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Abstract: 
 
The increasing number of characterized molecular receptors provides the basis for 

structure based design of active compounds which may be developed to become a 

new drug. In drug design one starts from a known or hypothetical mode of action or 

binding mechanism, a lead structure is rationally designed and afterwards tested 

experimentally.  

In contrast to experimental high throughput screening (HTS), which provides hits in 

terms of chemical compounds, virtual screening (VS) simply suggests computer hits. 

The compounds are selected on the basis of improved docking algorithms using an 

approximate energy function to rank them as putative hits. 

VS runs are usually validated by comparing the performance of a set of known 

actives with a large set of “randomly” picked compounds (decoy structures) which are 

inactive. All structures are submitted to the selected VS protocol, and the 

performance-ranks of the known actives with respect to the remaining pool are 

converted into enrichment plots. These plots are accumulation curves that show how 

the fraction of actives recovered varies with the percent of the database screened. 

 

Estrogens are involved in the growth, development and homeostasis of several 

tissues. They exert their physiological effects via the estrogen receptor (ER) which is 

associated with diseases like breast cancer, osteoporosis, neurodegenerative and 

cardiovascular diseases as well as obesity. 

 

In this work the estrogen receptor was used for a series of docking studies. Agonist 

and antagonist- bound receptor structures were used, once obtained from the Protein 

Data Bank (PDB), once from molecular dynamic simulations (MD-simulations).  

In the first docking study the receptor´s ligands were docked back into the receptor 

structures which is referred to as ‘bound docking’. A better docking score was 

obtained for ligands that docked in a correct position and vice versa. 

In the second docking study ligands and decoys were docked into the receptor 

structures to see whether the performance is able to put potential binders near the 

top of a score ranked list. The results were validated by enrichment plots. 

The study revealed a better enrichment for docking into structures obtained from the 

PDB than for docking into MD-simulation structures. The final step was ensemble 

docking which means that for each ligand and decoy docked into all receptors only 
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the best docking score was used. For both, docking into PDB-crystalstructures and 

into MD-simulation structures, ensemble docking produced a better enrichment. For 

MD-simulation structures, ensemble docking gave a result, which was nearly as good 

as those for the single PDB-structures.  
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1. Introduction 
 
1.1. Nuclear Receptors 
  
Nuclear receptors are ligand-regulated transcription factors that modulate target gene 

transcription. These transcription factors, many of which function as receptors for 

lipophilic hormones, control differentiation, development, homeostasis and behavior. 

All nuclear receptors are structurally related and belong to the nuclear receptor 

superfamily. [Gronemeyer2004] 

 
1.1.1. Nuclear Receptors functional domains 
 
A typical nuclear receptor is composed of several functional domains:  
 
A variable NH2-terminal region (A/B-region) which contains the autonomous 

transcriptional activation function (AF1), which is isoform-specific as well as cell and 

promoter-specific, suggesting that it is likely to contribute to the specificity of action 

among different receptor isoforms; a DNA-binding domain (C-region); a hinge region 

(D-region); a ligand binding domain (COOH-terminal conserved E/F-region) which 

contains the ligand dependent activation function (AF2) and the dimerization surface. 

The ligand binding domain (LBD) is the one where coregulator interaction takes 

place. [Aranda2001] 

 

 
Figure 1: Nuclear receptor domains; AF, activation function. 
 
 
A/B-region: 
 
The size of the A/B-domain is quite variable and ranges from several hundred amino 

acids in length for the steroid hormones to only a few amino acids in some of the 

nonsteroid nuclear receptors. [Burris, ex Nuclear Receptors and Genetic Disease] 
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Factors which modulate the response of nuclear receptors towards their ligands are 

alternative splicing and different use of promoters. These factors generate receptors 

with different A/B-regions and therefore different AF1 functions.  

This domain is also the target for phosphorylation and therefore posttranscriptional 

modifications.  

For example nuclear receptors such as the estrogen receptors (ERs) are 

phosphorylated at serine or threonine residues by the mitogen-activated protein 

kinase (MAPK) in vitro, and in cells treated with growth factors that stimulate the Ras-

MAPK cascade. This phosphorylation enhances transcriptional activity. [Aranda2001] 

 
C-region: 
 
The DNA-binding domain (DBD) is the most conserved domain of nuclear receptors 

and includes two zinc finger modules. It has the ability to recognize specific target 

sequences and activate genes. 

Amino acid sequences important for dimerization are contained within the DBD (as 

well as in the LBD). [Olefsky2001] 

 

D-region: 

 

The D-region, often called hinge region, because it is localized between the DBD and 

the LBD, often harbors nuclear localization signals (NLS) and also residues whose 

mutation is connected with the loss of interaction with nuclear receptor corepressors.  

[Aranda2001] 

 
E/F-region: 
 

The LBD is a multifunctional domain that mediates homo- and heterodimarization, 

interaction with heat shock proteins (HSPs), ligand dependent transcriptional activity 

and also hormone reversible transcriptional repression.  

The LBDs are formed by 12 alpha-helical regions numbered from H1 to H12. 

[Aranda2001]  

11 helices build a compact structure comprising a ligand binding pocket. The 

entrance to the pocket is guarded by helix 12 which carries the AF2 transactivation 

function. [Gronemeyer2004] 
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In the absence of ligand, H12 has been proposed to be exposed to solvent. 

[Gangloff2001] 

The E-domain is the second most conserved region among nuclear receptors. 

[Burris; ex Nuclear Receptors and Genetic Disease] 

 

The function of the F-domain which is present in the estrogen receptor α and β as 

well as in retinoic acid receptor is unknown. [Burris; ex Nuclear Receptors and 

Genetic Disease] 

 

Ligand binding: 

 

Ligand binding initiates a conformational change that results in a different orientation 

of H12 on the core of the LBD, closing the ligand binding pocket like a lid (mouse trap 

mechanism). [Gangloff2001]  

The flexibility of H12 allows for entry of the ligand into the ligand-binding cavity after 

displacement of the H12 lid. When the ligand has entered the cavity which is lined 

with hydrophobic amino acid residues, contacts are made, followed by the 

conformational shift which also includes closing the H12 lid. [Burris; ex Nuclear 

Receptors and Genetic Disease] 

The orientation of H12 is a consequence of allosteric effects induced by the chemical 

structure of the specific ligand that is binding. [Gronemeyer2004] 

 

Transactivation: 

 

The effect of a nuclear receptor is to increase the rate of transcription of target genes 

via interaction with the cis-acting DNA response element, a mechanism called 

transactivation, the activation function (AF1 and AF2) being located in the A/B-region 

and the E-region, respectively. The two transactivation domains are functionally 

independent.  

AF1 transactivates in a constitutive and hormone-independent manner whereas AF2 

acts as a hormone-inducible transactivation domain where the ligand-induced 

conformational change reveals the activation function. Crystal structure studies 

indicate, that the AF2 helix is helix 12, the one that reorientates upon ligand binding. 

In the unliganded state, the AF2 helix projects away from the core of the LBD. Upon 
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ligand binding the helix folds back on the surface of the LBD and forms a cleft that is 

able to recruit coactivators which are necessary for transcriptional activation. [Burris; 

ex Nuclear Receptors and Genetic Disease] 

 

Mechanism of transactivation: 

 

It is believed that nuclear receptors utilize several mechanisms to increase the rate of 

transcription of target genes. They may directly interact with or recruit general 

transcription factors that are components of the preinitiation complex (PIC) to 

increase the rate of initiation of transcription. 

The receptors could also act by altering chromatin structure to make the DNA more 

accessible to various transcription factors and to RNA polymerase II (PolII). 

Another suggestion is that receptors interact with components that act to bridge 

interactions with members of the PIC and proteins that alter chromatin structure. 

[Burris; ex Nuclear Receptors and Genetic Disease] 

 

Several steroid receptor coactivators display histone acetyltransferase (HAT) activity 

which indicates that acetylation of histones is an important mechanism in 

transactivation. Histone deacetylation is responsible for the chromatin condensation 

that accounts for the gene-silencing effect of apo-receptors (receptors without 

ligand). [Gronemeyer2004] 

 

1.1.2. Nuclear receptor subfamilies 
 
Nuclear receptors (NRs) are divided into 7 subfamilies based on amino acid 

sequence identity. The nomenclature system is based on the evolution of the two 

conserved domains (DNA- and ligand binding domain) of the NRs.  

The nuclear receptor superfamily is divided into 6 subfamilies and 26 groups of 

receptors. Receptors that contain only one of the two well conserved domains are 

grouped in subfamily 0. [Laudet1997] 

 

Subfamily 1 which contains eleven groups: TR (thyroid nuclear receptors), RAR 

(retinoic-acid receptors), PPAR (peroxisome-proliferator-activated receptors), REV-
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ERB, E78, RZR/ROR, Caenorhabditis CNR14, ECR, VDR, Drosophila DHR96 

orphan receptor and nematode NHR1 orphan receptor. [Laudet1997] 

 

Subfamily 2 which contains seven groups: HNF4 (hepatocyte nuclear factor 4), RXR 

(retinoid X receptor), TR2/4 (testicular receptor), Drosophila  DHR78, TLL, COUP-TF, 

EAR2. [Laudet1997] 

 

Subfamily 3 which contains three groups: estrogen receptors, ERR (estrogen-related 

receptors), steroid receptors. [Laudet1997] 

 

Subfamily 4 which to date contains one group: TGFIB. [Laudet1997]  

 

Subfamily 5 which contains two groups: FTZ-F1, DHR39. [Laudet1997] 

 

Subfamily 6 which contains one group: GCNF1. [Laudet1997] 

 

Subfamily 0 which contains two groups, one of them lacking the C-domain and one 

lacking the E-domain. [Laudet1997] 

 

1.1.3. Agonist and Antagonist 
 

The ER's natural ligand 17β-estradiol (E2) acts as a pure agonist in ER α and ER β. 

[Gangloff2001] 

 

17β-estradiol: 

 
ER- agonist and antagonist bind at the same site within the core of the LBD but show 

different binding modes. [Avendaño, ex Medicinal Chemistry of Anticancer Drugs] 
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Ligands can be designed to have different degrees of agonism or antagonism.  In the 

absence of ligand, the LBD of many nuclear receptors is bound to a set of 

transcriptional corepressors (proteins which recruit histone deacetylases (HDAC)).  

An agonistic ligand is responsible for complex allosteric effects that finally lead to 

corepressor complex dissociation. This holo positioning of H12 (structure with bound 

ligand) allows coactivators to interact with short LxxLL-like motifs (nuclear-receptor 

boxes, L=leucine, X=any amino acid) that exist in most coactivators and are common 

motifs for interaction with nuclear receptor LBDs. [Gronemeyer2004] 

It has been observed that in antagonist-bound complexes, H12 is positioned in a 

structurally conserved cleft where the LxxLL- motif of the coactivator molecule binds. 

This can be explained by a mechanism for antagonism where H12 and the 

coactivator compete for a common binding site. [Gangloff2001] 

 

Destabilization of the H12-protein core is the overall mechanism of pure and also 

partial antagonism. The dominant effect depends on the potency of the ligand to 

disrupt the active conformation or to prevent the correct binding of coactivators. 

[Gangloff2001] 

 

Knowledge of the features responsible for inducing and stabilizing a given 

conformation is very important in order to understand the initial events of nuclear 

receptor transactivation. [Gangloff2001] 

 

1.1.4. Estrogen receptor 
 

Estrogens, which belong to the steroid hormones, are involved in the growth, 

development and homeostasis of many tissues. They exert their physiological effects 

via the estrogen receptor (ER). [Brzozowski1997] 

  

In contrast to G-protein coupled membrane receptors which mediate fast reactions 

and translate them to long range regulation, nuclear receptors are responsible for 

slow genomic changes in the nucleus which leads to changes in gene activity.  

[Kleine, Rossmanith, ex Hormone und Hormonsystem] 
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ER and also other steroid nuclear receptors, is less stable in the absence of ligand or 

protein cofactors like HSP90 (heat shock protein 90). ‘The fold stabilization of these 

proteins is part of the control of gene expression and is ligand-dependent (induced fit 

mechanism) and controlled by the cellular context (redox potential, nature of the 

ligand, presence of interacting molecules like coactivators or corepressors).’ 

[Gangloff2001] 

 

Nuclear receptors regulate transcription by binding to specific DNA sequences in 

target genes. These sequences are called hormone response elements (HRE), and 

are normally located in regulatory regions of target genes. [Aranda2001]  
The symmetry of the HREs suggests that steroid receptors bind to DNA as dimers.  

[Burris, ex Nuclear Receptors and Genetic Disease] 

 

1.1.5. Nuclear receptor function 

 

Estrogens as well as other steroid hormones act to increase RNA synthesis by 

stimulating RNA polymerase activity. This stimulatory effect is essential for activity 

which was proved by treatment of cells with RNA synthesis inhibitor Actinomycin D 

which resulted in the block of cellular changes induced by estrogens. [Burris, ex 

Nuclear Receptors and Genetic Disease] 

 

It was demonstrated that transcription of specific, targeted messenger RNAs  

(mRNAs) was directly stimulated by estrogens and was the rate-limiting step in 

hormone-dependent induction of protein synthesis. [Burris, ex Nuclear Receptors and 

Genetic Disease] 

 

The receptors for the classical steroid hormones reside primarily in the cytoplasm 

associated with HSPs and are unable to bind to DNA.  After ligand binding the HSPs 

dissociate from the receptor which now homodimerizes and binds to HREs. The 

receptor mediates transcriptional activation of the target genes by interacting with 

general transcription factors and by recruitment of transcriptional coactivators. 

[Burris, ex Nuclear Receptors and Genetic Disease] 

 

 
 



 15 

 
 

Figure 2: General model of nuclear receptor function. The ER is associated with heat 

shock proteins (HSPs) and not bound to DNA in the absence of ligand. Upon ligand 

binding the receptor dissociates from the HSPs, homodimerizes and binds to specific 

hormone response elements (HREs) in the promoter regions of target genes. Once 

localized to the promoter, the receptor mediates transcriptional activation by 

interacting with general transcription factors and also by recruitment of transcriptional 

coactivators. 
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1.1.6. DNA-binding 
 
Nuclear receptors bind to DNA by recognizing a hexameric nucleotide sequence 

known as a core recognition motif or “half-site”. The sequence, arrangement and 

spacing of the half-sites define the nature and responsiveness of an HRE to various 

nuclear receptors. The majority of nuclear receptors bind to DNA as dimers with each 

of the receptors occupying one of the half-sites (Type1). The half site orientation of 

the ER is an inverted repeat type. Type 2 receptors usually recognize response 

elements organized into direct repeats. Most of them form heterodimers with retinoid 

X receptor (RXR) and a few form homodimers or monomers. [Burris; ex Nuclear 

Receptors and Genetic Disease] 

 
Figure 3: DNA-binding of ER (Type 1); DNA-binding of retinoid X receptor (RXR), 

thyroid hormone receptor (TR), steroidogenic factor (SF) (Type 2). 
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1.1.7. Diseases cohesive with ER 
 
 

Breast cancer: 

 

Estrogen is implicated in the development of breast cancer, based on data from both 

clinical and animal studies. Risk factors associated with breast cancer reflect 

cumulative exposure of the breast epithelium to estrogen. [Deroo2006] 

 

There are two hypotheses trying to explain why this causes tumor formation. In the 

first, binding of estrogen to the ER stimulates proliferation of mammary cells, which 

increases the target cell number within the tissue. The increase in cell division and 

DNA synthesis elevates the risk of replication errors, which is supposed to lead to an 

increasing number of mutations that finally disrupt normal cellular processes such as 

apoptosis, cellular proliferation and DNA-repair. [Deroo2006] 

In the second, estrogen metabolism leads to the production of genotoxic by-products 

(genotoxic waste) that could damage DNA directly, again resulting in point mutations.  

There is evidence that estrogen may act through both mechanisms to initiate and/or 

promote cancer. [Deroo2006] 

Selective estrogen receptor modulators (SERMs) and aromatase inhibitors are used 

in treatment of breast cancer and those patients whose tumors are ER-positive do 

respond to these therapies. [Deroo2006] 

 

The ER is also involved in several other cancers such as mammary, ovarian, colon, 

prostate and endometrial cancer. [Deroo2006] 

 

Osteoporosis: 

 

Estrogens regulate skeletal homeostasis. Osteoporosis is due to higher bone 

resorbtion in both sexes and is associated with estrogen deficiency. Estrogens 

prevent bone turnover by reducing osteoblast-mediated bone formation. Estrogen 

and Raloxifen are used as medication for the prevention of bone loss. [Deroo2006] 
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Neurodegenerative diseases: 

 

Clinical and experimental data support the protective effect of estrogen against 

neurodegenerative disease in humans such as stroke, Parkinson disease and 

Alzheimer disease. Experimental evidence from animal and cell culture models show 

that estrogen treatment protects against neuronal cell death due to insult and both 

ER α and β are found in several parts of the human brain. [Deroo2006] 

 

Cardiovascular disease:  

 

The incidence of cardiovascular diseases is low in premenopausal women but 

increases after menopause, suggesting that estrogen protects the female 

cardiovascular system. [Deroo2006] 

 

Obesity: 

 

Obesity results from excess with adipose tissue, which is considered to be an 

endocrine organ because of its ability to metabolize steroid hormones. Estrogens 

regulate the metabolism and the location of white adipose tissue and are involved in 

adipogenesis, adipose deposition, lipogenesis, lipolysis and adipocyte proliferation. 

In women the loss of circulating estrogen after menopause is associated with more 

central body fat. This effect can be attenuated by estrogen treatment. [Deroo2006] 

 

1.1.8. ER alpha and beta 
 

There are 2 subtypes of ER (α and β), which are products of distinct genes, ESR1 

and ESR2, that are found at different chromosomal locations. [Deroo2006] 

They display structural differences and can mediate overlapping but different sets of 

biologic functions. The two subtypes can interact with the same ERE (estrogen 

response elements) and can also form heterodimers, suggesting that in cells that 

express both ER subtypes, the ratio of the two will effect estrogen action. 

[Olefsky2001] 

ER α is found in endometrium, breast cancer cells, ovarian storma cells and in the 

hypothalamus. [Yaghmaie2005]  
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The expression of ER β protein has been documented in kidney, brain, bone and 

heart. [Babiker2002] 

 

ER α and ER β regulate gene transcription by binding to specific estrogen response 

elements (EREs) in the promoter of target genes, or by binding to other transcription 

factors acting at coactivator protein 1 (AP1) and specificity protein 1 (SP1) sites. 

Pathways in proliferation may be influenced by the interaction of ER with AP1 and 

SP1. It could be proposed that estrogen regulates differentiation and proliferation 

through two distinct pathways. [Gronemeyer2004] 

 

The aim in developing selective ER ligands in the future will be to achieve selecitvity 

for interaction at EREs (estrogen induced differentiation) versus AP1 sites (estrogen 

induced proliferation functions). [Gronemeyer2004] 

 

1.1.9. Selective ER modulators (SERMS) 
 

Selective estrogen receptor modulators (SERMS) have the ability to antagonize the 

detrimental effects of estrogen on uterine and breast tissue but producing estrogen-

like effects on bone and the cardiovascular system. [Kim2004] 

 

Whether a SERM is an ER agonist or antagonist in a particular tissue depends on 

several factors: 

Binding of a SERM to the ER causes a specific conformational change in the 

receptor and which coactivators and/or corepressors are recruited to the promoter 

depends on the resulting 3D-structure. The relative level of corepressors and 

coactivators in a specific tissue is also a determinant of a SERM's agonistic or 

antagonistic activity. The coregulators recruited to a particular promoter, depends on 

the type of ER dependent regulatory sequences that are present in the promoter. As 

already mentioned the ER α/ER β ratio varies between tissues and which ER form is 

dominant also effects SERM activity. [Deroo2006] 

 

Tamoxifen, which was the first SERM to be developed, is an ER agonist in bone and 

uterus but an ER antagonist in the breast and has been used as an effective and 

save adjuvant endocrine therapy for breast cancer. Tamoxifen recruits a coactivator 
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complex to estrogen regulated genes in endometrial cells but a corepressor complex 

to the same gene in breast cancer cells. [Deroo2006] 

Raloxifen (RAL) is a highly effective antiestrogen in the reproductive tissue but acts 

as a partial ER agonist in bone and also lowers blood cholesterol levels. [Pike1999] 

Different ligands may differ in their affinity for α and β isoforms of the ER. RAL for 

example binds preferentially to the α receptor. RAL has the ability to prevent 

formation of transcriptionally competent AF2 conformation. When RAL is in the 

binding pocket of ER its bulky site chain prevents H12 forming a lid. So H12 gets in 

the position of coactivator binding. [Pike1999] 

 

There is a so called “flip-flop” mechanism for H12 positioning, the equilibrium 

between the H12 agonist and antagonist positions in the coactivator binding site 

depends on the cellular context (nature and concentration of cofactors). 

[Gangloff2001] 

 

1.2. Drug design 
 

Structure-based drug design starts from a known or hypothetical mode of action or 

binding mechanism, a lead structure is rationally designed and subsequently tested 

experimentally. The results here obtained are fed back into a design cycle as new 

information. [Gohlke2002] 
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Figure 4: Rational drug design/design cycle. Starting with the discovery of a 

compound and biological testing, the information about the mechanism of action or 

binding mode is used for the development of a new drug. In contrast to computational 

methods the lead structure can also be found by experimental high-troughput-

screening (HTS), which involves the testing of large compound libraries. 

 

 

The following strategy in rational design depends on whether the three-dimensional 

structure of the biological target is known or not. If the structure is not available, 

“quantitative structure-activity relationship” (QSAR-methods) can be used to find a 

relationship between molecular structure and biological activity in order to allow an 

affinity prediction for unknown compounds. [Gohlke2002] 

Another approach is the generation of a pharmacophore model from a series of 

active compounds whose properties are represented in geometric terms. In the 

following step potentially active candidate molecules are obtained from a compound 

library that obey this pharmacophore hypothesis. [Gohlke2002] 
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The growing number of structurally characterized macromolecular receptors provides 

the possibilities for any structure-based design of active compounds. [Gohlke2002] 

The three-dimensional structure of a target can either be determined by 

crystallography, nuclear magnetic resonance (NMR) or construction on the basis of 

homologous proteins. [Klebe; ex Virtual Screening in Drug Discovery] 

 

There are two possible strategies for computer-aided complex-generation: 

 

-De novo docking where novel leads are generated in the binding pocket starting 

from prepositioned seed atoms that are subsequently grown into entire molecules. 

[Gohlke2002] 

-Another method would be screening a compound library for ligands in agreement 

with the binding site requirements. Several thousands of compounds from an in-silico 

database are often docked into a receptor binding site and afterwards ranked 

according to their fit. [Gohlke2002] 

 
The success of computer-aided drug design depends on the generation of 

reasonable ligand-binding modes (configuration-generation problem) and the 

recognition of those binding modes that suit best to the given situation based on a 

reasonable assessment of the expected binding affinity (affinity prediction problem). 

[Gohlke2002] 

 

1.2.1. Molecular Docking 
 

Docking is a tool often used to predict the binding orientation of small molecule drug 

candidates to their protein targets to predict the affinity and activity of the small 

molecule towards this target. Hence, docking plays an important role in drug design. 

[Kitchen2004] 

 

Molecular docking can be thought of as a problem of “lock and key”, where one is 

interested in finding the correct relative orientation of the right key which will open up 

the lock. Here the protein can be though of as the lock and the ligand as the key. The 

molecular docking problem can be defined as predicting the correct bound 

association of two molecules with the given atomic coordinates. [Halperin2002] 
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Docking is computationally difficult because there are many ways of putting two 

molecules together (three translational and rotational degrees of conformational 

freedom). With the size of the components, the number of possibilities grows 

exponentially. Furthermore protein flexibility and screening large compound 

databases makes the computational problem even more difficult. [Halperin2002] 

 

The interactions between ligand molecules and their receptors are dynamic and 

complex. Techniques in computer aided drug design should therefore account for the 

conformational flexibility of the ligand and the receptor which changes the “lock and 

key” problem into a “hand in glove” problem (induced fit). [Gohlke2002] 

Ligand flexibility exploring is already well established and new methods accounting 

for receptor flexibility are already available. [Gohlke2002] 

This is also important for discovering ligands that bind to one set of receptors but not 

to another potentially similar one and to design selective nuclear receptor modulators 

which means ligands that selectively modulate different receptor subtypes and/or act 

in a cell-type or tissue specific manner. [Fernandes2004] 

 
1.2.2. Methods accounting for protein flexibility 

 

Ensemble docking:  

 

Ensemble docking means docking into multiple conformations of the receptor where 

the ligands are treated as rigid bodies to focus on the effect of protein flexibility. The 

Ensemble docking algorithm can dock a ligand simultaneously into multiple protein 

structures and automatically select an optimal protein conformation. [Huang2007] 

 

Serial docking: 

 

This method docks a candidate ligand serially to a set of different receptors and the 

results obtained for the structure determine whether to continue on to the next 

receptor or not. [Fernandes2004] 

The purpose of serial docking is to find homology models for virtual screening and to 

find ligands that bind to one set of receptors but not to another potentially similar one 

(selective targeting). [Fernandes2004] 
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Relaxed complex method (RCM): 

  

The RCM also incorporates receptor flexibility, starting from molecular dynamic (MD) 

simulations followed by docking of special libraries of candidate ligands to a large 

ensemble of the receptor's MD conformations. [Amaro2008] 

 

Structures from the protein data bank (PDB) are mostly static and docking against 

them does often not reflect the true dynamical nature of most protein-ligand 

interactions. [Amaro2008] 

RCS combines the advantage of docking algorithms with dynamic structural 

information provided by MD simulations, which are carried out for the target of 

interest. [Amaro2008] 

 

Four-Dimensional Docking: using conformers as fourth dimension. 

 

The purpose here is to account for conformational changes induced by ligand 

binding. [Bottegoni2009] 

Receptor flexibility can be defined as the fourth discrete dimension of the small 

molecule conformational space, with multiple recomputed 3-D grids from optimally 

superimposed conformers merged into a 4-D object. The receptor conformations are 

represented by a single set of 4-D grids. In this method, no postprocess step is 

needed. [Bottegoni2009] 

 

Accounting for side chain rotations: 

 

Today several docking programs like GLIDE, DOCK, GOLD and AUTODOCK are 

using rotamer libraries to represent side chain flexibility. [Meiler2006] 

 
1.2.3. Virtual Screening (VS) 
 

For virtual screening, a knowledge about the spatial and energetic criteria 

responsible for the binding process needs to be available, which means either the  



 25 

3-D structure of the target molecule or a rigid reference ligand with a known bioactive 

conformation in the assumed receptor bindingsite. [Klebe2006] 

In contrast to experimental high throughput screening (HTS), which provides the 

medicinal chemist with hits in terms of chemical compounds that actually bind to the 

target of interest, VS simply suggests computer hits. [Klebe2006] 

In VS, compounds are selected on the basis of improved docking algorithms using an 

approximate energy function to mutually rank them as putative hits. [Klebe2006] 

The advantage of using computer programs for prediction of binding a compound to 

a target is that the compounds do not necessarily need to exist and that experimental 

deficiencies such as limited solubility, aggregate formation or any sort of influence 

that could possibly interfere with experimental assay conditions, do not need to be 

considered. [Klebe2006] 

Moreover, hits discovered by HTS, even through they represent real molecules, do 

not help us to understand why and how they act upon the target. Any gain in 

knowledge is only obtained once structural biology or molecular modeling come into 

play and detect structural similarities or possible binding modes among the 

discovered hits. [Klebe2006] 

 

1.2.4. Enrichment rates used to control the achievements of virtual screening 
 

Enrichment is the ability of the docking program to put ligands that are known to bind 

to the target near the top of a score ranked list. [Moustakas, Pegg, Kuntz; ex Virtual 

Screening in Drug Discovery] 

VS of compounds for possible drug leads requires identifying the few candidates, out 

of perhaps millions, which can bind with significant affinity (100 µM or better) to a 

target of a known structure. [Moustakas, Pegg, Kuntz; ex Virtual Screening in Drug 

Discovery] 

 

VS runs are usually monitored and validated by comparing the performance of a set 

of known actives with a large set of “randomly” picked compounds, which are inactive 

(decoy structures). All structures are submitted to the selected VS protocol, and the 

performance-ranks of the known actives with respect to the remaining pool are 

converted into enrichment plots. These plots are accumulation curves that show how 

the fraction of actives recovered varies with the percent of the database screened.                                                                                                                                                                                                                                                                                                                                                                                                                                             
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An enrichment factor (EF) can be defined as: 

 

EF= (a/n)/(A/N) 
 

Where a is the number of active compounds in the n top-ranked compounds of a total 

database of N compounds of which A are active. [Moustakas, Pegg, Kuntz; ex Virtual 

Screening in Drug Discovery] 

 

Successful screening implies EF>>1. This requires the identification of the best 

ligand conformation/position/orientation (pose) in the target binding site, that is, the 

solution of the docking problem. This in turn requires the ability to accurately 

calculate the binding affinity of a given pose (at least relative to another pose), which 

is the solution of the binding problem. [Moustakas, Pegg, Kuntz; ex Virtual Screening 

in Drug Discovery] 

 

Basically an enrichment ratio shows how much work one saves by performing a 

virtual screen followed by testing those compounds in the hit list, compared with 

random screening of the entire collection. [Halgren, Murphy, Friesner; ex Virtual 

Screening in Drug Discovery] 

 

1.2.5. Database preparation 

 

Compound libraries used in lead finding programs should generally be filtered first to 

remove unsuitable compounds that would not reach and pass clinical trails anyway 

because of undesired properties. A good method to evaluate drug-likeness is the 

Lipinski “Rule-of-Five” which is suggesting that poor absorbtion or permeation are 

more likely when the molecular weight is over 500, the calculated octanol/water 

partition coefficient (logP) is higher than 5, when there are more than 10 hydrogen 

bond acceptors and more then 5 hydrogen bond donors. Compounds that fulfil two or 

more of these conditions are likely to show poor permeability and should be removed 

from the database. [Höltje, Sippl, Rognan, Folkers; ex Molecular Modeling] 
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Meanwhile, filters for specific pharmacokinetic properties (absorbtion, distribution, 

metabolism, excretion=ADME) for prediction of aqueous solubility, membrane 

permeation and metabolic clearance are being developed. [Höltje, Sippl, Rognan, 

Folkers; ex Molecular Modeling] 

Another possibility for filtering is to create a universal filter from databases that 

automatically distinguishes between drugs and chemicals. [Höltje, Sippl, Rognan, 

Folkers; ex Molecular Modeling] 

 

1.2.6. Stages for optimization / Scoring function 
 

The success of a docking program depends on two important components: the 

search algorithm and the scoring function. [Gohlke2002] 

After a ligand with a detectable affinity for a given receptor is found several stages for 

optimization are followed. [Klebe2006] 

To characterize the binding affinity of putative lead candidates experimentally, the 

binding constant or its inverse, the dissociation constant (or inhibition constant), is 

determined. [Klebe2006] 

 

KA=KD
-1=Ki

-1=[R`L`]/[R][L] 
 
 

The scoring function takes a pose as input and returns a number indicating the 

likelihood that the pose represents a favourable binding interaction. [Klebe2006] 

 

Some scoring functions are physics-based molecular mechanics force fields that 

estimate the energy of the pose. A low (negative) energy indicates a stable system 

and a likely binding interaction. [Klebe2006] 

Alternatively one can derive a statistical potential for interactions from a database of 

protein-ligand complexes, such as the protein databank (PDB) and evaluate the fit of 

the pose according to this inferred potential. [Klebe2006] 

 

If one assumes that the basic rules of equilibrium thermodynamics can be applied, an 

equilibrium constant that describes the formation of a protein-ligand complex can be 

defined. This equilibrium constant is logarithmically related to the Gibbs free energy, 
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which contains both an enthalpic and an entropic contribution. Whereas the former 

relates to energetic features the latter is related to configurational and ordering 

aspects. The entropic term estimates how the energy content of the system is 

distributed over internal and external molecular degrees of freedom. [Klebe2006]  

 

∆G°= ∆H°-T∆S°= -RT lnKA 

 

It is known that electrostatic interactions determine noncovalent ligand-receptor 

binding. They include salt bridges, hydrogen bonds, dipole-dipole interactions, and 

interactions with metal ions. [Gohlke2002] 

Solvation and desolvation contributions and the mutual, spatial complementary in the 

van der Waals (vdW) interactions are also of great importance. [Gohlke2002] 

 
1.2.7. Different scoring functions 

 
There are energy-based scoring functions that are related to energy terms in force 

fields, empirical scoring functions whose parameters are more dependent on 

empirical data, and knowledge-based scoring functions that are derived from 

databases. The improvements in scoring functions account for partial charges, 

desolvation effects and balance of different score terms as used in consensus 

scoring which means combining multiple scoring functions. [Lee2008] 

 

1.2.8. Water-Treatment 
 

Water is a frequently ignored binding partner because it is very difficult to treat 

properly. [Klebe; ex Virtual Screening in Drug Discovery] 

The importance of water molecules as additional partners in protein-ligand 

interactions has to be considered in docking. Neglecting tightly bound water 

molecules in the binding site can result in a high desolvation penalty and 

unfavourable contributions to binding affinity. [Klebe; ex Virtual Screening in Drug 

Discovery] 

Taking water molecules into account is usually performed by considering them as 

integral parts of the binding pocket. This requires reliable criteria whether to classify a 

water molecule as tightly or loosely bound and even the loosely bound waters can 
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mediate important interactions between ligand and protein. Furthermore the 

displacement of water to another position after ligand binding has to be considered. 

One possibility to incorporate water molecules is the sound analysis of solvation 

patterns as observed in crystal structures of the target protein with a lot of structurally 

diverse ligands. [Klebe; ex Virtual Screening in Drug Discovery] 

 

1.2.9. Glide: Grid-based ligand docking with energetics 
 
The Glide algorithm approximates a systematic search for positions, orientations and 

configurations of the ligand in the receptor-binding site using hierarchical filters that 

allow for respectable computational speed. The shape and properties of the receptor 

are represented on a grid of several sets of fields that provide progressively more 

accurate scoring of the ligand pose. The binding site is defined by a rectangular box 

confining the translations of the mass center of the ligand. [Klebe; ex Virtual 

Screening in Drug Discovery] 

 

A set of initial ligand conformations is generated through search of the torsional 

minima, and the conformers are clustered in a combinatorial fashion. In the first 

stage, each cluster is docked as a single object. The search begins with a rough 

positioning and scoring phase that narrows the search space and reduces the 

number of poses to be further considered. The selected poses are minimized on 

precomputed OPLS-AA (molecular-mechanics force field) vdW and electrostatic grids 

for the receptor. [Klebe; ex Virtual Screening in Drug Discovery] 

 

The 5 to 10 lowest-energy poses obtained are subjected to a MC (multiple copy) 

procedure in which nearby torsional minima are examined and the orientation of 

peripheral groups of the ligand is refined. The minimized poses are then rescored 

using the GlideScore function. It has been shown that rescoring docked poses with a 

secondary function can help to improve the selection of poses to be used at the rank 

ordering stage in database screening. The final choice of the best pose is made 

using a model energy score (EModel) that combines the energy grid score, Glide 

score, and the internal strain of the ligand. [Klebe; ex Virtual Screening in Drug 

Discovery] 
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1.2.10. CHEMScore/GLIDEScore 
 

The ChemScore function was developed as a method to predict binding affinity. It 

consists of linear combination of four terms: lipophilic, H-bonding, metal binding, and 

an entropic penalty based on the number of frozen rotatable bonds. GlideScore has 

been designed to maximize enrichment in database screening.  The ChemScore 

function has been modified with additional terms that differentiate charged and 

neutral H-bonds and terms that account for intermolecular Coulomb- and vdW-

interactions and desolvation. [Perola, Walters, Charifson, ex Virtual Screening in 

Drug Discovery] 

 

1.2.11. Glide XP 
 

A new scoring function to estimate protein-ligand binding affinities has been 

developed named Glide 4.0 XP (extra precision) scoring function. Additional features 

characterizing XP Glide scoring are the application of large desolvation penalties to 

ligand and protein polar and charged groups in appropriate cases and the 

identification of specific structural motifs that provide large contributions to enhanced 

binding affinity. [Friesner2006] 

Beside the unique water desolvation energy terms, protein-ligand structural motifs 

leading to enhanced binding affinity are included: 

 

-Hydrophobic enclosure which is surrounding of ligand lipophilic atoms or 
groups by lipophilic protein atoms. 
 

-Neutral-neutral single or correlated hydrogen bonds in a hydrophobically 

enclosed environment. 
 

-Five contributions of charged-charged hydrogen bonds. 
 

The aim is to semiquantitatively rank the ability of candidate ligands to bind to a 

specified conformation of the protein receptor and to exclude false positives. 

[Friesner2006] 
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In order to make the docking protocols effective within the receptor approximation, 

some ability to deviate from the restriction of the hard wall vdW-potential of the 

receptor conformation used in docking must be built into the potential energy function 

to predict ligand binding. [Friesner2006] 

In XP and SP (standard precision) Glide, this is accomplished by scaling the vdW- 

radii of nonpolar protein and/or ligand atoms which when done effectively introduces 

the modest “induced fit” effect. [Friesner2006] 

 

The appropriate fitting is judged by two factors: the ability to make key hydrogen 

bonding and hydrophobic contacts and the ability to achieve an appropriate root-

mean-square deviation (RMSD) as compared to the native complex. [Friesner2006] 

 

Contributions to protein-ligand binding affinity: 
 

-Displacement of waters by the ligand from “hydrophobic regions” of the 
protein active site. Displacement of these waters by a suitable designed ligand will 

lower the overall free energy of the system. Considering entropic effects, if a water 

molecule is restricted in mobility in the protein cavity the release into solvent through 

the ligand will result in an entropy gain. Furthermore transfer of a hydrophobic moiety 

on the ligand from solvent exposure to a hydrophobic pocket can also contribute 

favourably to binding. [Friesner2006] 

Hydrophobic bonding or entropic effects play a very important role in each drug-

receptor interaction. [Höltje, Sippl, Rognan, Folkers; ex Molecular Modeling] 

 

-Protein-ligand hydrogen bonding interactions, as well as other strong 
electrostatic interactions such as salt bridges. Again displacement of waters by 

the ligand in the protein cavity leads to favourable entropic effects. Contributions to 

binding affinity also depends on the quality and type of hydrogen bonds formed, net 

electrostatic interaction energies and specialized features of hydrogen-bonding 

geometries. [Friesner2006] 

Interactions of the displaced waters with the protein environment near the hydrogen 

bond can also have effects on binding affinity. [Friesner2006] 
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Electrostatic interactions are particularly important due to their long-range character 

for the attraction between ligand and receptor. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

 

-Desolvation effects. Polar and charged groups of the ligand or the protein that 

were exposed to solvent may become desolvated because they get in contact with 

groups to which they cannot hydrogen bond effectively. Those effects can only 

reduce binding affinity. [Friesner2006] 

 

-Entropic effects due to restriction on binding of the motion of flexible protein 

or ligand groups. The major contributions are due to restriction of ligand 

translational/orientational motion and protein and ligand torsions but also 

contributions of vibrational entropies. These effects also reduce binding affinity. 

[Friesner2006] 

 

-Metal-ligand interactions. Special terms are necessary concerning metal-ligand 

interactions. Metal-specific parameterization is a very complex contribution which 

needs large effort to be treated correctly. [Friesner2006] 

 

XP Glide sampling methodology: 
 
XP Glide sampling begins with SP Glide docking but using a wider “docking funnel” to 

obtain a greater diversity of docked structures. For XP docking to succeed, SP 

docking must provide one structure in which a key fragment of the molecule is 

properly docked. [Friesner2006] 

The following step in XP sampling is to use various fragments of the molecule as 

“anchors” and starting from these anchors, to attempt to build a better scoring pose 

for the ligand. Typical anchors are rings but can also be other rigid fragments. 

Afterwards various positions of the anchors are clustered, representative members of 

each cluster are chosen, and the growing of the side chain from appropriate positions 

on the anchor is initiated. Glide “rough scoring” function is used to screen the initial 

side chain conformations which can be grown at extremely high resolutions because 

the total number of configurations considered is always pruned through screening 

and clustering algorithms. [Friesner2006] 
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After individual side chains are grown, a set of complete molecules is chosen by 

combining high scoring individual conformations at each position and rejecting 

structures with steric clashes between side chains. Candidate structures are 

minimized with the standard Glide total energy function. Afterwards, the grid based 

water addition technology is applied to a set of top structures, penalties are assessed 

and the full XP-scoring function is computed. [Friesner2006] 

 
Parameterization:  
 

Because the terms are calculated through fast empirical functions a lot of 

parameterization is required to obtain results in good agreement with experiment. 

These parameters are required to convert different geometrical criteria into specific 

scores. The number of parameters in XP scoring function is on the order of 80. 

[Friesner2006] 
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2. Materials and Methods 
 

2.1. Protein Data Bank (PDB) 
 
The success of a drug design study is strongly dependent on already available 

experimental data which is used as the basis for modeling procedures. A complete 

3D-structure of a receptor obtained from x-ray crystallography or NMR 

measurements would provide a good basis of information. [Höltje, Sippl, Rognan, 

Folkers; ex Molecular Modeling] 

 

The most important database for structural information is the Protein Data Bank 

(PDB) which is available via the World Wide Web (http://www.rcsb.org) and contains 

a collection of protein and DNA structures. The PDB gives information about the 

resolution of a crystal structure which should be between 2.5 and 1.5 Ǻ, or better. 

The structures do not include hydrogen atoms, so they have to be added especially 

when studying protein-ligand interactions. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

 

Two different estrogen-receptor conformations have been used in this study: 

 

First, the agonist bound complexes where ligand binding leads to the rotation of Helix 

12 which is then placed against the ligand binding cavity (mouse trap mechanism). 

This activation step is illustrated in Figure 5. [Avendaño, ex Medicinal Chemistry of 

Anticancer Drugs] 

 

Second, the antagonist bound complexes where the ligand prevents the rotation of 

H12. Figure 6 shows the activation state conformation and Figure 7 the repression 

state conformation. The conserved amino acid clamp which is supposed to 

accomodate the ligand in both conformational states is illustrated in Figure 8. The 

different binding modes are shown in Figure 9. In case of the agonist Estradiol, 

binding involves both polar and nonpolar interactions. The phenolic A-ring and the 

A/B interface interact with amino acids: Ala-350, Leu-387 and Phe-404. The D-ring 

interacts with amino acids: Ile-424, Gly-521 and Leu-525. [Avendaño, ex Medicinal 

Chemistry of Anticancer Drugs] 
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The hydroxyl group of the A-ring establishes hydrogen bonds with the carboxylate 

group of Glu-353 as well as with the guanidinium group of Arg-394 and a water 

molecule. [Avendaño, ex Medicinal Chemistry of Anticancer Drugs] 

 

The hydroxyl-group in the D-ring establishes a hydrogen bond with the imidazole ring 

of His-524. In case of the antagonist Raloxifene, this imidazole ring rotates to be able 

to bind to the hydroxyl group in Raloxifene. The other difference is that there are 

additional hydrophobic interactions because of Raloxifene´ s side chain. Furthermore 

a hydrogen bond is established between the basic group of the side chain and the 

carboxylate group of Asp-351. [Avendaño, ex Medicinal Chemistry of Anticancer 

Drugs] 

 

The alignment of H12 over the binding cavity is prevented, because the side chain is 

too long to fit in the ER binding pocket and hence protrudes from the cavity between 

helix3 and helix11 (see Figure 5 for the position). [Avendaño, ex Medicinal Chemistry 

of Anticancer Drugs] 

 

 
 

 

 

 

 

 

 
 
 
 

 
Figure 5: Activation of the Estrogen receptor. Symbolization of the rotation of Helix 

12 after binding of an ER-agonist (Estradiol): H12 projects its inner, hydrophobic 

surface towards the ligand, its outer, charged surface is able to make interactions 

with coactivators. H3, H5, H6, H11 are the helices surrounding the binding pocket.  
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Figure 6: Estrogen Receptor and ligand Estradiol: Activation state, Helix 12 closes 

the ligand binding pocket. 

 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

Figure 7: Estrogen Receptor and ligand Raloxifene: Repression state, Helix 12 

protrudes from the cavity. 
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Figure 8: Amino acids Arginine 353, Glutamate 394 and Histidine 524 (blue) and 

ligand Estradiol (red). These 3 residues build a sort of clamp with Arginine and 

Glutamate on one side and Histidine on the other side. This clamp is supposed to 

accommodate the ligand in the binding pocket. The clamp is conserved for all agonist 

and antagonist structures. 
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Figure 9: Binding modes of ER-agonist Estradiol (A) and ER-antagonist Raloxifene 

(B). See text for details. [Avendaño, ex Medicinal Chemistry of Anticancer Drugs] 

 

2.2. ZINC- a free database of commercially available compounds for 

virtual screening 
 

ZINC-database is a free available library of compounds with three dimensional 

structure, which can be used for docking (http://zinc.docking.org). The structures 

have biologically relevant protonation states and are annotated with information for 

molecular weight, calculated logP and number of rotatable bonds. The structures are 

available with multiple protonation states and tautomeric forms. [Irwin2005] 

 

2.3. Conformational analysis 
 

As the motional energy at room temperature is large enough to let atoms in a 

molecule move permanently, their absolute position is far from being fixed. 

Compounds which contain one or more single bonds exist in many different so called 

conformers or rotamers. The transformations are mostly related to changes in torsion 

angle about single bonds. The changes in molecular conformations can be regarded 

as movements on a multi-dimensional surface which describes the relationship 

between the potential energy and the conformation of the molecule, where stable 

conformations are the local minima on this surface. Conformational energies can be 

calculated either by quantum mechanical methods or molecular mechanical methods, 

the latter being used for large and flexible molecules because they are less time 

consuming. [Höltje, Sippl, Rognan, Folkers; ex Molecular Modeling] 
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2.4. Molecular Mechanics and force fields 

 

Molecular Mechanics is a well established computational method to calculate 

molecular geometries and energies. The simplification in molecular mechanics is 

based on considering the atoms in a molecule to be a collection of masses 

interacting with each other via harmonic forces. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

 

2.4.1. Molecular mechanics force fields 

  
Atoms in molecular mechanics force fields are treated as rubber balls (different atom 

types), joined together by springs of varying length (bonds).  

 

The total potential energy is: Etot = Estr+Ebend+Etors+EvdW+Eelec 

 

Etot = total energy of the molecule 

Estr = bond-streching energy term 

Ebend = angle bending energy term 

Etors = torsional energy term 

EvdW = Van der Waals energy term 

Eelec = electrostatic energy term 

 

Molecular mechanics makes it possible to calculate the total steric energy of a 

molecule in terms of deviations from reference “unstrained” bond lenghs, angles and 

torsions. Together with empirically derived fit parameters (force constants), these 

unstrained values are denoted the force field. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 
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Equation terms: 

 

1. Bond stretching term 
 

Estr=1/2 kb(b-b0)2 

 

kb=bond stretching force constant 

b0=unstrained bond length 

b=actual bond length 

 

2. Angle bending term 
 

Ebend=1/2 kθ(θ-θ0)2 

 

kθ=angle-bending force constant 

θ0=equilibrium value of θ 

θ=actual value of θ 

 

3. Dihedral potential energy term 
 

Etors=1/2 kφ(1+cos(nφ-φ0)) 
 

kφ=torsional barrier 

φ=actual torsional angle 

n=number of energy minima within one full cycle) 

φ0=reference torsional angle 
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4. Van der Waals interaction term: Lennard-Jones potential 
 

Evdw=Σ 4ε {(σij/rij
12)-(σij/rij

6)} 
 

ε= dielectric constant 

σij/rij
12=repulsive term  

σij/rij
6=attractive term  

rij=distance between atom i and j 

 

5. Coulomb interaction term for electrostatic forces 

 

Eelec=(1/ε) [(Q1Q2)/r] 
 

ε=dielectric constant 

Q1Q2=atomic charges of interacting atoms 

r=interatomic distance  

 

The underlying idea in molecular mechanics is that bonds and angles have a 

“natural” length. The equilibrium values of these bond lengths and angels together 

with the force constants used in the energy function are termed the force field 

parameters and are defined in the force field. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

 

A deviation from these equilibrium values will result in an increased total energy. So 

the total energy can be considered as a measure of intramolecular strain relative to a 

hypothetical “ideal” molecule. [Höltje, Sippl, Rognan, Folkers; ex Molecular Modeling] 

 

2.4.2. Force fields for bigger molecules 
 

Force fields for Protein modeling differ from small molecule force fields in that specific 

parameters and simplifications are being introduced. Such simplifications are used in 

the united atom model where only polar hydrogens that may be partners in hydrogen 

bonding are treated explicitly while non-polar hydrogens are only included in the 

treatment of the heavy atoms to which they are bonded. Force fields like GROMOS 
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are examples which make use of this model. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

Other simplifications make use of cut-off radii to ignore non-bonded interactions 

between atoms with larger distances than the defined cut-off and use continuum 

electrostatic models beyond the cutoff. [Höltje, Sippl, Rognan, Folkers; ex Molecular 

Modeling] 

 

What should be noted is that simplifications can always lead to a loss in accuracy 

and which force field to use, strongly depends on the given situation. [Höltje, Sippl, 

Rognan, Folkers; ex Molecular Modeling] 

 

2.5. Energy minimizing procedures/algorithms 
 

2.5.1. Steepest Descent Minimizer 
 

The steepest descent procedure is usually used for a rough minimization of little 

refined crystallographic data which is then followed by another minimization like the 

conjugate gradient method. The energy minimum is obtained by calculating the first 

derivative of the energy function. The energy-calculation starts with the initial 

geometry and is repeated for all atoms when they move to new positions until they 

finally reach the minimum on the energy surface. The procedure stops when a 

predetermined minimum condition is achieved. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

 

2.5.2. Conjugate Gradient Method 
 

The computational effort for conjugate gradients is greater than for steepest descent. 

Here, the information obtained after each iteration is concentrated, the gradient is 

calculated over and over, and is used for computing the new direction vector. As 

much better convergence to the minimum can be achieved with this method it is often 

used for larger systems like proteins. [Höltje, Sippl, Rognan, Folkers; ex Molecular 

Modeling] 
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2.5.3. Newton-Raphson Minimizer 
 

The Newton-Raphson Minimizer uses the gradient and supplementary the second 

derivative to calculate the curvature of the function in order to find the search 

direction. The method is usually used for problems where fast convergence form an 

already partially optimized geometry to a precise minimum is needed. [Höltje, Sippl, 

Rognan, Folkers; ex Molecular Modeling] 

 

2.6. Conformational analysis using Monte Carlo Methods 

 
The Monte Carlo Method is a random search or statistical technique. Starting from an 

optimized structure, each stage in a Monte Carlo procedure generates a new 

conformation by a random change of the former one. The new conformation is 

minimized by molecular mechanics and is only stored if it is unique. In principle 

molecules of any size can be correctly treated with this method. However, to cover all 

regions of conformational space the process may have to run extremely long 

depending on the number of conformers which have already been discovered. 

[Höltje, Sippl, Rognan, Folkers; ex Molecular Modeling] 

 

2.7. Conformational analysis using Molecular Dynamics 
 
Molecular dynamics are based on molecular mechanics. Here, the aim is to 

reproduce the time-dependent motional behavior of a molecule. According to the 

rules of the force field, the atoms in the molecule interact with each other. At normal 

time intervals the classical equation of motion is solved: 

 

Fi(t)=miai(t) (Newton's second law) 

 

where F is the force on atom i at time t, mi is the mass of atom i and ai is the 

acceleration of atom i at time t. [Höltje, Sippl, Rognan, Folkers; ex Molecular 

Modeling] 

The forces on the atoms are calculated with the use of the gradient of the potential 

energy function and the initial velocities on the atoms are generated randomly at the 

beginning of the dynamics run. Positions and velocities can be calculated based on 
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the initial atom coordinates of the system and the atoms will then be moved to these 

new positions. The collection of conformations produced is called an ensemble. An 

important advantage of molecular dynamics is the ability to overcome energy barriers 

between different conformations which offers the possibility to find local minima other 

than the nearest in the potential energy surface. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling] 

 

2.7.1. Model refinement of large molecules by molecular dynamics simulations 
 

Molecular Dynamics Simulations are used to find the energetically most realistic 

three dimensional structure of a large molecule with hundreds of rotatable bonds. A 

simulation for a molecular system is performed by integrating the classical equations 

of motion over a period of time. [Höltje, Sippl, Rognan, Folkers; ex Molecular 

Modeling] 

 

2.7.2. GROMACS: GROningen MAchine for Chemical Simulations 
 
GROMACS is a software for molecular dynamic simulations that was developed at 

the University of Groningen, The Netherlands. GROMACS works very fast, by 

carefully optimizing neighbor searching and inner loop performance. It doesn't have a 

force field of its own, but is usable with several previously mentioned force fields like 

GROMOS, OPLS and AMBER. The program was especially designed for the 

versatile simulation of biological (macro)molecules in liquid and membrane 

environments. [Van_Der_Spoel2005] 

For further versatility the software package is provided with quantum mechanical 

packages like for example MOPAC, GAMES and GAUSSIAN to perform mixed 

MM/QM simulations. [Van_Der_Spoel2005] 

 

2.8. Simulated Annealing and Monte Carlo Simulations 
 

A special molecular dynamic simulation is simulated annealing, where the simulation 

temperature is cooled down at regular time intervals which leads to the trap of the 

system in the nearest local minimum conformation. In Monte Carlo simulated 

annealing (MCSA), random changes are made during each constant temperature 
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cycle. A new conformation is accepted when the energy is lower than the energy of 

the state before. A probability expression (Boltzmann equation) provides the basis to 

the decision of accepting or rejecting a compound. [Höltje, Sippl, Rognan, Folkers; ex 

Molecular Modeling]  

 

P=exp(-∆E/kT) 

 

∆E=difference in energy from the previous step 

T=absolute temperature in Kelvin 

k=Boltzmann constant 

 

Full force field based MCSA minimization is used in Glide for high level calculations.  

Glide uses a new algorithm for fast conformational generation. Computational costs 

are minimized by clustering the core regions of the generated 3D ligand 

conformations and treating the positions of the rotamer groups at the ends 

independently. [Höltje, Sippl, Rognan, Folkers; ex Molecular Modeling] 

 

2.9. Glide-docking tool 
 

As already said in the introduction, Glide uses a series of hierarchical filters to flexibly 

dock a ligand in the active site of a protein-receptor. The search for ligand 

conformations starts with computational inexpensive initial screens to locate 

favorable ligand poses. After the initial poses have been selected the ligand is 

minimized in the receptor field using OPLS-aa (Optimized Potentials for Liquid 

Simulations) in association with a dielectric model. Three to five low-energy poses 

are obtained and are submitted to a Monte Carlo procedure. [Perola, Walters, 

Charifson, ex Virtual Screening in Drug Discovery] 

 

OPLS: Optimized Potentials for Liquid Simulations 

 

The OPLS force field was developed by Prof. William L. Jorgensen. Its functional 

form is similar to that of AMBER. [Perola, Walters, Charifson, ex Virtual Screening in 

Drug Discovery] 
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Different OPLS parameters are used in OPLS-ua (united atom) and OPLS-aa (all 

atom). OPLS-ua, where hydrogens next to carbon atoms are included in the carbon 

parameters, is used to safe simulation time. In OPLS-aa every atom is explicitly 

included. OPLS parameters were specifically optimized to fit experimental properties 

of liquids like density and heat of vaporization. OPLS makes use of the single point 

charge (SPC) or TIP3P water model for aqueous solution simulations. [Perola, 

Walters, Charifson, ex Virtual Screening in Drug Discovery] 

 

2.9.1. Protein and Ligand preparation 

 

For accurate docking with Glide a proper protein preparation is necessary. In order to 

yield favorable vdW-interactions for the receptor-ligand complex, steric clashes which 

are often found in crystallographically determined protein structures, have to be 

adjusted. Furthermore it has to be taken care that hydrogen bonding patterns and 

protonation states are correct. To adjust protonation states in the structures 

especially histidines, asparagines and glutamines have to be analyzed.  

 

The adjustments have been carried out with Protein Preparation Wizard in Maestro. 

The procedure adjusts protonation states and performs a series of restrained 

minimizations to improve hydrogen orientations and relax unphysical steric clashes in 

the protein-ligand complex. Although the preparation-procedure is mostly able to 

make the right preparation choices, protonation states have been checked to see 

whether there is an incorrect H-bonding.  
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2.9.2. Glide-scoring function 
 

Glide Score is an extended version of the ChemScore function: 

 

Score:  
 

∆Gbind = Clipo-lipo Σ f(rlr) + Chbond-neut-neut Σ g(∆r) h(∆α) + Chbond-neut-charged Σ g(∆r) h(∆α)            

 

+ Chbond-charged-charged Σ g(∆r) h(∆α) + Cmax-metal-ion Σ f(rlm) + Crotb Hrotb 

 

+ Cpolar-phob Vpolar-phob + Ccoul + Ecoul + CvdW + EvdW + Solvation Terms 

 

Glide Score has a unique solvation term to account for solvation of solvent-exposed 

moieties and water molecules in hydrophobic protein pockets. [Englebienne2007] 
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3. Results and Discussion 
 
3.1. Bound Docking  
 
The aim in bound docking is to reconstruct a complex with the use of the bound 

structures of a receptor and its ligand. [Halperin2002] 

 

33 crystallographic agonist bound receptor structures and 20 crystallographic 

antagonist bound receptor structures were obtained from protein databank (PDB) 

and have been used to perform bound docking. Each of the receptors had its ligand 

included. [Halgren, Murphy, Friesner, ex Virtual Screening in Drug Discovery] 

 
Optimization of the vdW-Scale Factors 
 
A factor that makes Glide such a successful docking program is its ability to 

recognize detailed interactions with the use of hard interaction energetics on a 

Coulomb-vdW grid. Glide provides a way to adjust the interaction with the protein site 

relative to what the full vdW potential would produce. This mechanism works by 

scaling down the vdW-radii of nonpolar protein or ligand atoms. It has been shown 

that this is important to allow some room for the ligands that are a little bit larger than 

the native ligand. [Halgren, Murphy, Friesner, ex Virtual Screening in Drug Discovery] 

 

Settings for Ligand docking 
 
Glide does not scale the protein radii, it scales the radii of non-polar ligand atoms by 

0.7 which corresponds to a 1.0/0.7 scaling. [Halgren, Murphy, Friesner, ex Virtual 

Screening in Drug Discovery] 

 

Scaling factor: 0.7 

Partial charge cutoff: 0.15 

Number of poses per ligand to include: 5 

Poses with Coulomb-vdW energy greater that 10 kcal/mol, have been rejected,  

because global strain energies of 10 kcal/mol have been proposed to be common for 

receptor-ligand complexes. [Perola2007] 
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Choosing the Enclosing Box 
 
The enclosing box should be chosen smaller than the default-sized box, which allows 

ligands with up to 100 atoms to dock. A small box will make the calculation faster and 

will eliminate those ligands that cannot fit because they will either find no viable 

position within the box or will be given unfavorable docking scores due to unresolved 

steric clashes. It also keeps available 'slots' in the rough scoring stage of the docking 

for ligand poses that could be of interest in the more detailed stages. A smaller box 

will also prevent from finding positions outside the active site like for example 

positions on the protein surface. [Halgren, Murphy, Friesner, ex Virtual Screening in 

Drug Discovery] 

 
Settings for Receptor grid generation 
 
Scaling factor: 0.7 

Partial charge cutoff: 0.25 

Enclosing Box: 

Supplied x, y, z coordinates: x=-4.78; y=-4.87; z=20.24 (used for agonist 

receptorstructures) 

Supplied x, y, z coordinates: x=-7.78; y=-2.87; z=20.24 (used for antagonist 

receptorstructures) 

Dock ligands with length ≤ 12 Ǻ 

 
Maestro: all structure-calculations and manipulations have been carried out in 

Maestro, a graphical user interface. 
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3.1.1. Results for Agonist structures 
 
All agonist ligands have been docked in each agonist receptor, including the docking 

of the receptor’s own ligand back into its structure which is referred to as self-

docking. [Rao2008]  

The question here is how reproducible the structure is or whether the receptor `finds` 

its own ligand, meaning that the own ligand has the most negative docking score. 

Protein receptors that have the best docking score for their own ligand are: 2B1ZB, 

1L2IA and 1L2IB. Table 1 shows the docking scores for each ligand docked into 

each receptor structure. Table 1 also shows at which position the receptors own 

ligand lies.  
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Table 1 
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Table 1: Docking of each ligand (shown in orange) into each receptor-structure 

(shown in red). Docking Scores for docking of receptors own ligand back into its 

structure (self-docking) is shown in grey; the bold numbers at the bottom show the 

positions at which the own ligand of the receptor lies (compared to the other docking 

scores for the other ligands). For receptors 2B1ZB, 1L2IA and 1L2IB the receptors 

own ligand has the most negative docking score (position 1, shown in light blue). 

Empty fields indicate cases, where the docking program produced no ligand pose.

           

To see how a ligand differs in orientation in the different receptor structures, the 

receptor's own ligand has been fixed in the project table in Maestro and the root 

mean square deviation (RMSD) between this ligand and the same ligand docked into 

all the other receptor structures has been calculated. The procedure has been carried 

out with the Superposition tool in Maestro. To compare the ligand orientations the 

option calculate 'in place' (no transformation) has been chosen which calculates the 

RMSD without moving the structures. 

Table 2 shows the RMSD for the agonist structures. Ligands that have a RMSD of 6 

or higher lie side inverted in the binding pocket. The reason for ligands lying side 

inverted is due to a different geometry of amino acids Methionine 343, Methionine 

421 and Isoleucine 424. Figure 10 and 11 show the different orientation of Met 343 

and Met 421 together with the ligand 17β-Estradiol in the correct and side inverted 

orientation respectively. 

To find out more about the interactions in this particular case, 17β-Estradiol has been 

docked in 2 receptors which differ in orientation of Met 421, with Glide Extra 

Precision (see Introduction).  Receptor 1, which orients the ligand correctly, has a 

more negative value for the lipophilic pair term and fraction of the total protein-ligand 

van der Waals energy and also a more negative value for the hydrophobic enclosure 

energy reward. Additionally it has a negative value for the electrostatic reward term, 

which is missing in Receptor 2, which orients the ligand side inverted: 

 Receptor 1 Receptor 2 
Glide Score -7.93 -6.88 
Lipophilic pair term -5.07 -4.98 
Hydrophobic encosure -0.72 -0.28 
Electrostatic reward -0.57 0 
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Table 2 
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Table 2: RMSD of agonist structures. A RMSD of 6 or higher means that the ligand 

lies side inverted in the binding pocket. It has been shown that this is due to a  

different orientation of amino acids Met 343, Met 421 and Ile 424. 

                                                                                                                                     
  
    
  
 
                                                                                           
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 10 

 
 
 
 

 
 
 
 

 
 
 
 
 

                                                               Figure 11 
Figure 10 and 11: Methionine 421 (Figure 10) and Methionine 343 (Figure 11) and  

17β-Estradiol. In both cases, the orientation of Met in blue orients the ligand correctly 

(ligand is shown in light blue), the orientation of Met in red docks the ligand side 

inverted (ligand is shown in orange). 
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Interestingly protein receptors 2B1ZA and 2B1ZB only differ in the side chain 

geometry of Isoleucine 424 (Figure 12). Receptor 2B1ZA docks ligands 1erea, 1ereb, 

1erec and 1ered with a RMSD above 6 (side inverted) and receptor 2B1ZB docks the 

same ligands with a RMSD under 1. In this particular case the docking scores for 

2B1ZB, where the ligands have the right orientation, have been better (below -7 

kcal/mol) than for 2B1ZA (above -7 kcal/mol). The comparison of these 2 receptors is 

shown in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 12: Isoleucine 424 and 17β-Estradiol. Ile 424 in blue orients the ligand 

correctly (ligand is shown in light blue) and Ile 424 in red leads to a side inverted 

orientation of the ligand (ligand is shown in orange). 

 
 

 Docking Score 
Standard 
deviation 

2B1zA -6.67 kcal/mol 0.11 
2B1zB -7.82 kcal/mol 0.07 
 RMSD  
2B1zA 6.57 0.11 
2B1zB 0.7 0.04 
 
Table 3: Mean value and standard deviation of docking score and RMSD for 

receptors 2B1ZA and 2B1ZB.  
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17β-Estradiol has been docked into receptors 2B1ZA and 2B1ZB with Glide- Extra 

Precision. 2B1ZB has a more negative value for the lipophilic pair term and fraction of 

the total protein-ligand van der Waals energy and a more negative value for the 

hydrophobic enclosure energy reward: 

 
 2B1ZA 2B1ZB 
Glide Score -6.88 -7.37 
Lipophilic pair term -3.66 -4.1 
Hydrophobic encosure -0.58 -1.03 
 
 
It has also been shown that for receptors 1G50A, 1G50B and 1G50C, receptor 

1G50A is the only one which orients all ligands correctly and this receptor has the 

overall docking score minimum (-9.72 kcal/mol). Receptor 1ERED has the second 

lowest minimum value (-9.51 kcal/mol) and compared to receptors 1EREA, 1EREB, 

1EREC, 1EREE and 1EREF; 1ERED again is the only one which orients all ligands 

correctly. All receptors and their overall minimum docking score are shown in Table 

5. 
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Receptor 
Minimum 

value 
1G50A -9.72 
1ERED -9.51 
3ERDB -9.36 
1X7EB -9.27 
2G44B -9.24 

1GWQB -9.18 
1GWRB -9.14 
1X7EA -9.13 
1PCGA -9.1 
3ERDA -9.06 
1GWQA -9.01 
2B1ZA -8.91 
2B1ZB -8.89 
1G50B -8.86 
1G50C -8.86 
2G44A -8.84 
1L2IA -8.8 

1QKUB -8.78 
2FAIB -8.76 
1EREE -8.71 
1QKUA -8.71 
1QKUC -8.63 
2B1VB -8.62 
1EREA -8.58 
1PCGB -8.56 
1EREB -8.52 
1GWRA -8.46 
1EREC -8.41 
2FAIA -8.38 
1L2IB -8.31 

1ZKYB -8.31 
1EREF -8.28 
2B1VA -8.09 

 
Table 4: Receptors and their overall minimum score.  
 
 
3.1.2. Results for Antagonist structures 
 
The same procedure as for the agonist structures has been carried out with the 

antagonist structures and here there are four receptors that have the best docking 

score for their own ligand: 1ERRA, 1SJ0A, 1XP9A and 2AYRA (Table 5). Table 6 

shows the RMSD for the antagonist structures. Once again there are ligands that lie 

side inverted in the binding pocket. 

 

 



 58 

 
                        Table 5: Docking scores for antagonist structures. 
 

 
                                   Table 6: RMSD for antagonist structures.  
 
The results for the antagonist structures also revealed a correlation between docking 

score and ligands lying correct or side inverted. Moreover there is evidence that the 

results are associated with the overall docking score minimum, as having observed 

for the agonist structures before: 

Ligand 1r5kc docked in receptors 1XQCA, 1XQCC and 1XQCD resulted in a docking 

score of under -5 kcal/mol and for receptor 1XQCB in a docking score of -3 kcal/mol. 

1XQCB is the only one which docks this ligand side inverted with a RMSD of 8.4, 

while the three others have a RMSD of 1.2, 1.3 and 1.7. Furthermore receptor 
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1XQCB has the highest overall minimum value and the highest mean value 

compared to the other ones. (Table 7 and Table 8)  

The structural analysis showed that 1XQCB has a different orientation of Met 343 

compared to the other three which orient Met 343 in a similar way. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         
 

                            Table 7                                          Table 8 
 
Table 7: Receptors and their overall docking score minimum value.  

Table 8: Receptors and their docking score mean value. 

 

3.1.3. MD-Simulations 
 
Macromolecular Systems 
 
Five different simulation systems were established, each one representing one of the 

distinct receptor conformations found among ER α structures available in the Protein 

Data Bank (PDB).  

The systems are simulated as monomer (M) and dimer (D) respectively, once with 

the ligand bound in the active site (apo (A) conformation), once without the ligand 

(holo (H) conformation), and where adequately,  with the bound coregulator peptide 

(C); no coregulator peptide (N). 
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Coordinates were taken from the best crystalstructure with the respective backbone 

conformation. Furthermore, coordinates from two PDB files have been combined in 

some cases, so that unresolved residues in one structure are resolved in the other 

one. 

Among the five systems, two were activation state conformations (act), meaning the 

protein bound to ER agonists, and two were repression state conformations (rep), 

meaning the protein bound to ER antagonists. One system was in the domain 

switched tetramer configuration (PDB code 1A52).  

 

MD Runs 

The simulations where carried out with Gromacs version 3.3 (simulation length 20ns). 

Force field: AMBER 
Protein solvatation: TIP3P water 
 

For an accurate comparison of MD-simulations and docking into PDB-crystal 

structures, for the simulations, the same settings as for the previous docking studies 

have been used. The structures have all been fitted so that their place and 

orientation is the same as for the crystal structures. This procedure has been carried 

out with the protein structure alignment tool in Maestro. Afterwards the same supplied 

x,y,z-coordinates for the respective enclosing box (agonist or antagonist) could be 

used for the simulations. 

As before the dockings have been performed with Glide SP. The settings for ligand 

docking and receptor grid generation have been the same as for the previous 

dockings. 

For comparing the ligand orientations in the MD-simulation docking study the ligand 

17beta-Estradiol from 1GWR PDB-structure has been fixed in the workspace of 

Maestro. This PDB structure was used to generate the act2 simulation system. The 

RMSD between 17beta-Estradiol from 1GWR and this ligand docked in the act2 

simulation structures has been calculated and is shown in Table 9. Again there are 

ligands that lie side inverted due to a different orientation of Isoleucine 424. 
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Table 9: RMSD of 17β-Estradiol from 1GWR and this ligand docked in the act2 

simulation structures. Ligands with a RMSD of 6 or higher lie side inverted in the 

binding pocket due to a different orientation of Ile 424. 

 

3.1.4. Conclusion 
 
Although it has been shown, that a receptor 'finds' its own ligand in only some cases, 

there is a correlation between docking score and the orientation of the ligand. A lower 

docking score is connected with lower RMSD and vice versa. Furthermore there is 

evidence that the overall docking score minimum (in case of the agonist and 

antagonist structures) and also the mean value (in case of the antagonist structures) 

can reveal specific receptors as being able to orient ligands correctly.  

In case of the agonist structures a side inverted orientation of a ligand comes from a 

different orientation of a few amino acids: Met 343, Met 421 and Ile 424. A different 

orientation of Ile 424 also leads to a side inverted orientation of 17beta-Estradiol 

docked into the MD-simulation structures. 

 
 
3.2. Cross-Docking 
 
Cross Docking refers to docking a ligand into each of the superimposed protein 

structures originally bound with other ligands in the ensemble, in other words it 

employs a protein structure with a bound ligand, but where the ligands to be 

predicted are different. [Huang2006] 

 

Cross docking has been performed with Glide SP, the settings have been the same 

as those used in the bound docking studies. 
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Molecular structures 
 
37 crystallographic agonist bound receptor structures and 20 crystallographic 

antagonist bound receptor structures from protein databank (PDB) have been used 

to perform cross docking. 

67 agonist ligands and 2570 agonist decoys (drug-like molecules- low molecular 

weight, high solubility) as well as 39 antagonist ligands and 1448 antagonist decoys 

form ZINC database (a free available database for virtual screening) have been 

docked in all agonist- and antagonist bound receptors. 

 
3.2.1. Enrichment Results: Docking of agonist- and decoy- ligands in 

agonist- receptor structures 
 
As a key objective is to find active compounds as early as possible in the ranked 

database, the enrichment plots have been visually compared and classified in three 

groups: good, bad and quite good enrichment.  
The enrichment plots show the percentage of known actives found (y-axis) versus 

percentage of the ranked database screened (x-axis). Table 10 gives the list of the 

classified receptors. Figure 13 shows the enrichment plots for all protein receptors.  

For seven receptors good enrichment has been achieved, the plots are steep 

meaning that the active compounds enrich very soon in the database. For 19 

receptors quite good enrichment has been obtained and 11 receptors show bad 

enrichment, the active compounds enrich very late in the database. 

The reason for choosing this classification, is that for receptors with good enrichment 

there might probably be one compound that binds significantly well (one top 

compound), while for the less steep enrichment plots (with quite good enrichment) 

there may be more compounds that have good affinities for these receptors. 
 
List of receptors with good enrichment: 1g50A, 1gwqA, 1gwqB, 1gwrB, 1x7eA, 
2b1zA, 2g44B 
List of receptors with bad enrichment: 1ereB, 1ereD, 1ereE, 1ereF, 1gwrA, 1x7rA, 
2b23A, 3erdA, 3erdB, 1l2iA, 2b1vB 
List of receptors with quite good enrichment: 1ereA, 1ereC, 1g50B, 1g50C, 1pcgA, 
1pcgB, 1qkuA, 1qkuB, 1qkuC, 1x7eB, 1zkyA, 1zkyB, 2b1vA, 2b1zB, 2b23B, 
2faiA, 2faiB, 2g44A, 1l2iB 
Table 10 
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Figure 13: All enrichment plots are shown. Percent of known actives found (y-axis) 

versus percent of the ranked database screened (x-axis). 

 

 

Figure 14 and 15 show the ZINC-Number versus docking score plots for the ligands 

(potential binders) and the decoys (nonbinders) respectively. With this representation 

the difference in docking score between ligands and decoys can be seen. Quite a lot 

of ligands have a docking score between -10 and -8 kcal/mol whereas the lowest 

docking score for the decoys is -8 kcal/mol. This observation suggests that for the 

ligands with docking scores between -10 and -8 kcal/mol there are no false positive 

hits, meaning decoys with a lower docking score than the ligands. 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 14: ZINC-number (x-axis) versus docking score (y-axis) for the ligands. 
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Figure 15: ZINC-number (x-axis) versus docking score (y-axis) for the decoys. 
 
 
3.2.2. Enrichment Results: Docking of antagonist- and decoy- ligands in 
agonist- receptor structures 
 
This docking study has been performed because especially competitive antagonists 

(antagonists which bind reversible and can be displaced by agonists) often bind 

partially in the agonist receptor binding site. [Höltje] 

However, for docking of antagonist- ligands and decoys in agonist bound receptor 

structures a bad performance was expected, because the ligands are often too big 

for the binding pocket of agonist receptors. Figure 16 shows the enrichment plots for 

all receptorstructures. In fact almost all structures show bad enrichment and most 

plots are very short because a lot of ligands could not dock at all. A better enrichment 

is only obtained for one structure (2B23A).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Bad enrichment for all receptorstructures; except for 2B23A (light green) a 

better enrichment was obtained. Some plots are very short because ligands could not 

dock at all. 



 65 

 
3.2.3. Enrichment Results: Docking of agonist- and decoy- ligands in 
antagonist- receptor structures 
 
Good enrichment has been obtained for 4 receptorstructures, 13 structures gave 

quite good enrichment and 3 gave bad enrichment (Table 11, Figure 16). 

 
 
List of receptors with good enrichment: 1qktA, 1r5kB, 1xp6A, 2ayrA 
List of receptors with bad enrichment: 1r5kC, 1xp1A, 1yinA 
List of receptors with quite good enrichment: 1errA, 1errB, 1r5kA, 1sj0A, 1uomA, 
1xp9A, 1xqcA, 1xpcA, 1xqcB, 1xqcC, 1xqcD, 1yimA, 3ertA 
Table 11 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
Figure 16: All enrichment plots for docking of agonist- and decoy- ligands in 

antagonist receptor structures are shown. 

 
3.2.4. Enrichment Results: Docking of agonist- and decoy- ligands in 

antagonist- receptor structures 
 

5 receptors gave good enrichment, 6 receptors gave bad enrichment and 9 receptors 

gave quite good enrichment (Table 12, Figure 17). 

 

List of receptors with good enrichment: 1r5kB, 1xp9A, 1xqcB, 1xqcD, 3ertA 
List of receptors with bad enrichment: 1errB, 1sj0A, 1xp6A, 1xqcA, 1xpcA, 1yinA 
List of receptors with quite good enrichment: 1errA, 1qktA, 1r5kA, 1r5kC, 1uomA, 
1xp1A, 1xqcC, 1yimA, 2ayrA 
Table 12 
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Figure 17: All enrichment plots for docking of agonist- and decoy- ligands in 

antagonist receptor structures are shown. 

 
3.2.5. Docking Sensitivity 

 
To see whether Glide can distinguish between receptor agonist and antagonist the 

ZINC-number (x-axis) of ligand agonists versus docking score of receptor agonist 

and antagonist (y-axis) has been plotted.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
Figure 18: ZINC-number (x-axis) versus docking scores for agonist and antagonist 

structures (y-axis). 

 
The Plot shows that no significant difference can be observed meaning that agonist 

and antagonist receptors cannot really be distinguished by the docking program.  
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The main structural difference between the two receptor types is that in contrast to 

agonist receptorstructures the antagonist receptorstructures have an opening which 

makes their bindingpockets slightly broader. However since this opening is only a 

small part of the bindingpocket-surface there will not be a big difference in the 

number and type of interactions between ligand- and receptoratoms.  

 

3.2.6. Ensemble Docking 
 
The lowest docking score of each agonist ligand and each agonist decoy has been 

used to make a further enrichment plot and to see whether this procedure gives a 

better accumulation curve or not. Figure 19 shows the enrichment plot of ensemble 

docking together with the best original ones.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19: Enrichment plot for ensemble docking is shown in purple, the single 

enrichment plots are shown in blue. 

 

As can be seen in this result, to identify the receptors where a ligand or decoy gives 

the best value and to use only these docking scores clearly makes sense.  

Ensemble docking incorporates protein flexibility which is often neglected in 

molecular docking. Local rearrangements of side chains but also domain movements 

are common in receptor conformational changes induced by ligand binding (induced 

fit). Sometimes even small changes in protein conformation can effect ligand binding 

affinity. [Huang2007] 
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3.2.7. MD-Simulations 
 
The same agonist and antagonist ligands and decoys used before have been docked 

in the MD-simulation structures and the results have been compared with those from 

the crystalstructure docking studies. Figure 20 shows the enrichment plots of both 

studies together in one plot and this revealed, that the dockings for the PDB-

structures gave better enrichment than those from the MD-simulations. This trend 

has been obtained for all simulation systems. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 20: Enrichment plots for structures from the PDB are shown in red, 

enrichment plots for structures from MD-simulations (simulation system 2DNH) are 

shown in dark green. 

 

3.2.8. Comparison with previous experimental evidence 
 

One problem in simulation techniques is that they are often too computationally 

expensive to be used for extensive sets of compounds which are common for 

biological targets. [Amaro2008] 

 
Previous studies mentioned the importance of correct treatment of solvent 

contributions. Water molecules can inhibit the flexibility of a bound ligand or they may 

even occlude potential areas of binding. Relaxed complex scheme (RCS) dockings 

have been carried out with and without cavity water molecules and the latter 

identified the best ligands. [Amaro2008] 

What has been deduced is that the consequence of introducing water molecules is a 

significant reduction of the configurational space available to the ligand. Correct 
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sampling of receptor, ligand and solvent phase space is primarily reached by more 

expensive free energy calculations. [Amaro2008] 

An important improvement would be first of all the refinements of the physical models 

describing ligand-binding thermodynamics. Secondly a more accurate description of 

the solvent contributions and the role of ligand entropy should be further investigated. 

Thirdly as already mentioned, the role of receptor flexibility is generally 

underestimated. [Amaro2008] 

One way to overcome these problems would be using a more generally 

parameterized MD-type force field to evaluate the docked complexes. This may also 

allow for increased transferability of the method to other sets of systems. 

[Amaro2008] 

A further development would also be an improved treatment of enthalpy-entropy 

compensation which should be especially considered when discussing the 

thermodynamics of proteins, ligands and nucleic acids.  

The computation of absolute entropies would be another challenge for investigation.  

[Amaro2008] 

 

A former ensemble-docking study mentioned the problem of improper consideration 

of receptor conformational changes. To overcome this problem Huang et al. 

proposed that an empirical energy correction term would have to be added. Another 

limitation is the optimization method. The problem arises from wrong predictions 

which originate from the optimization method, meaning that ligands may be trapped 

in a local minimum. Here a possible solution would be the use of a relatively global 

minimization method like genetic algorithm which means using operations similar to 

mutations and crosses. Here, the quality of the results is a function of the starting 

genes, mutations and crosses (evolutionary events) and the scoring function to pick 

favorable conformers. [Halperin2002] [Huang2007] 

 
 
3.2.9. Ensemble Docking 
 
Ensemble docking for the MD-simulation structures showed, that in the beginning of 

the accumulation curve, the plot is nearly as good as those for the single PDB-

structures. Figure 21 shows both ensemble docking plots and the single PDB-

structure plots. 
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Figure 21: MD-ensemble docking is shown in red, ensemble docking for PDB- 

structures is shown in purple and the single PDB-structure plots are shown in blue. 

 

4. Conclusion 
 

What these studies show is that one can not only identify protein receptors which 

give a better performance for docking, furthermore, with this information one can look 

for structural reasons why certain receptors give better results.  

Even small structural differences around the binding pocket of the estrogen receptor 

resulted in differences which could be measured with the refined docking programm 

Glide-XP.  

In my study it has been shown, that the structures obtained from the PDB have good 

ligand binding conformations for ligand ranking. 

Using ensembles of structures clearly gave an improved accuracy of compound 

ranking. Comparing ligand ranks with ensemble docking provides a method to pick a 

specific receptor for a virtual screen study. 

The information obtained from ensemble docking suggests that with the use of more 

MD-simulation structures it should definitely be possible to improve this method to get 

results as good as those for the crystal structures. 
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Zusammenfassung: 
 
Die wachsende Anzahl an charakterisierten molekularen Rezeptoren liefert die Basis 

für das struktur-basierte Design von aktiven Verbindungen zur Entwicklung eines 

neuen Medikamentes. Ausgehend von einer bekannten oder hypothetischen 

Wirkungsweise oder einem Bindungsmechanismus wird eine vernünftige Vorlage 

entworfen, die später experimentell getestet werden kann. 

Im Gegensatz zum experimentellen High Throughput Screening (HTS), mit dem man 

potentielle Medikament-Kandidaten in Form von chemischen Verbindungen erhält, 

liefert das sogenannte Virtual Screening (VS) einfach Computer-Treffer. 

Die Verbindungen werden auf der Basis eines verfeinerten Docking Algorithmus 

mithilfe einer approximativen Energiefunktion selektiert um sie als mutmaßliche 

Treffer zu reihen.  

 

Ein solcher virtueller Screen wird üblicherweise validiert, indem man die 

Durchführung mit bekanntlich aktiven Verbindungen, mit der gleichen Prozedur mit 

einer Serie inaktiver Verbindungen, sogenannter Köder, vergleicht. Hierbei werden 

alle Strukturen einem selektierten VS-Protokoll unterbreitet und der Rang der aktiven 

Verbindungen bezüglich der übrigen wird in Anreicherungskurven konvertiert. 

Diese Kurven zeigen, wie die Fraktion der aktiven Komponenten mit dem 

Prozentsatz der gescreenten Datenbank variiert. 

 

Estrogene sind in Wachstum, Entwicklung und Homöostase von diversen Geweben 

involviert. Sie betätigen diese physiologischen Effekte über den Estrogen Rezeptor 

der mit Krankheiten wie Brustkrebs, Osteoporose, neurodegenerativen und 

kardiovaskulären Krankheiten sowie Fettleibigkeit assoziiert ist. 

 

In dieser Studie wurde der Estrogen Rezeptor für eine Serie von Docking Studien 

verwendet. Es wurden Agonist- und Antagonist Strukturen benutzt sowohl aus der 

Protein Daten Bank (PDB) als auch aus Moleküldynamik-Simulationen. 

In der ersten Studie wurden die einzelnen Liganden der Rezeptoren in die 

Rezeptoren zurückgedockt, eine Methode die man als ‚Bound Docking’ bezeichnet.  

Ein besserer Dockingwert wurde für jene Liganden erhalten die in einer korrekten 

Orientierung gedockt haben und vice versa. 
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In der zweiten Studie wurden Liganden und Köder in die Rezeptoren gedockt um 

festzustellen ob die Durchführung dazu fähig ist, potentielle Binder an den Beginn 

einer Rangliste zu setzen. Die Resultate wurden mit Anreicherungskurven validiert. 

Das Resultat ergab bessere Ergebnisse für die PDB-Strukturen als für die 

Moleküldynamik-Simulationsstrukturen. 

Im letzten Schritt wurde Ensemble-docking durchgeführt was bedeutet, dass für 

jeden Ligand und jeden Köder gedockt in alle Rezeptoren nur der beste Dockingwert 

verwendet wurde. Für beide Systeme, PDB-Strukturen und Moleküldynamik-

Simulationsstrukturen wurden bessere Resultate mit Ensemble-docking erhalten. 

Für letztere Strukturen ergab Ensemble-docking ein Resultat das fast so gut war wie 

jenes für die einzelnen PDB-Strukturen.  
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