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CHAPTER 1

Introduction

“[F ]inance and economic research has hit a wall. We can not answer any
more questions by running another regression analysis. Now, we need to
get inside the brain to understand why people make decisions.”

Andrew Lo
Interview in Bloomberg Markets (2006)

With the benefit of hindsight economists have become accustomed to the fact
that financial decisions and conditions of uncertainty intertwine. Until the advance
of the early fifties of the twentieth century, Neoclassical Finance has treated hu-
mans as a black box, resting on the assumption that behavioral rules are imposed
by rational choice theory. Notwithstanding this normative theory of choice, in the
late seventies – in allusion to miscellaneous psychologically constructed evidence of
both experimental and observational studies of hypothetical choice – Behavioral Fi-
nance has reached a consensus on individuals’ choices diverging from the prediction
that economic and financial decisions are taken on immaculately rational grounds,
perpetually contemplating humans as a black box.

In contrast, the nascent field of Neurofinance preludes a daring challenge to the
deeply entrenched conundrum of the black box, by making attempts to find a com-
putational model of choice (i.e., to understand behavior) by scrutinizing the indis-
pensable neural correlates of decision making when exposed to financial risk.

For instance, where does choice in earnest originate from? Is it a foregone conclu-
sion that choice is the outcome of a utility maximization process? Are emotions to
impair financial decision making or are they necessary for reasoned choice? In recent
years, this genre of question has been addressed making use of fruitful collaborations
with neuroscientific methods to implement neuroimaging experiments. It is pertinent
to elaborate on the issue of in vivo localization of choice since it possesses the ability
to provide some intriguing insights into the involvement of multiple specific neural
circuitries in a large preponderance of individuals.
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2 CHAPTER 1. INTRODUCTION

Although the precise role of the neural substrate underlying financial decision
making – partly due to its highly intricate structure – has not been understood in
extenso, one of the main objectives of this thesis is to attempt to ably elucidate the
interdisciplinary endeavor of Neurofinance in the realm of cognitive neurosciences.
Thus, to provide constraint on the perennially adjuvant adjudication among neu-
roanatomically and perhaps neurophysiologically distinct and spatially separated
neural structures, the collective dynamics of neural networks in the human brain
is not to be regarded as a nuisance.

At the core, following the landmark studies of Preuschoff et al. (2006a,b) and of
Preuschoff et al. (2008), this thesis aims to warrant an understanding of the neural
basis of financial decision making, namely by focusing on the actual processing of
risks and rewards in the human brain.

The remainder of this work is structured as follows. The second Chapter con-
trasts Expected Utility Theory, which is the major normative theory of decision
making under risk, with Prospect Theory as a descriptive analysis, including an ex-
tensive segment on psychological biases and decision heuristics. Chapter 3 presents
the anatomical and the chemical foundations of the processes in the human cere-
brum, needed for the understanding of neural evidence of decision making under
risk. Chapter 4 investigates the perception of risk and reward in the human cere-
brum. I conclude with a short summary and with some discussion of future research
directions in Chapter 5.



CHAPTER 2

The Basic Tenets of Neurofinance

Neurofinance investigates the neural mechanisms underlying human decision making
under uncertainty. In recent years, ample experimental evidence has accumulated
arguing that choice is the outcome of complex neurophysiological processes. Before
opening the black box of the human brain in the third chapter, a natural question
to ask is what has led to the emergence of Neurofinance. Hence, in order to depict
the basic tenets of Neurofinance, this chapter aims at exploring and contrasting
the foundations of two distinctive approaches in finance attempting to characterize
human choice, namely Neoclassical and Behavioral Finance. Both approaches treat
the human agent as a black box, interpreting choices “as if” they maximize some
utility.

2.1 The Foundations of Neoclassical Finance

The assumption about investor preferences, or about how investors evaluate risky
gambles is an integral part of any model in the quest of understanding asset prices or
trading behavior. Neoclassical Finance in terms of studying decision making under
uncertainty is motivated by the premise that economic agents exhibit stable and
coherent preferences and act rationally with their choices being in consistence with
Expected Utility Theory (von Neumann and Morgenstern, 1944). The following
section provides the reader with a comprehensive explanation of the main elements
of Neoclassical Finance.

Expected Utility (EU) Theory (von Neumann and Morgenstern, 1944) as a nor-
mative model of rational choice, has dominated the analysis of decision making in
the presence of uncertainty. According to EU theory, there is an equivalence between
choices (i.e., when satisfying a number of rationality requirements) and maximization
of an expected utility index. Before I delve into the issue of highliting the core utility
paradox regarding non-rational behavior of actual decision-makers in detail, I will
devote considerable space to covering the utility function and the EU Rule.

3



4 CHAPTER 2. THE BASIC TENETS OF NEUROFINANCE

Rational choice theory traces its origins to the prominent St. Petersburg essay in
which Bernoulli (1738) suggested that if chosing among a set of uncertain alternatives,
people prefer the lottery yielding the greatest expected utility rather than the lottery
with the highest expected value.1 Samuelson’s (1938) crucial achievement which
lies at the heart of decision theory, was to identify rules for decision makers to be
obeyed if they are making choices in order to maximize some utility function. His
advance was to show that utility maximization implies restrictions identified by the
Weak Axiom of Revealed Preference (see, also Houthakker, 1950). This “revealed
preference” methodology in its simplest form states that if some object x is chosen
over another object y, in some other experiment y can not be chosen over x. If and
only if this condition holds does a decision maker behave as if making choices in
order to maximize some fixed utility function.

From the perspective of von Neumann and Morgenstern (1944) who pioneered
the derivation of an expected utility representation of preferences under uncertainty,
it is of fundamental significance to state that the basic objects involved in the char-
acterization of available choice are lotteries. By definition, a lottery is a random
variable with specified payoffs and specified probabilities. Traditionally, the mea-
surement of utility is based on rational behavior which is established as behavior in
accordance with a systematic set of preferences. Thus, a rational agent’s decision
problem essentially boils down to the following four elements:2

(1) a set of states (1, . . . , s, . . . , S) available to Nature;

(2) a set of actions (1, . . . , x, . . . ,X) available to him;

(3) a consequence function c(s, x) showing outcomes under all combinations of
states of nature s and actions x;

(4) a probability function p(s) representing his beliefs (as to the likelihood of Nature
choosing each and every state) by a “subjective” probability distribution – to
wit, a degree of belief assigned to each state s in the form of numerical weights
ps lying between zero and one inclusive, and summing to unity:

∑S
s=1 ps = 1.

1 Pascal’s (1948) theory of Expected Value postulates a first formal description of decision making.
Expected value provides a common metric that individuals can assign to various options and then
use to choose between them. As I will focus on the identification of neural correlates of expected
value in order to predict choice in the fourth chapter of my thesis, I will shed light on the theory
of Expected Value starting on page 25.

2 This section predominantly draws on the first chapter of the following book by Hirshleifer and
Riley (1992) and on the ninth chapter of the following book (in german) by Eisenführ and Weber
(2003).
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In assuming that each consequence c takes the form of a basket (vector) of con-
sumption goods, it has to be emphasized that initial individual preferences are de-
scribed as a ranking or “preference ordering” among choices, that is, in ordinal terms
(Arrow, 1951). As opposed to an “ordinal” relation, a “cardinal” relation is one which
contains information about how much better one alternative is than another, by the
assignment of real numbers to consequences. An essential property of cardinal vari-
ables is that they allow quantitative measurement, leaving the relative magnitudes
of differences unchanged (e.g., altitude, time, temperature).

Correspondingly, a rational agent will take action x as given and denote c(s, x) in
short hand as cs and p(s) as ps. An inductive argument can be used to show that the
lottery L that results from action x is defined by the vector C = (c1, . . . , cs, . . . , cS) of
possible consequences of x and its vector P = (p1, . . . , ps, . . . , pS) of the probabilities
of each consequence in C.

Four substantive assumptions on preferences over lotteries underlying Expected
Utility Theory are revealed by axiomatic analysis: completeness, transitivity, con-
tinuity and independence. At this point, we introduce the symbol ∼ to indicate
indifference, the symbol � for weak preference, and the symbol � to explain prefer-
ence relations.

Axiom 1: “Completeness”

For all L1, L2, either L1 � L2 or L2 � L1 or both.

Axiom 2: “Transitivity”

For any L1, L2, L3, if L1 � L2 and L2 � L3, then L1 � L3.

Axiom 3: “Continuity”

For any L3 � L2 � L1, there exists a unique α, 0 ≤ α ≤ 1 such that
αL3 + (1− α)L1 ∼ L2.

Axiom 4: “Independence”

For any L1, L2 and L3 such that L1 � L2, then for any α ∈ (0, 1),
(1− α)L1 + αL3 � (1− α)L2 + αL3.
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Representation Theorem. If the four axioms presented above hold, then there
exists a cardinal utility index u such that ranking according to expected utility accords
with actual preference over lotteries.

U(x) = p1u(c1) + p2u(c2) + . . .+ pSu(cS)

=
S∑
s=1

psu(cs)
(2.1)

Equation (2.1) says that the utility U(x) of an act x is obtained as the math-
ematical expectation (the probability-weighted average) of the elementary utilities
u(cs) of the associated consequences. The von Neumann and Morgenstern (1944, pp.
15-31) utility function u is unique up to a strictly increasing affine transformation
(i.e., cardinality requirement), with the implication that u can be replaced by a+ bu

for any constants a and b > 0 without changing the preference ordering of u. Im-
portantly, EU theory assumes that outcomes cs are valued nonlinearly by a utility
function u, but are weighted by their objective probabilities (Savage, 1954).

The standard utility function, derived from Expected Utility Theory, has two
essential characteristics: first, it captures the decision maker’s risk attitude, that
is, concavity of the utility function implies risk aversiveness of the decision maker
(Jensen, 1906), and second, it captures the decision maker’s attitude toward certain
outcomes, that is, concavity of the utility function implies a decreasing marginal
utility of wealth. In this manner a risk-averse agent prefers to receive the expected
value of every lottery rather than face a lottery, while a risk-preferring decision
maker prefers a random distribution of every lottery over its expected value. In the
intermediate case of risk neutral ity, the expected utility of wealth equals the utility
of its expected value. As opposed to the risk-averse agent who is equipped with a
concave utility function, meaning that its slope becomes flatter with the increase of
wealth, the risk-preferring decision maker displays a convex utility function, with
its slope getting steeper as wealth increases. Generally we can state that the more
concave the utility function, the more risk averse the individual will be, and the
more convex the utility function, the more risk preferring the individual will be. The
Arrow-Pratt coefficient of absolute risk aversion r is a measure of the curvature of
the utility function (Pratt, 1964 and Arrow, 1965) and is retained by normalizing
the second derivative of the expected utility function by dividing by the first:

r(c) = −u
′′(c)
u′(c)
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Rabin (2000) shows that an expected utility maximizer who is risk-averse to
gambles at low wealth levels, would have extraordinarily high risk aversion over
gambles with medium and high stakes.

Is Expected Utility Theory a good approximation to how people evaluate a risky
gamble like the stock market or does it make invalid predictions? Allais (1953) was
instrumental in the establishment of the “common ratio effect” which can be recon-
ciled by reliable evidence ably proving that the hypothesis of expected utility being
linear in probabilities displays systematical inconsistence with individuals’ conscious
patterns of choice.

The “ambiguity aversion effect” illustrates that most decision makers seem to ex-
press a preference for risky prospects with equal outcome probabilities to ambiguous
ones. The classic demonstration of it is the Ellsberg paradox (Ellsberg, 1961) as a
violation of the axioms of rational choice. In its simplest form, the classic experi-
ment would be an urn (I) with red and black balls of an unknown proportion, out
of which one ball is to be drawn at random. In urn (II) the red and the black balls
are in equal number and the proportion of red and black balls is known. Therefore,
in both cases the indifference between choosing Red or Black can be regarded as
an expression of assigning equal probabilities to both colors. As far as urn (II) is
concerned, the probability of drawing a red ball, for example, is objectively given as
0.5, and as far as urn (I) is taken into consideration, only the subjective probability
of the same event can be asserted as being 0.5, as the objective probability is un-
known. Ellsberg (1961) documents that people prefer to have the ball drawn from
urn (II) (with known proportion), displaying deviant behavior incompatible with the
expected utility principle.

2.2 The Foundations of Behavioral Finance

This section aims to provide a comprehensive survey of the growing interdisciplinary
area of Behavioral Finance, where insights from psychology are used to improve the
realism of classical financial models (Barberis and Thaler, 2003). As documented in
the Behavioral Finance literature, individuals’ choices show considerable deviation
from the expectation of rational behavior implied by normative decision analysis (see,
for example, Shefrin, 2002 and Camerer and Loewenstein, 2003).

2.2.1 Behavioral and Cognitive Psychologists

Literature on behavioral psychology seldom emphasizes the crucial role of develop-
mental psychology on neural mechanisms of the human mind. Academic thinking
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on the mental origin of individuals’ behavioral patterns vaguely bears in mind that
Darwin (1872) laid the foundations for the application of evolutionary theory to the
human behavioral sciences.

Behaviorism could be argued to originate as early as 1877 from Darwin’s nota-
tions on the nature of expressions observed for different emotions. He kept accu-
rate records on the early mental development of his first-born son William Erasmus
Darwin, introducing the notion of emotions such as anger, fear (including anxiety),
helplessness, affection, and moral sense. One seminal idea noted in Darwin (1877) is
that most of our emotions are innate. Darwin had not solely made an observation
about William’s smiling as an expression of affectionate behavior; he witnessed that
infants who are blind from birth begin smiling without practice or prompting at the
same age as normal infants.3

The theory of Pavlovian conditioning has heralded the beginning of neurophysio-
logical and psychophysiological studies of the reflex mechanisms of long-term cerebral
activity. Russian physiologist Ivan Pavlov – Nobel laureate in medicine in 1904 in
recognition of his investigations of digestive glands – merely by coincidence made
headway in introducing the theory of Conditioned Reflexes as being composed of
orchestrated physiological processes. In general, Pavlov (1927) refers to the con-
ditioned stimulus which comes to evoke a response of the unconditioned stimulus,
and under these circumstances the conditioned stimulus calls forth behavior that
has ably adapted to the behavior that had previously been elicited by the uncondi-
tioned stimulus – with the magnitude of the response depending on the intensity of
the stimulus.4 Pavlov and his colleagues paved the way for the emergence of cogni-
tive neuroscience analyzing the genetic contributions to the development of cerebral
asymmetry, formulating the heritability of lobar and cerebral hemispheric volumes
correlating with handedness.

The genesis of Behaviorism as a science of objectively observable behavior (ex-
cluding the study of mental processes) can be traced back to John B. Watson with

3 For evidence on the recognition of multiple emotions from facial expressions accompanied by
asymmetries in muscle movement, see Adolphs et al. (1994). Apart from focusing on the crite-
rion of phylogenetic contexts, they demonstrate that lesions of the human amygdala impair the
evocation of emotional responses.

4 Cortical inhibition processes shielding (the cortex) from overstimulation are exemplified through
the elicitation of salivation of dogs under study by a conditioned stimulus (the sound of a bell) that
has repeatedly preceded presentations of an unconditioned stimulus (food). The unconditioned
(i.e. initial inborn) reflexes are constantly supplemented by the conditioned ones routed through
the cerebral hemispheres.
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his magnum opus Psychology as the behaviorist views it (Watson, 1913). The basic
premise of his research is to evoke psychology into a general science of behavior,
arguing that all complex human behavior is learned by unique adaptation to the
environment in contrast to the inheritance of traits. Watson (1913) rejects the con-
cepts of consciousness and of introspection as being intersubjectively unverifiable,
suggesting that complex functional behaviors could be conditioned via Pavlovian
principles. In applying Pavlov’s (1927) model of classical conditioning in the first in-
stance to humans with phobic and other behavioral disorders, Watson (1913) provides
a mechanism for prescriptive psychotherapy, in which patients with simple phobias
of hereditary origin (mediated by genetic factors) are systematically challenged to
face clinical exposure.

In contrast to the model of classical (respondent) conditioning, Skinner (1938)
studies the impact of human behavior in terms of the operant conditioning paradigm.
In operant behavior analysis, the basic association takes place between the operant
response and the reinforcer, with the emission of antecedent (discriminative) stimuli
depending on its past consequences instead of on the unconditioned (eliciting) stim-
uli. Given this finding that the environment molds behavior, it can be expected that
characteristic patterns of responding are revealed as reinforcement contingencies are
subsequently varied. As operant behavior is shaped and maintained by the conse-
quences of current responses for the individual, its study is essential in specifying
what aspects of behavior are to be attributed to hereditary endowment.5

The theory of cognitive dissonance was introduced by Festinger et al. (1956), who
noted that individuals holding two or more cognitions (i.e., attitudes and beliefs) that
are psychologically inconsistent will experience an uncomfortable state of cognitive
dissonance. Individuals will therefore strive to reduce dissonance by changing one or
more of the cognitions so that they are no longer inconsistent. Kahneman and Tver-
sky (1972) and Tversky and Kahneman (1973, 1974) made headway in the empirical
study of human judgment under uncertainty, by documenting three heuristics – rep-
resentativeness, availability, and anchoring and adjustment – that people employ in
assessing probabilities and in predicting values.

5 Advances in the study of the biologic underpinnings of complex cognition are highlited in Gaz-
zaniga (2004). The author(s) profoundly covers the analysis of intellectual capacity in (devel-
opmental) cognitive neuroscience examining the role of environmental factors in intelligence,
suggesting that with nearly half of the variance attributable to genetic factors, IQ scores are
strongly heritable.
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2.2.1.1 Prospect Theory

Behavioral Finance rejects the idea that choice reflects maximization of a rational
(expected) utility function. In Behavioral Finance, the rules that govern the workings
of the black box are derived from observation of actual or hypothetical choice (i.e.,
maximization of prospect utility). The year 1979 saw the formulation of Prospect
Theory by Kahneman and Tversky as a descriptive model of decision making under
uncertainty.

Kahneman and Tversky’s (1979) original version of Prospect Theory is concerned
with simple prospects with at most two non-zero outcomes. The authors propose that
when offered a prospect of the form

(c1, p1; c2, p2),

to be read as “get outcome c1 with probability p1, outcome c2 with probability p2,

and nothing with probability 1 − p1 − p2,” where c1 ≤ 0 ≤ c2 or c2 ≤ 0 ≤ c1, and
where p1 + p2 ≤ 1, people assign it a value of

V (c1, p1; c2, p2) = π(p1)v(c1) + π(p2)v(c2),

where v(0) = 0, π(0) = 0, and π(1) = 1. Or in a condensed notation

V (x) =
S∑
s=1

π(ps)v(cs). (2.2)

Equation (2.2) shows that the over-all value of a prospect denoted V , is expressed
in terms of two scales, π and v. The first scale, π, associates with each probability
p a decision weight π(p), which reflects the impact of p on the overall value of the
prospect. The second scale, v, assigns to each outcome c a number v(c), which
reflects the subjective value of that outcome (see, Kahneman and Tversky, 1979).
Correspondingly, when deciding between different gambles, agents choose the gamble
with the highest value.

In comparison with Expected Utility Theory (as in Equation 2.1) u is replaced by
v as denoting the value function – being defined on outcomes – in a prospect theo-
retical context. Also, risk-sensitivity in Prospect Theory results from a combination
of nonlinearities in the value function and the presence of a probability-weighting
function π, whereas in standard Expected Utility Theory, nonlinearities in u pre-
dominantly generate risk attitudes (d’Acremont and Bossaerts, 2008).
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The essential feature of the value function is that it is defined on gains and losses
rather than on final asset positions, which captures the notion that people in general
treat outcomes as departures from some reference point, rather than in terms of
total wealth (for a seminal discussion, see Markowitz, 1952b). The relevance of this
assumption to the cognitive analysis of individual perception and judgment can be
seen by considering the capability of adaptation to attributes such as brightness,
loudness, or temperature relative to past concepts in the same context, rather than
to the evaluation in absolute terms.

A second salient characteristic of the value function is that the marginal value of
both gains and losses commonly decreases with their magnitude, that is, the value
function for changes of wealth is concave above the reference point (v′′(c) < 0, for
c > 0) and frequently convex below it (v′′(c) > 0, for c < 0).

A third significant property of the value function – called “loss aversion” – is that
it is steeper for losses than for gains (i.e., the disutility of giving up an object is greater
than the utility associated with acquiring it). The common reluctance to accept a fair
bet (i.e., a bet with expected gain or loss of wealth equal to zero) on the toss of a coin
suggests that the displeasure associated with losing a c number of money exceeds the
pleasure associated with gaining the same amount, or v(c) < −v(−c) (most notably,
see, Kahneman and Tversky, 1979, 1984, 2000 and Tversky and Kahneman, 1991).6

It can be therefore proposed that the S-shaped value function in Prospect Theory is
steepest at the reference point, in marked contrast to the utility function postulated
by Markowitz (1952b).

Kahneman and Tversky (1979) and Tversky and Kahneman (1992) confirm an
aversion to equiprobable gambles of the form:

Problem 1

(110, 0.5;−100, 0.5)

to be read as “win $110 with probability 0.5, lose $100 with probability 0.5, inde-
pendent of other risks”. Kahneman and Tversky (1979, p. 279) view loss aversion
as follows: “An individual is loss averse if she or he dislikes symmetric 50-50 bets
and, moreover, the aversiveness to such bets increases with the absolute size of the
stakes.”

6 In particular, Samuelson (1963) first finds evidence of loss aversion, by offering the following bet
to an economist colleague over lunch: a 50% chance to win $200 and a 50% chance to lose $100.
The colleague gave the following answer: “I won’t bet because I would feel the $100 loss more
than the $200 gain. But I’ll take you on if you promise to let me make 100 such bets”.
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Prospect Theory posits that individuals’ simultaneous demand for both lottery
tickets and insurance can be inferred from overweighting very low probabilities, that
is, π(p) > p for small p. In that vein, consider the following two choice problems
that illuminate the features of Prospect Theory – as a violation of Expected Utility
Theory – as in Kahneman and Tversky (1979).

The authors use −c to denote the loss of c, and � to denote the prevalent prefer-
ence, that is, the choice made by the majority of people. For example, the majority
of subjects prefer one chance in a thousand to win $5000 over a certain $5, whereas
they are not willing to accept a risk of 0.001 to lose $5000, in preference to a sure
loss of $5.

Problem 2

(5000, 0.001) � (5, 1)

Problem 3

(−5, 1) � (−5000, 0.001)

In problem 2, the preference for a small probability of a large gain – which can be
viewed as a lottery ticket – over the expected value of that ticket, contributes to the
concavity of the value function in gains. In contrast, in problem 3, individuals prefer
a small loss, what is in effect the payment of an insurance premium, over a small
probability of a large loss. Similarly, the payment for insurance implies convexity of
the value function for losses (Kahneman and Tversky, 1979).

Importantly, people seem to exhibit a larger amount of sensitivity to differences
in probabilities at higher probability levels. For example, the following pair of choices
(as in Kahneman and Tversky, 1979) where subjects tend to prefer a certain $3000
to ($4000, 0.8), but also prefer ($4000, 0.2) to ($3000, 0.25),

Problem 4

(3000, 1) � (4000, 0.8),

and

(4000, 0.2) � (3000, 0.25),
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violating Expected Utility Theory, imply

π(0.25)
π(0.2)

<
π(1)
π(0.8)

.

Problem 4 demonstrates that outcomes which are obtained with certainty are
overweighted relative to uncertain outcomes. Kahneman and Tversky (1979) refer to
this situation as the “certainty effect”. As seen above, the 20% increase in probability
from 0.8 to 1 appears to be more striking to people than the 20% increase from 0.2 to
0.25, emphasizing that people are placing more weight on outcomes that are certain
relative to outcomes that are merely probable (see, for example Barberis and Huang,
2007).

Tversky and Kahneman (1992) introduce a generalization of Prospect Theory
which can be applied to gambles with more than two outcomes. This version is
termed the “Cumulative Prospect Theory” since the transformation of probabilities is
first applied to the cumulative density function instead of directly to the probabilities.
Specifically, if a gamble pays off cs with probability ps – and where πs is the decision
weight associated assigned to outcome s – the authors propose that people assign
the gamble the value

S∑
s=1

πsv(cs), (2.3)

where v is called the value function with

v(c) =

cα if c ≥ 0

−λ(−c)β if c < 0,

and with w being the probability weighting function,

πs = w(ps)− w(p∗s),

w(p) =
pγ

(pγ + (1− p)γ)
1
γ

.

Above, ps (p∗s) denotes the probability of the gamble yielding an outcome at least
as good as (strictly better than) cs, where α=β=0.88, λ=2.25, and γ=0.65 (Tversky
and Kahneman, 1992). It is substantial to note that λ represents the coefficient of
loss aversion, which is as previously mentioned, a measure of the relative sensitivity
to gains and losses (also, see Benartzi and Thaler, 1995).
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To illustrate the importance of framing, consider the following experiment in
Tversky and Kahneman (1981) where they ask 150 subjects the following question:

Problem 5: Imagine that you face the following pair of concurrent decisions. First
examine both decisions, then indicate the options you prefer.

Decision (i). Choose between:

A. a sure gain of $240

B. a 25% chance to gain $1000 and a 75% chance to gain nothing

Decision (ii). Choose between:

C. a sure loss of $750

D. a 75% chance to lose $1000 and a 25% chance to lose nothing

In decision (i), A is chosen by 84% of respondents over B. The choice is consistent
with risk aversion, since the expected $250 gain of B is greater than the sure $240
gain of A. In contrast, in decision (ii), the majority (with 87%) of respondents opt
for D over C. The choice is consistent with risk seeking, since the expected $750 loss
of D (which is riskier than C since it can impose a $1000 loss) is equal to the sure
$750 loss of C. Kahneman and Tversky (1979) refer to this situation as “aversion to
a sure loss”, since C imposes a sure loss while D does not.

In particular, 73% of subjects chose the combination of A & D, which offers

- a 25% chance to win $240 and a 75% chance to lose $760,

while only 3% of respondents chose the combination of B & C, which offers

- a 25% chance to win $250 and a 75% chance to lose $750.

The choice of the most common pattern (A and D) is surprising, given that the
combination of A and D is inferior to the combination of B and C. Problem 5 shows
that the respondents fail to take into account the possibility of the conjunction of
two choices, although the instructions of the experiment indicate that the choice
among A, B, C and D is concurrent. Instead, they frame the choice as a pair of sep-
arate choices.7 Furthermore, the underweighting of moderate and high probabilities

7 For evidence of framing effects see also Tversky and Kahneman (1986). The authors describe
that subjects who choose optimally when problems are framed in a transparent form often choose
suboptimally when problems are framed in an opaque form.
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contributes to the relative attractiveness of the sure gain in decision (i) and to the
relative aversiveness of the sure loss in decision (ii).

Tversky and Kahneman (1981) emphasize that instead of focusing on the out-
come that determines their final wealth, subjects analyze choices in isolation from
the other aspects of their financial situations. By establishing a separate mental
account (psychological or mental accounting) for each choice, namely by framing
mental accounts as gains and losses, these gains and losses are determined in terms
of a reference point (see, also Thaler (1985) for implications to marketing).

Endowment effect (or inheritance effect) refers to the fact that people often de-
mand a much higher price for their assets (willingness to accept or WTA) than they
would be prepared to pay to acquire them (willingness to pay or WTP) (Thaler,
1980). People seem to give preference to their current situation when comparing it
with a new one that they do not know well, even if the current one does not seem the
most appropriate to them (Thaler, 1980). Kahneman et al. (1990) conduct a series
of experiments to determine whether the endowment effect survives when subjects
face market discipline and where learning takes place over successive trials.8

Shefrin and Statman (1985) apply Kahneman and Tversky’s notion of framing to
the realization of losses. They label this phenomenon the “disposition effect”, arguing
that investors are predisposed to holding losing investments (relative to their pur-
chase price) too long while selling winners too early.9 Subsequently, Odean (1998a)
– by studying the trading activity over the 1987 to 1993 period of 10,000 households
– confirms that over a one year period investors are more likely to sell stocks that
have increased their value relative to their purchase price, rather than stocks that
have decreased their value.

De Bondt and Thaler (1985, 1987, 1990) apply Tversky and Kahneman’s (1974)
notion of representativeness to market pricing. They argue that investors overreact
to both bad news and good news. Therefore, overreaction leads past losers to become
underpriced and past winners to become overpriced. Huberman and Regev (2001)
observe herding in the context of a contagious speculation associated with a potential
breakthrough in cancer research, although the latter had already been reported more
than five months prior in scholarly publications.

8 Subjects are for example either given a coffee mug and then asked if they would be willing to sell
it, or not given a mug and then offered the chance to buy one. Kahneman et al. (1990) argue
that mug owners demand more than twice as much to sell their mugs as non-owners are willing
to pay to acquire one.

9 In a recent paper, Barberis and Xiong (2009) support Shefrin and Statman’s (1985) decision to
implement prospect theory over realized gains and losses.
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2.2.1.2 Overconfidence and Excessive Trading

Extensive experimental and observational evidence compiled by behavioral psychol-
ogists concerning the psychology of beliefs has emerged from the cognitive analysis
of individual judgment and financial decision making. A significant tenet in the
behavioral finance literature is overconfidence, suggesting that people tend to be
overconfident about their ability to make good investment decisions (Fischhoff and
Slovic, 1980; Griffin and Tversky, 1992; Daniel et al., 1998; Odean, 1999; Barber and
Odean, 2001). Odean (1998b) and Gervais and Odean (2001) predict that investors
display overconfidence in the sense that they trade too much (i.e., trading, at the
margin, reduces their expected utility).10

Barber and Odean (2000) support the view that excessive trading emanates from
investor overconfidence. Figure 2.1 graphs the monthly turnover and the annual per-
formance of 78,000 households. Mean monthly turnover ranges from 0.19% (house-
holds of the low turnover quintile) to 21.49% (households of the high turnover quin-
tile). Households that trade frequently (households of the high turnover quintile)
earn a net annualized geometric mean return of 11.4%, while households that trade
infrequently (households of the low turnover quintile) earn 18.5%.

Figure 2.1
Monthly Turnover and Annual Performance of Individual Investors.
The blue bar represents the net annualized geometric mean return in percent for February 1991 through
January 1997 for individual investor quintiles based on monthly turnover (the average of sales and purchase
turnover). The green bar represents the mean monthly turnover in percent. Quintile 1 contains households
with the lowest turnover (highest net return), quintile 5 contains households with the highest turnover
(lowest net return).
Source: Lecture notes by Odean (2005).

10 In contrast, the rational expectations model predicts that investors whose expected trading is
greater (i.e., those who trade more) will have the same expected utility as those who trade less.
For detailed information please refer to Grossman and Stiglitz (1980).
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Barber and Odean (2001) study whether overconfidence contributes to excessive
trading and to lower returns by partitioning 37,664 investors on gender. Figure
2.2 depicts turnover rates for common stock portfolios held by women and men.
Some interesting facts concerning the difference in turnover between women and men
emerge. Barber and Odean (2001) find empirical evidence suggesting that women,
who are inclined to be less overconfident than men, trade less than men (as measured
by annual portfolio turnover). Men trade 45% more actively than do women, who
turn their portfolios over 52.8% annually, while men turn their portfolios over 76.9%
annually. However, if single households are taken into account, Figure 2.2 shows that
single men – at an annual turnover of 84.6% – trade the most. This compares with
an annual turnover of 50.6% for single women, who trade 67% less than single men,
respectively.

Figure 2.2
Turnover of Common Stock Investments of Female and Male Households.
Households are classified as female or male based on the gender of the person who opened the
account. The pale pink bar (pale blue bar) represents the annual portfolio turnover of 8,005 female
households (29,659 male households) in percent for February 1991 through January 1997. The pink
bar (blue bar) represents the annual portfolio turnover of 2,306 single female households (6,326 single
male households) in percent for the identical time period.
Source: Lecture notes by Odean (2005).

In Figure 2.3 the own-benchmark annual abnormal net returns for common stock
portfolios held by women and men are presented. Barber and Odean (2001) illustrate
that women earn annual net returns that are 1.72% lower than those earned by the
portfolio they held at the beginning of the year, while men lower their annual net
returns by 2.65%, respectively. Correspondingly, if taking single households into
consideration, single men underperform single women by annually 1.45%. Trading
reduces single women’s annual net returns by 1.45% as opposed to 2.90% for single
men.
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Figure 2.3
Return Performance of Common Stock Investments of Female and Male Households.
Households are classified as female or male based on the gender of the person who opened the account.
The pale pink bar (pale blue bar) represents the own-benchmark annual abnormal net returns of 8,005
female households (29,659 male households) in percent for February 1991 through January 1997. The
pink bar (blue bar) represents the own-benchmark annual abnormal net returns of 2,306 single female
households (6,326 single male households) in percent for the identical time period.
Source: Lecture notes by Odean (2005).

2.2.2 Affect and Financial Decision Making

Astonishingly meager literature in economics interrelated with behavioral psychology
has been devoted to illuminate affective cues tightly linked to diverse anomalies in the
behavior of stock market prices and returns. For example, Schwarz and Clore (1983)
find that affect negatively influences individuals’ ratings of life satisfaction partic-
ularly on rainy days. Hirshleifer and Shumway (2003) show that the occurrence of
sunshine is strongly positively correlated with market index returns at 26 interna-
tional stock exchanges from 1982-1997. In this respect, Hirshleifer and Shumway
(2003) illustrate that in New York City for instance, the annualized nominal market
return on perfectly sunny days is 24.8% per year, versus 8.7% return per year with
respect to cloudiness.

Research in psychology strongly supports the view that daylight has a far-reaching
effect on individuals’ moods, and in turn individuals’ moods are related to risk aver-
sion. Kamstra et al. (2003) analyze the effects of seasonal variation in length of
day in 9 stock markets at different latitudes and in both the Northern and Southern
Hemisphere. By observing stock market returns during the three months between
the autumn equinox and the winter solstice and the three months between the winter
solstice and the spring equinox, Kamstra et al. (2003) conclude that stock market
returns are significantly related to season. Specifically, lowest annual returns com-
mence with the autumn quarter and are followed by highest annual returns in the
month after winter solstice (see, also Kamstra et al., 2009).



CHAPTER 3

The Human Cerebrum

A major foundation of neurophysiological processes in the human brain is the pro-
found comprehension of the anatomy of the human cerebrum. Therefore, the aim
of this chapter is first, to explain the neuroanatomy and second, to shed light on
the neurochemistry. Before we advance our understanding of the human brain, the
impetus of this first section is to give a rigorous underpinning of the imaging tech-
nique applied in the vast majority of the studies introduced in this thesis, which has
hitherto been given scant attention.

3.1 Neural Imaging Techniques

The past decade has seen a proliferation of illuminating human studies confirming
the stringent tenacity of functional brain mapping in the clinical neurological sciences
(Logothetis et al., 2001 and Logothetis, 2008). The advent of functional magnetic
resonance imaging (fMRI) provides an indirect measure of neuronal activation by
dint of recording the ratio of oxyhemoglobin (i.e., oxygenated form of hemoglobin) to
deoxyhemoglobin (i.e., hemoglobin that has donated its oxygen).1 Eminently, fMRI
renders possible to monitor that blood oxygenation-level-depent (BOLD) contrast
to sequence in vivo changes (i.e., delays in onset occurring about 2 seconds after
neuronal activity) in hemodynamic responses in regions of the cerebral cortex as
small as 2mm3 on the order of seconds (Fecteau et al., 2007 and Knutson and Gibbs,
2007).

It is a conceptual advance, because the non-invasivity of fMRI allows to stipulate
brain activation that occurs not only during or after the performance of a specific
task, but also before decisions. This “crossing of the rubicon” enables researchers
to put herculean effort into investigating neural circuitries and its correlates, which
have long been believed to play crucial roles in financial decisions.

1 For prescient early insights, see Kwong et al. (1992) and Ogawa et al. (1992).
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3.2 Neuroanatomy2

The human cerebrum – as displayed in Figure 3.1 – at the coarsest level, is composed
of two hemispheres (with the right hemisphere controlling the left side of the body,
and vice versa) which again can be divided into the (cerebral or neo-)cortex and
into three evolutionary older subcortical structures: the basal ganglia3 (facilitates
the initiation of willed movements, such as walking or writing), the hippocampus4

located deep along the medial surface of the temporal lobe (involved in episodic
or autobiographical memory and in navigation), and the amygdala5 as part of the
“limbic system” specializing in emotional memories (LeDoux, 1995).

Each cerebral hemisphere is segmented into four major lobes – from anterior to
posterior – namely the frontal, parietal, occipital, and temporal lobes (as can be
seen in Figure 3.1). Anterior and dorsolateral regions of prefrontal cortex are largely
continuous to the upper and front most surfaces of the frontal lobes, which are
thought to be the locus of higher cognitive faculties, including deliberative thought,
abstract reasoning, judgment, problem solving, planning and language (see, for ex-
ample, Koechlin et al., 1999; Smith and Jonides, 1999; Miller and Cohen, 2001 and
Coricelli and Nagel, 2009). Parietal areas govern motor action, that is, they play a
crucial role in somatosensory processes. The occipital lobe is where visual processing
occurs. The temporal lobes are involved in the processing of auditory information
and semantics, or word meaning. A fifth area of the cortex, called the insula (or
insular cortex, as displayed in Figure 3.1), lies between the frontal and temporal
lobes (Reynolds and Zahm, 2005), and it has been known to be activated during the
observation of negative emotions such as revulsion, pain and disgust (Singer et al.,
2004 and Stein et al., 2007).6

2 Parts of this section have been adapted from O’Brien et al. (2008).
3 A collection of neurons deep in the cerebrum forms the basal ganglia, consisting of three major

structures covering the thalamus in each hemisphere: the caudate nucleus, putamen, and globus
pallidus (lateral and medial divisions). Together, the caudate nucleus and the putamen are
frequently referred to as the striatum.

4 Derived from Greek: “hippokampos”, since its curved shape in coronal sections resembles a
seahorse. Patients suffering from Alzheimer’s disease exhibit initial symptoms of memory absence
and of disorientation as a result of damage to the hippocampus. Also, the hippocampus – through
the process of neurogenesis – retains its ability to regenerate neurons throughout life.

5 The amygdala, as seen in Figure 3.1 (almond-shaped) sits anterior to the hippocampus (not pic-
tured) in the temporal lobes. The amygdala is important in memory consolidation, but primarily
it detects danger and activates fear and the stress response. The role of both antidepressants and
psychotherapy is of great significance in reducing the sensitivity and reactivity of the amygdala.

6 Nearly all studies of decision making under risk and uncertainty have assigned a prominent role
to insular activations. Insula activation has primarily been linked to the anticipation of monetary
loss (see, for example Kuhnen and Knutson, 2005 and Bechara and Damasio, 2005).
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Figure 3.1
Regions of the Human Cerebrum.
(Top and Bottom) Side (lateral) view and midline (medial) view of the human cerebrum, identifying
areas censoriously associated with decision making. Areas in bold depict key neural substrates un-
derlying emotional processing, while areas in italics have uniformly been associated with higher level
cognitive processes.
Source: Cohen (2005).

Cardinal attention will in this thesis be confined to the sound neurophysiological
underpinnings of the limbic system (Broca, 1877, 1878) – which is an evolutionarily
ancient brain structure known to be engaged in self-preservation behaviors in primi-
tive settings, that has evolved 150 million years ago – where reward centers can be
located, and of the frontal lobe – which as part of the neocortex was exaggerated in
humans 2 to 3 million years ago – where cognitive decision making occurs (Robson,
2001).
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3.3 Neurochemistry

This section advocates consideration of the neurochemical foundations of choice, thus
we will not concern ourselves greatly with the peripheral nervous system, but for the
purposes of description will first of all concentrate on the histology of the central
nervous system comprising the brain and spinal cord.

In essence, a nerve cell (a neuron) is the primal functional unit of the central
nervous system. Azevedo et al. (2009) find that the average adult male human
brain – with a mass of 1508 gramms – contains 86.1 billion neurons. Inimitably,
since Pakkenberg and Gundersen (1988) the authors arrestingly adumbrate that the
average human cerebral cortex – with a mass of 1233 gramms – contains 16.3 billion
neurons. Neurons are composed of three morphologically and molecularly distinct
domains: the cell body, axon, and dendrites (as illustrated in Figure 3.2).

The cell body (perikaryon or soma) of a neuron houses a nucleus surrounded by
cytoplasm inclosing dissimilar organelles such as lysosomes, mitochondria, Nissl sub-
stance, neurofibrils, and a Golgi complex. On the one hand, each neuron has singly
one axon (or nerve fiber), which in specific is an elongated cylindrical projection
conducting an electrical discharge, that is, the action potential (the nerve impulse)
away from the soma towards axon terminals. The axon may evoke divisive ramifi-
cations – termed axon collaterals – facilitating its parent cell to sway various other
cells. Axonal ensheathment or myelination by oligodendrocytes (node of Ranvier)
expedits the velocity of propagation of nerve impulses, a process known as “saltatory
conduction” (Na+ and K+ exchange pump). On the other hand, there are habitu-
ally multiple branches of unmyelinated dendrites, cultivating “dendritic trees” which
receive stimuli from other neurons and conduct nerve impulses toward the soma (see,
for example Brodal, 2004).

The area where transmittal of information occurs is called a synapse which repre-
sents a region of solely functional continuity between the outpouching of the terminal
aspects (synaptic knob or bouton) of the axon of one pre-synaptic neuron and the den-
drites, soma or axon of another post-synaptic neuron. The vesicles of the pre-synaptic
neuron contain a neurotransmitter substance which diffuses unidirectionally across
a physical gap called the synaptic cleft about 20nm wide (that is, 2/100, 000mm)
between the membrane of the bouton and the post-synaptic membrane.

Histochemical studies have indicated dendritic synthesis, storage and release of
dopamine from the nigro-striatal dopaminergic neurons (Geffen et al., 1976 and Cher-
amy et al., 1981). The human dopamine system is a collection of merely 450,000
neurons in the pars compacta of the substantia nigra (German et al., 1983).
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Figure 3.2
Anatomy of a Dopaminergic Neuron.
Nerve terminals, or boutons forming axosomatic and axodendritic synapses. The action potential –
that is, an electric current – is conveyed into a chemical signal through the presynaptic release of a
neurotransmitter by binding to receptor molecules in the postsynaptic membrane (increase in intracellular
Ca2+).
Source: Society for Neuroscience (2008).

Only in the fifties, dopamine was identified as a crucial neurotransmitter7 (Carls-
son et al., 1958). A plethora of studies – which will be discussed in detail in Section
4.1 – have effectually corroborated the involvement of dopamine in reward-based de-
cision making (see, also, Schultz, 2002; Montague et al., 2004; Knutson and Peterson,
2005 and Caplin et al., 2009). Concisely, considerable evidence indicates that in the
brain, dopamine plays an important role in the anticipation of reward and learning,
in the regulation of voluntary movements and postural reflexes, attention, and mo-
tivation (see Wise, 2004; Pessiglione et al., 2006 and Tobler et al., 2007a for grave
reviews).

7 Others for instance include serotonin, norepinephrine, acetylcholine, glutamate and γ-
aminobutyric acid.
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In addition to the aforementioned interactions, dopamine neurons have been as-
sociated with the involvement in symptoms of attention deficit hyperactivity disor-
der, mood disorders such as unipolar depression and bipolar disorder, anxiety and
Tourette’s disorder, cognitive dysfunction such as dementia (e.g., Parkinson’s and
Alzheimer’s disease as a common cause of dementia) and schizophrenia, and precari-
ous substance disorders, such as addictive behaviors of cocaine, heroin, nicotine and
amphetamines (see, for example, Saal et al., 2003; Nestler, 2005 and Naqvi et al.,
2007).

Of primary interest in all the studies that I highlight in my thesis are two
dopaminergic pathways in the midbrain. Figure 3.3 depicts the mesostriatal path-
way which originates in the substantia nigra pars compacta innervating the striatum
(i.e., specifically the caudate nucleus and putamen) and the mesolimbic pathway
which originates in the ventral tegmental area – which contains about 80% dopamine
neurons and measures about 60mm3 in volume – projecting to the amygdala, the
nucleus accumbens, and the prefrontal cortex (D’Ardenne et al., 2008).

Figure 3.3
Projection Pathways of Midbrain Dopamine Neurons.
Neuronal somata of dopaminergic neurons are located mainly in the pars compacta of substantia nigra
and the medially adjoining ventral tegmental area. Their nerve fibers project mainly to the striatum
(caudate nucleus and putamen), ventral striatum including nucleus accumbens, and frontal cortex
(dorsolateral, ventrolateral and orbital prefrontal cortex).
Source: Schultz (1999).



CHAPTER 4

Perception of Risk and Reward from a

Neural Perspective

A key contribution of this thesis is aimed at unraveling the neural and metabolic
mechanisms of the human brain underlying decision making under uncertainty. How-
ever, the quest for understanding the neural processing of the core parameters of
antecedent neural activation in order to predict upcoming financial decisions has re-
mained elusive. A foundational component of decisions in microeconomic theory is
represented by Pascal’s (1948) theory of Expected Value (EV). Pascal’s framework
postulates that since outcomes of choices possess specific magnitudes and occur with
specific probabilities, they can be appropriately characterized by probability distribu-
tions of outcome magnitudes. Pascal (1948) conjectured that when deciding between
different options, individuals tend to choose the option with the highest expected
(mean) value of the probability distribution of outcomes (expected value as sum of
all probability-weighted values of the distribution, the first moment of a probability
distribution).

Equation 4.1 denotes that expected value is the summed product of reward out-
come and probability:

EV (x) = µs =
S∑
s=1

pscs (4.1)

where p relates to the probability of reward; c refers to the outcome of reward;
and s refers to the underlying states of nature. Thus, economic models of decision
making also incorporate uncertainty involved in choice behavior. Uncertainty – as
in Equation 4.2 – can be denoted by the variance of the probability distribution
(variance as sum of probability-weighted differences from expected value, the second
moment of a probability distribution):

V ar(x) = σ2
s =

S∑
s=1

ps(cs − µs)2 (4.2)
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PERSPECTIVE

where p relates to the probability of reward; c refers to the outcome of reward;
µ stands for the expected value; and s refers to the underlying states of nature.
Variance refers to the spread of the probability distribution and indicates how far
each possible value is away from the expected value. Variance is perceived as “risk”
and denotes how much a decision maker in uncertain situations risks to gain or to
lose relative to the expected (mean) value of the known probability distribution.

However, probability is not a monotonic measure for risk. In a two-outcome
situation, such as reward versus no reward, expected reward (measured as mathe-
matical expectation of reward) increases linearly with the probability of reward p;
it is minimal at p = 0 and maximal at p = 1. In contrast to expected reward, risk
(measured as reward variance, or as its square root, standard deviation) follows an
inverted U-function of probability and is maximal at p = 0.5 and minimal at p = 0
and p = 1.1

To this date, numerous economic studies of decision making under uncertainty
(e.g. Holt and Laury, 2002; Bossaerts and Plott, 2004; Knutson and Bossaerts,
2007 and Platt and Huettel, 2008) have emphasized the crucial relevance of risk
consideration in addition to expected reward.2 In the following sections I refer to
neuroscientific studies that play a decisive role in confirming the neurobiological
representation of expected reward and risk in human (sub-)cortical structures. On
the one hand, neural representation of expected reward is investigated in detail in
Section 4.1. On the other hand, the studies examined in Section 4.2 provide a basis
for understanding the precise neural representation of risk. Furthermore, in Section
4.3 a rigorous neurophysiological underpinning of the perception of expected utility
is given. Section 4.4 focuses on the neural treatment of ambiguity. Ultimately, in
Section 4.5 we will put grave emphasis on the role of emotions in financial decision
making and discuss their neural correlates, respectively.

4.1 Neural Representation of Expected Reward

There is a growing literature which ascertains neuronal activation correlating with
expected reward (Elliott et al., 2000, 2003; Berns et al., 2001; Breiter et al., 2001;
O’Doherty et al., 2002; McClure et al., 2004, 2007; Dreher et al., 2006; Zink et al.,

1 Please refer to Figure 4.2B from Preuschoff et al. (2006a) for further details.
2 To provide elementar insights into the field of neuroeconomics, I have benefited from an early

paper by Camerer et al. (2005). For a profound confrontation with neurofinancial issues the
following book by Glimcher et al. (2009) served a great purpose.
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2006; Knutson et al., 2000, 2001, 2003, 2008a; Balleine et al., 2007; Kepecs et al., 2008;
Mainen and Kepecs, 2009). These papers are related to this thesis as they study the
engagement of the human and nonhuman sub-cortical dopaminergic structures such
as (the dorsal and) ventral striatum (including the nucleus accumbens), amygdala
and prefrontal cortex (e.g., medial orbitofrontal cortex) in reward-related processes
and provide interesting and important findings on this matter.

Neurophysiological evidence on the perception of risk and reward in the human
brain is primarily based on electrophysiological studies of the nonhuman primate
brain by Fiorillo et al. (2003) in support of the classic Pavlovian experiment outlined
in Section 2.2.1. The authors document that single dopaminergic neurons in groups
of the substantia nigra pars compacta and the medially adjoining ventral tegmental
area in the ventroanterior midbrain show an increase in response (by spiking) to
stimuli – during the interval between stimulus and reward – with the probability
of reward. Following the reward itself, the impulse activity decreases monotically
with increasing probability, leading to the proposal that the information encoded by
these neurons reflects the reward prediction error, or the difference between actual
and predicted rewards. The prediction error (signal) is used to update the expected
reward associated with a certain stimulus or cue in the environment (similarly to the
arguments in terms of temporal difference models of learning, see Fiorillo et al., 2005
and on a more fundamental level, see Rescorla and Wagner, 1972).

From the plethora of experiments in connection with the identification of brain re-
gions tracking reward prediction errors pioneered by Schultz et al. (1997), O’Doherty
et al. (2003) have found activations in the ventral striatum (left ventral putamen)
and in the orbitofrontal cortex to correlate with reward prediction error. Scaling
of rewards in the nonhuman primate orbitofrontal cortex and in striatal areas (ven-
tral striatum and putamen) was demonstrated by Tremblay and Schultz (1999) and
Cromwell and Schultz (2003) while in the human medial orbitofrontal cortex and
in dorsal striatum (i.e., caudate nucleus) it was recently observed by Elliott et al.
(2008); De Martino et al. (2009) and Valentin and O’Doherty (2009), respectively.

In a set of experiments Tobler et al. (2005) demonstrate “adaptive encoding” (i.e.,
scaling) of rewards by presenting three pseudorandomly alternating visual stimuli
indicating a 50% chance of gustatory (i.e., juice) reward to two adult female Macaca
fascicularis monkeys. The observation that the responses of dopamine neurons in
the ventral tegmental area to three liquid volumes spanning a tenfold range appear
to be identical is depicted in Figure 4.1A and 4.1B. Interestingly, the sensitivity or
gain of the neural responses as a function of liquid volume evoked an adaptation
according to the prediction made by the visual stimulus, so that responses appeared
to be equivalent regardless of their absolute magnitude (Figure 4.1C).
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Figure 4.1
Adaptive Encoding of Reward in the Nonhuman Primate Brain.
(A) Single Neural Firing Patterns in Ventral Tegmental Area.
Almost identical neural responses of a single dopamine neuron to three liquid volumes spanning a 10-
fold range. Each of three distinct visual stimuli (as shown on the left hand side in color), presented on
pseudorandomly alternating trials, predicts that one of two potential liquid volumes (top, 0.0 or 0.05 ml;
middle, 0.0 or 0.15 ml; bottom, 0.0 or 0.5 ml) will be delivered with p = 0.5. The dopamine responses
after visual stimuli onset increase with their associated expected reward values. Results for only rewarded
trials are shown.
(B) Population Histograms of Responses.
Histograms of group firing rates (of animal A) for the three different liquid volumes from the experiment
in (A).
(C) Plots of the Median Neural Responses as a Function of Liquid Volume.
Straight lines connect the data points which represent the median response (±95% confidence intervals)
of the population taken after normalizing the response (percentage change in activity) within each neuron
to the response following the delivery of unpredicted liquid (0.15 ml) recorded in a separate block of trials.
The slope of these lines provides an estimate of the neurons’ gain or sensitivity with respect to liquid
volume. (Left) The experiment in (A) and (B). (Right) Identical experiment performed in animal B with
two nonzero liquid volumes per conditioned stimulus at p = 0.5 (stimulus 1: 0.05 vs. 0.15 ml, stimulus
2: 0.15 vs. 0.5 ml, stimulus 3: 0.05 vs. 0.5 ml).
Source: Tobler, Fiorillo, and Schultz (2005).
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4.1.1 The Approach by Preuschoff, Bossaerts and Quartz (2006)

Preuschoff et al. (2006a) examine whether and how activation in subcortical dopamine
regions in the human brain correlates with changes in expected reward and risk.3 In
accordance with financial decision theory (i.e., portfolio theory), expected reward
is measured as mathematical expectation of reward (for example, as in Knutson
et al., 2003), and risk is measured as reward variance, namely as the mean squared
deviation from the expected outcome (Markowitz, 1952a). The combination of func-
tional magnetic resonance imaging (fMRI) with a simple gambling task allows for
the simultaneous variation of expected reward and risk.

4.1.1.1 Data and Methods

Figure 4.2 reveals the experimental procedure with subfigure (A) displaying the time-
line of the gambling task for a single trial and with subfigure (B) exhibiting the risk
and reward profile, respectively.

A total of nineteen subjects played a simple card game. Ten cards (as seen in
subfigure (A)), numbered 1 through 10, were randomly shuffled. In each trial, two
cards were drawn consecutively (and without replacement within each trial) from
the deck of cards. Before seeing either card, subjects were asked to place a bet ($1
per trial) on one of the two options, “second card higher” or “second card lower”.
If guessing the right card, subjects could earn $1 and if they were wrong, they lost
$1. About 3 seconds later, the first card was displayed, followed about 7 seconds
later by the second card. To ensure that subjects paid attention, at the end of each
trial, they were asked to indicate whether they won or lost on the according trial. A
penalty of $0.25 was imposed if they incorrectly reported the outcome of their bet
or if they did not respond.

Subfigure (B) demonstrates expected reward and risk as a function of the proba-
bility of reward. Expected reward (dashed line), modeled as mathematical expecta-
tion of reward (i.e., mathematical expectation of payoff), increases linearly in reward
probability p. Risk (solid line), measured as reward variance, is quadratic in reward
probability p, exhibiting a symmetric, inverted U-shaped pattern. Variance attains
a maximum at p = 0.5. Due to the fact that the level of reward was kept constant
across all rewarded trials, expected reward and risk (variance) upon display of card
1 vary only as a function of the probability of winning.

3 Please refer to Figure 3.3 for details on the subcortical dopaminoceptive structures of the human
brain.
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Figure 4.2
Experimental Procedure.
(A) Timeline of the Gambling Task for a Single Trial.
Screenshots that were seen by the subjects at each stage of a trial, are displayed to the left. 19 subjects
(10 male, 9 female; aged 18-30, mean age 21.4 years) performed the gambling task. Subjects started
out each session with the provision of an initial endowment of $25. Subjects played three sessions of
30 trials each, with their final payoff being determined by the selection of one of the three sessions at
random.
(B) Expected Reward and Risk Profile of the Gambling Task.
The horizontal axis depicts the probability of reward p ranging from p = 0 to p = 1. On the vertical
axis, expected reward is represented by the dashed line (in dark blue) and risk is represented by the
solid line (in red). Expected reward is minimal at p = 0 and maximal at p = 1. Risk attains minimums
at the extremes p = 0 and p = 1, peaking at p = 0.5.
Source: Preuschoff, Bossaerts, and Quartz (2006a).

Preuschoff et al. (2006a) emphasize that their focus is on the time interval between
display of card 1 and card 2, being referred to as the anticipatory period. In that
vein, their aim is to find regions of interest whose activity is modulated by expected
reward and risk (reward variance), by decomposing the anticipatory period into (i)

a response at the initial subperiod (i.e., at the onset of card 1), followed by (ii) a
response at the subsequent subperiod (i.e., until the onset of card 2). In accordance
with the previous findings of Fiorillo et al. (2003) and Tobler et al. (2005), the
duration of the initial response (i) was set at 1 s and the duration of the subsequent
response (ii) was set at 6 s.
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4.1.1.2 Results from the Approach by Preuschoff, Bossaerts and Quartz

(2006)

Figure 4.3 reveals anticipatory period activation in subcortical dopaminoceptive re-
gions correlating with expected reward. Figure 4.3A displays two cross-sections of
the human brain through the (ventral) striatum (top, in coronal format, and bottom,
in axial format), where immediate neural responses (i.e., within 1 second of display
of the first card) related to expected reward were detected. The coronal cross-section
through the (ventral) striatum depicts the nucleus accumbens (circled) and the axial
cross-section depicts the putamen and the globus pallidus (both are circled).4 In
Figure 4.3B activation in striatal areas (ventral striatum and putamen) is shown to
increase linearly in reward probability.

Figure 4.3
Immediate Encoding of Expected Reward in Dopaminoceptive Structures.
(A) Neural Responses Related to Expected Reward.
Regions showing activation within 1 s of display of the first card (in orange), including bilateral ventral
striatum (L vst, R vst; displayed in coronal format) and putamen (L put, R put; displayed in axial
format).
(B) Mean Activations Stratified by Level of Reward Probability.
Activation increases linearly in reward probability. Betas are slope coefficients for dummy variables that
are set equal to one for a 1 s period after cue presentation (i.e., presentation of the first card). Vertical
bars indicate 95% confidence intervals (df=degrees of freedom) and the dashed lines indicate the best
linear fit.
Source: Preuschoff, Bossaerts, and Quartz (2006a).

4 The minor activation seen in the coronal cross-section displays the anterior cingulate cortex
(upper left corner in Figure 4.3A).
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4.2 Neural Representation of Risk

Unambiguous correlation between risk and activation in human and nonhuman corti-
cal regions as (the anterior) insula, prefrontal cortex (i.e., frontoparietal cortex) and
anterior cingulate cortex is highlited in neuroscientific studies (Critchley et al., 2001;
Paulus et al., 2001, 2003; McCoy et al., 2003; Kuhnen and Knutson, 2005; Huettel
et al., 2006; Paulus and Frank, 2006). Furthermore, activity in human subcortical
dopaminergic structures such as (the dorsal and ventral) striatum (e.g. Hsu et al.,
2005; Dreher et al., 2006; Grinband et al., 2006; Knutson et al., 2008b) and in the
nonhuman primate brain (e.g. Lauwereyns et al., 2002 and Takikawa et al., 2002)
was found to correlate with risk.

As elucidated in the second chapter of this thesis, Expected Utility Theory posits
that risk sensitivity is ascertained by the curvature of the utility function. Studies
that observe neuronal activity in terms of the expected utility of an option (Knutson
et al., 2005 and Yacubian et al., 2006, 2007) identify neurocorrelates of probabilities
and of utilities assigned to outcomes principally in the medial prefrontal cortex and
the nucleus accumbens.

Admittedly, within the framework of financial decision theory, in the mean-
variance concept, risk aversion is the consequence of the penalty imposed on risk.
This mathematical model of decision making under uncertainty postulates a sepa-
rate assessment of expected value and variance (most notably, Tobin, 1958; Levy and
Markowitz, 1979 and Markowitz, 1991). Specifically, Sharpe (1964), Lintner (1965),
and Mossin (1966) suggest that expected returns on risky securities should increase
not as a function of their own risk, but only to the extent that they contribute to
the risk of the securities market as a whole (Capital Asset Pricing Model, CAPM).
Pivotally, the notion of prices of options (to purchase or sell securities) increasing
as a function of risk (variance) was pioneered by Black and Scholes (1973) marking
the cornerstone of modern option valuation theory. Thus, studies in support of the
mean-variance approach (McClure et al., 2003; Paulus et al., 2003; O’Doherty et al.,
2004; Huettel et al., 2005 and Rolls et al., 2008) correlate activation with expected
value and variance in striatal loci and insula, respectively. Taken together, the ob-
servation of neural correlates of value and risk in the ventral striatum and anterior
cingulate (Christopoulos et al., 2009) further seems to corroborate the validity of the
mean-variance analysis in neurally determining choice under uncertainty.

To complicate matters further, the striatum and the cingulate gyrus are found
to encode a nonlinear probability term (Berns et al., 2008 and Hsu et al., 2009) in
a manner predicted by Prospect Theory (for a comprehensive comparison between
mean-variance and Prospect Theory see, Boorman and Sallet, 2009).
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4.2.1 Results from the Approach by Preuschoff, Bossaerts and Quartz

(2006)

Figures 4.4A to 4.4C show three cross-sections of the human brain, namely through
the (ventral) striatum in (A) (in coronal format), through the brainstem (midbrain is
located between the forebrain and the brainstem) in (B), and through the thalamus
exhibiting the thalamic nuclei and the (bilateral) insula in (C) (both are displayed
in axial format). In each of these regions delayed neural responses (i.e., after 1
second of display of the first card and until display of the second card) related to
risk were registered. The responses in all regions increase towards medium reward
probabilities, with a maximum at p = 0.5, and decrease towards low and high reward
probabilities (as in 4.4D).

Figure 4.4
Delayed Encoding of Risk in Dopaminoceptive Structures.
(A to C) Neural Responses Related to Expected Risk.
Regions showing activation after 1 s of display of the first card and until display of the second card (in
blue), including bilateral ventral striatum (L vst, R vst; displayed in coronal format in (A)) extending
into the subthalamic nucleus, midbrain (mb; displayed in axial format in (B)), mediodorsal thalamic
nucleus and bilateral insula (md; L ins, R ins; displayed in axial format in (C)).
(D) Mean Activations Stratified by Level of Reward Probability.
Activation changes quadratically with reward probability. Betas are slope coefficients for dummy variables
that are set equal to one for a period starting 1 s after cue presentation (i.e., presentation of the first
card) and running until presentation of the second card. Vertical bars indicate 95% confidence intervals
(df=degrees of freedom) and the dashed lines indicate the best quadratic fit.
Source: Preuschoff, Bossaerts, and Quartz (2006a).
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4.2.2 Results from the Approach by Preuschoff, Quartz and Bossaerts

(2008)

The notion of human subjects adjusting their learning rate to changing risk im-
plies tracking of risk one way or another (Behrens et al., 2007 and Preuschoff and
Bossaerts, 2007). Although in the past researchers have already documented activa-
tion in insula in the context of uncertainty, they did so with respect to risk-related
characteristics of gambles and not with an emphasis on the precise neural responses
to risk prediction errors, nor on the differentiation of their occurrence from that of
the risk prediction signals (see, for example, Elliott et al., 2000; Critchley et al., 2001;
Ernst et al., 2002; Hsu et al., 2005; Huettel et al., 2006 and Grinband et al., 2006).
With respect to evidence for reward processing in the dopaminergic system, which
encodes both reward prediction and reward prediction errors, Preuschoff et al. (2008)
investigate activation in the human insula to correlate with risk prediction and risk
prediction errors.5

Preuschoff et al. (2008) employ the same experimental paradigm as in their sem-
inal article two years prior that can be reflected on in Figure 4.2A (Preuschoff et al.,
2006a). Within each trial, predictions occur twice: once before the first card, and
again before the second card. This means that both predictions generate correspond-
ing prediction errors, namely that the risk prediction before the first card is followed
by a risk prediction error when the first card is displayed, and subsequently the risk
prediction before the second card is revealed, is followed by a risk prediction error
when the second card is displayed.

Figure 4.5A depicts that activity in bilateral anterior insula correlates positively
with risk prediction errors as of display of both cards 1 and 2. Furthermore, as
shown in subfigure 4.5B, increasing activation levels in right anterior insula reflect
a linearly increasing relationship with the level of risk prediction error upon display
of both cards 1 (in red) and 2 (in blue). Most notably, Preuschoff et al. (2008)
demonstrate that the relative magnitudes of the activations after the first and the
second card are commensurate with the relative magnitudes of the risk prediction
errors. Trials where there is no risk after seeing the first card and, hence, there is
no risk prediction error at the second card, constitute an outlier (both attributes are
clearly visible in Figure 4.5B). These results are in consistence with novel findings by
d’Acremont et al. (2009), observing risk prediction errors in insula and importantly,
in other cortical structures such as the inferior frontal gyrus.

5 Mathematically, the risk prediction error is the difference between the squared reward prediction
error and reward variance. For details on autoregressive conditional heteroscedasticity (ARCH)
processes please refer to Engle (2002).
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Figure 4.5
Encoding of Risk Prediction Error in Cortical Areas.
(A) Neural Responses Related to Risk Prediction Errors.
Region showing activation as of display of the first and of the second card (in orange) is identified as
the bilateral anterior insula (left insula, right insula appears circled; displayed in coronal format).
(B) Mean Activation Stratified by Level of Risk Prediction Error.
Activation in right anterior insula increases linearly with the level of risk prediction error upon display
of the first card (in red) and of the second card (in blue). The average activation at zero risk prediction
error constitutes an outlier, referring to trials when no risk remained after the first card. Vertical bars
indicate 95% confidence intervals (df=degrees of freedom) and the dashed line indicates the best
linear fit.
Source: Preuschoff, Quartz, and Bossaerts (2008).

Preuschoff et al.’s (2008) findings indicate activation in bilateral anterior insula
correlating with both risk prediction and risk prediction error. This spatial separation
is highlited in Figure 4.6 in three cross-sections of the human brain (top panel)
through the insular cortex, whereby the risk prediction error signals (in orange) are
detected in an area slightly more inferior and posterior than risk prediction signals
(in blue).

Corroborating evidence not only on the spatial but also on the temporal differ-
entiation of the signals reflecting risk prediction and risk prediction error in bilateral
anterior insula comes from the paper by Preuschoff et al. (2008). The authors alle-
gorize the two signals of risk prediction and risk prediction error as of showing a late
onset followed by a fast onset signal at the time of the outcome, respectively. Figure
4.6 (bottom panel) depicts the time courses for activation in right anterior insula at
the first card. Risk prediction between placing the bet and seeing the first card is
constant across all trials and subjects. However, the risk prediction error at the first
card emerges instantaneously after the first card appears (in the bottom right panel,
displaying an U-shaped pattern). In contrast, activation correlating with the risk
prediction preceding the second card emerges with an approximate delay of five sec-
onds after the first card (in the bottom left panel, displaying an inversely U-shaped
pattern).
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Figure 4.6
Encoding of Risk Prediction and of Risk Prediction Error in Cortical Areas.
(Top) Neural Responses Related to Risk Prediction and to Risk Prediction Errors.
Bilateral anterior insula (left insula, right insula) activation correlates with risk prediction (in blue) as
well as with risk prediction error (in orange). Risk prediction error signals are reported in an area slightly
more inferior and posterior than risk prediction signals. The orange and blue clusters both picture positive
correlations in anterior insular cortex.
(Bottom) Temporal Patterns for Representations of Risk Prediction and of Risk Prediction Error.
Averaged adjusted time courses in right insula showing different temporal patterns at the first card.
Before the first card is seen, risk prediction is constant across all trials independent of the probability of
winning after the first card. The risk prediction error at the first card is a function of the first card and
the subject’s bet. It is pictured in the time course immediately after the first card is shown (bottom right
panel). Before the second card is seen, the risk prediction is pictured in the time course after the first
card but only after a short delay (bottom left panel).
Source: Preuschoff, Quartz, and Bossaerts (2008).

This paper by Preuschoff et al. (2008) has a profound impact on the understand-
ing of the exact role of the anterior insula in the processing of risk. As discussed
above, on the one hand, the neural response to risk prediction is delayed after the
risk cue (first card) and is remaining active at the time of the outcome, suggesting
that risk prediction may function as an anticipatory signal before risk is realized.
On the other hand, the authors observe that the neural response to risk prediction
errors is promptly present after risk is realized and is remaining active only for a
brief period, suggesting that risk prediction error may effectuate learning. As I will
elaborate on future challenges of Neurofinance in the concluding section of my thesis,
I will at this point merely suggest to put an emphasis on the clinical implications
of pathological inconsistencies, eventually considering psychiatric disorders in risk
prediction learning.
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4.3 Neural Representation of Expected Utility

Taken together, the perspective that evolves from the compelling contributions by
Preuschoff et al. (2006a) and Preuschoff et al. (2008) argues for the human brain
to value risky gambles by evaluating their expected reward and risk by means of
spatio-temporal separation (see Figures 4.3, 4.4 and Figure 4.6). Before we further
advance our understanding of the neural coding of basic decision parameters, a next
step is to consider the presence of total valuation signals functioning as the common
denominator between the separate evaluation signals, and then put the findings into
the larger perspective (for a study in a similar vein, see Bruguier et al., 2008).

In this vein, Tobler et al. (2007b) take cognizance of valuation signals in the
context of gambles in prefrontal cortex. Their study points to a distinct role of the
lateral part of the prefrontal cortex, because it appears to not solely be separately
sensitive to the two main components of expected utility, namely expected reward
and risk, but also sensitive to subjective attitudes towards risk (see Tobler et al. 2009
as a fruitful extension of Tobler et al. 2007b).

Figure 4.7
Encoding of Expected Utility in Cortical Areas.
(A) Neural Responses Related to Expected Utility.
Lateral orbitofrontal cortex (in yellow, circled) activation correlates with expected utility of a gamble.
(B to E) Activation in the Orbitofrontal Cortex as a Function of Expected Reward and Reward
Variance Stratified by Individual Risk Attitude.
Activation increases in expected reward for both risk averse (in (B)) and risk seeking subjects (in (C)).
Activation decreases with risk of the gamble (measured as reward variance) for risk averse subjects in
(D) while it increases with risk for risk seeking subjects in (E).
Source: Tobler, O’Doherty, Dolan, and Schultz (2007b).

Figure 4.7A locates the common neural signals correlating with expected utility of
a gamble in lateral orbitofrontal cortex (activation is located above the left orbita in
the bottom right corner and is circled in yellow for better visualization). Integrated
expected utility signals show increased activation in lateral orbitofrontal cortex in ex-
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pected reward irrespective of individuals’ risk attitude (Figure 4.7B and C). However,
activations in the same voxels decrease with risk (variance) in risk-averse subjects
(Figure 4.7D) but increase with risk in risk seekers (Figure 4.7E).

4.4 Neural Representation of Ambiguity

The results in this fourth chapter of the thesis suggest that distinct risk signals for
monetary rewards with different time courses occur in separate human brain struc-
tures, thus fulfilling the requirements for the mean variance concept in financial
decision theory. Upon further examination of the neural processing of key decision
variables and the brain mechanisms underlying the computation of choices under un-
certainty, the evidence exemplifies that in some choices, such as in weather forecasts
for distant tourist destinations or betting in games whose rules are not perspicuous,
probabilities are based on meager or conflicting evidence, where vital information is
absent (Schultz et al., 2008). At the other extreme, such as in gambling on a roulette
wheel, probability can be confidently judged from relative frequencies, event histo-
ries, or an accepted theory (Hsu et al., 2005). These two forms of uncertain events
are called ambiguous and risky, respectively. Ambiguity refers to situations of un-
certainty in which the probabilities of outcome are incompletely known, as opposed
to risk where probabilities are known (Ellsberg, 1961).6

The impetus of the standard decision theory, however, rests on the notion that
the preclusion of agents from acting differently in the face of pure risk and ambiguity
emerges from the availability of a constant level of information about probabilities
to the decision maker. Nevertheless, in the literature various empirical papers can
be found that find evidence for individuals’ aversion to ambiguity (see, for example,
Camerer and Weber, 1992). The connection of the revelation of ambiguity aversion
in choices with the identification of neural ambiguity signals is illuminating in light of
findings of amygdala and of striatal activation in Hsu et al. (2005). By contrasting
choices between certain and uncertain monetary outcomes involving three experi-
mental treatments in which the uncertain option dissociates between ambiguity and
risk based on different amounts of information, the authors observe two forms of
neural distinction between ambiguity and risk.

On the one hand, Hsu et al.’s (2005) findings suggest graded coding of uncertainty
in amygdala and in parts of frontocortical circuits (e.g., dorsomedial prefrontal cor-
tex), which may reflect a unified neural treatment of ambiguity (i.e., unknown or

6 The primary model existing that accounts for decisions under ambiguity is the maxmin expected
utility model by Gilboa and Schmeidler (1989) and subsequently, the “α-maxmin” expected utility
model by Ghirardato et al. (2004).
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partially known probabilities, higher signal) and risk (i.e., fully known probabili-
ties, lower signal). Figures 4.8A and 4.8B show two cross-sections of the human
brain, namely through the (bilateral) amygdala in (A), and through the (bilateral)
orbitofrontal cortex in (B) (both are displayed in coronal format) – with these brain
structures exhibiting stronger responses during the ambiguous condition relative to
the risk condition. Importantly, as depicted in Figure 4.8C, the hemodynamic re-
sponses of the respective (sub-)cortical regions are synched to the onset of the sti-
mulus, with the activations in bilateral amygdala (top panel) and in the orbitofrontal
cortex (bottom panel) occuring at the beginning of the trial, and peaking before the
decision epoch.

Figure 4.8
Encoding of Ambiguity in Subcortical and Cortical Areas.
(A and B) Neural Responses Related to Ambiguity.
Bilateral amygdala (Amyg; left amygdala, right amygdala extending into the parahippocampal gyrus, in
yellow, circled in red; displayed in coronal format in (A)) and bilateral orbitofrontal cortex (LOFC; left
orbitofrontal cortex, right orbitofrontal cortex, in yellow, circled in red; displayed in coronal format in
(B)) reveal greater activation in response to stimuli-predicting ambiguous outcomes than in response
to those outcomes involving pure risk.
(C) Temporal Patterns for Representations of Ambiguity.
Mean time courses of bilateral amygdala (top panel) and of bilateral orbitofrontal cortex (bottom panel)
responses to onset of stimuli-predicting ambiguous or risky outcomes (dashed vertical lines are mean
decision times; blue lines indicate average activation in trials with ambiguity; green lines indicate average
activation in trials with pure risk; error bars are standard error of the mean, SEM; n = 16 participants).
Source: Hsu, Bhatt, Adolphs, Tranel, and Camerer (2005).
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On the other hand, Hsu et al. (2005) were able to detect risk signals in dopaminocep-
tive areas such as dorsomedial striatum (caudate nucleus), precuneus and premotor
cortex exhibiting higher hemodynamic responses during risky compared with am-
biguous gambles. Furthermore, the striatal activations correlated positively with the
expected values of subjects’ actual choices, while inducing slower time courses with
significantly delayed peaks in comparison with the ambiguity signals in amygdala
and orbitofrontal cortex. Thus, the present results point to the presence of two
interacting neural circuits – a “vigilance”/evaluation circuit in the amygdala and
orbitofrontal cortex responding instantly to the stimuli and grading uncertainty, and
a reward anticipation circuit in the striatum that appears further downstream.

Taken together, striatum, parietal cortex, and parts of frontal cortex encode risk,
versus amygdala and more eminent frontocortical areas are uniquely demonstrated
to encode ambiguity distinctively, consistent with a scheme of dual dissociation (in
the context of learning under ambiguity, see Payzan Le Nestour, 2009). In effect,
corroborating the results from subsequent empirical research by Huettel et al. (2006),
Preuschoff et al. (2006a) and very recently by Asparouhova et al. (2009) and Bossaerts
et al. (2010) it is of severe relevance to point out the fact that a general neural circuit
seemingly evaluates qualitatively different degrees of uncertainty, which appears to
be incompatible with simplistic theories of decision making (Hsu et al., 2005).

4.5 Neural Representation of Emotions

The large body of research in neuroscience and psychology provides a wealth of infor-
mation about emotions as a major factor in the interaction between environmental
conditions and human decision processes. The Somatic Marker Hypothesis (Bechara
and Damasio, 2005) proposes that the process of decision making is influenced by
marker signals arising in bioregulatory processes, especially those underlying emo-
tions. A plethora of research highlights that in the absence of a somatic marker,
patients with focal lesions in specific components of neural circuitries that have been
shown to be critical for the processing of emotions take risks even when they result
in catastrophic losses.

Specifically, Bechara et al. (1997, 1999) find that impairment of the (ventromedial)
prefrontal cortex, of insula, and of amygdala preclude the ability to use somatic (i.e.,
emotional) signals that are necessary for advantageous decision making. However,
individuals deprived of normal emotional reactions may, under certain circumstances,
behave more efficiently than those not deprived of such reactions (see, for example,
Damasio, 1994 and Shiv et al., 2005).
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There is ample evidence of the necessity of emotional experience for reasoned
choice (Feng and Seasholes, 2005). Recent studies suggest an important link between
rationality in decision making and emotion, implying that the two notions are not
antithetical but, in fact, complimentary. In this strand of literature, most authors
emphasize the specific interaction between automatic emotional responses such as
fear and greed (i.e., responses mediated by the amygdala) which seem to trump
“higher-level” or more controlled responses (i.e., responses mediated by the prefrontal
cortex).

For example, Lo and Repin (2002) measure the real-time psychophysiological re-
sponses of ten securities traders during live trading sessions and observe that traders’
physiological reactions7 correlate with periods of market volatility. The authors also
hypothesize that less experienced traders exhibit a relevantly higher number of phys-
iological responses (i.e., in the number of skin conductance responses, blood vol-
ume pulse amplitude8, and in the number of body temperature increases) to market
volatility than traders with high experience. In this respect, their evidence provides
further corroboration of the somatic mediation of changes in cardiovascular variables
and in electrodermal activity. Or to put it in their words, “Contrary to the common
belief that emotions have no place in rational financial decision-making processes,
physiological variables associated with the autonomic nervous system exhibit signifi-
cant changes during market events even for highly experienced professional traders.”
(ibid, p. 332). In a study in the same vein, Lo et al. (2005) extend the findings of
Lo and Repin (2002) by showing that extreme emotional responses are counterpro-
ductive from the perspective of trading performance.

From the preceding discussion, it becomes obvious that emotions and reasoned
choice are interrelated. This means that studying the role of the endocrine system in
financial risk taking could provide valuable insights into the neural basis for rational
choice. This is exactly the novel path that the study by Coates and Herbert (2008)
takes and contributes to the literature. By taking saliva samples before and after
the bulk of the day’s trading from 17 male traders for 8 consecutive business days
on a trading floor in London, the authors analyze the levels of two steroids: testos-

7 At this point, I would like to emphasize that the vast majority of the studies of the neurobio-
logical basis of how emotions influence behavior was until Lo and Repin’s (2002) study confined
to methods measuring epiphenomenal physiological parameters such as the skin conductance
response.

8 The two cardiovascular variables measured in the study by Lo and Repin (2002) are blood volume
pulse and heart rate. The latter variable refers to the frequency of the contractions of the heart
muscle or myocardium, initiated by the pacemaker cells. Heart rate deceleration frequently results
in an increase in blood volume pulse, which is the rate of flow of blood through a particular blood
vessel and alludes to both blood pressure and the diameter of the vessel.
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terone and cortisol. Coates and Herbert (2008) find a significant relationship between
testosterone and financial return and between cortisol and financial uncertainty, the
latter being measured by the variance of economic return and the expected variance
of the market. These results point to an intriguing possibility – if the acutely elevated
steroids observed in the study were to persist or eventually increase as volatility rises,
they might have cognitive and behavioral consequences, especially by shifting risk
preferences and possibly altering a trader’s ability to make optimal decisions.

Consistent with the view that the insula is an arbitrative relay of the information
about bodily states (i.e., emotions) to the cortex, Critchley et al. (2004) find that
activation of the right anterior insula is uniquely correlated with subjective percep-
tion of heartbeat timing, which is a classic test of interoceptive awareness. These
results corroborate the hypothesis of Kuhnen and Knutson (2005) that anterior in-
sula activation precedes risk averse choices (such as buying insurance), while nucleus
accumbens activation precedes risk seeking (such as gambling at a casino) choices (for
a conceptual study on consumers’ purchasing decisions see, Knutson et al., 2007).

Inquiring whether the experience and anticipation of regret as a high-level emo-
tion has an impact on the process of choice, Coricelli et al. (2005) confirm the role
of the orbitofrontal cortex which seemingly integrates cognitive and emotional com-
ponents of decision making. Specifically, the activity of the regret circuitry is found
in situations where the experimental subjects know, prior to making a decision,
that they will get information about the outcomes of the rejected alternatives (i.e.,
complete feedback trials). The authors also report an increase of the proportion
of regret-avoiding choices over time with the cumulative effect of the experience of
regret.

As demonstrated in the second chapter of this thesis, the notable susceptibility
of human choices to the manner in which available options are presented, can be ex-
plained by the “framing effect”, which is a key aspect of Prospect Theory (Kahneman
and Tversky, 1979 and Tversky and Kahneman, 1981). In this vein, De Martino et al.
(2006) investigate the neurobiological basis of the framing effect and report increased
activation in the amygdala associated with subjects’ tendency to be risk seeking for
gambles involving losses but risk averse for gambles involving gains (as displayed
in Figure 4.9 in the left panel). Importantly, when subjects’ choices ran counter
to their general behavioral tendency, enhanced activation in the anterior cingulate
cortex (ACC) was identified (as depicted in Figure 4.9 in the right panel).
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Figure 4.9
Encoding of the Framing Effect in Subcortical and Cortical Areas.
(Left) Bilateral amygdala (Amyg) activation (left amygdala, right amygdala, in yellow, circled)
reflects subjects’ behavioral tendency to choose in accordance with the framing effect.
(Right) Anterior cingulate cortex (ACC) activation (in yellow, circled) reflects the decision to choose
counter to subjects’ general behavioral tendency.
Source: De Martino, Kumaran, Seymour, and Dolan (2006).

De Martino et al.’s (2006) findings indicate that the framing effect has a per-
vasive impact on amygdala activity, supporting an emerging role for the amygdala
in mediating decision biases. It is noteworthy that there appears to be an oppo-
nency between the anterior cingulate cortex9 and the amygdala, with the anterior
cingulate cortex being involved in “analytic” response tendencies (i.e., logically rea-
soned choice underlying slow response timing) and with the amygdala exhibiting
more “emotional” responses (i.e., intuitive choice signaling fast response patterns).

Furthermore, orbital and medial prefrontal cortex activation is shown to predict
the substantial intersubject variability in terms of behavioral susceptibility to the
framing effect (Figure 4.10A).10 Specifically, De Martino et al. (2006) calculate a
“rationality index” (i.e., level of sensitivity to the framing effect) for each subject
from the difference between the proportion of trials in which a given subject chose
the gamble option in the Loss frame, as compared to the Gain frame. This value is
then linearly transformed into an index, ranging from 0 (least rational) to 1 (most
rational).

These results reveal that across individuals, right orbitofrontal cortex activation
decreases with subjects’ tendency to become risk seeking for monetary losses (Figure
4.10B), i.e., more “rational” individuals exhibit greater activation in orbital and

9 The region around the paracingulate sulcus in the medial prefrontal cortex contains a large con-
centration of spindle cells – large projection neurons shaped like spindles, which are almost unique
to human brains (Allman et al., 2001).

10 For a discussion on the involvement of the paracingulate cortex in the encoding of an “influence
update” see, Hampton et al. (2008).
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medial prefrontal cortex, having a more refined representation of their own emotional
biases. This is a conceptual advance, because amygdala activation seems to reflect
these emotional biases imposed by some kind of “default action” deeply ingrained
in organisms trying to maximize the probability of survival in the face of adverse
events.11

Figure 4.10
Encoding of the Framing Effect in Cortical Areas.
(A) Neural Responses Related to the Framing Effect.
Interaction contrast in ventromedial prefrontal cortex activation (in yellow, circled in left panel),
and in orbital and medial prefrontal cortex and in right orbitofrontal cortex (R-OFC) activation (in
yellow, circled in right panel) significantly correlates with subjects’ rationality index (i.e., between-
subjects measure of susceptibility to the framing manipulation).
(B) Plot of the Correlation of Parameter Estimates for Right Orbitofrontal Cortex with the
Rationality Index for Each Subject.
Interaction contrast increases in right orbitofrontal cortex (R-OFC) with the rationality index for
each subject.
Source: De Martino, Kumaran, Seymour, and Dolan (2006).

In contrast, the orbitofrontal cortex seems to evaluate and integrate emotional
and cognitive information – more generally, it is engaged in “high-level” cognitive
functions, overriding the initial emotional reactions or “default actions” as for exam-
ple when such choices might lead to suboptimal decisions.12

Contrary to previous findings (see, for example, Sanfey et al., 2003), the necessity
of amygdala and of anterior insula activation in the context of loss aversion is not
corroborated. In a remarkable task contrasting neural loss aversion and behavioral
loss aversion, Tom et al. (2007) link ventral striatal and ventromedial prefrontal
cortical activation to loss aversion.

11 In this vein, the short commentary by Kahneman and Frederick (2007) sheds light on the psy-
chological propositions of De Martino et al.’s (2006) study.

12 Similarly to the arguments on differences in prefrontal cortex and amygdala interactions in the
course of genetic variation, see Roiser et al. (2009).



CHAPTER 5

Conclusion and Future Directions

“[I]f you feel you are on the cusp of disaster, you will tend to want to take
more risk ... Pilots are trained (very often actually) to ignore their own
cognitive input when they are for instance flying through the clouds, be-
cause the brain is not made for flying through the clouds. They actually
need instruments and they know beforehand, that they cannot possibly
rely on their own senses.”

Peter Bossaerts
Interview with Private Banking Innovation (2008)

Uncertainty is endemic in human decision making, peculiarly, in contemplation of
financial risks. Thus, characterized retrospectively through the lens of evolutionary
biology, financial risks are a novel phenomenon. This thesis tries to advocate consid-
eration of the neurophysiological antecedents of risk perception and eventually of the
neural correlates of underlying choice parameters by cataloguing canonical findings
in the aspiring frontier of neurofinance.

The second chapter focuses on the basic tenets of neurofinance by introducing and
contrasting two models attempting to characterize choice, namely expected utility
theory with prospect theory. It finds tentative support for the latter theory in the
sense that the preferences of people are not entirely reflected in their choices, to wit,
humans are prone to psychological biases and decision heuristics.

The third chapter sheds light on the neuroanatomical and neurochemical bases
of reward and decision making processes which have hitherto been given scant atten-
tion in the literature. Importantly, this chapter provides prima facie evidence that
the prefrontal cortical areas which are known to serve as the substrate for higher
cognitive functions, are inherently constrained through phylogenetic differentiation.
The second part of this chapter reveals that the neurotransmitter dopamine is an
integral component of reinforcement learning, belief formation, and choice within the
human and nonhuman brain.
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The last chapter of this thesis raises the seminal question of how the human
cerebrum computes choices. Eminently, this chapter integrates an extensive debate
of recent neuroeconomic work on the basis of the expected utility approach and on
the basis of the mean-variance approach to educing choice under uncertainty. In our
analysis of neurobiological studies of cortical and subcortical activation we coherently
confirm the presence of valuation signals in the orbitofrontal cortex. However, we
cannot corroborate the neural contemplation of either model in the computation
of values. Pivotally, it is not a foregone conclusion that the models are neurally
represented mutually exclusive of one another.

In a miscellaneous vein, the body of the fourth chapter of this thesis builds on
prior findings of in vivo lesion localization studies. It is particularly striking that
in a prolonged preponderance of probands enrolled in clinical trials, the cingulate
cortex and the amygdaloid nuclei – which are prominent parts of the “limbic sys-
tem” – occupy an integral role in reasoned decision making. In a nutshell, ample
research has provided decisive evidence that adaptation – fostered by the impact of
emotions – is a rigorous feature of neural activity. Our main insight is that affect
can influence financial decisions without coercion, therefore, emotions (e.g., anxiety
and excitement) and rationality are not to be placed in mutual opposition.

Much has happened in the conversation between economics and neuroscience
over the past five years. Professor Peter Bossaerts and his colleagues have been
instrumental in the establishment of neurofinance to come to the conclusion that
financial decision making at its coarsest level can be understood, not as a matter of
implementing existing preferences, but rather as the resolution of interaction between
multiple comprehensively complex neural systems. In light of this fact, it is a welcome
challenge for me to describe current research perspectives in but a few sentences.

Kuhnen and Chiao (2009) and Cesarini et al. (2009) have made considerable
headway in the endeavor of addressing the genetic determinants of financial risk
taking. Kuhnen and Knutson (2009) confirm that emotions modify risk preferences,
as well as the learning process itself. This is akin to a quest for adding a greater
impetus on the effect of aging and financial choice. Preliminary evidence by Samanez-
Larkin et al. (2010) suggests that aging may disrupt rational financial choice. To
conclude, human (sub-)cortical networks may vastly be “maladaptive” for today’s
financial markets (for example, see, Biais et al., 2010 and Bruguier et al., 2010).
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Deutscher Abstract

Diese Diplomarbeit beschäftigt sich mit den neuronalen Korrelaten von Investoren-
entscheidungen (“Neurofinance”). Die prägnante Erkenntnis, daß finanzielle Entschei-
dungen mit Unsicherheiten verknüpft sind, dient als Ausgangsthese des ersten Kapi-
tels dieser Arbeit. Es enthält zunächst eine Vorstellung und anschließend eine syn-
optische Gegenüberstellung der Erwartungsnutzentheorie und der Prospect Theorie.
Weiters werden systematische Verzerrungen im menschlichen Entscheidungsverhal-
ten ausführlich betrachtet.

Das zweite Kapitel behandelt die funktionelle Anatomie des Cerebrum, der Schwer-
punkt der Untersuchung liegt aber in der Darstellung der dopaminergen Inner-
vation des Mittelhirns. Essentiell ist nicht zuletzt aufgrund der extremen Kom-
plexität (sub-)kortikaler Strukturen die Abgrenzung des frontalen Assoziationskortex
gegenüber anderen neuronalen Strukturen. Insbesondere gilt festzuhalten, daß der
dorsale und laterale frontale Assoziationskortex – dem strategische Vorgehensweisen
zugeschrieben werden – zu den phylogenetisch jüngsten Hirnregionen zählen.

Das letzte Kapitel dieser Arbeit beschäftigt sich mit der Wahrnehmung von
Risiken und Belohnungen im Kontext finanzieller Entscheidungen. Es werden jüngere
Studien mit funktionellen bildgebenden Verfahren vorgestellt, die einerseits auf der
Erwartungsnutzentheorie, und andererseits auf dem Erwartungswert-Varianz-Prinzip
aufbauend, sich mit der Lokalisierung von neuronalen Korrelaten dieser Modelle be-
fassen. Die Forschungsergebnisse bestätigen nicht exklusiv das Vorhandensein der
spatio-temporalen Separation in der Wahrnehmung von Risiken und Belohnungen,
vielmehr zeigen sie, daß es sich um eine entweder/oder Abbildung handelt. Im
zweiten Teil des dritten Kapitels wird, basierend auf neuropsychologischen Unter-
suchungen von Patienten mit selektiven bilateralen Läsionen die eine differenzierte
Erregung der Amygdala und des orbitofrontalen Kortex feststellen, gezeigt, daß emo-
tionale Variablen bei der rationalen Entscheidungsfindung unverzichtbar sind.

Evolutionsbiologisch determiniert ist, daß die subkortikale Amygdala – die eine
entscheidende Rolle bei Gedächtnisprozessen mit affektiver Konnotation spielt – eine
unmittelbare, präkognitive Einschätzung eines Stimulus auf seine emotionale Rele-
vanz vornimmt, um zur Aktivierung instinktiver Reaktionsprogramme beizutragen.
Daher kann abschließend festgestellt werden, daß obwohl rationale Entscheidungen
ohne Affekt-Unterstützung nicht adäquat darzustellen sind, die amygdaloide Ak-
tivierung unter Umständen einen divergenten Ansatz der Maladaption in Bezug auf
rationale Investorenentscheidungen zu verfolgen scheint.
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