
DIPLOMARBEIT

Titel der Diplomarbeit

Spectroscopy of nanopore water

angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag. rer. nat.)

Verfasser: Marcus Weinwurm

Matrikel-Nummer: 0503370

Studienrichtung: 411 Physik

Betreuer: Univ.-Prof. Dr. Christoph Dellago

Wien, am 10. Juni 2010



2



Danksagung

Bis zum Abschluss eines Physikstudiums ist es ein langer Weg auf dem man von
vielen Menschen begleitet und unterstützt wird. Von Geburt an ist man auf
seine Eltern angewiesen, welche anfangs das Steuer übernehmen und einem dann
später immer mehr Freiheiten in die Hand geben, um seine Persönlichkeit zu ent-
falten. Ich kann mich glücklich schätzen, dass meine Mutter und mein Vater
schon sehr bald auf meine Entscheidungsfähigkeit vertraut haben und mir bei der
Verwirklichung meiner Ziele und Vorstellungen immer ohne Bedingungen geholfen
haben und auch weiterhin helfen. Sie gaben Geborgenheit innerhalb einer Fami-
lie, wertvolle Ratschläge in schwierigen Zeiten und auch �nanzielle Absicherung.
Zu Ersterem haben natürlich auch meine beiden Schwestern mitgewirkt, die das
gemeinsame Zusammenleben immer lebhaft gestalteten. Weiters hat meine Groÿ-
mutter Ihren Teil dazu begeitragen, indem Sie mich stets liebevoll kulinarisch
versorgte und Ihr Erspartes gern in mich investierte.

Unerlässlich sind aber auch Freunde, mit denen man Erfahrungen teilt und
die das gemeinsame Schulbankdrücken au�ockerten. Mit vielen von ihnen, die ich
schon seit der Hauptschule, Volksschule oder sogar dem Kindergarten kenne, bin
ich jetzt noch befreundet, und lerne von ihnen jene Dinge, die nicht in Büchern
stehen.

Wichtig waren auch die Mitglieder meiner Arbeitsgruppe, die mir beim Ver-
fassen meiner Diplomarbeit stets mit Rat und Tat zur Seite standen, und auch
abseits des universitären Alltags zu guten Freunden wurden.

Zu guter Letzt hat mir Christoph Dellago mit dem Betreuen dieser Diplomar-
beit, seinen stets kreativen Ideen und seiner wissenschaftlichen Erfahrung einen
Einstieg in die universitäre Forschung ermöglicht, wie man ihn sich besser wohl
nicht vorstellen könnte.

Hiermit möchte ich allen danken die mir auf meinem Weg geholfen haben!

i



ii



iii

Abstract
We study vibrational spectra of water con�ned inside various types of carbon
nanotubes. The water molecules form di�erent kinds of ordered structures
depending on temperature, density and the diameter of the nanopore. We
simulate the system using molecular dynamics methods and apply pertur-
bation theory to calculate vibrational frequencies. We study the motional
narrowing e�ect in these systems by taking into account the vibrational
lifetime of OH excitations and the dipole-dipole time correlation of the OH
stretch. The resulting spectra reveal the distinct order in the di�erent tubes,
and suggest that these structures can also be tested experimentally through
infrared spectroscopy. Furthermore, we compare the strong correlation be-
tween the E-�eld at the hydrogen and the vibrational frequency in these
systems to the correlation in bulk.

Zusammenfassung
In dieser Arbeit behandeln wir mit Wasser gefüllte Kohlensto�nanoröhren
und deren Vibrationsspektren. Unter diesem zylindrischen Einschluss bilden
sich vielfältige geordnete Strukturen je nach Dichte und Temperatur des
Wassers und Durchmesser der Röhren. Wir simulieren die Systeme unter
Anwendung von Molekulardynamikmethoden und wenden Störungsrech-
nung an, um Vibrationsfrequenzen zu berechnen. Wir untersuchen auch
den E�ekt der Linienverschmälerung indem wir die Lebensdauer eines an-
geregten OH Zustandes und die Dipol-Diopol-Korrelationen der OH Bindung
berücksichtigen. Die resultierenden Spektren lassen sich eindeutig verschiede-
nen Kon�gurationen des Systems zuordnen und legen nahe, dass diese Wasser-
strukturen auch experimentell mittels Infrarotspektroskopie getestet werden
könnten. Weiters vergleichen wir die starke Korrelation zwischen dem E-
Feld am Wassersto� und der Vibrationsfrequenz in diesen Systemen zur
Korrelation in der ausgedehnten Flüssigkeit.
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Chapter 1

Introduction

In previous works, it was shown that at ambient conditions single walled car-
bon nanotubes tubes �ll with water, even in tubes with diameters around 0.8
nm [1]. Other studies con�rmed water �lling through Raman spectroscopy
[2], and recent experiments by Cambre, Schoeters, Luyckx, Goovaerts and
Wenseleers con�rmed �lling down to chiral index (5,3) [3].

Water con�ned in narrow carbon nanotubes turned out to have many
intriguing properties. In tubes with diameters around 0.8 nm water forms
a single �le chain, where the molecules are linked together through hydro-
gen bonds. Kö�nger, Dellago and Hummer showed that it is possible to
describe such chains with a dipole lattice model and found nearly perfect
dipolar order for tube lengths up to 0.1 mm [4]. Kö�nger and Dellago also
suggested experimental procedures to probe the ordering [5]. Another in-
teresting phenomenon is the �ow of water through such tubes. It turns out
that the �ow rates are considerably higher than estimated by continuum
hydrodynamics. Furthermore, Dellago, Naor and Hummer found that pro-
ton transport in single-�le water is up to 40 times faster compared to bulk
water [6]. Membranes of carbon nanotubes can be viewed as model systems
for biological membranes, and proton transport in these systems was also
studied [7]. In tubes larger than 1 nm the water molecules form cylindrical
structures [8]. The phase diagram of such systems was studied and even
double and triple layered water cylinders were found for tubes wider than
1.5 nm [9].

In this work we study the electromagnetic absorption spectrum of single-
�le water in a (6,6) carbon nanotube and water structures in wider tubes.
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2 Chapter 1. Introduction

In the �rst case, each water molecule is situated in a chain, shares one
hydrogen bond and accepts another one from its neighbours. One of the
hydrogen atoms is free, without any hydrogen bonding, the other one is
bonded. Due to this separation into two types of hydrogens, the overall
electric �eld distribution at the hydrogens has two major contributions.
Since the E-�elds at the hydrogen in�uence the OH vibrational frequency
signi�cantly, we expect two well separated peaks in the spectrum. This
e�ect should even be more pronounced in the infrared spectrum compared
to the Raman spectrum, due to motional narrowing.

In the past there were several works on the OH stretch frequency ωOH

in water. Nakamoto, Margoshes and Rundle described the relationship be-
tween hydrogen bonding distances and ωOH [10]. Novak showed the strong
correlation between the intermolecular oxygen-oxygen distance and ωOH

[11]. Time-resolved transient hole burning has been used to study struc-
tural dynamics in glasses. Several computational works on nonlinear in-
frared spectroscopy described vibrational dephasing in HOD in D2O. Eaves,
Tokmako� and Geissler found a very strong linear correlation between the
electric �eld at the hydrogen and ωOH [12]. Corcelli and Skinner calculated
the temperature dependence of infrared and Raman line shapes of HOD in
H2O and D2O [13]. Reischl, Kö�nger, Dellago and Hummer described the
shell contributions of surrounding water molecules to the electric �eld in
the middle of the OH bond [14].



Chapter 2

Models

2.1 1D Ising model
Before we describe single �le water theoretically, we �rst would like to re-
mind the reader of a fundamental model system of statistical physics. The
one-dimensional Ising model is closely related to single-�le water chains,
which are in the focus of our interest. The 1D Ising Model consists of
dipole moments aligned in an in�ntely long chain. Each dipole moment Di

interacts only with its nearest neighbours and can only take the values −1

or +1. The Hamiltonian H takes the form:

H = −J
∑

i

DiDi+1 . (2.1)

For J > 0, it is favorable for the dipoles to align in the same direction, and
we would expect that for low temperatures the system goes into an ordered
phase, which involves a net magnetization. But surprisingly, this model
does not show a phase transition. Order takes place only at T = 0, where
the entropic terms vanish. We explain this by use of a expression for the
free energy F :

F = H − T S . (2.2)

Here H is the energy, T is the temperature and S is the entropy. A stable
con�guration of the system has to be a minimum of the free energy. Let
us imagine an ordered chain were all dipoles are aligned and an unordered
chain were the dipoles left of the center are −1 and the others are +1. In

3



4 Chapter 2. Models

the latter, the energy cost of the defect at the center is little compared to
the gain in entropy. The entropic term T S lowers the free energy for states
with high entropy (disorder) and thus the system is always in a disordered
state except for T = 0. However, in two dimensions the energy cost of a
defect is much higher and the system goes into an ordered phase below a
certain temperature Tc. [15].

2.2 Water chains of �nite size
Since water has a dipole moment, it is possible to describe the properties of
water con�ned in narrow nanotubes by using a dipole lattice model similar
to the 1D Ising. The di�erence is that the dipoles σj can take the values
(1,-1,0) and every dipole i interacts with every other j via a 1/r3 potential
φij.

φij = − ε σiσj

| i− j |3 (2.3)

Kö�nger, Dellago and Hummer showed that this model describes the main
properties of this system su�cient and parameterized it against molecular
dynamics simulations [4].

These studies also showed that the contact energy between next neigh-
bour dipoles is di�erent from the dipole-dipole interaction energy such that
the Hamiltonian takes the form:

H =
N−1∑

β=1

N∑

α=β+1

φij + (n− nc)(1 + Ec)− 2nd + ncSc . (2.4)

Here, we added the contact energy Ec of the (n − nc) parallel oriented
neigbours, subtracted the dipole interaction for (n−nc−2nd) next neighbour
pairs of parallel dipoles and added an entropic contribution Sc for the end
of ordered segments. The entropic contribution takes into account that
water molecules at the end of ordered chains have a larger set of possible
con�gurations available to them.

Kö�nger, Dellago and Hummer found that such water chains are ordered
at room temperature up to lengths of 105 molecules [4]. This corresponds
to a tube length of 0.05 mm. Occasionally, pairs of oriental defects arise,
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see Fig. 2.2, but they do not destroy the global order. Note that this does
not contradict the result for the 1D Ising model, since the water chains
are of �nite size. For tubes longer than 1 mm the chains are disordered as
suggested by the Ising model.

2.3 SPC/E
To simulate water we use the SPC/E model invented by Berendsen, Grigera
and Straatsma [16]. In this model, each water molecule carries an oxygen
charge of −0.8476e and an hydrogen charge of 0.4238e. The water molecules
are rigid with and HOH angle of 109.47◦ and an OH bond length of 1
Å. A Lennard Jones center is located at the oxygen site with parameters
A = 629400 kcal/mol Å12 and B = 625.5 kcal/mol Å6.

Since the model is rigid, vibrational couplings and vibrational energy
transfer are neglected. In particular, we simulate is HOD in D2O and the
coupling of OH oscillators is inhibited.

The model also does not feature changes in electron density induced by
surrounding molecules. Although there are several good polarizable water
models available, we used the simpler SPC/E model because polarization is
expected to have only minor e�ects in our system.

The behavior of our system depends very much on the hydrogen bonding
topology. The SPC/E model describes only the electrostatic character of
the hydrogen bond and neglects the covalent character. Since the SPC/E

Figure 2.1: Example of a defect con�guration in a water chain. In case of
the D-defect(L-defect) the molecule accepts (donates) two hydrogen bonds
(top). In the dipole picture both defects are represented by dipoles pointing
in a direction orthogonal to the tube axis (bottom) [1].
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model reproduces the bulk properties of liquid water accurately, we expect
that this approximation is suitable for our system.

2.4 Carbon nanotube
To model the carbon nanotube we use a polynomial potential V which
interacts with the oxygen atoms:

V (r) = a2r
2 + a4r

4 + a6r
6 + a8r

8 , (2.5)

where r is the radial distance from the cylinder axis. The parameters an of
the potential are

a2 = −0.2281 kcal/mol Å−2

a4 = 1.09 kcal/mol Å−4

a6 = 0.2341 kcal/mol Å−6

a8 = 0.3254 kcal/mol Å−8
,

(2.6)

and have been determined by �tting the polynomial in Equ. (2.5) to
−kBT ln ρ(r), where ρ(r) is the radial density pro�le of a single water
molecule in a (6,6) armchair-type carbon nanotube [6].

To obtain a measure for the volume of this (6,6) carbon nanotube we
de�ne the characteristic volume Vc:

Vc :=

∫

V

exp

(
− V (r)

kBT

)
dv . (2.7)

Furthermore, we de�ne the characteristic radius:

rc :=

√
Vc

π
. (2.8)

In Fig. 2.2 the tube potential, the characteristic radius rc and kBT are
plotted in one frame.

To obtain the con�ning potential corresponding to wider tubes out of
the (6,6) tube potential we make the approximation that the potential for
the wider tubes is equal to zero near the tube axis and let the usual (6,6)
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potential start at the radius di�erence between the wider tube and the (6,6)
tube.

V (r) = 0 for 0 < r < (dn − d6,6)/2 . (2.9)

V (r) = a2(r − rn∗)
2 + a4(r − rn∗)

4 + a6(r − rn∗)
6 + a8(r − rn∗)

8

for r > (dn − d6,6)/2 = rn∗
(2.10)

We used the following diameters dn of di�erent single walled carbon nano-
tubes in our simulations:

• (6,6) d6,6 = 0.81 nm

• (8,8) d8,8 = 1.09 nm

• (9,8) d9,8 = 1.15 nm

• (9,9) d9,9 = 1.22 nm

• (10,10) d10,10 = 1.36 nm
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Figure 2.2: red: tube potential energy, blue: kBT , green: rc
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2.5 OH vibration
To describe the OH vibrational frequency of a water molecule we quantize
and perturb a 1D Morse oscillator following the derivation of Eaves, Tok-
mako� and Geissler [12]. In the past, approaches with quartic potentials
were also tried [17]. However, a Morse potential is clearly the best choice for
water, because a polynomial potential would be too hard for large distances,
see Fig. 2.3. Note that a proton can also dissociate away from the water
molecule, which is described by the �nite number of energy levels of this
model [6]. But that does not mean that we simulate dissociation process,
since we are doing a classical simulation with rigid molecules. Nonethe-
less, the �nite energy of the Morse potential's eigenfunctions in�uences the
calculated frequencies.

We neglect intramolecular kinetic coupling to the OD-bond, bending and
rotation motion, which are small compared to the intermolecular coupling
to the electrostatic interaction [18].

Since the system we study is HOD in D2O the OH vibration does not

0.5 1.0 1.5 2.0 2.5 3.0
Þ

200

400

600

800

1000

�������������

KJ

mol

Morse potential

harmonic potential

dissociation energy

Figure 2.3: Morse potential(blue), harmonic potential(red) and dissociation
energy(purple)
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couple to other nearby OH oscillators of other molecules. In contrast to
H2O where the OH vibrations are strongly in�uenced by other nearby OH
oscillators in the bath. This simpli�es the quantum mechanical part of the
Hamiltionian and reduces it to one dimension.

The Hamiltonian H is split into three parts. Hs(P,Q) represents the
quantum mechanical vibration of the OH bond with the quantum mechan-
ical degrees of freedom P,Q. Hb(p, q) is the Hamiltonian for the classical
bath with the classical degrees of freedom p, q. Hsb couples the classical
motions of the bath to the quantum mechanical vibration. The full Hamil-
tonian takes the form:

H = Hs(P,Q) +Hsb(p, q, P,Q) +Hb(p, q) . (2.11)

Now we are going to de�ne these three separated Hamiltonians:

Hs is the bare one-dimensional quantum mechanical Morse Oscillator.

Hs(P,Q) =
P 2

2µ
+ d(1− exp(−aQ))2 (2.12)

Here, P is the momentum operator, µ is the reduced mass of the oxygen and
the hydrogen atom, Q is the internal space coordinate of the vibration, and
a,d are parameters of the Morse potential. We express the eigenfunctions
|n〉 of the Schrödinger equation in terms of Laguerre polynomials [19]:

|n〉 = eK exp(−aQ) [2K exp(−aQ)]K−n−1/2 L2K−2n−1
n (2K exp[−aQ]) , (2.13)

where
K = (2µd)1/2/ah̄. (2.14)

A derivation can be found in Appendix A. For the potential we used pa-
rameters from Reimers and Watts [18]:

d = 549.0586 kJ/mol ,

a = 2.13498 Å−1
.

As you can see in Fig. 2.4 the wave functions Ψ0 and Ψ1 are nearly odd
or even around the minimum of the potential. Wave functions of higher
energy-eigenvalue are in�uenced by the characteristical shape of the Morse



10 Chapter 2. Models

potential. Ψ5 is already clearly asymmetric because of the asymmetric po-
tential.

Hsb is the interaction between the OH oscillator and the classical bath.
To obtain an expression for Hsb we calculate the work that the electrostatic
�eld of the surrounding molecules performs on the OH vibration. Note that
we are evaluating the forces on the hydrogen and on the oxygen during the
classical simulation only at their equlibrium positions. Therefore we have
to expand the performed work in internal coordinates. We truncate this
expansion at the harmonic level and ignore the momentum terms.

Hsb(p, q, P,Q) = FQ+GQ2 (2.15)

F and G are derivatives of the Coulomb potential which we are know cal-
culating. To obtain expressions for F and G, we �rst have to express the
derivatives in internal coordinates. The center of mass ~rc is at the position:

~rc =
~rHmH + ~rOmO

mO +mH

. (2.16)

Where rH and mH is the position and the mass of the hydrogen and rO and
mO are the same variables for the oxygen. The internal coordinates ~r′H and
~r′O in the center of mass frame are:

~r
′
H =

~rHmO − ~rOmO

mO +mH

=
(~rH − ~rO)mO

mO +mH

=
−QmO

mO +mH

(2.17)

0.5 1.0 1.5 2.0 2.5 3.0
Þ

-1.0
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Figure 2.4: Wave functions ψ0, ψ1, and ψ5 of the Morse potential
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and

~r
′
O =

~rHmH − ~rOmH

mO +mH

=
(~rH − ~rO)mH

mO +mH

=
QmH

mO +mH

. (2.18)

Since Q is a function of ~r′H and ~r′O,

Q = Q(~r
′
H , ~r

′
O) , (2.19)

we obtain the expression,
∂

∂Q
= −µ r̂OH · (∇O

mo

− ∇H

mH

) , (2.20)

by applying the chain rule. We apply this operator to the Coulomb potential
and obtain:

F =
∂V

∂Q
= −µ r̂OH · (

~FO

mO

−
~FH

mH

) , (2.21)

G =
∂2V

∂Q2
= µ2 r̂

α
OH r̂

β
OH

2

(∇α
O∇β

O

m2
O

− 2∇α
O∇β

H

mOmH

+
∇α

H∇β
H

m2
H

)
V . (2.22)

We ignore the terms divided by the quadratic mass and half the mass of the
oxygen atom and obtain a simpli�ed expression for G:

G ≈ µ2r̂α
OH r̂

β
OH

3rαrβ − r2δαβ

r5m2
H

. (2.23)

We used the sum convention for greek indices and hats indicate unit vectors.
Calculating F is obvious, because the forces are available at every time

step during a molecular dynamics simulation. G requires additonal com-
puting time, but is feasible with currently available computing power even
for large systems.

By having expressions for F and G, we can compute expectation values
of vibrational frequencies. We solve the Schrödinger equation for Hs +Hsb

by use of perturbation theory [20]. Hsb shifts the vibrational frequency of
the OH bond as a function of the electric �eld and higher derivatives of the
Coulomb potential.

(Hs +Hsb)Ψ[q(t)] = (Esn + Esbn)[q(t)]Ψ[q(t)] (2.24)

We perturb the solutions |n〉 of Hs to obtain Esbn:

Esbn = 〈n|Hsb|n〉+
∑

k,n6=k

|〈n|Hsb|k〉|2
en − ek

. (2.25)
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The second order term is usually small and �rst order perturbation theory
is su�cient. We split the �rst order term into two parts and get:

Esbn = 〈n|FQ+GQ2|n〉 = F 〈n|Q|n〉+G〈n|Q2|n〉 . (2.26)

We calculate only transitions between the �rst two energy levels, since the
probabilty for other transitions is much smaller [21]. The frequencies ωOH

are calculated through:

h̄ωOH = Es1 − Es0 + Esb1 − Esb2 . (2.27)

The fact that G is small will result in a linear dependence of wOH as a
function of the electric �eld at the hydrogen in direction of the OH bond.
Eaves, Tokmako� and Geissler showed this in bulk water by calculating the
cross-correlation function of the E-�eld and the OH frequency [12]. We will
compare their result to the correlation in single-�le water in Chapter 4.7.



Chapter 3

Methods

3.1 Molecular dynamics
Molecular Dynamics is the method which evolves a system of many particles
in time by solving Newton's equations of motions iteratively for a given
potential V (r1, r2, ., ri, .., rn), where ri is the position of particle i. The
forces Fi are calculated from the potential at every timestep:

Fi =
∂V (r1, .., rn)

∂ri

. (3.1)

Velocities vi and coordinates xi are calculated from the relation between the
momenta pi and forces Fi:

dpi

dt
=
d(m vi)

dt
=
m dvi

dt
=
m d2xi

dt2
= Fi . (3.2)

After the system is equilibrated we perform certain measurements. In
doing that, we have to take care that the number of measurements is large
enough or else we might only see some con�gurations of the system, which
is likely to visit many very di�erent con�gurations over a long period of
time.

3.1.1 Verlet algorithm
The Verlet Algorithm is a method to integrate Newton's equations of motion
of order ∆t4.

We expand the position vector ~r(t+ ∆t):

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+
~a(t)∆t2

2
+
~b(t)∆t3

6
+O(∆t4) , (3.3)

13



14 Chapter 3. Methods

and the positon vector ~r(t−∆t):

~r(t−∆t) = ~r(t)− ~v(t)∆t+
~a(t)∆t2

2
−
~b(t)∆t3

6
+O(∆t4) . (3.4)

Where ~a = d2~r(t)/dt2 is the acceleration and ~b = d3~r(t)/dt3 is the jerk
vector.

If we add these two expressions we get:

~r(t+ ∆t) = 2~r(t)− ~r(t− t∆t) +
~F

m
∆t2 +O(∆t4) . (3.5)

By use of the above equation we are able to calculate the new positions
~r(t + ∆t), if we insert the old positions ~r(t) and the forces ~F (t) at time
t. At the next time step we get the positions ~r(t + 2∆t) by calculating
the forces ~F (t + ∆t) and again inserting them together with the positions
~r(t+∆t) in Equ. (3.5). By iterating this procedure we evolve the system in
time. We chose the time step ∆t small enough to achieve su�cient energy
conservation.

3.1.2 SHAKE algorithm
To simulate water we need a model like SPC/E described above. Water
models usually consist of three to six interaction centers. If one evolves a
system of such molecules, one has to take care that the distances between
these centers remain constant, during the time evolution.

One of the easiest ways to do this is the SHAKE algorithm. This al-
gorithm calculates virtual forces which keep the bond lengths rigid. The
important condition for the expressions of these forces is that they do not
perform work on the system. Let us look at the two basic equations required
to implement this algorithm. With the index i we denote the sites in the
water model. For SPC/E these are three. With the index j we denote the
neighbour sites within the same molecule. For SPC/E water, every site has
two neigbour sites with rigid distances. dij is the distance between site i and
j. dc

ij is the desired distance between site i and j, which remains constant
during the whole simulation. The mi are the masses of the sites. ~ri,j is the
vector from site i to site j. lij scales the force of site i in direction of site j.
For i equals j the scaling factor lij is zero. The other lij are calculated by
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this formula:

lij =
(dij(t+ ∆t))2 − dc

ij +O(∆t4)

2∆t2(m−1
i +m−1

j )ri,j(t) · di,j(t+ ∆t)
. (3.6)

~ri,a is the postion vector of interaction site i. ~ri,n is the new postion vector,
which we calculate by use of the following formula:

~ri,n(t+ ∆t) = ~ri,a(t+ ∆t) +
∑

j

(∆t)2

mi

lij(t)dij(t) . (3.7)

These two steps are approximations and to keep the bonds rigid they have
to be iterated in every timestep until the bond lengths are within a cer-
tain window. Usually less than three iterations are su�cient to keep the
bond length error within 10−8 times the desired bond length dc

ij and the
constraints do not have an in�uence on the energy conservation.

3.1.3 1D lattice sums
Very often, computational physicists are interested in investigating in�nite
systems with long range interactions. It is obvious that this is not man-
agable on a computer but a common approach in the three-dimensional
case to get approximately correct dynamics of such a system is the Ewald
summation [22]. This method formally replicates a �nite system in�nitely
often and approximates the sum of interactions of this formally in�nite sys-
tem. Part of this sum is done in Fourier space because it converges there
much faster. Although this method produces approximately the right forces
for the replicated system, it is not possible to make statements about the
phase behaviour of the system due to entropic terms in the free energy. The
Ewald sum cannot account for this entropic terms because the size of the
system and the number of possibilities for the system to arrange in a certain
way are important for the entropy.

To study an in�ntely long tube we formally replicate a �nite tube along
the tube axis and approximate the resulting interaction. Hummer derived
an expression for this 1D lattice sum in an unpublished study, which is an
analogon to the 3D Ewald sum. We will follow his derivation now.

We begin with a lattice sum of two particles in a box of the length
L, a positive charge in the origin and a negative one at (r, z) in cylinder
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coordinates. V is the potential of the system and with n we denote the
mirror boxes. The potential for the two particles replicated in�nitely in
both directions is given by:

V =− 1

(r2 + z2)1/2

+
∞∑

n=1

[
2

nL
− 1

(r2 + (nL+ z)2)1/2
− 1

(r2 + (nL− z)2)1/2

]
.

(3.8)

The �rst term is the potential of the particles in the simulation box. The
�rst term in the sum is the potential from the interaction of each particle
with his own periodic images, the other two terms describe the interaction
of the periodic images between di�erent charges.

To simplify this equation we need the Poisson summation formula:
∞∑

n=−∞
f(t+ nT ) =

1

T

∞∑

k=−∞
F

( k
T

)
exp(2πikt/T ) . (3.9)

The left hand side is a sum over the function f which is perodic with period
T . F ( k

T
) is the Fourier transform of f(t+ nT ). We can apply this formula

to our problem and calculate the sum in Fourier space as suggested by the
formula. With the use of symbolic algebra software we obtain:

V = − 4

L

∞∑
n=1

cos

(
2πnz

L

)
K0

(
2πnr

L

)
+

2

L
ln

( r

2L

)
+

2γ

L
. (3.10)

Here, γ is the Euler-Mascheroni constant and K0 is the Bessel function
of the second kind. This sum converges slowly for r=0. To improve the
convergence we expand Equ. (3.10) in r and obtain:

V =
2γ

L
− 1

(r2
ij + z2

ij)
1/2

+
∞∑

k=0

(−1)kr2k
ij

L2k+1(2k!!)2

{
Υ2k(1 +

zij

L
) + Υ2k(1− zij

L
)
}
.

(3.11)

The Υn(z) are the polygamma functions, de�ned as derivatives of the log-
arithm of the gamma function:

Υn(z) =
dn+1

dxn+1
ln(Γ(z)) . (3.12)

If we repeat these steps with a generalized expression of the potential con-
taining many particles, we have to sum over all interactions between every
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particle pair (ij) and obtain:

V =
γ

L

∑
i

q2
i +

∑
i<j

qiqj

[
1

(r2
ij + z2

ij)
1/2

+
∞∑

k=0

(−1)kr2k
ij

L2k+1(2k!!)2
{Υ2k(1 +

zij

L
) + Υ2k(1− zij

L
)}

]
.

(3.13)

Now we can easily calculate the forces needed for our MD simulation by
di�erentiating this potential as stated in Equ. (3.1).

3.2 Spectroscopy
Frequencies of intramolecular vibrations are in�uenced by the local solvent
environment. Hence, studying absorption spectra which are determined by
molecular vibrations, can yield information about the structure and dy-
namics of a system. Experimental physicists developed highly sophisticated
methods to measure spectra, which give us the opportunity to verify the
results obtained by simulations or check if the experimental system was
prepared in the right way.

3.2.1 Infrared spectroscopy
Infrared spectroscopy concentrates on the infrared spectrum of a substance.
The physics which in�uences this part of the spectrum are the vibrational
and rotational movements of molecules. The intramolecular vibrations are
in�uencend by surrounding molecules through an electric �eld. The charge
distribution of neighbour molecules is not uniform and thus the electro-
static interaction between these charge distributions in�uences intramolec-
ular bonds. These bonds are much stronger than for example intermolecular
hydrogen bonds, but the in�uence of the hydrogen bond topology is su�-
cient to shift vibrational frequencies.

3.2.2 Raman spectroscopy
Another possibility to get information about the rotational and vibrational
behaviour of a system is Raman spectroscopy. The Raman e�ect occurs
when a photon excites a molecule to a higher energy state. Afterwards the
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molecule emits a photon and relaxes into a di�erent vibrational or rotational
state as before. This results in an energy transfer between the excitation en-
ergy and the vibrational or rotational energy. This energy transfer changes
the frequency of the emitted photon. With Raman spectroscopy one mea-
sures this shift of the photo frequency away from the usual non Raman
in�uenced excitation frequency.

3.2.3 Optical absorption coe�cient
The optical absorption coe�cient α(ω) describes how much Energy E is
absorbed by a substance per time, if it is exposed to an energy �ux S. This
absorption coe�cient is a function of the frequency ω of the incident light
and the electric dipole-dipole time correlation function. Its de�nition is:

α(ω) = (dE/dt)abs/S (3.14)

Zwanzig derived a formula for the optical absorption coe�cient [23].
Absorption involves an energy gain of the system. Therefore we calculate

the energy change of the system to obtain α(ω). The energy change is the
di�erence in the energy times the transition rate between the energy levels
of the molecule. We know that the transition rate is proportional to the
frequency from Fermi's golden rule [21]. Ef are the energy levels of the
system, ωfi is the frequency of a photon emitted or absorbed as a cause of
a tranistion from energy level f to energy level i. To take into account the
probability of the di�erent states we use the Boltzmann weight ρi and sum
over all f and i.

dE

dt
=

∑

f,i

ρi (Ef − Ei)ωfi (3.15)

We can write down the transition rate ωfi by using the delta representation
of Fermi's golden rule [21]:

ωfi =
π

2h̄
|〈f |V |i〉|2 {

δ(Ef − Ei − h̄ω)− δ(Ef − Ei + h̄ω)
}
. (3.16)

Here, V is the Hamiltonian which perturbs the system. Using this expression
and writing h̄ω instead of (Ef − Ei) we obtain:
dE

dt
=
π

2
ω

∑

f,i

ρi|〈f |V |i〉|2 {δ(Ef − Ei − h̄ω)− δ(Ef − Ei + h̄ω)} . (3.17)
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By switching the indices in the second delta function, we can write dE
dt

as:

dE

dt
=
π

2
ω

∑

f,i

(ρi − ρj)〈f |V |i〉2 δ(Ef − Ei − h̄ω) . (3.18)

Next, we want to eliminate ρj. To do this, we need the equation which
relates the Boltzmann distributions ρ to each other:

ρf = ρi exp(−β(Ef − Ei)) . (3.19)

Inserting this expression into Equ. (3.18) leads to:

dE

dt
=
π

2
ω(1− exp(−βh̄ω))

∑

f,i

ρi〈f |V |i〉2 δ(Ef − Ei − h̄ω) . (3.20)

Instead of the Delta distribution we can use its integral representation de-
�ned as:

δ(E − h̄ω) =
1

2πh̄

∫ +∞

−∞
dt exp(−iωt) exp(itE/h̄) . (3.21)

For the next step, we also need the Heisenberg representation for the time
dependence of the perturbing Hamiltonian:

V (t) = exp(itH/h̄) V (0) exp(−itH/h̄) . (3.22)

Using these two expressions, Equ. (3.20) becomes:

dE

dt
=

ω

4h̄

(
1− exp(−βh̄ω)

) ∫ +∞

−∞
dt

∑

f,i

ρi〈i|V (0)|f〉〈f |V (t)|i〉 . (3.23)

The 〈f | are orthogonal to each other and thus cancel out. The sum over all
i produces the expected equilibrium value which simpli�es the expression
to:

dE

dt
=

ω

4h̄
(1− exp(−βh̄ω))

∫ +∞

−∞
dt exp(−iωt)〈V (0)V (t)〉eq . (3.24)

To obtain the classical limit of the above equation we taylor expand the
exponential function to the �rst order in h̄:

exp(−βh̄ω) ≈ 1− βh̄ω . (3.25)

We insert this expression in Equ. (3.24), and carry out the limit h̄ → 0,
which results in:
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dE

dt
=
ω2β

4

∫ +∞

−∞
exp(−iωt)〈V (0)V (t)〉eq . (3.26)

The perturbation V (t) equals the dot product of the incident light wave
~E0 cos(ωt) times the electric dipole moment of the system ~M(t) which in-
teracts with the light wave:

V (t) = ~E0 cos(ωt) · ~M(t) . (3.27)

We insert this expression in Equ. (3.24). The cosine vanishes because of
the time averaging and we obtain:

α(ω) ∝ dE

dt
∝ ω2β

∫ +∞

−∞
dt exp(−iωt)〈M(0)M(t)〉eq . (3.28)

For simplicity we dropped the dependence on E0 and other constant factors
in the last equation, since we are only interested in the shape of the spectrum
and not in its absolute magnitude.

3.2.4 Calculating IR absorption spectra
In each time step of our simulation we get a di�erent force on every hydrogen
and so a di�erent F. The Schrödinger equation then gives us a di�erent en-
ergy eigenvalue every timestep which in�uences our electric dipole moment
M(t).

M(t) = roh(t)exp{− i

h̄

∫ t

0

dt′E1(t
′)− E0(t

′)} (3.29)

By inserting this in Equation (3.28) and taking into account the vibrational
lifetime T1 of an OH excitation we obtain the following expression for the
infrared line shape:

I(ω) ∝ ω

∫ ∞

−∞
dteiωt

〈
exp

[
− i

h̄

∫ t

0

dt′E1(r(t
′))− E0(r(t

′))
]〉

〈
rOH(t) ∗ rOH(0)

〉
e−|t|/2T1

(3.30)

3.3 Time correlation functions
Time correlation functions are important to analyze the dynamics of a sys-
tem. The time average of a quanity A during a period τ is de�ned by:
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〈A〉 =
1

τ

∫ τ

0

dtA(t) . (3.31)

We subtract this time average 〈A〉 from the quantity A(t) and obtain:

∆A(t) = A(t)− 〈A〉 . (3.32)

We can de�ne a correlation function for every time dependend quantity,
which gives us information about how fast this quantity changes in time.
We de�ne this correlation function as follows:

C(t) =
1

τ

∫ τ

0

dq ∆A(q) ∆A(t+ q) . (3.33)

This time correlation function is called the autocorrelation function of A,
because it correlates the quantity A with the same quantity after a time t.
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Chapter 4

Numerical results

4.1 Simulation details

We performed molecular dynamics simulations by integrating Newton's
equations of motion using the Verlet algorithm [24]. The SHAKE algorithm
kept the molecules rigid [25]. The details of these methods are described
in Chapter 3. We chose a time step of 1.4 fs to keep the energy �uctua-
tions su�ciently small at a temperature of 298 K. The water model we used
was SPC/E [16]. The system consisted of one HOD and 30 D2O. All these
molecules were con�ned inside a (6,6) carbon nanotube with a diameter of
8.1 Å C-C distance. The nanotube was modelled by applying an external
polynomial potential to the water molecules. Details about the carbon nan-
otube model can be found in Chapter 2.4. We applied periodic boundary
conditions in the direction of the cylinder axis. To simulate an in�nitely
long tube we calculated a 1D lattice sum, which we previously derived in

Figure 4.1: A part of the system. Blue atom: hydrogen, white atoms:
deuterium, red atoms: oxygen, purple lines: hydrogen bonds.

23
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Chapter 3.1.3 [26]. As 1D density (particle number/length of the box) we
used 0.385 Å−1, as calculated by Striolo, Chialvo, Gubbins for the (6,6)
carbon nanotube at ambient conditions [27]. A snapshot of a part of the
system is shown in Fig. 4.1. The water molecules align in a chain, and are
linked through hydrogen bonds.

4.2 Dipole-dipole time correlation function
Time correlation functions play an important role in nonequilibrium sta-
tistical mechanics and linear response theory. Since optical absorption is
a nonequlibrium process, where the system is driven out of equlibrium by
the electromagnetical wave, it is essential to calculate the dipole-dipole time
correlation function of the system [23].

In Chapter 3.2.3 we derived that we need this correlation function to
calculate the infrared spectrum, furthermore it serves as a measure of the
timescale associated with the dynamics of the system.

We insert the dipole moment vector ~D(t) of the HOD molecule in Equ.
(3.33) to obtain the dipole-dipole time correlation function CD(t):

CD(t) =
1

τ

∫ τ

0

dq ∆ ~D(q) ·∆ ~D(t+ q) . (4.1)

Kö�nger, Hummer and Dellago showed that the water molecules form
an ordered chain [1]. We used this result for the starting con�guration of
our system and we expect that the average dipole moment 〈 ~D〉 is non-zero
for our simulation trajectories, which are on the nanosecond scale. However,
for long times the average dipole moment 〈 ~D〉 tends to zero, because of the
non-vanishing chance of a global �ipping event, during which the dipole
moment of the major part of the molecules �ips in the opposite direction.

To calculate CD we used this property of the system and set 〈 ~D〉 to zero,
although we do not observe it in our molecular dynamics simulations. Our
trajectories usually were on the nanosecond scale and are much too short
to see such a global �ipping event.

In Fig. 4.2 you see the resulting dipole-dipole time correlation function.
This correlation function is expected to show an exponential decay to zero
with a characteristic time equal to the �ipping time. This decay is not
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Figure 4.2: Dipole-dipole time correlation function (red) and Frequency
autocorrelation function (blue)

visible in Fig. 4.2, because on the time scale of our simulation �ipping
events are very rare.

4.3 Oxygen-oxygen and hydrogen-hydrogen
radial distribution functions

The radial distribution function g(r) is the expectation value of the particle
number divided by the particle number for a homogeneous medium with a
density ρ within a thin spherical shell of radius r,

g(r) :=

〈∑
j 6=i

δ(r − rij)〉

4πr2ρN
. (4.2)

Here N is the number of particles in the system and rij is the distance
between particle i and particle j.
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In our system we have three types of particles: oxygen atoms, deuterium
atoms and hydrogen atoms. Since we are calculating the spectrum of the
single HOD molecule in our system, we are interested in the distances of
the D2O molecules to the single HOD. A useful function to quantify the
structure of the system is the oxygen-oxygen radial distribution function.

As one can see in Fig. 4.3, there is a very sharp peak, centered at 2.45Å
in the O-O radial distribution function, which means that the �rst neigbour
molecules are located in a small region. At larger distances we see further
peaks, which correspond with the next neighbour molecules. With larger
distances the peaks widen, because the particles become uncorrelated.

To analyze the structure of the system in more detail we calculate the
hydrogen-hydrogen radial distribution function. For the bonded hydrogens
we expect pretty much the same picture as for the oxygens, because the
bonded hydrogens are directly linked to the oxygens through the hydrogen
bonds. Therefore, we concentrate on the free hydrogens. We expect that

0 2 4 6 8 10 12 14 16 18 20

r [ Å ]
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g(
r)

Figure 4.3: red: O − O radial distribution function, blue free H-H radial
distribution function
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they are more mobile and show a di�erent behavior than the oxygens.
The �rst neighbour shell of the free hydrogens is farther away than that

of the oxygens, see Fig. 4.3. This can be explained by the fact that the
hydrogens carry positive charges and are in�uenced by their repulsive forces.
Thus the free hydrogens rotate in the chain, trying to maximize the distance
from each other.

4.4 OH angle pair distribution functions
To get more detailed information about how the free hydrogen and deu-
terium atoms arrange, we calculated OH angle distribution functions. To do
this, we �rst de�ne ϕn as the azimuthal angle of the nth neighbour molecule's
OH vector. Then we calculate distributions of the angles |ϕ0 − ϕn|.

The red and orange curves for high temperatures and low densities in
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Figure 4.4: OH angle distribution functions between di�erent neighbour
molecules, blue: 50 K, green: 110 K, orange 200 K, red 298 K



28 Chapter 4. Numerical results

Fig. 4.4 show the expected results. The free atoms try to maximize the
distances from each other, aligning in 180◦ angles.

The blue and green curves for low temperatures and higher densities
show a di�erent behavior. At these conditions the in�uence of the second
nearest neighbours becomes important, and the OH angles of the nearest
neighbours decreases signi�cantly.

At lower temperatures the most probable OH angle between the nearest
neighbours is around 150 ◦, between the second nearest neighbours 60 ◦, be-
tween the third nearest neighbours 90 ◦ and the fourth nearest neighbours
120 ◦. We calculated only angles between 0 and 180 ◦ and therefore lost in-
formation about the actual orientation. If we assume for angles with an even
n: |ϕ0−ϕn| = 360−|ϕ0−ϕn|. We get the angles: 0 ◦, 150 ◦, 300 ◦, 90 ◦, 240 ◦.
We notice that they are equidistant on a circle, which suggests a helical
structure of the system with an angle change per molecule of 150 ◦. We
illustrate such a con�guration in Fig. 4.5.

For high temperatures the angle correlation nearly vanishes at the fourth
nearest neighbour, whereas at low temperatures we still notice a signi�cant
maximum for the most probable angle.

Figure 4.5: Helical structure of a single-�le water chain, with an azimuthal
angle change of about 150 ◦ per molecule
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4.5 E-�eld distributions

As derived in Chapter 2.5, the OH vibrational frequency is to �rst order
determined by the distributions of EH , the electrostatic �eld at the hydrogen
in direction of the oxygen, and to EO, the electrostatic �eld at the oxygen
in direction of the hydrogen. These �elds divided by the masses of the
hydrogen and the oxygen and multiplied by a constant, result in the �rst
order term F , see Equ. (2.21). Thus, EH is the dominating quantity,
because the oxygen is 16 times heavier than the hydrogen.

The EH distribution in Fig. 4.6 shows two peaks, one centered at -0.1
VÅ−1 and the other at -2.1 VÅ−1.

These two peaks can be explained by looking at the setting of one single
HOD (see Fig. 4.7). The molecule is neighboured by two D2O's. The
hydrogen of the HOD molecule donates a hydrogen bond to one D2O and
the oxygen accepts one of the other D2O molecule. The D atom is free,
without any hydrogen bonding.

Every several picoseconds a �ipping event occurs where the hydrogen
and the deuterium atoms switch their positions. The hydrogen breaks up
the hydrogen bond with the neighbouring D2O and the deuterium of the
HOD donates the hydrogen bond to the D2O. Now the hydrogen is free.

The peak centered at −0.1 VÅ−1 is associated with the time when the
hydrogen is free, see Fig. 4.7a and the other peak is associated with the time
when the hydrogen is bonded, see Fig. 4.7b. We have also tested this by
collecting statistics separately. One distribution is for the hydrogen, when
it is nearer to the neighbouring oxygen of the D2O than the deuterium and
another one is for the other way around. With this method we obtained
two distribution functions, one with a single peak centered at -0.1 VÅ−1

and one with a single peak centered at -2.1 VÅ−1. The integral over each of
the functions must be the same, because the probability for the deuterium
being nearer to the neighbouring oxygen than the hydrogen is the same as
vice versa. This is because these expectation values are independed of the
masses of the atoms, which is the only quantity that distuingishes them.

The EO distribution shows similar peaks as the EH distribution. The
oxygen does not �ip between di�erent hydrogen bond con�gurations and
therefore should not show two well separated peaks. However, since we are
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measuring the electrostatic �eld always in direction of the OH vector we
get a peak centered at -1.1 VÅ−1 associated with a bonded hydrogen and a
peak centered at -0.05 VÅ−1 associated with a free hydrogen, in analogy to
the distribution of EH .

The EH bond peak is located at negative �eld strength, because the force
on the hydrogen has its origin mainly in the oxygen of the neighbouring

-4 -3 -2 -1 0 1 2
E [V/A]

0

1

2

P(
E

)

Figure 4.6: Red: EH distribution, blue: EO distribution

(a) blue atom: free hydrogen (b) blue atom: bonded hydrogen

Figure 4.7: The two di�erent hydrogen bond con�gurations for the HOD
molecule in nanopore water
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Figure 4.8: Time evolution of EH at an arbitrary hydrogen during a switch
from a bonded to a free state

molecule, which is attracting the hydrogen. We also notice that the free
peak is much sharper than the bond peak. The �uctuations of the forces
and also the magnitudes of the forces at the bonded hydrogen are much
stronger than in the free hydrogen. We can see this in Fig. 4.8, which is
an arbitrary example of EH(t) during a transition from a bonded to a free
state. We also notice that the transition between the bonded and free state
is very fast.

4.6 Frequency distribution
Since the OH vibrational frequency ωOH is, to �rst order, mainly dependent
on EH , as we have seen in Chapter 2.5, we expect for the frequency distri-
bution nearly the same shape as for the EH distribution. The second order
term G should not in�uence the shape of the spectra signi�cantly. Eaves,
Tokmako� and Geissler obtained this result for bulk HOD in liquid D2O
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Figure 4.9: HOD stretch frequency distribution of nanopore water

[12]. They calculated a strong linear correlation between the OH frequency
ωOH and EH .

Furthermore, �rst order perturbation theory has to be su�cient for the
calculation of 〈Hsb〉 in Equ. (2.25) to get a linear dependence. If that is the
case, the calculation of ωOH results in a simple expression, see Equ. (2.26).

For the frequency distribution of the nanopore water system, see Fig.
4.9, we took account for the second order term G and also used second order
perturbation theory. Despite this more accurate calculation, the frequency
distribution has a very similar shape to the EH distribution in Fig. 4.6,
which con�rms the minor importance of G and second order perturbation.

4.7 EH - ωOH correlation
Next we will quantify how strongly EH is correlated to the OH vibrational
frequency ω. For this purpose, we calculate the correlation between EH

and ωOH in the nanopore water system. We count how often a certain
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E-�eld leads to a certain vibrational frequency, draw this statistics in a
two-dimensional plain and colour it according to the probability.

As shown in Fig. 4.10, the joint distribution of EH and ωOH has a
nearly straight and very narrow form. Therefore it is possible to determine
an approximate relation between the E-�eld and ωOH , by �tting a linear
curve to this data. Smith, Saykally and Geissler calculated the coe�cients
for this transformation for bulk water [28]. The coe�cients for the single �le
water di�er from them for bulk, because the in�uence of the second order
term G is di�erent. We are going to explain in Chapter 4.8 why this does
not disrupt the linear behavior.

The relation for the nanopore water system is:

ω = 155 cm−1V −1A× EH + 3705 cm−1 . (4.3)

In comparison, the relation for bulk HOD in liquid D2O determined by
Smith, Saykally and Geissler is:

ω = 160.514 cm−1V −1A× EH + 3745 cm−1 . (4.4)
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Figure 4.10: Color coded joint probability distribution of EH and ω
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Paesani, Xantheas and Voth recently also con�rmed this linear depen-
dency for bulk HOD in D2O and HOD in H2O by use of Centroid Molecular
Dynamics with an Ab Initio-Based Force Field[29].

4.8 EH - G correlation
To explain why the non-vanishing second order term G does not destroy the
linear dependence between EH and ω, we calculate the correlation between
EH and G. For these two quantities we also get a quite linear relation, see
Fig. 4.11.

The vibrational frequency ω is a function of EH and G:

Esbn = F 〈n|Q|n〉+G〈n|Q2|n〉 ≈ µ r̂OH · ~EH〈n|Q|n〉+G〈n|Q2|n〉 . (4.5)

For G = 0 we expect a linear correlation between ω and EH . For G 6= 0

this linear dependence should break down. However, since the correlation
between EH and G is also linear, the transformation in Equ. (4.3) holds.
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Figure 4.11: Color coded joint probability distribution for EH and G
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4.9 Temperature dependence

We also studied the temperature dependence of single-�le water frequency
distributions. We performed simulations at temperatures 450 K, 600 K,
900 K and 1500 K. The corresponding frequency distributions are shown
in Fig. 4.12. Up to a temperature of 600 K one can distinguish between
the free peak and the bond peak, which indicates stable hydrogen bonds
and the single-�le order. At higher temperatures the peaks merge into
one single peak. Since thermal �uctuations become stronger, the water
molecules become more mobile and the probability for stronger E-�elds in
the free peak increases. More and more defects occur in the chain and the
bond peak disappears.
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Figure 4.12: Frequency distributions for single-�le nanopore water at dif-
ferent temperatures. Blue: 450 K, green: 600 K, orange: 900 K, red: 1500
K.
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4.10 Infrared spectrum
The states of a molecule are perturbed while it is moving through a bath,
due to the �uctuations in the force which act on its intramolecular bonds.
Since the lifetime of the excitations is non-zero, the frequency of the emitted
or absorbed photons is a time average. Furthermore, the mean values of a
sample have always smaller variance than the individual variables. There-
fore, infrared spectra are usually narrower than the corresponding frequency
distributions. This e�ect is known as motional narrowing.

The vibrational lifetime T1 of the OH bond in D2O is on the same
timescale as the decay of the frequency autocorrelation function, see Fig.
4.2. Therefore, motional narrowing cannot be neglected for the calculation
of the nanopore water system's infrared line shape. As numerical value for
T1 we used an experimental result of pump-probe experiments by Loparo,
Fecko, Roberts and Tokmako� [30, 31].

The decay of the dipole-dipole time correlation function limits the nar-
rowing e�ect. The interaction between the incident electromagnetic wave
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ω/2πc [1/cm]

In
te

ns
ity

Figure 4.13: Infrared spectrum of the single-�le nanopore water system
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and the OH bond is described by the dot product between the wave's E-�eld
vector and the OH bond's dipole vector. If these vectors are perpendicular,
no energy is transferred and excitation is inhibited. Since the dipole-dipole
time correlation function decays signi�cantly on the femtosecond scale, we
have to consider it in our calculations, see Fig. 4.2. A quantum mechanical
description of the dipole moment is not necessary. Especially for the OH
stretching, the classical representation of the dipole moment operator leads
to even better results than the quantum mechanical approach [29, 32].

For very short excitation lifetimes the variation in the energies increases
because of the uncertainty relation between energy and time. This leads
to line broadening. We neglect this e�ect in our calculations, since the
vibrational lifetime T1 of the OH bond is about 750 fs, which is much too
long to have a considerable e�ect on the energies [30, 31].

To calculate the infrared line shape, we used an expression by Zwanzig,
derived in Chapter 3.2.3, and Eaves, Tokmako� and Geissler adapted by use
of a quantum mechanical time evolution operator, see Equ. (3.30), [23, 12].
This expression takes into account the e�ects described above, except for
the line broadening.

The shape of the IR-spectrum in Fig. 4.13 di�ers from the frequency
distribution shown in Fig. 4.9 but is qualitatively the same. The bond
peak has a line width of 85 cm−1 and the free peak has 15 cm−1. The
motional line narrowing compared to the frequency distribution is about 38
% for the bond peak and about 33 % for the free peak. Compared to the
motional narrowing of 30 % in bulk water, this e�ect is more pronounced
in the single-�le nanopore water system [28].

4.11 Wide carbon nanotubes
To date no method is available to produce carbon nanotubes of one single
kind. Experimentators have to deal with an ensemble of carbon nanotubes
with di�erent diameters. Therefore, we simulated water in several wider
carbon nanotubes with diameters ranging from 10.9 Å to 13.6 Å. By calcu-
lating the infrared spectra of the OH stretch we want to check wether it is
possible to distinguish between the single �le order in the (6,6) tube and the
water con�gurations in wider tubes through spectroscopy. To model these



38 Chapter 4. Numerical results

tubes we adapted the tube potential as described in Chapter 2.4.

4.11.1 Structure

Water in tubes with diameters larger than 10.9 Å shows a great variety
of di�erent structures. N -gonal ring tubes and also multilayer tubes of
water are common con�gurations. Koga, Gao, Tanaka, and Zeng even found
indications for a �rst order phase transition between liquid and these ice-like
structures [8].

(a) (8,8) CNT, tetragonal (b) (9,8) CNT, pentagonal

(c) (9,9) CNT, hexagonal (d) (10,10) CNT, DL heptagonal/single

Figure 4.14: Ice-like structures in CNT's, view along the tube axis
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Figure 4.15: Hydrogen bond network in a hexagonal water tube

Under these carbon nanotube con�nements water tries to maximize the
number of hydrogen bonds in the following way: The water molecules form a
tube, where each of them receives two hydrogen bonds, one by a neigbouring
molecule in the same ring, one by a molecule of a neigbouring ring. Conse-
quently it also donates two hydrogen bonds (again, one to a water molecule
member of the same ring one to a molecule of a neigbouring ring), see Fig.
4.15. From now on we call hydrogens, that donate bonds in their own ring,
intra-ring hydrogens, and hydrogens, that donate bonds to a neighbouring
ring, inter-ring hydrogens.

At higher densities or larger tube diameters double layer (DL) water
tubes form. In this case, a tube with a smaller diameter is located in-
side a larger one, see Fig. 4.14d. Also triple layer tubes were observed in
simulations [9].

Pair correlation functions

To quantify the structure of such water con�gurations we chose the tetrag-
onal water tube in a (8,8) CNT as an example. We calculated the oxygen-
oxygen pair correlation function.

For distances larger than 7.5 Å we see single peaks, each peak repre-
senting one tetragonal neighbour ring. For smaller distances the O-O pair
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CNT Diameter Å Density Å−1 Structure Temp K
(8,8) 10.9 1.41 tetragonal 295
(9,8) 11.5 1.68 pentagonal 295
(9,9) 12.2 1.93 hexagonal 295
(10,10) 13.6 2.28 disordered 295
(10,10) 13.6 3.27 DL heptagonal/single 220

Table 4.1: Simulated nanopore water systems
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Figure 4.16: O-O pair correlation function of a tetragonal water �le

correlation function resolves the intra-ring structure and we observe multi-
ple peaks within the range of the �rst and second neighbour ring.

4.11.2 Frequency distributions and spectra

Water in wider carbon nanotubes forms a cylindracal structure with a hydro-
gen bonding network as described in the above paragraph. Each hydrogen
has a quite similar environment. Nevertheless there is a slight di�erence
between a inter-ring hydrogen and a intra-ring hydrogen. This is an e�ect
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due to the curvature of the cylindrical water con�guration and the HOH
angle di�ering from 90◦.

We calculated frequency distributions and infrared spectra of water un-
der di�erent tube con�nements and temperatures, see Fig. 4.17.
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(a) (8,8) CNT, tetragonal water �le

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(b) (9,8) CNT, pentagonal water �le

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(c) (9,9) CNT, hexagonal water �le

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(d) (10,10) CNT, disordered

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(e) (10,10) CNT, DL heptagonal/single

Figure 4.17: Frequency distributions(blue) and infrared spectra(red) of wa-
ter under di�erent (n,n) carbon nanotube con�nements
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Tetragonal, pentagonal and hexagonal structure

The frequency distributions for the tetragonal, pentagonal and hexagonal
structure are single peaks with a slight shoulder on the blue side of the
peak. They do not show a clear indication for a separation into two types
of hydrogens, see Fig. 4.17a-4.17c.

However, the infrared spectra show two peaks close to each other. We
identi�ed the low(high) frequency peak as intra-ring (inter-ring) hydrogens
by collecting separated statistics. This obviously means, that the motional
narrowing e�ect revealed the presence of two types of hydrogens. For these
ice-like water structures the narrowing e�ect is slightly stronger compared
to single-�le water, because of a slower decay of the dipole-dipole time
correlation function. We conclude, that the frequency distributions are a
sum of two peaks, which are too wide to be distinguished in the overall
distribution. This further explains the slight shoulder in the frequency
distributions, which is a result of slight asymmetries between the inter-ring
and intra-ring peaks.

Compared to the results of Byl et al. [33] our intra-ring peaks are blue
shifted by about 60 cm−1. Byl et al. calculated their spectra at 123 K and
used a �exible water model. At these temperatures it is very likely that the
SPC/E model becomes inaccurate, but we expect it to be adequate in our
temperature range, see Table 4.1.

Disordered Water

We found SPC/E water to be disordered in a (10,10) CNT at 295 K. In
the frequency distribution and in the infrared spectrum we observe a broad
peak with a small peak attached at the blue side, see Fig. 4.17d. Motional
narrowing is inhibited due to the fast decay of dipole-dipole correlations.
The broad peak is associated with bonded hydrogends. Due to strong �uc-
tuations in this liquid-like state, hydrogends break their bonds and rotate
towards the edge of the tube. This explains the smaller high-frequency
peak.
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Double Layer heptagonal/single structure

As an example for a double layer structure we calculated the spectrum of
water inside a (10,10) CNT at 220 K. In this case, a single �le water chain
forms at the center of the tube. It is encircled by a heptagonal water tube.
Note that the properties of the single �le chain are very di�erent from the
single-�le chains in (6,6) CNTs described above.

Neither the frequency distribution nor the infrared spectrum show a clear
indication of di�erent hydrogen types for this double layer con�guration,
see Fig. 4.17e. Nevertheless the infrared spectrum has a small shoulder
on the red side, which suggests that the spectrum is a sum of multiple
contributions.

4.12 Water dimer
We also studied the water dimer, a system consisting of two water molecules.
In the lowest energy con�guration, one molecule donates a hydrogen bond
to the other. The former we call the donating molecule, and the latter
we call the accepting molecule. By looking at a typical con�guration, see

Figure 4.18: A snapshot of a water dimer



44 Chapter 4. Numerical results

Fig. 4.18, one expects a similar OH vibrational spectrum as for the single-
�le water system, see Fig 4.9. The forces acting on the hydrogens of the
donating molecule are alike the forces acting on a molecule within a single-
�le water chain. One hydrogen is bonded and one hydrogen is mobile with
only a weak force acting on it. The forces on the hydrogens of the accepting
molecule are qualitatively di�erent. This molecule accepts a hydrogen bond
and both of its hydrogens are not bonded.

The frequency distribution we determined shows three peaks, see Fig.
4.19a. The broad low frequency peak at 3567 cm−1 has a similar shape as
the bond peak in the frequency distribution of single-�le water in Fig. 4.9.
We expect it to be associated with the bonded hydrogen of the donating
molecule. Therefore, the high frequency peak at 3712 cm−1 has to be related
to the free hydrogen of the donating molecule, because the integrals over the

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(a) E = -0.0016 uÅ2fs−2,
entire dimer

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(b) E = -0.0016 uÅ2fs−2, donating
molecule

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(c) E = -0.0007 uÅ2fs−2,
entire dimer

3200 3300 3400 3500 3600 3700 3800 3900
ω/2πc [1/cm]

0

(d) E = -0.0007 uÅ2fs−2, donating
molecule

Figure 4.19: Frequency distributions of the water dimer at di�erent energies
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contributions of the donating molecule and the accepting molecule must be
equal. This leaves only the possibility for the mid frequency peak at 3670
cm−1 to be associated with the free hydrogens of the accepting molecule.
We also tested this interpretation by collecting separated statistics for the
donating and the accepting molecule. We plotted the contribution to the
frequency distribution of the donating molecule in Fig. 4.19b, which con-
�rms our conclusions.

We also simulated the water dimer at a higher energy, see Fig. 4.19c.
In this case the peaks broaden and the low frequency peak merges with the
mid frequency peak. Again, by collecting separated statistics we excluded
the spectrum of the donating molecule. Despite the stronger �uctuations,
one can still identify the peaks for the bonded and the free hydrogen, see
Fig. 4.19d.
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Chapter 5

Final remarks

We investigated vibrational spectra of water con�ned in di�erent types of
carbon nanotubes using classical molecular dynamics simulations and quan-
tum mechanical perturbation theory. In these nanopores various types of
water structures arise with signi�cant hydrogen bonding networks. In our
studies we focused on the OH stretch of HOD in D2O, because we expected
that it should be possible to identify diverse types of water con�gurations
under con�nement through their spectroscopic signature.

We started by calculating OH stretch frequencies for single-�le water
con�ned in a (6,6) single walled carbon nanotube. The resulting frequency
distribution showed very distinct characteristics. It consists of two peaks
with di�erent linewidth, representing the bonded and the free state of the
hydrogens. This spectrum is very di�erent from its counterpart for bulk,
which consists of a single peak.

Subsequently we went on studying water in tubes with diameters larger
than 1.09 nm. In this case, water forms cylindrical structures with a very
characteristic hydrogen bonding network. We can distinguish two types of
OH stretches in these systems. One kind is pointing in the direction of the
axis (inter-ring hydrogens), the otherone perpendicular (intra-ring hydro-
gens) to it. However, the frequency distributions of these water structures
showed only one peak, because of the similarity in the next neigbour posi-
tions between both kinds of hydrogens. Nevertheless, the infrared spectra
of these systems showed two peaks on account of motional narrowing. This
e�ect revealed the distinct hydrogen bond topology. Despite that, these
spectra are still very di�erent from their single-�le counterpart. The fre-
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quency shift between the intra-ring and inter-ring peak is much smaller than
that for the free peak and bond peak in single-�le water and in contrary to
single-�le water the linewidths of the peaks are nearly the same.

In a (10,10) CNT we found disordered liquid-like water. Its infrared
spectra showed a broad peak featuring a smaller peak attached on the blue
side. The latter is caused by a surface e�ect. Hydrogens pointing in direc-
tion of the tube wall cannot �nd a bonding partner and their OH stretch
frequency increases.

All these spectra are very di�erent from each other and therefore our
results suggest that it is indeed possible to distinguish between single-�le
water, cylindrical water, disordered tube water and bulk water through
vibrational spectroscopy.



Appendix A

Derivation of the eigenfunctions
of the Schrödinger equation for
the Morse potential

To obtain the analytical solutions of the Schrödinger equation for the 1D
Morse potential we follow a derivation by Boccara [34].

First we introduce the variable Q = r− r0 where r is the spatial coordi-
nate, r0 is the minimum of the Morse Potential and Q is the distance from
it. The Morse potential V (r) is given by:

V (r) = d
(
1− e−aQ

)2
. (A.1)

Since we neglect coupling of OH oscillations, and we are only interested in
time independend properties, we can use the stationary Schrödinger equa-
tion in one dimension with the reduced mass µ = 1/( 1

mO
+ 1

mH
) and its nth

eigenstates:

(
− h̄2

2µ

d2

dr2
+ V (r)

)
ψn(r) = Enψn(r) . (A.2)

We introduce the variable u = aQ and express the above equation in terms
of u:

(
d2

du2
+

2µ

a2h̄2

(
E − V (u)

))
ψn(u) = 0 . (A.3)

Next, we perform the transformation x = e−u. Since we are dealing with a
di�erential equation, we have to transform the derivative du,
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of the Schrödinger equation for the Morse potential

dx = −e−udu ,

and obtain

(
d2

dx2
+

1

x

1

dx
+

2µ

a2h̄2

(E
x2

+
2D

x
−D

))
ψn(x) = 0 . (A.4)

We make an ansatz for the wave functions ψn(x), with new variables d and
b, which we will de�ne later:

ψn(x) = e−dx(2dx)b/2Fn(x) . (A.5)

Instead of Equ. (A.4), we obtain a di�erential equation for Fn(x):

2µ

a2h2

(E
x
−D(−2 + x)

)
Fn(x)

+
1

4

(b2
x
− 4bd+ 4d(−1 + dx)

)
Fn(x)

+(1 + b− 2dx)
d

dx
Fn(x) + x

d2

dx2
Fn(x) = 0 .

(A.6)

We de�ne the newly introduced variables d and b,

D =

√
µd

ah̄
,

E =
−a2h̄2b2

8µ
,

and transform Equ. (A.6) to the coordinate z = 2dx, to obtain a simpli�ed
expression:

[( 2µD

a2h̄2d
− b+ 1

2

)
+ (b+ 1− z)

d

dz
+ z

d2

dz2

]
Fn(z) = 0 . (A.7)

Further, we de�ne:
A =

2µD

a2h̄2d
,

and recognize Equ. (A.7) as the de�ning equation for the generalized La-
guerre polynomials: F b

n(z) = Lb
A−(b+1)/2(z), where we introduced the dis-

crete eigenstates n = A− (b+ 1)/2.
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By inserting the Laguerre polynomials into Equ. (A.5), we obtain the de-
sired eigenfunctions:

ψn(x) = e−dx(2dx)b/2Lb
n(2dx) . (A.8)

These are the same wavefunctions as proposed in Equ. (2.13).
Note that the energy levels of the Morse potential are �nite, because

Lb
A−(b+1)/2(z) is only de�ned for b > 0. This implies a restriction on n and

limits the number of eigenfunctions:

n ≤ A− 1

2
. (A.9)
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