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Abstract

In general relativity one tries to find solutions to Einstein’s equations

8πT = G

which typically is not possible in full generality because of the complexity of this
system of partial differential equations. However, under certain assumptions on
the spacetime and on the matter in it, solutions can be found.
Our aim is to investigate solutions which have a certain geometric structure,
namely that of warped products. We will first develop general results for ge-
ometric properties of warped products and will afterwards use them in order
to investigate spacetimes which are of this form. In this work we restrict our
attention to Robertson-Walker-, Schwarzschild- and Reissner-Nordström space-
times.

Zusammenfassung

Die allgemeine Relativitätstheorie beschäftigt sich mit der Suche nach Lösungen
der Einstein-Gleichungen

8πT = G

Wegen der Komplexität dieses Systems von partiellen Differentialgleichungen ist
es zumeist nicht möglich, explizite Lösungen zu bestimmen. Unter bestimmten
Bedingungen an die Raumzeit und die darin enthaltene Materie wird es jedoch
möglich das System zu lösen.
Das Ziel dieser Arbeit ist es, Lösungen zu untersuchen, die eine gewisse ge-
ometrische Struktur aufweisen, sogenannte warped products (verzerrte Pro-
dukte). Wir werden zunächst allgemeine Resultate für die Geometrie von warped
products herleiten. Im Anschluss daran verwenden wir diese um Raumzeiten zu
betrachten, deren Geometrien warped products sind. Wir beschränken uns auf
Robertson-Walker, Schwarzschild- und Reissner-Nordström-Raumzeiten.
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Chapter 1

Introduction

In 1915, Albert Einstein stated the equations of general relativity,

8πT = G

where T is the stress-energy tensor of the matter in a spacetime M and G the
Einstein tensor. Solving this system of 10 coupled nonlinear partial differential
equations is in general not explicitly possible. However, under certain symme-
try assumptions or assumptions on the matter distribution special solutions for
these equations were constructed. Karl Schwarzschild for instance found in 1916
a solution for spherically symmetric vacuum spacetimes. A.G. Walker and H.P.
Robertson found an exact solution of Einstein’s field equations for an isotropic
and homogeneous universe.

The aim of this work is to identify some of the well-known solutions of the
field equations, namely the Robertson-Walker-, Schwarzschild- and Reissner-
Nordström-solution, as so-called warped products. A warped product, denoted
by M = B ×f F , is a special kind of a product manifold with a different metric
tensor than the usual one, i.e.

gM = pr1
∗(gB) + (f ◦ pr1)2pr2

∗(gF )

where gB and gF are the metric tensors on B resp. F .

In chapter 2 we will provide the technical tools for the investigation of ge-
ometric properties of warped products. In the first section we introduce the
notion of lifts which will turn out to be of great importance in what follows.
We then will compute the Levi-Civita connection on M and afterwards also the
Riemannian tensor and Ricci-curvature.
In the following section we develop the geodesic equations,

α′′ = 〈β′, β′〉F f ◦ α grad(f)

resp.

β′′ = − 2
f ◦ α

d(f ◦ α)
ds

β′

We also discuss the causal properties of M and it turns out that the causal
structure on M is mainly determined by the one on B and also the converse
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10 CHAPTER 1. INTRODUCTION

holds under certain assumptions on F . We will also prove that in case of Rie-
mannian manifolds, completeness of M is equivalent to completeness of both
factors B and F .
The third section of chapter 2 provides a generalization by using more fiber
manifolds Fi, each one warped with a function fi. Analogously to the singly
warped product case we will derive general geometric properties and causality
relations.

Chapter 3 starts with a short description of homogeneous and isotropic man-
ifolds. Afterwards we investigate the Robertson-Walker solution of Einstein’s
equations for a homogeneous and isotropic universe. It turns out that the met-
ric on such a spacetime M(k, f) = I ×f S where I ⊆ R and S an isotropic
Riemannian manifold is of the form

dt2 + f2(t)dσ2

hence it is a warped product. We will therefore apply the results developed in
chapter 2.
The characterization of geodesics will lead to the result that for null geodesics
f(t) dtds is constant. This will allow us to compute the redshift parameter in terms
of the warping function and so provide an explanation for the cosmological red-
shift. This result is the most direct observational evidence for the expansion of
the universe. As a corollary we can compute the present distance between two
galaxies.
After investigating causality and completeness of the spacetime, we will inter-
pret it as a solution of Einstein’s equations. It turns out that the stress-energy
tensor is that of a perfect fluid. Since we assume that the energy density dom-
inates pressure we will then restrict our investigation to the case in which no
pressure is present, and therefore obtain Friedmann cosmological models.
The main result in the last section of this chapter is that a Robertson-Walker
spacetime has an initial singularity and depending on f either expands indefi-
nitely or ends in a final singularity.

The topic of chapter 4 is the Schwarzschild solution of Einstein’s equation for
a spherically symmetric and static universe containing a single star as a source
of gravitation.
We will first derive the metric and obtain as the line element

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

Hence we can see that again it turns out to be a warped product and we use
chapter 2 for determining geometric properties.
After having developed the geodesic equations we will interpret the obtained
constants on the Schwarzschild exterior, i.e. the region with r > 2m. Afterwards
we will, in order to study the movement of material and lightlike particles, derive
the orbit equation. It turns out that this equation differs from the classical
Newtonian orbit equation only by a summand proportional to 1

r2 . However,
this difference is used for explaining the perihelion advance of Mercury’s orbit.
This is one of the most important experimental proofs of Einstein’s theory.
Other famous results in favor of it mentioned in this work are the time delay of
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radar echoes and the deflection of light near a mass.
The last section in this chapter, which deals with Schwarzschild spacetime, offers
a short historical overview of how physicists tried to get rid of the coordinate
singularity at r = 2m. Different coordinate systems are introduced, but for a
more detailed description we refer to [MTW].
In the final section we give another example for a warped product spacetime,
namely the Reissner-Nordström spacetime. It models the spacetime surrounding
a non-rotating spherically symmetric charged black hole. The line element is
given by

ds2 = −
(

1− 2m
r

+
ε2

r2

)
dt2 +

(
1− 2m

r
+
ε2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

Therefore Schwarzschild spacetime is just the special case with ε = 0.
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Chapter 2

Warped products

In this section we want to prepare the mathematical tools which are necessary
for the further study of different kinds of spacetimes.

2.1 Lifts

To relate the calculus of a product manifold M × N to that of its factors, the
crucial notion is that of lifting:
If f ∈ C∞(M) the lift of f to M × N is f̃ = f ◦ pr1 ∈ C∞(M × N) where
pr1 : M ×N →M , (p, q) 7→ p.
Let x ∈ TpM and q ∈ N then the lift x̃ ∈ T(p,q)(M × N) of x to (p, q) is the
unique vector in T(p,q)(M ×N) such that

T(p,q)pr1(x̃) = x

and
T(p,q)pr2(x̃) = 0

For X ∈ X(M) the lift of X to M × N is the vector field X̃ whose value at
each (p, q) is the lift of Xp to (p, q). X̃ is smooth thus the lift of X ∈ X(M) is
the unique element of X(M×N) that is pr1-related to X, i.e. X ◦pr1 = Tpr1◦X̃

T (M ×N)
Tpr1 //

πM×N

��

TM

πM

��
M ×N pr1

//

X̃

OO

M

X

OO

and pr2-related to the 0-vector field on N , i.e. 0 ◦ pr2 = Tpr2 ◦ X̃ and so
Tpr2 ◦ X̃ = 0, hence

X̃(p, q) = (Xp, 0q)

The set of such horizontal lifts X̃ is denoted by L(M).
Analogously functions, tangent vectors and vector fields can be lifted to M ×N
via using the projection pr2 : M × N → N , (p, q) 7→ q. The space of these

13



14 CHAPTER 2. WARPED PRODUCTS

vertical lifts is denoted by L(N).

Note: L(M) and L(N) are vector subspaces of X(M ×N) but neither one
is invariant under multiplication with arbitrary functions f ∈ C∞(M ×N).

2.2 Warped products

Warped products were introduced the first time in [B.o’N.].
Let B and F be n-resp. l- dimensional semi Riemannian manifolds. On the
semi Riemannian product manifold B × F the metric tensor g is given by

g = pr1
∗(gB) + pr2

∗(gF )

where gF and gB are the metric tensors on F resp. B.
A rich class of metrics on B×F can be obtained by homothetically warping the
product metric on each fiber p× F . Note that the manifold stays the same but
the geometries differ.
Notation 2.2.1. On B we use the notation gB = 〈 , 〉B , the Levi-Civita connec-
tion on B is denoted by ∇B . Analogously, on F , gF = 〈 , 〉F , the Levi-Civita
connection is ∇F . On M = B ×f F we write gM = 〈 , 〉M , resp. ∇M .
Definition 2.2.2. For semi Riemannian manifolds B, F of dimension n resp. l
and f > 0 a smooth function on B we define the warped product M = B ×f F
as the product manifold B × F furnished with the metric tensor

gM = pr1
∗(gB) + (f ◦ pr1)2pr2

∗(gF )

Explicitly, for a vector x ∈ T(p,q)(M ×N) we get

〈x, x〉M = 〈T(p,q)pr1(x), T(p,q)pr1(x)〉B + f2(p)〈T(p,q)pr2(x), T(p,q)pr2(x)〉F

gM is a metric tensor since symmetry is clear, nondegeneracy follows from non-
degeneracy of gF and gB and because f > 0.
For f = 1, B ×f F is just the usual semi Riemannian product manifold.
Definition 2.2.3. B is called the base of M = B ×f F and F is called fiber.

Remark 2.2.4. The difference between the usual product manifold B × F and
M = B ×f F is caused by the different metrics hence the geometries of the two
manifolds are not the same. Tangent spaces remain unchanged since

T(p,q)(B ×f F ) = T(p,q)(B × F )
= TpB × TqF
∼= (TpB × {0})⊕ ({0} × TqF )

Now we want to express the geometry of M in terms of the warping function
f and the geometries of B and F .
The relation to the base B is almost as simple as for semi Riemannian products,
but the warping function changes the relation to the fiber F .
The fibers p× F = pr1

−1(p) and leaves B × q = pr2
−1(q) are semi Riemannian

submanifolds of M . We obtain the following properties:
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Lemma 2.2.5.
(1) ∀ q ∈ F , the map pr1|B×q is an isometry onto B
(2) ∀ p ∈ B, the map pr2|p×F is a positive homothety onto F with scale-factor

1
f(p) .
(3) ∀ (p, q) ∈M the leaf B × q and the fiber p× F are orthogonal at (p,q).
(4) ∀ (p, q) ∈M we have that (T(p,q)(p× F ))⊥ = T(p,q)(B × q).

Proof.
(1) pr1

∗(gB) = g|B×q hence pr1|B×q is an isometry.
(2) pr2 : p× F → F is a diffeomorphism and

pr2
∗(gF ) =

1
f(p)2

g|p×F

so by using [O’N.] ,3.63 we get the result.
(3) Let v = (v1, 0) ∈ T(p,q)(B × q), w = (0, w2) ∈ T(p,q)(p× F ). Then we get

〈(v1, 0), (0, w2)〉M = 〈v1, 0〉B + f2(p)〈0, w2〉F = 0 + 0 = 0

(4)

(T(p,q)(p× F ))⊥ = {(z′1, z′2) ∈ T(p,q)(B ×f F )| ∀ (0, z2) ∈ T(p,q)(p× F ) :

〈0, z′1〉B + f2(p)〈z2, z
′
2〉F = 0}

= {(z′1, z′2) ∈ T(p,q)(B ×f F )| ∀ z2 ∈ TqF : 〈z2, z
′
2〉 = 0}

= {(z′1, z′2) ∈ T(p,q)(B ×f F )| z′2 = 0}
= TpB × 0
= T(p,q)(B × q)

Definition 2.2.6. Vectors tangent to leaves are called horizontal, those tangent
to fibers vertical.
The last item of 2.2.5 will be used in the following proofs to show that a vector
is horizontal or vertical.

Lemma 2.2.7. For h ∈ C∞(B) the gradient of the lift h ◦ pr1 of h onto M =
B ×f F is the lift of the gradient of h on B onto M (i.e. lift and gradient
commute).

Proof. Our task is to show that:

• grad(h ◦ pr1) is pr1-related to grad(h) on B

• grad(h◦pr1) is horizontal. As remarked above we show this via the relation

(T(p,q)(p× F ))⊥ = T(p,q)(B × q)

We start by showing horizontality:
Let v ∈ T(p,q)(p× F ), v = (0, v2) be a vertical tangent vector, then

〈grad(h ◦ pr1), v〉M = v(h ◦ pr1) = T(p,q)pr1(v)h = 0
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since T(p,q)pr1(v) = 0 because v is vertical.
So we conclude that grad(h ◦ pr1) is horizontal.

To show pr1-relatedness it is necessary to show that

Tpr1 ◦ grad(h ◦ pr1) = grad(h) ◦ pr1

So for x being horizontal, x ∈ T(p,q)(B × q), x = (x1, 0), we get

〈T(p,q)pr1(grad(h ◦ pr1)), T(p,q)pr1(x)〉B
horizontal= 〈grad(h ◦ pr1), x〉M

= x(h ◦ pr1)
= T(p,q)pr1(x)h
= 〈grad(h)|p, T(p,q)pr1(x)〉B

so T(p,q)pr1(grad(h ◦ pr1)) = grad(h) ◦ pr1 at each point.

This result allows us to simply write h for h ◦ pr1 and grad(h) instead of
grad(h ◦ pr1).

Before investigating the Levi-Civita connection ∇M of M and how it can be
related to those of B and F we state the basic properties of connections and
prove some results for product manifolds which will frequently be used in what
follows.

Definition 2.2.8. A connection on a smooth manifold M is a function ∇ : X ×
X→ X such that
(D1) ∇VW is C∞-linear in V .
(D2)∇VW is R-linear in W .
(D3) ∇V (fW ) = (V f)W + f∇VW for f ∈ C∞.

Theorem 2.2.9. On a semi Riemannian manifold M there is a unique connection
∇, the so called Levi-Civita connection of M , such that
(D4) [V,W ] = ∇VW −∇WV
(D5) X〈V,W 〉 = 〈∇XV,W 〉+ 〈V,∇XW 〉
for all V, W, X ∈ X(M).
∇ is characterized by the Koszul formula

2〈∇VW,X〉 = V 〈W,X〉+W 〈X,V 〉 −X〈V,W 〉
−〈V, [W,X]〉+ 〈W, [X,V ]〉+ 〈X, [V,W ]〉

Proof. See [O’N.], 3.11.

Lemma 2.2.10. Let X,Y ∈ X(B), V,W ∈ X(F ). Then
(1) 〈X̃, Ỹ 〉M = 〈X,Y 〉B
(2) 〈Ṽ , W̃ 〉M (p, q) = f2(p)〈V,W 〉F (q)
(3) 〈X̃, Ṽ 〉M (p, q) = 0
(4) [X̃, Ṽ ] = 0
(5) X̃(h ◦ pr1) = X(h) ◦ pr1

(6) Ṽ 〈X̃, Ỹ 〉M = 0
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Proof.
(1)

〈X̃, Ỹ 〉M (p, q) = 〈T(p,q)pr1(X̃), T(p,q)pr1(Ỹ )〉B
+f2(p)(〈Tpr2 ◦X,Tpr2 ◦ Y 〉F︸ ︷︷ ︸

=0

)

= 〈X,Y 〉B(p)

(2) Analogously to (1)
(3)

〈X̃, Ṽ 〉M (p, q) = 〈T(p,q)pr1(X̃), T(p,q)pr1(Ṽ )〉B(p)

+f2(p)〈T(p,q)pr2(X̃), T(p,q)pr2(Ỹ )〉F (q)
= 0

because T(p,q)pr1(Ṽ ) = 0 and T(p,q)pr2(X̃) = 0.
(4) Follows since by [O’N.], 1.22., [X̃, Ṽ ] is pr1-related to [X̃, 0] = 0 and pr2-
related to [0, Ṽ ] = 0
(5) In general

Tpr1 ◦ X̃ = X ◦ pr1,

hence

X̃(h ◦ pr1) = T (h ◦ pr1)(X̃)
= Th ◦ Tpr1 ◦ X̃
= Th ◦X ◦ pr1

= X(h) ◦ pr1

(6) Follows by noticing that

Ṽ 〈X̃, Ỹ 〉M = Ṽ (〈X,Y 〉B ◦ pr1) = V 〈X,Y 〉B ◦ pr1 = 0

since V ∈ X(F ) and 〈X,Y 〉B is constant on F .

Proposition 2.2.11. On M = B ×f F we have for X̃, Ỹ ∈ L(B), Ṽ , W̃ ∈ L(F )
the following properties:
(1) ∇M

X̃
Ỹ ∈ L(B) is the lift of ∇BXY to M .

(2) ∇M
X̃
Ṽ = ∇M

Ṽ
X̃ = X̃f

f Ṽ

(3) nor ∇M
Ṽ
W̃ = II(Ṽ , W̃ ) = −

(
〈Ṽ ,W̃ 〉M

f

)
grad(f)

(4) tan ∇M
Ṽ
W̃ ∈ L(F ) is the lift of ∇FVW to M .

Proof. In what follows we denote by X̃, Ỹ ∈ L(B), Ṽ ,W̃ ∈ L(F ) the lifts of the
vector fields X,Y ∈ X(B), V,W ∈ X(F ) to M .

(1): For the statement ∇M
X̃
Ỹ = ˜∇BXY we have to show:

• T(p,q)pr1(∇M
X̃
Ỹ )= ∇BXY ◦ pr1

• T(p,q)pr2(∇M
X̃
Ỹ ) = 0



18 CHAPTER 2. WARPED PRODUCTS

Now

T(p,q)pr1(∇M
X̃
Ỹ ) = ∇BXY |p

⇔ 〈T(p,q)pr1(∇M
X̃
Ỹ )−∇BXY |p, A〉B = 0 ∀ A ∈ X(B)

⇔ 〈T(p,q)pr1(∇M
X̃
Ỹ ), A〉B = 〈∇BXY |p, A〉B ∀ A ∈ X(B)

We have

2〈T(p,q)pr1(∇M
X̃
Ỹ ), A〉B = 2〈T(p,q)pr1(∇M

X̃
Ỹ ), T(p,q)pr1(Ã)〉B

= 2(〈∇M
X̃
Ỹ , Ã〉M−f2(p)〈T(p,q)pr2(∇M

X̃
Ỹ ), T(p,q)pr2(Ã)〉F)

where the last term vanishes because T(p,q)pr2(Ã) = 0. Using the Koszul-
formula leads to

2〈∇M
X̃
Ỹ , Ã〉M = X̃〈Ỹ , Ã〉M + Ỹ 〈Ã, X̃〉M − Ã〈X̃, Ỹ 〉M −

−〈X̃, [Ỹ , Ã]〉M + 〈Ỹ , [Ã, X̃]〉M + 〈Ã, [X̃, Ỹ ]〉M
= X̃(〈Y,A〉B ◦ pr1) + Ỹ (〈A,X〉B ◦ pr1)− Ã(〈X,Y 〉B ◦ pr1)−
−〈X, [Y,A]〉B ◦ pr1 + 〈Y, [A,X]〉B ◦ pr1 + 〈A, [X,Y ]〉B ◦ pr1

= [X(〈Y,A〉B + Y 〈A,X〉B −A〈X,Y 〉B − 〈X, [Y,A]〉B +
+〈Y, [A,X]〉B + 〈A, [X,Y ]〉B ] ◦ pr1

= 2〈∇BXY,A〉B

For the second part we calculate:

T(p,q)pr2(∇M
X̃
Ỹ ) = 0 ⇔ 〈T(p,q)pr2(∇M

X̃
Ỹ ), A〉 = 0 ∀ A ∈ X(F )

⇔ 〈T(p,q)pr2(∇M
X̃
Ỹ ), T(p,q)pr2(Ã)〉M = 0

Again using the Koszul formula we arrive at:

2〈∇M
X̃
Ỹ , Ã〉M = −Ã〈X̃, Ỹ 〉M + 〈Ã, [X̃, Ỹ ]〉M = 0

since all the other terms vanish by 2.2.10.

(2): Since
0 = [X̃, Ṽ ] = ∇M

X̃
Ṽ −∇M

Ṽ
X̃

it follows that ∇M
X̃
Ṽ = ∇M

Ṽ
X̃.

Using property (D5) of the Levi-Civita connection we get for A ∈ X(B):

〈∇M
X̃
Ṽ , Ã〉M = −〈Ṽ ,∇M

X̃
Ṽ 〉M + X̃〈Ṽ , Ã〉M = 0

by 2.2.10 (3) because Ṽ ∈ L(F ), but ∇M
X̃
Ṽ ∈ L(B). Hence we just have to

consider vector fields W ∈ X(F ) since T(p,q)M = TpB ⊕ TqF :

2〈∇M
X̃
Ṽ , W̃ 〉M

Koszul= −X̃〈Ṽ , W̃ 〉M + Ṽ 〈W̃ , X̃〉M − W̃ 〈X̃, Ṽ 〉M
−〈X̃, [Ṽ , W̃ ]〉M + 〈Ṽ , [W̃ , X̃]〉M + 〈W̃ , [X̃, Ṽ ]〉M

All terms except the first vanish by 2.2.10 (3) resp. (4). The definition of the
warped metric tensor leads to



2.2. WARPED PRODUCTS 19

(∗)
〈Ṽ , W̃ 〉M (p, q) = f2(p)〈Vq,Wq〉F

Writing f for f ◦ pr1 we get

〈Ṽ , W̃ 〉M = f2(〈V,W 〉F ◦ pr2)

〈V,W 〉F ◦ pr2 is constant on fibers to which X̃ is tangent since

T(p,q)pr1(〈V,W 〉F ◦ pr2) = 0,

so X̃(〈V,W 〉F ◦ pr2) = 0 and we get:

X̃〈Ṽ , W̃ 〉M = X̃(f2(〈V,W 〉F ◦ pr2)
= 2fXf(〈V,W 〉F ◦ pr2)
(∗)
= 2

Xf

f
〈Ṽ ,W 〉

hence ∇M
X̃
Ṽ = Xf

f Ṽ .

(3): Using again (D5) and (2) we get

〈∇M
Ṽ
W̃ , X̃〉M

(D5)
= −〈W̃ ,∇M

Ṽ
X̃〉M + Ṽ 〈W̃ , X̃〉︸ ︷︷ ︸

=0

(2)
= −〈W̃ ,

Xf

f
Ṽ 〉M

= −Xf
f
〈Ṽ , W̃ 〉M

Since by 2.2.7

X̃f = 〈g̃rad(f), X̃〉M = 〈grad(f), X〉B

it follows that

〈∇M
Ṽ
W̃ , X̃〉M = −〈〈Ṽ , W̃ 〉M

f
g̃rad(f), X̃〉M = −〈Ṽ , W̃ 〉M

f
〈grad(f), X〉B

Because (T(p,q)(p× F ))⊥ = T(p,q)(B × q) the result follows.

(4): V and W are tangent to all fibers p×F , so we have tan∇M
Ṽ
W̃ is the fiber-

covariant derivative on a fiber applied to the restrictions of V and W to that

fiber, i.e. tan∇M
Ṽ
W̃ = ∇̃FVW . pr2-relatedness then follows since homotheties

preserve the Levi-Civita connection ([O’N.], 3.64).

Corollary 2.2.12. Let X = (X1, X2), Y = (Y1, Y2) be arbitrary vector fields on
M with X1, Y1 ∈ B, X2, Y2 ∈ F then

∇MX Y = ∇BX1
Y1 +∇FX2

Y2 +
1
f

(X1(f)Y2 + Y1(f)X2− 〈(0, X2), (0, Y2)〉Mgrad(f))
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Proof. Applying 2.2.11 and linearity of ∇M leads to

∇MX Y = ∇M(X1,X2)(Y1, Y2)

= ∇M(X1,0)+(0,X2) ((Y1, 0) + (0, Y2))

= ∇M(X1,0)(Y1, 0) +∇M(X1,0)(0, Y2) +∇M(0,X2)(Y1, 0)∇M(0,X2)(0, Y2)
= (∗)

Since (X1, 0), (Y1, 0) ∈ L(B) and (0, X2), (0, Y2) ∈ L(F ) we obtain

(∗) = ∇BX1
Y1 +

Y1(f)
f

X2 +
X1(f)
f

Y2 −
〈(0, X2), (0, Y2)〉M

f
grad(f) +∇FX2

Y2

= ∇BX1
Y1 +∇FX2

Y2 +
1
f

(X1(f)Y2 + Y1(f)X2 − 〈(0, X2), (0, Y2)〉M grad(f))

Notation 2.2.13. The second fundamental form on leaves B × q is denoted by
IIB×q, on fibers p× F we write IIp×F .

Corollary 2.2.14. The leaves B× q of a warped product are totally geodesic (i.e.
IIB×q = 0), the fibers p×F are totally umbillic (i.e. there exists a smooth normal
vector field Z on p× F s.t. IIp×F (V,W ) = 〈V,W 〉MZ ∀ V,W ∈ X(p× F )).

Proof. In general we have II(V,W ) = nor ∇MV W

The shape tensor of a leaf is just the projection of ∇M
X̃
Ỹ onto F hence by

using 2.2.11(1) (∇M
X̃
Ỹ = ∇̃BXY ) we get the desired result.

By 2.2.11 (3) IIp×F (V,W ) = −
(
〈V,W 〉M

f

)
grad(f) so

Z = − 1
f

grad(f)

is the desired vector field satisfying

IIp×F (V,W ) = 〈V,W 〉MZ

Example 2.2.15.

• R3 \ {0} with spherical coordinates:

ds2 = dr2 + r2(dθ2 + sin2 θdφ2)

For r = 1 we get the line element of the unit sphere S2. So R3 \ {0} is
diffeomorphic to R+ × S2 under the map (t, p)↔ tp.
Thus the formula for ds2 shows that R3 \ {0} can be identified with the
warped product R+ ×r S2.
Leaves are the rays from the origin and fibers are the spheres S2(r), r > 0.
In general Rn \ {0} is naturally isometric to R+ ×r Sn−1

• A surface of revolution: Leaves are different positions of the rotated curve,
fibers are the circles of revolution.
If M is built up by revolving a plane curve C about an axis in R3, and
f : C → R+ gives the distance to the axis, then M = C ×f S1
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2.2.1 Geodesics

In B ×f F a curve γ can be written as

γ(s) = (α(s), β(s))

with α, β being the projections of γ onto B resp. F .
We now want to characterize geodesics via the following proposition:

Proposition 2.2.16. A curve γ = (α, β) in M = B×f F is a geodesic if and only
if

1. α′′ = 〈β′, β′〉F f ◦ α grad(f) in B

2. β′′ = − 2
f◦α

d(f◦α)
ds β′ in F

Proof. Since the result is local, it suffices to work in an arbitrary small interval
around s = 0.

Case 1: γ′(0) is neither horizontal nor vertical:
γ′(0) = (α′(0), β′(0)), so α, β are regular.
Therefore we can suppose that α is an integral curve of X on B, β one of V on
F . By denoting X̃, Ṽ the lifts to M , γ is an integral curve of X̃ + Ṽ . Thus

γ′′ = ∇M
X̃+Ṽ

(X̃ + Ṽ ) = ∇M
X̃
X̃ +∇M

X̃
Ṽ +∇M

Ṽ
X̃ +∇M

Ṽ
Ṽ

(⇒) γ′′ = 0 therefore tan γ′′ = 0 and nor γ′′ = 0 with respect to the fibers

0 = nor γ′′ = ∇M
X̃
X̃ + nor ∇M

Ṽ
Ṽ = ∇BXX︸ ︷︷ ︸

=α′′

−〈Ṽ , Ṽ 〉M
f

grad(f)

and we conclude that α′′ = 〈β′, β′〉F f ◦ α grad(f).
Since

0 = tan γ′′ = ∇M
X̃
Ṽ +∇M

Ṽ
X̃ + tan ∇M

Ṽ
Ṽ

= 2
Xf

f
Ṽ X̃ + tan ∇M

Ṽ
Ṽ

= 2
Xf

f
Ṽ +∇FV V︸ ︷︷ ︸

=β′′

So

β′′ = − 2
f ◦ α

d(f ◦ α)
ds

β′

where we have used the relations 〈Ṽ , Ṽ 〉M = f2〈V, V 〉F and α′ = X, β′ = V

(⇐) By assumption α′′ − 〈β′, β′〉F f ◦ α grad(f) = 0. So

0 = ∇M
X̃
X̃ − 〈Ṽ , Ṽ 〉M

f
grad(f) = 0 = nor γ′′

By β′′ + 2
f◦α

d(f◦α)
ds β′ = 0 it follows that tan γ′′ = 0.

Summing up leads to γ′′ = nor γ′′ + tan γ′′ = 0
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Case 2: γ′(0) is horizontal, i.e. γ′(0) = (α′(0), 0):
(⇒) Let γ be a geodesic in M , then, since leaves are totally geodesic,

(∗) γ remains in B × β(0)

since B × β(0) is totally geodesic if and only if every geodesic in B × β(0) is a
geodesic of M hence γ has to be a geodesic in B × β(0).
So β is constant (i.e. β′ = 0) and therefore it remains to show that α′′ = 0
and β′′ = 0. The second statement is clear since already β′ = 0. To show
the first recall that γ is a geodesic, hence γ′′ = 0 = (α′′, 0). Indeed, II =
IIB×β(0) +∇Mα′α′ = ∇Mα′α′ since IIB×β(0) = 0.

(⇐) If (2) holds, then, since β′(0) = 0 by horizontality of γ, it follows with
an ODE-argument that β is constant:

If we define Z := β′ then we obtain the system

Z ′k =
dZk

dt
+ Γkij(β(t)) β′i︸︷︷︸

Zi

β′j︸︷︷︸
Zj

(2)
= − 2

f ◦ α
d(f ◦ α)
ds

Zk

hence
dZk

dt
= Γkij(β(t))ZiZj − 2

f ◦ α
d(f ◦ α)
ds

Zk

Z(0) = 0

so Z = 0 is a solution and by uniqueness of solutions for ordinary differential
equations, Z = 0 is the only solution and so β′ = 0 and therefore β is constant.
Then (1) implies that α′′ = 0 hence α is a geodesic in B, so by (∗) also
γ = (α, β(0)) is a geodesic.

Case 3: γ′(0) is vertical and nonnull i.e. γ′(0) = (0, β′(0)) and
〈γ′, γ′〉M 6= 0:
We can suppose grad(f) 6= 0 at p = α(0), otherwise the fiber p × F is totally
geodesic since IIp×F (V,W ) = −

(
〈V,W 〉
f

)
grad(f) = 0. As in the case above α

is constant and the result follows since γ′′ = (0, β′′) and II(V,W ) = IIp×F +
∇Mα′α′ = 0.
(⇒) If γ is a geodesic then γ does not remain for any interval around zero in
the totally umbillic fiber p× F = α(0)× F hence α′(s) 6= 0 ∀s 6= 0. Otherwise

0 = nor∇Mγ′ γ′ = II(γ′, γ′) = −〈γ′, γ′〉 grad(f)
f︸ ︷︷ ︸
6=0

Therefore 〈γ′, γ′〉M = 0, a contradiction.
Hence there is a sequence si → 0 such that for all i, γ′(si) is neither horizontal
nor vertical:

γ′(si) = (α′(si), 0) is not possible since β′(0) 6= 0, α′(0) = 0 and by continu-
ity γ′(si)→ γ′(0) = (0, β′(0)), therefore it cannot be horizontal.
γ′(si) = (α′(si), β′(si)) where α′(si) 6= 0 ∀s 6= 0 therefore a contradiction to
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verticality.

Hence (1) and (2) follow by continuity from case 1.

(⇐) (1) shows that

α′′(0) = 〈β′(0), β′(0)〉F︸ ︷︷ ︸
6=0

f ◦ grad(f) 6= 0

hence there is a sequence si as above with γ′(si) neither horizontal nor vertical.
Since in the proof of case 1 we argued pointwise, any point s could be chosen in-
stead of 0 and therefore the result follows and γ is a geodesic since if γ′′(si) = 0
it follows that γ′′(0) = 0.

Case 4: γ′(0) is vertical and null, i.e. 〈γ′, γ′〉M = 0:
From γ′(0) being null it follows by using

0 = 〈γ′(0), γ′(0)〉M = f2(p)〈β′(0), β′(0)〉F
that 〈β′(0), β′(0)〉F = 0.
We now have to investigate two cases:

1. γ′(0) is null and there is a sequence ti → 0 such that γ(ti) is nonnull.

2. γ′(t) is null in an interval around 0

(⇐)

1. Without loss of generality γ′(ti) is eventually vertical since otherwise the
assertion follows from the cases 1 or 2. Using case 3 and continuity leads
to the desired result.

2. Assuming as above that γ′(t) is vertical for all t then α′(t) = 0 and
〈β′(t), β′(t)〉F = 0.
So equations (1) and (2) decouple and because of the uniqueness of solu-
tions we get α(t) ≡ α0.
Since β′(0) 6= 0 there is at least locally a vector field V ∈ X(F ) with
V = β′. α is constant hence it is an integral curve of X ≡ 0. So

γ′′ = ∇M
X̃
X̃︸ ︷︷ ︸

=0

+∇M
X̃
Ṽ︸ ︷︷ ︸

=0

+∇M
Ṽ
X̃︸ ︷︷ ︸

=0

+∇M
Ṽ
Ṽ

Therefore

nor γ′′ = nor ∇M
Ṽ
Ṽ

= −〈Ṽ , Ṽ 〉M
f

grad(f)

V=β′

= −〈β′, β′〉F f ◦ α grad(f)
(1)
= α′′ = 0

tan γ′′ = tan ∇M
Ṽ
Ṽ = ∇FV V = β′′ = − 2

f ◦ α
d(f ◦ α)
ds

β′=0

since α is constant. Hence γ′′ = 0
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(⇒): We show that the equations for α′′ and β′′ are valid for the second possi-
bility above (i.e γ′(t) is null in an interval around 0) since the first one follows
via continuity from the other cases which have already been investigated. By
assumption,

0 = 〈γ′, γ′〉M = 〈α′, α′〉B + f2〈β′, β′〉F (∗)
and 〈α′(t), α′(t)〉B = 0 resp. 〈β′(t), β′(t)〉F = 0 ∀ t.
Since γ′(0) is vertical we know

α′(t) = 0 ∀ t (∗∗)

hence α′′ = 0.
Using (∗) and (∗∗) leads to formula (1).
For (2) we observe that as above 0 = γ′′ = ∇M

Ṽ
Ṽ , hence

0 = tan γ′′ = tan∇M
Ṽ
Ṽ = ∇FV V = β′′

and, since α is constant, d(f◦α)
ds = 0 the result follows.

Remark 2.2.17. In the special case of a semi Riemannian product the warping
function is constant so the geodesic equations reduce to α′′ = 0 resp. β′′ = 0

Lemma 2.2.18. If B and F are complete Riemannian manifolds then M =
B ×f F is complete for every warping function f .

Proof. We use the theorem by Hopf-Rinow and show that every Cauchy-sequence
(pi, qi) converges:
Let v ∈ T(p,q)M be tangent to M , then since f > 0 and since F is a Riemannian
manifold

〈v, v〉M = 〈T(p,q)pr1(v), T(p,q)pr1(v)〉B + f2(p)〈T(p,q)pr2(v), T(p,q)pr2(v)〉F
≥ 〈T(p,q)pr1(v), T(p,q)pr1(v)〉B

Hence for any curve segment α we have

L(α) =
∫ b

a

‖α′(s)‖2 ds ≥
∫ b

a

‖(pr1 ◦ α)′(s)‖2 ds = L(pr1 ◦ α)

So ∀ m,m′ ∈M :
d(m,m′) ≥ d(pr1(m),pr1(m′)) (∗)

which says that a curve in M is longer than its projection onto B.
Let (pi, qi) be a Cauchy-sequence in M then by (∗) pi is a Cauchy sequence in
B. B is complete hence there is a limit p ∈ B.
We can assume that the sequence lies in some compact set K ⊆ B hence f ≥
c > 0 on K. Analogously to the above argument we get

d(m,m′) ≥ c d(pr2(m),pr2(m’)) ∀ m,m′ ∈ K × F

So qi is a Cauchy sequence in F and hence converges, so the original sequence
(pi, qi) converges and thus M is complete.

Remark 2.2.19. Also the converse of this result holds true, i.e. if M is a complete
Riemannian manifold, then also B and F are complete Riemannian manifolds.
A proof of this result will be given in the more general setting of multiply warped
products below (see 2.3.10).
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2.2.2 Curvature

Now our task is to express the curvature of a warped product M = B ×f F in
terms of the warping function f and the curvatures of B resp. F . We will use
the Riemannian curvature tensor, hence we first have to discuss the lifting of
tensors:
For a covariant tensor A on B its lift Ã to M is just its pullback pr1

∗(A) under
the projection pr1 : M → B
In case of a (1,s) tensor A : X(B)×· · ·×X(B)→ X(B) we define for v1, . . . , vs ∈
T(p,q)M Ã(v1, . . . , vs) to be the horizontal vector at (p, q) that projects to
A(T(p,q)pr1(v1), . . . , T(p,q)pr1(vs)) in Tp(B), i.e.

T(p,q)pr1(Ã(v1, . . . vs)) = A(T(p,q)pr1(v1) . . . T(p,q)pr1(vs))

Thus Ã is zero on vectors any one of which is vertical.
These definitions involve no geometry hence no warping function, and so they
are valid for lifts from F too.

Remark 2.2.20.

• Let B̃R and F̃R be the lifts of the Riemannian curvature tensors BR and
FR on B resp. F . Since the projection pr1 is an isometry on each leaf, BR
is just the Riemannian curvature of the leaf (B̃R =BR), and analogously,
since the projection pr2 is a homothety and hence preserves Levi-Civita
connection ([O’N.], 3.64),FR = F̃R.

• Leaves are totally geodesic hence BR agrees with the curvature tensor MR
of M on horizontal vectors which can be seen by using Gauss’ equation

〈BRVWX,Y 〉B = 〈MRVWX,Y 〉M + 〈II(V,X), II(W,Y )〉︸ ︷︷ ︸
=0

−〈II(V, Y ), II(W,Z)〉︸ ︷︷ ︸
=0

The corresponding assertion fails in case of FR because fibers are just
umbilic.

• For h ∈ C∞(B) the lift of the Hessian Hh = ∇B(∇B(h)) of h to M is
denoted by H̃h and it agrees with the Hessian of h ◦ pr1 generally only on
horizontal vectors. Indeed, for horizontal X

∇M
X̃

(∇M
X̃

(h ◦ pr1)) = ∇M
X̃

(∇̃B(h)) = ˜∇B(∇B(h))

For vertical V we calculate:

∇M
Ṽ

(∇M
Ṽ

(h ◦ pr1)) = ∇M
Ṽ

(
Ṽ f

f
(h ◦ pr1)

)
=
Ṽ f

f

(
Ṽ f

f
(h ◦ pr1)

)

In the following proposition some properties of R are discussed:
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Proposition 2.2.21. Let M = B ×f F be a warped product with Riemannian
curvature tensor MR. For X̃, Ỹ , Z̃ ∈ L(B), Ũ , Ṽ , W̃ ∈ L(F ) we have:
(1) MRX̃Ỹ Z̃ ∈ L(B) is the lift of BRXY Z on B.

(2) MRṼ X̃ Ỹ =
(
Hf (X̃,Ỹ )

f

)
Ṽ where Hf is the Hessian of f .

(3) MRX̃Ỹ Ṽ =M RṼ W̃ X̃ = 0

(4) MRX̃Ṽ W̃ =
(
〈V,W 〉M

f

)
∇X̃(grad(f))

(5) MRṼ W̃ Ũ = ˜FRVWU −
(
〈grad(f),grad(f)〉M

f2

)
(〈Ṽ , Ũ〉MW̃ − 〈W̃ , Ũ〉M Ṽ )

Remark 2.2.22. These are tensor identities hence are valid also for individual
tangent vectors.

Proof.
(1) See 2.2.20
(2) [Ṽ , X̃] = 0 since Ṽ ∈ L(F ), X̃ ∈ L(B), so we obtain

MRṼ X̃ Ỹ = ∇M
[Ṽ ,X̃]

Ỹ − [∇M
Ṽ
,∇M

X̃
]Ỹ = −∇M

Ṽ
∇M
X̃
Ỹ +∇M

X̃
∇M
Ṽ
Ỹ

Since by 2.2.11 (1) ∇M
X̃
Ỹ ∈ L(B), we can apply 2.2.11 (2) to obtain

∇M
Ṽ

(∇M
X̃
Ỹ ) =

(
∇M
X̃
Ỹ (f)
f

)
Ṽ

Thus

MRṼ X̃ Ỹ = −

(
∇M
X̃
Ỹ (f)
f

)
Ṽ +

X̃(Ỹ (f))
f

Ṽ

=

(
−
∇M
X̃
Ỹ (f)
f

+
X̃(Ỹ (f))

f

)
Ṽ

=
H̃f (X̃, Ỹ )

f
Ṽ

(3) Since this is a tensor identity we can assume [Ṽ , W̃ ] = 0
Thus

MRṼ W̃ X̃ = −∇M
Ṽ
∇M
W̃
X̃ +∇M

W̃
∇M
Ṽ
X̃

and

∇M
Ṽ
∇M
W̃
X̃ = ∇M

Ṽ

(
Xf

f
W

)
= Ṽ

(
Xf

f

)
W̃ +

Xf

f
∇M
Ṽ
W̃

Xf
f is constant on fibers, so Ṽ

(
Xf
f

)
= 0 and we get

MRṼ W̃ X̃ =
(
Xf

f

)
(−∇M

Ṽ
W̃ +∇M

W̃
Ṽ ) =

(
Xf

f

)
[Ṽ , W̃ ] = 0

by our assumption.
By taking care of symmetry properties of R it follows that

〈MRX̃Ỹ Ṽ , Z̃〉M = 〈MRX̃Ỹ Z̃, Ṽ 〉M = 0

∀ Ṽ ∈ L(F ), Z̃ ∈ L(B) since Ṽ is vertical and MRX̃Ỹ Z̃ hence MRX̃Ỹ Ṽ = 0
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MRX̃Ỹ W̃ is horizontal since 〈MRX̃Ṽ W̃ , Ũ〉M = 〈MRW̃ Ũ X̃, Ṽ 〉M which is 0 by
(3), MRṼ W̃ X̃ = 0 and by using the Jacobi-identity:

MRṼ W̃ X̃ +MRW̃ X̃ Ṽ +MRX̃Ṽ W̃ = 0−MRX̃W̃ Ṽ +MRX̃Ṽ W̃ = 0

Now using (2) leads to

〈MRX̃Ṽ W̃ , Ỹ 〉M = −〈MRṼ X̃W̃ , Ỹ 〉M
= 〈MRṼ X̃ Ỹ , W̃ 〉M
(2)
=

H̃f (X̃, Ỹ )
f

〈Ṽ , W̃ 〉M

=
〈Ṽ , W̃ 〉M

f
〈∇M

X̃
(grad(f)), Ỹ 〉M ∀ Ỹ

MRX̃Ṽ W̃ is horizontal and the equation holds for all Ỹ so the result follows.
(4) MRṼ W̃ Ũ is vertical since

〈MRṼ W̃ Ũ , X̃〉M = −〈MRṼ W̃ X̃, Ũ〉M = 0

pr2 is a homothety on fibers and so, as remarked above, FRVWU ∈ L(F ) is the
application of the curvature tensor of each fiber to V,W and U . Thus FRVWU
and MRṼ W̃ Ũ are related via the Gauss-equation:

〈FRVWU, Y 〉F = 〈MRṼ W̃ Ũ , Ỹ 〉M + 〈II(Ṽ , Ũ), II(W̃ , Ỹ )〉M
−〈II(Ṽ , Ỹ ), II(W̃ , Ũ)〉M (∗)

Since the shape tensor of fibers is given by IIp×F (V,W ) = −
(
〈V,W 〉
f

)
grad(f)

we get

(∗) = 〈MRṼ W̃ Ũ , Ỹ 〉M +
1
f2
〈Ṽ , Ũ〉M 〈W̃ , Ỹ 〉M 〈gradf, gradf〉F

− 1
f2
〈Ṽ , Ỹ 〉M 〈W̃ , Ũ〉M 〈gradf, gradf〉F

Y is an arbitrary vertical vector field and so the result follows.

Finally we now turn to Ricci curvature Ric of warped products, writing BR̃ic
for the lift (i.e. the pullback by pr1) of the Ricci curvature of B and similarly
F R̃ic for the Ricci curvature of F .

Corollary 2.2.23. On M = B ×f F with l = dim F > 1, let X̃, Ỹ be horizontal,
Ṽ , W̃ be vertical. Then
(1) MRic(X̃, Ỹ ) =B R̃ic(X,Y )− l

fH
f (X̃, Ỹ )

(2) MRic(X̃, Ṽ ) = 0
(3) MRic(Ṽ , W̃ ) =F R̃ic(V,W )− 〈Ṽ , W̃ 〉Mf∗, where

f∗ =
∆f
f

+ (l − 1)
〈gradf, gradf〉M

f2

with ∆f the Laplacian on B (here we need l > 1)
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Proof. Choose a local frame

E1 . . . En, En+1 . . . En+l

with E1 . . . En ∈ L(B) and En+1 . . . En+l ∈ L(F ) Then by using the results
from 2.2.23 and [O’N.], 3.52. we get

(1):

MRic(X̃, Ỹ ) =
∑
m≤n

εm〈BRX̃Em
Ỹ , Em〉M +

∑
n<m

εm〈MRX̃Em
Ỹ , Em〉M

= BR̃ic(X,Y )− 1
f

∑
n<m

εm〈Hf (X̃, Ỹ )Em, Em〉M

= BR̃ic(X,Y )− l

f
Hf (X̃, Ỹ )

(2):

MRic(X̃, Ṽ ) =
∑
m≤n

εm〈MRX̃Em
Ṽ , Em〉M +

∑
n<m

εm〈MRX̃Em
Ṽ , Em〉M = 0

because the first sum vanishes by observing that 〈MRX̃Em
Ṽ , Em〉M = 0 and

the second sum is also equal to zero. Indeed by using the symmetry properties
of R we obtain 〈MRX̃Em

Ṽ , Em〉M = 〈MRṼ Em
X̃, Em〉M = 0.

(3):

MRic(Ṽ , W̃ ) =
∑
n<m

εm〈F R̃Ṽ Em
W̃ , Em〉M −

〈grad(f), grad(f)〉
f2

·

(∑
n<m

εm〈Ṽ , W̃ 〉M 〈Em, Em〉M −
∑
n<m

εm〈Em, W̃ 〉M 〈Ṽ , Em〉M

)

−
∑
m≤n

εm
〈Ṽ , W̃ 〉M

f
〈∇MEm

(g̃radf), Em〉M

= F R̃ic(V,W ) + (l − 1)
〈gradf, gradf〉M

f2
〈Ṽ , W̃ 〉M

+
〈Ṽ , W̃ 〉M

f
〈∇MEm

(g̃radf), Em〉M

The result follows since

〈Ṽ , W̃ 〉M
f

〈∇MEm
(g̃radf), Em〉M =

〈Ṽ , W̃ 〉M
f

div(grad(f)) =
〈Ṽ , W̃ 〉M

f
∆f

2.2.3 Causal properties

In the following section we denote by (B, gB) an n-dimensional manifold with
signature (−,+, . . . ,+) and by (F, gF ) a Riemannian manifold of dimension l.
Before investigating causal properties of warped products we provide general
facts and definitions of causal relations. We will mainly follow [B.E.], ch.1., 3..
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General causal properties

In what follows let (M, g) be a Lorentzian manifold.

Definition 2.2.24.

• A nonzero tangent vector v ∈ TpM is called timelike if g(v, v) < 0, v is
called spacelike if g(v, v) > 0. We say that v is causal or nonspacelike if
g(v, v) ≤ 0 and v is null if g(v, v) = 0.

• (M, g) is said to be time-oriented if M admits a continuous nowhere van-
ishing timelike vector field X, i.e. Xp is timelike for any p ∈ M . This
vector field is used to separate the causal vectors at each point into two
classes, the future directed resp. past directed vectors.

Causality relations

Definition 2.2.25. For p, q ∈M

• p� q means that there is a future directed timelike curve in M connecting
p and q.

• p ≤ q means that either p = q or that there is a future directed causal
curve in M from p to q.

Clearly if p� q then p ≤ q since every timelike curve is causal.

Definition 2.2.26. The chronological past and chronological future of p are given
respectively by I−(p) = {q ∈ M : q � p} and I+(p) = {q ∈ M : p � q}. For
A ⊆M we have

I±(A) = {q ∈M : ∃ p ∈ A with p� q resp. q � p}

The causal past and causal future of p resp. A ⊆ M are defined as J−(p) =
{q ∈M : q ≤ p}, J+ = {q ∈M : p ≤ q} resp.

J±(A) = {q ∈M : ∃ p ∈ A with p ≤ q resp. q ≤ p}

The causal structure of (M, g) may be defined as the collection of past and
future sets at all points of M together with their properties.

We can see that A ∪ I+(A) ⊆ J+(A), I+(A) =
⋃
{I+(p) : p ∈ A}.

Since causality relations are transitive we obtain

Corollary 2.2.27. If x� y and y ≤ z or if x ≤ y and y � z then x� z.

Proof. It suffices to show x� y and y ≤ z implies x� z:
Let c1 be a future pointing timelike curve from x to y, c2 a causal curve from y
to z and c = c1∪c2. Then c is a causal curve from x to z, but not a null geodesic.
Hence there is, by [O’N.], 10.46., a timelike curve from x to z. More exactly,
sufficiently close to c there is a timelike curve c̃ so without loss of generality c̃′(t)
is in the same timecone as c′1(t) for t ∈ [t0, t1] where c1(t0) = x, c1(t1) = y hence
futurepointing since 〈c̃′(t), c′1(t)〉 is close to 〈c′1(t), c′1(t)〉 < 0 ∀ t ∈ [t0, t1]. Let
X be a timelike vector field making the time orientation then 〈c̃′(t), X(t)〉 < 0
in the beginning hence at every time.
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Corollary 2.2.28. For A ⊆M the following relations hold:

I+(A) = I+(I+(A))=I+(J+(A))
= J+(I+(A))⊆J+(J+(A))=J+(A)

Proof. By [O’N.], 14.1.

Causality conditions

Definition 2.2.29. A spacetime (M, g) is called chronological if p /∈ I+(p) ∀p ∈
M , i.e. (M, g) does not contain any closed timelike curve. Physically this is
a natural requirement since otherwise it can come to paradoxa such as an ob-
server taking a trip from which he returns before his departure. It is the weakest
causality relation which will be introduced.
If (M, g) does not contain any closed causal curve it is said to be causal. Equiva-
lently (M, g) does not contain a pair of distinct points p, q ∈M with p ≤ q ≤ p.
We call a spacetime distinguishing if for all p, q ∈ M either I+(p) = I+(q) or
I−(p) = I−(q) implies p = q, i.e. distinct points have distinct chronological
futures and chronological pasts.
Distinguishing spacetimes are called causally continuous if the set valued func-
tions I+, I− are outer continuous i.e. if for each p ∈ M and each compact set
K ⊆M \ I+(p) there exists a neighborhood U(p) of p such that K ⊆M \ I+(q)
∀ q ∈ U(p)
(M, g) is strongly causal at p ∈ M if p has arbitrarily small causally convex
neighborhoods , i.e. no causal curve intersects them into disconnected sets.
Equivalently we can say that given any neighborhood U of p there is a neigh-
borhood V ⊆ U of p such that every causal curve segment with endpoints in
V lies entirely in U . (M, g) is strongly causal if it is strongly causal at every
p ∈M .
(M, g) is stably causal if there is a fine C0-neighborhood U(q) of g in the set of all
Lorentzian metrics, Lor(M), such that each g1 ∈ U(g) is causal. (|g − g1|0 < δ
if ∀p ∈ M all of the corresponding coefficients and derivatives up to order 0 of
g and g1 are δ(p)-close at p).
One of the most important causality conditions is global hyperbolicity, meaning
that any pair of causally related points may be joined by a causal geodesic seg-
ment of maximal length. If (M, g) is strongly causal the equivalent condition is
that ∀p, q ∈M J+(p) ∩ J−(q) is compact.
A distinguishing spacetime is causally simple if J+(p) and J−(p) are closed
subsets of M for all p ∈M .

One can show the following relations:

globally hyperbolic

⇓

causally simple

⇓

causally continuous

⇓



2.2. WARPED PRODUCTS 31

stably causal

⇓

strongly causal

⇓

distinguishing

⇓

causal

⇓

chronological

Further results

Proposition 2.2.30. Any compact spacetime (M, g) contains a closed timelike
curve thus fails to be chronological.

Proof. I+(p) is open so {I+(p) : p ∈M} is an open covering of M . By compact-
ness it follows that M ⊆

⋃k
j=1 I

+(pj). Now p1 ∈ I+(pi(1)) for some 1 ≤ i(1) ≤ k.
Similarly pi(1) ∈ I+(pi(2)) for 1 ≤ i(2) ≤ k. Inductively we obtain an infinite
sequence . . . pi(3) � pi(2) � pi(1) � p1. k is finite so there is only a finite
number of distinct pi(j) hence there are repetitions on the list, by transitivity of
� it follows that pi(n) ∈ I+(pi(n)) for some index i(n) thus M contains a closed
timelike curve through pi(n).

It can also be shown that a spacetime is stably causal iff it admits a global
time function, i.e. a function strictly increasing along each future directed causal
curve.

Lemma 2.2.31. Let K ⊂⊂ M be strongly causal. If α is a future inextendible
curve, α : [0, b)→M starting in K then there is some s > 0 such that α(t) /∈ K
∀ t ≥ s. Hence α leaves K and does not return anymore.

Proof. Suppose ∃ si ↗ b with α(si) ∈ K ∀ i. Without loss of generality we can
suppose α(si)→ p ∈ K. Since α is future inextendible there has to be a further
sequence ti ↗ b such that α(ti)n → p. Without loss of generality there is a
neighborhood U of p with α(ti) /∈ U ∀i. Using subsequences we can suppose
s1 < t1 < s2 < t2 . . ..
The causal curves α|[sk,sk+1] start and end sufficiently close near p for k suffi-
ciently large, but all leave U , a contradiction to strong causality.

Lemma 2.2.32. Let K ⊂⊂ M be strongly causal. Let (αn) be a sequence of
futurepointing causal curves, αn : [0, 1] → M , αn([0, 1]) ⊆ K, αn(0) → p,
αn(1) = q, p 6= q. Then there exists a future pointing causal broken geodesic λ
from p to q and a subsequence (αnk

)k of (αn) with

lim
k→∞

L(αnk
) ≤ L(λ)

Proof. See [O’N.], 14.14.
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In order to study causality breakdowns and geodesic incompleteness we de-
fine:
Definition 2.2.33. Let γ : [a, b] → M be a curve in M . The point p ∈ M is
called endpoint of γ corresponding to t = b if

lim
t→b−

γ(t) = p

If γ : [a, b] → M is a future (resp. past) directed causal curve with endpoint p
corresponding to t = b, then p is called a future- (resp. past-) endpoint of γ.
A causal curve is future-(resp. past) inextendible if it has no future (resp. past)
endpoint and the curve is inextendible if it is both future and past inextendible.

Cauchy surfaces

Globally hyperbolic spacetimes may be characterized by using Cauchy surfaces,
i.e. subsets of M which every inextendible causal curve intersects exactly once.
It may be shown that a spacetime is globally hyperbolic iff it admits a Cauchy
surface ([H.E.]). Furthermore the following theorem was established in [Ge] in
1970:

Theorem 2.2.34. If (M, g) is a globally hyperbolic spacetime of dimension n
then M is homeomorphic to R×S where S is an (n−1)-dimensional topological
submanifold of M , and for each t ∈M , {t} × S is a Cauchy surface.

Proof. [B.E.], 3.17

In a complete Riemannian manifold any two points may be joined by a
geodesic of minimal length. The Lorentzian analogue developed by Avez and
Seifert states (see [B.E.], 3.18.)

Theorem 2.2.35. Let (M, g) be globally hyperbolic and p ≤ q. Then one can find
a causal geodesic from p to q with length greater than or equal to that of any
other future directed causal curve from p to q.

Take care that the geodesic in the theorem is not necessarily unique.

Application to warped products

Lemma 2.2.36. The warped product M = B ×f F may be time oriented iff

• either (B, gB) is time-oriented ( for n ≥ 2)

• or n = 1 and gB is a negative definite metric.

Proof. (⇒):

• n = 1: (B, gB) has a negative definite metric by definition.

• n ≥ 2: M is time-orientable hence there exists a continuous timelike vector
field X on M . By assumption f > 0 and gF is positive definite (since F
is a Riemannian manifold), therefore we obtain for p̄ = (p, q) ∈M :

〈T(p,q)pr1(X), T(p,q)pr1(X)〉B ≤ 〈T(p,q)pr1(X), T(p,q)pr1(X)〉B
+f2(p)〈T(p,q)pr2(X), T(p,q)pr2(X)〉F

= 〈X|p̄, X|p̄〉M < 0
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Thus for fixed but arbitrary q0 ∈ F the vector field X̄(p) := T(p,q0)pr1(X(p, q0))
provides a time orientation for (B, gB).

T (B × F )
Tpr1 // TB

B × F pr1
//

X

OO 99tttttttttt
B

X̄

OO

(⇐)

• n ≥ 2: Let (B, gB) be time oriented by the vector field V . We define V̄
at p̄ = (p, q) via setting V̄ (p̄) = (V (p), 0q) where we use the isomorphism
Tp̄(M) ∼= TpB × TqF .
From the definition of the metric it follows that

〈V̄ |p̄, V̄ |p̄〉M = 〈T(p,q)pr1(V̄ ), T(p,q)pr1(V̄ )〉B
+f2(p) 〈T(p,q)pr2(V̄ ), T(p,q)pr2(V̄ )〉F︸ ︷︷ ︸

=0

= 〈V |p, V |p〉B < 0

hence V̄ time orients B ×f F

• n = 1: In the appendix of [Mi] it is shown that B is diffeomorphic to S1 or
R. In either case let T be a smooth vector field on B with gB(T, T ) = −1.
Defining T̄ (p̄) = (T (p), 0q) as above we have T(p,q)pr2(T̄ ) = 0 so that T̄
time orients M .

Note that in case of B = S1 the integral curves of T̄ in M = B ×f F are
closed timelike curves hence M is not chronological.

In what follows we restrict our attention to the study of warped products
(M = B ×f F, gM ) with n ≥ 2.

Lemma 2.2.37. Let p̄ = (p, q) and p̄′ = (p′, q′) be two points in M with p̄ � p̄′

(resp. p̄ ≤ p̄′) in (M, gM ). Then p� p′ (resp. p ≤ p′) in (B, gB).

Proof. Let γ be a future directed timelike curve inM from p̄ to p̄′, i.e. 〈γ′, γ′〉M <
0. Then pr1 ◦ γ is a future directed timelike curve in B from p to p′. Indeed,

0 > 〈γ′(t), γ′(t)〉M = 〈Tγ(t)pr1(γ′(t)), Tγ(t)pr1(γ′(t))〉B+

+ f2(p)〈Tγ(t)pr2(γ′(t)), Tγ(t)pr2(γ′(t))〉F︸ ︷︷ ︸
≥0

hence 〈Tγ(t)pr1(γ′(t)), Tγ(t)pr1(γ′(t))〉B < 0 and so pr1 ◦ γ is a timelike curve.
The result is proven analogously for causal γ.
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Remark 2.2.38. pr1 : B ×f F → B maps causal curves to causal curves, but
it does not preserve null curves. Indeed let γ be any smooth null curve with
T(p,q)pr2(γ′(t)) 6= 0 ∀ t. Then

0 = 〈γ′(t), γ′(t)〉M = 〈Tγ(t)pr1(γ′(t)), Tγ(t)pr1(γ′(t))〉B
+ f2(pr1(γ(t)))〈Tγ(t)pr2(γ′(t)), Tγ(t)pr2(γ′(t))〉F ∀ t

Since f2(pr1(γ(t)))〈Tγ(t)pr2(γ′(t)), Tγ(t)pr2(γ′(t))〉F > 0 it follows that
〈Tγ(t)pr1(γ′(t)), Tγ(t)pr1(γ′(t))〉B 6= 0 and so pr1 ◦ γ is not a null curve.

The converse of 2.2.37 is also true if we assume that p̄, p̄′ are in the same
leaf pr2

−1(q) (q ∈ F ) of M = B ×f F .

Lemma 2.2.39. If p̄ = (p, q), p̄′ = (p′, q) are in the same leaf pr2
−1(q) then

p̄� p̄′ (resp. p̄ ≤ p̄′) in (M, gM ) iff p� p′ (resp. p ≤ p′) in (B, gB).

Proof. (⇒) Just apply 2.2.37
(⇐) Let γ1 : [0, 1] → B be a future directed timelike curve in B from p to p′,
i.e. γ1(0) = p, γ1(1) = p′. Then γ(t) := (γ1(t), q), 0 ≤ t ≤ 1 is a future directed
timelike curve with Tγ(t)pr2(γ′(t)) = 0 in M from p̄ to p̄′ since

〈γ′(t), γ′(t)〉M = 〈Tγ(t)pr1(γ′(t)), Tγ(t)pr1(γ′(t))〉B
+f2(pr1(γ(t)))〈Tγ(t)pr2(γ′(t)), Tγ(t)pr2(γ′(t))〉F

= 〈γ1(t), γ1(t)〉B < 0

Therefore γ is timelike.
Again the result is proven analogously for causal curves.

2.2.39 shows that each leaf pr2
−1(q) = B × {q} has the same chronology

and causality as M . In particular (M, gM ) contains a closed timelike curve iff
(B, gB) contains a closed timelike curve.
Hence we get

Proposition 2.2.40. Let (B, gB) be a spacetime and let (F, gF ) be a Riemannian
manifold. Then (M = B ×f F, gM ) is chronological (resp. causal) iff (B, gB) is
chronological (resp. causal).

The analogous statement also holds for strong causality:

Proposition 2.2.41. (M = B ×f F, gM ) is strongly causal iff (B, gB) is strongly
causal.

Proof. (⇒) Let p̄ = (p, q) ∈M . By contradiction we show that if (B, gB) is not
strongly causal at p then (M, gM ) is not strongly causal at p̄.
Since (B, gB) is not strongly causal at p there exists an open neighborhood U
of p in B and a sequence {γk : [0, 1]→ B} of future directed causal curves that
intersect U in a disconnected set with γk(0) → p, γk(1) → p as k → ∞, but
γk( 1

2 ) /∈ U ∀ k.
Define σk : [0, 1]→M via σk(t) = (γk(t), q).
Let V be any open neighborhood of q in F and set Ū := U × V ⊆M . Then we
obtain that {σk} is a sequence of causal future directed curves in M intersecting
Ū in a disconnected set. Indeed, U is an open neighborhood of p̄ and σk(0)→ p̄,
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σk(1)→ p̄ as k →∞, but σk
(

1
2

)
/∈ U hence M is not strongly causal at p̄.

(⇐) Suppose that strong causality fails at p̄ = (p, q) ∈ M . Let (x1, . . . , xn)
be local coordinates on B near p such that gB has the form diag(−1, 1, . . . , 1)
at p and let (xn+1, . . . , xn+l) be local coordinates on F near q such that f2gF
has the form diag(1, 1, . . . , 1) at q. Then (x1, . . . , xn+l) are local coordinates for
M .
Let F1 := x1, F2 := x1 ◦ pr1. These are time functions, i.e. strictly increasing
along any future directed causal curve.
Indeed, let c(t) = (c1(t), c̃(t)), then we obtain

〈ċ(t), ċ(t)〉M = −ċ1(t)2 +
∥∥ ˙̃c(t)

∥∥2
< 0

F2 is strictly increasing, i.e. ċ1(t) > 0 ∀ t. The vector X = (1, 0, . . . , ) time
orients M . c is future pointing iff 〈X, ċ〉 = −ċ1 < 0. Since M is not strongly
causal at p̄ we obtain a neighborhood U of p̄ and a sequence of future directed
causal curves with

γk(0)→ p̄

γk(1)→ p̄

as k →∞, but for each k there exists some tk such that γk (tk) /∈ U .
Without loss of generality let U = (−ε, ε) × B3ε(0) ⊆ Rn where B3ε(0) is the
Euclidean ball of radius 3ε in Rn−1 . Then there is for all k some tk such that

F2(γk(tk)) ≥ ε > 0 ∀ k (∗)

Otherwise, suppose
F2(γk(tk)) < ε (∗∗)

Let Λ̄p := {x|x − p is timelike or null}. Since γk is causal it follows by
[O’N.], 5.33 that γk lies entirely in Λ̄γk(0). By (∗∗) γk lies entirely in B :=(
(−ε, ε)× Rn−1

)
∩ Λ̄γk(0).

For ‖pr2(γk(0))‖ < ε we conclude that

B ⊆ {x| ‖pr2(γk(x))‖ < 3ε}

By assumption γk(tk) /∈ U , so because of (∗∗)

‖pr2(γk(x))‖ > 3ε,

a contradiction.
In what follows we choose tk = 1

2 by parametrizing γk suitably.

We now choose a neighborhood W of p in B such that W is covered by the
local coordinates above and such that

V = sup{F1(r) : r ∈W} ≤ ε

2
Then pr1 ◦ γk are future directed causal curves in B with pr1 ◦ γk(0) → p,
pr1 ◦ γk(1)→ p and pr1 ◦ γk

(
1
2

)
/∈W . Indeed

F1

(
pr1 ◦ γk

(
1
2

))
= x1 ◦ pr1 ◦ γk

(
1
2

)
= F2

(
γk

(
1
2

))
(∗)
≥ ε



36 CHAPTER 2. WARPED PRODUCTS

but sup{F1(r)|r ∈ W} ≤ ε
2 , hence pr1 ◦ γk

(
1
2

)
/∈ W . So using W and {γk}

shows the failure of strong causality at p in (B, gB).

Finally we mention without a proof the analogous result for the condition of
stable causality. The proof can be found in [B.E.].

Proposition 2.2.42. Let (B, gB) be a spacetime and (F, gF ) be a Riemannian
manifold. Then (M = B ×f F, gM ) is stably causal iff (B, gB) is stably causal.

Proof. [B.E.], 2.51.

Looking at the hierarchy of causality conditions we obtain

Corollary 2.2.43. Let (F, gF ) be a Riemannian manifold and let B = (a, b) with
−∞ ≤ a < b ≤ ∞ given the negative definite metric −dt2. For any smooth
function f : B → (0,∞), M = B ×f F is chronological, causal, distinguishing
and strongly causal.

If M = S1 then (S1 ×f F, gM ) fails to be chronological as remarked above
hence fails to be causal, distinguishing and strongly causal.

Now we want to investigate conditions on (B, gB) and (F, gF ) which imply
global hyperbolicity of (M, gM ).

Theorem 2.2.44. Let (B, gB) be a spacetime (dim B ≥ 2) and let (F, gF ) be a
Riemannian manifold. Then (M = B×f F, gM ) is globally hyperbolic iff both of
the following conditions are satisfied:

• (B, gB) is globally hyperbolic

• (F, gF ) is a complete Riemannian manifold

Proof. [B.E.], 2.53.

Remark 2.2.45. If B = (a, b), −∞ ≤ a < b ≤ ∞ with negative definite metric
−dt2 then the first condition in the theorem is automatically satisfied. Hence it
is sufficient for global hyperbolicity of M that (F, gF ) is a complete Riemannian
manifold.

Theorem 2.2.46. Let (F, gF ) be a Riemannian manifold and suppose that M =
R×f F is given the metric −dt2⊕f2h. The following statements are equivalent:

1. (F, gF ) is a geodesically complete Riemannian manifold

2. (R×f F,−dt2 ⊕ f2h) is geodesically complete

3. (R×f F,−dt2 ⊕ f2h) is globally hyperbolic

Proof. (1)⇔ (3): Follows from 2.2.44
(1)⇔ (2): All geodesics in M are up to reparametrization of the form (λt, c(t)),
(λ0, c(t)) or (λt, q) with λ, λ0 ∈ R, q ∈ F and c : R→ F a unit speed geodesic.
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Remark 2.2.47. For dim B = 1 and B homeomorphic to R we have just given
necessary and sufficient conditions for the warped product M = B ×f F to be
globally hyperbolic.
If B is homeomorphic to S1, M = B×f F is not chronological, no matter which
Riemannian metric is chosen on F . Thus no warped spacetime (S1 ×f F, gM )
can be globally hyperbolic.

We now will construct Cauchy-surfaces (CS) for globally hyperbolic warped
products:

Theorem 2.2.48. Let (F, gF ) be a complete Riemannian manifold, and let (B, gB)
be globally hyperbolic. If S1 is a CS of B, then S1 × F is a CS of (M =
B ×f F, gM ).

Proof. [B.E.], 2.56.

Remark 2.2.49. If B = (a, b), −∞ ≤ a < b ≤ ∞, with metric −dt2 then p × F
is a CS of (M, gM ) ∀ p ∈ B.

2.3 Multiply warped products

This section is mainly based on [Ül], [D.Ü.]. We will investigate a generalization
of singly warped products.

Definition 2.3.1. Let (B, gB), (Fi, gFi
) be pseudo Riemannian manifolds of di-

mension n resp. li (i ∈ {1, . . .m}) and let fi : B → (0,∞) be smooth functions
for any i ∈ {1, . . .m}. A multiply warped product is the product manifold M =
B×F1×. . .×Fm furnished with the metric tensor gM = gB⊕f2

1 gF1⊕. . .⊕f2
mgFm

defined by

gM = pr1
∗(gB) + (f1 ◦ pr1)2pr2

∗(gF1) + . . .+ (fm ◦ pr1)2prm+1
∗(gFm

)

Where
pr1 : B × F1 × . . .× Fm → B (p, q1, . . . qm) 7→ p

pri+1 : B × F1 × . . .× Fm → Fi (p, q1, . . . qm) 7→ qi

are the usual projection maps.
Each function fi : B → (0,∞) is called a warping function and each manifold
(Fi, gFi

) is called fiber manifold. (B, gB) is the base manifold of the multiply
warped product. We write M = B ×f1 F1 × . . .×fm

Fm

The manifold M = B×F1× . . .×Fm is a d-dimensional pseudo Riemannian
manifold with l =

∑m
i=1 li and d = n + l. We use natural product coordinate

systems:
Let (p, q1, . . . qm) be a point inM . There are coordinate charts (U, φ) and (Vi, ψi)
on B and Fi respectively such that p ∈ U , qi ∈ Vi. We can define a coordinate
chart (W,µ) on M such that W is an open subset in M contained in U × V1 ×
. . . × Vm and (p, q1 . . . qm) ∈ W . Then µ(u, v) = (φ(u), ψ1(v1), . . . , ψm(vm)).
The set of all (W,µ) defines an atlas on B × F1 × . . .× Fm.

Remark 2.3.2.

• If m = 1 then we obtain a singly warped product.
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• If all fi ≡ 1 then we deal with a (trivial) product manifold.

• If (B, gB) and all (Fi, gFi) are Riemannian manifolds then (M, gM ) is also
a Riemannian manifold.

• The multiply warped product (M, gM ) is a Lorentzian multiply warped
product if all (Fi, gFi) are Riemannian manifolds and either (B, gB) is a
Lorentzian manifold or else (B, gB) is a one-dimensional manifold with
negative definite metric −dt2.

• For B being an open interval I = (t1, t2) where −∞ ≤ t1 < t2 ≤ ∞,
equipped with the metric −dt2 and (Fi, gFi) is a Riemannian manifold for
any i, the Lorentzian multiply warped product (M, gM ) is called a gen-
eralized Robertson-Walker spacetime or a multi-warped spacetime. A gen-
eralized Robertson-Walker spacetime for m = 2 is a generalized Reissner-
Nordström spacetime.

Now again as for singly warped products we want to study the connection
and curvature on such a multiply warped product.

Proposition 2.3.3. Let M = B ×f1 F1 × . . . ×fm
Fm be a pseudo Riemannian

multiply warped product with metric gM = gB ⊕ f2
1 gF1 ⊕ . . . ⊕ f2

mgFm and let
X̃, Ỹ ∈ L(B), Ṽ ∈ L(Fi) and W̃ ∈ L(Fj) where lifts are defined as for usual
product manifolds (see 2.1) . Then
(1) ∇M

X̃
Ỹ ∈ L(B) is the lift of ∇BXY .

(2) ∇M
X̃
Ṽ = ∇M

Ṽ
X̃ = X̃fi

fi
Ṽ

(3) For i 6= j: ∇M
Ṽ
W̃ = 0

(4) For i = j: ∇M
Ṽ
W̃ = ∇̃Fi

V W −
〈Ṽ ,W̃ 〉M

fi
grad(fi)

Proof.
(1) Since none of the warping functions is concerned, the result follows as in
2.2.11(1).

(2) Since 0 = [X̃, Ṽ ] = ∇M
X̃
Ṽ −∇M

Ṽ
X̃ we obtain ∇M

X̃
Ṽ = ∇M

Ṽ
X̃. Property (D5)

for ∇M leads us to

〈∇M
X̃
Ṽ , Ỹ 〉M = −〈Ṽ ,∇M

X̃
Ỹ 〉M + X̃〈Ṽ , Ỹ 〉M = 0

hence as in 2.2.11 all terms in the Koszul formula for 2〈∇M
X̃
Ṽ , W̃ 〉M vanish

except X̃〈Ṽ , W̃ 〉M where W̃ ∈ L(Fi). Computing the scalar product we have

〈Ṽ , W̃ 〉M (p, q1, . . . qm) = f2
i (p)〈Vqi ,Wqi〉Fi

and so
〈Ṽ , W̃ 〉M = f2

i (〈V,W 〉Fi
◦ pri+1) (∗)

Hence

X̃〈Ṽ , W̃ 〉M = X̃(f2
i (〈V,W 〉Fi

◦ pri+1))
= 2fiX̃fi(〈V,W 〉Fi

◦ pri+1)

(∗)
= 2

(
X̃(fi)
fi

)
〈Ṽ , W̃ 〉M
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So it follows that

2〈∇M
X̃
Ṽ , W̃ 〉M = 2

(
X̃(fi)
fi

)
〈Ṽ , W̃ 〉M ∀ W

hence ∇M
X̃
Ṽ =

(
X̃(fi)
fi

)
Ṽ .

(3) In general ∇M
Ṽ
W̃ = nor ∇M

Ṽ
W̃ + tan ∇M

Ṽ
W̃ . We will compute both

parts separately:
For nor ∇M

Ṽ
W̃ we calculate

〈∇M
Ṽ
W̃ , X̃〉M = −〈W̃ ,∇M

Ṽ
X̃〉M + Ṽ 〈W̃ , X̃〉M

(2)
= −〈W̃ ,

X̃(fi)
fi

Ṽ 〉M + 0

= −X̃(fi)
fi
〈Ṽ , W̃ 〉M

= 0

since i 6= j. The result for tan ∇M
Ṽ
W̃ follows from 2.2.11.

(4) nor ∇M
Ṽ
W̃ =− X̃(fi)

fi
〈Ṽ , W̃ 〉M .

In case of i = j we compute for X̃(fi):

X̃(fi) = 〈gradMfi, X̃〉M = 〈gradBfi, X〉B ◦ pri+1

Therefore for all X:

〈∇M
Ṽ
W̃ , X̃〉M = −〈gradBfi, X̃〉M

fi
〈Ṽ , W̃ 〉M

and so

nor ∇M
Ṽ
W̃ = −〈Ṽ , W̃ 〉M

fi
gradBfi = II(Ṽ , W̃ )

tan ∇M
Ṽ
W̃ is again computed as in 2.2.11.

Proposition 2.3.4. For q = (q1, . . . qm) ∈ F1 × . . . × Fm and p ∈ B, the leaf
B × {q} is totally geodesic, the fiber {p} × F1 × . . .× Fm is totally umbillic and
it is totally geodesic if gradB(fi)|p = 0.

Proof. The first statement is analogous to 2.2.14.
The second follows since

II(Ṽ , W̃ ) = nor ∇M
Ṽ
W̃ = −〈Ṽ , W̃ 〉M

fi
gradBfi

Now we want to compute the gradient and the Laplacian on M in terms of
the corresponding ones in B resp. Fi.
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Proposition 2.3.5. Let (M, gM ) be a pseudo Riemannian multiply warped product
and φ : B → R, ψi : Fi → R be smooth functions for any i ∈ {1 . . .m}. Then
(1) gradM (φ ◦ pr1) = (gradBφ) ◦ pr1

(2) gradM (ψi ◦ pri+1) =
gradFi

ψi

f2
i
◦ pri+1

(3) ∆M (φ ◦ pr1) = ∆Bφ+
∑m
i=1 li

〈gradBφ,gradBfi〉B
fi

where li = dimFi
(4) ∆M (ψi ◦ pri+1) = ∆Fi

ψi

f2
i

Remark 2.3.6. Before starting to prove the proposition we introduce an orthog-
onal frame field on M .
Let {EB1 , . . . , EBn} and {EFi

1 , . . . , E
Fi

li
} be orthonormal frames on open sets U ⊆ B

and Vi ⊆ Fi. Then one can easily see that

{EB1 , . . . , EBn ,
1
f1
EF1

1 , . . . ,
1
f1
EF1
l1
, . . . ,

1
fm

EFm
1 , . . . ,

1
fm

EFm

lm
}

is an orthogonal frame on an open set W ⊆ B × F1 × . . . × Fm contained in
U × V1 × . . .× Vm ⊆ B × F1 × . . .× Fm. In the following proofs we will denote
it by

{E1, . . . En, E
1
1 , . . . E

1
l1 , . . . E

m
1 , . . . E

m
lm}.

Proof.
(1): Let v be tangent to {p} × F1 × . . .× Fm. We calculate:

〈gradM (φ ◦ pr1), v〉M = v(φ ◦ pr1) = T(p,q1,...,qm)pr1(v)︸ ︷︷ ︸
=0

φ = 0

hence the gradient of φ ◦ pr1 is horizontal.
For xi tangent to B × {q1} × . . .× {qm}:

〈T(p,q1,...,qm)pr1(gradM (φ ◦pr1)) , T(p,q1,...,qm)pr1(xi)〉B =
= 〈gradM (φ ◦ pr1), xi〉M
= xi(φ ◦ pr1)
= T(p,q1,...,qm)pr1(xi)φ
= 〈gradB(φ), T(p,q1,...,qm)pr1(xi)〉B ◦ pr1

so gradM (φ ◦ pr1) and gradB(φ) are pr1-related.

(2): Let xi be tangent to B × F1 × . . .× {qi} × . . .× Fm then

〈gradM (ψi ◦ pri+1), xi〉M = xi(ψi ◦ pri+1)
= T(p,q1,...,qm)pri+1(xi)︸ ︷︷ ︸

=0

ψi

= 0

hence it is vertical.
For v tangent to {p}×F1× . . .×Fm resp. to B×F1× . . .×{qj} . . .×Fm, i 6= j
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we obtain

〈T(p,q1,...,qm)pri+1(gradM (ψi ◦ pri+1)),T(p,q1,...,qm)pri+1(v)〉Fi
=

1
f2
i

〈gradM (ψi ◦ pri+1, v〉M

=
1
f2
i

v(ψi ◦ pri+1)

=
1
f2
i

T(p,q1,...,qm)pri+1(v)ψi

=
1
f2
i

〈gradFi
(ψi), T(p,q1,...,qm)pri+1(v)〉Fi

◦ pri+1

(3): We choose the orthogonal frame introduced in 2.3.6. Then

∆(φ ◦ pr1) = div(gradM (φ ◦ pr1))
2.2.11(2)

= div(gradB(φ)

=
n∑
i=1

εi〈∇MEi
gradBφ,Ei〉M +

l1∑
j1=1

εj1〈∇ME1
j1

gradBφ,Ej11 〉M +

. . .+
lm∑

jm=1

εjm〈∇MEm
jm

gradBφ,E
m
jm〉M (∗)

The first sum is ∆B(φ) and for the other terms we can calculate by 2.3.3(2)
since Ekj ∈ L(Fk)

∇MEk
j
gradBφ =

gradBφ(fk)
fk

Ekj

=
1
fk
〈gradBφ, gradBfk〉BEkj

hence 〈∇M
Ek

j
gradBφ,Ekj 〉M = εk

1
fk
〈gradBφ, gradBfk〉B .

Summing up leads to

∆M (φ ◦ pr1) = ∆B(φ) +
m∑
i=1

1
fi
〈gradBφ, gradBfi〉B · li

(4) Using (2) we obtain

∆M (ψi ◦ pri+1) = div(gradM (ψi ◦ pri+1))
(2)
=

1
f2
i

div(gradFi
(ψi)

where

div(gradFi
(ψi)) =

n∑
i=1

εi〈∇MEi
gradFi

ψi, Ei〉M +
l1∑

j1=1

εj1〈∇ME1
j1

gradFi
ψi, E

1
j1〉M +

. . .+
lm∑

jm=1

εjm〈∇MEm
jm

gradFm
ψi, E

m
jm〉M
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The first term vanishes as well as those for k 6= i by (2) and 2.3.3 (2) resp. (3).
Therefore

div(gradFi
(ψi)) =

li∑
ji=1

εji〈∇MEi
ji

gradFi
ψi, E

i
ji〉M

2.2.11(4)
=

li∑
ji=1

εji〈∇
Fi

Ei
ji

gradFi
ψi −

〈Eiji , gradFi
ψi〉M

fi
gradBfi, E

i
ji〉M

=
li∑

ji=1

εji〈∇
Fi

Ei
ji

gradFi
ψi, E

i
ji〉Fi

= ∆Fiψi

So ∆M (ψi ◦ pri+1) = 1
f2

i
∆Fi

ψi

Next we turn to Riemannian and Ricci curvature

Proposition 2.3.7. Let X̃, Ỹ , Z̃ ∈ L(B), Ṽ ∈ L(Fi), W̃ ∈ L(Fj) and Ũ ∈ L(Fk).
Then
(1) MR(X̃, Ỹ )Z̃ = ˜BR(X,Y )Z

(2) MR(Ṽ , X̃)Ỹ = H
fi
B (X̃,Ỹ

fi
Ṽ where Hfi

B is the Hessian on B of fi.
(3) MR(X̃, Ṽ )W̃ =MR(Ṽ , W̃ )X̃=MR(Ṽ , X̃)W̃ = 0 if i 6= j.
(4) MR(X̃, Ỹ )Ṽ = 0
(5) MR(Ṽ , W̃ )X̃ = 0 if i = j.
(6) MR(Ṽ , W̃ )Ũ = 0 if i = j and j 6= k.

(7) MR(Ũ , Ṽ )W̃ = 〈Ṽ , W̃ 〉M
〈gradBfi,gradBfk〉B

fifk
U if i = j and j 6= k.

(8) MR(X̃, Ṽ )W̃ = 〈Ṽ ,W̃ 〉Mfi
∇BX(gradBfi) if i = j.

(9) MR(Ṽ , W̃ )Ũ = ˜FiR(V,W )U− 〈gradBfi,gradBfi〉B
f2

i
(〈Ṽ , Ũ〉MW̃ − 〈W̃ , Ũ〉M Ṽ )

if i = j = k.

Proof.
(1) As in 2.2.21
(2) 2.2.21
(3) By 2.2.11,

MR(X̃, Ṽ )W̃ = −∇M
X̃

(∇M
Ṽ
W̃ ) +∇M

Ṽ
(∇M

X̃
W̃ )

= 0 +∇M
Ṽ

(
X(fi)
fi

W̃

)
= Ṽ

(
X(fi)
fi

)
W̃ +

X(fi)
fi
∇M
Ṽ
W̃

= 0

since Ṽ
(
X(fi)
fi

)
= 0 because fi, X(fi) are constant in the direction of Ṽ and the

first term vanishes because of 2.3.3 (3). The other cases are proven analogously.
(4) 2.2.21
(5) 2.2.21
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(6) 2.2.21
(7) Let X be an arbitrary vector field. By Gauss’ equation

〈FRUVW,X〉 = 〈MRŨṼ W̃ , X̃〉M + 〈II(U,W ), II(V,X)〉
−〈II(U,X), II(V,W )〉 = (∗)

We know that II(U,W ) = nor ∇M
Ũ
W̃

2.3.3= 0 and FRUVW = 0.

Additionally, by 2.3.3 II(V,W ) = − 〈Ṽ ,W̃ 〉fi
gradfi, therefore

(∗) = 〈Ṽ , W̃ 〉 〈gradfi, gradfk〉
fifk

〈Ũ , X̃〉

hence the result follows.
(8) 2.2.21.
(9) 2.2.21.

Proposition 2.3.8. Let X̃, Ỹ , Z̃ ∈ L(B), Ṽ ∈ L(Fi), W̃ ∈ L(Fj). Then
(1) MRic(X̃, Ỹ ) =B R̃ic(X,Y )−

∑m
i=1

li
fi
Hfi

B (X,Y )
(2) MRic(X̃, Ṽ ) = 0
(3) MRic(Ṽ , W̃ ) = 0 if i 6= j
(4)

MRic(Ṽ , W̃ ) = FiR̃ic(V,W )−
(∆Bfi

fi
+ (li − 1)

〈gradBfi, gradBfi〉B
f2
i

+
m∑

k=1 k 6=i

lk
〈gradBfi, gradBfk〉B

fifk

)
〈Ṽ , W̃ 〉M

if i = j

Proof. We again choose the frame from 2.3.6, i.e.{E1, . . . En, E
1
1 , . . . E

1
l1
, . . . Em1 , . . . E

m
lm
}

.

(1)

MRic(X̃, Ỹ ) =
n∑
k=1

εk〈BRXEk
Y,Ek〉+

l1∑
j1=1

εj1〈MRX̃E1
j1
Ỹ , E1

j1〉M

+ . . .+
lm∑

jm=1

εjm〈MRX̃Em
jm

Ỹ , Emjm〉M

= BR̃ic(X,Y )−
l1∑
l1=1

Hf1

f1
〈E1

j1 , E
1
j1〉 − . . .−

lm∑
lm=1

Hfm

fm
〈Emjm , E

m
jm〉

= BR̃ic(X,Y )− l1
Hf1

f1
− . . .− lm

Hfm

fm

= BR̃ic(X,Y )−
m∑
i=1

li
Hfi

fi
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(2) see 2.2.23
(3) see 2.2.23, and by using the symmetry properties of R, R(X,V )W =
R(V,W )X = R(V,X)W = 0.
(4)

MRic(Ṽ , W̃ ) =
n∑
k=1

εk〈MRṼ Ek
W̃ , Ek〉M +

l1∑
j1=1

εj1〈MRṼ E1
j1
W̃ , E1

j1〉M +

. . . +
li∑

ji=1

εji〈MRṼEi
ji

W̃ , Eiji〉M +. . .+
lm∑

jm=1

εjm〈MRṼ Em
jm

W̃ , Emjm〉M

Depending on the frame elements we have to distinguish the cases whether they
are elements on B, Fj for i 6= j or on Fi.
Let Ek ∈ L(B). Then MRṼ Ek

W̃ = −MREkṼ
W̃ = − 〈Ṽ ,W̃ 〉fi

∇BEk
(gradBfi). So

summing up leads to
n∑
k=1

εk〈MRṼ Ek
W̃ , Ek〉M = −

n∑
k=1

εk
〈Ṽ , W̃ 〉
fi

〈∇BEk
(gradBfi), Ek〉M

= −〈Ṽ , W̃ 〉∆Bfi
fi

For Ejk ∈ L(Fj) with i 6= j we obtain since

MRṼ Ej
k
W̃ = −MREj

kṼ
W̃

= −〈Ṽ , W̃ 〉 〈gradBfi, gradBfj〉
fifj

Ejk

Again summation leads to

lj∑
k=1

εk〈MRṼ Ej
k
W̃ , Ejk〉M = −〈Ṽ , W̃ 〉 〈gradBfi, gradBfj〉

fifj

lj∑
k=1

εk〈Ejk, E
j
k〉

= −lj〈Ṽ , W̃ 〉
〈gradBfi, gradBfj〉

fifj

For Eik ∈ L(Fi) we get

MR(Ṽ , Eik)W̃ =Fi R(V,Eik)W+
〈gradBfi, gradBfi〉B

f2
i

(〈Ṽ , W̃ 〉MEik−〈W̃ , Eik〉M Ṽ )

and so
li∑
k=1

εk〈MRṼ Ei
k
W̃ , Eik〉M =

lj∑
k=1

εk〈FiRV Ei
k
W,Eik〉Fi

+
〈gradfi, gradfi〉

f2
i

·

(
li∑
k=1

〈V,W 〉〈Eik, Eik〉 − 〈W,Eik〉〈V,Eik〉

)

= FiRic(V,W ) + (li − 1)
〈gradBfi, gradBfi〉B

f2
k

〈V,W 〉M

Summing up the terms gives the anticipated result.
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Next we state the geodesic equations for multiply warped products:

Proposition 2.3.9. Let M = B ×f1 F1 × . . . ×fm
Fm be a pseudo Riemannian

multiply warped product with metric gM = gB ⊕ f2
1 gF1 ⊕ . . . ⊕ f2

mgFm
and let

γ = (α, β1, . . . , βm) be a curve in M defined on some interval I ⊆ R. Then γ is
a geodesic in M iff for any t ∈ I the following equations hold:
(1) α′′ =

∑m
i=1 (βi ◦ α)〈β′i, β′i〉FigradB(fi)

(2) β′′i = −2
fi◦α

d(fi◦α)
dt β′i ∀ i ∈ {1, . . . ,m}

Proof.

1. If γ′(0) is neither tangent to {p} × F1 × . . . × Fm nor to any B × F1 ×
. . . {qi} × . . .× Fm the proof works just as in case (1) of 2.2.16.

2. If γ′(0) = (α′(0), 0, . . . , 0),γ′(0) = (0, β′1(0), . . . , β′m(0)) is nonnull resp.
null, the statement can also be proven analogously to 2.2.16.

3. If γ′(0) = (α′(0), β′1(0), . . . , β′m(0)) with β′i(0) 6= 0 for at least one i then
we are again in the case of being neither horizontal nor vertical hence we
get the result from case (1) of 2.2.16

Now we will investigate completeness. In case of a Riemannian manifold,
metric completeness is equivalent to geodesic completeness (Hopf-Rinow theo-
rem).

Theorem 2.3.10. Let M = B ×f1 F1 × . . . ×fm Fm be a Riemannian multiply
warped product.

1. If (B, gB) and (Fi, gFi) are complete Riemannian manifolds then also
(M, gM ) is a complete Riemannian manifold.

2. Conversely, if (M, gM ) is a complete Riemannian manifold then (B, gB)
and (Fi, gFi

) are complete manifolds.

Proof. We use the Hopf-Rinow theorem and prove metric completeness.

1. Let X be tangent to M , X̃ ∈ L(B). Then

〈X̃, X̃〉M = 〈T(p,q1,...qm)pr1(X̃),T(p,q1,...qm)pr1(X̃)〉B ≥ 0

So for any curve segment γ = (α, β1, . . . , βm) we obtain L(γ) ≥ L(α)
hence

dM ((p, q), (p′, q′)) ≥ dB(p, p′) ∀ (p, q), (p′, q′) ∈M
where by dM resp. dB we denote the Riemannian distance functions on
M resp. B.
Let now (pn, qn)n be a Cauchy sequence in M . By the above inequality
(pn)n is a Cauchy sequence in B. Since B is complete, (pn)n converges to
some p ∈ B. We may assume that the sequence lies completely in some
compact set P ⊆ B therefore we get fi ≥ ki > 0 on P for some ki > 0,
i ∈ {1, . . .m}.
Analogously to the above argument we get

dM ((p, q), (p′, q′)) ≥ min{ki}
m∑
i=1

dFi
(qi, q′i)
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∀ (p, q), (p′, q′) ∈ P × F1 × . . .× Fm.
Thus (qn)n is a Cauchy sequence in Fi which converges by completeness
of Fi. Summing up, the original Cauchy sequence converges in M and
therefore M is complete.

2. Let (pn)n be a Cauchy sequence in B. For fixed q = (q1, . . . , qm) ∈ F =
F1 × . . .× Fm the sequence (pn, q)n is a Cauchy-sequence in M , since

dM ((pn, q), (pm, q)) = dB(pn, pm) +
m∑
i=1

f2
i dFi

(q, q) = dB(pn, pm) (∗)

Since M is complete there is a point (p, q) ∈M such that

lim
n

(pn, q) = (p, q)

By
dM ((pn, q), (p, q)) = dB(pn, p)

we obtain that lim(pn) = p hence B is complete.
Let now (qin) be a Cauchy sequence in Fi for arbitrary i, and let qj be
fixed in Fj for i 6= j. For fixed p ∈ B we get the Cauchy sequence
(p, q1, . . . qin . . . q

m)n in M since analogously to (∗),

dM ((p, q1, . . . qin . . . q
m), (p, q1, . . . qik . . . q

m)) = fi(p)dFi(q
i
n, q

i
k)

Thus limn(p, q1, . . . qin . . . q
m) = (p, q1, . . . qi . . . qm) exists where qi ∈ Fi.

So

dM ((p, q1, . . . qin . . . q
m), (p, q1, . . . qik . . . q

m)) = fi(p)dFi(q
i
n, q

i
k)

Therefore
lim
n
qin = qi

and Fi is complete.

In case of Lorentzian multiply warped products the situation is more com-
plicated and some more calculation is needed. In what follows we consider
Lorentzian multiply warped products of the form M = (c, d)×f1 F1× . . .×fm Fm
with metric gM = −dt2 ⊕ f2

1 gF1 ⊕ . . .⊕ f2
mgFm

where −∞ ≤ c < d ≤ ∞.

Definition 2.3.11. A spacetime is said to be null (resp. timelike) geodesically
incomplete if at least one future directed null (resp. timelike) geodesic cannot
be extended to arbitrary negative and positive values.

From the definition we can see that if c > −∞ or d < ∞ then (M, gM ) is
timelike geodesically incomplete for any choice of warping functions fi. The
following theorems are just stated without proof. For further details see [Ül].

Theorem 2.3.12. Let M be a Lorentzian multiply warped product with metric as
above.

• If limt→c+
∫ t
w0
fi(s)ds < ∞ for some w0 ∈ (c, d) then there exists some

future directed nullgeodesics which are past incomplete hence (M, gM ) is
future directed null geodesically past incomplete.
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• If limt→c+
∫ t
w0

fi(s)ds
(1+f2

i (s))1/2 <∞ for some w0 ∈ (c, d) then (M, gM ) is future
directed timelike geodesically past incomplete.

• If limt→c+
∫ t
w0
fi(s)ds < ∞ and fi is bounded on (c, w0) for some w0 ∈

(c, d) then (M, gM ) is future directed spacelike geodesically past incomplete.

• The analogous statements hold for future incompleteness if we interchange
limt→c+ with limt→d− .

Theorem 2.3.13. Let (Fi, gFi
) be complete. Then

1. If (M, gM ) is timelike complete then (M, gM ) is null complete.

2. If 0 < inf(fi) < sup(fi) ∀ i then (M, gM ) is null complete iff (M, gM ) is
timelike complete.

For the converse we get

Theorem 2.3.14.

1. If (M, gM ) is null, timelike or spacelike complete then (Fi, gFi) is a com-
plete Riemannian manifold for any i ∈ {1, . . . ,m}.

2. If (M, gM ) is null, timelike or spacelike complete then (B, gB) is either a
null, timelike or spacelike complete Lorentzian manifold.
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Chapter 3

Robertson-Walker
spacetime

3.1 Homogeneity and isotropy

The study of our universe has shown that there is no large asymmetry in the
distribution of galaxies. So our universe looks the same in all directions. Hence
for a reasonably realistic spacetime model we assume our universe to be ho-
mogeneous and isotropic. Robertson-Walker spacetimes are based on such as-
sumptions hence we will now give a precise mathematical definition of these
properties.

Definition 3.1.1. Let (H,h) be a Riemannian manifold. H is said to be ho-
mogeneous if the isometry group I(H) of (H,h) acts transitively on H, i.e.
given any p, q ∈ H there is an isometry φ ∈ I(H) with φ(p) = q. Further
(H,h) is said to be two-point homogeneous if given any p1, q1, p2, q2 ∈ H with
d0(p1, q1) = d0(p2, q2) (where d0 denotes the Riemannian distance function)
there is an isometry φ ∈ I(H) with φ(p1) = p2 and φ(q1) = q2.
(H,h) is isotropic at p if Ip(H) = {φ ∈ I(H) : φ(p) = p} acts transitively on
the unit sphere Sp(H) = {v ∈ TpH : h(v, v) = 1}. This means that given any
v, w ∈ Sp(H) there is an isometry φ ∈ Ip(H) with Tpφ(v) = w. (H,h) is called
isotropic if it is isotropic at every point p ∈ H.

Since one can choose p1 = p2 and q1 = q2 in the definition of two-point
homogeneity above, a two-point homogeneous Riemannian manifold is also ho-
mogeneous.

Lemma 3.1.2. If (H,h) is a homogeneous Riemannian manifold then (H,h) is
complete.

Proof. By the Hopf-Rinow theorem it suffices to show that (H,h) is geodesically
complete. Therefore suppose to the contrary that there exists a unit speed
geodesic c : [a, 1)→ H which is inextendible to t = 1, i.e.

lim
t→1−

c(t) does not exist

Let p ∈ H be an arbitrary point. Then, by 2.2.35, there exists some constant

49
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α > 0 such that every geodesic starting at p has length ≥ α. Set

δ := min
(
α

2
,

1− a
2

)
By homogeneity of H, for q = c(1 − δ) we can find an isometry φ such that
φ(p) = q = c(1− δ).
Since isometries preserve geodesics we obtain a geodesic starting at q with length
≥ α which contradicts the non-extendibility of c.

The analogous result is in general false for homogeneous Lorentzian mani-
folds (without proof).

Proposition 3.1.3. A Riemannian manifold (H,h) is isotropic iff it is two-point
homogeneous.

Proof. In what follows we denote by d0 the Riemannian distance function.

(⇒): (H,h) is isotropic, hence ∀ p ∈ H, ∀ v, w ∈ SpH we can find an
isometry φ such that Tpφ(v) = w

Step 1 : (H,h) is homogeneous:
Let p ∈ H and c be an inextendible geodesic, c : (a, b)→ H with c(0) = p.
By isotropy there exists φ ∈ Ip(H) such that

Tpφ(c′(0)) = −c′(0)

c̃ := t 7→ c(−t) is also a geodesic with c̃(0) = c(0) = p and c̃′(0) = −c′(0).
Therefore

c̃(0) = (φ ◦ c)(0) = p

c̃′(0) = (φ ◦ c)′(0) = −c′(0)

Because geodesics are uniquely determined by their initial point and velocity
we can conclude that

c̃(t) = φ ◦ c(t) = c(−t) ∀ t ∈ (a, b)

So we observe that
L(c|(a,0]) = L(c|[0,b))

Since p is an arbitrary point on c , a = −∞, b = ∞. Therefore (H,h) is
geodesically complete.
By the theorem of Hopf-Rinow any two points p1 and p2 can be connected by
a geodesic segment c0 of minimal length L. c0 : [0, L] → H, c0(0) = p1 and
c0(L) = p2. Let p′ be the midpoint of c0, i.e. d0(p1, p

′) = d0(p′, p2).
Since (H,h) is isotropic we obtain an isometry φ which reverses c0 so φ◦c0(t) =
c0(L− t) and thus

φ(p1) = φ(c0(0)) = c0(L) = p2

So (H,h) is homogeneous.

Step 2 : (H,h) is two-point homogeneous:
Let p1, q1, p2, q2 ∈ H such that d0(p1, q1) = d0(p2, q2) = L. We will show that
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there is an isometry φ with φ(p1) = p2, φ(q1) = q2. We choose a geodesic of
minimal length c1 : [0, L] → H, c1(0) = p1, c1(L) = q1 which connects p1 with
q1, and analogously a geodesic of minimal length c2 : [0, L] → H, c2(0) = p2

c2(L) = q2 which connects p2 and q2.
The homogeneity of (H,h) gives an isometry ψ such that ψ(p1) = p2, by isotropy
there is some η ∈ Ip2(H) with Tp2η((ψ ◦ c1)′(0)) = c′2(0) so

φ = η ◦ ψ

is the isometry we searched for. Indeed, η ◦ψ ◦ c1 is a geodesic since η ◦ψ is an
isometry satisfying

η ◦ ψ ◦ c1(0) = φ(p1) = η(ψ(p1))
= η(p2) = p2

= c2(0)

and
(η ◦ ψ ◦ c1)′(0) = Tp2η((ψ ◦ c1)′(0)) = c′2(0)

Therefore
η ◦ ψ ◦ c1 = c2

and so
φ(q1) = η ◦ ψ ◦ c1(L) = c2(L) = q2

(⇐): Let p ∈ M be fixed. We choose a convex neighborhood U ⊆ M of p
and α > 0 such that

expp(u) ∈ U ∀ u ∈ TpH with h(u, u) ≤ α (∗)

Let v, w ∈ TpH, v, w 6= 0 and

h(v, v) = h(w,w) <
α

2

For q1 := expp(v) and q2 := expp(w) we obtain by (∗) that q1 and q2 are in U
and

d(p, q1) = (h(v, v))1/2 = (h(w,w))1/2 = d(p, q2)

By assumption (H,h) is two-point homogeneous, so we get some φ ∈ I(H) with
φ(p) = p, φ(q1) = q2. Therefore Tpφ(v) = w.
Indeed, by [O’N.], 3.61, (4) φ◦expp = expφ(p) ◦Tpφ and by noticing that φ(p) = p
we calculate

expp(w) = q2 = φ(q1)
= φ(expp(v))
= expφ(p) ◦Tpφ(v)
= expp(Tpφ(v))

Because expp is a diffeomorphism the result follows.
So we can conclude that Ip(H) acts transitively on SpH by choosing the above
isometry φ and scaling appropriately.
Since p was arbitrary (H,h) is isotropic.
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3.2 Robertson-Walker spacetimes

To introduce Robertson-Walker spacetimes we start with a smooth product-
manifold M = I × S where I ⊆ R is a (possibly infinite) open interval and S is
an isotropic Riemannian manifold. In what follows because of physical reasons
we will just consider connected three-dimensional manifolds with curvature k.
By pr1 and pr2 we denote the projections onto I resp. S. The lines I × p are
the world lines of the galactic flow.
Let Ũ = ∂t be the lift to I × S of the standard vector field d

dt on I ⊆ R and
for each p ∈ S parametrize I × p by γp(t) = (t, p). Then Ũ gives the velocity
of each ’galaxy’ γp hence they are its integral curves. We write h′ for Ũ h̃ = dh

dt

where h̃(t, p) is the lift of h(t) with h ∈ C∞(I)
Keeping t constant gives the hypersurface S(t) = t × S = {(t, p) : p ∈ S}. Be-
low we will show that these surfaces which foliate the manifold have constant
curvatures and that for distinct times s and t, S(s) and S(t) are related via the
homothety µ(s, p) = (t, p).

Now our task is to express I × S as a warped product I ×f S with smooth
f : I → (0,∞) , making the following observations. We use the assumptions of
isotropy and homogeneity where locally the isotropy-condition states that each
(t, p) has a neighborhood U such that for given unit tangent vectors x and y
to S(t) at (t, p) there is an isometry Φ = id × ΦS of U with T(t,p)Φ(x) = yand
with ΦS an isometry on a neighborhood of p in S. Φ therefore also satisfies
Φ(t, p) = (t, p).

1. Each particle γp is a curve parametrized by proper time t hence

〈U,U〉M = −1.

2. We can split the tangent space at a certain point into the particle’s time
axis and in the restspace. In case of isotropy it follows that the relative
motion of the actual galaxies is negligible on large scale average thus we
take each slice S(t) to be a common restspace for γp requiring

U⊥S(t) ∀ t ∈ I

hence S(t) becomes a Riemannian (i.e. a spacelike, since U is timelike,
see [O’N.], 5.26.) hypersurface.

3. S has constant curvature k and every injection jt : S → S(t) is a homo-
thety of scale factor f(t). In particular the constant curvature of S(t) is
k

f(t)2 and for vectors x, y tangent to S(t) we obtain

〈x, y〉M = f2(t)〈T(t,p)pr2(x), T(t,p)pr2(y)〉S

The last item in the list above follows from 3.2.2 and 3.2.3 below. Before we
start with the proof we state and prove Schur’s lemma, which will be needed in
what follows.

Lemma 3.2.1. Suppose that a Riemannian manifold (M, g) of dimension n ≥ 3
satisfies one of the following two conditions:
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1. K(Π) = f(p) for all 2-planes Π ⊆ Tp(M), p ∈M

2. Ric(v) = (n− 1)f(p)v ∀ v ∈ TpM , p ∈M

Then in either case f must be constant. In other words, the metric has constant
curvature.

Proof. See also [Pe]3,3.5, lemma 3.
Step 1: The first condition implies the second one, i.e.
K(Π) = f(p) implies Ric(v) = (n− 1)f(p)v:
Let v ∈ Tp(M), 〈v, v〉 = 1.
Choose unit vectors e2, . . . en such that {v, e2, . . . , en} is an orthonormal base
for Tp(M) and extend it to an orthonormal frame near p. Since by [O’N.], 3.52.,

Ric(v) = R(v, v)v +
n∑
i=2

R(v, ei)ei

The first term vanishes so we get

〈Ric(v), v〉 =
n∑
i=2

〈R(v, ei)ei, v〉 = (n− 1)f(p)〈v, v〉.

in the last equality we used that 〈R(v, ei)ei, v〉 = K(Π(v, ei)) = f(p) where
Π(v, ei) is the 2-plane spanned by v and ei.
To obtain the result it remains to show that 〈Ric(v), ej〉 = 0 ∀ j.
In case of i 6= j we calculate:

2f(p) = K(Π(ei, v + ej))〈ei, ei〉〈v + ej , v + ej〉
= 〈R(ei, v + ej)ei, v + ej〉
= 〈R(ei, v)ei, v + ej〉+ 〈R(ei, ej)ei, v + ej〉
= 〈R(ei, v)ei, v〉+ 〈R(ei, v)ei, ej〉+ 〈R(ei, ej)ei, v〉+ 〈R(ei, ej)ei, ej〉
= K(Π(ei, v)) + 〈R(ei, v)ei, ej〉+ 〈R(ei, ej)ei, v〉+K(Π(ei, ej))
= 2f(p) + 〈R(ei, v)ei, ej〉+ 〈R(ei, ej)ei, v〉

By using pair symmetry 〈R(ei, v)ei, ej〉 = 0.

For i = j we obtain that 〈R(v, ei)ei, ei〉 = 〈R(ei, ei)v, ei〉 = 0 because
R(ei, ei) = 0.
So 〈Ric(v), ej〉=

∑n
i=2 〈R(v, ei)ei, ej〉 = 0 since every term vanishes.

Step 2: If condition (2) is satisfied then f is constant:
From [O’N.], 3.54 we know that

dS = 2div(Ric)

Hence

dS = d(C(Ric))
= d(C((n− 1)f Id))
= d((n− 1)f C(Id))
= d((n− 1)n f)
= n(n− 1) df
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On the other hand

2 div(Ric)(v) = 2
∑
〈(∇ei

Ric)(v), ei〉

= 2
∑
〈(∇ei

((n− 1)f Id))(v), ei〉

= 2
∑
〈(n− 1)(∇ei(f)) Id(v), ei〉+ 2

∑
〈(n− 1)f (∇ei(Id))(v), ei〉

= (∗)

where in the last equality we have used the product rule. The second term
vanishes since again by using product rule

0 = δ1i = 〈v, ei〉
= ∇ei

(g(Id(v), ei))
= (∇ei

(g))(Id(v), ei) + g(∇ei
(Id(v)), ei) + g(Id(v),∇ei

ei)
= g((∇ei

Id)(v), ei) + g(Id(∇ei
v), ei) + g(Id(v),∇ei

ei)
= g((∇ei

Id)(v), ei) +∇ei
(g(v, ei))

where we used that ∇ei
(g) = 0, Id(∇ei

v) = ∇ei
v and ∇ei

(g(v, ei)) = 0. Hence
g((∇ei

Id)(v), ei) = 0. Therefore we continue the above calculation and get

(∗) = 2
∑
〈(n− 1)(∇ei

(f)) Id(v), ei〉

= 2(n− 1)
∑
〈v, (∇ei

f)ei〉

= 2(n− 1)〈v,
∑

(∇eif)ei〉
= 2(n− 1)〈v, grad f〉
= 2(n− 1) df(v)

From the two equalities above we get n df = 2 df which can only be satisfied
if n = 2 (which is not possible since we assumed n ≥ 3) or df = 0, hence f is
constant.

Proposition 3.2.2. Under the assumption of isotropy each slice S(t) in I×S has
constant curvature C(t)

Proof. Let Π be a 2-plane in an arbitrary tangent space to S(t) in (t, p). Since
as remarked in the beginning of the chapter we assume for physical reasons that
S(t) is three-dimensional, Π has the form x⊥ for some unit vector x ∈ TpS(t).
Let Π′ be another plane in TpS(t) with Π′ = x′⊥, where x′ ∈ TpS(t).
We now want to show that there is an isometric isotropy ΦS : S → S such that
TpΦS(Π) = Π′:
As already mentioned in the beginning of this chapter, it follows from isotropy
of I × S that for all (t, p) ∈ I × S there is a neighborhood N of (t, p) in I × S
such that for arbitrary unit vectors v, w tangent to S(t), v, w ∈ TpS(t) there is
an isometry Φ = id× ΦS with T(t,p)Φ(v) = w (∗).
Set

x̄ = (0, x) ∈ T(t,p)S(t)

x̄′ = (0, x′) ∈ T(t,p)S(t)



3.2. ROBERTSON-WALKER SPACETIMES 55

Isotropy gives some Φ as in (∗) with T(t,p)Φ(x̄) = x̄′.
Since T(t,p)Φ(x̄) = (Ttid × TpΦS)(0, x) = (0, x′) it follows that TpΦS(x) = x′

and therefore also TpΦS(Π) = Π′.
Since isometries preserve curvature it follows that Π and Π′ have the same
sectional curvature in the geometry of S(t). Π and Π′ were arbitrarily chosen
hence the first condition in 3.2.1 is satisfied and therefore S(t) has constant
curvature.

Proposition 3.2.3. For any t, s the map µ : (S(s), gs) → (S(t), gt), µ(s, p) =
(t, p), where gs and gt are the metrics on S(s) resp. S(t), is a homothety.

Proof. Step 1 : µ is conformal, i.e. there exists a function h such that µ∗(gt) =
h(s, p)gs:
This statement is equivalent to saying that

∥∥T(s,p) µ(x)
∥∥ is the same for all

unit vectors x tangent to S(s). Indeed, for x being such a unit vector we can
calculate

h(s, p) gs(x, x)︸ ︷︷ ︸
=1

= gt(T(s,p)µ(x), T(s,p)µ(x)) =
∥∥T(s,p)µ(x)

∥∥2

So we will show the second statement:
Let y be another unit vector, y ∈ T(s,p)S(s). From isotropy of I × S we obtain
an isometry Φ = id× ΦS such that T(s,p)Φ(x) = y. Furthermore, µ ◦ Φ = Φ ◦ µ
since

µ ◦ Φ(s, p) = µ(Φ(s, p)) = µ(s,ΦS(p)) = (t,ΦS(p)) = Φ(t, p) = Φ ◦ µ(s, p)

where t is chosen small enough that (t, p) is in the domain of Φ. We therefore
obtain T(s,p)(µ ◦Φ) = T(s,p)(Φ ◦µ) and so TΦ(s)µ ◦ TsΦ = Tµ(s) ◦ Tsµ. Hence we
calculate ∥∥T(s,p)µ(y)

∥∥ =
∥∥T(s,p)µ(T(s,p)Φ(x)))

∥∥
=

∥∥T(s,p)(µ ◦ Φ)(x)
∥∥

=
∥∥T(s,p)(Φ ◦ µ)(x)

∥∥
=

∥∥T(t,p)Φ(T(s,p)µ(x)))
∥∥

=
∥∥T(s,p)µ(x)

∥∥
where in the last equality we used that Φ is an isometry. Hence µ is conformal.

Step 2 : Finding the conformal factor h:
Let x ∈ T(s,p)S(s) be an arbitrary unit vector. We define

h(s, p, t) := gt(T(s,p)µ(x), T(s,p)µ(x))

then h : I × S × I → R is C∞ and the conformal factor we are searching for.
Indeed let z ∈ T(s,p)S(s), then z

‖z‖ has length 1 in S(s) and

h(s, p, t) = gt(
T(s,p)µ(z)
‖z‖

,
T(s,p)µ(z)
‖z‖

)

and so
h(s, p, t)gs(z, z) = gt(T(s,p)µ(z), T(s,p)µ(z))
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Step 3 : h is independent of p
It suffices to show that x(h) = 0 ∀ x ∈ T(t,p)S(t), ∀ t ∈ I, p ∈ S since then
we obtain by choosing coordinates such that ∂

∂xi
= x that Di(h ◦ φ−1)|φ(p) = 0

with respect to any chart φ. Hence h is constant on any chart-neighborhood
and since S is connected, h is constant everywhere on S.
Let now σ be the geodesic in S(s) with σ(0) = (s, p) and σ′(0) = x. Again from
isotropy we obtain an isometry Φ = id× ΦS with T(s,p)Φ(x) = −x.
Φ ◦ σ is a geodesic by [O’N.] , p.91, (3), satisfying Φ ◦ σ(0) = Φ(s, p) = (s, p)
and (Φ ◦ σ)′(0) = T(s,p)Φ(σ′(0)) = T(s,p)Φ(x) = −x.
Defining σ̃ := u 7→ σ(−u) we get another geodesic with σ̃(0) = (s, p) and
σ̃′(0) = −σ′(0) = −x hence

σ(−u) = σ̃(u) = Φ ◦ σ(u) ∀ u

Differentiating with respect to u leads us to

T(s,p)Φ(σ′(u)) = −σ′(−u)

Since Φ commutes with µ (as shown above) we have

h(σ(u), t) =
∥∥T(t,p)µ(σ′(u))

∥∥2

=
∥∥T(s,p)Φ(T(t,p)µ(σ′(u))))

∥∥2

=
∥∥T(t,p)µ(T(s,p)Φ(σ′(u))

∥∥2

=
∥∥T(t,p)µ(−σ′(−u))

∥∥2

= h(σ(−u), t)

Therefore u 7→ h(σ(u), t) is symmetric about 0 and so

(xh)(s, p, t)
x=σ′(0)

=
d

du
h(σ(u), t)|u=0 = 0

So I ×f S is a warped product with base I and fiber S, the function f is
used as a warping function.

Definition 3.2.4. A Robertson-Walker spacetime (M(k, f), g) is any Lorentzian
manifold which can be written as a Lorentzian warped product I ×f S with
I = (a, b) for −∞ ≤ a < b ≤ ∞ given the negative metric −dt2, S an isotropic
Riemannian manifold with curvature k and f : I → (0,∞) a smooth warping
function.

Explicitly, M(k, f) is the manifold I × S with line element −dt2 + f2(t)dσ2

where dσ2 is the line element of S lifted to I × S.
The manifold is time oriented by requiring that Ũ = ∂t is future pointing.
If the constant sectional curvature of S is nonzero, the metric may be rescaled
such that k is either identically +1 or −1, hence in the following we deal with S
being a connected three-dimensional Riemannian manifold with constant cur-
vature k = 1, 0 or −1.
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3.3 Geometric properties

In this section we will apply the results developed in chapter 1 for general
warped products to Robertson-Walker spacetimes since we have identified them
as warped products with warping function f .

Definition 3.3.1. I ⊆ R is said to be maximal if f : I → R cannot be extended
to a smooth positive function on an interval strictly larger than I.
The Riemannian manifold S is called the space of M(k, f). We denote its metric
tensor by 〈 , 〉S , the connection by ∇S , on I we write 〈 , 〉I and ∇I , analogously
〈 , 〉M and ∇M for the metric tensor and connection on M(k, f)

One can show ([B.E.], 4.12) that all possible choices for S are the simply
connected ones, R3,H3,S3, with curvature 0,−1, 1 respectively. Expressed in
coordinates the metric takes the form:
k = 1:

ds2 = −dt2 + f(t)2(dψ2 + sin2 ψ(dθ2 + sin2 θdϕ2))

k = 0:

ds2 = −dt2 + f(t)2(dx2 + dy2 + dz2)
= −dt2 + f(t)2(dψ2 + ψ2(dθ2 + sin2 θdϕ2))

k = −1:
ds2 = −dt2 + f(t)2(dψ2 + sinh2 ψ(dθ2 + sin2 θdϕ2))

Remark 3.3.2. In special relativity and in prerelativity physics it is assumed
that space has a flat structure given by k = 0.

Let now L(S) be the set of all lifts of vector fields on S to M(k, f), L(I)
those from I. Let Ũ = ∂t be the flow vector field normal to each slice S(t)
with 〈Ũ , Ũ〉M = −1 hence it is a future pointing unit vector field. We will now
express the connection ∇M in terms of the connections ∇I , ∇S on I resp. S
and similar for the curvature.

Corollary 3.3.3. For X̃, Ỹ ∈ L(S), Ũ ∈ L(I) on M(k, f) we obtain:
(1) ∇M

Ũ
Ũ = 0

(2) ∇M
Ũ
X̃ = ∇M

X̃
Ũ = f ′

f X̃

(3) nor ∇M
X̃
Ỹ= IIS(X̃, Ỹ ) = 〈X̃, Ỹ 〉M f ′

f Ũ

(4) tan ∇M
X̃
Ỹ = ∇̃SXY

Proof. We use the analogous statements proven for general warped products in
2.2.11.
(1) ∇M

Ũ
Ũ

2.2.11(1)
= ∇̃IUU = 0 since ∇IUU = 0.

(2) ∇M
Ũ
X̃ = ∇M

X̃
Ũ

2.2.11(2)
= Ũf

f X̃ = f ′

f X̃.

(3) nor∇M
X̃
Ỹ = IIM (X,Y )

2.2.11(3)
= − 〈X̃,Ỹ 〉Mf gradIf = (∗).

We observe that gradIf = −f ′U since

〈gradf,X〉M = df(X) = f ′dt(X) = 〈−f ′Ũ ,X〉M (∗∗)

So we get

(∗) = −〈X̃, Ỹ 〉M
f

(−f ′Ũ) = 〈X̃, Ỹ 〉M
f ′

f
Ũ
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(4) tan ∇M
X̃
Ỹ = ∇̃SXY follows as in 2.2.11(4).

Remark 3.3.4. By 3.3.3 (1) each γp is a geodesic, indeed

0 = ∇M
Ũ
Ũ = ∇Mγ′pγ

′
p

3.3.3 (3) gives the shape tensor of the totally umbillic fibers.

Corollary 3.3.5. For vector fields X̃, Ỹ , Z̃ ∈ L(S) we have:
(1) MRX̃Ỹ Z̃ =

[
f ′2

f2 + k
f2

]
[〈X̃, Z̃〉M Ỹ − 〈Ỹ , Z̃〉M X̃]

(2) MRX̃Ũ Ũ = f ′′

f X̃

(3) MRX̃Ỹ Ũ = 0
(4) MRX̃Ũ Ỹ = f ′′

f 〈X̃, Ỹ 〉M Ũ

Proof. We use the results from 2.2.21.
(1) S(t) has constant curvature k

f(t)2 ([O’N.], 3.65, 3.2.3) so by [O’N.], 3.43

SRXY Z =
k

f(t)2
[〈X̃, Z̃〉MY − 〈Ỹ , Z̃〉MX]

where X,Y, Z are the corresponding vector fields on S.
Using (∗∗) in 3.3.3

〈gradf, gradf〉M = 〈−f ′Ũ ,−f ′Ũ〉M = f ′2〈Ũ , Ũ〉M = −f ′2

we apply Gauss’ equation, [O’N.], 4.5.,

MRX̃Ỹ Z̃ = SRXY Z −
−f ′2

f2
[〈X̃, Z̃〉M Ỹ − 〈Ỹ , Z̃〉M X̃]

=
(
k

f2
+
f ′2

f2

)
[〈X̃, Z̃〉M Ỹ − 〈Ỹ , Z̃〉M X̃]

(2) Is just the application of 2.2.21(2). Indeed, MRX̃Ũ Ũ = Hf (Ũ,Ũ)
f X̃. For Hf

we calculate by using [O’N.], 3.48 and the fact that ∇M
Ũ
Ũ = 0 by 3.3.3(1)

Hf (Ũ , Ũ)=Ũ(Ũf)−∇M
Ũ
Ũ = f ′′

(3) The result is a direct consequence of 2.2.21 (3).
(4) Since MRX̃Ũ Ỹ = −MRŨX̃ Ỹ the results follows from 2.2.21 (4) by using
3.3.3(∗∗) and noticing that

MRX̃Ũ Ỹ = −MRŨX̃ Ỹ = −〈X̃, Ỹ 〉M
f

∇M
Ũ

(gradIf) = −〈X̃, Ỹ 〉M
f

∇M
Ũ

(−f ′U).

Using the product rule leads to

MRX̃Ũ Ỹ =
〈X̃, Ỹ 〉M

f
(f ′′Ũ − f ′∇M

Ũ
Ũ︸ ︷︷ ︸

=0

) =
f ′′

f
〈X̃, Ỹ 〉M Ũ
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Remark 3.3.6. It follows that every plane containing a Ũ -vector has curvature
KŨ = f ′′

f since for x tangent to S(t), u = Ũ(s) for some s,

KŨ (x, u) =
〈MRxux, u〉M
〈x, x〉M 〈u, u〉M

= − 〈
MRuxu, x〉M
〈x, x〉M 〈u, u〉M

=
f ′′

f

〈x, x〉M
〈x, x〉M

.

The analogous calculation shows that every plane tangent to a spacelike slice
has curvature Kσ = (f ′2+k)

f2 since

Kσ(x, y) =
〈MRxyx, y〉M

〈x, x〉M 〈y, y〉M − 〈x, y〉2M

But be careful not to confuse Kσ and KŨ with the curvature of S(t) which is
k
f2 in the geometry of S(t). KŨ and Kσ are called principal sectional curvatures
of M(k,f).

The next geometric properties we want to have a look at are Ricci- and
scalar curvature:

Corollary 3.3.7. For a Robertson-Walker spacetime M(k, f) with flow vector
field Ũ = ∂t we have:
(1) Ricci-curvature
(a) RicM (Ũ , Ũ) = −3 f ′′

f

(b) RicM (Ũ , X̃) = 0

(c) RicM (X̃, Ỹ ) =
(

2
(
f ′

f

)2

+ 2 k
f2 + f ′′

f

)
〈X̃, Ỹ 〉M if X̃, Ỹ⊥Ũ

(2) Scalar curvature

S = 6
((

f ′

f

)2

+ k
f2 + f ′′

f

)
Proof. Let (Em) = {E1, E2, E3, Ũ} be a local frame field on M(k, f) , then by
[O’N.], 3.52.,

RicM (V,W ) =
∑
m

εm〈MRV EmW,Em〉M

Therefore we can now insert the formulas developed in 3.3.5.
(1)
(a)

RicM (Ũ , Ũ) =
4∑

m=1

εm〈MRŨEm
Ũ , Em〉M

=
3∑

m=1

εm〈MRŨEm
Ũ , Em〉M

= −
3∑

m=1

εm〈
f ′′

f
Em, Em〉M

= −3
f ′′

f
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(b)

RicM (Ũ , X̃) =
3∑

m=1

εm〈MRŨEm
X̃, Em〉M − ε4〈MRŨŨ X̃, Ũ〉M = 0

since both 〈MRŨEm
X̃, Em〉M = − f

′′

f 〈Em, X̃〉M 〈Ũ , Em〉M = 0 and MRŨŨ X̃ = 0.

(c)

RicM (X̃, Ỹ ) =
3∑

m=1

εm〈MRX̃Em
Ỹ , Em〉M︸ ︷︷ ︸

(∗)

− 〈MRX̃Ũ Ỹ , Ũ〉M︸ ︷︷ ︸
(∗∗)

For (∗∗) we calculate

(∗∗) =
f ′′

f
〈X̃, Ỹ 〉M 〈Ũ , Ũ〉M = −f

′′

f
〈X̃, Ỹ 〉M

And (∗) equals

(∗) =
3∑

m=1

εm〈

[(
f ′

f

)2

+
k

f2

]
(〈X̃, Ỹ 〉MEm − 〈Em, Ỹ 〉M X̃), Em〉M

=
3∑

m=1

εm〈Em, Em〉M

[(
f ′

f

)2

+
k

f2

]
〈X̃, Ỹ 〉M

−

[(
f ′

f

)2

+
k

f2

]
3∑

m=1

εm〈Em, Ỹ 〉M 〈X̃, EM 〉M

= 2

[(
f ′

f

)2

+
k

f2

]
〈X̃, Ỹ 〉M

(2)

S = C(Ric) =
3∑

m=1

εmRicM (Em, Em) + ε4RicM (Ũ , Ũ)

=
3∑

m=1

ε2m

(
2
(
f ′

f

)2

+ 2
k

f2
+
f ′′

f

)
+ 3

f ′′

f

= 6

((
f ′

f

)2

+
k

f2
+
f ′′

f

)

3.4 Geodesics

In this section we will characterize geodesics. As an application of the theory
we will afterwards explain the physical effect of cosmological redshift, a phe-
nomenon that is naturally part of every Robertson-Walker spacetime.
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We start by noting that any curve α in M(k, f) = I ×f S can be written as

α(s) = (t(s), β(s))

where t(s) is the galactic time of α and β is the projection of α onto S. In what
follows we write f ′ for Ũf = df

dt and derivatives with respect to s are denoted
by a prime.

Proposition 3.4.1. A curve α = (t, β) in M(k, f) is a geodesic iff

1. d2t
ds2 + 〈β′, β′〉Sf(t)f ′(t) = 0

2. β′′ + 2 f
′(t)
f(t)

dt
dsβ
′ = 0

Proof. First note that since I ⊆ R is furnished with the standard flat metric,
no Christoffel symbols are involved in the geodesic equations. Furthermore
t′(s) = t′(s)U and ∇t′(s)

ds = t′′(s) ∂∂t = t′′(s)U . We apply 2.2.16. Therefore
equations (1) and (2) are of the following form:

1. d2t(s)
ds2 = 〈β′, β′〉Sf ◦ t g̃radf

2. β′′ = − 2
f◦t

d(f◦t)
ds β′

As seen in the proof of 3.3.3, by (∗∗) g̃radf = −f ′(t)U
For (1) we obtain by 2.2.16 that

t′′(s)U = −〈β′, β′〉S(f ◦ t)f ′(t)U
(t′′(s) + 〈β′, β′〉Sf ◦ tf ′(t))U = 0

and the last line is equivalent to t′′(s) + 〈β′, β′〉S(f ◦ t)f ′(t) = 0.
Noticing that

d(f ◦ t)
ds

= f ′(t)
dt

ds
we get the anticipated result for the second equation.

We now investigate null-geodesics:

Corollary 3.4.2. If α = (t, β) is a null geodesic in M(k, f) then the function
f(t) dtds is constant.

Proof. Since α′ =
(
dt
dsU, β

′) we calculate

0 = 〈α′, α′〉M = −
(
dt

ds

)2

+ 〈β′, β′〉Sf2

hence 〈β′, β′〉S = 1
f2 ( dtds )2 (∗)

By using (1) in the characterization of geodesics and (∗) we obtain

d2t(s)
ds2

+ 〈β′, β′〉Sfft(t) = 0

therefore d2t(s)
ds2 + 1

f ft
(
dt
ds

)2
= 0. Thus multiplication with f leads to

0 = f
d2t(s)
ds2

+ ft

(
dt

ds

)2

=
d

ds

(
f(t)

dt

ds

)
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Corollary 3.4.3. In M(k, f) = I ×f S let α be a curve with t(α(0)) = t0. Then
α is a null geodesic iff

α(s) = (t(s), β̄(h(s))

where t(s) is the inverse function of s = c
∫ t
t0
f(t′)dt′, β̄ is a unit speed geodesic

in S and h(s) =
∫ t(s)
t0

dt′

f(t′)

Proof. (⇒): Let α(s) = (t(s), β(s)).

Since α is a null geodesic we can apply 3.4.2 to obtain that

f(t)
dt

ds
= c (∗)

Therefore ds = 1
cf(t)dt and we can conclude that the inverse function of t is

s =
∫

1
cf(t)dt.

α is a null geodesic, hence

0 = 〈α′, α′〉M = −
(
dt

ds

)2

+ f2〈β′, β′〉S

so the length of β is

L|s0sp
(β) =

∫ s0

sp

〈β′, β′〉1/2S ds =
∫ s0

sp

1
f(t)

dt

ds
ds =

∫ t(s0)

t(sp)

dt

f(t)
= h(s0)

We now define β̄ via β(s) =: β̄(h(s)). It remains to show that β̄ has unit speed
and that it is a geodesic.
Since h′(s) = ‖β′(s)‖S we calculate β′(s) = β̄′(h(s))h′(s) = β̄′ ‖β′(s)‖S . This
leads to ∥∥β̄′(s)∥∥

S
=
‖β′(s)‖S
‖β′(s)‖S

= 1,

therefore β̄ is a unit speed curve. To show that β̄ is a geodesic we have to prove
that β̄′′ = 0. Since α is a geodesic β has to satisfy conditions (1) and (2) in
3.4.1. Inserting

β′′(s) = β̄′′(h(s))h′(s)2 + β̄′(h(s))h′′(s)

in (2) leads to

β̄′′(h(s))h′(s)2 + β̄′(h(s))h′′(s) = −2
f ′(t(s))
f(t(s))

dt

ds
β′

= −2f ′ ‖β′(s)‖S β̄
′(h(s))h′(s)

= −2f ′ ‖β′(s)‖S β̄
′(h(s)) ‖β′(s)‖S

So it remains to show that

h′′(s) = −2f ′ ‖β′(s)‖2S
Keeping (∗) in mind we calculate

h′′(s) = − 1
f(t(s))2

f ′(t(s))
(
dt

ds

)2

+
1

f(t(s))
d2t

ds2

=
2

f(t(s))
d2t

ds2
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On the other hand by 3.4.1(2) and (∗)

−2f ′(t(s)) ‖β′(s)‖2S =
2

f(t(s))
d2t

ds2

hence both sides are equal.

(⇐): We now have to show that α is a geodesic and that 〈α′, α′〉M = 0.
First observe that since ds = cf(t)dt it follows that dt

ds = 1
cf(t(s)) , so

f(t(s))
dt

ds
= const.

Since β̄ is a unit speed geodesic, 〈β̄′(u), β̄′(u)〉S = 1 and β̄′′(u) = 0 ∀ u. Using
the first of these assumptions we calculate

〈α′, α′〉M = −
(
dt

ds

)2

+ f(t(s))2〈β̄′(h(s))h′(s), β̄′(h(s))h′(s)〉S

= −
(
dt

ds

)2

+ f(t(s))2 1
f(t(s))2

(
dt

ds

)2

〈β̄′(h(s)), β̄′(h(s))〉S

= 0

Since by 3.4.1 α is a geodesic iff equations (1) and (2) in 3.4.1 are satisfied, we
have to show that for β(s) = β̄(h(s))

d2t

ds2
+ 〈β′, β′〉Sf(t)f ′(t) = 0

β′′ + 2
f ′(t)
f(t)

dt

ds
β′(s) = 0

We calculate
(β̄(h(s)))′′ = β̄′′(h(s))h′2(s)︸ ︷︷ ︸

=0

+β̄′(h(s))h′′(s)

so

β′′ + 2
f ′(t)
f(t)

dt

ds
β′(s) = β̄′(h(s))h′′(s) + 2

f ′(t)
f(t)

dt

ds
β̄′(h(s))h′(s)

= β̄′(h(s))h′′(s) + 2
f ′(t)
f(t)

dt

ds
β̄′(h(s))

1
f(t(s))

dt

ds

= β̄′(h(s))h′′(s) + 2
f ′(t)

f(t(s))2

(
dt

ds

)2

β̄′(h(s))

Therefore it suffices to show that

h′′(s) = −2
f ′(t)

f(t(s))2

(
dt

ds

)2

For the left hand side we calculate

h′′(s) = − 1
f(t(s))2

f ′(t(s))
(
dt

ds

)2

+
1

f(t(s))
d2t

ds2
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Keeping in mind that 0 =
(
f(t) dtds

)′
the equation reduces to

h′′(s) = −2
f ′(t(s))
f(t(s))

(
dt

ds

)2

which is what we wanted to show.
For the second part we calculate by recalling that β̄ has unit speed,

d2t

ds2
+ 〈β̄′(h(s))h′(s), β̄(h(s))′h′(s)〉Sf(t)f ′(t) =

=
d2t

ds2
+ 2

1
f(t(s))2

(
dt

ds

)2

〈β̄′(h(s)), β̄′h(s)〉Sf(t)f ′t(t)

=
1

f(t(s))

(
f ′(t(s))

(
dt

ds

)2

+ f(t(s))
d2t

ds2

)

=
1

f(t(s))

(
f(t(s))

dt

ds

)′
= 0

Now we investigate another consequence of 3.4.2 and give a relativistic ex-
planation of the physical effect of cosmological redshift which is the most direct
observational evidence for the expansion of the universe.
The analysis of light coming from a distant galaxy obtains the characteristic
pattern of spectral lines but all wavelengths λ are longer than for earth emitted
light. This relative increase

z =
λ0 − λp
λp

is called redshift parameter of the source. We can use the warping function for
the computation of the redshift parameter:

Corollary 3.4.4. In M(k, f) a photon emitted at γp(tp) and received at γ0(t0)
has redshift

z =
f(t0)
f(tp)

− 1

Proof. For each s the galactic observers (i.e. the γps) measure
(
dt
ds

)
(s) as the

energy E(s) of α and β′(s) as its momentum by decomposing α′ = ( dtds )U + β′

with U the 4-velocities of the observer. The physical relations E = hν, where h
is Planck’s constant as well as ν the frequency, and λν = 1 remain valid hence

dt

ds
(s) = E(s) =

h

λ(s)
∀s

Thus, by using 3.4.3

const. = f(t)
dt

ds
= f(t)

h

λ

the result is obtained after substituting λ = cf(t) in the definition of z.
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Now we can also compute the distance between the galaxies γp and γ0. We
can neglect the relative motion but their distance changes as a consequence of
the overall expansion (or contraction) of the universe. z > 0 implies f(t0) >
f(tp), so since in our universe all distant sources have positive redshift, we
assume an expanding universe. The redshift z determines the emission time tp.
Since f(t0) and z give f(tp), it is uniquely determined since f is a diffeomorphism
because f ′ > 0.

Corollary 3.4.5. Let M(k, f) have space S3,R3 or H3. For a photon starting at
γp(tp) and received at γ0(t0) we can calculate the present distance between the
galaxies γp and γ0 via

d = f(t0)
∫ t0

tp

dt

f(t)

provided in case of S3 that the value of the integral is ≤ π.

Proof. The projection β of the photon onto S is a pregeodesic with speed cal-
culated as in 3.4.3 |β′|s = 〈β′, β′〉

1
2
S= 1

f(t)
dt
ds hence

L(β) =
∫ s0

sp

〈β′, β′〉1/2S ds =
∫ s0

sp

1
f(t)

dt

ds
ds =

∫ t0

tp

dt

f(t)

The factor f(t0) in front of the integral is caused by the fact that in general
for galaxies γp and γq the distance between γp(t) and γq(t) in S(t) is f(t)d(p, q)
and d(p, q) is the length of β from p to q, as calculated above.
The extra hypothesis for S3 can be avoided by setting d(p, 0) = min{|L(β) −
2πm| |m ∈ Z}.

3.5 Completeness and causality

Considering null geodesics inM(k, f) = I×fS with I = (a, b), −∞ ≤ a < b ≤ ∞
we can conclude:

1. If
∫ b
t0
f(t)dt < ∞ then 3.4.3 shows that no future pointing null geodesic

can be defined on [0,∞) since s = c
∫ t
t0
f(t)dt < ∞. Hence every null

geodesic is future incomplete.
Analogously every null geodesic is past incomplete if

∫ t0
a
f(t)dt <∞.

2. If both integrals mentioned above are infinite then t(s) and h(s) are de-
fined for all s ∈ R. If S is complete then β̄ is also defined on R hence
every inextendible null geodesic is complete, so M(k, f) is null geodesically
complete and inextendible.

3. For complete S the monotone function t(s) of an inextendible null geodesic
runs through the entire interval I. Thus Robertson-Walker photons (un-
less otherwise destroyed) survive from the initial singularity t∗ or −∞ to
the final singularity t∗ or ∞.

4. For complete S, 2.2.44 implies that Robertson-Walker spacetimes are glob-
ally hyperbolic hence also causal, chronological etc.

5. We also know from 2.2.48 that every level hypersurface {t}×S is a Cauchy-
surface.
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3.5.1 Examples

Einstein static universe

Let I = R with metric −dt2, S = Sn−1 with the standard spherical Riemannian
metric. For f ≡ 1 the product Lorentzian manifold I ×f S is the n-dimensional
Einstein static universe. If n = 2 then M(k, f) is the cylinder R× S1 with flat
metric −dt2 + dθ2.
If n ≥ 3 then the metric is not flat anymore since Sn−1 has constant sectional
curvature 1. Applying 3.4.3 for t0 = 0 leads to s = ct, for c = 1 we get t(s) = 1

s

and h(s) =
∫ t

0
1dt = t(s).

Einstein-de Sitter universe

Here we have I = R+, S = R3 and warping function f(t) = t
2
3 . Using the

corollaries above we calculate for a typical photon: s = (3C/5)t
5
3 , taking C = 5

3

gives t(s) = s
5
3 . Then we further calculate h(s) =

∫ t3/5

0
t−2/3dt = 3(t3/5)1/3=

3s1/5

Hence a typical photon is α(s) = (s3/5, 3s1/5, 0, 0) for s > 0.

3.6 The flow of Robertson-Walker spacetimes

After having studied the geometric properties of Robertson-Walker spacetime
we will interpret it as a solution of Einstein’s equation

T =
1

8π
(Ric− 1

2
Sg)

where T is the stress-energy tensor, S the scalar curvature and g the metric on
M . We will investigate the dynamics of the system.

3.6.1 Perfect fluids

As we will see below we can approximate the source of the gravitational field by
a special kind of fluid, namely a perfect fluid. In general a fluid is a continuum,
i.e. a collection of particles where instead of individuals the whole collection is
described. Properties like for instance particles per unit mass, density of energy
or momentum, pressure etc.vary from point to point.
In general relativity we deal with perfect fluids. Such a kind of fluid is described
by a stress-energy tensor of the form

Tµν = (ρ+ γ)UµUν + γgµν

where ρ is the energy density, γ the pressure, U a flow vector field and g the
metric.
In order to motivate why the stress-energy tensor is of the above form we first
start with the investigation of classical Newtonian results concerning the behav-
ior of fluids and will then generalize them such that they hold in the relativistic
case.
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Newtonian physics:

This section is mainly based on [Pa], ch.6., [Hu], [Ba], ch. 2,3 and [CC], ch.
2,4..
To describe the motion of a fluid there are two different approaches. In the first,
the Eulerian description, flow quantities are defined as functions of positions in
space x and time t. The flow of a fluid is described by its velocity vector field
~u(x, t) where ~u is a smooth function depending on the position x and time t. It
describes the average motion of the fluid, i.e. it gives the direction and rate at
which the fluid flows. This kind of description provides a picture of the spatial
distribution of fluid velocity at each instant during the motion.
The second viewpoint, named after Lagrange, uses the fact that some dynamical
or physical quantities refer not only to positions in space but also to identifiable
pieces of matter. Flow quantities are functions of time and of the choice of
a material element of fluid. They therefore describe the dynamical history of
the selected fluid element. One has to take into account that material elements
change their shape as they move. So we identify the element such that its linear
extension is not involved, for instance by specifying it via the position a of its
center of mass at some instant t. The primary flow quantity is the velocity
~v(a, t).

Definition 3.6.1. A motion ~X of a body moving in Rn is a C∞ function ~X :
Rn × R→ Rn where ~X(·, t) is a diffeomorphism for each t.
We write x = ~X(a, t) for the location of the particle a at time t. x therefore is
the Eulerian coordinate, also called spatial coordinate. a is the Lagrangian or
material coordinate of the particle.
A particle path is the curve x(t) = ~X(a, t) where a is fixed. We can imagine it
as the trajectories of particles carried by the fluid.
The velocity ~v of a material particle a is given by ~v(a, t) = ~Xt(a, t) where the
derivative with respect to t is taken for fixed a. The corresponding spatial
velocity ~u(x, t) is defined via

~u( ~X(a, t), t) = ~v(a, t).

We can also reconstruct the motion ~X via solving the ODE-system

~Xt(a, t) = ~u( ~X(a, t), t)

with initial condition ~X(a, 0) = a. The solutions are the so-called particle-paths.
In general this is a nonlinear and not explicitly solvable system.

Let now f : Rn×R→ R be a function depending on (x, t) and F : Rn×R→
R the corresponding function F (a, t) satisfying F (a, t) = f( ~X(a, t), t). If we
differentiate f with respect to t for fixed x we obtain the rate of change of f
at a given spatial point, so the local rate of change at x. But in order to find
the rate of change of f for a material element, i.e. the rate of change following
a particle path it is necessary to add a convective rate of change caused by the
movement of the molecules within the fluid due to transporting the element to
a different position. This derivative is called material derivative and we denote
it by Df

Dt . In order to express the material derivative in terms of the spatial
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derivative we use the chain-rule to obtain

Df

Dt
( ~X(a, t), t) =

∂f

∂t
( ~X(a, t), t) + ~Xt(a, t)∇f( ~X(a, t), t)

=
∂f

∂t
( ~X(a, t), t) + ~u( ~X(a, t), t)∇f( ~X(a, t), t)

=
∂f

∂t
( ~X(a, t), t) + (~u · ∇)f

Therefore,
D

Dt
=

∂

∂t
+ ~u · ∇.

An important mathematical tool which will be used frequently in what follows
is the divergence theorem:

Theorem 3.6.2. If ~v(x) is continuously differentiable in a region R ⊆ R3 and if
∂R has ~n as outward unit normal then∫

∂R

~v · ~n dS =
∫
R

div ~v dV =
∫
R

∇ · ~v dV

For a proof see any book about calculus resp. [Pa], p.127 f.
Line-, surface- and volume integrals of quantities which move with the fluid and
consist always of the same particles are called material integrals. But we have
to note that the integration region is changing with time. In order to deal with
such material integrals we need the following result from multi variable calculus.

Definition 3.6.3. Let P ⊆ Rn be a bounded open set with C∞-boundary ∂P .
Then

Pt := { ~X(a, t) : a ∈ P}

is the spatial region which is occupied by all material particles contained in P .
Pt is called material volume.

Theorem 3.6.4. (Reynolds’ transport theorem) Let ~X ∈ C∞(Rn × R,Rn) be a
motion with ~X(·, t) a diffeomorphism of Rn for all t ∈ R. Let P ⊆ Rn be a
smooth bounded open set and Pt = ~X(P, t). For a smooth function f : Rn×R→
R we get

d

dt

∫
Pt

f dV =
∫
Pt

∂f

∂t
dV +

∫
∂Pt

f ~u · ~n dS

where ~n is the outward unit normal vector to ∂Pt, and ~u the spatial velocity of
~X.

Proof. See [Hu], p.9 f.

Many laws of fluid mechanics are conservation laws which state that the total
amount of some quantity associated with a fluid is either invariant or changes
because of forces.
As a first example we study the conservation of mass. Mass conservation states
that there is a balance between the outflow of mass and the rate of change of
mass contained in some material volume. The amount of mass contained in
such a material volume Pt is given by

∫
Pt
ρ dV where ρ(x, t) is the possibly

non-constant density. If the mass of the material volume does not change as the
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fluid moves we see that d
dt

∫
Pt
ρ dV = 0. Using now 3.6.4 and the divergence

theorem we obtain

d

dt

∫
Pt

ρ dV =
∫
Pt

∂ρ

∂t
dV +

∫
∂Pt

ρ~u · ~n dS

=
∫
Pt

(
∂ρ

∂t
+∇(ρ~u)

)
dV

= 0

This is valid for any any fixed time and arbitrary Pt therefore we can con-
clude that the integrand vanishes: so we have finally obtained the law of mass
conservation,

∂ρ

∂t
+∇ · (ρ~u) = 0

or, in components,
∂ρ

∂t
+
∑
k

∂

∂xk
(ρuk) = 0

In the special case of incompressible fluids (ρ = const) the law of mass conser-
vation can be formalized as div v = 0.

Another conserved quantity is momentum. In general two types of forces act
on a fluid. On the one hand a body force ~F per unit mass. This is an external
force like for instance gravity or Coriolis force. On the other hand a surface
pressure force acts. It arises from inter-molecular forces and thermal motion of
the molecules. For simplicity we assume this force to act in the inward normal
direction with magnitude per unit surface area equal to pressure γ. So we deal
with the model of an inviscid fluid.

The total momentum in the material region Pt is given by
∫
Pt
ρ~u dV . By

using Newton’s second law we require that the rate of change of momentum of
the material volume is equal to the force acting on it, i.e.

d

dt

∫
Pt

ρ~u dV = −
∫
∂Pt

γ~n dS +
∫
Pt

F dV

By using 3.6.4 and the divergence theorem we arrive at∫
Pt

∂(ρ~u)
∂t

dV +
∫
∂Pt

(ρ~u)~u · ~n dS =
d

dt

∫
Pt

ρ~u dV

= −
∫
∂Pt

γ~n dS +
∫
Pt

F dV

= −
∫
Pt

(∇γ − F ) dV

So we finally obtain by again using the divergence theorem that∫
Pt

((ρ~u)t +∇ · (ρ~u⊗ ~u) +∇γ − F ) dV = 0

Setting F = 0 and noting as above that Pt was arbitrary we conclude that

(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇γ = 0
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or,
∂

∂t
(ρui) +

∑
k

∂

∂xk
(ρuiuk) = ∂iγ

In Newton’s theory a source of some field has mass density ρ. In order to not
violate high-precision experiments (cf. [Sch], ch. 4.7 for further details) the
source of the field should consist of all energies. But this total mass energy is
only one component of a tensor and using a single component as a source would
lead to a non-invariant theory of gravitation. Therefore Einstein suggested that
the source of the field should be a tensor T , the stress-energy tensor, containing
all stresses, momenta and pressures acting as sources.
These quantities are collected by requiring that
T (dxα, dxβ) :=flux of the α-component of the 4-momentum across a surface of
constant xβ

So investigating the components we can see that
T 00 is the flux of the 0-momentum (i.e. the energy) across a surface of constant
t, therefore it is just the energy density.
T 0i is the flux of the energy through the surface xi and T ij is the flux of the
i-momentum through the surface xj .
One can show ([Sch], 4.5) that this tensor is symmetric. Further details can be
found in [Sch], 4.4.

Special relativity:

Now we want to generalize the conservation equations in a relativistic back-
ground. Therefore it is now our task to find an explicit form for Tµν such that
the conservation equations still hold if for the velocity u, u2

c2 � 1 hence in the
Newtonian limit. The following calculations are mainly based on [Re], 20.12.
p.851 ff.

We start with investigating a fluid with γ = 0. then the conservation equa-
tions are

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0,

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk) = 0 (∗∗)

Setting U0 = c√
1−u2

c2

, Uk = uk√
1−u2

c2

for k = 1, 2, 3 (see [Re], 20.2) and ρ0 = m0
V0

(the rest-density) and defining

T̃µν = ρ0U
µUν

we find as a relativistic generalization of (∗∗) that

∂ν T̃
µν = 0.

Indeed, if we set ρ = ∆m
∆V =

∆m0√
1−u2

c2

∆V0

√
1−u2

c2

= ρ0

1−u2

c2
then we obtain

∂

∂x0
T̃ 00 +

∂

∂xk
T̃ 0k =

1
c

∂

∂t

ρ0c
2

1− u2

c2

+
∂

∂xk
ρ0u

kui

1− u2

c2

= c

(
∂ρ

∂t
+

∂

∂xk
(ρuk)

)
= 0
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and analogously also ∂
∂x0 T̃

i0 + ∂
∂xk T̃

ik vanish for i = 1, 2, 3 by using the second
equation in (∗∗).

For fluids with isotropic pressure the conservation equations are

c

(
∂ρ

∂t
+

∂

∂xk
(ρuk)

)
= 0,

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk) = ∂iγ (∗ ∗ ∗)

We have seen above that T̃µν satisfies the equations in (∗ ∗ ∗) if ∂iγ = 0. Now
we search for a tensor Sµν whose divergence satisfies the right sides in the
Newtonian limit. They can be written as the divergence of

(S̃µν) = γ


0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Indeed, ∂ν S̃0ν = 0 since S̃0ν = 0 and ∂ν S̃
iν= ∂ν(γgiν) =giν∂νγ = ∂iγ where g

is the Minkowski metric.
The idea now is to write Sµν as Sµν = aUµUν + bgµν (∆) where a and b are to
be determined. So

Sµν =
a

1− u2

c2


c2 cu1 cu2 cu3

cu1 u1u1 u1u2 u1u3

cu2 u1u2 u2u2 u2u3

cu3 u1u3 u2u3 u3u3

+ b


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


We can see that for u � c, it has the anticipated form (∆). Since the c2-term
dominates strongly we can ignore the terms cui, uiuk and uiui to obtain

Sµν ≈ a


c2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ b


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


So we can now see that for Sµν = S̃µν it is necessary that ac2 + b = 0, b = γ
and therefore a = − γ

c2 . If we finally define Tµν :=
(
ρ0 + γ

c2

)
UµUν − γgµν we

again have
∂νT

µν = 0.

General relativity

We now have to use the covariant derivative and the conservation equations are
of the form

Tµν;ν = 0

In locally flat regions T is just the tensor derived above. In what follows we will
use geometric units hence c = 1.
After this preparation we are now ready to define perfect fluids and see which
role they play in general relativity.
To begin with we show that the flow given by the vector field U = ∂t is that of
a perfect fluid.
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Definition 3.6.5. A perfect fluid on a spacetime (M, g) is a triple (U, ρ, γ) where

• U is a timelike future pointing unit vector field on M called the flow vector
field.

• ρ ∈ C∞(M) is the energy-density function, γ ∈ C∞(M) is called pressure
function.

• The stress energy tensor is given by

T = (ρ+ γ)U∗ ⊗ U∗ + γg (∗)

where U∗ is the one-form metrically equivalent to U .

A calculation shows that

T (U,U) = ρ

T (X,U) = T (U,X) = 0
T (X,Y ) = γ〈X,Y 〉M

for X,Y ⊥ U
A perfect fluid also satisfies the energy equation Uρ = −(ρ + γ)divU and the
force equation (ρ+γ)∇UU = −grad⊥γ where grad⊥γ is the component of gradγ
orthogonal to U . For a proof see [O’N.], 12.5..

Since the stress energy tensor T is already determined by Einstein’s equations
our task is now to find functions ρ and γ such that T has the form (∗):

Theorem 3.6.6. If U is the flow vector field on a Robertson-Walker spacetime
M(k, f) then (U, ρ, γ) is a perfect fluid with energy density ρ and pressure γ
given by

8πρ
3

=
(
f ′

f

)2

+
k

f2

−8πγ = 2
f ′′

f
+
(
f ′

f

)2

+
k

f2

Proof. Einstein’s equation gives

T =
1

8π
(Ric− 1

2
Sg)

We therefore get T (U,X) = 0 since by 3.3.7 Ric(U,X) = 0 and

T (X,Y ) =
1

8π

(
2
(
f ′

f

)2

+ 2
k

f2
+
f ′′

f

)
〈X,Y 〉M −

− 3
8π

((
f ′

f

)2

+
k

f2
+
f ′′

f

)
〈X,Y 〉M

=
1

8π

(
−
(
f ′

f

)2

− k

f2
− 2

f ′′

f

)
〈X,Y 〉M
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where we have used the expressions for Ric and S as calculated in 3.3.7. We
can see that the last term is just γ〈X,Y 〉M for γ as above. If

ρ = T (U,U)

=
1

8π

−3
f ′′

f
− 3

((
f ′

f

)2

+
k

f2
+
f ′′

f

)
〈U,U〉M︸ ︷︷ ︸

=−1


=

3
8π

((
f ′

f

)2

+
k

f2

)

then T has the required form T = (ρ+ γ)U∗⊗U∗+ γg where T (U,U), T (X,Y )
are now the same as those we received from Einstein’s equation.

Since we deal with a perfect fluid, div T = 0. Therefore we get for the time
rate of change of the energy density:

Corollary 3.6.7. For a Robertson-Walker perfect fluid

ρ′ = −3(ρ+ γ)
f ′

f

Proof. Since Uρ = ρ′ it suffices to check that div U = 3 f
′

f because the energy
equation valid for U is Uρ = −(ρ+ γ)div U .
Using a frame field with E4 = U we obtain by noting that ∇MU U = 0

div U =
4∑

m=1

εm〈∇MEm
U,Em〉M=

3∑
m=1

εm〈∇MEm
U,Em〉M

Since ∇MEj
U = f ′

f Ej by 3.3.3 we calculate

div U =
3∑

m=1

f ′

f
〈Ej , Ej〉M = 3

f ′

f

3.7 Friedmann cosmological models

Since except at the earliest and final era of the universe, energy density strongly
dominates pressure it suffices to investigate Robertson-Walker models with γ =
0. Dusts, i.e. perfect fluids with γ = 0 and ρ > 0 will be the subject of our
further calculations and we obtain Friedmann cosmological models.

Lemma 3.7.1. Let M(k, f) be a Robertson-Walker spacetime with f a noncon-
stant function. Then the following are equivalent:
(1) The perfect fluid U is a dust.
(2) ρf3 = M where M > 0 is a constant.
(3) f ′2 + k = A

f where A = 8πM
3 > 0 (Friedmann equation).
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Proof.

(2) ⇔ (3): 8πρ
3 =

(
f ′

f

)2

+ k
f2 is equivalent to 8π

3 ρf
3 = (f ′)2f + kf , so

ρf3 = M iff f ′2 + k = 8π
3
M
f

(1)⇒ (2): If γ = 0 then, by 3.6.7, ρ′ = −3ρ f
′

f , so ρ′f + 3ρf ′ = 0 hence

ρ′f3 + 3ρf ′f2 = (ρf3)′ = 0

Therefore ρf3 is constant and positive, since both ρ and f are positive.

(2)⇒ (1): By 3.6.7

0 = ρ′ + 3(ρ+ γ)f ′/f
⇔ ρ′f + 3ρf ′ = −3γf ′

⇔ ρ′f3 + 3ρf ′f2 = −3γf ′f2

⇔ (ρf3)′︸ ︷︷ ︸
=0

= −3γf ′f2

so
γf ′ = 0 (∗)

but f is not constant by assumption.
Assume γ 6= 0, then there is a maximal interval J ⊂ I on which γ 6= 0. By (∗),
f ′ = 0 on J and so f is constant on J , hence J cannot be the whole interval I.
Since in

−8πγ = 2
f ′′

f
+
(
f ′

f

)2

+
k

f2

the first two terms vanish and the third is constant on J , it follows that γ is a
nonzero constant on J . Thus by continuity γ is nonzero on an interval strictly
larger than J , a contradiction to the maximality of J .

Remark 3.7.2. For the scale function f we obtain in the three cases k = 0, 1,−1:

• k = 0: The solution for the Friedmann equation is provided by f = Ct2/3,
where 4C3 = 9A

• k = 1: Integration of the Friedmann equation leads to

t =
1
2
A(θ − sin θ)

f =
1
2
A(1− cos θ)

• k = −1: Now we get as a solution of f ′2 = 1 + A
f

t =
1
2
A(sinh η − η)

f =
1
2
A(cosh η − 1)
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3.8 Expansion of the universe

According to Hubble (discovered in 1929) all distant galaxies are moving away
from us now at a rate proportional to their distance, which shows that there is
no preferred center of expansion.
For galaxies γp and γq the distance between γp(t) and γq(t) in S(t) is f(t)d(p, q)
where we denote by d the usual Riemannian distance in S. So the distance scale
changes with time. Hubble’s discovering was that

H0 =
f ′(t0)
f(t0)

=
1

18± 2 · 109yr

f therefore has positive derivative which implies that the spaces S(t) are ex-
panding. As a consequence we obtain:

Proposition 3.8.1. Let M(k, f) = I ×f S. If H0 = f ′(t0)
f(t0) > 0 for some t0 and

ρ+ 3γ > 0 then I has an initial endpoint t∗ with t0 −H−1
0 < t∗ < t0 and either

(1) f ′ > 0 which means expansion or
(2) f has a maximum point after t0 and I is a finite interval (t∗, t∗).

Proof. Since by [O’N.], 12.12., 3 f
′′

f = −4π(ρ + 3γ) the condition ρ + 3γ > 0
implies f ′′ < 0 since f > 0.
Thus the graph of f is, except at t0, below that of its tangent line at t0. (∗).
This line is the graph of

F (t) = f(t0) + f ′(t0)(t− t0) = f(t0) +H0f(t0)(t− t0)

H0 > 0, so as t decreases from t0, f > 0 must have a singularity at some t∗
before reaching the zero t0 −H−1

0 of F since otherwise f would become less or
equal to zero because of (∗).
Since f ′′ < 0 either f ′ is always positive on I or f has a maximum point (f ′ = 0)
after which f ′ < 0. In this case, repeating the procedure from above we get
another singularity at t∗ > t0.

Thus under the assumption of homogeneity and isotropy the theory states
that at a time less than H−1

0 ago the universe had a singularity and in the case
that it does not expand forever, must, after contracting for a while, come to a
final singularity.
However the result does not say that the universe begins small (i.e. f → 0 as
t→ t∗) or that in the expanding case it will last forever.

Definition 3.8.2. If the energy density approaches infinity as t → t∗ (or t∗),
M(k, f) has a physical singularity at t∗ (resp. t∗).
A big bang is an initial singularity of M(k, f) at t∗ if f → 0 and f ′ → ∞ as
t→ t∗.
Similarly to the above a final singularity is called a big crunch if f → 0 and
f ′ → −∞ as t→ t∗.

Big bangs as well as big crunches are physical singularities. The converse
holds as well under weaker conditions than those of 3.8.1 (2):
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Theorem 3.8.3. Let the spacetime M(k, f) = I ×f S have only physical singu-
larities and I be maximal. If H0 > 0 for some t0, ρ0 > 0 and

−1
3
< a ≤ γ

ρ
≤ A (∗)

where a and A are constants, then
(1) the initial singularity is a big bang.
(2) if k = 0 or −1, the interval I is of the form I = (t∗,∞) and the warping
function f and the energy density ρ satisfy f →∞, ρ→ 0 as t→∞.
(3) if k = 1, f reaches a maximum followed by a big crunch so the interval I is
a finite, I = (t∗, t∗).

Proof. Since by (∗)
ρ+ 3γ ≥ ερ > 0

for some ε > 0, namely, ε = 3a+ 1, the proof of 3.8.1 guarantees f ′′ < 0.

(1) : Because H0 > 0 we get f ′ > 0 on the interval (t∗, t0).
Since γ ≤ Aρ and, by 3.6.7 ρ′ = −3(ρ+ γ) f

′

f we get

ρ′ ≥ −3(ρ+Aρ)
f ′

f
= −cρf

′

f

where c = 3(A+ 1) > 2. So

(ρf c)′ = ρ′f c + cρf c−1f ′ ≥ 0

which means that ρf c is increasing, hence ρf c ≤ ρ(t0)f(t0)c on (t∗, t0).
By hypothesis t∗ is a physical singularity, so ρ→∞ as t→ t∗, hence

f → 0 (∗∗)

The inequality ρ− ερ ≥ −3γ gives

ρ′
3.6.7= −3(ρ+ γ)

f ′

f
≤ (−3ρ+ ρ− ερ)

f ′

f
= −(2 + ε)ρ

f ′

f

hence (ρf2+ε)′ ≤ 0 on (t∗, t0). Thus ρf2+ε ≥ ρ(t0)f(t0)2+ε on this interval.
As t→ t∗ we have by (∗∗) that f → 0 hence

ρf2 = ρf2+εf−ε ≥ f−ε · const. →∞

Then, by using
8πρ

3
=
(
f ′

f

)2

+
k

f2
(∆)

( see 3.6.6), we get f ′2 + k →∞, hence f ′ →∞
(2) + (3):

Case 1: f has a maximum at tm:

Since f ′(tm) = 0 we get 0
(∆)
< ρ(tm) = 3k

8πf2(tm) hence k=1 because by definition
of S, k = 0, 1 or −1 and f > 0.
Since f ′′ < 0, f ′ will be negative for t > tm. Analogously to the above we get
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ρ′ ≤ −cρ f
′

f , therefore (ρf c)′ ≤ 0.
So ρf c ≤ ρ(tm)f(tm)c and, by (1), f → 0

(ρf2+ε)′ ≥ 0

ρf2 ≥ f−ε · const→∞

so f ′2 + k →∞.
Since f ′ < 0 it follows that f ′ → −∞.

Case 2: f has no maximum: f ′ > 0 on I so the results from the preceding
case 1 are valid on I. The inequalities ρ > 0 and ρ + 3γ > 0 imply ρ + γ > 0:
indeed, if ρ+ 3γ > 0 it follows that 3ρ+ 3γ > 0, so ρ+ γ > 0
Hence ρ′ = −3(ρ + γ) f

′

f < 0 since ρ + γ as well as f ′

f are greater than zero.
So there are no physical singularities as t increases if we keep in mind that ρ
decreases hence cannot reach ∞.
Thus I = (t∗,∞).

Subcase A: f →∞ as t→∞:
Since (ρf2+ε)′ ≤ 0 which is case 1, ρf2+ε is bounded for t large, ρf2+ε ≤ c for
some c, hence ρf2 ≤ cf−ε → 0 as t→∞.
Thus f ′2 + k → 0, since f ′2 > 0 k has to be either 0 or −1.

Subcase B : f is bounded as t→∞:
We show that this is impossible:
Let f → b for t→∞. Since f ′′ > 0 we have f ′ → 0.
Hence

8πρ
3
→ k

f2

So 0 < ρf2 → 3k
8π . Thus k = 0 or k = 1.

As t→∞, ρf c is nondecreasing since f is nondecreasing, hence

ρf2 6→ 0

and so k 6= 0.

If, finally, k=1 then ρ→ 3
8π thus ρ ≥ δ for some δ > 0 (∗)

Since f ′ → 0 there is a sequence ti →∞ such that f ′′(ti)→ 0
indeed, take xi →∞, h > 0, then f ′′(ti) = f ′(xi+h)−f ′(xi)

h → 0, ti ∈ (xi, xi + h)
Because

−4π(ρ+ 3γ) = 3
f ′′(ti)
f(ti)

→ 0

we get (ρ+ γ)(ti)→ 0 which is a contradiction to

ρ+ 3γ ≥ ερ
(∗)
≥ εδ > 0

since − 1
3 < a ≤ γ

ρ ≤ A.



78 CHAPTER 3. ROBERTSON-WALKER SPACETIME

Hence the ultimate fate of the universe depends on the sign k of spatial
curvature which, by the equation

8πρ
3

=
(
f ′

f

)2

+
k

f2

depends on the present energy density ρ0 and on the Hubble number H0.

Corollary 3.8.4. Let ρc = 3H2
0

8π (the critical energy density).
If ρ0 ≤ ρc, then k = 0,−1 so the universe expands forever.
If ρ0 > ρc then k = 1, hence the universe eventually collapses.

Proof. By 3.6.6
8πρ

3
=
(
f ′

f

)2

+
k

f2
= H2 +

k

f2

so

ρ =
3H2

8π
+

3k
8πf2

If ρ0 ≤ ρc we obtain 8πρ
3 = H2

0 + k
f2 , therefore 0 > ρ0 − ρc = k

f2 .
If ρ0 > ρc then 8πρ

3 = H2
0 + k

f2 and 0 ≤ ρ0 − ρc = k
f2

So we conclude k = sgn(ρ0 − ρc)

Remark 3.8.5. If we apply the above statements on Friedmann cosmological
models we obtain for k = 0 that the initial expansion continues forever with
f → ∞ and f ′ → 0. For k = 1 the expansion reaches a maximum f = A at
t = πA

2 . Afterwards contraction starts and f decreases to a final collapse at
t∗ = πA. If k = −1 we have f ′ ≥ 1 hence the universe expands forever with
f →∞ and f ′ → 1.
Unless more mass is discovered in our universe ’open’ models are probably more
realistic than ’closed’ ones. The earliest era and the final one, if it exists, are
dominated by radiation thus Friedmann models give way to radiation models
for which mass is zero and γ = ρ

3 .



Chapter 4

Schwarzschild spacetime

In this chapter our task is to find a model for a universe containing a single
star which is assumed to be the only source of gravitation. We also assume
spherical symmetry and staticity. Below we will show that we can identify such
a spacetime again as a warped product and therefore apply the results from
chapter 1.
To derive the metric we first define the condition ’static’ and state some results
about static spacetimes needed in what follows. We start by introducing the
notion of Killing vector fields.

4.1 Killing vector fields and static spacetimes

Definition 4.1.1. A Killing vector field on a semi Riemannian manifold M is a
vector field X along which the Lie derivative of the metric tensor vanishes, i.e.

LXg = 0

Thus the metric tensor does not change under the flow of X, i.e. moving
along X does not change the metric. So one can view such a vector field as an
infinitesimal isometry. Let therefore ψ be the flow of X, i.e. ψ : M × R → M ,
ψ(p, t) = αp(t) where αp the maximal integral curve of X at p (see also [O’N.],
1.53.). Then the stages ψt are maps ψt : M → M , p 7→ ψ(t, p). Hence ψt lets
every point of M flow for time t. For further properties of flows see [O’N.], 1.54.

Proposition 4.1.2. A vector field X is Killing if and only if the stages ψt of all
its local flows are isometries.

Proof. (⇐): If each ψt is an isometry then ψ∗t (g) = g. Hence by using [O’N.],
9.21.,

LXg = lim
t→0

[ψ∗t (g)− g] = 0

(⇒): Let {ψt} be a local flow of X with X satisfying LXg = 0. Let v be a
tangent vector at a point p in the domain of the flow. ψs is defined for small s,
therefore we can choose a tangent vector w = Tpψs(v). Via using [O’N.], 9.21.,
we get

LXg(w,w) = lim
t→0

1
t
(g(Tpψt(w), Tpψt(w))− g(w,w)) = 0.

79
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Since ψsψt = ψs+t it follows that

lim
t→0

1
t
(g(Tpψs+t(v), Tpψs+t(v))− g(Tpψs(v), Tpψs(v)) = 0.

So the real valued function s 7→ g(Tpψs(v), Tpψs(v)) has identically vanishing
derivative hence is constant, so by using [O’N.], 1.54., i.e. ψ0(t) = id,

g(Tpψs(v), Tpψs(v)) = g(Tpψ0(v), Tpψ0(v)) = g(v, v) ∀ v, s

Definition 4.1.3.

• An observer field on an arbitrary spacetime M is a timelike future pointing
unit vector field U . Each integral curve of U is an observer parametrized
by proper time. Thus U describes a family of U -observers filling M .

• Let S̃ be a hypersurface to M normal to an observer field U at every
p ∈ S̃. So by [O’N.], 5.26., S̃ is spacelike since U is timelike. Then the
infinitesimal restspace U⊥p is just Tp(M) ∀ p ∈ S̃ hence S̃ is called restspace
of U .

• We call a spacetime M stationary if there is a timelike Killing vector field
on M .

• A spacetime M is static relative to an observer field U if U is irrotational
(i.e. curl U = 0) and if there is a smooth function g > 0 on M such that
gU is a Killing vector field.

• Let S be a 3-dimensional Riemannian manifold, I be an open interval and
g > 0 be a smooth function on S. Let t and σ be the projections of I × S
onto I resp. S. The standard static spacetime Ig×S is the manifold I×S
with line element −g(σ)2dt2 + ds2 with dt, ds being the lifts of the line
elements of I, S.

So heuristically a spacetime is static if time is symmetric with respect to
any arbitrary time-origin. This is a stronger assumption than stationarity (see
[D’I], 14.3).

Remark 4.1.4.

1. Since gU is a Killing vector field, any local flow {ψt} of gU consists of
isometries by 4.1.2 and each ψt preserves U -observers but generally dis-
torts the proper time parametrization.

2. At least locally the spatial universe always looks the same for an U -
observer. Standard static spacetime has a given restspace S.

3. In contrast to Robertson-Walker spacetimes space remains the same but
time is warped.

We will now show that Ig × S is static relative to ∂t

g :

Lemma 4.1.5. For M = Ig × S
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1. ∂t is a Killing vector field with global flow isometries given by ψt(s, p) =
(s+ t, p)

2. The observer field U = ∂t/g is synchronizable, i.e. there exist smooth
functions h > 0 and t on M such that U = −hgradt, hence U is irrota-
tional.

3. The restspaces t× S of U are isometric under the flow isometries ψt and
all are isometric under σ to S.

A proof can be found in [O’N.], 12.37. We identify every static spacetime as
locally standard.

Proposition 4.1.6. A spacetime M is static relative to an observer field U iff for
all p ∈ M there is a U -preserving isometry of a standard static spacetime onto
a neighborhood of p.

For a proof see [O’N.], 12.38.

4.2 Deriving the metric of Schwarzschild space-
time

In the following section we will denote derivation with respect to t by a dot,
derivation with respect to r by a prime. The calculations are mainly based on
[D’I], 14.5. A different approach following [O’N.], 13.1. will be given below.

4.2.1 Staticity

The spacetime is to be static relative to observers. We take R3 as the restspace
with line element q which is to be determined and I = R1. Since any static
spacetime is by 4.1.6 standard (at least locally) the line element is of the form

ds2 = A(x)dt2 + q x ∈ R3

where q is the line element lifted from R3.

4.2.2 Spherical symmetry

Intuitively spherical symmetry means that there exists a point 0, the origin, such
that the system is invariant under spatial rotation around 0. More precisely, for
each Φ ∈ O(3) the map (t, x) 7→ (t,Φ(x)) is an isometry.
Hence we can use spherical coordinates on R+ × S2 ∼= R3 \ {0}. It is shown in
[D’I], 14.4, that the line element of a spherical symmetric metric can be written
as

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2)

with λ = λ(t, r), ν = ν(t, r).
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4.2.3 Vacuum

Since the only source of gravitation is the star itself, which is not modeled, the
spacetime must be a vacuum solution, i.e. Tab = 0. Einstein’s equations for
vacuum are

G = 0

and so by [O’N.], 12.2., it follows that Ric = G − 1
2C(G) g = 0 hence the

spacetime is Ricci-flat. We use the field equations to determine λ and ν:
The covariant metric has the form

gab = diag(−eν , eλ, r2, r2 sin2 θ)

and therefore
gab = diag(−e−ν , e−λ, r−2, r−2 sin−2 θ)

(Note that in [D’I]14.4,5 a different sign-convention is used.)
If we calculate G b

a the only non-vanishing terms are

G 0
0 = −e−λ

(
λ′

r
+

1
r2

)
− 1
r2

G 1
0 = e−λr−1λ̇ = −e−λ−νG 0

1

G 1
1 = e−λ

(
ν′

r
− 1
r2

)
− 1
r2

G 2
2 = G 3

3 = −1
2
e−λ

(
ν′λ′

2
− λ′

r
+
ν′

r
+
ν′2

2
+ ν′′

)
− 1

2
e−ν

(
λ̈− λ̇2

2
+
λ̇ν̇

2

)

Using the contracted Bianchi-identity (for a proof see [Sch], 6.7)

∇bG b
a ≡ 0

shows that the equation for G 2
2 and G 3

3 automatically vanishes if the others
vanish. Hence it remains to solve three independent equations, namely

e−λ
(
λ′

r
− 1
r2

)
+

1
r2

= 0 (∗)

e−λ
(
ν′

r
+

1
r2

)
+

1
r2

= 0 (∗∗)

λ̇ = 0

Addition of the first two equations leads to λ′ + ν′ = 0 and by integration
λ+ν = h(t). Since the third equation shows that λ = λ(r), equation (∗) is after
multiplication with r2 the ordinary differential equation

e−λ − re−λλ′ = 1

or equivalently
(re−λ)′ = 1

hence by integration
re−λ = r − 2m
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where −2m is the integration constant. Therefore we obtain

eλ =
(

1− 2m
r

)−1

The last step consists of getting rid of h(r) which is done by transforming t to
a new time coordinate t′ given by

t′ =
∫ t

c

e1/2h(u)du

(c is an arbitrary constant). The only component of the metric that is changed
is

g′00 = −
(

1− 2m
r

)
since all other components are independent of t. Hence we have found Schwarz-
schild’s line element

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

4.2.4 Minkowski at infinity

The influence of the source of gravitation becomes smaller the further we are
away from it. We can see that the above form of the metric approaches Minkowski
metric of empty spacetime, i.e. ds2 = −dt2 + dr2 + r2dσ2 at infinity. But also
the converse is true, if we assume the metric to be Ricci-flat and Minkowski at
infinity then the metric has to be in the above form. The following lemma is
(in contrast to the previous calculations which can be found in [D’I]) based on
[O’N.], 13.1.

Lemma 4.2.1. P = (R1×R+)×rS with metric E(r)dt2+G(r)dr2+r2dσ2 is Ricci
flat and Minkowski at infinity iff E = −h and G = h−1 where h(r) = 1 − 2m

r
with m an arbitrary constant.

Before we start proving the lemma we have to deal with semi Riemannian
surfaces of dimension 2 with line element ds2 = E(r)dt2 +G(r)dr2.

Lemma 4.2.2. For a semi-Riemannian surface M , dim M = 2, with constant
sectional curvature K
(1) RXY Z = K(〈Z,X〉Y − 〈Z, Y 〉X)
(2) Ric = Kg and S = 2K.

Remark 4.2.3. The first result is also given in [O’N.], 3.43., which states that
for a semi Riemannian manifold with constant curvature C we obtain RXY Z =
C(〈Z,X〉Y − 〈Z, Y 〉X).

Proof.
(1) It suffices to show the statement on the basis vector fields ∂u, ∂v. Addition-
ally we can without loss of generality assume 〈∂u, ∂v〉 = 0 hence {∂u, ∂v} is an
orthonormal base for TpM . We consider the different possible cases
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• X = Y = Z = ∂u or ∂v: The right hand side vanishes as well as the left
hand side.

• X = Y = ∂u, Z = ∂v resp. X = Y = ∂v, Z = ∂u: Both sides of the
equation again vanish.

• X = ∂u, Y = ∂v, Z = ∂u: Equality follows because
〈left hand side, ∂u〉= 0 = 〈right hand side, ∂u〉 and

〈left hand side, ∂v〉 = K〈∂u, ∂u〉〈∂v, ∂v〉 = K(〈∂u, ∂u〉〈∂v, ∂v〉 − 0)
= 〈right hand side, ∂u〉

• X = ∂v, Y = ∂u, Z = ∂v: analogously to the above

• X = ∂v, Y = ∂v, Z = ∂u:

〈left hand side, ∂u〉 = 〈R∂v∂u
∂u, ∂u〉 = 0

〈right hand side, ∂u〉 = 0

〈left hand side,∂v〉=〈R∂v∂u
∂u, ∂v〉=−R∂u∂v

∂u, ∂v〉=−K〈∂u, ∂u〉〈∂v, ∂v〉

〈right hand side, ∂v〉 =K(0− 〈∂u, ∂u〉〈∂v, ∂v〉)

(2) Choosing a local frame {E1, E2} for M we have

Ric(C, Y ) =
2∑
i=1

εi〈RXEiY,Ei〉

(1)
= K

2∑
i=1

εi〈〈Y,X〉Ei − 〈Y,Ei〉X,Ei〉

= K

2∑
i=1

εi〈X,Y 〉〈Ei, Ei〉 − 〈Y,Ei〉〈X,Ei〉

= K

(
2∑
i=1

ε2i 〈X,Y 〉 − 〈X,Y 〉

)
= Kg(X,Y )

For the scalar curvature we calculate

S =
∑
i 6=j

K(Ei, Ej)︸ ︷︷ ︸
=K

= 2K

Lemma 4.2.4. In a semi Riemannian surface with coordinate system {t, r} and
line element ds2 = E(r)dt2 +G(r)dr2 we have
(1) Hr(∂t, ∂t) = Er

2G , Hr(∂t, ∂r) = 0, Hr(∂r, ∂r) = −Gr

2G

(2) gradr = ∂r

G

(3) ∆r = G
2

(
Er

E −
Gr

G

)
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Proof.
(1) In general for f ∈ C∞(M), Hf = ∇(∇f) hence by [O’N.], 3.49.,

Hf (X,Y ) = XY f − (∇XY )f = 〈∇X(grad(f)), Y 〉

Here we have metric coefficients gtt = E(r), grr = G(r), grt = gtr = 0. Hence
for X = Y = ∂t

∇∂t
∂t =

∑
k

Γktt∂k = Γttt∂t + Γrtt∂r

where

Γttt =
1
2

∑
m

gtm{∂tgtm + ∂tgtm − ∂mgtt}

=
1
2
gtt(2∂tgtt − ∂tgtt)

=
1
2
g11∂tgtt = 0

Γrtt = −1
2
grr∂rgtt

= −1
2

1
G(r)

Er

hence Hr(∂t, ∂t) = Er

2G(r)∂rr = Er

2G(r) .
Hr(∂t, ∂r) = 0 since ∇∂t∂r = Γttr∂t + Γrtr∂r and

Γttr =
1
2

(∂rgtt)gtt =
Er
2E

Γrtr =
1
2

(∂tgrr)grr = 0

hence Hr(∂t, ∂r) = ∂t∂rr − Γttr∂tr = 0.

The last statement follows by an analogous calculation.
(2) gradr =

∑
i,j g

ij∂ir∂j =
∑
i g
ii∂ir∂i =grr∂r = 1

G∂r.
(3) ∆r =

∑
i,j g

ijHr(∂i, ∂j) =gttHr(∂t, ∂t) + grrHr(∂r, ∂r) = 1
2G

(
Er

E −
Gr

G

)
.

Now we will prove 4.2.1

Proof. (⇐) is clear.
(⇒) From warped product generalities, cf. 2.2.23 we obtain
MRic(X̃, Ỹ ) =P R̃ic(X,Y )− 2

rH
r(X̃, Ỹ ) for X̃,Ỹ ∈ L(P ) and

MRic(Ṽ , W̃ ) =S2
R̃ic(V,W )− 〈Ṽ , W̃ 〉Mr∗ for Ṽ , W̃ ∈ L(S2), where

r∗ =
∆r
r

+ (3− 1)
〈gradr, gradr〉M

r2

Using 4.2.4 we obtain

r∗ =
1

2G

(
E′

E −G
′G
)

r
+
〈∂r

G ,
∂r

G 〉M
r2

=
1

2rG

(
E′

E
− G′

G

)
+

1
r2G

Since we assume Ricci-flatness these equations become
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1. PRic(X,Y ) = 2Hr(X̃, Ỹ )/r for X̃,Ỹ ∈ L(P )

2. S2
Ric(V,W ) = 〈Ṽ , W̃ 〉Mr∗ for Ṽ , W̃ ∈ L(S2)

Since leaves are totally geodesic and project isometrically it suffices to consider
(1) on leaves only by Gauss’ equation. Since dim P = 2 it follows from 4.2.2
that PRic(X,Y ) =PK〈X,Y 〉P . Choosing X,Y from ∂t, ∂r by 4.2.4, equation
(1) is equivalent to

PKE =
E′

rG
PKG = −G

′

rG
Indeed, on the one hand,

PRic(∂t, ∂t) =PK〈∂t, ∂t〉P =PKE

On the other hand, by (1)

PRic(∂t, ∂t) = 2Hr(∂t, ∂t)/r =
2E′/2G

r
=
E′

rG

Analogously we get the second statement if we insert ∂r:
PRic(∂r, ∂r) =PK〈∂r, ∂r〉P =PKG

resp.
PRic(∂r, ∂r) =

2Hr(∂r, ∂r)
r

=
−2G′/2G

r
= −G

′

rG
Therefore

−G
′

G
=PKrG =

E′

E
(∗)

so EG′ + E′G = (EG)′ = 0 hence EG is constant. Using the limit conditions
E → 1, G→ −1 we obtain EG = −1.
Next we take equation (2) into account: We observe that S2

Ric = g. Indeed,
by using [O’N.], remark after 3.52., Ric(u, u) for u a unit vector at some point
p, is given by Ric(u, u) = 〈u, u〉

∑
mK(u, em). K is the sectional curvature of

the plane spanned by u and em, {e1, . . . , en} a frame at p with e1 = u. Thus
Ric(u, u) is just the sum of the sectional curvatures of n − 1 non-degenerate
orthogonal planes through u. For any aritrary vectors v, w we can reconstruct
Ric(v, w) by using polarization. In case of the unit-sphere we know that the
sectional curvature is 1. So the result follows.
Hence for (p, q) ∈ P × S2, V,W ∈ X(S2) and denoting by Ṽ , W̃ the lifts to M ,
i.e. T(p,q)pr1(Ṽ |(p,q)) = 0 = T(p,q)pr1(W̃ |(p,q)) we calculate

S2
Ric(V,W ) = 〈Vq,Wq〉S2

= 〈T(p,q)pr2(Ṽ |(p,q)), T(p,q)pr2(W̃ |(p,q))〉M

=
1
r2
〈Ṽ |(p,q), W̃ |(p,q)〉M − 〈T(p,q)pr1(Ṽ |(p,q)), T(p,q)pr1(W̃ |(p,q))〉P

=
1
r2
〈Ṽ |(p,q), W̃ |(p,q)〉M

So S2
Ric(V,W ) = 1

r2 〈Ṽ , W̃ 〉M = 〈V,W 〉r∗ iff r∗ = 1
r2 with r∗ as calculated

above. By (∗) we can replace E′

E by −G
′

G and this leads to

− G′

rG2
+

1
r2G

=
1
r2
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which is equivalent to

−rG
′ +G

G2
= 1

hence
(
r
G

)′ = 1, and thus r
G = r + const where we choose the constant to be

−2m. This leads us to the anticipated form for G and E, namely

G =
r

r − 2m
=
(

1− 2m
r

)−1

E = −(G−1) = −
(

1− 2m
r

)

Remark 4.2.5.

1. The line element exhibits the spacetime as the warped product P ×r S2

where P = R× R+ is the half plane r > 0 in the tr-plane furnished with
the line element E(r)dt2 +G(r)dr2

2. In each restspace t = const (i.e. dt = 0) the surface r = const (dr = 0)
has the line element r2dσ2 and is thus the standard 2-sphere S2(r) with
Gaussian curvature 1/r2 and area 4πr2

3. We identify m with the mass hence require m > 0.

4. h(r) = 1− 2m
r rises from −∞ at r = 0 toward the limit 1 as r → ∞ and

passes through 0 at r = 2m. Thus the line element −hdt2 + h−1dr2 +
r2dσ2 has a singularity at r = 2m which will turn out to be a coordinate
singularity which can be omitted by a different choice of coordinates. But
we have actually found two spacetimes where initially only the exterior
half where r > 2m seemed to be physically relevant. The neglected half
provides the simplest model of a black hole.

Definition 4.2.6. For m > 0 let PI and PII be the regions r > 2m resp. 0 <
r < 2m in the tr-plane R×R+ furnished with the line element −hdt2 + h−1dr2

with h(r) =
(
1− 2m

r

)
.

For S2 being the unit sphere the warped product N = PI ×r S2 is called
Schwarzschild exterior spacetime and B = PII ×r S2 the Schwarzschild black
hole, both of mass m.
The projection t : R × R3 → R is called Schwarzschild time, the projection
r : R× R+ × S2 → R+ is the so-called Schwarzschild radius function

Remark 4.2.7. As already seen in 4.2.1, if the Schwarzschild radius r is suffi-
ciently large then the metric on N is nearly a Minkowski metric. We interpret
t as time, r as the radial distance. As r passes below 2m, h becomes negative
hence ∂t and ∂r change their causal characters, ∂t becomes spacelike, and ∂r
timelike.
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4.3 Geometric properties

As remarked above, Schwarzschild spacetime can be interpreted as a warped
product with warping function r hence we can apply the results from chapter 1.

As a direct consequence of 2.2.14 we obtain the following result.

Lemma 4.3.1.

1. For each (t, r) ∈ PI the fiber pr1
−1(t, r) is the sphere S2(r) in the restspace

of Schwarzschild time t. The sphere is totally umbillic in N and pr2 maps
it homothetically onto S2.

2. The leaf pr2
−1(q) = PI ×{q} is totally geodesic in N and isometric under

the projection pr1 to the half plane PI .

Since the metric tensors of N and B are formally the same, geometric prop-
erties can be treated simultaneously.
We start by computing the Levi-Civita connection ∇P on P = PI ∪ PII with
line element ds2 = −h(r)dt2 + h(r)−1dr2.

Lemma 4.3.2. On P = PI ∪ PII with line element ds2 = −h(r)dt2 + h(r)−1dr2

we have
(1) ∇P∂t

∂t = mh
r2 ∂r, ∇P∂t

∂r =∇P∂r
∂t = m

r2h∂t, ∇
P
∂r
∂r = −m

r2 ∂r.
(2) gradt = −∂t

h , gradr = h∂r.
(3) Hr = m

r2 gP where gP is the metric on P .
(4) K = 2m

r3

For the proof we need the following proposition

Proposition 4.3.3. Let {u, v} be an orthogonal coordinate system in a semi
Riemannian surface (i.e. F = 〈∂u, ∂v〉 = 0). Then, for E = 〈∂u, ∂u〉 and
G = 〈∂v, ∂v〉 we obtain
(1) ∇∂u

∂u = Eu

2E ∂u −
Ev

2G∂v
(2) ∇∂v∂v = −Gu

2E ∂u + Gv

2G∂v
(3) ∇∂u∂v =∇∂v∂u = Eu

2E ∂u + Gv

2G∂v

If we set e = |E|1/2, g = |G|1/2, ε1 = ±1 the sign of E and ε2 = ±1 the sign
of G then

K = − 1
eg

(
ε1

(gu
e

)
u

+ ε2

(
ev
g

)
v

)
Proof. [O’N.], 3.44.

Now we are well-prepared to prove 4.3.5.

Proof. of 4.3.5: For the line element ds2 = −h(r)dt2 + h(r)−1dr2 we calculate

E = g11 = −h(r) F = g12 = g21 = 0 G = g22 = h(r)−1

Using 4.3.3 with u = t, v = r we obtain

Et = 0 Er = −h′(r) = −2m
r2
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Gt = 0 Gr = −2m
r2

where a ′ denotes the derivative with respect to r. Hence

(1)

∇P∂t
∂t =

Et
2E

∂t −
Er
2G

∂r

=
mh

r2
∂r

∇P∂t
∂r = ∇P∂r

∂t =
Er
2E

∂t +
Gt
2G

∂r

=
m

r2h
∂t + 0

∇P∂r
∂r = −Gt

2E
∂t +

Gr
2G

∂r

= −m
r2
∂r

(2)

gradt =
∑
i,j

gij
∂t

∂xi
∂j = g11 ∂t

∂x1
∂1 + g22 ∂t

∂x2
∂2

= −h(r)−1 ∂t

∂t
∂t + h(r)

∂t

∂r
∂r

= −h(r)−1∂t

An analogous calculation for gradr leads to gradr = h∂r.

(3) Hr(X,Y ) = 〈∇X(gradf), Y 〉 = 〈∇X(h∂r), Y 〉. Decomposing X and Y as
X = a∂t + b∂r, Y = a′∂t + b′∂r and inserting it in the expression above leads to
the result Hr(X,Y ) = m

r2 〈X,Y 〉.
(4) Again using 4.3.3 with e = h(r)1/2, g = h(r)−1/2, ε1 = −1, ε2 = 1

K = −1
2

(h′(r))′ =
2m
r3

Notation 4.3.4. By ∂̃t, ∂̃r on M = N∪B we denote the lifts of the corresponding
vector fields on PI ∪ PII

We will now calculate the connection ∇M on M = N ∪ B by using warped
product generalities, cf. 2.2.11.

Proposition 4.3.5. On M = N ∪B we have for Ṽ , W̃ ∈ L(S2), ∂̃t, ∂̃r ∈ L(P )

(1) ∇M
∂̃t
∂̃t = m̃h

r2 ∂r

(2) ∇M
∂̃t
Ṽ =∇M

Ṽ
∂̃t = 0, ∇M

∂̃r
Ṽ =∇M

Ṽ
∂̃r = 1

r Ṽ

(3) nor (∇M
Ṽ
W̃ ) =II(Ṽ , W̃ ) = −hr 〈Ṽ , W̃ 〉M∂r

(4) tan (∇M
Ṽ
W̃ ) = ∇̃S2

V W
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Proof.
(1) In 2.2.11(1) we have already shown that ∇M

∂̃t
∂̃t ∈ L(B) is the lift of ∇P∂t

∂t

to M which is given by 4.3.2(1).
(2) Again applying the corresponding result, 2.2.11(2), we obtain

∇M
∂̃t
Ṽ = ∇M

Ṽ
∂̃t =

∂tr

r
Ṽ = 0

since ∂tr = 0, resp.

∇M
∂̃r
Ṽ = ∇M

Ṽ
∂̃r =

∂rr

r
Ṽ =

1
r
Ṽ

(3) By 2.2.11(3), nor (∇M
Ṽ
W̃ ) =II(Ṽ , W̃ ) =− 〈Ṽ ,W̃ 〉Mr gradr = − 〈Ṽ ,W̃ 〉Mr h∂r

where we used 4.3.3(3), i.e. gradr = h∂r.
(4) is just a direct application of 2.2.11(4).

Our next task is to calculate the Riemannian curvature

Proposition 4.3.6. Let Ṽ , W̃ be vertical vector fields on M = N ∪B, i.e. tangent
to all spheres S2(r). Then we obtain
(1) MR∂̃t∂̃r

∂̃t = − 2mh
r3 ∂̃r, MR∂̃r ∂̃t

∂̃t = 2m
r3h ∂̃t

(2) MR∂̃tṼ
∂̃t = mh

r3 Ṽ , MR∂̃rṼ
∂̃r = − m

r3h Ṽ , MR∂̃tṼ
∂̃r =MR∂̃rṼ

∂̃t = 0
(3) MR∂̃r ∂̃t

Ṽ =MRṼ W̃ ∂̃t=
M RṼ W̃ ∂̃r = 0

(4) MRṼ W̃ X̃=M RX̃W̃ Ṽ =m
r3 〈Ṽ , W̃ 〉M X̃ where X = ∂t or ∂r.

(5) For vertical U we obtain MRṼ W̃ Ũ = 2m
r3 (〈Ũ , Ṽ 〉MW̃ − 〈Ũ , W̃ 〉M )

Proof.
(1) Applying the result for warped products, 2.2.21 we obtain

MR∂̃t∂̃r
∂̃t = ˜PR∂t∂r

∂t = −2mh
r3

∂̃r

The second equation follows analogously.
(2) By 2.2.21(2) MRṼ X̃ Ỹ = Hr(X̃,Ỹ )

r Ṽ , and using 4.3.5 (3) we compute

MR∂̃tV
∂̃t = −m

r3
〈∂̃t, ∂̃t〉M Ṽ =

mh

r3
Ṽ

MR∂̃rV
∂̃r = −m

r3
〈∂̃r, ∂̃r〉M Ṽ = − m

r3h
Ṽ

MR∂̃rV
∂̃t = −m

r3
〈∂̃r, ∂̃t〉M Ṽ = 0

where we used the fact that 〈∂̃t, ∂̃t〉M = −h, 〈∂̃r, ∂̃r〉M = h−1 and 〈∂̃r, ∂̃t〉M = 0.
(3) Again using 2.2.21(3) leads to the result.
(4) Since by 2.2.21(4) MRX̃Ṽ W̃ =

(
〈Ṽ ,W̃ 〉M

r

)
∇M
X̃

(grad(r)) and by 4.3.5 (2) we
obtain

∇M∂t
(h∂r) =

∂h

∂̃t
∂̃r + h∇M

∂̃t
∂̃r = 0 +

m

r2h
∂̃th

and
∇M
∂̃r

(h∂̃r) =
∂h

∂r
∂̃r + h∇M

∂̃r
∂̃r =

2m
r2h

∂̃r −
m

r2
∂̃r =

m

r2
∂̃r
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Therefore
MRX̃Ṽ =

m

r3
〈Ṽ , W̃ 〉M X̃

for X being either ∂t or ∂r.

(5) By 2.2.21 MRṼ W̃ Ũ = ˜S2RVWU−
(
〈grad(r),grad(r)〉

r2

)
(〈Ṽ , Ũ〉MW̃−〈W̃ , Ũ〉M Ṽ ).

S2
R gives the curvature tensor of each fiber pr1

−1 = S2(r) Since S2(r) has
constant curvature k = 1

r2 we can compute by using [O’N.], 3.43.,

S2
R(V,W )U =

1
r2

(〈U, V 〉W − 〈U,W 〉V )

Using again 4.3.5(2), 〈grad(r), grad(r)〉 = h2〈∂r, ∂r〉 = h = r−2m
r therefore we

get

MRṼ W̃ Ũ =
1
r2

(〈Ũ , Ṽ 〉MW̃ − 〈Ũ , W̃ 〉M Ṽ )− r − 2m
r3

(〈Ũ , Ṽ 〉MW̃ − 〈Ũ , W̃ 〉M Ṽ )

which is the result.

4.4 Geodesics

In order to study geodesics in Schwarzschild spacetime we first introduce Schwarz-
schild spherical coordinates. We will use the same notation for vector fields and
their lifts.

Definition 4.4.1. Let θ, φ be spherical coordinates on the unit sphere S2 and t, r
be the Schwarzschild time-resp. radius function on P . The product coordinate
system (t, r, θ, φ) in M = N ∪ B is called Schwarzschild spherical coordinate
system.
A curve in M is initially equatorial relative to spherical coordinates on S2

provided it has θ(0) = π
2 , dθ

ds (0) = 0.

Remark 4.4.2.

• The domain of these coordinates omits σ−1(C) where C is a semicircle in
S2. ∂t, ∂r and ∂φ are well defined and smooth everywhere, ∂θ is singular
for θ = 0 and θ = π.
∂t and ∂r are tangent to radial planes, ∂φ and ∂θ are tangent to spheres.

• By rotating the coordinates suitably any curve may become initially equa-
torial, because of spherical symmetry the line element remains unchanged.

In what follows let

x0 = t x1 = r x2 = θ x3 = φ

Hence we can parametrize particles as γ(s) = (t(s), r(s), θ(s), φ(s)).

4.4.1 Geodesic equations

We can of course determine the geodesic equations by using the results for
warped products, cf. 2.2.16. But it turns out that a large amount of calculations
is needed hence we will now choose a different way to obtain the result.
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Lemma 4.4.3. For an orthogonal coordinate system the geodesic differential
equations become

d

ds

(
gii

(
dxi

ds

))
=

1
2

3∑
j=0

∂gjj
∂xi

(
dxj

ds

)2

(∗)

Proof. By [O’N.], 3.21., the geodesic equations are

d2(xk ◦ γ)
dt2

+
∑
i,j

Γkij(γ)
d(xi ◦ γ)

dt

d(xj ◦ γ)
dt

= 0 (∗∗)

where the Γkij are the Christoffel symbols. They can be computed by [O’N.],
3.13., as

Γkij =
1
2
gkm

(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)
Since we deal with an orthogonal coordinate system, gij = 0 for i 6= j. Keeping
this fact in mind we see that the Christoffel symbols vanish for i 6= j 6= k.
For i = k 6= j we get Γkkj = 1

2g
kk ∂gkk

∂xj and analogously for i 6= j = k, Γkik =
1
2g
kk ∂gkk

∂xi , for i = j 6= k we obtain Γkii = − 1
2g
kk ∂gii

∂xk and finally for i = j = k,
Γkkk = 1

2g
kk ∂gkk

∂xk . Now summing up we can see that (∗∗) is equivalent to

−d
2(xk◦γ)
dt2

=
∑
i,j

Γkij(γ)
d(xi◦γ)
dt

d(xj◦γ)
dt

=
∑
i 6=j=k

1
2
gkk

∂gkk
∂xi

d(xi◦γ)
dt

d(xk◦γ)
dt

+
∑
k=i 6=j

1
2
gkk

∂gkk
∂xj

d(xj◦γ)
dt

d(xk◦γ)
dt

−
∑
i=j 6=k

1
2
gkk

∂gii
∂xk

(
d(xi ◦ γ)

dt

)2

+
1
2
gkk

∂gkk
∂xk

(
d(xk ◦ γ)

dt

)2

=
∑
i 6=k

gkk
∂gkk
∂xi

d(xi◦γ)
dt

d(xk◦γ)
dt

−
∑
i

1
2
gkk

∂gii
∂xk

(
d(xi ◦ γ)

dt

)2

+gkk
∂gkk
∂xk

(
d(xk ◦ γ)

dt

)2

=
∑
i

gkk
∂gkk
∂xi

d(xi◦γ)
dt

d(xk◦γ)
dt

− 1
2

∑
i

gkk
∂gii
∂xk

(
d(xi ◦ γ)

dt

)2

Since we want to show the equivalence of (∗) and (∗∗), we start with calculating

d

ds

(
(gkk ◦ γ)

d(xk ◦ γ)
ds

)
=

d

ds
(gkk ◦ γ)

d(xk ◦ γ)
ds

+ (gkk ◦ γ)
d2(xk ◦ γ)

ds2

by using the chain rule. So (∗) is equivalent to

−d
2(xk◦γ)
dt2

= (gkk◦γ)

(
d

ds
(gkk◦γ)

d(xk◦γ)
ds

− 1
2

∑
i

∂gii
∂xk

(
d(xi◦γ)
dt

)2
)

= (gkk◦γ)

(∑
i

gkk
∂gkk
∂xi

d(xi◦γ)
dt

d(xk◦γ)
dt

− 1
2

∑
i

∂gii
∂xk

(
d(xi◦γ)
dt

)2
)

which is the same result as we obtained from (∗∗).
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We now deal with such an orthogonal coordinate system, hence the geodesic
differential equations reduce to the above form with

g00 = −h g11 = h−1 g22 = r2 g33 = r2 sin2 θ

Proposition 4.4.4. For a geodesic γ in M = N ∪B we have

(1) h dtds = E where E is a constant.
(2) r2 sin2 θ dφds = L, with L being a constant.

(3) d
ds

(
r2 dθ

ds

)
= r2 sin θ cos θ

(
dφ
ds

)2

.

Proof.
(1) This is just the geodesic equation 4.4.3 for i = 0.
(2) Set i = 3 in the geodesic equation 4.4.3.
(3) For i = 2 we obtain

d

ds

(
r2 dθ

ds

)
=

1
2
∂g33

∂θ

(
dφ

ds

)2

= r2 sin θ cos θ
(
dφ

ds

)2

Corollary 4.4.5. Let γ be a freely falling material particle in M with proper time
τ (i.e. |α′(τ)| = 1 ∀τ) which is initially equatorial to Schwarzschild spherical
coordinates. Then we get from 4.4.4

(G1) h dtdτ = E

(G2) r2 dφ
dτ = L

(G3) θ = π
2

Furthermore the energy equation holds

E2 =
(
dr

dτ

)2

+
(

1 +
L2

r2

)
h(r)

Remark 4.4.6. (G1)-(G3) also hold for lightlike particles. In this case the energy
equation is of the form

E2 =
(
dr

dτ

)2

+
(
L2

r2

)
h(r)

Proof. (G1)-(G3) follow from the corresponding formulas in 4.4.4 where now we
use instead of the parameter s proper time τ . Indeed,

(G1) is 4.4.4 (1) unchanged
(G2) follows from 4.4.4 (2) for θ = π

2 .
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As far as (G3) is concerned we observe that θ = π
2 is the unique solution of 4.4.4

(3) satisfying the equatorial initial conditions

θ(0) =
π

2
dθ

ds
(0) = 0

To obtain the energy condition for material particles we calculate

γ′ =
∑ dxi

dτ
∂i =

dt

dτ
∂t +

dr

dτ
∂r +

dφ

dτ
∂φ +

dθ

dτ
∂θ

=
E

h
∂t +

dr

dτ
∂r +

L

r2
∂φ

Hence

−1 = 〈γ′, γ′〉

=
E2

h2
〈∂t, ∂t〉+

(
dr

dτ

)2

〈∂r, ∂r〉+
L2

r4
〈∂φ, ∂φ〉

=
E2

h2
(−h) +

(
dr

dτ

)2

h−1 +
L2

r4
r2

which is equivalent to

E2 = h+
(
dr

dτ

)2

+
L2

r2
h =

(
dr

dτ

)2

+
(

1 +
L2

r2

)
h(r)

The energy equation for lightlike particles follows by setting 〈γ′, γ′〉 = 0

4.4.2 Interpretation of the constants m, E and L on N

The Schwarzschild exterior N is time oriented by requiring that the timelike
Killing vector field ∂t is future pointing. Additionally N is static relative to the
observer field U = ∂t

h1/2 . The integral curves α of U are called Schwarzschild
observers. For t being the average time we get by 4.1.5 (2) that

U = −h1/2grad t

If τ is the proper time of α we can calculate

d(t ◦ α)
dτ

= 〈α′, grad t〉

= 〈U, grad t〉
= 〈U,−h−1/2U〉
= −h−1/2〈U,U〉 = h−1/2

This dilation is constant on α. Since, on N , 0 < h < 1 we conclude that

d(t ◦ α)
dτ

> 1

and therefore Schwarzschild time is always faster than the proper time of the
observers.
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Lemma 4.4.7. If α is a Schwarzschild observer then

α′′ = ∇MU U =
m

r2
∂r 6= 0

hence α is not freely falling, i.e. it is not a geodesic.

Proof. Since U = −h1/2grad t and ∂h
∂t = 0 it follows by using 4.3.5 that

∇MU U = h−1/2(h−1/2∇M∂t
∂t) = h−1mh

r2
∂r =

m

r2
∂r

So each observer must accelerate to remain at rest therefore the interpreta-
tion of m as the mass of the star is justified.

Equation (G2), r2 dφ
dτ = L, is formally identical to Kepler’s 2nd law hence we

call L the angular momentum per unit mass of a particle.

In special relativity there is a relation between the energy, the momentum and
the speed of a material particle relative to a freely falling observer. Details can
be found in [O’N.], 6.27., 6.28. For a particle γ with mass m and energy mo-
mentum mγ′ the Schwarzschild observers α measure its energy as (see [O’N.],
6.28. (2))

−〈mγ′, U〉 = −〈mγ′, h−1/2∂t〉

= −mh−1/2〈 dt
dτ
∂t +

dr

dτ
∂r +

dφ

dτ
∂φ, ∂t〉

= −mh−1/2 dt

dτ
〈∂t, ∂t〉

= mh1/2 dt

dτ

By (G1), h dtdτ = E. Since h→ 1 for r →∞ E is called the energy per unit mass
at infinity of the particle. It is positive because γ′ is future pointing (〈γ′, U〉 < 0)
and therefore dt

dτ is positive.

For lightlike particles we also interpret E and L as the energy at infinity resp.
as the angular moment.

4.5 Orbits in N

4.5.1 Basic definitions

We consider free-falling (i.e. geodesic) material particles as well as lightlike par-
ticles.

Definition 4.5.1. The standard Schwarzschild restspace S is the region r > 2m
in R+ × S2 with the line element

h−1dr2 + r2dσ2
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All restspaces of U are naturally isometric to S. We can decompose a particle
γ in N as

γ(t) = (t, ~γ(t))

where ~γ is the projection of γ onto a curve in S.
We suppose that ~γ lies in the orbital plane of γ i.e. in the plane given in equa-
torial coordinates by θ = π

2 . Therefore we can write

~γ(τ) = (r(τ), φ(τ))

Definition 4.5.2. The orbit of γ is the route followed by ~γ in the orbital plane.
The particle is called ingoing if dr

dτ < 0 and outgoing if dr
dτ > 0.

Let now γ be a freely falling material particle with L 6= 0. Equation (G2) im-
plies that dφ

dτ is non vanishing hence the orbit can be expressed via the following
orbit equation.

Proposition 4.5.3. A freely falling material particle γ in N with L 6= 0 satisfies
the orbit equation

d2u

dφ2
+ u =

m

L2
+ 3mu2

where u = 1
r and r = r ◦ γ.

Proof. From (G2) we get r2 dφ
dτ = L so

dr

dτ
=
dr

dφ

dφ

dτ
=
L

r2

dr

dφ
.

Hence the energy equation has the form

E2 =
(
dr

dτ

)2

+
(
L2

r2

)
h(r) =

L2

r4

(
dr

dφ

)2

+
(

1 +
L2

r2

)(
1− 2m

r

)
.

By setting u := 1
r we obtain

E2 = L2

(
du

dφ

)2

+
(
1 + L2u2

)
(1− 2mu)

Now a derivation with respect to φ leads to

0 = 2L2 d
2u

dφ2
+ 2L2u− 2m− 6mL2u2

Dividing by 2L2 leads to the anticipated result.

Remark 4.5.4.

• The relativistic orbit equation differs from the Newtonian analogue by the
correction term 3mu2, see the next section below.

• We get an analogous equation for lightlike particles:

d2u

dφ2
+ u = 3mu2
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• In contrast to a material particle, the orbit of a lightlike particle γ does
not depend on E and L separately but on the impact parameter b = |L|

E .
We therefore can write the energy equation as(

1
L

dr

dτ

)2

+
h

r2
=

1
b2
.

Hence by using (G2), i.e. dφ
dτ = L

r2 we obtain for a lightlike particle with
b 6= 0

1
b2

=
(

1
L

dr

dτ

)2

+
h

r2
=
( 1
L

dr

dφ

dφ

dτ

)2 +
h

r2
=
(

1
r2

dr

dφ

)2

+
h

r2

where h
r2 is interpreted as the effective potential.

4.5.2 Classical results

Before we study orbits in Schwarzschild spacetime we recall some well known
results from classical Newtonian physics. This section is mainly based on [Fl],
[O’N.], appendix C and [HF],4.6,7.
In what follows a dot denotes derivation with respect to t, a prime derivation
with respect to r.

Energy

Let α be a particle whose motion from r to r + dr is determined by an outer
force F . We denote by dW = Fdr the work dW of the particle which is caused
by F . Along a path C from r1 to r2 the work is given by

W =
∫
C

dW =
∫
Fdr.

In general W depends on r1, r2 and on C. The work per time is called power,

P =
dW

dt
= F

dr

dt
= F ṙ

Kinetic and potential energy

Multiplication of Newton’s second law, F = mr̈, with ṙ leads to

mr̈ṙ = F ṙ

therefore
d

dt

mṙ2

2
= F ṙ = P (∗)

Adding or subtracting energy changes the particle’s velocity hence we define

Ekin =
m

2
ṙ2,

as the energy caused by motion.
If we separate the force F in a conservative and a dissipative part, F = Fcons +
Fdiss then Fcons contains all parts which can be written as

Fconsṙ = −dU(r)
dt



98 CHAPTER 4. SCHWARZSCHILD SPACETIME

where U(r) is the potential. Hence (∗) becomes

d

dt

mṙ2

2
= Fconsṙ + Fdissṙ

⇔ d

dt

(
mṙ2

2
+ U(r)

)
= Fdissṙ

If the force is conservative then mṙ2

2 + U(r) = E is constant.

Potential

If we differentiate U(r) = U(x, y, z) with respect to time then we obtain

Fconsṙ = −∂U
∂x

dx

dt
− ∂U

∂y

dy

dt
− ∂U

∂z

dz

dt
= −ṙgradU.

Therefore Fcons = −gradU(r) + ṙ × B(r, t) where B(r, t) is an arbitrary vector
field. We will only investigate the case F = −gradU(r). One can show ([Fl],
p.21) that F (r) can be written in such a form iff rot F (r) = 0.

Energy equation

On R3\{0} the gravitational force field F = −m
r2 ∂r is conservative with potential

V (r) = −mr . We obtain the energy equation

2E = ṙ2 +
L2

r2
− 2m

r

Indeed, if we use polar coordinates we can write α = reiφ and so the kinetic
energy can be calculated as α̇·α̇

2 = ṙ2+r2φ̇2

2 = 1
2

(
ṙ2 + L2

r2

)
since rφ̇2 = L. The

product in this and the following formulas is the usual scalar product on R3.
By assumption the potential is V (α) = −mr , hence

2E = α̇ · α̇− 2
m

r
= ṙ2 +

L2

r2
− 2m

r

We interpret this equation as follows: r = r(t) is the position of a unit mass
particle moving along R+ with kinetic energy 1

2 ṙ
2. Introducing the potential

V (r) = L2

r2 − 2m
r we obtain E = 1

2 ṙ
2 + 1

2V (r).
Since r2 ≥ 0 it follows that E ≥ V (r)

2 . To see how E determines the range of
r we plot the graph of V (r)

2 and draw horizontal lines at various values E. r is
restricted to those parts where E ≥ V (r)

2 . At E = V (r)
2 we obtain turning points

where r changes the direction, the motion is reversed and so ṙ(t) = 0 at such a
point. A bound orbit is possible if {r : V (r) ≤ E(r)} has two limits, rmin and
rmax. r then oscillates between those points.

4.5.3 Application to Schwarzschild spacetime

Now we have to deal with a different potential function. From 4.4.5 we obtain

E2 =
(
dr

dτ

)2

+ V (r)
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where V (r) =
(

1 + L2

r2

) (
1− 2m

r

)
= 1− 2m

r + L2

r2 − 2mL2

r3 . The only term different

from the classical solution is the 1
r3 term. This leads to an elliptic integral as a

solution of the energy equation which cannot be solved by elementary functions.
Asymptotically we expect Newtonian results. If the radius is getting smaller the
L2

r2 term dominates and so V is positive for L not too small. As the radius gets
smaller the attractive relativistic term becomes the dominant part.
Differentiating the energy equation with respect to τ we obtain

0 = 2
dr

dτ

d2r

dτ2
+
dV

dr

dr

dτ

Therefore 2 d
2r
dτ2 = −V ′(r). So we can conclude that a critical point of V (i.e.

V ′(r) = 0) represents a circular orbit r = r0. A maximum is unstable since a
small change in r results in an acceleration away from the center while at the
minimum the orbit is stable. At V (r) = E2 we obtain a turning point. For a
further discussion of the orbits we have to investigate V (r). It is obvious that
limr→0 V (r) = −∞ and limr→∞ V (r) = 1. The shape of the graph of V (r)
depends on the number of critical points of V (r). To compute them we have to
solve

0 = V ′(r) =
2
r4

(mr2 − L2r + 3mL)

so r1,2 = L2

2m

(
1±

(
1− 12m2

L2

) 1
2
)

. We can see that the graph of V (r) depends

on the ratio L
m since it determines whether the root is positive, zero or negative.

We will investigate the situation for different angular momenta:
We denote the zeros of V (r) by r1 and r2. Depending on L and E the orbits

can be crash, escape, bound or flyby orbits:

Lemma 4.5.5. For orbits in Schwarzschild spacetime we obtain

I Low angular momentum L2 < 12m2:
(a) If E2 < 1 we obtain a crash orbit, ingoing particles crash directly into
the star, outgoers move to a turning point and then back to crash.
(b) If E2 ≥ 1 then ingoers crash, outgoers escape to infinity

II Moderate angular momentum 12m2 < L2 < 16m2:
(a) If E2 < V (r1) and r(0) > r1 we have a crash orbit
(b) For V (r2) ≤ E(r)2 < V (r1) and r(0) > r1 the orbit is bound
(c) For V (r1) < E2 < 1 the orbit again crashes
(d) If E2 ≥ 1 we obtain a crash/escape orbit

III Large angular momentum L2 > 16m2:
(a) If E2 < V (r1) and r(0) < r1 the orbit crashes
(b) For V (r2) ≤ E2 < 1 and r(0) > r1 the orbit is bound
(c) For 1 ≤ E2 < V (r1) and r(0) > r1 we deal with a flyby orbit
(d) If E2 > V (r1) we obtain a crash/escape orbit

Proof.

I: If L2 < 12m2 then V has no critical points r1,2 = L2

2m

(
1±

(
1− 12m2

L2

) 1
2
)

since the root is negative. So we see that there are no circular orbits by recalling
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that a circular orbit is represented by a critical point. Since we see from the defi-
nition of V that limr→0 V (r) = −∞ and limr→∞ V (r) = 1 we can conclude that
V is strictly monotonically increasing, i.e. V ′(r) > 0 ∀r. Since 2 d

2r
dτ2 = −V ′(r)

it follows that d2r(τ)
dτ2 < 0 ∀τ .

(a) E2 < 1: Since V takes values from −∞ to 1 and is continuous there has
to be some r = r(τm) satisfying V (r(τm)) = E2.
By definition of ingoers, r is strictly monotonically decreasing, and, since V (r) ≤
E2 it follows that the starting radius r0 has to be smaller or equal to r(τm). So
r → 0 for τ →∞.
Outgoers starting at r0 ≤ r(τm) are strictly monotonically increasing until
they reach r(τm). There V (r(τm)) = E2 and therefore dr(τ)

dτ |τm
= 0 . Since

d2r(τ)
dτ2 < 0, r(τm) is a maximum, therefore a turning point.

(b) E2 ≥ 1: We can conclude that E2 ≥ V (r) ∀r. So for ingoers with
dr(τ)
dτ < 0 r is strictly monotonically decreasing hence r → 0.

For outgoers we have dr(τ)
dτ . E2 never hits V (r), so r →∞.

II: 12m2 < L2 < 16M2: Since the root in r1,2 = L2

2m

(
1±

(
1− 12m2

L2

) 1
2
)

is

positive we obtain two critical points r(τ1) < 6m < r(τ2) (at r = 6m the root
is zero and we deal with a circular orbit, see the remark below).
(a) E2 < V (r(τ1)) and r0 < r(τ1): V is strictly increasing until r(τ1), so as
in case I(a) there exists some τm such that E2 = V (r(τm)) and dr(τ)

dτ |τm = 0,
again r(τm) is a maximum, afterwards r → 0.

(b) V (r(τ2)) < E2 < V (r(τ1)) and r0 > r(τ1): Between r(τ1) and r(τ2) V is
strictly decreasing, afterwards again increasing hence there are a maximal and
a minimal radius. Between these the particle’s orbit is oscillating. At r = r(τ2)
we get a stable circular orbit.

(c) V (r(τ1)) < E2 < 1: By observing that there is some τ3 satisfying
V (r(τ3)) = V (r(τ1)) and for τ > τ3 V is strictly increasing we get a crash
orbit again as in I(a).

(d) E2 ≥ 1 is analogous to I(b).

III: L2 > 16m2: The potential barrier with crest V (r(τ1)) rises.
(a) E2 < V (r(τ1)) and r0 < r(τ1): We have a crash orbit as in I(a).

(b) V (r(τ2)) < E2 < V (r(τ1)) and r0 > r(τ1): This case works just as II(b)
and we therefore have a bound orbit.

(c)1 ≤ E2 < V (r(τ1)) and r0 < r(τ1): There is some τ3 with V (r(τ3)) = 1,
for all τ > τ3 we have V (r(τ)) ≤ 1. Therefore r0 ≥ r(τ3). For outgoers dr(τ)

dτ > 0
so r →∞.
If dr(τ)

dτ < 0 there is a minimal radius r(τmin) satisfying E2 = V (r(τmin)). Af-
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terwards r is again increasing. Hence we deal with a flyby orbit.

(d)E2 > V (r(τ1)): Analogously to I(b) we deal with a crash/escape orbit.

Remark 4.5.6. For L2 = 12m2 we can see that 1− 12m2

L2 vanishes, hence V has
one critical point at r = 6m satisfying V (6m) = 8

9 . It represents a circular
orbit.
For L2 = 16m2 the crest of the potential barrier reaches V (∞) = 1.

For lightlike particles orbits depend on the impact parameter b of γ and
discussion analogous discussion to the one above leads to the following result.

Lemma 4.5.7. For lightlike particles’ orbits we have

I Small impact parameter b < 3
√

3m:
Depending on the initial conditions γ either crashes into the star or it
escapes to infinity.

II Large impact parameter b > 3
√

3m:

(a) If r(0) < 3m the orbit crashes into the star.

(b) If r(0) > 3m we deal with a flyby orbit.

• For b = 3
√

3m the orbit is an unstable circular orbit with r = 3m.

In case of L = 0 we obtain

Lemma 4.5.8. Let γ be a freely falling material particle with L = 0 and E < 1.
The proper time τ and the Schwarzschild radius r of γ are related by

τ =
1
2
R

√
R

2m
(η + sin η)

r =
1
2
R(1 + cos η)

where τ = 0 at the maximum radius R of γ.

Proof. A particle with L = 0 is moving radially since the φ and θ coordinates
are constant. Hence its energy equation is

E2 − 1 =
(
dr

dτ

)2

− 2m
r

(∗)

At the maximum radius, dr
dτ = 0 so we obtain

E2 = 1− 2m
R

= h(R).

Thus inserting the term in the energy equation leads to

1− 2m
R
− 1 =

(
dr

dτ

)2

− 2m
r
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which is equivalent to (
dr

dτ

)2

+
2m
R

=
2m
r
.

Substituting these formulas in the equation leads to the required result. Indeed,

dr

dτ
=
dr/dη

dη/dτ
=

− sin η√
R

2m (1 + cos η)

Inserting into the right side of (∗) leads to(
dr

dτ

)2

− 2m
r

=
− sin2 η

R
2m (1 + cos η)2

− 4m
R(1 + cos η)

=
−2m
R

(
sin2 η − 2(1 + cos η)
1 + 2 cos η + cos2 η

)
=
−2m
R

= E2 − 1

4.6 Classical tests of General Relativity

After having studied the mathematical background of the theory we now want
to mention some experimental proofs.

4.6.1 Perihelion advance

In the bound case each trip around the star has an approximately elliptic orbit.
In Newtonian gravity the orbit is a perfect ellipse, after a fixed time it returns
to the same point. In the relativistic case the ellipses change their shapes. This
so called precision can be measured by the change of the perihelion, i.e. the
point of closest approach to the star where r = min. In order to calculate the
perihelion shift of Mercury’s orbit we first state some classical Newtonian results
on planetary movement. For the relativistic calculations see also [Re], 27.2.1.
and [St], 3.3.

Newtonian gravitation

Let m be a mass at the origin in R3, α be a particle of mass m̃ � m in R3.
Newton’s law of gravitation states that

F = −Gmm̃
r2

α = −Gmm̃
r2

U

where F is the force experienced by α, G the gravitational constant and r = ‖α‖
and U the outward radial unit vector, i.e. U = α

r . In what follows we will use
geometric units hence omit G in the formulas.
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By Newton’s second law F = m̃α̈ where a dot denotes derivation with respect
to time. Since m̃� m we can ignore the motion of the mass m. Then

m̃α̈ = −mm̃
r2

α

r
therefore α̈ = −m

r3
α (∗)

We will now show that the particle α moves in a plane:
By (∗), α̈ and α are parallel, so the cross product on R3, α× α̈ vanishes.
Let ~L := α× α̇ be the angular momentum vector per unit mass of α. By using
the properties of cross products we obtain

d

dt
~L = (α× α̇)· = α̇× α̇+ α× α̈ = 0

so ~L is constant. If we assume ~L 6= 0 then α · ~L = α · (α × α̇) = 0 therefore
α and ~L are orthogonal and α lies in a plane through the origin orthogonal to
~L. Since ~L 6= 0 α does not pass the origin. Indeed, α(t) = 0 for some t implies
α(t)× α̈(t) = ~L(t) = 0 therefore ~L = 0, a contradiction.
If ~L = 0 then α lies in a line through the origin. In both cases we can assume
that α lies in the xy-plane of R3.

Definition 4.6.1. The angular momentum of α per unit mass is the number L
such that ~L = L∂z

Our next task is to examine the shape of the orbit:
We start by rewriting ~L:

~L = α× α̇ = rU × (rU)·

= rU × (ṙU + rU̇)
= r2(U × U̇) + rṙ(U × U)
= r2(U × U̇) + 0

Using (∗) leads to

α̈× ~L = (−m
r3
α)× (r2(U × U̇))

= −m
r2
U × (r2(U × U̇))

= −mU × (U × U̇)
= −m((U · U̇)U − (U · U)U̇)

Since U is a unit vector, the scalar product U ·U = 1 and 0 = (U ·U)· = 2U · U̇ ,
therefore we get

α̈× ~L = −m((U · U̇)U − U̇) = mU̇

By noting that ~L is constant we obtain (α̇ × ~L)· = α̈ × ~L + α̇ × ~̇L = mU̇ + 0.
Integration of both sides leads to

α̇× ~L = mU + c

where c is a constant vector in the xy-plane (U and α̇× ~L lie in this plane).
We now use polar coordinates. Let φ be the angle between c and α. Then (r, φ)
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is the particle’s position in these coordinates.

α · (α̇× ~L) = α · (mU + c)
= m(α · U) + α · c
= mrU · U + ‖α‖ ‖c‖ cosφ
= r(m+ c cosφ)

where we used that ‖α‖ = r. So r = α·(α̇×~L)
M+c cosφ .

Since α · (α̇× ~L) = (α× α̇) · ~L = ~L× ~L = ‖~L‖2 = L2 we get

r =
L2

m

1− e cosφ

where e = cL2

m . This equation describes a conic section, for 0 < e < 1 the orbit
is an ellipse, for e = 1 a parabola and for e > 1 a hyperbola. Hence we have
obtained Kepler’s first law.
If we write α = reiφ, differentiate twice and set the result equal to −m

r3α by
using (∗) we obtain, after separating real and imaginary part, the equations

r̈ − ṙ2 = −m
r2

2ṙφ̇+ rφ̈ = 0 = (r2φ̇)·

The second equation again shows that L = r2φ̇ is constant, Kepler’s second law.
For the orbit equation we assume L 6= 0 hence r2 and φ̇ are never zero and so
by setting u(φ) = 1

r(φ) the first equation above can be rewritten as

d2u

dφ2
+ u =

m

L2

Perihelion advance

Corollary 4.6.2. Let γ be a freely falling particle with m 6= 0 in a bound orbit
around a Schwarzschild star of mass M . If L�M and r dφdτ � 1 then the orbit
of γ is approximately elliptical with angular perihelion advance and therefore a
change of period 2π to

2π
1− ε

≈ 2π(1 + ε)

where ε = 3m2

L2

Proof. As shown in 4.5.3, the orbit equation in Schwarzschild spacetime differs
from the classical Newtonian only by the correction term 3mu2. This term is
small for big r hence we can solve the orbit equation

d2u

dφ2
+ u =

m

L2
+ 3mu2 (∗)

by using a perturbation method.
We define

ε :=
3m2

L2
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Denoting the derivation with respect to φ with a prime we obtain

u′′ + u =
m

L2
+ ε

(
L2u2

m

)
(∆)

We suppose that a solution is of the form

u = u0 + εu1 +O(ε2) (∗)

Differentiating and inserting this solution in (∆) leads to

u′′0 + u0 −
m

L2
+ ε

(
u′′1 + u1 −

L2u2
0

m

)
+O(ε2) = 0

To make the first order approximation we set the coefficients of the ε, ε2, . . .-
terms equal to zero hence we solve u′′0 +u0 = m

L2 which is the classical Newtonian
equation with the solution developed above, i.e. u0 = m

L2 (1 + e cos(φ)).
Now we set the ε-coefficient equal to zero and insert u0 to obtain

u′′1 + u1 =
L2u2

0

m

=
L2

m

m2

L4
(1 + e cosφ)2

=
m

L2
(1 + 2e cosφ+ e2 cos2 φ)

and so

u′′1 + u1 =
m

L2

(
1 +

1
2
e2

)
+

2me
L2

cosφ+
me2

2L2
cos 2φ

For a solution we make the ansatz

u1 = A+Bφ sinφ+ C cos 2φ

and get

A =
m

L2

(
1 +

1
2
e2

)
B =

me

L2
C = −me

2

6L2

So u1 = m
L2

(
1 + 1

2e
2
)

+ 2meL2 φ sinφ− me2

6L2 cos 2φ. Therefore the general solution
of the first order is

u ≈ u0 + εu1 =
m

L2
(1 + e cosφ) +

εm

L2

(
1 + eφ sinφ+ e2

(
1
2
− 1

6
cos 2φ

))
The perihelion of this solution is at φ = 0. Since we assume L� m the dominant
terms are the first and the one involving the φ sinφ term which is increasing
after each revolution. Therefore approximating u ≈ m

L2 (1+e cosφ+εeφ sinφ) ≈
m
L2 (1 + e cos(φ(1 − ε))) we see that the orbit is no longer an ellipse but is still
periodic with period 2π

1−ε ≈ 2π(1 + ε). So we have a shift of the perihelion of

2πε = 6πm2

L2 .

The measurement of Mercury’s precession was first accomplished in the 19th

century. Other planets also disturb Mercury’s orbit hence the total observed
precession is about 5600′′/century. The 43′′ is the only part which is not ex-
plainable by Newtonian gravity hence the exact prediction of this amount by
Einstein’s theory was the first direct experimental proof in favor of it.
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4.6.2 Deflection of light

Analogous calculations and further details can be found in [St], 3.4.
For a lightlike particle we already showed in 4.5.3 that

d2u

dφ2
+ u = 3mu2 (∗)

As the Schwarzschild radius approaches infinity, the relativistic term becomes
small and if we neglect it the path of the particle is the solution of d2u

dφ2 + u = 0
which is given by u = a sinφ where a = 1

r0
. r0 � m is the perihelion at φ = 0.

Inserting this solution into the right hand side of (∗) gives

d2u

dφ2
+ u = 3ma2 sin2 φ = 3ma2(1− cos2 φ)

which has the particular solution u1 = 3ma2

2

(
1 + 1

3 cos 2φ
)
. So the first order

solution is u = a sinφ + 3ma2

2

(
1 + 1

3 cos 2φ
)
. For large r (resp. small u) φ is

close to zero. So we take sinφ ≈ φ and cosφ ≈ 1. In the limit r → ∞ we can
see that φ→ φ∞ with

φ∞ = −2ma.

The total deflection δ is equal to 2 |φ∞|, thus

δ = 4ma =
4m
r0

For the sun with m = 1.5km, r0 = 7 × 105km we obtain a deflection angle of
δ = 1.7′′. This result was predicted by Einstein and first tested on March 29,
1919 during the solar eclipse. Citing J.J. Thompson ’this is the most important
result obtained in connection with the theory of gravitation since Newton’s day’.
For further details see also [St].

4.6.3 Time delay of radar echoes

I. Shapiro suggested in 1964 a new test for the theory of general relativity. The
idea is to send radar signals from earth through a region near the sun to another
planet or satellite and reflect it back to earth which should lead to a time delay.
The following calculations are based on [St], 3.5.
So let the signal be transmitted from p1 = (r1, θ = π

2 , φ1) and be sent to
p2 = (r2, θ = π

2 , φ2). The time t12 required by the signal to travel from p1 to p2

can be computed via using the energy equation (see 4.4.5)(
dr

dτ

)2

= E2 −
(

1 +
L2

r2

)
h(r)

We write
dr

dτ

dr

dt

dt

dτ
=
dr

dt

E

h(r)
(∗)

After inserting this equation in the energy equation above we obtain

h(r)−3

(
dr

dt

)2

= h(r)−1 − L2

E2

1
r2
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Let now r = r0 be the distance of closest approach to the sun, then dr0
dt = 0 and

so L2

E2 = r2
0

h(r0) .
If we insert this in (∗) we get

h(r)−3

(
dr

dt

)2

+
(r0

r

)2

h(r0)−1 − h(r)−1 = 0

Now we can calculate the time which is needed by the signal to come from r0

to an arbitrary r by

t(r0, r) =
∫ r

r0

h(r)−1

(
1− h(r)

h(r0)

(r0

r

)2
)− 1

2

dr

Since 2m
r is small we obtain approximately

t(r0, r) ≈
∫ r

r0

1 +
2m
r

(
1−

(
2m
r0
− 2m

r

)(r0

r

)2
)− 1

2

dr

≈
∫ r

r0

(
1− r2

0

r2

)− 1
2
(

1 +
2m
r

+
mr0

r(r + r0)

)
dr

Integration leads to

t(r, r0) ≈
√
r2 − r2

0 + 2m ln

(
r +

√
r2 − r2

0

r0

)
+m

(
r − r0

r + r0

) 1
2

For |φ1 − φ2| > π
2 we have t12 = t(r1, r0) + t(r2, r0). For a circuit from p1 to p2

and back we introduce the Shapiro delay in coordinate time

∆t := 2(t(r1, r0) + t(r2, r0)−
√
r2
1 − r2

0 −
√
r2
2 − r2

0)

≈ 4m ln

(
(r1 +

√
r2
1 − r2

0)(r2 +
√
r2
2 − r2

0)
r2
0

)

+2m
(√

r1 − r0

r1 + r0
+
√
r2 − r0

r2 + r0

)
This delay is too small to be observed, for a trip from Earth to Mars and back
we get e.g. ∆t ≈ 4m

(
ln 4r1r2

r2
0

+ 1
)
≈ 240µs. To measure the time delay it

is necessary to know
√

r1−r0
r1+r0

+
√

r2−r0
r2+r0

extremely precisely. One must carry
out the measurements of the circuit times over some time and fit the data to a
complicated model describing the motion of the transmitter and receiver. For
further details see [St].

4.7 Singularities

After we have investigated the region N where the metric is nonsingular we now
want to take a closer look at the singularities of the metric. Since

ds2 = −hdt2 + h−1dr2 + r2dσ2,
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the metric becomes singular for r = 0 and r = 2m. Additionally there are the
spherical coordinate singularities. These and the one at r = 2m will turn out
to be coordinate singularities. One can find a different coordinate system to get
rid of them. As far as r = 0 is concerned, this singularity is a real spacetime
singularity which is not removable by a coordinate transformation. We will now
study the region r = 2m.

Definition 4.7.1. The region of the Schwarzschild geometry with r = 2m is
called gravitational radius (or Schwarzschild radius, -surface, -horizon).

The Schwarzschild metric satisfies the vacuum field equations for r > 2m as
well as for r < 2m. To determine whether the spacetime geometry is singular
at the gravitational radius we send an observer into this region and see what
happens: Let him fall freely and radially, then, by [MTW], p.820 his trajectory
is given by

τ

2m
= −2

3

( r

2m

)3/2

+ const.

t

2m
= −2

3

( r

2m

)3/2

− 2
( r

2m

)1/2

+ ln

∣∣∣∣∣
(
r

2m

)1/2 + 1(
r

2m

)1/2 − 1

∣∣∣∣∣
To reach r = 2m requires a finite lapse of proper time but an infinite lapse of
coordinate time (see [MTW] ch. 31 for more details).

Definition 4.7.2. For a vector 0 6= v ∈ TpM the tidal force operator Fv : v⊥ →
v⊥ is given by Fv(y) = Ryvv.

Fv is a self-adjoint linear operator on v⊥, and traceFv = −Ric(v, v). See
[O’N.], 8.9., for a proof.
Calculating the Riemannian curvature tensor we can see that curvature remains
finite at r = 2m. Hence the tidal forces during approaching the gravitational
radius are finite in contrast to the singularity at r = 0 where we obtain infinite
tidal forces.
But Schwarzschild coordinates behave strangely at r = 2m. The roles of t and
r as timelike resp. spacelike coordinates are reversed. Inside the horizon the
dr2 term is the only positive term so r cannot stand still for a particle’s or a
photon’s world line since it has to satisfy ds2 ≥ 0. But not standing still is a
characteristic of time. The future direction is that of decreasing r.

4.7.1 Different coordinate systems

Historically Eddington was the first who constructed a coordinate system which
is nonsingular at r = 2m in 1924 (see below for details). But he did not seem to
have recognized the significance of his results. In 1933 Lemaitre noted that the
’Schwarzschild singularity’ is not a singularity. For more detailed calculations
and discussions, see [MTW]31.3-31.5.

Novikov, 1963

To each test particle a specific value R of the radial coordinate is attached. It
emerges from r = 0 carries it through r = 2m until it reaches the maximal r and
then back again through r = 2m to r = 0. R is given by R =

(
rmax
2m − 1

)1/2. As
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a time coordinate we use proper time τ of the particle with τ = 0 on the peak.
A complicated transformation (see [MTW], 31.4) yields to the line element

ds2 = −dτ2 +
(
R2 + 1
R2

)(
∂r

∂R

)2

dR2 + r2(dθ2 + sin2 θdφ2)

Here r = r(τ,R) is no longer a radial coordinate but given implicitly by

τ

2m
= ±(R2 + 1)

(
r

2m
−
(
r

2m

)2
R2 + 1

)1/2

+ (R2 + 1)3/2 cos−1

(( r
2m

R2 + 1

)1/2
)

So there are two distinct regions with r = 0 and two with r →∞. The concept
of this coordinate system is quite simple, but the mathematical expressions for
the metric components are rather complicated.

Eddington, 1924, rediscovered by Finkelstein, 1958

In contrast to Novikov not freely falling particles are the foundation of the
coordinate system but freely falling photons instead. We introduce coordinates
u and v where outgoing radial null geodesics are given by u = const, u ≡ t− r∗,
ingoing ones by v = const, v ≡ t+r∗ with r∗ = r+2m ln

∣∣ r
2m − 1

∣∣. So we obtain
two coordinate systems. Ingoing EF-coordinates where r and v are used instead
of r and t with metric ds2 = −h(r)dv2 + 2dv dr+ r2(dθ2 + sin2 θdφ2) on the one
hand and on the other hand outgoing EF-coordinates where we choose r and u
with line element ds2 = −h(r)du2− 2du dr+ r2(dθ2 + sin2 θdφ2). Both systems
behave better at r = 2m than the Schwarzschild coordinates but describing
ingoing particles with outgoing coordinates (resp. vice versa) leads to the same
problems we had with Schwarzschild coordinates. But ingoing EF-coordinates
describe infall very well hence they are frequently used in the description of
gravitational collapse ([MTW], ch.32) or black holes ([MTW], ch. 33, 34).

Kruskal, Szekeres, 1960

The idea now is to use both u and v as coordinates. They are related to
Schwarzschild coordinates by

v − u = 2r∗

v + u = 2t

hence ds2 = −h(r)du dv+ r2(dθ2 + sin2 θdφ2). But we can see that this coordi-
nate system is again pathological at r = 2m. So we try to relabel the coordinates
to get rid of the disturbing factor 1− 2m

r which is allowed since any relabeling
does not change the physical properties of the surfaces .
We will now join the Schwarzschild half plane PI and the strip PII to ob-
tain a connected spacetime K. r becomes a function of u and v. Let f(r) =
(r − 2m) exp( r

2m − 1) with m > 0 a constant. Then f is given by f(r) = uv.
Since f ′(r) = r

2m exp( r
2m−1) > 0 on R+, f is a diffeomorphism onto (− 2m

e ,∞).

Definition 4.7.3. Let F (r) := 8m2

r exp(1 − r
2m ). The region Q in the uv-plane

given by uv > − 2m
3 furnished with the line element ds2 = 2F (r)dudv is called

Kruskal plane of mass m.
If we remove the coordinate axes we obtain the four quadrants Q1, . . . , Q4.
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Remark 4.7.4.

• For constant r we obtain the hyperbolas uv = const., at r = 2m the
coordinate axes.

• {u, v} is a null-coordinate system on Q, i.e. 〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 0 and
we can replace it by spacelike and timelike coordinates ũ, ṽ given by

ũ =
1
2

(v − u)

ṽ =
1
2

(v + u)

and obtain that dũ2 + dṽ2 = du dv.

• The mapping φ : (u, v) 7→ (−u,−v) preserves uv, hence r and so also
F (r) and the line element. We can interpret φ as an isometry reversing
quadrants.

To relate Schwarzschild coordinates to the new coordinates we define t =
2m ln

∣∣ v
u

∣∣. The level curves t = const. are then rays from the origin in Q. In what
follows we will show that ψ : Q1 ∪Q2 → PI ∪ PII with (u, v) 7→ (t(u, v), r(u, v))
is an isometry preserving the quadrants.

Lemma 4.7.5. On Q,
(1) Ff = 8m2h, Ff ′ = 4m and f

f ′ = 2mh
(2) dt = 2m

(
dv
v −

du
u

)
, dr = 2mh

(
du
u + dv

v

)
for uv 6= 0.

(3) gradr = 1
4m (u∂u + v∂v)

Proof.
(1)The first identity is a simple calculation. For the second one use f ′(r) =

r
2m exp( r

2m − 1) and the third identity is a consequence of the first two.
(2) We calculate dt = 2mu

v d
(
v
u

)
= 2mu

v

(
udv
u2 − vdu

u2

)
= 2m

(
dv
v −

du
u

)
.

Since f ′(r) = d(uv)
dr we obtain f ′(r)dr = vdu+ udv. From (1) we already know

that 2mh = f(r)
f ′(r) = uv

f ′(r) and so the result for dr follows.
(3) The vector fields metrically equivalent to du and dv are ∂v

F and ∂u

F , respec-
tively. Hence by using (2) we obtain the result. Indeed, let X be an arbitrary
vector field, then

〈gradr,X〉 = dr(X)

= 2mh
(
du

u
+
dv

v

)
(X)

= 〈2mh
(
∂v
Fu

+
∂u
Fv

)
, X〉

= 〈2mh
F

(
v∂v + u∂u

uv

)
, X〉

= 〈2mh
Ff

(u∂u + v∂v, X〉

= 〈 1
4m

(u∂u + v∂v), X〉
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Now we will show that the quadrants Q1 and therefore Q3 are isometric to
the Schwarzschild half plane PI , Q2 and Q4 to the strip PII :

Proposition 4.7.6. The function ψ : Q1∪Q2 → PI∪PII , (u, v) 7→ (t(u, v), r(u, v))
is an isometry preserving the quadrants and the functions t and r.

Proof. We denote the natural coordinate functions on PI ∪ PII by t̃ and r̃ so
it has the line element −hdt̃2 + h−1dr̃2. By the definition of ψ we obtain that
t̃◦ψ = t and r̃◦ψ = r hence ψ∗(T(u,v)t̃) = T(u,v)(t̃◦ψ) = T(u,v)t and analogously
ψ∗(T(u,v)r̃) = T(u,v)r. ψ preserves r hence also h, therefore after applying ψ∗ to
the line element we obtain −hdt2 + h−1dr2. We can now apply 4.7.5 to obtain
the line element of Q, i.e. 2F (r)dudv.
ψ is a diffeomorphism on each quadrant with inverse function given by u =√
f(r) exp(−t/4m) resp. v =

√
f(r) exp(t/4m).

So we can finally join N and B. We will again identify this connected
spacetime as a warped product:

Definition 4.7.7. Let Q be a Kruskal plane of mass m and let S2 be the unit
2-sphere. The Kruskal spacetime of mass m is the warped product K = Q×rS2

where r is the function on Q given by f(r) = uv.

ThusK is the product manifoldQ×S2 furnished with metric tensor 2F (r)dudv+
r2(dθ2 + sin2 θdφ2). By 2.2.14 we already know that each leaf pr−1

2 (q) is totally
geodesic and isometric to Q and each fiber pr−1

1 (u, v) is a 2-sphere of radius
r(u, v) which is totally umbillic in K.

Let now Ki, i = 1, . . . 4, be the open submanifolds pr−1
1 (Qi). Then K1

and K3 are isometric to N , K2 and K4 are isometric to B. Indeed, let ψ be
the isometry from 4.7.6. It preserves r so ψ × id is an isometry from K1 =
Q1 ×r S2 onto N = PI ×r S2. The isometry (u, v) 7→ (−u,−v) preserves r, so
φ(u, v, p) = (−u,−v, p) is an isometry reversing K1 and K3 resp. K2 and K4.
So to summarize we have

K3

φ
≈ K1

ψ
≈ N

and

K4

φ
≈ K2

ψ
≈ B

We therefore can see that two Schwarzschild patches are necessary to cover the
entire Schwarzschild geometry, but a single Kruskal system suffices.

Definition 4.7.8. The horizon H consists of all points over the coordinate axes
of Q. It is obtained by deleting pr−1

1 (Qi), i = 1, . . . , 4, from K.
pr−1

1 (0, 0) is called central sphere. The isometry φ : (u, v, p) 7→ (−u,−v, p)
introduced above is the so-called central symmetry.

Remark 4.7.9. Removing the central sphere from H leaves four hypersurfaces,
each diffeomorphic to R+ × S2.

SinceK is defined as a warped product, covariant derivative and curvature on
K can be expressed in Kruskal coordinates by using warped product generalities
introduced in the first chapter.



112 CHAPTER 4. SCHWARZSCHILD SPACETIME

4.8 Reissner-Nordström spacetime

In this section we want to investigate the spacetime surrounding a non-rotating
charged spherical symmetric black hole as another example for a warped product
spaetime. It is based on [D’I], chapter 18 where also further details can be found.

4.9 Deriving the metric

We search for a static, asymptotically flat spherical symmetric solution of the
Einstein-Maxwell equations

Gab = 8πTab

where Tab is Maxwell’s stress energy tensor. If there is no source it is given by

Tab =
1

4π

(
−gcdFacFbd +

1
4
gabFcdF

cd

)
(∗)

F ab is the electromagnetic field strength tensor, generally given by

F ab =


0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0


Tab is tracefree, hence we can rewrite Einstein’s equations as

Rab = 8πTab

Indeed, T is trace free, i.e. gabTab = 0 and

Gab = Rab −
1
2
gabS = 8πTab

where S is the scalar curvature. Multiplication with gab of both sides of the
equation leads to

gabRab︸ ︷︷ ︸
=S

−1
2
gabgab︸ ︷︷ ︸

=4

S = 8π gabTab︸ ︷︷ ︸
=0

therefore
0 = S

and
Gab = Rab

Furthermore Fab has to satisfy Maxwell’s equations for sourcefree space, i.e.

1. ∇bF ab = 0

2. ∂[aFbc] = 0

Now we take our assumptions in account to determine the metric. The calcula-
tions are quite similar to the ones in 4.2.
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Assumption 1: Spherical symmetry

When using the coordinates (t, r, θ, φ) the line element has the form

ds2 = −eνdt2 + eλdr2 + r2dσ2

where dσ2 is the line element on the unit sphere. λ and ν depend on t and r.

Assumption 2: Staticity

Since the solutions is to be static, λ and ν depend only on r, i.e.

λ = λ(r) ν = ν(r)

Assumption 3: Field

The field is built up by a charged particle at the origin, hence the line element
and the Maxwell tensor become singular at this origin.
The charged particle produces an electrostatic field which is radial, i.e.

Fab = E(r)


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


Therefore we can calculate

gab = diag(−eν , eλ, r2, r2 sin2 θ)

gab = diag(−e−ν , e−λ, r−2, r−2 sin−2 θ)

Consequently, Fab = 0 except for

a = 0 b = 1

a = 1 b = 0

So we can conclude that (2) of the Maxwell equations is automatically satisfied
and (1) is reduced to the single equation

(e−1/2(ν+λ)r2E)′ = 0

where a ′ denotes derivation with respect to r. Integration of this equation leads
to

E =
e1/2(ν+λ)ε

r2

where ε is an integration constant.

Assumption 4: Asymptotic flatness:

Since gab → ηab for r →∞ where ηa denotes the Minkowski metric, we conclude
that ν, λ→ 0 for r →∞. So E ≈ ε

r2 asymptotically which is the classical result
for an electric field of a particle with charge located in the origin.
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Calculating Tab

We already have determined E(r) and therefore also Fab. By (∗) we know how
we can calculate Tab from Fab. If we insert Tab into the field equation then the
00- and 11- equations lead to λ′ + ν′ = 0, since by assumption ν, λ → 0 it fol-
lows that λ = −ν. The only remaining independent equation is the 22-equation
which leads to (reν)′ = 1 − ε2

r2 . After integration we have eν = 1 − 2m
r + ε2

r2

where again m is an integration constant.

We finally have obtained the Reissner-Nordström solution

ds2 = −
(

1− 2m
r

+
ε2

r2

)
dt2 +

(
1− 2m

r
+
ε2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

This is also a warped product, and for ε = 0 we get the Schwarzschild solution.
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[D.Ü.] F. Dobarro, B. Ünal. Geometry of Multiply Warped Products,
arXiv:math/0406039v3

[Fl] T. Fließbach. Mechanik, Lehrbuch zur Theoretischen Physik 1, 4. Auflage,
Spektrum Akademischer Verlag, 2003

[Ge] R. Geroch. Domain of Dependence, J.Math.Phys. 11, No.2 437-449,
(1970). MSC2000

[H.E.] S.W. Hawking, G.F.R. Ellis. The large scale structure of spacetime, Sec-
ond Edition, Marcel Dekker, Inc. 1996

[HF] L.N. Hand, J.D. Finch. Analytical Mechanics Cambridge University Press,
1998

[Hu] J.K. Hunter. An Introduction to the Incompressible Euler Equations,
http://www.math.ucdavis.edu/ hunter/notes/euler.pdf, 2006

[Mi] J. Milnor. Topology from the differentiable viewpoint, Princeton University
Press, 1965

[MTW] C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation, W.H. Freeman
and Company, San Francisco, 1973

[O’N.] B. O’Neill. Semi Riemannian Geometry Academic Press, 1983

[Pa] D.F. Parker. Fields, Flows and Waves. An Introduction to Continuum
Models, Springer Undergraduate Mathematics Series, 2003

115



116 BIBLIOGRAPHY

[Pe] P. Petersen. Riemannian Geometry, Springer Graduate Texts in Mathe-
matics, 2006

[Re] E. Rebhan. Theoretische Physik. Band 1, Spektrum Heidelberg, 1999

[Ri] W. Rindler. Relativity Special, General and Cosmological. Second Edition,
Oxford University Press, 2006

[Sch] B. Schutz. A First Course in General Relativity, Second Edition, Cam-
bridge University Press, 2009

[St] N. Straumann. General Relativity with Applications to Astrophysics,
Springer-Verlag Berlin Heidelberg, 2004
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