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Summary 

 

Neural control of the female mating decision in Drosophila melanogaster 

Animals make behavioural decisions based on their internal physiological states and the sensory 

information they receive from outside world. For most species, whether and with whom to mate 

are amongst the most critical decisions they have to make in their life time. In Drosophila, 

although males usually initiate courtship and display an elaborate courtship ritual, it is the female 

who makes the final decision whether or not mating occurs. Both her own internal physiology 

and the external cues from the courting male are critical inputs to the female's mating decision. 

Courtship song is the primary sensory cue provided by the male to stimulate the female’s 

receptivity. In order to specifically study the effect of courtship song on females, in the absence 

of any confounding cues from the male, we have established a system which allows us to 

precisely monitor a single fly’s locomotion while providing defined acoustic stimuli to it. Female 

flies change their locomotion in response to courtship song, even when there is no male present, 

but the pattern of change is dependent on the female's mating status and sexual maturity. Mature 

virgin females slow down upon hearing the song, which suggests acceptance of a fictive courting 

male. In contrast, immature virgins and mated females speed up in response to courtship song. 

The mating switch in song response is mediated by the sex peptide receptor. Despite the 

differential responses, females in different states are all tuned to the conspecific interpulse 

interval, suggesting that song recognition itself is not dependent on either sexual maturity or 

mating status. In addition, we could show that fruM

 

, the male-specific isoform of fruitless, blocks 

female song responses as well as other female sexual behaviours. To identify the neural 

substrates of female mating behaviour, we also performed a neuronal silencing screen for 

receptivity with a collection of GAL4 lines. Out of this screen, lines which show post-mating-

like behaviour in virgins have been identified. The arborization pattern of the neurons labeled by 

these lines and GRASP signals with the sex peptide sensing neurons in the reproductive tract 

suggest they are likely to relay information of female mating status to the central brain. 
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Zusammenfassung 

 

Neuronale Kontrolle des weiblichen Paarungsverhaltens in Drosophila melanogaster 

Tiere fällen in ihrem Verhalten Entscheidungen, die sowohl von ihrem internen physiologischen 

Zustand als auch von den von der Aussenwelt kommenden sensorischen Informationen abhängen. 

Für die meisten Arten ist die Entscheidung, ob und mit wem die Paarung vollzogen werden soll 

eine der wichtigsten Entscheidungen im Leben. In Drosophila beginnen die Männchen 

gewöhnlich mit der Balz und stellen ein aufwändiges Balzverhalten zur Schau. Es ist jedoch das 

Weibchen, das die endgültige Entscheidung darüber fällt, ob es zur Paarung kommt. Diese 

Paarungsentscheidung des Weibchens wird von ihrem physiologischen Zustand und den 

Signalen, die vom balzenden Männchen ausgehen, beeinflusst. Der Balzgesang ist das 

vorrangige sensorische Signal, das vom Männchen gesendet wird, um die Empfänglichkeit des 

Weibchens zu erhöhen.  

In der vorliegenden Arbeit wurde experimenteller Aufbau entwickelt, der es ermöglicht, präzise 

die Lokomotion einer einzelnen Fliege zu messen, während ein definierter auditorischer Stimulus 

gegeben wird. Auf diese Weise kann spezifisch die Auswirkung des Balzgesangs auf das 

Weibchen in Abwesenheit anderer störender, vom Männchen ausgehender Signale untersucht 

werden. Weibliche Fliegen verändern ihr Lokomotionsmuster in Reaktion auf den Balzgesang 

auch in Abwesenheit eines Männchens. Die Art und Weise der Veränderung hängt dabei vom 

Verpaarungszustand und der sexuellen Reife des Weibchens ab. Reife, unverpaarte Weibchen 

verlangsamen ihre Lokomotion, wenn sie den Balzgesang hören, was die Akzeptanz eines 

fiktiven, balzenden Männchens nahelegt. Im Gegensatz dazu beschleunigen nicht ausgereifte 

unverpaarte Weibchen und bereits verpaarte Weibchen ihre Lokomotion in Reaktion auf den 

Balzgesang. Diese Verhaltensänderung in der Reaktion auf den Balzgesang ist vom Sex Peptide 

Rezeptor abhängig. Trotz der unterschiedlichen Reaktionen sind Weibchen in den verschiedenen 

Zuständen alle auf das konspezifische Interpulsintervall des Balzgesangs eingestimmt, was 

darauf schliessen lässt, dass das Erkennen des Balzgesangs als solchen weder von der sexuellen 
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Reife noch dem Verpaarungszustand abhängt. Des weiteren konnten wir zeigen, dass fruM

 

, die 

spezifisch im Männchen auftretende Isoform von fruitless, die Reaktion des Weibchens auf den 

Balzgesang sowie andere, spezifisch  weibliche Verhaltensmuster aufhebt. Um die neuronale 

Basis des weiblichen Paarungsverhaltens zu identifizieren, wurde ein neuronaler Silencing 

Screen mit einer Sammlung von GAL4 Linien durchgeführt, in dem die Empfänglichkeit des 

Weibchens getestet wurde. In diesem Screen wurden GAL4 Linien gefunden, für die unverpaarte 

Weibchen das Verhalten verpaarter Weibchen zeigen. Die Arborisierungen der Neurone, die in 

diesen Linien markiert werden sowie die GRASP Signale mit den Sex Peptide sensitiven 

Neuronen in den Reproduktionsorganen weisen darauf hin, dass diese Neurone vermutlich 

Informationen über den Verpaarungsstatus des Weibchens in zentrale Hirnstrukturen senden. 
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Introduction 

Overview 

All animals, even those with relatively simple brains, need to constantly choose appropriate 

actions based on sensory stimuli and internal physiological states. In some cases, sensory inputs 

convey a reflexive behavioural output. For example, one withdraws the arm immediately after 

touching a hot surface. In other cases, multiple sensory cues and internal states are processed and 

integrated to initiate higher order decision making. For example, a dog chooses whether to eat or 

not when food is provided and this decision is made based on quality of the food and satiety of 

the dog itself. It is a fascinating question to ask how neural circuits execute such action selection 

by processing and integrating information representing both outside world and internal states. 

With relative simplicity of its nervous system, robustness of its behaviours, accessibility in 

laboratory and state-of-art genetic tool box to dissect its neural circuits, the fruit fly Drosophila 

melanogaster provides a great opportunity to address this question. 

Sexual behaviour in Drosophila 

The brains of Drosophila are relatively small containing ~100,000 neurons compared to 

hundreds of billions in the human brain, yet these animals perform complex and motivated 

behaviours (Sokolowski 2001; Krashes, DasGupta et al. 2009). One of the most well-studied 

behaviours is the male courtship behaviour (Sturtevant 1915; Spieth 1974; Hall 1994). Male flies 

are attracted by visual or acoustic cues caused by a female’s movement (Tompkins, Gross et al. 

1982; Ejima and Griffith 2008) and pheromonal cues from a female’s cuticle (Amrein 2004). 

Males initiate courtship by following and orienting towards his target female. If the female is 

stationary, he taps her with his forelegs. He usually proceeds by extending one of his wings to 

produce a species-specific song while following or circling around the female. An unreceptive 

female will decamp or reject the courting male by kicking, flicking wings or extruding her 
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ovipositor. If the female is receptive, she will slow down her locomotion to allow the male to 

lick her genitalia with his proboscis and attempt to copulate by bending his abdomen (Figure 1). 

If the attempted copulation fails, the male will cease for a moment and start courting again with 

orienting or singing. After several rounds of these sequential steps, eventually the female will 

stop and assume an appropriate posture to allow the copulation to happen or keep rejecting the 

male until he gives up (Greenspan and Ferveur 2000). This elaborate ritual performed by male 

flies is innate, which means a male fly in isolation after birth can perform all the steps without 

any learning from other males.  

 

Figure 1. Courtship ritual of Drosophila melanogaster 

(A-F) Courtship steps sequentially performed by a male fly. When a male fly indentifies a female, (A) he starts the 

courtship by orienting towards her, (B) then taps her with his forelegs, (C) and sings a species-specific courtship 

song by vibrating one of his wings. (D) He proceeds by licking her genitalia with his proboscis and finally, (E) curls 
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his abdomen in an attempt to copulate with her. (F) If the female is receptive, the copulation happens. Adapted from 

(Sokolowski 2001). 

 

After decades of investigation by many labs, numerous mutants affecting different aspects of 

male courtship have been isolated (Gill 1963; Castrillon, Gonczy et al. 1993; Hall 1994; 

Yamamoto, Jallon et al. 1997). Among those, most have been found to be defective in general 

functions like vision or rhythm, etc. Therefore the observed courtship defects are likely the 

results of a more general defect in neural functions. Some which “specifically” affect courtship 

behaviour were mapped to a locus named as “fruitless” (Gailey and Hall 1989). The gene was 

independently cloned by two groups and it was revealed to be very complex with four promoters 

and eight exons (Ito, Fujitani et al. 1996; Ryner, Goodwin et al. 1996). Of particular importance, 

the S exon driven by P1 promoter has a binding site of the sex-determination factor Transformer 

(Tra) and its cofactor Transformer-2 (Tra-2), which leads to sex-specific splicing of the S exon 

containing transcripts (Heinrichs, Ryner et al. 1998; Lam, Bakshi et al. 2003). In males, these 

transcripts splice at the default donor site resulting in fusion with common exons shared by both 

sexes and can be translated into proteins called FruM

By mutating the Tra binding site or the splicing donor site in the S exon, flies constitutively 

splicing in default male or female way were made by homologous recombinations. The 

behavioural phenotypes of these flies suggest that Fru

, whereas in females the corresponding 

transcripts splice alternatively due to the binding of Tra, resulting in a premature stop codon that 

leads to no detectable protein (Usui-Aoki, Ito et al. 2000).  

M is required in males for courtship 

behaviour and is sufficient to drive females to court when ectopically expressed in females 

(Demir and Dickson 2005). FruM is expressed in about 1500 neurons in a male fly, which 

represents about 2% of the nervous system. GAL4 knocked into the S exon recapitulates the 

expression pattern of endogenous FruM.  Blocking neurotransmission of these neurons selectively 

during adulthood leads to loss of courtship behaviour in male flies (Manoli, Foss et al. 2005; 

Stockinger, Kvitsiani et al. 2005), which suggests FruM expressing neurons form the key 

“circuits” for the male courtship behaviour. Recently a lot of effort was focused on further 

dissecting functions of subsets of fru circuits and some progresses have been made (Koganezawa, 

Haba et al. ; Manoli and Baker 2004; Kurtovic, Widmer et al. 2007; Datta, Vasconcelos et al. 
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2008; Kimura, Hachiya et al. 2008), although it is still early days to solving the problem how fru 

circuits give rise to such complex yet well controlled behaviours. 

To date, the majority of studies on mating behaviour in Drosophila have focused on males; the 

female behaviour has often been viewed as relatively passive and subtle. Although males seem to 

play a more active role in mating, it is the female who makes the final decision whether mating 

occurs or not. Numerous factors contribute to the female’s mating decision. External factors 

include environmental factors like temperature and humidity, and more importantly, the signals 

emitted from the courting male which are essential for females to assess the male quality. 

Internal factors include sexual maturity and mating status of females. It has also been suggested 

that previous experience of local male quality can modulate female mating decision (Dukas 

2008). How does the brain of a female fly sense these external and internal signals and use them 

to guide the mating decision? It is an interesting biological question by itself and also an 

attractive paradigm for understanding the neural mechanisms of information integration and 

decision making (Dickson 2008). 

Female mating decision 

The mating costs for males and females are asymmetric. Unlike other species in which males 

contribute to their offspring by parental care or nutrition in the ejaculate (Markow and Ankney 

1984), in Drosophila melanogaster, the major investment of males is the effort of an elaborate 

courtship display. It is usually of a male’s interest to mate frequently using inexpensive sperm to 

maximize his reproductive success. For the females, egg production competes for nutrition with 

somatic growth and maintenance and mating itself has been suggested to be costly (Fowler and 

Partridge 1989; Chapman, Liddle et al. 1995). So it is important for the females to carefully 

choose males with high reproductive fitness. This is achieved by evaluating the signals emitted 

from the courting male during the courtship ritual. To maximize her reproductive success and 

reduce the cost, females also need to coordinate mating with their reproductive physiology. This 

needs tight regulation of mating behaviour in pace with oogenesis, ovulation and sperm storage.  

Therefore, every time a female fly encounters a courting male, the decision of whether to mate 
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with him is crucial to her reproductive success and this decision has to be made based on both 

her internal physiological states and the external cues from the courting male (Figure 2).  

 

Figure 2. Female mating decision: the elements and potential neural substrates. 

The female mating decision relies on multiple variables that include sensory inputs from the courting male 

(pheromones and courtship song) and her own physiological states (sexual maturity and mating status). Parentheses 

indicate relevant neurons or regions. OSNs, olfactory receptor neurons; GRNs, gustatory receptor neurons; JONs, 

Johnston’s organ neurons; AMMC, antennal mechanosensory and motor center. Adapted from (Dickson 2008) and 

minor modifications were made. 

 

Manning suggested there are two separate processes controlling female sexual behaviour. The 

first is “switch on”, which determines whether a female is “accessible” to the courtship of males. 

The second is “courtship summation”, which summates the various stimuli from a courting male 

until a critical level is reached, when the female allows him to mount (Manning 1967a). The 

“switch on” is largely controlled by the internal physiology of females including sexual maturity 

and mating status. The “courtship summation” depends mainly on acoustic and pheromonal cues 

from courting males (Figure 2). Although the neuroethology of how these factors contribute to 
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the female mating decision has been explored extensive in 60s and 70s, the genetic and neuronal 

mechanisms of these processes only started to emerge in recent years.  

Internal factors 

Sexual maturity 

It has been known for a long time that female flies do not mate until several hours after eclosion. 

By two days of age, females become fully receptive, which means if they are paired individually 

with males, mating happens in short period (normally below 30 minutes). Manning found that 

the receptivity of female flies increased gradually from almost 0 to 100 percent between 24 and 

40 hours after eclosion (Manning 1967a). Interestingly, the courtship time, which is the time 

from courtship initiation to copulation, showed a bimodal distribution with one group copulating 

within 15 minutes and another group having no copulation in 1 hour. This suggests a female fly 

is either fully receptive or unreceptive, which is independent of the amount of courtship from the 

male suitor (Manning 1967a). Therefore, for each individual female, it seems that a sudden 

transition in receptivity happens between 24 and 40 hours after eclosion (Manning 1967a). 

The mechanism of this change is still largely unknown. However, juvenile hormone has been 

implicated in this process (Ringo 1996). By inhibiting the development of adult characters, 

juvenile hormone plays an important role in insect metamorphosis (Wyatt and Davey 1996). 

Juvenile hormone becomes active again early in adulthood where it is secreted from the corpora 

allata and functions to stimulate oocyte development (Wyatt and Davey 1996). There are 

multiple lines of evidence that suggest juvenile hormone is involved in the development of 

female sexual receptivity. First, the development of sexual receptivity, ovarian maturation, and 

corpus allatum activity in early adulthood are temporally correlated (Ringo 1996). Second, 

topical application of juvenile hormone accelerated the onset of receptivity as did implanting 

active corpora allata in pupae (Manning 1966). Third, mutant flies of apterous gene, which is 

defective in juvenile hormone production, had very low receptivity (Ringo, Werczberger et al. 

1991). However, juvenile hormone seems not to control receptivity through stimulating the ovary 
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growth because females on a diet lacking protein matured normally in sexual receptivity while 

their ovary growth was arrested (Manning 1967a).  

Mating status 

Drosophila melanogaster females become refractory to further mating for 8-10 days after mating 

with wild-type males (Manning 1962). This process is accompanied by a dramatic increase in 

egg laying rate and known as the “post-mating switch” (Kubli 2003). The regain of receptivity is 

associated with depletion of sperm by fertilization and egg-laying (Manning 1967a).  

Two distinct mechanisms were proposed to cause the post-mating switch: the first is “copulation 

effect”, which lasts for 1-2 days when females are mated with spermless males; the second is 

“sperm effect”, which lasts for 8-10 days until sperm is exhausted in wild-type flies (Manning 

1962; Manning 1967a). During copulation, there are about 80 proteins and peptides in the 

seminal fluid transferred to females together with sperm (Chapman and Davies 2004; Walker, 

Rylett et al. 2006). Injection of either of two peptides from the male seminal fluid, sex peptide 

(SP, also known as Acp70A) or DUP99B, into the female hemolymph induced a switch in 

receptivity and egg laying rate for 1-2 days (Chen, Stumm-Zollinger et al. 1988; Saudan, Hauck 

et al. 2002). Ectopic expression of SP in female fat bodies or under control of a heatshock 

promoter also leads to unreceptivity and high egg laying rate (Aigaki, Fleischmann et al. 1991). 

Another protein ovulin (also known as Acp26Aa) was shown to stimulate egg laying rate on day 

1 after mating (Herndon and Wolfner 1995; Chapman, Herndon et al. 2001). However, only 

females mated with males lacking SP showed impaired post-mating switch from 12 hours on 

after mating, which suggests SP is required for the long-lasting “sperm effect” (Chapman, 

Bangham et al. 2003; Liu and Kubli 2003).  

SP is synthesized initially as a 55-amino acid precursor consisting of a 19-amino acid signal 

peptide that is cleaved off when it is secreted from the accessory glands (Cirera and Aguade 

1997). SP binds to sperm tail with the N-terminal end and is transferred to the female 

reproductive tract during copulation. The C-terminus of the peptide gets cleaved off from sperm 

tail in the female reproductive tract and released gradually to induce the long-lasting post-mating 
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switch (Schmidt, Choffat et al. 1993; Peng, Chen et al. 2005a). Some unbound full length SP can 

also be detected in the hemolymph of mated females and is cleaved there (Pilpel, Nezer et al. 

2008). The binding of SP to sperm explains the discrepancy concerning time frames between 

injection experiments and results of SP null males. Thus, SP is the molecular basis of “sperm 

effect” whereas sperm is merely the carrier. When mated with a spermless male, the female still 

receives SP from the male, although the storage cannot last for a long time and this explains most 

of the “copulation effect”. Therefore, SP is the key molecule responsible for the post-mating 

switch, whereas DUP99B and ovulin only play minor role on the first day after mating (Liu and 

Kubli 2003). However, it is not entirely clear at this moment if other mechanical or chemical 

factors contribute to the refractoriness to remating in the first couple of hours after mating. 

Besides regulating receptivity and egg laying, SP was shown to upregulate juvenile hormone 

production in corpus allatum with its N-terminus, which in turn elevates oogenesis and ovulation 

(Moshitzky, Fleischmann et al. 1996). SP also stimulates the immune response in mated females 

by elevating the anti-microbial peptide synthesis (Peng, Zipperlen et al. 2005b). In addition, food 

intake behaviour (Carvalho, Kapahi et al. 2006) and sleep cycle (Isaac, Li et al. 2009) in females 

were recently shown to change upon mating in a sex-peptide-dependent manner.  

The receptor for SP has been identified recently in a pan-neuronal genome-wide transgenic 

RNAi screen for egg laying (Yapici, Kim et al. 2008). When sex peptide receptor (SPR) was 

knocked down in all the neurons, mated females didn’t show the post-mating switch but rather 

behaved like virgins. They were also completely insensitive to the injection of synthetic SP into 

hemolymph (Yapici, Kim et al. 2008). The SPR gene encodes a G-protein coupled receptor. The 

binding of SP was examined with a cell culture assay in Chinese hamster ovary cells. In the 

assay, ligand-mediated GPCR activation triggers a luminescent flash through Gαq-dependent 

Ca2+ pathway. When SPR was expressed in the cultured cells together with the Ca2+ reporter 

aequorin and one of the chimaeric G proteins Gαqi or Gαqo, but not Gαqs or Gαq alone, treatment 

of SP or DUP99B in higher concentration could induce robust luminescence (Yapici, Kim et al. 

2008). These results indicate SPR signals through Gαi or Gαo. Therefore, cAMP but not 

Ca2+ might be involved in the downstream signaling of SPR and this is consistent with previous 
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results that the mutant of dunce, which encodes a cAMP

Orthologues of SPR are detected in most sequenced insect genomes including many species of 

Drosophila, Aedes and Bombyx. However, genes encoding SP-like peptides were only discerned 

in a few Drosophila species closely related to D. melanogaster (Yapici, Kim et al. 2008). It is 

also puzzling that SPR is expressed broadly in the central nervous system of males as well as 

females (Yapici, Kim et al. 2008), yet it is only required in a few sensory neurons in the female 

reproductive tract for the post-mating switch (see later sections). Recently, Kim and colleagues 

identified a highly conserved family of peptides across a wide range of invertebrate species, 

myoinhibitory peptides (MIPs), as SPR ligands (Kim, Bartalska et al. 2010; Yamanaka, Hua et al. 

2010). However, MIPs clearly doesn’t induce the post-mating switch, no matter whether injected 

into the hemolymph of females or transferred from males during copulation (Kim, Bartalska et al. 

2010).  

 phosphodiesterase, is insensitive to SP 

either from males or injections (Chapman 1996).  

External factors 

Pheromonal signals 

While the internal physiology of a female sets a permissive or restrictive condition, it is the 

sensory cues from the courting male that trigger the female mating decision. Information 

regarding the species and fitness of the male is presumably encoded in these signals (Ritchie, 

Townhill et al. 1998; Rybak, Sureau et al. 2002). Among them, chemical signals play an 

important role. Males lacking cuticular hydrocarbons have significantly reduced mating success 

(Rybak, Sureau et al. 2002; Billeter, Atallah et al. 2009) while smellblind females are much less 

receptive to courting males (Markow 1987).   

So far two male pheromones which stimulate female receptivity have been identified. Cis-

vaccenyl acetate (cVA) is a volatile pheromone synthesized in the male ejaculatory bulb 

(Butterworth 1969). The olfactory receptor Or67d is involved in sensing cVA. Or67d knock-out 
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females showed significantly reduced receptivity to courting males and the mutant males showed 

higher male-male courtship and reduced male-male aggression (Kurtovic, Widmer et al. 2007; 

Wang and Anderson 2009). This indicates cVA is an important signal for both sexes to evaluate 

their partners for the mating decisions. Or67d is expressed in trichoid sensilla in both sexes 

(Couto, Alenius et al. 2005; Fishilevich and Vosshall 2005). An essential co-receptor SNMP is 

also required for the detection of cVA in the olfactory sensory neurons expressing Or67d 

(Benton, Vannice et al. 2007). Or67d has recently been shown to be the receptor of odorant 

binding protein LUSH in a changed conformation upon binding cVA, rather than the receptor of 

cVA itself (Laughlin, Meehan et al. 2008).   

The non-volatile pheromone 7-Tricosene (7-T) is a male specific cuticular hydrocarbon that 

stimulates female receptivity. Males producing higher levels of 7-T or males perfumed with high 

levels of this pheromone need less courtship time to persuade the females to mate with them 

(Grillet, Dartevelle et al. 2006). The receptor and downstream signaling of 7-T are still unknown. 

Courtship song 

During courtship, the most conspicuous behaviour is the male circling around the female while 

extending and vibrating one of his wings. The importance of this action had been demonstrated 

by Sturtevant almost one century ago when he cut off the males’ wings and observed little 

success in their mating (Sturtevant 1915). One could imagine visual stimuli are provided by the 

wing extension and it should also cause air flow which ventilates pheromones. Shorey found 

acoustic signals were produced by the wing vibration and recorded the “courtship song” from the 

males (Shorey 1962). However, whether the courtship song is able to stimulate female 

receptivity wasn’t clear until Bennet-Clark and Ewing found that playback of a simulated song 

could rescue a wingless male’s mating speed (Bennet-Clark and Ewing 1967).  

Acoustic communication is widely used by animals to coordinate their behaviours (Gerhardt and 

Huber 2002). In Drosophila, each species produces a unique pattern of sounds (Waldron 1964; 

Ewing and Bennet-Clark 1968; Bennet-Clark and Ewing 1970) and it is thought to be involved in 

species recognition, sexual selection and sexual stimulation. Report on other acoustic stimuli 
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than courtship song for Drosophila is sparse (Paillette, Ikeda et al. 1991). In Drosophila 

melanogaster, the courtship song consists of pulse and sinusoidal components (Figure 3A). The 

trains of monocyclic pulses arranged in bursts are usually referred as “pulse song” and the “sine 

song”, which is a ~160Hz sinusoidal hum, precedes and/or follows some but not all pulse bursts 

(von Schilcher 1976a).  

Playback experiments clearly demonstrated that the pulse song can increase the mating speed of 

wingless males when played during courtship (Bennet-Clark and Ewing 1967; von Schilcher 

1976b; Kyriacou and Hall 1982; Ritchie, Halsey et al. 1999). However, whether stimulation of 

pulse song before courtship can be summated by females to enhance their receptivity is a matter 

of debate (Bennet-Clark, Ewing et al. 1973; von Schilcher 1976b; Kyriacou and Hall 1984). 

Playback of sine song during courtship doesn’t seem to increase the mating speed of wingless 

males (Kyriacou and Hall 1982). But pre-stimulation with sine song before males were 

introduced was reported to increase the female receptivity (von Schilcher 1976b).   

The pulse song was also shown by von Schilcher to stimulate males to increase their activity and 

courtship. Even when there are no females present, males can be aroused to court each other and 

form a “courtship chain” when artificial playback of the pulse song is provided (von Schilcher 

1976a; Eberl, Duyk et al. 1997). It may also be advantageous for a male to get instantly aroused 

when it hears other males singing, perhaps because this is a good indication there are virgin 

females nearby (von Schilcher 1976a). 

The power for both sine song and pulse song is concentrated below 250 Hz and the patterns are 

rather simple and stereotyped (Figure 3A). The limited acoustic stimuli space allows each 

parameter tested individually or in combination during behavioural assays or neural recordings 

(Murthy 2010). So far, the interpulse interval (IPI) draws most attention as a critical parameter to 

stimulate the abovementioned behavioural responses (Bennet-Clark and Ewing 1969; Tomaru 

and Oguma 1994a; Tomaru and Oguma 1994b). The IPI, measured as time from start of one 

pulse to start of the next pulse, seems to be species-specific. In Drosophila melanogaster, the 

average IPI is about 34 msec at 25˚C. Its sibling species Drososophila simulans sings a song 

with similar pulses, but the average IPI is about 48 msec (Ewing and Bennet-Clark 1968). 

Therefore, the average IPI could potentially serve as a species recognition cue. Playback 
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experiments confirmed that artificial songs can best stimulate the female receptivity when it is of 

the species-specific IPI (Bennet-Clark and Ewing 1969). The IPI of both species was also 

reported to fluctuate rhythmically with periods of 55 sec in D. melanogaster and 35 sec in D. 

simulans (Kyriacou and Hall 1980; Alt, Ringo et al. 1998). This species-specific cycle is 

controlled by the circadian gene period (Kyriacou and Hall 1980; Kyriacou and Hall 1986; 

Wheeler, Kyriacou et al. 1991). Although some results indicate the rhythm is the most important 

parameter to stimulate female receptivity (Kyriacou and Hall 1982; Greenacre, Ritchie et al. 

1993; Ritchie, Townhill et al. 1998), it became controversial when others reported failure to 

detect these cycles and suggested that incorrect statistics had been used to show the IPI is 

rhythmic (Crossley 1988; Ewing 1988; Logan and Rosenberg 1989; von Schilcher 1989).  

 

 Figure 3. The courtship song and audition in Drosophila 

(A) Top, an example trace of courtship song of Drosophila melanogaster. Bottom, the spectrogram (20 msec sliding 

fft window) for this clip. Adapted from (Murthy 2010). (B) Schematic of the antennal ear of Drosophila. The 

feather-like arista and the third segment of antenna (a3) form a rigid rod which is connected to the second segment 
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of antenna (a2) through a hook. Displacement of the arista rotates the a3 relative to a2 and this twist stretches the 

primary auditory neurons in a2. Adapted from (Kamikouchi, Shimada et al. 2006). (C) Cross-section of the a2/a3 

joint and gating-spring model of the transduction module. The proposed transduction module consists of gating 

springs, force-gated channels and adaptation motors. Adapted from (Murthy 2010). (D) The antennal 

mechanosensory and motor center (AMMC) in a Drosophila brain (white circle). Green channel is staining of 

mCD8GFP driven by the nan-GAL4, which labels all the JO neurons. Red channel is staining of NC82, which is a 

synaptic marker to highlight the neuropil regions. Maximum projection of confocal stacks is shown. (E) The AMMC 

can be subdivided to five zones, A-E. Adapted from (Kamikouchi, Inagaki et al. 2009). 

Audition in Drosophila 

In parallel with behavioural experiments on the functions of courtship song, studies on the 

audition of Drosophila also began in the 1960s. Manning found that the mobility of aristae of a 

female is very important for her receptivity, indicating arista is the receiver of courtship song 

(Manning 1967b). Direct electrophysiological recordings from antennal nerve in response of 

sounds confirmed the “ear” of flies is located in the antenna (Ewing 1978).  

Different from human ear as a sensor of sound pressure, the antenna of Drosophila responds to 

particle velocity, which is suitable for near field sound from a small source like a male fly’s wing 

(Bennet-Clark 1971). The mechanical transduction of acoustic signals in the antenna started to 

unravel in the last decade with the help of laser Doppler vibrometry (Gopfert and Robert 2002). 

By measuring the displacement of different parts of antenna in response to sound, Gopfert and 

Robert found the arista is rigidly attached to the third segment of antenna and they together 

connect to the second segment via a small hook (Gopfert and Robert 2001; Figure 3B). Particle 

movement of the air induced by sound causes the feather-like arista and the third segment of 

antenna to rotate around the hook and this twist stretches the primary auditory neurons in the 

second segment of antenna to convert the mechanical energy to electrical signals in neurons 

(Gopfert and Robert 2001). Despite the overt difference in the design between fly ear and human 

ear, striking similarities shared by them in the actuating functions were revealed by analysis of 

dead flies and genetic mutants that affects different parts of the auditory machinery (Gopfert and 

Robert 2003; Gopfert, Humphris et al. 2005). They both nonlinearly alter their tuning dependent 
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on the intensity of the stimulus and show spontaneous twitches in the absence of sound (Gopfert 

and Robert 2003). They also both have power gain by actively amplifying the mechanical input 

(Gopfert, Humphris et al. 2005).  Recent studies have provided evidence that these active 

processes and the transduction from mechanical vibration to electrical signals could be mediated 

by mechanisms similar to vertebrate hair cells. By using an electrode to apply stepped forces to a 

charged fly while simultaneously measuring the displacement of antenna and recording from the 

antennal nerve, Gopfert and colleagues found evidence supporting direct mechanotransducer 

gating in the fly’s ear (Albert, Nadrowski et al. 2007). They demonstrated in another study that a 

gating spring model containing a transducer channel and a motor (Figure 3C) can explain all the 

active mechanics and nonlinearity of a fly ear (Nadrowski, Albert et al. 2008). Such a 

quantitative understanding will facilitate the identification of transducer proteins, which are still 

unknown in vertebrates, by genetic screens in flies (Murthy 2010).      

The understanding of neural representation of auditory stimuli only started recently. Kamikouchi 

and colleagues carried out a detailed anatomical characterization of the primary auditory neurons 

in the Johnston’s Organ (JO).  The JO is a chordotonal organ that comprises ~480 monodendritic, 

ciliated mechanosensory neurons in the second segment of antenna (Kamikouchi, Shimada et al. 

2006). These neurons project along the antennal nerve to the antennal mechanosensory and 

motor center (AMMC) in the brain (Kamikouchi, Shimada et al. 2006; Figure 3D). With GAL4 

lines expressing in subsets of JO neurons and stochastic single cell labeling, Kamikouchi et al. 

found each subgroup of JO neurons innervate a stereotyped region in the AMMC (Figure 3E), 

although it doesn’t reveal a clear spatial organization like glomeruli for olfactory neurons 

(Kamikouchi, Shimada et al. 2006). Two recent studies examined the responses of subsets of JO 

neurons to different types of mechanical stimuli using calcium imaging. It seems JO neurons can 

be classified by their sensitivity to static deflection of the arista and sound. The JO neurons 

innervating the C and E region in AMMC are responsive to gravity and wind and the response 

remains as long as the arista is displaced. The JO neurons innervating the A and B regions 

respond to sound or transiently to the onset and offset of a displacement of arista (Kamikouchi, 

Inagaki et al. 2009; Yorozu, Wong et al. 2009). Since all the JO neurons attach to the same 

antennal receiver, different sensitivity to vibration and deflection should reflect distinct 

transduction machinery of different cell types (Kamikouchi, Inagaki et al. 2009). 
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Numerous genes and proteins important for the development and function of the fly’s ear have 

been identified with the power of fly genetics (Eberl, Duyk et al. 1997; Walker, Willingham et al. 

2000; Caldwell and Eberl 2002; Kim, Chung et al. 2003; Gong, Son et al. 2004; Eberl and 

Boekhoff-Falk 2007; Sun, Liu et al. 2009). Among them, a group of TRP Channels have been 

suggested to play different roles and function in distinct subsets of auditory receptor neurons. 

Two TRPV channels nanchung and inactive which are expressed in all JO neurons were first 

indentified as hearing mutants (Kim, Chung et al. 2003; Gong, Son et al. 2004), but later 

experiments suggested they are also important for gravity sensing (Sun, Liu et al. 2009). A 

TRPN channel, nompC, expressed specifically in the A and B subgroups of JO neurons, is 

required for hearing but not gravity sensing (Walker, Willingham et al. 2000; Kamikouchi, 

Inagaki et al. 2009; Sun, Liu et al. 2009). Two TRPA channels, painless and pyrexia, which are 

expressed in a distinct subset of JO neurons and cap cells respectively, are required for gravity 

sensing only (Sun, Liu et al. 2009). How these channels are gated by the mechanical inputs to the 

antenna remains to be uncovered.  

Neural circuits controlling female mating decision 

To date our understanding of the neural circuits underlying female mating decision is largely 

restricted to the early processing of each sensory modality (Figure 2). The male specific volatile 

pheromone cVA is known to be sensed by the olfactory sensory neurons expressing Or67d 

(Kurtovic, Widmer et al. 2007). The Or67d positive neurons project to the DA1 glomerulus in 

the antennal lobe of the fly brain (Couto, Alenius et al. 2005; Fishilevich and Vosshall 2005). It 

seems that the activity of Or67d neurons is sufficient to mediate the behavioural responses to 

cVA. When BmOR1, the receptor for a silkmoth pheromone bombykol, is expressed in the 

Or67d neurons in the mutant background, artificial activation of these neurons by applying 

bombykol elicits behavioural responses that mimic the responses to cVA in wild-type flies 

(Kurtovic, Widmer et al. 2007). A specific class of olfactory projection neurons were identified 

with photoactivatable GFP to innervate the DA1 glomerulus and project to the higher brain 

centers mushroom body and lateral horn (Datta, Vasconcelos et al. 2008). Both Or67d neurons 

and their cognate projection neurons are fru positive and fruM is required for these neurons to 
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generate sexual dimorphic projection patterns (Stockinger, Kvitsiani et al. 2005; Datta, 

Vasconcelos et al. 2008). The sexual dimorphic arborization of the DA1 neurons in the lateral 

horn indicates that the same sensory input is potentially fed into different downstream circuits in 

males and females to generate disparate behavioural responses. 

Our knowledge about auditory processing circuits currently lags behind that of the olfactory 

system. As discussed above, we already know a subset of JO neurons are responsible for hearing 

and they project to the A and B regions of AMMC. It remains to be uncovered which neurons are 

specifically involved in detecting the species-specific courtship song and how this information is 

integrated with other sensory inputs to guide the mating decisions. Several types of neurons have 

been suggested to innervate distinct regions of AMMC (Kamikouchi, Inagaki et al. 2009). 

Behavioural and physiological experiments are needed to answer whether and how they are 

involved downstream in processing the auditory information.  

The identification of SPR greatly facilitates the understanding of neuronal mechanisms 

underlying the post-mating switch. By knocking down SPR by RNAi or expressing a membrane-

bound SP in a collection of GAL4 drivers, recently two groups found ppk-GAL4 labels neurons 

where SPR expression is necessary and sufficient for the post-mating switch (Hasemeyer, Yapici 

et al. 2009; Yang, Rumpf et al. 2009). Based on the previous results that expression of SPR in fru 

neurons is also necessary and sufficient for the post-mating switch (Yapici, Kim et al. 2008), 

SPR should function in the intersection of fruGAL4 and ppk-GAL4 to control the behavioural 

switch after mating. The cell bodies of these internal sensory neurons are located in the female 

reproductive tract and they send their projections to the abdominal ganglion in the ventral nerve 

cord. Silencing of these neurons with a temperature sensitive dynamin mutant (shibirets) leads to 

mated-female-like behaviours in virgins including increased egg laying and reduced receptivity 

and it seems to account for all the effects of silencing fruGAL4 neurons (Kvitsiani and Dickson 

2006; Haesemeyer, Yapici et al. 2009; Yang, Rumpf et al. 2009). These results suggest that 

activation of SPR and subsequent signaling via Gαo and cAMP pathway lead to a reduction of 

neuronal activity or synaptic release, which is responsible for the switch of post-mating 

behaviours (Haesemeyer, Yapici et al. 2009; Yang, Rumpf et al. 2009; Hasemeyer 2010).  
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The advances on the neural pathways sensing cVA and SP should be mostly attributed to the 

identification of receptors. To search neural circuits responsible for the downstream processing 

of sensory information, integration of multimodality and action selection seems to be more 

difficult partially because we don’t have a gene or molecule as a handle. The number of classical 

mutants that affect female receptivity is very limited (Yamamoto, Jallon et al. 1997; Juni and 

Yamamoto 2009) and they are usually accompanied with other nonspecific defects (Nakano, 

Fujitani et al. 2001). One exception is the neuropeptide SIFamide (Terhzaz, Rosay et al. 2007). 

Knock down of SIFamide by RNAi leads to hyperreceptivity in females and high male-male 

courtship, and the mutant flies are seemingly normal otherwise. It seems that SIFamide is only 

expressed in four neurons in the pars intercerebralis in adult flies and ablation of these neurons 

by overexpressing pro-apoptotic genes under control of SIFamide-GAL4 phenocopies the RNAi 

knock down (Terhzaz, Rosay et al. 2007). Since the arborization of the SIFamide neurons is 

broad and there are no in vivo experiments done so far on the putative SIFamide receptor (Roller, 

Yamanaka et al. 2008), it is still not clear how SIFamide functions to control female receptivity. 

Since the pars intercerebralis houses a lot of neurosecretory neurons and destruction of this 

structure inhibits both oviposition and receptivity in a lot of insects including Drosophila 

melanogaster (Ringo 1996), it is possible that there are other neurosecretory neurons regulating 

female sexual behaviours directly or indirectly yet to be identified. 

Another piece of evidence about neurons important for female mating decision came from 

classical analysis of gynandromorphs to ask which neurons must be female for the female 

receptivity. A group of neurons in the dorsal anterior brain have been suggested to be necessary 

and sufficient for female receptivity when they are bilaterally female (Tompkins and Hall 1983).  

However, the resolution of this study is far from single-cell level and we still have no clue about 

how these neurons might execute the control on female mating decisions.   

Tools for dissecting neural circuits in Drosophila 

Individual neurons are the functional units of the nervous system. To study how neural circuits 

give rise to animal behaviours, we need to first identify individual neurons or group of neurons 
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that share some similarity in their morphology and functions; then we have to measure activities 

of these neurons in order to understand their physiology and perturb them in order to understand 

their functions by establishing causality between their activities and behaviours. In model 

systems like Drosophila, recent progress in the development of tools has provided great 

opportunity for genetic dissection of neural circuits (Luo, Callaway et al. 2008). 

To repeatedly access certain neurons or cell types, we take advantage of enhancers in the genome. 

If we already know a gene is specifically expressed in the target neurons, the best way is to use 

the cis-regulatory elements of this gene to mimic its endogenous expression. However, in most 

of the cases, there are no such specific genetic markers ready to use. An alternative strategy is to 

integrate an effector together with a minimal promoter randomly into the genome and employ the 

enhancers close to the integration site to drive the expression of the effector. With these 

“enhancer trap” methods (Bellen, O'Kane et al. 1989), we can generate a lot of transgenic lines 

and screen for interesting expression pattern or functional relevance. A limitation of these 

methods is that the expression is often too broad to be useful because usually multiple enhancers 

are “trapped”. Recent development of the site-specific integration based on the phage ΦC31 

integrase (Groth, Fish et al. 2004) and the genome-wide “enhancer bashing” method is promising 

to cope with this limitation. By taking relatively short fragments of genomic regions containing 

cis-regulatory elements and carefully choosing a specific site in the genome to minimize the 

interference of local environment, “enhancer bashing” offers more restricted expression patterns 

and flexibility in further subdividing these patterns (Pfeiffer, Jenett et al. 2008). 

Binary expression strategies based on transcription factors and its DNA binding sites, like the 

GAL4/UAS system (Brand and Perrimon 1993), have been proven to be extremely useful in 

increasing the expression level of transgenes, and more importantly, providing the combinatorial 

power of reusing the GAL4 lines and UAS-transgenes. Recent development of other binary 

systems, including the lexA (Lai and Lee 2006) and Q systems (Potter, Tasic et al. 2010), 

provides the possibility of expressing different effector transgenes in distinct populations of 

neurons simultaneously in the same animal.  

Another binary strategy is based on DNA recombinase and its recognition site. The yeast 

Flipase/FLP recognition target has been introduced into Drosophila (Golic and Lindquist 1989). 
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Flp/FRT system together with the transcription factor based binary systems, their suppressors 

(Lee and Luo 1999; Potter, Tasic et al. 2010) and the split halves of the transcription factors 

(Luan, Peabody et al. 2006) provide tremendous possibilities of intersectional analysis of 

neurons labeled by two or more cis-regulatory elements. 

Neuroanatomy in flies has benefited greatly from the abovementioned methods. But sometimes 

sparse labeling of neurons is difficult to achieve even with intersectional methods. A new 

approach based on photoactivatable GFP (PA-GFP) has been used for anatomical tracing of 

neurons labeled by a relatively broad driver (Datta, Vasconcelos et al. 2008). Photoactivation of 

a small region of neuropil can label all the PA-GFP expressing neurons intersecting this region. 

The converted GFP that fluoresces at high level can diffuse out of the photoactivated region to 

light up the somata and other arborizations of the candidate neurons. This method can be used to 

identify potential postsynaptic partners of a given neuron by photoactivating the region where 

the axon of this neuron terminates. Another GFP-based method, GFP reconstitution across 

synaptic partners (GRASP), has been developed and introduced to flies recently to study the 

connectivity between neurons (Feinberg, Vanhoven et al. 2008; Gordon and Scott 2009). By 

expressing N-terminal and C-terminal parts of GFP under control of membrane-bound signals in 

two different cell types, one can see the reconstituted GFP only when both cell types have close 

contacts. Other powerful tools for neuroanatomy like Brainbow (Livet, Weissman et al. 2007) 

and transsynaptic labeling (Ugolini 1995) have been available in other organisms and extensive 

efforts are being made to develop these techniques in flies.  

Genetic methods for neurophysiology have been emerging in recent years. Compared with 

electrophysiology, optical imaging with genetically encoded indicators of neuronal activities is 

less invasive, more tolerant to the small size of neurons in Drosophila and able to record from 

multiple cells in the same time. A wide range of genetically encoded indicators sensitive to 

Ca2+ (Miyawaki, Llopis et al. 1997; Baird, Zacharias et al. 1999; Griesbeck, Baird et al. 2001; 

Nakai, Ohkura et al. 2001), cyclic nucleotide (DiPilato, Cheng et al. 2004) or pH (Miesenbock, 

De Angelis et al. 1998) have been developed and applied in Drosophila. Among those, the Ca2+ 

indicator G-CaMP has been the most widely used (Wong, Wang et al. 2002; Marella, Fischler et 

al. 2006). GCaMP3, an improved version with higher signal-noise ratio, faster kinetics and better 
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photostability (Tian, Hires et al. 2009), will be very useful for physiologically dissecting neural 

circuits in the future. 

Loss- and gain-of-function experiments are essential for assigning gene functions to biological 

processes. Likewise, the causal relationships between the functions of neural circuits and animal 

behaviours can only be established when we manipulate the activity of these neurons and 

observe changes in behaviours. Besides knocking down important genes in relevant neurons with 

tissue specific RNAi (Dietzl, Chen et al. 2007) and overexpressing pro-apoptotic genes (White, 

Tahaoglu et al. 1996) or neural toxins (Han, Stein et al. 2000) to simply kill the cells, we can 

perturb the neural activity by directly blocking the synaptic release or altering the excitability of 

the neurons. The commonly used effectors to silence neurons include a temperature-sensitive 

dominant-negative mutant of dynamin, Shibirets1, which blocks the synaptic transmission at 

restrictive temperatures (Kitamoto 2001); the tetanus toxin light chain (TNT) which cleaves 

synaptobrevin to prevent vesicle fusion (Sweeney, Broadie et al. 1995); and an inward rectifying 

potassium channel, Kir2.1, which hyperpolarizes neurons to prevent action potential generation 

(Baines, Uhler et al. 2001). The options of activating neurons with genetically encoded effectors 

include a sodium channel NaChBac whose overexpression boosts the neural activity (Ren, 

Navarro et al. 2001; Nitabach, Wu et al. 2006); a light-gated cation channel Channelrhodopsin-2, 

which is inducible by blue light with kinetics in milliseconds (Nagel, Szellas et al. 2003; Zhang, 

Ge et al. 2007); a temperature-sensitive TRP channel TRPA1 which starts to be activated when 

the temperature is above 25˚C (Hamada, Rosenzweig et al. 2008; Pulver, Pashkovski et al. 2009); 

a ligand-gated ion channel the ionotropic purinoceptor P2X2 which can be activated by light-

induced release of caged ATP (Lima and Miesenbock 2005); and a photoactivated adenylyl 

cyclase (PAC) which allows light-induced manipulation of cellular cAMP levels (Schroder-Lang, 

Schwarzel et al. 2007). With these tools available, we can perform loss- and gain-of-function 

experiments in specific neurons to map the neural circuits important for animal behaviours. 
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Aim of the thesis 

With the increasingly powerful genetic tool box, the stage has been set for exploring the function 

of neural circuits in Drosophila (Olsen and Wilson 2008). Audition is the primary sensory 

modality for a female to make the mating decision (Markow 1987; Tomaru and Oguma 2000; 

Rybak, Sureau et al. 2002), yet the least understood sensory modality in terms of processing in 

higher order neural circuits. To map the downstream auditory circuits and study how these 

circuits are involved in female mating decision making, we urgently need a high-throughput 

behavioural assay that allows us to specifically assess the auditory responses in females, in the 

absence of any confounding cues from the male. In the first part of this project, we aim to 

establish such a behavioural assay to quantitatively measure the responses of females alone to 

auditory stimuli under the restrain of their internal physiological states. We hope to explore the 

higher order auditory processing circuits with this assay later on.  

In parallel, an unbiased screen of female receptivity with a collection of GAL4 lines is performed 

to identify the neural substrates for each component of female mating decision making (Figure 2). 

We hope some of the downstream circuits of each sensory modality could emerge in the screen 

and converge at some point. Our long-term goal is to reconstitute the neural circuits responsible 

for all components for female mating decision making and use it as an example to understand the 

basic principles of information processing and how animal behaviours are generated in neural 

circuits.  
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Results 

Part I Quantitative analysis of female behavioural responses to courtship song 

Automated quantitative analysis of song responses 

Courtship song stimulates the female’s receptivity, which is typically measured as the latency to 

copulation. In order to specifically study the female’s response to courtship song, in the absence 

of any other confounding cues from the male, we require an assay to measure the response of a 

single female to song alone. Playback of the male’s courtship song has been reported to induce 

virgin females to slow down their locomotion (von Schilcher 1976a; Crossley, Bennetclark et al. 

1995). We therefore sought to develop a more rigorous quantitative assay system that would 

allow us to explore this behavioural response to song in more detail. Our system (Figure 1A) 

consists of a simple perspex rack with 28 individual chambers covered by mesh on both sides, 

each 10 × 45 mm in area and 3 mm in height. Flies can be easily loaded into these chambers 

through a sliding cover. The rack is then placed horizontally inside a sound-proof box, where it is 

evenly illuminated from above. A digitally recorded courtship song is played through a set of 

three speakers, while a video camera records the flies’ movement. We also developed 

customized video tracking software to quantify the movement of single flies in each of the 28 

chambers. The position of each fly in every frame of the video is automatically detected and the 

locomotion speed is then derived (Figure 1B).  

In our standard assay, the fly’s movement is recorded for a total of 6 minutes. The first 3 minutes 

are in silence to allow the flies to settle down and serve as an internal control. Then, the song (or 

any control sound) is played in six 5-second bursts, each followed by 25 seconds of silence. An 

example of the locomotion of a single wild-type virgin female in response to a burst of pulse 

song is shown in Figure 1C (top). Consistent with previous observations, the flies walk in small 

bouts during the time of silence (Martin 2004; Valente, Golani et al. 2007). Therefore the 

locomotion speed for each fly is quite stochastic at a given time point. This is evident in the 
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noisy trace of locomotion speed of a single fly over time. By averaging the speed across the 28 

flies and 6 song repetitions in one assay, we obtained much smoother curves during the time of 

silence and we observe pronounced changes after the song starts (Figure 1C, bottom). Therefore, 

we use the maximal change of the average speed after the song is played normalized against the 

basal activity before song starts (∆v / v) to quantify the responses of flies to a song in later 

analysis (see methods for details). So a single data point in all of the subsequent analyses 

represents 28 flies, each exposed to 6 song repetitions. 

   
 

Figure 1.  Quantitative analysis of song responses 

(A) Schematic of the experimental setup. (B) We developed tracking software to analyze the videos. An example 

frame clipped from a video is shown on top. Our tracking software detects the position of each fly (bottom). Further 

analysis is done automatically based on the tracking results. (C) Top, an example trace of locomotion speed of a 
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single wild-type virgin female. This fly completely stopped its locomotion when a 5-second burst of pulse song is 

played (gray bar). Bottom, locomotion speed averaged across the 28 flies and 6 song repetitions in this assay. (D) 

The quantification of virgin female’s responses to pulse song, sine song and white noise. (E) The quantification of 

wild-type fly’s responses to pulse song (top) and sine song (bottom). Intact virgin females, virgin females with their 

arista bilaterally and unilaterally removed and intact males were tested. (F) Time courses of the responses of virgin 

females and males to pulse song (top) and sine song (bottom). Each trace was averaged across all the assays shown 

in E. In D and E, each box plotting consists of n = 8 to 9 data points; each data point represents an assay of 28 flies 

tested with 6 song repetitions. In each plot, the box represents the interquartile range; the whiskers represent the min 

and max, the line in the box represents the median and the “+” represents the mean. Single asterisk, P < 0.05; triple 

asterisk, P < 0.001; n.s., P > 0.05; Student’s t-test. 

 

In our initial experiments, we used our setup to assess the responses of mature wild-type virgins 

to a natural pulse song, natural sine song, and white noise. Consistent with previous findings 

(von Schilcher 1976a), virgin females showed a pronounced slowing response to pulse song, a 

more modest slowing in response to sine song, and no response to white noise (Figure 1D). The 

responses to both pulse and sine song were eliminated by removing both arista, confirming that 

they are mediated by audition. Females with one arista removed responded normally, confirming 

that these results were not due to the effects of the surgery. Males showed a similar slowing 

response to sine song, but did not slow down in response to pulse song (Figure 1E). If anything, 

males rather sped up in response to pulse song, although this effect was somewhat variable and 

statistically not significant (Figure 1E). Precise time courses reveal that the responses of virgin 

females and males to sine song were quite similar (Figure 1F bottom), whereas the responses to 

pulse song were dramatically different (Figure 1F top). Except for the brief and small drop in 

speed initially, the males indeed sped up in response to pulse song (Figure 1F top), which is 

consistent with previous results (von Schilcher 1976a; Crossley, Bennetclark et al. 1995; 

Kowalski, Aubin et al. 2004). Because the male’s basal activity declines fast in the 12-second 

window before the song starts (Figure 1F top), we tend to overestimate the baseline (v) by taking 

the average. When we calculate the ∆v for the males, the overestimated v leads to further 

underestimation of the speeding up effect and overestimation of the effect of the initial brief 

slowing down. This explains why the net effect ∆v was only slightly above 0 for males. 
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Maturation of song responses and mating receptivity 

Virgin females are not sexually receptive on the first day after eclosion, becoming fully receptive 

only at 2 days of age (Manning 1967a). To test whether changes in receptivity correspond to 

locomotion in response to song, we examined the responses of virgin females at varying ages, 

from 6 hours to 24 days after eclosion (Figure 2A). The baseline locomotion of these females, as 

well as their slowing response to sine song, remained fairly constant with age, although very 

young and very old females were slightly less active. In contrast, responses to pulse song varied 

markedly. At 6 and 24 hours after eclosion, virgins sped up significantly in response to song. 

Between 2–4 days, however, they showed their maximal slowing response, which was only 

mildly attenuated as they aged further. Therefore, the response to courtship song switches 

dramatically on the second day after eclosion, from an apparently aversive to a submissive 

response.  

This switch in song responses is mirrored in the receptivity of virgins to courting males. If intact 

mature males were provided in the same chambers, with or without additional song, 6-hour old 

females were completely unreceptive, 3-day old females maximally receptive, and older virgins 

slightly less receptive (Figure 2B). A similar pattern was seen when wingless (mute) males were 

added and the pulse song alone played in 5-second bursts at 25-second intervals, whereas 

females at all ages were largely unreceptive to wingless males without additional song playback 

(Figure 2B). For very young or older females, receptivity was indistinguishable when intact 

males or wingless males plus song were provided. However, playback was less effective around 

the time of maturation (1 day, P = 0.0564 and 0.0026, wingless + song versus winged – song and 

winged + song; 3 day, P < 0.0001, wingless + song versus winged ± song; Fisher’s exact test). 

We speculate one of the possible reasons could be that the newly matured virgins are more 

sensitive to the song quality or context. 
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Figure 2.  Maturation of song responses and mating receptivity 

(A) Responses of virgin females at indicated ages to pulse song and sine song (left y axis). Basal activity of flies in 

these experiments is represented by the average speed during the period of silence (right y axis). Depicted are the 

median (circle) and the interquartile range (whiskers); n = 10 for each group. (B) Mating receptivity of wild-type 

virgin females at indicated ages to wingless or intact males with or without pulse song playback. These experiments 

were done in the same environment as the song response assay. When the song was played, it started 3 minutes after 

the females and males were mixed and 25-second silence followed each 5-second burst of song playback. 84 pairs 

were tested for each data point.  

Sex Peptide Receptor signaling modulates song responses 

Females that have recently mated are not receptive to courting males (Manning 1962). We found 

that mated females also do not slow down in response to pulse song. Rather, like immature 

virgins, mated females show a seemingly aversive response, increasing their locomotion upon 
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detecting the pulse song. For wild-type females, this switch happens within 3 hours after mating 

and persists when examined 2 days later (Figure 3A). In contrast, the responses to sine song are 

not affected by mating (Figure 3A). Mating receptivity is regulated by the sex peptide (SP) a 

male seminal fluid protein that activates a specific receptor (SPR) in sensory neurons of the 

female reproductive tract (Chen, Stumm-Zollinger et al. 1988; Yapici, Kim et al. 2008; 

Hasemeyer, Yapici et al. 2009; Yang, Rumpf et al. 2009). Wild-type females that had mated with 

SP0 males (Liu and Kubli 2003) and females homozygous for the deficiency Df(1)Exel6234 that 

covers the SPR gene with wild-type males (Yapici, Kim et al. 2008) became fully receptive like 

virgins 48 hours after mating. However, under these two conditions, females didn’t start to 

remate for at least 4 hours after mating (Liu and Kubli 2003; Yapici, unpublished observations). 

Similarly, we found that wild-type females having mated with SP0

Recently, it has been shown that the ppk-GAL4 and fru

 males and deficiency females 

lacking SPR with wild-type males, like virgins, also slow down in responses to pulse song 48 

hours after mating. But during the short refractory period after mating, they do switch to 

speeding up (Figure 3B).  

GAL4 double positive neurons in the female 

reproductive tract are responsible for the SPR mediated post-mating switch of receptivity and 

egg laying (Hasemeyer, Yapici et al. 2009; Yang, Rumpf et al. 2009). By overexpression of SPR 

in ppk-GAL4 or fruGAL4

Figure 3.  Sex peptide signaling modulates song responses 

 neurons in the deficiency females lacking SPR, we found that the 

speeding up responses to pulse song were rescued in these females 48 hours after mating. 

Therefore, it is likely that the responses to pulse song in females are regulated by the same 

neuronal pathway that controls the switch of receptivity and egg laying after mating.  

(A) Responses to pulse song and sine song of wild-type virgin females, mated females 3 hours and 48 hours after 

mating with wild-type males; n = 8 for each group. (B) Responses to pulse song of wild-type females mated with 

SP0 males and SPR deficiency females; n = 10, 2, 6, 7, 2, 7 for each group from left to right. Df(1)Exel6234 is a 

deficiency covering SPR. (C) Rescue of song responses of SPR deficiency females with ppk-GAL4 and fruGAL4

 

 and 

controls; all mated females are tested 48 hours after mating; n = 5 to 9 for each group. In each plot, the box 

represents the interquartile range; the whiskers represent the min and max, the line in the box represents the median 

and the “+” represents the mean. Triple asterisk, P < 0.001; n.s., P > 0.05; Student’s t-test. 
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Tuning of pulse song responses 

The Drosophila melanogaster pulse song has a typical mean interpulse interval (IPI) of 

approximately 34 msec (Ewing and Bennet-Clark 1968). The IPI is believed to be a critical 

component of species discrimination, as other species have distinct IPIs (e.g., a closely related 

species Drosophila simulans has a typical mean IPI of approximately 48 msec; (Ewing and 
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Bennet-Clark 1968), and mating is best stimulated in playback experiments by the courtship song 

containing the correct species-specific IPI (Bennet-Clark and Ewing 1969; Kyriacou and Hall 

1982). To assess whether our assays of single females reflect the same preference, and also to 

ask whether immature virgins, mature virgins, and mated females all have the same tuning curve, 

we systematically varied the IPI across a range of 10–68 msec. All three types of females 

responded maximally to songs with an IPI in the range of 25–43 msec, with greatly attenuated 

responses below 20 msec or above 50 msec (Figure 4A). These data suggest that frequency 

tuning and song recognition is likely to occur upstream of the circuits that mediate the distinct 

behavioural response to song.  

 

Figure 4.  Tuning of pulse song responses 

(A) Pulse songs with different interpulse intervals (IPIs) were artificially generated by digitally placing silence of 

various durations after a pulse clipped from a natural song and repeating these patterns. Tuning curves to this series 

of songs were plotted for mature virgin females, immature virgin females, mated females and males. In each plot, 

the circle represents the median and the whiskers represent the interquartile range; n = 5 to 11 for each group. The 

average IPIs of the courtship songs of D. melanogaster and D. simulans males were indicated as references. (B) 

Time courses of the average locomotion speed of mature virgin females in response to pulse songs with different 

IPIs normalized against the basal level. (C) Time courses of the number of stopping flies (see methods) of mature 

virgin females in response to pulse songs with different IPIs normalized against the basal level.  
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For virgin female tuning that we mapped in higher resolution, we found a plateau of maximal 

responses to IPIs between 25 msec to 43 msec. This is also evident in the time courses of the 

responses, where responses to IPIs between 25 msec to 43 msec form a cluster which is clearly 

separated from shorter or longer IPIs (Figure 4B). This exactly reflects the IPI range of male 

courtship song in D. melanogaster, which centers at about 34 msec and has a standard deviation 

of about 6 msec (Popov, Sitnik et al. 2003). It seems that sudden transitions happen between 21 

msec and 25 msec and between 43 msec and 47 msec.  

The slowing down effect is contributed significantly by flies that completely cease their 

locomotion upon hearing the song. Therefore we also examined the proportion of flies that 

stopped (see methods) in responses to songs with varying IPIs (Figure 4C). We found that the 

low IPIs were actually as pro-stopping, if not more, as the intermediate IPIs that elicited the 

maximal slowing down in average speed. The contribution of the stopping flies to the average 

speed must be compensated by increased speed of other flies when songs with low IPIs were 

played. In contrast, the longer IPIs showed an attenuated effect of making flies stop. Therefore, 

we suggest that the low and high boundaries of the tuning curve are mediated by different 

mechanisms.  

We also examined the tuning of males (Figure 4A). Like females, they also showed maximal 

responses to the intermediate IPIs that are within the natural range of courtship song. But they 

still responded markedly to the IPIs out of this range, which is consistent with previous results 

(von Schilcher 1976a). 

FruM

fruitless (fru) is one of the two pivotal genes downstream of transformer (tra) in the sex-

determination hierarchy in Drosophila (Heinrichs, Ryner et al. 1998). Together with doublesex, 

alternative splicing of fru in the two sexes specifies sex-specific neural circuitry and behaviour 

(Demir and Dickson 2005; Kimura, Ote et al. 2005; Manoli, Foss et al. 2005; Stockinger, 

Kvitsiani et al. 2005; Vrontou, Nilsen et al. 2006; Rideout, Billeter et al. 2007; Kimura, Hachiya 

et al. 2008; Rideout, Dornan et al. 2010). The male specific isoform fru

 blocks female responses to pulse song 

M was shown to be 
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necessary for male courtship behaviour and when ectopically expressed in females, renders the 

females some aspects of male courtship behaviour but abnormality in sexual behaviours typical 

for females like receptivity and egg laying (Demir and Dickson 2005). Since the song responses 

we have reported are clearly sex-dimorphic, we sought to ask what roles fruM plays to specify 

these sex-dimorphic behaviours. Females bearing one copy of fruM, which is forced to splice in 

the male form to produce functional fruM proteins, lost the responses to pulse song typical for 

both immature virgins and mature virgins (Figure 5A). They however didn’t gain the speeding 

up responses of males. Their responses to sine song remain normal, which suggests the general 

auditory functions of these flies are not affected (Figure 5B). Therefore, these data suggest the 

responses to pulse song in females might be controlled by neural circuits that are amenable to the 

regulation of fruM

 

.  

Figure 5.  FruM

(A) Responses 1d and 3d old fru

 blocks female responses to pulse song 
M virgin females and wild-type controls to pulse song. (B) Responses 1d and 3d old 

fruM

 

 virgin females and wild-type controls to sine song. In both A and B, n = 10, 3, 10, 4 from left to right. In each 

plot, the box represents the interquartile range; the whiskers represent the min and max, the line in the box 

represents the median and the “+” represents the mean. Triple asterisk, P < 0.0001; n.s., P > 0.05; Student’s t-test. 
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Part II  A neuronal silencing screen identifies neural substrates for female 

sexual behaviours in Drosophila 

A neuronal silencing screen for female sexual behaviours 

Neural circuits underlying female sexual behaviours in Drosophila are poorly understood 

(Dickson 2008). Therefore, we carried out an unbiased neuronal silencing screen to search for 

the neural substrates of female sexual behaviours. We chose to screen an enhancer tiling GAL4 

collection generated in the lab (Masser and Bidaye, unpublished results) because it tends to label 

smaller population of neurons and provides more flexibility for further dissection with the known 

enhancer elements (Pfeiffer, Jenett et al. 2008). By crossing the GAL4 drivers to a transgenic line 

expressing UAS-Kir2.1, an inward rectifying potassium channel (Baines, Uhler et al. 2001), we 

selectively silenced the neurons labeled by the driver lines in the F1 generation (Figure 6A). We 

tested the receptivity of virgin females by pairing them with wild-type males and recording 

videos for 30 minutes. We also qualitatively scored egg laying of both virgins and mated females 

(Figure 6B). In total we have screened 1680 lines. About half of the lines were lethal at various 

stages after crossing to UAS-Kir2.1. About 42% of the lines that were viable and didn’t show any 

obvious general defects went through the behavioural tests (Figure 6C). Out of these lines, we 

found 35 lines showing various behavioural phenotypes, which are summarized in Figure 6D. 

Among those, 17 lines had receptivity below 30% but showed no phenotype in egg laying; 9 

lines showed elevated egg laying in virgins but normal receptivity; 5 lines showed elevated egg 

laying in virgins and extremely low receptivity; 3 lines didn’t lay a single egg but the receptivity 

was only slightly subnormal; and 1 line had very low receptivity while not laying any eggs. We 

haven’t found lines that are normally receptive and retain eggs (but still lay a few) after they are 

mated, which was seen in flies with SPR knocked down in the ppk and fru double positive 

neurons (Hasemeyer, Yapici et al. 2009; Yang, Rumpf et al. 2009). This might be due to the fact 

that our egg laying assay is not sensitive enough, or alternatively, it reflects how the relevant 

circuits operate (silencing of the ppk and fru double positive neurons lead to the opposite 

phenotypes (Hasemeyer, Yapici et al. 2009; Yang, Rumpf et al. 2009)).  
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Figure 6.  A neuronal silencing screen for female sexual behaviours 

(A) In our screen, enhancer tiling GAL4 lines were crossed to a transgenic line expressing an inward rectifying 

potassium channel Kir2.1. (B) Schematic of the behavioural assays for egg laying and receptivity. In our assay, we 

collect about 10 females together with several males and check their egg laying two to three days later while 

presuming they are mated. Wild-type females should have laid a lot of eggs (picture on the left; Yapici 2008). We 

also collect 30 virgins and age them for 3-5 days before we check their egg laying and receptivity. The wild-type 

virgins usually lay only a few eggs at this age (picture on the right; Yapici 2008). In the receptivity assay, we pair 

the virgins with single wild-type males and videotape for 30 minutes. The number of pairs copulated during this 

time are scored manually after the assay. (C) Classification of the phenotypes in the 1680 lines we have screened.  

(D) Distribution of primary positives in phenotypic categories. 
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GAL4 Lines are identified that label neurons important for receptivity and egg laying  

In those primary positive lines that were retested, some were confirmed and showed rather strong 

phenotypes. The virgins of 3 lines after crossing to UAS-Kir2.1: 454-GAL4, 45154-GAL4 and 

3280-GAL4, were completely unreceptive in 30 minutes after pairing with wild-type males 

(Figure 7A) and showed elevated egg laying rate that is typically seen in mated females (Figure 

7B). Another line 7068-GAL4 showed extremely low receptivity yet laid normal amount of eggs 

as virgins (Figure 7A and 7B). To exclude the possibility that developmental defects due to 

constant silencing led to the behavioural phenotypes, we used the TARGET system to restrict the 

expression of Kir2.1 to adulthood (McGuire, Mao et al. 2004). By expressing a temperature-

sensitive GAL80 under control of a ubiquitous promoter, we suppressed Kir2.1 expression at 

permissive temperature (22 ˚C) and only released it by shifting the flies to the restrictive 

temperature (30 ˚C) two days before the assay. While controls that were constantly in restrictive 

temperature showed normal receptivity, acute silencing of neurons labeled by 3 lines 454-GAL4, 

7068-GAL4 and 45154-GAL4 all led to reduced receptivity (Figure 7C). These results suggest 

that activity of the neurons labeled by these lines is important for female receptivity and egg 

laying. 

 

Figure 7. Identification of lines with impaired receptivity and egg laying in virgins 

 (A) Receptivity was severely impaired in 4 GAL4 lines driving the expression of Kir2.1. (B) Egg laying rate in 

virgins was elevated in 3 lines except for 7068. (C) Acute silencing of neurons labeled by 3 GAL4 lines only in 

adulthood leads to reduced receptivity. Parentheses denote the n for each column. Triple asterisk, P < 0.0001. In A, 
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Fisher’s exact test, compared with the first column; in B, Student’s t-test, compared with the first column; in C, 

Fisher’s exact test, compared with the 22˚C control for each genotype.  

Expression pattern and GRASP with ppk neurons  

In order to assess the expression pattern of the GAL4 lines in adult females, we expressed a 

membrane-tethered green fluorescent protein, mCD8GFP, under control of the GAL4 lines. A 

few clusters of neurons and neuronal processes were labeled in the brain and ventral nerve cord 

(VNC) of each line. A region highlighted in all of the lines that showed impaired receptivity is 

the abdominal ganglion (Abg) in the VNC (Figure 8A-8C, 8I). To accurately compare neurons 

labeled by different GAL4 lines in different tissue samples, we applied a non-rigid image 

registration algorithm to the samples against standard templates (Rohlfing and Maurer 2003; 

Jefferis, Potter et al. 2007; Yu 2009). In the overlay of the registered images of 454-GAL4, 7068-

GAL4, 45154-GAL4, we found an anchor-like structure of neuronal processes in the dorsal 

posterior Abg were labeled by all three lines (Figure 8D). Overlaps can also be seen in the 

median bundle and arborizations surrounding the oesophagus in the brain (Figure 8E). These 

regions are interconnected by two nerve tracts running along the dorsal midline of the VNC and 

the suboesophageal ganglion (SOG) in the brain (Figure 8D). However, we couldn’t resolve the 

origin of these neurites or identify overlapping cell bodies because the expression of these lines 

are not restricted enough.  

We think the expression in the abdominal ganglion is particularly interesting because the afferent 

projections from the SP sensing neurons in the female reproductive tract terminate in this region 

(Hasemeyer 2010). Silencing of the SP sensing neurons with ppk-GAL4 led to unreceptive 

virgins laying elevated amount of eggs, which resembles mated females (Hasemeyer, Yapici et al. 

2009; Yang, Rumpf et al. 2009).  This raises the possibility that the similar phenotypes we saw 

by silencing the neurons labelled by the abovementioned lines could come from a common 

neural pathway. We found the expression pattern of 3280-GAL4 resembled the SP sensing 

neurons in the female reproductive tract and their projections in the Abg (Figure 8I-8J; 

Hasemeyer, unpublished results). Females remated at high rate when SPR is knocked down in 

3280-GAL4 expressing neurons with RNAi (data not shown), which suggests this line indeed 

labels the SP sensing neurons. However, we didn’t find the SP sensing neurons labeled by 454-
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GAL4, 7068-GAL4 and 45154-GAL4 in the female reproductive tract (data not shown). To assess 

the possibility that these lines label downstream neurons of the SP sensing neurons, we used GFP 

reconstitution across synaptic partners (GRASP) to check the connectivity between the neurons 

labeled by these lines and by ppk-GAL4 (Feinberg, Vanhoven et al. 2008; Gordon and Scott 

2009). We fused ppk promoter with a membrane-tethered CD4::spGFP11 and used the GAL4 

lines to drive the expression of UAS-CD4::spGFP1-10. If these two populations of neurons have 

processes in close proximity, full GFP can be reconstituted and recognized by a mouse 

monoclonal antibody specifically. We used a rabbit polyclonal GFP antibody that also 

recognizes the spGFP1-10 to orient ourselves to the neurons labeled by the GAL4 lines. As 

shown in Figure 8F-8H”, strong GRASP signals can be detected in 454-GAL4, and weaker ones 

in 7068-GAL4 and 45154-GAL4. The localization of these signals is similar to the axonal 

terminals of the SP sensing neurons (Hasemeyer 2010)also see Figure 8I). These results suggest 

the GAL4 lines we identified could potentially label downstream neurons of the SP sensing 

neurons in the female reproductive tract, although further experiments are required to pinpoint 

the neurons responsible for the behavioural phenotypes and confirm the connectivity 

physiologically.  

 

Figure 8. Expression pattern and GRASP with ppk neurons 

(A-C) The expression patterns in the ventral nerve cord (VNC) of 454-GAL4, 7068-GAL4 and 45154-GAL4. 

Maximal projection of confocal stacks. (D-E) Overlay of the stainings registered against standard VNC and brain 

templates (gray) using a non-rigid warping algorithm. Confocal section for both VNC and brain. Arrows, 

colocalization of the three lines detected in the abdominal ganglion, two nerve tracks in the dorsal midline of the 

VNC, regions surrounding the esophagus and median bundle in the brain. (F-H”) GRASP with ppk-CD4::spGFP11, 

stained with a mouse monoclonal antibody specific for the reconstituted full GFP (green) and a rabbit polyclonal 

GFP antibody that also recognizes the spGFP1-10 (red). (I-J) The expression pattern of 3280-GAL4 in the VNC and 

female reproductive tract. Maximal projection of confocal stacks. Scale bar, 100 µm. 
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Discussion 

A quantitative assay for auditory responses in locomotion 

To study the neuronal mechanisms of auditory processing and how auditory information is used 

to guide mating decisions in females, we require a reliable readout of the response to song when 

perturbing the female’s genetics or physiological states. We also need to assess the female’s 

preference for different songs when manipulating the song patterns. The female’s response to 

song was often assessed by confining a group of females with mute males supplemented by 

playback of songs and measuring the mating speed (Bennet-Clark and Ewing 1969). There are 

two drawbacks of this method: first, the males emit other confounding cues that bring in 

unnecessary variables; second, males can also be stimulated by courtship song (von Schilcher 

1976a; Crossley, Bennetclark et al. 1995) and therefore it is difficult to distinguish between the 

effect of song on females and males. To directly assess the female’s response to song is difficult 

in Drosophila (Ritchie, Townhill et al. 1998). In two previous studies, locomotion of single-sex 

groups was examined while courtship song was played and females were observed to slow down 

in response to pulse song (von Schilcher 1976a; Crossley, Bennetclark et al. 1995). These results 

were thrown into confusion when another computer-tracking-based study failed to observe single 

female’s response to song alone (Kowalski, Aubin et al. 2004).  

Normal females become stationary before copulation occurs (Cook 1973; Tompkins, Gross et al. 

1982) and in almost all cases a bout of pulse song was seen directly before copulation (von 

Schilcher 1976b), which suggests pulse song might be able to trigger females to stop. Although 

Kowalski et al. suggested females only slow down in response to pulse song in the context of 

males, the temporal resolution in their study (1 frame / sec) might be insufficient for them to 

observe brief stopping of single females (Kowalski, Aubin et al. 2004).  

Although individual female’s responses to a bout of song are highly variable, we observed robust 

reduction of the average speed in virgin females in response to pulse song. Indeed, we found the 
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slowing down effect is rather short-lasting and the dynamics are fast (Figure 1C and 1F). We 

also observed that most of the copulations happened immediately after a burst of pulse song 

started in the mating experiments with wingless males shown in Figure 2B, which confirmed the 

trigger-like function of pulse song (von Schilcher 1976b). Therefore, the choice of temporal 

structure of song playback and the time windows to compare the speed change is crucial for 

observing female response to song in locomotion.  

Song responses as a proxy for mating decisions 

Immature virgin females were shown to have no response to pulse song, which was different 

from the mature virgins that slowed down (von Schilcher 1976a). In contrast, we found that 

immature virgins speed up robustly in response to pulse song. The discrepancy can be explained 

by the difference in methods between these studies. von Schilcher quantified the number of 

moving flies instead of the average speed we used in our assay. This could have prevented him 

from observing the acceleration of immature virgins in response to pulse song.  

We found song response is also regulated by mating status and mated females speed up in 

response to pulse song. Given the observation that locomotor activity of females is negatively 

correlated with their receptivity (Cook 1973), it is interesting to note that mated females as well 

as immature virgins show apparently “aversive” responses to pulse song in the absence of 

courting males compared to the “submissive” responses of mature virgins. We suggest pulse 

song alone might be sufficient to trigger a female to make a mating decision to a fictive male 

based on her own physiological states. Therefore, we could use female’s response to pulse song 

in locomotion as a proxy for female’s mating decision to study the underlying neural circuits.  

We have noted that the responses in the controls of the SPR rescue experiments are diminished 

(Figure 3C). This is surprising to us because these lines were backcrossed for five generations to 

our wild-type standard line and therefore they should share the same genetic background. But 

given the fact that our standard line is not an isogenic stock, selection for certain trait could 

happen as a bottleneck effect in the single female crosses. Since the difference between virgin 
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and mated female is clear in the rescued flies but absent in the controls, we think our conclusion 

that SPR acts in ppk and fru neurons to modulate the female responses to pulse song is still valid.  

The SPR deficiency females switch to speeding up in a brief period after mating, of which the 

mechanism is still not understood. One explanation is the ppk and fru double positive neurons 

might also be gated by mechanical stimuli. The uterus where these neurons locate undergoes 

conformational change after mating and Acp36DE, a male accessory gland protein, is required 

for this change (Avila and Wolfner 2009). A recent study found ppk actually encodes a 

DEG/ENaC protein that is involved in mechanical nociception (Zhong, Hwang et al. 2010). It 

would be interesting to test the ppk mutant females or wild-type females that mated with males 

lacking Acp36DE to ask if they remate and how they respond to the pulse song shortly after 

mating. 

Female preference for conspecific IPI 

Tuning for conspecific sounds is a conserved feature of auditory systems from insects to 

primates (Machens, Gollisch et al. 2005; Petkov, Kayser et al. 2008). Systematically mapping the 

female preference for certain song parameters will shed light on the roles of courtship song on 

speciation and sexual selection. It will also benefit our understanding of the neuronal 

mechanisms underlying such tuning. In Drosophila melanogaster, the main target for female 

tuning is thought to be the interpulse interval (IPI) rather than the carrier frequency (Bennet-

Clark and Ewing 1969; Rybak, Aubin et al. 2002). Our results confirmed the female tuning to 

conspecific IPI and suggested that this tuning is not modulated by sexual maturity or mating 

status (Figure 4A).  

Our quantitative analysis further revealed some interesting features of the IPI tuning. First, the 

tuning curve is a relatively broad plateau with steep slopes on both sides rather than a bell-

shaped curve. Since we were looking at a population response, it is possible that individual 

females have slightly different preferences and the plateau reflects this variation. Alternatively, 

the tuning curve might be entirely a result of the auditory processing in females. Second, the 
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females do show behavioural responses to lower or higher IPIs out of the tuning range and these 

responses are different, which is evident in the precise time courses of the average speed and the 

number of stopping flies (Figure 4B and 4C). These results suggest the IPI tuning is unlikely a 

consequence of filtering during the early processing in the auditory system. The “wrong song” is 

actually “perceived” by the flies and generates less obvious behavioural responses, although it 

doesn’t stimulate receptivity. This notion is corroborated by the fact that we could even detect 

behavioural responses of females to a single pulse (data not shown). A more obvious example is, 

a song with heterospecific IPI could elicit rejection in Drosophila biauraria females (Tomaru, 

Matsubayashi et al. 1995).  

We used a constant IPI in these experiments for simplicity. It is unlikely that the average IPI is 

the only target for female preference. When we played the natural pulse song, the females 

showed greater responses than when any of the songs with a constant IPI was played (compare 

Figure 1E and Figure 4A). In addition, the rhythm in IPI was suggested to affect female 

preference in mating (Kyriacou and Hall 1982; Ritchie, Townhill et al. 1998). Nevertheless, our 

behavioural tuning curves should provide a starting point for mapping the neuronal tuning to 

auditory stimuli with physiological methods, which is essential for studying the neuronal 

mechanisms underlying auditory processing and song pattern recognition. 

Sexual dimorphic responses to pulse song 

Males and females respond differently to pulse song (von Schilcher 1976a; Crossley, 

Bennetclark et al. 1995; Kowalski, Aubin et al. 2004; Figure 1E and 1F). We have shown that 

the female responses could be blocked by ectopic expression of fruM, yet these females didn’t 

gain the male responses (Figure 5A). This is consistent with the observations that grouped fruM 

females cannot be stimulated by pulse song to court each other more vigorously while fruF males 

that lack fruM protein show normal pulse-song-induced courtship (data not shown). These data 

suggest that the male responses to pulse song are doublesex (dsx) dependent. It is generally 

believed that these two transcription factors in the sexual determination pathway specify the 

sexual dimorphic neural circuits which in turn control the sexual specific behaviours (Demir and 
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Dickson 2005; Manoli, Foss et al. 2005; Rideout, Billeter et al. 2007; Clyne and Miesenbock 

2008; Kimura, Hachiya et al. 2008). With the neuronal populations expressing these two 

transcription factors well characterized and genetic tools to access these neurons available 

(Manoli, Foss et al. 2005; Stockinger, Kvitsiani et al. 2005; Kimura, Hachiya et al. 2008; Yu 

2009; Rideout, Dornan et al. 2010), we are at a good starting point to narrow down which 

neurons are responsible for the sexual dimorphic responses to pulse song. 

Besides the overt differences, we noticed two sexual dimorphic features in the responses. First, 

compared with females that only show “phasic” responses, males respond “tonically” to pulse 

song. The female responses decay fast and this process starts while the song is still playing 

(Figure 1F). In contrast, the male responses sustain for longer time even after the song ends 

(Figure 1F), which is consistent with previous results (von Schilcher 1976a). Second, the tuning 

curve of males to IPI seems to be broader than females, at least in the long-IPI end. Female 

responses show a pronounced reduction to IPIs below 17 msec or above 68 msec in both average 

locomotion speed (Figure 4A) and mating speed with wingless males (Bennet-Clark and Ewing 

1969). In contrast, males respond robustly even to IPIs above 80ms (von Schilcher 1976a; Figure 

4A). To IPIs shorter than 17 ms, von Schilcher found drastically diminished responses (von 

Schilcher 1976a), which is different from our results (Figure 4A). However, we noticed that the 

male responses to IPIs below 17 msec are much less sustainable (data not shown). These results 

suggest that the sexual dimorphic control of song responses may occur in song pattern 

recognition as well as action selection and motor output.  

Conclusion I 

We have established a quantitative assay to assess song responses of single flies. The precise 

quantification and high temporal resolution in our system allow us to reveal rather subtle and 

brief behavioural responses that are difficult to uncover with traditional methods. The automated 

video tracking system provides a reliable solution for handling rather large number of animals in 

genetic screens. By characterizing the responses of wild-type flies under different physiological 

states to various song types, we have established a baseline for genetic manipulations. The next 
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step is to explore the neural circuits underlying auditory processing and female mating decision 

by probing altered behavioural responses in animals with specific neuronal activity perturbed 

genetically.  

A neuronal silencing screen for female sexual behaviours 

Traditionally, the genetic approach to understand the neural mechanisms underlying behaviours 

is rather indirect. It involves isolating genes essential for the behaviours and mapping the 

neurons in which the genes function. The development of new tools in recent years has made it 

possible to make specific perturbations in genetically labeled neurons and directly assess the 

neuronal functions in certain behaviours (Luo, Callaway et al. 2008). As an analogue to forward 

genetics, we could screen random GAL4 lines unbiasedly in certain behavioural paradigms. 

Alternatively, as an analogue to reverse genetics, we could preselect GAL4 lines based on the 

expression patterns and specifically perturb neurons in some candidate regions in the nervous 

system. We decided to use an unbiased approach to screen for neural substrates underlying 

female sexual behaviours because little knowledge is available so far about the relevant circuits. 

We expect to identify neural circuits responsible for different aspects of female receptivity and 

egg laying, including sensory processing, action selection and motor control, although our screen 

is still in the early stages. With the knowledge of the specific behavioural phenotypes and 

expression patterns of the positive lines, we should be able to do more targeted secondary assays 

to tease out the components and finally assemble a whole picture for the neural control of female 

mating decision. 

Candidate second-order neurons for the SP sensors 

We found very low receptivity and elevated egg laying in virgin females when neurons labeled 

by several GAL4 lines are silenced (Figure 7). We also included 7068-GAL4 in the analysis, 

which showed normally low egg laying rates in virgins (Figure 7). 7068-GAL4 labels neurons 

morphologically similar to the octopaminergic neurons that control ovulation (Monastirioti 2003) 
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and neuronal arborizations were found in the ovary and oviduct. Therefore, we speculate that 

there might be a separate population of neurons directly suppressing egg laying in this line.  

Low receptivity and elevated egg laying resemble the behaviours of wild-type mated females and 

virgin females in which the neurons sensing SP are silenced (Hasemeyer, Yapici et al. 2009; 

Yang, Rumpf et al. 2009). The preliminary GRASP results suggest that neurons labeled by these 

lines might form synaptic connections with the ppk expressing neurons that sense SP. Although 

it is tantalizing to hypothesize that the behavioural phenotypes we saw when silencing these 

GAL4 lines are mediated by the downstream neurons of the SP sensors, we still have several 

steps to go before we can make any conclusions. 

Each of these GAL4 lines labels several clusters of neurons in the brain and VNC. We haven’t 

been able to identify the neurons specifically responsible for the behavioural phenotypes. Several 

methods can be used to circumvent this problem. First, we could stochastically label subsets of 

the neurons and correlate the behavioural phenotypes and neurons labeled in each animal. This 

method has been used to successfully identify a cluster of motor neurons that control the 

proboscis extension reflex (Gordon and Scott 2009). Second, if multiple lines label the same 

cluster of neurons, we could use the split-GAL4 system (Luan, Lemon et al. 2006) or other 

combinatory methods (Potter, Tasic et al. 2010) to specifically manipulate the overlapping 

neurons in behavioural experiments. If any of these methods work, we should also be able to 

resolve the projection patterns of the candidate neurons because the labeling would be much 

sparser.  

To establish the connectivity between the candidate neurons and the SP sensors, we need to 

circumvent some caveats in the GRASP experiments. First, we used the ppk promoter to drive 

the expression of one of split-GFP halves. Since a lot of peripheral sensory neurons other than 

the SP sensors are labeled by this promoter and project to the abdominal ganglion (Abg), we 

need to show these GRASP signals come from the right neurons. 3280-GAL4, in which the 

projections of the SP sensors in the Abg are clearly resolvable (Figure 8I), should be able to help 

us to circumvent this problem. Second, the GRASP system was not tested rigorously in 

Drosophila to show that signals can only be detected when synapses are formed. Therefore, we 

need either anatomical evidence from electron microscopy to show the synaptic connections or 
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physiological evidence that these neurons are functionally coupled. One method to achieve this is 

to activate the SP sensors with TrpA1 (Pulver, Pashkovski et al. 2009) while monitoring the 

activity of candidate downstream neurons with Ca2+

The similarity of phenotypes and expression patterns in these lines suggest that they might label 

some neurons in common. However, we cannot prove this until we examine the expression 

patterns driven by these enhancer tiles in the same animal. By fusing the enhancer tiles with a 

fluorescent protein indicator or using other binary expression systems (Lai and Lee 2006; Potter, 

Tasic et al. 2010), we should be able to achieve such double labeling. Alternatively, these lines 

may label different parts of the neural circuits that control female sexual behaviours. In this case, 

it would be interesting to examine whether they are interconnected and how information flows in 

these circuits. 

 imaging (Tian, Hires et al. 2009). Third, 

while the GRASP signals were very strong with 454-GAL4 and clearly colocalized with some 

neurites labeled by the GAL4 line, the signals were much weaker with 7068-GAL4 and 45154-

GAL4 and the colocalization was less clear. Possible reasons include that these lines are much 

weaker and the polyclonal anti-GFP antibody doesn’t stain GFP1-10 in the neurites labeled by 

the GAL4 lines very well. We need to repeat the experiments and increase the signal-noise ratio 

to exclude the possibility that these signals are non-specific.  

Besides receptivity and egg laying, multiple behaviours, including feeding (Carvalho, Kapahi et 

al. 2006), sleeping (Isaac, Li et al. 2009) and song responses (Figure 3B and 3C), are regulated 

by SP. At least for receptivity, egg laying and song responses, the ppk and fru double positive 

neurons in the female reproductive tract seem to act as a master switch (Hasemeyer, Yapici et al. 

2009; Yang, Rumpf et al. 2009; Figure 3C). Where does the downstream neural pathway of the 

SP sensors segregate to control each of the behaviours? Identification of the second-order 

neurons of the SP sensors will provide a great opportunity to assess how neural circuits are 

organized to relay the same sensory information to control different behaviours. 
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Conclusion II 

Female sexual behaviours in Drosophila are complex yet well controlled. Multiple sensory cues 

and internal states must be sensed and integrated in the brain to guide the mating decisions. We 

performed a neuronal silencing screen to search for the neural substrates underlying female 

sexual behaviours. In our initial results, GAL4 lines labeling candidate second-order neurons of 

the SP sensors have been uncovered. Characterization of these lines might provide unique 

insights into how information is relayed from an internal sensor to the brain to regulate multiple 

behaviourals.  

  



53 
 

Materials and methods 

Fly stocks 

The wild-type standard line used in the song response assay is bearing a hs-hid transgene on the 

Y chromosome and derived from a laboratory Canton S stock. Another wild-type line from the 

same genetic background with a compound X chromosome bearing a hs-hid transgene was used 

to generate large quantity of males. SP0 is a gift from Eric Kubli (Liu and Kubli 2003); UAS-

EGFP-Kir2.1, UAS-EGFP-Kir2.1, tub-GAL80ts and UAS-CD4-spGFP1-10 are gifts from Kristin 

Scott (Fischler, Kong et al. 2007; Gordon and Scott 2009). ppk-GAL4, fruGAL, UAS-SPR and 

Df(1)Exel6234 (Stockinger, Kvitsiani et al. 2005; Yapici, Kim et al. 2008; Hasemeyer, Yapici et 

al. 2009) were backcrossed to the wild-type standard line for five generations. fruM (Demir and 

Dickson 2005) was backcrossed to the wild-type standard line in 3 generations of single female 

crosses and 3 generations of single male crosses (since the fertility of fruM females is extremely 

low, we have to set up many single female crosses and select the males bearing the fruM

All the flies used in this work were raised on standard cornmeal-yeast-agar medium at 25 ˚C and 

60% humidity, except for the tub-GAL80

 allele in 

the progeny to set up single male crosses in order to get a lot of females for the next crosses). 

ppk-CD4-GFP11 is generated by Martin Hasemeyer by subcloning the CD4-spGFP11 DNA 

fragment into a construct containing the ppk promoter (Gordon and Scott 2009; Hasemeyer, 

Yapici et al. 2009). The enhancer tiling GAL4 lines are generated by Christopher Masser and 

Salil Bidaye in the lab.  

ts flies that were raised in 22 ˚C and shifted to 25 ˚C two 

days before the behavioural assays. The flies bearing hs-hid transgene were heat-shocked for 1.5 

hours during early pupa stage to generate large quantity of virgin females or males. 
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Behavioural assays 

The song response assay was done as described in the main text. The videos were recorded with 

a SONY HDR-SR5CE camcorder at 25 fps with a resolution of 1440:1080. The original songs 

were recorded digitally from wild-type Canton S males in the lab by Alex Keene. The white 

noise was generated with a build-in function in the software Goldwave. A short clip of song was 

repeated until reaching the duration of 5 seconds to generate a song burst. The songs for the 

tuning experiments were generated by inserting various lengths of silence after a standard single 

pulse taken from the original pulse song and these patterns were repeated until the duration of 5 

seconds was reached. The amplitude of the song playback was at about 100 dB SPL for the peak 

frequency in the position where the chambers are placed.  

In the GAL4 screen, the virgin females from the crosses as well as wild-type males were 

collected shortly after eclosion and aged in groups of about 30 virgins or males for 3-5 days. 

Receptivity assays were performed in round Perspex chambers with a diameter of 10 mm and a 

height of 4 mm. Single tester virgin female and wild-type male were introduced into each 

chamber before the video recording started. The courtship was videotaped for 30 minutes with 

30 pairs for each genotype. Number of pairs copulated within 5, 10 and 30 minutes were scored 

manually from the videos. The food tubes housing these virgins were examined for the virgin 

egg laying after the receptivity assay. Another 10 females and 10 males from the crosses were 

collected and aged together for 2-3 days before the food tubes were examined for the egg laying 

of mated females.  

All the flies were reared in a 12h:12h light:dark cycle with the dawn at 8 am. All the behavioural 

assays were done between 1 pm to 5 pm. 

Data analysis 

The videos for the song response assay were tracked with customized MATLAB software. The 

coordinate of each fly in every frame was detected. Euclidean distance was calculated for each 
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fly between two consecutive frames to derive the speed (Figure 1C top shows an example of this 

original speed of a single fly). The speed for each fly throughout a video was averaged in a 

moving window of 25 frames before the average speed of the 28 flies was calculated for each 

frame. The sound track was used to detect the frame at which the song started (frame 0) for each 

video. The average speed of the 28 flies in the 600 frames centered at frame 0 was further 

averaged across the 6 repetitions of song bursts (Figure 1C bottom shows an example of this 

averaged trace across 28 flies and 6 song repetitions). Further computations were based on this 

average speed. The mean of the average speed in the 300 frames before frame 0 was calculated 

as the basal activity v. The maximum and minimum of the average speed in the 150 frames after 

frame 0 was denoted as vmax and vmin. The metric Δv we used to quantify the responses in one 

assay was calculated with the following formula:  Δv = (vmax – v) – (v – vmin) = vmax + vmin

In the time courses (Figure 1F and Figure 4B), the average speed across 28 flies and 6 song 

repetitions was further averaged and normalized against v across multiple assays for each 

experimental condition.  

 – 2v.  

Euclidean distance between the frames T-2 and T+2 (time delay 160 msec) for each fly was 

calculated. If this distance was smaller than 2 pixels (0.2 mm), the fly was considered to stop at 

the frame T (slower than 1.25 mm/sec). The time courses (Figure 4C) were calculated with the 

same procedure of averaging and normalization as for the speed. 

Immunohistochemistry and image registration 

Immunohistochemistry and image registration were done by following the protocols described 

by Jai Yu (Yu 2009). Briefly, tissues were dissected in PBS and fixed with 4% PFA for 20 

minutes at RT. After fixation, tissues were washed 3 times with PBST (PBS in 0.3% triton-X) 

and blocked in 10% goat serum blocking solution for 4 hours at RT before incubated in primary 

antibodies for 48 hours at 4 ˚C and in secondary antibodies for 72 hours at 4 ˚C. After both 

primary and secondary antibody incubation, tissues were washed 3 times for 15 min at RT and 1 

time overnight at 4 ˚C. Confocal scanning was performed and the stacks were registered against 
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standard tissues (Yu 2009) with a non-rigid registration algorithm (Jefferis, Potter et al. 2007) in 

customized software Brainwarp. 

Antibody concentrations: 

Primary antibodies: 

Polyclonal rabbit anti-GFP (Torrey Pines)                             1:3000 

Monoclonal mouse anti-GFP (Sigma)                                     1:100 

Mouse anti-nc82 (DSHB)                                                        1:20 

Secondary antibodies: 

Alexa 488-conjugated goat anti-rabbit IgG (Invitrogen)         1:500  

Alexa 488-conjugated goat anti-mouse IgG (Invitrogen)        1:500 

Alexa 647-conjugated goat anti-mouse IgG (Invitrogen)        1:500 

Alexa Fluor 647 phalloidin (Invitrogen)        

  

                          1:100 
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