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Introduction

In recent years an intensified interest in the nez and historical details of Carnap’s
philosophy of mathematics and logic could be wiseels In my dissertation | take up this
debate and focus on his early formative contrim#ido a theory of formal semantics.
According to a dominating view regarding Carnap’srky a ‘semantic turn’ - eventually
culminating in his three volume book projegeries in SemanticgCarnap (1942), Carnap
(1943), Carnap (1947)) - took place only after tomfrontation with Tarski's program of
“scientific semantics” and the acceptance of seriimitations of the syntactical method in
Logical Syntax of Languagéd934). This has recently been put into propespective in a
number of contributions (Awodey and Carus (2001Wodey and Reck (2001), Bonk and
Mosterin (2000), Reck (2007), and Goldfarb (2008))s noted that there had been a short
phase of theoretical engagement with semantic sssu€arnap’s work well before his work
on logical syntax. These considerations were cjosieked to a larger project on the
methodology and formal reconstruction of moderroapdtics. Carnap’s contributions to the
topic include two published articles, (Carnap (19&806d Carnap and Bachmann (1936)), as
well as the recently published typesciipitersuchungen zur allgemeinen AxiomatikL928
(Carnap 2000). These works include early formalinitedns of the notions of ‘model’,
‘model extension’, and ‘logical consequence’ aslwasla number of theorems concerning the
metatheory of axiomatic theories. Whereas Carnapitatheoretic results have been
examined in the literature (see above), no closemi@on has so far been dedicated to
Carnap’s conception of the basic semantic notionshis theory of axiomatics. In my
dissertation, | provide a detailed conceptual asialgf the technical details of Carnap’s early
semantics and contextualize his results in thestohic and intellectual environment. By
drawing to unpublished material from CarnafNschlass in particular his notes on the
second projected part tintersuchungenl also discuss certain interpretative issuededl&o

his heterodox conception of formal models and #icéd semantics for his type-theoretic logic.

The dissertation comprises three chapters thanhteeded for separate publication. Chapter 1
critically surveys Carnap’s attempt to provide gi¢éal reconstruction of formal axiomatics in
a type-theoretic setting. The chapter has two akfirst, to analyze the kind of mathematical
structuralism and the specific semantics implioitdarnap’s account. Second, to show that

Carnap’s attempt to capture one of the central sémennovations of formal axiomatics, i.e.



the definition of classes of structures, with higion of “Explizitbegriffé is severely limited
due to these semantic assumptions.

Chapter 2 examines Carnap’s theory of extremalnagiwith a view to the auxiliary concepts
of models and model extensions introduced in Caf28p0). The motivating question here
is: “Does Carnap’s early conception of models alldamain variation?” My discussion
focuses on these aspects and responds to a comynienkdintikka (1991) which states that,
for several reasons, Carnap’s version of extremmadnas is seriously flawed. | present an
alternative interpretation of Carnap’s theory armbve that Hintikka’'s claims cannot be
upheld once a more balanced account of Carnaplg eamception of models is provided. |
describe in detail two conventions used by Carmagllbw domain variation for his formal
models. Finally I show that the notion of modelesdion underlying his theory of extremal
axioms, if properly understood, clearly captures itiformal use of model extension in the
axiomatic tradition.

Chapter 3 also discusses Carnap’s theory of extramiams, but this time from a more
historical perspective. The aim in this chaptertds provide a historically sensitive
reconstruction of the evolution of Carnap’s thebepween 1928 and 1936. The main focus is
thereby set on the unpublished documents of Paot @Wntersuchungefrom hisNachlass
Carnap’s theory is surveyed with an eye to clandfytwo points: the first concerns the main
mathematical influences, most importantly by thetlseorist Abraham Fraenkel, on Carnap’s
specific formalization of minimal axioms. The sedopoint regards Carnap’s specific
understanding of the connection between extremahas<and other metatheoretic notions of
completeness, most notably the categoricity ohaona system.

Each chapter of the dissertation is concerned aisipecific aspect or a specific interpretive
issue of Carnap’s early formal semantics. As seeleh is self-contained and readable as an
independent paper. There is, however, a broadepeetive shared in all chapters that can
also be considered a more general motivation «f thssertation. It concerns a certain
reservation against the universal validity of # dominant interpretive scheme in the history
of logic, viz. van Heijenoort’s (and Hintikka’'s)adsic distinction between therfiversalist

and the model-theoretic tradition (e.g. van Heijenoort (1967), Hintikkd988)). Briefly,
their claim is that there exist two essentiallyampatible traditions in the history of logic and
that each of the major proponents of modern lodiom Frege, Russell, Carnap to Quine —
can be neatly placed either within the one or ttieerocamp. As | show in the dissertation,

Carnap’s work inntersuchungerirom the late 1920s clearly does not fit withimstdualist
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picture. To be clear, there are on the one handwfhsbe shown in Chapter 1) strong
‘universalist leanings in Carnap’s work, particularly due teetlogicist background in his
treatment of axiomatics. Nonetheless, this doespmevent him on the other hand from
developing an account of formal models for axiomaltieories that anticipates constitutive
features of modern formal semantics (see Chapteflid)s, at least in this case, the van
Heijenoort-Hintikka interpretive framework, if cosiged in a strong dichotomic sense, does
not help to clarify but rather conceals the realagptual transformations in the evolution of
modern logic present in his work on axiomatics.|A®pe to show in the following, only a
more balanced account of Carnap’s early semabétseerthe lines of the two grand logical
traditions will allow specifying his particular ctibution to the “semantic revolution” in

logic in the first third of the last century.






Chapter 1: Carnap’s Explizitbegriffe: axiomatics, dructuralism, and

logicism

1.1 Introduction

This chapter discusses Carnap’s attempt in thell@28s to provide a formal reconstruction
of modern axiomatics.One interpretive theme commonly addressed in ¢éeent scholarly
literature concerns Carnap’s underlying logicismhis philosophy of mathematics in the
1920s, more specifically, his genuine attempt gxoéincile” the logicist approach of reducing
mathematics to logic with the mathematical methédoomal axiomatics. It was by Reck
and others that the central idea in Carnap’s maipisdntersuchungerwas to balance a
Fregean (or Russelliaf foundational stance with the modern model-theéoretewpoint
introduced in Hilbert'sGrundlagen der GeometrigHilbert 1899)% It was also shown that
Carnap’s attempt to provide a logicist reconstarciof axiomatics is limited in several ways.
No closer attention, however, has so far been dé&gtido some of the details of his attempted
reconciliation.

Our principle aim in this chapter is to undertakelaser analysis of Carnap’s theory of
axiomatics fromUntersuchungerand the related works, specifically of the impa€tan
implicit logicist assumption underlying his earlgnsantics for axiom systems. In this respect
the concept of an “Explizitbegriff” (“explicit coept”) will stand in the center of attention.
Carnap’s notion of “Explizitbegriffe” is particullgr insightful in the evaluation of his
reconciliatory approach between formal axiomatied Egicism. On the one hand it closely
mirrors Frege’s own reconstruction of Hilbert’s imad in Hilbert (1899). On the other hand,
the concept is clearly introduced to capture folynahe a central semantic innovation for
formal axiomatics, namely the idea that an axiorateay defines its class of structures.
Moreover, the concept implies a structuralist aotoof mathematical theories that has
leanings to both traditions.

The subsequent discussion of these points is glogesgveral interpretive questions: First, in
what sense is Carnap’s version of a mathematicattstralism expressed here effectively

! Carnap’s early contributions to axiomatics congtigo published articles, Carnap (1930) and Caamap
Bachmann (1936), as well as Carnap (1929) anddkthpmously published typescrightersuchungen zur
allgemeinen AxiomatikCarnap 2000) written around 1928.

2 Compare in particular Awodey and Carus (2001) k2604), Reck (2007), and Bonk and Mosterin (2000)
% For instance, Awodey and Carus (2007) charactéfizersuchungeas a “large-scale project to reconcile
axiomatic definitions with logicism, and transfomplicit into explicit definitions.” (ibid, 29)
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comparable to the structuralism implicit in the raod axiomatic tradition, in particular in
(Hilbert 1899)? Second, what are the semantic assans attached to this structuralist
approach? Here, in particular, a closer look atsipecifics of Carnap’s attempt to provide a
formal semantics for axiomatic theories, viz. aotlyeof formal models, is insightful. Finally,
given his logicist background, does his reconsibacineet the methodological and semantic
desiderata of the modern axiomatic tradition?

The chapter will be structured in this way: Follagia brief presentation of the crucial
semantic innovations in formal axiomatics (SectioB.1) and of Frege’s early attempt of a
logicist presentation of formal axiomatics (Sectio.2), Carnap’s account of axiomatics will
be outlined in Section 1.3. Section 1.3.1 introdubés notion of “Explizitbegriffe” of an
axiom system. In Section 1.3.2 the kind of mathé&wahbstructuralism involved in this theory
will be discussed. Carnap’s early notion of a fdrmadel as defined itUntersuchungeims
presented in Section 1.3.3. Given this rather axpgspart, we will show in Section 1.4.1
that Carnap’s attempt to reconstruct the semanfiexiomatic theories is based on a specific
logicistic premise, namely a logical definabilityordition for formal models. Carnap’s
definability assumption is compared with similacagnts suggested by Tarski (Section 1.4.2)
and Bachmann (1.4.3). We will argue in Section th&t this premise has strong limiting
effects for Carnap’s overall attempt to express mhedel-theoretic semantics of formal
axiomatics. This will be shown for cases where @premploys quantification over the
models of a theory is necessary (Section 1.5.Histi effectively restrains the tacit semantics
of his underlying type-theoretic background langu@8ection 1.5.2). In Section 1.6, it will
finally be shown that, as a consequence of thisn&pas “Explizitbegriffe” fail to capture

adequately the semantic innovations introduced itiyeH and others in modern axiomatics.

1.2 “Methodological turn(s)” of formal axiomatics

It is not intended here to provide an all-encomjpasspicture of the conceptual
transformations implied by the rise of formal axatios at the turn of the last century. Such a
task would have to discuss the epistemologicalraathodological innovations in the works

of Dedekind, Peano and the Italian ‘Peanists’, Rased, most importantly Hilbert in contrast



to the traditional axiomatic meth8dCrucial points in this transformation include ttteange

of the “epistemic status” of axioms, the new methllogy for axiom choice and justification,
the logical rigorization of proofs, as well as thieict “separation of the mathematical and
logical [spheres] from the spatial-intuitive [spbEr(Bernays 1922, 192), e.g. the complete

abstraction from intuition in mathematical concitnation.

1.2.1 Three semantic innovations

What is relevant for our discussion is the factt heese “new methodological turn(s)” in
formal axiomatics also led to a second revolutiamely a fundamental transformation of the
semantics of a mathematical theory. With the abstma from the intuitive sources of a
theory, modern model-theoretic semantics could geerhis is probably most explicit in
Hilbert's Grundlagen der GeometrigHilbert 1899)° For the present purposes, it will be
instructive to pin down three distinct but closelterrelated semantic innovations.

A first important difference to the classical ax@tns lies in thalisinterpretedcharacter of
the primitive terms of a mathematical theory. Githis schematic treatment, the primitive
concepts (like, in Hilbert’'s work, ‘point’, ‘line’;between’ etc.) can then be reinterpreted in
different ways.

A second innovation resulting directly from thisandormal treatment of the mathematical
terminology is the implementation of a theory of dals, in Hilbert’'s words “systems of
things” that to allow the reinterpretation of ingilly defined mathematical primitive terms.
In Hilbert's Grundlagen the use of models (and the idea of model vanatiplays a
methodologically fruitful role in his theory, mopecisely in the metatheory for his axiom
system: different analytic models ranging over & &fealgebraic numbers and over the
complete ordered field of real numbers are devisearder to prove the consistency of the
axiom system and different independence resulthioaxioms”.

* See de Jong and Betti (2010) for a detailed adanfuthe “classical model of science” preceding medern
axiomatic method. For a discussion of the histbeealution of modern axiomatics see e.g. Grattanr@ess
(2000).

® For a more general account of the emergence oemakmantics in the axiomatic tradition see Hiatik
(forthcoming). For a recent survey on the semantiovations in Hilbert's book and, more generatiy,
Hilbert’s new conceptualization of the relationsrntfiitive, analytic and axiomatic geometry complladlett
(2008).

® See Hilbert (1899, §2). Compare Hallett (2008}f@nconnection between the two innovations: “Theida
technique which Hilbert adopted for this investigatis that of modelling, more strictly, of tranttay the theory
to be investigated into another mathematical theoy this, it is essential (...) that the primitisencepts are
not tied to their usual fixed meanings; they muesfriee forreinterpretation” (ibid, 211)
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A third innovation less explicit in Hilbert (189%hows the algebraic background of his
approach. It consists in the fact that an axionmesygefines its class of modélsThis idea is
best visible in Hilbert's presentation of lagiom of completenesss a continuity axiom in
later editions ofGrundlagen The axiom implicitly involves the quantificatioaver the
possible models of his theofyin modern terms, this more or less correspondeeanodel-
theoretic notion of the “class of structures” definby an axiom system. Briefly, the class
defined is the one consisting of all models théisBathe axiom system.

One can schematically present the three semamtmvations of formal axiomatics in this

way:

(1) The _schematic conception of the primitive terras a theory, and thus their

reinterpretability.

(2) The_use of formal modefer the interpretation of a theory (as well as thkated notions

of truth or satisfaction in a model). This includee systematic use of model constructaom

variationfor establishing metatheoretic results.

(3) The notion of a definition of a class of maef an axiomatic theory.

The reason for pinpointing (1)-(3) is to refer ke in the following as adequacy conditions
for a logical reconstruction of the modern axiomatiethod. Thus, any attempt to provide a
formal presentation of axiomatics can only be cd&sd successful if it manages to capture
in an adequate manner each of these three sendastderata.

As mentioned in Introduction, the specific casebw tested in terms of (1)-(3) will be
Carnap’s explication ofHilbertian) axiomatics. Before turning to his approach, hosvea
closer look at his immediate predecessor Fregdlanthtter's attempt to come to terms with

Hilbert’'s new conception of axiomatics is instrueti

" Compare Hintikka on this point: “The basic ideah# [GS: axiomatic] method is the capture of a<laf
structures as the models of an axiomatic systeliritikka forthcoming) He further underlines the gea
relevance of this semantic approach in modern axiienthinking: “The very purpose of the axiomatiethod
is to study some class of structures by constrg@maxiom system whose models they are.” (ibid.)

8 See Hilbert (1900, 25). Compare Section 3.2 fular discussion of Hilbert’s axiom.

® Compare Hodges (1997, 30-37) for a technical ptesien of the concept.

8



1.2.2 Frege on Hilbert (1899): a shared assumption?

The appropriate starting point for our discussidntltte adequacy of Carnap’s logicist
reconstruction of formal axiomatics is the notos@ontroversy between Hilbert and Frege at
the turn of the last centufy.Their widely discussed correspondence is illusteasince it
provides a historical document that highlights soafethe main conceptual differences
between two opposing logical camps: Frege, on tleeside, as the founder of logicism and
proponent of a “universalist” conception of logidjlbert as an early proponent of the
“model-theoretic tradition” on the other sitfel will not go here into the details of Frege’s
objections to Hilbert’'s conception of axioms as licip definitions, nor of Frege’s own
conception of axioms and primitive terms in geometnd of his heterodox views on
axiomatic metatheory (in particular concerning Milts indirect consistency proofs). It
suffices to note that due these differences, ttmiiceptions were sometimes characterized as
simply irreconcilable.

Nevertheless, as was recently stressed by varioosnentators, the conceptual differences
between them are far smaller than often statedpdrticular, in view of the semantic
innovations of the modern axiomatic approach, is\wainted out that Frege’s approach to
axiomatics is not, in principle, incompatible witie model-theoretic approath.

Concerning condition (1), one can find in Frege amvention to by-pass the schematic
conception of logic necessary for Hilbert’'s treatmef axiomatics primitives as formal
terms. This is simply to treat primitives as frdagher-order) variables of the logical
language in use, thus allowing a similar kind ofigrality constitutive for Hilbert’'s approach.
In Carnap’s notes on Frege’s lecture “Logic in Mattatics” from 1914 Frege’s intuition

underlying this presentation is made clear. Innaam on Hilbert's axioms Frege states that:

Later Hilbert not only uses the word “between” withdifferent meaning, he also often uses “point,”
“line,” “plane,” (...) differently from Euclid. Whats unclear, then, is this: he never says so efiplici
and he never makes clear how else he understards @ften he uses expressions as indicating

indefinitely, just as we use lettérgReck and Awodey 2004, 166, my emphasis)

9 See Frege (1980) for the original corresponderteden the two mathematicians. Compare Blanchette
(2009) and the references given there for receminoentary on the debate.

1 As is well known, this distinction between two icaj traditions goes back to van Heijenoort (196%: more
recent discussions see Goldfarb (1979) and Hint{kk&8).

12 Compare, e.g., Blanchette (2009) and Tappendedv}19



“Letters” are understood here as free variablegb®iunderlying formal language. It should be
noted that this way of symbolizing the primitive§ an axiomatic theory was common
practice at that time. A similar treatmentsshematiderms as variables can be found in the
works of Russell, the American postulate theorigtgl - as we will see - also Carnap. In fact,
the same convention was also suggested by Hilbensétf three decades after his
controversy with Frege. In Hilbert and Bernays @9% partial formalization of the axiom
system of Hilbert (1899) is developed. Here, th@tes “Speaking properly, the primitive
relations have for formal axiomatics the rolevafiable predicates.” (ibid, 7}

Frege says less on condition (2), i.e. the sysiemage of models for studying the
(metatheoretic) properties of an axiomatic thebryact, it seems as though the very idea of a
model as introduced in Hilbert'&rundlagen was foreign to Frege’s understanding of
axiomatics. For instance, in a letter dated Janu&ryl900, he discussed a possible
modification of Hilbert’s notion of implicit defiions. In comparing Hilbert's version to that
of Stolz, he critically adds:

And to repair the damage that | believe to fingaur definitions one will have to proceed in a $ami
way; except that it will be much more difficult lzase what is in question is not just a single syste
but three systems (of points, lines and planes) thieir manifold relations. Incidentally, what g@u
calling a system here? | believe it is the samagthishich is elsewhere called a set or a class and
which is best called the extension of a conceped® 1980, 47)

This clearly suggests that Hilbert’s informal notiof a model as a “system of things” that
satisfies the axioms was (to put it mildly) notyuhcknowledged by Frege.

Despite this obvious disinterest in Hilbert's stigit use of models, Fregibes make an
interesting contribution to a formal presentatidr{3). To understand his approach, it should
be noted first that the modern version of (3) imm of a “class of models” can be given an
alternative formulation that more adequately caddhe historical accounts of the idea. In this
version, an axiom system defines not a class ofefsdalt an abstract structure (or a higher-
order property) that is shared by (or applies top@ssible models of the theory. Thus, in the
case of Hilbert's theory of Euclidian plane geomet(3) can be understood as the
specification of a general (relational) structunstantiated by all possible Euclidian planes.
More generally, one can rephrase (3) by the egemtalersion:

1310 Wahrheit aber haben fiir die formale Axiomadile Grundbeziehungen die Rolle veariablen
Pradikaten.” (Hilbert and Bernays 1934, 7) Comfwak and Mosterin (2000, 16).
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(3*) An axiom system_defines an abstract structsinared by all models satisfying the

axioms'*

It was argued recently that there is no deep cdneépifference between Frege and Hilbert
on condition (3) since the former in fact proposefogical reconstruction of (3*. The
crucial convention used by him is the ascent thdrigorder concepts. Frege holds that while
the single axioms, as assertive statements, cdyeoinderstood as (implicit) definitions in
Hilbert's sense, the axiom system neverthelessigesvan explicit definition of a “second-
level concept” that holds for all first-order copte defined in the theory. In the letter cited

above, Frege explicitly discusses this point:

The characteristic marks you give in your axioms apparently all higher than first-level (...). It
seems to me that you really want to define secemdHconcepts but do not clearly distinguish them

from first-level ones. (ibid, 46)

In a letter to Liebmann, his view of Hilbert's (189alleged confusion of the hierarchy of

concepts is stated in closer detail:

It seems to me that Prof. Hilbert first had theaidie mind of defining second-level concepts; but he
does not distinguish them from first-level conce@iad this explains what Hilbert's explanations
always leave unclear: how the same concept seebesdefined twice. It is just not the same concept.
At first it is a second-level concept, afterwardfirst-level concept falling into it. It is a midta to

mix up the two and to use the same word (e.g. thdimboth connections. (ibid, 93-94)

14 (3% is closely captured by Corcoran’s insightfemark on the historical notion of a structuregafomain) as
opposed to its modern understanding of strucisiie model: “From a philosophical and historical pafiview
it is unfortunate to that the term ‘mathematicalisture’ [GS: as the class of mathematical objantsfunctions
and sets over them] is coming to be used as a gyméor ,mathematical system’. In the earlier usége two
mathematical systems having totally distinct eletsean have the same structure. This in this sesseicture
is not a mathematical system, rather a structuae'gsoperty” that can be shared by individual neatiatical
systems. At any rate a structure is a higher cedéty. (...) For mathematical purposes it would losgible to
‘identify’ a structure with the class of mathematisystems having that structure, but such ‘idesatiion’” may
tend to distort one’s conceptual grasp of the ideaslved.” (Corcoran 1980, 188) For a detaileddrig of the
notion of ‘structure’ in modern mathematics anddagpmpare also Mancosu (2006, 210).

!> See e.g. Blanchette (2009) and Tappenden (19¢cBette paraphrases (3*) in terms of a higheesword
relation: “A setAX of sentences containimggeometric terms defines amplace relatiorRax holding of thosen-
tuples which, when taken respectively as the imedghions ofAX's geometric terms, render the membersf
true.” (Blanchette 2009 (SEP))
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The idea outlined here is that axiomatic primitidde 'point effectively refer to two
concepts. In Frege’s first senspoint expresses a first-order concept that applies fizeal
class of elements. In addition, it also refers teeaond-order concept, i.e. a concept “in”
which all first-level conceptspbint (with a fixed extension) that meet the conditions
specified by the axioms fall. The second-level emts, say point’, does not denote a
specific system of points, but a class of systefpomts, i.e. it holds for (extensionally)
different conceptspoint”.*® Thus, Hilbert's axiom system is reconstructed esiding an
explicit definition of the second-order concept ‘@uclidian Space” under which all

geometric systems satisfying the axioms ¥all.

Now, despite Frege’s clear reservations againsHiteert's use of “systems of objects” with
their “manifold relations”, it seems only a smaks from this idea of higher-order concepts
defined by the axioms to a properly semantic notlika (3*). As is suggested by Blanchette
and others, there is thus no deep disagreemenebetirege and Hilbert on this point. The
actual differences between their accounts resulf tom two different ways to express
essentially the same semantic id®n particular, in Frege’s case, the main tool tpress
the second- or higher-order concepts explicitlyirdf by an axiom system is that of
guantification in a higher-order pure logic (herm#di HOL). Quantification over individuals
in sentences like “For aX, x is point and ...” specifies a specific class of edets designated

by ‘point”. Second-order quantification in sentences liker“Bll classes of points, ...."” then
expresses the second-level concept which holdsalfoconcepts point”. Now, Frege is
nowhere explicit on how the higher-order concepfingel by an axiom system is to be
formalized. Nonetheless, the idea can easily beastein HOL. A possible tentative
formulation of Frege’s idea is this: an axiom syst#S specifies a concefi?? such that all
concepts satisfyingSfall under this concept, i.e. formallp?(X") « (OXH(ASKH).

I will return to this specific interpretation of ége’s view in Section 5. For the moment, it
suffices to say thagtrima facie there seems to be no deep conceptual differegiveebn the

informal model-theoretic version of (3) in HilbextGrundlagenand the one outlined by

16 Essentially the same idea can be found in therlathotes on Frege’s 1914 lecture (Awodey and R20R4,
163-166).

" Compare Reck (2004, 159-160) on this point.

'8 This affinity was already pointed out in Stein 889. Stein discusses a variant of (3*) in Hilba899): “(...)
hence the axioms taken together constitudefmition Of what? Of species of structuréThen, he remarks on
Frege’s “undervalued insight” concerning nature¢his definition: “(...) a Fregean “second-level coptie
simply is the concept of a species of structure.” (ibid, 254)
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Frege. More generally, one could be inclined tauarthat - despite the underlying, deeper
divergences between the mathematicians on the enatuaxioms, the role of intuition in
geometry, the correct conception of logic, etcrege’s account does in fact present a valid
reconstruction of Hilbert’'s semantics for his theof geometry. At least two of the crucial
semantic desiderata of formal axiomatics, name)yttig reinterpretability of mathematical
terms as well as (3*) the classification of an edadt structure by the axiom system are
captured in the former’s reconstruction.

With this background we will turn to Carnap’s foinpesentation of axiomatics. Our aim
will be to see whether this claim concerning thescathcy of a Frege-style logical
reconstruction can be upheld once the technicalilddeft implicit in Frege’s account are

fully specified.

1.3 Carnap’s axiomatics as “applied logistic”

We know from Carnap’s lecture notes of Frege’'s 1@&bdure that he was well acquainted
with Frege’s understanding dflilbertian) axiomatics. Moreover, the continuity with Frege’s
conception is also more than evident in Carnap’a @werk on the axiomatic method, from
the informal account in “Eigentliche und Uneigectie Begriffe” (Carnap 1927) to more
formal presentations iMbriss (Carnap 1929) andUntersuchungen(Carnap 2000)° In

particular, it is not difficult to identify severgbints of contact with Frege’s reconstruction of
the semantic innovations made by Hilbert. Generatlycan be safely said that the main
rationale for Carnap’s work was to provide a formgblication of Frege’s intuitions and, in a

way, to reconcile the axiomatic method with théeligs logicist approach to mathematics.

1.3.1 “Explizitbegriffe” for axiom systems

Carnap’s understanding of modern axiomatics isrmédly outlined in the Section 2 of
UntersuchungeiiSee Carnap, 2000, 87-98)The basic idea is that a formal axiom system is
symbolized in a “basic discipline” (“*Grunddiszipl)nviz. a fully interpreted type-theoretic
language (henceforth STT for simply theory of type§he “primitive symbols”

(“Grundzeichef) do not have a fixed interpretation but can beely interpreted. In the

9 See in particular Awodey and Carus (2001) and R20R4) for a closer discussion.
% Compare again Awodey and Carus (2001) for a sirdicussion of Carnap (2000).
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following passage the difference to “contentualoanatics” (“inhaltliche Axiomatik”) is
explicitly addressed:

One can also understand the primitive conceptaiggacified elements and relations of an unspecified
domain where it is only stipulated how they reltieeach other as specified in the axioms. If in
different domains elements and relations are faiad satisfy these formal specifications, then the
axiom system can be applied to each one of thes®ids; in each one of these domains also the

consequences of the axiom system hold given thpecéige interpretation. (ibid, 88)

Carnap continues to remark that this version is ‘thhethod commonly used by the
mathematician,” most notably Hilbert’'s conceptiarHilbert (1899).
As mentioned above, his logical presentation ofni@r axiom systems in STT is closely
inspired by Frege’s approach. Just as was indicétgdFrege, the primitive symbols
(expressing the primitive concepts) of a systensgmebolized by free predicate variables (of
a specified type). Axioms are conceived as prorst functions that range over the
primitive symbols. The axiom system is also presgnas a propositional function that
expresses the conjunction of its axioms and cositaiftmodel variable” (“Modellvariable”) of
a specified type, e.g%

fRn, Siy Trn) O f(Mp+1)
Given this formalization, we can see how Carnapnds to meet the semantic desiderate
described above. It is clear from the passage qistd that condition (1), i.e. the
reinterpretability of the primitive terms is clearhet here. Formally, this is done (as by Frege
before) by the symbolization of the primitive termgerms of free variables of STT.
We will postpone the discussion of Carnap’s attetopiackle condition (2) to Section 2.3.
There, it will be shown that he, unlike Frege, hadistinct idea of how Hilbert's “systems of

things” can be recast in formal terms.

2L«Oder aber man faRt die Grundbegriffe auf als stibente Gegenstande und Beziehungen eines
unbestimmten Gebietes, von denen nur festgelegt @af sie sich so zueinander verhalten, wie dstin
Axiomen bestimmt wird. Finden sich auf verschiede@Gebieten Gegenstéande und Beziehungen, die diese
formalen Bestimmungen erfillen, so kann das Axiosgstem auf jedes dieser Gebiete bezogen werden; auf
jedem dieser Gebiete gelten dann auch in entspnden®eutung die Folgerungen des Axiomensysteriisd;, (
88)

2 This conception of axiomatic systems as propastiéunctions was first introduced in publishednfain
Carnap (1929, 70-72). It is important to note hbmyever, that this convention to treat axiomaieatry as
propositions functions was quite common at the t@aenap was working on the topic. Carnap is refgrto
Huntington (1913) for the first explication of thssition. Compare Jané (2006, 18-27) on a sirndaception
in the works by the ‘Peanists’ Padua and Pieri.I8arcosu (2006, 212-216) for a broader historicaVvsy of
this “widespread conception”. Finally, see SecBoh1 for a similar account in Fraenkel (1928).
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Concerning condition (3) (or (3*%)), Carnap’s atteénmas to provide a logical reconstruction
of Frege’s original idea that an axiom system exihyi defines a higher-order concept. His
formal version of this is most explicitly discussigdhis logic manualAbriss der Logistik
(Carnap 1929). In the second part of the booleditiApplied Logicist,” Carnap describes —
in line with theUntersuchungen- two ways of understanding an axiom system: €lam
interpreted theory and (2) as a formal system iloeti's sense. Accordingly, two formal
presentations in STT can be provided for the th@oyuestion: the primitive terms in (1) are
to be expressed via non-logical constants, in #se ¢2), as we have seen, via free variables
(Carnap 1929, 78 Given this, Carnap is quick to point out that &ioe system in question
not only provides implicit definitions of its pritnte terms, but also an explicit definition of
something comparable to Frege’s second-level casacapmely an “Explizitbegriff”. | quote
the central passage on this point in Carnap (1828)ll length since it will provide the basis

for our further discussion:

In every AS (...) one or more primitive concepts amplicitly defined as “improper concepts”. In
addition, a specific, namely a logical conceptesirted explicitly by any AS of n primitive concepts
the “explicit concept” (“Explizitbegriff*) for theAS; this concept is a class for= 1, otherwise an
n-ary relation. Ifx, y, ... a, B, ... P, Q,... are the primitive variables of the AS and if n@me the
conjunction of axioms (that is a propositional filoc) ASK, vy, ... a, B, ... P, Q,...), then the

definition of the explicit concept for this AS is:

%.9,..4,5,...P,Q,.{Adx, y....a,5.,...P,Q,..}

The explicit concept of Peano’s AS of the numbegs is the class of number sequences that satisfy
the AS; this is the logical conceptog (class of the progressions (...)). (ibid, 71272)

23 Compare the following passage: “Jedes AS (...)ustizhste ein System von Zeichenkombinationen, fiir
dessen Deutung dir folgenden Mdglichkeiten vorliege Die Zeichen der Grundbegriffe (,Grundzeichen*
bezeichnen bestimmte nichtlogische Begriffe; ed aisonichtlogische Konstanteie Axiome und die
deduzierten Lehrsatze sind Aussagen Uber dieséff@ge@r Die Grundzeichen haben an sich noch keine
Bedeutung, sondern bekommen sie erst durch dasidSollen das bezeichnen, was die durch das AS
angebebenen Eigenschaften und Beziehungen hatligiteefinition“); exakter ausgedriickt: die
Grundzeichen sinffariable, die Axiome und Lehrsétze (...) Aussagefunktiong¢@arnap 1929, 71).
24 “In jedemASwerden (...) ein oder mehrere Grundbegriffe atsejgentliche Begriffe* implizit definiert. Es
wird aber aul3erdem durch jed&S wenn e Grundbegriffe hat, ein bestimmter, und zwar egidoher
Begriff, explizit definiert, der “ExplizitbegriffdesAS dieser Begriff ist fin = 1 eine Klasse, sonst eine
stellige Relation. Sind etway, ... a, B, ... P, Q,... die Grundvariablen des AS, und bezeichenen igir d
Konjunktion der Axiome (also eine Aussagefunktiar) AS(x,y, ... a, B, ... P, Q,...), so lautet die Definition
des Explizitbegriffs dieses A, §,....4, B,....P.Q,.{ASx, y.....a, B....,P.Q,..)} . Der Explizitbegriff des
PeanoscheASder Zahlen ist z.B. die Klasse der Zahlfolgen,dfisASerfilllen, das ist der logische Begriff
prog (Klasse der Progressionen (...)).“ (ibid, 71-72)
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It is important to have a precise understandingvioft is stated here. According to Carnap,
setting up an axiom system implies the definitiba glogical) “Explizitbegriff” as a class or
relation whose members are the interpretationdi®ftheory. For instance, an axiom system
with one primitive binary relatioR (as in his example of basic “Peano arithmetic’Hleitly
defines the class of higher-level relatioRs R, etc., i.e. the “class of progressions” that
satisfy the axiom systef.For an axiom system with primitive terms (e.g. Hilbert's system
in Hilbert (1899), the respective “Explizitbegrifilenotes a higher-level n-ary relation (in
modern terms, a class oftuples).

Now, Carnap’s notion of “Explizitbegriffe” clearlgnirrors Frege’s informal talk of higher-
level concepts. It has to be understood as a FSgde-attempt to formally model or capture
the semantic innovation (3), i.e. the concept #rataxiom system specifies its own model
class. Note that Carnap seems closer to the madedel-theoretic understating of (3) than
Frege originally was. The former explicitly speak$ a “class” determined by the
‘Explizitbegriff’ consisting of those interpretatie that “satisfy the AS”. Moreover, he uses

set comprehension to present his concept formally.

1.3.2 A structuralist account

Carnap’s account of ‘Explizitbegriffe’ inAbriss can also be considered as a formal
representation of the structuralist variant (3*). his example of Peano arithmetic, he
mentions the “class of number sequences”. In timessentence he holds that the axiom
systems also defines “the logical concgpbg’ (ibid, 72). Thus, the ‘Explizitbegriff’ is
viewed here as a (logically defined) concept ompprty that applies to all interpretations of
the theory. This seems to mirror closely the “ducadist methodology” (Reck and Price
2000) underlying the modern axiomatic method. Byjedtructuralism holds that mathematics
is the study of structures or of structural projesrof the objects that leaves unspecified the
particular nature of object§.This idea is at least implicit in Hilbert axiomatapproach.
Here, a theory does not study the specific intaithature of particular geometrical objects or
collections of objects but their ‘logical relationse. an abstract structure. In a second,
independent step the models as the instances linastedational structure are studféd.

% For a detailed presentation of Carnap’s theotyasic arithmetic see 2.5.1 as well as 3.4.3.

%6 See Shapiro (2000, 257-260).

" See again Bernays (1922, 192-193). Compare alsiikki on the implicit structuralism in modern
axiomatics: "The structuralist orientation of mogl@enathematics naturally leads to the use of aximakidn. To
understand a kind of structure, for instance thecstre of a group, is to have an overview oveitsll
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Carnap’s own structuralist account of axiomaticsdoees visible at several places in his
work from the late 1920s. In Carnap (1929), in dssing different examples of

‘Explizitbegriffe’ of mathematical axiom systems bxplicitly mentions of the structures of a
theory. Beside Peano arithmetic, he mentions diffesystems of projective geometry and

topology, stating that:

(...) the explicit concept of a geometrical AS,.@fjan AS of projective geometry (...) presents th
logical concept of the respective type of spacg. (e concept “projective space”). In this way,
geometry can (like arithmetic (...)) also be préséras a branch of logistic instead of an applesktc

of logistic to a non-logical field. (ibid, 7%)

Here, as in the case of Peano arithmetic, the cispeaxiom systems in geometry define an
abstract “logical concept” of a particular (Euchidj projective or topological) space that is
instantiated by different (Euclidian, projective ¢opological) models. Moreover, the
specification of this concept can be effected irepulogical terms, thus geometry itself can
be reconstructed as a “branch of logistic”. (I wikurn to this latter point in Section 1.4.)
This structuralist account of geometry is furthpedfied in an interesting exchange between
Scholz and Carnap in 1932 on the latter's conceptb ‘Explizitbegriffe’ for axiomatic
geometry inAbriss Scholz, in a letter dated April 19, 1932, remavksthe “interpretation of

Euclidian space”:

| have thought about a lot (...) whether it makessse to call every sextuple of argument values that
satisfy the Hilbert axioms of an Euclidian spacg.(If this makes sense, then the Euclidian sjjate
course in the sense of the class of Euclidian spageuld be the explicit conceptEXplizit-Begriff)
defined by the Hilbert system. Do you otherwise Wnan interpretation that gives us the One
Euclidian space? (RC 102-72-67)

instantiations. In an axiomatic system, this isomeplished by capturing all those structures asribdels of the
system.” And: "For this method is the natural ooed structuralist. The axioms determine a clasdrottures
as models of the axiom system.” (Hintikka (forthdng))
28« _..) der Explizitbegriff eines geometrischen ASBzeines AS der projektiven Geometrie (...) stedn
logischen Begriff der betreffenden Raundat (z.B. Begriff “projektiver Raum*). Auf diese &lse kann auch
die Geometrie, anstatt als Anwendungsfall der Lidgauf ein nichtlogisches Gebiet, dargestellt veerals
Zweig der Logistik selbst (wie die Arithmetik (...)Xibid, 72)
2 «Ich habe (...) viel dariiber nachgedacht, ob es\aill ist, jedes Sextupel von Argumentwerten, dig
Hilbert-Axiome befriedigen, einen Euklidischen Rammnennen (...). Wenn die Sache sinnvoll ist, scevdir
Euklidische Raum (natirlich im Sinn der Klasse Heklidischen Raume) der durch das Hilbert-System
definierte Explizit-Begriff. Oder kennen Sie eimadrpretation, die uns den Einen Euklidischen Raefart?*
(RC 102-72-07)
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Carnap’s reply in a letter (dated May 3, 1932)astipularly insightful:

To me, it does not seem to be a question of trutholb convenience what one names “Euclidian
space”. In case one prefers to speak not of varltudidian spaces but dhe Euclidian space, it
seems convenient to name as “Euclidian space”tthetsre shared by the Hilbertian sextuples. (RC
102-72-04%°

This clearly shows Carnap’s structuralist conceptad geometrical theories. (Euclidian)
space is defined here as the abstract structureedshhy all models of Hilbert's
axiomatizatiort® Finally, Carnap’s structuralism is also evidenhis more general account
in UntersuchungenHere, the formal reconstruction of axiom systeand the model theory
for them that makes essential use of the notiostroictures. Briefly, a theory can express a
number of ‘structures’ where each structure defamessomorphism class of models (Carnap
2000, 121-123). If the axiom system defines onlg @tructure (as in the case of Peano
arithmetic and Hilbert's Euclidian geometry), it eategorical (fnonomorph). It is non-
categorical (polymorph’) in case it defines more than one structure (ib&8-129)*

Given these remarks it is obvious that Carnap shavéh the axiomatic tradition a
structuralist understanding of mathematics. Nore#ise our initial concern was to see how
exactly his account of axiomatics can be positiomedween Hilbert's model-theoretic
viewpoint and a Frege’s ‘universalist’ approach.this in mind, a more refined view of
what Carnap’s version effectively amounts to withye to be necessary.

For this task a comparison with two variants of meatatical structuralism in the
contemporary discussion will be insightful. In th@rent debate, two (among other) different
conceptions are frequently discussed, namely @ative structuralism” and (b) “unversalist”
or “eliminative structuralism®® Both accounts hold that the genuine subject féle formal
mathematical theory are abstract structures andasofor instance in synthetic geometry,

%0«Es scheint mir keine Wahrheitsfrage, sondernaine Zweckmassigkeitsfrage zu sein, was man als
“euklidischen Raum" bezeichnen will. Mdchte marbée nicht von mehreren euklidischen Raumen, sondern
von demeuklidischen Raum sprechen, so dirfte es zeckgassi, als ,euklidischen Raum* die den
Hilbertschen Sextupeln (...) gemeinsame Struktubezeichnen. (...).” (RC 102-72-04)

3L For a related account of formal geometry compane&p’s dissertation (Carnap 1922), in particufar o
chapter 1 on “formal space”.

32 An example of a noncategorical theory discusse@dmpap is the axiom system of topology presemnted i
Abriss 833 (Carnap 1929, 75-78). See 2.2 for a rdetailed discussion of Carnap’s conception of i&tics.

3 For an overview of the current debate see Shgp0©0). For a detailed comparison of (a) and (B)Reck
and Price (2000, 348-354 and 354-361 respectivety)a further discussion of (a) compare Parso83qL
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facts about the intuitive nature of the field ofestigation). The central difference between
them concerns alternative assumptions on the additi“semantic implications” of the
structuralist doctrine (see Reck and Price 2000).34 (b), the abstract structures studied by
a theory can be instantiated by models or set-gtieat structures. Hence, talk about abstract
structures can thus be replaced by talk about eifgpenterpretation of a theory once the
structure has been interpreted model-theoreticalye denotation of the primitives and the
truth of a theory are specified relative to a giveodel. Moreover, the consequence relation
between a sentence and the theory can be expresseitie notion of model-theoretic
consequence (see ibid, 349-350). Thus, a relatruetaralist position can be characterized as
the combination of two assumptions: mathematicacsiralism and standard model theory.
In contrast to this, position (b) does not turmtodel theory for a semantic theory in support.
Instead of interpreting the primitives of a theanmyd its domain of discourse in a particular
model, the eliminative structuralist uses higheateorlogic to circumvent talk about relative
truth and specific model construction. Here, consege is not defined model-theoretically
but via the introduction of a universally closedhdiional of the form

OR(OS(ENIASR, S, T - ¢(R, S, ]
whereR, S T are higher-order variables for the primitive terofi@n axiomatic theorjpSand
¢(R, S T) is a specific sentence of the theory. The cldseahula then essentially states that
for any tuple of assignments to the primitivésfollows logically from AS. In short, the
sentence expresses a true sentence in HOL. Natehisatoo marks a specific semantics
assumption, just like the adoption of model-thearthe case of (a). The respective difference
in the semantic assumptions between the two vessgapecified in Reck and Price (2000):
the crucial characteristic of (a) is that - instesida model-theoretic interpretation of a
structure — use of higher-order quantification iade that allows generalization over all
possible interpretations of the variablRsS T of an axiom system. For the case of Peano

arithmetic this has the following effect:

(...) note that we again “abstract away” — now dBneralizing— from what is peculiar about any
particular model of PA (...) In fact, (...) any reference to specific modefsPA;, or to particular
objects and functions in them, has disappeared letety (even in a relative or model-theoretic
sense). Instead, what we assert with an arithnetigeement p is now something abalitobjectsall
one-place functions, arall one-place predicates and sets; since the mainalogperators in q [GS: a

universally closed sentence like the one aboveliarestricted universal quantifiers. (ibid, 356)

In comparison to (a), this difference is furtheeafied in this way:
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In relativist structuralism the basic idea is talpa particular model of the relevant theory and to
explain the reference of mathematical terms witpeet to it; in universalist structuralism the agdpe

to particular objects and the use of referring teisrsimply quantified away. (ibid, 361)

Given this, does Carnap’s structuralist account agfomatics (and in particular his
reconstruction of ‘Explizitbegriffe’) side with onef these two variants and its respective
“semantic implication™? As we will see, it is diffilt to provide a clear-cut answer to this
guestion. Consider again Carnap’s two main intaligc influences on this theory of
axiomatics: Hilbert's position irsrundlagenand Frege’s logical reconstruction. It is clear
that the semantic innovations in Hilbert (1899)particular his introduction and systematic
use of formal models (viz. (2)) make Hilbert anlggroponent of relative structuralism. In
contrast, Frege’s suggested formulation of inn@vat(3*) via the use of higher-order
concepts in 1900 and again in 1914 can be vieweal kind of eliminative structuralisii.
The difficulty in positioning Carnap’s account withone of the two camps of mathematical
structuralism results from the fact that it deldtety was formulated as a reconciliation
between Hilbert's and Frege’s viewpoints. We emjzeak the strong continuity between
Carnap’s notion of ‘Explizitbegriffe’ and Frege’'saonstruction of (3*). In fact, one can

easily reformulate Carnap’s use of set comprehangithe explication of this notion

X, 9,...,07,,@,...,IS,Q,..{AS(X, y,...,a,ﬁ,...,P,Q,...)}

by a universally quantified sentence in his “appliegistic” of the form

@Ox)(Oy) ..(o)(OR)..(OP)(0Q)..(ASK, V,..a,B,.. P, Q,..) » Exas(X,y, ..q, B,..P, Q,..))
Here, Exs stands for the ‘Explizitbegriff’ of the axiom sgsh in question. This clearly looks
like an instance of the more general scheme ofimditive structuralism discussed above. In
fact, given his examples of ‘Explizitbegriffe’ inathap (1929), one could view the quantifiers
in the sentence as introduced in order to “abstaacy” from the reference to particular
models of the class of interpretations specifiedthy axiom system. (I will return to this
interpretation in Section 5.)
Can one infer from this that Carnap was an elinnneagtructuralist? To a certain point, as far
as the Fregean background of his reconstruction goes, we woulduarthat one can.

Nonetheless, it would be a mistake to hold thatvhe an eliminative structuralist throughout.

% More generally, it is sometimes argued that elatiire structuralism and in particular the convemtio treat
mathematical primitives not as schematic termsaButariables, has close ties to the logicist acso@ompare
Parsons (1990, 311-315).
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In particular, closer attention to his explicatiohseveral semantic notions in the context of
his work on axiomatics shows that the situatiom@e intricate in his case. Where Carnap
differs from Frege is in the fact that he, unlike fatter, makes a serious attempt to come to
terms logically with Hilbert's semantic innovati@?), viz. the introduction and use of models

of an axiom system.

1.3.3 Formal models inUntersuchungen

No closer account of what Carnap understands bptarpretation of an axiomatic theory is
provided in Carnap (1929). Fortunately, in bistersuchungenvritten around the same time
asAbriss a detailed formulation of the notion of a “forrmabdel” of an axiom system can be

found® In §2.3 of the manuscript, the following definitigs given:

If we write for f[R, S T), in short f{M), and ifRy, S;, T, are specific, e.g. arithmetic relations that are
admissible values of the variablRsS T, then we can also introduce an abbreviatwation for the
ordered system of relatiol, S;, T;, sayM;. ThemodelM; is thena value of the model variabM.
Each of the relation variabld® S T of the axiom system has a specific type (...); tbstential
function for fR, S, T) only yields a true or false sentence if the valokthese types are inserted. If the
three relation®;, S;, T; are admissible values of the variadRe$§, T, i.e. if they can adopt the type of
the three variableR, S T (by declaring a specific domain of discourse ienthto be the domain of
individuals), we name the system of relatioRg &, T1), or shortM; an “admissible modélof fM,
irrespective of whethevl, satisfies M or not; M, is then in any case meaningful, i.e. either a true
false sentence. An admissible modi®l of fM is only then also a model offif fM; is not only

meaningful, but also true. (Carnap 2000, 95, natesiightly changed)

% Compare also Chapter 2 for a detailed survey of&ss conception of models.

% «Schreiben wir fiir fiR, S, T), kurz f(M), und sindR;, S;, T; bestimmte, etwa arithmetische Relationen, die
zulassige Werte der Variabl& S T sind, so kdnnen wir auch fiir das geordnete RelatisysteniR;, S;, T; ein
abkirzende Bezeichnung einfihren, eva Das ModellM; ist dann ein Wert der Modellvariabléh Jede der
Relationsvariable®, S, T des Axiomensystems hat einen bestimmten Typus (ur)dann, wenn Werte dieser
Typen eingesetzt werden, ergibt die Aussagefunktiof(R, S, T) eine wahre oder falsche Aussage. Wenn die
drei Relationerr;, S;, T; zuldssige Werte der Variabl& S, T sind, d.h. wenn sie (dadurch, dass ein
bestimmter Gegenstandsbereich in Ihnen zum Indéritareich erklart wird) den Typus der drei VariabfeS,

T annehmen kdnnen, so nennen wir das RelationensyBieS,, T,), oder abgekurtatl,, ein ,zuldssiges
Modell* von fM, gleichgultig, oV, M befriedigt oder nicht;Ml; ist dann jedenfalls sinnvoll, ndmlich entweder
eine wahre oder eine falsche Aussage. Ein zuldssigelellM; von M ist nur dann auch Modell voiMf, wenn
fM; nicht nur sinnvoll, sondern wahr ist.“ (Carnap @095, notation slightly changed)
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We have seen above that axiom systems were codcbieCarnap as “theory-schemata”
logically presentable as systems of sententialtions that range over several predicate (or
relation) variables. Systems with more than onelipete variable of the formR S T) are
abbreviated by a “model variabl® of a specified type. The resulting axiom systeM)f(
allows different empirical and formal interpretaitso The term “formal model” is reserved for
the second type of interpretations. The varidblthus ranges over the set of adequate models
(“zulassige Modelle”) of f (ibid, 95).

Carnap’s account has to be considered as an eein@ to provide a logically precise
definition of models, viz. of condition (2) in thaxiomatic context. Whereas different
informal version of the notion had been used inB20s and before, it is mainly in Carnap’s
Untersuchungems well as in Tarski’'s work at the same period finst attempts of a formal
explication were giver! This said it is obvious that Carnap’s definitioheomodel is - in
several ways - heterodox compared to modern acanfumodels. In recent work Carnap’s
Untersuchungenit was characterized as “something like modebtite(Awodey and Carus
(2001, 145) or as an “early heuristic form of thedarn concept” of models (Bonk and
Mosterin (2000, 38). However, so far no further ldication of Carnap’s account has been
given. Nonetheless, | believe that for reasons shiogow, it is worth the effort to look more
closely at where precisely Carnap’s conception otlefs differs from the modern account.
Some aspects are clearly anachronistic: first, tiwdé in contrast to standard model theory
models are devised for theories formulated notiist-brder but in higher-order logic,
particularly in type-theoretical settiriy>® Moreover, Carnap is operating imtersuchungen
with a pure logical language with an empty signatuvhereas, in the modern account,
models are usually constructed for theories in Uaggs with a non-empty signature. This
difference in the kind of the formal language iedily reflected in the Carnap’s conceptual
architecture of models. Briefly, a model (for anfia language) is conceived now as a tuple

(D, I) whereD designates the (non-empty) universe artie interpretation function that

3" See Badesa (2004) for an account of early moeelryhin the work of Léwenheim and Skolem. Compare
Mancosu (2006) on Tarski's early notion of a mo&sle Sieg and Schlimm (2005) for a detailed disonss
the notion of a system in Dedekind’s work on arigie in particular Dedekind (1888). See Jané (2006a
more general discussion of the semantic notiorstésy of things’, ‘application’, and ‘representati¢@mong
others) in the work of the Italian ‘Peanists’ adlvas the American postulate theorists Veblen, Ypand
Huntington.

% In fact, Carnap gives an explicit specificatiorthoé type-theoretic setting in which his theoryraidels is
conceptualized. One of his contributions to a systéc theory of models is the above distinctionestn the
‘structural adequacyas a type-theoretic condition for ‘admissible medand the truth’ in a model. This two-
step approach to models clearly mirrors Carnapngtbackground iRrincipia Mathematicaparticularly the
theory of relations presented there. For more @nsie Chapter 2.

39 Compare, however, Shapiro (1991), where a moeelrthof SOL is outlined.
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assigns to the non-logical symbols of the languelgenents ofD (sets of elements dd,
relations orD, and functions fronD" to D, respectivelyf® In Carnap’s notion, there exists no
interpretation function, but only valuations to the variablBs S T, viz. the primitive terms
of the theory. A modeM; is thus simply conceived as amtuple of relations (or more
precisely, as we will see, as a sequence of relatioonstants) of a specified type that are
assigned to the ‘primitive symbols’ and that “sigtishe axiom system f*

Finally, returning to our discussion above, it do¥ls from Carnap’s heterodox understanding
of formal models and its subsequent use in hisudson of axiomatic theories and their
metatheory that his account cannot be classifiednasliminative structuralisrtout court
Just like the relative structuralist Hilbert, Cgonases the notions of “truth”, “satisfaction” of
an axiom systenmelative to a given model and does not “abstract away” froanticular
interpretations of the theory. One can thus corelhdt he held a hybrid structuralist position
that combines both elements from (a) with elemé&ots (b). We saw above that he seems to
favour the semantics involved in unversalist stitadism in discussing the ‘Explizitbegriffe’
of an axiom system. This does not retain him fronmiulating an early theory of models and
of using particular models in his study of axiornasystems. We will return to the
implications of Carnap’s hybrid structuralist acobin Section 1.5.

Given Carnap’s presentation of formal models (amgsthis version of (2)), we are now
halfway to turn to the main question of this chapteamely ‘Does Carnap’s formal
reconstruction adequately capture the semantiovatian (3) of modern axiomatics?’ Before
addressing the question, however, a specific lsgieissumptions implicit in his early
semantics has to be specified. As we will see ©ti&e 1.6, it is here, that Carnap’s theory of

axiomatics runs into problems.

1.4 A logicist reconstruction of axiomatics

We mentioned in the Introduction that Carnap’s tiiexan be considered as a ‘logicistic’
reconstruction of Hilbertian axiomatics. This hade refined. More than Frege, Carnap was
aware of key methodological innovations (1) and ¢2)modern axiomatics. His use of
‘applied logicist’ in the formalization of schematprimitives and models of a theory was

clearly supposed to meet these desiderata. MoreGaenap also provided a reconstruction of

40 See, e.g., Enderton (2001, 80-82)
“1 For a more detailed survey on these differencéiseanodern notion, particularly with respect te toncept
of domain variation for models see Section 2.4.
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the model-theoretic idea expressed in (3). Gives, tn could infer that his theory clearly
meets the adequacy conditions of formal axiomatics.

Such a diagnosis would miss to take into accountelver, that Carnap’s heterodox version
of (2) was still closely tied to the traditional gioist program in the foundations of
mathematicé? Interestingly, in Carnap’8ntersuchungerand later on, this point is nowhere
explicitly addressed. In fact, at one point in Ggrn(2000), when introducing his “basic
discipline” for his study of axiomatics Russell'sopect of the logical reduction of
mathematics is mentioned in a sentence only tossttbat his work on axiomatics is
“independent of this conception” (ibid, 62). (Compaalso Section 1.4.5 below.) This
suggests that there was no closer conceptual ctonebetween Carnap’s work on
axiomatics and his more general logicist leanimgshie philosophy of mathematics at that
time. However, as we will see, the situation is mowre intricate than this.

As is well known, the logicist reduction of mathdioa to logic depends crucially on the
formal notion of interpretation. A mathematical dhne T, (expressed in languade) is
interpreted in a second logical thedry(expressed in the logical langudgein the following
way: (i) the mathematical terms ®f are defined irL,, i.e. for every primitive or defined
conceptP of Ty in language.; a formula¢ is given inL; that defines the concept; (ii) the
range of the quantifiers ih; is restricted to the range of the quantifierd_pivia quantifier
relativization. Given (i) and (ii) all axioms ankeiorems ofl; can be expressed as sentences
of L, and can be deduced from the axiom3:0fin the case of the classical logicist reduction,
T, is logical axiomatic system like Russell’'s theoifytypes and., a pure (type-theoretical)
logical languagé®

How does this classical logicist program relateCarnap’s logical reconstruction of formal
axiomatics? Evidently, in both cases the notion of an intetgien in terms of a translation
plays a central role. In Carnap’s axiomatics, ,itais we have seen, the translation of a formal,
uninterpreted axiomatic theory into a fully intezfegd logical system, his “basic discipline”.
The first step in this translation was outlined \&oprimitive terms are expressed as
variables, the axioms and sentences of the thesrprapositional functions of STT. In
addition, there is a second step in the transldtiahhas not been considered so far. What has

to be added to the above picture is that alsoeh®astics, in particular his formal models are

“2 For Frege’s and Russell’s logicist programs seey8ss (2005). For a broader account of Carnap’s own
evolving conceptions of logicism over his intellgaltcareer see Bohnert (1975).

3 For a more detailed definition see e.g. Burge88%250-51).

44 Compare in particular Reck (2004, 172-175) on ploit.
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subject to interpretation in pure logic. Thus, & liagical reconstruction of an axiom system
also concerns the interpretations of the system.

Carnap does not mention this additional conditioncerning the interpretations of an axiom
system, neither ikintersuchungemor in Abriss The most explicit account of it can be found
in his contribution to th&onigsbergdiscussion on the foundations of mathematics 8019
Here, in aiming to provide a bridging account af three foundational schools, he makes the

following well-known remark on the “logical analgsof the formalistic system”:

1. For every mathematical sign one or morerpretationsare found, and in fact purely logical
interpretations.

2. If the axiom system is consistent, then uporlampg each mathematical sign by its logical
interpretation (or one of its various interpretatiy every mathematical formula becomeawdology

3. If the axiom system is complete (...), then thenpretation is unique; every sign has exactly one
interpretation, and with that the formalist constion is transformed into a logicist one. (Hahn ahd
(1931, 143-144) quoted from: Awodey and Carus (2063))

Carnap’s understanding of a ‘logicist’ reconstractiof the formalistic method, i.e. formal
axiomatics as the interpretation in pure logic glined most distinctively here. Point 1
highlights the above assumption, viz. the logicatelipretability of the mathematical
primitives of the axiom system. If the system iglerstood as formal then this condition
effectively amounts to the logical interpretabiliy the formal models of an axiom system.
Given this, we can refine our above question in fiblowing way: what does Carnap
understand by “purely logical interpretations” of axiom system? And: applied to his theory

of models, how does he conceive the logical deflitglof a model?

1.4.1 The definability of models

One of the earliest commentators of Carndgigersuchungenthe mathematician Hasso
Harlen, already took notice of such a logicist agstion concerning the models of an axiom
system. In commenting on a draft of the manusadripa letter dated January 1, 1928, he

remarked that:
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The existence of cases of applicat|s herg equivalent to the existences of models. This cliasim
hypothetical; | would like to name it the hypotteesif logicism: that no structure can be described

axiomatically if it is not already describable oglc. (RC 081-01-34F

And then, in emphasizing the difference betweenn&as account and Hilbert's use of
analytic models in Hilbert (1899) he adds:

Hilbert mapped geometry to a mathematical moddltm@ formal one in your sense. Basically, this
amounts to the same, but Hilbert's mapping diffessprincipally from those of Lobatschefsky, Klein,
and Beltrami. (RC 081-01-3%)

The conceptual difference mentioned here between“thathematical models” used by
Hilbert and Carnap’s “formal models” is importdhtFor Harlen, using the latter as
presentations of the former implies an additiorsduanption, a “hypothesis of logicism,”
namely that every mathematical axiomatic structare be “captured logically”.

Now, it is important to note that the definabiliof models of an axiom system can be
understood in two ways. In the first and weakerssenthe definability assumption simply
requires that for every consistent mathematicabraxsystem, (at least) one purely logical
model can be constructed. In the second, stroregeses the definability assumption requires
that all models of a formalized theory can be pnesskin logical form, i.e. as logical models.
Both versions of the definability assumption haeer discussed in the recent literature on
Carnap’s axiomatics, sometimes without sufficiestiessing their differen¢&.For instance,

Reck (2007), in discussingntersuchungenexplicitly argues for the stronger assumption:

5 “orhandensein von Anwendungsfallgia heré gleichbedeutend mit Vorhandensein von ModelleresBi
Behauptung ist hypothetisch; ich méchte sie diedtlypse des Logizismus nennen: dass keine Struktur
axiomatisch erfassbar ist, die nicht schon logesdassbar ist.“ (RC 081-01-34)

¢ “Hilbert hat die Geometrie auf ein mathematischieslell abgebildet, nicht auf ein formales in ihr&inn. Im
Endeffekt ist das ja das gleiche, aber dem Sinh dilberts Abbildg. nicht prinzipiell von denen
Lobatschefskys, Kleins, Beltramis verschieden.” ((81-01-34)

" Harlen’s claim concerning the continuity betweka fntuitive models’ introduced by Beltrami andefi for
non-Euclidian geometries and Hilbert’s analytic mksdn Hilbert (1899) cannot be discussed here, See
however, Webb (1995).

“8 In recent commentary on the metatheoretic resularnap’s 1928 manuscript, most notably Awodey an
Carus (2001) and Reck (2007), this logicist defiligtassumption underlying his model theory iscals
mentioned, specifically in the discussion of Carsa@abelbarkeitssatzThe theorem states the equivalence of
the three notions of completeness discussed bya@are. categoricity (honomorphisr), syntactic
completeness deducibility) and semantic completenesadgh-forkability) (Carnap 2000, 133-139). Carnap’s
theorem is generally flawed for several reasons fsgodey and Carus (2001) and Goldfarb (2004)).
Nonetheless, it was argued that — given Carnaginatslity assumption for models — the equivalebetween
semantic completeness and categoricity does irhfadt Compare Awodey and Carus (2001) and RedBAR0
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“Carnap assumed that every model of a higher-otdeory is definable.” (ibid, 195) In
discussing Carnap proof of the ‘Gabelbarkeitssagnotes in Reck (2004) that:

Carnap implicitly assumes that, for any mollel“being isomorphic td/1” is expressible in the simple
theory of typesThis assumes thany model M is definable in simple type theavigich is not true as

became clear after Carnap’s work. (ibid, 170, mplkasis)

In contrast, in discussing the same proof, Awodey Reck (2002) describe Carnap’s tacit
assumption in this way: “In particular, he in effessumed that any consistent theory has a
model that is definable within simple type theompich is false.” (ibid, 35)

We will return to the limiting effects of thesefubability constraints on models in Sections
1.5 and 1.6. For the moment, our interest lieshiem question which of the two versions
Carnap actually assumed. Not surprisingly, it iialilt to give a clear-cutesponse to this
question based on Carnap’s writings in the 1920&ngthe fact that the logicist assumptions
were (mostly) left implicit in his project. Nonetkss, one can get a clearer picture of his
account when comparing it with two similar accouats'logicized’ axiomatics of two of

Carnap’s contemporaries, Alfred Tarski and FriddBachmann.

1.4.2 Tarski's “effective interpretation”

Carnap’s “Gabelbarkeitssatz” from 1928 is usuallycdssed in reference with Tarski and
Lindenbaum (1935) where the theorem was state@cibyrfor the first time. Here, in contrast
to Untersuchungenthe additional assumption concerning the loga=finability of models
was made explicit? The main result of the paper is the formulationaotheorem that
connects the logical definability of concepts toimrariance condition under permutations of
the logical “universal domain” V of a type-theoretanguage. The theorem states that all
notions definable in STT are invariant under alinpatations of VV and vice versa. The central
point is that this invariance condition holds favéry relation between objects (individuals,
classes, relations, etc.) which can be expressgulitg)y logical means”, viz. in terms of STT
(ibid, 385)°

49 See fn.48. Compare in particular Bonk and Mostg000, 41-43), Coffa (1991, 282), and Awodey aaduS
(2001, 160). For an independent treatment of tipepaompare Goméz-Torrente (2002).

%0 |t should be noted here that a kind of invariabased approach to logically definable notions ctosgarski’s
account is already discussed in Carnap’s concepfiamiomatics. Compare a a passage on “structural
properties” of relations in Carnap (2000) wheres thimade explicit: “The structural properties iara way the
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Applied to axiomatic theories this invariance thesor translates into a second theorem
concerning the logical definability of mathematicadlations. Tarski and Lindenbaum

paraphrase it in this way:

Intuitively speaking, every relation between obgect.) which can be expressed in terms of logic and
geometry is invariant with respect to every one-ora@ping of space onto itself in which the relation
a is preserved, i.e. with respect to every simyatinsformation (and not only with respect to gver

isometrical transformation)” (ibid, 388)

Note that with the move to specific mathematic \ded/e theories’ there is also a shift here
from definability within a pure logical languagek@ STT) to definability within a formal
language with a non-empty signature, i.e. with togneal terminology (say STT*). For their
example of an axiom system of Euclidian geomehgytexplicitly stress the limits of logical
definability compared to geometric definability (inis extended logical language): briefly,
there are geometrical relations that are definab&TT*, but not in STT (ibid, 389"

The consequence of this for Tarski’'s treatment isfuersion of the ‘Gabelbarkeitssatz’ is
this: the equivalence of semantic completenesg @nski’'s terms “non-ramificability”) and
categoricity is conceived as a direct “applicatmin[Theorem] 1,” i.e. the first invariance
theorem stated above. For this reason, an additiooadition concerning the logical
definability of the primitive terms of the axiomatiheory is explicitly mentioned (ibid, 390).
Their crucial Theorem 10 states: “Every non-ranbigaaxiom system which is effectively
interpretable in logic is categorical.” (ibid, 39Ihe “effective interpretability in logic’ of a
theory mentioned here is specified in this way:

[Theorem 10] (...) proves to hold under a supplenmgntéssumption. We define an axiom system
‘a(a, b, c, ...)" to beeffectively interpretable in logi€ there is in logic a sentential function
‘1(x, ¥, z, ...)" such that the following three logical formalare logically provable:
XV, z ..):1(x,v,z ..).0.0xV,2z..);
X(y,z ...) . 1(X, ¥, 2 ...);

(X, x"y,y", 2, 2"):u(x,y,z,...).u(x",y", z,..).

properties invariant under isomorphic transformagior hey are of particular importance for axionstic
(Carnap 2000, 74)

*L Tarski and Lindenbaum note for the case of gegm&Fhe distinction between logic and geometry certe
light, however, in the discussion of three termeldtions; for, as is well known, there are infihitsmany three-
(and many-termed) relations which are definablEuglidian geometry.” (ibid, 389)
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O.xX=x".y=y".27=2"..... (ibid, 390-391)

Several points should be mentioned here. Note Thetki’'s convention to formalize axiom
systems in STT closely mirrors Carnap’s own apprcadlined above. A sentential function
is logically expressed via the schenogd, b, c, ...; X, ¥, z, ...)wherea, b, c, .... stand for
“extralogical” constants and, y, z, .... for free variables of a given type. An interptete
axiom system can be expressed by the closed form(dab, c, ...)’ wherea, b, c, ... express
the primitive terms of the theory. A formal, dignpreted system is then symbolized afx,*

Yy, z, ...)" i.e. a sentential (or propositional) functionpore STT.

This said, Tarski’'s additional condition concernitige “effective interpretability” of
axiomatic theories is best understood as a traoslaf an interpreted theory of the form(a,

b, c, ...)’ expressed in STT* (i.e. here STT with the sigmat{a, b, c, ...}) into a theory of
the form T(Xx, y, z ...)" expressed in pure STT. This method bears steamgarities with the
method of logicist reduction outlined above. In Skis case, the interpretation can be
effected in two ways: in the above passage theetlm@nditions fix (i) that there is an
universally quantified implication from the sent@hfunctiont (expressing the logical axiom
system) to the sentential functian (expressing the disinterpreted axiom system);thigt
there exists an interpretation of foand (iii) thatt holds for a unique sequence of values for
X, Y, Z, .... The second way outlined in Tarski and Lindenbda885) to characterize the
“effective interpretation” has an interesting ingaliion on level of models of an axiomatic
theory>® There is an insightful reformulation of the coiwtis (i) to (iii) of the above passage:

(...) the axiom systemad(a, b, c, ...)’ is effectively interpretable in logic if and gnif there are
logical constantsa’’, ‘b'’, “ ¢'’, ... (undefined or defined) such that the sentenda’,b’,c’, ...)’

obtained by substituting these logical constantgte primitive terms in the axiom system discussed

is logically provable.” (ibid, 391)

In this kind of translation, the primitives of amerpreted theory expressed by the non-logical

!

constantsa, b, c, ... are substituted by logical constard'sb’,c', ..., i.e. primitive or defined

terms of STT. The axiom system is thus effectivialgrpretable in STT if the transformed

2 For a closer comparison of Tarski’s and Carnaptsception of formal models see 2.4.2.
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I

system &(a',b’,c’, ...,)’ can be deduced in Tarski’s logical syst@m. a theory of types plus

the axiom of infinity)>®

Tarski conception of models in the early 1930snslar to that of Carnap. Models are in both
cases understood as tuples of relations that &stigued for the variables in the formalized

I

axiom systemd(x, v, z, ...)". Given this, the sequence of logicghtions(a’,b’,c’, ..) has to

be understood as a logical model of the theory.sTheffective interpretability” means the
construction of a particular model for an axiomtegs that consists of logical constants. This
is in effect the translation of a theory in a matlaéical language into a theory in pure HOL
where variables expressing primitive notions attesstuted by logical notions. Conceived in
this way, the “effective interpretability” of an iaxn system then simply states that there is (at

least) one model of the theory that is definablpure STT.

1.4.3 Bachmann'’s “logical constitution of a model”

The notion of an “effective interpretation” outlchén Tarski and Lindenbaum (1935) is not
the only specification of a logical definabilitysasnption comparable to the “hypothesis of
logicism” in Carnap’s formal models. A similar ace can be found in a relatively unknown
work of the mathematician Bachmann, a later collatms of Carnap (Bachmann 1934).
Bachmann’s subject of his inaugural dissertatibe, formal presentation of different axiom
systems of arithmetic and the study of their logretations shares various points of contact
with both accounts. As in Tarski’'s notion here the aim is explicitly to provide a logicist
presentation of axiomatic theori&s.In the introduction, Bachmann presents this taskis

way:

%3 Tarski and Lindenbaum mention a possible limithe effective interpretability of a theory in a givtype
level of the background language. They add: “It stmes happens that an effective interpretaticsmnodixiom
system in logic can be found only at a higher tfthis applies, for example to the axiom systerhef t
arithmetic of real numbers).” (ibid, 391) Comparé.3 for a similar account ¢fpe ascenin Carnap’s logical
presentation of models for axiom systems.

>* Compare the discussion of Bachmann (1934) in 2.4.2

*5In his introduction, he explicitly speaks of adi§emeine Untersuchungen zur Axiomatik der Arithikiet
(ibid, Introduction). There is no indication, despihe strong similarity to Carnapintersuchungethat
Bachmann knew Carnap’s 1928 typescript when workimgis dissertation. Nonetheless, in Bachmann’s
bibliography, explicit reference is made to Car(B@29). Moreover, there exists an extensive disonss the
treatment of extremal axioms in Carnap (1930, 46-#ifiis topic was the subject of the later collattion
between the two. Compare also Chapter 2.
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The subject of this work is the problem of the d=bility of arithmetic from logic or — to be more
precise — the problem of the deducibility of aneiptetation of arithmetic from logic. (ibid,

Introduction§®
Bachmann mentions two “subtasks” for the “solutadrthe problem®:

1) The logical characterization of the models dthanetic (the presentation of an axiom system of
arithmetic)
2) The logical constitution of a model of arithnaefihe presentation of a system of constants aad th

proof that this system of constants holds in anméystem of arithmetic. (ibid, Introductich)

This is clearly not the typical approach of redgcarithmetic to logic according to classical
logicism. Nevertheless, Bachmann’s close ties t® pihogram are evident, however, in the
specifics of these two tasks. He discusses (1)ditberent axiomatizations of arithmetic,
including Peano arithmetic, Dedekind’s version iwhanetic via chains, and an axiom system
of elementary arithmetic (ibid, 27-52).As in Tarski’s and Carnap’s versions, axiom gyste
are treated here as “sentential formsAyssageforméh and the un-interpreted primitive
terms as variable¥. Models are also conceived in essentially the samg as in Carnap
(2000). In Bachmann’s terms, a model for the systérelementary arithmetic f(R a) is
specified in this way: “Every triple of values thidtsubstituted for xR a transforms the
axioms in true sentences is called a model ofraetic.” (ibid, 1)

Given these striking similarities, two subtle diffaces to Carnap’s account are worth to be
mentioned. The first concerns Bachmann’s discussiohis first subtask of the “logical
constitution of a model” for axiomatic arithmetice. the “presentation of a system of
constants” as a model for the system. Whereas @araacount is, as we will see, restricted
to a presentation of different sequences of “canistaf the basic system” without any further
specification of these constants, Bachmann is @baut the admissible range of constants to

be allowed here. He states that the constantsitudits} a model have to name concepts that

6 “Der Gegenstand dieser Arbeit ist das Problempdideitbarkeit der Arithmetik aus der Logik oder 4evich
mich genauer ausdriicken mochte — das Problem deitl¥drkeit einer Interpretation der Arithmetik ader
Logik.” (ibid, Introduction)

®7«1) einer logischen Charakterisierung der Moddbe Arithmetik (Angabe eines Axiomensystems der
Arithmetik); 2) der logischen Konstituierung eirdsdells der Arithmetik (Angabe eines Konstantensyst
und Beweis, dass dieses Konstantensystem einenm&yitem der Arithmetik genigt).” (ibid, Introductio
8 Compare Chapter 3 for a closer discussion of thgseems.

% For a given theory of arithmetic, he states tHaur axiom system consists of four sentential fiore in
which apart from the constants of logic and bouadables also three free variableR & appear.“ (ibid, 1)
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are definable in sense of Frege’s reductive defimst This is spelled out explicitly as a
condition for his task of showing the “deducibilidy an interpretation” of arithmetic. What is
missing - and probably deliberatively left out irar@ap’s treatment due to his shift of
attention from logicist reduction to axiomaticss-the specific method of the “presentation”
(“Aufweis) of “a logically constituted Modell” (“ein logidt konstitutiertes Modell”) (ibid,
9). In Bachmann (1934), for the case of elemen&ithmetic, such a task consists in the
presentation of a sequen¢® Succ¢ NN), where each concept is given an explicit reductive
definition. Here, unlike in Carnap, the assumptmoncerning the logical definability of
models is made explicit. So, the first task of {@yof a logicized reconstruction of axiomatic
arithmetic is to present at least one purely Idgmadel just as in Tarski and Lindenbaum
(1935).

A second difference to Carnap’s account concerrghiBann’s second task of step (2), the
“proof that this system of constants holds in anomx system of arithmetic” (ibid,
Introduction). Following the presentation of a laji model (as a sequence of logically
defined constants) for the axiom system in questBacthmann holds that, in a second step,
one has to “then show of its definientia that tfyn a model of arithmetic” (ibid, 9). This is
the proof that the logically defined notions ‘0Suc¢, and ‘NN “satisfy” the conditions
specified in the axiom system (see ibid, 18-26)teNbat in Carnap’s account, the relevant
notions used for this like ‘truth in a model’ oratssfaction’ are left informal, at least in
1928°%° Nevertheless, it is clear that they are - at lgmgrinciple - considered to be semantic
in nature. In Bachmann’s case, the proof that tleelets “hold” in an axiom system is
understood in purely syntactic terms. We have seanfor him models are a set of logically
defined relational expressions. An interpretatioentholds in an axiom system if the sentence
resulting form the substitution of the variableg(R a) by such constants is provable in the
logical background system. This “deducibility of iaterpretation of arithmetic” from logic is
not understood model-theoretically. The proof tlatmodel of the forni0, Suc¢ NN)
“satisfies” the axiom system is given “by exclusivee of the means of proof of logic” (ibid,
8). Note that also in Tarski and Lindenbaum (198%9,adequacy of a effective interpretation
of an axiom system is not expressed via a semantions of truth but syntactically, via the
“logical provability” in STT (see Coffa 1991, 28832) This clearly underlines his logicist
motivation of both accounts.

0 Compare 2.4.1 for a more detailed discussion.
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Given Bachmann’s two-step approach, it is importantote that the “logical constitution” of
a model of arithmetic means for him, just as inskas case, the construction of a single
logical model. Here again, definability seems taibderstood in the weak form.
Nevertheless, there exists a crucial differencevéen Tarski and Bachmann concerning the
general motivation of the formal reconstructionaxfiomatics. In Tarski and Lindenbaum
(1935), the “effective interpretation” is conceivad one among alternative ways to present
logically mathematical theories and their models/e@ the convention that axiom systems
are expressed via propositional functions with ssveariables, models can here either be
presented as sequences of genuinely mathematichlttars non-logical relations of a
language STT*. They can also be presented as seegmi@h logical expressions, “defined or
undefined” in pure ST

In contrast, in Bachmann (1934) thexclusiveaim of the study is to devise a logic
reconstruction of axiomatics close to classk@geanreduction. It is in this understanding of
logical formalization that the stronger definalyiliassumption concerning models can be
identified. Consider again Bachmann’s second taskhis intended “deducibility of an
interpretation of arithmetic from logic:” to pregemsingle “logically constituted model“ that
holds in the theory. Given his logicist accounty amodel of elementary arithmetic that can be
subject to this second task has to be logical & gbnse specified by him. In contrast to
Tarski's account, there are thus no alternative smayformalize axiom systems and their
models. The resulting stronger version of the adfility assumption is explicitly mentioned
in Bachmann (1934). In his discussion of the “prthaft the system of constants holds for an
axiom system,” he gives an explanation why the risoaeist consist only of logical constants

in this context:

For the second task to succeed it is necessarythieathree constants are constructed from the
primitive signs of logic and bound variables, ioghthat they are logical constants. A sentendé wi
nonlogical constants is only deducible from lodgiit is transformed into a universally valid sertteh
form in case the constants are substituted by MasaSince the sentential form A-AS IR, a) is not

universally valid, this approach is not possibileid( 9)°*

®1 See Goméz-Torrente (2009) for a broader survéiadki’'s “logical pluralism”, i.e. the different as of
logical language for the formalization of matheraltiheories in the 1930s.
2«Damit die L6sung der zweiten Aufgabe gelingt,@stnotwendig, dass die drei Konstanten aus den
Grundzeichen der Logik und gebundenen Variablegeh#ut, kurz: dass sie logische Konstanten sin Ei
Aussage Uber ausserlogische Konstanten ist namlicdann aus der Logik ableitbar, wenn sie beitzusgy
der Konstanten durch Variable in eine allgemeingélAussageform tbergeht. Da nun die AussageforABA-
I(x, R, a) nicht allgemeingdiltig ist, ist dieser Weg niclaingbar.” (ibid, 9)
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This passage is central for Bachmann’'s understgndinthe logicist reconstruction of
axiomatics. The theory A-AS I(OR, a) is not universally valid since one can, as Baalmna
points out, construct “non-models” that fail toisht the theory (ibid, 5-6). It follows from
this that any model constructed for the theorytbasonsist exclusively of logical constants in
order to allow this proof of the validity the inpgeted system. Thus, in Bachmann’s specific
presentation of axiomatics, any model for an axgystem has to be logical for exactly this
reason. All models relevant for consideration arest‘logically constituted” in this sense.

1.4.4 Carnap’s substitutional conception of models

How do Tarski's “effective interpretation” of aniaratic theory and Bachmann'’s “logical
constitution of a model” relate to Carnap’s tacdgfidability assumption? Recall again the
latter’'s remarks on the “logical analysis of thenfialistic system” in Kénigsberg. Here his
intention was obviously to providelagicizedversion of formal axiomatics close in spirit to
both Tarski’'s and Bachmann’s accounts. Moreoves, thik of “one or more (...) in fact
purely logical interpretations” of the mathematigaimitives suggests that he too proposed
the weak version of logical definability in 193b.

However, we saw from Bachmann (1934) that this typeeconstruction if considered the
exclusive formal method to treat axiomatic theoeéfectively implies the stronger version,
namely that all relevant models are logically dafile. Turning tdJntersuchungerwe noted
that Carnap’s primary aim here was not to proviogidist reconstruction in Bachmann’s
sense. Carnap stresses at the outset of his matuket the principle objective is to provide
formal explications, i.e.precise definitions for the concepissed in axiomatics in a formal
framework and not &regeanreduction (Carnap (2000, 59)). In this sense, &amaccount

in 1928 is closer in motivation to Tarski’'s discass of deductive theories in 1935.
Nonetheless, Carnap’s theory differs from the fa&tmore pluralist account with respect to
the specific formal framework. In particular, Tarsknceived of formal languages with non-
logical terminology. One of his conventions of anfial reconstruction of the semantics of a
theory was the introduction of (a sequence of) lngical mathematical constans b, c, ...)

that are assigned to the variables of an axiomesysti(x, Yy, z ...)". This is ruled out in

% Note that a similar account of a “logical interatéon” (in contrast to a “descriptive interpretatt) of an
axiomatic theory in a type-theoretic theory cal & found in Carnap (1939). The idea expressed ise
essentially identical to Tarski's method of an &gffive interpretation” (compare ibid, 22).
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Carnap’s framework with the deliberate limitation & pure type-theoretic logic. In
consequence, all formal models for an axiom sydtane to be expressed in pure STT. So,
whereas his general approach in 1928 is closer dski's formal reconstruction, he
effectively assumed logicist premises similar tostn highlighted in Bachmann (1934). The
main tacit import of this is that he in fact assdntbe stronger version of the logical
definability of models. The fundamental differende Tarski's account of formal
reconstruction of axiomatics is that the latter slnet impose — as does Carnap — that all
possible interpretations of an axiom system areicédg For the latter, the “effective
interpretability” of an axiom system is a speciabe of model construction. For Carnap, a
similar interpretability is conceived as a generandition for providing an interpretation.
Here, the underlying assumption is that all modeks in fact expressible in his “basic

discipline”®*

This tacit condition of thanterpretability in STT is evident in Carnap’s substitutional
conception of models. We have seen that models tveated as-tuples of relations, more
specifically as relational constants iimtersuchungeni.e. as relational terms with a fixed
meaning of the interpreted background language.aBsgnments to the “primitive variables”
are not understood extensionally in terms of objesets, or relations but substitutionally, in
terms of constants of STT. Provided that STT iseusitbod here as a pure logical language
without non-logical terminology, these constantresgions are all logical (as in Bachmann’s
theory).

There is strong evidence that Carnap understooébmsal models in this way, in 1928 and
also in later works. Compare a passage&Jimiersuchungerwhere he further specifies his

account of models:

® |t is important to clearly distinguish between te assumptions — weak and strong definabiliterehThe
versions are sometimes mingled in the recent deBatmpare a passage in Reck (2007) on the relatbmeen
Carnap’s tacit assumption and Tarski's “effectimeeipretation”: “Carnap assumed that every model loigher-
order theory is definable. This is made explicithie correct, but restricted, version of the regulilished, a few
years later, in Lindenbaum and Tarski (1935)."djtii95) What Tarski effectively imposes here, ssye have
seen, the weaker constraint on model definabiNgte, however, that the stronger version clearlglies the
weaker one. In a perceptive footnote in Awodey Badk (200}, this point is stressed: “Note that this
restriction, that the axiom system be “effectiviglierpretable” (...), is in effect imposed by Carnaphe
Axiomatics as well, where all sentences are inttgte in the basic system.” (ibid, 169)
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(...) in short, we speak of “models” of an axiom sgystund thereby mean logical constants, i.e.

“systems of concepts of the basic discipfihese are mostly systems of numbers). (ibid°94)

This is further highlighted in his distinction betan “formal models” and “realizations”, i.e.

empirical interpretations of an axiom system:

As the values of the primitive relations of an amisystem both logical as well as non-logical
constants can occur; the axiom system can eithappked to concepts of the basic discipline oo als

to real concepts Realbegriffe’) (concepts of a nonlogical, empirical state ofis). (ibid, 935°

In this conception, mathematical or formal modelks exclusively composed of the logical
terms of the “basic discipline”. The same accoum also be identified in a later paper,
Carnap and Bachmann (1936). In specifying the notid an isomorphism correlation
between h-place models (i.e., sequences witmembers)” the authors hold here that such a
correlation is defined “(...) over the field of thislation, i.e., over the totality of constants of
the basic, assumed language which can appear e®rdke of models (...)* (Carnap and
Bachmann (1981, 74). Here again, the underlyinguage is a pure and higher-order. This
substitutional conception of models is still prasanthe first English edition of.ogical
Syntax of Languagéom 1937. A small section not yet included in theginal German
version is devoted to the “axiomatic method* (ibgd,1e). Here, one can find a definition of
models and model domains that is comparable torleen Carnap and Bachmann (1936) and
Carnap (2000):

In the first method, the domain of the interpretasi of a certain primitive symbol is the domairthef
substitution-values of the variable. If, as is Usiids a case of primitive variable within a sgst of
types, then the same relations of types must hetelden the symbols of the model as hold between

the corresponding primitive variables. (Carnap 2J2e)

According to this method, a model for the AS idounderstood as a serieskagubstitution-values

U,,...U for the primitive variables. (ibid, 871e)

85«(...) wir sprechen kurz von “Modellen” eines Axiom&ystems und meinen damit logische Konstanten, also
»Systeme von Begriffen der Grunddiszip{umd zwar sind dies meist Systeme von Zahlernbitl( 94)

86 «Als Werte einer Grundrelation eines Axiomensyssgdinnen sowohl logische als auch nicht-logische
Konstanten auftreten; das Axiomensystem kann anggeteverden auf Begriffe der Grunddisziplin undtauc
auf Realbegriffe (Begriffe eines nichtlogischen pémschen Sachverhalts.)” (ibid, 93)
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Each of these passages cited here describes tleeBeature: formal models as conceived as
sequences of constants of a fully interpreted thgeretic language with an empty signature.
These constants are assigned to the “primitiveabéas” of a theory also expressed in that
language. Since there is no non-logical terminolagylanguages like STT, all relevant
constants used for this kind of model constructiame to be logical or logically definable in
STT.

1.4.5 The “scope of logic” inUntersuchungen

Carnap’s substitutional conception of models impostong conditions on the scope of
logical expressions of his “basic discipline”. Thexpressibility condition effectively
presupposes that there is a range of logical cotssta the language sufficient to express all
classes, relations, etc. that are referred to ideiso Several questions arise from this: First,
what exactly does Carnap understand by logicalteats inUntersuchungeh Second, what
is the “scope of logic” (Gebiet der Logi® in his “basic discipline”? Finally, what does
logical definability mean in context of his theor{8&fore turning to a discussion of the
limiting effects of this logicist assumption forshoverall theory of axiomatics, these points

have to be clarified.

Typically, constant expressions can be added inways to a formal language. They can be
stipulated at the outset with the specificatiorth@ primitive symbols of the language. They
can also be introduced via definitions from theegiwocabulary. For example, if a certain
formula of the language specifies a certain clags(oo relation on) the language’s
interpretation, a new constant can be added ttatigriage to name this set (or relation).

A similar approach can be found in Carnap’s speiion of his interpreted “basic discipline”
in UntersuchungenThe main difference to a modern conception liethe fact that here the
constant expressions are all logical. Thus, thegdage does not contain non-logical
expressions (i.e. “external signs’FHemdzeichet) denoting possible “external concepts” of
an axiom system) (see Carnap (2000, 8929M). setting up his background logical theory,
Carnap gives the following classification of thespible logical terms:

(1) properogical constants({, [ -, -, ...);

®"“The present investigation discusses, as is tisuahthematics, only axiom systems without external
concepts.” (ibid, 90)
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(2) constants of absolute arithmetsti¢cessgmumber 0, 1, 2, ...);

(3) constants of absolute set thearhags [);

(4) constants of relation theory (Carnap 2000, 69-7

The relevant distinction made here is between dlgechl constants in (1) and those logical
constants in a broader sense (2) to®{4yombined, they constitute the syntactic resoucées
his "basic discipline” in which the models for sty are constructed. Two points should be
noted here. First, the notion of logical conceptshviously conceived here in a much more
general way compared to the modern account. ST$ dotonly include the proper logical
terminology of (1) but in addition terms from antbtic, set theory, and most importantly,

relation theory. Compare Carnap’s following remankthis generalized account of logic:

The schools diverging in the question of providangoundation to mathematics will come to agree
that in the basic discipline the usual arithmesiet-theoretical and also logical concepts haveeto b
present; we want to designate the concepts of thesis (...) with the unifying expressiondyical
concepts (ibid, 62)*

Thus, any formalization of an axiomatic theory @mns of the theory of types does in fact
draw to resources not included in a modern accolirtOL. These are in particular terms of
mathematics and constant expressions of relateoryh

Given Carnap’s generalized “scope of logic”, theegfion arises how the expressions in
classes (2) to (4) are related to the proper logid).”° Carnap inUntersuchungefis more or
less silent on how the terms of (2) to (4) are sgpd to enter into the “basic discipline”. He
mentions that these concepts can be logically cactstd from proper logical concepts by
reductive definitions as in the work of Frege angsgell (see ibid, 61-62). Nonetheless, he
leaves undecided whether they should be conceivtidswch a “logistic meaning”. In fact, in
a side remark, Carnap is quite explicit that hena$ interested in the logicist project in

Untersuchungen

% Compare Carnap: “By “logical constants* we undamsttall signs of the basic discipline, i.e. thensigf logic
in the closer sense (...) as well as the arithmksigns (e.g.: 1, 2, + etc.).” (ibid, 89) At oti@aces of
Untersuchungeralso the signs of set theory and relation thepeymentioned.

9 “Die in der Frage der Begriindung der Mathematieinandergehenden Richtungen werden dariiber einig
sein, dass in der Grunddiziplin die Gblichen arighischen, die tGblichen mengentheoretischen undrdefe
noch logische Begriffe vorkommen miissen; die Bégdfeser Gebiete wollen wir (...) mit der
zusammenfassenden Bezeichnulogiische Begriffenennen.” (ibid, 62)

O Note again that all notions of the “basic disaipli are (in contrast to their disinterpreted ‘axaic
correlates) understood as “absolute”, i.e. as faligrpreted (thhaltlich”) (ibid, 60).
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For the following investigation of axiomatic probie it is irrelevant whether the set- theoretical an
arithmetical concepts are presented as indepermtenitive concepts or if they are deduced from
those[conceptk of logic. The results are independent of the nometil (Russellian) conception. (ibid,
62)71

Thus, he deliberately leaves open the question hehehe primitive mathematical notions
like ‘0’, '1’, '2’, * +, ‘<, *>, '[", etc. should be conceived as undefined primitogical
constants or as logical constants defined frontthe logical vocabulary in (1). This marks a
crucial difference to the decidedlygicistic account in Bachmann (1934). For Bachmahe
relevant logical constants used in a model of asmitienarithmetic are particularly those
mathematical terms that can be given a logicisind&fn in pure logic (compare Bachmann
(1934, 8-9). InUntersuchungenthese constituents of the formal models are sirtrphated as
logical primitives. It is deliberately left open eter they are defined or undefined notions.
However, this alleged indifference towards this gjioe in Carnap (2000) is doubtful at
closer inspection. The generalized account of klgmoncepts is almost per definition
conceptually tied to a logicist and thus reductagproach. The whole idea of classifying
genuinely mathematical terms likemumbet, ‘successdr ‘point, ‘betweennessetc. as
logical notionsas Carnap is grounded on the idea that they catefieed in proper logic.
That the genuine mathematical concepts in the sobpmgic are to be definable in terms of
pure logic is explicitly stated in a later work Barnap (Carnap 1948). Here the generalized
scope of logic from 1928 is still upheld. He givke following explication of the expanded

class of logical signs:

Further, all those signs are regarded as logic&dwhire definable by those mentioré&slS: those of
the above class (It)(...), all signs of the system ¢Principia Mathematich by Whitehead and
Russell and of nearly all other systems of symbddigic, all signs of mathematics (including
arithmetic, analysis of real numbers, infinitesiroalculus, but not geometry) with the meaning they
have when applied in science (...). A defined sigddscriptive if its definiens contains a descrigtiv

sign, otherwise logical. (ibid, 57-58)

" “F{ir die folgenden Untersuchungen axiomatischebRme ist es indessen nicht von Belang, ob die
mengentheoretischen und die arithmetischen Begiffselbststandige Grundbegriffe aufgestellt sider aus
denen der Logik abgeleitet werden. Die Ergebnisgkalso unabhangig von der genannten (Russell¥chen
Auffassung.” (ibid, 62)
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It is precisely this condition of logical conceptisat also seems to underlie Carnap’s
conception of the “basic discipline” ldntersuchungenaccording to it, a sign is logical if it

is primitively (or genuinely) logically or can beefined in terms of genuinely logical
expressioné® Given this conception, it is highly likely that @ap - irrespective of the
remark cited above - understood the mathematicaistén (2) to (4) of his ‘basic discipline’
not as primitives but as logically defined termsha sense of Russell’'s and Frege’s reductive
definitions in the part (1) of his logié.

This point concerning the definitional structure tbie “basic discipline” can be further
strengthened by looking at how the non-elementagthematical constants are actually used
in the specification of models. We have noted inti®a 1.3 that in contrast to Frege, Carnap
fully embraced the idea of model variation in thedry of axiomatics. Thus, for a given
axiomatic system like Peano arithmetic or HilbeHisclidian geometry he accepted the idea
that different models can be constructed for e&dory. Given his formal presentation of
models, this implies that tuples of extensionalljedent relations (more precisely, relational
constants) can be presented in which the systémeigpreted. Therefore, there exist — at least
in the case of non-categorical theories - not amlg sequence of logical concepts but several
sequences of extensionally different concepts S8aisfies the theory. Carnap’s “basic
discipline” has to include different logical sigok say ‘successor’ in the case of arithmetic or
‘between’ in the case of Euclidian geometry thatate extensionally different relations of
individual elements. Together, they form the substin class of the “primitive variables” of
an axioms system discussed in Section 1.3.3. Naw,im principle possible in this “relation-
theoretic” presentation of models that these dffiérexpressions are introduced as undefined
terms into the language. It is far more plausibkg they are introduced as constants denoting

sets or relations that are explicitly defined imts of (1) of STT.

2 A comparable conception of the scope of logic lwardentified in the work from the 1930s of Carrsap’
contemporary Tarski. Compare Goméz-Torrente (1888)is conception of logical notions: “(...) Tarski
reserves his most inclusive use of the word ‘loffic’a system of logic based on the theory of type}, such a
“logic” is a system, therefore, in which arithmeticonstants can be defined in terms of logicaktamts, and
arithmetic developed as logic.” (ibid, 134)

3 Goméz-Torrente (2002) gives as more general praem of this practice in Tarski and Lindenbaur@3%)
that is also shared by Carnap: “(...) all primitsxambols denoting notions in that language (...) brgical
constantsy, also, if the definition were applicable to defingymbols, all these symbols would be (logical
constants). Such results agree well with (...) traditional piee (for example the practice of the logicistst bu
others as well) according to which the constanthefanguage of the theory of types are logicabtants.”
(ibid, 16)
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Irrespective of this question, - given Carnap’sstiiitional conception of models and his
generalized scope of logic - we are now in a pmsitd give a more refined definition of his

tacit definability assumption (henceforth DA)lmtersuchungen

(DA) All models of a given axiom system are expressiblthe ‘basic discipline” in the sense that all
constitutive parts (sets, relations, and individeahstants) of a model are named by constant
expressions of STT. These constants are (i) eitoaventionally fixed to be part of the basic

vocabulary or are (ii) introduced via explicativefiditions in pure STT.

1.5 Carnap’s tacit semantics for STT

Carnap’s implicit logicist assumption (DA) has stgo limiting consequences for his overall
theory of axiomatics. It effectively restricts thiass of possible models of a theory to those
expressible in his background logic. This is natassarily restricting in the case of individual
model construction. In this case, (DA) calls foe fresentation of a particulexgical model

in the sense of Tarski’'s “effective interpretatiam” Bachmann’s “presentation of a logically
constituted model™ Here, the condition of logical definability causesdeeper problems for
Carnap’s theory, at least for the axiomatic systetrscussed inUntersuchungen For
instance, as it was shown by Bachmann (1934) fictse of Peano arithmetic that different
models can be presented via explicit ‘logicist’ idigfons of the three primitive terms ‘0’,
‘Suc¢and ‘NN. "

Where (DA) imposes constraints on Carnap’s thedmpadels is in cases where he refers to
all modelsof a theory. Here, the condition effectively ingdithe expressibility aill models

in STT, either in terms of primitive expressiondiué language or in terms of defined notions.
The real impact of (DA) is thus not on the level obncrete model construction
(“Modellaufweid) but on the more general level when the classoflels of an axiom system
is discussed. These instances are formally expidsgeCarnap via the quantification over

higher-order relations in STT. It is here that talkout the totality of models also implies

" Note that a similar account of a “logical interjatéon” of an axiomatic theory in a type-theordtieory can
still be found in Carnap (1939). The idea expresse is essentially identical to Tarski's methdem
“effective interpretation” (compare ibid, 22).

> One possible limitation to the logical presentatid models in a logical system was mentioned irsKisand
Lindenbaum (1935), namely that the definability elegis on the specific richness of the assumed bagkdr
language. They mention the following example: ttretimes happens that an effective interpretatf@ano
axiom system in logic can be found only at a highipe (this applies, for example to the axiom systd the
arithmetic of real numbers).” (ibid, 391) A similpoint was also stressed in Carnap and Bachmard6)19
Compare also 2.4.3.
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effective constraints on the tacit semantics oftigme-theoretic language, particularly of its
higher-order segments.

1.5.1 Quantification over models

Quantification over the models of a theory is uguakpressed in the metatheory today, e.g.
in an interpreted set theory like ZFC. In Carnagasly formal account, in contrast, talk of “all
models” was cast in his ‘universalist’ and alsdyfuhterpreted type-theoretic language STT.
Recall that models were conceived in Carnap (2@0@) later on as-tuples of relational
constants of a given type of the forl, = (R, S, Ti, ...). Given this conception, the
generalization over models is then simply expressethe higher-order quantification over
relations (of the type-level dfl,). So, e.g., in the case of Peano arithmetic witindividual
term and two first-level primitive terms, the quéats binding the “model variable” would
range over second-level tertiary relations of STT.

This use of higher-order quantification is frequgntsed in Carnap’s work on axiomatics.

Four particular cases should be mentioned here:

(1) The first example concerns his treatment of tim#ion of logical consequence. In
Untersuchungen (and already in Carnap (1927))edhrsat? is expressed byR)(fR - gR),
where R is an unspecified predicate (or relation) varialfle a propositional function
expressing the axiom system, arRlaypropositional function expressing a sentencelied”
by fR. “Lehrsatzé are defined as follows: Jgis called a consequence &, if (R)(fR - gR)

is valid“ (Carnap 2000, 92) Carnap gives this fartepecification: “If f» g is valid, that is,
if all models of f are also models of g, we carpaay: the extension mfang) of f is a
“part” of the extension of g” (ibid, 95). ClearlRR is understood here as a model variable that
ranges over all possible models of the systéfn f.

(2) A second example where Carnap generalizes owadtels can be identified in his
treatment of “extremal axioms” in the projectedaet; unpublished part ddntersuchungen
(and later in Carnap and Bachmann (1936)). “Extteareoms” are introduced to a theory in

order to impose minimal or maximal conditions oa ffossible interpretations of the theory.

® Compare Reck (2007) for an extensive discussioBamap’s understanding of the consequence-schema
(OR)(fR-gR). Reck points out that there is “an ambiguity is dkefinition of the notion of deducibility, or of
logical consequence more generally” that concearsi@p’s assumed conditions under which a “Lehrgatz”
valid (see ibid, 188-189).
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His main example of a mathematical maximal axioniilbert’s axiom of completeness
geometry (see Hilbert 1900).Carnap’s formal reconstruction of this maximalamihas the
following form:

Max(M) =g (CN) (M ON . M # N . F(N)).
Informally, the axiom states that for a given thebrand a modeM of F, there exists no
proper extension d¥l that also satisfies (Carnap and Bachmann 1981, 77).
(3) A further example of quantification over modebgain of a clearly metatheoretic
character from a modern perspective, is Carnagatrivent of categoricity (in his terms
“monomorphisrt) in UntersuchungenBased on a formal presentation of the notion of
“model isomorphism” between models of a given tgpeicture (Carnap 2000, 104-122), a
theory f is categorical if [f & (P, Q) [(fP & fQ) — Ismy(P, Q)] holds in STT. The formula
expresses that the theory f is satisfied and thraariy two model® andQ of f there exists an
“isomorphism correlation” of type-level g betweRrandQ (ibid, 128-129).
(4) Finally, we have already seen that an imp{eiberalization over the possible models of a
theory can be identified in Carnap’s notion of tBplizitbegriff” (compare Section 1.3.1).
Recall that, for Carnap, an axiom syst&8 defines in an explicit fashion the class of all
models of AS in terms of this higher-order explicit concept BBe noted that his formal
presentation of this via class comprehension, i.e.

EBas =R, S, T{ASR,S,T)}

can be reformulated as an universally quantifiedesece of STT of the form

OR(CS(ETYAS(R ST) - EB(R ST))
Thus, Carnap’s specification of the class of moaéla theory in an “Explizitbegriffe” can

also be recast in terms of higher-order quantibcadver relations.

Given these examples, two brief remarks should bdanFirst, note that all cases can be
viewed as additional cues for Carnap’s universalcstiralism underlying in his theory of

axiomatics (in the sense specified in Section 1. ®Rantification over models can in a sense
be considered as the abstraction from specifiant&s of his logical model construction
described above. Thus, in results that would todayunder the label of metatheory - viz. the

formulation of categoricity, model maximality, l@gil consequence, and the definition of

" See Sections 2.2 and 3.2 for further details.
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classes of structures - Carnap seems to have hehvarsal structuralist position. The next
section will show, however, that this is not th# fucture.

Second, in (1) to (4) the specific class of mod#lsan axiom system expressed here via
higher-order quantification is directly linked ta@ap’s tacit semantics for the type levels,
l.e. the ranges of the bound variables of STT hin ¢ontext of his formal reconstruction of
axiomatics there is thus a direct connection betwtee formal semantics of a theory,
specifically its class of possible models and titerpretation of the higher-order segments of
the background language STT. The class of modé&dsreel to in each of the above cases is
identical to the range of the higher-order quaettitf STT. It follows from this that Carnap’s
(DA) concerning the formal models has to be disectiflected in his tacit semantics of his
formal language. We mentioned above that (DA) ¢iffety restricts the class of models to
those expressible in STT. Consequently, it musetasgimilar effect on the (fixed) ranges of

the higher-order segments of Carnap’s underlyieg of types.

1.5.2 Higher-order quantification

We have pointed out before that the “basic systan'Carnap’s theory of axiomatics was
understood as fully interpreted. Compare the falhgw remark on this point in

Untersuchungen

Every treatment and investigation of an axiom systherefore presupposes a logic, specifically a
contentual logic, i.e. a system of sentences tteanhat merely combinations of signs but that have a

particular meaning. (Carnap 2000, 60)

Thus, the constant expressions as well as the iffgesof STT come equipped with a fixed
semantic interpretation. It follows also that alirhulas in the examples discussed above that
generalize over the models of a theory are condeagenterpreted statements of STT.
Unfortunately, Carnap did not get any more spea@hout his intended interpretation of this
“contentful logic” that forms the “basis for axiotres” (ibid, 60). In particular, no explicit
remark can be found idntersuchungeroncerning the intended interpretation of the argh

order quantifiers of the “basic discipline”. In tii@lowing discussion, we will restrict our

8«Jede Behandlung und Priifung eines Axiomensystatz also eine Logik voraus, und zwar eine inicai!
Logik, d.h. ein System von Satzen, die nicht bl@aBehenzusammenstellungen sind, sondern eine brastim
Bedeutung haben.” (Carnap 2000, 60) Compare Chagtara more detailed study of Carnap’s concepbibn
type-theoretic languages.
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attention for reasons of simplicity to a segmentGarnap’s (finite) type-theoretic logic,
namely SOL® The pressing interpretive question then is: WHatCarnap’s assumed
semantics for his “applied logicistic”, in partiemlfor the second-order domains of relations

(of a given arity)?

In order to reconstruct his case, a modern presentaf the spectrum of the possible
semantics for SOL will prove to be helpful. Koein@010) shows that for a second-order
languagd., a specific class df-structures can be defined by a formdig, y). An instance
of @ is a structuréM, S) whereM stands for the first-order domain a@dbr the second-order
domain of the structure respectively (ibid, 1-2heTinteresting point is to determine “what
constraints” differentbs can place on the possible structurek.dbiven this convention, the
difference between what is usually classified amridard” and “nonstandard semantics”
relates to two limiting instances of. in the minimal casep restricts the class of models for
L to models whose second-order domé&iware restricted to the definable subsetdviofin
other words, in the resulting “Definable SOIS= Def(M), viz. “the set of subsets ™ that
are definable oveM with parameters.” (ibid, 31) The other, maximase&as that of “Full
SOL.” Here, the second-order domains of the modetsS = [ (M), i.e. the second-order
domain ranges over the full power set of a giMesee ibid, 33-365°

Generally speaking, type-theoretic languages (dwd SOL) as used in the foundational
programs up to 1930s were usually conceived toeamer all appropriately segmented
objects of a type-theoretic univefSeFor instance, Shapiro argues for the adequachisf t
“standard semantics” in the characterization ofhtstorical use of type-theory in the works
of Frege, Russell and others: “(...) standard higider logic is a good model of the logicist
systems, and it would be a major distortion to khi them as if they were first-order (for

example, to impose a non-standard semantics)” (8h&p91, 179). In modern terms, this is

" Most of the axioms system Carnap discusses inapaf2000) and Carnap (1929) as well as their
interpretations can be recast formally in SOL. &mample, we saw that quantification over the fiestl

relations conceived as the interpretations for Beaithmetic PA can be expressed in SOL. Also, his discussion
of “elementary arithmetic” based on the concepipobgressions” as binary first-level relations denexpressed

in SOL.

8 Compare Shapiro (1991, 80-96) for a similar dismrsof standard and non-standard semantics for. SOL

81 See e.g. Ferreirés (2007) and Grattan-Guinne€0§Z0r two broader historical studies of the eviol of

logic during that time.
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to say that the bound first-level predicate anccfiom variables of a language were intended
to range over the power set of the respective iddal domain of the language.

Nevertheless, turning to Carnap’s use of “applagidistic” for formalizing axiomatics, there
is direct evidence that he must have conceivedhtgleer-order domains of his interpreted
language in a nonstandard sense. In the casesnfifigzation over models mentioned above,
this nonstandard treatment follows directly frons Hubstitutional conception of models
outlined in Section 1.4.4. Given the fact that @Garmonceived his models as sequences of
relational constants, it is obvious that — in seoés like (JR)(fR- gR) — the range of({R) is
clearly restricted to the class of relational esprens of STT. Note that this understanding of
higher-order quantification is not limited to Capreawork on axiomatics. In fact, it can safely
be said that prior to theogical Syntax of Languag€arnap 1934), he upheld a substitutional
understanding of higher-order domains (as well faghe first order domain) of a formal
languagé® This conception of models and of higher-order djiaation necessarily implies

a nonstandard semantic close to the above speckede. The reason for this is that,
particularly in mathematical contexts, substitutibquantification is restricted compared to
standard extensional quantification. This holdstipaliarly for mathematical domains with
indenumerable cardinalities given the usual assiomphat a substitution class of expressions

of a given type is at most (infinitely) denumeraliarnap himself was quite explicit on this

82 pgainst Shapiro’s view, these historical logice aometimes also characterized in terms of a “tandsrd
semantics.” It is argued for instance in HintikkR®95) that Russell’s ramified type theoryHrincipia
MathematicaWhitehead and Russell (1962)) effectively impkssnon-standard interpretation. Due to Russell’'s
predicativity constraints on the comprehensiongipies, the higher-order quantifiers effectivelnga only
over a subset of the power set of the model’s uig/eThe sets of admissible values for the higbestl
quantifiers are thus effectively restricted to tnetements (concepts, relations, sets,...) thatradigatively
definable in type theory. Thus, due to this addgicdefinability condition for higher-order entisieHintikka
follows, Russell and Whitehead “in effect assurmoastandard interpretation” of the higher-orderrgifi@rs of
their logical language (Hintikka 1995, 38)

% This becomes obvious in Carnap’s correspondente®idel from 1932 on several issues concerninfjdra
of Logical Syntaxmost importantly, the valid understanding of tiséion of ‘analyticity’ for formulas in a type-
theoretic language. Here, in an early version ahditity for formulas involving a second-order aptidier
presented to Godel, Carnap apparently suggested gentenceX)X(0) is analytic iff F(0) is analytic for all
predicate constants F of the language. Godel abjecto this use of substitutional quantificatiaeetually led
Carnap to a change in mind concerning his concemtidiigher-order quantification and his subsequeote to
an extensional treatment limgical Syntaxand later on. Compare Carnap (2002) on this ptimnay happen
that, though all these sentences are tiMé)’ is nevertheless false — in so farMgloes not hold for a certain
property for which no predicate can be defined in.1) we will follow Gédel’'s suggestion and defitealytic’
in such a way theM(F)’ is only called analytic iM holds for every numerical property irrespectivehaf

limited domain of definitions which are possibldliri (Carnap 2002, 106-107) Compare Awodey anduSar
(2007, 37-38) and Coffa (1991, 290-293) for dethdéscussions of this correspondence and its sffact
Carnap (1934).

46



premise concerning the vocabulary of a formal lagguat several places in his w8tiGiven
these inherent limits of this conception of (firakd higher-order) quantifiers in comparison
to the extensional interpretation, it is clear t6atrnap’s conception of STT was nonstandard

in a crucial way.

One might object here that Carnap’s early subsiitat approach was - in the absence of a
sharply drawn syntax/semantics-distinction - int fanintended or merely the result of a
(generally shared) confusion between the express@na language and their semantic
correlates. In this more charitable reading, he m@tsdeliberately proposing a substitutional
theory of models and quantifiers in a strong sehaeyather a quasi-extensional conception
cast - for lack of better knowledge - in syntadgems® In the context of his work on
axiomatics, there are in fact a number of passagemtersuchungerthat indicate a certain
ambiguity in his understanding of the “domains’Gébieté) of a theory that can be
mentioned in support of this view. For instance,oate place when Carnap is discussing
Hilbert’s consistency proofs for axiomatic geometey mentions its domains of “individuals

of real numbers (or ordered set of those)” (Ca2@@0, 94). More specifically, he states:

As a model of an axiom system of Euclidian geometgy different triples of real numbers and certain

relations between them can be used (...). (ibid*%4)

There is not talk here of linguistic representati@as the elements of the respective domain,
but simply of relations between (triples of) reahmbers, classes, and individuals. Hence, one

might be tempted to infer that when Carnap spedk®gical constants (of STT) as the

8 Compare, e.g., Carnap (2002): “(...) obviously thenber of aggregate-designations is denumerabledrye
system. The richness is only assumed by meansarhaxand it is not demonstrable by designatiomsmes or
descriptions).” (ibid, 270)
8 A similar account can be identified Rrincipia Mathematicavhere it is not always clear whether Russell and
Whitehead are discussing the syntactic expressiotiseir semantic relata when speaking of propmsat
functions.
8 «Als Modell eines Axiomensystems der euklidiscl@eometrie konnen z.B. die Tripel reeller Zahlen und
gewisse Beziehungen zwischen Thnen genommen wérdeh (ibid, 94)
871n a second example he discusses the fact thawéy non-formal, e.g. an empirical interpretat&of an
axiom system, an isomorphic formal mo@&etan be presented. Here again the elements cdtarsyseem to be
understood extensionally: “For every system S &timgj of such individual elements (including classe
relations of such individual elements or classesédlations) of classes (or relations) of suchvidlial elements
etc.) there is a structure-identical system S’ wehiaglividuals are real numbers (or ordered setaof) (...).”
(ibid, 94) “Zu jedem System S, das aus solchenddireten besteht (einschlieRlich der Klassen oagatidnen
solcher Einzelheiten, oder der Klassen oder Relatioron Klassen oder Relationen solcher Einzelheist.),
gibt es daher ein strukturgleiches System S’, debstividuen reelle Zahlen (oder geordnete Mengam v
solchen) sind (...).“ (ibid, 94)
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constituents of the models or the instances ofh@mngrder) quantification, what he actually

means to speak about are the extensional objectdéeteby them.

Even if a certain ambiguity concerning the propature of the semantic relata is granted for
Carnap’s case, one should not overlook the fadt i substitutional account is directly
motivated by his logicist background. More speailiig, it is a natural consequence of his
definability assumption for mathematical conceptsus, there is also a deliberate reason for
him to restrict higher-order quantification to anstandard semantics. This is most explicitly
expressed in Carnap (1931) in the context of heswdision of Ramsey’s approval of full
impredicative comprehension in the theory of typescontrast to Russell’'s ramified version
in Principia Mathematica In arguing against Ramsey’s “concept absolutisim®the

quantification over all properties, Carnap states:

(...) I think we should not let ourselves be seduogd into accepting Ramsey’s basic premise; viz.,
that the totality of properties already exists beftheir characterization by definition. (...) | thimve
ought to hold fast to Frege’s dictum that, in mathé&cs, only that may be taken to exist whose
existence has been proved (and he meant proveitlyf many steps). | agree with the intuitionists
that the finiteness of every logical-mathematigadration, proof, and definition (...) is requiredthg
very nature of the subject. (Carnap 1931, 102 glisten: Benaceraff and Putnam 1983, 50)

In a draft of his Konigsberg talk on which the elgiwas based in Carnapi&achlass he gets

more explicit about the kind of definability assuirteere:

We in contrast: not theological as Ramsey, but ttoosvistically: “all properties” means: “all
expressions with 1 variable constructed from thsido@roperties according to given principles of
construction.” (RC 090-16-0%)

Two points should be stressed here. First, Caradplly explicit here about his motivation
for a deliberate restriction of the higher-ordendons: Ramsey’s “concept absolutism” has to
be rejected from d&regean constructivist point of view. Carnap’s explicit rgiructivism
mentioned here essentially coincides with what wecdbed as (DA) for formal models, i.e.
the assumption that all mathematical higher-lewatities (such as models) have to be

8 “Wie dagegen: nicht theologisch, wie Ramsely, ssndonstruktivistisch: “alle Eigenschaften® bedzut
“alle Ausdriicke mit 1 Variablen, die aus Grundeg@raften nach gegebenen Konstruktionsprinzipien
konstruiert sind.” (RC 090-16-09)

48



expressible in the “basic discipline”. In Carna@31) the condition for the existence of (and
thus quantification over) higher-level conceptthat they have to be (logically) constructible
or definable®®

Second, note that here again a certain ambiguibhcerming the effective elements in the
range of quantification can be identified: they aather be considered as extensionally
understood “properties” or as “expressions” andsthubstitutionally. Nonetheless, in either
way (and in contrast to Ramsey’s suggested fulhtifieation), the higher-order domains are
clearly supposed to be restricted to logically nigile entities. Hence, Carnap tacit semantics
for higher-order quantifiers is significantly noastlard irrespective of the intrinsic
constraints of the substitutional account, due hi tlogicist constructivism in concept
formation and in quantification over properties.

Given thisFregeandoctrine in Carnap’s philosophy of mathematics &e specify his tacit
semantics for the higher-order regions of STT iis tiway: in the case of second-order
domains, the assumption implies something comparabtDefinable SOL” specified above.
In Carnap’s account, the second-order donsawrh the intended modéM, S consists of the
relations on and sets ™ that are definable in the language. Given the tizat the class of
defining formulae (and thus the introduced constaleinoting them) have to be denumerabile,
it is clear that this semantics for SOL, i.e. tlamge over relations, is strongly restricted
compared to full second-order quantification over power set ofl. Thus, Carnap’s logical
constructivist doctrine effectively restricts theual full higher-order semantics for his formal

language ST

8 |n fact, this Fregean constructivism can be carsid as a philosophical invariant in Carnap’s wiookn that
time. Compare also his remarks in (Carnap 193@81he “logicistic definitions* of Frege and
Whitehead/Russell: “The concepts of mathematicsdeadeduced from the logical concepts (...)" (ibiei8R

A few lines later, he talks of a “formally develabgsystem of basic concepts: starting from someclzasicepts
all concepts of the mentioned fieldSS: i.e., arithmetic, analysis, and set th¢a@an be constituted by Stepp-
wise explicit definitions.” (ibid, 300) For a clasanalysis of Carnap’s logicism in the 1920s sesraReck
(2004, 172-175) as well as Bonk and Mosterin (2@3329).

% This fact is eventually noted lrogical Syntaxvhere Carnap - under the influence of Gédel's sstigns

from 1932 - purposes an extensional treatmenteofuitly interpreted higher-order quantifiers of laaguages
LIl. Compare the following passage in 855 on “impeo operators* of LII: “The universal and existanti
operators of higher levels — that is to say, willor f) — are apparently improper in the majority of laages.
(...) Let the’pr', pr?, of 11, [GS: the logical sub-language I6F designate (in material speech) a property which
belongs to all the number properties which arenddiie inll, but, on the other hand, not to all the number
properties which are indefinablelin (...). Then %) (pr’(pY)) is contradictory; the class of all closed vatiaof
the operand is, however, analytic: and hence timsradictory sentence can not be a consequentefafrther,
on the same hypothesispf)(Cpr’(ph)) is analytic; hence all closed variants of theramd are contradictory; the
content of the existential sentence is null andptteeluct of the contents of the variants is thaltobntent;
therefore the former is a proper sub-class ofdlted.” (Carnap 2002, 197)
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With this in mind, we are now finally in a positiea address the question what implications
Carnap’s logicist assumption (and the resultingstamdard semantics for his logical system)
have for his attempt to capture formally the madtieleretic condition (3) of modern

axiomatics via “Explizitbegriffe”.

1.6 A restricted “Explizitbegriff’?

Previous Sections 1.2.2 and 1.3.2 showed thato@fde recast in structuralist terms as (3*).
We mentioned that a proper understanding of (3f)edes on one’s additional semantic
assumptions concerning the interpretation of thectires referred to here. In a “relative
structuralism,” this concerns the specifics of an@nception of models. In case of “universal
structuralism,” the intended interpretation of thigher-order quantifiers in formulas like
(OR)Y(TS)™AT) [AS(R, S, T)- ¢(R, S, T)] turns out to be decisive.
As was pointed out, Carnap’s own semantic assumptimderlying his structuralist account
of axiomatics combine elements from both strandsreHa heterodox notion of formal
models is used vis-a-vis a universal approach sesavhere models are quantified out in
higher-order quantification. Moreover, we saw tthag generalization over the interpretations
of a theory is not eliminative in a strong senséhefterm since it does not fully abstract from
the particular instances. Quantification in Carsapase remains effectively constrained by
the logical definability conditions imposed on fegel of individual model construction (i.e.
his “Modellaufwei). The implications of this for his reconstructian (3) (or (3*)) are not
difficult to see: the range of the quantifiers e reformulation of Carnap’s “Explizitbegriff”
CRE9(ET) ASR ST) - EBss (R ST))
is clearly restricted to those instancesRyfS T that are explicitly definable in his “basic
system”. Hence, Carnap’s talk the classes of matifiaed by an ERs effectively means the
class of logically definable models of the AS.
So much for Carnap’s side. What have not been Bpecso far are the actual semantic
assumptions underlying modern axiomatics, e.g.ilbad’s own work. In particular, for (3),
this concerns the intended class of models spddifyehis axiomatic theories for geometry or
analysis. In order to get a definitive answer tcethler Carnap’s notion of “Explizitbegriffe”
provides a valid reconstruction, we have to getoger picture on the implicit semantics

underlying (3) in the modern axiomatic practice.
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1.6.1 Frege vs. Hilbert: which shared assumption?

In addressing this, a short detour over the alrgadgtioned Frege-Hilbert controversy will
be instructive. In particular, a comparison of toent commentaries on the historical debate
by Tappenden (1997) and Shapiro (2005) will helglarify the semantic implications of
Hilbert’'s account. Both papers attempt to relatvin a certain degree the received view of
the conceptual gap between Fregasversalistand Hilbert’'smodel-theoretiaconceptions.
They differ substantially, however, in their undargling of how Frege and Hilbert's
respective semantic assumptions can actually beerkto each other.

Tappenden (1997) discusses the historical contsgvprimarily with a view to reconcile
Frege’'s own reconstruction of the axiomatic methwith Hilbert's essentially modern
account. He starts by stressing the former’'s clggvosition to the latter's “schematic”

understanding of primitive terms and of axioms @asquantified schemata”:

Frege makes it evident that he is opposed to tha tlat one can determine a subject matter by
writing down a set of such uninterpreted senteacekindirectly fixing a family of interpretationerf
them. (ibid, 208)

Nonetheless, Frege, as we noted in Section 1.Rulated an alternative version of the
semantic innovation (3) in the framework of hisempireted higher-order logic. Concerning

this reconstruction in terms of higher-order corisgpappenden states:

That is, although he objects to the idea of restiitg a set of only partially interpreted schemaita a
class of models for them, he has no objection incple tothe exploration of families of models

using second-order quantificatio(ibid, 209, my emphasis)

This point is further strengthened. Tappenden htids there is in fact no effective logical
difference between this “substantive” expressio(Bdfand Hilbert's own schematic approach
in the formulation of axioms. This claim is basedteo crucial assumptions: first, that Frege
understood higher-order quantification substitudlbn In this sense, the quantifiers range
over a substitution class of linguistic expressiand not, as in the extensional treatment, over
a universe of higher-order entities (relationsssetc.). Second that this substitutional account

is semantically equivalent to a schematic concepiifdogic:
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As is well known, the distinction between quantfisentences and schemata essentially disappears
when the quantifiers are substitutional; the qdieng serve just as indicators of substitutionaleor
(ibid, 210)

With respect to (3) Tappenden’s claim can thus &eaghrased this way: If Frege held a
substitutional interpretation of higher-order qufers, then the class of models quantified
over in a sentence likéIR)(ASR) - ¢(R)) is in effect identical to the one in Hilbert'saw

standard) schematic treatment. Thus, given thetiaddl assumption concerning the implicit
semantics of the “substantive” logicist traditidhe two versions of (3) result to be logically

equivalent.

| see a problem in this account that does not gonite semantics of Frege’s “substantive”
logic. (I will simply sidestep the debate here ohether Frege actually held a substitutional
account of second-order quantificatidh)The problem, in my mind, rests on a misconception
of Hilbert's “schematic” account of axiomatics. ift certainly true that he introduced in
Hilbert (1899) the notion ofdisinterpreted schematically understood mathematical
primitives. This is precisely the semantic innogati(1). It would be a mischaracterisation,
however, to label his theory as generathematicin character. This can be illustrated by
looking at the informal logic used in his expressi@f the geometrical axioms. Tappenden’s
account seems to suggest that Hilbert's axiomabizas schematic in the sense of a first-
order theory with axiom schemes. This would be tmfgse, however, thechematic
conception of primitivesvith aschematic version of axiomé/hile it is true that the bulk of
Hilbert axioms for geometry can easily be formadize FOL, his main continuity axiom, the
axiom of completenessan only be expressed in HOL. Generally, the raxpays a pivotal
role in Hilbert's theory of Euclidian geometry.i¢tintroduced to secure the completeness (in
terms of model maximality and categoricity) of #tsdom system and thus also its adequacy
in relation to analytic geometi¥. The way it is expressed in ti@rundlagen der Geometrie

it effectively involves quantification over all pgible domains (and thus over all models) of
the theory, quite similar to the idea of a defomtiof the class of structures of an axiom
system expressed by (3). Given this, it would ¢tyebe misleading to characterize Hilbert's
axiomatic approach to geometry as purely schematic.

1 Compare Heck (2007), Linnebo (2004) and the refaze given there.
92 See Chapter 3 for further details on Hilbert'somxiand Carnap’s reception of it. See also Hal2a08).
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A similar point can be made for the case of arittiendlere too, it is sometimes argued that
the schematic first-order version of the Peanoesystioes not adequately capture out
intuitions about arithmeti® The bone of contention here is obviously the axadrimduction.

In the first-order formulation, it is expressedias axiom scheme

(AlY) ¢(0) & (Ix)(9(x) - $(S(x)))) - ([OX)p(X).

The schematic lettep allows instantiation by all formulas FOL that defia property or set
of the intended individual domain. If the axionfasmalized in this sense, then there is in fact
no substantial difference between!A&nd a Fregean reconstruction of the axiom in
substitutionally interpreted HOL. The possible amstes for the schematic lett¢r(in the
modern schematic version) are effectively the samthose of the bound predicate variable
(in the “substantive” quantified versioff). With the move to second-order Peano arithmetic,
¢ is also substituted by a bound variakler'he second-order version of Al then reads:

(AI%) COQX(0) O (EX)(X(X) - X(SHN] — ([Ey)XW)))-

Unlike in the “substantive version”, the range Xfis not restricted here to definable
properties, but includes all properties (or setsjle given individual domain of the intended
model. Thus, in contrast to Althe range of possible arithmetical relations djfied over in
Al? is not limited by definability in the formal langge?®

Tappenden’s proposed reconciliation between Fresydistantive-but-substitutionapproach
and the modern model-theoretic one holds in thescat geometry and arithmetic only if the
respective formal theories are understood in thwst-@irder version (i.e. without a
completeness axiom and a second-order axiom ofctiwh) *° However, in both Hilbert's
and Peano’s original presentations of their theoméormal but explicit use of higher-order
quantification was made: in the first case ovelkaitlidian “systems of things” in the axiom
of completeness, in the second case over all agiibai properties in AI°” Thus, both
axioms were not conceived as first-order axiom s@ta in early modern axiomatics, but as

fully interpreted second-order principles of thepective theory. Given this, one could in fact

% Compare e.g. Kreisel (1972).

% For additional, more subtle differences betweentitp accounts see Chapter 3.

% Compare Shapiro (1991, 110-113), for a more d=taitcount of the differences between the two @Bssi
% Compare again Shapiro (1991) on the differencevden the two formalizations: “The second-order msmf
induction, completeness (...) apply to any subs¢h@idomain, whether definable in the language of ibid,
111) More specifically: “Each of the first-ordeetiries, formulated with a scheme, entails thaefah model
M, the relevant principle (induction, completenesg,eplacement) applies to every first-order ddflasgsubset
of, or function on, the domains bf. But that is all. They do not, and cannot, staé the principle applies to
every subset of the domain.” (ibid, 112)

" Compare Awodey and Reck (2002) for further detaiighe historical axiomatizations.
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reverse Tappenden’s argument in this way: givegédse‘substantive” conception of logic, it

Is not substitutional (or definable) but full sedeorder quantification that is needed in order
to capture the original intentions behind theseoms in these early axiomatic systems. A
formal reconstruction in which the higher-order dans are conceived nonstandard cannot

adequately capture the modern axiomatic practice.

In Shapiro (2005), greater focus than on Fregeisception is laid on the actual logical
assumptions in Hilbert’'s account, specifically be fjuestion whether there are “substantive”
assumptions in his informal use of logic. Similatty Tappenden (1997), it is also stressed
here that Hilbert is a major proponent of the “&lgéc,” model-theoretic tradition (in
opposition to the “substantive” or, in Shapiro’snte, “assertory” conception of logic of the
logicists like Frege) (ibid, 68). However, what papden sees as the overall “schematic”

conception of Hilbert's axiomatics, is charactedizifferently here:

One can take any algebraic sentence and intetpdatectly as a proposition about all systems of a
certain sort. Consider, for example, the Euclidsentence that there is a point that lies betwegn an
two distinct points. From the algebraic perspectikies comes to something like this:

(*) In any (possible) Euclidian system S, for amyotdistinct objects a, b in S that are ‘points-in-S

there is a third object ¢ that is also a point-jraf¥d ¢ lies between-in-S a and b. (ibid, 68)

Shapiro points out here an implicit universalistusturalism, more precisely the tacit
quantification over all (possible) models of a systin Hilbert's schematic version of
expressing his axioms. Concerning the implicit samea of this structuralist account, he

remarks:

What is the status of statements like (*)? It woséem that for the algebraist [GS: i.e. Hilberticls
sentences must themselves be assertory. (...) Mareibveould run counter to the spirit of Hilbert's

approach to think of the opening quantifier in &%) itself restricted to a particular system. (il6ig])

Shapiro’s claim made here is this: The implicit giféers in sentences like (*) in Hilbert’s
theory were conceived to be fully interpreted andange over all possible models of the
axiom system. Thus, as in Frege’s treatment of maia@ systems, there is also a tacitly
assumed generalization over the interpretationsiliert’s theory. His informally used logic
in Grundlagen der Geometriss “assertive” (or “substantial”) despite the gexlealgebraic

nature of the project.
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Concerning the notorious controversy with the ‘t@iuniversalist’ Frege, Shapiro mentions
that “such statemen{&S: as (*) are at least implicit in Hilbert's motivating rerka and in
the correspondence with Frege.” (ibid, 68) Fregaven attempt “to recapture Hilbert's
perspective was thus to construct “statements (#ein his own logical system. And, of
course, for Frege such statements, like all otimensathematics, are assertory.” (ibid, 68)
This reading, as the one proposed by Tappendeh,dit@mpt to reconcile the two historical
positions by stressing their mutual assumption® flimdamental difference of Shapiro’s to
Tappenden’s interpretation concerns precisely tlaure of this (allegedly) shared
assumption: The latter assumes a substitutionatgretation of Frege’s logical language. He
argues that a “substantive” reconstruction of axabos with this restricted semantics meets
Hilbert schematic conception. Shapiro, in contrastphasizes the fact that not only in
Fregean logicism, but also in Hilbert's algebraioniext, statements like (*) have an
“assertory” sense, viz. they are substantive clamas informal but interpreted logic.
In Hilbert's case, these logical resources arevigible given the fact that Hilbert (1899) is
fully written in colloquial language and thus nofcamalized theory. Moreover, we already
mentioned that most of his axioms can be expreksedhlly in FOL. Take for instance the
axiom of order underlying Shapiro’'s example (*).ldért and Bernays (1934) give the
following formalization of the axioms in FOL:

OQ(Cy)(xzy - ((D)(ZWMzX.y)))
wherex, y, z are individual variables that range over pointd Zw is a tertiary relation that
expresseddetweennessibid, 6).
The mathematical motivation of the algebraist tontto higher-order quantification (over
models) does not concern this object-level in whiod theory is expressed. It concerns the
theory’'s metatheory. Shapiro’s main point is that Hilbert's axiomatics, despite his
schematic conception in the object theory, there toabe an assertive use of logic in his
interpreted metatheory. This is necessary in otdedevelop the well-known (semantic)
consistency and independence results in Hilbel®gL&see ibid, 70} We saw that this full
use of (higher-order) logic is also present - om tbject-level — in Hilbert'saxiom of
completenessThe axiom is clearly metatheoretic from a modpoint of view since it

involves the quantification over the models of Hase theory® More generally, as Shapiro

% For the central importance of a metatheoretic aatim Hilbert (1899) see also Hallett (2008) aridttka
(forthcoming).

% Compare 3.2 for a closer discussion of the axiswaell as of Carnap’s formal reconstruction ofsitea
maximal axiom.
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makes clear, sentence (*) itself has to be consttlas a metatheoretic reformulation of the

original axiom in this sense:
(*) For all individual domain® and all assignments &w. (IX)(Oy)(xzYy - (()(ZW(zX.,y)))

This is a quantified out version of Hilbert's ongi axiom that is fully in line with the
universal structuralist account described aboveteNbat the underlying semantics for the
meta-mathematical sentence (*) has to be strongginm order to allow talk of “all ranges
of P” and “all assignments t@w’, hence to quantify over all possible interpreias of the
terms as defined by the axidff. The most natural way to secure this is to assuridha
semantics for the language in which (*) is exprdssehus, irrespective of whether the
background language in a given metatheory is famedlor kept informal (as in Hilbert's
account), the quantification indicated in (3) adlves in sentences like (*) is most likely
supposed to be standard in modern axiomatics. Miusn Hilbert tacitly assumed the prefix
“for all models” for all of his axioms, he most éilky meantevery (mathematically possible)
model and every model expressible in a given laggua

Here again, the difference between this view anpgp&€aden’s account with respect to (3)
should be stressed. Tappenden claims that Fregetstruction of (3) via substitutional
higher-order logic is equivalent to Hilbert’s schaio definition of the class of models. From
Shapiro’s perspective, the mistake of this views lia the fact that (3) is certainly not
expressed in the object theory, but in the metathe®s such it is not a schematic but an
assertive statement that presupposes sufficietrtipg mathematical resources to refer to all
models of a theory. Hence, one can view Shapirnterpretation of the Frege-Hilbert
controversy in direct opposition to Tappenden’ssi@r. according to the former, Hilbert’s
metatheoretic and thus assertoric treatment ofafiil (3)) and Frege’s formal reconstruction
are in fact comparable under the premise that Feegeally assumed full higher-order

quantification in his logical system.

1% compare Hintikka on the necessary semantic presifigns of the axiomatic account: “When a certgjre
of structure is studied mathematically, this stigdgot restricted to what can be found out abdugwadh
structures or about some subclass of them. A peréagn more important task in practice is to reath
overview over all such structures.” (Hintikka (facbming))
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1.6.2 Consequences for Carnap’s version

Shapiro’s understanding of metatheoretic senteliceg*) implicit in Hilbert axiomatics on
first sight also seems to apply to Carnap’s recantbn of similar sentences in higher-order
guantification. In Carnap too, (*) would clearly lb@derstood as a substantive truth in his
“applied logistic”. Similarly, this holds for hisxplication of (3) via “Explizitbegriffe”.

Now, one might object to this comparison by stmgsan important difference between
Carnap’s account from 1928 and the modern modelrtie treatment of this issue. In the
modern account sentences like (*) are expressed interpreted meta-language. In contrast,
in Carnap’s case, they are formulated on the ollgeel, i.e. in a single logical object
language. We saw that in Himtersuchungerthis ‘universal’ background system is his type-
theoretic “basic discipline”, in which both the amatic theories and their (semantic)
metatheory (including sentences like (*)) are cegrdu The examples of the metatheoretic
sentences or formulas (all clearly semantic in eot)tdiscussed in Section 1.5.1 are further
cases in point for thi&*

However, concerning statements about the semaafican axiom system (like (3)), the
missing object-/meta-language distinction is natoasequential difference to the algebraic
tradition. First, Hilbert in Grundlagen der Geometrieclearly engaged in semantic
metatheoretic investigation for his axiom systenthauiit possessing anything like a proper
meta-perspective, let alone a proper formal metgtlage. Here, too, the informal metatheory
(in particular his independence and consistencyfpjois expressed in one and the same
language as the axiom system, in his case in aobGerman Sentences like (*) described
by Shapiro would thus also be expressed in thigausal colloquial language.

Second, it is questionable whether a metatheopeispective has to be considered as a
conditio sine qua noffor large parts of formal semantics. In Frege’snvadl as in Carnap’s
formal reconstructions of axiomatics, there is tromgent reason why (at least some) of their
explications of semantics notions cannot be express the proper object language. This is

true in particular if the languages in question éhatrong enough logical resources, e.g.

191 The missing distinction between meta- and objeebty in Carnap’&)ntersuchungehas been discussed
extensively in recent scholarship. Compare Coff&€amap’s “monoliguistic approach®: “Carnap’s bosés
thus inspired by the somewhat epicyclic aim of singvthat everything of value in metamathematics (@an
should) be expressed within the monolinguistic feamrk ofPrincipia Mathematicd (Coffa 1991, 274) A
more differentiated account is given in Reck (2004)..) if looked at in more detail his [i.e. Caiig]
approach is only partly metamathematical and mtusdretic, since he does not separate preciselyelet
object-language and meta-language, and since lenddeet have a full understanding of the modebthtic
notion of an interpretation for a formal languagidia disposal.” (Reck 2004, 170). See Awodey &uSaR2001,
158-161) for a critical discussion of Carnap’s tersalist’ approach in his treatment of the “Gabdipitssatz”.
Compare also Bonk and Mosterin (2000, 35-36).
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sufficient (interpreted) higher type-levels to metsthe semantics of the expressions and
formulae of the lower type-levels. Carnap’s undedyuniversal language for the “basic

discipline” is finite STT. Here, this condition ¢dearly met. The higher interpreted type levels
can definitely be used to present the semantics, tke models for theories (like Peano

arithmetic) expressed in the lower regions of theglage. A move to a separate meta-
language is therefore not necessary, especiallthebaxiomatic theories discussed in Carnap
(2000).

Where the discussed accounts actually differ fr@oheother is in the implicit background
semantics, more specifically in the tacit assunmg@ti@oncerning the language in which
sentences like (*) and also (3) are expressed.therovords, where Frege’s and Hilbert's
position can conceptually differ from each otherinsthe semantic understanding of the
higher-order quantifiers of the respective (forrmainformal) background language.

Applied to Carnap’s case, the main point to sekasHilbert’s informal use of quantification
and the formal use of quantification in the forrseBTT are “assertory” or “contentual” in
different senses. | fully agree with Shapiro (andtca Tappenden) that there is an assertoric
use of quantifiers in ‘Hilbertian’, viz. modern axnatic practice, in particular in the
presentation of the model-theoretic results like (3would add that the semantic or set-
theoretical resources necessary for expressingehbigt are most neatly codified in a SOL (or
alternatively in ZFC). Moreover, talk about “allagsible) models” of a theory seems to
presuppose a full, standard interpretation of theéeulying metalanguage. The quantification
involved here ranges over all “possible” models, all Euclidian structures in which the
theory in question holds. Therefore, | take it tthet intended metatheory for Hilbert’s theory
of Euclidian geometry, if formalized, would have lbe cast in fully interpreted SOL (or
something equivalently strondf}? It follows from this that any formal reconstrugtiof (3)
has to employ equally strong logical resources hé taim is to capture Hilbert's
metamathematical account.

We saw in Section 1.4.5 that for Carnap the posgitbdels of an axiom system are those
expressible (or definable) in his formal backgrodadguage. In particular, the definability
assumption led him to treat formal models in a st®nal way, i.e. a tuples of (logical)
constants of STT. Moreover, Section 1.5.2 showeat the same logicist definability

condition for the introduction of higher-order et led him to assume a nonstandard

192 Compare Shapiro (1991) for a detailed discussfahenset-theoretic import of different versionsSL.
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semantics for the higher-order domains of his lalgianguage. In his work on the semantic
metatheory of axiomatics, this affects cases tinatlve quantification over the models of an
axioms system: the range of a bound “model-variadfl@n axiom system is thus restricted to
the logically definable models. It also follows rnothis that Carnap’s concept of an
“Explizitbegriff” effectively determines the clasd definable models of an axiom system and
not of all mathematically possible models. It tliere remains limited in context to the

model-theoretic assumption (3) in modern axiomatics

1.7 Conclusion

The aim of this chapter was to provide a close eyf Carnap’s early theory of axiomatics
from the 1920s. We saw that his formal reconstomctof axiom systems and their model
theory was based on a tacit but consequential isigissumption inherited from Frege and
Russell. Carnap’s discussion of formal models Igextt to a strong definability assumption in
the sense that each model of a theory has to lressible in this logical background system.
One consequence of this was that Carnap effectivggeld a nonstandard semantic
conception of higher-order logic, for the caseitflevel relation quantifiers, definable SOL.
A second consequence was that certain of the ¢rgeimantic innovations of modern
axiomatics, most importantly the idea that a thesmmantically defines the class if its models
could not be adequately captured in his formal metroction. These limitations resulting
from the definability condition (and thus the n@mstard semantics for his type-theoretic
language) not just affect Carnap’s “Explizitbeggiff It also has strong limiting effects on his
overall project inUntersuchungento provide a formal explication of the (semantic)
metatheory of axiomatics. For Carnap’s “Gabelbaskaitz,” this was already discussed in
Awodey and Carus (2001) and Reck (2007). It is irtgrd to stress that the tacit logicist
definability assumption for models also affects r@gr's formal reconstruction of the
individual notions of completeness, most importatiiat of categoricity (“monomorphisti).
The categoricity of a mathematical theory, e.gsexfond-order Peano arithmetic, is nowadays
usually proved in a fully interpreted higher-oraeetatheory (see Shapiro 1991, 82-83). The
fact that Carnap assumed a nonstandard intergmetati his universal background logic
makes his explication of the notionlimtersuchungeiproblematic at best.

In this chapter we have gained an understandingeofnherent limits of Carnap’s work on
axiomatics, in particular his attempt to providbamal semantics for axiomatic theories. We
will see in the next chapter, on the other handt ks early account of formal models has in

several ways anticipated constitutive featurehiefrhodern notion.
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Chapter 2: Carnap’s early semantics: models, extreal axioms, analyticity

2.1 Introduction

One interpretive issue concerning Carnap’s earlytrdmutions to formal semantics,
specifically his theory of models for axiomatic dhies formulated in the only recently
published manuscript/ntersuchungen zur allgemeinen Axiomatik1928 (Carnap (2000))
has yet not been resolved conclusively. It concragjuestion whether Carnap conceived his
models to allow for domain variation, i.e. whetter held a variable domain conception (in
the following VDC)!%® Whereas the first, published part of Carnap’s rsaript does not
provide conclusive evidence for deciding on thsues | will show that the results of the
second, projected part, which exists in fragmentamy in Carnap’Nachlas§RC 080-01-01

to RC 080-01-33), parts of which were publishe€Carnap and Bachmann (1936), will give
decisive cues for the understanding of his earhception of the domain of a model.

It has been stressed recently, most notably byikiatthat due to Carnap’s ‘universalistic’
conception of logic — mainly inherited from Russellthe idea of changing a universe of
discourse for a language was simply inconceivabtehfim!®* Drawing to van Heijenoort's
now classic distinction between two opposing cotioep of logic, thdogic as calculusys.

the logic as language(van Heijenoort (1967)), Hintikka argues that theniversality
assumption” involved in the second is also a tawiiriant in Carnap’s thinking throughout
his intellectual career. With regards to semassties this background assumption results in a
“one domain thesis" (Hintikka 1991) according toigththe domain of an interpretation, i.e.
the range of the individual quantifiers, is invatig fixed with the specification of a

language-®®

193 For recent work on Carnap’s axiomatic projectAeedey and Carus (2001), Reck (2007), Goldfarb §100
Bonk and Mosterin (2000), and Awodey and Reck (2002

194 See esp. Hintikka (1991) and Hintikka (1992).

95«1 Carnap assumes that, in order to interpret a first-otdeguage, we have to specify some one given
domain of individuals to which that language persai...) the members of that given domain of iidiials can
still assume different structures. They can hafferdint properties and different relations to eattter.”
(Hintikka 1992, 175) Hintikka’s main focus heredarnap’s specific understanding of possible woindsis
modal semantics in Carnap (1947). Neverthelessgasill see, he takes the same remarks to holdfafsais
theory of models for standard logical languages.
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| will in the following term this assumption thexéid domain conception (in short FDES.
According to Hintikka, FDC concerning logical, foamlanguages systematically hinders
Carnap, being one of the inventors of formal semantfrom a full apprehension of a
standard “model-theoretical viewpoint® (ibid.).i# also held that Carnap’s tacit FDC can be
traced back to his early contributions to the @uolohy of logic and mathematics and related
topics in formal semantics. In support of this wlaiHintikka (1991) refers to Carnap and
Bachmann (1936), a neglected technical article firasents (with slight modifications)
results formulated in the second, projected partofersuchungef?” The paper marks a
highly innovative contribution to a topic in mathatical axiomatics broadly discussed at the
time, namely the use, function and limits of “extisd axioms”, i.e. mathematical axioms that
impose minimal or maximal conditions on the modxla theory in question. Hintikka makes
two interpretive claims about Carnap’s treatmenextremal axioms: first that his formal
explications misrepresent the actual use of theaesponding axioms in mathematical
practice, i.e. that Carnap fundamentally miscoreeithe usual intentions underlying axioms
like Hilbert's completeness axioms for geometry andlysis or Peano’s axiom of induction
for arithmetic. Second that this misconception @mn@p’s side can be explained by the fact
that he already presupposed something like FDGsithieory of models at this early phase in
his intellectual career.

The principle aim of this chapter is twofold: firdb provide a precise and historically
sensitive account of Carnap’s early conception oflets. For this, | will draw extensively on
unpublished material from CarnapNachlass Second, it is to argue against both of
Hintikka’'s claims. | will show that the conclusiordintikka draws for Carnap’s tacit
semantics result from an inadequate understandirntgeolatter’s heterodox conception of
models inUntersuchungenHence, the former fails to take into account enber of subtle
distinctions concerning Carnap’s (and Bachmannigjiliary notions of ‘model structure’,
‘model domain’, and ‘model extension’ that provithe conceptual framework for Carnap’s
formal explication of extremal axioms. In this cheapl first sort out different conventions

19 Hintikka gives the following more general spedifion of this assumption: “If we cannot in our thieing
assume a different set of language-world relatinrgeneral, we cannot assume a different set oeralnpect
relations, either. What this means is that a smadibn of the domain of individuals is part andqs of the
interpretation of any one language. If the domdimdividuals is changed, we are dealing with dedtént
language.” (Hintikka 1991, 328) For a similar assasnt of Carnap’s limitative assumptions underhhig
semantics compare Awodey (2007).

197 Apart from Hintikka (1991), Carnap’s theory of exhal axioms has not been subject to extensiveatjno
discussion. A short commentary can be found in Bamk Mosterin (2000) where Carnap’s theory is presk
and the projected structure of the second pddndérsuchungeis outlined. For a short discussion see also
Awodey and Reck (2002) and Reck (2007).
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introduced by Carnap to allow domain variation fos models in the axiomatic context.
Second, it is argued that once a more balanceduatod Carnap’s underlying semantics of
these auxiliary notions is provided, Hintikka'sarpretive claims cannot be upheld. To the
contrary, a more refined picture of Carnap’s actamfnmodels and model extensions will
suggest that he - despite the heterodox charatteis aotion —conceived domain variation
for his models in a sense structurally comparabtaé modern notion.

The chapter will be organized as follows: In Sattth2 an outline of Carnap’s theory of
extremal axioms (as presented in Carnap and BaahniB®36)) is given. Following a
discussion of Carnap’s notion of a model’s struet{8ection 2.2.1) and the presentation of a
simple example of extremal structures (Section 22,2Hintikka’s interpretive claims
concerning the theory will be discussed (Secti@®). Z’he main aim in Section 2.4 will be to
develop a detailed analysis of Carnap’s heterodaxception of formal models. Certain
differences concerning the conceptual frameworlkCafnap’s definition of a formal model
between the 1936 paper abditersuchungemill be discussed (Section 2.4.1). This allows
outlining what | will term a ‘domain-as-fields’ coaption of models held by Carnap (Section
2.4.2). Moreover, by drawing to unpublished matefiam Carnap’sNachlass a second
convention for domain variation based on a typ«illle understanding of his formal
background language will be discussed (Sectior83.¥Vith this in hand, an interpretation of
Carnap’s technical notions of ‘submodel’ and ‘modetension’ alternative to Hintikka’s
account will be presented in Section 2.5. It wid Brgued - contra Hintikka - that the
explications given in 1936 are fully consistenthwihe informal use of these notions in
mathematical practice. Additional evidence for thiew is presented by taking into
consideration Carnap & Bachmann’s treatment of gty mathematical examples of model
extension from “basic arithmetic” and geometry (mer 2.5.1). Finally, an alternative
convention for models extensions via language itians outlined in the final section of
Carnap and Bachmann (1936) will be discussed inti®@e@.5.2. | will argue that this
provides additional support for my reading of Ca@reanotions of model and model

extension.

2.2 Extremal axioms

In the first part ofUntersuchungenCarnap describes of formalized version of axiaenat
systems as “theory-schemata” that can be presdotgdally as systems of sentential
functions. The ‘basic terms’Grundzeicher) of a theory are expressed by typed relation or

class variables. Systems with more than one prumiterm of the form ®, Q, R, ...) are
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abbreviated by a ‘model variableMbdellvariable) M of a specified type (see Carnap 2000,
88). The resulting systemM() allows different empirical and formal interpretais. The term
‘formal model’ is reserved for the second typerdkrpretations. The variabM ranges over
the set of adequate modelziftassige Modell@ of f. A model M; is then defined as an
ordered sequence of relations (and thus as aaelé@self) of a specified type that present
admissible values for the predicate variabRRs{, R, ...) and “satisfy” the axiomatic system
f (see ibid, 95).

Given this, the second, projected part of the mampt deals with different versions of
maximal and minimal axioms, i.e. axioms introduced order to fix the intended
interpretation of a mathematical theory (RC 0810d@1to -33). A mathematical instance of a
maximal axiom Carnap discusses extensively is IHib@xiom of completeneg#\C) for
geometry first published in the French editionGrindlagen der Geometri@ 1900. As an
example of a minimal axiom Carnap refers to Peaaai®m of induction as well as to
Fraenkel'saxiom of restrictiondevised for axiomatic set theory around 18%0All these
cases share a similar limiting structure: they isgpthat the domain of elemeridsof the
possible models of the axiom system in questionnofirbe extended/restricted to a
larger/smaller domain of individual®' without violating the relations implicitly definelly
the theory. Thus e.g. Hilbert's AC for geometry msps that the models satisfying AS+AC
are the maximal models of the base system ASnicelels, whose domain of elements cannot
be extended without violating one or more of thiatrens defined by AS. The underlying
idea here is to rule out non-intended models anthtended models for an axiom system. In
Hilbert's case, the aim behind the addition of ACCto rule out models of Archimedean
Euclidian Geometry that are submodels of analytiongetry (e.g. certain algebraic models
satisfy AS+Archimedean axiom defined for indepermgeproofs in 89 in Hilbert (1900)) and
to secure the identity of (the models of) his axabim theory with “ordinary” analytic
geometry:®®

As already mentioned we can get a detailed impyassi Carnap’s attempt to provide a
formal explication of these types of axioms aro@8@8 by looking at his joint paper with the
German mathematician Friedrich Bachmann with thiéying title “Uber Extremalaxiome”

published a couple of years later (Carnap and Baohn{1936/1981))'° Here the topic is

1% For a closer discussion of Carnap’s receptionraéfkel’s axiom of restriction see Schiemer (2010).

199 For a detailed presentation of Hilbert's axiomsoimpleteness see Awodey/Reck (2002) and Ehrlig87)L

110 The origin of the 1936 paper can be retraced fB@map’s correspondence with Bachmann documented in
Carnap’s Nachlass. In a letter dated July 27, 1@34nap invites Bachmann to write a joint papet shauld

64



taken up again. At the outset of the paper a pimved explication of extremal axioms is
given by elucidating their domain-fixing function:

Axioms of the sort of Hilbert's axiom of completesse which ascribe to the objects of an axiomatic
theory a maximal property in that they assert thate is no more comprehensive system of objects
that also satisfies a series of axioms, we callaaimal axiomThe same axiomatic role as that of the
maximal axioms is played in different axiom systdmysminimal axiomswhich ascribe a respective
minimal property to the elements of the disciplivaximal and minimal axioms we call collectively

extremal axioms(Carnap & Bachmann 1981, 68-89)

The remainder of the paper is essentially a cone¢@larification and formal explication of
their understanding of these informal notions. Befturning to the specifics of their formal
versions of extremal axioms, one point concernimgn@p’s tacit semantics involved here
should be emphasized: the task of giving a fornxplieation of these axiom typgwima
facie seems to presuppose a semantic apparatus congtowablbdern model theory, i.e. an
understanding of models and model extensions tlmtsadomain variation. Without such an
assumption a discussion of different models (ofediig power) of a theory could hardly be
meaningful. Note the way in which the intended @feof the maximal axioms are described
above: the axiom&scribe” a “maximal property” to the “elements of the d@me”, i.e. its
“systems of objects”. From this intuitive pictureme, it is difficult to see what led Hintikka
to claim that Carnap tacitly assumes a FDC in ety of models. To address this, it will be
instructive to take a closer look at Carnap’s notaf a model’s “structure” that plays a
crucial role in his conception of model extensiofss.will become clear in the next sections,
the central difficulty in assessing Carnap and Bzeotn’s formal version of extremal axioms
lies in the fact that whereas Hilbert (as well aslarn accounts) speak of model extensions in
terms of extensions of the individual domain of adel, Carnap and Bachmann —
unconventionally - speak of extensions of a modstscture.

My main point will be to show that Hintikka's infaetive claims about Carnap’s underlying
semantics and his misconception of mathematicaktiom essentially stems from a

misreading of Carnap’s emphasis of structures dweenains of individuals. For clarification,

combine his results from part two dhtersuchungemith Bachmann’s own work on extremal axioms (R®-02
02-01).

11 Now, it is well known that extremal axioms likelbtrt's AC are, from a modern point of view, lodiga
problematic for they “conflate formal languageshwtiteir model-theoretic semantics” (Shapiro 1985)10ne
of my main points in this paper will be to show@sely in what regards Carnap’s account differsnfia full-
fledged modern conception of model theoretic seioant
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| will briefly outline in the following two sectiamCarnap’s notions of a model’s structure and

of structure extensions which | take to be at thre ©f this misinterpretation.

2.2.1 Model structures

A central notion employed by Carnap in his treattmghaxiomatics is that of a relational
“structur€ , a concept originally adopted and further deveiofpem the theory of relations in
Principia Mathematicd'® The main characteristic of a relation’s structigeits abstract
character, i.e. the fact that it abstracts from srigrmation about the extension of a given
relation possessing this structure. In 8§22 of QamAbriss der LogistiKCarnap 1929) we

find the following characterization of the “strucaliproperties of a relation”:

A relation is fully specified by its structure witegards to its formal properties if we understéram

to consist of those properties that result fromsadering exclusively the identity and differencetlod
3’, 114

relational elements, irrespective of their otheura (Carnap 1929, 54
Applied in Untersuchungen Carnap’s main intention is to define formal pmdjgs of

mathematical models axiomatically. Here, the follugvdefinition is given:

The property P of relations is called “structural property” ify case it holds for a relatid®, it also

holds for every relation isomorphic B” (ibid, 74)*°

Expressed in Carnap’s formal terms, this reaBsQ)[fP & Ism(Q,P) — fQ]. A substantial
part of Part 1 ofUntersuchungens reserved for the exact type-theoretic definitiof a
“generalized” or “complete isomorphism” IsRQ) between n-ary relation® andP where
the elements of the different domains are of diffiertypes:® It is shown that the

112 5ee Whitehead and Russell (1962, §21 and §30:8B)pare also Russell (1919, 60-61).

13«Eine Relation wird durch ihre Struktur vollstagdiharakterisiert in Bezug auf ihre formalen Eigdvadten,
wenn wir hierunter diejenigen ihrer Eigenschafterstehen, die sich bei blof3er Bertucksichtigung diemtitéat
und Verschiedenheit unter den Relationsgliederaleg, unter Nichtbeachtung der sonstigen Beschadfen
der Glieder.” (Carnap 1929, 54)

114 This notion of a relation’s structure is close#jated to Carnap’s concept of “structure descnistiaf
relations in Carnap (2003). In 811, he gives thieddng characterization of a relation’s ‘formalgprerties’:
“By formal properties of a relation, we mean thtfsa can be formulated without reference to thenimgpof
the relation and the type of objects between wihibblds.” (ibid, 21)

15«Die Eigenschaft® von Relationen heift eine “strukturelle Eigensthafenn sie, falls sie einer Relatiéh
zukommt, auch jeder mR isomorphen Relation zukommt.” (ibid, 74)

118 For Carnap’s theory of relations as well as hiotly of (model-)isomorphism see Carnap (2000, §s7)
well as Carnap (1929).
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construction of an isomorphism correlation betweetations is closely connected to
specification of their ‘structure’. Two relationkat are isomorphic also share “the same
structure.” This, in turn, can be defined via teemorphism class of the relation by stating
that P holds as a structural property of a relation if it also belongs to all relations
isomorphic toP (ibid, 74)!*" Since models are treated as higher-level relatisimilar
remarks hold also for a model’s structure.

This approach can - as Carnap himself specifiadadt be viewed as an approach to define a
structural property of a relation via an invarianadndition over “isomorphic
transformations” of a certain kind (ibid, 74). Howee, it is not clear how the transformations
referred to here are actually understood, espgcialien models are considered as the
subject'*® Fortunately, in Carnap and Bachmann (1936), thkoas get more specific about
the concept of a ‘model structure’. Again the diifom closely leans on the notion of

“complete isomorphism”:

Since the complete isomorphism betweeplace models (i.e., sequences wittmembers) is &"-
equivalence relatiom-place relations can be defined over the field lo$ telation, i.e., over the
totality of constants of the basic, assumed languwagch can appear as elements of models, such that
the n-place relations have the following properties: &ach model there exisexactly one such
relation which is satisfied by the constituents of the malad is satisfied by the constituents of two
different models if and only if the models are coetgly isomorphic. The relations so determined we
will call structures and will say that model; has structures, if ' S(M,)’ is analytic. (Carnap and

Bachmann (1981, 74), my emphasis)

This passage is highly instructive in helping tarifly the semantics of Carnap’s approach. In
the theory of models proposed here, each model gavith a single structure that specifies a
relational architecture, i.e. ttegity and type structure, shared by its isomorphismsclahis
structure of a modeé¥; of typen can itself be expressed as a rela®) of typen+1.*°1

will return to this in Section 4.

117 A similar remark on the defining features of riglas can be found in CarnapAdriss “A property is
characterized as a structural property if it betotmany relatiofR it also belongs to all relations of the same
structure, that is to all relations isomorphidRaExpressed in terms of classespresents a structural property if
every relation belonging the a relation isomorghia also belongs ta (...).“ (Carnap 1929, 54)

118 Compare also Bonk and Mosterin (2000) on this fpoin

119 This conception of a model’s structure is closeptured by Corcoran’s more general remarks on the
historical notion of a structure as opposed tonitglern understandires a model: ,From a philosophical and
historical point of view it is unfortunate to thie term ‘mathematical structure’ is coming to Bedias a
synonym for ‘mathematical system'. In the earlisage (...) two mathematical systems having totabiriit
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Given these preliminaries, we can turn to Carnag Bachmann’'s theory of ‘extremal
structures’ of an AS that lay the proper groundtf@ir explication of minimal and maximal

axioms. They are also, as | will argue, the rodtitikka’s misinterpretation.

2.2.2 Extremal structures

We have seen that for Carnapuntersuchungem model’s structure characterizes a model in
the sense that it fixes its isomorphism class. Adiogly, an axiom system has a ‘structure
number’ referring to the numbers of different stuues it defines. Each of these structures
fixes one isomorphism class of models. An axiomtesys with only one structure is
categorical (fnonomorphi), one with more than one structure non-categbrica
(‘polymorphic) (see Carnap 2000, 128).

In Carnap and Bachmann this idea of structuresgssssl by an axiomatic theory is further
developed?® Axiom systems are conceived here again as praopoait functions can
“possess a certain number of structures” that cleriae their possible modes: A segment
Tse of this class of structures can be classified gy telation of a ‘proper substructure’
holding between set of structures of the systenstrdctureSis a ‘proper substructure’ of a
structureT, if SandT are not identical and there are at least two nsddedndN, whereM is

a ‘proper part’ ofN andM satisfiesS andN satisfiesT. Put in Carnap and Bachmann’s formal
terms,Sis a proper substructure ofif the two conditions hold (ibid, 75):

(i) S#T

(i) (OM)(CN) (S(M).T(N).MON)

It is important to emphasize they way in which Garrand Bachmann address this issue.
They speak of a model’s structures and substrustme not, as one would expect, of models
and submodels of an axiom system. Also, the ‘exateranditions’ imposed by minimal and
maximal axioms are in the following cashed outemrs of structures, not in terms of the

models themselves. Given the explications abovstractural diagram’ of an axiom system

elements can have the same structure. This irséinise a structure is not a mathematical systerarrath
structure is a “property” that can be shared bywiddal mathematical systems. At any rate a stmacisi a
higher order entity. (...) For mathematical purpasesould be possible to ‘identify’ a structure witie class of
mathematical systems having that structure, but §dentification’ may tend to distort one’s conteal grasp
of the ideas involved.” (Corcoran 1980, 188) Fdisiory of the term ‘structure’ in modern matheroat@nd
logic see also Mancosu (2006).

1201 this section | am following closely Section B@arnap and Bachmann (1936).

121|1n (RC 081-01-05), Carnap’s assumed relation betviae models of a theory and the structures desthy
it is further specified in this way: “Given thaf@mal AS is satisfied by every model of a struetur case it is
satisfied by one model of the structure, we sahimcase: the AS is “satisfied” by the structur@id.)
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can be defined as the relatidar of a “proper substructure restricted to the structures
belonging to ‘F(M)" (ibid, 75).}% S is termed abeginning structureof F if it belongs to the
domain ofTsg Sis termed anend structureof F, if it belongs to the range dkr Finally, S

is called anisolated structurkif it belongs toF, but not toTsg (see ibid, 76).

Note that these definitions are closely relateth® theory of relations expressed in Russell
and Whitehead’sPrincipia Mathematicaas well as Carnap’s own more introductory
presentation iMbriss der Logistik** The main innovation in the 1936 paper is its agtion

to formal models with the aim to classify differdimniting types of model structures defined
by an AS: minimal structure’sconsist of the beginning- and isolated structuresaximal
structure$are the end- and isolated structures of an ax@gstem (see ibid, 76).

Carnap & Bachmann present a simple example of amagystem in order to illustrate how
these different types of structures and their mutlations are to be understood. Presumably,
the example is also intended to outline how thevabgiven specifications concerning a
model's structure are to be related to the typenaiimal and maximal conditions that
extremal axioms impose on the models of a theosy.l Aill show in Section 2.5, in this
second role it is to a certain extent misguiding.

The axiom system R) in question consist of four axioms with one bdsiicary relational
variable R. Axioms (1) to (3) define the properties of injeity, asymmetry, and non-
reflexivity of R. Axiom (4) states that the field 8 contains exactly four elemerits.A set of

topological “arrow diagrams” illustrate the diffetekinds of model structures the system

captures?>
R LI VALV SRS VAR I B S V4

(ibid, 76)
Obviously, each diagram here presents not a speuifidel but a model’s structure that is
defined by fR). Each of these individual structures can be preted differently, by

assigning models with different domains of foumedmts. What is also immediately evident

122 An essentially identical approach can be founthénnotes for Part 2 dfntersuchungein Carnap’s
NachlasgRC 081-01-05).

123 See esp. (ibid, 35-38).

1241n Part 2 ofUntersuchungercardinality axioms such as this are termed ‘alisaéxistence axioms’ that fix
the ‘Urklassenof a theory (RC 081-01-10).

125 The diagrams are to be understood in the senséhthécardinality of the) field of a relatidd(fld R) is
presented by the points, its domain (d@nby the starting points of the arrows and its mfr@nR) by their
arrowheads. Compare Behmann (1927, 82 also Carnap (1929, 26-28).
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from this illustration is that the different modedatisfying these possible structures of the
axiom system are not isomorphic to each other,f({R. does not capture its models up to
isomorphism.

The crucial point to see, however, is that Carrmagh Bachmann seem to intend the sequence
of structures (a) to (g) to illustrate their accowi model extensions (and restrictions
respectively). A possible model extension for aegivmodelM; of the theory (say, of
structure (e)) is prima facie conceived as the resitm to a modeM, with one of the
succeeding structure (say (g)). Obviously, in tbése, no extension of the domain of
individuals ofM; to M3 is involved. This idea strongly suggests a kindcDfC concerning the
models of a theory. This is further strengthenedlidoking at how the different extremal
conditions of axiom systems described above ardeoexplained via this sequence of
structures. Given the topological arrow diagramsvabone can classify the types of relations
that are intended to satisfy the extremal cond#tiaf f(R). Thus, Carnap & Bachmann
develop a “structure diagram” of the axiom systéwat tallows classifying the maximal and

minimal structures of the theory:

(ibid, 76)
The structures (a) and (d) in the graph are beggsiructures, g and f are end structures and
b is an isolated structure. Therefore (a), (b), @)dare minimal structures and (b), (f) and (g)
are maximal structures respectively (see ibid, @&xnap’s theory can be further illustrated
by building a number of simple modé¥, My, ... Mg of f(R) that share an individual domain
of four natural numbers, say A= {1, 2, 3, 4}, buigsmgn different valuations to the binary
relation variableR overA? so thatR, = ((1,2); (3,4); R, =((1,3); (1,2); (1,4); ...; Ry =((1,3);
4,1); (1,2); (2,4). The way the relations (and therefore the modeds) be clustered is by
drawing to the notion of a partial relation: eRy.is a partial relation dR;, Re, Ri andRy. Now
(g) expresses a maximal structure due to factitheannot be extended by adding ordered
pairs fromA? (like (1,4)) without violating one of the axiomis this case, the axioms 1 and
2). Similar holds for the structures (b) and (f).dontrast, (a) presents a minimal structure
because there exists no partial relatiotMgfthat satisfies the axiom system. The same holds
for structures (b) and (d). Finally, b is an isethstructure since there neither exists a partial
relation ofR, nor isR, a partial relation of a more comprehensive refatiat satisfies R).
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2.3 Hintikka’s interpretation

Hintikka’s critical discussion of Carnap and Bacimmg1936) sets in at this point. As | have
mentioned above, it essentially consists of twerprtetive claims. They can be paraphrased
in this way (see Hintikka 1991, 332):

(1) The specific formalized version of extremalustures in the 1936 paper is nonstandard
compared to mathematical practice in the sense ithdbes not capture the informal
conceptions of limiting conditions on a theory’sniin expressed in the corresponding
axioms by Hilbert, Peano and Fraenkel.

(2) This misconception on Carnap & Bachmann’s sdedirect consequence of the tacit, but
guiding “one domain assumption® in Carnap’s conicepbf semantics.

Due to his assumed FDC - Hintikka argues — Carnap ferced to conceive the idea of
‘extremal assumptions’ in a fundamentally differarmty than they were originally codified in
the mathematical completeness and restriction axiétmtikka puts the point as follows:

Because of this one-domain assumption, Carnap athrBann had to reinterpret tacitly the entire
problem so as to speak of the extremality of a adth respect to properties and relations, nohwit
respect to individuals, as Hilbert among othersl tansidered the problem. The result was less than
magnificent (...). Indeed, the only really intenegtthing about Carnap’s ill-fated paper seemsetit

reliance on the one-domain assumption. (Hintikkd219.76)

According to Hintikka, the focal point of this m@uception lies in the Carnap’s treatment of
the extension of a model that is not understoothe®xtension of the domain of individuals
but as the “structural” extension of the primitrédations over a fixed domain of individuals.

Compare again Hintikka on this point:

Instead of asking whether a given model can bendgid by introducing new individuals while the
axioms stay satisfied, Carnap and Bachmann ara@s¥nether a given model can be extended by
assuming the relations involved in the axiom systenmold between more individuals among the

members of the given fixed domain. (Hintikka 19832)

Now, if understood in this sense, Carnap and Baahmadoubtedly had misconceived the

mathematical intentions behind the different extibaxioms they attempted to formalize. By
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looking at the way the minimal and maximal condiioare defined above via structure
extensions, this claim also seems to be highly qotde. The crucial fact in the simple
example described above is that the individual domramains constant for all model
extensions. In contrast to the standard accouatcaindinality of the domain of individuals is
axiomatically fixed (by axiom (4)) for all possiblaodels of fR). Interpretations of K)
differ only in the structure of their relations. dhe compares this e.g. to Hilbert’s original
formulation of the limiting condition expressedhis AC for geometry inGrundlagen der
Geometriethe conceptual difference becomes obvitisiVhereas the extensibility in the
completeness condition expressed here concernsevieé of individuals of the theory in
guestion, maximality in Carnap and Bachmann isngefias the non-extensibility of the

axiomatically defined primitive relatioR over a fixed domain of individuals.

However, as a will suggest in the remainder of thigpter, this is not a valid interpretation of
Carnap’s theory, despite tipgima facie plausibility it gains from Carnap and Bachmann’s
example. To show this, it will prove worthwhile farther refine Hintikka's interpretive

claims. In fact, there seems to be a sub-claiml@ebin (2) that can be put this way:

(2i) A FDC (or the “one-domain assumption”) conéegnthe interpretation of a formal

language implies a FDC concerning the models dd@riormulated in that language.

This is in fact a perfectly natural consequenc€dfif one assumes a standard conception of
models, in which the interpretation of the languagpiantifiers, i.e. the range of the bound
variables, is actually part and parcel of the medelowever, as | will show in the next
section, this is not a sound assessment conce@angap’s understanding of a model. So, to
anticipate my argument: Hintikka interpretationldasince he misses to take into proper
account Carnap’s underlying heterodox conceptiormoflels. Where he is wrong is his
assumption thator Carnap, a “one domain assumption” concerning auagg necessarily
involves a FDC concerning the models of a theorythW2i) shown to be an inadequate

assumption, Hintikka’s claim (1) will also provelte untenable.

1281 the original version, the axiom reads: "It st possible to add new elements to a system otgdtraight
lines, and planes in such a way that the systemdbuoeralized will form a new geometry obeyingladl five
groups of axioms. In other words, the elementsenfngetry form a system which is incapable of beixtgrded,
provided that we regard the five groups of axiomsalid.” (Hilbert 1902, 25A structurally similar axiom of
completeness specifying the non-extensibility ef sfistem of real numbers can be found in Hilbert's
axiomatization of the real number field in HilbétB00). Compare Awodey and Reck (2002).

72



2.4 A heterodox conception of models

What is Carnap’s early conception of modeldJmersuchungemnd Carnap and Bachmann
(1936)? Does it allow domain variation in some ser®mparable to the modern
understanding? Finally, how are models related h® interpretation of a given logical
language, in which an axiomatic theory is formul&en order to address these interpretive
guestions, let us start with Carnap’s most detagieplication of formal models in the first
part ofUntersuchungenin section 2.3 he introduces the notion in thas/#’

If we write for f(R, S, T), in short fR), and ifRy, S;, T; are specific, e.g. arithmetic relations that are
admissible values of the variablgsS, T, then we can also introduce an abbreviataation for the
ordered system of relatiof, S;, T1, sayR;. ThemodelR; is thena value of the model variabR
Each of the relation variabld® S T of the axiom system has a specific type (...); tbstential
function for fR, S, T) only yields a true or false sentence if the valokthese types are inserted. If the
three relationsy, S;, T, are admissible values of the variabResS T, i.e. if they can adopt the type of
the three variableR, S T (by declaring a specific domain of discourse ienthto be the domain of
individuals), we name the system of relatioRs, &, T,), or shortR; an “admissible modélof fR,
irrespective of whethdR, satisfies R or not; R, is then in any case meaningful, i.e. either a thua
false sentence. An admissible modrel of fR is only then also a model oRfif fR; is not only

meaningful, but also true. (Carnap 2000,'95)
In Carnap 1930 the following shortened definition fnodels is given:

If fRis satisfied by the constaR{, whereR, is anabbreviation of a system of relatioRg Q, ...; R
is called a “model” of f. A model Ry) is a system of concepts of the basic system,rgiypa system

of numbers (number classes, relations and so fqaynap 1930, 303§’

Note that a central feature of modern model thetbry,domain variability of a model, is not
explicitly specified in Carnap’s explications. Mdsleare defined as “systems of numbers

(number classes, relations and so forth)”, i.esesigiences of the forfR, S T, ...), where

127 See also Chapter 1, Section 2.3 for further disionsof Carnap’s notion of a ‘formal model'.

128 gee fn.36.

1294wird fR durch die KonstantB; befriedigt, wobeR, Abkiirzung fiir ein System von Relationen Q;,.. ist,
so hei3R; ,Modell“ von f. Ein Modell ist ein System von Beffen der Grunddisziplin, meist ein System von
Zahlen (Zahlklassen, Relationen u.dergl.).” (Carbh8p0, 303)
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R, S T, ... stand for classes or relations of a given tyfygart from this rather intuitive
qualification, no further indication is given witagards to his understanding of the domain of
a model. In particular, unlike in the modern ddfonis of a model as a tup(®, 1), whereD
stands for the domain of the model ahdor an interpretation function, there exists no
notational sign indicating the domain of a speaifiodel in the above definition.

Given this, the question arises whether of not @arconceived of something comparable to
modern domain variability from his use of modelshis theory of axiomatics. Intuitively,
Carnap’s overall motivation ibntersuchungemo provide a logical reconstruction of formal,
i.e. reinterpretable axiom systems and its senmmatine seems to suggest that he aimed for a
theory of models that allow VDC. Nevertheless,ha first part ofuntersuchungeiCarnap’s
position on the issue of domain variability is falty conclusive. In fact, one can find prima
facie conflicting evidence by looking at Carnapesnarks throughout the manuscript. On the
one side, there is strong textual evidence pointmghe direction that Carnap actually
intended domain variation in his treatment of medélote first that in the definition above
Carnap speaks of “declaringspecificdomain of discourse in thef®S: the relatioristo be
the domain of individuals”, which seems to indictttat the domain of individuals can be
varied in a sense. Second, there are also sexghtit remarks on the notion of “domain of
discourse” Grundbereich in Untersuchungempointing towards a VDC.

One is related to the specification of an isomaphicorrelation between models by
stipulating its “step number” or, which amountsth® same, the type-level of individuals
assumed in a specific case. One of the ways timsbeadone is by indicating a domain of

discourse to act as the domain of individuals fepecific model:

The step number can in a specific cHse fixed (...) by reference to a domain of discourse which

will act as a domain of individuals for a model (. (ibid, 120}%*°

One can thus in this way specify a domain of indlials for a specific model. It seems
plausible that in the same way, one could alsgassidifferent domain to this model.

This view finds additional support by consideringat second passage in which - in a slightly
different context — the issue of a model’s domaidiscussed. In 82.11 Carnap introduces the

notion of a “g-step model structure” and remarkat tthe structure of models with finite

130“Dje Stufenzahl kann in einem bestimmten Falle festgelegt sein: (...) durch Angabe eines
Gegenstandsbereichs, der fiir ein Modell als Indiettbereich gelten soll (...).“ (ibid, 120)
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number of elements is presentable via a “g-ste@ntory list of a model” ({-stufigen
Bestandsliste eines Modé)lsn which all constants are substituted by valeshb(ibid. 121).
Inversely, the resulting “schemes of inventoryslist'Bestandslistenschemd&tacan be used
for model building: one can get different modelsnir interpreting, i.e. assigningjfferent

domains of discourse to them. The central passagerbads:

(...) if a g-step model structure is given by an imeey list with variables, one can always specify a
model which has this structure and whose indivisiUatlative to step q) belong to an arbitrary,
stipulated domain of discourse by inserting arbjtrelements of the domain of individuals for the
variables in the inventory formula. In short: (.if)a finite (g-step) structure and a domain of

individuals is given, one can specify a (q-stepiiehdelonging to it(ibid, 122)

Carnap explicitly speaks of an “arbitrary, stipathtdomain of discourse” here. This again
seems to suggest VDC. Second, this remark on numretruction in effect seems to come
close to the modern conception of a model as asgjgronstruction from a (non-empty) set
of individuals to the expressions of a languageaWs clearly missing is something like an
interpretation functiorl that assigns elements and subsets of the domahmretaon-logical
constants of the language. This however, is inB@gmt for Carnap’s account since he is
working with a pure higher order language, i.eimpte type theoretical language with an
empty signaturé, in his theory of axiomatics. Given this, modeds &n AS can be taken as
assignments from a chosen domain of individualthéovariables of. or, in Carnap’s own
terms, the method of “inserting arbitrary elemeantsthe domain of individuals for the
variables” (ibid, 122).

Against this essentially modern reading of Carnawaception of models (more precisely
models’ domains), several remarkdJntersuchungeran be mentioned that seem to indicate
a FDC for models. They concern Carnap’s use higd#bdanguage, more specifically the use
of quantification in the formulation of axiom systs. One can find an insightful remark that
is crossed out in the final version of the manyscan an alternative to his version of
formalizing axiom systems. It illustrates clearlyar@ap’s nonstandard conception of

quantification involved in his project:

A different conception on the nature of axiom sysewhich, however, does not seem acceptable to
us, does not consider the basic relations of tharagystem, but the elements of these basic rektio

as the variables that transform the axiom systeim ansentential function. The basic relations are
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treated as constants. The elements do occur abies] althouglas bound variable$...), those can
also appear in a sentence sitfeey do not transform the axiom system into a séiatdunction (ibid,

89, my emphasis}

The last sentence here is particularly insightfal.Carnap’s own approach to formalize
axiomatics theories are expressed as sententiatidms and the primitive terms as free
variables. What he argues in the passage abohesidftthese variables were to be bound by
guantifiers, then the free reinterpretability oé tAS would be restricted to a fixed range, a
fixed interpretation of the background language use. The underlying assumption
concerning the semantics of the language involexé becomes even clearer in an example

of a simple transitivity axiom he gives for thisesthative version:

| we express it with the help of the M-elementg, #ixiom is:

x)2) (IM(xy) & M(y,2] - M(x.2))
Herex, y, z are not free variables, but bound by the univeogarator in front. IfM were now a
constant, then the expression would be a senténcay only then be a sentential functionMfis a
variable. (ibid, 892

This indicates that for Carnap, when formalizingaadomatic theory, the logical language in
use comes equipped with a (fixed) universe andasoin modern semantics, allows changing
its interpretations. Further textual evidence factsa fixed interpretation of the background
logic, and thus a fixed range of the language’sntifiars can be found in a remark

concerning the question of “decidabilityEiitscheidungsdefinithgiof the discussed systems:

Therefore,not singular domaingare demarcated by the different axiom systemsgebety deduction

of any consequence of any axiom system is perfoim#teone domain of logiq(ibid, 149}%

131«Eine andere Auffassung iiber das Wesen der Axisystame, die uns aber nicht zulassig erscheint,
betrachtet nicht die Grundrelationen des Axiometesys, sondern die Glieder dieser Grundrelationgulial
Variablen, die das Axiomensystem zu einer Aussateifon machen, die Grundrelationen selbst aber als
Konstante. Die Glieder treten allerdings als Vdgaduf, aber als gebundene Variable (...), solche lafrenen
ja auch in einer Aussage vorkommen, sie machendals®xiomensystem nicht zu einer Aussagefunktion.”
(ibid, 89)

132«prijcken wir die mit Hilfe der M-Glieder aus, sauitet das Axiom:xy,d (IM(x,y) & M(y,2] — M(x,2).
Hier sind x, y, z keine freien Variablen, sondeunath den vorn stehenden Alloperator gebunden. \iéneM
eine Konstante so ware der Ausdruck eine Aussadenm nur dann eine Aussagefunktion sein, wennrd e
Variable ist.” (ibid. 89)

133«Daher werden durch die verschiedenen Axiomensysteicht einzelne Gebiete abgetrennt, sondern jede
Ableitung irgendeiner Folgerung irgendeines Axiosyatems vollzieht sich in deainen Gebiet der Logik
(ibid, 149)
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Here again, what Carnap seems to be assuming thdosy of axiomatics is a universal, fully
and invariantly interpreted background languagese&lto what Hintikka describes as the
“one-domain thesis” in Carnap’s thought.

Now, to be specific, the exact nature of the tam&ietween remarks like this one and talk of
“arbitrary, stipulated domain(s) of discourse” ofrebdel cited above arises form lack of
clarification on Carnap’s side of the exact relasbip between the semantics for axiomatic
theories formalizedh a languagé. and the semantidsr L itself. Put differently, it concerns
the way his theory of models is related to therprietation ofL. As we have seen, Carnap’s
remarks on this issue are not fully conclusive Ire tfirst part of Untersuchungen
Fortunately, Carnap and Bachmann, in their 193@paget more explicit.

2.4.1 Models and analyticity

Recall the passage in Carnap and Bachmann (198&¢djin Section 2.2.1, in particular the

last sentence concerning the model’s structure:

The relations so determined we will call structuaesl will say that mode¥l; has structuré&, if 'S

(My)’ is analytic. (Carnap and Bachmann (1981, 74) emphasis)

The fact that the notions of structure and model teeated in a highly similar fashion in
Carnap’s 1928 manuscript and in 1936 should nodl leae to overlook the substantial
differences in their explication. The passage absiresses a significant shift in Carnap’s
underlying conception from what has been term&ussellian‘monolinguistic” approach in
1928 (see Coffa (1991)) to an explicit metatheorstance formulated ihogical Syntax of
Language(in the followingLSL) (Carnap (1934)). Put differently, the conceptitamework
within which Carnap’s theory of models was devetbged changed, by 1936, from a
universalist approach to that b§L This new horizon is most evident in his above afstne
metatheoretic notion o&nalyticity to state that a modeéll; satisfies a given structure: a
“model M1 has structures, if ‘S (M1)’ is analytic.” Similarly, models themselves arewn

definedvia the notion of analyticity:

Let 'M;" be an abbreviation for a sequence of constanteefanguag& We say thaM; is a model
of the axiom systenF,;(M)’ if the sentenceF,;(M,)’ is analytic in S. (ibid, 67)
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Compare this to the corresponding segment in Céregplier explication of an “admissible
model” of an axiom system in the 1928 manuscripin ‘admissible modeR; of fR is only
then also a model oRfif fR; is not only meaningful, but also trtigCarnap 2000, 95, my
emphasis). In Carnap (1930), the concept of trigaduabove is substituted by that of
‘satisfaction’: “If fR is satisfied by the constaRi, whereR; is anabbreviation of a system of
relationsPy, Qq, ...; Ryis called a “model” of f.“ (Carnap 1930, 303)

Now, the nominal difference between the 1936 dediniand those itUntersuchungeseems
to concern only the substitution of the terms ‘Hfuiand “satisfaction” respectively) with that
of “analytic in S* (viz. in a type-theoretic langumlike LIl defined inLSL). Nonetheless, this
conceptual background of the respective definitioakes all the difference. First, note that
both concepts - truth and satisfaction - used e dhrlier definitions are used in a strictly
informal sense and thus in no sense comparablargkils formally explicated versions given
in (Tarski 1935). No further remarks can be foundJntersuchungemmn how the notion of
truth is understood or what conditions have to et im order to speak of a theory to be true
in a model. Carnamnno 1928, simply does not have something correspontdirg formal
concept oftruth in a modef** In contrast, the explications of a model and a efisdstructure
given in Carnap & Bachmann (1936) are based onfdheal definition of the notion of
‘analytic for LI’ first published in a side paper t&SL (see Carnap (1935)° With this in
hand, Carnap’s background semantic apparatus ushd idefinition of models in 1936 is
essentially identical with Tarski’s recursively oefd notions of truth and satisfactitfi.
Second, with the shift to the conceptual framewofil_SL, there is also a change in the
explication of the intended semantics of the baglgd languages in use. lmtersuchungen
Carnap is not fully conclusive on the intended notetation of the ‘contentful basic system’
(‘inhaltliche Grunddiszipliny. Given his overall logicist program at that tiraad the two
passages quoted in Section 4, one could arguehthas assuming a universal and fully
interpreted logical language with quantifiers rampover afixed but unspecifieduniverse of
type theoretic objects (but see Section 4.3). Intrest, the ranges of the quantifiers in
Carnap’s languages LI and LIl studiedLiSL are stipulated explicitly*’ It is crucial to note

that here, as in 1928, Carnap’s conception of émasitics of a logical language like LIl is

134 There is some evidence that truth in the axionwittext is understood here by Carnap as “being
tautological“. Compare Bonk and Mosterin (2000, 88)this point.

135|n a footnote in the 1936 paper, Carnap and Baohreaplicitly refer to Carnap (1935) for the formal
definition of ‘analytic inll’ used in their explication of models (see ibid).84

13 For a closer comparison with Tarski’'s semantidamst see Coffa (1991, 288-293).

137 See Carnap (2002, §6 and §26).
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not comparable to a modern model-theoretic accoungreviguantifiers are subject to free
reinterpretation (on a given type level). As Lavetesses in a recent paper, a pure type-
theoretic language like LIl ihSLis used not as a formal language in the modersesdmut as

a “meaningful formalism”, i.e. a language with &efil intended interpretation for each type
level (see Lavers 2008, 10). Thus, there is a deatinuity between 1928 and 1936: logical
languages are fully interpreted and the interpietas fixed.

The real difference tdJntersuchungenhowever, is that where Carnap was most likely
operating with a single universal language rangimgr a universal domain of typed objects,
there is now a move to a logical pluralism conaggnihe choice of formal languagasad
their specific interpretations. The intended semcarfor a language like LIl is still invariant,
however not longer universal. Quantification inaaguage can be freely stipulated to range
over specific mathematical systems and not the-tigperetical universe. For instance, the
individual quantifiers of LIl are set to range ov& domain isomorphic to the natural
numbers” (Lavers 2008, 10). In contrast, in Caraagd Bachmann 1936, one can find the

following remark on a (syntactically) similar larege:

We think of a language [GS: like LII], excepts thhe domain of individual contains the natural
numbers and also the points of a line of Euclidggometry among which two points are
distinguished. (Carnap & Bachmann 1981, 71)

Unlike in the ‘basic system’ in 1928 the individuwariables here do not range oadlrlogical
objectsof type 0, but instead over a stipulated classesaithematical objects, namely natural

numbers and a denumerable set of points. Simillastor the higher-order variables in LII.

Having underlined these transitions in Carnap’sreagh — i.e. to shift from an informal
notion of truth to a formal notion of analyticitin(LIl) on the one hand, a full explication of
the intended interpretation of LIl on the other - wre finally in a position to better
understand the exact nature of the connection legtwlee semantics for a language and his
conception of models. Put differently, the maireetfof this shift is a new explicitness of the
intrinsic relation between the domain of models ahd semantics of the background
language in use. Given the conceptual frameworkSif the link between models and truth
conditions for a formula in a given interpretatisecomes transparent. The dependency on the

language’s interpretation gets evident when comsigeghe application of the truth condition
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expressed in Carnap’s account of analyticity fotye-theoretic language like LIl to his
definition of modeld=>®

To illustrate this, consider a simple example ofaaiom system f{1), consisting of just one
transitivity axiom (borrowed from Carnap’s exampl®ove). The axioms (implicitly) define a
single primitive term, expressed as a binary fesel relation variabl:

1) 0 (Cy)(H2) (M(xy) & M(y.2)] - M(x.2))

A possible model of 1) consists of the binary relatidvl;. If M; is substituted for the free

variableM then the interpreted axiom systef] turns into the closed formula

(2) ) (Uy)(02) (Ma(xy) & Ma(y,2)] - Ma(x.2))
that according to 843 ibSL, is analytic in LIl iff
3) M{(a,b) & Mi(b,c)] - Ma(a,c)

is analytic in LIl for all numerals, b andc in the substitution class of LIl (in short D.
Similar truth conditions hold for cases in whicke formulation of an axiom involves higher
order quantification over relations or properti€ake for instance the second order version of
the axiom of inductiorfor arithmetic as g{S) and an interpreted version with a modeh j(

as

(4) OO ([X(@) O (EXXX) - X&) - Cy)X(Y)

where§, is an interpretation of the function variable &em g(0,S,) is analytic in LI iff
(5) X(0) O ([EX)(X() - X(S(¥))] - By(X(y)

is analytic in LII for all possible assignments (arnap’s terms “valuations”) of relations on
Dy, i.e. all subsets of Hto the predicate variablé (assuming given substitutions forand

y). The main difference to the case of bound indigidvariables is that Carnap treats higher-
order quantification extensionally I'SL. Instead of being restricted to a substitutiorsslaf
predicate symbols in LII, the quantifierIX) ..." is supposed to range over all relations or
properties of the set of numerals d of LII, thug. @ver all subsets of or ann-ary relation
variable**

Two points can be made here. First, this accouspetifying the truth of an AS in a model
in the (proto-) semantic framework b&L seems irreconcilable with a current understanding
of model-theoretic truth. In particular, note tiratontrast to the modern accountiith in a

structure the question whether an axiomatic theory is tnua model is not reduced to truth

138 For Carnap’s detailed definition of ‘analytic ifi'lsee Carnap (2002, §34).
139 For further historical details concerning Carnaptsve to an extensional treatment of higher-order
quantification see Coffa (1991) and Awodey and €42001).
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conditions relative to that modelhere. Instead, it is conceptually linked to theetlx
substitution class of numerals Dof LI, thus to the intended interpretation of tl@guage.
Instead of specifying truth conditions for formulais the assignment of elements of and
relations on a variable model’s domain of discouwséhe variables of the formal language
Carnap states conditions of analyticity based sigaments from a fixed interpretation of the
language.

Second, given the above examples, iprigna facienot clear how the domains of different
models are related to the range of individualsheflanguage. Several interpretive options to
understand this are possible: (a) In the first,nadidels’ domains are supposed to coincide
with Dy . In this case, the result is a FDC concerning rsosieggested by Hintikka. Against
this, one can hold that there is no reason intimsiCarnap’s explication to assume thaf D
necessarily has to coincide with the domaindegfM,, etc. for an axiom like (1). Moreover,
such an understanding would be in conflict with rggxr's remarks cited in 84 and more
generally with Carnap’s overall attempt to recamst(Hilbertian) formal axiomatics plus its
informal model theory.

(b) The second option would assume that with eaoldem the range of quantification is
reinterpreted with the model’'s domain. Thus, wiltcle new assignment ¥ in (1) the range
of X, y, andz is interpreted to the domain ®&. The earliest account of this — genuinely
modern approach | found formulated in the firstwoé of Hilbert and Bernay$rundlagen
der Mathematik published in the same year as Carndj®& (Hilbert and Bernays 1934).
Here, Hilbert and Bernays give a presentation advdom system of Euclidian geometry with
two predicateR (for greater than andS (for betweeh The axiom system is expressed in a
strikingly similar sense to Carnap’s version asghpositional functiotJ(R, S) and a model
accordingly as a certain tup{&;, S;). The central point for our discussion is a passage

which the specification of the models domain islakyed:

It should be noted that together with the assigriraéthe predicates one also has to fix the doro&in
individuals, on which the variablesy, ... are to refer. It is in a way introduced in thgical formula
as ahidden variable (ibid, 8-9)*°

190474 beachten ist, dass man zugleich mit der Bestimg der Pradikate auch den Individuenbereich
festzulegen hat, auf den sich die Variabtey, ... beziehen sollen. Diese geht gewissermalereadseckte
Variablein die logische Formel ein.” (ibid, 8-9)
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Such a stipulation of the range of individuals wilie ‘assignment’ Bestimmung of the
predicatesR and S clearly implies a VDC concerning the individual ndans of the
interpretations ofJ(R, S). At the same time, it also implies a VDC for taaguage itself. In
fact, models are here explicitly understood asctirabination of the “individual domain” and
the chosen ‘value-rangesWertverlaufef) of the primitive predicates, based on which “the
satisfaction of the axioms” ¢as Erflilltsein der Axionigcan be shown (see ibid, 12).

Note that this is not what Carnap has in mind iB6L9n fact, such an understanding is simply
not consistent with Carnap’s own definition whepalytic meansanalytic in LIl. The
conditions for analyticity of a formula are expligi linked to the interpretations of the
language, in the case of individual variables tq@.0O'hus, any attempt to understand (3) (or
(5)) as specifying the truth of an AS in a givendaloin something comparable to the modern
sense will fail since the conditions for “analyticLIl” require the preservation of truth over
all possible assignments from Dand not over a specific (but principally variable) model
domain.

The crucial interpretive question we are thus caomtied with is this: How can Carnap’s
account of truth conditions for a type-theoretindaage like LIl with a fixed, intended
interpretation be reconciled with Carnap’s scatteremarks inUntersuchungenand in
Carnap and Bachmann (1936) cited in Section 2.Adrevsomething comparable to a VDC
for models is explicitly indicated? | suggest thia¢ key to solving this tension lies in the
acknowledgement of the genuinely heterodox charawfteCarnap’s conception of models
involved in his theory. It is to see where exadtig account differs from the modern

architecture of models.

2.4.2 Domains as fields

Carnap’s definition of modelgia analyticity given in 1936 seems to involve two a&epe
semantic systems: the intended interpretation efdgiven language on the one hand, the
models for a theory expressed that language onttiez. This renders impossible the modern
account in which the interpretation of the langyage the range of its quantifiers, is intrinsic
or “built into” the conceptual architecture of a deb™* Note, however, that the apparent
tension arising from this can be resolved once dbeain of discourse of a model is

understood as independent from the truth conditaefned above. More precisely, if the

141 Compare Bays (2001) for a similar remark on Tassbarly conception of models.
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domain is not assumed — as in modern understandimdpe identical with the range of the
individual variables of LIl but as a subset of;Dgained by effectively restricting its
quantifiers of LIl. How does Carnap conceive sudakestriction of the range of the (bound)
variables to the domain of a specific model exgdss this language? To my understanding,
the most plausible interpretation of his underlyiognception is also the simplest one:
consider again the above example of a transitaxipm:

0X)(0y)(02) (M(xy) & M(y,2)] - M(x,2)).
What specifies the individual domain of an admiesiimodel of this axiom is not the fixed
intended interpretation of the language but théetbht assignments to the free variable
themselves, i.e. the relatioMy, M,, etc. substituted fav. Where Carnap speaks of a model
domain he most likely thinks of the field of thesgible relation assigned t@l. More
generally, a specific sequence of relatibhs= (Ry, S, Ty, ...) that satisfies an axiom system
thus simultaneously fixes the domain of the thedtirysimply consists of the union of the
respective fields oR;, S, Ty, .... Note that this conception of model domainsti closely
linked to the semantics of the background languemgeise. It follows from Carnap’s
explication of models via analyticity that all @trlevel) relations of a sequence constituting a
model are defined over the individual class ofldrguage. In our example, any domain of a
model for M is thus a certain segment, a subset @f. D'hus, while the range of the
quantifiers in LIl if fixed to Q;, a specific assignment to the model variablein fact
restricts their effective range to the domain @& ¢fiven model. For the subsequent discussion,
| will dub this the ‘domain-as-fields’ view.

There exists extensive textual evidence in Carnepisngs on axiomatics in support of the
view that he actually conceived models and modehalns in this way. In Carnap and
Bachmann (1936), in a passage on the ‘completeagamsm’ between two relations, the
authors mention the “fields of their field elemef(its., forcertain segments of the individual
domain of the languagé(ibid, 73, my emphasis). A few lines further below, in the qzage
already cited in Section 2.2.1, concerning the ghism betweenr-place models” it is
stated that

(...) n-place relations can be defined over the fieldhed fGS: isomorphisinrelation, i.e.over the
totality of constants of the basic, assumed languabich can appear as elements of models.

(ibid, 74,my emphasis)
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It is clear from this that Carnap understands aeti®dhdividual domain as a specific subset
of the “totality of constants® of the specified kgoound languag¥? Given this
substitutional approach, models with different domaare constructed by carving out
segments of the substitution class of individuahstants, i.e. mostly numerals of the
language. The specific domain of a model is he@nagonceived as union of the fields of
individuals of the primitive relations constitutitige model.

This identification of domain of discourse of a rebdith the (union of) field(s) is articulated
more explicitly in a separate, but closely relaretk on axiomatics by Carnap’s collaborator
Bachmann (Bachmann 1934). In his inaugural dissenteon the logical foundations of
arithmetic, Bachmann presents different possibleraatizations of “elementary arithmetic”
in a many-sorted language and a detailed studyeif tespective logical relatiortd® He
discusses different axiom systems of the form R a) with three free variables (for
individuals, relations and classes respectivelgj #tand for the primitive terms of the theory
(Bachmann 1934, 1). Models for the theory are aefihere in a way similar to Carnap’s
account inUntersuchungen“Each triple of values that transforms the axiomstrue
sentences when inserted foR o is termed anodel of arithmeti¢ (ibid, 1)*** Note that - in
contrast to the axiom system presented in Carnd@Bachmann (1936) — there exists a class
variablea here that is conceived as an explicit notatiorgal for the domain of discourse, i.e.
the number set of an arithmetical model aflRa). Moreover, according to Bachmanncan

be interpreted differently: as the “set of the mnalttnumbers,” as the “set of natural numbers
greater then 37,” as the “set of primes,” etc. (dkee, 4-5). Bachmann also discusses the
question whether an axiom system of “basic aritich&tR) can be constructed with just one
primitive term, i.e. with one free variable that“generally equivalent” to { R a).**® The
crucial point for our discussion is that he expljcimentions a condition concerning the
relation ofR to a the models of that X(R a) have to fulfill in order that the two theories

become equivalent:

142 A similar informal remark concerning the compasitiof models can be found ntersuchungen®(...) we
speak in short of “models” of an axiom system urehmby this logical constants, i.e. “systems ofcepts of
the basic system” (and these are mostly systemarabers).” (ibid, 94)

143 This work, supervised by Heinrich Scholz, antedettie collaboration with Carnap. Nevertheless, Bem
was well acquainted with (published) Carnap’s wonkaxiomatics. He refers to Carnap (1929) @adnap
(1930) repeatedly in the text (see e.g. Bachmaid 1497).

144 «3edes Wertetripel, dass in xcReingesetzt die Axiome in wahre Aussagen uberfiigift einModell der
Arithmetik" (Bachmann 1934, 1)

145 A discussion of the details of Bachmann'’s notibtgeneral equivalence’ of axiom systems would take
too far afield here.
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The reason why the reduction Roas the single free variable was not possible sdida in the fact
that there were no sufficiently strong connectibatveerk anda; for it was simply demanded byxf(
R a) thata is contained in the field d®, not thata is identical with the field oR. We therefore add to
out AS the conditiofr. (02)(Cy) (YRz— z O a) (...). (ibid, 43, notation changed)

Given this additional condition that any successfos number is to be contained in the class
a, Bachmann effectively shows thakfR a) + F imposes that, in any model, the domain is
identical with the field of the relatioR. Given thisextended AS, it is thus possible to provide
a functional definition ofx in terms ofR (see ibid, 43-44). An additional primitive indicad

the domain of a model besid&sthus becomes redundant given that the domainresdy
stipulated with the assignment B A version of Bachmann’s axiom system of “elementa
arithmetic” with one variabld that defines a class of “progressions” will becdssed in
Section 2.5.1. What is important here is to notat tBachmann’s dissertation must be
considered as the immediate background for theryheioaxiomatics outlined in Carnap and
Bachmann (1936). With this in mind, the remarks enad the passage above on the
connection ofa and R should be valued as direct evidence for the ‘dorastfields’
interpretation of the conception of models outlirédve.

Decisive textual evidence in support of this viean @lso be presented from Carnap’s own
works. As mentioned in Section 2.4, Carnap isfalby explicit on his conception of models
in the first part ofUntersuchungenNevertheless, by drawing to Carnapschlass in
particular to the manuscript documents for the gutgd second part ddntersuchungent
becomes clear that he already conceived modelssengally the same way in the late 1920s
and thus years before the conceptual turnL&L In the two typed documents titled
“Complete isomorphism” {/ollstandige Isomorphig¢ (RC 081-01-15) and “Domains of a
model” (“Bereiche eines Modells(RC 081-01-16), both dated from 1928, Carnapetigps a
clear and detailed discussion of the auxiliary owdi underlying his theory of models.
Carnap’s method of explication here is to firstaldee the different domains of a given,
disinterpretedaxiom system in terms of a ‘domain analysi8dfeichsanalysg Based on

this purely structural description, the correspagdiomains of a model are then stipulated in

146«Dass die Reduktion al als einzige freie Variable bisher nicht méglichrwigt daran, dass zwischén
unda nicht gentigend starke Bindungen bestanden; demuieke in f(xR a) nur verlangt, dass im Feld vonR
enthalten ist, nicht dassmit dem Feld von R identisch ist. Wir fligen dabemunserem AS die Forderung F.
(029(Oy) (YRz - zO a) hinzu (...)." (ibid, 43, notation changed)
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a second, independent step. Briefly, the ‘domaialyems’ can be understood as a way to
specify the type structure of the theory beginnwigh the relations of highest type and
descending the relational hierarchy defined byyatesn until reaching the elements of type
level 0. One thus starts with the ‘base domains!,the different domains of the primitive
relationsR, S T, etc. defined by the theory. In case these baswuhs can be further reduced
to domains of a lower type level, then the analysisceeds until one reaches the non-
reducible ‘individual domains’ of type level 0 ofhaxiom system (RC 081-01-15). An
individual domain of a system is thus defined as “dhomain from which no other domains
descend” (ibid.). Given this, a “family tree ofrdains of an AS” (Stammbaum der Bereiche
des AS”) is constructed by assigning each domain in A% a fixed “type expression”
(“Typenausdrucl. Note that up to this point, models are not ti@red. The domains of an
axiom system are understood in a purely structmay so far. The analysis of domains
concerns exclusively the type-theoretic structiekngd by an axiom system.

This changes, however, in the following section“Bereiche eines Modells” (RC 081-016)
where Carnap describes, in analogy to the “fammége bf domains” of an axiom system f(...)
the compositions of domains of a given mollefor f(...). Here again, models are conceived

147

as the relations substituted for the model varmlolef(...).””" Carnap specifies the point in

this way:

Let M be an admissible model of the AS f(.M).assigns to each primitive term of f a logical dansg
in order that this is possible, there always habdaann-ary relation corresponding to eankary
relation. It follows thatexactly one set in Nk assigned to each domain of f as its “correspundi

domain®. (ibid, my emphasi&}

The central notion here — not mentioned in Part fl1Uatersuchungen— is that of
‘corresponding domains’ of a model. The differeondins (of different type levels) of a
model are treated in strict analogy with the stiteltdomains of the theory specified before.
Here, however, as the passage above shows, théneated extensionally, i.e. as ‘classes’ of
(tuples of) individuals, relations on classes afiwidual, relations on relations on classes of

individuals etc.. The relevant point for our dissios is the way in which Carnap understands

147 perhaps the most explicit statement of this unideding can be found in a remark where Carnap spefak
“the valuesR (the modelg of an AS f(R) (RC 081-01-12, my emphasis).

1484M sei ein zulassiges Modell des AS f(.M.ordnet also jedem Grundbegriff von f eine logisklumstante
zu; damit dies méglich ist, muss eimegliedrigen Relation auch stets eimgliedrige Relation entsprechen.
Daraus folgt, dass jedem Bereich von f gee@ae Klasse in M als “entsprechender Bereichigeordnet ist.”
(ibid, 105 my emphasis)
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the ‘individual domains’ of a model in this conteki a footnote in this section he makes the

following insightful remark:

k; in My is called an “individual domain® in relation to Afthe corresponding domalknof the AS is
an “individual domain*“ or, in cade corresponds to several domaing’, ... of the AS: if all these are
individual domains of the AS. (ibid?y

Thus, the individual domagn(note the plural) of a model are understood as(plssibly)
different sets of individuals that can occur in adal. It is but a small step from this to
considerthe domain of individuals of a given model as the unad these sets of individuals.
In fact, Carnap at several places in his manuscexplicitly speaks of the ‘union’
(‘Vereinigung) of ‘corresponding domains’ of an axiom systemdan on the level of
extensional relations of the domains as “unions egjui-level relation domains”

(“Vereinigungen gleichliegender RelationsbereitifeC 081-01-18).

| consider these remarks in the projected secondop&ntersuchungemn combination with
those made in Carnap and Bachmann (1936), Bachifi®34) to be conclusive evidence
that Carnap, from 1928 onward, understood formadefsof axiomatic theories as sequences
of relations and a universe of a model as the unfahe fields of these relations. This said,
three points of commentary are in order here. Riveat follows from this heterodox account
of the domain-as-fields account is that — evenné @assumes a fixed interpretation of the
background language - models of an AS can haverdiit, variable domains. Assuming this
conception of formal models of an axiom systemhasimterpretations of its primitive terms,
one can specify models with different domains ire ¢enguage without violating the truth
conditions codified in Carnap’s notion of analytyciSince the relations’ fields stipulated as
domains can be chosen freely as subclasses of @ coonprehensive class of syntactical
signs that form the individual constants of theguage in useCarnap’s approach is de facto
structurally comparable to the modern variable darnsanception of models. Thus, VDC for
the models of an axiomatic theory is provided inr@a’s account. What this amounts to is
the possibility of assigningxtensionallydifferentrelationsM;, My, etc. to the model variable

M. Thus, if one understands an n-ary relation Redimed over D of LIl and the extension of

14941, in M, heisst ein “Individuumbereich” inbezug auf das A®nn der entsprechende Berekatles AS ein
Jndividuumbereich” [inbezug auf das AS] ist, odalls demk; mehrere Bereichie k', ... des AS entsprechen:
wenn alle diese Individuumsbereiche des AS sindid ()
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R as a sef of n-tuples the relation is true on, whekell D", then the domain of a model
expressed by consists simply of the set of individuals contadine A, i.e. the field ofR.
Within the limits of O, extensionally different relations can be formedres models of an
AS.]'SO

Second, it should be noted here that variants ef‘domain-as-fields’ view have recently
been discussed extensively in an ongoing schot#lyate on the proper understanding of
Tarski’s notion of models in the 1938%.In the light of the discussions there, severakisiy
resemblances between Tarski’'s and Carnap’ accdan@etsme visible. In an instructive paper,
Mancosu presents an interpretation of Tarski's wstdading of “domains of discourse” of an
axiomatic theory that is essentially identical tar@p’s approach (Mancosu (2008)).
Mancosu shows that at least for some formalizatmfngxiomatic theories given by Tarski,
there is no prefixed “identity between the intendednain of the theory and the range of the
quantifiers” which is antecedently fixed for theedsbackground type-theoretic logic (ibid,
226). In order to allow the variation of the domairdiscourse of a theory, the fixed range of
quantification is in some cases effectively resddc by a non-logical domain-predicate
additionally introduced to the languajd This convention used in Tarski's formal axiomatics
certainly comes close to the suggested ‘domairfeells’ view for Carnap’s theory.
Nonetheless, one important difference to TarsKigraach concerning the method of logical
formalization of axiomatic theories can be mentobieere. At least in some examples of
Tarski's formalizations of a ‘deductive theory’, tsein fact operating with a logical language
with a non-empty signature, i.e. a language inclgdion-logical, schematically understood
constants to express the primitive terms of anraaitc theory. In Carnap’s account, as we
have seen, axioms systems are always expressqulne gype-theoretic language without the
use of non-logical constants. Here, the domain thieary is fixed by the interpretation of the
model variable, i.e. by the assignment of a spe@ktensionally understood relation (or a

sequence of relations) to the model variable (er\tariables expressing the disinterpreted

%0 Eor Carnap’s notion of a relation’s extension €aenap (2000, 65-67) as well as Carnap (1929, 66).

151 See Bays (2001), Gomez-Torrente (1996) and (2088hcosu (2006), Jané (2006) and the literatuegicit
there for further references.

1321n fact, Mancosu explicitly mentions — without ggiinto specifics - “Carnap’s conception of modets”
Untersuchungemnd describes it as “very similar to Tarski's”. flether states that: “In general (...) one should
devote a whole paper to the relationship betweendpaand Tarski on the notion of model and logical
consequence.” (Mancosu 2006, 215). At least reggr@arnap’s notion of models, this suggestionkstiaup in
the present chapter.

133 Compare also Bays (2001) for a similar interpietaof Tarski. For lack of space | cannot go irtte subtle
differences between Mancosu’s and Bays’ understgnali Tarski’'s domain conception, but see Gomez-
Torrente (2009) for a detailed comparison.
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primitive terms). Thus there is no quantifier relaation involved here via a non-logical
domain-fixing predicate. However, as is also shownthere are cases in Tarski’s writings
where he as well is operating withpare simple theory of types as the background language
for reconstructing axiomatic theori&¥. In these cases Tarski's method of domain
specification is practically identical to the onagygested by Carnap. Compare Mancosu on
Tarski's method:

(...) the ‘universe of discourse’ of the mathematitedory in question (...) will be giveby a class
taken as thealue of the variable corresponding to one of thejtives of the theory...) . (ibid, 224,

my emphasis)

One could hold that there is one subtle differeacmpared to Carnap’s account. In the
latter’s case, there is no specific single relatiosequence constituting a model, i.e.Mh=

(R, S T, ...), explicitly reserved for specifying the domaintbe theory. Thus, there is no
functionally distinct variable used for relativigithe quantifiers in LIl. However, in Mancosu
(2006), at least in one example in Tarski’s wriingom the 1930s is discussed where a
convention identical to Carnap’s can be identifieddescribing an axiom system defined in

Tarski (1935a) with only one primitive binary retat R, Mancosu holds:

A model for such a theory is given by the finitgjsence containing only the relati®the ‘universe
of discourse’ is implicitly defined by the field &). (ibid, 224)

Given this, we can witness here a striking simijabietween the two approaches to a logical
formalization of axiomatic theories in 1920s an®0d$® Both authors seem to assume variants
of the ‘domain-as-fields’ approach. This is parely insightful given the fact that there
seems to be no direct line of influence in eitHeeation between Tarski and Carnap! take

this conceptual similarity in dealing with formalontels as an expression of a by then
standard practice for the formalization of the setica of axiomatic theories. Moreover, it
clearly shows historical point that Carnap, evefotgeTarski’'s work in the 1930s (and, most

importantly, Tarski’s classical paper on models kgical consequence (Tarski (1936))), was

1% Goméz-Torrente describes in detail “Tarski’s plisra®, i.e. “his disposition to work within a vatieof
different frameworks” in his formalization of axiatic theories (see ibid, 250-251).

135 At least in the CarnaNachlassno documents can be found that would suggesifarence on Carnap from
Tarski’s side while working obintersuchungenThis is also not surprising given the fact thna first points of
personal contact between Carnap and Tarski toaeptal930. Compare Awodey and Carus (2001) on this
point.
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introducing a convention to treat formal modelshwitariable domains in the axiomatic
context.

Finally, note that this conception of ‘domains-agefs’ is in Carnap’s case perfectly
consistent with Hintikka’'s sweeping assumption ofoae domain thesistoncerningthe
logical languages used by him. It can be consistemgued — along the lines of Hintikka -
that for Carnap everyférmal language in usetomes with a fixed interpretation and still
hold that he conceived of the variability for hagrhal models. The reason for this is, as we
have seen, that Carnap, in his theory of axiomasiesms to draw a distinction between the
range of the quantifiers of the ‘contentual’ backgrd logic in which a theory is formalized
and the domain of discourse of a theory captureadspecific model. Hintikka’s attribution of
the “one domain thesis” to Carnap’s semantics ferlédinguage, his claim (2), thus has no
stronger implications for his method of model comstion. So, whereas it makes perfect
sense to hold that Carnap’s semantics involvedisnakiomatic project is in crucial ways
heterodox compared to the modern understandingoalefa it would be wrong to argue that
he assumes a FDC for his models. Where Hintikkduatian of Carnap’s semantics misses
track is in his conclusion that a “one domain agstion” concerning a language necessarily
involves a FDC for the models in Carnap’s theoryaeiomatics. Given Carnap’s heterodox
treatment of models, claim (2i) that a FDC for theguage in use implies a FDC for models

shows to be aon sequitur

2.4.3 VDC via type ascent

So far, our discussion has left unquestioned tlseimaption that Carnap, in his theory of
axiomatics, is using fully interpreted backgrounanduages in which the range of
quantification at each type level is invariantlyed. This is essentially Hintikka’s claim (2).
According to him, for Carnap “a specification oetdomain of individuals is part and parcel
of the interpretation of any one language. If tlmndin of individuals is changed, we are
dealing with a different language.” (Hintikka 19®8P8) This “one-domain-assumption” is in
fact an interpretational claim concerning Carnagse of formal languages commonly shared
in recent scholarship? It is held that due to Carnap’s logicist doctrinkerited from Frege

1% Compare Hintikka (1999), Awodey (2008), Awodey &mfus (2001), and Reck (2004).
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and Russell, quantifiers were conceived by hinoggl constants with a fixed interpretation
throughout his intellectual care®f: **°

Support for this view is usually provided via texituevidence from his later works,
particularly from Carnap’s works in h&eries of Semantiés the 1940s (See Awodey 2008).
Moreover, also the passage cited in this chapt8ettion 4 onthe one domain of logican

be considered as support for such a universal poiecefor logical languages with fixed
range of quantification it/ntersuchungeh®

Nevertheless, | want to argue here that this inédige claim of fixed assignments to the
guantifiers of each type level does not do propstige to Carnap’actual usehe simple type
theoretic language in the axiomatic context, ire.his attempt to symbolize axiomatic
theories, its metatheory and its interpretationy. pdint is that at least for Carnap’s early
work on axiomatics this understanding of his taatnantics for STT is not adequate. The
reason for this is the following: In his attemptebgpress the models of an axiomatic theory in
this formal language Carnap is assuming and filytitmplementing a kind of type flexibility
concerning the semantics of his language, i.e. réaioeflexibility concerning the type
assignments to the variable expressions of a gyatactic level or category that is in direct
conflict with the “one domain assumption”.

Carnap’s convention of a type flexible treatmentS¥T is based on a certain tolerance
concerning the type status of logical objects amgigto the variables of the language. In
particular, he allows a certain relativity concegnithe level of individuals of a given
language: for the O-type-level variables, the dctaage of quantification is not fixed to a
specific class of elements, e.g. logical elemehtypme O, but allows different interpretations
also in (classes of) higher-typed constructs. It Raof UntersuchungenCarnap puts the

point this way:

57 This is considered as a premise in the logicistition since the seminal work of van Hejienoo8&T).
Compare Goldfarb’s often cited description of {hiént: “The ranges of the quantifiers — as we waadg — are
fixed in advance once and for all. The universdis€ourse is always the universe, appropriateigten.”
(Goldfarb 1979, 352)

138 A similar point was made for some of Tarski’s wariCompare again Mancosu: “It is the type-theoretic
framework that in the first place decides whatdtass of individuals (V) is. (...) The type-theocetiamework
comes interpreted. In particular, the quantifides/the role of logical constants and thus, (...¢réhis no
reinterpretation of the quantifiers.” (Mancosu 20P82)

139 Compare also Awodey and Carus on this point im&a(2000): “What made Carnap’s definitions seem
natural to him is his “universal” conception of iog...). There is only one logic, in this conceptidiot only
were all possible axiom systems fragments of thisarsal system; all logical analysis of and staets about
this system has also to be stated within this samneersal system.” (Awodey and Carus 2001, 159)
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Which elements are considered as “individuals’@spect to a given variable is not determined by the
variable’s type; at one point elements of this koah function as individuals, at another point the
elements of another kind. Accordingly, elements gfiven kind can count as individuals at one time

can count as relations at another time. (Carnap,20m7

What is considered as the class of individual fgiven language like SST is thus relative to a
given context of us€! The notion of ‘individuals’ is thus not an “abst#t but a “relative
concept” whose extension in STT, i.e. the rangeit®ffirst-order variables, has to be
stipulated for each case of application of the lmug®* There is thus no unifying universal
class of individuals in terms of a fixed class ybe-theoretic objects taken as the level of
individuals of the language. So, for instance, itttdvidual variables of STT can range over
the type O objects in one theory and over relationgunctions on these, i.e. over type 1
objects in another. If applied to mathematical themo this means that in one case the
language might range over a class of natural drm@@bers as the individuals of the theory.
In another case the language ranges over elemeatdigher type that can be constructed
from the class of real numbers (see Carnap andrBaich (1936) and the discussion below).
Several consequences of this convention concethmgise for STT as an "applied logistic”
are worth noting here. First, it should be cleat tiwhen Carnap is speaking of the context-
relativity of individuals, he means different forlizations of axiomatic theories in STT. The
use of flexible types is thus explicitly devisea the axiomatic context, i.e. for symbolizing
axiomatic theories their models as well as certa@tatheory for thert®® Second, note that
for a formal type-theoretic language, this effeglyvcalls for a conventional stipulation of the
interpretation of the type-levels of the language, a stipulation which elements of a typed
universe are considered as the individuals of éinguage at a given time. Note that his type
flexibility has the effect that the range of a giveariable is de facto reinterpretable. The
ranges of the variables of each level are not fixedhe sense of ranging over a certain

specified invariant class of elements in the typestetic hierarchy. Instead, assignments to

80 \welche Gegenstande als “Individuen” inbezug dnédestimmte Variable anzusehen sind, ist durch de
Typus der Variabeln nicht festgelegt; das eine kalnen Gegensténde dieser, das andere Mal Gegéastan
jener Art als Individuen fungieren. Und demgemafrien Gegenstande einer bestimmten Art das einalglal
Individuen gelten, das andere Mal als Relationé@adrnap 2000, 107)

161 Compare also Carnap (1929, 19).

182 Note that a related account oélative types of variables“ dependent on the given cortézipplication can
already be found in the convention of typical anitigin Principia MathematicaSee e.g. Whitehead and
Russell (1962).

183 The main context in which this relativized versifriindividuals in respect to step n“ is usedrigfie
explication of “complete isomorphism” between mad&ee Carnap (2000).
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the variables are supposed to change when STTplsedpto another theory. Given this,
Carnap is in fact assuming a kind of VDC concerriiggbackground language that is based
on the idea of keeping flexible the semantic tiesMeen the formal language and the type-
theoretic universe. His convention allows that tleéations between this type-theoretic
hierarchy and the levels of the language can lsedeas flexible and most importantly, as
changeable. Variability is thus secured here imgeof variable type assignments to the
syntactic expressions of the languaffe.

Finally, the comparison with Tarski’s use of fornl@hguage to formalize axiomatic theories
in his work in the 1930s can be taken up here agaiMancosu (2006) - with hindsight to
Tarski's case - an interesting distinction betwéeo alternative ways to understand the
semantics of a type-theoretic language is drawioth version, STT is fully interpreted and
the interpretation is fixed. In the first, “stron§DC, the individual quantifiers of STT range
over a fixed class of logical objects, Tarski'sssl@f individuals \*°

In the second, suggested account of a “weak” F@@guages like STT are introduced as

“specific interpreted languages” for a given axitim¢heory.

Every theory comes equipped with its backgroundmhef types and with its own interpretation of
the theory of types. (...) Thus, there is a certhrilbility in choosing what the class of individsads
that will be assumed in the background. (Manco€162233)

Thus, if STT is used for the formalization of aittanetical theory, the individual variables
are to range over the class of natural numbersase STT is used for symbolizing an axiom
system of geometry, the first order variables raoggr points (or lines etc.).

Now, Mancosu offers two ways of explanation hovs timore tolerant version of FDC can be
made consistent with the “universalist” assumptidran all-encompassing type-theoretical
universe, based on a fixed class of individual cisjeOne is to suggest a class-theoretic

184 Note that this flexible type theory has no strarigglications for the traditional logicist undeastling of
type- theoretic hierarchy described above. In paldr, the convention is fully consistent with thew that the
“logicist” Carnap assume@nno1928, a universal universe of type-theoreticakoty. Moreover, it also does
not conflict with the Russelian view that a logitahguage is universal in the sense of ranging thierall-
encompassing universe of objects. What is does domenflict with is the claim that for Carnap, hirs logical
approach to formal axiomatics, the universal baokgd language STT comes fixed with a single, irardri
interpretation in which each range of quantificatfor a given type-level is assigned a fixed clafstype
theoretical objects. Where the flexibility of typescomes virulent is in the assignment of theseeugés to the
different type-levels of STT.
185 Compare Mancosu (2006): , The theory of types coaftesady with the meaning of the quantifiers fixei
that determines the range of the individual vagabih all possible theories that can be formulatest the
theory of types. The range of individual variaklgsis the class V) is taken to be the “real” ursecof
individuals.” (ibid, 232)
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understanding of the type-theoretic universe. Tomaln (of individuals) is considered here
as a proper class “from which we can manage toecant set-theoretical interpretations of
higher and higher cardinality.” (ibid, 235) Accandi to the second reading, the individual
class (henceforth IC) assigned to the individualialdes of the language can be freely
stipulated when the language is introduced forvemgitask (see ibid, 236). Thus, IC can be
interpreted differently in different theoretical ntext by substituting different classes of
mathematical objects to it. (Thus, it can consfstauntable set of the natural numbers in on
context and of the incountable set of real numbeemnother). There exists no prior, in some
sense logically privileged individual class of STNevertheless, once the language is set up in
this way for a specific mathematical formalizatiats, interpretation remains fixed. There is
thus no way to change or reinterpret IC in a gifgemalization of a mathematical theory.
Now, this account of a weak FDC seems to come éfospirit to Carnap’s understanding of
languages like LIl in his 1936 paper. One can ot fend passages in Carnap’s work from the
early 1930s that seems to suggest such a weak mtaoorceof FDC for his background

language. In Carnap (1931), in providing a genexalication of STT, he states that:

To type 0 belong the names of the elements (“indiais”) of the domain of thought that are treated i
the respective context (for instarge ...). (Carnap 1931, 96f

In the paper “Die Mathematik als Zweig der Logikbiin 1930, in the context of discussing
the “existential character” of Russell and Whitatisaaxioms of infinity, reducibility and

choice, he makes the following remark:

The axiom of infinity is not valid solely becauskits form alone; it is valid, if at all, somewhbhy
coincidence. For some domains of individual it lsolibr others it does not. Whether one can speak at

all of an absolute domain of individuals, seemblematic. (Carnap 1930a, 3¢8)

These passages strongly suggest that Carnap wtbitsie semantics for STT, if applied in
the axiomatic context, in a way similar to the “Wéa&onception described by Mancosu.

Moreover, the last sentence of the second passagd be taken as evidence that Carnap

186 «7um Typus 0 gehoren die Namen der Gegenstanaedigjduen) des Denkbereiches, der in dem
betreffenden Zusammenhang behandelt wird (etviza.).” (Carnap 1931, 96)

187«pas Unendlichkeitsaxiom gilt aber nicht aufgrunohee Form allein; sondern es gilt, wenn Uberhaupt,
gewissermafien zufallig. Fir manche Individuenbbeegilt es, fir andere nicht. Ob man von einem laibso
Individuenbereich reden kann, erscheint problerolati{Carnap 1930a, 306)
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seems to sympathize - contra the universalist mctuith a ‘substitutional’ explanation of
weak FDC in Mancosu’s sense, where IC is considardse but a class structure that has to
be filled or substituted with a specific class aithematical entities.

Nevertheless, this similarity should not lead om@verlook where Carnap’s account differs
essentially from Mancosu’s Tarski. One can seefthmer’'s convention of a type flexible
interpretation of STT as a special kind of weak FDCis, however, not a substitutional
understanding in Mancosu’s sense that follows fritis convention. The main body of
evidence discussed above shows that Carnap, uhdikeki assumed a fixed class of type 0
objects at the basis of the hierarchy of types. fiiseorder variables of the language can be
interpreted, not via substitutions of different, nrre@lated classes of elements, but by
assignments of classes from different levels in tierarchy of objects. Thus, any two
interpretation of the individuals quantifiers of BTsay IG and IG, stand in a fully
explicable connection via their respective positiorthe objective type-theoretic hierarchy.
The elements of 1€ (say the real numbersan be related to the elements of (Bay the
natural numbers) by making explicit the logical swaction of the former in terms of the
letter. With this convention, Carnap’s weak FDC dam understood as a kind of a
substitutional account that is consistent withxadi universe. Moreover, this is also a better
explanation of the possibility of domain variatigiven a fixed hierarchy than Mancosu’s
explanations since it follows naturally — at lefmt Carnap’s theory — from the traditional
‘universalist’ assumptions concerning the type-teé&o hierarchy.

A second, more substantial difference to Mancosiasski is this: recall that Mancosu
explicitly holds in his explanation that once aa@fpe IC is assigned to the language for a
specific formalization, it remains fixed. Note thidis is not necessary when siding with
Carnap’s convention of flexible types. Here, in @edfic application of an interpreted
language to an axiomatic theory, it is possiblevaoy the interpretation of the individual
variables (and thus the range of individuals) off Sy assigning different classes from the
type-theoretic hierarchy. Moreover, and more imgatty, this type flexibility concerning the
variables of the language opens up a possibiligotsider a second kind of VDC for models
of an AS formalized in STT that is independent frahe ‘domain-as-fields’ approach
sketched above. Recall from Section 2.4 Carnapgrks on an “arbitrary, stipulated domain
of discourse” of the models (ibid, 122) and of “@eimng a specific domain of discourse in
them to be the domain of individuals® (ibid, 95).dddition to the convention outlined above,
Carnap conceives of a second version how modeldtom and the VDC indicated here can

be gained. It is directly related to the type due of the AS in question or, more precisely,
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to the type-theoretic architecture of models inn@ats account. | will dub this approach as
“‘domain variation via type ascent”. In a set of ewtfrom the projected Part 2 of
UntersuchungerCarnap gets explicit on how the idea of type tdiy can be used for
domain variation for models. Recall that in hisgemgtation of a model’s individual domain,
the level of individuals for a given theory depemasthe type-structure of the axiom system.
The individual domain in lyican only be specified “in respect to AS”. In trecdment titled
“Domains of a model” (RC 081-01-16) Carnap furtbdescusses the connection of the type-
structure of an AS and the type level of the “esponding domains” of a model. He points
out that two modelsv; and M, of an axiom system f can have (individual) domanfs
different types if the type of the variable indiogt the corresponding domain in f is

‘undetermined’ (nbestimmij:

There is notably as difference betwadrand f:M consists of constants, thus any two constitueits o
M therefore have a specific type-relation, they eitber of the same or of a different type and if
different, then in a certain relation to each athercontrast,k; andk, are variables, there are 3

possibilities: of the same type, of different typesdetermined. (RC 081-01-18)

The crucial point here is that for a given variaBReof f, two admissible models can be
constructed that are “of different typetypenverschiedély given thatR is undetermined.
Given Carnap’s notion of “corresponding domainstween two modeld$vl; and M,, the
undetermined type expression of the primitives rofa&iom system allows that there can be
corresponding domains; andK, of M; andM; “in respect to AS that have a different type
level” (see also RC 081-01-18). As Carnap makediapthis holds in particular for

individual domains:

The type of the individual domains [GS: in an ASkd not at all have to be the same (since the AS
can stipulate for 2 such domains either that they tgpe-identical or it lets the type relation
undetermined (...). (RC 081-01-18)

188 «Eg st eben ein Unterschied zwischHdrund f:M besteht aus Konstanten, irgendzwei GebildeMdmaben
daher ein ganz bestimmtes Typenverhaltnis, sieesitateder von gleichem oder von verschiedenem Tiyg,
wenn von verschiedenem, so in bestimmtem Verhakpisndk, hingegen sind Variablen, das sind 3
Mdglichkeiten: typengleich, typenverschieden, utibest.” (RC 081-01-16)

189 «Der Typ der Individuenbereiche [GS: in einem ABAucht durchaus nicht derselbe zu sein (den das AS
kann fiir 2 solche Bereiche entweder bestimmen, slaggpengleich sind, ode es lasst das Typenueikal
unbestimmt (...).“ (RC 081-01-18)
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It is not difficult to see the possible impact bist use of syntactically undetermined type
levels for the question of domain variability ofetimodels of f. It can be considered as a
certain complementation or strengthening of the aioras-fields convention. Under the latter
convention, the variables symbolizing the theoqysnitive terms of a given theoryR( S

T), if left unspecified, can be (re-)interpreted dyferent modelsM; and M, where the
respective model constituting relatioRg, S, T: andR,, S, T, are extensionally different.
Nevertheless, their respective fields consist eimants of the same type level. In other
words, the type structure of the relations is haddstant here, i.e. all relations have fields
consisting of elements of the same type level. Nadding the convention of flexible types,
to class of possible models for AS can be extertdedodels like M where the relationBs,

S;, T3 are not of the same type level as the correspgnailations inM; or M,. This allows
the reinterpretations of f with models whose domaaonsist of individual elements of
different types.

Interestingly, Carnap and Bachmann are not silenthés issue in their 1936 paper. In fact,
the idea of domain variation via type ascent idiekly mentioned here. In the final section 6
of the paper one can find an explicit argument whgh a strengthened form of domain
variability might be productively used for somerf@lization of axiomatic theories. Carnap
and Bachmann discuss “informal extensions” in mathtécal practice based on models that

are ‘stepwise’ distinct, i.e. not of the same tigeel:

In actual informal thought, one has no hesitatiopérmitting systems of higher level as extensions
and it is even quite customary to extend domainsdmstructing new domains from the elements of

the original domainhrough one or more steps of class construct{ioid, 83, my emphasis)

Note that ‘systems’ means models and ‘domains’ meaondel domains here. The above
passage stresses that there are kinds of domaatiearin informal mathematical practice
that involve an informal ascent to higher-level stoactions that, if recast in a type theoretic
setting, involve a type ascent of domains descrifleolve. Thus, “class construction” in a
type-theoretic framework simply means that for egi setT of n-typed objectsn+1-typed
objects can be constructed as certain relatiomsnations onT. As one “classic” example for
such informal kinds of model extensions Carnap Badhmann mention the field of real
numbers as the extension of the field of rationainbers gained “by regarding classes of
fundamental sequences of rational numbers as etefm{@nid, 83). Thus, in respect to a given
axiomatization of fields, one can view the abovampgle as a typical instance of model

variation via type ascenCarnap and Bachman go on to outline a version“ofpee-flexible
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presentation” (StufenmaRig beweglichdarstellung”) (in contrast to the traditional
presentation with rigid type distinctions) of axiosystems in STT aimed to logically
reconstruct these kinds of domain variations inhmiadatical practice. The cornerstone is here

again a certain flexibility concerning the typedlud variables of the formal language:

The variables and those logical constants thatemerpl belong to the type systems would (...) be
flexible as to typei.e., they would have no definite type but rumottgh a denumerably infinite

sequence of types, beginnings with the “base tgp#ie given sign. (ibid, 85, my emphasis)

Given this flexible conception of variables in STe effect for the interpretations of AS is
this: “To a given axiom system then there may bglorodels of different levels.” (ibid, 85)
We have seen that this convention of symbolizingpraatic theories in a non-type-rigid
version of STT, devised explicitly to capture kindé model variation in mathematical

practice essentially goes back to Carnap’s eadeas of flexible types from 1928.

To recapitulate: We have shown in Section 2.4.2 harnap’s heterodox conception of
models, in particular the ‘domain-as-fields’ contten shared with Tarski is perfectly
consistent with the assumption of a FDC concerttiegoackground language in use. Thus, in
terms of Hintikka’'s claims, inference from (2) @i)(is invalid in Carnap’s case since he can
perfectly well hold a VDC concerning the modelsadheory and still hold a FDC concerning
the formal language in which the theory is formadizHowever, given Carnap’s additional
convention of a flexible type theory and of modaltiation via type ascent outlined above,
Hintikka's sweeping claim (2) that the ranges otuifiers of a given type level are fixed
itself seems problematic at best. This is so atleden it is directed, as in Hintikka (1991),
at Carnap’s use of formal languages in the axiametintext:’® Given the “type-flexible
presentation” of axiom systems, Carnap’s conceptioh STT allows a kind of
reinterpretability of its ranges of quantificatitimt is in direct conflict with the “one domain
assumption”. Thus, to summarize, we can statelbt claims made by Hintikka, (2i) and
(2) ware shown to be untenable in the case of @&rexiomatics. The remaining question

now is: what follows from this for Hintikka’s firstlaim (1)?

170 et me emphasize this point: my claim here istactay that (2) (or something equivalent) is wremgf
courtas a characterization of Carnap’s general conmepti formal languages. It is to say that it is aatalid
characterisation of Carnap’s specific use of alagg like STT in the axiomatic context, i.e. foe thgical
reconstruction of mathematical axiomatic theories.
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2.5 Submodels and model extensions

Did Carnap, as Hintikka (1991) argues, completeigconceive the use of extremal axioms
and thus the informal understanding of model extensn formal axiomatics? Does his
formal explication misrepresent the basic intergitiehind the completeness and restriction
axioms introduced by Hilbert, Peano and Fraerkkl®iven the above refutations of
Hintikka’s claim (2) and his tacit sub-claim (209ne should be more than skeptical about his
claim (1). Nevertheless, in order to address tlgesstions thoroughly, it will be necessary to
see what exactly Carnap’s understanding of subrsaed model extensions tacitly assumed
in his theory of extremal axioms was. In particulais to see whether he held a conception of
model extensions that is comparable to modern atcand this despite the continuous
emphasis on model’'s structures and structure etenutlined in Section 2.2.1. In fact, it
seems that at the time of working on thetersuchungemanuscript in 1928, Carnap was not
quite certain of the exact relation between “sutetextensions” and “model extensions”. In a

document of Part 2 in thg¢achlasswe can find him asking himself:

Should we consider “partial relation” and “familigsvith respect to the partial relation) as well as
“maxima” and “minima” (with respect to the parti@lation) for the relations or the structures? (RC
081-01-05§"

The remarks on the extremal structures of an ABedlsas his toy example presented in 1936
suggest that Carnap chose the second option. NMeless, closer inspection of how the
extremal structures and the corresponding extreamams are presented in Carnap and
Bachmann (1936) will show that the above made rdistin between structure and model
extensions turns out to be less consequentiathler words, the distinction alluded to in the
passage above between structure extension and eddakions has no stronger implications
for Carnap’s overall theory if both terms are ursti@od in sufficiently broad sense. My point
in this section will be to show that —contra Hiktks interpretation — Carnap assumed a
version of model extensions in 1936 that is fullynpatible with the informal uses of model

extensions in mathematical practice he aims toucapT o see this, a closer look at the formal

"1 Compare Schiemer (2010) for a closer discussidbanhap’s mathematical influences for his accotint o
extremal axioms.

1724g0llen wir “Teilverhéltnis” und “Familien” (inbazy auf das Teilverhaltnis) und “Maxima” und “Minitha
(inbezug auf das Teilverhaltnis) fiir die Relatiomgler fur die Strukturen betrachten?“ (RC 081-0)-05
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details of Carnap and Bachmann’s auxiliary notiohsubmodel and extension of a model

introduced will prove to be instructive.

Following their explications of minimal and maximatructures, Carnap and Bachmann
(1936) go on to present their account of the cpording extremal axioms in 84 of their
paper: Informally, a maximal axiom imposes on a eldd that ‘there is no extension N of M
such that F(N) holds...).” Accordingly, a minimal axiom imposes that &fe is noN such
that F(N) holds an M is an extension of N)” (ibid, 77). The notion of extensions used here
is defined more formally in terms of the modelsaatheory: for any two modeld; andNy,
N; is an extension d¥l, if M is a “proper part” of\y, i.e.
M 00 N1.M1 # Ny
Given this, a further ramification of this kind ektension is mentioned. The conceptual
motivation for it is to make a distinction betweto types of extension based on whether or
not the extended models are admitted that can dmaoigphically embedded in the original
model. In Carnap’s own terms, whether or not italomatically stipulated that the
“structures of models are really distinct” (ibid7)7 In the first case, the relation of extension
is defined via the notion of “proper part” as Carr@onceives it in the sense above. This
leaves open the possibility that two models sharatwie terms a “dividable structure®
In the second case of extension, structures oftwltemodels are deliberately fixed to be
“undividable”, the admissible models are thus msmmorphic — a condition explicitly
“included in the definition of extension”. Theseawoncepts of extension, terminologically
fixed as “model-extension” and “structure-extensjoare given the following formal
presentations (see ibid, 77):
BN, M) =M ON.M#N
EsiM; M) =¢s M O N . Osm,(M, N)
Note that the first condition for extensions is werathan the second: the use “proper parts”
leaves open the possibility that there exits a @raxtensiorN; of a given modeM; such
that N; is isomorphic toM;. This explicitly ruled out in the more restrictizase of second

type that also rules out any isomorphic extensigid,;.!’*

173 A structure is called “dividable” if there exisisproper submodel M of a model N that satisfiessthecture
of M, put formally (M)(CN) (S(M). S(N). M O N. M # N). It follows in this case that models are “isopiuc
with a proper part of itself” (ibid, 74-75).

7 Given these two types of extensions, Carnap & Besm distinguish between two versions of extremalit
axioms: in the case of maximality axioms, betwem@aximal model axioms" and “maximal structure axiéms
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Surprisingly, this distinction between model-exiens and structure-extension is not
mentioned in Hintikka’'s commentary. Neither does de¢ more explicit about Carnap’s

specific understanding of the notions of “part™proper part” of a model, i.e. Carnap’s use
of the “inclusion” relation in his treatment of wha a modern terms amounts to a (proper)
submodel featured in both definitions. Obviouslgr@ap’s specific understanding & TJ N.
M # N’ in this context turns out of be crucial for hiacit assumptions concerning the
extensions (or restrictions) of a model and, in seguence, extremal axioms in an
axiomatization.
Let us see how Carnap’s notion of a “proper pagfates to the modern model-theoretic
notion of a submodel. Here, given two modéls (A, s) and W =(A’, t) of a languagée) is
considered to be a submodel or substructun/ ¢br inversely,W an extension of)), if the
following conditions hold:

HAOA

(i) for everyn-ary relation symboRy = Ry N A"

(iii) for everyn-ary function symbolfy = fy| A"

(iv) for every constant symbaly = cw.'"
Is Carnap’s notion of a “proper part’” of a modelusturally comparable to this? Is he
assuming a condition like (i)? Note that accordimdHintikka this cannot be the case since it
would involve the possibility of actually changittge individual domain. This - according to
his second claim - was simply inconceivable forr@ar However, we have seen that this
reading shows to be untenable as soon as one alddges the heterodox character of
Carnap’s conception of models. Where does thigimdeave us in our understanding of his
central use of submodels in his theory? Here agaahpser look at what Carnap actually says
about the very notion of “proper parts” proves ®ibstructive. Recall again that models in
Untersuchungerare understood as sequences of relations (of @figpetype level) of the
form M; = (R, S, Ty). In an insightful footnote in 83 of Carnap & BacaAnn (1936) the

meaning of M [ N, is further specified:

Maxn(F; M) =4 C(CN) (M O N. M 2 N. F(N)); Max(F; M) =4 C({CN) (M O N. Osm,(M, N). F(N)). The second
axiom rules out extensions of a modiethat do not share a “dividable structure” with the first and stronger
axiom rules out extensions Bf per se(see ibid, 77).

17> Compare e.g. Enderton (2001, 95) for a similainitédn.
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Let‘u, v, ...,w, F, G,..H and %, vy, ..., z, J, K, ..., be two series of variables, wherg,’..., 'z are
the individual variables andF’, ..., 'L’ the predicate variables, which are abbreviatetMbyand 'N’;
then M O N’ is an abbreviation foi=x.v=y. ...w=z FOJ. GOK. ... .HOL". (ibid, 75)*"°

Note that here, as in the official definition offarmal model” cited in Section 2.4 an explicit
notational specification of the model domains ie gense of condition (i) in the modern
definition is missing. In fact, one might be tentpte read the series of individual variables
‘u, v, ..., wand x, y, ..., zin the 1936 passage as indicators of the respedibmains of the
models. In that case, the crucial question wouldhbe to make sense of the series of
conjunctions of identity relations between the widiial variables of the two structuras= x
V=Y. ....w=2Z. Now, if understood as a relation between th@eetive individual domains
of M andN, a serious tension with our main interpretiveroléinat Carnap held a VDC for his
models would arise. This is due to the fact thahis case, the domain of a model would be
fixed to a specific set given the fixed sequencmdividual variables. Moreover, the series of
identity relations would clearly imply a nonstandi@onception of submodels for it imposes
on the fields of the two models to be identicalabrleast equinumerous. In this reading,
closely in line with Hintikka’s critical remarks,anap theory clearly would miss a modern
account of submodels since the domain restrictiecessary for condition (i) simply could
not be expressed. This interpretation of Carnapeeiy of submodels also gaipema facie
plausibility in the light of Carnap and Bachmanp@int set example mentioned in Section
2.2.2 where the individual variables stand for élements of a fixed finite set of individuals
that stays invariant through all structure extensio

Nonetheless, Carnap and Bachmann did not take efjeeaces of individual variables as
indicating the respective universes of discoursevof models. This is so for several reasons:
first, the use ofy, v, ...,w and x, y, ..., Z for presenting the models’ universes would limit
the formal treatment to models with a finite domdihis is due to the fact that the sequences
are restricted to a finite number of “basic signs, variables of a specified level. Carnap &
Bachmann explicitly mention this condition of theiteness in 1936:M” is an abbreviation

for afinite sequence of variablégibid, 70, my emphasis)

178 A similar but simplified version of the notion af‘submodel” (Teilmodell) (note the explicit use of the
term here!) can be found in his notes in Carndl@shlass Here, Carnap states that for two modeI®, S T
andP’: R’, S', T' the submodel relatioR 0 P’ expresseRO R, SO S, TOT (see RC-081-01-19/119,
notation slightly changed).

102



Moreover, given this syntactic restriction, theeatpt to understand the series of individual
variables as a convention to indicate a model’s alorbecomes especially implausible with
regard to Carnap’s examples of actual model extessn mathematics, including extensions
of models with infinite domains (see the followiSgction). It would in fact be inconsistent
with Carnap’s presentation of models with infin@wers since here the fields of the relations
are simply not presentable by a finite series ofades.

If ‘u, v, ...,wand %y, ..., Z are not used as syntactic indicatory of domamisat are their
respective roles in the presentation of a modetiscture? | think the most plausible reading
iIs to wunderstand them simply as placeholders foe tfprimitive individuals”
(“Grundindividuer) of an axiomatic theory. There is textual suppéot this view in
Untersuchungemnd Carnap and Bachmann (1936) in the discusgiomathematical axiom
systems, most notably that of Peano arithmetic revi@arnap mentions thmsic individuals

of the theory in the sense above:

The axiom system of elementary arithmetic in tharféeform with “0”, “successor” and “natural
number” as basic concepts can be represented asdacgie taking as arguments one individual

variable, one two-place, and one one-place preslicatiable of the first level.” (ibid, 169)

We have seen that in Carnap’s conception of aximsyatinlike in the modern schematic
account, Peano arithmetic is symbolized as a progoal functionf(x, Sx, y), N(xX)) in pure
STT wherex stands for the primitive constaregrg S, y) for successoandN(x) for theclass

of natural numbersA model of f of the form0, S;, N1) then assigns a binary relationSoa
class taN and an individual constant 0 In my mind, it is in this respect that, ‘v, ..., w - if
satisfied by a model - expresses a finite numbeindividuals that are assigned to the
individual variables of the AS in question.

Note that the example discussed in this passagenswhat atypical in Carnap’s formal
reconstruction of axiom systems and its modelgh& majority of cases, Carnap does not
explicitly refer to the level of individual expresas related to a model. Commonly, models
are presented as sequences of relations of this @@+, S, Ty, ...), i.e. without any mention
of individual constants. A reason for this conventcan be found in a section for Part 2 of
Untersuchungen titled “Reduction of the primitive concepts” Réduktion der
Grundbegriffé) (RC 081-01-12). Here, Carnap argues that thenipisie individual terms can

usually be ‘eliminated’ as ‘primitive terms’ fronhe AS if a “structural description” can be
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given for them in terms of the other primitive t@as of the AS"*"®What is important
here is that this idea of the structural eliminigpibf primitive individuals explains why
individual variables are in most cases simply nehtioned in a model’s structure. Moreover,
if the series of individual variables in the abopassageare understood as (potentially
eliminable) primitive individuals of the AS, they course have no restricting effect on the
domains of the models satisfying the AS. In thisecdhe series of identity relations between
the individual variables of the two structures=x .v =y. ....w = Z simply hold that for any
two modelsM; andN; of an AS there has to be a direct mapping betwberrespective
assignments to the (finite set of) primitive indivals of the AS. Thus, it essentially expresses
condition (iv) in the modern definition of submaslel

Given this, it remains to see how the inclusioratiehs F 0 J. G O K. ... .H O L’ are
understood in the context of models. Recall thattn@p’s use of the inclusion sign was
already exemplified in the point set example disedsabove: Heré; was a partial relation of

J, G a partial relation oK etc. This relation between the constituents of mamlels is further
specified in Carnap’s manuscript in tiNachlass In a document for the second part of
Untersuchungenthe connection between a “proper submodel” (‘“eshteilmodell”) TmP,

P’) and a “proper partial relation” (“echte Teilretat”) Tr(P, P’) is made explicit (RC 081-
01-07). Carnap states here that given two modetls model variable® = (R, S T) andP’=

(R, S, T): “Tm (P,P’) means: (TRR’) OR=R") &(S...) & (T...) & (Tr(RR’) O Tr(SS)

O Tr(T,T"))” (RC 081-01-07, notation slightly changed.) addition, he states that “Tm
(bzw. T bzw. Tr*>" means: Tm, given that a proper partial relatiofdé forR (or for

R, Sor for R, § T respectively), for the rest proper or impropemtiens.” (ibid, notation
slightly changed.) This makes evident that a sulehag@s conceived here as a set of (proper
or improper) partial relations. More specificallypsoper submodel is understood as the
sequence of disjunctions of partial relations (@& telations constituting the original model).
Now, Carnap does not get more precise on his utasheling of the notion of a partial relation
here (nor in Carnap and Bachmann (1936)). Nonethelne can get a clear grip on his use
of the notion by taking his related work into acebuFor example, in Carnap (2000), the

following definition of a partial relation TR, Q) is given (ibid, 67):

Y7 Carnap, in the first first ddntersuchungemlso mentions this possibility and refertincipia Mathematica
§122 for the presentation of such an eliminatiothencase of Peano arithmetic (see Carnap 2008988-

178 Carnap’s discussion of such descriptions of piimiterms would take us too far afield here. Os thpic,
compare also Carnap’s notes on the notion of “Homiet in (RC 081-01-20 and -21).
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TR(Q) =0t (U, Vv, ...2[P(u,v, ...2) - Q(u,V, ...2)]

In Abriss written around the same tim&,more detailed, ramified presentation is given tha
grosso modaorresponds to the modern version and explicéfgns to the “restriction of the

field” of relation:

The partial relation oR which results from the restriction of the domainPfo the clasq, is
expressed byt R (read as R pre-restricted ta*“); accordingly the restriction of the range! 3 (“R
post-restricted t@*); in case of both restrictionstt Ri 3, in case of the restriction of the field? |y

(“Rrestricted to/). (Carnap 1927, 37, notation slightly changét)

The crucial point to note here is that since modeks conceived as sequences of n-ary
relations by Carnap, all three kinds of restrictadso apply to his conception of submodels.
Most importantly, keeping in mind the ‘domain-ashfis’ convention only the third kind of
restriction of a relation’s field “to a clags necessarily involves a restriction to a subset of
individuals of the original universe of a model.e€zan thus plausibly understand a submodel
N1 of modelM; as a set of relations restricted to a subsetefitid of the relations d;.
Thus, in order to reconcile Carnap’s definitionsobmodels with the modern definition one
simply has to reformulate the conditions mentioabdve: recall again that the modéls
and M, - unlike U and W — share the same range of individuals of the giveckground
language. Nevertheless — assuming the domain®las-fonvention — an equivalent to
condition (i) (and thus (ii) and (iii)) is met bie restriction of the field (more precisely, the
restriction of the union of the fields) dfl; to that of M,. Thus, (i) is met in Carnap’s
conception by understanding the restrictions ingpire (i) (and (iii) to simultaneously result

in a restriction of the domain &, to the domain oM..

If submodels (or more specifically partial struesirepresenting different admissible models)
are understood in this way, Carnap’s resulting mheof extremal conditions becomes

consistent with the standard account. Neverthetbss should not lead one to overlook the

19 “Dje Teilrelation vonR, die durch Beschrankung des VorbereichesRauf die Klasse entsteht, wird
bezeichnet mitit R (gelesen R vorbeschrankt aud“); entsprechend bei Beschrankung des Nachbereigh§s
(“R nachbeschrankt afif); im Falle beider Beschrankungemt Ri 3, bei Beschrankung des FeldBs:ly (“R
beschrankt awf").” (Carnap 1927, 37, notation slightly changed)
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fact that there remains a central difference tontloelern account of extensions. Not all types
of extensions conceived by Carnap involve an dffecextension (or restriction) of the
individual domain in the sense of (i). The finiteiqt set example mentioned in §2.2 is a case
in point. As we have seen, the extensions desctieeel simply daot imply the addition of
new elements to the field of (interpretations) loé fprimitive variableR, but include only
extensions over an invariant field. The point t@s$ here is that all structure extensions in
this example present instances of “pre-“ and “pestriction”, i.e. versions oM [ N
expressing a restriction of the domain or the rawfgé. Notably, these kind of restrictions are
perfectly compatible with an invariant fixed fiedtiared by both relatiod andN. Thus, the
interpreted structureR,, R,, andRy are partial relations d®, Re, Ry, andRs that result from a
restriction of the respective domain or rangerimttof the respective field. For instance, in

Ra 0 Re, Ra results from restricting the range Rf, viz. {1, 3, 4} to the smaller class {1, 4},
provided that the fields d®, andR. stay invariant. Quite plausibly, Hintikka's misaaption

of Carnap and Bachmann’s theory of model extensisnBased specifically on this toy
example. It is important, however, to see thatitivariance of the models’ domains presents
a contingent rather than an essential featuresothi@ory. In particular, we have to see that the
example of point set models with different strueturdoes not — contrary to Hintikka’'s
assumption — have any strong implications for hertgeneral theory of model extensions.
Carnap and Bachmann emphasize the fact that thenpeadeals with “finite, therefore
undividable, structures.” (ibid, 78) In contradtetexamples of model extensions from real
mathematics discussed in the paper all have “tefistructures” where the extension of a
model necessarilyinvolves the extension of set of individuals, tiee field of a relatior®°
This is to say that, from a mathematical point igw Carnap and Bachmann's example of
point set models is clearly misleading, since alieesions of mathematical models with
infinite powers discussed in the remainder of thpgp clearly and necessarily presuppose the
extensibility of the respective domains of indivédisl To see this, a closer look at the

mathematical examples they give will be instructive

180 This move from the toy example to instances of ehedtension in mathematics corresponds to whatapar
terms inUntersuchungethe distinction between “finite” and “infinite” &m systems, i.e. axiom systems with
models of “infinite structures (structures of madedth an infinite number of immediate and medeltEments)”

(see Carnap 2000, 149-150)
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2.5.1 Examples of mathematical model extensions

My point in the above section was this: if one gsathat Carnap understood models in 1936
and before as sequences of relations and theirideraa the respective union of fields, then
his theory of extremal axioms shows to be perfectigsistent with the informal versions of
completeness and minimal axioms of Hilbert, Fraérded others. This point can be
strengthened by looking at examples of genuinelyheraatical model extensions discussed
by Carnap and Bachmann. In fact, the examples frathematical axiomatics in Carnap &
Bachmann 1936 show their clear conviction to captaathematically relevant instances of
model extensions (and thus also those instancégding the extension of individual domain
of a given model).

The most extensively discussed example in 1936 nisadomatization of “elementary
arithmetic” presented at the end of §4The axiom system defines a primitive binary relati

R based on Russell's concept of progresstBhdt consists three first-order axioms
expressing the “endlessness” (b1), injectivity (l#)d the existence of a unique base element
(b3) as well as one second-order “minimal structaxgom” (b4) (ibid, 79)** What is
insightful for our concern here about example &rtdiscussion of model classes for the two
“base systems” Rumpf-Axiomensystefebl-b2(R) and bl-b3R) and of the effects of
adding a minimal axiom to those. In particulansishown that b1-b3 is satisfied by models
with different model structures. The AS describesdi@idable structureProg (for
‘progressiof) as well as an infinite number of non-dividabteustures, i.e. “zero to infinitely
many cycles with from one to infinitely many elertgn(ibid, 79)*** Thus, models of b1-
b3(R) can be instances of a progression or of more tougiructures (i.e. progressions plus
cycles of up to infinite elements, progressionspobgressions etc’}> Nevertheless, all
relations b1-b3) (without the minimal condition b4) have fieldsedfual power as the set of

181 The same axiom system is also discussed in (REQ8ID) in Carnap’$lachlass

182 progressions are definedfmincipia Mathematicaas a specific type of series, i.e. as a clas# ofductive
cardinals whose “generating relation” satisfiesftitowing conditions: (i) being 1-1; (ii) havingfast term not
included in raR; (iii) being denumerably infinite; (iv) being cled under its “generating relatioR’
(Whitehead and Russell (1962, 245). The intentiemitd this last closure condition is to excludestha-1
relations that result in independent chains of elets) i.e. infinite series with a serial numbereottinanw (see
ibid, 245-248).

**1n formal terms: (b1)4)(y) [ R(xy) O (C(R(y,2)]; (b2) Q)@ [(R(xY)- R(x2) O x =y). (R(xY). Rzy) O

x =2)]; (b3) (donkR —rarR) € 1; (b4) Ming(b1-b3;R) (see ibid, 79, notation slightly changed).

184 The concept of “cycle” @ykel) is defined here as follows: “By a cycle withelements we understand a
one-one relation whose field consists of a sinfgeariR-family with n elements. (...) In the limiting case= o
there arise a one-one relation, with no first af Element, which consists of single ofpefamily.” (Carnap
1929, 178)

185 Compare also Russell (1993).
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natural numbers. This changes if one considersptssible model class of bl-BJ)( As
Carnap and Bachmann point out, the base systenistingsof b1-b2R) allows different
structures and thus models consisting of finiteuar relations, i.e. single cycles of one to
finitely many elementsas well asof models of mixed infinite structures (ibid, 8a)hus,
whereas all models satisfying b1-BB(have denumerable infinite domains, b1/B)2also
allows instances d® whose fields are subsets of the set of naturabeunsn®

This point is further elucidated in Bachmann (193d)discussing an similar theory of basic
arithmetic, Bachmann points out that there areethffit “partial relations” of a progressién
that come in one of three possible forms: (a) adisegment (Abschnitt) of a progression,
(b) several (up to infinitely many) finite segmeinfsR or (c) an infinite segment . (see
Bachmann 1934, 49-50). Relations of the first thjpee finite fields and are therefore non-
isomorphic toR. This illustrates that b1-bR] allows interpretations oR with different
cardinalities. What is important to see is thatehisrthat any extension of a modRglof type

(@) to a modelR, of type (c) necessarily involves the extensiontled field of R; to a
denumerable infinite domain.

Note also that if the base system b1R)3é closed by a minimal structure axiom (b4) of th
form OCN)(N O M. Ismy(M,N). F(N)) and its model class is therefore restricted to
interpretations of infinite dividable structure, deb extensions and restrictions have to be
understood in the standard sense (see Carnap amiBan 1981, 80). The remaining class
of admissible models consists of an infinite numladr interpretations ofR that are

progressions and as such equal in power to thealaumbers®’

One could make the following objection at this goifhe cases of structure and model
extensions discussed by Carnap and Bachmann ftareht base systems of elementary
arithmetic show that they conceived of model exters in the case of subsystems of
arithmetic. However, (for whatever reason) this cheet be so for stronger cases of
mathematical model extensions, in particular exterssto systems with a non-denumerable
universe. But again, there is textual evidence amn@p and Bachmann (1936) that model

extensions of these kinds are also understoockisehse outlined above, i.e. as extensions of

18 |n Carnap and Bachmann’s own words: “The axionisBB(R)” are satisfied not only by the models of “b1-
b3(R)” but also by single cycles and combinations oitély many or infinitely many cycles.” (ibid, 80)

187 Nevertheless, universe of the progressions catifteeent as long as they can be isomorphically edaded
into each other. For instance, the domaiivigf (D4, R;) might be the set of natural numbers starting from
number 100, the domain bf, =(D,, R,) the whole set of the natural numbers. In this cas®, is a submodel
of M, in the proper sense sinbe [ D..
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the field of the interpreted primitive terms of axiomatic theory. On#cus classicugor the
reflection about models of different higher cardiites is Hilbert's axiomatization in
Euclidian geometry itGrundlagen der Geometrigiilbert 1910). As is well known, 89 of the
book contains Hilbert’s classic “model-theoretiadnsistency proof for his axiom system.
Consistency is in fact proved for two axiom systeii®e first is the base system consisting of
all axioms of the first four axioms groups plus #ehimedean axiom. The proof is based

here on an interpretation of the primitive geonuadrierms “point,” “line,” “between,” etc. in
a model with a countable infinite “domain”’Béreicl) Q ranging over a certain field of
algebraic numbers (see ibid, §2§.Consistency of the full axiomatization, includitige
axiom of completenesis then proved in a second step via the intesizet of the primitives
in an extended model with the dom&hranging over all real numbers (see ibid, 26).
Carnap, inUntersuchungenclearly had in mind this use of models when rafgrto Hilbert
method repeatedly throughout the manuscript. I, facone place he explicitly discusses
Hilbert’s consistency proofs by the “presentatidraanodel” (“Aufweisung eines Mod€l)s

in particular his “arithmetic model” for Euclidiageometry:

Every model of the axiom system can be mapped ¢owbll-known model in which points are
considered as triples of real numbers and the renmaprimitive terms are interpreted accordingly.
(Carnap 2000, 141

Hence, the arithmetic model referred to here idbetifs second one, ranging over closed
ordered field of real numbers. Unfortunately, thisrao explicit discussion, neither in Carnap
(2000) nor in Carnap and Bachmann (1936) of thiemiht models (or model classes) for the
base systems of Hilbert's axiomatization as indage of elementary arithmetic. Nonetheless,
there is direct support that the kind of model egiens fromQ to Q’, i.e. from a model with

a denumerable infinite to a model with a non-dematnle domain were supposed to be
presentable in their formal framework. In Bachmdt@36), a side paper to Carnap and
Bachmann (1936), Hilbert's case is taken up agdiheorem 1 in the paper states that an

extremal axiom Ext(&An; M) is dependent on the base-A,(M) if and only if there exists

188 A comparable algebraic model is used in Hilbem®del construction” (Modellaufweig) for the
independence proof of the Archimedean axiom ini8&&, however, the domag(t) ranges over a
denumerable set of algebraic functions (ibid, 2p-8bmpare Awodey and Reck (2002, 13) for furthetais.
189«Jedes Modell dieses Axiomensystems lasst sickiriieutig abbilden auf das bekannte Modell, bei dam
Tripel reeller Zahlen als Punkte genommen, undibiggen Grundbegriffe entsprechend interpretienten.”
(Carnap 2000, 141)
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an extension of the mod#l that satisfies the base system. In formal terims,extremal
axiom is independent if the formula (3*)

O(CM)(EN) Ar-An(M). Ai-An(N). Erw(N; M)
is true (Bachmann 1936, 45). Bachmann’s exampléhisris illustrative for our concern: he
states that Hilbert’'s axiom of completeness is jpaselent of its base axioms in this respect
“since the algebraic modelG(undlagen89) and the Cartesian analytic geometry are two
modelsM; andM; for which the axioms I-VI and EnM; M;) hold; therefore the negation of
(3*) holds.” (ibid, 45}°° Given the fact that Bachmann (1936) is identicalCarnap and
Bachmann’s joint paper from the same year with eespo terminology and background
definitions, | take this as conclusive evidencet tBarnap too, in his theory of extremal
axioms, conceived model extensions fully in linethwithe then standard informal
mathematical practice. Given this, little supp@mgins for Hintikka’'s claim (1) concerning
the descriptive inadequacy of Carnap’s theory iewviof the mathematical versions of

extremal axioms.

2.5.2 Extensions and language “transition”

A further argument and more systematic that Caowaeeived model extensions close to the
modern sense can be based on Carnap and Bachnpernéptive remarks on a possible
limitation of their approach in the final 86 of ti®936 paper. These concern the strong
dependency of a theory’s models on the intendestpreetation of the background language.
In particular, we saw that in Carnap’s conceptahpossible domains have to be subsets of
the range of individuals of the language in useghimexample discussed in Section 2.4.1, the
domains of the models forR] are subsets of the substitution class of num&gajs D, thus
presents an upper limit to possible extensionsgi@n model of fR) that is expressed in LII.
More generally, given Carnap’s account, the freedoraonstruct and extend models for an
axiomatic theory formalized in a given languagedstricted to its intended interpretation.
When considering cases of mathematical model extenss in Section 2.5.1, the question
naturally arises how his reconstruction is suppdsechpture extensions to models of higher

infinite cardinalities in the case of analysis eometry in the case the theories are expressed

190« ) denn das algebraische Modell (Grundl §9) dielCartesische analytische Geometrie sind zwei

ModelleM; undN; fir die die Axiome I-VI und Ervi{;; M,) guiltig ist; also gilt das Negat von (3*).” (ibidp)
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in a background language like LIl with a denumesabhnge of individuals. This, in
particular, if this language’s interpretation igpased to remain fixed.

Interestingly, 86 of Carnap and Bachmann (1936artteshows that the authors were fully
aware of this possible weakness of their theorynm@mpared to “informal extensions” in
mathematics. This is again left unnoticed in Hikéil(1991). In fact, they acknowledge the
language dependency as a “serious objection” agthes account arguing that one can in
principle devise cases where a (relatively) weakrpreted language effectively imposes
constraints on model building (ibid, 8%). The mathematical example mentioned to illustrate

this is insightful:

For example, if we regard the Hilbertian axiom ewstfor Euclidian geometry as a propositional
function of first level in a language with a denuaigy infinite domain of individuals, there can be

models which have only higher level extensionsd(iB3)

Thus, working in a language like LI, Hilbert's meld with domainQ (and Q(t)) can be
constructed. They cannot, however, be extendedlbzits model with domairQQ’ ranging
over full Cartesian space. It is important to strieere that these remarks alone underline that
when Carnap speaks of model extensions he actuains extensions of individuals and not
extensions of relations on a fixed set of individuahis point can be further strengthened by
looking at the different proposals outlined in &6 llock the potential limitation of their
formal reconstruction. The first, most simple swintis simply to stipulate that the language
in use is to be sufficiently rich in order not tmit model building for a given theory (ibid,
83).192

The second option outlined in 86 to vindicate theoty of extremal axioms was already
discussed in Section 2.4.3 of the present chapteonsists in introducing a flexible theory of

191 Bear in mind that what is meant in this contexttig relative weakness (or richness) of a langimie type-
levels or its syntactical resources, but the rasfgadividuals, the cardinality of its intendedénpretation.
Compare Carnap and Bachmann on this point: “Iy iset sure quite possible to do without the gredtbness
afforded by admitting extensions of higher levékhé background language is rich enough, espgaiath
respect to its domain of individual&hen, however, the language exhibits a certaoress it is quite possible
that extensions of higher level exist but nonehefsame level. (ibid, 83, my emphasis)

192 An explicit formulation of this option can be faiin Bachmann (1936): “We presuppose that the dowii
individuals of[a background languap& is rich enough in order to secure that the impnkisi of extensions of
models stipulated in the extremal axioms for thesidered axiom systems is not a consequence @ity
of the language. (Bachmann 1936, 39) Note thatcthiglition seems to be implicitly assumed in Caimap
theory of extremal axioms idntersuchungenThere, in 1928, the theory was based on a urdalvbeskground
language. With the turn to the framework.ofgical Syntaoutlined in Section 2.4.1, such a condition on the
language’s interpretation had to be explicitly gigted via an additional premise.
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types in use in order to be able to model “informeensions” in mathematics that involve
(informal) type ascents (see Carnap and Bachm&86(B4-85).

The third attempt to block possible limitationsafanguage deserves closer attention here.
Carnap and Bachmann suggest that the above medhtiestiction to model building can be
circumvented by allowing model extensions thatafiely transcend the limits of the given
language in which the theory is formalized. Thirg idea is to allow extensions of the kind
mentioned above via the “transition” to a semaiifiagcher background language (ibid, 84).
In the case of Hilbert’'s axiomatization of geomethe extension from a model ranging over
Q to one ranging ovef’ can thus be expressed by a change to a langu#fjeawnon-
denumerable range of individuals. Clearly, the ialuchallenge of this approach is to express
this language transition for a given theory in ttmaceptual framework dfogical Syntax
More specifically, it is to modify Carnap and Badmm’s heterodox definition of truth in a
model via analyticity in a given language (presénteSection 4.1) in order to allow for these
changes of the background language. Concerningthiig, the authors present an insightful,

slightly altered condition cdinalyticity.

(...) in the case where the object language is wealkamend the definition of “analytic in“Sn such
a way that a sentence of the fornMjF(M)“ is called analytic only when it remains analytinder
transition to a languag® with a larger domain of individuals. In this wayetearlier discussion will
remain valid. (ibid, 84)

Let us name the revised scheme expressedanaitgticity*. It can be rephrased in this way:

(analytic*) A sentenced is analytic* iff ¢, if analytic in S, is also analytic irs,, whereS; is

semantically richer tha§,.

Given this amended version, one can reformulaten@es original version of truth in a
model by saying tha¥l, is a model of if F(M,) is analytic® in the sense specified here.
Several points are worth to be mentioned heret,Fitgde a number of subtle but significant
differences to the original version. For starteéedk of the substitution class of individual
constants is replaced by talk of the “domain ofivittials” of a language. Thus, one can
witness a tacit shift here in Carnap’s thought frasubstitutional treatment of individuals (in
terms of numerals) to an extensional understanadiingdividuals. Moreover, note that unlike
before the new analyticity*-scheme explicitly inves quantification over models. The model

variableM is not treated as free, but as a bound variabie, telding for all models of;.
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Given these variations, it is important to see whadctually implied in this definition and
whether or not it presents a valid option to all@arnap’s version of model extensions.
Carnap and Bachmann’s intuitive motivation undewdythe corrected definition of truth in a
model was this: For a given theoRy, there exists an extensid, of a modelM; that
satisfiesF; but (unlike M;) cannot be captured b$;, since the domain oM, is more
comprehensive than the range of individualsSpfThus,S; is too restricted to express..
NeverthelessM, is clearly considered an admissible modeFpfn so far as it is an instance
of the model variabl&! in (M)F1(M). The central point to see here is that the addssodels

of the theory expressed iM{Fi(M) is understood somewhat independently of a given
language. It is the range dfl] that transcends the actual bounds of the origamguages;.

The notion of a “transition” to a richer languageintroduced then in order to provide a
formal valid account of how this quantification ol models can include all mathematically
relevant cases of models (and model extension®spective of the specific background
language. How is the modified account ahalyticity* conceptually connected to the
analyticity conditions for a fixed language outlinie Section 4.1 abov&? Note that, in our
example, the condition not only requires thhtis a model of; if F1(My) is analytic inS;. It
expresses a stronger condition, namely Matan be expressed as a model extensidvi;of
despite the transition t&. Thus, the central difficulty in the amended diffom is to redefine
the analyticity condition for the expressiorM)F(M)’ given the transition fronS, to a
semantically richer languadg®, where fld\M,) O Ds,. How can this additional condition for
analyticity properly be understood? In order to sd®t the requirement stipulated here

amounts to, we need to spell out in closer detaihtveffect lies behind this new condition

193 Given the lack of further specification, one cobklinclined to view the condition for analyticitif Carnap
and Bachmann (1936) as conceptually related todpésriechnical notions of a “sub-language” and
“translation” inLogical SyntaXCarnap 2002, 850 and 861 respectively). Brigflgub-languag8, of S, defined
as language for which following conditions hold:dvery sentence &; is a sentence @&, and (ii) every
sentence analytic i, is also analytic irs;. S is also a “conservative sub-language'Spff , in addition to (i)
and (i), also the following condition holds: (iif)a sentencé is analytic inS; then, if contained i%,, is also
analytic inS; (See Carnap 2002, 179). Put informally, (ii) sesuhe conditional from analyticity B to
analyticity inS,. The third condition secures the semantic conseeregess of the language extension to the
effect thatS, is conservative oves, with respect to the class of analytical sentengesordingly, Carnap
defines a “transformance” in 861 lbfgical Syntaxas a syntactic correlatidrfof “expression classes”) between
two “isomorphic” languag&, andS,. A syntactic correlatiofis then a “translation” 0§, into S; if S; contains

S as a sub-language (See Carnap 2002, 223-224), inntever, that a comparison of “translation” and
“transition” would overlook the different nature lalhguage extension involved in the two casesofrirast to
Carnap’s sub-languageslingical Syntaxlanguage transitions as outlined above concemapily the
extension of the respective base of individualseEsions understood here not as new type levelenfigates,
but, as Carnap and Bachmann put it quite explicithy/“a larger domain of individuals”. In the coxttef

Logical Syntaya translation holds for languages with an idehtigarpretation of the individual variables. Ireth
1936 case of a transition froB andS, to crucial difference between the two languages mourse thas; is
essentially richer in terms of its domain of indivals.
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expressed here that M)F;(M)” is called analytic only when it remains analytimder
transition to a language,'S Carnap’s refined analyticity condition suggesiss for the
context of his model theory: Consider first the lgiieity of (M)F1(M) in S. The closed
formula is analytic if for every instances of th@ael variables M, viz. for every modil;,

Mo, ..., M, expressible ir5;, F1(My) is analytic inS. With the transition t&,, the class of
expressible models can be enlargeiite, ..., Mn. In this case,Ml)F1(M) is analytic in $if

for any model expressible B, F1(Mp) is analytic inS. Now, it is clear that the range of the
relation variableM changes with the move frof to S. Thus, the set of possible relations
constructible from the respective range of indialdy i.e. the range of the metatheoretic
sentence “for all relations of the individuals’neore comprehensive @&, than forS. The
higher-order quantifier ranging over models is eydd here to a richer class of models. Note,
however, that this transition 18, does not alter the truth conditions for the thewmrythe
models expressed iB. Given our above specification of Carnap’s notadra model, it is
clear that this extended range of quantificatiors met restricting effect on the truth
conditions for the class of models expressibl&inTruth in model remains stable for each
element of this class since the (extended) rangadifiduals of the language is effectively
restricted to the field of the respective indiviloadel. It is in this sense that the additional
conditions in analyticity* simply holds that foryagiven modeM,, if F1(M,) is analytic in§

then it is also analytic 6.

Given this, how does this account of treating madeénsions via language transitions relate
to our initial interpretive question concerning tthemain variability in Carnap’s conception
of models? On first sight, the definition of anadity* could be read as evidence in support of
Hintikka’s claim of a FDC for the models of a thgdand model extensions thereof) after all.
An argument in this direction could go along thises: Assuming (as Carnap allegedly did)
a FDC concerning models, the only way to allow progxtensions of a model in the sense of
extensions of the individual domain (and not simgmyextensions of the existing relations on
a fixed set of individuals) is to actually change formal background language in which the
theory is defined. Thus, assuming FDC for modelshange of individual is only possible by
changing the underlying language.

However, this argument would severely conflict wiintikka's original interpretation of
Carnap’s account. For Hintikka makes the followstgonger claim concerning the latter’s
conception of extension: Carnap not only was unabléormalize mathematical standard

model extensions in a proper way due to his FDGhefunderlying language. He in fact
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conceived the very notion of model extensions imanstandard (and mathematically
irrelevant) way. In this picture, there is simplp place for extensions of the individual

domain in Carnap’s account, since extensions agesged in terms of relations (or

structures) and not in terms of individuals (seaimgintikka 1991, 332). In his interpretation

of Carnap’s theory model extensias the extension of the relations (better relations’
structures) over an invariant domain.

Hintikka does not provide any significant textuapport for his view. In particular, he does

not mention the concluding section of Carnap andhBenn (1936). This is not altogether
surprising since the very nature of the remarks enaere on how model extensions can
transcend the limits of a given language simply @sako sense in his notion of what counts
as an extension for Carnap. If one were to followmtikdka’s picture of Carnap’s account, the

move to model extensions via language transitioosldvnot be conceivable. In contrast, it

makes perfect sense if one sides with the inteapoet of Carnap’s conception of models

outlined in the present chapter.

2.6 Conclusion

Summing up, the principal aim in this chapter wagtovide a detailed survey of Carnap’s
early conception of models in his work on axiomatiBased on several documents from
Carnap’sNachlass | proposed and defended a new interpretationash&p’s reconstruction

of extremal axioms and his early contributions twnfal semantics. Given the archival
evidence as well as the systematic arguments éohéterodox ‘domains-as-fields’ version of
models and the convention of model variation vipetyascent, | showed that Hintikka’s

interpretive claims concerning the FDC in Carnagesly use of model cannot be upheld. |
argued further that once a more balanced accoudanfap’s conception of model extensions
(and restrictions thereof) is provided, also Hikéls second claim that Carnap, in his theory

of extremal axioms, misconceived mathematic pradticns out to be untenable.
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Chapter 3: Carnap’s extremal axioms and his mathemizcal influences

3.1 Introduction

Recent scholarship on Carnap’s early theory obraatics (Carnap (2000)) has focused on
his distinction between three metatheoretic notiook completeness: categoricity
(“Monomorphié), semantic completeness Nitht-Gabelbarkel), and syntactic
completeness Entscheidungsdefinith&jt In particular, Carnap’s somewhat misguided
views on the equivalence of these notions pricgéalel’s and Tarski’'s metatheoretic results
in the 1930s have been discussed extensiVélgo far, less attention has been drawn,
however, to a forth kind of completeness concerieginterpretations of an axiom system
that plays a prominent role in Carnap’s axiomatiznely the “completeness of the models”
(“Vollstandigkeit der Modell¢ (Carnap and Bachman 1981, 82). In Carnap’s view,
completeness in this sense describes a certaimmabgroperty of the admissible models, i.e.
the non-extendibility of the models of an axiomteys. In modern terms, for an axiomatic
theory T and the class of modeld of T, this maximality assumption can be defined in this

way:

Model maximality The models irM are completeif they aremaximal i.e. if the universe of each

member oM cannot be extended without violating the axiom3.6F

As is well known, this kind of maximality propertyas first expressed in Hilbert's famous
axioms of completenegbhenceforth AC) for analysis and geometry at te tof the last

century (see Section 1). Hilbert's axioms playedemtral role in a broader discussion
(involving mathematicians like Baldus, Baer, Fins@achmann, and Bernays) on the kind of
maximality conditions they impose on an axiomatieary*® Interestingly, the completeness
of the models has an inverse, i.e. a less extdgsiliecussed minimal property that can be

paraphrased in this way:

19 See Awodey and Carus (2001), Reck (2007), Gold0b5), Bonk and Mosterin (2000). For modern-style
definitions of the different notions of completesekscussed by Carnap see in particular AwodeyRauk
(2002).

19 5ee Ehrlich (1997) for an alternative definitidrtiis maximality assumption.

19 Compare Awodey and Reck (2002).
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Model minimality The models inM are minimal if the universe of each model M cannot be

restricted without violating the axioms ©f

As Hilbert's AC was introduced to enforce model maality, comparable minimal or
restriction axioms were devised to impose the matityn of the intended models of an
axiomatic theory. Their history, however, is man&ricate than in the above case. As we will
see in Section 3.3 and Section 3.4.2, the firsti@kpninimal principles can be found in
Dedekind’s proto-axiomatic treatment of elementanythmetic and, in succession, in
Fraenkel’'s axiomatization of set theory.

Carnap, in his own metatheoretic work on axiomatiahe late 1920s, was among the first to
notice the analogous character of the two compésteproperties. In his resulting theory of
extremal axioms — first developed in the projectedond part of hi&Jntersuchungen zur
allgemeinen Axiomatiknd then, in published form in Carnap and Bachn{a886) — he set
out to provide a unified account of the two consept model maximality and model
minimality. Specifically, his theory was deviseda$ormal explication of the two groups of
mathematical axioms that share the feature of imgosuch “extremal conditions” on the

possible models of an axiom system.

The aim in this chapter is to provide a detailed &istorically sensitive reconstruction of
Carnap’s theory of extremal axioms and its theoa¢tvolution between 1928 and 1936. The
main focus will be set on the unpublished documenhtBart Two ofUntersuchungerirom
Carnap’sNachlass(RC 081-01-01 to 081-01-33) where his account igelbgped in most
detail. In particular, Carnap’s theory outlined rinewill be surveyed with an eye to two
interpretive points not properly considered so Tdre first concerns Carnap’s mathematical
sources, i.e. is the mathematical axioms basedloahwhis formal versions were modeled.
Here, especially, the case for minimal axioms isfally clear. Notably, Carnap mentions the
(second-order) axiom of induction (henceforth Al) Peano arithmetic as a mathematical
instance of his version of minimal axioms sevenales. Given that the induction axiom is
usually not conceived as an extremal axiom as alteeils ACs, this might raise general
doubts about his formal reconstruction. One ciiitatgection would be to say that Carnap’s
proclaimed unificatory approach is in fact compgrthe incomparable. In a second, more
critical reading, one might claim that Carnap’sniiatized version of extremal axioms not
only misrepresents mathematical axioms like Al eir@tnot minimal in his specific sense, but

118



that he also failed to capture the informal coniogst of limiting conditions on a theory’s
domain expressed in the relevant mathematical axtdm

The second interpretive issue concerns Carnap’sifgpe@nderstanding of the relationship
between his “completeness of the models” and theerotmetatheoretic notions of
completeness discussed by him, most notably tlegyodtity of an axiom system. As we will
see in Section 3.5, Carnap’s general account ofretaionship outlined in Part Two of
Untersuchungercan be embedded in a broader debate between Etagok Neumann, and
Baldus in the late 1920s on whether the additioaroéxtremal axiom results in a categorical
axiomatization of a theory. Here again the critigaestion can be raised whether Carnap’s
formal presentation of extremal axioms presentadeguate setting for deciding on the issue.

My attempt here is to approach these interpretoiatp with special attention to the historical
setting of Carnap’s formal reconstruction and, artigular, to the mathematical influences
that led him to devise a theory of extremal axiomghe first place. The main point | want to
make is that therima faciepeculiarities of his approach can be resolved @emmap’s main
influence for modeling minimal axioms, namely Fraglis axiom of restriction(henceforth
AR) is studied in closer detail. Fraenkel's relesarfor Carnap’s theory of axiomatics,
especially his three notions of axiomatic complegsnwas already mentioned in recent
literature’®® In this chapter, | aim to show that his influenme Carnap’s conception of
axiomatics had been more substantial than was a&sksmfar. It not only concerns Carnap’s
notions of meta-axiomatic completeness and his &meconstruction of minimal axioms but
also Carnap’s overall conception of the semantitone such as a “model” and a “domain”

of a model that underlie his theory of axiomatics.

The chapter is organized as follows: | start withart outline of Carnap’s theory of extremal
axioms — as presented in Carnap and Bachmann (3986y of the mathematical examples
Carnap and Bachmann mentioned there (Section Bdllpwing this, Fraenkel's axiom of
restriction for set theory is presented (Secti@).3n Section 3.4, | discuss Carnap’s original
theory of extremal axioms as documented in M@chlass(Section 3.4.1) and see how it
relates to Fraenkel's views (Section 3.4.2). Theecaf a minimal axiom in arithmetic is

discussed in Section 3.4.3. Finally, Carnap’s vienshe relation between completeness of

197 See Hintikka (1991) for a related critique. Seeyithr 2 for a critical discussion of Hintikka’sénpretation.
1% 5ee, e.g., Reck (2007) and Bonk and Mosterin (2000

119



models and categoricity will be discussed in Sec8&. After reviewing a limitative result by
Baldus (Section 3.5.1), Carnap’s more general adcoiuthe relationship will be evaluated in
this light (Section 3.5.2).

3.2 Extremal axioms in 1936

We have mentioned in the second chapter that the systematic treatment of Carnap’s
extremal axioms in published form is Carnap andhBzan (1936). The paper starts with a
provisional characterization of minimal and maxiragloms by highlighting their respective

domain-fixing functions:

Axioms of the sort of Hilbert's axiom of completesse which ascribe to the objects of an axiomatic
theory a maximal property in that they assert thate is no more comprehensive system of objects
that also satisfies a series of axioms, we callaaimal axiomThe same axiomatic role as that of the
maximal axioms is played in different axiom systdmyaminimal axiomswhich ascribe a respective
minimal property to the elements of the disciplivaximal and minimal axioms we call collectively

extremal axiomg(Carnap and Bachmann 1981, 68-69)

Based on this informal account (and given the d$gation of several auxiliary notions such
as that of a formal models, a model’s structure omorphism correlation), a formal
explication of different kinds of extremal axioms presented in 84 of the paper. The
distinction between different types of minimal anthximal axioms is based here on a
ramification of the notion of a model extensioi.In particular, Carnap and Bachmann
distinguish between “model extensions” and “struetaxtensions”. In the former case the
original models are admitted to be isomorphicathbeddable in extended model, in the latter
they are not. Here, the condition that model exterssare non-isomorphic to the original
model is explicitly “included in the definition axtension” (ibid, 77). The two notions are
formally presented in this way (see ibid, 77Y:

Erwmn(N; M) =M ON .M #N

EtW;, M) = M O N . Osm,(M, N)

199 Compare Chapter 2 for a detailed discussion of&ais conception of models and model extensions.

20 A second ramification of the notion of extensicar@p and Bachmann do not work out in detail ietam
the question on whether or not model extensionaldradlow extension of N whereM contains a proper part
T isomorphic taN (ibid, 177). Compare Ehrlich (1997) for discussadra similar point.
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Based on these two types of extensions, CarnapBaatimann present two versions of
extremal axioms: “maximal” and “minimal model axiefmand “maximal” and “minimal

structure axioms* (ibid, 77):

(1) Max(F; M) =¢s (CN) M ON . M £ N . F(N))
(2) Max(F; M) =¢t [XLN) (M O N . Olsm(M, N) . F(N))
(3) Min (F; M) = XCN) (NO M . M £ N . F(N))
(4) Max(F; M) =t (CN) (N O M . Olsmy(M, N) . F(\)).

The axiom schemes (1) and (3) are more restrithiga (2) and (4): in the case of minimal
axioms, (3) excludes any submodel of a given mddledf a theory, also, if there are any,
those isomorphic td1. (4), in contrast, only rules out non-isomorphibmodels oM (see
ibid, 77). This distinction between structure axgoamd model axioms will be relevant for one
of the mathematical examples of a minimal axiommely the induction axiom, Carnap
discusses in greater detail (see Section 3.4.3).

Irrespective of this, it is clear that the intenagtéct of all four axioms was to impose a kind
of completeness on the axiomatic theory to whichytlare added. In fact, after having
presented the formal versions, Carnap and Bachmsaude explicit the supposed effect for

the case of a maximal axiom:

The models of an axiom system that is closed byaaimmel axiom possess a certain completeness

property in that they cannot be extended withoalaging the original axiom system. (ibid, 82)

This is precisely the “completeness of the models’an axiom system, here the model

maximality described in the Introduction.

Turning to Carnap’s mathematical influences, ile tctual axioms on which his formal
reconstruction of extremal axioms is based, hige®is obvious in the case of maximal
axioms. In fact, a version of Hilbert's axiom ofnapleteness for geometry is cited at the
outset of the paper and again mentioned in theagasguoted above. In particular, Carnap
and Bachmann refer explicitly to the original versiof the axiom of completeness for
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geometry in Hilbert's second to sixth edition@fundlagen der Geometrigbid, 68)*°* As is
well known, the axiom of completeness was concethede as a means to impose the model
maximality for the Hilbert's base axiom system, hés four groups of geometrical axioms
plus the Archimedean axiom. As Ehrlich points dg axiom was introduced to “distinguish
“ordinary analytic geometry” from the remaining net&l of Archimedean Euclidian
geometry” and, thus, fix the Cartesian space dwercbntinuous ordered fieRl C(R), as the
intended, single model of the axiom system (EhrlieB7, 57).

Carnap and Bachmann explicitly held that Hilbett® AC (both for geometry and analysis)
could be explicated in terms of their maximal moaeéloms, in particular via axiom scheme
(1)_202

The mathematical influences for Carnap’s minimabms are less obvious. As mentioned
above, Carnap referred to “Peano arithmetic” oerfeéntary arithmetic” on several occasions
as one axiomatic theories to illustrate his themrgninimal axioms (see e.qg. ibid, 79-80). This
might seem peculiar to the modern reader since-tan first sight - difficult to see how the
central axiom of the modern version of Peano ariicnnamely Al

(AI%) COAIX(0) O ([EX)(X(X) - XS] - ([Ey)(X(¥)))

is related to the minimal axioms (3) or (4) presénn Carnap and Bachmann (1936). In fact,
the closer look at Al and Carnap’s axiom schemesaesiavident the conceptual gap between
the modern presentation of Al in second-order l@gid Carnap’s own reconstruction. In the
induction axiom, the second-order quantifier rangesr arbitrary relations on a specified
universe of a model in which Peano arithmetic ierpreted. The primitives ‘0’ (fazerg and

‘S (for ‘successd) are schematic non-logical constants interpretethe same universe. In
Carnap’s version, in contrast, the higher-ordemgjtiars in the minimal axiom schemes are
not ranging over arbitrary relations on a given el@ddomain, but over models as such. We
saw before that models were conceived by Carnapigtser-level n-ary relations, more
specifically as n-tuples of relations of a spediftgpe. Moreover, all models were defined in

a fixed universal interpretation of the formal baund languag&’ There are thus no direct

%1 There, Hilbert states his axiom in this way: “Fe system of points, straight lines, and plands, it

impossible to adjoin other elements in such a matha the system thus generalized shall form a gesmetry
obeying all of the five groups of axioms I-V; irhet words, the elements of the geometry form aegysthich

is not susceptible of [proper] extension, if alltbé stated axioms are preserved.” (Hilbert 1980 (ioted

from: Ehrlich (1995), 171)

292 Moreover, since the intended model in Hilbert'soax system for the Euclidian plane, viZ(R), is ‘non-
dividable”, i.e. it does not have submodels isomorphic tartagimal model, the axioms can also be symbolized
by a maximal structure axiom (2) (see ibid, 178).

203 Compare 2.4.3 for a closer discussion of thiséssu
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equivalents in Carnap’s formalization to the schigngerms in Al above. Instead, the
primitives of an axiom system are expressed by frean the case of extremal axioms, by
bound higher-order variablé%'

Given these conceptual differences, it is diffidoltsee what led Carnap to consider Al as an
instance of his minimal axionf§> Moreover, one might get the impression that intki to
the case of model maximality, the issue of modelimality was not fully clear to Carnap.
The point | want to make in the following is thhistis not the case. In fact, the most fruitful
way to see what exactly Carnap understood by mmdgmality will be to take a closer look
at the second mathematical example he gives forimmal axiom. This is Fraenkel's
meanwhile neglected axiom candidate for set theotlyp axiom of restriction
(“Beschranktheitsaxioin (AR). In Carnap and Bachmann (1936) there isycalone-line
remark on the axiom: “The restriction axiom in Frikel's axiom system for set theory can be
formulated as a minimal-model axiom.” (ibid, 78)@arnap (1930), AR is also mentioned as
a minimal analogue to the axiom of completenesd,(BD7).

Now, despite the lack of a more extensive discussib Fraenkel’'s axiom candidate in
Carnap’s published work, AR exercised a formatividuence on Carnap’s understanding of
minimal axioms and the kind of minimality condititimey impose on an axiomatization. As |
will show in Section 3.4.1, AR was (beside AC) Gagris main motivation for providing a
formal reconstruction of extremal axioms in firéage. Moreover, a closer look at Fraenkel’s
different versions of formulating AR will help teetier understand Carnap’s own version of
minimal conditions expressed in his minimal axioarsd how they relate to the case of
arithmetic (and Al in specific). So, before turnitggCarnap’aNachlassto illustrate this line

of influence, | will briefly present Fraenkel’s owrews on his axiom candidate.

3.3 Fraenkel's axiom of restrictiorf®

In the 1920s, Fraenkel proposed two additional ragidor Zermelo’s axiomatic set theory.
The axiom of replacement has meanwhile becomeraatd axiom of ZF. The second, AR,

was devised to express a minimality condition fioy aet model satisfying the axioms set up

294 Eor a more detailed account of Carnap’s conceptfdarmal logical languages see Chapter 1.

25| fact, it seems as though Carnap himself wagjnibé certain of the status of Al. In his only fisbed
report on Part 1 dfntersuchungeifiCarnap (1930)), a small section is also dedictidds extremal axioms.
Here, Al is mentioned not as a minimal axiom, laiaa example of a maximal structure axiom. Seedparn
(1930, 307).

2% This section follows closely Schiemer (2010).
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by Zermelo’s original system 27 His attempts to devise such a restriction clauseset
models of Z varied in the course of his work on tbpic and eventually led to different,
partly independent versions of minimal axioms fet gheory. In the following | present a

brief reconstruction of the evolution of Fraenkehisught on AR from this period.

3.3.1 Fraenkel’'s motivation

The first mention of AR can be found in (Fraenk&22). Here, Fraenkel presents two
arguments why AR should be added to Zermelo’s thede first states that “Zermelo’s
concept of set is more comprehensive than seembetmecessary for the needs of
mathematics (...).” (ibid, 223) Fraenkel mentions tkiods of possible sets in the set-
theoretic “domain” (“Grundbereich”) that are corerg with the existing axioms, however
irrelevant for mathematical purposes. The first “a@-conceptual” sets, e.g. sets consisting
of physical elements. The second are so called -“negll-founded” sets, i.e. such with
infinite membership chains. Given their possibilitithin Zermelo’s axiomatization, Fraenkel

remarked that:

Whereas sets of the first as of the second kindnatenecessary for set theory considered as a
mathematical discipline, it in any case followsnfréhe fact that they have a place within Zermelo’s
axiomatization that the axiom system (..) doeshavie a “categorical character”, that is to sayeggl

not determine the totality of sets completely.djt#234)

In the second edition of his monograpimleitung in die Mengenlehr@raenkel 1924) a more
structured presentation of his motivation for add&R is given. Fraenkel argued here that
the introduction of the additional axiom would letmda "simplification of the set theoretic
edifice” by ruling out non-well-founded numbers. &s independent argument — the property

of completeness in terms of categoricity is refétae

Moreover, without such a restriction it is not viitlieach that our axiom system captures the tgptalit

of admissible setsompletelyas is desirable for the construction of every adtization. (ibid, 218)

Thus, one can identify here at least two relateddifterent objections against Z: the possible
existence of extraordinary sets and its non-cateigyar Moreover, it should be stressed that

27 For a more detailed account of Fraenkel’s axiondigate see Schiemer (2010).
124



Fraenkel explicitly expressed here the assumptmmcerning the connection between the
intended restriction of the domain of sets andcttegoricity of the resulting theory (compare
Schiemer (2010, 312-313)). This point was furthghlghted in his lectures from 1925. Here

he remarked that:

It means more than a mere flaw of our axiom systeat the totality of all possible sets is not
unequivocally fixed but that instead there are gbsvanarrower and more comprehensive
interpretations of the concept of set that remamgatible with our axiom system. (Fraenkel 1927,
101)

According to Fraenkel's view ifh924, the non-categoricity of Zermelo’s originalan
systems is mainly caused by the possible existehtaxtraordinary sets”. As a solution to

this, Fraenkel proposed his AR which was conceimezhalogy to Hilbert's AC:

(...) As is the case there, the mentioned deficienca be remedied by setting up a (...) last axiom,
the “axiom of restriction” that imposes on the ogpicof set or more appropriately the dompoh

set$, thesmallest extension compatible with the remainingras.(ibid, 234)

Fraenkel's motivation for adding AR to Z is cle&o: rule out non-intended and non-well-
founded sets by restricting either the interpretatf the concept of set or the domain of set.
This would also make the resulting axiom systersgatical (see Schiemer (2010, 315)).

3.3.2 Versions of restrictiod®

Fraenkel’'s remarks on the intended effect of hisraxcandidate do not go beyond the level
of informal remarks. The most detailed explicatoam be found in (Fraenkel 1922b). Here he
formulates two alternative versions of AR for amoaxatization of cardinal numbers that also

hold for the case of set theory.

(1) AR as an axiom of closure: in the first versié is defined as expressing a minimality
condition on sets: There exist no sets in a mofl@lFoapart from the ones implied by the
given axioms. A similar version of this understargdof AR can also be found in Fraenkel
(1924): “Aside from the sets imposed by the axidmi Zermelo (1908) there exist no

2% This section closely follows Schiemer (2010).
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further sets.” (Fraenkel 1924, 21%) The mathematical idea underlying this is that of a
closure of a given bases system under a specifezatipn. This implies a view of the
intended domain (or model) as an algebraic clotwaeFraenkel first introduced to axiomatic
set theory. According to it, the intended set don{ar set model) is the closure of a base (in
Fraenkel's case the empty set, in Zermelo’s casertainUrklassg under the operations on
sets defined in the axioms of ZF. AR is then uneid as expressing a closure property on

the set domain, i.e. as a kind of “restriction skador closures” (Kanamori 2004, 515).

(2) AR as a minimal axiom: Fraenkel's second regdiketches the intended effect of the
axiom. According to it, the axiom imposes a minimabdel for the axiom system: “If the
domain Grundbereich B contains a smallest submodé&k(lbereich) By satisfying the axioms
(...), thenB is identical with such a smallest submoBgl’ (ibid, 163) This effectively rules
out the existence of proper submodel8gthat satisfy ZF. In an added footnote, Fraenkél go
more specific on the method of constructing suatiramal model:

As is usual, a smallest submodel of the indicateatacter is to be understood as a model that is the
intersection of all submodels & with the property in question and that also passeshe property
itself. (ibid, 163)

This states that the minimal modelof ZF can be constructed by the intersection of al
possible models that satisfy the theory. Moreoifesuch a minimal model exists, then the
extended theory ZF+AR will result to be categorisde Schiemer 2010, 316). (I will return

to the last point in Section 3.5 below.)

3.4 Part 2 ofUntersuchungen

As | mentioned above, the formative influence daddfikel’s AR on Carnap’s own theory of
extremal axioms is not intelligible from Carnap aBdchmann (1936) alone. Neither is it
traceable in the first part afntersuchungerfCarnap 2000). Here, Carnap sets his main focus
on the three metatheoretic notions of complete(sss Introduction) without mentioning the
“completeness of the models” and his extremal azidAowever, things look different taking

into consideration Carnap’s unpublished material floe projected second part of his

299 Compare also the third edition Binleitung (Fraenkel (1928) for a similar definition.
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manuscript on axiomatics in tidachlass(RC 081-01-01 to -33). These documents clearly
prove that Carnap was working on a general accotigxtremal axioms already in 1928.
Moreover, they show that most of the concepts aullts listed in the 1936 paper with
Bachmann can be traced back to this earlier warkally and most relevant for our account,
the importance of Fraenkel's AR (and the way heceores its effect on the models of ZF)
for Carnap’s theory becomes evident from the exgstidocuments of Part 2 of
UntersuchungenGenerally, one can say that Carnap’s accounktoémal axioms in 1928 is
more ramified than in 1936. In a “preliminary wapokan” for Part 2 he mentions different
types of axioms that yield the completeness prgpgscribed above. For the first group, the
“minimal” and “maximal axioms”, Fraenkel's AR is mi&oned as the main example of the
former (RC 081-01-02). Beside these, Carnap mest@rdifferent but related group of
axioms dubbed “accessibility axioms‘Hfreichbarkeitsaxiomg. And here again, AR (next
to Peano’s Al) is mentioned as a typical mathemhiitstancé’® The next section will be
used to present Carnap’s different groups of exfeaxioms and to show how the

distinctions he makes between them closely reffleaenkel’s different versions of AR.

3.4.1 Different types of minimal axioms

Fraenkel’s influence becomes visible in the wayn@prdescribes the first group of minimal
axioms in his manuscript. In (RC 081-01-04) he @n¢s a general account of “axioms of
restriction” (Not surprisingly, their maximal cowmparts are dubbed “axioms of

completeness.”) The following two informal defiitis are given:

An axiom of restriction means fixing the minimaltexsion: the domain of elements is to have the

smallest possible extension compatible with theoéxioms. (RC 081-01-04/j

The axiom of restriction can be formulated in thigy: ,There exists no (proper) part of a system of

elements (a model or a realization) that satisfiethe axioms. (RC 081-01-047&}

210 carnap’s “preliminary work plan” is the single dmeent of Part 2 of/ntersuchungethat is published in
Carnap (2000). In their commentary, the editorskBammd Mosterin hold that “Fraenkel’s suggestion [GS
adding AR to ZF] (...) was probably the starting gdor Part 2 ofUntersuchungéhwithout, however,
discussing any details of this line of influencattban be witnessed in Carnap’s documents (Bonkvasderin
(2000, 48)

#l1Ejn Beschranktheitsaxiom bedeutet FestlegungMieemalumfangs: das Gegenstandssystem soll den
kleinsten mit den Ubrigen Axiomen vertraglichen @md haben.” (RC 081-01-04/1)

#124Das Beschranktheitsaxiom kann so formuliert werd€&s gibt keinen (echten) Teil eines
Gegenstandssystems (Modells oder einer Realisatiendie Axiomen ... erfillt.“ (RC 081-01-04/2)
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The formal versions of an axiom of restriction meed here are more or less equivalent to
(3) in Carnap and Bachmann (1936). In addition, lighty different formalization is
suggested. For an axiom system f with only one ipisierelation P, the axiom reads:
P(POR fP.0.P=R
Carnap paraphrased this version in this way: “lIrrdsoa) every partial relation @& that
satisfies the other axioms coincides wWRl And in a footnote he adds: “This formulation is
only suited as a verbal description of the logiftienulas; otherwise the earlier formulations
are more easily comprehensible.” (RC 081-01-3472)
Now, Carnap’s informal definitions clearly echo &m&el's characterization of his set-
theoretical AR. In fact, Carnap’s first reading thle axiom as “determining a minimal
extension” that is consistent with the other axiomsan almost a verbatim adoption of
Fraenkel's talk of “thesmallest extension compatible with the remainingpra¥’ quoted
above (Fraenkel 1927, 234). Moreover, there is alsttong similarity in the way the models
of an axiomatic theory are conceived in the twaesa&ollowing Carnap’s second definition,
an axiom of restriction imposes the minimal modeglthae single admissible model of an
axiom system. In his third definition, closely fming the “logistic formula”, a minimal
model is conceived as the minimal partial relatddrihe model relatioiR. We have already
indicated above that Carnap’s conception of formmaldels is clearly heterodox from a
modern point of view since the models of a theaey@nceived as (sequences of) relations.
Submodels are thereof presented as partial refatiéra given (model) relatiott* What is
important to see here is that this conception dfnsadels as partial relations is already
present in Freankel's own treatment of AR (and &f models more generally). Note for
example a section in Fraenkel (1928) the general use of “models” and “pseudosystems”
(“Pseudosysterfle of an axiom system for indirect consistency adependence proofs.
Models are explicitly defined here as ,interpreiat differing from the usual interpretation of
the primitive concept” fom Ublichen abweichenden Deutung gewisser Grumdfesy
(ibid, 342). The standard method of devising restd models for consistency or
independence proof is described in this way:

23410 Worten: a.) jedes (sic!) Teilrelation von Redlie anderen Axiome erfiillt, fallt mit R zusammén.)
Diese Formulierung eignet sich nur zur Wortbesdhney der logistischen Formeln; sonst sind die fréihe
Formulierungen leichter verstéandlich.” (ibid.)

2 For an extensive study of Carnap’s nonstandaedrirent of submodels compare again Chapter 2.
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In many cases the interpretation in question moiess restricts the extension of a primitive cqtce
vis-a-vis its usual interpretation for the wholeéaamt system so that only a part of the objects pally

falling under the primitive concept is accepteexisting. (ibid, 342"

Model variation is thus conceived here as the mmatibn of the standard or intended
interpretation of the axiomatic primitives of a ¢ing. In the case of set theory, this means
that, for different independence proofs, the cohadset (or, equivalently the membership
relation) is reinterpreted in the sense that fursderstood differently, generally in a narrower
sense than in the “proper” set theory followingifioour axiomatic (system).” (ibid, 344)
Applied to Fraenkel’s version of AR for set theottyis effectively means that the intended
model of ZF+AR is conceived as the minimal “intefation” of the “basic relation]
defined by ZF. Now, it is exactly this view of animal model as the minimal partial relation
of the axiomatic primitives that is also expressedCarnap’s third formal version of his

axioms of restriction in 1928.

The parallels with Fraenkel's account do not eng h&s mentioned above, Carnap presents
a second kind of extremal axioms in his manusctig, so-called “accessibility axioms” he
considers as “related with (possibly a special ady¢he axiom of restriction” (RC 081-01-
10). An accessibility axiom presupposes “absol#ed “relative existence axioms” which
state that “there exist elements in the system Whidse and that propertiedJfelement¥)”

and that “if elements exist of this and that proypénen there also exist elements of that and

those properties” respectively. Given this, an asit®lity axiom is defined in this way:

An accessibility axiom then states: every elemérhe system is either an element (according to the
absolute existence axiom) or its existence candukickd in finitely many steps from the elements

with the help of the relative existence axiom.di)®

The underlying idea here is that an axiom sysierfixes a certain dccessibility class
(“Erreichbarkeitsklass® of elements constructible from a certain base(geposed by the

absolute existence axioms ©f via the iterative application of operations (exgsed in the

2154 vielen Féllen schrénkt die fragliche DeuturendUmfang eines Grundbegriffs gegeniiber der tibliche
Deutung im gesamten Axiomensystem mehr oder werigeiso dass nur mehr ein Teil der urspriinglidemun
jenen Grundbegriff fallenden Objekte (...) als exigtnd zugelassen werden.” (Fraenkel 1928, 342)

41%«Ein EA besagt dann: jeder Gegenstand des Systtrestweder selbst eine Gegenstand (geméaR dem)aExA
oder seine Existenz ist aus der der Gegenstanddilfgitdes rExA in endlich vielen Schritten ableitt (ibid.)
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relative existence axioms @). The accessibility axiom then secures that tlasscis also the
single intended model df. It states, in Carnap terms, that “every elemsratccessible” (RC
081-01-10/3).

Here again, the set-theoretic context of his reitaogon is quite definite. Note first that
Carnap’s discussion of absolute and relative extgte@axioms clearly reflects Fraenkel’'s own
presentation of the standard set theoretical axiomsaenkel (1928). There, ZF includes a
number of “unconditional existence axioms” (e.ge #xiom of infinity) and “conditional
existence axioms” (e.g. the axioms of union, power and choicé)’’ Second and more
generally, Carnap’s picture of a theory’'s domainaasaccessibility class closely mirrors
Fraenkel's newly introduced conception of the sgverse as an algebraic closure of a base
set (in his case the empty set) under the opesatodified in the axioms of ZF. Note that
Carnap explicitly speaks of a “basic classUklass€) consisting of Urelement$and of an
“order of classes” @tufenreihe von Klass8nas a theory’s domain. The latter begins with
the basic class and yields higher and higher levelthe reiterated application of an “order-
relation” (“Stufenrelatior) that defines the group of operations specifiedthe relative
existence axioms. The “union of these classedias the accessibility class; its elements are
the “accessible” elements of a theory (RC 081-0/[R)10t is precisely this idea of a theory’s
domain as the accessibility class that one canfeddan Fraenkel’s closure conception of set
models. Moreover, Carnap’s version of an acced#gibalxiom as expressing the (closure)
condition that “every element is accessible” clg@drresponds to Fraenkel's first version of
devising AR. Recall from Section 3.2 that AR wasided there as a minimal condition on
admissible sets. The intended domain of ZF+AR vwaxeived as the restriction to the sets
introduced by the absolute existence axioms anthby‘finite application” of the relative

existence axioms of Z£®8

Given this obvious background in axiomatic set thied is quite surprising that Carnap,
instead of explicitly discussing AR, draws to “Peamithmetic” to further illustrate his theory

of accessibility axiom (RC 081-01-10/3Y. Recall that in the “preliminary work plan” for

27 See Fraenkel (1928, §16)

18 Compare Fraenkel (1928, 355).

#191n Carnap (1934) Fraenkel's AR is extensively dised as an accessibility axiom: “The axiom ofriet&in
states that in the domain of sets treatefdhia axiom systeinS, sayB, only those sets are considered whose
existence is imposed by the other axioms." (Cadg®, 281)

.Das Beschranktheitsaxiom besagt, dass in dembiehandelten Mengenbereich, etdjanur diejenigen
Mengen vorkommen, deren Existenz durch die and&xéme gefordert ist.* (Carnap 1934, 281)
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Part 2 ofUntersuchungeriPeano’s axiom of induction® is juxtaposed to ARan instance of
an accessibility axiom. What was Carnap’s motivatfor treating these two axioms as
functionally similar? In order to approach this stien let us make a step back and have a
second look at Fraenkel's own conception of AR hrsdmotivation for setting it up in the

way he did.

3.4.2 Fraenkel’s arithmetical background?®

It is not completely clear from Fraenkel’'s remadksAR mentioned in Section 3.3.2 how he
conceived the intended restrictive effect of hisoax on the possible set models of ZF.
Nevertheless, there exists an insightful passagéraenkel (1928) that helps to see his
mathematical background for AR. Fraenkel mentioesehthe “special character” of the
axiom compared to the “existential” and “relatiomaioms” of ZF and observes the fact that
“in both versions [of AR], the inductive momentéassential.” (Fraenkel 1928, 355) What is
his intuition about the inductive character of ABdf? As we have already seen, the concept
of intersection plays a central role for the intetiekffect of the axiom candidate. A minimal
model is conceived as the intersection of all gwesimodels satisfying ZF. From a
methodological point of view, this is a paring desyproach of defining a specific minimal
structure by taking the intersection of all closetsets of a given set.

There is a direct link between Fraenkel's use of thethod and the early understanding of
induction principles in arithmetic. As is generalkkpown, the paring down method was
productively used by Dedekind to express the ppiecof mathematical induction as well to
fix axiomatically the standard model of arithmétitl make a case in Schiemer (2010) that
Fraenkel's conception of a minimal model for setaty was very likely shaped in close
analogy to Dedekind’s strategy of defining the na@tnumbers as a minimal set closed under
induction. More specifically, 1 show that there asstriking similarity between Fraenkel's
treatment of AR and Dedekind’sheory of chains(* Kettentheori®&) introduced in Dedekind
(1888) (see Schiemer (2010, 316-321)). This sugghst Fraenkel actually modeled his idea
h2.22

of set-theoretic restriction based on Dedekind’sragc Here, my aim is not to retrace

this line of influence but to offer an explanatiwhy Carnap, in formally reconstructing AR,

220 This Section is based on Schiemer (2010).

221 Compare Sieg and Schlimm (2005).

222 5ee Schiemer (2010) for further details of thisiparison between Dedekind’s approach to arithnaetit
Fraenkel's conception of set theory.
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also perceived a methodological affinity betweemehRkel's axiom and the arithmetical
axiom of induction. It is for this reason that aebrlook at Dedekind’s approach will be

instructive.

Dedekind’s foundational treatment of the naturainbers in Dedekind (1888) is based on a
number of methodological results concerning theraéconcepts that allow the reduction of
numbers to a logical basis (ibid, 351). One of ¢heewly introduced concepts allowing him
to devise the sequendé¢ of the natural numbers is that ofchain (relative to mapping
function¢ and a syster§): in modern terminology, a subsyst&wf Sis called ahainif it is
closed under a mappirgy (ibid, 352). A systend? is defined as thehain of A(“Kette des
Systems A if Ag is the intersection of all chains containiAdibid, 353). What is important
to note here is that Dedekind also conceikg&ive this underlying intersection of closures
approach) as the smallest chain contairg.e. the smallest subset 8fclosed undet.
Again, in modern terminology, this effectively sapsitAq is the minimal closure oA under

¢ (compare Schiemer (2010, 3%H.

Given this concept of a minimal chain, a set obaxatic conditions is set up by Dedekind to
characterize “simple infinite systems,” i.e., sysseisomorphic to the system of natural
numbers (1N, ¢). One of the four conditions, conditif) states that the admissible system
has to be a minimal chain containing the baséNk= 1y Thus, in Dedekind’s account of the
natural numbers, 1 is the base element and theesegWM is the intersection of all sets
containing 1 that are closed under the successenatpn. Note the difference of this early
axiomatic presentation of arithmetic to standarécg¢md-order) Peano arithmetic: In
Dedekind’s version, principl is used as an alternative to an explicitly fornedainduction
axiom. Instead of introducing Al as an axiom, Daddkproves the principle of mathematical
induction with the help of his concept of a minirchkin®?*

It is this minimal chain condition expressed in Bkitid’s original axiomatic system of
arithmetic (and the paring down method underlyifighat most likely motivated Fraenkel's
own axiom of restriction for set theory. The alldgenductive character” of AR thus can be

best explained with reference to Dedekind’s oribimalirect treatment of arithmetical

223 As Sieg and Schlimm (2005) point out, Dedekinddsexplicit about the minimality of chains of A in
Dedekind (1888). There exists, however, have pdiotd, a note in Dedekind’s earlier unpublished usanipt
“Gedanken uber Zahlen” in which this issue is ecifili mentioned: “Q) [i.e. the chain of\] is the “smallest”
chain that contains the systéh(quoted from Sieg and Schlimm 2005, 144). Compzyain Schiemer (2010)
for a fuller discussion of this point.

224 Dedekind (1888, 361); compare Sieg and Schlimr%245).
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induction via minimal chains. Moreover, Fraenkddackground in Dedekind arithmetic will
also help us to understand Carnap’s more genararks about the role of minimal axioms

in arithmetic in a proper way.

3.4.3 Carnap’s versions of arithmetic.

Our initial question was: Why does Carnap repegtegfer to arithmetic for illustration of his
extremal axioms despite the fact that the Al obsigpinas a different structure than his formal
reconstructions of minimal axioms? The point to isethat Carnap — just as Fraenkel — is in
fact not considering Peano arithmetic (in its modern careinform) when speaking of
“basic” or “elementary arithmetic”. Instead he has mind alternative axiom systems
including such related to Dedekind3sthat are structurally comparable to his account of
minimal axioms. Thus, even though Carnap mentiohsa®\ an instance of accessibility
axioms in particular and of minimal axioms more gatly, it is in fact not the main focus in
his discussion of the axiomatization of basic aniic.

In the notes on Part 2 dfntersuchungethere are two versions of a “Peano axiom system®,
both including alternatives to the axiom of indoati In Carnap’s published work up to
Carnap and Bachmann (1936), most importantly lgglmanualAbriss der LogistiKCarnap

1929), one can identify all in all three alternatixersions of arithmetic:

(@) (Second-orderpPeano arithmetic An “original form” of Peano arithmetic with three
primitives (Nu, Za, Nf) standing for Zerd, ‘ Natural Numbet and ‘Successomrespectively.
The axiom system includes a second-order versigheofnduction axiom (see Carnap 1929,
74).

(b) Ancestral arithmetic: The axiom system defines a single primitive relat(Vg) (for
“antecessor” (Vorganget)). An accessibility axiom (AA) imposes that “eyenumber is
accessible from the base element (the Zero) imigefnumber of steps (...).” (ibid, 75).
Carnap’s formal presentation of the axiomAibriss makes central use of the concept of the
“successionf Vg’ (* Vg-Nachkommensch&ft®?

(AA) BNg. [0. Za= Vg* B'Vg

25> Compare Carnap (1929, 34-35).
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It can be paraphrased by saying that the set ofraatumbersZa is the “succession ofg’
from the base elemei of Vg. Translated in modern terms, this simply states the set of
natural numbers is the transitive closure of theebelement undarg.??° Essentially the same

version of the axiom system can also be found @ (B1-01-10f*’

(c) Basic arithmetic: A version of “Peano’s AS (without the inductiori@m)” where the
accessibility axiom in version (2) is substitutegl @ minimal structure axiom in the sense
specified in Section 2 above. This axiom system lwariound in (RC 081-01-11). It is also
discussed more extensively in Carnap and Bachntd86( 79-80).

Now, Carnap holds that the three versions are atpnv axiomatic presentations of the same
theory of the natural numbers. More importantlyr fom, there are direct correlations
between the axioms of the respective systems:dbesaibility axioms in (b) “corresponds” to
the induction axiom in (a) (Carnap 1929, 75). Tk expressing a closure condition via
the notion of “succession &g’ in (c) corresponds to the union of the accessyhélxiom and
two other axioms in (b) (stating the existence bkae element ofg and the endlessness of
Vg respectively). Finally, from Part 2 @fntersuchungenit is clear that Carnap takes the
accessibility axiom in (b) to be equivalent to animal structure axiom used in (c) (see RC
081-01-11). So, in Carnap’s understanding, thedhdn axiom, the accessibility axiom, the
closure axiom and the minimal structure axiom héwere or less) equivalent roles in the
axiomatization of basic arithmetic.

Three points have to be emphasized here. Firss, dearly in connection with ancestral
arithmetic that the status of Al as an accessybdkiom becomes intelligible. In fact, one can
understand AA as conceptually motivating the ingucaxiom. The idea expressed in AA is
that the intended model of ancestral arithmetigased by the transitive closure of Zero

under successor operation. On closer inspectiigiof course also implicit in Al:

[RA(X(0) O (X)X ~ XS] - ([@Ey)X(Y))

226 Compare Smith (2008) for a modern presentaticamoéstral arithmetic. Here, the accessibility axism
defined for the signature (8) (for ‘Zero’ and ‘Successor’) and read8bj(x = 01 S*0x) (see ibid, 4).

27 |n Abriss there is a forth, “most simple” version of aritltie, also with a single primitive relation'd), but
with only two axioms. The first axiom states tNatis 1-1. The second axiom effectively states that iomain
of Vgis the closure of the base element undg(see Carnap 1929, 75).
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The last part of the formula, i.e. the consequey(iX(y)), expresses that all elements of the
intended domain hold in a set (given that it corgaZero and is closed under Successith).
Thus, any subse&t of a model's domain for PA that is assignedXtthat satisfies these two
conditions in the antecedent is also the intenaedain of PA.

Second, note that in the light of these equivalerafethe alternative axiomatic systems the
minimality of the intended model of Peano arithmmebecomes clear. In particular, the
comparison with the equivalent versions of Al mal@gdent its intended role in the
axiomatization: to fix the system of natural nunsbas the minimal subset of all sets closed
under inductiorf®® In all four of Carnap’s axiomatic systems this imal property of the
standard model of basic arithmetic is implied: wiecessibility and an implicit minimal
closure condition in (b), via containment in allluttive sets in (a), and finally via an explicit
minimality condition expressed in the minimal sture axiom in (¢

Carnap’s discussion of the alternative axiomat&tesys of arithmetic actually explains why
he conceived Al as a minimal axiom despite the abwidifferences described above. We
indicated that Fraenkel, when mentioning the “indigccharacter” of AR, did not think of Al
but rather of something like Dedekind’s axiomatmdition3: N = 1. A similar point holds
for Carnap. His immediate conceptual backgroundhi®@xiomatic presentation of arithmetic
in (b) and the closure condition expressed thergimot Dedekind’s notion of a chain.
Nevertheless, it is built on something essentialiyilar, namely Frege’s concept of an
“ancestral” of a relation introduced in Heegriffsschrift®* and, more directly, on the notion
of an arithmetical “progression”. Carnap mentiowplieitly in Abrissthat his version (b) is
effectively based on Russell and Whitehead’s formaion of a “progression” frorRrincipia
Mathematica§122 (see Carnap 1929, 733.Now, it is generally known that the closure

condition expressed in Russell’'s progressions dlsasen Frege’s ancestral of a relation is in

228 The same point was recently stressed by Smith fseussing the relation between PA and ancestral
arithmetic: “Now note, however, the crucial assumphere: the successors of zero are the only alatur
numbers. This assumption evidently underlies oaepiance of induction. (...) it is an idea which tabe
available to anyone who fully grasps PA.” (SmitfD203)
229 Compare Hintikka (1986) on this point.
280 The minimal structure axiom explicitly adds to ffieture the additional condition that this modéhimality
holds for the intended models of arithmetic upstnorphism.
%1 See Frege (1879, Prop.76)
232 progressions are definedmmincipia Mathematicaas a specific type of series, i.e. as a clas# ofductive
cardinals whose “generating relation” satisfiesftitowing conditions: (i) being 1-1; (ii) havingfast term not
included in range of R; (iii) being denumerablyiiite; (iv) being closed under its “generating tela” R
(Russell and Whitehead (1962, 245). The intentiemird this last closure condition is to excludestha-1
relations that result in independent chains of elats) i.e. infinite series with a serial numbereotthanw (see
ibid, 245-248).
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fact identical to the one expressed in Dedekindtion of a chairf>® There exists, however, a
subtle difference between the three approachesttoretic that is relevant here. Dedekind,
as we have seen, explicitly mentions that the chais the smallest of possible chains. This
minimality property is not made explicit in the ethtwo accounts that lay the ground for
Carnap’s axiom system (b). In particular, no expheention was made by Frege or Russell
of the model minimality implied in their versionsancestral arithmetic. It was for this reason
that Carnap - in connecting the dots - introdudeal third version (c) including an explicit
minimal axiom in order to emphasize the model mality already implicit in his
predecessors’ formal theories of arithmetic.

Finally, with theRussellian(andFregear) background of Carnap’s conception of arithmetic
in mind, the apparent conflict between the specifietatheoretic” character of his minimal
axioms and his mathematical sources (specifically dan be dissolved. The axioms (or
axiomatic conditions) on which Carnap’s formal nestouction is based are unlike Al clearly
metatheoretic from a modern point of view. Theytaom as do Carnap’s minimal axioms, a
minimal closure approach that is nowadays expressadheory’s metatheory and not in the
axioms themselved? Thus, Carnap’s minimal axioms (as his mathembsioarces) can be
criticized for their anachronistic metatheoreticacdcter, i.e. mainly for quantifying over
possible models of a theofy? They cannot, however, be criticized for not adéejya
representing their mathematical sources. A clasek ht the actual influences for his formal
reconstructions - namely Freankel's AR anRussellianinterpretation of Peano arithmetic -
has shown that Carnap is in fact capturing therméb conceptions of limiting conditions on
a theory’s domain expressed there quite closelysTthe possible claim mentioned in the
introduction that Carnap’s theory of extremal axgofails to capture actual axiomatic practice
has shown to be untenable.

I turn now to the second interpretive issue mertibat the outset of the chapter, the question
on Carnap’s views on the relation between “compless for models” and “monomorphism”

and on how they relate to a larger then contempgatabate on the issue.

233 See e.g. Demopoulos and Clark (2005, 140).

234 See Shapiro (1991) for further discussion of the of minimal closures in Dedekind’s work (ibid ) 2& well
as in Frege’s ancestral arithmetic (ibid, 129).

235 See Hintikka (1991, 331-332) and, for an altexmatiew, Shapiro (1991, 185-186). For an earlyiquiz of
this nature see Baldus (1928).
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3.5 Extremal axioms and categoricity

A central motivation for Carnap’s discussion of mal axioms (and extremal axiom in
general) inUntersuchungenwvas to show that the addition of such an axiom ltesa
categorical (in Carnap’s termsnbnomorphic) axiomatizatiorf>® In the case of Peano
arithmetic, adding an accessibility axiom or a mmai axiom to the base system enforces
model minimality on the possible interpretatiomsQarnap’s view, this kind of completeness
of the models also implies the categoricity of tesulting system. We saw in Section 3.1 that
a similar motivation for introducing a minimal armoto the axiom system of set theory can
also be traced in Fraenkel’s discussion of his RBcall that in Fraenkel (1924) and later on,
the axiom candidate is introduced in order to yield axiomatization that “captures the
totality of admissible setsompletely(...),” where completeness is understood as cateityori
(ibid, 218)?*” Fraenkel never made an attempt at a formal cdtéyoproof for his set-
theoretic system. Nonetheless, it is clear from in®rmal remarks that for him the
minimality of the set models would imply the categiy of ZF+AR. Here, as with Carnap’s
example of basic arithmetic, Fraenkel viewed theegaricity of the resulting system of
axiomatic set theory was an immediate result ofrefldR to ZF.

More generally, | think it is save to say that I ttheoretical accounts of formal axiomatics
up to the 1920s, the categoricity of a theory wassceived as a direct consequence of the
completeness of models expressed by extremal axidevertheless, in the second half of the
decade a more refined discussion of these two m®taf completeness set in (with the
participation of von Neumann, Zermelo, Skolem, KEinsBernays, Bear, Baldus, and Carnap
among others). The main focus in this debate wdscdied to Hilbert's AC and Fraenkel's
AR and their effects on the respective axiomatéties*>® However, to a lesser extent, also
the more general logical relation between extreaxa@ms (and the kind of completeness
imposed by them) and the categoricity of the ma#teral theories was discussed. In this
respect, two contributions stand out. One is Cdsnaywn attempt to characterize and classify
extremal axioms in th&ntersuchungenf 1928 that was least partly motivated by the wish

clarify their effect on an axiomatic system. Thea® explicit discussion of this point can be

3% |n (RC 081-01-04), after stating the informal vens of restriction and completeness axioms, hetimes
that “both happens to yield monomorphism.” Compaeek (2007, 195-196).

237 For Fraenkel’s treatment of three types of conepiess, i.e. semantic completeness, syntactic ctenples
and categoricity, as well as their relationship kter reception, by Carnap, see Awodey & Reck 2200

238 For the immediate, mostly critical reception ofi€nkel’s axiom candidate see Schiemer (2010).
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found in an article of the mathematician RicharddBa also dated from 1928. In the

remaining two sections, their contributions to tmistatheoretic question will be compared.

3.5.1 A limitative result by Baldus

One central limitative result on the general impafcgéxtremal constraints on the models of a
theory was developed in Baldus (1928). The maigetaof Baldus’ discussion is Hilbert’s
geometrical AC inGrundlagen der Geometrf@® Baldus discusses different versions of
Hilbert’'s axiom (both the original version quoted$ection 3.2 above and the axiom of line
completeness introduced in a lagglition of the book). He shows that the later aximintine
completeness can be substituted by an equivalemincity (or Cantoriar) axiom?*® A
theory consisting of Hilbert's axioms groups | ¥, khe Archimedean axiom, the continuity
axiom but not the (Euclidian) axiom of parallels tesmed (following Bolyai) “absolute
geometry”. In his paper, Baldus presents two irtgmar metatheoretic results on the
axiomatic theory of absolute geometry. First, itsitlown that the general completeness of

models can be proved as a meta-theorem of the asgstem. In Baldus’ own terms:

Theorem of completeness. It is not possible to iaddhought any kind of things (“points,” “lines,”
“planes”) to an interpretation of the axioms of @bg geometry (...) so that the axioms again hold in
the extended interpretation and that the axionmetations between the elements (points, lines,gdan

of the original interpretation are preserved urilerextension. (ibid, 32%Y

This completeness theorem in fact expresses the kard of model maximality as Hilbert's
AC does. Baldus motivation for his reconstructisnthis: By substituting Hilbert's ‘meta-
axiom’ by a less problematic axiom of continuitiietmaximality constraint on the possible
models of the theory does not have to be expresgbth the theory itself. It can instead be

transposed to the (semantic) metatheory of thenasigstent**

239 Beside the discussion of AR, there are also a enmibcritical side-remarks on Fraenkel’s AR, in
particularly on its problematic metatheoretic clotea For a fuller discussion see Schiemer (2000jnpare
also Hintikka (1991).

240 5ee Baldus (1928, 323).

24Lwy/olIstandigkeitssatz. Es ist nicht moglich, zmei Deutung der Axiome der absoluten Geometrie (...)
irgendwelche Dinge (,Punkte”, ,Geraden®, ,Ebenert) hinzuzudenken, dass in der erweiterten Deutung
wieder die Axiome der absoluten Geometrie geltew dass die axiomatischen Beziehungen der Elemente
(Punkte, Gerade, Ebene) der urspriinglichen Deutender Erweiterung erhalten bleiben.” (ibid, 324)

42 Note that this idea goes further than Hilbertisd@ernay’s) own approach in later editionsSstindlagento
substitute AC by an (still ‘metatheoretic’) axiorhlime completeness and present full completensss a
theorem. Compare Awodey and Reck (2002, 12-17hisrpoint.
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It is Baldus’ second and main result concerningohlte geometry that clearly limits (or
better, puts into proper perspective) the previpgsinceived relation between completeness
of models and the categoricity of a theory. In Hills axiomatization of Euclidian geometry
the maximality assumption expressed in AC implies tategoricity of the theory. Baldus
shows that this consequence does not hold in tke o& absolute geometry. Here model
maximality (in Baldus’ specified sense as the netesibility of the domain of points) does
no suffice to effect categoricity. Thus, Baldus f@sas | know) was the first to show in print
that the two kinds of completeness — model maxiywand categoricity - are not generally

equivalent notions:

An axiom system can be complete in the sense ofaffien of completeness without that all its
interpretations are isomorphic, i.e. there exist$-h correlation between them that preserves the

axiomatically fixed concepts and relations. (it8agy**

There can be cases, he argues, in which two modl@elsheory are both maximal in terms of
the set of points but where a 1-1 correlation betwihe respective domains does not preserve
the structure of the models (see ibid, 327-328ald&s’ result is highly intuitive in the light
of non-Euclidian geometries, in particular hypeiboyjeometry. The axiom system of
absolute geometry was in fact originally set upBm}yai as a neutral base theory to which
different inconsistent axioms of parallels could added, thus vyielding different non-
Euclidian theoried** Baldus shows that the completeness property fatefscholds for any
theory that includes absolute geometry, i.e. Ewaidjeometry or hyperbolic geometry, but
not elliptic geometry. In both cases the continaikyom fixes that the possible models have
as the domain Cartesian space over the continudesed fieldR, viz. C(R).

Model maximality is thus a necessary, but not digaht condition for the categoricity of a
theory. Only the addition of an axiom that providesinique characterization of the space
defined by absolute geometry would render the tesutheory categorical (see ibid, 329).
Since the possible axioms for this role, namely Ehelidian axiom of parallels and a

hyperbolic alternative are inconsistent with eatienq i.e. impose inconsistent structures on

243«Ejn Axiomensystem kann im Sinne des Vollstanditdaxioms vollstandig sein, ohne dass dessen samtli
Deutungen isomorph sind, d.h. unter Erhaltung demaatisch festgelegten Begriffe und Beziehungen
elementweise ein-eindeutig aufeinander beziehlgidid, 328)

244 Compare also Torretti (1984, 66).
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its models, the base theory of absolute geometdgnlying both theoretical extensions could
simply not be categoricaf’

The general moral to be drawn from these countenples presented in Baldus (1928) was
that model maximality (and minimality thereof) i®tnequivalent to categoricity. More

precisely, it is the conditional from model maximalko categoricity that does not hold in

general. Constraints in addition to the extremalst@ints concerning the possible models of
a theory have to be specified so that the intradnaif an extremal axiom yields a categorical
theory. Baldus, apart from his discussion of the examples of a complete, non-categorical
theory did not get more specific on how these diomas can be understood in a more general

setting. Here, Carnapldntersuchungeenters into the picture.

3.5.2 Carnap’s understanding in 1928

It was already mentioned that one of Carnap’s maativations for his formal reconstruction
of extremal axioms was to get a clearer picturéheflogical relations between the different
notions of metatheoretic completeness, includinggs¢h of “monomorphism” and
“completeness of the models”. How, then, does bt®ant relate to Baldus limitative result?
According to Hintikka (1991), the relation is oné @omplete misunderstanding of the
original problem on Carnap’s side: Due to a tacihiVersality assumption” in Carnap’s
thought he presupposed in his formal models anriavaand fixed domain of discourse.
Since the domain of a model cannot be extendecegricted in this conception, Carnap
simply missed the point of extremal conditions (egsed by Hilbert and later by Baldus in
terms of thenon-extensibilityof a model’s domain) (ibid, 332). Hintikka obsesviarther that
since “the bone of contention was thus a profouffdrénce in the conceptual assumption of
the two parties, it is perhaps not surprising thatas never consciously acknowledged by the
disputants, either by Baldus or by Carnap.” (ib883) Now, whereas Hintikka's last
observation is correct, | take the reason for tiise that Carnap and Baldaie in fact (both

in Carnap and Bachmann (1936) and in Carnap (20@@Jyessing the same problem as
Hilbert and Baldus. | showed in Chapter 2 that Rkd#d's reading is not a valid

characterization of Carnap’s version of extremaidittons. Moreover, | argued there that

245 A second example for a model maximal, non-categbtheory mentioned by Baldus is the theory of
algebraically closed, absolute algebraic field$witt a characteristic mentioned to him by Emmy ReetSee
(ibid, 328-329).
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once the heterodox character of Carnap’s concetianodels is understood properly, also
his formal reconstruction of extremal axioms shawsbe in accord with mathematical
practice.

What remains to be studied here is the actualioeldietween Baldus’ limitative result and
Carnap’s account. Here again, a closer look at&pasrunpublished work on the topic proves
to be insightful. There is archival evidence tharap was, already in 1928, seriously
engaged in assessing the more general relationebatthe two types of completeness. For

instance, in a letter to Fraenkel dated March 2@81he writes:

| have also started to analyse the question ofdlaion between the axiom of restriction, the axio
of completeness and monomorphism. The treatmetiteohxiom systems as propositional functions
greatly facilitates the investigation. (RC 081-G&)*%°

Unfortunately, it seems impossible to decide on Itlasis of Carnap’s documents in the
Nachlasswhether or not he was aware of Baldus (1928) wherking on the subject in his
manuscript for Part 2 obntersuchungef®’ Nevertheless, a closer look at what Carnap
thought about the relation of completeness of nedal categoricity in his projected Part 2
Is quite revealing. It shows that Carnap was i fially aware that the addition of an extremal

axiom to a given base system was not a sufficiednms to yield categoricity.

Before turning to Carnap’s own results on this poirecall again his convention for
discussing extremal constraints on the models ofyaom system. His last remark in the
letter to Fraenkel that the conception of axionteys as propositional functions simplifies
the study of extremal axioms is central here. Tlanneconcept introduced by him to study
extremal constraints is that of a model’s structdfén Untersuchungena model’s structure
characterizes a model in the sense that it fix@ssamorphism class (Carnap (2000, 74)).
Accordingly, an axiom system - expressed as a @itpoal function fR, S T) with primitive
relationsR, S T - has a “structure number” referring to the nursbardifferent structures it

defines. Each of these structures fixes one isohiemp class of models. An axiom system

246 4Ich habe auch angefangen, die Frage des Zusanangeh zw. Berchr.Axiom, Vollst.Ax und Monomorphie
zu untersuchen. Die Behandlung der AS als AussagBéunen erleichtert die U. sehr.” (RC 081-01-26)

47 |n an attached note to the manuscript titled “Reiomatics, to read” (RC 081-01-30) he mentionsyonl
Baldus (1927), a paper on the Archimedean axiogeometry, but not Baldus (1928). Overall, | tak ibe
rather unlikely that Carnap was aware of Baldu2& 3vhen working on his manuscript.

248 Compare 1.3.2 for a more detailed account of Gasriatructuralist’ conception of axiom systemse €2.1
for his notion of a ‘model structure’.
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with only one structure is categorical (“monomorghi a system with more than one
structure non-categorical (“polymorphic”) (ibid,8)2

We also saw in Section 2.2.2 that the “extremabldomns” imposed by minimal and maximal
axioms were also cashed out in terms of structanesstructure extensions (and restrictions
respectively): In Part 2 (as well as in Carnap Badhmann (1936)), a segményr of this
class of structures of an axiom system can beittsdy the relation of a being a “proper
substructure®*® “Beginning structurésof f are those belonging to the domainTef~ “End
structure$ of f are those belonging to the rangeTgf. Finally, “‘isolated structurésare the
structures of f not belonging ik (see (Carnap and Bachmann 1981, 75-R€)081-01-08).
Accordingly, the minimal structuresof f imposed by a minimal axiom restrict the pibo$s
models of f to instances of the beginning- andaiteml structures;maximal structurés
imposed by maximal axioms fix the models to beanses of either the end- or the isolated
structures of f (see (ibid, 76); RC 081-01-6%).

Given this structural account of axiom systems,came now turn to Carnap’s understanding
of the general logical relation of completenessrmfdels and categoricity. In a document
titted “Monomorphism by BA [axioms of restrictiomr VA [axioms of completeness],” he
discusses the general conditions which a base agystem has to fulfill so that an extremal
axiom implies the categoricity of the resulting teys (RC 081-01-09). For the case of
maximal axioms, the base system in question hgsossess among the different possible

structures either:

() a single undividable isolated structure andundividable end structumer
(ii) a single undividable end structure and noasedl structure (RC 081-01-09).

249 A structure S is called gtoper substructureof an existing structur@, if SandT are not identical and there
are at least two modeld andN, whereM is a “proper part” oN andM satisfiesS andN satisfiesT. See RC
081-01-06 and Carnap and Bachmann (1981, 75).

20 Note that Carnap’s reconstruction of extremal dtionlis cast in terms of model’s structures amdcttre
extensions and not, in terms of models and modehsion. It is important to emphasize here agantthis

does not commit him to a nonstandard understarafitige informal use of models and model extensfonad

in Hilbert, Baldus, and others. As | show in Sett®5, Carnap’s notions of structure extensionseaticemal
structures fully correspond to their informal canparts in Hilbert and others, provided that Caishpterodox
account of models is understood properly.
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Put in terms of models, a maximal axiom adds up tategorical axiomatization if the base
axiom system is satisfied by either exactly one imak model or one structurally non-

extensible modett 22

How does this account relate to the results in Bald928)? It is clear in both cases that the
addition of an extremal axiom was not conceivedaasufficient condition to yield the
categoricity of a theory. For Carnap, a maximabaxieffects categoricity only if it restricts
the set of admissible models to either an isolaieda single maximal model. This is
essentially what Baldus expresses in his examplealigfolute geometry. Translated in
Carnap’s terms, the point to see there was thatathem system allows different and
independent proper substructures, say a “Euclidéand’ a “hyperbolic” substructure. Baldus’
axiom of continuity thus restricts the class of misdo the respective maximal models, i.e. to
the models of the respective maximal structureamhesubstructure. Since the condition (ii)
of a single maximal structure is nanet here, adding a maximal axiom to the base system
does not imply categoricity. As we have seen, Iy @ets categorical if an additional axiom,
say the axiom of parallels, is added to the theloryhis case, the resulting base axiom system
(taken without a maximal axiom) possesses only prgper substructure, namely the
“Euclidian” structure. Since Baldus’ axiom of cantity restricts the possible models to the
model(s) of the maximal structure, the theory seffi to capture its interpretations up to
isomorphism.

Given this, Carnap’s account in 1928 can be comst@s a formal equivalent to Baldus
result. In fact, it allows getting a better grip thre difference described informally by Baldus
between the different inconsistent structures witithsolute geometry. Note that the issue of
extremality constraints and categoricity is takgnagain in Carnap and Bachmann (1936),
however this time with explicit reference to Bald(k928). Carnap and Bachmann, in
discussing Baldus’ examples note here that whetkasinference from categoricity to

completeness of models is trivial,

51 An analogue case can be found a few pages laténdaase of maximal structure axioms. Here, agtlie
an axiom yields categoricity if among the possinledels there are either (i’) a single isolatedcitre
(dividable or undividable) and no end structuréiira single end structure (dividable or undividd@) and not
isolated structure (RC 081-01-11).

%2 Note that this result is closely related to Cammapcond notion of completeness extensively disetign Part
1 of Untersuchungemamely “non-forkability” (Nichtgabelbarkefy. It states, in modern terms, that a the®ry
is semantically complete if there is no sentefi@xpressible ifT such that botid 0{ ¢} andT O{-¢} are
satisfiable (see Awodey and Reck (2002, 4)). Gibés) one could say that for Carnap, a theory tegaarical iff
it is complete in the models andn-forkable
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The converse does not follow, however. The nonexc of extensions for the models of an axiom
system does not at all imply the monomorphism ofiom system. (Carnap and Bachmann (1981,
82))

For Carnap in 1936, the inference in this directioight fail due to the existence of
“incomparable models, i.e., such that neither cansbmorphically mapped into the other.”
(ibid, 82) Given the case of absolute geometrywak as Noether’s algebraic example), the
authors go on to specify a general condition undleat circumstances the addition of a

maximal axiom implies categoricity:

An axiom system closed by a maximal axiom is mongic if among the models of the body
axioms there is oneinto which all others(that do not belong to endlessly increasing stmact

sentences of the body axioneg)n be isomorphically mappegibid, 82, my emphasiSy

Two remarks on this passage are in order heret, Bueye is a slight change in the treatment
of model maximality compared to Carnap’s originet@unt inUntersuchungeninstead of
speaking of end (and isolated) structures, the mabtly of a model is expressed here in
terms of its embedding properties.

Second, and more important for our discussion, hote the stronger notion of completeness
of modelsfor a categorical theorys stated here. Model maximality in this sense ban
paraphrased in this way: a modiélis (up to isomorphism) thenique modebf T that admits
no proper extension to a moddl of T. Two characteristics dfl are expressed here: (a)
uniqueness and (b) non-extensibility. Now, the uaigess condition had traditionally been
understood as a direct consequence of the nonshiily of a maximal model, for instance
in Hilbert’s axiom system for Euclidian geometryowever, as we have seen, this inference
does not hold in absolute geometry.

A similar example can be given for the complemagntase of minimal axioms. The relation
between (a) and (b) is not completely settled im@g’s original example of minimal axioms,
Fraenkel's AR. Already in von Neumann (1925), théiest critical discussion of Fraenkel’s

axiom candidate, doubts were raised concerningrib@el minimality effected by AR. More

53 Compare also the following related passage: “&an®le, in monomorphic, closed axiom systems makkima
axioms are equivalent with the positive requirentbat every model of the axiom body can be isomicgily
mapped intdv.” (Carnap and Bachmann 1981, 82)

%4 See Ehrlich (1995) for a closer discussion of plisnt.

144



specifically, von Neumann argued that Fraenkelsppsed method of devising a model via
the intersection of all possible models need naessarily lead to a single minimal model
satisfying the other axioms and thus to a categbsxiomatization (ibid, 405>

It is in this light, | think, that Carnap’s and Bak’ more general limitative results on
extremal axioms have to be seen: both authorsssthesfact that whereas (b) is generally
secured by an extremal axiom, (a) is not. Conditimncan also hold for structurally different
models of an axiom system. Now, in Carnap and Barim{1936), the conceptual distinction
between (a) and (b) is drawn explicitR?.Nonetheless, we have seen that already in 1988 thi
distinction is clearly reflected in Carnap’s accbohextremal structures. In addition to the
Carnap’s remarks in (RC 081-01-09) discussed abtivis, becomes obvious from a
distinction he draws throughout the manuscript eetw“deducing” an extremal axiom from
a given axiom system and “applying” it to the axiggstem (e.g. RC 081-01-05). Briefly, a
maximal axiom can be deduced in the case thatyters possessesie or moranaximal (or
isolated) structures. In these cases, the com@ssenf models is not necessarily an exclusive
property of a single model. Thus, according to @prnit makes no sense to “apply” a
maximal axiom in order to effect categoricity. lantrast, a maximal axiom should only be
applied to a system if it helps to fix one uniquaximal model as the intended model of the
theory (as is the case in Euclidian geometry) (isieke).

3.6 Conclusion

As pointed out by Hintikka, there was a “subsequdgierioration of the discussion” on the

general character of extremal axioms after Bald@28) and Carnap and Bachmann (1936)
(Hintikka 1991, 334). This is an effect, howeverf Garnap’s misguided semantic

understanding of extremal condition. To the cowntram this chapter | aimed to show that

Carnap - in higntersuchungefrom 1928 and later on - not only presented a &raccount

of extremal axioms that closely captures the infdreonceptions of model maximality and

minimality expressed in his mathematical sourcegstmmportantly Hilbert's AC and

2% According to von Neumann, this is due to the fhat the range of the generalization over all (suimdels
of a theory involved in the intersection approaepehds on which background set theory is assuniédrdnt
(or better differently interpreted) background syss might allow different ranges of submodels. Give
Fraenkel's paring down method of specifying a madimodel, this may lead to different results whédfecent
systems are assumed as the background theory 4,
¢ Compare again how model maximality is introduaed936: The models of an axiom systémt is closed
by a maximal axiom possess a certain completerregefy in thatheycannot be extended without violating
the original axiom system.” (ibid, 82, my emphasis)
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Fraenkel's AR. Moreover, he (together with his datellaborator Bachmann) also established
a more refined picture of the connection betweencttmpleteness of models and categoricity
that was in full agreement with Baldus result. Hinawhereas Carnap’s type-theoretic
account of extremal axioms has to considered aslglbeterodox and problematic from a
modern logical perspective, it would be a mistakemiake the infer ex-post that is was not
conceived in earlier days as a valid formal expiora Two references should suffice to make
this point. In a later paper on Hilbert's AC (Beysa(1955)), Bernays after mentioning the
problematic logical character of the axiom staked:t“That this complication does not, on the
other hand, hinder the logistic formalization o thxiom of completeness was shown by R.
Carnap and F. Bachmann (...) [in Carnap and Bachr(886)].” (ibid, 219>’

Second, in a FraenkelBoundations of Set Theoffraenkel & Bar Hillel 1958), Fraenkel
referred to Carnap’s attempts to formalize AR amimimal axiom in HOL, concluding that
“True, recently (...) Carnap proposed a vindicatidrthis axiom of restriction, and Carnap
formulated it symbolically, as an axiom of a minlmeodel (...).” (ibid, 90¥°® In an attached
footnote to the passage cited above he stressedntition of a restriction condition in
Carnap’s formal presentation as an adequate vedidiis own informal treatment of AR:
“The pith of the axiom is then the demand that partial relation”e should fulfill the
conditions expressed by the other axioms.” (Frale®kgar Hillel 1958, 90)

These two references by Bernays and Fraenkel fneni950s clearly do show that Carnap’s
formal account of extremal axioms was, at leasbigethe eventual turn to contemporary
model-theoretic semantics, generally consideresl sevious contribution to the (meta-)theory

of formal axiomatics.

#7«Dass andererseits diese Komplikation die logistisFormalisierung des Vollstandigkeitsaxioms nicht
hindert, wurde von R. Carnap and F. Bachmann gegeiy[in Carnap and Bachmann (1936)].” (ibid, 219)
28 The formalization referred to here is{)((X)(y)(Hxy O Exy). Kon(H) O (X)(y) (Hxy ~ Exy)]’ from (Carnap
1954). As already intersuchungeian Carnap and Bachmann (1936), Fraenkel's acafuntninimal
property codified in AR is symbolized here by thse wf higher-level binary relations (representiiftecent
possible membership relations) and the notionmframal partial relation here: “There exists no fpeo partial
relation of E that also satisfies the propertiesest in axioms Al to A8 [GS: i.e. ZF].” (Carnap #9354)
Compare also Schiemer (forthcoming).
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Outlook

Carnap’s project ofJntersuchungemvas eventually abandoned as a direct reactioritte(®
incompleteness theorems and to Tarski’'s metalogicak (see Awodey and Carus (2001)
and Goldfarb (2005)). With the subsequent turn tpuaely syntactical investigation of
mathematics inLogical Syntax of Languagalso the explicit semantic framework of his
“general axiomatics” was given up. This holds imtigalar for his notion of a formal model.
The concept is not mentioned in Carnap (1934). Maurisingly, also his later work on
semantics, most notably the three-volume book pt§eries in Semanticsemains silent on
the notion. Instead of discussing formal modelsyn@a introduces here the substitute
concepts of “state of affairs,” and “state desooipt” (see Carnap (1942) and (1947)).

It is only in his very late work, in his ‘Repliené Expositions’ in the Schilpp-volume
(Schilpp (1963)) that the notion is eventually tesduced in print. In 810 of the book - titled
“My conception of semantics” - the following defiioin of ‘model’ is given:

A model for a language (in the extensional sensémaidel” customary in mathematics, as in the
definitions by Tarski, Kemeny, and others) is asigrament of extensions of the following kind: To
every type of variables a class of entities of thige is assigned as the range of values, anddry ev

primitive constant of the type system an extensioihe same type is assigned. (ibid, 902)

The conception outlined here essentially conformmthe way formal models are understood
today. Interestingly, following a remark on thertstture’ of a model, Carnap also refers to
his early work on axiomatics here. In an attachedtrfote he adds: “For more exact
definitions, especially with respect to axiom sysse see Carnap and Bachm§h83qg.”

This reference gives the impression of a certaimticaity between his original theory of
models for axiomatic theories and the late starndaddaccount mentioned in 1963. However,
in light of the results of the present work, thi®ws to be more of a retrospective idealization
than an adequate account of the evolution of tlmson in his work. One of the main
objectives in the dissertation was to point out sghexactly his early theory is heterodox
compared to modern model theory. In particulawnas to show that the conception of models
underlyingUntersuchungemand also Carnap and Bachmann (1936) differs sogmifly from
the above specification of “model(s) for a language

The results gained in the present work open upilpiiges for further research in Carnap

scholarship. In particular, it would be worthwhile retrace Carnap’s evolving views on
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semantics in general and on models in particuldisrsubsequent work up to Schilpp (1963).
As | see it, at least three pressing questionsstilteopen for closer discussion: (1) Which
influences led to the shift from Carnap’s subsiidl conception of models to a modern
extensional understanding in terms of an “assigriroéextensions” outlined above? (2) At
what point did he change his ‘universalist’ viewaopure type-theoretic language in favor of
the use of schematically understood languages math-logical terminology? (3) Finally,
when did Carnap adopt the modern notion of domanmtion for models. Addressing these
questions would call for a closer study to the felwcuments (mostly in informal
correspondence and in discussion notes fromNhbehlas$ where the notion of models
resurfaces in Carnap’s later philosophy. This ideki(among other things) his notes of the
Harvard discussions with Tarski and Quine from 194Gs well as his correspondence with
Kemeny and Bar-Hillel on issues in inductive logicthe early 1950s. Investigation of these
discussions will allow a deeper understanding @& tonceptual transitions in Carnap’s
thinking about formal semantics throughout hisllattual career. This, however, is work for

another day.
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Abstract (German and English)

In jingerer Zeit hat sich ein verstarktes Interemselen historischen und technischen Details
von Carnaps Philosophie der Logik und Mathematikvekelt. Meine Dissertation knlpft an
diese Entwicklung an und untersucht dessen fritte farmative Beitrdge aus den spaten
1920er Jahren zu einer Theorie der formalen Sekian@arnaps zu Lebzeiten
unveroffentlichtes Manuskriptntersuchungen zur allgemeinen Axiomatikarnap 2000)
beinhaltet ein Reihe von erstmals formal entwiakelDefinitionen der Begriffe ,Modell’,
,Modellerweiterung’, und ,logischer Folgerung’. Di@rliegende Dissertation entwickelt eine
logische und philosophische Analyse dieser sendrdrs Begriffsbildungen. Dartber hinaus
wird Carnaps frihe Semantik in ihrem historiscleliektuellen Entwicklungskontext
diskutiert. Der Fokus der Arbeit liegt in der Themi@rung einiger interpretatorischer Fragen
zu dessen implizit gehaltenen Annahmen beziglich\V@eiabilitéat des Diskursuniversums
von Modellen sowie zur Interpretation seiner typle@eretischen logischen Sprache. Mit
Bezug auf eine Reihe von historischen Dokumenten@arnaps Nachlass, insbesondere zu
dem geplanten zweiten Teil dddntersuchungenwird erstens gezeigt, dass dessen
Verstandnis von Modellen in wesentlichen Punkteterdoglox gegentiber dem modernen
Begriffsverstandnis ist. Zweitens, dass Carnap gorer ,nonstandard’ Interpretation der
logischen Hintergrundtheorie fur seine Axiomatiksgeht. Die Konsequenzen dieser
semantischen Annahmen fir dessen Konzeptualisiemamg metatheoretischen Begriffen
werden nédher diskutiert. Das erste Kapitel entwickae kritische Analyse von Carnaps
Versuch, die axiomatische Definition von Klassen woathematischen Strukturen mittels des
Begriffs von ,Explizitbegriffen’ formal zu rekonstieren. Im zweiten Kapitel werden die
Implikationen von Carnaps frihem Modellbegriff fsieine Theorie von Extremalaxiomen
naher beleuchtet. Das letzte Kapitel bildet eineskDssion der konkreten historischen
Einflusse, insbesondere durch den Mengentheoretidaiaham Fraenkel, auf Carnaps

formale Theorie von Minimalaxiomen.

In recent years one was able to witnassintensified interest in the technical and histir
details of Carnap’s philosophy of logic and mathegesa Iln my thesis | will take up this line
and focus on his early, formative contributions aotheory of semantics around 1928.
Carnap’s unpublished manuscriphtersuchungen zur allgemeinen Axiomd@arnap 2000)
includes some of the first formal definitions oetgenuinely semantic concepts of a model,

model extensions, and logical consequence. Inigsedation, | provide a detailed conceptual
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analysis of their technical details and contexaglCarnap’s results in their historic and
intellectual environment. Certaimterpretative issues related to his tacit asswmngti
concerning the domain of a model and the semanbfidgpe theory will be addressed. By
referring to unpublished material from Carnapachlassl will present archival evidence as
well as more systematic arguments to the view @ahap holds a heterodox conception of
models and a nonstandard semantics for his typerdhe logic.

Given these semantic background assumptions,ithpact on Carnap’s conceptualization of
certain aspects of the metatheory of axiomatic ribeawill be evaluated. The first chapter
critically discusses Carnap’s attempt to explicate of the crucial semantic innovations of
formal axiomatics, i.e. the definition of classe$ structures, via his notion of
“Explizitbegriff’. The second chapter analyses the impact of Gasnearly theory of model
for his theory of extremal axioms. The final chapteviews the mathematical influences,
most importantly by the set theoretician AbrahamelRkel on Carnap’s specific formalization

of minimal axioms.
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