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Abstract

This thesis studies and derives a general 3 + 1 formalism in the context of
the initial value formulation of electromagnetism and ideal hydrodynamics
in curved spacetime: From a strictly mathematical point of view it is intere-
sting to consider a general slicing of spacetime instead of a regular foliation
[13]. Whilst a foliation of spacetime requires that its leaves, labelled ϕt(Σ),
do not intersect and that their disjoint union covers the entire manifold M ,
in a general slicing the intersection of individual hypersurfaces is allowed and
M does not necessarily have to be covered completely. This implies that the
lapse function N can take any value and does not have to be constrained
to strictly positive values. One of the crucial consequences is that a natural
tensor field like the unit normal vector field n is no longer defined on the
spacetime manifold anymore, but only along the family of embeddings. In
more fancy words, the unit normal is not anymore a section of the tangent
bundle T M over M , but only a section of the pullback bundle of T M under
the map R× Σ 3 (t, y)× Σ 7→ p = ϕt(y) ∈ M . Consequently one has to be
far more careful when deriving the time evolution equations of geometrical
and/or physical objects. Nonetheless, we develop a general concept such,
that meaningful interpretations of conceptually difficult expressions can be
given.

After a detailed explanation of the differential geometric framework, we
derive the 3 + 1 formulation of Maxwell’s theory of electromagnetism and of
an ideal fluid in full detail. These two models are the two main ingredients
of the most relevant model in Astrophysics, namely of magnetohydrodyna-
mics. Therefore they are essential for the description of astrophysical objects
like stars, accretion disks etc. [12]. Concerning the model of a perfect fluid,
we derive the evolution equations for the standard Eulerian and the Taub
formulations.

Afterwards, we apply the 3 + 1 splitting to Einstein’s field equations of
General Relativity and therefore obtain the well-established evolution and
constraint equations, the ADM-equations.

We present the derivation of the 3+1 evolution equations of special mat-
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ter models in a completely general setting and do not impose any restrictions
on lapse and shift. Furthermore, the usage of Riemannian neighbourhoods
in the spacetime manifold M can be avoided completely and therefore the
derivation is done in full generality. Although the existence of solutions in
the case of a vanishing lapse has not been proven yet, these more general
time evolution schemes for certain dynamical systems in curved spacetime
are interesting for specific slicings, e.g., CMC-slicings in cosmology [4, 5]
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Zusammenfassung

Diese Diplomarbeit leitet einen allgemeinen 3 + 1 Formalismus im Zusam-
menhang mit der Anfangswertproblem-Formulierung des Elektromagnetis-
mus und der idealen Hydrodynamik in einer gekrümmten Raumzeit her und
studiert diesen im Detail: Von einem rein mathematischen Standpunkt aus
ist es sehr interessant ein so genanntes Slicing an Stelle einer Foliation zu be-
trachten [13]. Während die einzelnen Blätter einer Foliation einander nicht
schneiden dürfen und daher als disjunkte Vereinigung die gesamte Raumzeit-
Mannigfaltigkeit überdecken, sind Schnitte bei der Betrachtung eines Sli-
cings gestattet. Mathematisch drückt sich dies dadurch aus, dass die bei-
den kinematischen Größen lapse N und shift β beliebige Werte annehmen
können. Insbesondere kann der lapse daher auch verschwinden. Eine bedeu-
tende Konsequenz dieses allgemeinen Rahmens ist, dass natürliche Tensor-
felder wie z.B. das Einheitsnormalenvektorfeld n nicht mehr länger auf der
Raumzeit selbst definiert sind, sondern nur noch entlang der gegebenen Fa-
milie von Einbettungen. Mathematisch bedeutet dies, dass n kein Schnitt
des Tangentialbündels T M von M ist, sondern ein Schnitt des Pullback-
Bündels von T M unter der Abbildung R×Σ 3 (t, y)×Σ 7→ p = ϕt(y) ∈M .
Folglich ist bei der Herleitung der Zeitentwicklungsgleichungen physikali-
scher und/oder geometrischer Größen erhöhte Sorgfalt geboten. Wir ent-
wickeln hier ein allgemeines Konzept, sodass konzeptuell schwierige Begriffe
sinnvoll interpretiert werden können.

Nach einer detaillierten Erklärung des geometrischen Rahmens wird die
Anfangswertproblem-Formulierung des Elektromagnetismus und der idealen
Hydrodynamik hergeleitet. Diese beiden Modelle zusammen sind die beiden
Hauptbestandteile des in der Astrophysik am häufigsten verwendeten Mate-
riemodells: der Magnetohydrodynamik [12]. Wir betrachten das Modell des
idealen Fluids in seinen zwei gängigsten Varianten, nämlich in der üblichen
Euler-Formulierung und der sogenannten Taub-Formulierung.

Im Anschluss daran wenden wir den 3 + 1 Formalismus direkt auf die
Einsteinschen Feldgleichungen der Allgemeinen Relativittstheorie an und er-
halten so die 3+1 Entwicklungsgleichungen, so wie die Zwangsbedingungen,
die zusammen als ADM-Gleichungen bekannt sind.
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Wir leiten die 3 + 1 Entwicklungsgleichungen spezieller Materiemodelle
in einem vollkommen allgemeinen Rahmen her und unterwerfen lapse und
shift keinen Zwangsbedingungen. Zusätzlich verzichten wir auf die Verwen-
dung Riemannscher Normalumgebungen. Daher erfolgt die Herleitung in
absoluter Allgemeinheit und ohne Einschränkungen. Obwohl die Existenz
von Lösungen im Fall eines verschwindenden lapse nicht bekannt ist, ist
diese allgemeine Formulierung bei der Betrachtung bestimmter Slicings von
Interesse [4, 5].
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Chapter 1

Introduction

Specific, simplifying models are used to describe baryonic matter distribu-
tions in the entire universe. Considering well-known astrophysical scenarios
like the formation of accretion disks around black holes, it is natural to ask
about the dynamics of such a lump of matter in the neighbourhood of a
given strong gravitational field. In short, we ask how the dynamic of matter
evolves in a given curved background.

It is well-known from classical physics, that the dynamics and thus the
evolution of a physical system is governed by differential equations. In the
context of classical physics, e.g. mechanics, these equations are ordinary dif-
ferential equations (ODE), whereas Einstein’s equations as well as all other
field equations are partial differential equations (PDE).

In order to illustrate how something abstract like a differential equation
can completely describe the motion of a system, let us assume a simple
mechanical problem: consider a stone being thrown upwards in the Earth’s
Newtonian gravitational field. Then, one knows already from an undergrad-
uate course in mechanics, that its motion can be determined completely, if
the initial position and the initial velocity of the stone are given. Hence, if
the initial values are known and well-posed, the problem possesses a unique
solution. Although “only” an ODE has to be considered, this example should
provide an easy understandable analog to the far more complex case of mat-
ter in a given spacetime. In order to state something about the dynamical
evolution of matter in curved spacetime, it thus is important to reformu-
late the dynamical equations as an initial value problem. The so-called
3 + 1 formalism is one method that allows one to pose field equations in
such a way. For this purpose, the 4-dimensional spacetime manifold is split
into 3-dimensional hypersurfaces representing “space”, and “time”. This
decomposition into space and time admits one to manipulate time-varying
quantities in the ordinary 3-dimensional space. The time evolution we are

1



interested in is then given by propagation of initial data, i.e. appropriate
data given at the time t = 0, along the time direction.

The 3 + 1 formalism was originally developed by André Lichnerowicz
in the 1940’s [29, 30, 31] and his PhD student Yvonne Choquet-Bruhat in
their studies of the initial value formulation of General Relativity itself. In
1952, Choquet-Bruhat proved the existence of a locally unique solution of
the Cauchy problem arising from the 3 + 1 decomposition [17, 18]. In the
1950’s and 60’s Dirac, Wheeler, as well as Arnowitt, Deser, Misner (ADM)
and others further developed the 3+1 splits as part of their efforts to estab-
lish a Hamiltonian formulation of General Relativity. It was this so-called
ADM-formulation that lay the foundation for a canonical quantisation of
the gravitational field.

Since the 1970’s the full ADM 3 + 1 formalism has become the basic
tool in Numerical Relativity. James W. York developed a general method
to solve the initial value problem and put the governing equations in the
shape commonly used by the Numerical Relativity community. Nowadays,
most numerical codes for solving Einstein’s equations are based on the 3 + 1
formalism.

The subject of this thesis is to deduce the 3+1 formulation of electromag-
netism and ideal hydrodynamics in curved spacetime in the mathematically
most general way. Thus, we allow arbitrary lapse and shift and do not
impose any constraints on them. Therefore, we shall start with a detailed
explanation of the geometrical framework, which we then apply to certain
field theories in order to gain valid initial value formulations.

Chapter 2 is dedicated to the geometry of a single hypersurface being
embedded into the 4-dimensional spacetime manifold and its evolution due
to the consideration of a family of embeddings generated by a local vector
field. The relevant kinematic quantities like lapse N and shift β are in-
troduced in this chapter. The two subsequent chapters then deal with the
3 + 1 decomposition of the electromagnetic field equations and the Euler
equations governing the dynamics of a perfect fluid. We have chosen these
two models since their combination yields the most astrophysically relevant
model, namely ideal magnetohydrodynamics. Furthermore, we present the
3+1 splitting of Taub’s formulation of general relativistic hydrodynamics. In
Chapter 5 the explicit decomposition of the Einstein field equations, where
the Cauchy problem with constraints originates from, is done. We will see
that the essential dynamical variables are the spatial metric h and the ex-
trinsic curvature K. The last section of this chapter gives a brief overview
of the nature of the initial value formulation of General Relativity, mention-
ing the crucial theorems and concepts to obtain well-posedness. Chapter 6
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gives a brief summary of the results we have obtained and Chapter 7 con-
tains some final, concluding remarks.

In order to not disturb the logical structure of this work, useful tools,
mathematical concepts and alternative, cumbersome derivations are not
present throughout the chapters but can be found in the appendices at the
end of the thesis. For this purpose, Appendix A summarises the essential
concept of the Lie dragging and Lie derivative. Appendix B obtains the time
derivative of the normal vector field n in the context of a general slicing,
which is of crucial relevance. Appendix C contains a conceptually elegant
but elaborate derivation of the evolution equations of the extrinsic curva-
ture. Since certain projections of the geometric quantity describing matter
in a full general relativistic context, the stress-energy tensor, are required,
Appendix D is dedicated to the general 3 + 1 decomposition of it.

1.1 Notation and Conventions

Unfortunately, there exists no standard notation or sign convention within
the General Relativity community. Thus, it is worth briefly mentioning the
conventions used here.

When talking about a Lorentzian manifold, we always refer to a 4-
dimensional spacetime of signature sign(−,+,+,+), unless otherwise de-
noted. Spacetime coordinates are labelled by greek letters which run from
0 to 3, while purely spatial coordinates will be assigned by latin indices and
thus only run from 1 to 3.

Furthermore, we use Einstein’s convention of summation throughout the
whole thesis. Thus, wherever two equal indices, one covariant the other con-
travariant, appear a summation is performed.

We also use so-called geometric units, where the speed of light c as well
as the gravitational constant G are set to unity. In the context of general
relativistic hydrodynamics, we also consider the Boltzmann constant kB to
be of dimension one.
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Chapter 2

Hypersurfaces

As the notion of hypersurfaces is crucial to understand the 3+1 formalism of
General Relativity, we dedicate the entire chapter to them. We focus on the
geometric and kinematic properties of single hypersurfaces, thus everything
discussed here is completely independent of the Einstein field equations.

We follow the structure and representation of Éric Gourgoulhon’s notes
[20] although there are essential differences concerning the differential ge-
ometric frame and the notation. If the reader is interested in a further
mathematical presentation, we refer to O’Neill’s book on semi-Riemannian
geometry [33].

2.1 Lorentzian Spacetime

As we are interested in physically relevant models of 4-dimensional space-
times, we consider a smooth (C∞) Lorentzian manifold M . These types of
manifolds (M, g) are characterised by a non-degenerate metric g of signature
sign = (−,+,+,+). Furthermore, we assume that (M, g) is time orientable
and torsion free. The unambiguous affine connection of our spacetime, the
Levi-Civita connection, is denoted by ∇. Note that this symbol refers to
the spacetime connection only. Other connections introduced later are
denoted by a different symbol in order to avoid any possible confusions.

Consider a given point p ∈M . The tangent space of M at this point p
is symbolised by Tp(M). It is the space of all vectors tangent to M at p. Its
dual, the cotangent space of M at p, is denoted by T ∗p (M) and consists of
all linear forms at p. In general, a covariant tensor over a vector space can be
viewed as a multilinear map of this vector space into the real numbers R [36].

Remark: We do not use abstract index notation [42] but we use index nota-
tion in order to handle calculations explicitly. Therefore, let us recall how
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the components Tµ1...µpν1...νq of a type (p, q) tensor T are given w.r.t. the
bases (eµ) and (eν):

T = Tµ1...µpν1...νqeµ1 ⊗ ...⊗ eµp ⊗ eν1 ⊗ ...⊗ eνq . (2.1)

One of the most important operations is the covariant derivative ∇ of a
tensor field T. Its components are defined by:

∇T = ∇σTµ1...µpν1...νqeµ1 ⊗ ...⊗ eµp ⊗ eν1 ⊗ ...⊗ eνq ⊗ eσ. (2.2)

As a very useful result, the covariant derivative of a tensor T along a vector
field v is related to ∇T by:

∇vT = vσ∇σTµ1...µpν1...νqeµ1 ⊗ ...⊗ eµp ⊗ eν1 ⊗ ...⊗ eνq . (2.3)

Its components are then vσ∇σTµ1...µpν1...νq .

As already noted before, a spacetime manifold is mainly described by its
metric g, which is a symmetric bilinear form g : Tp(M) × Tp(M) 7→ R
such, that ∀v,w ∈ Tp(M) g(u,w) = gµνu

µwν . This denotes the scalar
product between two vectors and is often written as the dot product u ·w.

Aside from this, the metric g induces an isomorphism between Tp(M) and
T ∗p (M), which corresponds to the raising and the lowering of indices by
applying either gµν or the inverse metric gµν , defined such that

gαµg
αν = δ ν

µ , (2.4)

where δ ν
µ denotes the standard Kronecker symbol. Thus, vectors can be

transformed into 1-forms and vice versa. Such an operation is called a met-
ric contraction. Contraction itself is another important basic operation
in differential geometry. Consider, for instance, a second rank covariant
tensor Aµν and a vector vν , then the contraction of A with v is given by
Aµνv

ν = aµ ∈ T ∗p (M) in index notation.

One of the crucial facts in General Relativity compared to Special Rela-
tivity or Newtonian physics is, that the spacetime manifold one operates on,
is not flat anymore but curved due to existing gravitational fields. Hence,
the existence of gravity is encoded in the geometry of spacetime. Far away
from gravitational field sources, spacetime becomes Minkowskian, i.e. flat
as known from Special Relativity, but close to stars for example, spacetime
is curved. The differential geometrical object to describe the spacetime cur-
vature is the Riemann curvature tensor 4R, which is defined as follows:

Definition 1 Let M be a semi-Riemannian manifold with Levi-Civita con-
nection ∇. The map 4R : X (M)3 →X (M), 4RXY Z = ∇[X,Y ]Z−[∇X ,∇Y ]Z
∀X,Y, Z ∈ X (M), is a (1, 3)-tensor field, the so-called Riemann curva-
ture tensor 4R of (M,∇), where X (M) denotes the set of smooth vector
fields over M and [., .] the standard Lie bracket of vector fields.
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As before, the components of this tensor field in a given basis (eα) are
denoted by 4Rµνγσ. Since 4R is a tensor field, single tangential vectors can
be used instead of vector fields: x, y ∈ Tp(M) 4Rxy : Tp(M)→ Tp(M) such,
that z 7→ 4Rxyz. The above definition of the curvature tensor then yields an
important identity, the Ricci identity:

∀v ∈ Tp(M), (∇µ∇ν −∇ν∇µ)vσ = 4Rσρµνv
ρ. (2.5)

Many textbooks refer to Eq.(2.5) as the defining equation for the curvature
tensor. Notice from Definition (1), that the Riemann curvature tensor is
symmetric on the exchange of the two pairs of indices, whereas it is anti-
symmetric on the exchange of the indices within a pair. Additionally, it
satisfies the cyclic property, often called the first Bianchi identity:

4Rxyz + 4Ryzx+ 4Rzxy = 0. (2.6)

Contraction of the Riemann tensor leads to another essential geometric ob-
ject: the Ricci tensor.

Definition 2 Let 4R be the Riemann curvature tensor of a semi-Riemannian
manifold M . The Ricci tensor 4Ric of M is the (1, 3) contraction of 4R.
In local coordinates this is denoted by:

4Rµν = 4Rσµσν . (2.7)

Remark : We use here the common notation for the Riemann and the Ricci
tensor. Both tensors are indicated by the letter R, but the number of indices
allows to distinguish between the two tensors unambiguously.

Finally, we are now able to define the scalar curvature of a manifold,
which is the characterising scalar quantity of gravity in the context of Gen-
eral Relativity:

Definition 3 The scalar curvature 4R, sometimes also called the Ricci
curvature, of a Lorentzian manifold M is the metric contraction of its Ricci
tensor. In local coordinates this writes as

4R = gµν4Rµν = tr(4Rµν) = 4Rµµ. (2.8)

2.2 Submanifolds

Since we have described the most important properties of Lorentzian mani-
folds in Sec. 2.1, we now focus on submanifolds in this passage.

Definition 4 A submanifold N of a manifold M is a subset which itself
has the structure of a manifold and for which the inclusion map satisfies
certain properties.
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In the following we consider a Lorentzian spacetime (M, g,∇), a submanifold
N and an inclusion map ϕ : N ↪→ M such, that N ⊆ M . If N additionally
is a topological subspace in M , i.e. if the natural topology of N is the trace
topology of M , N is called a regular submanifold. The map ϕ induces a
scalar product h = ϕ∗g on N , where ϕ∗ denotes the pullback (see Definition
8 below) of the spacetime metric g under the inclusion map ϕ. If the induced
metric h has Euclidean signature, the submanifold is called Riemannian or
spacelike.

Definition 5 Let ϕ : N → M C∞. ϕ is called an immersion, iff the
tangential map Tpϕ is injective ∀p ∈ N . Equally, ϕ is said to be an
immersion iff rank(ϕ) = dim(M).

Definition 6 Let ϕ : N → M C∞. ϕ is called a topological embedding,
if ϕ is a homeomorphism1 from N onto its image ϕ(N) ⊆ M . In other
words, N is diffeomorphic to its image ϕ(N).

Definition 7 A smooth embedding is an injective immersion, which is a
topological embedding in the sense of Definition 6.

Remark : Commonly a smooth embedding is used to specify the inclusion
map. But notice that ∀p ∈ N an immersion ϕ is a local embedding, i.e.∀p ∈ N
there exists a neighbourhood U ⊆ N of p such that ϕ : U → M is an em-
bedding. Conversely, a local embedding is always an immersion.

Due to an inclusion map we are now able to determine the geometric struc-
ture of the abstract manifold N . Therefore, we need operations which allow
us to relate geometric objects defined on M to objects defined on N . The
essential operation yielding the claimed connection between N and M is the
pullback.

Definition 8 Let ϕ : N → M C∞.The pullback of any covariant tensor
field α of rank k in the tensor space over M by ϕ is defined as:

ϕ∗α(p) = (Tpϕ)∗ ◦ α ◦ ϕ(p). (2.9)

For x1, ..., xk ∈ Tp(N) this writes in local coordinates:

ϕ∗α(p)(x1, ..., xk) = α(ϕ(p))(Tp(x1), ..., Tp(xk)). (2.10)

Remark : Notice that if ϕ is a diffeomorphism the pullback map possess an
inverse which is called the pushforward. It that case it turns out that ϕ∗

is a linear isomorphism and (ϕ∗)−1 = (ϕ−1)∗.

1A homeomorphism between two topological spaces is a continuous function with a
continuous inverse.
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One of the most essential pullback operations is that of the spacetime metric
g, which defines the induced metric h on the submanifold N :

h := ϕ∗g. (2.11)

In local coordinates this writes as hij = ϕµ,iϕ
ν
,jgµν . h is also called the

first fundamental form of N .

Since there exists an induced metric on the submanifold N , the question
of an induced affine connection suggests itself: if N is a Riemannian sub-
manifold of M , the Levi-Civita connection ∇ of M induces a connection D
on N . More details on this can be found in the following section.

2.3 Geometry of Hypersurfaces

Since the previous section dealt with submanifolds in general, we now turn
to a special class of submanifolds, namely hypersurfaces.

2.3.1 Definition

Definition 9 Let M be a n-dimensional semi-Riemannian manifold. A
hypersurface H is a submanifold of dimension n-1. Equivalently, the codi-
mension of H is 1.

In the special case of General Relativity, where dim(M) = 4, a hypersurface
is a 3-dimensional submanifold. From now on, the considered submanifolds
will be hypersurfaces if not mentioned otherwise. If ϕ is a smooth embed-
ding, as given by Definition 7, it applies that

ϕ : Σ →M

Σ 7→ ϕ(Σ) (2.12)

defines a hypersurface ϕ(Σ) in M , where Σ is an abstract 3-dimensional
manifold. Locally, a hypersurface can be defined as a set of points for which
a (smooth) scalar field t defined on an open neighbourhood of M is constant:

∀p ∈M, p ∈ ϕ(Σ) ⇐⇒ t(p) = const. (2.13)

For instance, consider a connected submanifold ϕ(Σ) of M with the trace
topology of R3. Introducing local coordinates xµ = (t, x1, x2, x3) in an
open neighbourhood U of M and using Eq.(2.13), the hypersurface in M
is defined by the coordinate condition t = const. Further, presuming that
{yi} are given coordinates on the abstract manifold Σ, an explicit form of
the mapping can be obtained:

ϕ : Σ →M

{yi} 7→ (xµ) ≡ (ϕ(t0, y
i)), (2.14)
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where we have chosen the constant to be t0.

Due to the definition of an immersion (see Definition 5) any v ∈ Tp(Σ)
can be mapped onto a vector w ∈ Tϕ(p)(ϕ(Σ)) ⊆ Tϕ(p)(M). Conversely,
the pullback mapping (see Eq.(2.9)) allows us to identify covariant tensor
fields on M with covariant tensor fields on the abstract manifold Σ. The
pullback of the spacetime metric g and its identification with the metric on
the abstract manifold Σ has already been mentioned before (see Eq.(2.11)).

Remark : In general, so-called globally hyperbolic spacetimes are considered
when developing a method to solve the Cauchy problem in General Relativ-
ity, since this is the most relevant case for the initial value formulation. A
globally hyperbolic spacetime admits the existence of a special hypersurface,
namely a Cauchy surface:

Definition 10 A subset of M is called a Cauchy surface, iff each timelike
inextendible curve intersects it once and only once.

But not all possible spacetimes admit a Cauchy surface. For instance, space-
times with closed timelike curves are not globally hyperbolic. Nonetheless,
there exist some results that spacetimes with closed timelike curves possess
an initial value formulation [40], but causality arguments show, that it is
not possible to prescribe arbitrary initial data on a spacelike hypersurface
in such spacetimes.

If not mentioned otherwise, from now on we consider Σ to be a 3-dimensional
Riemannian manifold such that ϕ(Σ) ⊆M , where M is a 4-dimensional
Lorentzian manifold and ϕ(Σ) a spacelike, i.e. Riemannian, hypersurface in
M . As aforementioned (see Eq.(2.13)), it is possible to locally parametrise
the hypersurface by any regular scalar field t such, that ϕ(Σ) represents an
instant of time, i.e. it is locally a level surface of this scalar field. Physically
spoken ϕ(Σ) is then a surface of simultaneity.

Remark : It is common to use an entire foliation of such hypersurfaces which
covers M completely, but this is not necessary for our purposes. By now
we have one and only one 3-dimensional Riemannian manifold Σ which is
embedded in M .

2.3.2 Unit normal

Since ϕ(Σ) is a spacelike hypersurface in M , it admits a timelike normal.
If the hypersurface is locally parametrised by a regular scalar field t, then
the gradient 1-form defines the normal at a point p ∈ ϕ(Σ):

ñµ = ∇µt (2.15)
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It is common to choose the normal to be normalised, hence we refer to it as
the unit normal n by imposing the following normalisation condition:

gµνn
µnν = −1. (2.16)

The unit normal n points in a direction orthogonal to ϕ(Σ) in the sense that
the pullback of the co-normal nµ vanishes:

ϕ∗n = 0. (2.17)

This is the defining equation for the unit normal. In the following we refer to
the above equation as the orthonormality condition. Its coordinate version
writes as ϕµ,inµ = 0. We conclude, that the normal n at the point p ∈ ϕ(Σ)

is an element of T ∗p ϕ(Σ)⊥, which is the orthogonal complement of T ∗p ϕ(Σ).
Consequently, the scalar product between any vector v in Tpϕ(Σ) and the
unit normal, g(n, v) = vµnµ, vanishes identically.

Notice that the normal of a null hypersurface is tangent to it at the same
time. Further, if n is null it cannot be re-normalised. Thus, in this case
and only in this case, there is no way of uniquely splitting any vector into
a part tangential and a part normal to ϕ(Σ). In contrast, if a spacelike
hypersurface is considered, any vector x ∈ Tp(M) can be uniquely split into
parts tangential and normal to ϕ(Σ):

x = tan(x) + nor(x), (2.18)

where tan(x) ∈ Tpϕ(Σ) and nor(x) ∈ Tpϕ(Σ)⊥ are the appropriate tangen-
tial and normal projections. This is equivalent to the decomposition of the
tangent space Tp(M) itself.

2.3.3 Intrinsic curvature of ϕ(Σ)

However Σ is mapped onto M , it possesses an intrinsic curvature which
encodes the information about whether Σ is flat or curved. Since the triple
(Σ, h,D) describes an abstract manifold with Riemannian metric h and
Levi-Civita connection (or covariant derivative) D, there exists a Riemann
curvature tensor 3R associated with this connection, which represents the
intrinsic curvature of Σ. Following the notation introduced in Sec. 2.1, the
components of 3R are denoted by 3Rikjl.

As already mentioned before, many books on differential geometry refer
to the Ricci identity (see Eq.(2.5)) as the defining equation for the curvature
tensor. Thus, one might define 3R by:

Definition 11 (Ricci identity)

∀v ∈ Tp(Σ), (DjDl −DlDj)v
i = 3Rikjlv

k. (2.19)
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The corresponding Ricci tensor 3Ric of Σ can be obtained by calculating the
(1, 3) contraction of 3R:

3Rij = 3Rkikj . (2.20)

Analogous to the the case of the entire spacetime (see Eq.(2.8)) the scalar
curvature can be determined by taking the trace of the Ricci tensor with
respect to the 3-metric h:

3R = hij3Rij = tr(Rij) = 3Rii. (2.21)

2.3.4 Extrinsic curvature of ϕ(Σ)

In addition to the intrinsic curvature of Σ we discussed before, another
type of curvature regarding the inclusion of the abstract manifold Σ in the
ambient manifold M can be defined. We may call this one the extrinsic
curvature K of the hypersurface ϕ(Σ). This special curvature is related
to the bending of Σ in the spacetime manifold M under the embedding ϕ.
For instance, assume that Σ is intrinsically flat, i.e. 3R vanishes. Now, take
an embedding ϕ such, that the hypersurface ϕ(Σ) appears to be bent. This
“bending” is mathematically examined the following: compare the normal
defined at the point p1 ∈ ϕ(Σ) with the normal at the point p2 ∈ ϕ(Σ),
p1 6= p2 by parallel transporting n(p1) along tangential vectors to p2 w.r.t.
the spacetime connection ∇. If the parallel transported normal n(p1) and
the normal in p2 do not coincide, the hypersurface is bent in M . Hence, it
appears to be curved in the ambient manifold, although it is still intrinsically
flat. More precisely, the extrinsic curvature is defined as the following:

Definition 12 The extrinsic curvature K of a hypersurface ϕ(Σ) is de-
fined as the bilinear, symmetric map

K : Tp(ϕ(Σ))×Tp(ϕ(Σ)) → R
(v,w) 7→ −g(v,∇wn). (2.22)

Its components are denoted by Kµν . Notice, that the extrinsic curvature is
also often called the second fundamental form or the shape operator.
In words, the extrinsic curvature describes the change of the normal direc-
tion as one moves along the embedded hypersurface.

Since K is purely tangential to ϕ(Σ) per definition, i.e. its contraction
with the unit normal n vanishes, the pullback of K under ϕ onto Σ itself
encodes the same information as the object “living” in spacetime. Hence,
instead of using Kµν one can equivalently deal with Kij . We are here, and
often in what follows, identifying the tangent space of ϕ(Σ) with the tangent
space of Σ itself.

As aforementioned, the link between the extrinsic curvature and the unit
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normal to the embedded hypersurface is rather illustrative. But in order to
perform explicit calculations a formula, connecting the extrinsic curvature
and unit normal rigorously, is needed. Therefore, we use the definition of the
extrinsic curvature tensor Eq.(2.22) and evaluate it using any pair of vectors
(v, w) ∈ Tp(M)×Tp(M)2. Since K is a bilinear form defined for two vectors
tangent to ϕ(Σ), an operation called projection (see below) has to be used
in order to extract only the tangential parts of the vectors. Hence, it follows
directly:

Kij = −ϕµ,iϕ
ν
,j∇µnν . (2.23)

Notice, that the minus sign is a question of convention.

In order to obtain the associated mean curvature, we take the trace either
with respect to the spacetime metric g or to the spatial metric h:

K = gµνKµν = hijKij = Ki
i. (2.24)

Taking the trace of Eq.(2.23) yields a simple relation between the trace of
K and the divergence of the unit normal:

K = −∇µnµ. (2.25)

Remark : Although we have not yet mentioned an entire family of hyper-
surfaces, we have to make an important remark here. In the case of a so-
called foliation (see below), the unit normal is defined on M and commonly
referred to as the 4-velocity of some observer. Such an observer, called Eu-
lerian observer in Sec. 2.4.2, can be defined by choosing a non-zero lapse
and arbitrary shift in the language of Sec. 2.4.1. For example, choosing the
lapse equal to one, corresponds to extending the unit normal nµ off ϕ(Σ)
by requiring it to be geodesic. For Eulerian observers a useful relation can
then be found:

∇µnν = −Kµν − aνnµ, (2.26)

where aλ := nσ∇σnλ is the 4-acceleration of this observer. The comprehen-
sive explanation can be found in [20]. Let us emphasise here that such a
definition does not make sense in the case of a general slicing which we want
to consider later. The explanation can be found in Sec. 2.4.

2.3.5 Projection onto Σ

We have seen in Sec. 2.3.2 that the tangent space of the ambient manifold
(M, g) at each point p ∈ ϕ(Σ) can be decomposed uniquely into the direct
sum of the space tangential to the spacelike hypersurface ϕ(Σ) 3 and its

2Remember that the tangent space of M at the point p can be decomposed uniquely
in a component tangential to the ϕ(Σ) and one orthogonal to it.

3Remember that Tpϕ(Σ) is also the tangent space to Σ itself as ϕ is a diffeomorphism.
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orthogonal complement. Hence, we are free to choose the subspace generated
by the unit normal n to span the orthogonal complement to Tpϕ(Σ):

Tp(M) = Tpϕ(Σ)⊕ V ec(n), (2.27)

where V ec(n) ⊆ Tpϕ(Σ)⊥. Equivalently, this means that any vector x in
Tp(M) can be decomposed uniquely into components tangential and orthog-
onal to ϕ(Σ) via

xµ = xµ‖ + x⊥n
µ, ∀x ∈ Tp(M). (2.28)

The idea of a so-called projection onto the hypersurface is to “filter”
the tangential component of a spacetime vector or its dual, a spacetime 1-
form, or objects of higher rank. This tangential part can then be identified
as an object in Tp(Σ) due to the smooth embedding.

Remark : Since a smooth embedding is used, Σ is diffeomophic to its im-
age ϕ(Σ) and thus an inverse mapping can be found, which we call the
extension operator (see below).

It appears to be natural to consider the projection of covariant objects rather
than contravariant ones. Therefore, the projection coincides with the pull-
back mapping in order to reduce objects in T ∗p (M) to objects in T ∗p (Σ) (or
products of these spaces):

Definition 13 The orthogonal projection onto Σ is defined as the pullback
map

ϕ∗ω = ω‖, ∀ω ∈ T ∗p (M), (2.29)

where ω‖ is an element of T ∗p (Σ). Using index notation this writes as

ϕµ,i ωµ = ωi ∈ T ∗p (Σ). (2.30)

In words, the pullback of any element of the linear space of covariant tensors
of rank k over M yields objects of the same rank in the linear space over Σ
and thus is called the orthogonal projection onto Σ. In a chosen basis
its components are given by:

(ϕ∗T)α1...αk = ϕα1
,i1
...ϕαk,ikTα1...αk = Ti1...ik . (2.31)

As mentioned before, one might also extend a purely spatial object, i.e. an
object defined on Σ, to an object on M . This can be done since the map ϕ
is an embedding and thus provides an injective tangential map. Therefore,
the extension appears to be a natural inverse to the orthogonal projection
and is denoted by γ. In the easiest case it is a map

γ : T ∗p (Σ)→ T ∗p (M). (2.32)
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The extension map is also defined on the product spaces and therefore ap-
plies to covariant tensors of any rank. Let us illustrate this extension map
in the case of the spatial metric h, which is a symmetric bilinear form on
Σ. h can only be extended to a covariant tensor of rank 2 on M such that
it satisfies Eq.(2.11). Hence, it can be expressed in terms of the spacetime
metric g and the dual to the unit normal n:

hµν = γiµγ
j
νhij ≡ gµν + nµnν . (2.33)

Applying the pullback or orthogonal projection to Eq.(2.33) actually pro-
vides the original spatial metric hij on Σ as given by Eq.(2.11), exactly as
demanded. The component version of the extension operation is

γiµ = gµνϕ
ν
,jh

ij . (2.34)

Similarly, we might use this extension to turn the extrinsic curvature tensor
K, originally defined as a bilinear form on Σ, into a bilinear form on M .
Then, the extension is given by:

Kµν = γiµγ
j
νKij . (2.35)

Notice that Kµν is still tangential to ϕ(Σ) as it is defined as a symmetric
bilinear form on T ∗p ϕ(Σ)×T ∗p ϕ(Σ) by Eq.(2.22).

Let us adhere the main conclusions by now: the orthogonal projection of a
tensor on M gives only its part tangential to ϕ(Σ) and the projection of any
tensor normal to ϕ(Σ) vanishes identically.

Applying Eq.(2.31) to a tensor field T tangential to ϕ(Σ) yields a direct
translation between the covariant derivative with respect to the spacetime
Levi-Civita connection ∇ and the covariant derivative of this tensor field
w.r.t. the induced connection D on the spacelike hypersurface, respectively
on Σ itself.

DT = ϕ∗∇T. (2.36)

The component version writes similar to Eq.(2.31):

DkTi1...ip = ϕµ,kϕ
α1
,i1
...ϕ

αp
,ip
∇µTα1...αp (2.37)

Remark : The domain of T on the right-hand side of Eq.(2.36) is only the
hypersurface ϕ(Σ) and therefore it represents directly the 4-dimensional ver-
sion of a spatial tensor field.

Further, making use of Eq.(2.36) yields an interesting and useful relation
for the derivative of vector field v along another vector field w, when both
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of them are tangent to ϕ(Σ). According to Eq.(2.33) we find:

Dwv = (w ·D)v

= γ[(w · ∇)v]

= (w · ∇)v + n⊗ n(w · ∇)v. (2.38)

Proving Eq.(2.36) needs two steps: first, one has to show that the pullback
of the spacetime connection induces a torsion-free connection on Σ which
satisfies all required properties. This is done easily and hence not demon-
strated here. Secondly, the connection applied to the spatial metric h must
vanish identically:

Dkhij = ϕµ,iϕ
ν
,jϕ

σ
,k∇σhµν

= ϕµ,iϕ
ν
,jϕ

σ
,k(∇σgµν + (∇σnµ)nν + nµ∇σnν)

= 0, (2.39)

since the pullback of the normal 1-form and the covariant derivative of g
are zero.
According to the uniqueness of a torsion-free connection associated with a
non-degenerate metric, we conclude that necessarily

ϕ∗∇ = D. (2.40)

2.3.6 The Codazzi relation

So far, we have developed several relations between the spacetime objects
and their counterparts belonging to Σ, like the relation between the two
metrics. But since the geometric object encoding the forces of gravity is
the Riemann curvature tensor, we are more than interested in deducing re-
lations between the Riemannian of the 4-dimensional spacetime (M, g) and
the 3-dimensional one of the hypersurface (Σ, h). The following equations
are the basis of the 3 + 1 version of General Relativity.

Note: As is customary, the calculations in this and in the following subsec-
tion assume that the unit normal n is also defined off the hypersurface ϕ(Σ).
Such an extension can always be found, e.g. using an Eulerian observer. It
turns out though, that the final result does not depend on such an extension.

Let us start with the easier equation to derive, the so-called Codazzi re-
lation4. Therefore, we take the Ricci identity Eq.(2.19) and apply it to the
unit normal vector n:

(∇µ∇ν −∇ν∇µ)nσ = 2∇[µ∇ν]nσ = 4R λ
µνσ nλ, (2.41)

4often referred to as Codazzi-Mainardi equations
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where the square brackets denote the anti-symmetrisation operation. In
order to establish a relation between the 4- and the 3-dimensional objects,
one has to project the above equation onto the considered hypersurface as
demonstrated in the previous subsection. Hence, applying the orthogonal
projection yields

ϕσ,kϕ
µ
,iϕ

ν
,j

4R λ
µνσ nλ = 2ϕσ,kϕ

µ
,iϕ

ν
,j(∇[µ∇ν]nσ). (2.42)

Now, taking into account Eq.(2.26), it follows:

2ϕσ,kϕ
µ
,iϕ

ν
,j∇[µ∇ν]nσ = ϕσ,kϕ

µ
,iϕ

ν
,j∇µ(−Kνσ − aσnν)−

− ϕσ,kϕ
µ
,iϕ

ν
,j∇ν(−Kµσ − aσnµ)

= ϕσ,kϕ
µ
,iϕ

ν
,j(−∇µKνσ − aσ∇µnν − nν∇µaσ)−

− ϕσ,kϕ
µ
,iϕ

ν
,j(−∇νKµσ − aσ∇νnµ − nµ∇νaσ)

= −DiKjk +DjKik (2.43)

where we have used the orthonormality relation Eq.(2.17) to obtain the last
line. Thus, we conclude

ϕσ,kϕ
µ
,iϕ

ν
,j

4R λ
µνσ nλ = DjKik −DiKjk. (2.44)

This is the famous Codazzi equation, relating the 4-dimensional Riemann
curvature tensor the the spatial covariant derivative of the extrinsic curva-
ture.

Taking the (3, 4)-contraction of Eq.(2.44) leads to the contracted Codazzi
relation:

ϕµ,in
ν4Rµν = DiK −DkK

k
i , (2.45)

where we have used
γkλϕ

σ
,k = hσλ = δσλ + nσnλ. (2.46)

2.3.7 The Gauß relation

The second important relation is the so-called Gauß relation: as given by
Eq.(2.19), the Riemann tensor of the Σ measures the lack of commutation
of two successive covariant derivatives with respect to the connection D.
Using the definitions given in the previous sections and applying the relation
between the spacetime connection and the induced connection on Σ (see
Eq.(2.36)), we obtain:

DiDjv
k = ϕµ,iϕ

ν
,jγ

k
σ∇µ(Dνv

σ), ∀v ∈ Tp(Σ). (2.47)

Notice that vσ is the 4-dimensional version of the 3-vector tangent to Σ and
thus also tangent to ϕ(Σ), whereas Dν denotes the metric connection on the
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embedded hypersurface ϕ(Σ). Applying the definitions of Sec. 2.3.5 and
using Eq.(2.36) again, we gain the following explicit form of these extensions:

Dνv
σ = γmν ϕ

σ
,nDmv

n

= γmν ϕ
σ
,nϕ

α
,mγ

n
β∇αvβ

= hανh
σ
β∇αvβ. (2.48)

Inserting this intermediate result into Eq.(2.47), we obtain altogether that

DiDjv
k = ϕµ,iϕ

ν
,jγ

k
σ∇µ(hανh

σ
β∇αvβ). (2.49)

Using Eq.(2.46) and ∇µ(δαβ + nαnβ) = nβ∇µnα + nα∇µnβ yields:

DiDjv
k = − Kijγ

k
σn

λ∇λvσ + ϕµ,iϕ
ν
,jγ

k
σ∇µ∇νvσ −

− ϕµ,iϕ
ν
,jγ

k
σK

σ
µ Kνλv

λ. (2.50)

Applying the same procedure to the second term in the Ricci identity, which
is equivalent to the permutation of the indices i and j, as well as using that
v and K are tangent to Σ, we acquire the following result:

(DiDj −DjDi)v
k = (K k

j Kim −K k
i Kjm)vm+

+ ϕµ,iϕ
ν
,jγ

k
σ∇µ∇νvσ − ϕ

µ
,iϕ

ν
,jγ

k
σ∇ν∇µvσ. (2.51)

Comparing the last two terms of the equation above with Eq.(2.5) and taking
into account the right-hand side of Eq.(2.19), the very final result reads as:

ϕµ,iϕ
ν
,jϕ

λ
,mγ

k
σ

4Rσλµνv
m = 3Rkmijv

m + (K k
j Kim −K k

i Kjm)vm. (2.52)

Due to the presence of the projections and the fact that 3R and K are tangent
to Σ, the above result is even valid for any vector v ∈ Tp(M) and thus we
conclude:

ϕµ,iϕ
ν
,jϕ

λ
,mγ

k
σ

4Rσλµν = 3Rkmij + (K k
j Kim −K k

i Kjm). (2.53)

This is the famous Gauß relation which was originally found for 2-dimensi-
onal surfaces embedded in the Euclidean R3.

Applying the (1, 2)-contraction to Eq.(2.53) and using the symmetry re-
lations of the Riemann tensor we obtain the contracted Gauß relation:

ϕµ,iϕ
ν
,j

4Rµν + ϕµ,iϕ
ν
,j

4Rσµλνn
λnσ = 3Rij + K Kij −KimK

m
j (2.54)

Now, taking the trace of the above equation with respect to the spatial
metric yields the scalar Gauß equation, which is a generalisation of Gauß
famous’ theorema egregium:

4R + 24Rµνn
µnν = 3R +K2 −KijK

ij . (2.55)
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It directly relates the intrinsic curvature of Σ to its extrinsic curvature and
the intrinsic curvature of the ambient manifold M represented by the Ricci
scalar and the Ricci tensor.

The Gauß and the Codazzi relation constitute crucially to the basis of re-
formulating Einstein’s equations in the 3 + 1 version since they provide the
essential connection between the 4- and the 3-curvature.

2.3.8 Examples of Hypersurfaces

In order to illustrate the aforementioned definitions and concepts, we use
a space which we are very familiar with, namely R3 equipped with the
standard Euclidean metric g of signature (+,+,+), which is a Riemannian
metric instead of a Lorentzian one. Thus, the ambient manifold (M, g) is of
dimension 3 and any hypersurface ϕ(Σ) therein is a surface by the common
means of the word “surface”, i.e. a 2-dimensional submanifold. We present
the three most common surfaces in R3: a plane, a cylinder and a sphere. A
more detailed presentation can be found in [20].

Example 1: a plane
For our first illustration let us consider Σ to be a simple plane. Further
we assume a chart on M = R3 such, that Cartesian coordinates are given:
(Xi) = (x, y, z). The surface ϕ(Σ) shall be a level surface of the coordinate
z, e.g. ϕ(Σ) shall be the plane given by z = 0. The tuple (yi) = (x, y) con-
stitutes an appropriate coordinate system on the abstract surface Σ. The
induced metric then takes the standard form h = diag(+1,+1). Obviously,
this metric is flat, i.e. 2R vanishes. The components of the unit normal are
ni = (0, 0, 1) with respect to the Cartesian chart on M . One sees imme-
diately that the gradient of the unit normal vanishes. As a consequence,
the extrinsic curvature vanishes as well. Hence, a plane in R3 is not only
intrinsically flat, also its extrinsic curvature is zero.

Example 2: a cylinder
For the second example let us consider the surface ϕ(Σ) to be a very well-
known geometric figure, namely a cylinder which is defined by the equation
t := ρ−R = 0, where R < 0 is the radius of the cylinder and ρ =

√
x2 + y2

the standard radial coordinate, while Σ is again a simple plane. Introducing
standard cylindrical coordinates (Xi) = (ρ, φ, z) on M, such that φ ∈ [0, 2π),
x = R cosφ and y = R sinφ, also gives an appropriate coordinate system
(yi) = (φ, z) on the surface respectively on Σ itself. The components of the
induced metric in this coordinate system are given by

hijdx
idxj = R2dφ2 + dz2. (2.56)
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Due to the appearance of polar coordinates, one might be tempted to think
of this as a non-flat metric. But it actually is as demanded for a plane,
which can be seen easily using a coordinate transformation like z 7→ Rz̃.
In order to evaluate the extrinsic curvature, one has to calculate the unit
normal explicitly, which writes with respect to the cylindrical coordinates
as

ni =

(
R cosφ

ρ
,
R sinφ

ρ
, 0

)
. (2.57)

Transforming the above result into Cartesian coordinates and calculating
the gradient of it gives the extrinsic curvature. Taking the trace yields the
expected final result:

K = − 1

R
. (2.58)

Hence, though Σ is an intrinsically flat plane, its immersive image, the cylin-
der, has an extrinsic curvature.

Example 3: a sphere
In the third and last example we consider Σ to be a sphere of radius
R and thus ϕ(Σ) represents a sphere embedded in R3. It is defined by
t := r − R = 0, where r =

√
x2 + y2 + z2 is the common Cartesian radial

coordinate. In order to use an appropriate coordinate system, we introduce
the well-known spherical coordinates (Xi) = (r, θ, φ) on M . This choice
constitutes the coordinate system (yi) = (θ, φ) on Σ which obviously is an
S2 ⊆ R3. The components of the extended spatial metric h on ϕ(Σ) are
then given by

hijdx
idxj = R2(dθ2 + sin θ2dφ2). (2.59)

Notice that this metric is not flat compared to the ones of the examples
before. Hence, the Riemann tensor of (Σ, h) does not vanish.
Applying the same procedure as before, we can calculate the unit normal
of the embedded sphere and eventually its extrinsic curvature, which turns
out to be

K = − 2

R
. (2.60)

Hence, we have an example which is neither intrinsically nor extrinsically
flat. Both types of curvature do not vanish in this case.

These examples show that hypersurfaces with both types of curvature
vanishing (plane) exist as well as hypersurfaces where only one curvature,
in the cylindrical case the intrinsic one, vanishes but that there are also
hypersurfaces with both curvatures not vanishing as seen in the spherical
case. Remembering the Gauß equation (Eq.2.53), we have already seen
that the extrinsic curvature is not fully independent from the intrinsic one.
Further details can be found in [20].
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2.4 Kinematics of Hypersurfaces

Until now we have only considered a single set Σ which is included into a
Lorentzian manifold (M, g) via a smooth embedding ϕ such, that the origi-
nating submanifold is a spacelike, i.e. Riemannian, hypersurface ϕ(Σ) in M .
But, according to the idea of an initial value formulation, we are interested
in deducing the kinematic evolution of certain physically relevant quantities
or even gravity itself.

In order to say something about the propagation of a point p originally
contained in this one hypersurface, we have to introduce a kinematic con-
cept. This is done either by considering a family of spacelike hypersurfaces,
a so-called foliation, as commonly done or, as we prefer to do, by choosing
a 1-parameter family of embeddings or slicing. In the general case of a slic-
ing, the intersection of adjacent hypersurfaces is allowed, whilst a foliation
demands that hypersurfaces do not intersect. Commonly, a regular foliation
is used in order to derive the 3 + 1 form of field equations but as we want
to keep it as general as possible, we prefer a slicing instead though one has
to be more careful with the derivation.

Remark : The aforementioned concept of a general slicing requires at least
two important remarks. First, since we allow intersecting hypersurfaces in
M , one might suppose that the unit normal is not well-defined. This is true
in the sense, that n is not a vector field on M anymore. But every hyper-
surface has a normal being well-defined in each point of the hypersurface
although the adjacent hypersurface has a different unit normal vector field.
Therefore we conclude that, mathematically spoken, in the case of a slicing
the normal vector field is defined only along the embedding ϕ. Notice, that
these normal vector fields coincide only in the case of a foliation such, that
the unit normal vector field is again a vector field on M . Secondly, if a
point p is at the same element of a hypersurface and the adjacent one as
well, this only means that p is not propagated along the change of the family
parameter.

Before turning to some important kinematic quantities, let us make the
above concept more precise:

Definition 14 Let Σ be a topological set and ϕλ be a 1-parameter family of
embeddings ϕ labelled by the parameter λ ∈ R. A single slice is the image
of the set Σ under the embedding ϕ at parameter value λ.

Notice that the consideration of a family of embeddings is equivalent to
operating on the Cartesian cross-product R × Σ. Hence, if {yi} provides
a local coordinate system on Σ, the coordinates (λ, yi) are appropriate to
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label a point q ∈ R× Σ. In local coordinates the map then writes as:

ϕλ : R× Σ→M

(λ, yi) 7→ (xµ) = ϕ(t, yi). (2.61)

Considering again the important case of the unit normal we see immediately,
that n depends on t and yi since it is only defined along the embedding and
thus not a vector field on M . Hence, we write

n = n(λ, yi). (2.62)

Remark : If and only if we would choose a regular foliation instead, the unit
normal would be a global vector field on M depending on xµ.

Since we are interested in the time evolution, it appears to be natural to
consider the family parameter λ to be a coordinate time. Hence, from now
on we use t instead of λ to label the hypersurfaces. With these conceptual
assumptions we are now well-equipped to focus on the kinematics of points
q ∈ Σ under the embeddings (ϕt)t∈R.

2.4.1 Time evolution vector field

Originally, we started with only one topological set Σ and an embedding ϕ
such that the originating submanifold is a spacelike hypersurface in M . In
order to establish a kinematic description of points in Σ, we have already
mentioned the concept of a slicing but we have not yet made clear how the
slicing respectively the parameter family of embeddings is generated. This
is the goal of this subsection.

Starting with a single hypersurface ϕ(Σ) an entire family of embeddings
ϕt is generated by a vector field ξ. In contrast to the unit normal vector
field, this time evolution vector field is really a vector field on M , al-
though it is only defined in an open neighbourhood of a hypersurface. If
we choose coordinates {xµ} on the domain of ξ, the time evolution vector
field depends on these coordinates. Hence, we have ξ = ξ(x). Further, when
considering the integral curves of the vector field ξ, it becomes clear that it
is the generator of a family of embeddings:

ξµ(ϕ) = ϕ̇µ, (2.63)

where the “dot” represents the derivation with respect to the family param-
eter t. This obviously defines a system of autonomic ordinary differential
equations. Naturally, an appropriate initial condition for this ODE system
is

ϕµ(0, yi) = ϕµ(yi). (2.64)
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According to Eq.(2.18) the vector field ξ can be decomposed uniquely into
its parts normal and tangential to one hypersurface ϕt(Σ)5 by

ξµ(ϕ(t, y)) = N(t, y)nµ(t, y) + βµ(t, y). (2.65)

This is a completely general decomposition of the vector field ξ(x). The
scalar function N(t, y) is referred to as the lapse function and the tan-
gential part β is the so-called shift vector. Notice that the shift is purely
spatial, hence βµ = ϕµ,jβ

j ∈ Tp(Σ). We have chosen this specific decomposi-
tion, since the parameter family shall allow us describe the kinematics of a
all points in Σ. ξ can then be interpreted as the “flow of time” throughout
the spacetime M . Any point p ∈ ϕt(Σ) can now be “transported” along this
time evolution vector to an adjacent surface ϕt+∆t(Σ).

Remark : Commonly, the lapse function is restricted to be strictly greater
zero, i.e. N > 0. In a slicing the lapse can take any value, in particular it
can vanish at certain points.

Remark : Notice that the vector field ξ(x) can describe different situations
due to its explicit decomposition. If ξ vanishes at the point p ∈ ϕt(Σ), it
means that p is stuck in time and space. On the other hand, if only the
lapse is zero but the shift not, this is equivalent to a reparametrisation of
the hypersurface. And finally, if the shift vanishes, then the point is propa-
gated in time but not along the spatial directions.

This effect of moving forward in time leads to the change of the spatial
metric h on the abstract 3-manifold Σ. Hence, it is obvious to interpret
the ambient manifold (M, g) as the time development of a Riemannian met-
ric h on a 3-dimensional manifold. This clearly suggests that at least one
important dynamical variable in the 3 + 1 formalism of General Relativity
is the spatial metric [42]. Thus, regarding the initial value formulation of
General Relativity, we expect appropriate initial data to consist of Σ, the
spatial metric (the dynamical variable) and its “time derivative”, which is
the second dynamical variable. The motion under ξ does not only lead to an
evolution equation for the spatial metric, but as we see later it also leads to
an evolution for the extrinsic curvature. Due to Einstein’s equations it turns
out that these two variables together, the spatial metric and the extrinsic
curvature, are subject to a closed system of time evolution equations, which
is crucial in the context of the initial value formulation of General Relativity
(see Chapter 5 ).

On the abstract 3-manifold Σ respectively on the Cartesian product
space R × Σ the time derivative of a tensor defined on it is nothing else

5When considering only one hypersurface, t is fixed.
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but the common and expected one: its partial derivative with respect to the
parameter of the family of embeddings, i.e. it is simply ∂t which we denote
by a “dot”. But how can this be translated into an appropriate derivative of
tensors in M defined on ϕt(Σ)? Regarding Eq.(2.65) and its interpretation
below, the natural time derivative in M must be related to the time evolu-
tion vector ξ somehow. Again, thinking of a single point p in ϕt(Σ) and not
a covariant tensor field, its natural propagation is determined by the flow of
the vector field ξ. Hence, each point “flows” along the integral curves of ξ
into the adjacent surface. In the context of a point, this is often referred to
as Lie dragging along the time evolution vector ξ. A detailed explanation
of the Lie dragging and the Lie derivative is given in Appendix A.
Since this operation is also appropriate to tensor fields, the Lie dragging of
a tensor field defined on ϕt(Σ) along ξ results in a tensor field on ϕt+∆t(Σ).
Thus, the time derivative of a tensor T on Σ is given by the pullback of the
Lie derivative of the counterpart of this tensor in M along the embedding
ϕ:

∂tTi1...in = ϕµ1,i1 ...ϕ
µn
,in

LξTµ1...µn . (2.66)

We also denote the partial derivative of a tensor T with respect to the family
parameter t ∈ R by the conventional “dot” Ṫ .

Since the above equation is valid for any tensor field on M tangent to ϕt(Σ),
it applies particularly to the 3-metric h yielding the following essential re-
lation:

ḣij = ϕµ,iϕ
ν
,jLξgµν . (2.67)

But what about a vector defined only along the embedding and not tangent
to the hypersurface? What is the time derivative of the unit normal n(t, yi)
for example? Therefore, we differentiate Eq.(2.17) with respect to the time
parameter t, yielding

ϕ̇µ,inµ + ϕµ,iṅµ = 0. (2.68)

Starting with the above equation, one of the most essential relations is found.
The explicit, cumbersome derivation can be found in Appendix B but the
important result is mentioned here:

ṅµ + Γµνλn
νϕ̇λ = ϕµ,i(D

iN −Ki
jβ

j). (2.69)

Equivalently, we sometimes write

ξλ∇λnµ = ϕµ,i(D
iN −Ki

jβ
j). (2.70)

Hence, we can make this essential conclusion:

If an arbitrary lapse N is considered, the time derivative of tangent and
orthogonal objects is still defined.
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As mentioned before, the vector field ξ can describe various different sit-
uation. Naturally, this does have an effect on Eq.(2.69). In the case of a
vanishing shift (β = 0), i.e. a point is not moved along the spatial directions
but only along the direction orthogonal to the initial hypersurface. Then
Eq.(2.70) reads the following way:

Nnλ∇λnµ = ∂t

∣∣∣∣
β=0

nµ ≡ ϕµ,iD
iN. (2.71)

On the other hand, if the lapse vanishes, i.e. N = 0, this yields

ϕλ,jβ
j∇λnµ = −ϕµ,iK

i
jβ

j . (2.72)

We conclude, that the time derivative splits into two parts: one dependent
on the lapse N and the other one dependent on the shift β.

Let us mention an important observation concerning the vector field ξ. As
seen before, it is the generator of the 1-parameter family of spacelike hy-
persurfaces and since we do not impose any constraints on it, it generates a
completely general slicing. BUT :

Iff the time evolution vector field is transversal to the hypersurface in ev-
ery point p it generates a regular foliation.

If the time evolution vector is not transversal to the hypersurface in every
point p, it generates a general slicing.

2.4.2 Slicing vs. foliation

So far, we have derived the kinematic concept in a completely general setting.
But let us use this section to highlight the main and essential differences be-
tween this general context and the commonly used foliation setting.

When using “only” a regular foliation, i.e. N > 0, it makes sense to
introduce observers since we are working in a relativistic context. In Sec.
2.3 we have introduced the unit normal of a single hypersurface. In the
case of a foliation the normal n is a well-defined vector field on M . Since
it is timelike and even normalised, it can be regarded as the 4-velocity of a
certain observer. The integral curves of the normal vector field are timelike
and non-intersecting and hence represent the wordlines of this specific ob-
server, normally called an Eulerian or fiducal observer. A hypersurface then
represents the set of simultaneity for this observer. Such observers do not
exist in a general slicing, since the unit normal vector field is not defined
on the manifold itself. Hence, no congruence with n as tangent vector is
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generated.

Further, the lapse function can be interpreted as the proportionality factor
relating the coordinate time t to the proper time of the Eulerian observer,
as originally introduced by Wheeler. Such an interpretation cannot be given
in the slicing context since the label “observer” does not have a reasonable
meaning. But if a regular foliation is considered, a 4-acceleration can be
associated with the fiducial observer. It is then defined by

aµ = nσ∇σnµ. (2.73)

Note that the 4-acceleration is orthogonal to the unit normal n and thus
an element of T ϕt(Σ). Hence, the extended 4-acceleration and its pullback
are identical. It follows immediately from Eq.(2.71) that the lapse and the
4-acceleration are related by

Nai = DiN. (2.74)

But an expression like the 4-acceleration does not make any sense at all when
a general slicing is considered: in this case, the unit normal is only defined
along the embedding, whereas at least a local definition is required in order
to establish the validity of Eq.(2.73). But if a foliation is considered, a very
useful relation between this 4-acceleration and the extrinsic curvature can
be established (see Eq.(2.26)).

Commonly, the lapse function is restricted to be N > 0. In our more gen-
eral setting, where intersecting surfaces are allowed, the lapse can take any
value, in particular it can become zero at certain points. A point, where
the lapse function vanishes (intersection point) can be seen as an event
where the time “freezes in”. This does not happen in a foliation although
it is of physical relevance: for instance, consider the Penrose diagram of a
Schwarzschild spacetime. There might be interest in a slicing such, that
both horizon crossings (lapse changes sign here) and the bifurcation sphere
(lapse vanishes) are included. Normally, this is avoided by choosing a dif-
ferent slicing, but it can be of interest when certain constraints are imposed
on the extrinsic curvature as well as in cosmological contexts [4].

We already mentioned several time that the unit normal vector field is
only defined along the embedding ϕt when a general slicing is considered
as opposed to the foliation setting, where it is a vector field on M . To
be mathematically precise, we give a rigorous definition of the unit normal
vector field for a slicing:

Definition 15 Let M be a 4-dimensional Lorentzian manifold and ϕt a 1-
parameter family of smooth embeddings. The pullback bundle of M w.r.t.
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the map (t, yi) ∈ R× Σ 7→ x = ϕt(y
i) ∈M is then defined as

ϕ∗(T M) :=
⊔
p

{p} ×Tϕt(p)M. (2.75)

Hence, it is the disjoint union of all p ∈ R × Σ and the tangent spaces at
ϕt(p).

Let us now consider two points q1 and q2 on the product space R× Σ. We
choose a chart on this space such, that the points are given by the follow-
ing coordinates: q1 = (t1, y

i
1) and q2 = (t2, y

i
2). A slicing allows that these

originally different point are mapped onto the same point q under the em-
bedding. Thus, let us consider that q is such an intersection point between
two adjacent hypersurfaces ϕ1(Σ) and ϕ2(Σ). Choosing coordinates on M
the point is then at the same represented by (t1, ϕ1(yi)) and by (t2, ϕ2(yi)).
This is already a main difference to the foliation setting, where this cannot
happen at all. Additionally, two different tangent spaces and unit normals
can be found at this point: one with respect to ϕ1(Σ) and one with respect
to to the other hypersurface. Hence, it is obvious that n cannot be a vector
field on M . But, if we consider the pullback bundle, the unit normal n is
well-defined as a section of the pullback bundle and thus represents a vector
field on R×Σ. Due to this definition the degenerate point in M is identified
correctly with the two different original points and further each point is as-
sociated with the unique and correct unit normal. We conclude, that some
vector fields formerly defined only along the embedding are well-defined as
sections of the pullback bundle of M but not as sections of the tangent bun-
dle of M .

2.4.3 Evolution of the spatial metric

Regarding the considerations in the last sections, we have already seen that
one essential dynamical variable in the initial value formulation of General
Relativity is the spatial metric itself. Before deriving its evolution equations,
let us take a look at a simple example to illustrate this:

Consider a spherically symmetric solution of the vacuum Einstein field equa-
tions. By the Birkhoff theorem we know that the most general such solution
is the Schwarzschild solution. Physically it describes the gravitational field
outside a non-rotating, spherical mass distribution. To make it more pre-
cise consider a Schwarzschild black hole observed at a time t = 0. Hence,
h(t = 0) ∈ T ∗p (Σ) × T ∗p (Σ) has to be chosen such that it describes a
Schwarzschild black hole. Since we are interested in the dynamical evolu-
tion of the spacetime including a Schwarzschild black hole, it is evident that
the time evolution of the metric yields the adequate description of the phys-
ical system as the metric is the characterising paramter.
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The above example shall visualise why the spatial metric h is a basic dynam-
ical variable. We now turn to the explicit derivation of the time evolution
equations for the 3-metric. The starting point is Eq.(2.67). Therefore we
get:

ḣij = ϕµ,iϕ
ν
,jLξgµν

= ϕµ,iϕ
ν
,j(ξ

ρ∇ρgµν + gµρ∇νξρ + gρν∇µξρ)
= ϕµ,iϕ

ν
,j(∇µξν +∇νξµ)

= ϕµ,iϕ
ν
,j(nν∇µN +N∇µnν +∇µβν + nµ∇νN +N∇νnµ +∇νβµ)

= ϕµ,iϕ
ν
,j(−2NKµν +∇µβν +∇νβµ)

= −2NKij +Diβj +Djβi

= −2NKij + Lβhij , (2.76)

where we have used the definition of the Lie derivative (see Appendix A),
the explicit form of the time evolution vector ξ given by Eq.(2.65), the
relation between the gradient of n and the extrinsic curvature K as stated in
Eq.(2.23), as well as the vanishing of the covariant derivative of the spacetime
respectively the spatial metric. Note that all derivatives in the fourth line
on the right make sense even for general slicings, since all derivatives are
purely tangential. Hence, we conclude that the evolution of the spatial
metric h is given by

(∂t −Lβ)hij = −2NKij . (2.77)

Remark 1 : We will see below, that the time evolution of the dynamical
variable h can be expressed in terms of the extrinsic curvature. Thus, K is
the second quantity we need to construct valid initial data for the general
relativistic Cauchy problem. Hence, appropriate initial data shall consist of
the triple (Σ,h,K).

Remark 2 : We have not used the Einstein equations until now. All con-
cepts taken into account at the moment are purely geometrical. In order to
rewrite the field equations for General Relativity as an initial value problem,
we still have to find the evolution equations for the extrinsic curvature K.
These will be obtained directly from Einstein’s equations (see Chapter 5 ).
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Chapter 3

The 3 + 1 Equations for the
Electromagnetic Field

After having introduced all the relevant geometric and kinematic quantities,
we are now well-equipped to focus on the 3 + 1 formulation of specific rel-
evant matter models in a 4-dimensional Lorentzian spacetime. Therefore,
we consider a physical quantity, e.g. the electromagnetic field of a charged
particle, given on the initial hypersurface1 ϕ0(Σ), which is characterised by
the spatial metric h(t=0) and the extrinsic curvature K(t=0). Notice that
we do not consider the “plasma” as the source of the gravitational field but
rather something evolving in a specific given spacetime. A very illustrative
example is the consideration of a rotating black hole surrounded by an ac-
cretion disk: the matter flow is the plasma which propagates on this Kerr
background. Hence, the spatial metric is given by the Kerr metric and the
extrinsic curvature depends on the chosen slicing [1].

Whilst the evolution of the gravitational field will be described and de-
duced in a later chapter, we are now interested in deriving the evolution
equations of physical quantities, i.e. fields, on a curved background. We
start with the electromagnetic field of a charge distribution and then move
on to an ideal fluid (see Chapter 4 ) since their combination leads to general
relativistic ideal magnetohydrodynamics, the most commonly used plasma
model in Astrophysics.

3.1 Introduction

The easiest plasma model one might think of is simply a distribution of
charged particles. It is well-known from the theory of electromagnetism
that these electric charges generate an electric field E. Further, when they

1We have chosen the initial time to be t = 0
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move they also produce a magnetic field B. The origin of these fields as well
as their interactions were unified by Maxwell in 1873, yielding the famous
Maxwell equations:

div ~E = 4πρe (3.1)

rot ~B = ∂t ~E + 4π~j (3.2)

div ~B = 0 (3.3)

rot ~E = −∂t ~B (3.4)

Eq.(3.1) and Eq.(3.2) are known as the inhomogeneous Maxwell equations
since they include the generators of the fields, which are the electric charge
density ρe and the electric current ~j. The other two equations are the ho-
mogeneous ones since no charges appear in them. Eq.(3.3) states the non-
existence of magnetic monopoles. Furthermore, Eq.(3.2) is widely known as
Ampère’s law while Eq.(3.4) is the famous induction or Faraday law. The
minus sign in Eq.(3.4) is a direct consequence of energy conservation respec-
tively of Lenz’s law.

In Relativity, the essential quantities are not the electric and magnetic field
themselves, but an antisymmetric tensor of second rank, the electromagnetic
field tensor F, often also called the Faraday tensor. It is given by

F = n ∧E− ∗(B ∧ n), (3.5)

where the ∗-operation denotes the Hodge dual [25]. In a chart chosen on M
the above tensor equation is written as Fµν = nµEν − nνEµ − εµνσλBσnλ.
Hence, we notice that F = F(x) is a tensor field on the spacetime manfiold
M . Due to the decomposition of F, the electric and magnetic field are purely
spatial and hence given by:

Eµ = Fµνn
ν (3.6)

Bµ = −1

2
εµναβnνFαβ. (3.7)

Due to the appearance of nµ in their definition, the physical quantities E and
B are well-defined as sections of the pullback bundle of M , i.e. E = E(t, yi)
and B = B(t, yi).

Before turning to the covariant version of Maxwell’s equations, we have
to introduce another 4-vector representing the relativistic generalisation of
the two inhomogeneities or field sources ρe and ~j. In Relativity they are
expressed by the 4-current Jσ defined as

Jµ := ρen
µ + ϕµ,ij

i (3.8)
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Note that ji is a purely spatial 3-vector representing the physical current
and jµ is only its 4-dimensional extension. Again, Jµ is well-defined as a
section of the pullback bundle.

Now we are in the position to write down the governing equations of elec-
tromagnetism in a fully covariant form, namely:

∇µFµν = −4πJν (3.9)

∇[σFµν] = 0. (3.10)

Eq.(3.10) represents both inhomogeneous Maxwell equations whilst Eq.(3.11)
is the covariant version of the homogeneous ones. After this brief summary
of the electromagnetic interactions, we can now turn towards the evolution
of the electric and the magnetic field on a given metric background but let
us make one last remark.

Remark : The original Maxwell equations Eq.(3.1)-(3.4) represent a spe-
cial case of the general 3 + 1 Maxwell equations which we derive in the next
subsection. If we chose so-called Gaussian coordinates, namely N = 1 and
β = 0, and a hyperplane slicing (K=0) of Minkowski spacetime, the general
equations turn out to take the standard form of Maxwell’s equations. This,
of course, corresponds to choosing ξ to be a time-translation Killing vector
orthogonal to the hypersurface ϕ(Σ).

3.2 Evolution of the Electric Field

In the case of electromagnetism there exist two different possibilities to de-
rive the time evolution equations for the two fields: one could split Maxwell’s
equations Eq.(3.9) and Eq.(3.10) directly, but since we operate in a com-
pletely general setting2 we have to be careful and must avoid any division
by N as this operation is not defined. Therefore, we would have to apply
a little “trick” and multiply Maxwell’s equations by N before applying the
projections as we will do in later chapters for reasons of simplicity3. But
fortunately we are aware of the relevant quantities E and B and can there-
fore chose a different, completely general and far more elegant approach in
order to determine the evolution equations. The starting point is the same
as for the extrinsic curvature shown in Appendix C. Its mathematical basis
is Eq.(2.66). Hence, we get (where the t-dependence of ϕ is suppressed):

Ėi(y) = ϕµ,iLξEµ(y) = ϕµ,iLξ(Fµν(ϕ(y))nν(y)). (3.11)

2Remember: N arbitrary.
3We have seen in Sec. 2.4.1 that the projection along the normal part of the time

evolution vector is reasonable for slicings.
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Using the definition of the Lie derivative, the explicit form of the time evo-
lution vector ξ and Eq.(3.6) yields

Ėi(y) = ϕµ,iLξEµ(ϕ(y))

= ϕµ,i
{
ξλ∇λEµ + Eλ∇µξλ

}
= ϕµ,i

{
ξλ∇λ(Fµνn

ν) + Eλ∇µ(Nnλ + βλ)
}

= ϕµ,i
{
ξλ(∇λFµν)nν + Fµνξ

λ∇λnν+

+NEλ∇µnλ + nλEλ∇µN + Eλ∇µβλ
}
. (3.12)

Taking into account the definition of the inverse extended spatial metric
hαβ = gµν + nµnν as well as Eq.(2.69) then gives

Ėi = ϕµ,i
{
N(hλν − gλν)∇λFµν + Fµνϕ

ν
,mD

mN+

+ βλ∇λ(Fµνn
ν)− βλFµν∇λnν+

+ βλFµν∇λnν −NEλK λ
µ + Eλ∇µβλ

}
= ϕµ,i

{
Nϕλ,mϕ

ν
,nh

mn∇λFµν −N∇νFµν + Fµνϕ
ν
,mD

mN+

+ βλ∇λEµ −NEλK λ
µ + Eλ∇µβλ

}
(3.13)

Remark : We have written terms containing the extrinsic curvature since the
right projector is applied to it. Otherwise, it would not be possible to iden-
tify ∇αnβ = Kαβ since such an expression is not given explicitly without a
projector in the context of a general setting. Iff we were using a foliation,
we could make use of Eq.(2.26).

Making use of the fact that the pullback of F yields a purely spatial an-
tisymmetric rank 2 tensor governing the magnetic field defined as

Bij := ϕµ,iϕ
ν
,jFµν , (3.14)

gives the following important intermediate result

Ėi = LβEi − 4πNϕµ,iJµ −NEkK
k
i +

+ BikD
kN +Nϕµ,iϕ

λ
,mϕ

ν
,nh

mn∇λFµν , (3.15)

where we have also taken into account the definition of the Lie derivative
and the fact that the pullback and the Lie derivative along the time evolu-
tion vector interchange in the case of a purely spatial object as well as the
inhomogeneous Maxwell equations Eq.(3.9).

Although the above equation looks already quite fine, there is still a term
(the very last one in Eq.(3.15)) we can not interpret a priori and thus it has

31



to be examined further.

Nϕµ,iϕ
λ
,mϕ

ν
,nh

mn∇λFµν =

= Nϕµ,iϕ
λ
,mϕ

ν
,nh

mn
{
nµ∇λEν + Eν∇λnµ−

− nν∇λEµ − Eµ∇λnν +∇λBµν

}
= Nϕµ,iϕ

λ
,mϕ

ν
,nh

mn
{
− EνKλµ + EµKνλ +∇λBµν

}
= −NEnK n

i +NK Ei +NDnBin, (3.16)

where we have inserted the explicit construction of the Faraday tensor
Eq.(3.5), the orthonormality condition and made use of the fact that B
is tangential to Σ in the last step. Altogether this gives the time evolution
equation of the electric field E:

Ėi −LβEi = Dk(NBik)− 4πNji − 2NEkK
k
i +NK Ei. (3.17)

Obviously, the above equation does not look like the famous Ampère law
(see Eq.(3.2)) since we have not used the physical magnetic field itself but
this rather practical rank 2 tensor B. Therefore, a transformation is needed.
Eq.(3.5) reveals immediately the relation between the “magnetic field ten-
sor” and the magnetic field itself:

Bij = εijkB
k, (3.18)

where εijk is the metric volume form given in local coordinates. Let us re-
call the definition of the metric volume form : ε := e1 ∧ ... ∧ en. Hence,
in local coordinates this writes as εijk =

√
hε(i, j, k), where ε(i, j, k) are the

components of the volume form given in an orthonormal basis and therefore
represent the well-known permutation tensor or Levi-Civita symbol, which
takes the value +1 for an even permutation of (i, j, k), −1 for an odd per-
mutation and 0 if i = j or j = k or k = i. h is the determinant of the spatial
metric.

Inserting Eq.(3.18) into the non-standard evolution equation Eq.(3.17) yields

Dk(NBik) = Dk(NBnεikn) = εiknD
k(NBn)

= (D ×NB)i. (3.19)

We have taken into account that the covariant derivative of the metric vol-
ume form vanishes, since it is an isometry of h mathematically spoken.
Therefore it conserves volumes. Further we have used the standard definition
of the cross product in three dimensions: (rotX)i = (D ×X)i = εijkD

jXk.
Now, with this transformation the well-know Ampère law in its 3 + 1 form
can be written down:

(∂t −Lβ)Ei = (D ×NB)i − 4πNji − 2NEkK
k
i +NK Ei. (3.20)
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Note that the above equation only represents the evolution of the i-th com-
ponent of the eletric field. Since the field is a 3-vector, we actually have
three equations, one for each component.

3.3 Evolution of the Magnetic Field

After having treated the electric field, we can now focus on the magnetic
field B and derive its time evolution when given on a metric background. As
already mentioned in the subsection before, one could also project Maxwell’s
equations directly, but we stick to the mathematically more elegant formal-
ism. Using Eq.(2.66) it holds that

Ḃij = ϕµ,iϕ
ν
,jLξFµν . (3.21)

It is very convenient to derive the evolution equation using the magnetic
field tensor. Once again, we perform the transformation into the physical
quantity B at the end. Now, using the definition of the Lie derivative for a
second rank co-tensor field gives:

Ḃij = ϕµ,iϕ
ν
,j

{
ξλ∇λFµν + Fµλ∇νξλ + Fλν∇µξλ

}
= ϕµ,iϕ

ν
,j

{
nµξ

λ∇λEν + Eνξ
λ∇λnµ − nνξλ∇λEµ−

− Eµξλ∇λnν + ξλ∇λBµν +NFµλ∇νnλ+

+ nλFµλ∇νN + Fµλ∇νβλ +NFλν∇µnλ+

+ nλFλν∇µN + Fλν∇µβλ
}
, (3.22)

where we also used the decomposition of the Faraday tensor Eq.(3.5) as
well as the explicit form of the evolution vector. Notice, that all terms are
well-defined since the right projection operators are applied. Taking the
orthonormality condition into account yields immediately

Ḃij = ϕµ,iϕ
ν
,j

{
− EνξλKλµ + Eµξ

λKλν+

+Nnλ∇λBµν + βλ∇λBµν−
−NFµλK λ

ν + Eµ∇νN+

+ nµEλ∇νβλ − nλEµ∇νβλ + Bµλ∇νβλ−
−NFλνK λ

µ − Eν∇µN+

+ nλEν∇µβλ − nνEλ∇µβλ + Bλν∇µβλ
}
. (3.23)
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Further, applying that the contraction Kλµn
λ vanishes and again putting in

the orthonormality condition gives

Ḃij = ϕµ,iϕ
ν
,j

{
− EνβλKλµ + Eµβ

λKλν+

+Nnλ∇λBµν + βλ∇λBµν −NBµλK
λ
ν +

+ Eµ∇νN + Eµβ
λ∇νnλ + Bµλ∇νβλ−

−NBλνK
λ

µ − Eν∇µN − Eνβλ∇µnλ + Bλν∇µβλ
}
. (3.24)

This intermediate result still looks a bit bulky but fortunately we can make
use of Eq.(C.8). After inserting this equation into Eq.(3.24) nearly all terms
cancel and therefore we get the following important intermediate result:

Ḃij = ϕµ,iϕ
ν
,j

{
LβBµν +Nnλ∇λBµν −NBµλK

λ
ν −

−NBλνK
λ

µ + Eµ∇νN − Eν∇µN
}
. (3.25)

As already aforementioned interchanges the pullback and the Lie deriva-
tive of an object tangential to Σ along a purely spatial vector field, which
concretely means in the case of the magnetic field tensor

ϕµ,iϕ
ν
,jLβBµν = LβBij . (3.26)

Before we make use of this fact, we have to specify the second term on the
right-hand side of Eq.(3.25), since we cannot interpret it a priori. Expressing
B in terms of the electromagnetic field tensor (see Eq.(3.5)) and making use
of Eq.(2.71) leads to

ϕµ,iϕ
ν
,jNn

λ∇λBµν = ϕµ,iϕ
ν
,jNn

λ∇λ
{
Fµν − nµEν + nνEµ

}
= ϕµ,iϕ

ν
,j

{
Nnλ∇λFµν + Eµγ

k
ν DkN − Eνγ k

µ DkN
}

= EiDjN − EjDiN + ϕµ,iϕ
ν
,jNn

λ∇λFµν , (3.27)

where we have again used the orthonormality condition. As a look at the last
term in the just derived equation suggests, we are not finished yet. Exactly
this term has to be rehandled since no a priori conclusions can be made.
Making use of the homogeneous Maxwell equations gives

ϕµ,iϕ
ν
,jNn

λ∇λFµν = ϕµ,iϕ
ν
,jNn

λ
{
−∇νFλµ −∇µFνλ

}
= ϕµ,iϕ

ν
,jN
{
∇ν(Fλµn

λ) + Fλµ∇νnλ −∇µ(Fνλn
λ) + Fνλ∇µnλ

}
= ϕµ,iϕ

ν
,jN
{
∇νEµ −∇µEν − FλµK λ

ν − FνλK λ
µ

}
= NDjEi −NDiEj − ϕµ,iϕ

ν
,jN
{
BλµK

λ
ν + BνλK

λ
µ

}
. (3.28)

Taking the last two auxiliary results and inserting them into the original
equation Eq.(3.25) provides the final result in terms of B:

Ḃij −LβBij = Dj(NEi)−Di(NEj) (3.29)
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In order to reformulate the 3 + 1 form of the induction law in terms of the
physical quantity B we once again have to apply the transformation to it.
Be aware that the transformation here is a bit more cumbersome than it
was in the case of the electric field as it includes two more complex terms.
Let us start with the time derivative term: since the partial derivative obeys
the Leibniz rule we get immediately

Ḃij = ∂t(εijkB
k) = ∂t(

√
hε(i, j, k)Bk) =

=
1

2

ḣ√
h
ε(i, j, k)Bk +

√
hε(i, j, k)Ḃk. (3.30)

It is well-known that the derivative of the determinant is explicitly given by
the following relation, which can be found in most books on Analysis and
Calculus:

ḣ = h(hij ḣij) (3.31)

Since the time derivative of the spatial metric has already been deduced in
Chapter 2 Eq.(2.77) it follows that

ḣ = h(−2NKijh
ij + hijLβhij) = −2NK h+ hhijLβhij . (3.32)

Making use of the definition of the Lie derivative turns the last term on the
right-hand side of the above equation into

hijLβhij = hij(βkDkhij + hkjDiβ
k + hikDjβ

k)

= δ i
k Diβ

k + δ j
k Djβ

k

= 2Dkβ
k. (3.33)

Altogether the time derivative of the determinant of the spatial metric is
therefore given by

ḣ = h(−2NK + 2Dkβ
k). (3.34)

Applying the above mentioned result to the initial equation Eq.(3.30) de-
termines the B-field expression for the term containing the time derivative:

Ḃij =
√
h(−NK +Dmβ

m)ε(i, j, k)Bk +
√
hε(i, j, k)Ḃk

= −εijkNK Bk + εijk(Dmβ
m)Bk + εijkḂ

k. (3.35)

Secondly, we have to work out the other term on the left-hand side of
Eq.(3.29). The definition of B and the Lie derivative yield

LβBij = Lβ(εijkB
k) = BkLβεijk + εijkLβB

k (3.36)

BkLβεijk = εmjkDiβ
m + εimkDjβ

m + εijmDkβ
m (3.37)
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Consequently, the left-hand side of the evolution equation is then

Ḃij −LβBij =− εijkNK Bk + εijk(Dmβ
m)Bk + εijkḂ

k−
− εijkLβB

k −BkεmjkDiβ
m−

−BkεimkDjβ
m −BkεijmDkβ

m. (3.38)

Though we got rid of the terms containing the spatial part of the Faraday
tensor, the resulting expression in terms of the real magnetic field does not
look too handy but contracting it with the inverse volume form gives

εijn(Ḃij −LβBij) =2δ n
k (−NK Bk +BkDmβ

m + Ḃk −LβB
k)−

− (δ i
m δ n

k − δ i
k δ

n
m )BkDiβ

m−

− (δ j
m δ n

k − δ
j
k δ

n
m )BkDjβ

m − 2BkDkβ
n, (3.39)

where we have used two important, well-known identities for ε, namely

εimnε
jmn = 2δ ji (3.40)

εijkε
imn = δ m

j δ n
k − δ

n
j δ

m
k . (3.41)

As expected we get eventually

εijn(Ḃij −LβBij) = 2Ḃn − 2LβB
n − 2NK Bn. (3.42)

Until now we have only “massaged” the left-hand side of Eq.(3.29). Since its
right-hand side does not vanish, the inverse volume form has to be applied
to it as well, giving

εijn(Dj(NEi)−Di(NEj)) = −2(D ×NE)n, (3.43)

where the standard expression for the cross product in terms of the ε-symbol
was used. All in all we obtain the final evolution equation:

Ḃi −LβB
i = NK Bi − (D ×NE)i. (3.44)

This clearly looks like the famous induction law, but a comparison with the
evolution equation for the electric field Eq.(3.20) shows an obvious difference:
the above equation does not contain a term of the type KikB

k. The reason
for this is that we have developed the time evolution for the electric co-
vector field whereas Eq.(3.44) is the evolution equation for the magnetic
vector field. For consistency we transform these equations into a relation in
terms of the magnetic co-vector field. This is done by inserting Bi = hijBj
yielding

LβB
i = hijLβBj + 2BjNK

ij +Bj ḣ
ij (3.45)

Ḃi = ∂t(h
ijBj) = Bj ḣ

ij + hijḂj , (3.46)
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where again the definition of the Lie derivative was taken into account. The
application of the metric h gives the ultimate result:

(∂t −Lβ)Bi = NK Bi + 2NK k
i Bk − (D ×NE)i. (3.47)

This is the famous Faraday law in its 3+1 version referred to as the evolution
equation of the magnetic field B.

3.4 Projected Divergence Equations

By now we have only found six equations governing the dynamics of the
electric and the magnetic field. But Maxwell’s equations are a total of eight
equations. Therefore, two more equations, namely the divergence equations,
are still missing and have to be found in order to close the Maxwell system.

In order to obtain the scalar equations describing the sources of the
electric field, the inhomogeneous Maxwell equations have to be contracted
with the unit normal. Again, like in Sec. 2.3.6, the deduced formulae do
not depend on the extension of n off a hypersurface ϕt(Σ). Hence, we get

nν∇µFµν = −Eνnµ∇µnν +∇µEµ (3.48)

Since the electric field E is tangential to Σ, the right-hand side exactly
prescribes the covariant divergence of the electric field E with respect to the
spatial metric h:

DiE
i = ϕµ,iγ

i
ν ∇µEν

= hµν∇µEν

= (δµν + nµnν)∇µEν

= ∇µEµ − Eνnµ∇µnν
= ∇µEµ − EiDiN. (3.49)

On the other hand, the contraction of the right-hand side of the inhomo-
geneous Maxwell equations yields 4πρe. Together, this gives the projected
divergence equation for the electric field:

DiE
i = 4πρe. (3.50)

For retrieving the second scalar Maxwell equation covering the fact, that no
magnetic monopoles exist, we rewrite Eq.(3.10) in a slightly different but
absolutely equivalent form, namely

εµνσλ∇σFµν = 0. (3.51)
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In the previous section we have already used two important identities for the
3-dimensional ε-tensor. The 4-dimensional version of Eq.(3.42) then writes
as

εµνσλεµναβ = −2(δ σ
α δ λ

β − δ
λ

α δ σ
β ). (3.52)

A comprehensive treatment of the volume form and important relations can
for example be found in [41].

Inserting the decomposition of the electromagnetic field tensor and using
the identity Eq.(3.52) then gives

εµνσλ∇σFµν = 2εµνσλ(nµ∇σEν − Eµ∇σnν)+

+ 2(δ σ
α δ λ

β − δ
λ

α δ σ
β )nβ∇σBα−

− 2(δ σ
α δ λ

β − δ
λ

α δ σ
β )Bα∇σnβ

= 0. (3.53)

Hence, we get

0 =εµνσλ(nµ∇σEν − Eµ∇σnν)+

+ nλ∇αBα − nβ∇βBλ −Bσ∇σnλ −BλK . (3.54)

In order to obtain the divergence, the above intermediate result has to be
contracted with n4, leading to

0 =− nλEµ∇σ(εµνσλnν) + nλnνEµ∇σ(εµνσλ)−
−∇λBλ − nλnβ∇βBλ, (3.55)

where we have made use of the fact that the 4-dimensional ε-tensor is totally
antisymmetric in all indices and therefore any contraction over two indices
with a symmetric object, e.g. n ⊗ n, vanishes. Furthermore, we have used
that the scalar product of two orthogonal vectors is zero. Additionally, using
the relation between the covariant divergence with respect to g and the one
with respect to h (see Eq.(3.49)) and the fact that the covariant derivative
of the 3- and 4-volume form vanishes, finally yields the well-known equation
describing the non-existence of magnetic charges in its 3 + 1 form:

∇λBλ −Bλnα∇αnλ ≡ DiB
i = 0. (3.56)

3.5 The 3+1 Maxwell system

Combining the results established in the previous sections, we find that the
initial value formulation of the Maxwell system consists of the six evolution

4Again, the derived results are independent of the extension of n off the hypersurface.
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equations for the electric and the magnetic field, as well as of two constraint
equations, which coincide with the equations found by [2] in the case of a
regular foliation:

The evolution equations5:

(∂t −Lβ)Ei = (D ×NB)i − 4πNji − 2NEkK
k
i +NK Ei (3.57)

(∂t −Lβ)Bi = NK Bi + 2NK k
i Bk − (D ×NE)i (3.58)

The constraint equations:

DiE
i = 4πρe (3.59)

DiB
i = 0 (3.60)

Lemma 1 The 3 + 1 Maxwell system Eq.(3.57) and Eq.(3.58) as well as
Eq.(3.59) and Eq.(3.60) is equivalent to the original Maxwell equations given
by Eq.(3.9) and Eq.(3.10) and represents its well-posed initial value formu-
lation.

Proof: We do not present the proof here since there exists an extensive
amount of literature on this. The equivalence of the original and the 3 + 1
version of Maxwell’s equations is more or less apparent from the explicit
calculations performed here. In order to proof the well-posedness we refer
to literature, see for example [42] or [37]. The common proof makes use
of potentials and the Lorenz gauge, but well-posedness can also be shown by
using the above equations directly.

�

5The vacuum evolution equations can be found in [6].
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Chapter 4

The 3+1 Formulation of
General Relativistic
Hydrodynamics

4.1 Introduction

In the previous chapter we have discussed the case of a purely electromag-
netic plasma, i.e. moving charges, on a given background. However, most
astrophysical configurations involve matter sources like stars or accretion
discs and therefore it is not adequate to use a purely electromagnetic plasma.
Most of the mentioned systems involve gases and therefore it is natural to
use the well-established theory of fluid dynamics to model them which is a
standard procedure in Astrophysics.

Fluid dynamics describes matter as a continuum: the volume or fluid
element considered is infinitesimally small compared to the entire system,
but it still contains a large number of particles. It is obvious, that the
fluid description is only an approximation. In order to be an appropriate
one, the distance between the particles and the mean free path between
collisions must be small compared to the physical length of the system.

Usually, the state of the entire fluid is characterised by five quantities:
the three components of the velocity field v of a volume element and two
thermodynamical quantities, for instance the mass-energy density ε and the
pressure p. The thermodynamical quantities are related via an equation of
state (EOS), i.e.

p = f(ε, T ), (4.1)

where T is the temperature. It is clear that the choice of the EOS depends
on the specific fluid model. For a brief discussion of the thermodynamics of
a perfect fluid see below.

In the context of modelling astrophysically relevant matter, a specific
type of a fluid is commonly used as a first approximation, namely a perfect
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or ideal fluid. Such a fluid describes freely moving particles, which interact
via collisions and can therefore exchange energy and momentum. Further,
no particles are created or destroyed. Hence, the number of particles per
unit volume stays constant. On the other hand side, more general but also
more complex fluid models can be considered, so-called imperfect fluids.
Normally, these models also include non-linearities like heat conduction and
viscosity. Hence, we call an ideal fluid inviscid. Furthermore, the fluid can
be chosen to consist of several components like ions and free electrons for
example [14].

In order to actually describe and follow the motion of the fluid, two
distinct approaches are known: the first possibility, the so-called Lagrangian
approach, ties a chosen coordinate system to an individual fluid element and
flows with it in time. In the second approach a coordinate system fixed
in spacetime is considered and the motion of the fluid is described as seen
from an observer at rest in this specific frame. This approach is known as
the Eulerian one. Mathematically, the main difference is encoded in the so-
called convective derivative. However, it is common to follow the Eulerian
approach, since in the case of an imperfect fluid shear forces can easily
distort the coordinate system tied to a volume element [1].

The non-relativistic dynamical equations governing the fluid motion of
a perfect fluid are the Euler equations

∂tv
i + (vjDj)v

i = −1

ε
Dip. (4.2)

In the case of a viscid fluid the analogous equations are referred to as the
Navier-Stokes equations. In the following we will only consider ideal fluids
and derive the equations of motion in the 3 + 1 form. Therefore, we are
again neglecting the gravitational field generated by the fluid itself whose
motion shall be determined.

The description of general relativistic hydrodynamics here will be very
short, since we focus on the deduction of the 3+1 evolution equations of the
physical quantities. Naturally, there exists a large number of books dedi-
cated to the theory of fluid dynamics. At this point we strongly recommend
to the book by Landau and Lif̌sic [27] for a comprehensive treatment of the
subject.

4.2 Fluid kinematics and thermodynamics

The main goal of fluid dynamics is to predict the motion of a fluid from
given initial conditions. In non-relativistic hydrodynamics the main quan-
tity is the velocity field v of the fluid. Given appropriate initial data, the
equation for the velocity field can then be solved and the entire motion of
the fluid predicted.
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Let us mention again, that we neglect the gravitational field of the fluid.
Therefore, we do not consider the Einstein field equations and assume g to
be the metric of a given background. The fluid is then called a test fluid. In
relativistic hydrodynamics the essential kinematic quantity to study is again
the velocity field though one has to deal with a 4-velocity field u instead,
which is a vector field on the spacetime manifold M . The integral curves of
this vector field are the worldlines of the fluid elements. In fluid dynamics
these trajectories are known as the streamlines of the fluid particles. Due to
causality, the velocity field is assumed to be timelike. By definition it then
satisfies the normalisation condition

uµuµ = −1. (4.3)

Since we are now aware of the main kinematic variable, namely the 4-velocity
u, we turn towards the thermodynamical description of a perfect fluid. As
aforementioned, besides the three kinematic functions, there are two ther-
modynamical variables, such as the energy density and the particle number
density, needed, in order to determine the motion of the fluid. These vari-
ables characterise the thermodynamical state of fluid. They are measured
in the momentarily co-moving frame of reference, i.e. the local rest frame
of the fluid and therefore appointed “proper”. The various variables are:

ε̄ proper total energy density
n̄ proper particle number density
p̄ principal pressure
T temperature
s specific entropy
e specific internal energy
v specific volume
h specific enthalpy

Some of these variables depend on each other like

v =
1

n̄
, ε = n̄(1 + e), h = e+ p̄v. (4.4)

It is important to note that we are not interested in a microscopic description
of the fluid. The above introduced thermodynamical variables are macro-
scopic quantities since they characterise an entire ensemble of particles.
Hence, they can be interpreted as the averages of microscopic quantities
taken over a suitable volume. As we operate on the level of this macroscopic
description of the fluid, the first law of thermodynamics is suitable:

de = Tds− p̄dv. (4.5)

It states that the internal energy of the system can be changed due to addi-
tional thermal energy or mechanical work. Commonly, the equation of state
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is given in the form of Eq.(4.1). Together with the first law of thermody-
namics and the relations between the various thermodynamical variables,
one can then calculate all variables and thus obtain the full thermodynam-
ical description of the fluid when the EOS is given.

As mentioned in the introduction part, we do not consider any particle cre-
ation or annihilation processes. This implies the conservation of the number
of particles:

∇µ(n̄uµ) = 0. (4.6)

In the non-relativistic limit the particle number conservation corresponds to
the continuity equation

∂tε̄+Di(ε̄v
i) = 0 (4.7)

In General Relativity matter is characterised by its corresponding stress-
energy tensor T (see Appendix D for further information). The stress-energy
tensor describing an ideal fluid is then given by

Tµν = (ε̄+ p̄)uµuν + p̄gµν . (4.8)

Since we consider an ideal fluid, we further have local energy and momentum
conservation. Hence, all together the governing covariant conservation laws
take the form

∇µ(n̄uµ) = 0 (4.9)

∇µTµν = 0. (4.10)

The above system of equations therefore is the relativistic generalisation of
the Euler system Eq.(4.2) and Eq.(4.7). Together with an EOS the motion
of a relativistic ideal fluid can be determined completely.

4.3 The 3+1 Euler equations

According to the explanation in the previous subsection, the main quantity
is the 4-velocity of the fluid. Any vector field on the spacetime manifold
M can be decomposed into its parts normal and tangential to the initial
hypersurface as we have seen in Sec. 2.2. Thus, the 4-velocity is explicitly
given by

uµ = γ(nµ + ϕµ,kv
k), (4.11)

where γ = (1 − vivi)−
1
2 is the Lorentz factor and v the 3-velocity of the

fluid, the main kinematic quantity in the non-relativistic Euler equations.
Of course, it is also the essential variable in the 3 + 1 form and therefore the
relevant dynamical quantity.
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As mentioned before, we are interested in deriving the evolution equations
using the Eulerian approach. Therefore, we first have to define the energy
density, the momentum density, the particle number density and the stress
tensor with respect to the normal n and not to the 4-velocity field u. Hence,
as given by Eq.(D.1), the energy density w.r.t. the normal is then

ε = Tµνn
µnν

= (ε̄+ p̄)uµn
µuνn

ν + p̄gµνn
µnν

= γ2(ε̄+ p̄)− p̄, (4.12)

where we have made use of Eq.(4.11) as well as of the normalisation and
orthonormality condition for n.

The particle number density w.r.t. the normal can be obtained via

n = −n̄uµnµ
= γn̄. (4.13)

Further, the purely spatial part of the stress-energy tensor, the so-called
stress-tensor, is determined by

Sij = ϕµ,iϕ
ν
,jTµν

= ϕµ,iϕ
ν
,j

{
(ε̄+ p̄)uµuν + p̄gµν

}
= γ2(ε̄+ p̄)vivj + p̄hij

= (ε+ p̄)vivj + p̄hij , (4.14)

where we have used Eq.(4.12).

Eventually, the momentum density is given by

pi = −ϕν,inµTµν
= γ2(ε̄+ p̄)vi

= (ε+ p̄)vi. (4.15)

Remark : Generally, the so-called principal pressures are defined as the eigen-
values p1, p2, p3 of the stress tensor S. They coincide in the case of an ideal
fluid and are simply referred as the pressure p̄. [10]

Finally, we have collected all essential relations and definitions to start deriv-
ing the evolution equations of the velocity v. As already mentioned before
there are two ways to deduce the evolution equations: either to directly use
the relation between the time derivative and the Lie derivative, namely

v̇i = ϕµ,iLξ(uµ − nλuλuµ), (4.16)
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or the indirect way of projecting Eq.(4.9) onto the hypersurface and recon-
structing the time derivative via the evolution vector ξ. In order to do so,
one has to multiply the conservation equation with the lapse function N .
This looks like a “trick” and is certainly less elegant but using Eq.(4.16)
directly turns out to lead to quite complex terms and relations, whereas the
projective way is straightforward. Therefore, we perform the derivation of
the evolution equations using this time the mathematically less elegant way
contrary to the derivation of the evolution equations for the electric and
magnetic field, where we have used the other way.

Hence, our starting point is Eq.(4.11), where we insert the stress-energy
tensor in its general decomposition given by Eq.(D.7). It follows immedi-
ately

N∇µTµν = Ngµλ∇λTµν
= Ngµλ∇λ

{
Sµν + nµpν + pµnν + εnµnν

}
= N∇λSλν −NK pν +Nnλ∇λpν +Nnν∇λpλ+

+Npλ∇λnν −NεK nν + εNnλ∇λnν + nνNn
λ∇λε

= 0, (4.17)

where have taken into account equation Eq.(2.23) as well as the facts, that
the covariant derivative of the metric and the scalar product between the
unit normal and any extended spatial vector vanish.

Remark : Let us point out again that the multiplication with the lapse func-
tion N is necessary to obtain well-defined expressions when considering a
general slicing (see Sec. 2.4.1).

In order to get the time evolution equation of the total energy density,
which corresponds to Eq.(4.7) in the non-relativistic limit, the contraction
of Eq.(4.17) is needed. The contraction yields

0 = nν
{
N∇λSλν −NK pν +Nnλ∇λpν +Nnν∇λpλ+

+Npλ∇λnν −NεK nν + εNnλ∇λnν + nνn
λ∇λε

}
= −NSλν∇λnν − pνNnλ∇λnν−
−N∇λpλ +NεK −Nnλ∇λε (4.18)

We notice, that extended spatial quantities, e.q. the stress tensor, can be
identified with the corresponding 3-quantities at the time t. Due to that,
the essential projectors are present but “hidden” in them. Hence it follows

0 = NSijK
j
i −NDip

i − 2piDiN +NεK −Nnλ∇λε

= NSijK
j
i − 2piD

iN −NDip
i +NεK − ξλ∇λε+ βλ∇λε, (4.19)
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where we have again used Eq.(3.49) but this time for the momentum density
as well as Eq.(2.71).

In the case of a scalar field like ε, the Lie derivative reduces to the directional
derivative. Additionally using

ε̇ = Lξε (4.20)

directly gives the evolution equation of the energy density ε:

(∂t −Lβ)ε = NSijK
j
i +NK ε−NDip

i − 2piD
iN. (4.21)

Remark : As in the case of the velocity field v, we could also have chosen
Eq.(4.20) as the starting point to derive the evolution equation. Unfor-
tunately, this way also turns out to be very cumbersome since all kind of
thermodynamical relations have to be used. Therefore, we have decided to
use the way presented above. Further it should be mentioned, that this evo-
lution equation really corresponds to the classical continuity equation. It is
not obvious because we have not expressed the stress-tensor S in terms of
the velocity v. This can easily be done by inserting Eq.(4.14) and Eq.(4.15)
into Eq.(4.21).

After having made use of the energy conservation law, the momentum
conservation is left. From this, the evolution equations for the velocity field
can be deduced. Henceforth, we apply the orthogonal projection to the
energy-momentum conservation equations. As we know that the Lie deriva-
tive must appear in order to obtain a time derivative, we again multiply
these equations with N and therefore are able to reconstruct the evolution
vector as needed. Starting with Eq.(4.17) we obtain

0 = ϕν,i
{
N∇λSλν −NK pν +Nnλ∇λpν +Nnν∇λpλ+

+Npλ∇λnν −NεK nν + εNnλ∇λnν + nνNn
λ∇λε

}
. (4.22)

Making use of the orthonormality condition cancels two terms and therefore
leads to

Nϕν,i∇λSλν −NpiK +Nϕν,in
λ∇λpν + εDiN −NpjKji = 0. (4.23)

Obviously, there remain only two more terms which cannot be interpreted
a priori and therefore have to be treated in greater detail. Let us start
with the very first term in Eq.(4.23). Making use of the relation between
the covariant derivative associated with the spacetime metric g and the one
associated with h and Eq.(2.71) yields immediately

Nϕν,i∇λSλν = NDjS
j
i + SjiDjN. (4.24)
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In order to interpret the third term in Eq.(4.23) some more effort has to be
made. Expressing Nnλ as ξλ − βλ gives

Nϕν,in
λ∇λpν = ϕν,i(ξ

λ − ϕλ,kβk)∇λpν
= ϕν,iξ

λ∇λpν − βjDjpi

= ϕν,iLξpν − ϕν,ipλ∇νξλ − βjDjpi

= ϕν,iLξpν − ϕν,inλpλ∇νN − ϕν,iNpλ∇νnλ−
− ϕν,ipλ∇νβλ − βjDjpi

= ϕν,iLξpν +NpjK
j
i − pjDiβ

j − βjDjpi. (4.25)

Additionally, we have used the definition of the Lie derivative and the or-
thogonality between the unit normal and the momentum co-vector as well
as Eq.(2.23).

Due to previous considerations it is easily understood that the time deriva-
tive of the momentum co-vector is given by

ṗi = ϕν,iLξpν . (4.26)

Besides, it follows from the definition of the Lie derivative of a co-vector
along a vector that the last two terms in Eq.(4.25) exactly reproduce the
Lie derivative of the momentum co-vector along the shift vector β.

Inserting the two auxiliary equations Eq.(4.24) and Eq.(4.25) into the inter-
mediate result Eq.(4.23) gives

0 =NDjS
j
i + SjiDjN −NK pi + εDiN−

−NpjKji + ṗi −Lβpi +NpjK
j
i. (4.27)

The two terms containing the extrinsic curvature vanish. This yields the
evolution equation for the momentum density:

(∂t −Lβ)pi = NpiK −NDjS
j
i − S

j
iDjN − εDiN. (4.28)

These equations are already equivalent to the Euler equations but it is not
common to formulate them in terms of the momentum density. It is rather
usual to use the velocity field v. Therefore, we have to insert Eq.(4.15) into
the above relation leading to

(∂t −Lβ)[(ε+ p̄)vi] =NK (ε+ p̄)vi −NDj [(ε+ p̄)viv
j + p̄δ ji ]−

− εDiN − [(ε+ p̄)vjvi + p̄δ ji ]DjN (4.29)
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The term containing the time evolution of the energy density can be ex-
pressed by the right-hand side of Eq.(4.21). Therefore we get

0 =NviS
m
nK

n
m + viNεK −NiDjp

j − 2vipjD
jN+

+ vi(∂t −Lβ)p̄+ (ε+ p̄)(∂t −Lβ)vi+

+Nviv
jDj(ε+ p̄) + (ε+ p̄)NviDjv

j+

+ (ε+ p̄)NvjDjvi +NDip̄+ (ε+ p̄)viv
jDjN+

+ (ε+ p̄)DiN −NK (ε+ p̄)vi. (4.30)

Taking a close look at the bracket-expressions and inserting the explicit form
of the stress-tensor as given by Eq.(4.14) we see, that several terms cancel
out such that the 3 + 1 Euler equations remain ultimately:

(∂t −Lβ)vi +NvjDjvi +NK n
m vmvnvi =

= − 1

(ε+ p̄)

{
NDip̄+ vi(∂t −Lβ)p̄

}
+ vivjD

jN −DiN. (4.31)

Remark : The above result represents the 3 + 1 Euler equations in the Eu-
lerian approach which is obvious due to the appearance of the convective
derivative (v ·D)v.

The original Euler system contained three kinematic and two thermody-
namical quantities, hence relativistic fluid dynamics is a theory of these five
dependent function. Counting the equations established by now we see im-
mediately, that we have gained only four of the five equations: one for the
energy density and three for the velocity field. In order to close the system
of differential equations, another one is still missing: the particle number
density conservation. Only then the closed 3 + 1 Euler system is complete.

The calculation to derive the evolution equation for the particle number den-
sity in order to close the system is straightforward. We start with Eq.(4.9)
multiplied by the lapse N :

N∇µ(n̄uµ) = N∇µ[n̄γ(nµ + vµ)]

= N∇µ(nnµ + nvµ)

= Nnµ∇µn+Nn∇µnµ +Nn∇µvµ +Nvµ∇µn
= 0. (4.32)

We further make use of Eq.(2.71) to derive a relation for the divergence of
the purely spatial vector v, yielding:

NDiv
i ≡ NDµv

µ = N∇µvµ − vσNnµ∇µnσ = N∇µvµ − viDiN. (4.33)

Inserting the above relation into Eq.(4.32) then gives

Nnµ∇µn−NK n+Di(Nnv
i) = 0. (4.34)
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Since we have multiplied the equation by N , the product Nnλ can be ex-
pressed in terms of the time evolution vector field and the shift:

ξµ∇µn− βµ∇µn−NK n+NDi(Nnv
i) = 0. (4.35)

Since the derivative of a scalar field in the direction of ξ corresponds to its
time derivative, we finally get the evolution equation for the particle number
density :

(∂t −Lβ)n = NK n−Di(Nnv
i). (4.36)

We conclude that for a given equation of state the 3 + 1 Euler system is
given completely by the equations (4.21), (4.31) and (4.36). These equa-
tions coincide with the ones found by [20] in the case of a regular foliation.

Remark : As in the case of the Einstein field equations and the Maxwell equa-
tions, the general relativistic Euler initial problem is also subject to a con-
straint equation, namely to Eq.(4.3). The constraint condition uµuµ+1 = 0
has to be satisfied all times t. With our choice of variables this constraint is
taken care of automatically, since vµu

µ = −γ is not among our dependent
variables.

The last thing remaining is to show that the new 3 + 1 Euler system
Eq.(4.21), Eq.(4.31) and Eq.(4.36) is indeed equivalent to the original one
Eq.(4.9) and Eq.(4.11). By counting equations we see that we have certainly
obtained the right number of equations: the original system consists of five
equations. We also gained five equations from the splitting. But in order
to prove this rigorously, one would have to redo the calculation starting
with the 3 + 1 system and deducing the original general relativistic Euler
equations encoded in the divergence of the energy-stress tensor and the
particle number conservation law.

Lemma 2 The 3 + 1 Euler system Eq.(4.21), Eq.(4.31) and Eq.(4.36) is
equivalent to the original Euler equations given by Eq.(4.9) and Eq.(5.67).

Proof: We don’t give the full proof here but sketch it. Starting with the
evolution equation for the energy density, one can reconstruct the stress-
energy tensor of the ideal fluid by making use of Eq.(4.31). Once we have
reconstructed the stress-energy tensor, it is easy to show that it is divergence-
free due to the Bianchi identity.
It is even easier to prove the equivalence of the particle number conservation
and the evolution equation for n, since one only has redo all the steps of
calculation.

�
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4.4 The Taub formulation

So far, we concentrated on the standard formulation of Euler’s equations,
where the velocity field v is the main dynamical quantity. It followed that
the entire fluid dynamics can then be described via the conservation laws for
the energy density, the momentum density and the particle number density
for a given equation of state. Nonetheless, it turns out that it is often more
use- and fruitful to work with a different dynamical quantity, namely the
vorticity field instead [12]. The main reason for the change of the dynam-
ical variable is that the governing equations of motion turn out to be much
simpler than in the velocity domain. Further, many flows are characterised
by local regions of intense rotation, e.g. smoke rings, hurricanes or the great
red spot on Jupiter. Therefore it is necessary to study the vorticity of the
flow. In non-relativistic hydrodynamics the vorticity is simply:

Definition 16 The vorticity field ω is defined as the curl of the velocity
field v:

ω := curl v = D× v. (4.37)

Its relativistic counterpart turns out be an antisymmetric tensor of second
rank, the so-called vorticity tensor Ω. This generalisation of the vorticity
field was found by Lichnerowicz and Taub [28, 38]. In order to derive the
reformulation of the Euler equations in terms of the vorticity tensor they
used a necessary assumption: the equation of state has to be barotropic.

Definition 17 A barotropic fluid is characterised by an equation of state
such that the pressure p1 only depends on the energy density, hence

p = p(ε), (4.38)

where the energy density ε itself is a function of the particle number density
n and the specific entropy s. Thus, the EOS can equally be assumed to be
dependent on s and n.

Remark : Barotropic fluids are important idealised fluids in Astrophysics.
There, the most common class of barotropic models are so-called polytropes.

More precisely, the equation of state of a barotropic fluid takes a form such
that the energy density is a function of the product n · m, where m is a
C 1-function in s [10]. Thus we have

ε = ε(n ·m(s)). (4.39)

1Notice that we drop the bar in this section: we denote the pressure measured in the
rest frame of the fluid by p only.
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If we assume a barotropic EOS, due to the first law of thermodynamics
Eq.(4.5) the differential of the energy density ε is then given by

dε =
(ε+ p)

n
dn+ nTds. (4.40)

Hence, given the EOS, one can immediately calculate

p(n, s) = n

(
dε

dn

)∣∣∣∣
s

− ε(n, s) T (n, s) =
1

n

(
dε

ds

)∣∣∣∣
s

(4.41)

Now, inserting the EOS given by Eq.(4.39) into the first relation in Eq.(4.41)
we get

p = nm
dε

d(nm)
− ε(nm) = p(ε). (4.42)

Let us rename our variables for reasons of convenience: x := nm, y := ε
and g := p. This yields an ordinary differential equation for the variable x,
which can be solved by separation:

xy′(x)− y(x) = g(y(x))⇒ dx

x
=

dy

g(y) + y
⇒ lnx =

∫
dy

g(y) + y
(4.43)

Hence, the explicit expression for the product n ·m(s) is then

n ·m(s) = exp

{∫
dε

ε+ p(ε)

}
. (4.44)

Therefore we conclude, that any equation of state can be brought in the
form of Eq.(4.39) by solving the integral Eq.(4.44).

Since T is the absolute temperature, it is a positive function. This implies
that the function m(s) is strictly increasing. If further the pressure function
p(ε) is increasing such that the inverse exists and if also the integral∫ p

0

dp′

ε+ p′
= f(p) (4.45)

exists, then the energy and momentum conservation laws respectively the
Euler equations can be expressed in terms of a future directed timelike vector
field [10]:

Vµ = Fuµ, (4.46)

where u is the 4-velocity of the fluid and F := ef ≥ 1. This vector field is
often referred to as the Taub current. It plays an important role in the
description of vorticity in relativistic hydrodynamics and can be interpreted
as the 4-momentum per particle [26].

Definition 18 The vorticity tensor Ω is defined as

Ωµν := ∇νVµ −∇µVν . (4.47)
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Remark : The above defined vorticity tensor vanishes in the case of an irro-
tational fluid [38]. Then the vector field V turns out to be the gradient of
a potential and can thus be written as V µ = −gµν∂νφ [10].

We further note, that an isentropic2 ideal fluid is also barotropic. An
isentropic flow is defined by

uµ∇µs = 0. (4.48)

This together with the particle number conservation implies the following
relation:

∇µ(snuµ) = 0, (4.49)

where s · n denotes the total entropy density and snuµ is often called the
entropy current density. Again notice that n is the number density mea-
sured in the MCRF of the fluid. We have again dropped the bar in the
notation. This is important, since in order to establish the Euler equation
in terms of the vorticity tensor, it follows from the variational principle
of hydrodynamics that the particle number conservation and the conserva-
tion of entropy have to be imposed [8]. Therefore, the consideration of an
barotropic fluid is necessary. This finally yields the Euler equations in the
variable Ω respectively in V:

Ωµνu
ν = T∇µs. (4.50)

Remark : We do not provide the proof of the equivalence of the standard
formulation and this one here. The proofs can for example be found in the
papers by Taub and Brown [38, 8].

Our aim is to derive the 3 + 1 form of the Euler equations in their new
form. Therefore, we have to apply both projection opportunities, the or-
thogonal projection provided by the pullback and the normal projection,
yielding

NnµΩµνu
ν = NnµT∇µs, (4.51)

ϕµ,iΩµνu
ν = ϕµ,iT∇µs. (4.52)

Since in both equations the term Ωµνu
ν appears, it is our first goal to simplify

this expression in terms of the Taub current. Inserting the expressions for
the 4-velocity and the Taub current then gives:

Ωµνu
ν = γ(nν + vν){∇νVµ −∇µVν}

= γ(nν + vν){F∇νuµ + uµ∇νF − F∇µuν − uν∇µF}
= γ(nν + vν){(nµ + vµ)∇ν(Fγ)− (nν + vν)∇µ(Fγ)+

+ Fγ∇νnµ + Fγ∇νvµ − Fγ∇µnν − Fγ∇µvν}. (4.53)

2Isentropic means adiabatic and reversible.
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In order to establish the final expression we have taken into account Eq.(2.17),
Eq.(2.16) and the fact that the normal is orthogonal to the spatial velocity v.

After this useful simplification, we can now start with the first projection.
Therefore, we apply Nn to the above equation:

NnµΩµνu
ν = −Nγ(nν + vν)∇ν(Fγ) +

1

γ
Nnµ∇µ(Fγ)+

+ FγNnµuν∇νnµ + FγNnµuν∇νvµ−
− FγuνNnµ∇µnν − FγuνNnµ∇µvν

= −Nγ(nν + vν)∇ν(Fγ) +
1

γ
Nnµ∇µ(Fγ)−

− Fγ2vµNn
ν∇νnµ − Fγ2Nvµvν∇νnµ−

− Fγ2(nν + vν)ϕν,jD
jN + Fγ2vνNn

µ∇µnν−
− Fγ2vνNnµ∇µvν

= −Nγ(nν + vν)∇ν(Fγ) +
1

γ
Nnµ∇µ(Fγ)+

+ Fγ2NvµvνKµν − Fγ2vνϕ
ν
,jD

jN−
− Fγ2vνNnµ∇µvν . (4.54)

We have used the same relations as already mentioned below Eq.(4.53). Note
that we used Eq.(2.23) since the right projector is present due to the spatial
velocity v. Additionally, we made use of Eq.(2.71) and

γ2 =
1

1− vkvk
. (4.55)

The very last term on the right-hand side of Eq.(4.54) can be rewritten as
Fγ2vνNnµ∇µvν = 1

2γ2
FNnµ∇µγ2.

Further, expressing Nnλ in terms of ξ and the shift β gives

NnµΩµνu
ν =

1− γ2

γ
(ξµ − βµ)∇µ(Fγ)−NγvjDj(Fγ)+

+NFγ2vjviKij −
1

2γ2
F (ξµ − βµ)∇µγ2 − Fγ2vjDjN (4.56)

Until now we have only considered the left-hand side of Eq.(4.50). Applying
Nnµ to right-hand side gives

TNnµ∇µs = T (ξµ − βµ)∇µs
= T (Lξ −Lβ)s

= T (∂t −Lβ)s, (4.57)
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since s is only a scalar function and not a vector field. Let us further
introduce the spatial Taub current by

Vi = ϕµ,iVµ = Fγvi. (4.58)

Using again the definition of the Lie derivative of a function and Eq.(4.58)
the first evolution equation finally writes as:

T (∂t −Lβ)s =− γvkvk(∂t −Lβ)(Fγ)−NγvjDj(Fγ)−

+NγV jviKij − γV jDjN −
1

2γ2
F (∂t −Lβ)γ2. (4.59)

It describes the evolution of the specific entropy s.

In order to gain the equivalent 3 + 1 form of Eq.(4.50) the orthogonal pro-
jection has to be performed as well. Thus, for the left-hand side given by
Eq.(4.53) we obtain:

ϕµ,iΩµνu
ν = ϕµ,iu

ν{(nµ + vµ)∇ν(Fγ)− (nν + vν)∇µ(Fγ)+

+ Fγ∇νnµ + Fγ∇νvµ − Fγ∇µnν − Fγ∇µvν}
= uνvi∇ν(Fγ)− uν(nν + vν)Di(Fγ)− uνFγϕµ,iKµν+

+ uνϕµ,iFγ∇νvµ + uνϕµ,iFγKµν − Fγϕµ.iu
ν∇µvν

= γvin
ν∇ν(Fγ) + γviv

kDk(Fγ) + γ(1− vkvk)Di(Fγ)+

+ Fγ2ϕµ,in
ν∇νvµ + Fγ2vkDkvi + Fγ2ϕµ,iv

ν∇µnν−

− Fγ2vkDivk

= γviv
kDk(Fγ) +

1

γ
Di(Fγ) + Fγϕµ,in

ν∇ν(Fγvµ)+

+ Fγ2vk(Dkvi −Divk)− Fγ2Kijv
j . (4.60)

The above calculation is straightforward, making use of all necessary rela-
tions, in detail already mentioned below Eq.(4.53). It is a priori not clear,
how the term γϕµ,in

ν∇ν(Fγvµ) in the above equation shall be interpreted.
For this reason we have to deal with it in greater detail. Since we are inter-
ested in deriving the time evolution for the spatial Taub current, we have to
multiply the above relation by N in order to obtain well-defined expressions.
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For the ambiguous term we then get:

γϕµ,iNn
ν∇ν(Fγvµ) = γϕµ,i(ξ

ν − βν)(Fγvµ)

= γ2Fϕµ,iξ
ν∇νvµ + γϕµ,ivµξ

ν∇ν(Fγ)− γ2Fϕµ,iβ
ν∇νvµ − γϕµ,ivµβ

ν∇ν(Fγ)

= γviLξ(Fγ) + γ2Fϕµ,iLξvµ − γ2Fϕµ,ivν∇µξ
ν − γviβkDk(Fγ)−

− γ2FβkDkvi

= γ∂t(Fγvi)− γ2FvkDiβ
k + γ2NFvkK

k
i − γviβkDk(Fγ)− γ2FβkDkvi

= γ∂t(Fγvi) + γ2NFvkK
k
i − γFLβvi − γviLβ(Fγ)

= γ∂t(Fγvi)− γLβ(Fγvi) + γ2NFvkK
k
i . (4.61)

Reinserting this important auxiliary result in our original equation Eq.(4.60)
then yields for the left-hand side the following result:

Nϕµ,iΩµνu
ν = γ∂t(Fγvi)− γLβ(Fγvi) + γ2NFvkKik +

N

γ
Di(Fγ)+

+ γNviv
kDk(Fγ) +NFγ2vk(Dkvi −Divk)−NFγ2Kijv

j

= γ(∂t −Lβ)Vi +
N

γ
Di(Fγ) +NγvkDkVi−

−NγvkDiVk +Nγvkv
kDi(Fγ)

= γ(∂t −Lβ)Vi + γDi(Fγ) +Nγ(vkDkVi − vkDiVk). (4.62)

The projection of the right-hand side of Eq.(4.50) is calculated easily and
turns out to be:

NTϕµ,i∇µs = NTDis. (4.63)

Eventually, putting all pieces together we obtain the final time evolution
equation for the Taub current:

(∂t −Lβ)Vi =
NT

γ
Dis−Di(Fγ)−N(vkDkVi − vkDiVk). (4.64)

We conclude, that in the case of a barotropic fluid, the Euler equations
can be reformulated in terms of the vorticity tensor respectively the Taub
current. The 3 + 1 system is then given by the equations Eq.(4.59) and
Eq.(4.64).
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Chapter 5

The 3 + 1 Formulation of the
Einstein Equations

Since the last chapters focused entirely on geometric concepts and prop-
erties as well as on the 3 + 1 formulation of electromagnetism and ideal
hydrodynamics on a curved background, we now turn to full General Rela-
tivity: it is time to apply the 3+1 splitting to the fundamental equations of
General Relativity: Einstein’s field equations. This procedure allows us to
deduce a valid initial value problem formulation of General Relativity itself.
In order to do so, we consider a 4-dimensional semi-Riemannian spacetime
(M, g) such, that the spacetime metric g fulfills the Einstein equations with
a vanishing cosmological constant Λ:

G := 4R− 1

2
4Rg = 8πT, (5.1)

where G is the Einstein tensor, 4R the Ricci tensor associated with the
spacetime metric g as given by Eq.(2.7), 4R the corresponding Ricci scalar
and T is the stress-energy tensor of the source of the gravitational field (for
further details see Appendix D). Note that the right-hand side vanishes in
the case of vacuum, hence the vacuum field equations reduce to G = 0. In
components, i.e. in local coordinates {xσ} on M, Eq.(5.1) writes as

Gµν := 4Rµν −
1

2
4Rgµν = 8πTµν . (5.2)

In order to obtain the 3 + 1 version of Eq.(5.2) one could either apply the
orthogonal projection introduced in Sec. 2.3 directly to the Einstein tensor,
or to the equivalent form of the field equations given by

4Rµν = 8π(Tµν −
1

2
4T gµν), (5.3)

where T is the trace of the stress-energy tensor with respect to the spacetime
metric g. It turns out that the projection of Eq.(5.3) is more handy, thus we
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follow the approach presented in [20]. The “direct splitting” of the standard
form of Einstein’s equations can be found in [42].

5.1 Projection of Einstein’s equations

We consider a Lorentzian spacetime and a spacelike hypersurface ϕ(Σ) ful-
filling all properties given in Sec. 2.1. Hence, the approach is now to divide
Einstein’s equations into parts tangent to the hypersurface and orthogonal
to it. Further we assume a family of smooth embeddings generated by a
local vector field ξ(x) on M . Therefore, the concepts of the orthogonal pro-
jection, the unit normal and further the time evolution play a crucial role
(see Sec. 2.3).

Let us start with the orthogonal projection of the left-hand side of Eq.(5.3),
which we have multiplied by N to make use of Eq.(2.74). Due to the ap-
pearance of successive covariant derivatives it is far more complicated to
derive the final result if we stick to a general slicing. Therefore, we assume
N > 0 for this derivation only. If we do so, we are able to use the rela-
tion Eq.(2.26) which simplifies the derivation significantly. Further, taking
into account the equations (2.54) as well as the orthonormality condition
ϕσ,inσ = 0 we obtain:

Nϕµ,iϕ
ν
,j

4Rµν = N3Rij +NK Kij −NKimK
m
j −Nϕµ,iϕ

ν
,j

4Rµσνρn
σnρ

= N3Rij +NK Kij −NKimK
m
j −

−Nϕµ,iϕ
ν
,jn

ρ(∇ν∇ρ −∇ρ∇ν)nµ

= N3Rij +NK Kij −NKimK
m
j −

−Nϕµ,iϕ
ν
,jn

ρ[∇ν(−Kρµ − aµnρ)−∇ρ(−Kµν − aµnν)]

= N3Rij +NK Kij −NKimK
m
j −Nϕµ,iϕ

ν
,j(Kρµ∇νnρ+

+∇νaµ + nρ∇ρKµν + aµaν)

= N3Rij +NK Kij −DiDjN −Nϕµ,iϕ
ν
,jn

ρ∇ρKµν , (5.4)

where we have also used N∇νaµ = ∇ν(Naµ) − aµ∇νN to get the last line
of Eq.(5.4).

Let us now show that the very last term in Eq.(5.4) is related to the time
evolution of the extrinsic curvature K. The Lie derivative of K along the
time evolution vector field ξ according to Appendix A is given by

LξKµν = ξρ∇ρKµν +Kµρ∇νξρ +Kρν∇µξρ. (5.5)
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Comparison with Eq.(5.4) and making use of Nnρ = ξρ − βρ, yields the
following intermediate result:

Nϕµ,iϕ
ν
,jn

ρ∇ρKµν = ϕµ,iϕ
ν
,j(LξKµν −Kµρ∇νξρ −Kρν∇µξρ − βρ∇ρKµν)

= K̇ij − ϕµ,iϕ
ν
,j(NKµρ∇νnρ −Kµρ∇νβρ−

−NKρν∇µnρ −Kρν∇µβρ − βρ∇ρKµν)

= K̇ij − ϕµ,iϕ
ν
,jLβKµν + 2NKimK

m
j , (5.6)

where we have taken into account that Kαβn
β = 0 since K is tangential to

the hypersurface.

Now, taking the above relation and inserting it into Eq.(5.4) leads to the
designated final result for the left-hand side of the field equations:

Nϕµ,iϕ
ν
,j

4Rµν = N3Rij+NK Kij−K̇ij+LβKij−2NKimK
m
j −DiDjN (5.7)

The afore derived equation is only the first part of the projection of the
Einstein equations onto Σ. Now we have to work out the right-hand side as
well which is done very easily:

8πNϕµ,iϕ
ν
,j(Tµν −

1

2
4T gµν) = 8πN(Sij −

1

2
4T hij), (5.8)

where Sij denotes the stress tensor. All together this gives now

N3Rij+NK Kij−K̇ij+LβKij−2NKimK
m
j −DiDjN = 8πN(Sij−

1

2
4T hij).

(5.9)
An alternative derivation of the time evolution equation for the extrinsic
curvature is performed in Appendix C. We have chosen to more convenient
way here because it is more obvious that the evolution equations for K fol-
low directly from the Einstein field equations.

Remark : For simplicity we have derived the evolution equation using the
assumption N > 0. We state without proof that the equations remain valid
in the setting of a general slicing.

Since the extrinsic curvature is a symmetric, purely spatial tensor of second
rank, the above relation yields equations for three components. Together
with the evolution equations for the components of the spatial metric we
have a total of six equations. Einstein’s field equations form a system of
ten quasilinear PDEs. Thus, in order to close the system there are still four
equations missing. But, since the evolution equations have already been
deduced, these additional equations will rather be constraints which have to
be imposed on the dynamical variables h and K.
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After having performed the full projection of the Einstein equations onto
Σ, there remain two possible projections: first we are to find the projection
perpendicular to the considered hypersurface. This is done by contracting
Eq.(5.2) twice with the unit normal n since Einstein’s equations are a tensor
identity between bilinear forms. Using the normalisation of n, we get

4Rµνn
µnν +

1

2
4R = 8πTµνn

µnν . (5.10)

Now, taking into account the scalar Gauß equation Eq.(2.55), we find im-
mediately:

3R + K 2 −KijK
ij = 16πε, (5.11)

where we have used that the double contraction of the stress-energy tensor
T with a unit normal vector gives the total energy density ε of the matter
w.r.t. n (see Appendix D). Notice that the above equation does not contain
any time derivatives and therefore is not an evolution equation but really
a constraint equation as mentioned before that must be satisfied at all
times t. Eq.(5.11) is often referred to as the Hamiltonian constraint equa-
tion since it contains the energy density.

Together with this constraint equation, we have a total of seven equations.
Thus, there are still three components missing. In order to reproduce the
full system, we have to perform the so-called mixed projection of the field
equations:

ϕµ,i
4Rµνn

ν − 1

2
ϕµ,i

4Rgµνn
ν = 8πϕµ,iTµνn

ν . (5.12)

The second term vanishes identically since ϕµ,igµνn
ν = ϕµ,inµ ≡ 0. Taking

into account that the contraction of the stress-energy tensor with a unit
normal and its pullback onto Σ gives minus the momentum density p of
the matter as measured by an observer with 4-velocity n (see Eq.(D.2)) and
the contracted Codazzi equation Eq.(2.45) we maintain the three missing
equations to close the Einstein system:

DjK
j
i −DiK = 8πpi. (5.13)

As before there are no time derivatives contained in the afore derived equa-
tion. Therefore they are also constraint equations that have to be fulfilled
at all times. The above equation is known as the momentum constraint
for obvious reasons. The constraint equations are non-linear elliptic partial
differential equations for the initial data h and K.

We conclude that the Einstein system can be reformulated as a con-
strained Cauchy problem for the two dynamical variables, the spatial metric
and the extrinsic curvature, when they are specified on an initial hypersur-
face.
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5.2 The 3+1 Einstein system

Now, collecting the above results the final 3 + 1 Einstein system rewrites
as a system of six evolution equations and four constraint equations. Thus,
the general relativistic Cauchy problem is given by:

The evolution equations:

(∂t −Lβ)hij = −2NKij (5.14)

(∂t −Lβ)Kij = N3Rij +NK Kij − 2NKimK
m
j −

−DiDjN − 8πN
{
Sij −

1

2
4T hij

}
(5.15)

and the constraint equations:

3R + K 2 −KijK
ij = 16πε (5.16)

DjK
j
i −DiK = 8πpi (5.17)

If the source terms (ε,p,S) are given, the system Eq.(5.14)-Eq.(5.17) consti-
tutes a non-linear PDE system of second order for the variables (h,K, N, β).
The evolution equations Eq.(5.14) and Eq.(5.15) are sometimes called the
ADM equations, although the evolution system was already known before
their work.

Remark : It is of importance to notice that we have no evolution equations
for lapse and shift. These two represent the coordinate freedom in General
Relativity and therefore can be chosen freely [1].

5.3 The Initial Value Problem in General Relativ-
ity

General Relativity states that gravitation is described by and encoded in
a 4-dimensional Lorentzian manifold M which is mainly characterised by a
symmetric second-rank covariant tensor field, the spacetime metric g. [42]
The metric is a solution of the prescribing field equations, the Einstein
equations. These equations form a geometric system of non-linear partial
differential equations (PDEs) of second order, whereas space and time play
equivalent roles. Thinking about astrophysical configurations, it is natural
and reasonable to ask about the evolution of the gravitational field of a given
source. This is the subject of an initial value formulation. But, in the case
of General Relativity, it is a priori not clear how this shall be done, since
time and space build up a 4-dimensional grid [1].
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Fortunately, Einstein’s field equations can be reduced to a system of
strictly hyperbolic PDEs, which are, from a mathematical point of view,
of the same type as the wave equation. Therefore, it appears to be feasi-
ble due to the theory of hyperbolic partial differential equations to look for
the development of solutions which are given on an initial spacelike hyper-
surface. It had been proven several decades ago that Einstein’s theory of
gravity can be rewritten such, that the dynamical evolution can be deter-
mined uniquely. In other words, General Relativity possesses a well-posed
initial value formulation. Such a formulation demands a separation between
“space” and “time” such, that Einstein’s equations are rewritten in terms of
purely spatial, time-dependent tensor quantities. The explicit performance
of this reformulation of the field equations is done in the previous section.
We now focus on the formulation and the properties of the initial value
problem in General Relativity.

The concept of an initial value problem or Cauchy problem is of central
importance in the study of differential equations. Roughly speaking, the
initial value problem simply consists of a differential equation (either
ordinary or partial) and initial conditions. In the case of second order
differential equations, naturally two appropriate initial conditions have to
be specified. Rigorously, the initial value problem for an ordinary differential
equation is generally defined as:

Definition 19 Be k ∈ N and f : R × Rn+k → Rn and y ∈ Rn a function
of the independent variable t. Then, the initial value problem of kth-order
is given by

y(k) = f(t, y(t), y′(t), ..., y(k−1)(t))

y(i)(t0) = yi, i ∈ {0, 1, ..., k − 1}. (5.18)

Note that the initial points have to lie in the domain of the function f in
order to define the initial value problem. A solution of the initial value
problem is a function y(t) that is a solution of the differential equation and
satisfies the initial conditions. For a large class of initial value problems, the
existence and uniqueness of solutions is given due to the theorem of Picard
and Lindelöf (see any modern text on differential equations).

On the level of partial differential equations, the initial value problem is
commonly referred to as the Cauchy problem. Like in the ordinary case,
it asks for a solution to a PDE (or a system of PDEs) that satisfies cer-
tain initial conditions given on a hypersurface in the domain. The existence
and uniqueness of solutions to Cauchy problems are subject to the famous
theorem by Cauchy and Kovalevskaya (see any modern text on PDEs):

Theorem 1 (Cauchy-Kovalevskaya theorem): Let {t, x1, ..., xm−1} be coor-
dinates of Rm. Consider a system of n partial differential equations for n
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unknown functions f1, ..., fn in Rm of the form

∂2fi
∂t2

= Fi(t, x
j ; fk; ∂tfk; ∂jfk; ∂t∂jfk; ∂j∂lfk), (5.19)

where each Fi is an analytic function. Let ui(x
j) and vi(x

j) be analytic
functions. Then there is an open neighbourhood O of the initial hypersurface
ϕ0(Σ) such that within O there exists a unique analytic solution of Eq.(5.19)
such that fi(0, x

j) = ui(x
j) and ∂tfi(0, x

j) = vi(x
j).

Let us now turn to the nature of the Cauchy problem in General Relativity
but notice that we only provide a brief overview of the problem. A detailed
and rigorous explanation can for example be found in [9]. A comprehensive
summary is provided by [37].

For this purpose, let us recall that any spacelike hypersurface ϕ(Σ) of a
Lorentzian manifold (M, g) possesses an induced Riemannian metric h and
a second fundamental form K (see Chapter 2 ). The famous Gauß and Co-
dazzi relations then show that certain components of the Einstein tensor
G are determined completely by g and K. This fact is the first important
observation concerning the nature of the initial value problem in General
Relativity: these equations have to be imposed as constraints for the initial
data (see previous subsections).

Secondly, we have to define a set of initial data. In the context of General
Relativity, an initial data set is a triple (Σ,h,K), where Σ is an abstract
3-dimensional manifold, h a Riemannian metric and K a symmetric ten-
sor of rank 2. A development of the initial data set is a triple (M,g, ϕ),
where (M, g) is the 4-dimensional Lorentzian manifold, the spacetime, and
ϕ a diffeomorphism ϕ : Σ → ϕ(Σ) ⊂ M , such that h = ϕ∗g and ϕK is
the extrinsic curvature of ϕ(Σ) as submanifold of (M, g). A development of
(M,g, ϕ) is called an Einsteinian development or E-development if the
metric g satisfies the Einstein equations on M [9].

As already mentioned before, the initial data (h, K) cannot be chosen arbi-
trarily, but have to satisfy the constraint equations Eq.(5.16) and Eq.(5.17).
If and only if h and K satisfy the constraints, an E-development can exist.

One crucial point in the discussion of the Cauchy problem is the well-
posedness of the problem. This means that

• the problem has a solution

• the solution is unique

• the solution depends continuously on the initial data.
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Moreover, according to the definition of a Cauchy problem, must the evolu-
tion equations guarantee the propagation of the constraints. If one considers
the Einstein vacuum equations for reasons of simplicity and makes use of
the contracted Bianchi identity, one obtains a first order linear homogeneous
system of PDEs. Thus, if these equations are satisfied for t = 0, they are
satisfied for all times later for given analytic data. Rigorously, this can be
proven with the theorems that guarantee the existence and uniqueness of a
solution to the Cauchy problem in General Relativity [37, 43].

In order to obtain at least the local existence and uniqueness theorems
in General Relativity, one makes use of the harmonic gauge condition, since
Einstein’s equations turn out to be a strictly hyperbolic system in this gauge.
This special gauge condition requires that the coordinate functions xµ are
harmonic:

Hµ ≡ 2xµ = ∇σ∇σxµ = 0. (5.20)

This is of crucial importance, because there exist mathematical theorems for
these kind of PDE systems, which guarantee the existence and uniqueness
of solutions. Another equally important fact is that it is sufficient to solve
the Cauchy problem for the reduced Einstein system since it guarantees the
propagation of the harmonic gauge condition. If the gauge condition and
the constraints are imposed on the initial surface, they hold for all later
times. Hence, also the field equations are satisfied. In the harmonic gauge,
the vacuum field equations rewrite as1:

0 = RHµν = Rµν +
1

2

∑
α

(gαµ∂ν + gαν∂µ)Hα

= −1

2

∑
α,β

gαβ∂α∂βgµν + F̂µν(g, ∂g), (5.21)

where F̂ is a non-linear function of the metric components and their first
derivatives. Thus, the original Einstein equations are equivalent to the above
system of quasi-linear hyperbolic PDEs together with the harmonic gauge
condition. The PDE system Eq.(5.21) is known as the “reduced Einstein
equations”. The key point is, that Einstein’s equations are now in such a
form that well-established mathematical theorems tell us, that the equations
possess locally a unique solution for smooth initial date gµν(t = 0, xi) and
∂tgµν(t = 0, xi). In order to obtain even global uniqueness, the considered
spacetime has to be globally hyperbolic. For the relevant theorems see [42]
or [9]. Therefore, we conclude that General Relativity definitely possess a
valid initial value formulation in the vacuum case.

1The explicit and detailed derivation can be found in [42] Chapter 10.
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Finally, let us make a brief comment on the well-posedness of the initial
value formulation of the Einstein equations with matter sources. Its exis-
tence depends strongly on the dynamical equations satisfies by the matter
and the explicit form of the stress-energy tensor. A well-posed initial value
formulation only exists, if the matter consist of fields which satisfy a quasi-
linear hyperbolic equation and if the stress-energy tensor depends only on
these fields, the metric and the first derivatives of them, because then the
combined Einstein system in the harmonic gauge takes again the form of
Eq.(5.21). Thus, the Einstein-Maxwell equations have a well-posed initial
value formulation. It was further shown that some systems, which cannot
be rewritten in this form, also possess a well-posed initial value formulation,
in particular the Einstein- perfect fluid system for a barotropic equation of
state [24]. But the initial value formulation is not an automatic feature in
most field theories and therefore certain field equations generalised to curved
spacetime do not posses a valid initial value formulation [42].
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Chapter 6

Summary

This chapter contains a brief overview of the topics treated and the results
obtained in this work. All relevant formulae are derived and explained in
great detail in the main text.

Chapter 2

Since the knowledge of hypersurfaces is crucial for the understanding of
the 3 + 1 formalism of General Relativity, the entire chapter is dedicated to
main geometric and kinematic properties of Riemannian hypersurfaces.

First, we give an introduction to the differential geometry of a single
hypersurface, later we introduce a general family of such surfaces - a so-
called slicing - generated by a 1-parameter family of smooth embeddings,
which is a far more general case than the standard one which only considers
non-intersecting hypersurfaces, commonly called a foliation. The two main
gauge quantities, lapse N and shift β are presented here. In this chapter
we also define several important vector fields along the embedding such as
the normal vector field, which connects the parameter derivative along the
embedding with the Lie derivative in the ambient 4-dimensional Lorentzian
manifold. We spend quite some time on this general formalism since we do
not impose any constraints on lapse and shift and therefore many quantities
are not defined on the spacetime manifold M anymore. Important relations
between 3- and 4-dimensional objects like the famous Gauß and Codazzi
relations are deduced. Finally, we compare the standard foliation case with
a general slicing in greater detail.

Let us note that not only the fundamental geometric objects and their
relations are defined but also a specific notation is developed in this chapter
which is used throughout the entire work.
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Chapter 3

This chapter is devoted to the explicit derivation of the 3 + 1 equations
of Maxwell’s theory of electromagnetism. We assume an electromagnetic
plasma to propagate on a given curved metric background. Hence, we ne-
glect the gravity induced by them and do not study the Einstein-Maxwell
equations. These can be found in [2].

The first part gives a brief introduction to Maxwell’s theory of electro-
magnetism. We summarise its covariant formulation and deduce the 3 + 1
equations in a completely general way. We see then explicitly that the initial
value problem in Maxwell’s theory is subject to two constraint conditions -
the Gauß law and the non-existence of magnetic monopoles.

Chapter 4

After the detailed discussion of the electromagnetic field and its 3 + 1 de-
composition, we turn to general relativistic hydrodynamics in the case of a
one-component fluid. We restrict the discussion to ideal or perfect fluids,
thus no heat conduction and/or viscosity are present.

First, we summarise the thermodynamics and the kinematics of a perfect
fluid yielding the general relativistic form of the Euler equations represented
by three conservation laws plus an equation of state. Secondly, we decom-
pose the 4-dimensional equations yielding their final 3 + 1 form consisting
of the evolution equations for the spatial velocity and the particle number
density as well as of the normalisation condition for the 4-velocity which is
again a constraint equation.

We then turn towards a different formulation of hydrodynamics, namely
to the so-called Taub formulation. This formulation plays an important role
in the context of circulation and vorticity. It is of main interest in the study
of turbulent flows and convection. For this purpose, barotropic fluids and
the Taub current Vµ are introduced. The final 3 + 1 system consists of the
evolution equations for the specific entropy and the spatial Taub current
and again of the constraint equation for the 4-velocity.

Chapter 5

In Chapter 5 we first introduce the Einstein field equations and then de-
duce their equivalent 3 + 1 formulation. Therefore we apply the formalism
developed in Chapter 2 to them, although we assume N > 0 in this deriva-
tion for reasons of simplicity. It turns out that the initial value formulation
of General Relativity leads to a constrained Cauchy problem. The 3 + 1
form of the Einstein equations consists of three evolution equations for the
spatial metric h, which are purely due to the kinematics of a hypersurface,
three evolution equations for the extrinsic curvature K and four constraint
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equations, known as the Hamiltonian and the momentum constraint. An al-
ternative, less obvious but more elegant derivation of the evolution equations
for the extrinsic curvature can be found in Appendix C.

After the derivation of the 3 + 1 Einstein system, we present a brief
overview of the Cauchy problem in General Relativity. The local version
of the initial value problem is explained and crucial theorems governing the
existence and uniqueness of solutions are mentioned.
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Concluding Remarks

The well-posed initial value formulation of General Relativity had a major
impact on the field of Numerical Relativity, leading to the development of
codes which determine the motion of black holes, neutron stars, accretion
discs etc. in full General Relativity and not only in post-Newtonian ap-
proximations. In order to do so, a specific slicing has to be chosen. In the
standard formulation this is chosen to be a regular foliation. In our general
approach to the 3 + 1 formulation we do not restrict the discussion to a
foliation but instead try to establish meaningful expressions under the con-
sideration of a slicing. In such a setting all relevant quantities are defined
only along the given family of embeddings. Nonetheless, it is not clear yet
whether the associated initial value problem is well-posed in the case of a
vanishing lapse. But, as expected, we gain the same 3+1 equations as in the
context of a foliation. We want to emphasise that one of the key points even
in our general approach is the development of a meaningful concept of the
time derivative of the normal although it is not a vector field on M anymore.
This general formulation is not only interesting from a pure mathematical
point of view, it might also broadens the range of relevant and applicable
slicings in Numerical Relativity, especially in cosmological contexts.

Further, we provide the explicit and detailed derivation of the general
3 + 1 Maxwell and Euler equations. Though we have not done the full
Einstein-Maxwell or Einstein-Euler equations, the combination is rather
easy since we have already done one part of it. Additionally, is it now
not difficult to combine the 3+1 Maxwell and 3+1 Euler equations in order
to establish the general 3 + 1 form of magnetohydrodynamics. However, the
consideration of an electromagnetic field and/or a perfect fluid in a curved
background plays an important role in the description of accretion discs or
matter flows and thus is relevant for numerical simulations.

Moreover, we present the 3 + 1 version of the Taub formulation of ideal
hydrodynamics. This special formulation is of importance regarding the
derivation of the equations of motion from the variational principle. The
Taub formulation has recently become very popular in the context of su-
perfluidity and the study of neutron stars [34]. The explicit and detailed
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derivation of its 3 + 1 version might be useful for the simulation of neutron
star matter in full General Relativity.
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Appendix A

Lie Derivative

One of the most useful and essential analytic tools in differential geometry
is the Lie derivative along a congruence. Since it is also fundamental in
the 3 + 1 formulation established in Chapter 2, this appendix shall provide
a comprehensive annotation of the concept.

Definition 20 Let M be a smooth manifold. A congruence is a family of
non-intersection curves1 which fills a region V ⊆ M , i.e. each point p ∈ V
lies on one and only one curve. The congruence is generated by a vector
field which is tangential to each point on a curve of the congruence. They
are said to be the integral curves of the generator.

Let λ ∈ R be the parameter of one curve. Consider a point on the curve
at the parameter value p(λ0). Then, a congruence defines a map such that
p(λ0) can be mapped into a point p(λ0 + ∆λ) a bit “further away” but still
on this curve. Hence, a congruence defines a one-to-one map in a region
V , where the generating vector field is well-defined and at least C 1. If the
generator is even C∞ then the map is a diffeomorphism. The figurative
explanation already suggests that this map provides the dragging of points
along the congruence. Therefore this map is commonly called Lie dragging
[36].

The dragging permits the definition of a derivative along the congruence,
although the concept of a derivation of vectors and tensors on a general man-
ifold is a difficulty in itself [42]. In Euclidean geometry a natural parallelism
exists and therefore vectors at two different points can easily be compared
with each other. In a curved space there is no natural identification of the
tangent spaces at two distinguishable points. In order to compare vectors
or tensors living in different spaces and calculate their infinitesimal differ-
ence as we do in simple analysis, an additional structure has to be added:

1A smooth curve C on the manifold M is simply a C ∞-map from I ⊆ R into M.

70



an affine connection (see [42, 36]). But, using the frame work of a congru-
ence, the problem of parallelism can be avoided in an elegant way: vectors
and/or tensors defined at different points along the congruence can easily be
dragged and evaluated at the same point. If a vector defined at the point
p(λ0) is Lie dragged along the congruence to the point p(λ0 + ∆λ) and eval-
uated there, a new vector arises. The comparison between this new one and
the original one defined at this point yields a unique difference and hence
defines the infinitesimal change of the vector which is the fundamental idea
of a derivative. But notice that this difference does, of course, depend on
the choice of the congruence. This kind of derivative along a congruence is
called the Lie derivative and commonly denoted by the special operator L .

Let us now derive an explicit expression for this kind of derivative. First con-
sider a scalar function f defined on V ⊆M . The procedure suggested above
is the following: evaluate the function f at the parameter value λ0 + ∆λ,
drag it back to the point at λ0, subtract the value of the function there,
divide it by the parameter difference ∆λ and take the limit ∆λ → 0 [36].
Notice that the back dragging or pullback defines a new function f̃ at λ0.
Hence, the result is:

df

dλ

∣∣∣∣
λ0

= lim
∆λ→0

f̃(λ0)− f(λ0)

∆λ
(A.1)

Thinking about calculus and the difference quotient, the above result is, of
course, not surprising. As expected, the Lie derivative of a function can be
generalised to the Lie derivative of vectors, one-forms and eventually to any
kind of tensors.

In order to see the the link between the general definition of the Lie deriva-
tive and our application to the 3 + 1 formalism immediately, we change our
notation: let ϕt be the congruence generated by the vector field ξ ∈X (V ),
where t ∈ R is the curve parameter and X (V ) denotes the set of the smooth
vector fields on V ⊆M . Due to Definition 20 it is clear, that ξ is defined as
the derivative of the congruence, hence satisfying a set of ordinary differen-
tial equations, namely ξ := ϕ̇. Further, let T be a tensor field of type (k, l)
defined on this region V in M and p the point on the curve with parameter
value t = 0. Then, the Lie derivative of T along ξ is given by

(LξT)(p) = lim
∆t→0

{
(ϕ∗−∆tT )(p)− T (p)

∆t

}
(A.2)

or equivalently by

LξT :=
d

dt

∣∣∣∣
t=0

(ϕ∗tT ), (A.3)
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where the star-operation denotes the dragging or pullback as introduced in
Chapter 2. This means that the Lie derivative describes the negative rate of
change of a smooth tensor field when being Lie dragged along a vector field.
Further it follows immediately from the above definition that the Lie deriva-
tive Lξ is a linear map from smooth tensor fields of type (k, l) to smooth
tensor fields of type (k, l), it permutes with the contraction and satisfies the
Leibniz rule [42]. Hence, it is a derivation on the tensor algebra.

In order to analyse the action of the Lie derivative on an arbitrary tensor
field, it is helpful to introduce local coordinates {xµ} on M such that the
family parameter t is chosen to be one of the coordinates, e.g. x0. The gen-
erating vector field ξ can then be chosen to be the tangent to the coordinate
line ∂

∂x0
. This choice of coordinates is called an adapted coordinate system.

The action ϕ∗−∆t then corresponds to a simply coordinate transformation,
namely to x0 7→ x0 + ∆t [42]. Consequently, the components of the Lie
derivative of T written in a coordinate system adapted to the generating
vector field ξ are:

LξT =
∂T

∂x0
. (A.4)

In adapted coordinates the Lie derivative of a vector field u respectively its
components is then given by

Lξu
σ =

∂uσ

∂x0
. (A.5)

From this we can obtain a coordinate independent expression for the Lie
derivative of a vector field u by considering that u = uα ∂

∂xα . Hence, it
follows

Lξu = [ξ,u], (A.6)

where the bracket denotes the common commutator of the two vector fields.
Notice, that Eq.(A.6) is a coordinate-independent formula and hence valid
in any arbitrary coordinate system and thus holds for any derivative op-
erator, e.g. the partial derivate, the covariant derivative etc. [42]. The
same procedure applies to the derivation of the Lie derivative of the dual
vector field. Thus, one finds the final expression for the Lie derivative of an
arbitrary tensor field:

LξT
µ1...µk

ν1...νl
=ξσ∇σTµ1...µk ν1...νl

−
k∑
i=1

Tµ1...σ...µk ν1...νl
∇σξµi

+

l∑
j=1

Tµ1...µk ν1...σ...νl
∇νjξσ (A.7)

Remark 1 : It is rather important to notice, that the Lie derivative is only
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a local concept. The integral curves of the generating vector field only have
to exist up to a finite value of the family parameter which is equivalent to ξ
being only well-defined in a certain region of the manifold M .

Remark 2 : Regarding the explicit form of the generating vector field (see
Eq.(2.65)) certain generic points may occur. One might wonder, if the Lie
derivative is even defined in such cases. The answer is that one does not
have to worry about nulls or purely spatial ξ if and only if the considered
tensor field is tangential to the initial hypersurface ϕ0(Σ).
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Appendix B

Time derivative of the unit
normal n

This chapter is dedicated to the proofs of the essential relations in Chapter
2 concerning the time derivative of the unit normal vector n. Therefore, let
us start the following:

Consider two vectors X,Y ∈ Tpϕt(Σ). Due to the considerations of Chapter
2 we know that

Xµ = ϕµ,jc
j , Y µ = ϕµ,jd

j (B.1)

and further that
(Xλ∇λY µ)|| = ϕµ,jc

iDid
j , (B.2)

where “||′′ denotes the part parallel to the hypersurface ϕt(Σ). Consequently,
the normal part is defined by

(Xλ∇λY µ)⊥ = −nµnνXλ∇λY ν . (B.3)

Furthermore, it is well-known that the complete derivative of Y along X is
given by

Xλ∇λY µ = (Xλ∇λY µ)|| + (Xλ∇λY µ)⊥. (B.4)

In order to derive an explicit expression of the above equation in terms of
ϕσ,k we first have to rewrite Eq.(B.3). This yields

−nµnνXλ∇λY ν = Xλ∇λ(nµnν)Y ν

= ϕν,jd
jϕλ,ic

i∇λ(nµnν)

= −Kijn
µcidj . (B.5)
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Plugging this in Eq.(B.4) as well as the definition of the covariant derivative
it follows

ϕµ,jc
iDid

j − nµKijc
idj = Xλ∂λY

µ + ΓµαλY
α

= ϕλ,ic
i∂λ(ϕµ,jd

j) + Γµαλϕ
λ
,iϕ

α
,jc

idj

= ci∂k(ϕ
µ
,jd

j) + Γµαλϕ
λ
,iϕ

α
,jc

idj

= ϕµ,ijc
idj + ciϕµj∂id

j + Γµαλϕ
λ
,iϕ

α
,jc

idj . (B.6)

Rewriting the induced covariant derivative Di on the left-hand side as

Did
j = ∂id

j + Γ̄jkid
k (B.7)

then yields immediately the desired result:

nµKij = −ϕµ,ij − Γµαλϕ
λ
,iϕ

α
,j + Γ̄kijϕ

µ
,k (B.8)

since all the ingredients are valid ∀c, d ∈ Tp(Σ).

Now, differentiating the orthonormality as well as the normalisation con-
dition w.r.t. the time parameter t gives

gµν,λϕ̇
λnµnν + 2gµν ṅ

µnν = 0 (B.9)

and
ϕ̇µ,inµ + ϕµ,iṅµ = 0, (B.10)

where the “dot” symbolises ∂t and the comma denotes the partial coordinate
derivative. Before we can start with the actual derivation of ṅ we have to
express ϕ̇µ,i ≡ ξ

µ
,i:

ϕ̇µ,i = (Nnµ + ϕµ,jβ
j),i = N,in

µ +Nnµ,i + ϕµijβ
j + ϕµ,jβ

j
,i. (B.11)

Contracting the above equation with nµ then gives

nµϕ̇
µ
,i = −N,i +Nnµn

µ
,i + nµϕ

µ
,ijβ

j . (B.12)

Plugging Eq.(B.8) into Eq.(B.12) and inserting this expression into Eq.(B.10)
then yields

−N,i +Nnµn
µ
,i +Kijβ

j − nµΓµαλϕ
λ
,iϕ

α
,jβ

j + ϕµ,iṅµ = 0, (B.13)

where we have again used the orthonormality condition. In order to deter-
mine ṅ we make the following general Ansatz :

ṅµ = αnµ + ϕµ,kX
k, (B.14)
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with α ∈ R and X ∈ Tp(Σ). Contraction with gµνϕ
ν
,k then gives

ṅµgµνϕ
ν
,k = hjkX

k ≡ Xj . (B.15)

and contraction with nµ yields an expression for the proportionality factor
α, namely:

α =
1

2
gµν , λϕ̇

λnµnν , (B.16)

where we made use of Eq.(B.9). Now, we are well-equipped to derive an
explicit expression for the time derivative of the unit normal n. Starting
with Eq.(B.13) we find:

0 =−N,i +Nnµn
µ
,i +Kijβ

j − nµΓµαλϕ
λ
,iϕ

α
,jβ

j + ϕµ,i∂t(gµνn
ν)

=−N,i +Nnµn
µ
,i +Kijβ

j − nµΓµαλϕ
λ
,iϕ

α
,jβ

j+

+ ϕµ,jgµν,λϕ̇
λnν + ϕµ,igµν ṅ

ν . (B.17)

The last term is given by Eq.(B.15) and the term Nnµn
µ
,i turns out to be

the following when starting with the normalisation condition:

∂i(gµνn
µnν) = gµν,λϕ

λ
,in

µnν + 2gµνn
µ
,in

ν = 0

⇒ gµν,λϕ
λ
,in

µnν = −2nµn
µ
,i

⇒ Nnµn
µ
,i = −1

2
Ngµν,λϕ

λ
,in

µnν . (B.18)

Hence, all together with have by now

Xi = N, i+
1

2
gµν,λϕ

λ
,in

µnν−Kijβ
j+nµΓµαλϕ

λ
,iϕ

α
,jβ

j−ϕµ,igµν,λϕ̇
λnν . (B.19)

Inserting this into our Ansatz Eq.(B.14) after transforming Xi into Xi, we
get:

ṅµ =
1

2
gρν,λϕ̇

λnρnµnν + ϕµ,iD
iN − hµρgρν,λϕ̇λnν−

− ϕµ,iK
i
jβ

j + hµαΓραλϕ
λ
,jβ

jnρ +
1

2
Ngρν,λh

µλnρnν . (B.20)

If one now uses the explicit form of the Christoffel symbols
Γραλ = 1

2g
ρσ(gσα,λ + gσλ,α − gαλ,σ) we find the final expression for the time

derivative of the unit normal:

ṅµ + Γµαλn
αϕ̇λ = ϕµ,i(D

iN −Ki
jβ

j). (B.21)

Let us further take a look at the following object in order to interpret the
time evolution of n in a general slicing:

ξλ∇λnµ = Nnλ∂λn
µ +NnλΓµαλn

α + βλ∂λn
µ + βλΓµαλn

α

= Nnλ∂λn
µ + βλ∂λ + Γµαλϕ̇

λnα

= ϕ̇λ∂λn
µ + Γµαλϕ̇

λnα. (B.22)
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Hence, we conclude that if the unit normal vector field n is defined on M ,
i.e. if n = n(ϕ(t, yi)) respectively N > 0, then the above relation directly
corresponds to the time derivative of n by the chain rule.
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Appendix C

Evolution equation for K -
an alternative derivation

This section is dedicated to an alternative but mathematically interesting
derivation of the evolution equation of the extrinsic curvature K. It appears
like a little trick to multiply Einstein’s equations with the lapse function N
and try to extract the time derivative of K via constructing a Lie derivative
somehow “artificially” as we have already done in Chapter 4, but this nec-
essary step was well motivated in Chapter 2. Here, we deduce the evolution
equation for K via the mathematically more reasonable way, namely by

∂tKij = ϕµ,iϕ
ν
,jLξKµν . (C.1)

Though one does not see directly the connection to the field equations, from
the initial value formulation we already know that K is the second dynam-
ical variable besides the spatial metric. Unfortunately, this way is more
challenging as it requires a good knowledge of the Lie derivative and com-
mutator relations between the covariant and the Lie derivative. Luckily,
the comprehensive book [44] by Kentaro Yano contains all the relevant rela-
tions.1 Furthermore, we assume again N > 0 in this derivation. Hence, we
are perfectly equipped to perform this general derivation of the evolution
equation.

Let us start with an essential commutator relation, known as the Lie
bracket, which can be found in [44] p.16:

Lξ(∇µnν)−∇µLξnν = −(LξΓ
ρ
µν)nρ. (C.2)

Since Christoffel symbols associated with the spacetime metric g appear in
the above relation, we further have to find an explicit expression for the

1Yano uses a different sign convention than we do. In order to use the equations one
has to check for consistency.
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right-hand side. Fortunately, this important relation can also be found in
Yano’s book on p.8:

LξΓ
ρ
µν = ∇µ∇νξρ + 4R ρ

µσν ξ
σ (C.3)

Further we need to compute the second term on the left-hand side of Eq.(C.2):

∇µLξnν = ∇µ
{
ξλ∇λnν +Nλ∇νξλ

}
= nν∇µ(nλ∇λN + βλaλ) + (nλ∇λN + βλaλ)∇µnν (C.4)

Now, the projection of the above result as needed for Eq.(C.1) yields

ϕµ,iϕ
ν
,j∇µLξnν = nρ(Lξnρ)Kij . (C.5)

Taking into account what we have by now, we get the following important
intermediate result:

K̇ij = −ϕµ,iϕ
ν
,j(−nρLξΓ

ρ
µν +∇µLξnν)

= ϕµ,iϕ
ν
,jnρLξΓ

ρ
µν −Kijn

ρLξnρ

= ϕµ,iϕ
ν
,jnρ

{
∇µ∇νξρ + 4R ρ

µσν ξ
σ
}
−Kijn

ρLξnρ. (C.6)

Making use of Lξnν = (nλ∇λN + βλaλ)nν we get

K̇ij = ϕµ,iϕ
ν
,jnλ

{
∇µ∇ν(Nnλ + βλ) + 4R λ

µσν ξ
σ
}

+

+Kijn
λ∇λN +Kijakβ

k (C.7)

There are still some steps before we reach our final result. Therefore, we
compute the complex expressions in Eq.(C.7) separately. An important
relation we often make use of in the following is:

∇λN = DλN − (nρ∇ρN)nλ (C.8)

Notice that the above equation is the natural connection between the covari-
ant derivative associated with the spacetime metric g and the one associated
with h. It is a direct consequence of the unique decomposition of the tan-
gent space of M .

We can now focus on the explicit computation of the remaining terms. We
start with the first term on the right-hand side of Eq.(C.7):

ϕµ,iϕ
ν
,jnλ∇µ

{
nλ∇νN +N∇νnλ +∇νβλ

}
=

= ϕµ,iϕ
ν
,jnλ

{
nλ∇µ∇νN +N∇µ∇νnλ +∇µ∇νβλ

}
= ϕµ,iϕ

ν
,j

{
−∇µ∇νN − nλN∇µK λ

ν + nλ∇µ∇νβλ
}

= ϕµ,iϕ
ν
,j

{
−∇µDνN +∇µ[(nλ∇λN)nν ] +NK λ

ν ∇µnλ + nλ∇µ∇νβλ
}

= −DiDjN −Kijn
λ∇λN −NKimK

m
j + ϕµ,iϕ

ν
,jnλ∇µ∇νβλ, (C.9)
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where we have used K λ
µ nλ = 0 as well as Eq.(C.8) and the orthonormality

condition Eq.(2.17). Therefore, we get the following mean result:

K̇ij =−DiDjN −NKimK
m
j + ϕµ,iϕ

ν
,jnλ∇µ∇νβλ +Kijakβ

k+

+ ϕµ,iϕ
ν
,jNgλρ

4R λ
µσν n

ρnσ + ϕµ,iϕ
ν
,jϕ

σ
,knλ

4R λ
µσν β

k (C.10)

Unfortunately, the above equation still contains three terms which have to
be handled further. The next term we work out is the last one on the right
side of Eq.(C.10):

ϕµ,iϕ
ν
,jϕ

σ
,kgρλn

ρ4R λ
µσν β

k =

= ϕµ,iϕ
ν
,jϕ

σ
,kn

ρ4Rµσνρβ
k

= βkDkKij − βkDiKjk. (C.11)

In order to retrieve the final line of Eq.(C.11) we have used the Codazzi equa-
tion Eq.(2.44) as well as the pair symmetry of the Riemann curvature tensor.

Let us treat the second term containing the Riemann tensor in Eq.(C.10)
next:

ϕµ,iϕ
ν
,jNn

ρnσ4Rµσνρ =

= ϕµ,iϕ
ν
,jN(hρσ − gρσ)4Rµσνρ

= ϕµ,iϕ
ν
,jNh

ρσ4Rρνσµ − ϕµ,iϕ
ν
,jN

4Rσνσµ

= N3Rij + K Kij −KimK
m
j −Nϕµ,iϕ

ν
,j

4Rµν , (C.12)

where we made use of Eq.(2.33), the definition of the Ricci tensor and the
contracted Gauß relation Eq.(2.54).

Based on ϕµ,iϕ
ν
,j∇µ∇ν(nλβ

λ) = 0 we are ready to work out the very last
term:

ϕµ,iϕ
ν
,jnλ∇µ∇νβλ =

= −ϕµ,iϕ
ν
,j

{
(∇µβλ)∇νnλ + βλ∇µ∇νnλ + (∇µnλ)∇νβλ

}
= ϕµ,iϕ

ν
,j

{
Kνλ∇µβλ +Kµλ∇νβλ + βλ∇µKνλ + βλaλ∇µnν

}
= KjkDiβ

k +KikDjβ
k + βkDiKkj − βkakKij (C.13)

Finally, we can collect all the results from the auxiliary calculations Eq.(C.11)-
Eq.(C.13) and plug them into the original equation. Notice that the terms
containing the scalar product of the 4-acceleration and the shift vector an-
nihilate whereas the terms KimK

m
j add up. Further, we know already that

the projection of the Ricci tensor is equal to the projection of the right-hand
side of the Einstein equations Eq.(5.3) yielding Eq.(5.9). Thus, we are able
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to write down the ultimate result as already known from the less elegant
but maybe more obvious derivation in Chapter 5 :

(∂t −Lβ)Kij =−DiDjN − 2NKimK
m
j +NK Kij+

+N3Rij − 4πN(Sij − 4T hij). (C.14)

Remark : In order to deduce this essential equation in the setting of a com-
pletely general slicing, we would not be allowed to insert Kµν = −∇µnν
into Eq.(C.1) as we do here, since the identification of the time derivative
with the pullback of the Lie derivative along ξ can no longer be made for
non-tangent objects. Hence, we would have to start the following way:

K̇ij = ϕµ,iϕ
ν
,jLξKµν

= ϕµ,iϕ
ν
,j(ξ

λ∇λKµν +Kµλ∇νξλ +Kλν∇µξλ), (C.15)

respectively by
K̇ij = ∂t(ϕ

µ
,iϕ

ν
,jKµν). (C.16)
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Appendix D

The stress-energy tensor

This additional chapter is dedicated to the right-hand side of Einstein’s field
equations Eq.(5.1) - the stress-energy tensor T.

As already known from Special Relativity (see e.g. [22]), continuous mass
distributions are described by the symmetric second rank tensor, the stress-
energy tensor. It is the generalisation of the mass density and therefore,
in the context of General Relativity, the source of the gravitational field.
In order to interpret the components of the stress-energy tensor, we first
have to introduce a reference frame respectively an observer. We choose an
observer with 4-velocity u. By definition, its length is g(u, u) = −1 with
respect to a Lorentzian metric g of signature (−,+,+,+) as considered here.
For an observer with 4-velocity u the T 00 component is interpreted as the
energy density as measured by this observer:

ε := T (u, u). (D.1)

Chosen a coordinate system {xσ} on M , this component is given by ε =
Tµνu

µuν . For baryonic matter this quantity ε is always nonnegative, hence
Tµνu

µuν ≥ 0 [42].

Furthermore, it follows directly from the very definition of the stress-energy
tensor, that the T 0i components describe the momentum density of the mat-
ter:

p := −T (u,w), (D.2)

where the vector w is orthogonal1 to the 4-velocity, hence g(u,w) = 0. The
components −Tµνuµwν are interpreted as the momentum density as mea-
sured by the observer characterised by the 4-velocity u.

1In the context of the initial value formulation w simply represents a vector tangent
to the considered hypersurface or the projection of a general vector onto Σ.
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Since T is a symmetric tensor of rank 2, the missing components are the
spatial-spatial ones Tij . This sub-tensor is commonly denoted by a differ-
ent letter, namely by S and is called the stress-tensor. In particular the
Sii components represent the normal stress or pressure as measured by this
observer. We conclude that in general the quantities of the stress-energy
tensor as measured by an observer with 4-velocity u can be written as

Tµν =


ε −p1 −p2 −p3

−p1 p S12 S13

−p2 S21 p S23

−p3 S31 S32 p

 .

Obviously, the stress-energy tensor reduces to the rather simple diagonal
matrix diag(ε, p, p, p) in the momentarily comoving reference frame of the
matter. Taking the trace of the energy-stress tensor with respect to the
spacetime metric g, as required in Eq.(5.8), yields

gµνTµν = T = S − ε, (D.3)

where we have used uµuµ = −1 as well as pµu
µ = 0. “S” denotes the trace

of the stress tensor.

For our purposes we also introduce the physical quantities defined above
as measured by an observer with 4-velocity n. Thus, the below-mentioned
relations follow immediately:

ε = Tµνn
µnν (D.4)

pi = −nµϕν,iTµν (D.5)

Sij = ϕµ,iϕ
ν
,jTµν . (D.6)

Hence, the standard 3 + 1 decomposition of the stress-energy tensor writes
as

Tµν = Sµν + nµpν + pµnν + εnµnν . (D.7)
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