
DIPLOMARBEIT

Titel der Diplomarbeit

On some aspectsof tsunami waves

angestrebter akademischer Grad

Magistra der Naturwissenschaften (Mag. rer. nat.)

Verfasser: Anna Geyer

Matrikel-Nummer: 0407766

Studienrichtung: A 405 Mathematik

Betreuer: Univ.-Prof. Dr. Adrian Constantin

Wien, am 25. 06. 2010



Abstract

The aim of this work is to discuss the mathematical modelling of surface wa-
ter waves and currents with a special focus on tsunami waves. In particular,
we investigate the possibility of incorporating a background flow field which is
governed by the full Euler equations and models isolated regions of non-zero
vorticity.
After briefly introducing the basic properties of tsunamis, a physical motivation
of the governing equations for water waves is given. We discuss some impor-
tant modelling assumptions and derive the equations of motion and boundary
conditions for a two-dimensional setting. A stream function and the concept
of vorticity is introduced in order to reformulate the governing equations in a
simpler way. To get a better grasp of the subject, we review some important
facts from the theory of ordinary differential equations. With the aid of a co-
ercive functional, a dynamical systems approach enables us to overcome the
difficulties due to the non-linear character of the vorticity function and the fact
that the system is not autonomous. For a given non-linear vorticity distribu-
tion we find that the system of equations governing the background flow has a
non-trivial, radially symmetric C2-solution with compact support, which models
a background state with flat surface containing an isolated region of non-zero
vorticity outside of which the water is still.
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Chapter 1

Introduction

We will be concerned with understanding the motion of water in the ocean,
describing surface water waves and underlying currents from a mathematical
point of view. Some physical considerations will be necessary to justify mod-
elling assumptions on the fluid, the types of boundaries and the physical laws
of motion. We will focus our attention on a special type of surface water wave,
namely tsunami waves.

In our context, the term “water wave” refers to the shape of the water sur-
face resulting from a disturbance of the stable equilibrium state (a flat surface)
under the force of gravity. As opposed to sound waves, which all move with
the same speed, water waves propagate with different speeds according to their
wavelengths. This fact can be observed in a simple experiment, throwing a big
stone into a pond of still water. Waves will propagate outward from the source
of the disturbance in circles and in this wave pattern, longer waves will always
be further from the center than shorter waves. This phenomenon, that longer
waves move faster than shorter waves, is called “wave dispersion” (see [Sto57]
or [Lig03] for more details).

Note that when we talk about the propagation speed of a wave we do not
refer to the velocity of the water or its particles, but to the speed at which the
elevation of the water surface (the wave pattern) moves in a horizontal direction.
Leonardo Da Vinci described this phenomenon by comparing the water surface
to a cornfield exposed to strong wind where “one sees the waves running over
the fields without the ears of corn changing their place” (cf. [WK08]).
Similarly, think of some small object floating on the water’s surface. Instead
of moving in the direction of the wave, it is lifted and then dropped again,
following the vertical displacement of the water surface as the wave passes,
before it returns (almost) to its initial position.
Waves whose wavelengths are long compared to the local water depth, so called
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“long waves” or “shallow water waves”, move with a speed of approximately

c =
√

gh,

where g is the gravitational acceleration and h is the average local water depth.
Tsunami waves, which have characteristic wavelengths much longer than the
average ocean depth, are a prominent example of such waves (cf. [Seg04]).

The term “tsunami” is the Japanese word for “harbor wave” (“tsu” – harbor,
“nami” – wave). It actually refers to a series of up to a half dozen separate
waves, arriving at the coast in time intervals ranging from a few minutes to
up to half an hour. Tsunamis have been documented for millenia, the earliest
records dating back as far as 4000 years. The formation of a tsunami wave is
quite a rare event, but it can cause major damage in the affected coastal areas.
Tsunami waves are generated by a sudden vertical displacement of a body of
water on a massive scale, caused by undersea earthquakes, landslides or volcanic
eruptions. If the origin is volcanic, the body of water experiences a disruption
by a collapse of the volcanic edifice, or landslides accompanying the eruption.
If the origin of the displacement is due to an underwater earthquake, a large
mass of earth on the bottom of the ocean drops or rises, thereby displacing the
column of water directly above it. This frequently occurs along breaks in the
earth’s crust, so-called fault lines. There are three types of faults: a thrust fault
is characterized by one plate moving up over an adjacent plate; in the case of
a normal fault, one plate dips beneath another; strike-slip faults occur, when
two plates slide past each other horizontally. The type of fault produced by
the earthquake has significant influence on the generation of tsunami waves.
Tectonic collisions in the form of strike-slip movement produce little vertical
displacement and are therefore not likely to cause tsunamis. When the outcome
of an undersea earthquake is a thrust (or normal) fault however, the ocean floor
rises (or drops) by a few meters, causing the water directly above to rise (or
fall) as well and thereby creating a positive (or negative) initial wave profile.
Combinations of these types also occur1. Studies of these generation phenom-
ena suggest a close correlation between the size and shape of tsunamis and the
size of the earthquake, area and shape of the rupture zone, the amount of dis-
placement of the earth’s crust and the depth of water in the source area.

After the energy from the displacement of the tectonic plates or other land-
masses is transferred to the water and the wave has obtained its initial profile,
it spreads outwards from the source, travelling over thousands of kilometers at
a speed of possibly more than 1000 km/h. The propagation of a tsunami is
directional, depending on the geometry of the seafloor in the rupture zone. The
source area is usually of elliptic shape, with the major axis up to 1300 km long.

1An example is the December 2004 tsunami off the coast of Indonesia, where the earthquake
generated an initial wave profile such that a positive wave was sent out travelling towards India
and Sri Lanka, whereas a negative wave was sent out in the opposite direction and hit the
coast of Thailand, where people observed a sudden drop of the water level prior to the arrival
of the waves (cf. [Seg04]).
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Most of the tsunami energy is transmitted at right angles to the rupture line
and thus the direction of propagation of the wave is perpendicular to the major
axis. This is why we can reasonably model the evolution of such waves in a two
dimensional setting, assuming that the motion in the direction of the major axis
of the rupture zone is uniform (cf. [LL89]).
Away from the shore, where the ocean can be assumed to have uniform depth
over large distances, the evolution of the wave is governed essentially by the lin-
ear wave equation and the wave propagates at speed

√
gh. Since the amplitude

of a tsunami wave out in the open sea is typically very small and the wavelength
is hundreds of kilometers, ships in this water region usually do not even notice
that a wave is passing by.
When the front part of a tsunami wave approaches the shore, it slows down,
since the water depth and therefore also its speed decreases. The problem is
that the rear of the wave might still be hundreds of kilometers out in the sea,
travelling at much higher speed than the front. Thus, the back of the wave
starts catching up with the front, causing the water to pile up vertically near
the coast. Since the wave is so long, enormous amounts of water are involved
in this process. This fact accounts for much of the devastating effects tsunami
waves have in the coastal areas.

Before the arrival of the wave at the shore, the water in that region is unlikely
to be still, as currents and other kinds of rotational disturbances in the body
of water are common phenomena described in oceanography. There is an im-
portant concept in fluid dynamics called vorticity, which provides a measure for
the local spin of fluid elements. Vorticity is present in most fluid bodies, even in
your kitchen sink when you pull out the plug and the water flows out of the sink.
You can visualize the rotational movement by throwing small soil particles into
the water near the drain and observe that not only do they describe circular
paths as they are washed down the sink, but they also rotate with angular ve-
locity proportional to the vorticity. While Feynman [FLS63] suggests checking
it out for a bucket of water on a turntable, I limited my efforts to soil particles
in the kitchen sink. A famous quote describing why vorticity is a measure of
the local spin of a fluid element is given in [MT68]:

If a spherical element of the fluid were suddenly solidified and the
surrounding fluid simultaneously annihilated, this solid element would
rotate with [angular velocity half the vorticity].

A more detailed mathematical discussion of this phenomenon is given in Section
2.5.
With this in mind, it seems essential in a reasonable model for tsunami waves
to allow for some kind of background flow field, which models the motion of
water before the arrival of a tsunami. The wave may then be introduced as a
perturbation of the background state and the interaction between a background
flow and a tsunami wave can be studied.
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A lot of work has been done on modelling the evolution of tsunami waves as
they pass through the ocean and eventually approach the shoreline (see for
example [CJ06], [Ham73], [Voi87], [ZYN09]). Most investigations are restricted
to modelling tsunami waves on irrotational background flows (that is, flows with
zero vorticity), which model background states of still water. The possibility
of incorporating pre-existing vorticity was only recently investigated in [CJ08].
We will follow up this matter and try to explain and answer questions like:

- What are the physical laws of motion that govern the evolution of water
waves and currents?

- How can we incorporate background flows in the modelling of water waves?

- What kind of vorticity distributions are allowed?

In [CJ08] various vorticity distributions were obtained in the shallow water
regime. It was found that the requirement of a flat free surface is too restrictive,
as it invalidates even the simple choice of constant non-zero vorticity throughout
the flow field (as would be the case for example in tidal flows, cf. [dSP88]).

As opposed to passing to the long wave limit and studying approximations for
the shallow water regime, the possibility of incorporating background flows with
isolated regions of vorticity that allow for a flat free surface and are governed
by the full Euler equations is even more recent. In [Con10] an example of a vor-
ticity distribution such that the equations governing a two dimensional steady
flow with vorticity admit a non-trivial solution that models an isolated region
of vorticity near the shore is given. The aim of the present work is to discuss
a generalization of this paper. The difficulty of finding appropriate vorticity
distributions lies in the fact that for linear distributions and distributions of C1

regularity only trivial solutions are obtained. It is necessary to consider non-
linear vorticity functions which are continuous but not Lipschitz continuous.

We will proceed in the following way: In Chapter 2, we discuss some basic mod-
elling assumptions for water waves. Furthermore we will motivate and derive
the equations of motion and boundary conditions that govern the behavior of
the water in the background state. In this setting we introduce the concept of
a stream function, which allows us to reformulate the equations at hand in a
simpler way. We will focus more closely on the aforementioned term vorticity
and obtain a better understanding of this important concept in fluid dynamics.
Furthermore, we shall see how vorticity can be related to the stream function to
obtain yet another reformulation of our equations. In Chapter 3 we will review
some important results of the theory of ordinary differential equations. The
main result will then be presented in Chapter 4. It says essentially that our
model allows for an isolated region of non-zero vorticity in the background flow
field with a flat free surface.



Chapter 2

The Governing Equations

Before we discuss the equations that govern the motion and the conditions that
specify the behavior at the boundary according to the given physical context, let
us clarify some modelling assumptions on the properties of the fluid in question,
water.

2.1 Modelling assumptions

In general fluid dynamics it is common to regard the fluid as a continuum. How
can we justify this assumption? On a molecular level, water is not a uniform
material, as the mass of its molecules for example is concentrated in the nuclei of
the atoms. However, fluid dynamics is usually concerned with the behavior at a
scale large compared to the distance between molecules. From this macroscopic
point of view, we can suppose that the fluid behaves as if it were continuous in
its structure (cf. [Bat67]). In the case of water this seems like a natural assump-
tion, as it obviously behaves in a continuous way when observed with the naked
eye or any of the usual measuring devices. This so called continuum hypothesis
implies that we can give a definite meaning to the notion of a value “at a point”
in the fluid. It is therefore reasonable to regard the quantities determining the
state of the fluid (we will see in a moment which are the relevant ones for our
purpose) as continuous functions of position x and time t, relative to Cartesian
coordinate axes. On the basis of this Eulerian description of the fluid we are able
to establish equations governing its motion, irrespective of the actual particle
structure of the medium. It should be pointed out that there is an alternative
description – the Lagrangian viewpoint – where the focus lies on the individual
fluid particles and the time evolution of the particle paths. The independent
variables then are the initial position a of a particle and time t. A particle path
is obtained by integrating dx

dt = u, where the constant of integration is defined
by x(t = 0) = a. These two descriptions are equivalent.

We focus our attention on models which are suitable for describing tsunami
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waves, where the main restoring force of the wave is gravity. This means that
the formation of a wave is driven by a balance between the fluid’s inertia and
its tendency, under gravity, to return to a state of stable equilibrium, a flat
surface (cf. [Lig03]). Such waves are therefore also called gravity water waves as
opposed to capillary waves, were surface tension plays the role of the restoring
force. We will, however, neglect surface tension as we focus our attention on
waves and phenomena that are of some orders of magnitude larger than the
effects of capillarity account for. We are also not concerned with how exactly a
tsunami wave is generated – we start with the initial profile of the water surface
and try to understand the evolution of the wave as it passes through the ocean
and approaches the shore. In the introduction we already mentioned the fact
that the behavior of tsunami waves is almost uniform in the direction perpen-
dicular to the direction of propagation and we can therefore reasonably treat
the problem in two dimensions only – a horizontal direction in which the wave
spreads and a vertical direction that indicates the elevation of the water surface.
Note that in this study the interaction between water and, for example, sand
on the seabed is not taken into consideration. That is, we assume the bed to be
impermeable, which means that water particles cannot penetrate the bed.

Another important modelling assumption for studying tsunami waves is that
we regard the water to be inviscid. Viscosity is a measure of the resistance of
the fluid towards shear stresses and one could think of it as something like the
“thickness” of a fluid. Honey, for example, has higher viscosity than water and
in this sense, honey is “thicker” than water. A slightly more physical formula-
tion of this phenomenon is that viscosity describes the fluid’s internal resistance
to shear flow and measures a kind of internal friction between fluid particles.
Inviscid fluids are sometimes also called ideal fluids. Although the study of wa-
ter neglecting viscosity was described by John von Neumann as studying “dry
water”, this approximation is good enough for our purposes.

A further simplification of the model is obtained by imposing on the fluid the
homogeneity assumption of water having constant density. Density is in fact a
function of depth, temperature and salinity. However, variations of these prop-
erties of the water have negligible effects on density – changes in salinity account
for variations of about 0.2%, temperature variations are responsible for up to
0.5% of density changes and a descent of 1km in depth increases the density by
no more than 0.5% (cf. [AT81], [Lig03]).

After having discussed the main modelling assumptions, let us turn to the equa-
tions that govern the motion of water.

2.2 Equations of motion

How can we describe the motion of a fluid? One way to answer this question
is to give the fluid’s properties at every spacial point in any instant of time.
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That is, to characterize the motion we would have to give the fluid’s velocity,
pressure, temperature, density and so on everywhere in the fluid. If we could
find the equations which govern the time evolution of these properties, we would
know how the water moves with time.

We already agreed on some simplifying assumptions and reduced the relevant
properties to velocity and pressure. Now let us look at the equations determining
the motion.

2.2.1 Mass conservation

The assumption of water being a homogeneous fluid is a good approximation
for the phenomena we are concerned with and enables us to derive a version of
the continuity equation for hydrodynamics. In physics, a continuity equation
basically describes the transport of some kind of conserved quantity. In a fixed
region the amount of this quantity can only change by the amount that enters
or leaves the region through the boundary. In fluid dynamics this means that
the rate at which water enters a fluid volume equals the rate at which it leaves
the volume. The idea is that mass is neither generated nor destroyed anywhere
in the fluid. That is, there are no sources or sinks where “new” water is added
to the fluid body – if some amount of water flows away from one point, the
amount left behind must decrease in kind. Now, let us derive an equation which
formalizes these thoughts.

Imagine a test volume V with surface S in the fluid. The amount of mass which
flows out of V through S in a unit time is

∫

S

ρu · n dS,

where n is the outward unit normal on S and u is the velocity vector of the
water, so u · n is the velocity component perpendicular to the surface S. The
change in time of the total amount of mass inside V is

d

dt

∫

V

ρ dx.

The principle of mass conservation says that this rate of change of mass is solely
due to the rate of mass flowing into V across S, so

d

dt

∫

V

ρ dx = −
∫

S

ρu · n ds.

In view of the divergence theorem and since V is a fixed region in space, we
may write ∫

V

∂ρ

∂t
dx = −

∫

V

∇ · ρu dx.
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Since we derived this equation for an arbitrary test volume V , this equation is
true only when

∂ρ

∂t
+ ∇ · ρu = 0, (2.1)

which is the continuity equation for the conserved quantity ρ. Since we as-
sumed the density ρ to be constant in the fluid we obtain the equation of mass
conservation for homogenous fluids,

∇ · u = 0.

For a two-dimensional vector field u = (u, v) and Cartesian coordinates x =
(x, y) the equation of mass conservation simplifies to

ux + vy = 0. (2.2)

At this point the reader should note the close connection between the notion of
an incompressible fluid and the principle of mass conservation.
A fluid is called incompressible when the density of each element of the fluid
is constant, that is, the rate of change of ρ following the motion of the fluid is
zero,

Dρ

Dt
= 0.

The expression DQ
Dt = ∂Q

∂t +u ·∇Q is the material derivative of some quantity Q.
It describes the rate of change of Q “at a point moving with the fluid’s velocity
u” or “following a fluid particle along its path”. The material derivative consists
of a differentiation with respect to time at a fixed point, ∂

∂t , and a convective
term u · ∇ which takes account of the motion of the fluid particles.
We can expand (2.1) to

∂ρ

∂t
+ ρ∇ · u + (u · ∇)ρ = 0,

and, using this new notation, rewrite the continuity equation in terms of the
material derivative as

Dρ

Dt
+ ρ∇ · u = 0. (2.3)

Thus, for incompressible fluids we recover the equation of mass conservation,
since the material derivative vanishes and ρ∇ · u = 0 only when ∇ · u = 0.
On the other hand, assuming that mass conservation ∇ · u = 0 holds, we have
that Dρ

Dt + ρ ∇ · u
︸ ︷︷ ︸

=0

= Dρ
Dt = 0, i.e. that the flow is incompressible.

We saw that the assumption of constant density is actually not necessary to
deduce the principle of mass conservation. Although it suffices to consider in-
compressible fluids to obtain mass conservation, we will maintain the assumption
of constant density to simplify calculations. Furthermore, note that mass con-
servation implies incompressibility (and vice versa) but not necessarily constant
density.
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2.2.2 Euler equations

After establishing and formalizing the concept of mass conservation we now
want to deduce an equation that governs the motion of water. The starting
point for our deduction will be Newton’s second law of motion which says that
force equals mass times acceleration,

F = m · a.

When we apply this equation to the fluid, the only quantity whose meaning
is clear from the beginning is mass, which is equal to the fluid’s density times
some specified volume. We will proceed step by step and answer the following
two questions:

1. What are the forces F acting on the fluid (at rest and in motion)?
2. What does acceleration a mean for a fluid?

In general fluid dynamics two types of forces are considered relevant in describing
the motion of a fluid: external forces (or body forces, which have a similar effect
on all fluid particles) and internal forces (which act between fluid particles).
Among these we can furthermore distinguish between forces acting normal to
any surface in the fluid and forces acting tangentially (shearing forces). We
already mentioned that a fluid’s viscosity gives a measure for how the fluid is
able to resist shear. Since we assume that water is inviscid, we can neglect
the shearing forces of viscosity. Therefore, the only relevant internal force is
the normal force P , whose magnitude is called pressure. As we are concerned
with gravity water waves, the only external force playing a role for us is gravity
F = (0, 0,−g), where g is the gravitational constant of acceleration. Gravity
is a conservative force in the sense that the work W done by moving a particle
from one point to another is independent of the path taken:

W =

∫

C

F dr = 0,

where the integral is taken over a closed contour C. This is equivalent to the
fact that the force F can be written as the gradient of a potential φ,

F = ∇φ.

Let us turn now to the internal pressure force and think for a moment about
the fluid at rest. When fluids are at rest, there are no shear forces, not even in
viscous fluids. This means that any stress (force per unit area) is always acting
normal to any surface in the fluid. This normal force per unit area is called
(hydrostatic) pressure and its magnitude is the same in all directions. This is
also known as Pascal’s Law. Although pressure is the same in all directions,
it may vary from place to place. If we imagine a small cube of unit volume of
water, the total force on it from pressure is −∇P , cf. [FLS63]. Even when the
water is at rest, there is gravity acting upon it, with the force per unit volume
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in terms of the potential given by ρ∇φ. These forces (gravity and pressure)
must be balanced when the fluid is at rest, so that

−∇P + ρ∇φ = 0. (2.4)

This equation is called the equation of hydrostatics. In our case of constant
density, we can reformulate it to ∇(P − ρφ) = 0, which has a solution along
any line where P − ρφ = const.
Let us go back to Newton’s law of motion, which tells us that the forces that
are balanced when the fluid is at rest, behave according to F = m · a when
things start to move. Now it is time to address the question about acceleration.
The thrust lies in understanding the different meanings of differentiation from
Lagragian and Eulerian viewpoints. The vector field u gives the velocity of a
fluid particle at (x, t). A first guess for finding an expression for acceleration
would probably be ∂u

∂t . However, this just gives the rate at which the veloc-
ity u changes in time at a fixed point in space. What we need is the rate at
which the velocity of a particle changes as it moves through the fluid along its
particle path. Think of x(t) as the path of a fluid particle as it moves with
the fluid, that is, its velocity is equal to the fluid velocity, dx

dt = u. Then us-
ing the chain rule formula from vector calculus one gets for the rate of change
∂
∂tu(x(t), t) = ∇u· dx

dt + ∂u

∂t = Du

Dt , which is the material derivative we discussed
before.
Note that there can be an acceleration of particles although ∂u

∂t = 0. Just think
of a river or creek as it bends around a big rock. The water flows steadily in
the sense that there is (during the time of your observation) always the same
amount of water flowing with the same speed in the same direction. So at every
fixed location there is no observable change in the flow field, that is ∂u

∂t = 0.
However, if you focus on one water particle and follow it with your eyes, as it
approaches the rock you will find that it accelerates near the rock and after it
has passed, slows down again. Thus, its material derivative Du

Dt will not be zero.
From the point of view of a single particle, a change of velocity has occurred.
This is exactly the type of acceleration that we need to take into into account.

Now we are ready to use Newton’s second law of motion to balance the forces
within the test volume V we had before: The total force acting on the water is
equal to the water’s mass times the total acceleration of all water particles in
V , ∫

V

−∇P + ρ∇φ dx =

∫

V

ρ
Du

Dt
dx.

Let us set the constant density ρ = 1. Then the above equation yields

Du

Dt
= −∇P + ∇φ,

since we derived it for arbitrary V . Written separately for each component of
u = (u, v) and using that the potential is simply given by φ = −gy, where
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g = 9.81m/s is the gravitational acceleration, we obtain the two-dimensional
Euler equations

ut + uux + vuy = −Px (2.5)

vt + uvx + vvy = −Py − g. (2.6)

2.3 Boundary conditions

Before we discuss what conditions we have to impose at the boundary of the fluid
domain, let us specify what the actual boundaries are in our setting. We consider
water in the ocean with a so called free surface on top of the fluid which can
be parametrized by a function y = µ(x, t). The free surface is to be determined
and thus forms part of the problem (and the solution). On the bottom we have
a fixed impermeable bed, which means that water particles cannot penetrate
the seabed. In many cases the water is assumed to extend to infinity in either
horizontal direction, and one is interested in the time evolution of the shape of
the free surface as a wave passes through the fluid domain. In our case, we want
the model to admit a shoreline. In cartesian coordinates (x, y), let the origin be
the intersection of the flat free surface and the seabed at the shoreline x = 0.
Let the horizontal x-axis be in the direction of the incoming right-running waves
and the vertical y-axis pointing upwards. We assume the fluid to extend to −∞
in the negative horizontal direction. The bed’s topography is assumed to be
given by the function b(x) where b(0) = 0 and b(x) < 0 for x < 0. For a gently
sloping beach we require b′(0) > 0. In the open sea we assume uniform depth
h0 such that b(x) = h0 for x far away from the shoreline x = 0. We will denote
the fluid domain by D = {(x, y) ∈ R

2 : x < 0, b(x) < y < µ(x, t)}.
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Figure 2.1: Fluid domain D

There are two types of boundary conditions, kinematic and dynamic. For the
free surface a kinematic boundary condition can be derived using the fact that
a surface S(x, t) = const. which moves with the fluid always contains the same
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fluid particles, that is, it must satisfy

DS

Dt
= 0.

This also holds for our free surface S(x, t) = y−µ(x, t) = 0 and means that fluid
particles that are on the surface initially remain there for all times. Writing out
the material derivative for each component thus yields the kinematic boundary
condition for the free surface

v = µt + uµx on y = µ(x, t).

Similarly for the bottom we have that D
Dt (y − b(x)) = 0, the difference being

that b does not depend on time. The kinematic boundary condition for the bed
is therefore given by

v = ubx on y = b(x).

The dynamic boundary condition solely involves pressure forces as we agreed
on neglecting surface tension and viscous forces. We decouple the motion of air
above the free surface from the motion of water via the condition

P = P0 on y = µ(x, t),

where P0 denotes the atmospheric pressure above sea level which we assume to
be constant. This approach is reasonable since the density of air is very small
compared to that of water. (If the fluid were viscous, we would also have to
consider stresses that the atmosphere exerts on the fluid surface.)

The equations we have derived so far are valid for general water wave prob-
lems and can be used in various models describing the motion of water. We
are, however, mainly concerned with applying them to velocity fields for back-
ground flows that describe the state of the water prior to the arrival of waves.
In particular, we will be modelling a steady background flow, which means that
at every point in the fluid domain the water moves in exactly the same way at
all times. This does not mean that the water is still. The fluid particles move
around and change their velocities all the time. It just expresses the fact that
∂u

∂t = 0 at each fixed point in the fluid. Thus, time dependency drops from our
equations1.

This more or less concludes our discussion of the physical laws of motion and
the boundary conditions involved in the problem. We summarize by stating the

1In many settings (for example when we consider travelling waves which move at constant
speed c > 0 without changing their shape), a steady flow means that the water flows at
constant speed so that the (x, t)-space-time dependence of the free surface, the pressure and
the velocity field is of the form (x− c, t). Then one can pass to a moving frame via the change
of coordinates (x− ct, y) 7→ (x, y) and thereby eliminate time from the problem.
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equations governing the background state of our flow field (u, v) in D:

uux + vuy = −Px (2.7)

uvx + vvy = −Py − g (2.8)

ux + vy = 0 (2.9)

P = P0 on y = µ(x) (2.10)

v = uµx on y = µ(x) (2.11)

v = ubx(x) on y = b(x) (2.12)

2.4 Stream function

For a two-dimensional velocity field (u, v) we obtain a simpler formulation of
the problem by introducing a so-called stream function ψ(x, y) : R

2 → R,

ψx = −v (2.13)

ψy = u. (2.14)

This definition is unique up to an additive constant since we may write

ψ(x, y) =

∫ y

b(x)

u(x, ξ) dξ + d(x).

Differentiating with respect to x in view of mass conservation (2.9) and the
boundary condition (2.12) yields

ψx(x, y) = −bx(x)u(x, b(x)) +

∫ y

b(x)

ux(x, ξ)
︸ ︷︷ ︸

−vy(x,ξ)

dξ + d′(x) (2.15)

= −v(x, b(x)) − v(x, y) + v(x, b(x)) + h′(x) = ψx(x, y) + d′(x), (2.16)

so d′(x) = 0 and thus d ≡ d0 is constant.
Existence of such a C2-function ψ is guaranteed, since in view of mass conser-
vation (2.9) the vector field (−v, u) is curl free, that is

∇× (−v, u) = ux + vy = 0.

The fact that our fluid domain is simply connected thus ensures existence of
a function ψ with ∇ψ = (−v, u), which is exactly how we defined the stream
function. Because the gradient of ψ does not vanish, at least locally the level
sets of ψ,

ψα = {(x, y) ∈ R
2 : ψ(x, y) = α},

are curves with the same regularity as ψ. Furthermore ψα⊥∇ψ⊥(u, v) which
means that the levelsets ψα are tangential to the velocity field. We call ψα
streamlines. Note that although streamlines can be very useful to analyze the
flow, they do not coincide with the particle trajectories unless the flow is steady.
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We find that the stream function is constant on both the free surface and the
bottom as

d

dx
ψ(x, µ(x)) = ψx + ψyµx = −v + uµx = 0

on y = µ(x) in view of (2.11), and

d

dx
ψ(x, b(x)) = ψx + ψyb

′(x) = −v + ub′(x) = 0

on y = b(x) by the boundary condition (2.12). Thus the free surface as well as
the sea bed are streamlines. In this terminology, existence of a shoreline at x = 0
means that these two streamlines intersect and b(0) = µ(0) = 0. Therefore, the
constant value of ψ on the two curves has to be the same and we may set it equal
to zero. Thus, also d0 = 0, which uniquely determines the stream function.

2.5 Vorticity

A heuristic explanation of this concept as a measure for the local spin of fluid
particles was already given in the introduction. In the mathematical modelling
of fluid motion vorticity is defined as the curl of the velocity field of the fluid,

ω = ∇× u. (2.17)

To get a better understanding of this rotational movement from a mathematical
point of view consider a three-dimensional velocity field u. Imagine a small
circular disc S in the fluid bounded by the contour C, centered at a point p,
and oriented via the unit normal n(p). Recall Stokes’ Theorem

∫

C

u · dl =

∫

S

(∇× u(x))
︸ ︷︷ ︸

ω(x)

·n(x) dS.

The expression on the left hand side is called circulation of u around C. This
value is zero if the vector field u is aligned with n, since then u has no com-
ponents tangential to the disc. The circulation gets bigger the more u aligns
with vectors tangential to the disc. When we take the disc S centered at p to
be infinitely small, ω(x) and n(x) can be reasonably approximated by ω(p) and
n(p). Their dot product will then be approximately the circular density of u at
p,

ω(p) · n(p) ≈ 1

S

∫

C

u · dl.

When n points in the direction of the vorticity vector ω, this value is greatest.
We can therefore regard the vorticity as a measure for local rotation (or spin)
on an infinitesimal disc perpendicular to the direction of the vorticity vector.

In the case of a two-dimensional velocity field, the vorticity is given by

ω = vx − uy.
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Note that this is in a sense abuse of notation, since the curl of a three dimen-
sional vector field is by definition again a vector of three dimensions. What
we are actually doing here is extending our two dimensional velocity field to
(u, v, 0). Taking the curl, we get a vector of the form (0, 0, vx − uy). It points
in the direction of the axis of rotation and its norm gives the magnitude of the
infinitesimal rotation of the vector field. Thus, when we write ω = vx − uy we
mean that there is vorticity present with magnitude vx − uy and with the axis
of rotation pointing in the z-direction, perpendicular to the (x, y)-plane.

Notice that vorticity does not describe global rotation of the fluid body, but
local rotation of fluid particles. To illustrate why we have to be careful not to
confuse the local spin of fluid elements with global rotation in a fluid domain,
let us state two examples.

Example 1 In a torus, consider the velocity field defined by

u = − y

x2 + y2
, v =

x

x2 + y2
.

A short calculation shows that ω = vx − uy = 0, so there is no local spin. On
the other hand, if we look at the particle trajectories

x′(t) = − y

x2 + y2
, y′(t) =

x

x2 + y2
,

with initial positions x(0) = x0, y(0) = y0 we can solve this system of ordinary
differential equations by rewriting it in polar coordinates

x = r cos(θ), y = r sin(θ).

Since
d

dt
r2(t) =

d

dt
(x2(t) + y2(t)) = xx′ + yy′ = 0,

we have for the radius that r(t) = r0. We find that θ(t) = t/r20 + θ0 and thus

x(t) = r0 cos(θ0 + t/r20), y(t) = r0 sin(θ0 + t/r20).

This means that the particles move in circles around the torus. Therefore there
is a global rotation with angular velocity 1/r20 although the flow is irrotational.

Example 2 In contrast, consider in the same torus the velocity field defined
by

u = −y, v = x.

Then the vorticity of the flow is ω = vx − uy = 2 and again the particle trajec-
tories show global rotation with angular velocity 1. Hence in this case we get
both global and local rotation.
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Vorticity can in some cases even be expressed as a function of ψ, the stream
function. To see this take the curl of the Euler equations (2.5)

0 = ∂x[uvx + vvy + Py + g] − ∂y[uux + vuy + Px]

= uxvx + uvxx + vxvy + vvyx + Pyx

− uyux − uuxy − vyuy − vuyy − Pxy (2.18)

(2.9)
= u(vxx − uxy) − v(uyy − vyx)

= ψy ωx − ψx ωy,

where we have used the condition of mass conservation and the definitions of ω
and ψ. ψy ωx − ψx ωy = 0 is equivalent to (u, v) · ∇ω = 0, which means that
the velocity field (u, v) is perpendicular to the gradient of ω. We already know
that the streamlines ψα are tangential to (u, v), so ∇ω⊥ψα. Furthermore, the
gradient of ω is perpendicular to the level sets of ω, ∇ω⊥ωα. Summing up, we
have that ψ and ω have the same levelsets, so that we may specify ω by means
of a vorticity function γ with

ω = γ(ψ). (2.19)

2.6 Reformulation of the system

To obtain a more convenient formulation of the governing equations (2.7)-(2.12)
in terms of the stream function ψ and the vorticity distribution γ, we introduce
the energy functional

E(x, y) =
|ψ|2
2

+ P + g y + Γ(ψ), (2.20)

where Γ(ψ) =
∫ ψ

0
γ(s) ds. It is easy to see that E(x, y) ≡ E0 is constant

throughout the fluid domain D, whenever the Euler equations hold:

∂xE(x, y) = ψxψxx + ψyψyx + Px + ψx γ(ψ)
︸︷︷︸

=ω

= vvx + uux + Px − v(vx − uy)

= uux + vuy + Px = 0,

and

∂yE(x, y) = ψxψxy + ψyψyy + Py + g + ψy γ(ψ)
︸︷︷︸

=ω

= vvy + uuy + Py + g − u(vx − uy)

= uvx + vvy + Py + g = 0.

In the expression (2.20), the term |ψ|2
2 is the kinetic energy, gy is the gravita-

tional potential energy, P is the energy due to the fluid pressure that is exerted
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upon each particle by the fluid around it, and Γ(ψ) can be interpreted as the
rotational energy. Notice that

∆ψ = ∂xψx + ∂yψy = −vx + uy = −ω
= −γ(ψ) in D.

In terms of the stream function, the kinematic boundary conditions (2.11) and
(2.12) read

ψx = −ψyµx on y = µ(x)

ψx = −ψybx on y = b(x).

To express the remaining dynamic boundary condition involving P we consider
the above expression E on y = µ(x), which is equivalent to

2(E0 − P0 − gy) = ψ2
y(µ

2
x + 1) on y = µ(x). (2.21)

At this point, recall that we want to model background states where the water
surface is flat in the absence of waves. That is, we are dealing with the spe-
cial situation of a flat free surface y = µ(x) = 0. This simplifies the boundary
conditions even further. We already know that ψ = 0 on both boundaries, so
in particular ψx(x, 0) = 0. Also, since we assumed bx(0) 6= 0, the kinematic
boundary condition on the bottom yields ψx(0, 0) = −ψy(0, 0)bx(0) = 0, so
ψy(0, 0) = 0. But evaluating E at (0, 0) yields E0 = P0 and therefore, in view
of (2.21), ψy = 0 on y = 0.

We can finally formulate the equations governing the background state with a
flat surface in terms of the stream function ψ as







∆ψ = −γ(ψ) in D
ψ = ψy = 0 on y = 0
ψ = 0 on y = b(x)

(2.22)

given a vorticity distribution γ and the bottom profile b in the fluid domain
D = {(x, y) ∈ R

2 : x < 0, b(x) < y < 0} .
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Figure 2.2: Fluid domain D with a flat free surface and an isolated region of
non-zero vorticity
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Our aim is to show existence of an isolated region of non-zero vorticity in D (see
Figure 2.2). That is, we have to find a suitable vorticity function γ and prove
that (2.22) has a non-trivial solution with compact support.

In (2.22) we have boundary conditions for the solution ψ on top and on the bot-
tom, as well as a boundary condition on top for its derivative. Consequently, we
are dealing with an over-determined boundary value problem and it is expected
that a non-trivial solution will only exist for certain classes of functions γ. We
shall see in Section 4.4.2 that for a linear vorticity function γ(ψ) = aψ + b,
system (2.22) admits only trivial solutions. Furthermore we will prove that
choosing γ ∈ C1 precludes radially symmetric solutions with compact support
in the fluid domain. The details will be discussed in Chapter 4.



Chapter 3

Basic Theory of Ordinary
Differential Equations

In the discussion of the main result in Chapter 4, we will be essentially concerned
with solving a system of two first order ordinary differential equations subject
to initial conditions. Problems in solving this initial value problem arise due to
the fact that it fails to be locally Lipschitz in the dependent variable, and even
displays a discontinuity in the independent variable. In this chapter we will give
a quick overview of some important results in the theory of ordinary differential
equations (cf. [CL55], [Cop65]). It will then become clear in the next chapter
why we cannot apply standard results in our case, which makes the analysis of
the problem at hand somewhat harder.

3.1 Existence

Consider a domain D = {(t, x) ⊂ R
2 : t ∈ I an open interval on the real line,

|x| <∞} and f ∈ C(D) a real valued continuous function in D. We denote the
derivative with respect to the independent variable t by ′ = d

dt .

Initial value Problem (IVP): Find an interval I and a solution ϕ of the
differential equation

x′ = f(t, x), t ∈ I, (3.1)

which satisfies the initial condition

x(t0) = ξ0, t0 ∈ I. (3.2)

A function ϕ is called a solution of (3.1) if it is defined and differentiable on I
such that

(i) (t, ϕ(t)) ∈ D, and it satisfies

(ii) ϕ′(t) = f(t, ϕ(t)) for t ∈ I.

19
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Clearly, if ϕ is a solution to (3.1) then ϕ ∈ C1 on I, on account of (ii), since f
is continuous.

We will state all results for first order ODE and x ∈ R, so that f takes values in
the (x, t)-plane. This can be easily generalized to higher dimensions and higher
order ODE or systems of ODE, regarding the dependent variables xi as coor-
dinates of a single vector variable x = (x1, . . . , xn) and f = (f1, . . . , fn), thus
treating (3.1) as a vector differential equation.

There are several methods establishing existence of solutions, and all depend
essentially on the fact that the differential equation (3.1) can be replaced by an
integral equation:

Lemma 3.1.1 The (IVP)of finding an interval I and a solution ϕ to (3.1)
with (3.2) is equivalent to finding all continuous functions ϕ on I satisfying the
integral equation

ϕ(t) = ξ0 +

∫ t

t0

f(s, ϕ(s)) ds.

Local existence of solutions to the (IVP) follows from

Theorem 3.1.2 (Cauchy – Peano) Suppose f ∈ C(D) and (t0, ξ0) ∈ D.
Then there exists a solution ϕ ∈ C1 of (3.1) satisfying (3.2) on some t interval
containing t0 in its interior.

The proof is based on the construction of a sequence of approximate solutions
ϕn of the (IVP), which is uniformly bounded and equicontinuous. Ascoli’s theo-
rem then guarantees existence of a subsequence converging uniformly to a limit
function satisfying (3.1.1).
If the solution is known to be unique, then every sequence of the polygon paths
ϕn converges uniformly to this solution. Thus, the proof is constructive in this
case.

Existence of solutions of the (IVP) can also be proved via an extension of
Brouwer’s fixed point theorem to function spaces:

Theorem 3.1.3 (Schauder – Tychonoff) Consider the set of continuous func-
tions F = {x(t) ∈ C(I) : |x(t)| ≤ µ(t) for all t ∈ I}, where µ(t) is a fixed positive
continuous function. Let T : F → F such that

(i) T is continuous, in the sense that if xn ∈ F and xn → x uniformly
on every compact subinterval of J , then Txn → Tx uniformly on every
compact subinterval of J ,

(ii) the functions Tx ∈ TF in the image set of T are equicontinuous and
bounded at every point of J .

Then the mapping T has at least one fixed point in F.
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Its application to the initial value problem follows immediately. Let f(t, x) be
continuous and bounded on the strip t ∈ I = [t0, t1], |x| < ∞ and let T be the
continuous mapping of C(I) into itself defined by

(Tx)(t) = ξ0 +

∫ t

t0

f(s, x(s)) ds.

If |f(t, x)| ≤M , then

|(Tx)(t) − (Tx)(t̃)| ≤
∫ t

t̃

|f(s, x(s))| ds ≤M |t− t̃|,

so the function T is equicontinuous and bounded by |ξ0| +M(t1 − t0). Taking
µ(t) = |ξ0| +M(t1 − t0), all conditions of the Schauder–Tychonoff theorem are
satisfied and hence the mapping T has at least one fixed point in F , that is,
there exists x̂ ∈ F such that x̂ = T x̂. By the definition of T , x̂ is a solution to
(3.1.1),

x̂(t) = T x̂(t) = ξ0 +

∫ t

t0

f(s, x̂(s)) ds,

and thus a solution to the (IVP) in view of Lemma 3.1.1.

3.2 Uniqueness

An essential concept in establishing uniqueness results is that of Lipschitz conti-
nuity. A function f defined in the domain D of the (t, x)-plane is said to satisfy
the Lipschitz condition with respect to x in D, if there exists a constant L > 0
such that

|f(t, x1) − f(t, x2)| ≤ L |x1 − x2|, (3.3)

for every (t, x1), (t, x2) in D. This condition is trivially satisfied for functions of
class C1. A function is called locally Lipschitz in D, if for every point (t, x) in D
there exists a neighborhood where the function satisfies the Lipschitz condition.
Notice that if f is Lipschitz in D, it is in particular uniformly continuous in x
for fixed t, although nothing is implied about the continuity of f in t.

Lemma 3.2.1 (Gronwall) Let λ(t) be a real continuous function and µ(t) a
non-negative continuous function on an interval [a, b]. If a continuous function
y(t) has the property that

y(t) ≤ λ(t) +

∫ t

a

µ(s) ds,

for a ≤ t ≤ b, then on the same interval

y(t) ≤ λ(t) +

∫ t

a

λ(t)µ(s) exp

(∫ t

s

µ(r) dr

)

ds.
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With this lemma, a straightforward proof of another important inequality can be
given, from which existence and uniqueness as well as results on the continuity
of solutions can be deduced.

Theorem 3.2.2 Let x1(t), x2(t) be differentiable functions such that

|x1(a) − x2(a)| ≤ δ,

and
|x′i(t) − f(t, xi(t))| ≤ εi, (i = 1, 2)

for t ∈ [a, b]. If the function f is Lipschitz in x with constant L, then

|x1(t) − x2(t)| ≤ δeL(t−a) + (ε1 + ε2)[e
L(t−a) − 1]/L

for t ∈ [a, b].

When δ = ε1 = ε2 = 0, x1, x2 are two actual solutions of (3.1) passing through
the same point at t = t0. Then x1(t) = x2(t) everywhere in [a, b], which proves
the following uniqueness result:

Theorem 3.2.3 Suppose f(t, x) is Lipschitz in x and continuous in t. If ϕ1, ϕ2

are two solutions of (3.1) on some interval I containing t0 such that ϕ1(t0) =
ϕ2(t0) = ξ0, then ϕ1 ≡ ϕ2 everywhere on I.

Existence can also be proved from Theorem 3.2.2 and we will see another ap-
plication in the next chapter on continuity of solutions.

Another way of obtaining existence and uniqueness of solutions of the (IVP)
in one go is based on the method of successive approximations, originally used
by Peano for linear ODE and later for non-linear equations by Picard (it is
sometimes referred to as the theorem of Picard – Lindelöf). In a more abstract
setting, it can be formulated using the notion of a contraction principle.
On a Banach space X a mapping T : F ⊂ X → X is called a contraction iff
there exists a real constant 0 < K < 1 such that

|Tx− Ty| ≤ K|x− y|, x, y ∈ F.

Consider Banach’s contraction principle in the following form:

For F ⊂ X a closed subspace of a Banach space X, any contraction T : F → F
has a unique fixed point.

Any contraction has at most one fixed point, the contraction principle states
that this is the only one. The proof is based on the fact that we can recursively
define a sequence {xn} by setting xn = Txn−1, n = 1, 2, . . . which is Cauchy
and therefore, as F is closed, converges in F .
The application to an (IVP) is stated in the following
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Theorem 3.2.4 If f(t, x) ∈ C(D) is Lipschitz in x with constant L, then the
(IVP) has a unique solution on I.

For the proof, take the Banach space X of continuous functions on I = [t0, t1]
with norm ‖x‖ = sup{t0≤t≤t1}{e−K(t−t0)|x(t)|}, where K is some constant
greater than L, and define the mapping

T : X → X, (Tx)(t) = ξ0 +

∫ t

t0

f(s, x(s)) ds.

After proving that T is a contraction, the theorem follows by the contraction
principle. We already saw that a fixed point of T is a solution to the (IVP) in
the discussion after Theorem 3.1.3.

Before moving on to the next topic of continuity of solutions with respect to the
initial condition, we briefly address the issue of continuation of solutions. The
previously stated results on existence and uniqueness of solutions are all valid
only locally around a starting point (t0, ξ0). However, if f remains bounded
solutions can be continued over the entire real line, that is, solutions are global
unless blow-up occurs.

Theorem 3.2.5 Let f ∈ C(D) and ϕ a solution of (3.1) on an interval (a, b).
If f is bounded on D, then the limits ϕ(a+) = limt→a+ ϕ(t) and ϕ(b−) =
limt→b− ϕ(t) exist. If furthermore (t, ϕ(a+)), (t, ϕ(b−)) lie in D, then the solu-
tion ϕ may be continued to the left of a, or right of b.

3.3 Continuous dependence on initial conditions

We can consider a solution of a differential equation not only as a function of
the independent “time” variable t, but also as a function depending on the co-
ordinates of an initial point through which the solutions passes. That is, we
consider a solution ϕ = ϕ(t, t0, ξ0) of the (IVP) and ask ourselves under what
assumptions ϕ is a continuous function of (t, t0, ξ0).
Based on Theorem 3.2.2 from the previous section, we can say that if f is Lip-
schitz, then a solution to the (IVP) depends continuously on initial conditions.

Corollary 3.3.1 Suppose f is Lipschitz with constant L and consider two so-
lutions ϕ1 = ϕ1(t, a, ξ1) and ϕ2 = ϕ2(t, a, ξ2) of (3.1) with initial conditions
ϕ1(a) = ξ1, ϕ2(a) = ξ2 such that |ξ1 − ξ2| < δ. Then for t ∈ [a, b] they satisfy
the inequality

|ϕ1(t) − ϕ2(t)| ≤ δeL(t−a).

The requirement of f being Lipschitz continuous is actually more than we need;
its consequence, uniqueness of solutions, suffices to prove continuous dependence
of solutions on initial conditions.
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Theorem 3.3.2 Consider a domain D in (t, x)-space and let f be continuous
and bounded by a constant on D. Suppose the (IVP) has a unique solution ϕ0

on [a, b], with t0 ∈ [a, b]. Then there exists δ > 0 such that for all (τ, µ) fixed
satisfying

|τ − t0| + |µ− ξ0| < δ

all solutions ϕ = ϕ(t, τ, µ) of

x′ = f(t, x), x(τ) = µ

exist over the entire interval [a, b] and as (τ, µ) → (t0, ξ0),

ϕ(t, τ, µ) → ϕ0 = ϕ(t, t0, ξ0)

uniformly over [a, b].



Chapter 4

Background States with
Isolated Regions of
Vorticity

In Chapter 2 we deduced a model for a background flow with flat free surface
in the fluid domain D in terms of the stream function ψ, given a vorticity
distribution γ and a function b determining the shape of the seabed. We found
that the motion is governed by the equation

∆ψ = −γ(ψ) in D, (4.1)

subject to the boundary conditions

ψ = ψy = 0 on y = 0
ψ = 0 on y = b(x).

(4.2)

Consider the vorticity function

γ(ψ) =

{

ψ − ψ|ψ|−α for ψ 6= 0,

0 for ψ = 0,
α ∈ (0, 1). (4.3)

Theorem 4.1 System (4.1)-(4.2) has a non-trivial, radially symmetric C2-solution
ψ with compact support in the fluid domain D. This models a background state
with flat surface containing an isolated region of non-zero vorticity outside of
which the water is still.

Note that for solutions with compact support the boundary conditions (4.2) will
be trivially satisfied, as ψ ≡ 0 outside some compact region. The restriction to
radially symmetric solutions allows us to use the Ansatz

ψ(x, z) = ψ(r) with r =
√

(x− x0)2 + (y − y0)2 for (x0, y0) ∈ D.

25
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Figure 4.1: The vorticity function γ for the value of α = 1
2

Equation (4.1) thus simplifies to the second order ordinary differential equation

ψ′′ +
1

r
ψ′ = −γ(ψ), r > 0, (4.4)

where ′ denotes the derivative with respect to r. To be able to uniquely deter-
mine a solution to (4.4), we have to specify initial values for ψ and ψ′ at r = 0,
say ψ(0) = a1, ψ

′(0) = a2.
We claim the existence of a > 0, such that (4.4) has a unique, non-trivial solu-
tion with compact support on [0,∞) with initial values

(ψ(0), ψ′(0)) = (a, 0). (4.5)

Instead of solving this second order initial value problem, consider the equivalent
system of first order ordinary differential equations







ψ′ = β,

β′ = − 1
rβ − ψ + ψ|ψ|−α,

r > 0, (4.6)

with initial values
ψ(0) = a, β(0) = 0. (4.7)

Define

aα := (
2

2 − α
)

1
α > 1 and Mα :=







a
2

α4
α for 0 < α ≤ 1

2 ,

a
8

(1−α)α2

α for 1
2 ≤ α < 1.

(4.8)

The following two results will be crucial in proving Theorem 4.1. Their proofs
will be the subject of Sections 4.1 and 4.2, respectively.

Proposition 4.2 For all a > aα there exists a unique C2-solution (ψ, β) to
(4.6)-(4.7) which depends continuously on the initial data (a, 0) on any compact
interval on which ψ2(r) + β2(r) > 0. Furthermore the solution satisfies ψ > 1
for r ∈ [0, 1].



Chapter 4. Background States with Isolated Regions of Vorticity 27

Proposition 4.3 There exists a > Mα > aα such that for the corresponding
solution (ψ, β) of (4.6)-(4.7) there is a finite value T > 0 with ψ(T ) = β(T ) = 0.

Proof of Theorem 4.1 As we are looking for radially symmetric solutions to
(4.1), it suffices to consider the initial value problem (4.4)-(4.5) which in turn is
equivalent to the system (4.6)-(4.7). By virtue of Propositions 4.2 and 4.3 there
exists a value of a > Mα > aα such that for the corresponding uniquely defined
C2-solution to (4.6)-(4.7), we can find T > 0 such that ψ(T ) = β(T ) = 0. Then
by setting ψ(r) = 0 for r ≥ T we obtain a compactly supported solution of
(4.4) defined for all r ≥ 0. By Proposition 4.2 the solution is strictly greater
than 1 on [0, 1]. This is the radially symmetric compactly supported non-trivial
C2-solution of (4.1) we were looking for.
Recall from (2.19) that we set the vorticity ω = γ(ψ). Since ψ has compact
support with ψ > 1 on a ball of unit radius in the fluid domain D, we obtain an
isolated region of non-zero vorticity which contains a ball of unit radius where
ω = γ(ψ) > 0. �

4.1 Uniqueness and continuous dependence of
solutions

The aim of this section is to prove Proposition 4.2. We claim that for any a > aα
there exists a unique C2-solution (ψ, β) to (4.6)-(4.7) which depends continu-
ously on the initial data (a, 0) on any compact interval on which ψ2(r)+β2(r) >
0 and for which ψ > 1 for r ∈ [0, 1].

This is not immediately clear for two reasons:

• the right hand side of (4.6) displays a discontinuity at r = 0, so the system
is not a classical initial value problem.

• since the vorticity function γ(ψ) fails to be locally Lipschitz when ψ = 0
the right hand side of (4.6) is not locally Lipschitz and we cannot apriori
expect uniqueness of solutions or continuous dependence on initial data
from the standard theory discussed in Chapter 3.

In the first part of the proof, summed up in Lemma 4.1.1, we consider the system
in the vicinity of the discontinuity at r = 0. In this case, it turns out to be more
convenient to work with formulation (4.4) . By a simple change of variables we
overcome the problem of the discontinuity and find that locally ψ stays away
from zero. We then solve this equivalent system using an integral Ansatz and
Banach’s fixed point theorem. After that we ensure continuous dependence of
the solution on the initial data (a, 0). In Lemma 4.1.2 we introduce an important
function which will be helpful in deriving results throughout the proofs of both
Proposition 4.2 and 4.3. In Lemma 4.1.3 we tackle the second part of the
proof as we treat the system (4.6) away from the discontinuity. By rewriting
it in polar coordinates we get existence and uniqueness of solutions as well as
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continuous dependence on initial data via standard results whenever the right
hand side is C1. We overcome the problem of a lack of local Lipschitz continuity
in one of the dependent variables by a simple application of the inverse function
theorem. This yields yet another formulation of the system which guarantees
local uniqueness and continuous dependence at points where the right hand side
fails to be Lipschitz.

Lemma 4.1.1 For r ∈ [0, 1] the system (4.6) can be equivalently written as

v′′ + e−2s(v − v|v|−α) = 0, s ≥ 0, (4.9)

where the initial values (4.7) are described by the limits

v(s) → a and v′(s)es → 0 for s→ ∞. (4.10)

(4.9) has a unique C2-solution which depends continuously on the parameter a
and is strictly greater than 1.

Proof We perform the change of variables

s = − ln r, ψ(r) = v(s), (4.11)

and find that (4.6) is equivalent to

v′′ + e−2s(v − v|v|−α) = 0, s ∈ R,

since (4.6) is equivalent to (4.4) and

ψ′(r) =
∂v(s)

∂s

∂s

∂r
= −v′(s)1

r
and ψ′′(r) = v′′(s)

1

r2
+ v′(r)

1

r2
.

Then

ψ′′ +
1

r
ψ′ + ψ − ψ|ψ|−α = v′′

1

r2
+ v′

1

r2
− 1

r2
v′ + v − v|v|α = 0

yields, in view of (4.11),

v′′ + r2(v − v|v|α) = v′′ + e−2s(v − v|v|α) = 0.

The restriction 0 ≤ r ≤ 1 is equivalent to s ≥ 0 in the new variable.
Let an arbitrary a > aα be fixed. We can deal with local existence and unique-
ness issues of a solution to (4.6)-(4.7) by considering the integral equation

v(s) = a−
∫ ∞

s

(
τ − s)e−2τ (v(τ) − v(τ)|v(τ)|−α

)

︸ ︷︷ ︸

γ(v(τ))

dτ, s ≥ 0, (4.12)

with

v′(s) =

∫ ∞

s

e−2τγ(v(τ)) dτ, s ≥ 0, (4.13)
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ensuring the corresponding asymptotic behavior (4.10), since

lim
s→∞

v(s) = lim
s→∞

a−
∫ ∞

s

(
τ − s)e−2τγ(v(τ))dτ = a

and

lim
s→∞

v′(s)es = lim
s→∞

∫ ∞
s
e−2τγ(v(τ))dτ

e−s
= lim
s→∞

e−2sγ(v(s))

e−s

= lim
s→∞

e−s γ(v(s))
︸ ︷︷ ︸

→a−a|a|−α

= 0,

where we used the rule of de l’Hospital in the second equality.
As long as v(s) ≥ 1 we have that v is non-decreasing, since γ(v) ≥ 0 which in
view of (4.13) gives v′(s) ≥ 0. We even have

v(s) > a1−α > 1 for s ≥ 0. (4.14)

Indeed, if this were not so, define s1 := sup{s ≥ 0 : v(s) = a1−α}. Then for
all s ≥ s1 we have 1 < a1−α ≤ v(s) ≤ a, which in view of (4.12) yields a
contradiction as

0 < a− a1−α = a− v(s1) =

∫ ∞

s1

(τ − s1)e
−2τ

(

v(τ) − v(τ)1−α
)

dτ

≤ (a− a1−α)

∫ ∞

s1

(τ − s1)e
−2τdτ = (a− a1−α)

e−2s1

4

≤ (a− a1−α)

4
,

in view of the fact that γ(v) is strictly increasing for v ∈ [a1−α, a]. So for s ≥ 0
we have that v(s) > a1−α > 1 is non-decreasing.

These considerations allow us to view the solution of the integral equation (4.12)
as the unique fixed point of the contraction Ta defined by

Ta(v)(s) := a−
∫ ∞

s

(τ − s)e−2τ (v(τ) − v(τ)|v(τ)|−α)dτ, s ≥ 0, (4.15)

on the closed subspace Xa := {v ∈ X : a1−α ≤ v(s) ≤ a, s ≥ 0} of the Banach
space X of bounded continuous functions on [0,∞) endowed with the supremum
norm ‖v‖ = sups≥0{|v(s)|}.

Recall Banach’s contraction principle from Chapter 3:
For F ⊂ X a closed subspace of a Banach space X, any contraction T : F → F
has a unique fixed point.

To be able to apply this principle to (4.15) and subsequently to the integral
equation (4.12), we have to check the hypothesis.
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Xa is clearly a closed subspace of X. Notice that for v ∈ Xa we have v ≥ 1,

since a > aα and thus a1−α > ( 2
2−α )

1−α

α > 1 for 0 < α < 1. Let us check that
Ta(v) ∈ Xa, i.e.

a1−α ≤ a−
∫ ∞

s

(τ − s)e−2τγ(v(τ))dτ ≤ a, s ≥ 0.

The upper bound follows from the fact that the integral is positive, since for
v ∈ Xa, v ≥ 1 and thus γ(v) ≥ 0. For the lower bound, we use the same
reasoning as in the proof of (4.14).
Now we show that Ta as defined above is a contraction.
Since the vorticity function γ defined in (4.3) is C1 on [1,∞), by the mean value
theorem (cf. [Die69]) there exists ξ ∈ (v, w) for v, w ≥ 1 such that γ(v)−γ(w) =
f ′(ξ)(v − w). This yields

|γ(v) − γ(w)| ≤ |v − w| for v, w,≥ 1, (4.16)

since for ξ ≥ 1, f ′(ξ) = 1 − ξ−α + αξ−α ≤ 1 is true.
Then for s ≥ 0 we have

∣
∣
∣

∫ ∞

s

(τ−s)e−2τ [γ(v(τ)) − γ(w(τ))]dτ
∣
∣
∣ ≤

∫ ∞

s

(τ−s)e−2τ
∣
∣
∣γ(v(τ)) − γ(w(τ))

∣
∣
∣dτ

≤
∫ ∞

s

(τ−s)e−2τ |v(τ) − w(τ)|dτ

≤ ‖v−w‖
∫ ∞

s

(τ−s)e−2τdτ =
1

4
‖v−w‖ ,

whenever v, w ∈ Xa. Thus

‖Ta(v) − Ta(w)‖ ≤
∣
∣
∣

∫ ∞

s

(τ − s)e−2τ

(

γ(v(τ)) − γ(w(τ))

)

dτ
∣
∣
∣

≤ 1

4
‖v − w‖ for v, w ∈ Xa, s ≥ 0,

which shows that Ta is a contraction on Xa with contraction constant K ≤ 1
4 .

Therefore, according to Banach’s contraction principle, Ta has a unique fixed
point, i.e. the integral equation (4.12) has a unique solution v ∈ Xa. To confirm
that the fixed point v = Ta(v) is really a solution of the differential equation
(4.9), observe that

∂s

∫ ∞

s

(τ − s)e−2τγ(v(τ))dτ = −
∫ ∞

s

e−2τγ(v(τ))dτ

So v′(s) =
∫ ∞
s
e−2τγ(v(τ))dτ and the fundamental theorem of calculus (cf.

[Die69]) yields (4.9), since

v′′(s) = ∂s

∫ ∞

s

e−2τγ(v(τ))dτ = −e−2sγ(s).
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The solution is of class C2 since v′′(s) = −e−2s(v(s)−v(s)1−α) is continuous for
s ≥ 0.

To show continuous dependence of the solution on the parameter a, let v1 ∈
Xa1

, v2 ∈ Xa2
. Then the integral equation (4.12) yields, in view of (4.16), that

for s ≥ 0

|v1(s) − v2(s)| ≤ |a1 − a2| +
∫ ∞

s

(τ − s)e−2τ
∣
∣
∣γ(v1(τ)) − γ(v2(τ))

∣
∣
∣dτ

≤ |a1 − a2| +
∫ ∞

s

(τ − s)e−2τ |v1(τ) − v2(τ)|dτ (4.17)

≤ |a1 − a2| +
e−2s

4
‖v1 − v2‖ ≤ |a1 − a2| +

1

4
‖v1 − v2‖ ,

and therefore

‖v1 − v2‖ ≤ 4

3
|a1 − a2|. (4.18)

This tells us that v depends continuously on the initial data a for s ≥ 0. (We
actually even obtain that the solution is stable, cf. [Cop65]). �

Remark In view of the formulation (4.6) of the problem, Lemma 4.1.1 tells
us that for r ≤ 1, (4.6)-(4.7) has a unique C2-solution (ψ, β) which depends
continuously on a for r ∈ [0, 1] and is such that ψ > 1 .

Before we proceed to the case where r ≥ 1, we prove the following useful

Lemma 4.1.2 The function

E(r) = E(ψ, β) =
1

2
β2 +

1

2
ψ2 − 1

2 − α
|ψ|2−α (4.19)

satisfies

E′(r) = −1

r
β2, r > 0, (4.20)

as long as solutions to (4.6)-(4.7) exist and remains bounded for all r > 0.
Furthermore, E(r) is strictly decreasing whenever (ψ(r), β(r)) /∈ {(0, 0), (±1, 0)}.
We can conclude that solutions to (4.6)-(4.7) are defined for all r ≥ 0 and that
ψ and β are bounded functions of r.

Proof As long as a solution to (4.6)-(4.7) exists, we have E′(r) = − 1
rβ

2, since
the derivative with respect to r of the function E(r) given by (4.19) can be
computed as

E′(r) = ψψ′ − |ψ|1−αsgn(ψ)ψ′ + ββ′

= ψβ − β|ψ|−αψ + β(−1

r
β − ψ + ψ|ψ|−α)

= −1

r
β2.
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Notice that E attains its minimum Emin = α
2(α−2) < 0 at (ψ, β) = (±1, 0), so

that (4.20) ensures that E remains bounded. Furthermore,

inf
ψ∈R

{ψ2

2
− 1

2 − α
|ψ|2−α

}

=
α

2(α− 2)
and lim

|ψ|→∞

{ψ2

2
− 1

2 − α
|ψ|2−α

}

= ∞.

Therefore ψ and β remain bounded as long as solutions exist, since otherwise
E would become unbounded. We can conclude that the solutions to (4.6)-(4.7)
are defined for all r ≥ 0.
In view of (4.20) we see that E(r) is strictly decreasing whenever (ψ(r), β(r)) /∈
{(0, 0), (±1, 0)}. Otherwise, for r2 > r1 > 0 with E(r2) = E(r1), we would have

0 = E(r2) − E(r1) =

∫ r2

r1

E′(r)dr = −
∫ r2

r1

β2(r)

r
dr.

This implies β(r) = 0 on [r1, r2] and consequently from (4.6) we have that
ψ′(r) = 0 and β′(r) = −ψ(r) + ψ(r)|ψ(r)|−α = 0 for all r ∈ [r1, r2]. Thus,
ψ(r) = ψ(r1) is constant in [r1, r2] and ψ(r1) = ψ(r1)|ψ(r1)|−α so that ψ(r) ∈
{0,±1}, a contradiction. �

Now we consider the system away from the discontinuity at r = 0 and prove
existence, uniqueness and continuous dependence of solutions on the parameter
a as long as ψ2 + β2 > 0.

Lemma 4.1.3 For r ≥ 1 system (4.6) can be equivalently reformulated as







θ′(r) = − 1

2r
sin (2θ) − 1 +R−α| cos(θ)|2−α,

R′(r) = −1

r
R sin2(θ) +R1−α sin(θ)

cos(θ)

| cos(θ)|α ,
r ≥ 1. (4.21)

As long as R > 0 this system of first order differential equations has a unique
C2-solution which depends continuously on the initial data (θ(1), R(1)), which
in turn depends continuously on the parameter a.

Proof We introduce polar coordinates

ψ = R cos(θ), β = R sin(θ), (4.22)

to show that (4.21) is yet another equivalent formulation of (4.6):

θ′(r) =
d

dr
arctan

(
β(r)

ψ(r)

)

=
β′ψ − βψ′

ψ2 + β2

(4.6)
=

− 1
rβψ − ψ2 + |ψ|2−α − β2

ψ2 + β2

(4.22)
=

− 1
rR

2 sin(θ) cos(θ) −R2 cos2(θ) +R2−α| cos(θ)|2−α −R2 sin2(θ)

R2

= − 1

2r
sin(2θ) +R−α| cos(θ)|2−α − 1,
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and

R′(r) =
ψ′ cos(θ) + ψ sin(θ)θ′

cos2(θ)

=
R sin(θ) cos(θ) +R cos(θ) sin(θ)(− 1

r sin(θ) cos(θ) +R−α| cos(θ)|2−α − 1)

cos2(θ)

= −1

r
sin2(θ)R+R1−α sin(θ) cos(θ)| cos(θ)|−α.

The initial data (θ(1), R(1)) is specified after solving the integral equation (4.12)
on [0,∞).
To show continuous dependence of (θ(1), R(1)) on a, notice that (4.13) in view
of (4.16) and (4.18) yields for s ≥ 0

|v′1(s) − v′2(s)| ≤
∫ ∞

s

e−2τ |γ(v1(τ)) − γ(v2(τ))|dτ

≤
∫ ∞

s

e−2τ |v1(τ) − v2(τ)|dτ

≤ 1

4
‖v1 − v2‖ ≤ 1

3
|a1 − a2|. (4.23)

Evaluating inequalities (4.17) and (4.23) at s = 0 together with (4.18) yields

|v1(0) − v2(0)| + |v′1(0) − v′2(0)| ≤ 5

3
|a1 − a2|. (4.24)

This means that if the initial data a varies little, both v and v′ vary lit-
tle at s = 0. In view of the formulation (4.21) of the initial value prob-
lem (4.6)-(4.7) this means that ψ and ψ′ = β vary little at r = 1. Thus,

θ(1) = arctan
(
β(1)
ψ(1)

)

and R(1) =
√

ψ2(1) + β2(1) depend continuously on a.

The considerations we made in Lemma 4.1.1 show that ψ(1) > a1−α > 0 and

R(1) =
√

ψ2(1) + β2(1) > 0, so cos(θ(1)) = ψ(1)
R(1) > 0. As long as R > 0 and

cos(θ) > 0 the right hand side of (4.21) is C1. Thus we get local existence and
uniqueness as well as continuous dependence on initial data (θ(1), R(1)) for a
solution to (4.21) by the standard results discussed in Chapter 3.

What we have to show is that as long as R > 0 this continues to hold even if
cos(θ(r)) = 0, that is, when a solution intersects the vertical axis in the (ψ, β)-
phase plane. At such points, the right hand side of (4.21) is still continuous,
but fails to be locally Lipschitz. Thus we can still rely on local existence of solu-
tions from Theorem 3.1.2 (Cauchy – Peano), since we know that the right hand
side of (4.21) is continuous and bounded by virtue of Lemma 4.1.2. Unique-
ness and continuous dependence on initial data on the other hand are no longer
guaranteed. We can overcome this problem by transforming the system in a
neighborhood of such values of r, taking advantage of its local structure.
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Denote by r0 the smallest value of r > 1 where cos(θ(r0)) = 0, say θ(r0) = −π
2 .

Since for r ∈ (1, r0) the right hand side of (4.21) is C1, the solution is unique
and depends continuously on the initial data (θ(1), R(1)) up to r0. We then
select one of the possible continuations of the solution across r = r0, cf. 3.2.5,
and show that this selection is unique and depends continuously on (θ(1), R(1))
close to r = r0.
Since cos(θ(r0)) = 0 and θ′(r0) = −1, the inverse function theorem (cf. [Die69])
guarantees the existence of neighborhoods (r0 − ε, r0 + ε) of r0 and (−δ, δ+) of
0 for sufficiently small ε > 0 and δ, δ+ > 0, as well as a uniquely determined
C1-function ϕ(τ) = r such that ϕ(0) = r0, ϕ(−δ) = r0 − ε and ϕ(δ+) = r0 + ε
which allows us to locally set

cos(θ(r)) = −τ.

Notice that this transformation preserves the monotonicity of the respective
independent variables, since θ′ < 0 and cos(θ) is increasing in a neighborhood of
−π

2 . Then r0−ε < r0 < r0+ε implies cos(θ(r0−ε)) > cos(θ(r0)) > cos(θ(r0+ε)),
or, equivalently, cos(ϕ(−δ)) > 0 > cos(ϕ(δ+)). This implies −δ < 0 < δ+,
since cos(θ(ϕ(τ))) = −τ in a δ-neighborhood of 0. Differentiating the equation
ϕ(τ) = ϕ(− cos(θ(r))) = r with respect to r ∈ (r0 − ε, r0 + ε) yields

ϕ′(τ) =
1

θ′(r) sin(θ(r))
, τ ∈ (−δ, δ+).

Setting
ρ(τ) = R(r)

yields

ρ′(τ) = R′(r)ϕ′(τ), for r ∈ (r0 − ε, r0 + ε), τ ∈ (−δ, δ+).

Now we transfer (4.21) for r ∈ (r0 − ε, r0 + ε) and τ ∈ (−δ, δ+) into the system







ϕ′(τ) =
1√

1 − τ2 + τ(1−τ2)
ϕ(τ) − ρ(τ)−α|τ |2−α

√
1 − τ2

,

ρ′(τ) = −
1

ϕ(τ)ρ(τ)
√

1 − τ2 − ρ(τ)1−α τ
|τ |α

−1 − τ
√

1−τ2

ϕ(τ) + ρ−α(τ)|τ |2−α
.

(4.25)

A straightforward calculation and the fact that

sin(θ) = −
√

1 − cos2(θ) = −
√

1 − τ2

and
sin(2θ) = 2 sin(θ) cos(θ) = 2τ

√

1 − τ2

for ε > 0 small enough shows that (4.25) and (4.21) are equivalent.
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The advantage of the system (4.25) with respect to (4.21) is that the lack of
C1-regularity in θ was shifted into a lack of C1-regularity in τ . Consequently,
the new system is C1 in the unknown variables (ϕ, ρ) ∈ (1,∞)× (0,∞) and con-
tinuous in the independent variable τ . This is enough to ensure uniqueness and
continuous dependence on initial data (ϕ(−δ), ρ(−δ)) of the solutions to (4.25),
cf. Sections 3.2 and 3.3. Furthermore, (ϕ(−δ), ρ(−δ)) depends continuously on
(θ(r0 − ε), R(r0 − ε)) via the C1-function ϕ(τ) = r and we already mentioned
the continuous dependence of solutions (θ(r), R(r)) on (θ(1), R(1)) and thus on
the parameter a for r ∈ (1, r0). We can therefore deduce that uniqueness and
continuous dependence on a of the solution to (4.21) holds also in a neighbor-
hood of r0.

This procedure can be repeated in almost the same way for the next value of
r > r0 where cos(θ(r)) = 0 as long as R > 0, i.e. where the solution intersects
the vertical axis in the upper half plane. Denote by r1 the value of r > r0 such
that θ(r1) = π

2 . Then again, since θ′(r1) = −1, the inverse function theorem
(cf. [Die69]) guarantees the existence of neighborhoods (r1 − ε, r1 + ε) of r1 and
(−δ, δ+) of 0 for sufficiently small ε > 0 and δ, δ+ > 0, as well as a uniquely
determined C1-function ϕ(τ) = r such that ϕ(0) = r1, ϕ(−δ) = r1 − ε and
ϕ(δ+) = r1 + ε which allows us to locally set

cos(θ(r)) = τ.

Notice that this time we choose τ instead of −τ to preserves monotonicity of
the respective independent variables, since cos(θ) is now decreasing in a neigh-
borhood of π

2 . So cos(θ(r1 − ε)) < cos(θ(r1)) < cos(θ(r1 + ε)), or, equivalently,
cos(ϕ(−δ)) < 0 < cos(ϕ(δ+)). This implies −δ < 0 < δ+ since cos(θ(ϕ(τ))) = τ
in a δ-neighborhood of 0. Differentiating the equation ϕ(τ) = ϕ(cos(θ(r))) = r
with respect to r ∈ (r1 − ε, r1 + ε) yields

ϕ′(τ) =
−1

θ′(r) sin(θ(r))
, τ ∈ (−δ, δ+).

As before, setting
ρ(τ) = R(r),

yields

ρ′(τ) = R′(r)ϕ′(τ), for r ∈ (r1 − ε, r1 + ε), τ ∈ (−δ, δ+).

Now we transfer (4.21) for r ∈ (r1 − ε, r1 + ε) and τ ∈ (−δ, δ+) into the system







ϕ′(τ) =
1√

1 − τ2 + τ(1−τ2)
ϕ(τ) − ρ(τ)−α|τ |2−α

√
1 − τ2

,

ρ′(τ) =

1
ϕ(τ)ρ(τ)

√
1 − τ2 − ρ(τ)1−α τ

|τ |α

−1 − τ
√

1−τ2

ϕ(τ) + ρ−α(τ)|τ |2−α
.

(4.26)
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Again, the fact that sin(θ) =
√

1 − cos2(θ) =
√

1 − τ2 and

sin(2θ) = 2 sin(θ) cos(θ) = 2τ
√

1 − τ2

for ε > 0 small enough ensures that (4.26) and (4.21) are equivalent. (4.26)
differs from (4.25) only by a change of sign in the second equation. Thus by the
same reasoning as above we deduce that uniqueness and continuous dependence
on a of the solution to (4.21) also holds in a neighborhood of r1.

Summing up, we can say that for values of r where cos(θ(r)) = 0, that is, where
θ(r) = −π

2 + 2kπ or θ(r) = π
2 + 2kπ for k ∈ Z, the above local transformations

guarantee uniqueness and continuous dependence on a of the solution to (4.21)
also in neighborhoods of such values as long as R > 0. In between these values
of r, the right hand side of (4.21) is C1 and everything follows from standard
results. �

This concludes the proof of Proposition 4.2, as we have seen that for any a > aα
there exists a unique C2-solution (ψ, β) to (4.6)-(4.7) for which ψ > 1 on [0, 1]
by virtue of (4.14) and which depends continuously on the initial data (a, 0) on
any compact interval on which ψ2(r) + β2(r) > 0.

4.2 Existence of a compactly supported solution

In this section, we prove Proposition 4.3, that is, we show that there exists a
value of a > aα such that for the corresponding solution to (4.6)-(4.7) we can
find some 0 < T <∞ with ψ(T ) = β(T ) = 0.

The idea is to perform a detailed qualitative analysis for the system (4.6)-(4.7),
similar to the phase-plane analysis of autonomous systems. We introduce two
sets Ω± defined by the solution sets of the equation E(ψ, β) = 0, where E is the
function defined in Section 4.1. In Lemma 4.2.1 we are going to show that for
initial data a large enough the solution can enter the region Ω± only for values
of r > 2

α . We will also see that the value of r at which the solution can enter
Ω± will tend to infinity as a→ ∞. After that, Lemma 4.2.2 ensures that there
exists an initial value a+ such that the corresponding solution stays outside
Ω− ∪ Ω+ for all r ≥ 0. Finally, in Lemma 4.2.3, we prove that for solutions
corresponding to such initial data a+ there exists a finite value T > 0 such that
E(T ) = 0, and therefore also ψ(T ) = β(T ) = 0.

Let us start with defining the sets Ω±. From (4.19) in Lemma 4.1.2 we have
that

E(ψ, β) = 0 if and only if β2 =
2

2 − α
|ψ|2−α − ψ2.

In the plane (ψ, β) the set where E < 0 consists of the interiors Ω± of the
closed curves representing the solution set of the above equation. These curves
are symmetrical with respect to the vertical and the horizontal axis and are
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Figure 4.2: The solution set of E = 0 in the phase plane (ψ, β) with arrows
indicating the dynamics of the system

tangential to one another and to the vertical axis at the origin. Note from (4.8)

that the curves reach their maximum βα = ( α
2−α )

1
2 at ψ = ±1 and they intersect

the horizontal axis at the points ψ = 0 and ψ = ±( 2
2−α )

1
α = ±aα.

To get a better understanding of the dynamics of the system (4.6), consider
the right half plane, where ψ > 0. At β = 0 we have ψ′ = β = 0 and
β′ = − 1

rβ − ψ + ψ|ψ|−α > 0 when ψ|ψ|−α > ψ which is true for 0 < ψ < 1,
whereas β′ < 0 for ψ > 1. In the left half plane, we have exactly the oppo-
site situation. Therefore, solutions intersect the horizontal axis perpendicularly
from the upper to the lower half plane for ψ > 1 and for −1 < ψ < 0. On the
complement of these sets, they intersect the axis in the opposite direction.
For ψ = 0 and β > 0 we have that ψ′ > 0 and β′ < 0, which means that
solutions intersect the vertical axis from left to right in the upper half plane. In
the lower half plane, the opposite is true (see Figure 4.2).

By Lemma 4.1.2, E is strictly decreasing as long as (ψ, β) /∈ {(0, 0), (±1, 0)}.
Therefore, once a solution reaches the boundary of Ω± at a point other than
(0, 0) it will enter Ω±. Once inside, a solution will stay in either Ω+ or Ω− for
all subsequent times, as E is strictly decreasing.

Recall from (4.8) that

Mα :=







a
2

α4
α for 0 < α ≤ 1

2 ,

a
8

(1−α)α2

α for 1
2 ≤ α < 1.

For certain initial data, solutions stay outside of Ω± for some time:

Lemma 4.2.1 For a > Mα we have that E(r) > 0 as long as r ∈ [0, 2
α ]. This

means that a solution to (4.6)-(4.7) with a > Mα can enter Ω± only for values
of r > 2

α . Additionally, we find that the value of r such that a solution can
enter Ω± tends to infinity as a→ ∞.
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Proof Let a > a
2

1−α

α . We know from the results in Lemma 4.1.1 that R(r) =
ψ(r)

cos(θ(r)) > a1−α > aα for r ∈ [0, 1], since (4.14) implies ψ(r) > a1−α for r ≤ 1.

If a solution with initial data a enters the region Ω+ ∪Ω−, then for some value

of r∗ > 1 we will have R(r∗) = aα < a
1−α

2 . We can therefore define

r0 = inf{r > 0 : R(r) = aα}
r1 = sup{0 < r < r0 : R(r) = a1−α} > 1 (4.27)

r2 = sup{r1 < r < r0 : R(r) = a
1−α

2 }

such that

a1−α = R(r1) ≥ R(r) ≥ R(r2) = a
1−α

2 for r ∈ [r1, r2].

The argument leading to the desired result requires us to consider separately the
case where α ∈ (0, 1

2 ] and the case where α ∈ [ 12 , 1). Some inequalities involving
functions of α in the exponent will be denoted by (a)-(c) and will be shown at
the end of the proof of this Lemma.
Let α ∈ (0, 1

2 ]. We claim that

r2 ≥ aα
3

. (4.28)

Indeed, assume to the contrary that r2 < aα
3

, then from (4.21) we infer that

R′(r) = −1

r
R sin2(θ)

︸ ︷︷ ︸

≤1

+R1−α sin(θ)
cos(θ

| cos(θ)|α
︸ ︷︷ ︸

≥−1

≥ −1

r
R−R1−α > −2

r
R.

In the last inequality we have used that R(r) ≥ a
1−α

2 , thus for α ∈ (0, 1
2 ] we have

that Rα ≥ a
(1−α)α

2

(a)

≥ aα
3

> r2 ≥ r for r ∈ [r1, r2], which yields R > rR1−α or,
equivalently, −R1−α > − 1

rR. Integrating the differential inequality

R′(r)

R(r)
> −2

r
, r ∈ [r1, r2]

with respect to r on [r1, r2] yields

lnR(r2) − lnR(r1) > −2(ln r2 − ln r1).

Then

ln r2 > ln r1 +
1

2
ln

(
R(r1)

R(r2)

)

= ln r1 +
1

2
ln

(
a1−α

a
1−α

2

)

= ln r1 + ln(a
1−α

4 ),

gives

r2 > r1 a
1−α

4 > a
1−α

4

(a)

≥ aα
3

for α ∈ (0,
1

2
].

This last argument yields a contradiction and we are done proving the claim
that r2 ≥ aα

3

.
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Note that this also means that r0 > r2 ≥ aα
3

and the smallest value of r
such that a solution can enter Ω− or Ω+ is r0. We can therefore deduce that

solutions corresponding to initial data a > a
2

α4
α will stay outside Ω− ∪ Ω+ at

least for values of r ∈ [0, 2
α ], since a > a

2
α4
α implies aα

3

> a
2
α

α = ( 2
2−α )

2
α2

(c)
> 2

α

and thus r0 > aα
3

> 2
α .

Now let α ∈ [12 , 1). We claim that in this case

r2 ≥ a
1−α

4 . (4.29)

If we assume to the contrary that r2 < a
1−α

4 , then from (4.21) we infer again
that

R′(r) ≥ −1

r
R−R1−α > −2

r
R,

since R(r) ≥ a
1−α

2 and thus Rα ≥ a
(1−α)α

2

(b)

≥ a
1−α

4 > r2 ≥ r for r ∈ [r1, r2] and
α ∈ [12 , 1), which yields −R1−α > − 1

rR.
Integrating the differential inequality

R′(r)

R(r)
> −2

r
, r ∈ [r1, r2],

with respect to r on [r1, r2] now yields

r2 > r1 a
1−α

4 > a
1−α

4 , α ∈ [
1

2
, 1).

This last argument again yields a contradiction and we are done proving the

claim that r2 ≥ a
1−α

4 .
Note that this also means that r0 > r2 ≥ a

1−α

4 and as before the smallest value
of r such that a solution can enter Ω− or Ω+ is r0. We can therefore deduce that

solutions corresponding to initial data a > a
8

(1−α)α2

α will stay outside Ω− ∪ Ω+

at least for values of r ∈ [0, 2
α ], since a

(1−α)α

4 > a
2
α

α = ( 2
2−α )

2
α2

(c)
> 2

α and thus

r0 > a
1−α

4 > a
2

α2
α ≥ a

2
α

α > 2
α .

Summing up, we can state that for a > Mα and r ≤ 2
α we have R(r) > aα and

it follows that

E(r) > 0 for r ∈ [0,
2

α
], if a > Mα, (4.30)

since

E(r) =
1

2
(β2 + ψ2) − 1

2 − α
|ψ|2−α =

1

2
R2 − 1

2 − α
R2−α| cos θ|2−α (4.31)

≥ R2−α
(

1

2
Rα − 1

2 − α

)

> a2−α
α

(
1

2
aαα − 1

2 − α

)

︸ ︷︷ ︸

= 1
2 ( 2

2−α
)

α

α − 1
2−α

=0

= 0. (4.32)
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This means that a solution with a > Mα can enter Ω− or Ω+ only for a value
of r > 2

α . Moreover, (4.28) and (4.29) show that as a → ∞ the value of r > 0
at which a solution enters the region Ω− ∪ Ω+ also approaches infinity.

What is still missing in the proof of this Lemma is to show that certain inequal-
ities hold, namely

(a) a
1−α

4 > a
(1−α)α

2 > aα
3

, for α ∈ (0, 1
2 )

(b) a
(1−α)α

2 > a
1−α

4 , for α ∈ ( 1
2 , 1)

(c) ( 2
2−α )

2
α2 > 2

α , for α ∈ (0, 1).
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Figure 4.3

Since a > 1, in (a) and (b) it suffices to consider the exponent functions of α in
and compare them in size (cf. Figure 4.3a). Inequality (c) is a bit more tricky
and can be shown in the following way (cf. Figure 4.3b).
First note that the statement is equivalent to

ln
2

2 − α
>
α2

2
ln

2

α
for α ∈ (0, 1).

We are going to show that this is true, since for all α ∈ (0, 1) we have on the

one hand ln 2
2−α >

α
2 and on the other hand α

2 >
α2

2 ln 2
α .

Let us start by proving the first claim. Define f(α) = α
2 , g(α) = ln 2

2−α for
α ∈ (0, 1). Both functions are monotone increasing and equal to 0 at α = 0.
Furthermore g′(α) = 1

2−α >
1
2 = f ′(α), so f(α) < g(α) for all α ∈ (0, 1).

For the proof of the second claim define h(α) = α ln 2
α . Then h(α) → 0 as α→ 0

and h(2) = 0. It is easy to check that h(α) has its only maximum at α = 2
e with

h( 2
e ) = 2

e < 1 which shows that h(α) = α ln 2
α < 1. Thus α

2 h(α) = α2

2 ln 2
α <

α
2 .

�
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Now we know that the solution to certain initial conditions a > Mα can only
enter the region Ω± for a value of r > 2

α . Furthermore, this value of r increases
if we let the starting point a tend to infinity. The question that arises is: will
all solutions with initial data a > Mα enter Ω±? The answer is no, which is the
result of the next

Lemma 4.2.2 There exists initial data a+ > Mα such that the corresponding
solution to (4.6)-(4.7) stays outside of Ω+ ∪ Ω− for all r ≥ 0.

Proof Outside of Ω−∪Ω+ we have E > 0 so that ψ2+β2 > 2
2−α |ψ|2−α. Passing

to polar coordinates (4.22) we find

− 1 − 1

2r
≤ θ′(r) ≤ −α

2
+

1

2r
, (4.33)

for the values of r > 0 where E(r) > 0. This is easy to see, as the derivative
with respect to r of θ(r) in view of (4.6) is given by

θ′(r) =
d

dr
arctan

(
β(r)

ψ(r)

)

=
β′ψ − βψ′

ψ2 + β2

(4.6)
=

− 1
rβψ − ψ2 + |ψ|2−α − β2

ψ2 + β2

= −1 − βψ

r(ψ2 + β2)
︸ ︷︷ ︸

=:A

+
|ψ|2−α
ψ2 + β2

︸ ︷︷ ︸

=:B

.

Since r > 0 we have |A| = |βψ|
r(ψ2+β2) ≤ 1

2r , and since E > 0 we have B < 2−α
2 .

Thus {
θ′(r) = −1 −A+B ≥ −1 −A ≥ −1 − 1

2r ,
θ′(r) = −1 −A+B ≤ −1 + 1

2r + 2−α
2 = −α

2 + 1
2r .

This estimate on θ′(r) gives an upper and lower bound on the angular velocity
of the solution for all values of r > 0 where E(r) > 0. In the previous lemma
we showed that E(r) > 0 at least for r < 2

α if a > Mα. Now, let us consider
values of r > 2

α for which E(r) is still positive. For such values, (4.33) reads

− 1 − α

4
< θ′(r) < −α

4
, (4.34)

since

θ′(r) ≥ −1 − 1

2r
> −1 − α

4
and θ′(r) ≤ −α

2
+

1

2r
< −α

2
+
α

4
= −α

4
.

Denote by D+, D− as the sets of points {(a, 0) : a > Mα} such that a solution
(ψ, β) to (4.6)-(4.7) with initial data (a, 0) will enter Ω+, Ω−, respectively, for
some finite value of r. Both sets D+ and D− are open by continuous dependence
of the solution on initial data. To see this, consider a point (a∗, 0) ∈ D+

whose corresponding solution enters the region Ω+ at time r = r∗. Then by
continuous dependence on the initial data, a solution whose starting point (a, 0)
lies sufficiently close to (a∗, 0) will also enter Ω+ at some time close to r∗ and
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in view of (4.20) stay there for all times.
In the beginning of the discussion of the proof of Proposition 4.2 we analyzed the
dynamics of the system and found that in the plane (ψ, β), outside of Ω− ∪ Ω+

a solution to (4.6)-(4.7) intersects the horizontal axis from the upper to the
lower half-plane on the right of the origin, and in the other direction on the
left of the origin. Notice also that a solution intersects the horizontal axis a
finite number of times as it winds around the region Ω− ∪ Ω+ before entering
it. Denote by DN ⊆ D− ∪ D+ the set of initial data such that corresponding
solutions intersect the positive horizontal axis exactly N times prior to entering
Ω− or Ω+. Since these intersections are transversal (that is, not tangential to
the axis), they are stable under small perturbations (cf. [GP74]). Thus, again
by continuous dependence on initial data, for any N these sets DN are open. In
view of the fact that solutions are unique once we specify the initial condition

(a, 0), they are disjoint. We can therefore write D− ∪D+ =
.⋃

NDN .
Assume for a moment that all solutions will at one point enter Ω+ or Ω−. (4.28)
and (4.29) in Lemma 4.2.1 show that as a → ∞ the value of r > 0 at which
a solution can enter the region where E < 0 approaches infinity. In view of
the above inequality (4.34) and since E is strictly decreasing whenever (ψ, β) /∈
{(0, 0), (±1, 0)} by virtue of (4.20), this means that for r > 2

α a solution to (4.6)-
(4.7) with a > Mα keeps winding around the region Ω− ∪ Ω+ before entering it
as a→ ∞. We deduce that there exist infinitely many open, non-empty sets DN

with N → ∞ as a tends to infinity. By assumption, D− ∪D+ = (aα,∞). But
this is an open interval in R which cannot be written as the disjoint union of open
non-empty sets DN . Hence, there exists a+ > Mα such that (a+, 0) /∈ D+∪D−.
Solutions to such initial data will therefore not enter the region Ω− ∪ Ω+. �

Lemma 4.2.3 For solutions to (4.6)-(4.7) corresponding to initial data a > Mα

such that they stay outside of Ω− ∪ Ω+ for all r ≥ 0, there exist 0 < T < ∞
such that E(T ) = 0 and ψ(T ) = β(T ) = 0.

Proof Let us assume that E(r) > 0 for all r ≥ 0 and show that this leads us
to a contradiction.
Recall (4.34) from the previous lemma. Under the assumption that E > 0 for
all r ≥ 0, this bound on θ′ holds in particular for all r > 2

α . Consequently,
a solution to (4.6)-(4.7) with a > Mα and r > 2

α would surround the region
Ω− ∪ Ω+ with angular velocity between 1 + α

4 and α
4 in clockwise direction.

Thus we can construct an increasing sequence {rn}n≥1 with r1 >
2
α such that

θ(rn) = π
6 + 2(n− k)π where k ∈ N is fixed. From (4.34) we infer that

8π

α+ 4
< rn+1 − rn <

8π

α
for r1 >

2

α
, n ≥ 1. (4.35)

This is true since the angular velocity of θ varies between 1+ α
4 and α

4 and thus
2π = θ(rn+1) − θ(rn) < (1 + α

4 )(rn+1 − rn) or, equivalently, rn+1 − rn >
8π
α+4

and 2π = θ(rn+1) − θ(rn) >
α
4 (rn+1 − rn), so rn+1 − rn <

8π
α .

This shows that independent of the number of cycles n the solution has com-
pleted, the “time” it takes the solution to return to the ray θ(rn) = π

6 is bounded
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from above and below by constants. Now consider the region

A :=
{

(ψ, β) : E > 0,
π

6

(

1 − 1

3
α
)

< θ <
π

6

}

. (4.36)

From the dynamics of the system (4.6) we infer that the solutions enter the
region A crossing the ray θ = π

6 at some time r = rn and leave it crossing the
ray θ = π

6 (1 − 1
3α) at some bigger value of r = r+n . This value r+n satisfies

rn +
2π

9

α

α+ 4
< r+n < rn +

2π

9
, (4.37)

since from (4.34)

(−1 − α

4
)(r+n − rn) < θ(r+n ) − θ(rn) =

π

6
(1 − 1

3
α) − π

6
= −α π

18

and − α

4
(r+n − rn) > θ(r+n ) − θ(rn) = −α π

18
.

Passing to polar coordinates (4.22), we find that

R >

(√
3

2

) 2−α

α

(
2

2 − α

) 1
α

in A. (4.38)

To see this, note that for θ < π
6 we have cos θ > cos π6 =

√
3

2 and thus E > 0
whenever ψ2 + β2 > 2

2−α |ψ|2−α or, equivalently,

R2 >
2

2 − α
R2−α| cos θ|2−α ≥ 2

2 − α
R2−α

(√
3

2

)2−α
,

so Rα >

(√
3

2

)2−α
2

2 − α
.

Consequently in view of (4.22)

β2(r) > sin2(
π

9
)

(√
3

2

) 2(2−α)
α

=: Kα for r ∈ (rn, r
+
n ), (4.39)

since π
6

(

1 − 1
3α

)

> π
6

(

1 − 1
3

)

= π
9 for α ∈ (0, 1) and

sin(θ) > sin
(π

6
(1 − 1

3
α)

)

in A.

So in view of (4.38) we have that

β2(r) = R2 sin2(θ) >

(√
3

2

) 2(2−α)
α

(
2

2 − α

) 2
α

sin2(
π

9
)

> sin2(
π

9
)

(√
3

2

) 2(2−α)
α

in A.
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Furthermore, by virtue of (4.35) and (4.37),

rn +
2π

9

α

α+ 4
< r+n < rn+1, (4.40)

since r+n < rn + 2π
9 < rn + 8π

α+4 < rn+1 for all α ∈ (0, 1). But now from (4.20),
together with (4.39), (4.37) and (4.40), we get a contradiction:

E

(
2

α

)

− E(∞) = −
∫ ∞

2/α

E′(r)dr =

∫ ∞

2
α

β2(r)

r
dr

≥ Kα

∑

n≥1

∫ r+
n

rn

1

r
dr ≥ Kα

∑

n≥1

1

r+n
(r+n − rn)

> Kα
2π

9

α

α+ 4

∑

n≥1

1

rn + 2π
9

= ∞.

The series is divergent since rn <
8π
α (n− 1) + r1 in view of (4.35), and E(∞) is

some finite number, as E is bounded by virtue of Lemma 4.1.2. Recall that we
assumed E(r) for all r ≥ 0, which lead to the above contradiction. Thus there
exists a finite value of T > 0 such that E(T ) = 0. Notice that for such values
of T we also have ψ(T ) = β(T ) = 0. If this were not the case, the dynamics of
the system would force the solution to enter Ω+ or Ω− at this point, which is
contradictory to the assumption of this Lemma. �

This completes the proof of Proposition 4.3, as we have seen that there exists
a sufficiently large such that the solution to (4.6)-(4.7) corresponding to such
initial data (a, 0), which is uniquely defined and C2 by Proposition 4.2, goes to
zero in finite time.

Remark Notice that solutions to (4.6)-(4.7) corresponding to initial data (a0, 0)
with a0 ∈ (0, aα] will stay inside Ω+ for all r ≥ 0. Such solutions clearly do not
have compact support.

4.3 Limiting cases of the parameter α

The case α = 1

In this case the vorticity function γ simplifies to

γ(ψ) = ψ − ψ

|ψ| (4.41)

and has a point of discontinuity at ψ = 0, since

lim
ψ→0−

γ(ψ) = 1 whereas lim
ψ→0+

γ(ψ) = −1 but γ(0) = 0,

by definition of the vorticity function. As we are only interested in classical
solutions, we will not consider this case.
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The case α = 0

In this case we simply have
γ(ψ) ≡ 0. (4.42)

Thus, equation (4.5)-(4.4), for which we seek compactly supported C2-solutions,
reads

ψ′′ +
1

r
ψ′ = 0, r > 0, (4.43)

with boundary conditions

ψ(0) = a, ψ′(0) = 0. (4.44)

If we denote ψ′(r) = β(r), then (4.43) reads

β′(r) +
1

r
β(r) = 0,

which we can solve easily, obtaining β(r) = C1

r for some constant C1 ∈ R. This
in turn yields

ψ(r) = C1 ln(r) + C2,

for some constants C1, C2 ∈ R.
Since ψ is continuous and ψ(0) = a we conclude

C1 = 0 and C2 = a,

and we get that ψ(r) ≡ a is constant for all r ≥ 0.

In the setting of ψ being the stream function on the fluid domain D discussed
in Chapter 2, this means that ψ ≡ a is constant throughout the flow field. The
boundary conditions ψ = ψy = 0 on the flat free surface require this constant
to be zero. So ψ ≡ 0 and the water is still throughout the fluid domain, which
is why we do not consider this case.

4.4 Types of vorticity functions

4.4.1 Why not choose a vorticity function γ ∈ C1?

The proof discussed in the previous sections to show that system (2.22) has a
radially symmetric C2-solution with compact support turned out to be quite
elaborate. The difficulties were mainly due to the fact that we could not rely
upon classical existence and uniqueness theorems from the theory of ordinary
differential equations, because the vorticity function γ failed to be locally Lip-
schitz. The natural question that arises is therefore - why did we pick such an
“ugly” function, why not simply take, for example, γ ∈ C1?

To shed some light on this issue, assume that ψ is a radially symmetric solution
to (2.22) with compact support in the fluid domain D and take some vorticity
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function γ to be of class C1. Since ψ is radially symmetric, we can make the
Ansatz ψ(x, y) = ψ(r) where r =

√

(x− x0)2 + (y − y0)2 for some (x0, y0) ∈ D
and again rewrite the system in the equivalent form of a two-dimensional system
of non-linear first order ordinary differential equations







ψ′ = β,

β′ = − 1
rβ − γ(ψ),

r > 0, (4.45)

with initial values
ψ(0) = a, β(0) = 0. (4.46)

From the classical theory of ordinary differential equations discussed in Chapter
3, we know that this initial value problem has a unique solution defined for r in
some interval (r0, r1), if the right hand side is continuous in r and Lipschitz in ψ.
In our case, for r away from zero and γ ∈ C1 this is certainly true. Since we as-
sumed the solution ψ to the above system to have compact support, we can find
a value T ∈ (r0, r1) such that ψ(T ) = ψ′(T ) = 0, that is (ψ(T ), β(T )) = (0, 0).
Thus, if we “go backwards in time”1, by uniqueness of solutions we would have
(ψ(r), β(r)) ≡ (0, 0) for all values of r > 0.Therefore, if we choose a continuously
differentiable vorticity function γ, the only possible radially symmetric solution
with compact support is the trivial solution.

4.4.2 Linear vorticity functions

The aim of this section is to discuss a result in [CJ08] concerning linear vorticity
functions. It turns out also that in this case the system only admits trivial
solutions:

Proposition 4.4.1 If ψ is a C2-solution of problem (2.22) for a linear vorticity
function γ, then ψ ≡ 0 and γ ≡ 0.

Proof Assume that ψ is a solution of (2.22) for a linear vorticity function
γ(s) = as + b, s ∈ R, a, b real constants. We will first prove that b = 0 and
a = 0, so f ≡ 0. Then ψ is a harmonic function in D and we infer from the
weak maximum principle (cf. [Fra00]) that maxD̄ ψ = max∂D ψ = 0 in view of
the boundary conditions in (2.22). Thus, ψ ≡ 0 in D.
Assume b > 0. Since γ is linear and because of C2-regularity of ψ up to the
boundary, on y = 0 the partial differential equation ψxx+ψyy = −γ(ψ) simplifies
to ψyy = −b < 0. In view of the boundary condition ψ = ψy = 0 this means that
ψ has a local maximum at y = 0. Thus, for y < 0 sufficiently close to the sur-
face, we have ψ < 0 and ψy > 0. Suppose a > 0. We can find an open bounded
domain D0 ⊂ D, with upper boundary y = 0 and lower boundary a semicir-
cle centered at some point (x0, 0) with x0 < 0, such that 0 < −aψ(x, y) < b
in D0 (that is, we can make the radius of the semicircle small enough to en-
sure ψ < 0 and furthermore such that the absolute value of ψ in D0 is small

1 This can be made explicit by performing a change of variables r 7→ −r and taking as
initial condition (ψ(T ), β(T )) = (0, 0).
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enough to ensure −aψ < b). Then in D0 we have −aψ − b < 0. Suppose on
the other hand that a < 0. Then aψ > 0 in D0, and thus −aψ − b < 0. So
for any a ∈ R, we have that ψxx + ψyy = −aψ − b < 0 in D0. Furthermore,
0 = ψ(x0, 0) = supD0

ψ(x, y). Since D0 satisfies an interior sphere condition
in (x0, 0), a version of the strong maximum principle (cf. [Fra00]) implies that
the outer normal derivative ∂ψ

∂ν (x0, 0) = ψy(x0, 0) < 0, unless ψ ≡ 0. This is a
contradiction to the boundary condition on y = 0. The case for b < 0 can be
dealt with in a similar way. This proves that b = 0.
Next we will try to produce a contradiction assuming a 6= 0, knowing b = 0.
Consider the operator T := −(∂2

x + ∂2
y) acting on L2(D). Then in view of the

partial differential equation in (2.22), we have Tψ = aψ and ψ is an eigenfunc-
tion of the operator T with corresponding eigenvalue a. The essential Dirichlet
spectrum of T is [0,∞) for some s > 0, and the number of Dirichlet eigenvalues
λj in (0, s) is finite, (cf. [EE87]). We want to rule out the possibility of ψ being
a Dirichlet eigenfunction corresponding to the eigenvalue a.
Consider the connected components of the complements of the set where ψ = 0,
so called nodal domains. From [MP85] we infer that the number of nodal do-
mains is at most j. Furthermore, in the neighborhood of a point (x, y) in D
where ψ(x, y) = 0, the set ψ = 0 is either a smooth curve or an intersection of
up to j smooth curves at equal angles (cf. [CH53]). In order to be able to apply
these results, we consider the set

Ds = {(x, y) ∈ R
2 : x < 0, b(x) < y < −b(x)}

and symmetrically extend ψ to Ds setting

ψ(x, y) = ψ(x,−y), for (x, y) ∈ Ds, y > 0.

In view of the boundary condition for ψ on y = 0, ψ ∈ C2(Ds). Thus, we can
view ψ as a Dirichlet eigenfunction for the operator T acting on L2(Ds) with
nodal line y = 0. We want to find an open subset D0 of Ds such that ψ has no
zeros in D0, whereas the boundary ∂D0 contains a subset of the line y = 0 of
the form {(x, 0) : a < x < b} for some a < b < 0. Existence of such a set D0

is guaranteed by the above reasoning on the number of eigenvalues and nodal
domains and in view of the structure of the set {ψ = 0} ∩ Ds. Hence we can
apply the strong maximum principle (cf. [Fra00]) to the operator T acting on
L2(D0) and obtain a contradiction, since ψ = 0 on y = 0 and in view of the
boundary condition ψy(x, 0) = 0 for some x ∈ (a, b).

4.4.3 Necessary condition on γ for existence of solutions

In this section we present another general result (cf. [CJ08]).

Proposition 4.4.2 The vorticity function γ must satisfy γ(0) = 0 for problem
(2.22) to have a solution.

Proof We have already seen in the beginning of the proof of Proposition 4.4.1
that if γ ≡ 0 then ψ ≡ 0 is a solution. On the other hand, if (2.22) has a solution,
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then γ(0) = 0 has to hold. To see this, assume to the contrary that γ(0) > 0.
Then, because on the boundary condition on y = 0, ψ = ψy = 0 and we have
ψyy = −γ(0) < 0 on y = 0. Just as in the proof of (4.4.1) we can find a bounded
open domain D0 ⊂ D such that ψ < 0 and ψy > 0 in D0, which guarantees
that 0 = ψ(x0, 0) = supD0

ψ(x, y) in D0. Again, the strong maximum principle
implies a contradiction to the boundary condition ψy(x, 0) = 0. The case where
γ(0) < 0 is similar. �
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Deutsche Einleitung und Zusammenfassung

In dieser Arbeit geht es um die mathematische Beschreibung von Wasserwellen
und Strömungen im Ozean, insbesondere um Tsunamis.
Unter dem Begriff “Wasserwelle” verstehen wir Oberflächenwellen an der Grenze
zwischen Luft und Wasser die das Resultat einer Auslenkung aus der Gleich-
gewichtslage (flache Oberfläche) unter Einwirkung von Gravitation als entgegen-
gerichtete Rückstellkraft ist. Im Unterschied zu Schallwellen, die sich alle mit
derselben Geschwindigkeit ausbreiten, hängt die Ausbreitungsgeschwindigkeit
von Wasserwellen von deren Wellenlänge ab. Dieses Phänomen nennt man “Dis-
persion von Wellen”.
Mit Ausbreitungsgeschwindigkeit meinen wir nicht die Geschwindigkeit des Was-
sers selbst, sondern die Geschwindigkeit mit der sich das Wellenprofil in hori-
zontaler Richtung ausbreitet. Leonardo Da Vinci hat dies beschrieben, indem er
die Wasseroberfläche mit einem Ährenfeld verglich: ”Die Ähnlichkeit der Wellen
ist groß mit den Wellen, die der Wind in einem Kornfeld hervorbringt, welche
man über das Feld hineilen sieht, ohne dass das Getreide sich vom Platz bewegt”.

Wir betrachten in dieser Arbeit vornehmlich Wellen, deren Wellenlänge groß
ist im Vergleich zu der Wassertiefe. Ein prominentes Beispiel solcher Wellen
sind Tsunamiwellen. Der Begriff “Tsunami” kommt aus dem Japanischen und
bedeutet “Hafenwelle”. Tsunamiwellen werden meist durch Seebeben hervor-
gerufen, bei denen die Erdkruste am Meeresboden abrupt in vertikaler Richtung
verschoben wird. Dadurch hebt bzw. senkt sich auch die gesamte Wassersäule
direkt darüber und definiert dadurch das anfängliche Wellenprofil des Tsunamis.
Die so entstandene Welle breitet sich mit einer Geschwindigkeit von bis zu
1000km/h aus und legt dabei enorme Distanzen zurück. Die Ausbreitungs-
richtung steht im Wesentlichen senkrecht auf die Hauptachse der meist ellip-
tischen Störungszone des Erdbebens, wobei man davon ausgeht dass die Bewe-
gung parallel zu dieser Achse einheitlich ist. Aus diesem Grund kann man sich
bei Modellen, welche die Evolution solcher Wellen beschreiben, auf zwei Dimen-
sionen beschränken – die horizontale Ausbreitungsrichtung und die Auslenkung
in vertikaler Richtung.
Auf offener See kann die Wellenbewegung im wesentlichen durch lineare Theorie
beschrieben werden und die Ausbreitungsgeschwindigkeit mit

√
gh approximiert

werden, wobei g die Gravitationskonstante und h die typische Wassertiefe bezei-
chnet. Die Amplitude eines Tsunami ist im Vergleich zur Wellenlänge so klein,
dass Schiffe am offenen Meer meist gar nicht merken, wenn sich gerade eine
Tsunamiwelle unter ihnen bewegt. Erst wenn der vordere Teil der Welle in die
Nähe der Küste kommt, wo die Wassertiefe und damit auch die Geschwindigkeit
geringer ist, baut sich das Wasser zu riesigen Wellen auf, da der hintere Teil der
Welle ja immer noch im offenen Meer liegt und mit viel größerer Geschwindigkeit
auf die Küste zusteuert. Da die Welle so lang ist, werden bei diesem Vorgang
enorme Mengen an Wasser transportiert, die sich in Küstennähe zu verheeren-
den Wellen auftürmen und mitunter enorme Schäden anrichten.
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Bevor eine Tsunamiwelle die Küste erreicht, ist das Wasser in dieser Region
meist nicht in Ruhe, sondern unterliegt Strömungen und anderen wirbelartigen
Störungen. Um ein aussagekräftiges Modell für die Tsunamiausbreitung zu er-
halten, versucht man daher diesen Hintergrundzustand zu berücksichtigen, um
dann die Interaktion zwischen einer Tsunamiwelle und etwaigen Hintergrund-
strömungen studieren zu können. Ein wichtiges Konzept in diesem Zusammen-
hang ist die sogenannte “Vortizität” oder “Wirbelstärke” (engl. vorticity). Sie
ist ein Maß für die lokale Rotation von Flüssigkeitsteilchen bzw. für die lokale
Scherung einer Strömung.

In dieser Arbeit soll untersucht werden, welche Art von Wirbelverteilung für
Hintergrundströmungen in einem Modell für Wasserwellen zulässig ist. Dazu
ziehen wir die zweidimensionalen Eulergleichungen heran und zeigen an einem
konkreten Beispiel einer Wirbelverteilung, dass die Bewegungsgleichungen einer
derartigen stationären Strömung eine nicht triviale Lösung zulassen, die eine
isolierte Wirbelregion in Küstennähe modelliert.
Die Schwierigkeit eine passende Wirbelverteilung zu finden besteht darin, dass
man für lineare und stetig differenzierbare Verteilungen nur die triviale Lösung
erhält, was der Modellierung von stillem Wasser entspricht. Es ist daher not-
wendig, mit nicht linearen Wirbelverteilungen zu arbeiten, die stetig, jedoch
nicht Lipschitz stetig sind.
Für den Beweis werden die Eulergleichungen zunächst mit Hilfe einer Strömungs-
funktion umgeformt und dann über einen radialsymmetrischen Lösungsansatz
in ein System nicht linearer gewöhnlicher Differenzialgleichungen transformiert.
Da dieses System eine Unstetigkeitsstelle bei Null aufweißt und außerdem nicht
lokal Lipschitz stetig ist, betrachtet man das Problem zunächst in einer Umge-
bung der Unstetigkeitsstelle und führt den Existenz- und Eindeutigkeitsbeweis
mittels eines Kontraktionsarguments. Außerhalb dieses kritischen Punktes wird
ein koerzives Funktional definiert, mit Hilfe dessen und einer weiteren Transfor-
mation gezeigt wird, dass Lösungen global existieren und eindeutig sind, sowie
stetig von den Anfangsdaten abhängen. Im zweiten Teil des Beweises werden
Eigenschaften dieses Funktionals und die Theorie dynamischer Systeme herange-
zogen um zu zeigen, dass das System eine Lösung mit kompaktem Träger besitzt,
welche die gesuchte isolierte Wirbelregion modelliert.
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