI(4,5)P2  and PI(3,4)P2, which impair downstream signalling 

of PI3K.7,14 

 

3.5.3. PLC-γ 

Another enzyme acting on PI(4,5)P2 as its preferred substrate is PLCγ. Binding of 

phosphorylated Y1021 and with lower activity Y1009 of PDGFR-ß leads to increased 

catalytic activity of PLCγ and formation of two secondary messengers, DAG and 

inostiol-1,4,5-triphosphate. PI(3,4,5)P3 produced by PI3K and bound by PLCγ via its  

PH-domain is involved in another important regulatory mechanism of PLCγ activity, 

suggesting a cross-talk between PI3K-pathway and PLCγ.18 
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3.5.4. MAPK pathway 

Activation of the small G-protein Ras by the Grb2/Sos1 complex is the initial step in 

induction of the MAPK-pathway. The adaptor molecule Grb2 either directly binds to 

phosphorylated Y716 of the PDGFR-ß or associates with the receptor via other 

adaptor molecules like Shc or SHP-2.18 Sos1, a nucleotide exchange factor for Ras 

involved in the complex, switches the inactive Ras-GDP to the active Ras-GTP. 

Activated Ras interacts directly with the N-terminal regulatory part of the MAPKKK 

Raf-1, resulting in activation of the serine/threonine kinase in its C-terminal part.  

Raf-1 transmits the signal further by phosphorylating the dual specificity kinases 

MEK1/2 (MAPKKs). By phosphorylating regulatory tyrosine and threonine residues 

MEK1/2 finally activate the MAPKs Erk1/2 (T202/Y204). Erk kinases are known to 

phosphorylate and activate a series of transcription factors important for the 

regulation of cell proliferation and transformation such as Elk1, c-Fos, p53, Ets1/2 

and c-Jun.39 

Other MAPKs activated by PDGF stimulation are the c-Jun N-terminal or stress-

activated protein kinases (JNK or SAPKs) and p38.16 

Negative regulator for the MAPK pathway is the GTPase activating protein (GAP) for 

Ras, a molecule with two SH2 domains, able to bind phosphorylated Y771 of the 

PDGFR-ß. After binding the PDGFR-β, GAP becomes phosphorylated itself and 

deactivates Ras by converting it from Ras-GTP to the inactive Ras-GDP.18 

 

3.5.5. Signal transducers and activators of transcription 

Signal transducers and activators of transcription (STATs) are a family of 

cytoplasmic transcription factors currently known to consist of seven structurally 

related members (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6) 

and involved in signal transduction from the cellular surface to the nucleus without 

necessity of second messengers.12,44 Originally assumed to be only activated by 

cytokines, they are actually activated by a large number of different cytokines and 

growth factors through phosphorylation of one single C-terminal tyrosine residue.44,12 

Phosphorylation and activation of STAT transcription factors either occurs after 

binding of the STAT SH2 domain to phosphorylated tyrosine residues inside the 

juxtamembrane domain of PDGFR-ß (Y579/581) or is either mediated by the receptor 

associated family of JAK kinases (JAK 1-3, Tyk2) or intracellular non-receptor 
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tyrosine kinases (e.g. Src family kinases) activated by PDGF stimulation. Activated 

STAT molecules form homo- or heterodimeric molecules via their SH2 domains, 

which are immediately translocated inside the nucleus, where they regulate the 

expression of target genes like cyclin D1, c-myc and Bcl-XL after binding to STAT-

specific response elements (STATRE) on DNA.41,44 By activating or repressing the 

transcription of these genes STATs are responsible for regulation of cellular 

processes like proliferation, differentiation and embryonic development. Sensitive 

control of duration and intensity of STAT signalling are essential to prevent 

development of neoplastic or autoimmune diseases, which arise from disruption or 

aberrant activation of STAT signalling. Therefore suppressors of cytokine signalling 

(SOCS) proteins serve as endogenous negative feedback regulators, these proteins 

bind phosphorylated receptors and non-receptor tyrosine kinases in turn preventing 

STAT binding and activation.12 

 

3.5.6. Non-receptor tyrosine kinases 

Additional signalling molecules involved in PDGF signalling are nonreceptor tyrosine 

kinases. Members of the Src family of tyrosine kinases (SFKs), such as Src, Fyn 

and Yes are cytoplasmic kinases characterised by presence of domains like SH2, 

SH3 or a kinase domain.9,18 High affinity binding of SFKs SH2 domain to 

phosphorylated Y579 of PDGFR-ß and with lower affinity to Y581, in combination with 

dephosphorylation of Y527 leads to increased kinase activity by disruption of tight 

molecular interactions.9,18 The mechanism of c-Src tyrosine kinase activation via 

PDGF-R is explained in detail in section 4.3.1. 

Unlike SFKs, members of the c-Fer and c-Fes cytoplasmic tyrosine kinases lack an 

SH3 domain and a C-terminal regulatory phosphorylation site. The importance of  

c-Fer and c-Fes kinases in PDGF signalling is uncertain at the moment.18 

 

3.5.7. Adaptor molecules in PDGF signalling 

Beside the two already mentioned adaptor molecules involved in Ras activation, 

Shc, mediating the association of the Grb2/Sos1 complex with PDGFR-ß and Grb2, 

capable of directly binding phosphorylated Y716 of PDGFR-ß, other adaptor 

molecules participate in PDGF signalling. 
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Nck, a small adaptor protein, consisting of one SH2 and three SH3 domains binds 

phosphorylated Y751 inside the kinase insert of PDGFR-ß and becomes itself 

phosphorylated on tyrosine residues, additional to already phosphorylated 

serine/threonine residues, after PDGF stimulation. It is supposed to be involved in 

activation of the JNK serine/threonine kinase by interactions with PAK1 and NIK 

serine/threonine kinases.18 

Shb is an adaptor protein with a C-terminal SH2 domain and multiple proline rich 

sequences in the N-terminal part. After binding to phosphorylated tyrosine residues 

of the PDGFR-ß, Shb is presumably involved in mediating indirect interactions of 

PDGFR-ß and SH3 domain containing proteins.9 

Crk, the only adaptor molecule known to bind PDGFR-α with higher affinity than 

PDGFR-ß, forms a complex with Cas, an SH3 domain containing protein shown to 

be phosphorylated after PDGF stimulation and C3G, a nucleotide exchange factor 

supposed to be involved in JNK activation. 

The Grb7 family of adaptor proteins consists of one SH2, one PH and one domain 

named GM domain. Similar to Grb2, Grb7 interacts with phosphorylated Y716 of 

PDGFR-ß. Other members of this family are Grb10 and Grb14. While Grb10 binds 

the activated PDGFR-ß, only PDGF-stimulated serine phosphorylation of Grb14 was 

observed.18 

 

3.6. Physiological functions of PDGF 

Starting with its discovery as a mitogenic compound for mesenchymal cell types 

more than two decades ago, subsequent studies identified diverse other cellular 

processes induced by or requiring PDGF including chemotaxis, survival, apoptosis 

and transformation of mesenchymal cell lines.17,48 

By using knockout or transgenic vertebrate mutants, mostly gene-targeted mice, not 

only the correlating in vivo functions of PDGF but also the different cell types 

targeted by PDGF were unravelled.4 

These animal models combined with the results of the in vitro experiments from 

Heldin and Westermark identified PDGF as a growth factor with essential meaning 

for embryonic development, organogenesis of lung, skin, testis, kidney and lens, as 

well as its crucial importance for the development of the CNS, the cardiovascular 

and the hematopoetic system. Furthermore its involvement in blood pressure 
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regulation, wound healing, regulation of platelet aggregation and tissue 

homeostasis, and its proposed neuroprotective function make PDGF a significant 

participant in maintenance of physiologic processes in vertebrates and 

mammalians.4 

Silencing of PDGF/PDGF-R encoding genes or selective abolition of PDGF and 

PDGF-R expression lead to severe abnormalities or dysfunctions of the targeted 

organ system or tissue, which at the worst caused death of the test animal.4,19 
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4. c-Src 

 

4.1. The Src family kinases 

c-Src, a non-receptor tyrosine kinase encoded by the c-src gene, the first proto-

oncogene discovered in multicellular organisms, is the namegiving representative of 

a whole famly of non receptor tyrosine kinases (NRTKs) consisting of nine 

members: Yes, Fyn, Lyn, Lck, Hck, Fgr, Blk, Yrk and Src, commonly known as the 

Src family kinases.8,43 

As signalling molecules, these multifunctional kinases regulate different cellular 

processes like cell differentiation, motility, proliferation, survival and adhesion by 

interaction with cell surface receptors (EGF-, PDGF-, FGF-receptor family, CSF-1 

receptor), integrins, G-protein coupled receptors (GPCRs), steroid hormone 

receptors, cytokine receptors and activation of downstream signalling molecules like 

FAK, p85, Ras, Cas, PLC-γ and STATs either directly or via adaptor molecules 

(p130CAS, Shc).1,21 

Although essential for maintenance of physiologic cellular processes numerous 

members of the SFKs habe been identified to be involved in development of 

diseases like cancer, diabetes and others due to constitutive activation after 

mutation, lasting stimulation by upstream signalling molecules or defective 

regulation of their kinase activity.5,21 Especially elevated levels of activated Src have 

been detected in various types of cancer including lung, skin, colon, breast, ovarian, 

endometrial cancer as well as head and neck malignancies.21 

Just recently, the SFKs were identified as an important downstream substrate 

activated by Bcr-Abl kinase independent from its kinase activity in Ph+ leukaemias, 

responsible for proliferation of B-lymphoid cells even after abolition of Bcr-Abl kinase 

activity by imatinib treatment. Considering these findings simultaneous inhibition of 

Bcr-Abl and SFKs seems to be the most promising approach for future Ph+ 

leukaemia treatment.26 

 

 

 



Introduction 

22 
 

4.2. Source, structure and intramolecular interactions 

Human c-Src is an ubiquitously expressed 60-kDa protein of 536 amino acids. Its 

highest protein levels are found in osteoclasts, the brain and platelets, where the 

expression levels are 5 – 200 fold higher than in most other cells.35,43 

The structure of c-Src is very related to those of the other SFKs. A 14 carbon 

myristoyl group is attached to its N-terminal SH4 domain, mediating the commitment 

of c-Src to cellular membranes. Following the N-terminal SH4 domain, a poorly 

conserved unique domain, a 60 amino acid residue SH3 domain ,which allows the 

kinase to bind proline rich sequences and a 100 amino acid residue SH2 domain, 

allowing the enzyme to bind phosphorylated tyrosine residues, and other sequences 

are found.34  

Located in between of the SH2 domain and the adjacent tyrosine kinase domain 

(alternatively called SH1 or catalytic domain) is the SH2-kinase linker. This motif 

forms the intersection between the two nearby domains and is involved in regulating 

c-Src kinase activity via interaction with the SH3 domain.5 

The catalytic domain is highly conserved not only among SFKs but tyrosine kinases 

in general, thus it is found in kinases like Csk and PKA. Its two lobed architecture 

consists of a smaller N-terminal lobe (N-lobe, residues 267 – 337) mainly formed by 

ß-sheet structures, the larger mainly α-helical C-terminal lobe (C-lobe, residues 341 

– 520) and the active site or activation loop located between them. In activated c-Src 

the active site of the kinase is freely accessible for ATP, allowing transfer of its γ-

phosphoryl group to substrate peptides after sterical changes in the arrangement of 

N- and C-lobe. Giving substrates access to the active site of c-Src is not the only 

function these two lobes fulfil within the phosphorylation process of c-Src substrates. 

ATP, working as the phosphate donor, is anchored and orientated after binding the 

smaller N-terminal lobe of the c-Src catalytic domain, while the C-lobe works as 

binding site for the nucleotide-phosphate.34,47 

The enzyme is completed by its C-terminal regulatory tail, also involved in keeping 

the kinase in its inactive state.34  

This inactive conformation is typical for c-Src under normal conditions. Binding of 

phosphorylated Y527 in the C-terminal regulatory tail of c-Src (according to chicken 

numbering system equivalent to Y529 in mammalian c-Src) to the SH2 domain as 

well as binding of the SH2-kinase linker to the SH3 domain of c-Src stabilize the 
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inactive conformation with low tyrosine kinase activity. Additionally, Y416 (equivalent 

to Y418 in mammalian c-Src), located in the activation loop of the kinase, works as a 

steric barrier to avoid substrates from accessing the active site of the enzyme.5,34 

Disruption of these tight molecular interactions by dephosphorylation of Y527 and 

additional phosphorylation of Y416 leads to increased kinase activity and activation of 

c-Src downstream signalling cascades.5 

 

 

 

Figure 5: Phosphorylation sites and structure of c-Src kinase 

Shown are the known phosphorylation sites involved in regulation of c-Src kinase activity. The different residues are 

labeled according to the chicken numbering system.  

Adapted from: Roskoski, R. Jr. 
35 

 

 

4.3. Regulation of c-Src kinase activity 

The non-receptor tyrosine kinase c-Src is an essential mediator of signalling 

cascades required for cellular processes including proliferation, transformation, 

motility and adhesion. Disruption of negative regulatory mechanisms, which 

normally keep the kinase in an inactive state, lead to aberrant activation and 

increased kinase activity of c-Src and cause excessive activation of signalling 

pathways that regulate all stages of cancer progression.5,21 

Regulation of c-Src kinase activity therefore is represented by tightly controlled 

interactions between activating and inhibitory phosphorylations of tyrosine, threonine 

and serine residues, mediated by various enzymes (e.g. Chk, Csk, PKA).35 

 

4.3.1. Regulation via tyrosine phosphorylation and dephosphorylation 

Beside others, current knowledge about c-Src identified the balance between 

phosphorylation and dephosphorylation of two critical tyrosine residues, Y416 and 

Y527, as the main responsible mechanism for regulating the kinases activity.34,35 
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Under basal in vivo conditions about 90 – 95 % of Y527, the negative regulator 

located in the C-terminal regulatory tail of c-Src, are phopshorylated. 

Phosphorylation of this tyrosine residue allows intramolecular binding of Y527 to the 

SH2 domain and stabilization of c-Srcs inactive conformation without tyrosine kinase 

activity. The first enzyme discovered to catalyze phosphorylation of Y527 was the 

cytoplasmic kinase Csk. Today several other kinases are known which are capable 

of suppressing c-Src kinase activity by phosphorylating Y527, e.g. Chk, PKA, PKC 

and CDK1.5,34 Interestingly dephosphorylation of Y527 alone seems to be insufficient 

to activate c-Src, and requires Y416 phosphorylation.5 

Y416 is the second regulatory tyrosine residue of c-Src, located in the activation loop 

of its catalytic domain. In its inactive state the catalytic domain of c-Src is clenched 

by the SH2 and the SH3 domain, preventing Y416 from phosphorylation by other 

kinases and substrate peptides from binding to the active site of c-Src. Interception 

of intramolecular interactions between phosphorylated Y527 inside the C-terminal 

regulatory tail and the SH2 domain leads to disbanding of the clasp, allowing 

autophosphorylation of Y416, which in turn causes displacement of Y416 from the 

kinases binding pocket, giving the kinase access to substrates and stabilizes the 

active conformation of c-Src.5,35 

Two further tyrosine residues of minor meaning for c-Src kinase activity regulation 

are known, these are Y138 in the SH3 domain and Y213 in the SH2 domain of c-Src. 

Phosphorylation of Y213 is mediated by the activated PDGF-R and supposed to 

increase kinase activity by reducing the capability of the SH2 domain to bind 

phosphorylated Y527. Y138 is also phosphorylated by the PDGF-R after association of 

the receptor with the SH2 domain of c-Src, causing decreased interactions between 

the SH3 domain and the SH2-kinase linker of c-Src.35 

By causing the contrary effects as phosphorylation, dephosphorylation of tyrosine 

residues by protein tyrosine phosphatases is of the same importance for regulation 

of c-Src kinase activity as their phosphorylation by tyrosine kinases. Currently only 

PTPs capable of dephosphorylating Y416 and Y527 are known, the complexity in 

which these PTPs affect the phosphorylation status of Y138 and Y213 is not known 

presently. The phosphatases PTP1B, PTPα, PTPε, PTPλ and SHP-1 were already 

shown to increase c-Src kinase activity by dephosphorylation of Y527.5,35 For SHP-2, 

another phosphatase, an allosteric mechanism of activation was assumed beside 
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dephosphorylation of Y527.5 PTP-BL, the mouse homologue of human PTP-BAS, a 

cytosolic phosphatase, is the only PTP known of dephosphorylating Y416 at the 

moment.35 

 

 

Figure 4: Regulation of c-Src kinase activity via phosphorylation of Y
416

 and Y
527

 

The kinase is normally maintained in an inactive conformation by interactions between its SH2 domain and C-

terminal Y
527

.  

c-Src activation results from dephosphorylation of Y
527

 by PTPs or displacement of Y
527

 after binding of the kinases 

SH2 domain to autophosphorylation sites (Y
579

 and Y
581

) of the activated PDGFR and subsequent 

autophosphorylation of Y
416

. The kinase can return to its inactive state after phosphorylation of Y
527

 by Csk and 

other kinases or dissociation from the growth factor receptor.  

Adapted from: Bjorge, J.D. et al.
5 

 

 

4.3.2. Regulation via serine and threonine phosphorylation 

Aside from tyrosine kinases, c-Src is also a substrate for protein-serine/threonine 

kinases. Affected residues are Ser12 after PDGF stimulation, Ser17 after 

phosphorylation by PKA as well as Thr34, Thr36 and Ser72 after phosphorylation by 

CDK1. The concrete mechanism of c-Src activation after phosphorylation of serine 

or threonine residues is still unclear today, but decreased SH2/SH3 interactions are 

supposed to be responsible for increased kinase activity.35 
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4.3.3. Regulation via Src-binding proteins 

Src-binding proteins or adaptor proteins are a considerable element of c-Src 

activation. Their primary intention is to get c-Src in contact with potential substrates 

either by direct binding or relocalization of c-Src within the cell. But binding of 

different structural motifs of c-Src to these adaptor proteins has additional regulatory 

consequences since most of these proteins bind to sequences of c-Src that are 

involved in maintaining c-Src in its inactive conformation like the SH2 and SH3 

domains and therefore disturb the intramolecular SH2/C-terminal tail and SH3/SH2-

kinase linker interactions by competing for the same binding sites. PDGF-R and 

FAK bind the SH2 domain while Nef and Sin bind the SH3 domain of c-Src. p130Cas, 

a protein with a large amount of binding motifs, is the only known Src-binding protein 

that binds the SH2 domain as well as the SH3 domain of c-Src.5 

 

4.4. c-Src in PDGF-induced signalling 

As for most of the PDGF-induced signalling cascades, PDGF-R dimerization and 

activation by autophosphorylation after ligand binding describes the initial step in 

activating the c-Src-dependent signalling pathway. 

c-Src binds the phosphorylated tyrosine residues, Y579 with high affinity and Y581 with 

lower affinity, of activated PDGFR-ß with its SH2 domain, resulting in increased c-

Src kinase activity by disturbing the intramolecular interactions between the kinases 

SH2 domain, SH3 domain, its C-terminal regulatory tail and the SH2-kinase linker, 

which normally keep the enzyme in its inactive conformation. Especially disturbance 

of the SH2 domain interactions with C-terminal phosphorylated Y527 seem to be 

crucial for activation of c-Src after PDGF stimulation. These activating mechanisms 

on the one hand comprise binding of the c-Src SH2 domain to phosphorylated 

tyrosine residues of the PDGF-R as otherwise phosphorylation of c-Src at Y138 and 

Y213 by the PDGF-R.5,18 

Downstream substrate of activated c-Src is amongst others STAT3, a cytoplasmic 

transcription factor, serving as a key molecule in growth factor and cytokine 

signalling, which can be activated by RTKs like the PDGF-R as well as by NRTKs as 

c-Src and JAK. Members of the STAT family are involved in regulation of cellular 

processes via controlling expression of genes required for cell proliferation and 

apoptosis; target gene for STAT3 is amongst others c-myc, an intermediate early 
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gene. After activation by c-Src via phosphorylation on Y705, STAT3 dimerizes and 

translocates into the nucleus, where it is responsible for modulating the expression 

of c-myc. Increased expression of the c-myc gene causes increased protein levels 

of c-Myc, a transcription factor, finally appropriate for increased DNA synthesis and 

mitogenesis after PDGF-dependent c-Src activation.6 
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5. Indirubin 

 

5.1. Source and origin 

The last encyclopaedia of Traditional Chinese medicine, released in 1977, enlists 

more than 5500 natural sources, collected by practitioners of TCM in over 4000 

years of appliance, forming the basis of up to 500,000 prescriptions, today used in 

modern China and other countries.20 

One of these prescriptions is Danggui Longhui Wan, a recipe consisting of 11 herbal 

medicines, used for the treatment of various chronic diseases, especially chronic 

myeloic leukaemia (CML) because of its antiproliferative effects. In 1966, the 

Institute of Haematology of the Chinese Academy of Medical Sciences attempted to 

isolate the active constituent of Danggui Longhui Wan, which was first identified as 

Quing Dai (indigo naturalis), a dark blue coloured powder composed of the blue dye 

indigo, a 2,2‟-bisindole, as the main component and a small amount of the red 

coloured 3,2‟-indigo isomer, indirubin, as minor constituent.13,20 

Indigo naturalis, extracted from the leaves of Baphicacanthus cusia (Acanthaceae), 

Polygonum tinctorium (Polygonaceae), Isatis indigotinctoria (Brassicaceae), 

Indigofera suffrutticosa and Indigofera tinctoria (both Fabaceae), is widely used in 

TCM because of its hemostatic, antipyretic, anti-inflammatory, sedative, antibacterial 

and antiviral properties. Interestingly the antileukaemic/antproliferative qualities of 

indigo naturalis were not elicited by the blue indigo, but by its red coloured 3,2‟-

isomer indirubin.13,20 

Both of the two compounds are produced out of the colourless precursors indican or 

isatan B. The evolving intermediates indoxyl and isatin finally form indigo and 

indirubin via dimerization and oxidation.20 

 

5.2. Derivatives 

Although showing good antitumor activity combined with low toxicity and missing 

bone marrow toxicity in animal studies as well as in studies with CML patients, 

indirubin is characterized by poor solubility and poor intestinal absorption. Several 

derivatives were synthesized to improve these pharmacological characteristics  
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[5-halogenoindirubin, N-ethyl-indirubin, N-methylisoindigo, indirubin-3‟-monoxime 

(I3MO)].13,20 Of these analogues I3MO was the most potent derivative concerning its 

antitumor activity. In 2007 Kim et al. were able to prove inhibition of cancer cell 

proliferation in vitro as well as a growth inhibition of solid and oral tumors in vivo by 

three novel indirubin derivatives; 5‟-NIO, 5‟-FIO and 5‟-TAIO.23 

 

 

 

Figure 6: Chemical structure of indirubin and selected derivatives 

Adapted from: Kim, S.A. et al.
23 

 

 

5.3. Targets 

 

5.3.1. Cyclin-dependent kinases 

CDKs play a crucial role in regulation of cell cycle progression. Together with their 

regulatory subunits, the cyclins, they form holoenzymes which hyperphosphorylate 

proteins serving as negative regulators of the cell cycle; one of these target proteins 

is the retinoblastoma protein. Hypophosphorylated pRb forms complexes with 

various binding partners like cAbl, HDAC, DNA polymerase δ, D type cyclins, E2F-

family transcription factors and keeps them in an inactive state. Inactivation, induced 
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by hyperphosphorylation of pRb causes release of these transcription factors and 

activation of E2F-dependent transcription, necessary for S-phase progression due to 

the synthesis of proteins like cyclinE, cyclinA, DHFR, CDK1 and others. Today nine 

different CDKs and 16 corresponding cyclins are known in mammalian cells, each 

one of vital importance for progression through different phases of the cell cycle. 

Indirubin and several of its derivatives were able to inhibit cell cycle progression by 

binding to the ATP-binding site of different CDKs, causing G1/S-phase arrest and in 

concentrations >10 µM G2/M-phase arrest, accompanied by decreased pRb 

phosphorylation and increased apoptosis. Interestingly most of the indirubin 

derivatives showed higher preferences for CDK1, CDK2 and CDK5, than for CDK4, 

while indirubin and I3MO showed slight reduction in specificity.13,20 

 

5.3.2. c-Src and STAT3 

The c-Src/STAT3 cascade is one of the signalling pathways highly involved in 

progression of cancer. STAT3 plays an important role in tumor cell survival and 

proliferation via gene regulation, while c-Src acts as a key player in tumorigenesis 

and metastasis by activation of oncogenic signalling patways. Indirubin derivatives 

were able to block STAT3 signalling by direct inhibition of c-Src kinase activity (in 

vitro and in vivo) as well as by inhibition of tyrosine phosphorylation of STAT3 in 

vivo.30 

 

5.3.3. Glykogen synthase kinase-3ß 

GSK-3ß is an ubiquitously expressed serine/threonine kinase, which was originally 

assumed to regulate glycogen metabolism and insulin signalling, but is nowadays 

known as a multifunctional protein in different signalling pathways. Altogether more 

than 40 different proteins, including 12 transcription factors, are known to be 

phosphorylated by GSK-3ß. One of these proteins is ß-catenin, participant of the 

Wnt signalling pathway, which undergoes proteosomal degradation after 

phosphorylation by GSK-3ß and subsequent ubiquitination.  GSK-3ß is also 

supposed to be involved in cell cycle progression by regulating cyclin D1 levels. 

Indirubin and its derivatives are known to be potent inhibitors of this enzyme 

supposed to be involved in the development of Alzheimer‟s disease.16,46 
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5.3.4. NF-κB pathway 

Aside from its antiproliferative effects, indirubin shows remarkable anti-inflammatory 

effects through modulation of the NF-κB pathway. NF-κB is a heterotrimeric family of 

Rel-domain containing proteins located in the cytoplasma. Under quiescent 

conditions these proteins consist of a p50, p65 and IκB, a family of ankyrin-domain 

containing proteins (IκBα, IκBß, IκBγ, IκBε, Bcl-3, p105 and p100) required to keep 

NF-κB inactive. Carcinogens, inflammatory agents, tumor promoters, cigarette 

smoke, TNF and others activate NF-κB via activation of IKK, resulting in 

phosphorylation, ubiquitination and degradation of IκBα as well as phosphorylation 

of p65. Activated NF-κB translocates into the nucleus, binds to DNA response 

elements and regulates expression of antiapototic genes (cIAP1/2, survivin, TRAF, 

Bcl-2, Bcl-XL), genes encoding adhesion molecules, chemokines, cytokines as well 

as cell cycle regulatory genes (c-myc, cyclin D1), whose products are involved in 

tumorigenesis. Indirubin was shown to inhibit NF-κB activation by preventing initial 

phosphorylation of IKK due to inhibition of TAK1, a kinase acting upstream of IKK.37 

 

5.3.5. The Aryl hydrocarbon receptor 

The AhR is a ligand activated transcription factor, present in most cells and tissues 

of the body, mediating the toxic and biological effects of dioxins. Ligand binding to 

the AhR causes heterodimer formation of AhR with the Aryl hydrocarbon receptor 

nuclear translocator followed by subsequent activation of the Ah gene battery 

transcription, affecting genes like CYP1A1, CYP1A2, glutathione S-transferase Ya 

subunit, NAD(P)H quinone oxidoreduktase, UDP-glucuronosyltransferase 1A6 and 

aldehyde-3-dehydrogenase genes. 

In a yeast assay, indirubin showed a more potent binding to the AhR than its 

prototype ligand TCDD, leading to induction of CYP1A1 and 1A2 mRNA at 1 pM 

concentrations.2 
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5.3.6. Other targets 

Other targets like tau, a kinase involved in Alzheimer‟s disease by formation of 

neurofibrillary plaques and c-Jun NH2-terminal kinase, a regulator of neuronal cell 

death, make indirubin a promising new agent not only for cancer indications.23 
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6. Dasatinib 

 

6.1. The Philadelphia chromosome 

The so called Philadelphia chromosome originates from translocation [t(9,22)] of the 

Abl gene, typically located on chromosome 9 (der9), to chromosome 22 (der22) and 

subsequent replacement of a fragment of chromosome 22, adjacent to the Bcr 

(breakpoint cluster region) gene locus, causing the development of a Bcr-Abl fusion 

gene. Depending on appearing breakpoints on chromosome 22, m-Bcr (minor) and 

M-Bcr (major), two different Bcr-Abl fusion genes evolve. While m-Bcr leads to 

formation of p185Bcr-Abl, which is a hallmark for all Ph+-ALL, but only sporadically 

found in CML, M-Bcr causes formation of p210Bcr-Abl, which is supposed to be 

specific for CML. The encoded fusion protein, the chimeric Bcr-Abl tyrosine kinase is 

constitutively activated and seems to be of pivotal importance for the development 

of Ph+ leukaemias, including chronic myeloic leukaemia (CML) and B-cell acute 

lymphoblastic leukaemia (B-ALL).26,32,49 

 

6.2. Dasatinib in CML 

Developed as BMS-354825 dasatinib is an oral applied, multi-targeted Bcr-Abl and 

Src family kinase (SFK) inhibitor that was just recently approved by the FDA and the 

European Union as first-line treatment in all stages of imatinib-resistant CML. 

Together with nilotinib and bosutinib it forms the „second-generation‟ of Bcr-Abl 

inhibitors, developed due to increased incidence of Bcr-Abl mutations leading to 

imatinib-resistant CML. These „second-generation‟ inhibitors are between 20- and 

325-fold more potent than imatinib, whereas dasatinib evolved the greatest potency 

against Bcr-Abl in vitro and is the only one effective against 18 of 19 known Bcr-Abl 

mutations leading to imatinib-resistance.38 

Dasatinib is supposed to induce apoptosis in CML cells by inhibition of STAT5 

signalling due to prior inhibition of Bcr-Abl and SFKs. Decreased DNA binding of 

STAT5 leads to inhibition of cell proliferation and induction of apoptosis by down 

regulation of STAT5 target genes like Bcl-x, Mcl-1 and cyclin D1.31 
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6.3. Indications outside CML 

Although its molecular mechanism of Bcr-Abl and SFK inhibition is not totally 

resolved at the moment, dasatinib seems to be a promising therapeutic agent for 

other types of cancer as well as for Ph+ leukaemias. 

In human DU-145 cells, a very aggressive metastatic prostate cancer cell line, 

dasatinib inhibits cell adhesion, migration and invasion by inhibition of c-Src kinase 

activity and subsequent abolition of oncogenic FAK and p130CAS signalling.29 

The Src/FAK/p130CAS signalling pathway not only seems to be involved in prostate 

cancer but also in other types of sarcomas, like soft tissue and bone sarcomas. In 

these types of malignancies dasatinib inhibited migration, invasion and induced 

apoptosis in an analogous manner. The only cell line not responding to dasatinib 

treatment was HT-1080, which was also the only one lacking detectable levels of  

c-Src kinase activity.40 These findings identify dasatinib as a possible therapeutic 

approach against tumors exhibiting elevated Src/FAK/p130CAS signalling. 

 

6.4. Dasatinib resistance 

Resistance against dasatinib is mostly caused by mutations inside the Bcr-Abl 

kinase domain. To meet these concerns, several „third generation‟ Bcr-Abl kinase 

inhibitors, pass through clinical development or phase I clinical trials. One of these 

so called „Aurora kinase inhibitors‟, MK-0457, has already showed the ability to bind 

to dasatinib-resistant T315I-mutations of Bcr-Abl kinase. A combination study with 

dasatinib and MK-0457 has delivered promising outcomes to complement 

resistance development. If such combinations will ever be applied to CML patients is 

unclear at the moment.38 

 

 

 

Figure 7: Chemical structure of dasatinib 

Adapted from: Nam, S. et al.
29 
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7. AIM OF THE WORK 

 

Inhibition of VSMC proliferation and migration seems to be a promising therapeutic 

approach for the treatment of atherosclerosis, especially for the prevention of 

restenosis of blood vessels due to intimal thickening. To achieve this therapeutic 

goal compounds with sufficient antiproliferative properties against VSMCs are 

essential. One promising candidate seems to be indirubin, the red-coloured isomer 

of indigo and active principle of a TCM reciepe used for treatment of leukaemia. Due 

to its poor aqueos solubility several derivatives were designed, of which I3MO 

represents a very potent one. 

Previous studies identified numerous signalling molecules inside oncogenic 

signalling pathways as targets for indirubin and its derivatives such as STAT3, c-Src 

kinase, p130CAS and FAK.30,36 Additionally, these findings are of interest for the 

possible use as therapeutic agents against atherosclerosis, since signalling 

molecules like STAT3 and c-Src were also identified as participants in PDGF-

induced signalling and could therefore be responsible for PDGF-dependent 

development of atherosclerosis due to their excessive activation.18,19 

In previous studies a decreased autophosphorylation of the PDGF-R, abolition of 

STAT3 signalling and inhibition of ROS production were documented as effects of 

I3MO when added to VSMCs prior to PDGF stimulation.36 

In our study we tried to identify c-Src kinase as a potential target of I3MO within the 

PDGF signalling cascades in VSMCs and interruption of PDGF-dependent c-Src 

activation as the accountable step for subsequent inhibition of STAT3 signalling. 

Furthermore we tried to specify the inhibitory effect of I3MO on c-Src kinase activity 

by performing an in vitro tyrosine kinase assay. 
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C   MATERIALS AND METHODS 
 

1.   Materials 
 

1.1. Inhibitors 

Name Concentration Provider 

Indirubin-3‟-monoxime 3 µM Laurent Meijer (Roscoff, France) 

Dasatinib 100 nM LC Laboratories (Woburn, MA, USA) 

Table 5: Inhibitors 

 

Inhibitor stock solutions (10 mM, dissolved in DMSO) were stored at -80°C. 

 

1.2. Recombinant proteins 

Name Concentration Provider 

recombinant PDGF-BB, human 1 µg/µl Bachem (Weil am Rhein, Germany) 

recombinant Src, human 10 μg/100 μl Millipore (Billeria, MA, USA) 

Table 6: Recombinant  proteins 

 

PDGF-BB stock solution (10 ng/µl) was stored in 20 µl aliqouts at -20°C and diluted 

with starvation medium to a final concentration of 1 ng/µl before use.  

Src stock solution (10 µg/100 µl) was stored at -80°C. 

 

1.3. Antioxidants 

Antioxidant Concentration Solvent Provider 

Ascorbic acid 100 µM Aqua dest. Sigma-Aldrich Inc. (St. Louis, MO, USA) 

Dehydroascorbic acid 100 µM DMSO Sigma-Aldrich Inc. (St. Louis, MO, USA) 

Trolox 100 µM Ethanol 100% Sigma-Aldrich Inc. (St. Louis, MO, USA) 

Table 7: Antioxidants 

 

Antioxidant stock solutions (10 mM) were stored in aliquots at -80°C. 
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1.4. Antibodies 

Target Source Dilution Provider 

phospho Akt Ser
473 

rabbit, pc 1:2500 New England Biolabs (Beverly, MA, USA) 

phospho Erk1/2 Y
202/204 

rabbit, pc 1:1000 New England Biolabs (Beverly, MA, USA) 

phospho p38 Y
180/182 

rabbit, pc 1:1000 New England Biolabs (Beverly, MA, USA) 

Src rabbit, pc 1:1000 Cell Signaling (Danvers, MA, USA) 

phospho Src Y
418 

rabbit, pc 1:1000 Biosource (Camarillo, CA, USA) 

phospho Src Y
529 

rabbit, pc 1:1000 Biosource (Camarillo, CA, USA) 

phospho STAT3 Y
705 

rabbit, pc 1:1000 New England Biolabs (Beverly, MA, USA) 

α-tubulin mouse, mc 1:500 Santa Cruz (Santa Cruz, CA, USA) 

phospho tyrosine (P-Tyr-

100) 

mouse, mc 1:1000 New England Biolabs (Beverly, MA, USA) 

Table 8: Primary antibodies 

 

Target Source Dilution Provider 

rabbit IgG goat 1:2500 New England Biolabs (Beverly, MA, USA) 

mouse IgG goat 1:2500 Upstate (Charlottesville, VA, USA) 

Table 9: Secondary antibodies, HRP-linked 

 

The antibodies were diluted in TBS-T pH 8.0 as listed above. 5% BSA or 5% milk 

powder were added to TBS-T before dilution if recommended by the provider. 

 

Target Source Concentration Provider 

v-Src mouse, mc 1 mg/ml Calbiochem (La Jolla, CA, USA) 

Table 10: Immunoprecipitation antibody 

 

The antibody was stored at 4°C until used for immunoprecipitation. 
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1.5. Buffers and solutions 

Western blotting  Reagents 

Lysis buffer (stock solution) 25 ml 

25 ml 

1.05 g 

2.23 g 

25 ml 

91.95 mg 

HEPES 50 mM 

NaCl 50 mM 

NaF 50 mM 

Na4P2O7 x 10 H2O 10 mM 

EDTA 

Na3VO4 

 Reagents were dissolved in Aqua dest. (4°C) 

pH was adjusted to 7.5 

solution was filled up to a final volume of 430 ml with Aqua dest. 

before use: 4.3 ml 

50 µl 

202 µl 

500 µl 

Stock solution 

PMSF 0.1 M 

Complete™ 25x 

Triton X-100 (10%) 

CHAPS buffer pH 7,5 197.0 mg 

3.6 mg 

4.7 mg 

7.7 mg 

53.7 mg 

2.5 ml 

307.44 mg 

Tris-HCl 

EDTA 

EGTA 

DTT 

Gluthation 

Glycerol 

CHAPS 

 pH was adjusted to 7.5 

solution was filled up to 25 ml with Aqua dest. and stored in 1.5 ml 

aliquots at -20°C 

Protease inhibitor cocktail 41.99 mg 

36.78 mg 

223.05 mg 

NaF 200mM 

Na3VO4 40 mM 

Na4P2O7 x 10 H2O 100 mM 

 Reagents were dissolved in 5ml Aqua dest. and stored in 50 µl 

aliquots at -20°C 
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SDS – sample buffer, 3x  

(stock solution) 

 

 

 

 

before use: 

37.5 ml 

6.0 g 

30.0 ml 

15.0 mg 

ad 100.0 ml 

 

85 % 

15% 

Tris-HCl 0,5M pH 6.8 

SDS 

Glycerol 

Bromphenol blue 

Aqua dest. 

 

Stock solution 

β-mercaptoehanol 

SDS 10% 5.0 g 

ad 50.0 ml 

SDS 

Aqua dest. 

APS 10% 1.0 g 

ad 10.0 ml 

APS 

Aqua dest. 

Complete™ 25x one tablet 

2.0 ml 

Complete™ 

Aqua dest. 

PMSF 0.1M 52.26 mg 

ad 3.0 ml 

PMSF 

Aqua dest. 

Resolving gel 10% 2.5 ml 

1.875 ml 

75 µl 

3.05 ml 

7.5 µl 

37.5 µl 

PAA 30% 

Tris-HCl 1.5M pH 8.8 

SDS 10% 

Aqua bidest. 

TEMED 

APS 10% 

Stacking gel 640 µl 

375 µl 

37.5 µl 

2.62 ml 

7.5 µl 

37.5 µl 

PAA 30% 

Tris-HCl 1.25M pH 6.8 

SDS 10% 

Aqua bidest. 

TEMED 

APS 10% 

Electrophoresis buffer, 10x 30 g 

144 g 

10 g 

ad 1000 ml 

Tris-base 

Glycine 

SDS 

Aqua bidest. 

before use: 100 ml 

ad 1000 ml 

10x Electrophoresis buffer 

Aqua bidest. 
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Blotting buffer, 5x 15.17 g 

72.9 g 

ad 1000 ml 

Tris-base 

Glycine 

Aqua bidest. 

before use: 200 ml 

200 ml 

ad 1000 ml 

5x Blotting buffer 

Methanol bidest. 

Aqua bidest. 

Coomassie staining solution 0.4g 

200 ml 

200 ml 

Coomassie brilliant blue R350 

MeOH 40% 

Acidic acid 20% 

 Coomassie brilliant blue was dissolved in MeOH 40% and after 

filtration acidic acid 20% was added 

Coomassie destaining solution 500 ml 

100 ml 

ad 1000 ml 

MeOH 

Acidic acid 100% 

Aqua dest. 

Luminol (stock solution) 0.44 g 

10 ml 

Luminol 

DMSO 

p-Coumaric acid  

(stock solution) 

0.15 g 

10 ml 

p-Coumaric acid 

DMSO 

ECL 4.5 ml 

500 µl 

25µl 

11 µl 

1.5 µl 

Aqua dest. 

Tris-base 1M pH 8.5 

Luminol 

p-Coumaric acid 

H2O2 (30%) 

TBS-T pH 8,0 3.0 g 

11.1 g 

1 ml 

ad 1000 ml 

Tris-base 

NaCl 

Tween 20 

Aqua dest. 

 pH was adjusted to 8.0 with HCl conc. 

Table 11: Buffers and solutions 
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1.6. Cell culture 

 

Cell culture: Reagents Provider 

Dulbecco‟s Modified Eagle Medium (DMEM),  

4.5 g/l glucose, w/o L-glutamine, w/o phenolred 

Lonza Group Ltd. (Basel, Switzerland) 

Penicillin/streptomycin mixture 

(10.000 U/ml potassium penicilline/  

10.000 µg/ml streptomycin sulphate) 

Lonza Group Ltd. (Basel, Switzerland) 

L-glutamine 200 mM Lonza Group Ltd. (Basel, Switzerland) 

Calf serum Lonza Group Ltd. (Basel, Switzerland) 

Trypsin (1:250) Invitrogen (Carlsbad, CA, USA) 

Table 12: Cell culture reagents 

 

Cell culture: Solutions  Reagents 

PBS pH 7,4 36.0 g 

7.4 g 

2.15 g 

ad 5000 ml 

NaCl 

Na2HPO4 

KH2PO4 

Aqua dest. 

Trypsin/EDTA in PBS 0.5 g 

0.2 g 

1000 ml 

Trypsin 

EDTA 

PBS 

Table 13: Cell culture solutions 

 

Cell culture: Media  Reagents 

Growth medium 500 ml 

10% 

100 U/ml / 100 µg/ml 

2 mM 

DMEM 

Calf or foetal calf serum 

Penicillin / Streptomycin 

L-glutamine 

Starvation medium 500 ml 

100 U/ml / 100 µg/ml 

2 mM 

DMEM 

Penicillin / Streptomycin 

L-glutamine 
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Freezing medium 1.1 ml 

8.0 ml 

2.0 ml 

DMSO 

Growth medium 

Calf serum 

Table 14: Cell culture media 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 

46 
 

1.7. Tyrosine kinase assay kit (chemiluminescent) 

Components  Reagents 

96-well plate 

(Streptavidin coated, 2 pieces) 

  

Substrate peptide  

(2 vials) 

12.5 µg 

250 µl 

Poly-(Glu4-Tyr)-peptide, biotin conjugate 

Sterile distilled water 

Reference peptide 5 µg 

50 µl 

Poly-(Glu4-phospho-Tyr)-peptide, biotin conjugate 

Sodium bicarbonate 0.1M 

Tyrosine Kinase Reaction Buffer, 

5x  

(1 vial á 5 ml) 

100 mM 

50 mM 

5 mM 

5 mM 

1 mM 

Tris-HCl pH 7.4 

MgCl2 

MnCl2 

Dithiothreitol 

ATP 

Sodium orthovanadate 500 µl Na3VO4 50mM pH 10.0 

TBS, 20x  

(1 vial á 50 ml) 

1 M 

3 M 

2% 

Tris 

NaCl 

Tween™-20 

ELISA Blocking Buffer, 10x 

(1 vial á 25ml) 

10% 

0.05% 

BSA in TBS pH 7.4 

Kathon™ 

anti-p-Tyr HRP conjugate 

(recombinant, 4G10™) 

25 µl 

5 mg/ml 

0.05% 

IgG2bK-HRP conjugate in PBS 

BSA 

Kathon™ 

LumiGLO™  

Chemiluminescent substrate 

10 ml LumiGLO™ Reagent A 

LumiGLO™ 

Chemiluminescent substrate 

10 ml LumiGLO™ Reagent B 

Table 15: Tyrosine kinase assay kit components 

 

The tyrosine kinase assay kit was provided by Upstate™, which is now part of 

Millipore™ (Billeria, MA, USA). Substrate peptide, reference peptide, tyrosine kinase 

reaction buffer and sodium orthovanadate were stored at -20°C, all the other 

components at 4°C. 

 

 



Materials and Methods 

47 
 

1.8. Equipment 

Name Provider 

Tecan GENios™Pro, Tecan Sunrise™ Tecan (Mannedorf, Switzerland) 

LAS-3000™ Luminescent Image Analyzer Fujifilm (Tokyo, Japan) 

Light Microscope Olympus CKX 31 Olympus Europe GmbH (Hamburg, Germany) 

Mini-PROTEAN™3 Cell BIO-RAD Laboratories (Hercules, CA, USA) 

Power Pac™ HC power supply BIO-RAD Laboratories (Hercules, CA, USA) 

Mini Trans-Blot™ Electrophoretic Transfer Cell BIO-RAD Laboratories (Hercules, CA, USA) 

Vi-Cell™ XR Cell Viability Analyzer Beckman Coulter (Fullerton, CA, USA) 

HERAsafe™ KS Workbench Thermo Fisher Scientific Inc. (Waltham, CA, USA) 

HERAcell™ 150 Incubator Thermo Fisher Scientific Inc. (Waltham, CA, USA) 

Heraeus™ Multifuge™ 1 S-R Centrifuge Thermo Fisher Scientific Inc. (Waltham, CA, USA) 

Heraeus™ Fresco™ Centrifuge Thermo Fisher Scientific Inc. (Waltham, CA, USA) 

Galaxy Mini Microcentrifuge VWR International Inc. (West Chester, PA, USA) 

Vortex Shaker VWR International Inc. (West Chester, PA, USA) 

RCT basic Magnetic Stirrer IKA™ Laboratory equipment (Staufen, Germany) 

Vibrax VXR basic Shaker IKA™ Laboratory equipment (Staufen, Germany) 

Heraeus™ B15 Incubator Thermo Fisher Scientific Inc. (Waltham, CA, USA) 

Table 16: Equipment 

 

1.9. Software 

Name Provider 

AIDA™ (Advanced Image Data Analyzer) 

Version 4.06 

Raytest GmbH (Straubenhardt, Germany) 

GraphPad PRISM™ Version 4.03 GraphPad Software Inc. (San Diego, CA, USA) 

Image Reader LAS-3000™ Version 2.0 Fujifilm (Tokyo, Japan) 

Vi-Cell™ XR 2.03 Beckmann Coulter (Fullerton, CA, USA) 

Table 17: Software 
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1.10. Consumables 

Name Provider 

Immun-Blot™ PVDF Membrane (0.2 µm) BIO-RAD Laboratories (Hercules, CA, USA) 

Precision Plus Protein™ Standard BIO-RAD Laboratories (Hercules, CA, USA) 

Gel Blotting Paper Whatman plc (Kent, UK) 

Serological Pipettes (1ml, 2ml, 5ml, 10ml, 25ml) Sarstedt GmbH (Nümbrecht, Germany) 

Tissue Culture Flask 75cm
2 

Sarstedt GmbH (Nümbrecht, Germany) 

Tissue Culture Dishes (60mm, 100mm) Greiner bio-one (Frickenhausen, Germany) 

96-well Microplates Greiner bio-one (Frickenhausen, Germany) 

PP – Test tubes (15ml, 50 ml) Greiner bio-one (Frickenhausen, Germany) 

Cell scraper Greiner bio-one (Frickenhausen, Germany) 

Protein A/G Agarose Plus Santa Cruz (Santa Cruz, CA, USA) 

Table 18: Consumables 
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2. Methods 

 

2.1. Cell culture techniques 

 

2.1.1. Cell lines 

Most of our cell-based experiments were performed with vascular smooth muscle 

cells between passage 7 and 14, isolated from thoracic aortas of male Sprague-

Dawley rats. As part of the troubleshooting procedure a single tyrosine kinase assay 

was additionally performed with mouse endothelial fibroblasts and MCF-7 breast 

cancer cells. All kind of cell culture work was performed in the same way for all three 

different cell lines and is described on the basis of VSMCs. 

 

2.1.2. Thawing cells 

Fresh cells at passage 7 were stored in aliquots of 1.5 million in liquid nitrogen. The 

first step, when preparing the cells for further cultivation, was to thaw one of the 

aliquots. Therefore one of the cryovials was removed from the nitrogen tank and 

thawed in a water bath at 37°C. Under the laminar hood the cell suspension was 

immediately transferred into a prepared falcon with 9 ml growth medium. After 10 

minutes of centrifugation at 1000 rpm the supernatant fraction, containing growth 

medium and freezing medium, was disposed and 10 ml of fresh growth medium 

were added to the remaining cell pellet. By a brief vortex pulse the cell pellet was 

resuspended and the cell suspension was transferred into a 75 cm2 tissue culture 

flask, which was placed in an incubator for further cultivation. 

 

2.1.3. Cultivation 

To assure optimal cell growth VSMCs were cultured at 37°C and 5% CO2 with daily 

medium change, whereas the cells showed a doubling time of 24 hours. If a daily 

medium change was not possible, additional 10 ml of growth medium were added 

for each cultivation day. The cells were kept under these conditions until they 

grew at near confluence, which made passaging once or twice a week necessary. 

The first step when passaging the cells was to discard the growth medium in which 

the cells were cultivated from the culture flask. Afterwards the cells were washed 
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with 10 ml of PBS to remove the last remaining traces of calf serum, which is part of 

the growth medium. Calf serum would inhibit the protease trypsin, which is used to 

detach the cells from the surface of the culture flask in the next step. Therefore 3 ml 

of trypsin/EDTA were added to the cells, which were stored in the incubator for a 

maximum of three minutes. A light microscope was used to verify that all cells were 

detached from the surface by the trypsin/EDTA treatment. Remaining cell 

aggregates were resolved by mechanic force. To inhibit trypsin from lysing the cells 

7 ml of growth medium were added and the suspension, containing cells, growth 

medium and trypsin was transferred into a prepared falcon. The culture flask was 

rinsed with additional 5 ml of growth medium to remove the last remaining cells, 

which were also moved into the falcon. After centrifugation for 4 minutes at 1400 

rpm the supernatant fraction was removed, 10 ml of fresh growth medium were 

added to the falcon and the cells were resuspended by a vortex pulse. 

To determine the total amount of viable cells received from the harvest, 500 µl of the 

suspension were transferred into the ViCell™ XR Cell Viability Analyzer. The cells 

were counted by the trypan-blue dye exclusion method, which is based on the fact 

that trypan blue is able to penetrate through the membrane of dead cells but not 

through those of viable cells. 

 

After the count, exact numbers of cells were seeded into new 75 cm2 culture flasks 

for further cultivation. For experiments, cells were seeded in 60 or 100 mm dishes 

and stimulated with 20 ng/ml PDGF-BB, when they reached 70 – 90 % confluence. 

To allow a maximum response to growth factor stimulation, cells were incubated 

with starvation medium 24 hours prior to stimulation. 
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2.2. Western blot 

 

2.2.1. Sample preparation 

Cells were seeded in 60 mm dishes and cultivated at 37°C and 5 % CO2 with growth 

medium until they reached 70 – 80 % confluence. 24 hours in advance of the 

stimulation the cells were incubated with starvation medium and thus because of the 

absence of serum, kept quiescent. After an additional hour of incubation with fresh 

starvation medium, I3MO and dasatinib were added in the appropriate 

concentrations and allowed to act on the cells for 30 minutes. If antioxidants were 

used, the preincubation with the reagents was performed for one hour instead of 30 

minutes. DMSO (1 %) which was used as solvent for dasatinib and I3MO was added 

to the control cells. In case of the antioxidants the respective solvents used (distilled 

water, DMSO and ethanol 100 %) were used as controls. As soon as the 

preincubation procedure was finished, the cells were stimulated with 20 ng/ml 

PDGF-BB for the desired time point. After successful PDGF-BB stimulation, 

medium, growth factor and reagents were removed from the dishes by using a 

vacuum pump and the cells were washed twice with ice-cold PBS. On ice, 200 µl 

lysis buffer were added to each dish and the cells were lysed for 30 minutes at 4°C. 

To receive the cell lysates, cells were scrapped of the dishes and transferred into 

pre-chilled tubes. By centrifugation for 10 minutes at 4°C with 13.000 g the lysates 

were cleared from cell components. 10 µl of each sample were kept aside to 

perform a Bradford protein quantification assay later on. Remaining lysates were 

separated from the cell components by transferring them into fresh pre-chilled tubes, 

where they were diluted with 3x SDS sample buffer (including 15 % ß-

mercaptoethanol) and afterwards boiled for 5 minutes at 95°C. The finished samples 

were stored at -20°C until the SDS – PAGE was performed. 

 

2.2.2. Bradford protein quantification 

To determine the exact amount of protein contained in each sample a Bradford 

assay was performed. The basic mechanism of the assay is based on a shift of the 

absorption maximum of Coomassie Brilliant Blue G-250 in acidic environment from 

465 to 595 nm, when interacting with basic or aromatic side chains of proteins. 
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Therefore the 10 µl separated from each lysate were diluted in 90 µl distilled water 

and triplicates of 10 µl from each diluted sample were transferred into a 96-well 

plate. A standard curve was prepared by diluting increasing concentrations of BSA 

(50 – 500 ng/ml) in distilled water, which were afterwards transferred in triplicate into 

the  

96-well plate. Finally 190 µl Bradford solution was added to each occupied well and 

the plate was incubated for 5 minutes at room temperature. The absorbance 

measurement was performed at 595 nm with a Tecan Sunrise™ microplate reader. 

 

2.2.3. SDS-PAGE 

To separate the different proteins contained in each sample and to enable a specific 

detection of single proteins of interest a sodium dodecylsulfate polyacrylamide gel 

electrophoresis (SDS – PAGE) was performed.  

The previous treatment with an excess of SDS, an anionic detergent which binds to 

hydrophobic parts of the protein, caused the loss of secondary protein structures by 

breaking hydrogen bonds. Tertiary structures, such as disulfide bonds, were cracked 

by reducing agents like ß-mercaptoethanol. As an additional effect induced by SDS 

the protein charges were covered with the constant negative charge of SDS, leaving 

a constant molecular weight/charge relation. Therefore the only parameter left for 

separation via electrophoresis is the different molecular weight of the proteins. 

 

Before the electrophoresis was performed, the gels had to be prepared. Usually two 

gels were prepared at the same time caused by the ability of running two gels at the 

same time in one chamber. First of all a spacer plate and a short glas plate were 

mounted together by a casting frame to form the gel cassette assembly. Fixed in a 

casting stand, the gel cassette assembly was filled with distilled water to check if 

both plates are flush at the bottom. In the meantime the resolving gel was prepared 

and transferred into the gel cassette assembly if both plates proved to be flush. The 

resolving gel was covered with a layer of isopropanol to remove bubbles from the 

surface. After 45 (- 60) minutes of polymerization the isopropanol was removed and 

remaining traces were removed with a filter paper. The stacking gel was prepared 

and the solution was placed above the hardened resolving gel. A 10-well comb was 

inserted and the gel was allowed to polymerize for one hour. The hardened gel 
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cassette sandwich was transferred into the electrode assembly, both were fixed 

inside the clamping frame and the inner chamber was moved into the tank of the 

Mini-PROTEAN™ 3 cell system, after filling it with ~125 ml electrophoresis buffer. 

After removing the comb, the wells were loaded with samples and Precision Plus™ 

protein standard was placed in the external left well. 200 ml of electrophoresis buffer 

were filled into the tank and electrophoresis was first performed for 21 minutes at 

110 V to stack the proteins and 36 minutes at 200 V to resolve them. 

 

2.2.4. Western blotting 

When separated by SDS – PAGE, the proteins had to be transferred to a PVDF 

membrane to allow immunodetection. The transfer of the proteins was performed via 

the tank blotting technique using a Mini Trans-Blot™ electrophoretic transfer cell. 

To prepare the membrane, it was first inserted in distilled methanol and afterwards 

in blotting buffer. In the meantime the gel cassette sandwich was prepared, by 

placing the cassette in an adequate vessel, filled with blotting buffer. A fiber pad was 

placed on the bottom side of the cassette and covered with a sheet of filter paper, 

on which the gel and afterwards the membrane were placed. To complete the 

sandwich, another sheet of filter paper and a second fiber pad were placed above 

the membrane. The cassette was locked and placed in the electrode module, which 

was fixed in the tank. A cooling unit was added and the tank was completely filled 

with blotting buffer. After adding a magnetic stir bar to maintain the temperature 

constant throughout the buffer, the transfer cell was connected to the power supply 

and the blot ran for 90 minutes at 100 V. 

 

2.2.5. Staining of gels 

To control equal protein loading and blotting, gels were stained with Coomassie blue 

staining solution after western blotting. Coomassie blue penetrates into the 

membrane and remains permanently bound to the proteins after 20 minutes of 

staining at room temperature. When washing the gels several times with Coomassie 

destaining solution the proteins appear as blue bonds on the gel. 
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2.2.6. Detection 

Immunodetection is based on a two-stage antigen-antibody reaction. A primary 

antibody, which specifically binds the protein of interest, is incubated with the 

membrane. Before the secondary antibody is added, washing steps are performed 

to remove unspecific bound antibody. The horse reddish peroxidase-conjugated 

(HRP) secondary antibody is aimed against specific regions of the primary antibody, 

favoured the Fc-region, and binds them during incubation. Addition of a 

chemiluminescent substrate solution (ECL) allows the enzyme horse reddish 

peroxidise (HRP) to create a light signal, which can be used for detection of the 

protein bands of interest by using a luminescent image analyzer. 

After the transfer, the membranes were blocked by incubating them with 5 % milk 

powder at room temperature for one hour on a shaking platform to avoid unspecific 

binding of the antibodies. To remove last traces of the milk powder three washing 

steps, each taking 10 minutes, were performed with TBS-T and the membranes 

were incubated with specific primary antibodies at 4°C over night. The secondary, 

horse reddish peroxidase-labelled antibody was added after three more washing 

steps. Depending on how many times the secondary antibody has been used 

before, the membrane was incubated between 45 minutes and 3 hours at room 

temperature. Three more washing steps with TBS-T were performed, before ECL-

solution was added and the protein bands were detected with a LAS-3000™ 

luminescent image analyzer. AIDA™ software was used for quantification.  
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2.3. In vitro tyrosine kinase assay 

The non-radioactive tyrosine kinase assay was performed to detect possible 

inhibitory effects of indirubin-3‟-monoxime on the phosphotransferase activity of Src-

kinase and to determine the scale of the inhibition. Due to the fact that both 

immunoprecipitated Src from cell lysates and purified recombinant Src were used for 

the assay, two different protocols were applicable. 

 

2.3.1. Principle 

The assay itself is based on a two-step peptide phosphorylation detection. A 

biotinylated poly-(Glu4-Tyr)-peptide („substrate peptide‟) is bound to a streptavidin-

coated 96-well microplate, where it is captured due to the very strong biotin-

streptavidin interactions. During incubation together with a tyrosine kinase in the 

presence of ATP and a Mn2+/Mg2+ co-factor cocktail, the kinase transfers phosphate 

residues from ATP to the tyrosine residues of the substrate peptide. Increasing 

concentrations of a poly-(Glu4-phospho-Tyr)-peptide („reference peptide‟) serve as 

positive control for the assay. The phosphorylated tyrosine residues are detected via 

ELISA, after addition of a monoclonal anti-phosphotyrosine-HRP antibody 

conjugate. After incubation with a chemiluminescence substrate the detection can 

be accomplished with a Tecan GENios™ Pro microplate reader. 

 

 

2.3.2. Procedure for enzymes in immune complexes 

 

2.3.2.1. Sample preparation 

For the tyrosine kinase assay cells were seeded out in 100 mm dishes and 

cultivated until grown to 80 – 90 % confluence. After treating them 24 hours with 

starvation medium the cells were preincubated for one hour with fresh starvation 

medium and, prior to stimulation, 30 minutes with dasatinb or indirubin-3‟-monoxime. 

DMSO (1%) was used as control. The cells were stimulated with 20 ng/ml PDGF-BB 

or calf serum for the desired time point to induce signal transduction. Supernatant 

medium was removed after stimulation, the cells were washed twice with ice-cold 

PBS and 200 µl lysis buffer were added to each dish. On ice, the dishes were kept 
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30 minutes at 4 °C to lyse. To receive the lysates, the cells were scraped of the 

dishes and transferred into pre-chilled tubes. These tubes were centrifuged for 10 

minutes at 4°C with 13,000 g to clear the lysates from cellular components. The 

cleared lysates were transferred into fresh tubes and 10 µl from each sample were 

kept aside for the Bradford protein quantification. 

 

2.3.2.2. Sample preparation with CHAPS buffer 

As part of our troubleshooting procedure we were forced to modify the protocol for 

sample preparation to exclude the possibility that the assay might not work in 

VSMC. We therefore decided to perform the assay with other cell lines, such as 

MEF (mouse embryonic fibroblasts) and MCF-7 breast cancer cells. We also 

decided to treat each of the cell lines with a different lysis buffer instead of the 

common used one. CHAPS buffer was selected because of its ability to even gain 

access to membrane proteins, an important fact due to the capability of c-Src to 

anchor in cell membranes with its myristoylated N-terminal domain. 

The different lysis buffer required a slightly different way of sample preparation. 

Before treating the cells with CHAPS buffer, 40 µl Complete and 50 µl protease 

inhibitor cocktail were added per mililiter buffer needed. After adding the buffer to 

the previously with 20 ng/ml PDGF-BB stimulated cells, the cells were scraped of 

immediately, transferred into pre-chilled tubes and incubated for 15 minutes on ice. 

The tubes were placed in an ultrasonic bath for one minute and afterwards 

centrifugated for 10 minutes at 4°C with 13,000 g. The last steps of the sample 

preparation were performed similarly to „normal‟ lysis buffer. 

 

2.3.2.3. Protein quantification 

A Bradford assay was performed to determine which volume of each sample was 

necessary to achieve a protein concentration of 550 µg protein. After transferring the 

calculated volume into fresh tubes, the samples were filled up with lysis buffer to a 

final volume of 550 µl. 
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2.3.2.4. Immunoprecipitation 

To clear our samples from proteins causing unspecific interactions, which would 

lead to falsified results in our tyrosine kinase assay, an immunopreciptiation was 

performed. 

After pre-clearing the samples from unspecific binding proteins by adding protein 

A/G agarose beads (preclearing), an antibody, with a Fc-region from mammalian Ig, 

against the protein of interest was added. Based on an antigen-antibody reaction the 

antibody binds the protein and forms a soluble antigen-antibody-complex. Protein A 

and G bind the Fc-region of most mammalian Ig very specific. By adding protein A/G 

agarose beads again, the former soluble complex gets insoluble and can be 

separated by centrifugation from the other proteins in the sample. After a few 

washing steps we received a purified lysate with an increased concentration of our 

protein of interest.  

Usually the preclearing and addition of the antibody were performed one day in 

advance of the actual tyrosine kinase assay. Only collecting of the immune 

complexes was done on the same day as the assay. 

 

To preclear our samples, 25 µl of protein A/G agarose beads were added to our 

samples and rotated end-over-end for one hour at 4°C. The beads, now containing 

unspecific binding proteins, were collected by centrifuging the samples for 5 minutes 

with 13,000 g. The supernatant fraction was separated from the pellet by 

transferring it into fresh tubes, per 500 μl of lysate12.5 µl of an anti-v-Src mouse 

antibody were added and the samples were mixed over night at 4°C. To collect the 

immune complexes, 12.5 µl protein A/G agarose beads were added. After one hour 

of rotating end-over-end, the antigen-antibody-bead complexes were collected by 

centrifugation (5 minutes, 13,000g).  

 

2.3.2.5. Well rehydration 

The well rehydration was usually done on the same day as the immunoprecipitation 

and therefore one day in advance of the actual assay procedure. A sufficient amount 

of 1x TBS-T and 1x ELISA Blocking Buffer for the number of wells needed had to be 

prepared before starting the rehydration. Therefore 20x TBS-T stock solution was 
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diluted 1:20 with sterile distilled water and 10x ELISA stock solution 1:10 with 1x 

TBS-T. 

100 µl of 1x TBS-T were added to each well and incubated for 15 minutes at room 

temperature. After removing 1x TBS-T from the wells 300 µl of 1x ELISA Blocking 

Buffer were added to each well and incubated over night. 

 

2.3.2.6. In vitro kinase assay 

Prior to the assay sufficient 1x TBS-T and lysis buffer for the whole experiment had 

to be prepared by diluting 20x TBS-T stock solution with sterile distilled water. 

Afterwards the final steps of the immunoprecipitation were performed. 12.5 µl of 

protein A/G agarose beads were added to the samples and rotated one hour end-

over-end to collect the Src-antibody-bead complexes. While the samples were 

rotating, Tyrosine Kinase Reaction Buffer, Sodium orthovanadate and the substrate 

peptide (12.5 µg in 250 µl) were thawed on ice. Sodium orthovanadate and Tyrosine 

Kinase Reaction Buffer were part of the „Master Mix‟, a reaction mix to enable an 

optimal environment for phosphorylation of the substrate peptide by Src-kinase. As 

soon as all reagents were ready. 50 µl Master Mix for each experimental well were 

prepared in separate tubes and stored on ice until the precipitated Src was ready for 

further processing. 

 

Reagent Amount 

Tyrosine Kinase Reaction Buffer (5x Stock Solution) 10 µl 

Sodium Orthovanadate 50 mM 1 µl 

Poly-(Glu4-Tyr)-Peptide (12.5 µg/ 250 ml) 5 µl 

Sterile Distilled Water 34 µl 

Table 19: Preparation of the Tyrosine Kinase Assay Master Mix 

After mixing distilled water and Tyrosine Kinase Reaction Buffer the substrate peptide was added. 

The phosphatase inhibitor Sodium Orthovanadate was added last because of its small amount. 

 

After rotating for one hour the Src-antibody-bead complexes were collected by 

centrifugation and the supernatant fraction was removed. The remaining beads were 

washed five times with 200 µl lysis buffer and finally with 100 µl 1x tyrosine kinase 

reaction buffer (TKRB). As much buffer as possible was removed from the beads 
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and Master Mix was added to precipitated Src. The tubes with Src-Substrate-Mix 

were incubated for 10 minutes under agitation at 37°C. In the meantime Reference 

Solution and Substrate Solution were prepared by diluting Reference Peptide stock 

solution 1:100 with 1x TBS-T and Substrate Peptide stock solution 1:50 with 1x 

TBS-T to a final concentration of 1 µg/ml. Reference Series was prepared by mixing 

increasing amounts of Reference Solution with Substrate Solution to a final volume 

of 100 µl. 

 

Reference Series Reference Peptide 

(ng) 

Volume Reference 

Solution (µl) 

Volume Substrate 

Solution (µl) 

Ref. 0 0 0 100 

Ref. 1 1 1 99 

Ref. 2.5 2.5 2.5 97.5 

Ref. 5 5 5 95  

Ref. 10 10 10 90 

Table 20: Preparation of Reference Series 

Reference Solution and Substrate Solution were prepared by diluting the corresponding stock solutions to a final 

concentration of 1µg/ml with 1x TBS-T. After producing Substrate Solution in tubes, Reference Solution was added 

and the tubes were stored on ice until used. 

 

The reaction between kinase and substrate was terminated by cooking the samples 

for 5 minutes at 95°C. Blocking Buffer was removed from the 96-well microplate and 

the wells were rinsed with 300 µl 1x TBS-T. After centrifugation, Src-Substrate-Mix 

and Reference Series were transferred into individual wells. The well plate was 

covered with a sealing film and incubated for 1 hour at 37°C. To remove last traces 

from the Src-Substrate-Mix the wells were rinsed twice with 300 µl 1x TBS-T after 

incubation. Four more washing steps with 300 µl 1x TBS-T were performed with 10 

minutes incubation at room temperature and agitation between the buffer changes. 

 

2.3.2.7. Phosphotyrosine detection 

During the last incubation period the anti-phosphotyrosine-HRP antibody conjugate 

was prepared by diluting the antibody stock solution 1:250,000 with prior prepared 

1x ELISA Blocking Buffer. The anti-p-Tyr-HRP conjugate was removed after 30 
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minutes of incubation at room temperature. After rinsing the wells once with 300 µl 

1x TBS-T five more washes with 1x TBS-T were performed, incubating the 

microplate 2 minutes at room temperature with agitation between the buffer 

changes. During the last wash sufficient amount of the LumiGLO™ 

chemiluminescent HRP substrate was prepared by mixing LumiGLO™ Reagent A 

and B 1:1. The plate was once more washed with 300 µl distilled water to remove 

last traces of TBS-T. TBS-T has to be removed completely because of the contained 

Tween-20, which is able to interact with HRP-activity. After removing the last traces 

of liquids which could alter the luminescence signal, 75 µl of the LumiGLO™ 

Chemiluminescent HRP Substrate were added to each well. The luminescence was 

measured with a Tecan GENios™ Pro microplate reader, 10 and 15 minutes after 

the addition of LumiGLO™. The results of the measurements were declared in 

relative light units (RLU). 

 

2.3.3. Procedure for enzymes in solution 

Because of the abolition of sample preparation and immunoprecipitation when using 

purified recombinant enzymes in solution to perform the assay the whole procedure, 

including well rehydration, was performed on one day. 

 

2.3.3.1. Well rehydration 

As well as for immobilized enzymes, sufficient 1x TBS-T had to be prepared in 

advance of the assay. While incubating the 96-well microplate for 15 minutes at 

room temperature with 100 µl 1x TBS-T in each well required, Kinase Substrate 

Solution and Kinase Reference Solution were prepared by diluting prior thawed 

Kinase Substrate Peptide stock solution 1:50 and Kinase Reference Peptide stock 

solution 1:100 with 1x TBS-T to a final concentration of 1 µg/ml. A Reference Series 

was prepared, by mixing Substrate Solution and Reference Solution as stated under 

point 2.3.2.6. The solutions and the Reference Series were stored on ice until used. 

 

2.3.3.2. Binding peptides to the plate 

After removing the 1x TBS-T from the wells 100 µl Kinase Substrate Solution and 

the Reference Series were added to individual wells. The plate was covered with a 

sealing film and incubated for one hour at 37°C. Finally the wells were rinsed once 
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with 300 µl 1x TBS-T after incubation to remove unbound peptide and the plate was 

incubated another hour at 37°C with 300 µl 1x ELISA Blocking Buffer in each well. 

 

2.3.3.3. In vitro kinase assay 

To prepare 50 µl Master Mix for each experimental well 5x Tyrosine Kinase 

Reaction Buffer, Sodium orthovanadate, I3MO, DMSO and recombinant c-Src were 

thawed up on ice while incubating the microplate. I3MO 0.3 µM was used as a Src-

kinase inhibitor, while DMSO (1%) served as control. The preparation of the Master 

Mix was timed so that I3MO was able to interact with c-Src for 15 minutes.  

 

Reagent Amount 

Tyrosine Kinase Reaction Buffer (5x stock solution) 10 µl 

Sodium orthovanadate 50 mM 1 µl 

Purified recombinant c-Src 0.1 – 5 µl 

I3MO 0.3 mM or DMSO 1% 0.5 µl 

Aqua dest. ad 50 µl 

Table 21: Preparation of Master Mix for enzymes in solution 

Distilled water and 5x TKRB were produced, followed by Sodium orthovanadate and recombinant Src. 

I3MO addition was timed, so that I3MO could interact with c-Src for 15 minutes until further 

processing. 1% DMSO was used as control. 

 

Blocking buffer was removed and the wells were rinsed once with 300 µl 1x TBS-T. 

After adding 100 µl 1x TBS-T to each reference well and 50 µl Master Mix to each 

experimental well, the plate was incubated for 10 minutes at 37°C. Before 

proceeding to phosphotyrosine detection, all wells were rinsed once with 300 µl 1x 

TBS-T. 4 additional washes were performed, incubating the plate 2 minutes at room 

temperature with agitation between the buffer changes. 

 

2.3.3.4. Phosphotyrosine detection 

The recombinant anti-p-Tyr-HRP antibody conjugate was prepared for detection by 

diluting the antibody stock solution 1:250.000 with 1x ELISA Blocking Buffer, 

prepared in advance. After incubating with the antibody conjugate 30 minutes at 

room temperature the wells were rinsed once and washed four times with 300 µl 1x 
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TBS-T. During the washing steps the plate was incubated 2 minutes at room 

temperature with agitation between the buffer changes. LumiGLO™ 

Chemiluminescent HRP Substrate was prepared during the last washing step by 

mixing its reagents A and B 1:1. 75 µl of the chemiluminescent substrate were 

added to each well after rinsing them one last time with 300 µl distilled water. The 

luminescence was detected 10 and 15 minutes after the addition of the LumiGLO™ 

Chemiluminescent Substrate with a Tecan GENios™ Pro microplate reader and 

declared in relative light units (RLU). 

 

2.4. Statistics 

Statistical analysis of experimental data was performed with GraphPad PRISM™ 

software by using one-way ANOVA with subsequent Dunnett multiple comparison 

test. In case of time courses, I3MO treated and untreated samples at different time 

points were compared via one-tailed paired t-test. Results are shown as means with 

standard error of the mean (SEM), whereas significance was considered at p values 

<0.05. Each experiment was performed at least three times. 
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D RESULTS 
 

1. Effects of I3MO on Akt and Erk1/2 kinases 

 

PDGF is one of the most important mitogens for VSMCs and other cell types of 

mesenchymal origin leading to cell proliferation and migration. Beside others, the 

MAPK- and PI3K-pathway are crucially involved in PDGF-induced signalling.17,19 

To verify the effects of I3MO on these two pathways we selected representative 

signalling molecules and determined their activity in the presence and absence of 

I3MO. Akt kinase was selected to represent the PI3K-pathway, while Erk1/2 kinases 

were chosen from the MAPK-pathway. 

Based on the fact that kinase activity often correlates with their phosphorylation 

status, we measured changes at critical phosphorylation sites of the kinases in 

VSMCs experiencing I3MO treatment in advance of PDGF-BB stimulation compared 

to VSMCs not receiving I3MO treatment. 

These initial experiments were performed to reproduce the results from previous 

studies, required for the comparison of future experimental results concerning 

cellular effects of I3MO on VSMC after PDGF-BB stimulation.36 

 

For our time courses 24 h serum-starved VSMCs received 30 minutes of I3MO 

pretreatment and were afterwards stimulated up to 10 minutes with PDGF-BB. 

VSMCs only treated with 1 % DMSO, serving as vehicle, were used as comparison 

to define the effects of I3MO at a concentration of 3 µM on PDGF-induced signalling 

cascades.  

 

After replicating each experiment three times, the received results illustrated in Fig. 

8 showed only marginal differences in Akt phosphorylation between I3MO-treated 

and untreated cells at all measured time periods. The same was observed for Erk1/2 

kinases, although I3MO caused a decreased phosphorylation of both Erk kinases at 

2 minutes of PDGF stimulation. The effect was classified irrelevant because of the 

return to physiological phosphorylation levels at 5 minutes after PDGF stimulation, 

where it was kept maintained until the final time point of the experiments.  
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Figure 8: I3MO does not affect phosphorylation/activation of Akt and Erk1/2 kinases 

24 hour serum-starved VSMC were stimulated with 20 ng/ml PDGF-BB for the declared time periods after treatment 

for 30 minutes with I3MO 3 µM or DMSO 1 %, serving as vehicle. Lysates were prepared as stated in the Materials 

and Methods section. For immunoblotting specific antibodies against phospho-Akt (S
473

) and phospho-Erk1/2 

(T
202

/Y
204

) were used; tubulin served as loading control. Experiments were performed three times. Shown are 

representative western blots, chosen out of the performed experiments (A), and averaged, time dependent changes 

in phosphorylation status in the presence and absence of I3MO 3 µM of Akt (B) and Erk1/2 (C). ***p<0.001, n.s. (not 

significant) p>0.05 (t-test). 
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2. Effect of I3MO on c-Src activation via Y418 and Y529 

 

c-Src kinase is known today as an important mediator of PDGF-induced signalling. 

The kinase binds to phosphorylated PDGFR which leads to increased kinase activity 

and phosphorylation of Src target proteins. 

The main mechanism regulating the kinase activity is based on phosphorylation and 

dephosphorylation of two major involved tyrosine residues, Y418 as upregulating 

residue and Y529 as downregulating residue. 

Increased phosphorylation at Y418 causes steric interactions, leading to dislocation of 

Y418 from the kinase substrate binding pocket and better accessibility for potential 

phosphorylation substrates. In contrast, phosphorylation of Y529 causes augmented 

interactions of the phosphorylated tyrosine residue with the SH2 domain of the 

kinase, transferring it into the inactive conformation.5 

 

Time courses were performed to expose a potential effect of I3MO on c-Src kinase 

activation in PDGF-stimulated VSMCs by stimulating serum-starved cells up to 10 

minutes with 20 ng/ml PDGF-BB following a 30 minutes treatment with I3MO (3 

µM).To determine a possible effect, we monitored the phosphorylation status of the 

above mentioned tyrosine residues, mainly responsible for c-Src activation, 

respectively inactivation. 

 

As shown in Fig. 9, Y418 seems to remain unaffected by I3MO treatment, whereas 

the tyrosine residue Y529 showed a slight dephosphorylation after 2 minutes of 

PDGF stimulation. Due to its return to physiologic phosphorylation levels after 5 

minutes, we accounted this dephosphorylation as deficient to achieve any notable 

effect on c-Src activation. 
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Figure 9: I3MO does not affect phosphorylation of Y
418

 or Y
529 

After 30 minutes preincubation with I3MO 3 µM or DMSO 1 % (vehicle) serum-starved VSMC were stimulated with 

20 ng/ml PDGF-BB for up to 10 minutes. The received lysates were prepared as described in the Material and 

Method section. Immunoblotting was performed with specific antibodies against phospho-Src (Y
418

 and Y
529

), tubulin 

was used as loading control. After 3 replications of the experiments, data were analysed via 2D – densitometry. 

Shown are representative western blots (A) and a comparison of phosphorylation status of Y
418

 (B) and Y
529

 (C) at 

the indicated time points in the presence or absence of I3MO 3 µM. * p<0.05, n.s. (not significant) p>0.05 (t-test). 
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3. Comparison of I3MO with dasatinib, a synthetic  

Src-/Bcr-Abl kinase inhibitor 

 

For the purpose of knowing more about the molecular mechanism of I3MO as a 

potential Src-kinase inhibitor, we compared its effect on PDGF-stimulated VSMCs 

with dasatinib, a synthetic Src-/Bcr-Abl-kinase inhibitor, which is used as therapeutic 

agent for the treatment of imatinib-resistant chronic myeloic leukemia as well as an 

experimental Src-kinase inhibitor.31 

 

Serum-starved VSMCs were stimulated with PDGF-BB for 2 and 10 minutes, 

respectively, after receiving 30 minutes of treatment with I3MO, dasatinib or DMSO 

(1 %), serving as vehicle; unstimulated cells were used as controls. After performing 

each experiment three times, results were obtained by densitometric analysis of 

western blots performed with the prepared cell lysates. 

 

As potential targets for both inhibitors we checked the overall autophosphorylation of 

the PDGF-R, c-Src kinase activity (via phosphorylation of Y418 and Y529), activation of 

the Src downstream substrate STAT3 (via phosphorylation of Y705) and total Src 

protein level. 

 

Autophosphorylation of the PDGF-R is the initial step in creating necessary binding 

sites for SH2 domain-containing adaptor proteins or downstream signalling 

molecules. A particular binding site is created by phosphorylation of Y579/581, 

necessary for the association of SFKs.5,18 Treatment with dasatinib causes abolition 

of PDGF-induced receptor autophosphorylation, whereas I3MO shows a slighter 

reduction of the overall receptor phosphorylation as dasatinib. 

As depicted in Fig. 10 reduction of PDGF-R autophosphorylation was clearly 

detectable for I3MO as well as for dasatinib in all three performed experiments. 

Nevertheless, statistical evaluation of the received results surprisingly showed that 

the effect was not significant for both I3MO and dasatinib, which, however, may be 

caused by large interexperimental variance or randomisation to tubulin. 
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Figure 10: Dasatinib and I3MO diminish overall PDGF-R phosphorylation 

VSMC kept abstinent from serum for 24 hours were stimulated with 20 ng/ml PDGF-BB, after preincubating them 

30 minutes with I3MO 3 µM, dasatinib 100 nM and DMSO 1 %. Lysates were prepared as listed in the Material and 

Method section. Immunoblotting was performed with an antibody against phospho-tyrosine, tubulin was used as 

loading control. 

A representative western blot, selected out of the three performed experiments is shown. 

 

As mentioned before, one of the downstream signalling molecules activated after 

PDGF-R autophosphorylation is c-Src, a non receptor tyrosine kinase. Binding to the 

activated PDGF-R causes disruption of interactions keeping the kinase in its inactive 

state and leads to activation of the c-Src/STAT3/c-myc signalling cascade.19,30 

Maintenance of Y529 phosphorylation or suppression of Y418 phosphorylation 

represent two possible mechanisms to inhibit PDGF-induced c-Src activation. We 

compared the phosphorylation status of Y529 and Y418 in PDGF-stimulated VSMCs 

pre-treated with I3MO or dasatinib. While phosphorylation of both tyrosine residues 

remained unaffected by I3MO treatment, dasatinib-treated VSMCs showed 

significant dephosphorylation of Y529. Activity upregulating Y418 was, however, not 

affected by dasatinib. 
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Figure 11: I3MO has no impact on phosphorylation of c-Src Y
529

 whereas dasatinib causes 

dephosphorylation 

VSMC preincubated with I3MO 3 µM, dasatinib 100 nM and DMSO 1 %, were stimulated with 20 ng/ml PDGF-BB 

for up to 10 minutes. After preparing the lysates, a specific antibody against phospho-Src (Y
529

) was used for 

immunoblotting; tubulin served as loading control. The experiment was performed three times. A representative 

western blot is shown in (A). Analyzed data of treatment with I3MO is shown in (C) and with dasatinib in (B). * 

p<0.05, n.s. (not significant) p>0.05 (t-test). 
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A 

            DMSO                     Dasatinib                      I3MO          

PDGF                  -           2’       10’        -         2’         10’      -         2’         10’ 

pSrc  Y
418 

tubulin   

 

B C 

  

Figure 12: Dasatinib and I3MO do not affect phosphorylation of c-Src Y
418 

Serum-starved VSMCs were preincubated for 30 minutes with I3MO 3µM, dasatinib 100 nM and DMSO 1%. After 

stimulation with PDGF-BB for 2 and 10 minutes, respectively, lysates were prepared as described in the Material 

and Method section. The experiment was repeated three times and changes in the phosphorylation status were 

measured densitometrically after immunoblotting with a specific antibody against phospho-Src (Y
418

); tubulin 

served as loading control. A representative western blot is shown in (A), analyzed data in (B) and (C). N.s. (not 

significant) p>0.05 (t-test). 

 

Although not having evidence for inhibition or reduction of c-Src activity via changes 

in the phosphorylation status of Y529 and Y418 of c-Src, we were able to observe a 

complete abolition of STAT3 phosphorylation, a downstream substrate of c-Src 

kinase, under the influence of I3MO and dasatinib in three independently performed 

experiments as illustrated in Fig. 13. However, statistical evaluation of the 

experiments surprisingly showed that the effect was not significant for dasatinib and 

I3MO at 2 and 10 minutes of PDGF-BB stimulation. As already mentioned when 

discussing the results for the PDGF-R, the reason may again be caused by 

interexperimental variance and subsumption of these results for statistical analysis. 

A representative western blot is shown in Fig.13. 
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           DMSO                     Dasatinib                       I3MO              

PDGF                   -          2’        10’       -          2’        10’         -         2’        10’ 

pSTAT3  
Y

705 

tubulin   

Figure 13: Dasatinib and I3MO inhibt STAT3 phosphorylation 

VSMC, preincubated for 30 minutes with I3MO 3 µM, dasatinib 100 nM and DMSO 1 %, were stimulated for 2 and 

10 minutes with 20 ng/ml PDGF-BB. After repeating the experiment thrice, lysates were prepared as declared in the 

Material and Method section. Immunoblotting was performed with a specific antibody against phospho-STAT3 

(Y
705

). A representative western blot is shown. 

 

Fig.14 finally shows an increase of total Src protein levels after treatment with 

dasatinib which was monitored in all our western blots and may be explained by 

recruitment of Src out of cell compartiments or debonding from cell membranes. 

Whereas protein levels of total Src remained unaffected under the influence of 

I3MO. Again statistical analysis of experimental data seemed to shift western blot 

results from an observable increase in total Src protein levels to a non significant 

effect. Alteration of the experimental results, when using them for statistical analysis 

seems to be founded in variance of individual experimental data. To fortify our 

western blot results and avoid possible misapprehension when interpreting them we 

only illustrated the representative western blot in Fig.14 and left graphs from 

evaluation aside. 

 

                 DMSO                    Dasatinib                    I3MO          

PDGF                      -           2’       10’        -         2’       10’        -         2’       10’ 

totSrc  
 

tubulin   

Figure 14: Dasatinib causes increase of totSrc protein level 

VSMC kept serum-starved for 24 hours were stimulated with 20 ng/ml PDGF-BB after preincubating them for 30 

minutes with I3MO 3 µM, dasatinib 100 nM and DMSO 1 %. Lysates were prepared according to the Materials and 

Methods section, afterwards a specific totSrc antibody was used for immunoblotting, with tubulin as loading control 

whereas a representative western blot is shown only. 
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4. Effect of I3MO on c-Src kinase activity 

 

After observing an inhibition of STAT3 phosphorylation under the influence of I3MO, 

we carried out a second method to affirm the prior results received via western 

blotting in order to exclude the eventuality of c-Src not being a target of I3MO, by 

performing an in vitro tyrosine kinase assay and measuring kinase activity in the 

presence and absence of I3MO. 

 

The assay, based on a phosphorylation reaction of tyrosine residues of a substrate 

peptide followed by detection via chemiluminescence after addition of a HRP-

labelled anti-phospho-Tyr antibody, was performed with immunoprecipitated Src 

from VSMCs, MEF and MCF-7 lysates (experiments no.1 – 4, see table 21 - 24) and 

recombinant enzyme in solution (experiments no.5 – 11, see table 25 and figures 15 

- 18). 

 

In our first experiment we tried to confirm the activation of c-Src-kinase by PDGF 

stimulation. Because the instruction manual offered different opportunities with 

respect to incubation time of tyrosine kinase and its substrate, we prepared two sets 

of protein samples, each containing a sample of unstimulated VSMCs only treated 

with 1 % DMSO and another sample stimulated with 20 ng/ml PDGF-BB for ten 

minutes, with an overall protein concentration of 500 µg per sample. Incubation of 

the immunopreciptitated c-Src kinase together with its substrate peptide is required 

to allow direct interactions between the two proteins in terms of tyrosine residue 

phosphorylation of the substrate peptide. In these first experiments c-Src and its 

substrate were incubated for 10 and 15 minutes at 37°C, respectively. 

We assumed to measure an increase of phosphorylated substrate peptide in  

PDGF-stimulated samples in contrast to the samples only treated with vehicle 

(experiment no.1, table 21). Although PDGF stimulation caused an increase in 

measured luminescence, all values were located below the values of the Reference 

Series implying that no substrate peptide has been phosphorylated in the samples. 
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These results suggest the following assumptions: 

(1) we were not able to immunoprecipitate sufficient amounts of c-Src from the 

lysates to achieve an adequate phosphorylation of substrate peptide 

(2) immunoprecipitated c-Src from cell lysates was of too low kinase activity 

(3) PDGF stimulation was not sufficient to activate c-Src kinase 

(4) the assay was to insensitive for an overall protein concentration of 500 µg 

per sample 

(5) VSMCs may not be an ideal source for recruiting sufficient amounts of c-Src 

kinase 

 

Due to the fact that the detected luminescence was higher after an incubation time 

of 10 minutes we decided to use this reaction time in all further experiments. 

 

Sample Luminescence (in RLU) 

DMSO (10 minutes incubation) 9137 

PDGF 10‟ (10 minutes incubation) 12524 

DMSO (15 minutes incubation) 2130 

PDGF 10‟ (15 minutes incubation) 4228 

Ref. 0 (0 ng phosphorylated protein/µl) 14820 

Ref. 1 (1 ng/µl) 32675 

Ref. 2.5 (2.5 ng/µl) 40719 

Ref. 5 (5 ng/µl) 41858 

 Ref. 10 (10 ng/µl) 47886 

Table 21: Results of kinase activity experiment no.1 

The instruction manual offered different opportunities to work up the samples concerning the incubation 

time periods of the tyrosine kinase with its substrate peptide (10 and 15 minutes). 

Incubation is apprehended as the reaction between the kinase and its substrate peptide for a previously 

determined period (10 and 15 minutes, respectively) at 37 
°
C in a reaction mixture called “Master 

Mix”,consisting of ATP, Mn and Mg. 

 

Despite the unsatisfying results of the first experiment we decided to test the effects 

of different Src-kinase inhibitors in PDGF-stimulated VSMCs. Therefore five different 

samples were prepared: 
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1. VSMCs treated with 1 % DMSO as vehicle 

2. VSMCs stimulated with 20 ng/ml PDGF-BB 

3. VSMCs stimulated with 20 ng/ml PDGF-BB + dasatinib 100 nM 

4. VSMCs stimulated with 20 ng/ml PDGF-BB + I3MO 3 µM 

5. blank sample only containing lysis buffer, serving as negative control 

(experiment no.2, table 22). 

Furthermore, we increased the overall protein concentration of our samples to 1000 

µg. In contrast to our first experiment we incubated all samples for ten minutes at 

37°C. Because in the user manual it was declared unessential to perform the 

complete Reference Series for every experiment we only prepared the highest and 

the lowest value of the Reference Series during this experiment. Still, the results 

were all located below the Reference Series and additionally no increase compared 

to the blank value was observed, making further troubleshooting necessary. 

 

Sample Luminescence (in RLU) 

DMSO  429 

PDGF 10‟ 418 

Dasatinib 100 nM 277 

I3MO 3 µM 484 

Lysis buffer 313 

Ref. 0 (0 ng phosphorylated protein/µl) 1179 

Ref. 10 (10 ng phosphorylated protein/µl) 88667 

Table 22: Results of kinase activity experiment no.2 

 

As first step of our troubleshooting procedure we decided to test further stimuli on 

VSMCs in order to investigate whether PDGF-BB was able to allow a sufficient 

activation of c-Src kinase. PDGF stimulation was therefore performed for different 

time periods (5 and 10 minutes) and, additionally, calf serum 10 % was used as 

stimulus. DMSO 1 % and blank lysis buffer were used as controls. 

Prepared samples for tyrosine kinase assay (experiment no.3): 

1. VSMCs with 1 % DMSO (vehicle) 

2. VSMCs stimulated with 20 ng/ml PDGF-BB for 5 minutes 
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3. VSMCs stimulated with 20 ng/ml PDGF-BB for 10 minutes 

4. VSMCs stimulated with 10 % calf serum for 10 minutes 

5. blank lysis buffer. 

Although values were located more inside the Reference Series, the samples 

stimulated with PDGF-BB for 5 and 10 minutes still did not seem to experience a 

sufficient stimulation of c-Src kinase and consequently to achieve higher 

concentrations of phosphorylated substrate peptide resulting in a significant 

increase of luminescence compared to the blank value. Calf serum failed as 

stimulus. 

 

Sample Luminescence (in RLU) 

DMSO 3316 

PDGF 5‟ 3742 

PDGF 10‟ 4114 

Calf Serum 10% 2350 

Lysis buffer 2747 

Ref. 0 3675 

Ref. 10 68163 

Table 23: Results of kinase activity experiment no.3 

 

The next kinase assay experiment (experiment no.4, table 24) was not only 

performed with VSMCs, but also with MEF (mouse embryonic fibroblasts) and MCF-

7 breast cancer cells, two cell lines assumed to contain higher amounts of c-Src 

compared to VSMCs. Moreover, we used a specific lysis buffer (CHAPS buffer) in 

addition to our commonly used buffer because of its ability to make even membrane 

proteins accessible. The experiment was performed with cells directly harvested 

from culture conditions lacking serum starvation and PDGF-BB treatment; blank 

lysis buffer was used as control. 

Similar to the previous experiments, all samples seem to miss an adequate 

activation of c-Src kinase, resulting in luminescene values located below the 

Reference Series. Even the used CHAPS buffer was not able to recruit sufficient 

amounts of c-Src from VSMCs and the other cell types, actually it seemed to be less 
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effective in VSMCs than our commonly used lysis buffer. In contrast, samples 

received with the CHAPS buffer seemed to cause slightly higher c-Src kinase 

activity in MCF-7 and MEF cells compared to lysates received with our common 

buffer. 

 

Sample Lysis buffer Luminescence (in RLU) 

MCF-7 

CHAPS buffer 

2704 

MEF 3324 

VSMC 510 

MCF-7 

Common lysis buffer 

940 

MEF 2714 

VSMC 1686 

Lysis buffer 745 

Ref. 0 5204 

Ref. 10 38330 

Table 24: Results of kinase assay experiment no.4 

 

Due to the recieved results, not able to provide sufficient kinase activity even with 

increased protein concentrations, different stimuli and other cell lines, we decided to 

perform the next experiments with recombinant, active c-Src. Our first experiment 

was performed to empirically determine the concentration of recombinant enzyme 

allowing us to perform reproducible experiments (experiment no.5, table 25); kinase 

activity was measured in increasing concentrations from 10 – 100 ng. 
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Sample Luminescence (in RLU) 

c-Src 10 ng 1076 

c-Src 25 ng 964 

c-Src 50 ng 670 

c-Src 100 ng 861 

Ref. 0 250 

Ref. 10 20890 

Table 25: Results of kinase assay experiment no.5 

 

Although the first results using the recombinant enzyme were promising, we 

performed an additional experiment with an enzyme concentration of 500 ng to gain 

wider margin to avoid descending below the Reference Series when using an 

inhibitor. 

The following samples were prepared (experiment no.6): 

1. c-Src 100ng 

2. c-Src 500ng 

3. c-Src 500ng + DMSO 1% 

4. c-Src 500ng + I3MO 3µM 

5. blank Master Mix as control 

We were able to observe a decrease of c-Src kinase activity with I3MO 3 µM, 

however, the luminescence level of our sample was below the level of blank Master 

Mix (a reaction mixture containing ATP, Mn, Mg and the recombinant enzyme to 

create an environment enabling the phosphorylation of the substrate peptide), so we 

were not able to clearly determine the extent of kinase activity reduction. 
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Figure 15: Results of tyrosine kinase assay no.6 

 

For the next experiment we prepared two identical sets of samples with c-Src 100 

ng and 500 ng and a complete Reference Series for each set of samples 

(experiment no.7, Fig. 16). After evaluation of the achieved results we finally 

decided to perform all future experiments with a concentration of 500 ng of active c-

Src because of the higher levels of phosphorylated substrate. 

 

 

Figure 16: Results of kinase assay experiment no.7 

Shown are the average results received from two parallel performed experiments. 
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After finding of a sensitive setting for our experiments we were finally able to 

investigate potential inhibitory effects of I3MO 3 µM on Src-kinase activity. Therefore 

the following three experiments were performed in the same setting with a complete 

Reference Series (experiments no.8-10, see Fig. 17): 

1. c-Src 500ng 

2. c-Src 500ng + DMSO 1% 

3. c-Src 500ng + I3MO 3µM 

4. Ref. 0 (0 ng/µl phosphorylated Reference peptide) 

5. Ref. 1 (1 ng/µl phosphorylated Reference peptide) 

6. Ref. 2.5 (2.5 ng/µl phosphorylated Reference peptide) 

7. Ref. 5 (5 ng/µl phosphorylated Reference peptide) 

8. Ref. 10 (10 ng/µl phosphorylated Reference peptide) 

In all three performed experiments we were able to observe an inhibition of kinase 

activity, varying from 20 – 80 % of reduction. Additionally we determined the R-

values from the Reference Series performed from experiment 7 – 11, which spread 

from 0.6434 to 0.9558. 
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C  

 

D  

  

 

Figure 17: Results of kinase assay experiments no.8-10 
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Shown is the x-fold increase of relative light units (RLU) compared to Ref. 0 of experiment no.8 (A), experiment 

no.9 (B) and experiment no.10 (C); blank Master Mix was used as control and a representative Reference Series 

from experiment no.9 is shown (D). 

 

In our final experiment (no.11, see Fig. 18), we tried to exclude all possible 

interactions of DMSO and I3MO with the Master Mix and possible inhibitory effects 

of I3MO concerning the biotin-streptavidin interactions necessary to bind the 

substrate peptide to the 96-well microplate for phosphorylation. In addition to the 

samples used to perform in experiments no. 8 – 10 we prepared a sample with 

Master Mix and DMSO or I3MO, respectively; additionally, a sample with reference 

substrate [10 ng/µl (Ref. 10)] with I3MO was prepared. Again kinase activity was 

inhibited by I3MO 3µM, whereas DMSO showed no reduction of c-Src kinase 

activity. Additionally, DMSO and I3MO did not show any substantial interactions with 

the Master Mix. I3MO also does not seem to inhibit biotin-streptavidin interactions, 

instead it rather seems to increase the amount of phosphorylated protein.  

 

 

Figure 18: Results of kinase assay experiment no.11 

In our final tyrosine kinase assay we initially tried to repeat the inhibition of c-Src kinase activity by I3MO, which we 

already observed in previous experiments; DMSO had no impact on measured kinase activity. Additionally, we tried 

to confirm the absence of potential interactions between the Master Mix and I3MO as well as DMSO during 

incubation by preparing additional samples only consisting of Master Mix and I3MO or DMSO, respectively. 

 

Finally we identified the average of kinase activity inhibition from all comparable 

performed kinase assay experiments (experiments no.6, 8, 9, 10 and 11), in which 
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we were able to detect an average reduction of kinase activity of about 50 %. 

Examining each experiment individually, the percental inhibition ranged from 20 – 70 

%. 

 

A B 

  

Figure 19: Average inhibition of kinase activity by I3MO  

The average kinase activity after treatment with I3MO 3 µM remains at about 50 %. When looking at each 

experiment separately, the inhibition ranged from 20 – 70 %. 

Shown are the average inhibition of Src-kinase activity (A) and inhibition examined from each experiment 

separately (B). ** p<0.005 (t-test). 
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5. Antioxidants in PDGF signalling 

 

According to previous studies, antioxidants and other antioxidative active 

compounds seem to exert a beneficial effect in preventing the development of 

cardiovascular diseases. 27,42 While for some, like lycopene, the mechanism in 

mediating the beneficial effect on prevention of CVDs is still largely unknown 27, a 

large number of additional as well as independent effects from their antioxidative 

activity has been identified for polyphenolic compounds (e.g. green tea catechins).42 

Especially the antioxidants ability to inhibit PDGF-induced signalling cascades, 

which has already been shown for EGCG 3,45, a green tea catechin and polyphenol 

respectively, and lycopene 27, a natural compound from tomato, was of particular 

interest. Independent from these findings another antioxidant, resveratrol, has 

proven to be able to inhibit Src and STAT3 signalling in v-Src transfected NIH3T3 

mouse fibroblasts.24 

 

Considering the results of these studies, we examined the effects of three further 

antioxidants, ascorbic acid (dissolved in distilled water), dehydroascorbic acid 

(dissolved in DMSO) and trolox (dissolved in ethanol 100%) on PDGF-induced 

signalling cascades regarding their potential inhibitory effects by measuring the 

phosphorylation status of the PDGF-R and other signalling molecules involved in 

PDGF signalling like STAT3, Erk1/2, p38 MAPK and Akt. 

 

For the performance of these experiments 24 h serum-starved VSMCs were 

preincubated 1 hour with the antioxidants in a concentration of 100 nM and 

afterwards stimulated with 20 ng/ml PDGF-BB for the declared time periods. To 

exclude possible effects on VSMCs resulting from the solvents, VSMCs 

preincubated for 1 h with blank solvent were prepared for comparison. Unstimulated 

samples, only treated with the different solvents, served as controls. 

 

The results of the performed experiments can be subsumed in the following way. 

None of the three antioxidants seems to inhibit or somehow affect the activation of 

p38 MAPK, Akt or Erk1/2 kinases. Their effects on activation of STAT3 and 
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phosphorylation of the PDGF-R remain indistinct, because of serious discrepancies 

between the particular experiments. 

 
A 
                           DMSO              H2O              EtOH          A        D         T     

PDGF                     -         10’       -         10’       -        10’      10’      10’      10’ 

pAkt  S
473 

tubulin  
 

 

B C 

  

                                      D 

 

 

Figure 20: Ascorbic acid, dehydroascorbic acid and Trolox do not inhibit Akt kinase phosphorylation 

24 hour serum-starved VSMC were preinucbated with ascorbic acid 100 nM (A), dehydroascorbic acid 100 nM (D), 

trolox 100 nM (T) or vehicles for one hour. Lysates were prepared as declared in the Materials and Method section. 

 For Immunoblotting a specific antibody against phospho-Akt (S
473

) was used; tubulin served as loading control. The 

experiment was performed in triplicate. Shown are one representative western blot selected from the three  
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experiments (A) and changes in phosphorylation levels after treatment with ascorbic acid (B),  

dehydroascorbic acid (C) and trolox (D). Blank solvents were used as control to exclude potential inhibitory  

effects from the solvents. n.s. (not significant) p>0.05 (t-test). 

 

A 

                                     DMSO              H2O             EtOH          A        D        T         

PDGF                          -        10’        -        10’       -        10’      10’      10’     10’ 

pErk1/2 

 

T
202

/Y
204 

tubulin   

 

B C 

  

                                         D 

 

Figure 21: Ascorbic acid, dehydroascorbic acid and trolox have no impact on Erk1/2 phosphorylation 
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Serum-starved VSMC were stimulated with PDGF-BB for ten minutes after one hour of preincubation with the 

antioxidants ascorbic acid 100 nM (A), dehydroascorbic acid 100 nM (D), trolox 100 nM (T) or vehicles. After 

preparing the lysates as described in the Material and Method section, a specific antibody against phospho-

Erk1/2 (T
202

/Y
204

) was used for immunoblotting. The experiment was repeated three times and a representative 

western blot is shown in (A). The graphs received after densitometric analysis of the experimental results show 

no impact of ascorbic acid (B), dehydroascorbic acid (C) and trolox (D) on phosphorylation of Erk1/2 kinases. 

n.s. (not significant) p0.05 (t-test). 
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A 

                                      DMSO              H2O            EtOH          A       D        T  

PDGF                           -        10’        -        10’        -        10’      10’     10’     10’ 

pp38  Y
180/182

 

tubulin   

 

B C 

  

 

                                         D 

 

Figure 22: Ascorbic acid, dehydroascorbic acid and trolox have no effect an p38 

phosphorylation/activation 

After preincubating serum-starved VSMC for one hour with ascorbic acid 100 nM (A), dehydroascorbic acid 

100 nM (D) and trolox 100 nM (T) they were stimulated with PDGF-BB for ten minutes. After preparing the 

lysates as described in the Material and Methods section, a specific antibody against phospho-p38 (Y
180/182

) 

was used for immunoblotting. The representative western blot (A) and graphs show no inhibitory effects on 
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p38 phosphorylation caused by ascorbic acid (B), dehydroascorbic acid (C) and trolox (D), compared to their 

vehicles after stimulation with PDGF-BB. Blank vehicles were used as control. n.s. (not significant) p>0.05 (t-

test). 
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E Discussion 

 

1.  Introduction 

Abnormal proliferation of VSMCs is one of the key events in the development of 

atherosclerosis and even restenosis after initial successful coronary angioplasty.27 

Of vital importance within this complex process is PDGF, serving as a major 

mitogen for VSMCs, responsible for their migration and increased proliferation.17,19 

Thus, inhibition of aberrant PDGF-induced VSMC proliferation seems to be a 

promising alternative for today‟s commonly used strategies to treat atherosclerosis, 

including PTCA and stent implantation. Indirubin, the active principle of a TCM anti-

leukaemic recipe20, and its derivatives, especially I3MO23, represent potent 

antiproliferative compounds due to their inhibition of inflammatory37 and oncogenic30 

pathways. In VSMCs, I3MO was shown to exhibit an inhibitory effects on STAT3 

activation, PDGF-R phosphorylation, and ROS production.36 Considering STAT3 as 

a downstream substrate of the non-receptor tyrosine kinase c-Src6, we tried to 

clarify whether the inhibition of c-Src kinase activity is the basic cause for 

subsequent abolition of STAT3 phosphorylation. 

 

2.  PDGF-R autophosphorylation 

The initial step to activate downstream signalling pathways of PDGF is 

autophosphorylation of the PDGF-R. Phosphorylated tyrosine residues create 

binding sites for SH2-domain containing adaptor proteins and other singaling 

molecules, leading to further phosphorylation/activation of their downstream 

substrates.18,19 Inhibition of phosphorylation of specific tyrosine residues therefore 

prevents creation of these binding pockets and subsequently activition of 

downstream substrates. In our experiments we were able to show a reduced overall 

phosphorylation of the PDGF-R under the influence of dasatinib and I3MO at 2 and 

10 minutes of PDGF stimulation. In earlier studies the same effect has already been 

described for I3MO regarding PDGF-R phosphorylation in total and particularly on 

Y579/581.36 Considering that phosphorylation of Y579/581 is necessary for c-Src 

activation and further activation of its downstream substrates9,18, we investigated a 

possible inhibitory effect of I3MO on Src kinase activity. 
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3.  MAPK- and PI3K-pathway 

Other important pathways involved in PDGF signalling are the MAPK- and the PI3K-

pathway. Binding of the Grb2/Sos1 complex to PDGF-R leads to activation of Ras, 

which in turn causes activation of MAPKKK Raf1. Raf1 itself induces 

phosphorylation of MEK1/2, which activate Erk1/2 by phosphorylating threonine and 

tyrosine residues. Erk1/2 cause VSMC proliferation by transcription of intermediate 

early genes like c-myc and c-fos induced via phosphorylation and translocation of 

Elk1 and p90RSK.15, 39  

To exclude these two pathways from containing potential new targets of I3MO we 

performed time courses in the presence and absence of I3MO, measuring the 

phosphorylation status of Erk1/2 and Akt kinase at different time periods after PDGF 

stimulation. I3MO treatment did not lead to any changes in the phosphorylation 

status of Akt kinase, confirming the results previously shown.36 Phosphorylation of 

Erk1/2 kinases was diminished at 2 minutes of PDGF stimulation in the presence of 

I3MO, but returned to physiological levels after 5 minutes of PDGF stimulation. We 

therefore reconfirmed that MAPK- and PI3K-pathway are not affected by I3MO, 

indicating that the cell system worked as previously shown. 

 

4.  c-Src kinase 

Binding of c-Src via its SH2-domain to phosphorylated PDGF-R is involved in 

activation of the kinase. Changes in the phosphorylation status of the two tyrosine 

residues Y418 and Y529 regulate the kinase activity of c-Src.19, 35 Phosphorylation of 

Y418 causes increased kinase activity by dislocating Y418 from the kinase substrate 

binding pocket, allowing substrates better access.5 Increased phosphorylation of 

Y529 instead causes enhanced interactions of Y529 with the kinases SH2-domain, 

forcing its transformation into the inactive conformation.5,34 However, in our time 

courses, I3MO seems not to affect the phosphorylation of both tyrosine residues, 

except of a diminished phosphorylation of Y529 after 2 minutes of PDGF stmulation, 

similarly to the results obtained with Erk1/2 kinases, and was therefore classified as 

inconsiderable. A different view is obtained with dasatinib. Although not affecting the 

phosphorylation of Y418, a clear inhibition of Y529 phosphorylation could be observed. 

When examining the expressed protein levels of total Src, we observed increased 
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protein levels under treatment with dasatinib, not seen with I3MO. Summarised, the 

results did not indicate an effect of I3MO on phosphorylation status of Y418 and Y529. 

 

5.  STAT3 

STAT3 is known to be one of the downstream substrates of Src-kinase and has 

already been identified as a target of I3MO in earlier studies.6,30 With our 

experiments we were able to confirm the inhibition of STAT3 phosphorylation with 

I3MO as well as with dasatinib. Due to inhibition of STAT3 activation and its nature 

as a downstream substrate of Src-kinase, we hypothesized an inhibition of Src-

kinase activity as reason for the inhibition of STAT3 phosphorylation. 

 

6.  c-Src kinase activity 

To confirm our assumption of I3MO inhibiting STAT3 activation via Src kinase 

inhibition we performed a tyrosine kinase assay to measure kinase activity after 

PDGF stimulation and I3MO treatment. Due to the fact that we were not able to 

illustrate an explicit inhibitory effect of I3MO on activated c-Src neither 

immunoprecipitated from VSMC lysates nor MEF or MCF-7 lysates, further in vitro 

tyrosine kinase assays were conducted with recombinant activated human c-Src. 

Pooled data from five performed experiments showed an average inhibition of 

kinase activity under I3MO treatment of about 50 %, compared to PDGF stimulation. 

The kinase activity was ranging from 20 – 70 % when looking at each experiment 

separately. Although these results seem very promising at first sight it has to be kept 

in mind, that no comparable effect was observed or reproducible in any of the 

previously performed western blot experiments. Not even in vitro tyrosine kinase 

assays performed with c-Src from cell lysates were able to show an approximate 

outcome. Therefore existing inconsistency within the available results does not 

deliver any verification of coherence between the observed inhibition of tyrosine 

kinase activity in cell free conditions and potential influences of I3MO in the cellular 

model. Furthermore, when considering the consequences of changes in 

experimental setting like switching from immunoprecipitated c-Src from cell lysates 

to recombinant c-Src, potential effects of I3MO on c-Src kinase activity and its 

downstream cellular signalling may not be predicted for in vivo conditions at the 

moment. 
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7.  Antioxidants 

Antioxidants are widely known to deploy benefic effectsial on prevention of CVDs27 

and other malignant proliferative diseases3,42. Especially their effects on PDGF-

induced signalling and the involved signalling molecules are of vital importance 

when considering the relevance of their antiproliferative effects, which some of 

them, especially EGCG3,45, exert on VSMCs.24,27  

Initiated by these findings, we focused on the examination of three widely known 

antioxidants, ascorbic acid, dehydroascorbic acid and trolox, regarding a potential 

beneficial impact in preventing development of CVDs by inhibition of VSMC 

proliferation due to inference with PDGF-induced signalling cascades. 

Anyhow, summarized data from our western blots did not show any changes in the 

phosphorylation status, correlating with activity, of essential signalling molecules like 

Akt kinase, Erk 1/2 kinases or p38MAPK regardless of the presence or absence of the 

antioxidants. Considering the remaining evaluable results it currently seems that the 

investigated antioxidants do not deploy a beneficial effect on the prevention of CVDs 

by interfering with PDGF-induced signalling. Furthermore, it has to be mentioned 

that prevention of CVDs like atherosclerosis by these antioxidants may not result 

from inhibition of disease development or progression via repression of VSMC 

proliferation, but maybe from preventing ROS-induced vascular wall injury. 

 

8.  Conclusion 

Prior studies identified I3MO to be capable to inhibit PDGF-R overall 

phosphorylation, PDGFR Y579/581 phosphorylation, STAT3 phosphorylation and c-Src 

kinase signalling.30,36 Nevertheless, its effect on c-Src kinase activity in VSMCs has 

not been determined so far. As previously shown, we were also able to observe a 

significant inhibition of PDGF-R autophosphorylation and STAT3 activation in vitro, 

assuming an upstream molecule of STAT3 as possible target for I3MO. Considering 

the before mentioned ability of I3MO to inhibit PDGFR Y579/581 autophosphorylation, 

which is crucial for creation of binding sites for SH2 domain-containing downstream 

signalling molecules activated by the PDGF-R, particularly for c-Src kinase as one of 

them, a diminished phosphorylation of PDGFR Y579/581 could deliver a possible 

explanation for reduced c-Src kinase activity and consequent interruption of STAT3 

signalling under I3MO treatment. In the in vitro tyrosine kinase assay, performed 
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with recombinant, active c-Src in cell free environment we observed an average 

reduction of kinase activity of around 50% in presence of I3MO indicating that Src 

represents a potential target of I3MO. However, these results were only received 

under in vitro conditions, outside the physiologic environment and are therefore not 

necessarily assignable to cellular conditions. Further experiments are required to 

elucidate the effect of I3MO on c-Src kinase in the cellular system as well as under 

in vivo conditions. 
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G APPENDIX 

 

1.    Abbreviations 

 

A 

AhR   Aryl hydrocarbon receptor 

APS   Ammonium persulphate 

ATP   Adenosine triphisphate 

 

B 

B-ALL   B-cell acute lymphoblastic leukaemia 

BAD   Bcl-2 antagonist of cell death 

Bcl-2   B-cell lymphoma 2 

Bcl-XL   B-cell lymphoma extra large 

Bcr   Breakpoint cluster region 

BSA   Bovine serum albumin 

 

C 

CDK   Cyclin-dependent kinase 

CHAPS  3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 

CHD   Coronary heart disease 

CHK   CSK homologous kinase 

CML   Chronic myeloic leukaemia 

CSF   Colony stimulating factor 

CSK   c-Src kinase 

CYP   Cytochrom P 450 

 

D 

DAG   Diacylglycerol 

DHFR   Dihydrofolate reductase 

DMSO   Dimethylsulphoxide 

DNA   Desoxyribonucleic acid 

DTT   Dithiothreitol 

 

E 

EC   Endothelial cell 

ECL   Enhanced chemiluminescence 

ECM   Extracellular matrix 

EDTA   Ethylendiamintetraacetic acid 

EGF   Epidermal growth factor 
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EGTA   Ethylene glycol-bis(2-aminoethylether)-tetraacetic acid 

ELISA   Enzyme-linked immunosorbent assay 

Erk   Extracellular signal-regulated kinase 

EtOH   Ethanol 

 

F 

5„-FIO   5„-fluoro-indirubinoxime 

FAK   Focal adhesion kinase 

FDA   Food and drug administration 

FGF   Fibroblast growth factor 

FOXO   Forkhead family of transcription factors 

 

G 

GAP   GTPase activating protein 

Glu   Glutamate 

GPCR   G-protein coupled receptor 

Grb   Growth factor receptor binding protein 

GSK-3β  Glykogen synthasae kinase-3β 

 

H 

HDAC   Histon deacetylase 

HDL   High density lipoprotein 

HEPES  N-(2-hydroxyethyl)piperazine-N„-(2-ethansulphonic acid) 

HER   Human epidermal growth factor receptor 

HRP   Horse reddish peroxidase 

 

I 

I3MO   Indirubin-3„-monoxime 

ICAM-1  Intercellular adhesion molecule 1 

IFN-γ   Interferon-γ 

IGF   Insulin-like growth factor 

IgG   Immunglobulin G 

IHD   Ischemic heart disease 

IκB   Inhibitory subunit of NF-κB 

IKK   IκBα kinase 

IL-1   Interleukin-1 

 

J 

JAK   Janus kinase 

JNK   c-Jun N-terminal kinase 

 

K 

kDa   Kilo Dalton 
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L 

LDL   Low density lipoprotein 

 

M 

MAPK   Mitogen activated protein kinase 

mc   Monoclonal 

Mcl-1   Myeloid leukaemia-1 

MCF-7   Human mammary carcinoma cell line 

MCP-1   Monocyte chemotactic protein-1 

MEF   Mouse embryonic fibroblasts 

MeOH   Methanol 

 

N 

5„-NIO   5„-nitro-indirubinoxime 

NADH   Nicotinamide adenine dinucleotide 

NADPH  Nicotinamide adenine dinucleotide phosphate 

NF-κB   Nuclear factor-κB 

NO   Nitric oxide 

NRTK   Non-receptor tyrosine kinase 

 

P 

p-Tyr   Phospho-tyrosine 

PAA   Polyacrylamide 

PBS   Phosphate buffered saline 

pc   Polyclonal 

PC   Proprotein convertase 

PCAM-1  Platelet cellular adhesion molecule-1 

PDGF   Platelet-derived growth factor 

PDGFR  Platelet-derived growth factor receptor 

PDK   Phosphoinositide-dependent protein kinase 

Ph+   Philadelphia chromosome positive 

PH-domain  Pleckstrin homology-domain 

PI(3,4,5)P3  Phosphatidylinositol-3,4,5-triphosphate 

PI(4,5)P2  Phosphatidylinositol-4,5-bisphosphate 

PI3K   Phosphatidylinositol 3-kinase 

PK   Protein kinase 

PLC   Phospholipase C 

PMSF   Phenylmethylsulphonylfluoride 

PTEN Phosphate and tensin homologue deleted on chromosome ten 

PTP   Protein tyrosine phosphatase 

PVDF   Polyvinylidenefluoride 
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R 

Rb   Retinoblastoma protein 

RLU   Relative light unit 

ROS   Reactive oxygen species 

RTK   Receptor tyrosine kinase 

 

S 

SAPK   Stress-activated protein kinase 

SDS   Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Ser   Serine 

SFK   Src-family kinase 

SH2/3/4 domain Src-homology 2/3/4 domain 

Shb   Src-homology 2 domain containing adaptor protein B 

SHP   SH2-containing protein-tyrosine phosphatase 

SMC   Smooth muscle cell 

SOCS   Suppressor of cytokine signalling 

Sos   Son of sevenless 

STAT   Signal transducer and activator of transcription 

STATRE  STAT-specific response element 

 

T 

T   Threonine 

5„-TAIO  5„-trimethylacetamino-indirubinoxime 

TAK-1   Transforming growth factor-β-activated kinase 1 

TBS-T   Tris-buffered saline containing Tween 20 

TCDD   2,3,7,8-tetrachlorodibenzo-p-dioxin 

TCM   Traditional Chinese medicine 

TEMED  N,N,N„,N„-tetramethylethylene diamine 

TGF   Transforming growth factor 

Thr   Threonine 

TKRB   Tyrosine kinase reaction buffer 

TNF   Tumor necrosis factor 

tPA   Tissue plasminogen activator 

TRAF   TNF receptor associated factor 

Trolox 6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid 

Tyr   Tyrosine 

 

V 

VCAM-1  Vascular cellular adhesion molecule-1 

VEGF   Vascular endothelial growth factor 

VLDL   Very low density lipoprotein 

VSMC   Vascular smooth muscle cell 
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Y 

Y   Tyrosine 
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