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Abstract

With the emergence of multi-core processors in the consumer market, parallel computing is

moving to the mainstream. Currently parallelism is still very restricted as modern consumer

computers only contain a small number of cores. Nonetheless, the number is constantly increas-

ing, and the time will come when we move to hundreds of cores.

For software developers it is becoming more difficult to keep up with these new develop-

ments. Parallel programming requires a new way of thinking. No longer will a new processor

generation accelerate every existing program. On the contrary, some programs might even get

slower because good single-thread performance of a processor is traded in for a higher level of

parallelism. For that reason, it becomes necessary to exploit parallelism explicitly and to make

sure that the program scales well.

Unfortunately, parallelism in current programming models is mostly based on the “assembler

of parallel programming”, namely low level threading for shared multiprocessors and message

passing for distributed multiprocessors. This leads to low programmer productivity and erro-

neous programs. Because of this, a lot of effort is put into developing new high level programming

models, languages and tools that should help parallel programming to keep up with hardware

development. Although there have been successes in different areas, no good all-round solution

has emerged until now, and there are doubts that there ever will be one.

The aim of this work is to give an overview of current developments in the area of parallel

programming models. The focus is put onto programming models for multi- and many-core

architectures as this is the area most relevant for the near future. Through the comparison of

different approaches, including experimental ones, the reader will be able to see which existing

programming models can be used for which tasks and to anticipate future developments.





Zusammenfassung

Mit dem Auftauchen von Multicore Prozessoren beginnt parallele Programmierung den Massen-

markt zu erobern. Derzeit ist der Parallelismus noch relativ eingeschränkt, da aktuelle Prozes-

soren nur über eine geringe Anzahl an Kernen verfügen, doch schon bald wird der Schritt zu

Prozessoren mit Hunderten an Kernen vollzogen sein.

Während sich die Hardware unaufhaltsam in Richtung Parallelismus weiterentwickelt, ist es

für Softwareentwickler schwierig, mit diesen Entwicklungen Schritt zu halten. Parallele Program-

mierung erfordert neue Ansätze gegenüber den bisher verwendeten sequentiellen Programmier-

modellen. In der Vergangenheit war es ausreichend, die nächste Prozessorgeneration abzuwarten,

um Computerprogramme zu beschleunigen. Heute jedoch kann ein sequentielles Programm mit

einem neuen Prozessor sogar langsamer werden, da die Geschwindigkeit eines einzelnen Prozes-

sorkerns nun oft zugunsten einer größeren Gesamtzahl an Kernen in einem Prozessor reduziert

wird. Angesichts dieser Tatsache wird es in der Softwareentwicklung in Zukunft notwendig sein,

Parallelismus explizit auszunutzen, um weiterhin performante Programme zu entwickeln, die

auch auf zukünftigen Prozessorgenerationen skalieren.

Die Problematik liegt dabei darin, dass aktuelle Programmiermodelle weiterhin auf dem

sogenannten
”
Assembler der parallelen Programmierung“, d.h. auf Multithreading für Shared-

Memory- sowie auf Message Passing für Distributed-Memory Architekturen basieren, was zu

einer geringen Produktivität und einer hohen Fehleranfälligkeit führt. Um dies zu ändern, wird

an neuen Programmiermodellen, -sprachen und -werkzeugen, die Parallelismus auf einer höheren

Abstraktionsebene als bisherige Programmiermodelle zu behandeln versprechen, geforscht. Auch

wenn bereits einige Teilerfolge erzielt wurden und es gute, performante Lösungen für bestimmte

Bereiche gibt, konnte bis jetzt noch kein allgemeingültiges paralleles Programmiermodell entwi-

ckelt werden - viele bezweifeln, dass das überhaupt möglich ist.

Das Ziel dieser Arbeit ist es, einen Überblick über aktuelle Entwicklungen bei parallelen

Programmiermodellen zu geben. Da homogenen Multi- und Manycore Prozessoren in nächster

Zukunft die meiste Bedeutung zukommen wird, wird das Hauptaugenmerk darauf gelegt, in-

wieweit die behandelten Programmiermodelle für diese Plattformen nützlich sind. Durch den

Vergleich unterschiedlicher, auch experimenteller Ansätze soll erkennbar werden, wohin die Ent-

wicklung geht und welche Werkzeuge aktuell verwendet werden können.
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Chapter 1

Introduction

In 1965 Gordon Moore first observed that the number of circuits on microprocessors had dou-

bled roughly every two years, and he predicted that this trend would hold on for at least some

time [Moore, 1965]. Moore’s law, which is how this prediction is called today, still holds true.

Until the year 2002, the exponential increase in processor density was accompanied by an expo-

nential increase of processor performance, due to increased clock-rates of computer processors.

Unfortunately, this is not the case any more.

One reason for this is the, so called, power wall, a phenomenon coming from a cubic re-

lationship between power consumption and the processor clock rate. Partly, the rising power

consumption can be countered by decreasing the size of the integrated circuits. The problem

is that, as the size decreases, the power leakage rises. Parallel computing has the advantage of

increasing theoretical processor throughput without increasing the clock rate, which means that

power consumption does only increase with die size.

Another problem, apart from the power wall, is that memory latency does not decrease and

the bandwidth does not increase at the same rate as the processor speed increases. This means

that memory access becomes a bottleneck, and processors spend a large amount of time waiting

for data. While once memory access was cheap, it can now take a few hundred cycles to fetch

data from memory. Therefore, a lot of effort is put into caching and prefetching to reduce the

negative effects of the memory wall. [Wulf and McKee, 1995]

For some time instruction level parallelism (ILP) has been seen as a solution for increasing

processor performance. For ILP to work efficiently with long pipelines, complex branch predic-

tion and speculative execution techniques were needed. Unfortunately, the gains from ILP are

limited as the time lost to pipeline stalls increases with pipeline length. After a certain point it

is impractical to enhance branch prediction and speculative execution to reduce pipeline stalls

because of increasing processor complexity and power usage. This phenomenon is called the ILP

Wall [Asanovic et al., 2006].

[Asanovic et al., 2006] formulates the dilemma created by these three “walls” as: “Power

Wall + Memory Wall + ILP Wall = Brick Wall”. This means that through these effects the

increase of serial performance is diminishing.
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6 CHAPTER 1. INTRODUCTION

The only known way to overcome this dilemma is to introduce parallelism. On parallel

platforms the performance of a single processing unit is sacrificed in favour of a higher number

of processing units. This allows to overcome the power wall by increasing the theoretical peak

performance without increasing power consumption. The memory wall can be overcome by

ensuring a parallel workload which is high enough. When a thread stalls because of a memory

access, the processor can meanwhile switch to execute another thread until the data is delivered.

1.1 Amdahl’s and Gustavson’s law

Using parallelism to increase program performance is actually not a new idea, only that for a

long time exploitable parallelism was thought to be limited. This was first stated by Gene M.

Amdahl in [Amdahl, 1967]. The central point of Amdahl’s argument, which is often referred to

as “Amdahl’s law”, is that the speedup of a parallel application is always limited by the serial

portion. This is demonstrated by the following formula:

Speedup =
1

rs +
rp

n

(1.1)

If we increase the number of processors (n) to infinity, the maximum achievable speedup is
1

rs
, where rs denotes the sequential portion of the code. As an example, a program with a serial

portion of ten percent would have a maximum possible speedup of 10.

Later on “Amdahl’s law” was often criticized. The best known argument against it was

thought up by John L. Gustafson in [Gustafson, 1988]. He noticed that faster processors were

generally not used to calculate the same problems in less time, but to solve larger problems while

keeping the run-time constant. Interestingly, for most scientific problems the serial portion stays

the same when increasing the problem size, whereas the parallel portion grows larger. Thus,

when fixing the run-time instead of the problem size we get the following formula:

Scaled speedup = n + (1 − n) ∗ rs (1.2)

In this case, linear speedup is achieved, which is what is desired. This argument is often called

“Gustafson’s law”

Certainly, there are also problems that are difficult or even impossible to parallelize. However,

when we hit the three “walls” described in Section 1, the question is not about getting linear

speedup anymore but about getting any speedup at all. Parallelism seems to be the only way

to achieve it.



Chapter 2

Architectures

2.1 Shared memory architectures

In shared memory architectures multiple processors share a global address space. Shared mem-

ory architectures allow for convenient parallel programming models as data can be accessed from

any processor. Coordination between processes can be done via shared variables. Shared mem-

ory architectures can be categorized into Uniform Memory Access (UMA) and Non-Uniform

Memory Access (NUMA) architectures. In UMA architectures memory accesses by all proces-

sors have the same latency. On the other hand, in NUMA architectures this restriction is taken

away, and each processor has its own local memory, which can be accessed faster than remote

memory. A problem with NUMA architectures is that the difference between local and remote

memory is usually not reflected in the shared memory programming model. This can introduce

some inefficiencies.

As memory accesses are slow in general, modern CPUs have a hierarchy of caches that is

used to reduce latency for subsequent accesses to memory pages. Typical consumer processors

nowadays have two or three levels of cache where level 1 cache is nearest to the processor but

has only little capacity. In most cases level 1 and level 2 caches are exclusive for each processor.

This generates the problem of having to maintain coherency between caches, which ensures that

as soon as a processor modifies a memory location, the corresponding cache lines of all other

processors are invalidated. An overview over different cache coherency protocols can be found

in [Archibald and Baer, 1986].

One problem that can limit scalability of cache-coherent systems is false sharing. It comes

from the fact, that coherency is not maintained for single bytes, but for cache lines. (The line

size is dependent on the processor architecture.) This can lead to processors competing for

exclusive access to the same cache line even if they access different memory locations.

Shared memory architectures are widely used as most personal computers sold today contain

a multi-core processor. The roadmaps of all major processor vendors show that the number of

cores on a chip is going to increase in the next years. This means that multi-core processors

will be the main source of parallelism on shared memory architectures in the near future. Si-

7



8 CHAPTER 2. ARCHITECTURES

multaneous Multithreading (SMT ) is a special type of shared memory architecture. An SMT

processor provides hardware support for a given number of threads to increase the utilization

of the processor’s functional units and to reduce pipeline stalls. More information about SMT

can be found in [Tullsen et al., 1995]. Another type of shared memory architecture is Sym-

metric Multiprocessing (SMP), where multiple processors are built into one machine. With

multi-core processors the importance of SMP is decreasing. When the limits of shared memory

architectures are reached, SMP architectures might completely disappear in favour of multi-core

architectures.

2.1.1 Memory consistency

In order to enable the writing of correct parallel programs on shared memory architectures,

some guarantees concerning memory semantics have to be given to the programmer. A formal

specification of memory semantics [Adve and Gharachorloo, 1996] is called a memory consistency

model. If a programmer follows the rules of a memory consistency model it is guaranteed that

the results of all memory operations are predictable and that the memory itself is consistent.

The easiest way to achieve memory consistency is through the sequential consistency model.

In sequential consistency, all memory operations in a code block have the same semantics as

in a sequential program. Although this consistency model would also be the most intuitive

for programmers, it is not supported in most modern parallel systems. The reason is that

sequential consistency restricts the use of many performance optimizations that are commonly

used in processors and compilers. One example of such an optimization is latency hiding where

high-latency read operations are moved before other memory operations to reduce the time lost

waiting for the data.

Therefore, most compilers and processors only support relaxed memory consistency nowa-

days. [Adve and Gharachorloo, 1996] describes some relaxed memory consistency models: relax-

ing the Write to Read order, relaxing the Write to Read and Write to Write program orders,

weak ordering, release consistency and the models used in the Alpha, RMO and PowerPC ar-

chitectures.

Figure 2.1: How a write buffer can violate sequential consistency. (Source: [Adve and Ghara-
chorloo, 1996])
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Relaxing the Write to Read program order

Relaxing the program order constraints to allow reordering of Write operations in respect to

Read operations to different memory locations allows the use of some optimizations. Figure

2.1 shows an optimization where a write buffer with bypassing capability is introduced. Write

operations are issued to the write buffer, and the processor does not wait for the write operation

to complete. In the program in Figure 2.1, which depicts Dekker’s algorithm [Dijkstra, 1965],

sequential consistency is violated as the read operations can execute before the write operation

completes. In a sequentially consistent system it is not possible that both read operations return

zero, and so the critical section can only be executed by one processor. This assumption does

not hold true when the Write to Read program order is relaxed.

Relaxing the Write to Read and Write to Write program orders

Allowing the reordering of Write operations with respect to other Write operations to different

memory locations in addition to the relaxation of the Write to Read order, enables optimizations

through pipelining or overlapping of writes. Figure 2.2 shows an example where this kind of

optimization can lead to problems: If the write operation to the variable Head completes before

the write to Data, it can happen that the second processor reads out the old value of Data.

Figure 2.2: How overlapped writes can violate sequential consistency. (Source: [Adve and Ghara-
chorloo, 1996])

Relaxing the order between all data operations

Some memory consistency models go even further by relaxing the order between Read operations

and a following Read or Write operation. This relaxation allows further optimization as Read

operations can be executed in a non-blocking manner. The problems with this optimization are

depicted in Figure 2.3. It uses the same code as Figure 2.2 but this time we assume that we

only optimize by allowing non-blocking reads. In this case, the second processor may read the

variable Data before it has been written by the first processor.

To overcome the problems created by relaxing the order of data operations, relaxed con-

sistency models typically provide some form of fence statement. A fence statement creates a
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reordering barrier that allows to specify which statements have to be sequentially consistent.

Some models, like the Weak Ordering and the Release Consistency models, which are described

below, add additional semantics that makes it easier to ensure consistency.

Figure 2.3: How non-blocking reads can violate sequential consistency. (Source: [Adve and
Gharachorloo, 1996])

The Weak Ordering model

In the Weak Ordering (WO) model, operations are classified into data operations and synchro-

nization operations. There are no reordering restrictions between data operations. When a

synchronization operation is issued, the processor has to make sure that all previous operations

have been completed before it is processed. Moreover, no operations are issued until the previous

synchronization operation completes.

Release Consistency

Release Consistency is a more fine-grained model than Weak Ordering as it uses a hierarchical

model of operations. On the top level, operations are distinguished between special and ordinary

operations. Special operations roughly correspond to synchronization operations in the Weak

Ordering model, whereas ordinary operations roughly correspond to data operations. In Release

Consistency special operations are further distinguished into sync and nsync operations. Nsync

operations correspond to asynchronous data operations or other special operations that are not

used for synchronization. Sync operations are further distinguished into acquire and release

operations. An acquire operation is a read operation used to gain access to a set of shared

locations, as, for example, a lock operation. A release operation is a write operation used to

grant permission for access to a shared location. There are two variants of Release Consistency

which differ in the program order that is enforced between the operations. They are described

in more detail in [Adve and Gharachorloo, 1996].
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2.1.2 Difficulties

Although they are relatively easy to program, shared memory architectures are not without

problems. One major problem is that maintaining cache coherency and memory consistency

does not scale well for a large number of processors. This puts an upper limit to the number of

processors in a shared memory system. In fact, current supercomputers only use shared memory

inside computation nodes, but not on the large scale. Another problem is that shared memory

programming models are currently not able to express locality of memory, which can help to

provide better efficiency on NUMA architectures. On the other hand, UMA architectures, where

a concept of locality is not needed, are very difficult to implement efficiently for a larger number

of processors. This means that in the future NUMA architectures will become dominant.

2.2 Distributed memory architectures

In distributed memory architectures each processor has its own local memory that it operates

on. Communication between processes is typically done via messages. To be able to operate on

a remote memory location, a processor first has to retrieve the data in it and copy it into local

memory. Distributed memory systems provide better scalability compared to shared memory

architectures. The main reason for this is that shared memory architectures usually use a bus

topology for inter-processor communication, whereas network topologies are used in distributed

memory systems. Another reason is the overhead created by memory consistency and cache

coherency protocols, which increases with the number of processors. In fact, there are no more

shared memory systems in the Top500 list of supercomputing sites today (see [Top, 2009]).

Unfortunately, the good scalability of distributed memory architectures comes at the price

of difficult programmability. As communication between processors is costly, the programmer

needs to ensure that each processor has the data it needs in its local memory so that only little

communication is necessary. Some programming models like HPF, Chapel and X10 have tried to

abstract part of this away by automatically distributing the data according to patterns specified

by the programmer. This is described in more detail in Chapter 4.

Distributed architectures exist on different scales. They differ in the type of interconnect

between computation nodes. Depending on the problem and the machine it is run on, the

latency and bandwidth of the interconnect can become the limiting factors for scalability.

2.3 Modern cluster architectures

As both shared and distributed memory architectures have their advantages, they are often

combined in modern cluster architectures. Modern clusters consist of distributed memory nodes,

where each node is a shared memory system. For the purpose of this work we will primarily

focus on homogeneous clusters, where all nodes consist of identical hardware.

An example of a modern cluster architecture is depicted in Figure 2.4. This example cluster

consists of four shared-memory nodes, where each node contains four dual-core processors. These
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nodes are connected with each other using a mesh topology, which means that each node has a

direct link to each other node. Please note that the mesh topology is only practical for a small

number of nodes.

Figure 2.4: Example of a modern cluster architecture.

Cluster architectures add additional complexity to parallel architectures, as there is a distinc-

tion between parallelism inside each node and parallelism on the cluster level. For a program to

efficiently utilize such an architecture, it has to be aware of the architecture. For example, tasks

that have to do a lot of communication with each other should be placed inside a shared mem-

ory node, whereas tasks with little communication among each other could be put on different

nodes.

When combining distributed memory architectures with shared memory architectures, there

is also a discrepancy between the programming models that can be used. The programmer either

has to use a distributed memory programming model for the whole program or he can combine

two programming models like MPI and OpenMP instead, where one programming model is used

for the distributed memory level and the other is used for shared memory parallelism.

Being able to efficiently utilize modern cluster architectures is one of the most challenging

tasks. Cluster architectures are already very common, therefore it is necessary for programming

models to be able to utilize them.

2.4 Heterogeneous architectures

Shared memory as well as distributed memory architectures have one thing in common: They

are both based on the idea that all processors in a system are homogeneous. Over time it

has become clear that for some tasks it can be an advantage to use specialized processors

instead of general purpose ones. Architectures mixing conventional processors with specialized

ones are often called heterogeneous architectures. Throughout this work the term heterogeneous

architectures always refers to such architectures.

Especially accelerator cards for cryptography and graphics processing have become popular
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over time. As the requirements in graphics processing rose, graphics processors (GPU ) be-

gan to support more programmability, which led to the creation of General Purpose Graphics

Processing Units (GPGPU s). GPGPUs are processors that are optimized for computationally

demanding highly parallel tasks with little control code. Such tasks cannot only be found in

image processing, but also in other fields like molecular biology or physics. More information

about graphics processors can be found in [Blythe, 2008].

Another approach to heterogeneous architectures, where accelerator units are put directly

on a processor, was realized by IBM in the Cell Processor. The Cell Processor is a heterogeneous

multi-core processor that consists of one general purpose core called the PowerPC Processing El-

ement (PPE ) and eight specialized accelerator cores called the Synergistic Processing Elements

(SPE s).

Both approaches, the GPGPUs and the Cell Processor, have in common that they force the

programmer to explicitly decide which code is to run on which processor. Standard shared mem-

ory processors provide cache coherency and memory consistency in their shared address space

and are typically used to implement the control logic of the program. Specialized processing

units, on the other hand, are used as accelerators for computationally intensive tasks.

Heterogeneous architectures add another level of complexity to existing architectures. They

provide a high theoretical peak performance at the cost of additional complexity for the pro-

grammer. Especially in combination with modern cluster architectures they can become very

challenging to program. It has yet to be shown how this complexity can be handled.



Chapter 3

Concepts

Programming of parallel applications provides additional complexity compared to serial pro-

gramming. This section presents some parallel computing concepts that are relevant for the

application programmer. Chapter 4, which gives an overview over parallel programming mod-

els, shows how these concepts are supported in different programming models.

3.1 Locality of reference

Although computer programs might require large amounts of memory, they only access a rela-

tively small amount of it at any instant of time. This property allows modern virtual memory

systems to create the illusion of large amounts of fast memory by making sure that memory

locations which will be used in the near future are stored in caches. The difficulty is, of course,

to predict which memory locations will be accessed in the near future. This is done using the

locality principle.

There are two types of locality:

1. Temporal locality : Memory locations that are referenced are more likely to be referenced

again in the near future.

2. Spatial locality : Memory locations near a referenced memory location are likely to be

referenced too.

Modern computer architectures take advantage of the locality principle to implement cache

hierarchies. Caches provide quick access to some memory locations, but are very restricted in

size. When a referenced memory location is not available in a cache, a whole memory line is

fetched and stored in the cache. If the cache is full, one line is chosen to be replaced using

a specific strategy (e.g. least recently used). Temporal locality is used in caches, as memory

locations that are referenced are kept in the cache for future accesses. Caches also make use of

spatial locality, as whole cache lines are fetched, not only the referenced memory location.

In parallel systems, the locality principle can be used to predict which processor will access

which memory location. On shared memory systems, each processor has its own memory hier-

14
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archy, and cache coherence protocols ensure that cache lines are invalidated as soon as another

processor modifies them. Page migration strategies can be used to migrate memory pages from

one processor to another if the other processor accesses them more frequently. [Nikolopoulos

et al., 2000] This can reduce memory access latency in some programs.

One common problem with caching is thrashing, which is a situation where system perfor-

mance degenerates. [Denning, 2005] Thrashing can for example occur when multiple memory

locations compete for the same line in memory so that both processor’s caches are invalidated all

the time. This can even happen if each processor works on different memory locations, as long

as these memory locations are in the same cache line. This is called false sharing. [Patterson

and Hennessy, 2008, p468ff.]

3.2 Work distribution

For a program to be able to run in parallel, it has to be decomposed into computationally

independent work units that are then distributed onto different processors. In general, such a

work distribution may either be derived from task or from data parallelism.

When deriving a work distribution from task parallelism, a problem has to be broken down

into independent tasks. Those tasks do not necessarily have to be completely independent, as

long as managing the dependencies only uses little time compared to the runtime of the tasks.

On one side this can be achieved by allowing computationally independent kernels to run in

parallel. Such tasks are easy to find, but can only provide minimal gains, as the number of such

tasks is limited and does not scale with the problem size.

Fortunately, other types of task decomposition scale better. For example, distinct calls to a

function can be mapped to tasks. This approach works especially well for recursive problems,

like the divide and conquer class of algorithms, but can also be used in a variety of other settings.

The Cilk programming language described in Section 4.1.3 is focused on such a functional

decomposition as primary source of parallelism. Another source of task parallelism can be found

in computationally independent loop iterations, where each iteration can be seen as a separate

task. Most parallel programming languages provide some kind of parallel loop directives that

allow to execute loop iterations in parallel. As the number of iterations often exceeds the number

of processors, different strategies exist for how the iterations can be mapped onto processors.

Figure 3.1 shows standard strategies that are often used.

In many cases, the most computationally intensive part of a program revolves around com-

putations on, or manipulations of, a large data structure. In such programs, similar operations

are executed for each element of the data structure. The goal of data decomposition is to split a

data structure into multiple parts, which are then operated on by parallel tasks. As an example,

a matrix may be split into submatrices, and each task can work on one of these submatrices.

This type of decomposition has been used for one of the matrix multiplication kernels used for

the experiments in the context of this work. It is described in more detail in Chapter 5.

Whether task or data decomposition should be used to parallelize an application, depends
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(a) cyclic distribution

(b) block distribution

(c) block-cyclic distribution

Figure 3.1: Different types of loop distribution.

on the problem. For problems revolving around large data structures, data decomposition

often has the advantage of having less data dependencies compared to a solution based on task

decomposition. In distributed memory settings this becomes even more relevant, as the data

is typically distributed onto different nodes. Therefore, the work distribution is often directly

derived from the data distribution to minimize the communication overhead.

Often, task and data decomposition are not used on their own, but instead they are combined

to be able to expose more parallelism. The programmer starts by using one of these patterns,

and then further splits up tasks using the other pattern. A special case of such a combination can

be found in pipelining. It allows working around problems with operations that are dependent

on the results of previous computations. Analogous to an assembly line, data resulting from one

operation is passed to sequentially dependent operations. The advantage is that a dependent

task does not have to wait until the previous task has finished its work on all data, but it can

start after a small latency instead. Figure 3.2 shows how a pipeline operates: In the first step,

pipeline stage 1 works on the data element C1. In the second step, C1 is processed by pipeline

stage 2 and pipeline stage 1 works on C2. At step 4, the pipeline is filled completely and can

operate at its full speed. The figure shows that a pipeline needs a few steps at the beginning

to achieve full concurrency. At the end of a computation, concurrency decreases again until the

pipeline is emptied. To minimize the negative effect on performance by filling and draining the

pipeline, the number of pipeline stages should be small compared to the amount of processed

data.

In general, pipelines increase the throughput of data by reducing the run-time per piece of

data from the time needed to calculate the whole pipeline to the time needed for the longest

pipeline stage. This means that for good performance of a pipeline, it is necessary to make the

pipeline stages equally long. Wherever possible, non-deterministic stages should be avoided.

Especially stages that might invalidate data following in the pipeline can be limiting to average
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Figure 3.2: Operation of a pipeline. (Source: [Massingill et al., 2005])

throughput and might even make performance worse than in a design without a pipeline. Most

modern computer processors use some form of Instruction level parallelism (ILP), which is

realized using a pipeline for processing instructions. The possible gains through the use of ILP

are limited though, as the results of conditional statements cannot be determined before they

are actually executed. Therefore, the pipeline can not always be completely filled. [Massingill

et al., 2005]

3.3 Data distribution

A problem relevant primarily for distributed memory architectures is data distribution. Algo-

rithms in scientific applications often operate on large arrays. For these arrays it has to be

decided how they are distributed between distributed memory nodes to minimize the commu-

nication demand between nodes. Replication of complete arrays is only an option in rare cases,

as it increases the memory demand of an application. In most cases data is distributed over

computation nodes by a specific pattern. Depending on the algorithm, different patterns might

provide good efficiency. Work distribution for an algorithm is often derived then from the data

distribution to minimize communication demand.

Data distribution is usually less relevant for shared memory architectures. However, for

NUMA architectures, a good memory layout may help to optimize an algorithm by reducing

the number of remote memory accesses. As the latency for remote memory accesses in NUMA

architectures is lower compared to distributed memory architectures, manual data distribution

is not the only way to achieve efficient data layout. [Nikolopoulos et al., 2000] describes how

performance similar to manual data distribution can be achieved for some applications with page

migration strategies. Still, manual data distribution can reduce the number of false sharing sit-

uations compared to page migration strategies, and, therefore, reduce problems with thrashing.

In general, to distribute a data structure onto multiple processors, its index space has to

be split up into multiple sub-spaces that can be mapped to different processors. This process

is called domain decomposition. As an example, a simple form of domain decomposition is the
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cyclic decomposition where indices of the domain of the data structure are mapped to indices

in the processor array in a cyclic fashion. Figure 3.3 shows an example where a 4x4 matrix is

mapped onto a 2x2 array of processors using cyclic decomposition. A more complex example of

a domain decomposition can be found in [Chapman et al., 1992].
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Figure 3.3: Mapping of a 4x4 matrix onto a 2x2 processor array using cyclic domain decomposi-
tion.

In low-level parallel programming models like MPI, the programmer has to do domain de-

composition manually and to explicitly write communication code for remote memory accesses.

Because of the complexity of doing this, research has been done to provide a high-level in-

terface for data distributions. The programmer should only need to specify the kind of data

distribution that should be used for a data structure, and the compiler and run-time should

automatically map global array indices to processors and provide implicit communication where

needed. One of the first programming languages supporting such structures was Kali [Koelbel

and Mehrotra, 1991]. This approach has been developed further in High Performance Fortran

(HPF ) [Loveman, 1993], which is described in Section 4.2.2. Although HPF itself was not suc-

cessful commercially, its approach to data distribution has been refined and is now used in some

experimental programming models like Chapel and X10.

3.4 Synchronization and Communication

In typical parallel programs, some type of coordination and exchange of data is necessary.

In distributed memory settings, this is typically realized with communication primitives that

allow for explicitly sending messages and data from one node to another. In shared memory

environments, exchange of data is not necessary as each processor has complete access to data in

the shared memory. Instead, synchronization is important on shared memory machines, which

is essential to ensure consistency of shared data and can also be used as a means to coordinate

computations. Some typical synchronization and communication constructs will be described in

the following paragraphs.

3.4.1 Synchronization

Race conditions

Non-deterministic sections of a program that can lead to an erroneous program behaviour are

called race conditions. [Netzer and Miller, 1992] defines two types of race conditions: data or
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atomicity race and general or determinacy race.

A data or atomicity race results in a critical section not being executed atomically due to

improper synchronization, which can lead to an improper update of a shared variable. All other

race conditions are called general races. (Sometimes they are also called determinacy races.)

A typical example of a general race occurs when a specific order should be enforced between

operations, and the order is not correctly enforced.

Mutual exclusion

A lock or mutual exclusion is a resource that can be exclusively acquired by one thread. When

one thread holds a lock, no other thread can acquire it. Locks can be used to coordinate

accesses to critical sections by only allowing a thread that holds a specific lock to process the

critical section. Some programming models, like OpenMP, provide higher-level constructs to

define critical sections. Additionally, locks are often used to limit access to a shared resource

by requiring a thread to acquire a lock before doing certain operations on the shared resource.

When multiple locks are combined, more complex lock semantics is possible, as, for example a

read-write lock that allows an arbitrary number of read accesses at the same time but ensures

that no other thread reads or writes the resource as soon as one thread has locked it for writing.

Some programming models, like Threading Building Blocks, have built-in support for read-write

locks.

Mutual exclusion is only relevant in shared memory settings, as there are no shared resources

in distributed memory environments.

Barriers

A barrier is a high-level synchronization construct used to suspend the execution of threads at

a certain point in the code until it is reached by all threads. This construct is typically used

to make sure a calculation has been completed before doing some processing on the results.

Barriers are relevant in shared memory as well as in distributed memory settings.

Transactional Memory

The concept of transactions originally comes from the database community [Gray and Reuter,

1993]. A transaction provides atomic execution of a critical section and ensures that changes

on variables performed during execution of the section become visible after the transaction has

been completed successfully. Transactional memory can be implemented with either optimistic

or pessimistic concurrency control. In optimistic concurrency control, a transaction is executed

and it is assumed that no conflict occurs. If a conflict occurs, one of the conflicting transactions

is aborted and rolled back. In pessimistic concurrency control, exclusive access to a resource is

acquired before it is modified. In this case transactions are only rolled back when a deadlock

occurs. Transactional memory can either be implemented entirely in software or with hardware
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support. Software transactional memory systems have not been able yet to deliver good perfor-

mance because of the high overhead created by transactions. Hardware transactional memory

systems can reduce the overhead. [Larus and Kozyrakis, 2008]

3.4.2 Communication

Although they can also be used in shared memory environments, communication primitives are

primarily relevant in distributed memory settings. Communication primitives can be divided

into basic communication primitives and collective communication primitives.

The simplest possible communication primitive is point-to-point communication, which is

the basic communication primitive primarily used in MPI. In point-to-point communication

one process sends data and the other process actively receives the data and processes it. The

difficulty with this approach is that both the sending and the receiving process have to be actively

involved in the communication process, so both need to know when the communication has to

take place. This can become a problem in programs with irregular communication patterns.

In general, developing algorithms using point-to-point communication is difficult and error-

prone. One-sided communication helps to avoid some problems, like starving receiver processes,

by allowing a process to write directly into the memory of another process without requiring

involvement of the process on the receiving node. One-sided communication is the primary

mode of communication in Partitioned Global Address Space (PGAS) languages and support

for one-sided communication has also been added to MPI 2.0. [Bell et al., 2006]

Collective communication primitives represent a kind of synchronization point where a group

of processors exchanges data. Examples of collective communication primitives include gather

and scatter, where an array is gathered from or scattered to all nodes, and broadcasts, where one

message is sent to all nodes. These primitives are generally only relevant for distributed memory

setups. Barriers, which have already been described as synchronization primitives, can also be

seen as a collective communication primitive. Collective communication primitives can often

benefit from different, sometimes architecture dependent optimizations. Unfortunately there

also exist some collective communication primitives that do not scale well to large numbers of

processors, which has been shown in [Balaji et al., 2009].

Although in theory it would be possible to simulate communication primitives in a shared

memory environment, this is seldom done in practice. Of higher interest for shared memory

environments are reduction operations. A reduction operation processes data elements and

combines them to a smaller amount of data using a binary operator. Associative and commuta-

tive operators are usually used for this kind of operation. Figure 3.4 exemplifies reduction with

the summation operator over a sixteen-element array that is distributed to four nodes: First,

the array is reduced inside each node. This is usually done by using a sequential algorithm.

Then the local sums of the nodes are further reduced until one global sum has been calculated.

Reduction between nodes is usually based on a tree-based algorithm as in Figure 3.4, which can

be used for associative reduction operators.
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Figure 3.4: Calculating the sum of an array with a reduction operation.

3.5 Views on data

In parallel computing usually a distinction is made between global and local views on data. A

global view is a consistent view of shared data that is accessible by all processors, whereas a

local view is a specific processor’s view on data. The local view contains variables private to a

specific processor and may also contain copies of shared variables that are synchronized with the

global view every time a synchronization operation is issued. In shared memory environments,

the local view of a global variable typically corresponds to the value that can be found in the

caches or registers of a processor. In some distributed memory environments, like the PGAS

group of programming models, the global view on data is the view of the owner of the variable,

whereas the local view is a cached copy at some other processor. Some distributed memory

programming models, such as MPI, only provide a local view on data.

For arrays, the distinction between global and local views is also often made in distributed

memory setups where the array is distributed between nodes. In this case the global view of an

array corresponds to the complete array, whereas the local view corresponds to the part of the

array that is local to the processor. In programming models where the programmer explicitly

operates on the local view of an array, array indices have to be translated between indices in

the global view and indices in the local view. Accesses to non-local parts of the array have

to be specified explicitly and complicate the code. High-level parallel programming models for

distributed memory architectures often try to abstract away the distinction between the global

and the local view on an array. The difficulty of this approach is the high complexity of doing

this abstraction efficiently.



Chapter 4

Programming Models

One of the major problems in parallel programming is the trade-off between programmer pro-

ductivity and program performance and scalability. Unlike sequential programming, where

high-level abstractions have allowed to increase productivity and where efficient compilers ex-

ist, most of parallel computing is still being done through multithreading and message passing.

Programs where performance is not essential are often still written sequentially. Hence, the gap

between the performance possible with modern parallel systems and the actual utilization of it

is widening. [Hofstee, 2009]

For parallel programming to be adopted in the mainstream, high level programming models

are necessary. Still, they need to deliver speedup for most applications, and make sure that

applications do not get slower when executed on a higher number of processors. Unfortunately,

these goals are still far away.

This chapter describes which established programming models exist and what their limits are.

Additionally, it discusses some experimental new high level programming models. Some high-

level programming models, namely OpenMP, Cilk++, Threading Building Blocks, Chapel and

X10, are described in more detail and compared based on four criteria. The criteria are support

for data distribution, support for work distribution, the memory model and the coordination

primitives provided by the programming model. These programming models have also been

used for the experiments described in the next Chapter.

In the analysis of the support for data distribution each programming model is looked at with

regard to how data can be split up to be processed in parallel. It is evaluated how different types

of data distributions are supported and how the programming model can help to access data in

an efficient manner. In [Nikolopoulos et al., 2000] it has been shown that for NUMA architectures

a good data distribution between processors does not necessarily have to be implemented on

the language level to achieve good performance, because dynamic data-migration strategies can

provide similar effects with only little overhead. In the context of this work, a lack of means

for data distribution is not seen as a problem for a programming model for shared memory

architectures. Still, a good data-layout can reduce problems with cache invalidation due to false

sharing that can lead to degrading performance in some applications.

22
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For the overview of the support for work distribution, the focus is laid on how work distri-

bution can be realized in each programming model. This can either happen implicitly when the

work distribution is derived from the data distribution or explicitly through work distribution

primitives like parallel for -loops.

The memory model is evaluated by looking at how program-memory is presented to the

programmer. One major point is the memory consistency model used in the programming

model, and how the memory consistency model provided by the hardware is abstracted away.

Another point is how global and local views on data are realized, and how the programmer can

utilize them.

Finally, the coordination primitives provided by each programming model are looked at. In

general, coordination in programs can either be message based, like in MPI, or memory based,

e.g. through the use of locks. Some high-level coordination primitives, such as barriers, cannot

be clearly categorized as message or memory based because they can be built on top of both

paradigms with similar complexity.

4.1 Programming models for shared memory architectures

This section gives an overview over programming models for shared memory architectures. All

these models have in common that they are not suitable for distributed memory architectures.

To utilize modern cluster architectures, shared memory programming models are sometimes

used in combination with a distributed memory programming model, where the shared memory

programming model is used within every shared memory node.

4.1.1 Multithreading

On modern operating systems, multithreading is supported by default. This means that every

process in the operating system can consist of one or more threads of execution, which can

run concurrently. Every thread has its own execution stack but shares the address space with

all other threads in the same process. The execution of threads is scheduled by the operating

system scheduler. On single processor systems, the scheduler tries to give a fair share of CPU

time to every running thread, by swapping them at regular intervals. The advantage of this

method is that long running tasks can be moved into their own thread and do not block the rest

of the program.

On multiprocessor and multi-core architectures threads can be run on all cores or processors,

which allows to exploit parallelism by splitting a program into multiple threads. Standard low

level threading libraries are better suited for task decomposition than for data decomposition,

because a function call can easily be converted to a fork. Unfortunately, to get good performance

out of threading, the programmer has to find the optimum granularity of tasks manually.

Threading is often criticised for being very low level, and, in fact, synchronization is a big

issue. Write operations on shared data-structures often require complex locking routines, and,

while read operations can usually be done concurrently, they cannot be done while writing the
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data structure. Locks can be omitted using non-blocking synchronization constructs like the one

presented in [Herlihy et al., 2003]. They can sometimes reduce synchronization overhead, but

can become very difficult to implement.

[Lee, 2006] criticizes multithreading for being non-deterministic by default and requiring

the programmer to prune away that non-determinism. Lee argues that instead a programming

model should provide deterministic behaviour by default and allow the programmer to explicitly

add non-determinism where necessary.

In addition to that, multithreading, especially on parallel architectures where threads really

run in parallel, can often lead to effects that create indeterministic behaviour.

Race conditions are one example where the result of an operation is dependent on the timing

of the threads as shown in Figure 4.1. Depending on the order of the operations on x, the result

will either be 24 or 22, and when the operations on x are not atomic, which is usually the case,

the result can also be 12 or 20.

Main program:

x = 10

fork thread1()

fork thread2()

print x

thread1:

\\ do something

x = x + 2

thread2:

\\ do something

x = x * 2

Figure 4.1: Race condition example

Deadlocks are another common problem that appears in multithreading. It can be best

explained with the dining philosophers problem described in [Dijkstra, nd]. It is summarized

as a situation where five philosophers sit around a table and do one of two things: eating or

thinking. Every philosopher has a fork on either side, which he has to share with his neighbour.

To be able to eat, a philosopher needs both forks. If we suppose that every philosopher gets

hungry at the same time and takes his right fork first, every single of them will end up with

only one fork. None of the philosophers will then be able to eat and they will all end up waiting

for the other fork. However, as not a single philosopher gives his fork back, they all end up

in a deadlock and therefore have to wait forever. Hence, if only one philosopher had got both

forks, he would have been able to eat and then give the forks back so that his neighbours

could have used them. Deadlocks are difficult to reproduce and difficult to track, which makes

multithreaded programming even more complex.

A big problem with low level threading libraries is that they can only provide memory con-

sistency guarantees through the use of synchronization statements. More advanced consistency

models that do not solely rely on reordering constraints over synchronization statements can

only be realized with the help of the compiler.

Examples of standard low level programming libraries include POSIX threads [Barney, 2009],
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which is the standard threading library used in UNIX systems, Windows API threads [Microsoft,

2009] and Java Threads [Java, 2009].

Since Version 5.0, Java also supports some higher level threading constructs like executors

and futures. Executors are used to execute tasks using a given strategy, which is defined by the

type of executor that is used. One of the standard executors provided by the Java library is the

ThreadPoolExecutor, which provides a fixed pool of threads where the given tasks are executed

on. This can reduce the overhead of creating threads, as threads are reused after finishing

a task. The ScheduledThreadPoolExecutor is an enhanced version of the ThreadPoolExecutor,

where tasks can be executed after a certain amount of time, or execution of a task can be

repeated periodically.

Java’s futures are objects that represent the result of an asynchronous computation. The

calling thread can poll whether the future already has a result. When the calling thread tries

to read the result, it blocks the calling thread until the result is ready and then returns the

result. [Java, 2009]

Moreover, the memory model of Java has been improved to provide a modern model for

multithreaded languages. It provides semantics that should be intuitive for well-synchronized

programs, and that minimize security hazards for incorrectly synchronized programs. [Lea, 2009,

Gosling et al., 2005]

4.1.2 OpenMP

OpenMP has been jointly developed by a group of hardware vendors and compiler developers

since 1997. The main idea is to use the SPMD model, where all processors execute the same

program, but work on different pieces of data. Figure 4.2 shows how this is realized in OpenMP:

At program start, a master thread is run which forks off multiple threads as soon as a parallel

region is reached.

Figure 4.2: OpenMP’s execution model.

By adding OpenMP directives before regions which should be parallelized, a sequential

C/C++ or Fortran program can be transformed into an OpenMP program. OpenMP direc-

tives are implemented as comments so that OpenMP programs can still be compiled with a

normal sequential compiler. This non-invasive approach has two advantages. The first one is
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that OpenMP allows for converting existing code to OpenMP code easily without destroying the

sequential semantics of the program. As long as the algorithm used in the code is suitable for

parallel execution, it is often only a matter of adding a small amount of comments to parallelize

it. This allows incremental parallelization of existing code, which is very useful for parallelizing

existing sequential applications. The second advantage is that the program can still be compiled

as a sequential program to simplify debugging. Moreover, when compiling the program as a

sequential program code, analysis tools built for sequential programs can still be used.

A major advantage of OpenMP is the wide support in the industry. Most of the major

C/C++ and Fortran compilers contain OpenMP support, and there exist quite optimized im-

plementations. IBM even announced a version of its XLC compiler that supports automatic

optimization of OpenMP code for the Cell architecture. Some tests with this compiler have also

been done in the context of this work to see the potential of this approach.

Support for data distribution

In OpenMP there is no support for data distribution, although extensions to support data

distribution have been proposed. [Chandra et al., 1997] The reason why this has never been

implemented is that it would introduce additional complexity for the programmer that has only

a negligible effect on SMP systems. In fact, it has been shown in [Nikolopoulos et al., 2000]

that implementing data distribution on the language level would not bring any performance

advantage on NUMA systems compared to dynamic page migration. Dynamic page migration,

which is implemented at the compiler and runtime level and, therefore, does not introduce

additional complexity on the language level, is a technique where a memory page is moved to a

specific processor depending on the data access patterns [Nikolopoulos et al., 2000].

Still, with support for data distribution, the programmer would have more control over data-

layout. This would allow the programmer to reduce situations where false sharing occurs, and,

therefore, to avoid some cases of thrashing.

Although it would be possible in theory, there do not seem to be any plans to adapt OpenMP

for distributed memory architectures. Therefore, it is highly unlikely that data distribution

directives will be added to OpenMP in the near future.

Support for work distribution

Traditionally, work distribution may be specified in the context of OpenMP parallel sections

and parallel loops. To make OpenMP better suitable for irregular work distribution, the concept

of tasks was introduced in OpenMP 3.0.

Parallel sections provided by OpenMP are sections of code that are executed in parallel on

a fixed number of threads (by default the maximum number of threads available to OpenMP).

Figure 4.3 shows an example where each OpenMP thread spawned in the parallel section outputs

a message including its unique thread number, which is retrieved using the omp get thread num

function.
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#pragma omp parallel

printf("Hello from thread %d!\n", omp_get_thread_num());

Figure 4.3: Using parallel sections in OpenMP.

The support for parallel loops is a concept which is supported by most of today’s high-

level parallel programming models. OpenMP allows parallelizing simple linear for -loops (or do

loops in Fortran). The work distribution in OpenMP parallel loops can be influenced using

the schedule clause, which allows to specify whether iterations are scheduled dynamically or

statically, and how large the chunk-size of the used block-cyclic distribution should be.

The task directive introduced in OpenMP 3.0 provides a fork-join model of parallelism that

launches lightweight tasks to execute a statement in parallel with the containing block of code.

Figure 4.4 shows how the task directive can be utilized to parallelize the quicksort algorithm.

The quicksort algorithm is a sorting algorithm that works by choosing a pivot element in the

array and moving the contained data so that all data on one side of the pivot element is smaller

than the pivot element, and the data on the other side is larger. After the data has been

partitioned, the quicksort algorithm can be applied recursively to both array parts separated by

the pivot element. As both recursive calls operate on different data, they can be executed in

parallel, which is how the algorithm has been parallelized in Figure 4.4. There, the OpenMP

task -directive is used to create a new task for the first recursive call to the quicksort function so

that it can execute in parallel with the second call.

void quicksort(int data[], int left, int right) {

if(right > left) {

int i = partition(data, left, right)

#pragma omp task

quicksort(data, left, i-1);

quicksort(data, i+1, right);

}

}

Figure 4.4: OpenMP implementation of the quicksort algorithm.

Memory model

The memory model of OpenMP is defined as a “relaxed-consistency, shared-memory model”

[OpenMP, 2008]. It differentiates between a global view, which is accessible by all threads, and

a temporary local view for each thread, which can be used to represent any kind of intervening

structure between thread and memory (e.g. caches). By default, all variables in OpenMP

are shared between threads. To allow different behaviour, OpenMP introduces data-sharing

clauses. When a variable is declared as private, each thread gets a copy of the variable that is

not synchronized with the other threads. A shared variable, on the other hand, is a variable



28 CHAPTER 4. PROGRAMMING MODELS

accessible to all threads of a parallel region. Shared variables follow a relaxed consistency model

similar to the weak ordering model described in [Adve and Gharachorloo, 1996] with only small

differences. In this consistency model, changes to a shared variable may stay in a thread’s

temporary view until the next synchronization operation, instead of being instantly propagated

to the global view. Some OpenMP operations provide implicit synchronization.

The flush statement, which takes one or more variables as parameters, can be used to

explicitly synchronize the local view of variables in a thread with their global view. During a

flush the temporary view of the given variables is discarded. In addition, if some data has been

written to a temporary local view of the given variables, it is written back to the global view.

The program proceeds after the flush as soon as the write operation has been completed. The

flush operation also makes sure that accesses to the given variables are not reordered in respect

to the flush operation. Synchronization operations like the barrier statement and locks contain

implicit flushes to ensure consistency.

OpenMP also supports other types of data sharing attribute clauses. They are special cases

of private variables that only differ in how the variable is initialized and what happens to the

variable and data after the end of the parallel region. For variables used in reductions, OpenMP

provides the reduction clause. With it the programmer can define a variable that works as a

private variable throughout a parallel region. After the end of the parallel region the values of

all local instances of the variable are reduced to a global value by a specified operator. Figure

4.5 shows an example of how to calculate the sum of an array with OpenMP. In this example,

the variable sum is used for reduction with the “+”-operator. First, each thread calculates the

sum of its own piece of the array and stores it in its local view of sum. After the loop is finished,

all local views of sum are added up by OpenMP and stored in the global view of sum, which is

then accessed in the following printf -statement.

int sum = 0;

#pragma omp parallel for reduction(+:sum)

for (int i=0; i<n ; i++)

sum += data[i];

printf("The sum is: %d", sum);

Figure 4.5: Calculating the sum of an array with OpenMP reduction.

Coordination primitives

The primary means of coordination in OpenMP are critical sections and barriers. Declaring a

statement block as a critical section, ensures that it can only be executed by one thread at a time.

Inside parallel loops an ordered section can be used to ensure that a block of code is executed

in sequential loop order. A barrier statement blocks the execution until all threads executing a

parallel section or loop have reached the barrier. To ensure that all spawned asynchronous tasks
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have terminated before resuming execution, the taskwait directive can be used.

In addition to the synchronization constructs, OpenMP provides atomic statements, which

provide atomic execution of mathematical operations on a variable.

4.1.3 Cilk/Cilk++

Cilk is an extension to the C programming language and a corresponding runtime, specialized

on simple parallel programming under C. It was developed by a research group at the MIT and

is mainly based on task parallelism. Creating a parallel task in Cilk simply works by using the

spawn directive when calling a function. A function called with spawn can run in parallel with

the caller. Similar to Threading Building Blocks, Cilk manages threads in pools and maps tasks

onto threads.

To make sure all threads are utilized, Cilk employs a work-stealing scheduler. In a work-

stealing scheduler, each thread has its own task queue that it processes. New tasks are added

to the queue of the parent’s thread. As soon as one thread runs out of work, either because

the queue is empty or because all tasks are blocked, a thread tries to “steal” work from another

thread. [Blumofe and Leiserson, 1994] describes work-stealing in more detail.

A lot of research has been done in Cilk to create an efficient work scheduler. For example, it

uses the information it has about the parent-child relationship between tasks to create a task-

graph. This graph can then be used by the work-stealing scheduler to make better decisions,

like stealing shallow tasks in a graph first, as they are more likely to spawn other tasks.

Cilk has inspired the development of Cilk++ by a commercial company named Cilk Arts,

which has been bought by Intel in July 2009. It employs the techniques used in Cilk in a

C++ setting and provides additional tools for verification and testing like a race condition

tester. [Cilk, 2009b, Leiserson and Mirman, 2008] For the purpose of this work the focus has

been laid on Cilk++, but most findings should also apply to Cilk.

Support for data distribution

Similar to OpenMP, Cilk++ does not aim to provide support for data distribution. As Cilk++

is a programming model primarily aimed at shared memory architectures as well, the same

findings should apply as for OpenMP.

Support for work distribution

The programming model of Cilk++ is mostly focused around its spawn statement, which creates

tasks that are executed in parallel with the calling code. A task in Cilk++ roughly corresponds

to a task in OpenMP 3.0 and is, therefore, a good candidate for implementing divide and

conquer algorithms like quicksort. Figure 4.6 depicts a Cilk++ implementation of the quicksort

algorithm. This example differs only little from the example in Figure 4.4 which shows an

OpenMP implementation of the same algorithm. In this example, the cilk spawn directive is
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used to create a new task executing the first recursive call to the quicksort method. The call to

cilk sync blocks further execution until all tasks spawned inside the function have completed.

void quicksort(int data[], int left, int right) {

if(right > left) {

int i = partition(data, left, right)

cilk_spawn quicksort(data, left, i-1);

quicksort(data, i+1, right);

cilk_sync;

}

}

Figure 4.6: Cilk++ implementation of the quicksort algorithm.

In addition to the spawn directive, Cilk++ also provides parallel for-loops with the cilk for

directive. This directive is used in Figure 4.7 to implement a matrix multiplication kernel. The

only difference to a standard sequential matrix multiplication kernel is that the outer loop is

executed in parallel.

cilk_for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)

for(int k = 0; k < N; k++)

C[i*N + j] += A[i*N + k] * B[k*N + j];

Figure 4.7: Matrix multiplication in Cilk++.

The power of Cilk’s work distribution concepts comes from the optimizations for task creation

and scheduling employed by Cilk’s compiler and scheduler. These optimizations ensure that

overhead for creating tasks is small and that Cilk++ provides good scalability for large numbers

of spawned tasks [Frigo et al., 1998]. In fact, some of Cilk’s concepts have already been taken

up by other programming models (e.g. TBB uses Cilk’s work-stealing scheduler).

Memory model

Unlike the memory consistency models used in most programming models where consistency is

defined in terms of actions by physical processors, Cilk’s memory consistency model is based

on dag consistency. Dag consistency is a relaxed consistency model based on the dag spanned

by the user-level threads spawned by a computation. In dag consistency a read operation can

only see a write operation if there exists a sequential execution order consistent with the dag in

which the read operation sees the write operation. Dag consistency is described in more detail

in [Blumofe et al., 1996].

Further research in this direction was done in [Frigo, 1998]. In his work Frigo, who was also

involved in the development of dag consistency, tries to identify the “weakest reasonable memory

model”. The following properties were defined by Frigo as being necessary for a weak memory



4.1. PROGRAMMING MODELS FOR SHARED MEMORY ARCHITECTURES 31

consistency model to remain “reasonable”: Completeness, Monotonicity, Constructibility, Non-

determinism confinement, Classicality. Interestingly, dag consistency violates the constructibil-

ity property, which means that the actual memory consistency model that can be implemented is

stronger than the theoretical model of dag consistency. Frigo proves in [Frigo, 1998] and [Frigo,

1999] that another consistency model, which he calls location consistency, is a constructible

version of dag consistency, which is identical to the actual implementation of Cilk’s memory

consistency model.

Cilk provides a fence statement which makes sure that statements are not reordered over

the fence and that all read and write operations are completed before the fence. Unfortunately,

unlike the OpenMP statement, the Cilk programming model does not allow for specification of

a set of variables for which this fence applies. Instead, this fence applies to all variables, which

makes the Cilk implementation less flexible.

It is worth pointing out that the fence statement does not seem to be supported in Cilk++.

Instead, Cilk++ introduces the concept of hyperobjects. Hyperobjects are objects that allow

every task to have its own view of itself. Therefore, the access to a hyperobject inside a task

is consistent. After spawned tasks have completed, changes in different views of a hyperobject

are merged back into one object. Currently, there only exists one type of hyperobjects, namely

the reducer, which allows the reduction of a value with associative operations. It has yet to

be shown by the Cilk++ developers that hyperobjects can be useful for use cases other than

reductions. Except for these changes, the memory consistency model of Cilk++ seems to be

similar to the one of Cilk.

To make the work with the memory consistency model used in Cilk++ easier, the company

behind Cilk++ offers an analysis tool that detects data races (but not every general race) to

allow the developer to verify his program. According to their documentation, it is guaranteed

to detect every data race in a program. This tool is contained in the commercial version of

Cilk++. [Leiserson and Mirman, 2008,Cilk, 2009a]

Coordination primitives

As Cilk++ mainly focuses on fork-join parallelism, the most relevant coordination primitive is

the cilk sync statement, which can be seen in Figure 4.6. It blocks execution of the current

function until all tasks spawned by the function have terminated. Synchronization is also done

implicitly at the end of each function which means that the example in Figure 4.6 should also

be correct without the cilk sync statement. Like most programming models Cilk++ provides

support for mutexes. Cilk++’s mutexes are kept very simple and support only locking and

unlocking. [Supercomputing, 2001,Frigo et al., 1998,Randall, 1998]

As an additional coordination construct Cilk++ provides hyperobjects. A hyperobject is

defined as being an object that provides a local view on a variable for each thread and that

can merge its local views back into one global view. In its current implementation Cilk++ only

provides hyperobjects for reduction operations. Only little information can be found about the

general concepts behind hyperobjects and it is difficult to say whether hyperobjects may be
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useful for tasks other than reductions.

4.1.4 Threading Building Blocks

Threading Building Blocks (TBB) [Willhalm and Popovici, 2008, Reinders, 2007] is a C++

library created by Intel that tries to address common issues in multithreaded programming

without reducing the programmers flexibility. It is designed to be used as a normal C++

library, and it utilizes template metaprogramming to implement its functionality.

TBB utilizes a thread pool that contains as many threads as there are virtual processors on

the machine. Each processor has its own task queue, but it can do work-stealing to make sure its

queues do not run empty. Having its own scheduler allows TBB to use the additional information

it has about its tasks to optimize the scheduling for data locality. Another advantage is that

tasks are more lightweight than system threads.

In addition to its scheduler and its parallelization primitives, TBB also provides a library of

parallelized replacements of some standard C/C++ and STL classes and functions like concur-

rent collections and memory allocators.

Support for data distribution

As Threading Building Blocks (TBB) is a programming model for shared memory architectures,

there is only little support for actual data distribution. Still, the focus of TBB’s programming

model lies on data parallel programming, and, therefore, it provides at least some means to

optimize memory access patterns for cache locality. Specifically, it is possible to implement

different range classes for the use in data-parallel operations like parallel for and parallel scan.

A range is an object that represents a part of the array domain used in a parallel operation. When

starting a parallel operation, the programmer passes a range object representing the whole array

domain to the function executing the operation. TBB then uses a partitioner object (which can

also be implemented by the programmer) to partition the range into smaller subranges, which

are then passed to the computational kernel. The functionality of the range object can be used

to optimize memory access patterns and caching behaviour for data-parallel applications.

Figure 4.8 depicts how TBB’s ranges work. In this example a blocked range from 0 to n is

passed to a parallel kernel (e.g. parallel for). TBB internally splits the range up into a range

from 0 to n
2

and a range from n
2

to n. Each subrange is then passed to the sequential kernel

provided by the programmer.

Support for work distribution

TBB provides a wide variety of operations that can be used for work distribution. The flexible

range class, which has already been described above, allows to flexibly configure how work

is distributed in parallel algorithms. TBB also provides a task class that allows to spawn

lightweight tasks.



4.1. PROGRAMMING MODELS FOR SHARED MEMORY ARCHITECTURES 33

Figure 4.8: How TBB’s ranges work.

Figure 4.9 shows how tasks can be used in TBB. In this example, a root task is started in

the main program that recursively creates asynchronous tasks and waits for them to finish. The

actual code of the task is found in the execute method of the MyTask class.

class MyTask: public task {

public:

task* execute() {

// Do computation

if(recurse) {

MyTask t1 = *new(allocate_child()) MyTask();

MyTask t2 = *new(allocate_child()) MyTask();

spawn(t1);

spawn_and_wait_for_all(t2);

}

return NULL;

}

};

int main(void) {

task_scheduler_init init(NUM_THREADS);

MyTask& t = *new(task::allocate_root()) MyTask();

task::spawn_root_and_wait(t);

}

Figure 4.9: How to use tasks in TBB.

Like most high-level programming models, TBB also provides a parallel for -loop. Parallel

for-loops utilize the range class, which has been described in the previous section, to determine

the work distribution. The range object and a function object containing a sequential kernel

that can be applied to a subrange of the given range are passed as parameters to the parallel for
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function to start a parallel iteration. TBB also uses range objects for the parallel reduce and

parallel scan methods, which can be used to do a reduction or scan on data.

The flexibility of parallel for -loops in combination with range objects is revealed when they

are used to implement divide and conquer algorithms like the quicksort algorithm. The quicksort

algorithm can be implemented in TBB by using the range object as a partitioner for the array

to sort. This approach maps well to TBB’s range objects as they are always partitioned using

a divide and conquer approach (see Figure 4.8). During partitioning the range object is free to

manipulate the array the range operates on, as it is guaranteed that the region it is operating

on is not operated on by other range objects.

For problems where the amount of work cannot be determined at the beginning, the par-

allel while template class can be used. In addition to a computational kernel, it requires an

input stream as parameter which returns the next item to calculate. The disadvantage of this

approach is that operations on the input stream are inherently sequential, which may limit

achievable parallelism.

TBB also provides a pipeline class that can be used to implement pipelined algorithms.

The native support for pipelines in TBB makes implementing pipelined algorithms an easy

task. Unfortunately, TBB does only support linear pipelines, so that pipeline stages that can

theoretically be executed in parallel either have to be linearized or have to be implemented in

one pipeline stage. According to [Reinders, 2007, p.83], the pipeline implementation provided by

TBB performs better compared to manual pipeline implementations using the concurrent queue

class provided by TBB because TBB pipelines are optimized for cache locality. Figure 4.10

shows an example code for the implementation of a pipeline. To create a pipeline step, the

programmer has to implement a class derived from TBB’s filter class and to override the ()

operator. In this example the class MyFilter implements a pipeline step. Inside the method

runPipeline the actual pipeline is created, and an instance of the MyFilter class is added as a

filter to the pipeline. The run method of the pipeline object starts pipeline execution and blocks

until it is complete. Finally, the memory used by the pipeline is cleared using the clear method.

Memory model

As TBB is implemented as a C++ library and not a compiler, it cannot influence the memory

consistency model of the complete application. For that reason, memory consistency for normal

operations is highly dependent on the consistency model provided by the compiler and the target

processor architecture. To provide consistent access, TBB contains the atomic template class,

which provides five basic statements, namely read, write, fetch and store, fetch and add and

compare and swap. These statements are guaranteed to be executed atomically on the given

template data-type, which may be an integral or pointer type. To provide consistency between

atomic statements, atomic statements provide release consistency. In this consistency model

two operations exist: acquire and release. An acquire makes sure that operations following this

statement are not reordered over it. This is the default behaviour for atomic read operations. A

release, on the other hand, makes sure that operations before the statement are not moved over
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class MyFilter: public tbb::filter {

// ...

void* operator() (void* item);

};

void* MyFilter::operator() (void* item) {

// Do something with item

return output;

}

void runPipeline() {

tbb::pipeline pipeline;

MyFilter filter(/* ... */);

pipeline.add_filter(filter);

// Add more filters

pipeline.run( input );

pipeline.clear();

}

Figure 4.10: Using TBB’s pipeline class to implement a pipeline.

it. This is the default behaviour for atomic write operations. All other atomic operations are

by default handled as both acquire and release operations, but TBB allows to explicitly specify

weaker consistency for them.

Coordination primitives

TBB focuses on data-parallel programming and tries to keep most coordination on the algorithm

design and library level. This means that for common problems no explicit coordination should

be necessary. TBB also provides concurrent collection objects with interfaces mostly similar

to their C++ Standard Template Library (STL) counterparts, which can be used for high-level

coordination (e.g. a concurrent queue can be used as a message queue). For cases where

explicit coordination is necessary, TBB provides various types of mutexes (mutex, spin mutex,

queuing mutex, spin rw mutex and queuing rw mutex ) which differ in their characteristics. The

spin rw mutex for example, which is used in Figure 4.11 to demonstrate the lock syntax of TBB,

provides a read-write lock with good performance, but is unfair, which means that it does not

avoid starving tasks.

The atomic template class in TBB provides the programmer with variables that support

various atomic operations. In Figure 4.12, the atomic template class is used to create an atomic

integer variable. The atomic operation fetch and add, which adds a value to the variable and

returns its previous value, is then used on the atomic variable. One speciality of TBB’s atomic

operations is that they follow a release consistency memory consistency model. As TBB does

not provide memory consistency for normal variables, atomic variables are necessary to write

memory-consistent code.
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spin_rw_mutex my_lock;

void critical() {

spin_rw_mutex::scoped_lock = lock(my_lock, /*is_writer=*/true);

// write something

}

Figure 4.11: Using TBB’s mutexes.

atomic<int> x = 5;

// ...

int y = x.fetch_and_add(3);

// x = 8 and y = 5

Figure 4.12: Using TBB’s atomic template class

4.2 Models for distributed and cluster architectures

One of the major drawbacks of shared memory architectures is that they do not scale well to

a high number of processors. Therefore, to build machines with a large number of processors

the shared memory abstraction has to be given up, which leads to more complex programming

models. The distributed memory programming models presented in this section are able to

handle this complexity. Nonetheless, they can also be used on shared memory architectures.

4.2.1 Message passing

Message passing is a programming model for distributed memory architectures, which is often

used in an SPMD (single program multiple data) setting. In the SPMD paradigm, which was first

described by M. J. Flynn in 1972 [Flynn, 1972], multiple processes execute the same program,

but operate on different data. Every MPI program is designed to have multiple instances of

itself running in parallel on different processors. Each process has its own local memory and

communicates with other instances by sending messages to them. To be able to distinguish

between those processes, a unique id is assigned to each of them.

Depending on the architecture and the MPI implementation, communication is realized in

different ways. In networks a message is typically implemented as a network package that is

stored in a receive buffer on receiving, whereas on shared memory architectures, communication

can be internally handled by shared data queues.

Programs using message passing are even more difficult to program than multithreaded

programs as all the communication between nodes has to be done explicitly. A lot of care has to

be taken to maximize the communication throughput by grouping communication tasks where

it is possible. This is the reason why message passing is often called the “assembler of parallel

programming”.

Interestingly, a program written in MPI and running on shared memory architectures does
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not necessarily have to be slower than its multithreaded counterpart. In fact, MPI programs can

be faster as well. The overhead created by message passing can be outweighed by the advantage

of explicitly expressing locality of a process. Making the communication between processes

explicit also reduces problems with false sharing.

Nonetheless, on modern cluster architectures, such as SMP clusters, MPI is often combined

with threading libraries. Most common is the combination with OpenMP, where MPI is used on

the network level and OpenMP within every shared memory node [Quinn, 2003, p436ff]. Using

a different programming model for each hierarchy level of the hybrid architecture makes it easier

to do specific optimizations per hierarchy level.

4.2.2 HPF

High Performance Fortran (HPF ) [HPF, 1997,Loveman, 1993,Benkner and Zima, 1999] is an

extension to the Fortran 90 standard aimed at creating a high-level high performance program-

ming language for scientific codes based on a data parallel programming model. HPF is suitable

for a wide variety of architectures, but focusses mainly on distributed memory architectures.

The first version of the HPF specification was released by the High Performance Fortran Forum

in 1993. In 1997 version 2.0 was released.

As in OpenMP, HPF directives are comments, which means that an HPF program can still

be compiled as a sequential program with a normal Fortran compiler. The core feature of HPF

is that for every array that is declared in the program a distribution can be specified. Some

2-dimensional standard distributions are depicted in Figure 4.13.

(a) cyclic distribution (b) block distribution (c) block-cyclic distribution

Figure 4.13: Different types of 2-dimensional data distribution onto two nodes.

The compiler tries to transform the sequential Fortran code to MPI code where the owner

of every memory region does the calculations which are based on the memory region. This be-

haviour is called the owner computes rule. For accesses to memory regions from other processors

than the owner, the compiler automatically creates the necessary MPI calls to retrieve the data.

To increase efficiency, it tries merging remote memory accesses to reduce the overhead created

by the calls and to hide latency. The programmer can use the INDEPENDENT directive to

explicitly specify that there are no data dependencies between loop iterations. Independent

loops can be automatically parallelized by the HPF compiler. Many HPF compilers can actu-
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ally automatically detect independent loops, but not all independent loops can be recognized

by the compiler. [Loveman, 1993]

Although the HPF compilers work well for some problems, achieving good performance is

often difficult. Especially irregular problems lead to difficulties, and some research has been

done to extend HPF to support irregular problems [Benkner, 1999]. One major problem with

HPF is that it is difficult to build up a performance model of an HPF application. In fact,

the programmer still has to think about code optimization techniques, however, it is much

more difficult to apply them. During migration of existing kernels to HPF, optimization might

become necessary because in some cases the communication overhead created by HPF might

exceed the gains from parallelization, so that an application actually slows down when executed

on a parallel machine. Additionally, the need to optimize for a specific compiler has reduced

the portability of HPF. [Kennedy et al., 2007, Mehrotra et al., 2002] Some of the mentioned

problems can also be found in OpenMP, but on distributed memory architectures they more

often lead to degrading performance.

After some initial enthusiasm, the interest for HPF faded in the late 1990’s. In [Kennedy

et al., 2007] four main reasons therefore were identified:

“(1) inadequate compiler technology, combined with a lack of patience in the HPC

community; (2) insufficient support for important features that would make the

language suitable for a broad range of problems; (3) the inconsistency of implemen-

tations, which made it hard for a user to achieve portable performance; and (4) the

complex relationship between program and performance, which made performance

problems difficult to identify and eliminate.” [Kennedy et al., 2007]

The problems with HPF and the limitations imposed by Fortran 90 are the reason that

nowadays HPF is mostly interesting for theoretical reasons. Still, some of the features of HPF

were actually included into the Fortran 95 standard. Some concepts developed in HPF can now

be found in newer high-level programming languages like Chapel and X10.

4.2.3 Partitioned Global Address Space (PGAS) languages

After the decrease of the popularity of HPF, a new distributed programming model came up

and was adopted in several new programming languages. This programming model is called

Partitioned Global Address Space (PGAS ). In PGAS, a virtual shared memory exists that is

split up in several parts, where each part is local to a specific processor. A schematic view of the

PGAS memory model can be seen in Figure 4.14. It depicts an address space that consists of the

local memories of multiple processors. Each processor provides a shared memory area that can

be accessed by all processors, but also has a private area that can only be accessed locally. The

difference to HPF’s model is that the programmer explicitly specifies in which memory location

to store which piece of data.

The abstraction of a virtual shared memory makes programming in a PGAS easier com-

pared to MPI, and it still allows to optimize for locality. As all memory locations in the address
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Figure 4.14: The PGAS memory model.

space have a unique address, it is possible to use one-sided communication. In one sided com-

munication, the process in the target system does not have to actively receive and process

messages but instead communication is only initiated by one side. (See Section 3.4.2 for more

details.) On some systems this communication even can be handled by Remote Direct Memory

Accesses (RDMA), which allows the network interface to directly service the memory access so

that the remote processor is not involved in the communication. Because of one-sided commu-

nication, programs in PGAS languages may sometimes be faster than their MPI counterparts,

which are traditionally programmed using a two-sided communication pattern [Yelick et al.,

2007]. Actually since version 2.0, MPI has also supported one-sided communication, which is,

however, handled on a lower abstraction level than in PGAS languages.

Compared to HPF, the programming model behind PGAS languages is more low-level. The

programmer has to explicitly specify where data is stored. Also, no concept of data distributions

exists in the standard PGAS languages, which means that the programmer has to manually

distribute data. This low-level approach allows the programmer to have more influence on

the actual program performance while still maintaining a higher productivity than with MPI

code. Moreover, building a PGAS compiler is less complex than building an HPF compiler. To

ease the development of PGAS languages, low-level libraries like GASNet [GASNet, 2009] and

ARMCI [ARMCI, 2009], which provide a communication layer for remote memory accesses,

have been implemented.

A wide variety of programming languages have been based on the PGAS model. Unified

Parallel C (UPC ) [UPC, 2009, UPC, 2005], Co-Array Fortran [Numrich and Reid, 1998, Co-

Array, 2009] and Titanium [Hilfinger et al., 2001,Titanium, 2009] are all based on an existing

programming language (UPC on C, Co-Array Fortran on Fortran 95, Titanium on Java 1.4)

and combine it with an SPMD programming model. Newer programming languages like Chapel

and X10 utilize PGAS libraries at their core but provide a higher-level view on the data.

4.2.4 X10

X10 is an experimental programming language that has been developed by IBM in the DARPA

program on High Productivity Computer Systems since 2004. It is based on the serial subset

of the Java language with added concepts for parallelism and a PGAS. Four main goals were

formulated for X10: safety, analyzability, scalability and flexibility. Safety means that the pro-

gramming model should be safe from typical problems in low-level programming languages, like



40 CHAPTER 4. PROGRAMMING MODELS

invalid pointer references and type errors. Furthermore, it should guarantee to preserve determi-

nacy and avoid deadlocks for common usage patterns. Analyzability requires programs written

in X10 to be analyzable by programs. This can be achieved best with a programming language

that features simple programming constructs and strong data-encapsulation and orthogonality

properties. Scalability is, of course, a major goal for any programming model aimed at parallel

systems. Flexibility shows the need for a programming language to support different design

patterns for parallelism like task parallelism and data parallelism. The lack of flexibility is a

major drawback of the SPMD programming paradigm used by some programming models.

X10 tries to achieve the given goals by using Java, which satisfies the given criteria for

sequential programming. The use of PGAS provides a flexible memory model that allows to

maintain good scalability without making the programming model too complex. Asynchronous

activities, which are comparable to OpenMP tasks, allow to parallelize the program in a flexible

way. Tasks can be mapped to a specific place, and a place corresponds to a physical computation

node. X10 replaces Java arrays by its own array type. Each array is associated with a region

specifying which indices are contained in the array. Additionally, a distribution can be specified

so that different array regions can be mapped to different places. Reduction operations and

scans can be called for arrays and are then automatically applied over all places. Arrays can be

iterated over with the for, foreach and ateach constructs. The for construct iterates sequentially

over all points in a region. The foreach construct spawns activities in the same place for every

iteration. The ateach construct spawns activities for each point in the region and every iteration

is executed in the place specified by the distribution. [Saraswat and Nystrom, 2008,Charles et al.,

2005]

Currently, there exist two official implementations of the X10 language. One translates X10

code into Java code that can be used on an SMP machine, whereas the other is based on C++

and contains a PGAS runtime allowing it to run on distributed systems. Both implementations

can be found at [X10, 2009].

Support for data distribution

For arrays X10 provides the concepts of regions and distributions, which can be compared with

Chapel’s domain and distribution concepts. A region maps an index space consisting of points,

which are n-dimensional tupels of integers, to memory locations. X10 provides various types

of regions apart from standard n-dimensional arithmetic regions, such as, for example, regions

representing a banded matrix. A distribution is used in X10 to map array indices to different

places. A place represents a node in a distributed memory setup. X10 provides some typical

distributions, like block and cyclic distributions, and also an indirect distribution that uses an

array as a map.

In X10 regions as well as distributions allow different operations like doing an intersection or

union between two regions or distributions. This is a feature unique to X10 as this is not possible

with Chapel’s domains and distributions. The disadvantage of this concept is that X10’s regions

and distributions are more restricted as they need to allow static reasoning, which might not be
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possible for some irregular data structures.

At the time of writing no concepts for user-defined regions and distributions have been

released for X10 yet, but, according to the specification, future versions might support them in

a way that supports static reasoning [Saraswat and Nystrom, 2008, p122].

Support for work distribution

The smallest unit of parallel execution in X10 is an activity. An activity can be spawned locally

or in a remote place and is executed in parallel to the spawning task. Each activity except for

the root activity has a parent activity, and X10 even propagates exceptions from child activities

to their parents. This means that, unlike some other parallel programming models, exceptions

cannot get lost over activity boundaries. X10’s scheduler is based on the concepts introduced

with the work-stealing scheduler of Cilk, so it should exhibit similar characteristics.

async (SOMEPLACE) {

System.out.println("Async hello world!");

}

Figure 4.15: Spawning an activity in X10.

In addition to activities, X10 provides the foreach and ateach statements. Both statements

start a parallel iteration with the difference being the place the iterations are executed on. In

the foreach statement the loop body is executed in the place local to the point returned by the

iteration. The ateach statement, on the other hand, requires a distribution as a parameter and

executes each iteration in the place specified by the distribution for the current index.

X10 also allows to synchronously execute statements in another place with the at statement.

Code following an at-block will only execute after the at-block has terminated. (See Figure 4.17.)

ateach( point[i] : dist.factory.unique() ) {

System.out.println("Hello World: " + i);

}

Figure 4.16: Iterating through a distribution in X10 with the ateach statement.

at (SOMEPLACE) {

System.out.println("Hello world from another place!");

}

System.out.println("This will always be shown last.");

Figure 4.17: Launching a synchronous activity in another place in X10 with the at statement.
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Memory model

X10’s memory model is based on the partitioned global address space (PGAS ) model. The

traditional PGAS model is extended by X10 to be globally asynchronous, locally synchronous

(GALS ), which means that non-local memory accesses implicitly launch an asynchronous activ-

ity local to the memory location.

The memory consistency model used in X10 is based on research presented in [Saraswat

et al., 2007]. It guarantees sequential consistency for programs whose sequentially consistent

executions do not contain race conditions. This means that it allows code transformations as

long as only programs with race conditions can distinguish between them. X10 requires the

programmer to use the high-level coordination primitives, such as finish and atomic blocks, to

ensure race-free programs.

For remote memory accesses the memory consistency model does not apply because they are

always done using asynchronous activities.

Coordination primitives

X10 provides some high-level coordination primitives that allow programmers to create parallel

programs that are guaranteed to be deadlock-free. The coordination primitives introduced by

X10 are the finish directive, clocks and atomic blocks.

The finish directive ensures that the following statement or statement block terminates after

all tasks spawned inside the statement or statement block have terminated. Figure 4.18 shows

how the quicksort algorithm can be implemented in X10 using asynchronous tasks and the finish

directive. In this example, both recursive calls to the quicksort function run in parallel. The

finish directive ensures that the quicksort function terminates only after both recursive calls

have finished.

public def quicksort(val A:Array[double], val left: int, val right: int) {

if(right > left) {

val i = partition(A, left, right);

finish {

async quicksort(A, left, i - 1);

quicksort(A, i + 1, right);

}

}

}

Figure 4.18: A simple X10 implementation of the quicksort algorithm.

With clocks X10 provides a unique concept that can best be compared to barriers. Clocks

allow to split the execution of asynchronous tasks into multiple phases where each phase is

ended by a task with the blocking next statement. As soon as all tasks registered for a clock

have executed the next statement, the next phase of the clock is started and execution resumes.
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Figure 4.19 shows an example of how clocks can be used in X10. In this example, a clock is

used to synchronize the output of status messages. In the first phase, both tasks output “Phase

1”. The spawned task waits then for the first phase to be completed with the next statement,

whereas the main task signals the clock with the call to the resume method that it is ready

to advance to the next phase and then resumes execution to output “After phase 1” before

executing next to finally advance to the second phase. During execution of the second phase,

the main task unregisters from the clock with the drop method to ensure the other task does

not wait for this task to advance to the next stage.

c : Clock = new Clock();

async clocked(c) {

System.out.println("Phase 1");

next;

System.out.println("Phase 2");

next;

System.out.println("Phase 3");

}

System.out.println("Phase 1");

c.resume();

System.out.println("After phase 1");

next;

System.out.println("Phase 2");

c.drop();

System.out.println("Not using the clock any more");

Figure 4.19: Using clocks to synchronize task execution.

X10 places restrictions on clocks that ensure that programs using clocks can never deadlock.

Tasks can only be registered with a clock at creation time, and the parent task has to be

registered for this clock as well. The blocking next statement always advances every clock the

task is registered on, whereas the more fine-grained resume method, which is clock-specific, is

non-blocking so that it is not possible for two tasks to deadlock because they block on different

clocks. Finally, a task is automatically deregistered from a clock as soon as the task terminates.

X10 provides two types of atomic blocks: conditional- and unconditional atomic blocks.

Unconditional atomic blocks, which are introduced in X10 using the atomic statement, provide

transactional semantics for the statements executed inside them. X10 places some restrictions

on atomic blocks as they are not allowed to contain blocking statements, they are not allowed to

spawn asynchronous tasks and they have to access only local memory locations. Also, atomicity

is not guaranteed for statements that throw exceptions so that the programmer has to catch the

exceptions and provide undo-code to ensure atomicity.

Conditional atomic blocks, which can be used in X10 with the when statement, are similar

to unconditional atomic blocks with the difference that the execution of the statement blocks
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until a certain condition, which is evaluated atomically, holds true. X10 allows the programmer

to provide two or more alternative conditional atomic blocks.

4.2.5 Chapel

Similar to X10, Chapel is a language originating from the DARPA program on High Productivity

Computer Systems. [Chapel, 2009a, Chapel, 2009b, Callahan et al., 2004, Chamberlain et al.,

2007] It has been developed by Cray Inc. since 2004. The design of this language is tailored

mainly for the purposes of scientific computing where most algorithms operate on arrays.

One of the major goals in the design of Chapel was to provide support for flexible data

distributions. The experience gained in HPF development [Mehrotra et al., 2002] showed that

for a programming model to be widely accepted, it has to be able to support arbitrary data

distributions. For this reason, Chapel provides means to implement custom array domains and

data distributions with an object oriented interface.

One of advantages of Chapel is its expressiveness for array operations. Arrays can be sliced by

using a range in the index field. Scalar promotion allows to specify arrays or functions returning

arrays as a parameter to functions that accept scalar values. In these cases, the function is

called for every array element and an array containing the results is returned. Reductions can

be applied to every array with the reduce keyword.

The expressiveness of Chapel’s array statements can be seen in Figure 4.20. It depicts a

Jacobi iteration written in Chapel. In it, a point in the XNew matrix is calculated by calculating

the average of its neighbours in the old matrix. This is done by using a forall iteration iterating

through the complete problem space. After this, the maximum difference between the old and the

new matrix is calculated by using an array statement to calculate the difference and a maximum

reduction operation to get the maximum. It is worth noting that scalar promotion is used to

calculate the absolute value of each element in the difference matrix using the abs function. At

the end, the new matrix is assigned to the old matrix using a simple array statement.

const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);

do {

// compute next approximation using Jacobi method and store in XNew

forall ij in ProblemSpace do

XNew(ij) = (X(ij+north) + X(ij+south) + X(ij+east) + X(ij+west)) / 4.0;

// compute difference between next and current approximations

delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace]);

// update X with next approximation

X[ProblemSpace] = XNew[ProblemSpace];

} while (delta > epsilon);

Figure 4.20: Shortened version of the Jacobi sample program delivered with the Chapel compiler.
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The current implementation of Chapel supports the use of the GASNet and ARMCI libraries

as a communication layer, which provide a PGAS for distributed setups. Although PGAS is

used internally, only a global memory address space is presented to the programmer. Only when

implementing data distributions, storage locations can be explicitly specified. Each computation

node is represented in Chapel by a locale object, which can be used with the on statement to

map execution regions to specific nodes. All locales can be accessed through a global locale

array.

For Chapel to gain wider acceptance, object oriented programming and generics are also sup-

ported. Both concepts allow for further increasing the programmer productivity in comparison

to other programming models that are currently often used in scientific computing. Nonethe-

less, these concepts are seen as optional, and they are not as powerful as in some purely object

oriented languages like X10. [Chapel, 2009a,Chapel, 2009b,Callahan et al., 2004]

Support for data distribution

Chapel provides two concepts that are used for the implementation of arrays: domains and

distributions. A domain is a mapping of an arbitrary index space to memory locations where

indices are not restricted to integral types. As domains are first-class objects that can be

implemented by the user, Chapel is able to support any type of array domains. Examples of

array domains include sparse domains and associative domains, which are already included in

the Chapel distribution. As the actual implementation of a domain is transparent to the user,

the programmer can easily switch between different domain types without having to change his

algorithm. The possibility to implement custom domains can even bring advantages in simple

cases like two-dimensional arithmetic domains. They can be implemented to store a matrix

blockwise to provide more efficient caching behaviour in matrix multiplication algorithms. Each

domain also provides an iterator that can be used in for and forall loops. In case of a domain

that stores its data blockwise, the iterator may be implemented to access the elements in a

blockwise manner similar to the order in which the matrix is stored.

Currently, Chapel supports five types of array domains. Arithmetic domains are used for

arrays which have indices in an arithmetic range for one or more dimensions. Sparse domains are

used to specify sparse arrays. For these arrays, only the given indices are actually stored in the

array. Reading every other index of the arithmetic domain containing the subdomain out of the

array returns 0. Indices can be dynamically added or removed from the sparse domain, and these

changes are automatically reflected in the corresponding arrays. An associative domain can be

used to declare associative arrays like hash tables. Opaque domains are similar to associative

domains but with different performance characteristics. If changes to the domain are rare, they

should be faster than an array with an associative domain. An enumerated domain creates

associative arrays where each entry maps to a value in an enumeration data type.

The other concept provided by Chapel, data distribution, allows to map indices in a source

domain to indices in a target domain. The target domain corresponds to an array of physical

memory locations, which are called locales in Chapel. This mapping allows Chapel to decide on
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which locale to store each array element. Similar to domains, distributions are first-class objects

that can be implemented by the user. Moreover, like in domains, the implementation of data

distributions is completely transparent to the implementer so that the programmer can easily

switch to another distribution without having to change his algorithm.

Figure 4.21 shows an example program written in Chapel that operates on a matrix which

is distributed using a two-dimensional block distribution. Changing the distribution to another

one only requires importing the corresponding package and modifying the line initializing the

data distribution.

The ability to implement custom data distributions is one of the major strengths of Chapel.

The goal of the Chapel developers is to provide a framework to allow development of data

distributions by third party developers. This might lead to the availability of a wide variety of

third party libraries that provide different types of domains and distributions. [Diaconescu and

Zima, 2007]

Support for work distribution

In Chapel work distribution is often automatically derived from the data distribution. Each

array domain provides a sequential and a parallel iterator that can be used to iterate through

all indices in the domain. The parallel iterator is responsible for distributing work onto different

shared memory threads in a parallel loop. When iterating over a domain that is distributed

over multiple locales using a distribution, each iteration is executed local in respect to the

corresponding index.

Chapel’s arrays also provide a very high-level interface. Scalar operations, like additions and

multiplications, can be applied to whole arrays and are interpreted as an element-wise application

of this operation. Arrays can also be passed as parameters to scalar functions, which leads to

the function being applied to each element of the array, and the results being combined into

an array of the same domain as the input array. Where possible, the execution of these array

statements is done in parallel. The implementation of the example matrix multiplication kernel

(Figure 5.14) takes advantage of array statements.

In addition to implicit work distribution that is derived from the data distribution, Chapel

also provides primitives that allow manual work distribution. For distributed memory settings

Chapel offers the on clause (see Figure 4.22) that allows explicit specification of the locale the

following statement or block should run on. The on clause can also be used inside for and forall

loops to override the implicit work distribution onto distributed memory nodes.

To distribute work inside a shared memory node, Chapel provides the begin and cobegin

clauses, which launch one or more tasks in parallel, and the coforall loop, where each iteration is

executed as a separate task. Figure 4.23 depicts an implementation of the quicksort algorithm

in Chapel. In this example parallelism is introduced by the cobegin statement that launches

both recursive function calls contained in the block following cobegin as separate tasks. The

cobegin statement provides an implicit synchronization after the end of the block.
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use BlockDist;

// Size of each dimension of our domain. Note that int(64) is the

// default for domains and arrays distributed with the Block

// distribution.

config const n: int(64) = 8;

// Declare and initialize an instance of the Block distribution Dist,

// a distributed domain Dom, and a distributed array A. By default,

// the Block distribution distributes the domain across all locales.

var Dist = distributionValue(new Block(rank=2, bbox=[1..n, 1..n]));

var Dom: domain(2,int(64)) distributed Dist = [1..n, 1..n];

var A: [Dom] int;

//

// Loop over the array using a serial for-loop and assign each element

// an increasing number.

//

var j = 1;

for a in A {

a = j;

j += 1;

}

writeln("Initialized array");

writeln(A);

writeln();

//

// In parallel, subtract one from each element of the array.

//

forall i in Dom do {

A(i) = A(i) - 1;

}

writeln("Subtracted 1 via parallel iteration over the domain");

writeln(A);

writeln();

Figure 4.21: Shortened version of the Block2D sample program delivered with the Chapel com-
piler.

Reductions and Scans are implemented in Chapel as a native language element and automat-

ically distribute the necessary work. Figure 4.24 depicts a simple example where the addition

operator is used to scan over an array that is initially filled with ones. In the implementation

of the example matrix multiplication kernel in Figure 5.14, a sum reduction is used to calculate

each element of the resulting matrix. Chapel also allows for implementing custom reduction and

scan operations, but no details can be found in the documentation yet.
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on Locales(1) {

writeln(here.id);

}

Figure 4.22: Explicit work distribution in Chapel using the on clause.

def quicksort(data: [],

left: int = data.domain.low,

right: int = data.domain.high) {

if(right > left) {

const i = partition(data, left, right)

cobegin {

quicksort(data, left, i-1);

quicksort(data, i+1, right);

}

}

}

Figure 4.23: A simple Chapel implementation of the quicksort algorithm.

var A: [1..3] int = 1;

writeln(+ scan A);

// Outputs: 1 2 3

Figure 4.24: Using scans in Chapel.

Memory model

Internally, Chapel uses a partitioned global address space (PGAS ) as an abstraction layer on top

of the distributed memory model. On the user side, the APGAS is mostly abstracted away so

that, in general, the programmer does not have to specify locality of data accesses. In Chapel’s

syntax no distinction is made between local and remote memory accesses. For arrays data

distributions can be specified that are then translated by the compiler and runtime to local or

remote memory accesses. The address space is only partitioned between distributed memory

nodes, which means that inside one node a global address space is used.

In the current Chapel specification, the memory consistency model is defined as being se-

quentially consistent for data-race-free programs, but this point is still open for discussion and

might, therefore, be subject to change.

Coordination primitives

Coordination in Chapel is completely memory based and Chapel does not provide message

passing capabilities. One way to coordinate Chapel programs is by the use of sync variables.



4.3. MODELS FOR HETEROGENEOUS ARCHITECTURES 49

Sync variables provide lock semantics in that they can have two states: full and empty. A

write operation on a sync variable transitions the variable to full state or blocks execution if the

variable is already full and waits for it to empty. Read operations on a sync variable put the

variable back to empty state or block execution as long as the variable is empty. Figure 4.25

depicts how a sync variable can be used as a lock. In this example, the task launched with begin

blocks at the first line, where the sync variable is read. It can only continue after the end of the

main task, where the sync variable is assigned a value.

var finishedMainOutput$: sync bool;

begin {

finishedMainOutput$;

writeln("output from spawned task");

}

writeln("output from main task");

finishedMainOutput$ = true;

Figure 4.25: Using sync variables as locks Chapel.

Another more high-level means of coordination in Chapel is the atomic statement. It allows

to specify a block of code to be executed atomically in respect to the rest of the program so

that no variable assignment becomes visible until the whole atomic block has executed. Figure

4.26 shows how a delete statement in a doubly linked list can be implemented using atomic

blocks. Here the atomic block ensures that changes to both neighbours become visible at the

same time so that the linked list stays consistent. It is still an open issue whether Chapel’s

atomic statements should provide strong atomicity (an atomic block is atomic in respect to the

whole program) or weak atomicity (an atomic block is only atomic in respect to other atomic

blocks).

atomic {

if(prev != null) {

prev.next = next; }

if(next != null) {

next.prev = prev; }

}

Figure 4.26: Simplified implementation of a delete in a doubly linked list using atomic blocks in
Chapel.

4.3 Models for heterogeneous architectures

In the context of this work, the term heterogeneous architecture describes architectures that

consist of different types of processors. Heterogeneous architectures are still a young research

topic and present additional difficulties compared to the other presented architectures. There
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has been some research to add support for heterogeneous architectures to MPI [Kumar et al.,

2007], but the question remains whether MPI can fully realize their potential. This section gives

a short overview over some models that have been proposed to solve the difficulties posed by

heterogeneous architectures.

4.3.1 Computation offloading (OpenCL)

Message passing and multithreading are programming models that assume that they operate on

homogeneous architectures. These programming models do not differentiate between the perfor-

mance characteristics and memory restrictions of different nodes. So for programs to work well

on heterogeneous architectures, the programmer has to do the differentiation manually. In addi-

tion, architectural differences between accelerator chips and the CPU often make it impossible

to use these programming models. Therefore, the computation offloading programming model

has emerged, which is a concept orthogonal to message passing and multithreading. In this

programming model the program is separated into program logic and computational kernels.

The program logic is executed on the normal CPU, and the computation of a kernel is started

by sending the kernel program, compiled for the accelerator architecture, and parameters to one

or more accelerator units. After the computation has been completed, the program logic pulls

the results from the accelerator units.

Some accelerators, like the Synergistic Processor Elements (SPE ) in the Cell processor,

support more complex communication patterns where accelerators can directly communicate

with each other through non-coherent DMA transfers. This allows the use of programming

models other than computation offloading for the Cell processor. But as there is no memory

consistency for accesses outside of the local memory of each processing element, computation

offloading is often preferable for programmer productivity and program stability reasons.

The computation offloading model allows optimizing programs for throughput through la-

tency hiding. Communication is only done at the time when a kernel is uploaded to an acceler-

ator, and when the results are fetched back. During the kernel computation, all data lies in the

local memory of the accelerator unit, which usually has low latency.

Most libraries used for computation offloading are specific for a vendor of accelerators. Only

at the end of 2008, the OpenCL specification was released. OpenCL is a vendor-independent

standard developed by the Khronos Group in cooperation with many industry-leading compa-

nies. It aims at unifying the access to accelerators and thus increasing program portability.

The OpenCL specification explicitly states that OpenCL does not aim to provide high-level

constructs, but instead only low-level interfaces which abstract away hardware specifics. The

concepts used in OpenCL are mostly taken from existing libraries for computation offloading

like CUDA by nVidia.

At the time of writing, AMD and nVidia have already released software development kits that

provide support for OpenCL for their GPUs. IBM has also released an OpenCL implementation

which supports the Cell processor. OpenCL will make it easier to create high-level programming

models for heterogeneous architectures and might lead to some new developments in the near
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future. [OpenCL, 2009]

Except for OpenCL, there also exist numerous other vendor independent computation of-

floading toolkits like the HMPP Workbench [HMPP, 2010], Codeplay Offload [Codeplay, 2010]

and ASTEX [Petit et al., 2006]. These toolkits all try to provide an approach to computation

offloading on a higher level compared to OpenCL. OpenCL may allow the vendors of these toolk-

its to provide support for a wider range of hardware platforms by removing the requirement to

create a backend for each platform.

4.3.2 Stream programming

One of the problems with the given high-level programming models is that they still do not

provide good support for heterogeneous architectures. This means that to be able to take

advantage of accelerator chips like General Purpose Graphics Processing Units (GPGPUs) or

the Synergistic Processing Elements (SPEs) of the Cell processor, the programmer would have

to resort to techniques like computation offloading. (see Section 4.3.1)

A more high-level approach to computation offloading is stream programming. As in com-

putation offloading, the program is split into program logic and computational kernels. In the

program logic, data that has to be worked upon is put into streams using gather operation and

then passed to one or more computational kernels. Output streams containing results are passed

back to the main program using scatter operations. The computational kernels themselves only

operate on their input and output streams.

Figure 4.27 shows a simple example of a stream program. In it, Kernel 1 receives three

streams of data (a, b and c), which it uses to calculate d. The output stream d, and another

input stream (e) are then used as input to Kernel 2. The result from Kernel 2 can then either be

scattered back to the main program or further used in other kernels. The runtime of a streaming

language automatically distributes the data in the streams to the accelerator units. It sends the

streaming data to the local memory of the accelerator units and retrieves the resulting data after

the calculation for this streaming element has been finished. Sophisticated implementations can

use the information about subsequent stream operations to keep some input or output data in

the local memory for the next streaming operation so that data does not have to be transferred

between these iterations. By utilizing some compiler optimization techniques in the streaming

runtime, it is even possible to split up or merge different streaming operations as it is done in

Ct. (see Section 4.3.3)

Figure 4.27: Dataflow Graph of a stream program.
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Most development is currently done to use stream programming for GPGPU programming,

like in the programming languages BrookGPU and Sh. Rapidmind [Monteyne, 2008], a com-

mercial stream programming language which is based on Sh, aims to support a wide variety

of accelerator chips through different backends. Nonetheless, stream programming can also be

of value for parallelization of kernels on normal CPUs. In [Gummaraju and Rosenblum, 2005]

techniques are described to utilize CPUs in stream programming languages. The programming

language Ct by Intel, which will be described in the next section, is specialised to support Intel’s

future terra-scale processor architectures.

4.3.3 Ct

Ct is a research effort by Intel to create an autoparallelizing C++ library based on the stream

programming model. It introduces vector primitive templates, which can be used with any scalar

type, and operations that can be applied to these vectors. A vector object is immutable and all

operations which can be applied to it are side-effect free and return a new vector object. This

results in less locking overhead and allows for aggressive optimizations.

Ct supports the use of nested parallelism, thus making it easier to implement certain classes

of algorithms based on recursion, such as the divide and conquer class of algorithms (e.g. Quick-

sort), in a natural and efficient way. The vector primitives themselves can also be nested, which

allows for supporting complex data structures, like sparse matrices, in an efficient manner. All

operators supported by Ct can cope with nested data structures.

Compilation can be done using standard C++ compilers for the x86 and x86-64 architectures.

Ct operations are implemented as function calls to the Ct dynamic engine, which in fact is a

second compiler that resides in the runtime of a Ct program. This runtime compiler uses

information from function calls to create an intermediate code representation of current calls.

Data flow analysis helps the compiler to reduce communication overhead, as results from one

computation can be kept locally in the memory of the processor core for the next computation.

In addition to that, the compiler can take advantage of kernel splitting and merging techniques,

which, in combination with other compiler optimization techniques, can optimize execution. The

advantage of this runtime approach is that the runtime compiler has some information about

the streaming operations which cannot be determined by a static compiler.

At the time of writing, no public release of Ct is available and, therefore, no experiments

with Ct can be performed in the context of this work. Nonetheless, concepts found in Ct provide

an interesting outlook on the theoretical potential for optimization in the stream programming

model. It has yet to be shown, how high the gains provided by these techniques will be in

practice. [Ghuloum et al., 2007b,Ghuloum et al., 2007a]



Chapter 5

Experiments

This chapter is aimed at providing a comparison of high-level programming models from the

programmer’s point of view. The evaluation thereby focuses on programming models for shared

memory architectures due to the increased public interest in these models since the emergence

of multi-core processors. Furthermore, the suitability of the tested programming models for

distributed memory architectures will be described but, however, not evaluated. Programming

models suitable for heterogeneous architectures are not included in this evaluation.

5.1 Approach used

For the experiments, a matrix multiplication kernel is implemented in each programming model.

As a reference implementation a sequential matrix multiplication kernel written in C++ is used.

The reference kernel is implemented in a simple and intuitive way (ijk-form) that does not

consider performance. For comparison, variants of the kernel are used which contain some

simple optimizations that are well known and often used by programmers. Ideally, the manual

use of such optimizations should not be necessary in a programming model, but should instead

be automatically applied by the compiler.

Depending on the tested programming model, either the reference implementation is ported

to it or, if the intuitive implementation of this kernel in this model differs from the reference

implementation, it is reimplemented.

For languages which have not been optimized for performance yet, and that are, therefore,

still not used in production systems, no performance measurements are done. Measuring the

absolute performance for these languages would not be representative, especially when comparing

them to other models. Still some interesting information can be gained by looking at the speedup,

so some performance data is evaluated to show this. For these models the example kernel is

primarily implemented to gain some practical experience with the programming models.

For all other models, build-scripts are created based on the build-script of the reference

implementation.(see Listing 2) These scripts build program executables for different problem

sizes, numbers of threads and implementation variants. Additional parameters that can influence

53
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the performance, like grain size, are added for programming models where they are necessary. All

executables can then be run by a run-script (see Listing 3) that iterates through all executables

and runs them one after the other, aggregates the results and writes them to a results file. This

file is then used for manual analysis of the data.

These results are then further analysed manually to find interesting characteristics of this

programming model. The goal is to find out how good the performance is for the intuitive

implementation, how much performance can be achieved by doing some simple optimizations

and how much the choice of additional parameters, like grain size, influences the results.

To get more representative results, each kernel is run for a configured number of times and

the run-time of each run is measured. Both the best and the worst run are dropped, and the

average run-time of the other runs is output. All tests are done using double-precision floating

point variables.

5.2 The matrix multiplication kernel

A matrix multiplication of the form C = A × B + C is a typical kernel that is widely used.

It is also available as a part of the BLAS library [Blas, 2008] which provides mathematical

kernels for scientific applications. Although in its simplest forms the sequential version is easy

to implement, there is still a lot of room for optimization by increasing cache-locality. (An

introduction into optimization for matrix multiplications can be found in [Wolfe, 1995].)

The simplest sequential reference implementation used in this evaluation is based on the

standard ijk form which can be seen in Figure 5.1. Although it is the most intuitive form, it

is far away from optimal performance. Assuming column major order (Column elements of a

matrix are stored in continuous memory), the problem is that for matrix B the inner loop jumps

between different columns of the matrix while reading only one element per column. For large

matrices, which do not fully fit into the processor cache, this leads to memory lines being cached

only for one element access and then being replaced by another memory line before they are

needed again.

for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)

for(int k = 0; k < N; k++)

C[i*N + j] += A[i*N + k] * B[k*N + j];

Figure 5.1: Sequential reference implementation of the ijk form of matrix multiplication.

A typical optimization, which is automatically applied by some compilers is loop reordering.

In the case of matrix multiplication reordering the “j” and the “k” loop leads to more efficient

behaviour. After reordering, the inner loop iterates through a column of matrix B, meaning

that the whole cache line is utilized for the iteration. In addition to that, only one element of

A is accessed in the inner loop so that it can be kept in the processor registers. This form of
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matrix multiplication is typically called ikj form in the literature.

for(int i = 0; i < N; i++)

for(int k = 0; k < N; k++)

for(int j = 0; j < N; j++)

C[i*N + j] += A[i*N + k] * B[k*N + j];

Figure 5.2: Sequential reference implementation of the ikj form of matrix multiplication.

Another typical optimization is dividing the given matrices into submatrices so that each

submatrix fits into the cache. The matrix multiplication is then split into an inner and an

outer multiplication. In the inner multiplication, two submatrices are multiplied and added to

the corresponding submatrix of the result matrix. The outer multiplication multiplies the global

matrix consisting of submatrices with each other. Figure 5.3 shows the reference implementation

of this method. Both the outer and the inner multiplication are implemented using the ikj

method.

for(int it = 0; it < N; it+=STRIDE)

for(int kt = 0; kt < N; kt+=STRIDE)

for(int jt = 0; jt < N; jt+=STRIDE)

for(int i = it; i < (it + STRIDE) && i < N; i++)

for(int k = kt; k < (kt + STRIDE) && k < N; k++)

for(int j = jt; j < (jt + STRIDE) && j < N; j++)

C[i*N + j] += A[i*N + k] * B[k*N + j];

Figure 5.3: Sequential reference implementation of the submatrix form of matrix multiplication.

Unfortunately, doing two comparison operations instead of one in the inner loop leads to

some overhead compared to the ikj form. To solve this, one can only allow matrices the di-

mensions of which are divisible by the stride. If support for other matrices is needed, the only

solution is to do the submatrix multiplication for the biggest submatrix that fulfils this criterion,

and to handle the corner cases in additional loops where the other condition is used then. Al-

though this optimization is actually already too low-level for the scope of this work, it has also

been implemented as a sequential reference implementation and included as the fourth variant

“unrolled submatrix form”, to be able to determine how much the setting of a grain size, which

is possible in some programming models, can utilize the potential of submatrix multiplications.

5.3 Testing environments

For the performance evaluation three different machines were used.

The first machine, daisy, is a Sun Fire X4600 M2 system. It consists of eight AMD Opteron

8218 dual-core processors that run at a frequency of 2.6 GHz. This system has been chosen

as it allows sixteen-fold parallelization on x86 processors. The software stack consists of the
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Sun Solaris 10 operating system, the Sun Studio 12 compiler collection and the GNU compiler

collection (GCC ) version 3.4.3.

The second system, rose, is a Sun Fire T5140 which consists of two Sun UltraSPARC T2

Plus processors. This system is especially interesting because of its unique processor architec-

ture. Each of the processors consists of eight cores, which in turn are capable to do eight-way

Simultaneous Multithreading (SMT ). The CoolThreads technology used in the processor allows

to do fast thread-switching whenever a high-latency operation is issued. This makes the proces-

sor well suitable for high-throughput applications, especially as the single-thread performance

of the processor is fairly low compared to other processors. Like on daisy the software stack

consists of Sun Solaris 10, Sun Studio 12 and GCC 3.4.3.

Unfortunately, both daisy and rose are not suitable for doing all tests on. Most programming

models are first developed for the most common platforms, which means that not all of them

support the Sun Solaris operating system. The situation for rose is even worse as the SPARC

architecture is less common as the x86 architecture, which is why only few programming models

support it.

To overcome these limitations, a third system, fleur, has been chosen for the tests. This

machine consists of two quad-core AMD Opteron 2378 processors and, therefore, allows for

eight-fold parallelization at least. Its software stack consists of the 64-bit version of Ubuntu 8.04

Server and GCC 4.2.4. The kernel version is 2.6.24.

An overview of the used systems can be found in Table 5.1

System Daisy Rose Fleur

Type Sun Fire X4600 M2 Sun Fire T5140 HP DL385 R05p
Processors 8x AMD Opteron 8218 2x Sun UltraSPARC T2+ 2x AMD Opteron 2378
Threads 16 128 8
Compilers SUN Studio 12 SUN Studio 12 GCC 4.2.4

GCC 3.4.3 GCC 3.4.3

Table 5.1: Testing environments.

5.4 Sequential version

The sequential version of the matrix multiplication is implemented in C++ and has been com-

piled using the compilers accessible on the machines. The results of the performance measure-

ments can be found in the Tables 5.2-5.6. For the submatrix forms of the multiplication different

strides have been tried out. Only the result that has provided the best performance is shown in

the tables.

On fleur (Table 5.2) it can be seen that memory layout becomes a performance dominating

factor on matrix dimensions higher than 256. On matrix sizes higher than 1024 it is advanta-

geous to split the matrix into single blocks that fit into the processor cache. Some higher-level

programming models should theoretically be able to automatically utilize these effects.



5.4. SEQUENTIAL VERSION 57

Variant Dimensions Stride Avg. time (sec.)

ijk 256 0.10
ijk 512 0.95
ijk 1024 32.63
ijk 2048 456.29

ikj 256 0.08
ikj 512 0.26
ikj 1024 3.99
ikj 2048 29.34

submatrix 256 256 0.06
submatrix 512 512 0.26
submatrix 1024 512 2.70
submatrix 2048 128 23.60

submatrix unroll 256 128 0.06
submatrix unroll 512 512 0.26
submatrix unroll 1024 512 2.19
submatrix unroll 2048 256 19.23

Table 5.2: Performance results of the matrix multiplication code on fleur.

Variant Dimensions Stride Avg. Time (sec.)

ijk 256 0.11
ijk 512 4.36
ijk 1024 48.36
ijk 2048 622.21

ikj 256 0.02
ikj 512 0.56
ikj 1024 4.48
ikj 2048 46.29

submatrix 256 32 0.04
submatrix 512 128 0.33
submatrix 1024 128 2.74
submatrix 2048 64 24.55

submatrix unroll 256 32 0.02
submatrix unroll 512 256 0.20
submatrix unroll 1024 128 1.84
submatrix unroll 2048 64 17.26

Table 5.3: Performance results of the matrix multiplication code on daisy (SunCC).

On daisy (Tables 5.3 and 5.4), the submatrix variant is already advantageous for matrix sizes

bigger than 256. Also, the optimal strides are typically smaller on daisy. This can be explained

by the smaller cache sizes compared to fleur. It should also be noted that even for this simple

matrix multiplication example there is a big performance difference between the Sun and the

GCC compiler. As the Sun compiler would be the compiler of choice for this system, the results
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Variant Dimensions Stride Avg. time (sec.)

ijk 256 0.13
ijk 512 5.55
ijk 1024 113.64
ijk 2048 952.82

ikj 256 0.04
ikj 512 0.72
ikj 1024 4.72
ikj 2048 37.46

submatrix 256 256 0.04
submatrix 512 128 0.38
submatrix 1024 128 3.06
submatrix 2048 64 29.76

submatrix unroll 256 256 0.03
submatrix unroll 512 256 0.29
submatrix unroll 1024 128 2.61
submatrix unroll 2048 64 23.39

Table 5.4: Performance results of the matrix multiplication code on daisy (GCC).

from Table 5.3 will be used as a reference for the evaluation of all programming models on this

machine.

Variant Matrix dimensions Stride Avg. time (sec.)

ijk 256 0.49
ijk 512 3.89
ijk 1024 48.23
ijk 2048 1389.37

ikj 256 0.34
ikj 512 2.77
ikj 1024 31.05
ikj 2048 248.21

submatrix 256 256 0.45
submatrix 512 256 3.70
submatrix 1024 512 29.04
submatrix 2048 256 235.33

submatrix unroll 256 256 0.35
submatrix unroll 512 256 2.78
submatrix unroll 1024 256 22.24
submatrix unroll 2048 256 176.83

Table 5.5: Performance results of the matrix multiplication code on rose (SunCC).

On rose (Tables 5.5 and 5.6) it can be noted that for matrix sizes bigger than 512 the

submatrix multiplication performs better. Again, SunCC outperforms GCC, which means that

the results from Table 5.5 will be used as a reference in the evaluation.
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Variant Matrix dimensions Stride Avg. time (sec.)

1 256 0.58
1 512 4.66
1 1024 55.81
1 2048 1623.46

1 256 0.51
1 512 4.09
1 1024 61.95
1 2048 496.92

1 256 256 0.77
1 512 256 5.98
1 1024 256 47.51
1 2048 128 382.86

1 256 256 0.51
1 512 512 4.09
1 1024 256 32.60
1 2048 256 261.48

Table 5.6: Performance results of the matrix multiplication code on rose (GCC).

5.5 Results

5.5.1 OpenMP

The OpenMP version of the matrix multiplication is relatively easy to implement. (see Listing

5) To parallelize the loops of the sequential version it is only necessary to add the compiler

directive #pragma omp parallel for before the outmost loop over i or j. All four variants

of the matrix multiplication have been parallelized in this way. Figures 5.4 and 5.5 depict the

resulting code for the ijk and the submatrix form.

#pragma omp parallel for

for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)

for(int k = 0; k < N; k++)

C[i*N + j] += A[i*N + k] * B[k*N + j];

Figure 5.4: OpenMP implementation of the ijk form of matrix multiplication.

The performance measurement results gained on daisy show that potential speedup for the

matrix multiplication kernel in OpenMP is limited by the way in which it is implemented. Figure

5.6(a) depicts the speedup gained for the ikj-variant of the matrix multiplication code. It can

be seen that for this variant speedup is very limited. In fact, for the eight processor run the

parallelization overhead seems to outweigh the gains compared to the four processor run so

that execution is actually slower. Interestingly, performance increases again while raising the

number of threads to sixteen. To explain this phenomenon, tests have been done using different
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#pragma omp parallel for

for(int it = 0; it < N; it+=STRIDE)

for(int kt = 0; kt < N; kt+=STRIDE)

for(int jt = 0; jt < N; jt+=STRIDE)

for(int i = it; i < (it + STRIDE) && i < N; i++)

for(int k = kt; k < (kt + STRIDE) && k < N; k++)

for(int j = jt; j < (jt + STRIDE) && j < N; j++)

C[i*N + j] += A[i*N + k] * B[k*N + j];

Figure 5.5: OpenMP implementation of the submatrix form of matrix multiplication.

thread-affinity settings. It seems that on daisy OpenMP threads are first distributed between

physical processors and then between processor cores. In case of the matrix multiplication this

is a disadvantage as the communication overhead is higher between physical processors than

between different processor cores.

(a) ikj (b) unrolled submatrix form

Figure 5.6: Speedup of the OpenMP implementation of the matrix multiplication code on daisy
- matrix size: 2048

If we compare the speedup achieved by the ikj-variant of the kernel with the speedup achieved

by the unrolled submatrix variant, it can be seen that the optimized version of the kernel also

scales better. This variant scales well up to eight threads, and at least some speedup can be

noticed when again doubling the number of threads to a total of sixteen.

Detailed run-times of the test-runs on daisy are depicted in the Tables 5.7 and 5.8. It should

be noted that on daisy the one-processor-run of the OpenMP version was always faster than

the sequential version. This behaviour might result from additional code optimizations that are

only done by the compiler when the OpenMP flag is set. For this reason, the one-processor-run

of the OpenMP version has been taken as a reference point for the calculation of speedup.

The observation that the submatrix variant can exhibit higher speedup can be reproduced

on both rose and fleur, although the ikj-variant scales better on these platforms. Figure 5.7
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Type Threads Avg. Time Speedup

Sequential reference 1 46.29 0.70

OpenMP 1 32.37 1.00
OpenMP 2 20.28 1.60
OpenMP 4 17.70 1.83
OpenMP 8 20.96 1.54
OpenMP 16 19.77 1.64

Table 5.7: Performance results of the OpenMP implementation of the ikj variant of the matrix
multiplication code on daisy - matrix size: 2048

Type Threads Stride Avg. Time (sec.) Speedup

Sequential reference 1 64 17.26 0.99

OpenMP 1 32 17.11 1.00
OpenMP 2 32 9.64 1.77
OpenMP 4 32 4.84 3.54
OpenMP 8 32 2.76 6.20
OpenMP 16 32 2.69 6.35

Table 5.8: Performance results of the OpenMP implementation of the unrolled submatrix variant
of the matrix multiplication code on daisy - matrix size: 2048

(a) ikj (b) unrolled submatrix form

Figure 5.7: Speedup of the OpenMP implementation of the matrix multiplication code on rose -
matrix size: 2048

depicts that on rose both variants exhibit nearly linear speedup up to 32 threads. This means

that the application is even able to efficiently utilize two-way SMT, as rose consists of only

sixteen cores. When using more than 32 threads in the ikj-variant, the parallelization overhead

seems to exceed the possible gains, which results in a slowdown compared to the 32-thread run.

The unrolled submatrix variant scales up even further with a speedup-factor of up to 49.

On fleur (see Figure 5.8) the unrolled submatrix variant scales especially well. It can be
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(a) ikj (b) unrolled submatrix form

Figure 5.8: Speedup of the OpenMP implementation of the matrix multiplication code on fleur
- matrix size: 2048

noticed that a speedup better than linear was achieved during the test-run. Such an effect can

be explained with increased cache-locality due to the split of the iteration space onto multiple

processors.

The analysis of OpenMP’s performance leads to the conclusion that OpenMP is able to

efficiently utilize parallelism on shared-memory architectures, and to provide good speedup

and good absolute performance. However, with OpenMP it becomes even more important

to optimize memory access patterns compared to sequential code as they not only influence

the absolute performance but also the possible speedup. This means that effectively OpenMP

programs still have to be programmed on a very low level to run efficiently.

5.5.2 Threading Building Blocks

Due to the fact that TBB is only an object oriented library, the parallelization of the matrix

multiplication is not as easy as it is with other programming models. (see Listing 7) Each

matrix multiplication kernel has to be moved out into its own function object that can then be

executed via the parallel for function. Inside the kernel the iteration ranges for the loops which

are to parallelize have to be replaced by TBB’s range objects. An example implementation is

shown in Figure 5.9. Parallelizing two loops gets even more complex than just parallelizing

one as it requires the developer to use a blocked range2d object to specify the iteration range.

When converting an existing 1-dimensional implementation to two dimensions this means that

not only the function object has to be modified but also all calls to parallel for which use this

function object. A 2-dimensional implementation of the ikj-variant is depicted in Figure 5.10.

Tests with TBB were both done using the 1-dimensional and the 2-dimensional implemen-

tation. The tests with two dimensions were made to see if the range-object blocked range2d

provides better cache-locality compared to the one-dimensional blocked range. Since TBB re-
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struct Submatrix {

void operator() (const blocked_range<int>& range) const

{

for(int it = range.begin(); it < range.end(); it += STRIDE)

for(int kt = 0; kt < N; kt += STRIDE)

for(int jt = 0; jt < N; jt += STRIDE)

for(int i = it; i < (it + STRIDE) && i < range.end(); i++)

for(int k = kt; k < (kt + STRIDE) && k < N; k++)

for(int j = jt; j < (jt + STRIDE) && j < N; j++)

mat3[i*N j] += mat1[i*N k] * mat2[k*N j];

}

};

void runSubmatrix()

{

Submatrix submatrix;

parallel_for(blocked_range<int>(0, N, GRAINSIZE), submatrix);

}

Figure 5.9: TBB implementation of the submatrix form of matrix multiplication.

struct Ikj {

void operator() (const blocked_range2d<int, int>& range) const

{

for(int i = range.cols().begin(); i < range.cols().end(); i++)

for(int k = 0; k < DIMENSIONS; k++)

for(int j = range.rows().begin(); j < range.rows().end(); j++)

mat3[i*N + j] += mat1[i*N + k] * mat2[k*N + j];

}

};

void runIkj()

{

Ikj ikj;

parallel_for(blocked_range2d<int, int>(0, N, GRAINSIZE, 0, N, GRAINSIZE), ikj);

}

Figure 5.10: TBB implementation of the ikj form of matrix multiplication using a 2-dimensional
range object.

quires a grain size to be specified by the programmer, different settings have been tested with

the ijk-variant and the ikj-variant to see which setting provides the best performance. For the

submatrix variants a grain size of 1 was used because it would have made little sense to increase

it there.
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When looking at the performance of the example kernels, some interesting insights can be

gained. Contrary to OpenMP, no performance can be gained using the unrolled submatrix form.

Relative to the corresponding one-processor run, both kernels scale in a similar manner, but in

absolute numbers the ikj-variant outperforms the unrolled submatrix variant (see Figure 5.11).

For the grain size different settings were used for the ijk and ikj variants, but no correlation

between performance and grain size has been found. The grain size that provided the best

performance for a specific configuration can be found in Table 5.9.

(a) ikj (b) unrolled submatrix form

Figure 5.11: Speedup of the TBB implementation of the matrix multiplication code on fleur -
matrix size: 2048

Type Threads Grain size Avg. Time (sec.) Speedup

Sequential reference 1 29.34 1.00

TBB 1 4 30.07 0.98
TBB 2 16 17.00 1.73
TBB 4 4 11.58 2.53
TBB 8 1 9.04 3.25

Table 5.9: Performance results of the TBB implementation of the ikj variant of the matrix
multiplication code on fleur - matrix size: 2048

To see whether a 2-dimensional range can be used in TBB to replace the manual optimization

of splitting the matrices into submatrices, tests have also been done using a blocked range2d

object. The corresponding code can be found in Figure 5.10. As can be seen in Table 5.11, the

performance is only a bit worse than the performance of the unrolled submatrix variant in Table

5.10. Other than in the one-dimensional implementation (see Table 5.9) a correlation between

grain size and performance can be noticed. The optimal grain size for fleur seems to be 256,

which corresponds to the optimal stride of 256 in the unrolled submatrix variant. This shows

that range objects are flexible enough to be used instead of the manual submatrix optimizations.



5.5. RESULTS 65

Type Threads Stride Avg. Time (sec.) Speedup

Sequential reference 1 256 19.23 1.00

TBB 1 256 34.12 0.56
TBB 2 256 19.06 1.01
TBB 4 128 11.92 1.61
TBB 8 256 9.08 2.12

Table 5.10: Performance results of the TBB implementation of the unrolled submatrix variant
of the matrix multiplication code on fleur - matrix size: 2048

Type Threads Grain size Avg. Time Speedup

Sequential reference 1 29.34 1.00

TBB 1 256 36.52 0.80
TBB 2 256 19.67 1.49
TBB 4 256 12.93 2.27
TBB 8 256 11.28 2.60

Table 5.11: Performance results of the 2-dimensional TBB implementation of the ikj variant of
the matrix multiplication code on fleur - matrix size: 2048

One major problem of TBB seems to be that although its high-level nature allows to abstain

from some low-level optimizations, it cannot provide the same performance and scalability as

OpenMP with low-level optimizations. The overhead created by TBB seems to be too high to be

competitive. One reason might be that TBB relies on function calls inside parallel constructs,

which may make it more difficult for the compiler to optimize. Apart from that, the compiler does

not know about the parallelism in those constructs and, therefore, cannot use this information

for optimizations. It is possible that compilers supporting more sophisticated optimizations than

the GCC are able to optimize TBB code better, but for the platform it was tested on this is not

the case.

The experience from parallelizing the matrix multiplication kernels has already shown that

parallelizing existing libraries with TBB can become much more work than it is with most

other programming models. The experience with converting a 1-dimensional implementation

to two dimensions shows that the function objects cannot be used as an abstraction layer as

the calls to the function object still contain some implementation specifics. And yet TBB has

the advantage of being easily extensible because it is just a C++ library. This might prove

to be an advantage during the transition from sequential to parallel models where no model is

able to support all use-cases. One major drawback is that for applications needing very good

performance the performance potential is limited. Although it might perform better using other

compilers, the optimization potential is limited by the compiler’s lack of understanding of the

parallelism in TBB. The author believes that in the long term TBB will not be of significant

importance because of its complexity compared to other models and the limitations imposed by

being only a C++ library.
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5.5.3 Cilk++

Parallelizing the matrix multiplication in Cilk++ is only a matter of replacing the normal for -

statement with a cilk for statement. Like TBB Cilk++ allows to specify a grain size for its

parallel for-loop, but unlike TBB Cilk++ can also calculate an optimal grain size setting. To

see whether the grain size can influence the performance of the matrix multiplication kernel,

different grain size settings were used in the ijk and ikj variants.

cilk_for(int it = 0; it < N; it += STRIDE)

for(int kt = 0; kt < N; kt += STRIDE)

for(int jt = 0; jt < N; jt += STRIDE)

for(int i = it; i < (it + STRIDE) && i < N; i++)

for(int k = kt; k < (kt + STRIDE) && k < N; k++)

for(int j = jt; j < (jt + STRIDE) && j < N; j++)

mat3[i*N + j] += mat1[i*N + k] * mat2[k*N + j];

Figure 5.12: Cilk++ implementation of the submatrix form of matrix multiplication.

Type Threads Grain size Avg. Time (sec.) Speedup

Sequential reference 1 29.34 1.00

Cilk++ 1 1 29.58 0.99
Cilk++ 2 automatic 16.80 1.75
Cilk++ 4 16 11.49 2.55
Cilk++ 8 8 8.88 3.31

Table 5.12: Performance results of the Cilk++ implementation of the ikj variant of the matrix
multiplication code on fleur - matrix size: 2048

The test results do not show any correlation between grain size and performance. Apart

from that, the performance and scalability are similar to OpenMPs so that the same findings

should apply. This means that the unrolled submatrix optimization not only influences absolute

performance, but also scalability. When looking at Figure 5.13(b) a better than linear speedup

can be noticed compared to the sequential reference implementation, whereas for the ikj variant

in Figure 5.13(a) the speedup with 8 threads amounts to only 3.3.

Type Threads Stride Avg. Time (sec.) Speedup

Sequential reference 1 256 19.23 1.00

Cilk++ 1 256 19.49 0.99
Cilk++ 2 256 9.36 2.05
Cilk++ 4 256 4.63 4.15
Cilk++ 8 256 2.34 8.23

Table 5.13: Performance results of the Cilk++ implementation of the unrolled submatrix variant
of the matrix multiplication code on fleur - matrix size: 2048
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(a) ikj (b) unrolled submatrix form

Figure 5.13: Speedup of the Cilk++ implementation of the matrix multiplication code on fleur
- matrix size: 2048

5.5.4 Chapel

Chapel’s focus on high-level array operations allows for implementing the matrix multiplication

example kernel in a more elegant way than in the sequential reference implementation. (see

Listing 8) It can in fact be derived from the mathematical definition of a matrix multiplication.

The following formula depicts how each element of the resulting matrix C is calculated:

Ci,j =
n

∑

r=1

Ai,rBr,j (5.1)

Each element Ci,j is calculated as the sum of products of the elements of the ith row of

matrix A and the jth column of matrix B. In Figure 5.14 an array statement is used to calculate

the product of the ith row with the jth column. The result of this multiplication is then reduced

with the addition operator.

const ProblemSpace: domain(2) distributed(Block) = [1..n, 1..n];

var A, B, C: [ProblemSpace] real(64);

forall (i, j) in ProblemSpace do {

C(i,j) = C(i,j)+ +reduce(A(i,1..n) * B(1..n, j));

}

Figure 5.14: Chapel implementation of a matrix multiplication.

Tests and performance measurements done using versions 0.8 and 0.9 of the prototype Chapel

compiler showed that the Chapel compiler is still in an early stage of development. Data distri-

butions and the interface to implement custom array distributions are still undocumented and

are not recommended by the developers to be tested yet. Actual measurements were done using a
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standard two-dimensional arithmetic array domain for the matrices. The measurements showed

that neither the forall loop nor the array statements executed in parallel, therefore, there was

no speedup when using more threads. Brad Chamberlain, one of the lead developers of Chapel,

confirmed that this part has not been implemented yet. To test the actual autoparallelization

capabilities of Chapel, a simple one-dimensional block distribution has been provided by the

Chapel developers, which has been used by them to implement a Chapel version of the stream

benchmark [Stream, 2009]. Measurements using the stream benchmark, in fact, showed a small

speedup when using two threads.

As the prototype Chapel compiler is not recommended for productive use and as it does

not aim to provide competitive performance, no detailed performance measurements have been

done in the context of this work.

5.5.5 X10

Although X10 should provide more high-level means of implementing a matrix multiplication,

the easiest way to implement it is similar to the sequential reference implementation and its

counterparts in OpenMP, TBB and Cilk++. Figure 5.15 shows an example implementation

for shared memory architectures. In this example a foreach loop iterates over both matrix

dimensions, which might allow X10 to automatically apply the submatrix optimization to the

iteration space.

finish foreach ((i,j) in [0,0]..[N-1,N-1])

for(var k:int = 0; k < N; k++)

C(i,j) += A(i,k) * B(k,j);

Figure 5.15: X10 implementation of a matrix multiplication for shared memory architectures.

While the shared memory example is very straightforward, the implementation becomes

much more complex when trying to implement the matrix multiplication for distributed memory

systems. The difficulty is that locality is explicit in X10, which leads to complex problems

when actually trying to implement a matrix multiplication algorithm for distributed memory

architectures. As there is still little documentation in this area, it has not been possible to

implement the algorithm in a way that would actually have made sense performance-wise.

With future versions of X10 it might be possible to implement matrix multiplication in a

more declarative syntax, which would also make it easier for the X10 compiler to optimize the

code. A code example for calculating a dot product in X10 using declarative syntax can be found

in [Saraswat and Nystrom, 2008, p123] and is also displayed in Figure 5.16. Unfortunately, this

example has never been fully explained and no details on X10’s declarative syntax can be found

in the literature. Apart from that, the examples found in the literature do not seem to be

consistent. The author believes that the declarative syntax is still not fully specified and cannot

be used in the current implementation of the X10 compiler.
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def dotProduct(a: Array[T](D), b: Array[T](D)): Array[Double](D) =

(new Array[T]([1:D.places],

(Point) => (new Array[T](D | here,

(i): Point) => a(i)*b(i)).sum())).sum();

Figure 5.16: Dot product implementation using X10’s declarative syntax. (Source: [Saraswat
and Nystrom, 2008, p123])

Like in the evaluation of Chapel, no detailed performance measurements were done using

the X10 compiler, as its developers have not aimed at providing competitive performance yet. It

can be noted that during the test-runs of the matrix multiplication code some speedup could be

achieved compared to a one processor run of the X10 code, but compared to other programming

models X10 is still very slow.
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Conclusion

Even when ignoring heterogeneous architectures, parallel programming is still a challenge. For

the time being, distributed memory architectures will be ignored by most programmers. Only in

High Performance Computing the support of distributed memory architectures is essential, but

there people will still rely on the “assembler of parallel programming”, namely MPI. At least

on shared memory platforms approaches on a higher level than multithreading work well. Both

OpenMP and Cilk++ can already be used today and can provide good performance although

they still require a lot of manual optimization. It is only a matter of time until the features

found in these programming models are available in other programming languages than C++

and Fortran.

The problem is, that development will not stop at homogeneous multi-cores. In fact, spe-

cialized accelerator chips are already available. At least with OpenCL, a standardized interface

will become available for them, but access to them is explicit and happens on a very low level.

It still cannot be said whether it will be possible to integrate programming for accelerators into

a parallel programming model on a high level.

Another problem will emerge when the limits of shared memory architectures are reached.

If this is the case, a high-level distributed memory programming model will be necessary for

distributed memory architectures to come to the mainstream. Without such a programming

model, shared memory architectures would continue to be the standard, but as this would stop

innovation, the CPU industry would become a replacement industry instead of an innovation

industry.

6.1 About the tested programming models

The tested programming models can be split into two groups, namely, established programming

models, which can be used in production environments, and experimental high-level program-

ming models. Experimental high-level programming models aim at providing high performance

and good scalability, which is realised using new high-level concepts. Although it is not sure yet

whether these programming models will ever be used in productive environments, some of the
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concepts will certainly be adopted by other programming models.

As shown in this work, X10’s strengths can be found in the area of task-based parallelism

and coordination. One such concept is X10’s rooted exception model, where exceptions are

propagated from child to parent tasks, which means that exceptions can never get lost. Another

major contribution by X10 is the clock concept, which is able to completely replace barriers in

modern parallel programming models. X10’s regions and data distributions have the advantage

of allowing static reasoning, which allows the application of set operations, such as intersections,

to iteration spaces. Also, this concept is very likely to grant good performance for parallel

operations. Besides, X10 provides extensions to object oriented programming to make it better

suitable for parallel environments. These contributions will most certainly find their way into

other object oriented programming languages.

The major problem of X10’s domains and data distributions is the complexity of managing

local and remote memory accesses. As such, the programmer has to explicitly specify whether a

memory access references a local or a remote memory location, which increases code complexity.

In fact, writing distributed memory code in X10 is still very low-level. Another concern with X10

is whether the concepts provided are flexible enough to support complex scenarios like irregular

problems.

The complications associated with X10, however, cannot be found in Chapel: First, Chapel

promises to provide arbitrary data distributions. In addition, Chapel abstracts away the differ-

ence between local and remote memory accesses. Chapel’s array syntax allows to describe some

algorithms on a higher level than classical sequential programming models do, which has the

advantage of both making compiler optimizations easier to realize and reducing complexity for

the programmer. In Chapel it is easy to derive work distribution from data distribution, though,

where necessary, work distribution can also be specified manually. The question remaining open

is whether Chapel’s programming model has the potential of providing high performance. This

question cannot be answered yet.

In terms of high-level concepts, Threading Building Blocks (TBB) is the programming model

out of the tested established ones that comes closest to the experimental programming models.

TBB’s range class allows to define iteration spaces similar to those in Chapel’s and X10’s array

domains. The range classes included in the TBB distribution provide only basic functionality,

though, as custom ranges can be implemented by the user, it should be possible to create ranges

for arbitrary problem classes. However, the problematic thing about ranges is that, unlike

Chapel’s domains and X10’s regions, a range does not provide iterators. This means that the

actual application of a range requires detailed understanding of the specific range’s conceptual

fundament, which leads to implementations on a lower level, compared to implementations using

array domains.

The biggest disadvantage of TBB in comparison with the other evaluated programming

models is its being just an object oriented C++ library. Due to this, code accessing TBB

functionality is very bloated compared to other programming models and most of the code

is just boilerplate code. Also, the fact that TBB is not a programming language becomes a
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problem with regard to memory consistency models: TBB only provides memory consistency

for operations on instances of the atomic template class.

Unlike TBB, OpenMP and Cilk++ provide only little support for data-parallelism and focus

on task-based parallelism instead. However, this is compensated by their reduced complexity:

Both programming models facilitate the parallelization of existing C++ code, with the paral-

lelization requiring only little modifications of the source-code. Furthermore, both programming

models allow to create a sequential C++ representation of a parallel program which can be used

in code-analysis tools and for debugging. Though only Cilk++ guarantees that the sequential

representation always has the same semantics as the parallel version, in most cases this should

also apply to OpenMP programs. In general, since the release of OpenMP version 3.0, which

supports tasks, Cilk++ and OpenMP have been very similar. The differences can mainly be

found in the memory consistency models: Whereas Cilk++ tries to provide an intuitive model

that is very relaxed, OpenMP’s is more explicit, thus allowing more fine-grained control. Also,

the performance behaviour may differ in some complex scenarios, which, however, are not in the

scope of this work.

(a) ikj (b) unrolled submatrix form

Figure 6.1: Comparison of the evaluated programming model’s speedup for the matrix multipli-
cation code on fleur - matrix size: 2048

When we look at the performance and scalability of OpenMP, Cilk++ and TBB, which can

be seen in Figure 6.1, it can be noted that regarding the simple matrix multiplication example

OpenMP and Cilk++ exhibit similar behaviour: Both programming models are able to achieve

better than linear speedup, using the matrix multiplication code in the unrolled submatrix

variant. With respect to the ikj-variant, which is easier to implement, neither OpenMP nor

Cilk++ are able to achieve such results. TBB, though, behaves differently: Whereas it can

deliver competitive performance for the ikj-variant of the code, for the unrolled submatrix variant

the performance is actually worse than for the ikj-variant. The tests carried out for the ikj-variant

using the blocked range2d object, which are marked as TBB 2D in Figure 6.1(a), have not been

able to provide better performance, either.

Based on this evaluation the following conclusions can be drawn:
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1. Both OpenMP and Cilk++ are mature programming models, enabling the programmer to

easily parallelize existing programs. Nevertheless, they are still very low-level and profit

from manual optimization. OpenMP’s advantage over Cilk++ is that it is an industry

standard supported by most compiler-vendors. Cilk++, in turn, profits from a more

sophisticated memory consistency model.

2. TBB tries to provide a more high-level approach, compared to OpenMP and Cilk++.

However, its major design flaw is that it is only a C++ library, thus being not able to

provide its own memory consistency model. Apart from that, compilers are not aware of

TBB’s parallelism, which reduces the potential for optimization. Finally, TBB requires a

lot of boilerplate code, as a consequence of which code readability is reduced.

3. Chapel provides very interesting concepts for array operations. All the same, it cannot

yet be said whether it will ever be able to provide competitive performance.

4. X10’s innovation lies mainly in the area of task-based parallelism and coordination - es-

pecially the clock concept is very interesting and will almost certainly replace barriers in

other programming models. Although X10’s array concepts have the advantage of allowing

set operations on array regions and data distributions, they are not as sophisticated as

Chapel’s: It is doubtful whether X10 arrays will be able to support any kind of problem.

OpenMP Cilk++ TBB Chapel X10

data dis-
tribution

unsupported unsupported only data ac-
cess patterns

custom data
distributions

supported

work dis-
tribution

task and
data-parallel
constructs

mainly task-
parallel

mainly data-
parallel

derived from
data distri-
bution or
explicit

task and data-
parallel

memory
model

local view,
synchronized
with global
view on sync
ops

global view global view PGAS - mostly
abstracted
away

APGAS

memory
consis-
tency

weak ordering dag-
consistency

none, release
consistency for
atomic class

undecided sequential if
race-free, only
local

coordina-
tion

barriers, mu-
texes, critical
sections,
taskwait

mutexes, sync mutexes sync variables,
atomic blocks

finish, clocks,
atomic blocks

Table 6.1: Overview over the evaluated programming models.



74 CHAPTER 6. CONCLUSION

6.2 Promising concepts

The experimental programming models evaluated in this work lay the groundwork for future

high-level programming models. There seems to be a consensus in the community that PGAS

is the memory model future programming models will be built upon. The question, however,

remains, whether it is necessary for the programmer to explicitly manage locality. The simplicity

of Chapel’s memory model from the programmers point of view would ease the adoption of

distributed memory programming models. However, it is yet to be determined if this approach

is scalable.

On the side of task management, X10’s task management model, that builds upon Cilk’s

model and extends it with features like a rooted exception model, looks very promising. The

clock concept is a good replacement for barriers as it works well together with tasks and has

no disadvantages. It is less error-prone than mutex-based coordination, especially, as it can be

guaranteed that a program using locks is deadlock-free. Clocks would be a good addition to

existing task-based programming models.

Although clocks would reduce the need for the use of mutexes, they are still needed to secure

critical sections. Another way to secure critical sections, which is less error-prone, is the use

of transactions. Currently, transactional memory suffers from a high overhead, which makes it

unattractive compared to locking techniques. Only time can tell if this problem will be solved.

The problem most relevant for scalability of a parallel program on distributed memory ar-

chitectures is data distribution. Without a scalable high-level means of data distribution, dis-

tributed memory architectures will not be accepted in the mainstream. Both X10 and Chapel

try to solve this problem in a different way. Chapel’s concept is more elegant in that it supports

arbitrary types of data distribution. The question, however, remains, whether this concept is

scalable. X10 restricts itself to data distributions that allow static reasoning. Although this

approach has a higher chance to scale well, it might not be accepted in the community if it is

not able to support every type of problem.

6.3 Future developments

In the near future, chances are high that programming models for shared memory architectures

will still be based on fork-join parallelism. They will differ from standard threading libraries

by providing a task scheduler and a memory model for the programming language. A lot of

productivity could already be gained today if some of the task management features of X10 were

adapted to existing programming models.

For distributed memory architectures no new high-level programming model can be seen that

might be able to replace MPI as the standard programming model. It seems that the PGAS

model is a good starting point for developing a new programming model for homogeneous

distributed memory systems, but PGAS is still a very low-level approach. Automatic data

distribution still seems to be a good way to reduce the complexity of writing parallel programs,
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but the difficulty is the necessity of providing arbitrary data distribution, while still maintaining

good scalability.

The research regarding heterogeneous architectures is still at its beginning, and, for the time

being, OpenCL is going to become the standard for accessing accelerator units. One concept that

might be able to provide a higher-level approach for programming heterogeneous architectures is

stream programming. Stream programming is especially interesting because it would even allow

to work with accelerator hierarchies. Only time will show whether stream programming will be

able to solve the challenges posed by heterogeneous architectures.

Although a lot of problems are still not solved on the software side, hardware development

will further proceed in the direction of parallel computing. Although the number of transistors on

processors still increases, they cannot be efficiently used to increase single processor performance.

Therefore they are instead used to increase on-chip parallelism. Another paradigm change

might occur when sometime in the future the cost per transistor still decreases, while the power

consumption per transistor doesn’t decrease any more. According to [Hofstee, 2009] performance

can only be further improved on a fixed power budget, when efficiency is improved. And efficiency

per computation can only be improved in two fundamental ways:

“Running each thread slower or

Specializing the core to the computation” [Hofstee, 2009]

As reducing single-thread performance will sooner or later limit scalability for most appli-

cations, the only remaining solution is to use cores specialized to the computation. General

Purpose Graphics Processing Units (GPGPUs) are already used today to accelerate computa-

tions. The author believes that the functionality provided by GPGPUs will sooner or later be

integrated into normal CPUs in the form of specialized cores, similar to the SPUs in the Cell

processor. If we look at embedded processors, where power is more restricted than in desktop-

and server-based computing, we can see that these processors contain a great variety of units

specialized for specific tasks. This might also become necessary for standard CPUs.

Another way to increase efficiency per computation is through the use of FPGAs. With

FPGAs, processing units specialized for a specific kernel can be created on the fly, and as soon

as this unit is not needed any more, the FPGA can be reconfigured for another kernel. Of

course, an FPGA cannot provide the same performance as a processor specialized for a specific

computation, but the flexibility of reconfiguration might prove to be of advantage in the future.
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Sourcecode

Listing 1: The Makefile used to make and run the sequential reference implementation.

1 LIBS =

2

3 TARGET = MatMul

4

5 OBJS =

6

7 include config/make .def

8

9

10 $(TARGET): $(OBJS )

11 $(CXX) $(CXXFLAGS ) -o bin/$(TARGET) MatMul.cpp $(OBJS ) $(LIBS )

12

13 all: ijk ikj submatrix submatrix_unroll

14

15 clean:

16 rm -f $(OBJS ) $(TARGET)

17 rm -f lib/*

18 rm -f bin/*

19 rm -f results /*

20

21 ijk:

22 ./ ijk_suite "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )"

23

24 results /ijk:

25 ./ ijk_run "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )"

26

27 ikj:

28 ./ ikj_suite "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )"

29

30 results /ikj:

31 ./ ikj_run "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )"

32

33 submatrix :

34 ./ submatrix_suite "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )" "$(SUBMATRIX_STRIDE

)"

35

36 submatrix_unroll :

37 ./ submatrix_unroll_suite "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )" "$(

SUBMATRIX_STRIDE )"

38

39 results /submatrix :

40 ./ submatrix_run "$( DIMENSIONS )" "$(RUNS )" "$( DATA_TYPE )" "$(SUBMATRIX_STRIDE )"

41

42 results /submatrix_unroll :

43 ./ submatrix_unroll_run "$(DIMENSIONS )" "$(RUNS )" "$(DATA_TYPE )" "$(

SUBMATRIX_STRIDE )"

87
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44

45 run: results /all

46 results/all: results/ijk results/ikj results /submatrix results/ submatrix_unroll

47 ./ gather_results .pl

Listing 2: The submatrix suite script of the sequential reference implementation which is used
to make a target for each combination of parameters.

1 for i in $1 # dimensions

2 do

3 for j in $4 # submatrix stride

4 do

5 if [ "$j" -le "$i" ]

6 then

7 echo "#define DIMENSIONS $i

8 #define RUNS $2

9 #define DATA_TYPE $3

10 #define DATA_TYPE_NAME \"$3\"

11 #define METHOD \"submatrix \"

12 #define SUBMATRIX_STRIDE $j

13 #define RUN runSubmatrix " > parameters .h

14 make TARGET=submatrix .$3.dim$i.stride$j

15 fi

16 done

17 done

Listing 3: The submatrix run script of the sequential reference implementation which is used to
run each variant of the submatrix multiplication.

1 for i in $1 # dimensions

2 do

3 for j in $4 # submatrix stride

4 do

5 if [ "$j" -le "$i" ]

6 then

7 bin/ submatrix .$3.dim$i.stride$j | tee results /submatrix .$3.dim$i.stride$j

8 fi

9 done

10 done

Listing 4: Sequential reference implementation of the matrix multiplication code. (see Section 5.2)

1 // ============================================================================

2 // Name : MatMul.cpp

3 // Description : Matrix multiplication . To be consistent with literature ,

4 // column major order is used .

5 // ============================================================================

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <sys/time .h>

10 #include <string.h>

11 #include <algorithm >

12 #include " parameters .h"

13

14 using namespace std;

15

16 #define VERIFY

17

18 DATA_TYPE mat1 [DIMENSIONS * DIMENSIONS ];
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19 DATA_TYPE mat2 [DIMENSIONS * DIMENSIONS ];

20 DATA_TYPE mat3 [DIMENSIONS * DIMENSIONS ];

21

22 inline void clearC ()

23 {

24 memset(mat3 , 0, sizeof(DATA_TYPE ) * DIMENSIONS * DIMENSIONS );

25 }

26

27 double timing(struct timeval start , struct timeval stop )

28 {

29 double dStart = 1.0e-6 * start.tv_usec ;

30 double dStop = (stop .tv_sec - start.tv_sec) + 1.0e-6 * stop .tv_usec;

31

32 return dStop - dStart;

33 }

34

35 // Prints out the matrices if the parameter " SHOW_MATRICES " is set. (For

debugging purposes .)

36 void printMatrix (const char name [], DATA_TYPE * mat)

37 {

38 #ifdef SHOW_MATRICES

39 printf("\nMatrix: %s\n", name );

40 for(int j = 0; j < DIMENSIONS ; j++)

41 {

42 for(int i = 0; i < DIMENSIONS ; i++)

43 {

44 printf("%d\t", (int)mat[j* DIMENSIONS + i]);

45 }

46 printf("\n");

47 }

48 #endif

49 }

50

51 // Generates the matrices .

52 void generateMatrices ()

53 {

54 for(int j = 0; j < DIMENSIONS ; j++)

55 {

56 for(int i = 0; i < DIMENSIONS ; i++)

57 {

58 mat1 [i + j * DIMENSIONS ] = i + j;

59 if(abs(i - j) == 1)

60 {

61 mat2 [j * DIMENSIONS + i] = 1;

62 }

63 else

64 {

65 mat2 [j * DIMENSIONS + i] = 0;

66 }

67 mat3 [j * DIMENSIONS + i] = 0;

68 }

69 }

70 }

71

72 // Runs a verification of the results using a sequential ijk version of the

matrix multiplication .

73 #ifdef VERIFY

74 DATA_TYPE mat4 [DIMENSIONS * DIMENSIONS ];

75 inline void verifyData ()

76 {
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77 for(int i = 0; i < DIMENSIONS ; i++)

78 for(int k = 0; k < DIMENSIONS ; k++)

79 for(int j = 0; j < DIMENSIONS ; j++)

80 mat4 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

81 printMatrix ("C (verify)", mat4 );

82 for(int i = 0; i < DIMENSIONS ; i++)

83 {

84 for(int j = 0; j < DIMENSIONS ; j++)

85 {

86 if(mat3 [i*DIMENSIONS + j] != mat4 [i*DIMENSIONS + j])

87 {

88 printf("Correct :\t\t0\n");

89 return;

90 }

91 }

92 }

93 printf("Correct :\t\t1\n");

94 }

95 #endif

96

97 // Ijk variant of the multiplication .

98 inline double runIjk(const bool verify)

99 {

100 struct timeval start , stop ;

101

102 gettimeofday (& start , NULL );

103

104 for(int i = 0; i < DIMENSIONS ; i++)

105 for(int j = 0; j < DIMENSIONS ; j++)

106 for(int k = 0; k < DIMENSIONS ; k++)

107 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

108 gettimeofday (&stop , NULL );

109 printMatrix ("C (ijk)", mat3 );

110 #ifdef VERIFY

111 if(verify)

112 {

113 verifyData ();

114 }

115 #endif

116 clearC ();

117

118 return timing(start , stop );

119 }

120

121 // Ikj variant of the multiplication .

122 inline double runIkj(const bool verify)

123 {

124 struct timeval start , stop ;

125

126 gettimeofday (& start , NULL );

127

128 for(int i = 0; i < DIMENSIONS ; i++)

129 for(int k = 0; k < DIMENSIONS ; k++)

130 for(int j = 0; j < DIMENSIONS ; j++)

131 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

132 gettimeofday (&stop , NULL );

133 printMatrix ("C (ikj)", mat3 );
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134 #ifdef VERIFY

135 if(verify)

136 {

137 verifyData ();

138 }

139 #endif

140 clearC ();

141

142 return timing(start , stop );

143 }

144

145 // Submatrix variant of the matrix multiplication .

146 #ifdef SUBMATRIX_STRIDE

147 inline double runSubmatrix (const bool verify)

148 {

149 struct timeval start , stop ;

150

151 gettimeofday (& start , NULL );

152

153 for(int it = 0; it < DIMENSIONS ; it+= SUBMATRIX_STRIDE )

154 for(int kt = 0; kt < DIMENSIONS ; kt+= SUBMATRIX_STRIDE )

155 for(int jt = 0; jt < DIMENSIONS ; jt+= SUBMATRIX_STRIDE )

156 for(int i = it; i < (it + SUBMATRIX_STRIDE ) && i < DIMENSIONS ; i++)

157 for(int k = kt; k < (kt + SUBMATRIX_STRIDE ) && k < DIMENSIONS ; k++)

158 for(int j = jt; j < (jt + SUBMATRIX_STRIDE ) && j < DIMENSIONS ; j++)

159 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

160 gettimeofday (& stop , NULL );

161 printMatrix ("C (submatrix )", mat3 );

162 #ifdef VERIFY

163 if(verify)

164 {

165 verifyData ();

166 }

167 #endif

168 clearC ();

169

170 return timing(start , stop );

171 }

172

173 // Unrolled submatrix variant of the matrix multiplication .

174 inline double runSubmatrixUnroll (const bool verify)

175 {

176 struct timeval start , stop ;

177

178 gettimeofday (& start , NULL );

179

180 int dim = DIMENSIONS - (DIMENSIONS % SUBMATRIX_STRIDE );

181

182 // i, j, k

183 for(int it = 0; it < dim; it += SUBMATRIX_STRIDE )

184 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

185 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

186 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

187 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

188 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

189 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

190

191 if( DIMENSIONS != dim)
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192 {

193 // -i, j, k

194 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

195 for(int jt = 0; jt < dim; jt += SUBMATRIX_STRIDE )

196 for(int i = dim; i < DIMENSIONS ; i++)

197 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

198 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

199 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

200

201 // -i, j, -k

202 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

203 for(int i = dim; i < DIMENSIONS ; i++)

204 for(int k = dim; k < DIMENSIONS ; k++)

205 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

206 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

207

208 // -i, -j, -k

209 for(int i = dim; i < DIMENSIONS ; i++)

210 for(int k = dim; k < DIMENSIONS ; k++)

211 for(int j = dim; j < DIMENSIONS ; j++)

212 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

213

214 // i, j, -k

215 for(int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

216 for(int jt = 0; jt < dim; jt += SUBMATRIX_STRIDE )

217 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

218 for(int k = dim; k < DIMENSIONS ; k++)

219 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

220 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

221

222 // i, -j, -k

223 for(int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

224 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

225 for(int k = dim; k < DIMENSIONS ; k++)

226 for(int j = dim; j < DIMENSIONS ; j++)

227 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

228

229 // i, -j, k

230 for(int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

231 for(int kt = 0; kt < dim; kt += SUBMATRIX_STRIDE )

232 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

233 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

234 for(int j = dim; j < DIMENSIONS ; j++)

235 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

236

237 // -i, -j, k

238 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

239 for(int i = dim; i < DIMENSIONS ; i++)

240 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

241 for(int j = dim; j < DIMENSIONS ; j++)

242 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

243 }

244 gettimeofday (&stop , NULL );
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245 printMatrix ("C ( submatrix_unroll )", mat3 );

246 #ifdef VERIFY

247 if(verify)

248 {

249 verifyData ();

250 }

251 #endif

252 clearC ();

253

254 return timing(start , stop );

255 }

256 #endif

257

258 // Drops the highest and lowest timing and calculates the average of the rest .

259 double getAvg(double *timings)

260 {

261 double avg = 0.0;

262 double min , max;

263

264 if(timings [0] > timings [1])

265 {

266 max = timings [0];

267 min = timings [1];

268 }

269 else

270 {

271 min = timings [0];

272 max = timings [1];

273 }

274

275 for(int i = 2; i < RUNS ; i++)

276 {

277 if(timings [i] > max)

278 {

279 avg += max;

280 max = timings[i];

281 }

282 else if(timings[i] < min)

283 {

284 avg += min;

285 min = timings[i];

286 }

287 else

288 {

289 avg += timings[i];

290 }

291 }

292 return avg / (RUNS - 2);

293 }

294

295 int main (void ) {

296 generateMatrices ();

297

298 printf("Method :\t\t\t%s\n", METHOD);

299 printf("Dimensions :\t\t%d\n", DIMENSIONS );

300 printf("Num. Threads :\t\t%d\n", 1);

301 printf("DataType :\t\t%s\n", DATA_TYPE_NAME );

302 printf("Grainsize :\t\t%d\n", DIMENSIONS );

303 printf("Runs :\t\t\t%d\n", RUNS );

304 #ifdef SUBMATRIX_STRIDE
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305 printf(" Submatrix Stride :\t%d\n", SUBMATRIX_STRIDE );

306 #endif

307 printMatrix ("A", mat1);

308 printMatrix ("B", mat2);

309

310 double timings [RUNS ];

311

312 for(int i = 0; i < RUNS ; i++)

313 {

314 timings [i] = RUN(false);

315 }

316 printf("Avg. Time :\t\t%f\n", getAvg(timings));

317 #ifdef VERIFY

318 RUN(true );

319 #endif

320 }

Listing 5: OpenMP implementation of the matrix multiplication code. (see Sections 4.1.2 and
5.5.1)

1 // ============================================================================

2 // Name : MatMul.cpp

3 // Description : Matrix multiplication arallelized using OpenMP. To be

4 // consistent with literature , column major order is used .

5 // ============================================================================

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <sys/time .h>

10 #include <string.h>

11 #include <algorithm >

12 #include <omp.h>

13

14 #include " parameters .h"

15

16 using namespace std;

17

18 #define VERIFY

19

20

21 DATA_TYPE mat1 [DIMENSIONS * DIMENSIONS ];

22 DATA_TYPE mat2 [DIMENSIONS * DIMENSIONS ];

23 DATA_TYPE mat3 [DIMENSIONS * DIMENSIONS ];

24

25 inline void clearC ()

26 {

27 memset(mat3 , 0, sizeof(DATA_TYPE ) * DIMENSIONS * DIMENSIONS );

28 }

29

30 double timing(struct timeval start , struct timeval stop )

31 {

32 double dStart = 1.0e-6 * start.tv_usec ;

33 double dStop = (stop .tv_sec - start.tv_sec) + 1.0e-6 * stop .tv_usec ;

34

35 return dStop - dStart;

36 }

37

38 // Prints out the matrices if the parameter "SHOW_MATRICES " is set. (For

debugging purposes .)

39 void printMatrix (const char name [], DATA_TYPE * mat)



BIBLIOGRAPHY 95

40 {

41 #ifdef SHOW_MATRICES

42 printf("\nMatrix: %s\n", name );

43 for(int j = 0; j < DIMENSIONS ; j++)

44 {

45 for(int i = 0; i < DIMENSIONS ; i++)

46 {

47 printf("%d\t", (int)mat[j* DIMENSIONS + i]);

48 }

49 printf("\n");

50 }

51 #endif

52 }

53

54 // Generates the matrices .

55 void generateMatrices ()

56 {

57 for(int j = 0; j < DIMENSIONS ; j++)

58 {

59 for(int i = 0; i < DIMENSIONS ; i++)

60 {

61 mat1 [i + j * DIMENSIONS ] = i + j;

62 if(abs(i - j) == 1)

63 {

64 mat2 [j * DIMENSIONS + i] = 1;

65 }

66 else

67 {

68 mat2 [j * DIMENSIONS + i] = 0;

69 }

70 mat3 [j * DIMENSIONS + i] = 0;

71 }

72 }

73 }

74

75 // Runs a verification of the results using a sequential ijk version of the

matrix multiplication .

76 #ifdef VERIFY

77 DATA_TYPE mat4 [DIMENSIONS * DIMENSIONS ];

78 inline void verifyData ()

79 {

80 // Uses a sequential ijk version for verification .

81 for(int i = 0; i < DIMENSIONS ; i++)

82 for(int k = 0; k < DIMENSIONS ; k++)

83 for(int j = 0; j < DIMENSIONS ; j++)

84 mat4 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

85 printMatrix ("C (verify)", mat4 );

86 for(int i = 0; i < DIMENSIONS ; i++)

87 {

88 for(int j = 0; j < DIMENSIONS ; j++)

89 {

90 if(mat3 [i*DIMENSIONS + j] != mat4 [i*DIMENSIONS + j])

91 {

92 printf("Correct :\t\t0\n");

93 return;

94 }

95 }

96 }

97 printf("Correct :\t\t1\n");
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98 }

99 #endif

100

101 // Ijk variant of the multiplication .

102 inline double runIjk(const bool verify)

103 {

104 struct timeval start , stop ;

105

106 gettimeofday (& start , NULL );

107

108 #pragma omp parallel for

109 for(int i = 0; i < DIMENSIONS ; i++)

110 for(int j = 0; j < DIMENSIONS ; j++)

111 for(int k = 0; k < DIMENSIONS ; k++)

112 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

113 gettimeofday (&stop , NULL );

114 printMatrix ("C (ijk)", mat3 );

115 #ifdef VERIFY

116 if(verify)

117 {

118 verifyData ();

119 }

120 #endif

121 clearC ();

122

123 return timing(start , stop );

124 }

125

126 // Ikj variant of the multiplication .

127 inline double runIkj(const bool verify)

128 {

129 struct timeval start , stop ;

130

131 gettimeofday (& start , NULL );

132

133 #pragma omp parallel for

134 for(int i = 0; i < DIMENSIONS ; i++)

135 for(int k = 0; k < DIMENSIONS ; k++)

136 for(int j = 0; j < DIMENSIONS ; j++)

137 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

138 gettimeofday (&stop , NULL );

139 printMatrix ("C (ikj)", mat3 );

140 #ifdef VERIFY

141 if(verify)

142 {

143 verifyData ();

144 }

145 #endif

146 clearC ();

147

148 return timing(start , stop );

149 }

150

151 // Submatrix variant of the matrix multiplication .

152 #ifdef SUBMATRIX_STRIDE

153 inline double runSubmatrix (const bool verify)

154 {

155 struct timeval start , stop ;
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156

157 gettimeofday (& start , NULL );

158

159 #pragma omp parallel for

160 for(int it = 0; it < DIMENSIONS ; it+= SUBMATRIX_STRIDE )

161 for(int kt = 0; kt < DIMENSIONS ; kt+= SUBMATRIX_STRIDE )

162 for(int jt = 0; jt < DIMENSIONS ; jt+= SUBMATRIX_STRIDE )

163 for(int i = it; i < (it + SUBMATRIX_STRIDE ) && i < DIMENSIONS ; i++)

164 for(int k = kt; k < (kt + SUBMATRIX_STRIDE ) && k < DIMENSIONS ; k++)

165 for(int j = jt; j < (jt + SUBMATRIX_STRIDE ) && j < DIMENSIONS ; j++)

166 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

167 gettimeofday (& stop , NULL );

168 printMatrix ("C (submatrix )", mat3 );

169 #ifdef VERIFY

170 if(verify)

171 {

172 verifyData ();

173 }

174 #endif

175 clearC ();

176

177 return timing(start , stop );

178 }

179

180 // Unrolled submatrix variant of the matrix multiplication .

181 inline double runSubmatrixUnroll (const bool verify)

182 {

183 struct timeval start , stop ;

184

185 gettimeofday (& start , NULL );

186

187 int dim = DIMENSIONS - (DIMENSIONS % SUBMATRIX_STRIDE );

188

189 // i, j, k

190 #pragma omp parallel for

191 for(int it = 0; it < dim; it += SUBMATRIX_STRIDE )

192 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

193 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

194 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

195 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

196 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

197 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

198

199 // -i, j, k

200 for(int kt = 0; kt < dim; kt += SUBMATRIX_STRIDE )

201 #pragma omp parallel for

202 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

203 for(int i = dim; i < DIMENSIONS ; i++)

204 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

205 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

206 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

207

208 // -i, j, -k

209 #pragma omp parallel for

210 for(int jt = 0; jt < dim; jt += SUBMATRIX_STRIDE )

211 for(int i = dim; i < DIMENSIONS ; i++)

212 for(int k = dim; k < DIMENSIONS ; k++)
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213 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

214 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

215

216 // -i, -j, -k

217 #pragma omp parallel for

218 for(int i = dim; i < DIMENSIONS ; i++)

219 for(int k = dim; k < DIMENSIONS ; k++)

220 for(int j = dim; j < DIMENSIONS ; j++)

221 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

222

223 // i, j, -k

224 #pragma omp parallel for

225 for(int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

226 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

227 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

228 for(int k = dim; k < DIMENSIONS ; k++)

229 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

230 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

231

232 // i, -j, -k

233 #pragma omp parallel for

234 for(int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

235 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

236 for(int k = dim; k < DIMENSIONS ; k++)

237 for(int j = dim; j < DIMENSIONS ; j++)

238 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

239

240 // i, -j, k

241 #pragma omp parallel for

242 for(int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

243 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

244 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

245 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

246 for(int j = dim; j < DIMENSIONS ; j++)

247 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

248

249 // -i, -j, k

250 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

251 #pragma omp parallel for

252 for(int i = dim; i < DIMENSIONS ; i++)

253 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

254 for(int j = dim; j < DIMENSIONS ; j++)

255 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

256

257

258 gettimeofday (&stop , NULL );

259 printMatrix ("C ( submatrix_unroll )", mat3 );

260 #ifdef VERIFY

261 if(verify)

262 {

263 verifyData ();

264 }

265 #endif

266 clearC ();
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267

268 return timing(start , stop );

269 }

270 #endif

271

272 // Drops the highest and lowest timing and calculates the average of the rest .

273 double getAvg(double *timings)

274 {

275 double avg = 0.0;

276 double min , max;

277

278 if(timings [0] > timings [1])

279 {

280 max = timings [0];

281 min = timings [1];

282 }

283 else

284 {

285 min = timings [0];

286 max = timings [1];

287 }

288

289 for(int i = 2; i < RUNS ; i++)

290 {

291 if(timings [i] > max)

292 {

293 avg += max;

294 max = timings[i];

295 }

296 else if(timings[i] < min)

297 {

298 avg += min;

299 min = timings[i];

300 }

301 else

302 {

303 avg += timings[i];

304 }

305 }

306 return avg / (RUNS - 2);

307 }

308

309 int main (void ) {

310 generateMatrices ();

311

312 omp_set_num_threads (NUM_THREADS );

313

314 printf("Method :\t\t\t%s\n", METHOD);

315 printf("Dimensions :\t\t%d\n", DIMENSIONS );

316 printf("Num. Threads :\t\t%d\n", NUM_THREADS );

317 printf("DataType :\t\t%s\n", DATA_TYPE_NAME );

318 printf("Grainsize :\t\t%d\n", DIMENSIONS );

319 printf("Runs :\t\t\t%d\n", RUNS );

320 #ifdef SUBMATRIX_STRIDE

321 printf("Submatrix Stride :\t%d\n", SUBMATRIX_STRIDE );

322 #endif

323 printMatrix ("A", mat1 );

324 printMatrix ("B", mat2 );

325

326 double timings[RUNS ];
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327

328 for(int i = 0; i < RUNS ; i++)

329 {

330 timings [i] = RUN(false);

331 }

332 printf("Avg. Time :\t\t%f\n", getAvg(timings));

333 #ifdef VERIFY

334 RUN(true );

335 #endif

336 }

Listing 6: Cilk++ implementation of the matrix multiplication code. (see Sections 4.1.3 and
5.5.3)

1 // ============================================================================

2 // Name : MatMul.cpp

3 // Description : Matrix multiplication parallelized using Cilk ++. To be

4 // consistent with literature , column major order is used .

5 // ============================================================================

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <sys/time .h>

10 #include <string.h>

11 #include " parameters .h"

12 #include <cilk .h>

13

14 using namespace std;

15

16 #define VERIFY

17

18 DATA_TYPE mat1 [DIMENSIONS * DIMENSIONS ];

19 DATA_TYPE mat2 [DIMENSIONS * DIMENSIONS ];

20 DATA_TYPE mat3 [DIMENSIONS * DIMENSIONS ];

21

22 inline void clearC ()

23 {

24 memset(mat3 , 0, sizeof(DATA_TYPE ) * DIMENSIONS * DIMENSIONS );

25 }

26

27 double timing(struct timeval start , struct timeval stop )

28 {

29 double dStart = 1.0e-6 * start.tv_usec ;

30 double dStop = (stop .tv_sec - start.tv_sec) + 1.0e-6 * stop .tv_usec ;

31

32 return dStop - dStart;

33 }

34

35 // Prints out the matrices if the parameter "SHOW_MATRICES " is set. (For

debugging purposes .)

36 void printMatrix (const char name [], DATA_TYPE * mat)

37 {

38 #ifdef SHOW_MATRICES

39 printf("\nMatrix: %s\n", name );

40 for(int j = 0; j < DIMENSIONS ; j++)

41 {

42 for(int i = 0; i < DIMENSIONS ; i++)

43 {

44 printf("%d\t", (int)mat[j*DIMENSIONS + i]);

45 }
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46 printf("\n");

47 }

48 #endif

49 }

50

51 // Generates the matrices .

52 void generateMatrices ()

53 {

54 for(int j = 0; j < DIMENSIONS ; j++)

55 {

56 for(int i = 0; i < DIMENSIONS ; i++)

57 {

58 mat1 [i + j * DIMENSIONS ] = i + j;

59 if(abs(i - j) == 1)

60 {

61 mat2 [j * DIMENSIONS + i] = 1;

62 }

63 else

64 {

65 mat2 [j * DIMENSIONS + i] = 0;

66 }

67 mat3 [j * DIMENSIONS + i] = 0;

68 }

69 }

70 }

71

72 // Runs a verification of the results using a sequential ijk version of the

matrix multiplication .

73 #ifdef VERIFY

74 DATA_TYPE mat4 [DIMENSIONS * DIMENSIONS ];

75 inline void verifyData ()

76 {

77 for(int i = 0; i < DIMENSIONS ; i++)

78 for(int k = 0; k < DIMENSIONS ; k++)

79 for(int j = 0; j < DIMENSIONS ; j++)

80 mat4 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

81 printMatrix ("C (verify)", mat4 );

82 for(int i = 0; i < DIMENSIONS ; i++)

83 {

84 for(int j = 0; j < DIMENSIONS ; j++)

85 {

86 if(mat3 [i*DIMENSIONS + j] != mat4 [i*DIMENSIONS + j])

87 {

88 printf("Correct :\t\t0\n");

89 return;

90 }

91 }

92 }

93 printf("Correct :\t\t1\n");

94 }

95 #endif

96

97 // Ijk variant of the multiplication .

98 inline double runIjk(const bool verify)

99 {

100 struct timeval start , stop ;

101

102 gettimeofday (& start , NULL );

103
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104 #ifdef GRAINSIZE

105 #pragma cilk_grainsize = GRAINSIZE

106 cilk_for (int i = 0; i < DIMENSIONS ; i++)

107 for(int j = 0; j < DIMENSIONS ; j++)

108 for(int k = 0; k < DIMENSIONS ; k++)

109 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

110 #else

111 cilk_for (int i = 0; i < DIMENSIONS ; i++)

112 for(int j = 0; j < DIMENSIONS ; j++)

113 for(int k = 0; k < DIMENSIONS ; k++)

114 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

115 #endif

116 gettimeofday (&stop , NULL );

117 printMatrix ("C (ijk)", mat3 );

118 #ifdef VERIFY

119 if(verify)

120 {

121 verifyData ();

122 }

123 #endif

124 clearC ();

125

126 return timing(start , stop );

127 }

128

129 // Ikj variant of the multiplication .

130 inline double runIkj(const bool verify)

131 {

132 struct timeval start , stop ;

133

134 gettimeofday (& start , NULL );

135

136 #ifdef GRAINSIZE

137 #pragma cilk_grainsize = GRAINSIZE

138 cilk_for (int i = 0; i < DIMENSIONS ; i++)

139 for(int k = 0; k < DIMENSIONS ; k++)

140 for(int j = 0; j < DIMENSIONS ; j++)

141 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

142 #else

143 cilk_for (int i = 0; i < DIMENSIONS ; i++)

144 for(int k = 0; k < DIMENSIONS ; k++)

145 for(int j = 0; j < DIMENSIONS ; j++)

146 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

147 #endif

148 gettimeofday (&stop , NULL );

149 printMatrix ("C (ikj)", mat3 );

150 #ifdef VERIFY

151 if(verify)

152 {

153 verifyData ();

154 }

155 #endif

156 clearC ();

157

158 return timing(start , stop );

159 }
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160

161 // Submatrix variant of the matrix multiplication .

162 #ifdef SUBMATRIX_STRIDE

163 inline double runSubmatrix (const bool verify)

164 {

165 struct timeval start , stop ;

166

167 gettimeofday (& start , NULL );

168

169 cilk_for (int it = 0; it < DIMENSIONS ; it+= SUBMATRIX_STRIDE )

170 for(int kt = 0; kt < DIMENSIONS ; kt+= SUBMATRIX_STRIDE )

171 for(int jt = 0; jt < DIMENSIONS ; jt+= SUBMATRIX_STRIDE )

172 for(int i = it; i < (it + SUBMATRIX_STRIDE ) && i < DIMENSIONS ; i++)

173 for(int k = kt; k < (kt + SUBMATRIX_STRIDE ) && k < DIMENSIONS ; k++)

174 for(int j = jt; j < (jt + SUBMATRIX_STRIDE ) && j < DIMENSIONS ; j++)

175 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

176 gettimeofday (& stop , NULL );

177 printMatrix ("C (submatrix )", mat3 );

178 #ifdef VERIFY

179 if(verify)

180 {

181 verifyData ();

182 }

183 #endif

184 clearC ();

185

186 return timing(start , stop );

187 }

188

189 // Unrolled submatrix variant of the matrix multiplication .

190 inline double runSubmatrixUnroll (const bool verify)

191 {

192 struct timeval start , stop ;

193

194 gettimeofday (& start , NULL );

195

196 int dim = DIMENSIONS - (DIMENSIONS % SUBMATRIX_STRIDE );

197

198 // i, j, k

199 cilk_for (int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

200 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

201 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

202 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

203 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

204 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

205 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

206

207 if( DIMENSIONS != dim)

208 {

209 // -i, j, k

210 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

211 cilk_for (int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

212 for(int i = dim; i < DIMENSIONS ; i++)

213 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

214 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

215 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

216
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217 // -i, j, -k

218 cilk_for (int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

219 for(int i = dim; i < DIMENSIONS ; i++)

220 for(int k = dim; k < DIMENSIONS ; k++)

221 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

222 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

223

224 // -i, -j, -k

225 cilk_for (int i = dim; i < DIMENSIONS ; i++)

226 for(int k = dim; k < DIMENSIONS ; k++)

227 for(int j = dim; j < DIMENSIONS ; j++)

228 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

229

230 // i, j, -k

231 cilk_for (int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

232 for(int jt = 0; jt < dim; jt += SUBMATRIX_STRIDE )

233 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

234 for(int k = dim; k < DIMENSIONS ; k++)

235 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

236 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

237

238 // i, -j, -k

239 cilk_for (int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

240 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

241 for(int k = dim; k < DIMENSIONS ; k++)

242 for(int j = dim; j < DIMENSIONS ; j++)

243 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

244

245 // i, -j, k

246 cilk_for (int it = 0; it < dim; it+= SUBMATRIX_STRIDE )

247 for(int kt = 0; kt < dim; kt += SUBMATRIX_STRIDE )

248 for(int i = it; i < it + SUBMATRIX_STRIDE ; i++)

249 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

250 for(int j = dim; j < DIMENSIONS ; j++)

251 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

252

253 // -i, -j, k

254 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

255 cilk_for (int i = dim; i < DIMENSIONS ; i++)

256 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

257 for(int j = dim; j < DIMENSIONS ; j++)

258 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS

+ j];

259 }

260 gettimeofday (&stop , NULL );

261 printMatrix ("C ( submatrix_unroll )", mat3 );

262 #ifdef VERIFY

263 if(verify)

264 {

265 verifyData ();

266 }

267 #endif

268 clearC ();

269

270 return timing(start , stop );
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271 }

272 #endif

273

274 // Drops the highest and lowest timing and calculates the average of the rest .

275 double getAvg(double *timings)

276 {

277 double avg = 0.0;

278 double min , max;

279

280 if(timings [0] > timings [1])

281 {

282 max = timings [0];

283 min = timings [1];

284 }

285 else

286 {

287 min = timings [0];

288 max = timings [1];

289 }

290

291 for(int i = 2; i < RUNS ; i++)

292 {

293 if(timings [i] > max)

294 {

295 avg += max;

296 max = timings[i];

297 }

298 else if(timings[i] < min)

299 {

300 avg += min;

301 min = timings[i];

302 }

303 else

304 {

305 avg += timings[i];

306 }

307 }

308 return avg / (RUNS - 2);

309 }

310

311 int my_cilk_main (void *unused) {

312 generateMatrices ();

313

314 printf("Method :\t\t\t%s\n", METHOD);

315 printf("Dimensions :\t\t%d\n", DIMENSIONS );

316 printf("Num. Threads :\t\t%d\n", NUM_THREADS );

317 printf("DataType :\t\t%s\n", DATA_TYPE_NAME );

318 #ifdef GRAINSIZE

319 printf("Grainsize :\t\t%d\n", GRAINSIZE );

320 #endif

321 printf("Runs \t\t\t%d\n", RUNS );

322 #ifdef SUBMATRIX_STRIDE

323 printf("Submatrix Stride :\t%d\n", SUBMATRIX_STRIDE );

324 #endif

325 printMatrix ("A", mat1 );

326 printMatrix ("B", mat2 );

327

328 double timings[RUNS ];

329

330 for(int i = 0; i < RUNS ; i++)
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331 {

332 timings [i] = RUN(false);

333 }

334 printf("Avg. Time :\t\t%f\n", getAvg(timings));

335 #ifdef VERIFY

336 RUN(true );

337 #endif

338 return 0;

339 }

340

341 int main (void ) {

342 cilk :: context ctx;

343 ctx. set_worker_count ( NUM_THREADS );

344 return ctx.run(my_cilk_main , NULL );

345 }

Listing 7: TBB implementation of the matrix multiplication code. (see Sections 4.1.4 and 5.5.2)

1 // ============================================================================

2 // Name : MatMul.cpp

3 // Description : Matrix multiplication parallelized using TBB. To be

4 // consistent with literature , column major order is used .

5 // ============================================================================

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <sys/time .h>

10 #include <string.h>

11 #include <algorithm >

12 #include " parameters .h"

13

14 #include "tbb/task_scheduler_init .h"

15 #include "tbb/parallel_for .h"

16 #include "tbb/blocked_range .h"

17

18 using namespace std;

19 using namespace tbb;

20

21 #define VERIFY

22

23 DATA_TYPE mat1 [DIMENSIONS * DIMENSIONS ];

24 DATA_TYPE mat2 [DIMENSIONS * DIMENSIONS ];

25 DATA_TYPE mat3 [DIMENSIONS * DIMENSIONS ];

26

27 inline void clearC ()

28 {

29 memset(mat3 , 0, sizeof(DATA_TYPE ) * DIMENSIONS * DIMENSIONS );

30 }

31

32 double timing(struct timeval start , struct timeval stop )

33 {

34 double dStart = 1.0e-6 * start.tv_usec ;

35 double dStop = (stop .tv_sec - start.tv_sec) + 1.0e-6 * stop .tv_usec ;

36

37 return dStop - dStart;

38 }

39

40 // Prints out the matrices if the parameter "SHOW_MATRICES " is set. (For

debugging purposes .)

41 void printMatrix (const char name [], DATA_TYPE * mat)
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42 {

43 #ifdef SHOW_MATRICES

44 printf("\nMatrix: %s\n", name );

45 for(int j = 0; j < DIMENSIONS ; j++)

46 {

47 for(int i = 0; i < DIMENSIONS ; i++)

48 {

49 printf("%d\t", (int)mat[j* DIMENSIONS + i]);

50 }

51 printf("\n");

52 }

53 #endif

54 }

55

56 // Generates the matrices .

57 void generateMatrices ()

58 {

59 for(int j = 0; j < DIMENSIONS ; j++)

60 {

61 for(int i = 0; i < DIMENSIONS ; i++)

62 {

63 mat1 [i + j * DIMENSIONS ] = i + j;

64 if(abs(i - j) == 1)

65 {

66 mat2 [j * DIMENSIONS + i] = 1;

67 }

68 else

69 {

70 mat2 [j * DIMENSIONS + i] = 0;

71 }

72 mat3 [j * DIMENSIONS + i] = 0;

73 }

74 }

75 }

76

77 // Runs a verification of the results using a sequential ijk version of the

matrix multiplication .

78 #ifdef VERIFY

79 DATA_TYPE mat4 [DIMENSIONS * DIMENSIONS ];

80 inline void verifyData ()

81 {

82 // Uses a sequential ijk version for verification .

83 for(int i = 0; i < DIMENSIONS ; i++)

84 for(int k = 0; k < DIMENSIONS ; k++)

85 for(int j = 0; j < DIMENSIONS ; j++)

86 mat4 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS + j

];

87 printMatrix ("C (verify)", mat4 );

88 for(int i = 0; i < DIMENSIONS ; i++)

89 {

90 for(int j = 0; j < DIMENSIONS ; j++)

91 {

92 if(mat3 [i*DIMENSIONS + j] != mat4 [i*DIMENSIONS + j])

93 {

94 printf("Correct :\t\t0\n");

95 return;

96 }

97 }

98 }

99 printf("Correct :\t\t1\n");
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100 }

101 #endif

102

103 struct Ijk {

104 void operator () (const blocked_range <int >& range) const

105 {

106 for(int i = range.begin(); i < range.end(); i++)

107 for(int j = 0; j < DIMENSIONS ; j++)

108 for(int k = 0; k < DIMENSIONS ; k++)

109 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

110 }

111 };

112

113 // Ijk variant of the multiplication .

114 inline double runIjk(const bool verify)

115 {

116 struct timeval start , stop ;

117

118 gettimeofday (& start , NULL );

119 Ijk ijk;

120 parallel_for (blocked_range <int >(0, DIMENSIONS , GRAINSIZE ), ijk);

121 gettimeofday (&stop , NULL );

122 printMatrix ("C (ijk)", mat3 );

123 #ifdef VERIFY

124 if(verify)

125 {

126 verifyData ();

127 }

128 #endif

129 clearC ();

130

131 return timing(start , stop );

132 }

133

134 struct Ikj {

135 void operator () (const blocked_range <int >& range) const

136 {

137 for(int i = range.begin(); i < range.end(); i++)

138 for(int k = 0; k < DIMENSIONS ; k++)

139 for(int j = 0; j < DIMENSIONS ; j++)

140 mat3 [i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*DIMENSIONS +

j];

141 }

142 };

143

144 // Ikj variant of the multiplication .

145 inline double runIkj(const bool verify)

146 {

147 struct timeval start , stop ;

148

149 gettimeofday (& start , NULL );

150 Ikj ikj;

151 parallel_for (blocked_range <int >(0, DIMENSIONS , GRAINSIZE ), ikj);

152 gettimeofday (&stop , NULL );

153 printMatrix ("C (ikj)", mat3 );

154 #ifdef VERIFY

155 if(verify)

156 {

157 verifyData ();
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158 }

159 #endif

160 clearC ();

161

162 return timing(start , stop );

163 }

164

165 #ifdef SUBMATRIX_STRIDE

166

167 struct Submatrix {

168 void operator () (const blocked_range <int >& range) const

169 {

170 for(int it = range.begin(); it < range.end (); it+= SUBMATRIX_STRIDE )

171 for(int kt = 0; kt < DIMENSIONS ; kt+= SUBMATRIX_STRIDE )

172 for(int jt = 0; jt < DIMENSIONS ; jt+= SUBMATRIX_STRIDE )

173 for(int i = it; i < (it + SUBMATRIX_STRIDE ) && i < range.end(); i++)

174 for(int k = kt; k < (kt + SUBMATRIX_STRIDE ) && k < DIMENSIONS ; k++)

175 for(int j = jt; j < (jt + SUBMATRIX_STRIDE ) && j < DIMENSIONS ; j

++)

176 mat3[i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

177

178 }

179 };

180

181 // Submatrix variant of the matrix multiplication .

182 inline double runSubmatrix (const bool verify)

183 {

184 struct timeval start , stop ;

185

186 gettimeofday (& start , NULL );

187

188 Submatrix submatrix ;

189 parallel_for (blocked_range <int >(0, DIMENSIONS , GRAINSIZE ), submatrix );

190

191 gettimeofday (& stop , NULL );

192 printMatrix ("C (submatrix )", mat3 );

193 #ifdef VERIFY

194 if(verify)

195 {

196 verifyData ();

197 }

198 #endif

199 clearC ();

200

201 return timing(start , stop );

202 }

203

204 struct SubmatrixUnroll {

205 void operator () (const blocked_range <int >& range) const

206 {

207 int dim = DIMENSIONS - (DIMENSIONS % SUBMATRIX_STRIDE );

208 int dimi = range.end() - (( range.end() - range.begin()) % SUBMATRIX_STRIDE );

209 int stepi = SUBMATRIX_STRIDE ;

210 bool unrolli = true ;

211 if(stepi > (range.end() - range.begin()))

212 {

213 stepi = range.end () - range.begin();

214 dimi = range.end ();

215 }
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216 if(dimi == range.end ())

217 {

218 unrolli = false;

219 }

220

221 for(int it = range.begin(); it < dimi ; it+= stepi)

222 for(int kt = 0; kt < dim; kt += SUBMATRIX_STRIDE )

223 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

224 for(int i = it; i < (it + stepi); i++)

225 for(int k = kt; k < (kt + SUBMATRIX_STRIDE ); k++)

226 for(int j = jt; j < (jt + SUBMATRIX_STRIDE ); j++)

227 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

228

229 if(dim != DIMENSIONS )

230 {

231 if(unrolli )

232 {

233 // -i, j, k

234 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

235 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

236 for(int i = dimi ; i < range.end(); i++)

237 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

238 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

239 mat3 [i*DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

240

241 // -i, j, -k

242 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

243 for(int i = dimi ; i < range.end(); i++)

244 for(int k = dim; k < DIMENSIONS ; k++)

245 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

246 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

247

248 // -i, -j, -k

249 for(int i = dimi ; i < range.end (); i++)

250 for(int k = dim; k < DIMENSIONS ; k++)

251 for(int j = dim; j < DIMENSIONS ; j++)

252 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

253 }

254 // i, j, -k

255 for(int it = range.begin(); it < dimi ; it += stepi)

256 for(int jt = 0; jt < dim; jt+= SUBMATRIX_STRIDE )

257 for(int i = it; i < it + stepi; i++)

258 for(int k = dim; k < DIMENSIONS ; k++)

259 for(int j = jt; j < jt + SUBMATRIX_STRIDE ; j++)

260 mat3 [i* DIMENSIONS + j] += mat1 [i* DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

261

262 // i, -j, -k

263 for(int it = range.begin(); it < dimi ; it += stepi)

264 for(int i = it; i < it + stepi; i++)

265 for(int k = dim; k < DIMENSIONS ; k++)

266 for(int j = dim; j < DIMENSIONS ; j++)

267 mat3 [i* DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

268

269 // i, -j, k
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270 for(int it = range.begin (); it < dimi ; it+= stepi)

271 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

272 for(int i = it; i < it + stepi; i++)

273 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

274 for(int j = dim; j < DIMENSIONS ; j++)

275 mat3[i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

276

277 if(unrolli)

278 {

279 // -i, -j, k

280 for(int kt = 0; kt < dim; kt+= SUBMATRIX_STRIDE )

281 for(int i = dimi ; i < range.end(); i++)

282 for(int k = kt; k < kt + SUBMATRIX_STRIDE ; k++)

283 for(int j = dim; j < DIMENSIONS ; j++)

284 mat3[i*DIMENSIONS + j] += mat1 [i*DIMENSIONS + k] * mat2 [k*

DIMENSIONS + j];

285 }

286 }

287 }

288 };

289

290 // Unrolled submatrix variant of the matrix multiplication .

291 inline double runSubmatrixUnroll (const bool verify)

292 {

293 struct timeval start , stop ;

294

295 gettimeofday (& start , NULL );

296

297 SubmatrixUnroll submatrixUnroll ;

298 parallel_for (blocked_range <int >(0, DIMENSIONS , GRAINSIZE ), submatrixUnroll );

299

300 gettimeofday (& stop , NULL );

301 printMatrix ("C ( submatrix_unroll )", mat3 );

302 #ifdef VERIFY

303 if(verify)

304 {

305 verifyData ();

306 }

307 #endif

308 clearC ();

309

310 return timing(start , stop );

311 }

312 #endif

313

314 // Drops the highest and lowest timing and calculates the average of the rest .

315 double getAvg(double *timings)

316 {

317 double avg = 0.0;

318 double min , max;

319

320 if(timings [0] > timings [1])

321 {

322 max = timings [0];

323 min = timings [1];

324 }

325 else

326 {

327 min = timings [0];
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328 max = timings [1];

329 }

330

331 for(int i = 2; i < RUNS ; i++)

332 {

333 if(timings [i] > max)

334 {

335 avg += max;

336 max = timings[i];

337 }

338 else if(timings[i] < min)

339 {

340 avg += min;

341 min = timings[i];

342 }

343 else

344 {

345 avg += timings[i];

346 }

347 }

348 return avg / (RUNS - 2);

349 }

350

351 int main (void ) {

352 generateMatrices ();

353

354 printf("Method :\t\t\t%s\n", METHOD);

355 printf(" Dimensions :\t\t%d\n", DIMENSIONS );

356 printf("Num. Threads :\t\t%d\n", NUM_THREADS );

357 printf(" DataType :\t\t%s\n", DATA_TYPE_NAME );

358 printf(" Grainsize :\t\t%d\n", GRAINSIZE );

359 printf("Runs \t\t\t%d\n", RUNS );

360 #ifdef SUBMATRIX_STRIDE

361 printf(" Submatrix Stride :\t%d\n", SUBMATRIX_STRIDE );

362 #endif

363 printMatrix ("A", mat1);

364 printMatrix ("B", mat2);

365

366 // Initialize the task scheduler .

367 task_scheduler_init init (NUM_THREADS );

368

369 double timings [RUNS ];

370

371 for(int i = 0; i < RUNS ; i++)

372 {

373 timings [i] = RUN(false);

374 }

375 printf("Avg. Time :\t\t%f\n", getAvg(timings));

376 #ifdef VERIFY

377 RUN(true );

378 #endif

379 }

Listing 8: Chapel implementation of the matrix multiplication code. (see Sections 4.2.5 and
5.5.4)

1 use Time ;

2

3 config var n = 16;

4 config var runs = 7;



BIBLIOGRAPHY 113

5

6 def main () {

7 const ProblemSpace : domain (2) distributed (Block) = [1..n, 1..n];

8

9 var A, B, C: [ ProblemSpace ] real (64) = 0.0;

10

11 var timings : [1.. runs ] real ;

12 var myTime: Timer();

13

14 // Generate matrices .

15 forall (i, j) in ProblemSpace do

16 {

17 A(i, j) = i + j - 2;

18 if(abs(i - j) == 1)

19 {

20 B(i, j) = 1;

21 }

22 }

23

24 for run in 1.. runs

25 {

26 myTime.start ();

27

28 // Matrix multiplication Kernel

29 forall (i, j) in ProblemSpace do

30 {

31 C(i, j) = C(i, j) + + reduce (A(i, 1..n) * B(1..n, j));

32 }

33 myTime.stop ();

34 timings [run] = myTime.elapsed ();

35 myTime.clear ();

36 }

37

38 var avgTime = ((+ reduce timings ) - (max reduce timings) - (min reduce timings

)) / (runs - 2);

39

40 writeln (" Dimensions :\t\t", n);

41 writeln (" Num. Threads :\t\t", maxThreads );

42 writeln (" DataType :\t\tdouble ");

43 writeln (" Runs :\t\t\t", runs );

44 writeln (" Avg. Time :\t\t", avgTime );

45 }
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