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Abstract

This paper is concerned with a generalization of the Levene model (see H.
Levene, [10]) in the context of game theory. More precisely we study symmet-
ric normal form games with locally varying payoffs. After a rather heuristic
derivation of our equations, we embed the model into a proper mathematical
framework in the first chapter and make it clear to which extent the proposed
generalization translates into known formulas. We conclude Chapter 1 with
some basic theory on dynamical systems, which will be used in later sections.
Chapter 2 is dedicated to the case of two strategies. The original question
is whether or not our model allows for more dynamical scenarios than the
Levene model. As a central point we answer an open problem by establishing
that for two alleles and J habitats up to 2J − 1 interior fixed points may
occur. Based on this result we can show that concerning the possible num-
ber of fixed points and the (generic) stability configurations indeed no new
possibilities arise.
Proceeding one step further we arrive at the case of three strategies in Chap-
ter 3. To obtain feasible results we confine to cyclic games, which have thor-
oughly been analyzed in panmictic models. For that specification explicit
conditions for permanence of the system and for the stability properties of
the (necessarily existent) interior fixed points can be derived. Furthermore,
based on a result by C. Cannings [2], we show that for more than two strate-
gies our generalization of Levene’s model offers more dynamical opportunities
than its archetype.
In the Appendix, the interested reader finds some supplementary results as
well as the Mathematica program codes which were used to conduct simula-
tions and create the figures in this paper.
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Deutsche Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer Verallgemeinerung des soge-
nannten Levene Modells (siehe H. Levene, [10]) in das Umfeld der Spiel-
theorie. Speziell interessieren wir uns für symmetrische Spiele in Normalform
(Matrixform) mit regional unterschiedlichen Auszahlungen. Im ersten Kapi-
tel leiten wir zuerst unser Modell heuristisch her und betten es anschließend
in das entsprechende mathematische Umfeld ein um zu zeigen, inwiefern es
mit bekannten Modellen überein stimmt. Den Abschluss von Kapitel 1 bil-
det ein kurzer Abriss über die Theorie dynamischer Systeme, auf die wir im
Laufe der Arbeit zurückgreifen werden.
Das zweite Kapitel widmet sich dem Fall von zwei Strategien und stellt die
Frage, ob unser Modell damit bereits mehr dynamische Möglichkeiten als
das Levene Modell bietet. Im Mittelpunkt steht die Lösung eines offenen
Problems: Wir zeigen, dass die theoretische obere Schranke an die Anzahl
der inneren Fixpunkte angenommen werden kann. Davon ausgehend bewei-
sen wir, dass die möglichen Anzahlen von Fixpunkten und die (generischen)
Stabilitätskonfigurationen für beide Modelle die selben sind.
Als nächsten Schritt lassen wir im folgenden Kapitel drei Strategien zu. Um
explizite Ergebnisse zu erhalten, beschränken wir uns hierbei auf zyklische
Spiele, deren Verhalten ohne räumliche Struktur bereits gut analysiert wur-
de. Unter diesen Voraussetzungen treffen wir Aussagen über die Permanenz
des Systems, sowie über die Stabilität des (notwendigerweise vorhandenen)
inneren Fixpunktes. Ausgehend von der Arbeit von C. Cannings [2] zeigen
wir weiters, dass unser Modell ab dem Vorhandensein von mindestens drei
Strategien tatsächlich mehr dynamische Möglichkeiten als Levenes Original
bietet.
Im Anhang findet der interessierte Leser außerdem ergänzende Resultate, so-
wie die Mathematica-Befehle, mit denen Simulationen durchgeführt und die
Bilder in dieser Arbeit erzeugt wurden.
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Chapter 1

Introduction

1.1 The model

Imagine a group of salesmen meeting at some dusty inn in any city at any
time you may think of. They decide, each one for his own, to go out into the
wide world at a venture and try their mercantile fortune somewhere abroad.
Apart from the collection of goods they assemble for sale, other decisions have
to be made; some may hire heavy guard to protect their lives and property,
others could prepare banners and posters for advertising campaigns at their
destinations, and so on. However, after leaving home they find themselves
in different surroundings, where the chosen strategies have to prove their
worth. Furthermore, some merchants might find themselves having picked
out the same place to raise their business as some of their friends from home,
so each strategy is not only checked against local circumstances but against
competing agents in the respective region.
Having lost contact with all their friends but those trading in their neigh-
borhoods, the salesmen learn much by observing each other, comparing each
other’s actions with the associated profit or loss. In peaceful regions it turns
out to be a waste of resources having invested too much in protection, in
crowded areas advertising becomes vital. Finally, after having sold their
stock of goods, all of the salesmen travel back home to feed and provide for
their families. And, of course, they meet again at some dusty inn. There

1



1. INTRODUCTION

they decide, each one for his own, to go out into the wide world with their
acquired knowledge and try their mercantile fortune somewhere abroad.

This is, of course, just a simple story not worth being told at the fireplace,
but let us try to embed the scenario into a mathematical framework, more
precisely into the framework of game theory. In contrast to basic examples,
we are confronted with several games — all allowing for the same strategies
— and the players are assigned to different games in each round. Yet the
more usual approach is considering a game with spatial structure and mi-
gration; a single game with varying payoffs depending on the location of the
players, so to speak. To be precise, we proceed as follows.
We are looking at a group (or population) of players, which is supposed to
be large enough such that we may ignore stochastic fluctuations in the argu-
mentation at hand. Each player may choose one out of n (pure) strategies
from the set S = {1, ..., n} and by xi we denote the proportion of agents
using strategy i. The vector x bearing information about the population’s
composition with regard to these strategies is

x = (xi)
n
i=1 ∈ ∆ := {x ∈ Rn : x ≥ 0,

n∑
i=1

xi = 1}.

To simulate migration, players are dispersed randomly over J patches (demes,
niches) according to their sizes (proportions) n1, ..., nJ , where

∑J
j=1 nj = 1.

(This assumption of randomness seems unfitting to our salesmen-example,
but one has to compromise.) Each individual then obtains a payoff f (j)(x(j)),
j = 1, ..., J , depending explicitly on the patch j it is located on as well as
on x(j), the composition of other agents acting there. Having split up agents
randomly we can drop the second, implicit dependence on the niche, as the
population structure must be the same as before dispersal. Thus we arrive
at payoff functions f (j)(x), j = 1, ..., J .
In the investigations to follow we assume them to be linear and therefore -
in tradition of standard game theory - end up with

f (j)(x) = A(j)x j = 1, ..., J

2



1.2. THE MATHEMATICAL BACKGROUND

where A(j) denotes the payoff matrix for deme j. Consequently, an i-player’s
payoff in patch j is (A(j)x)i =

∑n
k=1 a

(j)
ik xk.

Next we need a mechanism to get hold of the individuals’ decisions to
switch strategies. It is convenient to use a discrete analogon of the replicator
dynamics, which is an imitation dynamics most commonly applied to model
learning processes. The quality of a strategy is measured at the payoff it
provides in the respective situation in comparison to the average payoff that
has been achieved: The higher the strategy’s payoff, the more likely the
strategy will be chosen. In a single-patch model this leads to the difference
equation

x′i = xi
(Ax)i
xAx

= xi

∑n
l=1 ailxl∑n

l,k=1 aklxlxk
. (1.1)

Since we just have to add up each patch’s contribution to each strategy’s
frequency in our spatially structured model, we finally arrive at

x′i = xi

J∑
j=1

nj
(A(j)x)i
xA(j)x

= xi

J∑
j=1

nj

∑n
l=1 a

(j)
il xl∑n

l,k=1 a
(j)
kl xlxk

. (1.2)

This recursion may look familiar to some readers, as it basically is the
Levene model1 used to analyze gene frequencies over time with migrating
individuals. Since the model should reasonably map the simplex ∆ to itself,
we require all A(j) to be positive matrices. Note that they need not necessarily
be symmetric, as generally assumed in matters of population genetics.

1.2 The mathematical background

The following sections present an introduction into spatially structured mod-
els, which are commonly used in population genetics. We limit ourselves to
models of discrete time and space to cast light on the bigger picture in which
our scenario is set up2.

1see H. Levene [10] for details
2cf. T. Nagylaki [12]
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1. INTRODUCTION

1.2.1 Spatially structured models

The basic discrete migration-selection model to describe the change of gene
frequencies considers the following life cycle, which can be translated into an
action sequence for a spatially structured game.
From the point of view of population genetics we are interested in gene fre-
quencies. Therefore let p(j)

i denote the frequency of allele i ∈ {1, ..., n} in
deme j ∈ {1, ..., J}. Furthermore one has to keep track of the deme sizes nj,
as they might change when individuals wander from one niche to the other.
Starting out at an initial state (nj, p

(j)
i ), reproduction leads to a new genera-

tion of zygotes, which experience selection when growing up. That entails a
new set of gene frequencies p(j)∗

i , which are usually determined by the same
model we introduced in 1.1, now reading

p
(j)∗
i = p

(j)
i

(W (j)p(j))i
p(j)W (j)p(j)

for positive, symmetric fitness matrices W (j).
Also deme sizes may change by selection if there is competition between
niches. In that case, the success of each deme, similar to what we had above,
depends on the average fitness of individuals within the respective deme in
comparison to the average fitness over all demes:

n∗j = nj
p(j)W (j)p(j)∑J

k=1 nkp
(k)W (k)p(k)

This assumption of competition beween niches is called hard selection. In
contrast to that, assuming no such competition, one is talking about soft
selection. In that case we simply set nj = n∗j ∀j ∈ {1, ..., J}.

Knowing how to simulate selection we turn towards the mechanism of
migration. To this end we define

• m̃jk as the probability that an individual from deme j migrates to deme
k and

• mkj as the probability that an individual in deme k was in deme j

4



1.2. THE MATHEMATICAL BACKGROUND

before migration.

We call M̃ = (m̃jk) and M = (mkj) the forward- and backward-migration
matrix, respectively. It is clear that these matrices are stochastic. With M
given, one can easily compute gene frequencies after migration by

p
(j)∗∗
i =

J∑
k=1

mjkp
(k)∗
i .

However, it seems more realistic to assume only M̃ to be known. Fortunately,
converting M̃ into M is not too difficult. Supposing that individuals are not
getting lost during migration we can write

n∗∗j =
J∑
k=1

n∗km̃kj.

Another obvious equality is

n∗jm̃jk = n∗∗k mkj.

Inserting the first into the second equation, we arrive at

mkj =
n∗jm̃jk∑J
j=1 n

∗
jm̃jk

,

so we have explicit formulas for M̃ and consequently for p(j)∗∗
i .

There is only one more problem yet to be solved: After migration some
demes may be over- or underpopulated. Thus we need some regulation mech-
anism killing individuals which are exceeding niche sizes and filling up empty
space in vacant places. Assuming that regulation hits all individuals the
same (that is, regulation happens independently from the genotypes), gene
frequencies are not affected. Thus p(j)∗∗

i = p
(j)′

i , while niche proportions are
set back to their values before migration, i.e., n′j = n∗j . In other words we
can skip computing n∗∗j , which was needed to get a formula for M̃ but does
not directly influence the successive generation.

5



1. INTRODUCTION

To summarize these results we can write down a difference equation which
models the migration-selection process at hand. Because it is quite common,
we assume soft selection. The equation reads

(p
(j)
i )′ =

J∑
k=1

mjkp
(k)∗
i , (1.3)

where mkj =
njm̃jk∑J

j=1 njm̃jk
and p(j)∗

i = p
(j)
i

(W (j)p(j))i

p(j)W (j)p(j)
.

In order to adapt this model to our game theoretical background, one
simply has to translate the reproduction and selection process into achieving
a payoff by playing the game and changing strategies according to a learning
mechanism. Regulation then means that redundant players drop out of the
game and empty slots are populated by new participants. Furthermore we
replace fitness information W (j) by (non-symmetric) payoff matrices A(j) as
well as gamete frequencies p(j)

i by strategy distributions x(j)
i . This leaves us

with a neat identification

nj, p
(j)
i

nj, (p
(j)
i )′

n∗j , p
(j)∗
i

n∗∗j , p
(j)∗∗
i

repro
ductio

n &

select
ion

migration

regulation

nj, x
(j)
i

nj, (x
(j)
i )′

n∗j , x
(j)∗
i

n∗∗j , x
(j)∗∗
i

playin
g &

learni
ng

migration

regulation

and we obtain

x
(j)′

i =
J∑
k=1

mjkx
(k)∗
i (1.4)

where mkj =
njm̃jk∑J

j=1 njm̃jk
and x(j)∗

i = x
(j)
i

(A(j)x(j))i

x(j)A(j)x(j) .
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1.2. THE MATHEMATICAL BACKGROUND

1.2.2 The Levene model

Obviously, (1.4) is still not the same thing as the model proposed in (1.2). In
fact, we have not incorporated randomness of dispersal as supposed in Sec-
tion 1.1. Considering this, we now go back to the framework of population
genetics, where theis task has already been done by Howard Levene in 1953
(see [10]).
Assume that migration is independent from the niche of departure; this
means, that for each deme j ∈ {1, ..., J} we have a fixed number µj such
that m̃kj = µj for all niches k. Naturally, we demand

∑
µj = 1.

Now we can calculate

mkj =
njm̃jk∑j
j=1 njm̃jk

=
njµk∑j
j=1 njµk

= n∗j

or, assuming weak selection from now on, mkj = nj. Furthermore, when
looking at

(p
(j)
i )′ =

J∑
k=1

mjkp
(k)∗
i =

J∑
k=1

nkp
(k)∗
i

we assert that the right hand side of this equation does no longer depend on j.
Thus it suffices to consider pi instead of p(j)

i ; the state space of the model has
become the (n−1)-dimensional simplex ∆. There is no geographic structure
of the population per se, but selection varying regionally. The difference
equation now reads

p′i = pi

J∑
j=1

nj
(W (j)p)i
pW (j)p

(1.5)

which translates exactly into (1.2) when we apply the notation from our game
theoretical framework.

1.2.3 Weak selection limit

When studying effects of selection in population genetics, selecting forces
are usually very small. Introducing a parameter s for selection strength and
letting s→ 0 one obtains the so-called weak selection limit, a system of ODEs

7



1. INTRODUCTION

that can be much easier to handle than the original difference equations.
In context of game theory this procedure can be reasoned by looking at
"unimportant" games; each player gets a certain base payoff, on which the
game of interest only has little influence. The following lines present the
weak selection limit for the spatially structured game model (1.2).

Normalizing the base payoff to 1 we rewrite payoff matrices A(j) by

a
(j)
kl = 1 + sr

(j)
kl

for R(j) = (r
(j)
kl ) ∈ Rn×n. Thus, as s becomes small, strategies will produce a

similar payoff close to 1. Inserting in (1.2) we obtain

x′i = xi

J∑
j=1

nj
(A(j)x)i
xA(j)x

= xi

J∑
j=1

nj
1 + s(R(j)x)i
1 + sxR(j)x

.

Then we calculate

x′i − xi = xi

 J∑
j=1

nj
1 + s(R(j)x)i
1 + sxR(j)x

− 1︸︷︷︸
=
∑

j nj


= xi

J∑
j=1

nj

(
1 + s(R(j)x)i
1 + sxR(j)x

− 1

)

= xis
J∑
j=1

nj
(R(j)x)i − xR(j)x

1 + sxR(j)x
.

Dividing by s we find

x′i − xi
s

= xi

J∑
j=1

nj
(R(j)x)i − xR(j)x

1 + sxR(j)x
.

Now we set xi := xi(t) and x′i := xi(t+ ∆t). Also changing the timescale by

8



1.3. SOME THEORY ON RECURRENCE EQUATIONS

∆t = s we let s→ 0 and arrive at

dxi(t)

dt
= xi

J∑
j=1

nj
(
(R(j)x)i − xR(j)x

)
(1.6)

Defining a matrix R by R :=
∑J

j=1 njR
(j) we can write this as

dxi(t)

dt
= xi ((Rx)i − xRx) ,

which is exactly the replicator dynamics commonly used to describe games
in continuous time without spatial structure. One can say that a strategy
will become more frequent, if taking the mean over all demes it does better
than average. Thus in the limit of weak selection, the dynamics of equation
(1.2) behaves as if there was no spatial structure. In fact, we expect (1.6)
to approximate the system of difference equations (1.2) very well as long as
all payoff values are sufficiently close to each other. Note, that we did not
presume the matrices R(j) to be positive, but we allow for arbitrary r(j)

kl ∈ R.

1.3 Some theory on recurrence equations

1.3.1 Basic notions

In order to build up common vocabulary we skim through basic concepts
and results concerning dynamical systems in discrete time. A first-order
recurrence equation is a dynamical system given by

xt+1 = F (xt), (1.7)

where F : M → M is usually demanded to be at least continuous and M is
some metric space (in our case, a subset of Rn). For the sake of brevity we
write (1.7) as

x′ = F (x). (1.8)

9



1. INTRODUCTION

For x0 ∈M we call the sequence

{xt}t≥0 = {F t(x0)| t ∈ N ∪ 0}

the (forward) orbit of x0 and x0 is called the starting point of its orbit {xt}t≥0.
A point x̂ ∈M is a fixed point of (1.8), if x̂ = F (x̂) holds true. Fixed points
are said to be stable, if orbits near x̂ do not move far away. More precisely,
a fixed point x̂ is stable if for any neighbourhood U(x̂) ⊂ M we can find
another neighbourhood V (x̂) ⊆ U(x̂), such that any orbit starting in V (x̂)

remains in U(x̂) for all n > 0. If, additionally, nearby orbits even converge
to x̂, x̂ is said to be asymptotically stable or an attractor. In case all orbits
in a neighbourhood of x̂ move away from x̂, we call x̂ a repellor.

To decide about stability issues, the following theorem is of vital impor-
tance.

Theorem 1.3.1 (Hartman-Grobman). Let x′ = F (x) be a dynamical system
with continuously differentiable F : M → M , M ⊆ Rn open, and fixed point
x̂. Furthermore, let J := DF |x̂ denote the linearization of F and assume
that x̂ is hyperbolic, i.e. for every eigenvalue λ of J we have λ 6= 0 and
|λ| 6= 1. Then there are neighbourhoods V ⊆ M of p̂ and U ⊆ Rn of 0 and
a homeomorphism φ : V → U such that φ ◦ F = J ◦ φ. Thus locally, F is
topologically conjugate to its linearization J .

This result tells us that, with the requirements from Theorem 1.3.1, the
local stability properties of (1.8) in x̂ and of its linearization are qualitatively
the same. Thus, if all eigenvalues λi of J |x̂ fulfill |λi| < 1, x̂ is an attractor,
whereas it is a repellor in case the opposite inequalities hold for all i. With
mixed configurations, x̂ is some kind of saddle point.

1.3.2 ω-limits and Ljapunov functions

The concept of a Ljapunov function is a very powerful tool to analyze dy-
namical systems of any kind. Recall the following definitions.

Definition 1.3.2. Let x′ = F (x) be a time-independent difference equation

10



1.3. SOME THEORY ON RECURRENCE EQUATIONS

with continuous F : G → G for some G ⊆ Rn. Furthermore let {xt}t be a
solution of this system with the initial condition x0 = x.

1. The ω-limit of x is defined as

ω(x) := {y ∈ Rn : xtk → y for some sequence tk →∞}

2. The map V : G→ R is called a Ljapunov function for x′ = F (x) if V
is continuous and for any x ∈ G we have V (x) ≥ V (F (x)).

The theorem to come is analogous to the corresponding result in contin-
uous time (see, e.g. Hofbauer and Sigmund [7], p.19).

Theorem 1.3.3. Let V be a Ljapunov function for x′ = F (x) on G as above
and x ∈ G. Then

ω(x) ∩G ⊆ {x ∈ G : V (x) = V (F (x))}

Proof. Assume V (x) ≥ V (F (x)) for all x ∈ G. By induction it follows that
V (xt1) ≥ V (xt2) for t1 ≤ t2 (�).
Pick a y ∈ ω(x). By definition, a sequence tk →∞ exists with xtk → y.
Now suppose, that V (y) > V (F (y)).
We create another orbit {yt}t with y0 = y. In the first step V decreases and
stays non-increasing from then on; thus we can conclude

V (y) > V (yt) (1.9)

holds for all t > 0.
From xtk → y by continuity of V we know that V (xtk)→ V (y) and thus

V (xt) ≥ V (y) ∀t ∈ N. (1.10)

Applying F for t times on xtk and y, we get xtk+t → yt and, again by
continuity of V ,

V (xtk+t)→ V (yt).

11



1. INTRODUCTION

Thus, V (xtk+t) comes arbitrarily close to V (yt) until, for t sufficiently large,
we get by (1.9)

V (xtk+t) < V (y),

which is a contradiction to (1.10) by statement (�).

1.3.3 Permanence

In the context of game theory, a dynamics F : ∆ → ∆ is called permanent,
if no strategy can become extinct. More precisely, there must be an ε > 0

and an t0 = t0(ε) such that for all starting vectors x > 0 we have F t(x) > ε

for all t > t0 and all i = 1, ..., n. We will give conditions for permanence of
(1.2) with n = 2 and n = 3. The first case can be done easily without further
theoretical background (see Section 2.3). To formulate a sufficient condition
for the latter, we will need the following proposition, which is a special case
of Corollary 2.3 by Hofbauer and So, [8], p.1139.

Proposition 1.3.4. Let M be an invariant set of the system x′ = F (x),
F : X → X, and require that every ω-limit point in M is a fixed point of F .
Furthermore let X \M be positively invariant. Then M is a repellor, if a
continuous function P : X → R+ exists, such that

• P (x) = 0 if and only if x ∈M , and

• for every fixed point x̂ of x′ = F (x) in M we have ψ(x̂) > 1,

where ψ : X → R+ is defined by P (F (x)) = ψ(x)P (x).

For our purposes we set X = ∆ and M = ∂∆ and, by this proposition,
have an instrument to check if orbits are pushed away from ∂∆ and thus no
present strategy can get lost.

12



Chapter 2

The case of two strategies

Supported by the existence of a Ljapunov function the behaviour of the Lev-
ene model with two alleles has been analyzed quite well. Without this tool,
the game theoretical model (1.2) is more difficult to handle.
Allowing for two strategies only, (1.2) is reduced to a single equation. Ex-
ploiting the fact that x1 + x2 = 1, we write x := x1 (therefore x2 = 1 − x)
and only need to compute how x evolves. Writing the payoff matrices as

A(j) =

(
a

(j)
11 a

(j)
12

a
(j)
21 a

(j)
22

)

equation (1.2) transforms into

x′ = x

J∑
j=1

nj
a

(j)
11 x+ a

(j)
12 (1− x)

a
(j)
11 x

2 + x(1− x)(a
(j)
12 + a

(j)
21 ) + a

(j)
22 (1− x)2

. (2.1)

2.1 Convergence to fixed points

At the beginning we assure ourselves of the fact that with two strategies
present we will not be confronted with any complicated behaviour like pe-
riodic orbits or chaos, no matter how many demes might be interfering. In
fact, every solution of (2.1) converges to a fixed point. This is based on the
following result, which is well-known from the literature.

13



2. THE CASE OF TWO STRATEGIES

Proposition 2.1.1. For continuous F : R→ R consider the difference equa-
tion x′ = F (x). If F is monotonically increasing, every bounded orbit con-
verges to a fixed point.

Proof. Consider an orbit {x}∞t=0 and suppose that x0 ≤ x1 = F (x0). Because
F is monotonically increasing we obtain by induction

xt = F t(x0) ≤ F t+1(x0) = xt+1.

Hence {xt}∞t=0 is monotonically increasing and - if bounded - converges to a
point x̂.
If x0 ≥ x1, {x}∞t=0 is monotonically decreasing due to the same argument. In
any case, if the orbit is bounded, it converges to x̂.
Furthermore, x̂ must be a fixed point, as by continuity of F we have

xt
t→∞−→ x̂

xt+1 = F (xt)
t→∞−→ F (x̂),

and from
lim
t→∞

xt = lim
t→∞

xt+1

we deduce x̂ = F (x̂).

Proposition 2.1.2. Every orbit of (2.1) converges to a fixed point.

Proof. To apply Proposition 2.1.1 we verify that F , denoting the right-hand
side of (2.1), is monotonically increasing. We don’t need to worry about
unbounded orbits, as F : [0, 1]→ [0, 1].
To simplify calculations we introduce a new variable by z = x

1−x .

F (z) = z(1− x)
J∑
j=1

nj
a

(j)
11 z(1− x) + a

(j)
12 (1− x)

a
(j)
11 z

2(1− x)2 + z(1− x)2(a
(j)
12 + a

(j)
21 ) + a

(j)
22 (1− x)2

=
J∑
j=1

nj
a

(j)
11 z

2 + a
(j)
12 z

a
(j)
11 z

2 + z(a
(j)
12 + a

(j)
21 ) + a

(j)
22

=:
J∑
j=1

nj

(
�(j)
)

(ℵ(j))

14
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d

dz
F (z) =

J∑
j=1

nj

(
ℵ(j)
) (

2a
(j)
11 z + a

(j)
12

)
−
(
�(j)
) (

2a
(j)
11 z + (a

(j)
12 + a

(j)
21 )
)

(ℵ(j))
2

Now it is not difficult to see that d
dz
F (z) ≥ 0 for all z ∈ [0,∞]. Since the

denominators do not cause us any trouble we simply check the numerators
of each summand j = 1, ..., J .

(
ℵ(j)
) (

2a
(j)
11 z + a

(j)
12

)
−
(
�(j)
) (

2a
(j)
11 z + (a

(j)
12 + a

(j)
21 )
)

=

=
(

2a
(j)
11 z + a

(j)
12

)(
a

(j)
21 z + a

(j)
22

)
− a(j)

21

(
a

(j)
11 z

2 + a
(j)
12 z
)

=

= 2a
(j)
11 a

(j)
21 z

2 + 2a
(j)
11 a

(j)
22 z + a

(j)
12 a

(j)
22 + a

(j)
12 a

(j)
21 z − a

(j)
11 a

(j)
21 z

2 − a(j)
12 a

(j)
21 z =

= a
(j)
11 a

(j)
21 z

2 + 2a
(j)
11 a

(j)
22 z + a

(j)
12 a

(j)
22 > 0,

which completes the proof.

2.2 Qualitative equivalence to selection model

Without spatial structure the behaviour of the Levene model (1.5) and our
game theoretical model (2.1) is qualitatively the same. This means, that
allowing for asymmetric matrices does not give rise to new dynamical possi-
bilities, which can be seen as follows.
Given a payoff matrix

A =

(
a11 a12

a21 a22

)
we can always "transform" it into an admissible (i.e. symmetric) fitness
matrix W . For that purpose, w.l.o.g. suppose a12 − a21 ≥ 0 (otherwise
relabel strategies accordingly), and add c = a12 − a21 ≥ 0 to the first colum
of A. The dynamics then becomes

x′ = x
(Wp)1

xWx
= x

cx+ (Ax)1

cx+ xAx
=: F̃ (x). (2.2)

15



2. THE CASE OF TWO STRATEGIES

Now assume that x̂ is a fixed point of the original equation

x′ = x
(Ax)1

xAx
=: F (x), (2.3)

which means that (Ax̂)1 = x̂Ax̂. Inserting into (2.2), it becomes obvious
that x̂ also is a fixed point of (2.2). Furthermore, the property of being
attractor or repellor is the same under both equations: Calculating fixed
points means intersecting F (or F̃ , respectively) with the line y = x. In
regions where values of F lie above this function, i.e. F (x) > x holds, we
have an increase of x in the next generation and vice versa. Hence we can say
that the dynamics of (2.3) and (2.2) qualitatively bear the same behaviour
if the two functions

G(x) :=F (x)− x

G̃(x) :=F̃ (x)− x

have corresponding regions of positive and negative function values on [0, 1].
Since xAx (and thus also cx + xAx) is positive on this interval, we see that
basically both functions are proportional to the same polynomial

p(x) := x ((Ax)1 − xAx) .

Hence qualitatively (2.3) and (2.2) are the same. To make this precise, a
different approach in the Appendix, Proposition 5.1.1, redrafts our finding
and underlays the statement in a mathematically more profound way.

Clearly, this reasoning works out for n = 2 and J = 1 only. As soon as
more strategies come into play, the argument above fails. Consider a cyclic
game as proposed in Section 3.1. Then in general the matrix A from (3.1)
cannot be transformed into a symmetric matrix by adding constants k1, k2

and k3 to columns, because the equations

c+ k1 = b+ k2, b+ k1 = c+ k3, c+ k2 = b+ k3

do not necessarily have solutions for k1, k2 and k3. Indeed, in Section 3.3.2
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2.2. QUALITATIVE EQUIVALENCE TO SELECTION MODEL

we find examples of (1.2) for J = 3, whose dynamics cannot be reproduced
by (1.5).
If, on the other hand, spatial structure is introduced, adding constants to
columns of the payoff matrices may symmetrize them but also change fixed
points of the dynamics. Even with two demes, adding a constant c > 0 to,
w.l.o.g., the first column of A(1) reduces the "importance" of the game in
the first niche, because its contribution to the x1-frequency in the new round
changes from x1n1

(A(1)x)1
xA(1)x

to

x1n1
cx+ (A(1)x)1

cx+ xA(1)x
,

which is closer to the initial niche’s contribution x1n1. For c → ∞, this
expression even becomes x1n1, transforming (1.2) into

x′1 = x1

(
n1 + n2

(A(2)x)1

xA(2)x

)
,

which has exactly the same fixed points as the panmictic model (1.1) with
A = A(2), because

x1 = x1

(
n1 + n2

(A(2)x)1

xA(2)x

)
x1 (1− n1) = x1n2

(A(2)x)1

xA(2)x

x1 = x1
(A(2)x)1

xA(2)x
.

From this we conclude that fixed points in general change their position
and for large c can even leave the area of interest when symmetrizing payoff
matrices by the means above. Thus, at this point, we cannot exclude to find
richer behaviour in (2.1) than in its counterpart from the field of population
genetics. Nevertheless in Section 2.6 we will come back to this problem.
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2. THE CASE OF TWO STRATEGIES

2.3 Conditions for permanence

As we will also do for the case of cyclic 3 × 3-games in Section 3.2.2, we
investigate prerequisites on the payoff values to exclude the loss of any of the
two strategies. With equation (2.1) being a one-dimensional problem, this
reduces to calculating derivatives in x = 0 and x = 1.

Lemma 2.3.1. Consider (2.1). Then strategy 1 is protected (i.e., x = 0 is
unstable) if

J∑
j=1

nja
(j)
12

a
(j)
22

> 1. (2.4)

Proof. Denoting the right hand side of (2.1) by F (J)(x) and setting J = 1 it
is a simple computation to see that

dF (1)

dx
|x=0 =

a
(1)
12

a
(1)
22

.

Since taking the derivative is a linear operation, we obtain the proposed
result.

By relabeling strategies we find an analogous statement for strategy 2.
Putting together these results we get a sufficient condition for permanence
of the system.

Proposition 2.3.2. The system (1.2) for n = 2 is permanent if both in-
equalities

J∑
j=1

nja
(j)
12

a
(j)
22

> 1,
J∑
j=1

nja
(j)
21

a
(j)
11

> 1 (2.5)

hold true.

One might be interested in permanence for the case of equality in at least
one of these formulas. For only two strategies, this question can be answered
without notational difficulties. Let us call a fixed point x̂ of x′ = F (x),
F : R→ R, first-order neutrally stable, if dF

dx
|x=x̂ = 1. From Taylor expansion

18



2.4. THE MAXIMUM NUMBER OF FIXED POINTS

around x̂ up to order two we then obtain

|F (x)− x̂| = |F (x)− F (x̂)| ≈ |x− x̂|
∣∣∣∣1 +

x− x̂
2

d2F

dx2
|x=x̂

∣∣∣∣ .
Hence orbits near x̂ = 0 move away from that point if (2.4) holds or — in
case of neutral stability — d2F

dx2 |x=0 > 0. Analogously, suppose dF
dx
|x=0 = 1

and dkF
dxk |x=0 = 0 for k = 2, ...,m− 1; in that case, call x = 0 neutrally stable

of order m− 1. Then the first strategy is protected, if dmF
dxm |x=0 > 0.

We can apply this insight to our model (2.1), which has the form

x′ = F (x) = xf(x).

The point x = 0 being first-order neutrally stable then translates into f(0) =

1. For the higher derivatives we find by induction

dkF

dxk
|x=0 = k

dk−1f

dxk−1
|x=0, k ≥ 1.

Thus, if x = 0 is neutrally stable of order k, one has to check the sign
of dk+1F

dxk+1 |x=0 in order to make assertions about the protectedness of the first
strategy. Unfortunately, going deeper into the matter by inserting the explicit
formula for f(x) entails work with many parameters and we have, so far, not
been able to derive a feasible criterion for protectedness involving fitness
parameters and niche proportions.

Note that for J = 1 the notion of neutral stability is nonrelevant, because
x = 0 being neutrally stable excludes the existence of interior fixed points as
well as neutral stability of x = 1. Hence in that case the sign of df

dx
|x=1 − 1

co-determines the protectedness of x = 0.

2.4 The maximum number of fixed points

Even for the Levene model (1.5) with two alleles the exact greatest possible
number of interior fixed points has not been assured yet. Solving the equation
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

J = 2
(1.5) 0.3866 0.5844 0.027 0.0021 − −
(1.2) 0.4629 0.5122 0.0234 0.0015 − −

J = 3
(1.5) 0.3496 0.6066 0.0393 0.0045 1.4 · 10−6 0
(1.2) 0.4235 0.5389 0.0342 0.0034 1.9 · 10−6 0

Table 2.1: Approximate relative frequencies of cases with i interior fixed points
for n = 2.

x = F (x) (with F denoting the right-hand side of (1.5), n = 2) leads to the
equation

0 = x(1− x)R(x),

where R is some rational function whose numerator is a polynomial of degree
2J−1. Hence 2J−1 is an upper bound for the number of interior equilibria.
For J = 1, 2 the situation is clear: Any possible number of fixed points
with feasible stability configuration is known to occur in concrete examples.
Furthermore, S. Karlin [9] found several examples for J = 3 producing four,
as well as one configuration for J = 7 with five interior fixed points.

With our interest not being oriented towards the Levene model in the
first place, but rather in its game theoretical counterpart (1.2), we asked
ourselves at the beginning of this chapter if either model offers more dynam-
ical possibilities than the other with increasing local division. Concerning
the maximum number of fixed points we will use the following sections to
first give concrete examples to answer this question for J = 3, 4. In the
subsequent section we then present a general result (see also [13]).

2.4.1 Concrete examples

Table 2.1 displays the approximate frequencies of cases with i interior rest
points for both (1.5) and (1.2), if J = 2 and J = 3, with randomly cho-
sen payoff matrices and niche proportions. More precisely, for each row we
created 107 payoff configurations by choosing payoff values uniformly [0, 1]-
distributed. This is no restriction, because taking multiples of payoff matrices

20



2.4. THE MAXIMUM NUMBER OF FIXED POINTS

does not change the dynamics of the system. An algorithm following Sturm’s
Theorem about zeros of polynomials produced the number of fixed points for
each configuration (the corresponding Mathematica code can be found in the
Appendix, Program Code 5.2.1).

Reading from Table 2.1 one might doubt that the theoretical bound of 5

interior fixed points for J = 3 can be achieved. But consider the configuration

A(1) =

(
1.29 9.17

4.15 2.26

)
, A(2) =

(
8.54 8.09

2.31 8.09

)
, A(3) =

(
1.02 0.47

2.45 8.39

)

and n1 = 0.0806, n2 = 0.6857, n3 = 0.2337. Then equation (2.1) has fixed
points at approximately

x0 = 0, x1 ≈ 0.033, x2 ≈ 0.496, x3 ≈ 0.709, x4 ≈ 0.87, x5 ≈ 0.991, x6 = 1,

and thus five interior fixed points, where x1, x3 and x5 are asymptotically sta-
ble. For the purely symmetric case a very similar scenario can be produced.
Setting

A(1) =

(
1 2

2 1

)
, A(2) =

(
3 1

1 1

)
, A(3) =

(
1 1

1 3

)
,

n1 = 0.26, n2 = 0.37, n3 = 0.37

equation (2.1) has fixed points at approximately

x0 = 0, x1 ≈ 0.049, x2 ≈ 0.308, x3 ≈ 0.5, x4 ≈ 0.692, x5 ≈ 0.951, x6 = 1,

where again x1, x3 and x5 are asymptotically stable. The reverse stability
configuration can be found in a similar example1:

A(1) =

(
4 1

1 4

)
, A(2) =

(
25 1

1 1

)
, A(3) =

(
1 1

1 25

)
,

n1 = 0.52, n2 = 0.24, n3 = 0.24

1Unlike in the panmictic model (1.1), one cannot replace a(j)
ik by c − a(j)

ik , c ∈ R suffi-
ciently large, to maintain fixed points but switch stability properties.
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Inserting this into (2.1) produces equilibria at

x0 = 0, x1 ≈ 0.205, x2 ≈ 0.328, x3 ≈ 0.5, x4 ≈ 0.672, x5 ≈ 0.795, x6 = 1,

where, this time, x0, x2, x4 and x6 are asymptotically stable.
Pursuing this further, we can also give numerical examples for J = 4 with

the greatest possible number of interior fixed points with all two generic sta-
bility configurations. The permanent scenario was created from the example
above by introducing a fourth niche with small size but wide spread in payoff
values. In the following tables, filled circles "•" represent stable fixed points,
whereas unfilled rings "◦" stand for repellors.

A(1) =

(
4 1

1 4

)
, A(2) =

(
25 1

1 1

)
, A(3) =

(
1 1

1 25

)
, A(4) =

(
1 100

100 1

)
,

n1 = 0.51, n2 = 0.24, n3 = 0.24, n4 = 0.01

0 0.003 0.16 0.446 0.5 0.554 0.84 0.997 1

As for the reversed stability properties, we can present the following example:

A(1) =

(
90 1

1 1

)
, A(2) =

(
1 1

1 90

)
, A(3) =

(
3 1

1 1

)
, A(4) =

(
1 1

1 3

)
,

n1 = n2 = 0.0564, n3 = n4 = 0.4436

0 0.126 0.329 0.443 0.5 0.557 0.671 0.874 1

2.4.2 A general construction

To simplify subsequent arguments, let us settle on the following notion.

Definition 2.4.1. Let x′ = F (x) be a dynamical system on the interval
[0, 1]. We call F (or the dynamics under F ) symmetric if F ◦ φ = φ ◦F is a
conjugacy for φ : x 7→ 1−x (that is, if F (x) = 1−F (1−x) for all x ∈ [0, 1]).

A simple observation gives
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2.4. THE MAXIMUM NUMBER OF FIXED POINTS

Lemma 2.4.2. Let Fj, j = 1, ..., J , be symmetric and
∑

j εj = 1, εj > 0 ∀j.
Then

∑
j εjFj is symmetric.

Proof. This is obvious:∑
j

εjFj(x) =
∑
j

(εj − εjFj(1− x)) = 1−
∑
j

εjFj(1− x)

With this helpful tool at hand we start the following construction. Con-
sider (1.2) for n = 2, which we write as

x′ =
J∑
j=1

njfj(x) =: F (x) (2.6)

and suppose that

• F is symmetric,

• x = 0 and x = 1 are asymptotically stable, i.e. d
dx
F |x=0 < 1, d

dx
F |x=1 <

1, and

• F has k hyperbolic, interior fixed points2 . We label them

0 < x1 < ... < xk < 1

Note that under these conditions two adjacent fixed points always must have
different stability properties.

For ζ ≥ 1 define the following two matrices

Z(1) =

(
ζ 1

1 1

)
, Z(2) =

(
1 1

1 ζ

)
.

Then, if 0 < ε < 1, the recursion

x′ = (1− ε)F (x) + εs(x) =: F̃ (x), (2.7)
2That is, in every fixed point the absolute value of the derivative of F is 6= 1
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where

s(x) =
x

2

(
(Z(1)x)1

xZ(1)x
+

(Z(2)x)1

xZ(2)x

)
,

defines a valid game in J + 2 demes according to (1.2). The perturbation
function s is symmetric and therefore, by Lemma 2.4.2, F̃ is symmetric.
Furthermore, s is continuous in ζ. Thus by choosing ε sufficiently small we
can ensure that for all ζ ≥ 1 the new dynamical system (2.7) is similar to
(2.6) in the following sense:

• Since s is bounded and monotone, all fixed points x̃i, i = 1, ..., k, of F̃
are close to their original locations xi. Furthermore, no other equilibria
emerge and, in particular, none leave [0, 1].

• Since s(0) = 0, the point x = 0 remains a fixed point (and by symmetry
of F̃ the same holds for x = 1). Moreover these monomorphic states
remain stable because

ds

dx
|x=0 =

ds

dx
|x=1 =

1

2

(
1 +

1

ζ

)
,

which clearly is bounded for ζ ≥ 1.

• Because ds
dx

is uniformly bounded on every compact interval [a, 1 − a]

(0 < a < 1
2
, see Lemma 5.1.2 (a) and (b)), dF̃

dx
|x=x̃i

is close to dF
dx
|x=xi

for ε small, uniformly in ζ. Hence the local stability properties of all
equilibria x̃i, i = 1, ..., k, are maintained.

After a short calculation, we find s(x) → 1
2
if ζ → ∞ for all x ∈ (0, 1)

(compare Figure 2.1), which motivates the next step:
Pick ε with 0 < ε < 2x̃1 and δ ∈ (0, ε

2
). By the last statement we can find a

ζ∗ > 1 such that
δ < εs(δ) <

ε

2
< x̃1.

Therefore we have F̃ (δ) = (1 − ε)F (δ) + εs(δ) > δ and δ ∈ (0, x̃1). From
the stability configuration above we know that F̃ (x) < x on a right-hand
side neighbourhood (0, ε1) of 0 as well as on a left-hand side neighbourhood
(x̃1−ε2, x̃1) of x̃1. Thus by the intermediate value theorem it follows that two

24



2.4. THE MAXIMUM NUMBER OF FIXED POINTS

(a) ζ = 20 (b) ζ = 100 (c) ζ = 1000

Figure 2.1: The function s for some values of ζ. Note that ds
dx
|x=0 = ds

dx
|x=0 < 1

for all ζ which becomes visible only after zooming in.

more fixed points exist in (0, x̃1). Since F̃ is symmetric, we automatically
have two additional equilibria in (x̃k, 1) as well.

To sum up, we started out with a game in J niches with k fixed points
and absorbing edges x = 0 and x = 1. We finally ended up with a dynamics
with J + 2 niches and k + 4 fixed points. Note that we only used symmetric
matrices so the procedure works for the Levene model (1.5) as well. This
constitutes the proof of the following

Lemma 2.4.3. Given an example of either (1.2) or (1.5) in J demes and
k interior fixed points, where F is symmetric and x = 0 and x = 1 are
asymptotically stable, we can always find a dynamics with J + 2 demes and
k+ 4 interior fixed points. This dynamics is symmetric and x = 0 as well as
x = 1 are asymptotically stable.

Now we have arrived where we wanted to get to:

Proposition 2.4.4. For (1.2) (or (1.5), respectively) and n = 2 the theo-
retical upper bound of 2J − 1 interior fixed points can be achieved. We may
even confine to symmetric dynamics.

Proof. Simple induction: For J = 1, 2 the configurations

A =

(
2 1

1 2

)
,

{
A(1) =

(
6 1

1 1

)
, A(2) =

(
1 1

1 6

)
, n1 = n2 =

1

2

}
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give the required result. By repeatedly applying Lemma 2.4.3 we may con-
struct examples with the maximum possible number of fixed points for any
J > 2.

So far we only have a guarantee that examples with stable monomor-
phisms and a maximum possible number of fixed points — of which J + 1

are stable — exist. The following proposition extends Proposition 2.4.4 to
the case of protected alleles.

Proposition 2.4.5. The theoretical upper bound of 2J − 1 interior fixed
points in (2.1) for n = 2 can be realized in permanent dynamics, i.e. with
repelling monomorphisms.

Proof. For J = 1 symmetric and permanent dynamics with one interior fixed

point are known to exist (e.g., consider A =

(
1 2

2 1

)
).

As in the argumentation leading to Lemma 2.4.3 take a dynamics F with J
demes and attracting edges x = 0 and x = 1, which is symmetric and bears
the maximum possible number 2J − 1 of interior fixed points. Consider
equation (2.7) with

s(x) = x
(Zx)1

xZx
,

where Z =

(
1 ζ

ζ 1

)
, ζ ≥ 1. Then again s is symmetric and s(x) → 1

2

on (0, 1) for ζ → ∞. Furthermore s is monotone and the derivative ds
dx

is
uniformly bounded on every compact interval [a, 1 − a], 0 < a < 1

2
(consult

the Appendix, Lemma 5.1.2 (c) for a proof of this statement). Therefore by
choosing ε small and ζ large — for the things to come ζ > 1

ε
will suffice —

we eventually obtain that all interior fixed points of F and their stability
properties are maintained. In particular, x̃1 remains a repellor.
On the other hand ds

dx
|x=0 = ζ and thus by the choice of ζ above we have

dF̃

dx
|x=0 = (1− ε)dF

dx
|x=0 + εζ > 0 + ε

1

ε
= 1.

Hence x̃0 = 0 is also a repellor and it follows that there is an additional
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2.5. EVEN NUMBERS OF EQUILIBRIA

rest point in (0, x̃1). Because F̃ is symmetric we automatically get another
equilibrium in (x̃2J−1, 1), and we have constructed a permanent dynamics
with J + 1 demes and 2J + 1 interior fixed points.

2.5 Even numbers of equilibria

By Lemma 2.4.3 and following the proof of Proposition 2.4.5 we immediately
see that we can construct examples for any feasible configuration with an odd
number of interior fixed points. In other words, for any J ≥ 1 we can find a
dynamics with 2k−1, k ∈ {1, ..., J}, interior fixed points and preset stability
properties ("Repellor-attractor-...-attractor-repellor" for the permanent case
or "attractor-repellor-...-repellor-attractor"). To obtain an even number of
interior fixed points we must get rid of the symmetry in our examples. Still
the method is the same as conducted in Section 2.4.2.

As usual, suppose F to be a right-hand side of either equation (1.2) or
(1.5) with J ≥ 1 demes and 2k − 1 hyperbolic interior equilibria for some
k ∈ {1, ..., J}. Furthermore presume that x = 0 and x = 1 are attractors.

For Z =

(
1 ζ

ζ ζ

)
, ζ ≥ 1, ε sufficiently small and s(x) = x (Zx)1

xZx
consider

equation (2.7). Lemma 5.1.2 (d) and some basic algebra show that

• s is monotone and ds
dx

is uniformly bounded in ζ on every compact
interval [a, 1− a], 0 < a < 1

2
,

• ds
dx
|x=0 = 1 and ds

dx
|x=1 = ζ.

By the first point we may assume (making ε smaller if necessary) that all
interior fixed points and their stability properties are maintained. In partic-
ular, the rightmost interior equilibrium remains a repellor.
By the second point the property of x = 0 being an attractor remains un-
changed as well. On the other hand, enlarging ζ we get arbitrarily large
values for ds

dx
|x=1 — and hence also for dF̃

dx
|x=1 — eventually making x = 1

a repellor. As we cannot have two repellors side by side, one additional
(asymptotically stable) interior fixed point must have emerged.
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2. THE CASE OF TWO STRATEGIES

Summing up we have a dynamics with J + 1 demes and 2k (k ∈ {1, ..., J})
interior rest points. Putting this together with what we know from Section
2.4.2 (plus some bits of folklore to start inductive reasoning in a rigorous
proof) we get:

Theorem 2.5.1. If n = 2, both (1.2) and (1.5) allow for any number k ∈
{1, ..., 2J−1} of interior fixed points with any feasible stability configuration.

2.6 A final remark on equivalence

Let us turn back to the question remaining from Section 2.2: We already
know that for n = 2 and J = 1 the equations (1.2) and (1.5) are equivalent
in the sense that any dynamics induced by one model can be qualitatively
reproduced by the other. After our findings in this section we know that for
any F̃ , denoting a right-hand side of (1.5), we can find a right-hand side F
of (1.2), such that F and F̃ have the same number of fixed points with the
same stability configuration. Hence we can apply Proposition 5.1.1 from the
Appendix and find that there is a conjugacy between F and F̃ . Therefore
we have shown:

Proposition 2.6.1. If n = 2, (1.2) and (1.5) are equivalent in terms of none
of them offering more dynamical possibilities than the other.
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Chapter 3

Cyclic games

3.1 Cyclic payoffs in a single patch

In preparation for the following chapters we will present basic results for a
cyclic game without spatial structure. That means we are looking at the
recurrence equation (1.1), which reads

x′i = xi
(Ax)i
xAx

and assume that A has the structure

A =

a b c

c a b

b c a

 (3.1)

with a, b, c > 0.

3.1.1 A Ljapunov function

The following result was stated by J. Hofbauer in [5], p.771. As details are
omitted there, we exercise the whole calculation.

Proposition 3.1.1. The function V : int∆ → int∆, V (x) = xAx
x1x2x3

, is a
Ljapunov function for the dynamical system (1.1).
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3. CYCLIC GAMES

Note: The restriction to int∆ does not cause us any trouble, because ∂∆

(and thus also int∆) is invariant under (1.1), which can be checked easily.

Proof. Clearly, V is continuous on int∆.
We have to compare V (x) with V (x′). For clarity, we first compute the
average payoff after one generation:

x′Ax′ =
∑
i,j

aijx
′
ix
′
j =

∑
i,j

aijxixj
(Ax)i(Ax)j

(xAx)2

Introducing the notation ai := (Ax)i and recalling that

A =

a b c

c a b

b c a


we can rewrite this as

x′Ax′ =
1

(xAx)2

a
(∑

i

x2
i a

2
i

)
+ (b+ c)

(∑
i

∑
j 6=i

xixjaiaj

)
︸ ︷︷ ︸

Θ

 .

Hence we get for V (x′):

V (x′) =
x′Ax′

x′1x
′
2x
′
3

=
Θ

(xAx)2
· (xAx)3

x1x2x3a1a2a3

=V (x)
Θ

a1a2a3

In order to establish that V is a Ljapunov function we have to make sure
that V (x′)− V (x) never changes its sign, which is equivalent to Θ− a1a2a3

never changing its sign. To simplify calculations we introduce homogeneous
coordinates by multiplying a1a2a3 with 1 = x1 + x2 + x3. We obtain a
homogeneous polynomial T (x1, x2, x3) = Θ− a1a2a3(x1 + x2 + x3) of degree
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3.1. CYCLIC PAYOFFS IN A SINGLE PATCH

four, which - after some strenuous manual work - turns out to have the form

T (x1, x2, x3) =
(
a2 − bc

)
(a · t1(x1, x2, x3) + b · t2(x1, x2, x3) + c · t3(x1, x2, x3)) ,

where

t1(x1, x2, x3) = x4
1 + x4

2 + x4
3 − x2

1x2x3 − x1x
2
2x3 − x1x2x

2
3,

t2(x1, x2, x3) = x3
1x2 + x3

2x3 + x1x
3
3 − x2

1x2x3 − x1x
2
2x3 − x1x2x

2
3,

t3(x1, x2, x3) = x1x
3
2 + x3

1x3 + x2x
3
3 − x2

1x2x3 − x1x
2
2x3 − x1x2x

2
3.

All this may look a little messy but it helps a lot that the polynomials t1,
t2 and t3 are non-negative on the simplex ∆. This can be seen quite easily:
Obviously, the ti are non-negative on ∂∆ because all summands with negative
sign vanish if one xi is zero. The usual procedure from differential calculus
yields that all of the three functions (restricted on ∆) have a unique minimum
at x̂ = (1

3
, 1

3
, 1

3
) with t1(x̂) = t2(x̂) = t3(x̂) = 0. Hence all ti and therefore

also at1 + bt2 + ct3 is nonnegative on the area of interest.
From the statement above it follows that the sign of T is determined only by
the sign of a2− bc, which does not depend on either of the xi. Thus we have

V (x′) ≤ V (x) ∀x ∈ int∆ if a2 < bc

V (x′) ≥ V (x) ∀x ∈ int∆ if a2 > bc

with equality only at x̂ = (1
3
, 1

3
, 1

3
). If a2 = bc holds, it follows that V (x′) =

V (x) ∀x ∈ int∆, so all orbits move along level set curves of V . In any case
we have shown that V is a Ljapunov function for (1.1).

3.1.2 Classification of behaviour

We are now able to sketch a rough picture of possible dynamics in cyclic
3× 3 games. To this end, we first calculate the fixed points of (1.1). Apart
from the trivial ones at the corners of ∆, i.e. where only one strategy is
present, there is a unique interior fixed point at P = (1

3
, 1

3
, 1

3
), the absolute
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3. CYCLIC GAMES

minimum of the Ljapunov function V . As this is not obvious at first sight,
the calculation is sketched in the Appendix, Lemma 5.1.3. From Proposition
3.1.1 we may conclude that for a2 < bc the fixed point P is globally stable.
If a2 > bc, all orbits starting in int∆ move towards the boundary ∂∆.

To obtain information about behaviour at ∂∆, we treat local stability of
E1 = (1, 0, 0), E2 = (0, 1, 0) and E3 = (0, 0, 1), the corners of ∆. For reasons
of symmetry it is irrelevant which point to choose, so we decide for E1. For
the linearization we calculate:

∂x′i
∂xk

= δik
(Ax)i
xAx

+ xi
xAx · ∂

∂xk
(Ax)i − (Ax)i · ∂

∂xk
xAx

(xAx)2
(3.2)

Inserting E1 we obtain the Jacobian

J |E1 =

0 − c
a
− b
a

0 c
a

0

0 0 b
a

 .

The eigenvalues λ1 = b
a
and λ2 = c

a
of this matrix can be read from its diag-

onal1. Applying the Hartman-Grobman Theorem 1.3.1, we can summarize
as follows (see also Figure 3.12):

• Case 1: b > a and c > a

All orbits in the interior of ∆ converge to P = (1
3
, 1

3
, 1

3
). Since the

corners are repellors, we have an internally stable fixed point on each
edge of ∆, i.e. stable coexistence of the strategies present.

• Case 2: b < a and c < a

The interior fixed point P is a repellor. Orbits of almost all starting
values converge to one of the corners of ∆. This is a coordination game
where it is best to act as the majority of the population does.3

1Ignoring the value zero belonging to an eigenvector transversal to ∆.
2For the corresponding Mathematica-code consult the Appendix, Program Code 5.2.2.
3Remark : This game produces the greatest possible number of seven Nash equilibria

in (panmictic) 3× 3-games. Besides the corners of ∆ and P also the single fixed point at
each edge of ∆ is a Nash equilibrium.
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3.1. CYCLIC PAYOFFS IN A SINGLE PATCH

(a) Case 1 (b) Case 2

(c) Case 3a (d) Case 3b (e) Case 3c

Figure 3.1: Classification of cyclic 3× 3-games. Time evolving from blue to red.

• Case 3: w.l.o.g. b > a and c < a

The boundary of ∆ forms a heteroclinic cycle: Each strategy dominates
another and is dominated by the third in a cyclic way.

– Case 3a: a2 < bc

In int∆ all orbits spiral towards P .

– Case 3b: a2 > bc

In int∆ all orbits spiral away from P and towards ∂∆.

– Case 3c: a2 = bc

As in this case we have V (x) = V (x′), all trajectories move along
level sets of V . Hence each point in int∆ lies on an invariant closed
curve around P .
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3. CYCLIC GAMES

3.2 Spatial structure with cyclic payoffs

Having done the preliminary work in the previous chapter we will now take
account of a spatially structured population according to (1.2) with the ad-
ditional assumption of cyclic payoffs in each deme. Thus we are investigating

x′i = xi

J∑
j=1

nj
(A(j)x)i
xA(j)x

where

A(j) =

a
(j) b(j) c(j)

c(j) a(j) b(j)

b(j) c(j) a(j)

 . (3.3)

In what to come we first give conditions for the local stability of the interior
fixed point and for permanence. These results are obtained by linearizing at
the respective points and computing the absolute values of the corresponding
eigenvalues.

3.2.1 Local stability of the interior fixed point

Before rushing right into stability issues we point out one simple but handy
fact, which faciliates our work: As noted earlier, multiplying payoff matrices
with a constant factor s does not affect the dynamics of (1.2), because s
then appears both in enumerator and denominator and thus cancels out.
We exploit that circumstance by rescaling our payoff matrices, in that case
setting

a(j) + b(j) + c(j) = 1 ∀j = 1, ..., J. (3.4)

Furthermore we easily verify that P = (1
3
, 1

3
, 1

3
) is always a fixed point under

(1.2) with payoffs according to (3.3). We sloppily address P as the interior
fixed point of our model, although it need not be unique4. This is partially
justified by the fact that the existence of more than one isolated interior fixed

4See Section 3.3.
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3.2. SPATIAL STRUCTURE WITH CYCLIC PAYOFFS

point is yet doubtful.

Proposition 3.2.1. The fixed point P = (1
3
, 1

3
, 1

3
) is stable under (1.2) with

(3.3) and (3.4) if(
J∑
j=1

nja
(j)

)2

<

(
J∑
j=1

njb
(j)

)(
J∑
j=1

njc
(j)

)
. (3.5)

If the inverse inequality holds, P is a repellor.

Proof. We have

x′i = xi

J∑
j=1

nj
(A(j)x)i
xA(j)x

(i = 1, ..., n)

and need to compute the Jacobian at P . So we calculate

∂x′i
∂xk

= δik

J∑
j=1

nj
(A(j)x)i
xA(j)x

+

+ xi

J∑
j=1

nj
xA(j)x · ∂

∂xk
(A(j)x)i − (A(j)x)i · ∂

∂xk
xA(j)x

(xA(j)x)2
. (3.6)

We are aimed at ∂
∂xk

x′i|P . Let us check the components of that expression
first:

(A(j)x)i|P =
1

3
(a(j) + b(j) + c(j)) =

1

3

xA(j)x|P =
1

3
(a(j) + b(j) + c(j)) =

1

3
∂

∂xk
(A(j)x)i|P = (A(j))ik

∂

∂xk
xA(j)x|P =

2

3
(a(j) + b(j) + c(j)) =

2

3
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We can summarize:

∂

∂xk
x′i|P = δik

∑
j

nj

1
3
1
3

+
1

3

∑
j

nj

1
3
(A(j))ik − 1

3
· 2

3

1/9

= δik +
∑
j

nj(A
(j))ik −

2

3
(3.7)

The usual procedure to follow is to write down the Jacobian, calculate its
eigenvalues and compute their absolute values. This entails strenuous work
we can fortunately avoid, exploiting the simplicity of P . Define the matrix

H :=
J∑
j=1

njA
(j)

and a single-niche model on ∆ by

y′i = yi
(Hy)i
yHy

. (3.8)

Now we compute the Jacobian of (3.8) at P , which still is a fixed point of
this altered dynamics. Adapting formula (3.2) from Section 3.1.2 we get:

∂y′i
∂yk

= δik

∑
j nj(A

(j)y)i∑
j njyA

(j)y
+

+ yi

∑
j njyA

(j)y ·
∑

j nj
∂
∂yk

(A(j)y)i −
∑

j nj(A
(j)y)i ·

∑
j nj

∂
∂yk
yA(j)y

(
∑

j njyA
(j)y)2

Inserting P yields

∂

∂yk
y′i|P = δik +

1

3

1
3

∑
j nj(A

(j))ik − 1
3
· 2

3
1
9

= δik +
∑
j

nj(A
(j))ik −

2

3
,

which is exactly (3.7). Thus the local stability properties of P are the same
under both dynamics (1.2) and (3.8). From Chapter 3.1 we transcribe the
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3.2. SPATIAL STRUCTURE WITH CYCLIC PAYOFFS

condition for stability of P , which produces the desired formula.

Remark 3.2.2. As mentioned before, (3.4) means no restriction. We can
get rid of this condition in (3.5) by dividing each payoff value by the sum
a(j) + b(j) + c(j). (3.5) then reads(

J∑
j=1

nja
(j)

a(j) + b(j) + c(j)

)2

<

(
J∑
j=1

njb
(j)

a(j) + b(j) + c(j)

)(
J∑
j=1

njc
(j)

a(j) + b(j) + c(j)

)
.

3.2.2 Permanence

Thinking of the single-deme model (1.1) with cyclic behaviour induced by the
payoff matrix (3.1), we remember from Section 3.1.2 that the eigenvalues of
the linearization at the corners of ∆ were λ1 = b

a
and λ2 = c

a
. For (w.l.o.g.)

λ1 > 1 and λ2 < 1, ∂∆ is a heteroclinic cycle. Taking P (x) = x1x2x3

and applying Proposition 1.3.4, we see that it is repelling (or, equivalently,
our system is permanent) if the product λ1λ2 > 1. As the calculation is
straighforward, we omit it at this point and refer to the more general case
we treat in the next proposition.

Proposition 3.2.3. Consider the system of difference equations (1.2) on ∆

with (3.3) and assume that there are no fixed points on ∂∆ apart from the
corners of ∆. Then the system is permanent if(

J∑
j=1

njb
(j)

a(j)

)(
J∑
j=1

njc
(j)

a(j)

)
> 1. (3.9)

Proof. According to Proposition 1.3.4 we choose P (x) = x1x2x3. It is easily
verified that

P (x′) = P (x)
3∏
i=1

J∑
j=1

nj
(A(j)x)i
xA(j)x

.

Therefore

ψ(x) =
P (x′)

P (x)
=

3∏
i=1

J∑
j=1

nj
(A(j)x)i
xA(j)x
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and inserting any of the corners of ∆ we get

ψ(x̂) =
3∏
i=1

J∑
j=1

nj
(A(j)x̂)i
a(j)

=

(
J∑
j=1

nj
a(j)

a(j)

)
︸ ︷︷ ︸

=1

(
J∑
j=1

nj
b(j)

a(j)

)(
J∑
j=1

nj
c(j)

a(j)

)
.

Remark 3.2.4. Admittedly, the assumption of having no fixed points at the
edges of ∆ is not nice to work with. Unfortunately, it is difficult to give a
handy formula for such points with more than one deme at hand, so we will
stick to this rather vague statement. A necessary condition for ∂∆ being a
heteroclinic cycle is λ1 ≥ 1 and λ2 ≤ 1 (or the other way round), where λi are
the eigenvalues of the Jacobian at the corners of ∆. The following proposition
gives explicit formulas for these values, which are basically transcribed from
Section 2.3 and can be found again in (3.9).

Proposition 3.2.5. Consider the system of difference equations (1.2) on ∆

with (3.3). Then the eigenvalues of the Jacobian of (1.2) at any of the points
E1 = (1, 0, 0), E2 = (0, 1, 0) or E3 = (0, 0, 1) are

λ1 =
∑
j

njb
(j)

a(j)

λ2 =
∑
j

njc
(j)

a(j)

Proof. Dealing with the dynamics on the edge xi = 0 of ∆ is equivalent to
removing the ith row and column from each payoff matrix and examining
the recurrence equation for the remaining xk, k 6= i. Thus following the
argumentation leading to Proposition 2.3.2 produces the proposed formulas.

Remark 3.2.6. Different from the case without spatial structure (see Section
3.1.2), the conditions for stability of P and for permanence of the system,
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3.3. EXAMPLES FOR POSSIBLE BEHAVIOUR

(3.5) and (3.9), are not the same. We will, for example, investigate perma-
nent systems with unstable fixed point P in the next section.

3.3 Examples for possible behaviour

The following examples will demonstrate that even with relatively tough
restrictions on the model (1.2), namely admitting only three strategies in
two demes and assuming cyclic payoffs in each patch according to (3.3), we
end up with interesting behaviour. We start out with known phenomena,
namely

• continua of invariant curves, occurring already in the cyclic single-niche
model (1.1)5, and

• continua of fixed points, which can appear in the Levene model (1.5)
as a special case of (1.2) requiring symmetric matrices W (j).

Introducing spatial structure or generalizing the payoff matrices, we ask our-
selves if these properties can be reproduced using (1.2) with (3.3). This
may give us a feeling how the cyclic single-niche model and Levene’s model
"combine" to our specific scenario.

3.3.1 Continua of invariant curves

As stated in Section 3.1.2, the cyclic single-deme model (1.1) yields a contin-
uum of closed orbits if and only if a2 = bc. At least for the case of two niches
we will now work out a precise characterization of that behaviour for our
case at hand. Initially, it might be conceivable that several niches balance
in sophisticated ways, but the condition for a continuum of invariant curves
turns out to be quite simple.
A necessary condition for int∆ consisting of closed orbits certainly is the
interior fixed point as well as the boundary ∂∆ being neutrally stable. From

5See case 3c in Section 3.1.2.
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Propositions 3.2.1 and 3.2.3 we conclude that(
J∑
j=1

nja
(j)

a(j) + b(j) + c(j)

)2

=

(
J∑
j=1

njb
(j)

a(j) + b(j) + c(j)

)(
J∑
j=1

njc
(j)

a(j) + b(j) + c(j)

)
(3.10)

and (
J∑
j=1

njb
(j)

a(j)

)(
J∑
j=1

njc
(j)

a(j)

)
= 1 (3.11)

must hold6.
Now assume that we have only two niches with deme sizes n1 and n2. Similar
to what we did in Section 3.2.1 we can rescale payoffs values, in this case
setting a(1) = a(2) = 1. Thereby we can write condition (3.11) as

n1b
(1) + n2b

(2) = k

n1c
(1) + n2c

(2) = 1/k

for some real constant k > 0. Solving for b(2) and c(2) yields

b(2) =
k − n1b

(1)

n2

c(2) =
1− kn1c

(1)

kn2

.

Inserting in equation (3.10), we get after some basic algebra

b(1) =
1− c(1)k + k2

k

and hence for b(2)

b(2) =
k2 − (1− c(1)k + k2)n1

kn2

.

6Note: As these conditions do not follow from (a(j))2 = b(j)c(j) ∀j, we cannot simply
"add up" single niches bearing continua of closed orbits to get the desired effect.
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Looking closer we see that

b(1) + c(1) = b(2) + c(2)

(
= k +

1

k

)
,

and because the average payoff in each niche can be written as

xA(j)x = a(j)(x2
1 + x2

2 + x2
3) + (b(j) + c(j))(x1x2 + x1x3 + x2x3),

we end up with xA(1)x = xA(2)x =: A(x) for all x ∈ ∆.
As in the proof of Proposition 3.2.1 we now set

H := n1A
(1) + n2A

(2).

Then (Hx)1 = n1(A(1)x)i +n2(A(2)x)i and xHx = n1 · xA(1)x+n2 · xA(2)x =

A(x). Thus we arrive at

x′i = xi

(
n1
A(1)x)i
xA(1)x

+ n2
A(2)x)i
xA(2)x

)
= xi

n1(A(1)x)i + n2(A(2)x)i
A(x)

= xi
(Hx)i
xHx

. (3.12)

Because (3.10) holds, we have case 3c from Section 3.1.2 at hand; that is,
under system (3.12) int∆ consists of closed orbits. Hence (3.10) and (3.11)
are a sufficient condition for the existence of a continuum of closed orbits
and we have proved

Proposition 3.3.1. For the case of two demes, J = 2, (1.2) with (3.3)
provides a continuum of invariant curves around P if and only if conditions
(3.10) and (3.11) hold.

Allowing for more than two demes the calculations from above cannot be
done that easily because too many variables are involved. Thus the average
payoff being equal in every deme cannot be assured by the same arguments.
Presuming xA(1)x = xA(2)x = ... = xA(J)x, we can define H :=

∑
j njA

(j)
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and are able to rewrite (1.2) as (3.12). In that case, (3.10) ensures a contin-
uum of invariant curves. So we can state:

Proposition 3.3.2. If (3.10) holds and the average payoffs in each niche
are the same for all x ∈ ∆, then (1.2) with (3.3) provides a continuum of
invariant curves.

3.3.2 Continua of fixed points

As C. Cannings [2] pointed out, continua of fixed points can occur even in
the Levene model with two demes. The configuration

A(1) =

1 2 2

2 1 2

2 2 1

 , A(2) =

2 1 1

1 2 1

1 1 2

 , n1 = n2 =
1

2
(3.13)

produces a dynamics with the incircle

x2
1 + x2

2 + x2
3 − 2 (x1x2 + x1x3 + x2x3) = 0

of ∆ consisting of fixed points. By slightly altering the niche proportions ni
one can easily shrink or enlarge this curve. Three numerical examples are
given in Figure 3.2. These pictures were acquired by laying a grid of starting
points over ∆ and applying the generation map (1.2) with the above matrix
configuration on them repeatedly. The respective program code is presented
in the Appendix, Program Code 5.2.3. Just by the look of the pictures it
is, of course, not clear that the depicted curves consist of fixed points, but
following Cannings’ reasoning we can overcome our doubts. For the complete
argumentation we refer to the Appendix, Proposition 5.1.4.
For us this example is of interest, as it is a special case of a game with
cyclic behaviour in each niche. To make it "truly" cyclic we added some
cyclic perturbation in several ways, ending up with two qualitatively different
results. While the first is presented in the following lines, we move the
analysis of the second possibility to Section 3.3.3.
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3.3. EXAMPLES FOR POSSIBLE BEHAVIOUR

(a) n1 = n2 = 1
2 (b) n1 = 0.48, n2 = 0.52 (c) n1 = 0.52, n2 = 0.48

Figure 3.2: Curves of fixed points in Cannings’ example

Considering a single perturbation matrix

Υ =

0 ε δ

δ 0 ε

ε δ 0

 , ε > 0, δ > 0

and the configuration

A(1) + kΥ, A(2) − kΥ, n1 = n2 =
1

2
, k ∈ R, (3.14)

simulations suggest that, depending on k, the curve of fixed points changes
its diameter like it does in the pure symmetric scenario with varying niche
proportions. The following proposition confirms this statement.

Proposition 3.3.3. If 1+2k(δ+ε) > 0, the system (1.2) with (3.14) provides
a continuum of fixed points, which is given by the intersection of ∆ with the
sphere centered around P =

(
1
3
, 1

3
, 1

3

)
with radius r =

√
1+2k(δ+ε)

3(2+k(δ+ε))
.

Proof. Let z =
(
(s,−1

2

(√
2− 3s2 + s

)
, 1

2

(√
2− 3s2 − s

))
. Then

∑
zi = 0,

‖z‖ = 1 and γ = P ± rz defines a circle with radius r in the plane (R3)1 :=

{x ∈ R3 :
∑
xi = 1}. Rewriting (1.2) as x′ = xf(x) we find

f(γ) =
3

2

(
α1P − rZ
α1 − r2β

+
α2P + rZ

α2 + r2β

)
,
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where

α1 = 5 + k(ε+ δ), α2 = 4− k(ε+ δ), β = 3

(
1 +

k(ε+ δ)

2

)
and Z = z−kεz−kδz. Here, z and z are obtained from z by cycling through
the vector’s components. Inserting the formulas for r and z gives a lengthy
expression which provides fi(γ) = 1 for all i = 1, 2, 3. Thus every point on γ
is a rest point.
The distance from P to either of the edges of ∆ is

√
2
3
. Therefore, for

γ ∩ int∆ 6= ∅ we require

r =

√
1 + 2k(δ + ε)

3(2 + k(δ + ε))
<

√
2

3
. (3.15)

Suppose that 1 + 2k(ε + δ) < 0. Then 2 + k(ε + δ) < 0 must hold for γ to
exist. Taking the square of (3.15) we get

1 + 2k(ε+ δ) > 4 + 2k(ε+ δ),

which is obviously untrue, hence γ is located outside of ∆.
From 1 + 2k(ε+ δ) > 0 as proposed it follows that also 2 + k(ε+ δ) > 0 and
(3.15) becomes

1 + 2k(ε+ δ) < 4 + 2k(ε+ δ).

Thus under given conditions we have γ ∩ int∆ 6= ∅.

3.3.3 Attracting curves

Apart from what we showed in the previous section, many other perturba-
tions of (3.13) lead to a collapse of the fixed point manifold. In its place,
simulations show an invariant curve, along which orbits move around the in-
terior fixed point P = (1

3
, 1

3
, 1

3
). This definitely can not happen in the Levene

model, as such a behaviour contradicts the existence of a (strict) Ljapunov
function, which would have to be strictly monotone along a closed curve.
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(a) k = 0, clockwise rotation (b) k = 2, counterclockwise rotation

Figure 3.3: Change of rotational direction

As an example consider

A(1) =

 1 2 + ε 2 + δ

2 + δ 1 2 + ε

2 + ε 2 + δ 1

 , A(2) =

 2 1 + kδ 1 + kε

1 + kε 2 1 + kδ

1 + kδ 1 + kε 2

 ,

with ε, δ > 0, ε 6= δ, n1 = n2 = 1
2
and k ≥ 0. Setting ε = 0.02, δ = 0.01 and

k = 0, simulations show clockwise rotations on an attracting curve, while
e.g. for k = 2 the rotational direction is counter-clockwise (see Figure 3.3).
To confirm that these simulations are not misleading we sketch a systematic
analysis.

• The system is permanent.

Applying Proposition 3.2.5 we obtain λ1 = 1
4
(5 + 2ε + kδ) > 1 and λ1 =

1
4
(5 + 2δ + kε) > 1 and therefore the corners of ∆ are repellors. It follows

that at least one fixed point on each edge of ∆ must exist, hence we cannot
apply Proposition 3.2.3. To see that the system is permanent, we proceed as
follows:
W.l.o.g. we pick the edge x3 = 0, which is repelling if x

′
3

x3
= f3(x) > 1 for x3 ≈

0. By reasons of continuity we only need to show that f ((x, 1− x, 0)) > 1
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3. CYCLIC GAMES

for x ∈ (0, 1) or, equivalently, f ((x, 1− x, 0)) − 1 > 0. As the denominator
of this expression is greater than zero, we need the numerator — which is a
polynomial p of degree four — to be greater than zero as well for the system
to be permanent. Immediately we get

p(0) = 1 + 2δ + kε, p(1) = 1 + 2ε+ kδ.

Assuming that ε and δ are small enough7 to ignore terms of higher order in
these parameters (i.e. ε2, δ2, εδ, ...), we find that p has a single critical point
in R at

x =
1

8
(4 + 3(k − 1)(ε− δ))

with function value

p(x) =
1

4
(1 + 2k)(ε+ δ) > 0.

Thus p(x) > 0 on (0, 1) and therefore the system is permanent.

• The interior fixed point P = (1
3
, 1

3
, 1

3
) is a repellor.

Inserting into (3.5) from Proposition 3.2.1 and expanding into a Taylor series
around ε = 0 and δ = 0 up to first order, we find that P = (1

3
, 1

3
, 1

3
) is a

repellor if 27 > (94 + 65k)ε+ (70 + 65k)δ, which holds for sufficiently small ε
and δ. Note that in the above numerical example this inequality is fulfilled.
Together with the previous point this implies the existence of an attractor
between P and ∂∆, which — in the absence of further fixed points — has the
shape of a (distorted) annulus. Numerical simulations suggest that it takes
the form of an invariant curve, but investigating the dynamics on this is a
remaining problem.

• No further interior fixed points for almost every choice of parameters.

Verifying this statement rigorously is disproportionately hard work which
can hardly be retraced without the extensive use of CAS. Here we will limit

7In the example given above, the values of ε, δ and k are within the admissible range
for all arguments to follow.
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3.3. EXAMPLES FOR POSSIBLE BEHAVIOUR

ourselves to showing that, for almost every choice of parameters, there are no
fixed points on the line l(s) = (1−s, s

2
, s

2
), s ∈ (0, 1) apart from P . This does

not exclude the possibility of a heteroclinic attractor in int∆, but on the one
hand we would then observe great differences in the orbit’s speed depending
on its distance to the fixed points in this attractor (which in simulations
we do not). On the other hand it would not change the message of this
section, namely that we can give examples for which the dynamics of (1.2) is
complicated enough to object the existence of a Ljapunov function for this
model.
We are interested in solutions of

F (l(s)) = l(s),

which means three equations in only one variable s (F stands for the right-
hand side of (1.2) as usual). Solving F1 (l(s)) = l1(s) gives three solutions
that are in (0, 1):

s0 =
2

3
, s1,2 =

2

3
±
√

2

3

√
2− 3(2 + (2 + k)(ε+ δ))

(2 + ε+ δ)(2− k(ε+ δ))

We may ignore s0 because it represents P = (1
3
, 1

3
, 1

3
). If the other values are

fixed points, they must fulfill F2 (l(s1,2)) = l2(s1,2). Some direct computations
yield

F2 (l(s1,2))− l2(s1,2) = (1− (1 + ε+ δ)k) (δ − ε)K,

where K < 0 as long as ε and δ are sufficiently small. Thus we only have
further fixed points on the line l if k = 1

1+ε+δ
. In that case one can show

that again we have a continuum of fixed points; we will not exercise this. If
k deviates from that value, there are no fixed points apart from P in int∆.
For k < 1

1+ε+δ
we then observe clockwise, for k > 1

1+ε+δ
counter-clockwise

rotations.
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(a) (b) (c)

Figure 3.4: Closed attracting curve and fixed points on ∂∆

3.3.4 A concluding example

The way we obtained the examples above and the fact that we had to take ε
and δ sufficiently small has a somewhat artificial aftertaste. Anyhow, closed
attracting curves can also be found in apparently generic (cyclic) games as
the following configuration illustrates. Consider

A(1) =

2.231 9.747 4.781

4.781 2.231 9.747

9.747 4.781 2.231

 , A(2) =

8.729 0.156 5.573

5.573 8.729 0.156

0.156 5.573 8.729


and n1 = n2 = 1

2
. This example is of interest as the resulting dynamics shows

two fixed points within each edge of ∆, a repelling interior fixed point and an
attracting curve (see Figure 3.4). Thus, the variety of dynamical possibilities
— even for the restriction on cyclic games — seems to pose a challenge with
regards to eventual systematic classifications.
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Conclusion

To concludingly summarize our results we can state that one can generalize
Levene’s model without notational difficulties to the context of game theory.
Unfortunately the convenient feature of having a Ljapunov function at hand
does not hold true in our generalization, but conditions for the qualitative
behaviour of the model have to be directly computed. We exercised this by
giving explicit formulas for permanence of the system for the case of two
strategies (Section 2.3) and for cyclic 3 × 3-games (Section 3.2.2). For the
latter case we also established prerequisites on the local stability of the (al-
ways existent) interior equilibrium P = (1

3
, 1

3
, 1

3
) (Section 3.2.1).

For n = 2 we showed that our proposed generalization of the Levene model is
qualitatively equivalent to its archetype, so in fact allowing for asymmetric
matrices does not increase the variety of dynamical situations opening up
(Sections 2.2 and 2.6). On the way to this result we affirmed the open prob-
lem whether the theoretical upper bound on the number of equilibria can be
attained for the Levene model with n = 2 (Section 2.4).
In the case of n ≥ 3 the above equivalence clearly does not hold. We en-
dorsed this statement by presenting a class of games (n = 3, J = 2) whose
dynamics show invariant curves, which cannot happen in the Levene model
(Section 3.3). In particular these examples contradict the existence of a strict
Ljapunov function for our model.
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Chapter 5

APPENDIX

5.1 Part I: Supplementary results

Proposition 5.1.1 (c.f. Section 2.2 and 2.6). Consider two strictly increas-
ing maps F, F̃ : [0, 1] → [0, 1] and assume that F has fixed points exactly at
x̂i, i = 0, ..., k + 1,

0 = x̂0 < x̂1 < ... < x̂k+1 = 1,

and that F̃ has fixed points exactly at x̃i, i = 0, ..., k + 1,

0 = x̃0 < x̃1 < ... < x̃k+1 = 1.

Furthermore suppose that F and F̃ induce the same stability configuration,
i.e. for fixed i ∈ {0, ..., k} and x ∈ (x̂i, x̂i+1), x̃ ∈ (x̃i, x̃i+1) we have

sgn
(
F (x)− x

)
= sgn

(
F̃ (x̃)− x̃

)
.

Then the functions F and F̃ are topologically conjugate via a homeomor-
phism Φ : [0, 1]→ [0, 1]; that is, we have a homeomorphism Φ, such that the
following diagram commutes:
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5. APPENDIX

[0, 1] [0, 1]

[0, 1] [0, 1]

F

Φ Φ

F̃

Note: We do not require x̂i = x̃i for all i (and k ∈ {0, 1}) as is the case
in Section 2.2 but treat the more general case needed in Section 2.6.

Proof. Our task is to find a homeomorphism Φ : [0, 1]→ [0, 1] with F̃ ◦ Φ =

Φ ◦ F . Clearly we will need

Φ(x̂i) = x̃i ∀i ∈ {0, ..., k + 1}.

Hence we can construct Φ in a piecewise manner for each interval in between
two consecutive fixed points of F , Φ : [x̂i, x̂i+1] → [x̃i, x̃i+1]. For simplicity,
we may assume x̂i = x̃i = 0 and x̂i+1 = x̃i+1 = 1 and construct a conjugacy
Φ for F and F̃ where:

• F (0) = F̃ (0) = 0 and F (1) = F̃ (1) = 1.

• W.l.o.g. F (x) > x and F̃ (x) > x for x ∈ [0, 1].

Pick x0 ∈ [0, 1] and create the following (forward-backward) orbits, which in
our case are uniquely determined:

{xFt }t∈Z = {xFt |t ∈ Z such that xt+1 = F (xt)}

{xF̃t }t∈Z = {xF̃t |t ∈ Z such that xt+1 = F̃ (xt)}

Then limt→∞ x
F
t = limt→∞ x

F̃
t = 1 and limt→−∞ x

F
t = limt→−∞ x

F̃
t = 0.

Now define φ by φ(xF̃t ) = xFt for each t ∈ Z. Furthermore assume

φ0,1 : (xF̃0 , x
F̃
1 )→ (xF0 , x

F
1 )

to be monotonically increasing and mapping (xF̃0 , x
F̃
1 ) onto (xF0 , x

F
1 ). By

induction we define φt,t+1 : (xF̃t , x
F̃
t+1) → (xFt , x

F
t+1) for t ∈ Z+ = N as
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5.1. PART I: SUPPLEMENTARY RESULTS

follows: For each y ∈ (xF̃t , x
F̃
t+1) we find exactly one x ∈ (xF̃t−1, x

F̃
t ), such that

y = F̃ (x). Therefore

φt,t+1

(
F̃ (x)

)
:= F

(
φt−1,t(x)

)
maps (xF̃t , x

F̃
t+1) onto (xFt , x

F
t+1) and is monotonically increasing.

xF̃t−1

x

xF̃t

y

xF̃t+1

xFt−1 xFt xFt+1

φt−1,t φt,t+1

F̃

F

For t ∈ Z− proceed analogously. Finally define

Φ(x) =


0 x = 0

φ(x) x ∈ {xF̃t }t∈Z

1 x = 1

φt,t+1(x) x ∈
(
xF̃t , x

F̃
t+1

) .

Then F ◦ Φ = Φ ◦ F̃ and Φ is monotonically increasing. It remains to show
that Φ is continuous.
For x ∈

(
xF̃t , x

F̃
t+1

)
the case is clear, because every φt,t+1 has been obtained

as a composition of continuous functions. Furthermore, at each node x = xF̃t

continuity from the right and the left is induced by φ0,1 being continuous
from the right in x0 and continuous from the left in xF̃1 . Finally, continuity
from the left in x = 1 follows from the fact that Φ is increasing and 1 is
an upper bound (if Φ(x) > 1 for some x ∈ (0, 1) we could find a t with
xF̃t > x and Φ(xF̃t ) = xFt < 1, which contradicts monotonicity). By the same
argument we find that Φ is continuous from the right in x = 0.
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Lemma 5.1.2 (c.f Sections 2.4.2 and 2.6). For ζ ≥ 1 and any of the matrices

(a) Z =

(
ζ 1

1 1

)
, (b) Z =

(
1 1

1 ζ

)
, (c) Z =

(
1 ζ

ζ 1

)
, (d) Z =

(
1 ζ

ζ ζ

)

define the function sζ : [0, 1]→ [0, 1] by

sζ(x) = x
z11x+ z12(1− x)

z11x2 + x(1− x)(z12 + z21) + z22(1− x)2
,

(compare equation (2.1) for J = 1). Then d
dx
sζ is uniformly bounded on

every compact interval [a, 1− a], 0 < a < 1
2
.

Proof. (a) We set g(x, ζ) := d
dx
sζ and show that

g : [a, 1− a]× [1,∞)→ R 0 < a <
1

2

is bounded. Obviously g is continuous and nonnegative (sζ increasing,
c.f. the proof of Proposition 2.1.2). Furthermore, for every x ∈ [a, 1− a]

we have
g(x, ζ)

ζ→∞−→ 0

because g is a quotient of two polynomials where the numerator has lower
degree in ζ than the denominator.
Some computations yield

∂

∂ζ
g(x, ζ) = 0 ⇔ ζ = ζ(x) =

x3 − 2x2 + 3x− 2

x2(x− 2)
,

which is bounded for x ∈ [a, 1− a]. Set

ζ := max
a≤x≤1−a

ζ(x),

then by the statements above g is decreasing for ζ > ζ (for any fixed x ∈
[a, 1− a]). Since [a, 1− a]× [1, ζ] is compact, there must be some M > 0

such that g(x, ζ) ≤M on [a, 1− a]× [1, ζ] and therefore g(x, ζ) ≤M on
[a, 1− a]× [1,∞) as required.
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(a) (b)

(c) (d)

Figure 5.1: The maximum of ds
dx

lies within the pale blue shaded area.

For (b) - (d) the same arguments hold true with

(b) ζ(x) = x−x2+x3

(x−1)2(x+1)
(we may even save ourselves any calculations by notic-

ing that we obtain this case from (a) by x 7→ 1− x),

(c) ζ(x) = 1−4x+8x3−4x4

2x(1−3x+4x2−2x3)
and

(d) ζ(x) = 2x2−x3

2−3x+2x2−x3 , where all denominators are > 0 in the region of
interest.
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Lemma 5.1.3 (c.f. Section 3.1.2). The function

V : int∆→ int∆

V (x) =
xAx

x1x2x3

has a unique minimum at P = (1
3
, 1

3
, 1

3
).

Proof. Although Lagrange’s method works just fine we present an approach
which is more suitable for manual calculations.
Pick an arbitrary point on the edge of ∆ where x1 = 0. This point has the
form (0, s, 1 − s) for s ∈ (0, 1). The connecting line of this point and the
point x1 = 1 is parametrized by (1 − λ, λs, λ(1 − s)), λ ∈ (0, 1). Inserting
this into V we obtain

V (λ, s) =
a (1− 2λ+ 2λ2(1− s+ s2)) + (b+ c) (λ2(s− s2) + λ(1− λ))

λ2(1− λ)(s− s2)
.

After differenting with respect to s and simplifying the expression we find

∂V (λ, s)

∂s
=

(2s− 1) (a(1− 2λ+ 2λ2) + (b+ c)λ(1− λ))

(1− λ)λ2(1− s)2s2
.

Setting this equal to zero, we see that either s = 1
2
or λ = 1

2
± 1

2

√
b+c+2a
b+c−2a

.
Since the last expression never lies within the interval (0, 1), we conclude
that any critical point of V must be on the line (1 − λ, 1

2
λ, 1

2
λ). Thus we

investigate V (λ, 1
2
):

∂V
(
λ, 1

2

)
∂λ

=
(3λ− 2) (2a(2− 2λ+ λ2) + (b+ c)(2− λ)λ)

(1− λ)2λ3

From ∂
∂λ
V
(
λ, 1

2

)
= 0 we conclude that either λ = 1 ±

√
b+c+2a
b+c−2a

/∈ (0, 1) or
λ = 2

3
. Putting this value into the second derivative yields

∂2V
(
λ, 1

2

)
∂λ2

|λ= 2
3

=
405

2
a+ 81(b+ c) > 0.

Thus we have a unique minimum on ∆ given by λ = 2
3
and s = 1

2
, which
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corresponds to the point (1
3
, 1

3
, 1

3
).

Proposition 5.1.4 (Cannings, 1971; c.f. Section 3.3.2). The dynamics of
the Levene model (1.5) with

W (1) =

1 2 2

2 1 2

2 2 1

 , W (2) =

1 1
2

1
2

1
2

1 1
2

1
2

1
2

1

 , n1 = 1− n2 ∈
(

1

3
,
5

9

)

shows a (stable) continuum of fixed points.

Proof. Considering Levene’s model, the function V (p) =
∏J

j=1(pW (j)p)nj is a
Ljapunov function with V (p) ≤ V (p′) and equality only at rest points (for a
proof of this statement consult, e.g., T. Nagylaki [12], p.145). Thus, looking
for equilibria of (1.5) translates into finding extrema of V .
We require J = 2 and, for better readability, set Vj(p) := pW (j)p. Then we
have

∂V

∂pi
=

∂

∂pi
(V n1

1 V n2
2 ) = V n1−1

1 V n2−1
2

(
n1V2

∂V1

∂pi
+ n2V1

∂V2

∂pi

)
.

Suppose that V2 = N − KV1 for some N,K > 0. Substituting this and
n2 = 1− n1 in the equation above yields

∂V

∂pi
= V n1−1

1 V n2−1
2

∂V1

∂pi
(Nn1 −KV1) .

To obtain fixed points we set this expression equal to zero. While ∂V1

∂pi
= 0

leads to the fixed point P =
(

1
3
, 1

3
, 1

3

)
we already know, Nn1 −KV1 = 0 for

egligible n1 and V1 defines a candidate for a curve of equilibria1. Now set

V1 = p2
1 + p2

2 + p2
3 + 4(p1p2 + p2p3 + p1p3), N =

3

2
, K =

1

2
,

then V2 = p2
1 +p2

2 +p2
3 +p1p2 +p2p3 +p1p3. This corresponds to the proposed

configurations of W (1) and W (2) and Nn1 − KV1 = 0 becomes 3n1 = V1.
1To confirm that this surface actually represents the maximum or minimum of V one

either has to check the second derivatives or follow the argumentation at the end of this
proof.
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Easily we calculate that V1 has its maximum at P with V (P ) = 15
9
. Thus we

require n1 <
5
9
for the curve of equilibria to exist.

Furthermore, if we multiply the left-hand side of 3n1 = V1 by (p1+p2+p3)2(=

1), we find

(1− 3n1︸ ︷︷ ︸
(∗)

)(p2
1 + p2

2 + p2
3) + (4− 6n1︸ ︷︷ ︸

(∗∗)

)(p1p2 + p2p3 + p1p3) = 0.

In order to find solutions of this equation in ∆ it is necessary that (∗) and (∗∗)
have different signs. This is the case for n1 ∈

(
1
3
, 2

3

)
. Plugging this together

with the condition above, we have continua of fixed points for n1 ∈
(

1
3
, 5

9

)
as

required.
To ensure that the curve Nn1 − KV1 = 0 truly consists of equilibria, we
keep in mind that apart from P no other fixed point exists in int∆ and,
by formulas (3.5) and (3.9), find out that for n1 ∈

(
1
3
, 5

9

)
the interior rest

point P is a repellor and the system is permanent. Because every orbit must
converge somewhere in int∆ due to the existence of a Ljapunov function,
Nn1 −KV1 = 0 is a stable equilibrium curve.

5.2 Part II: Program codes

The program codes presented in this section were written for Mathematica
6.0. As this was done by the author of this paper himself to only serve the
purposes of his work, there is no claim for technical perfection, elegance or
efficiency. In fact, high value has been set on readability and traceability.

Program Code 5.2.1 (Counting fixed points). The following two programs
create a given number of random configurations of (1.2) or (1.5) for n = 2

and break it down into the number of fixed points they produce. To do the
latter, Sturm’s Theorem is applied to achieve reasonable efficiency. Input
variables are

J ... number of demes
steps ... number of examples created

58



5.2. PART II: PROGRAM CODES

For (1.2) the code reads:

1 Sturm [J_, steps_ ] :=
2 Block [ { counter ,A, nvec , n , f , x , deg , z , sigma , o ldcount } ,
3 Off [Power : : " i n f y " ] ;
4 Off [ \ i n f t y : : " inde t " ] ;
5 (∗ de f i ne counters ∗)
6 For [ k=0,k<=2J−1,k++,
7 counter [ k ]=0 ] ;
8 (∗ compute number o f i n t e r i o r f i x e d po in t s f o r " s t ep " times ∗)
9 For [ s=1,s<=steps , s++,

10 (∗ de f i ne niche s i z e s and payo f f matr ices ∗)
11 nvec=RandomReal [ {0 , 1} , J ] ;
12 For [ j =1, j<=J , j++,
13 A[ j ]=RandomReal [ { 0 , 1 } , { 2 , 2 } ] ;
14 n [ j ]=nvec [ [ j ] ] /Sum[ nvec [ [ k ] ] , { k , 1 , J } ] ] ;
15 (∗ de f i ne polynomial , cance l out f a c t o r s x and (1−x ) ∗)
16 f [ x_]=Sum[ n [ j ] (A[ j ] [ [ 1 , 2 ] ] −A[ j ] [ [ 2 , 2 ] ] +A[ j ] [ [ 1 , 1 ] ] x−A[ j ] [ [ 1 , 2 ] ] x−A[ j

] [ [ 2 , 1 ] ] x+A[ j ] [ [ 2 , 2 ] ] x ) Product [ { x,1−x } .A[ i ] . { x,1−x} ,{ i , 1 , j −1}]
Product [ { x,1−x } .A[ i ] . { x,1−x} ,{ i , j +1,J } ]

17 ,{ j , 1 , J } ]//Expand ;
18 (∗ a lgor i thm according to Sturm ’ s Theorem∗)
19 deg=Exponent [ f [ x ] , x ] ;
20 f [ 0 ,x_] := f [ x ] ;
21 f [ 1 ,x_] :=D[ f [ z ] , z ] / . { z−>x } ;
22 For [ j =2, j<=deg , j++,
23 f [ j , x_]=(PolynomialQuotient [ f [ j −2, z ] , f [ j −1, z ] , z ] / . { z−>x}) f [ j −1,x]− f [ j −2,

x ] //Expand//Chop ] ;
24 sigma [x_] :=Count [ Table [ Sign [ f [ k , x ] ] ∗ Sign [ f [ k−1,x ] ] , { k , 1 , deg } ] , −1 ] ;
25 (∗ add 1 to r e s p e c t i v e counter ∗)
26 oldcount=counter [ sigma [0]− sigma [ 1 ] ] ;
27 counter [ sigma [0]− sigma [ 1 ] ]= oldcount +1] ;
28 Print [Prepend [ Table [ { k , counter [ k ] } , { k , 0 , 2 J−1}] ,{ "#FP" , "#Examples" } ]//

TableForm ] ]

To adapt this program to model (1.5) simply replace lines 11 to 14 by
1 nvec=RandomReal [ { 0 , 1} , J ] ;
2 For [ j =1, j<=J , j++,
3 B[ j ]=RandomReal [ { 0 , 1 } , { 2 , 2 } ] ;
4 A[ j ]=B[ j ]+Transpose [B[ j ] ] ;
5 n [ j ]=nvec [ [ j ] ] /Sum[ nvec [ [ k ] ] , { k , 1 , J } ] ] ;
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Program Code 5.2.2 (Plotting orbits). Given a set of starting points, this
program pictures the corresponding orbits for a panmictic, cyclic game. The
following input variables are needed:

a, b, c ... payoff values
starts ... (a set of) starting points
steps ... number of generation steps performed

The code reads:

1 Cycl icPaths [ {a_,b_, c_} , starts_ , steps_ ] :=
2 Block [ {A,F , t rans f , fp , s t a r t va l , gen } ,
3 (∗ mapping & trans format ion on simplex ∗)
4 A=NestList [ RotateRight , { a , b , c } , 2 ] ;
5 F[x_] :=x∗A. x/x .A. x ;
6 t r a n s f [ {x_,y_, z_}] :={y+z /2 ,Sqrt [ 3 ] z /2} ;
7 (∗ crea t e s e t o f f i x e d po in t s ∗)
8 I f [0<a−b<2a−b−c | | 2 a−b−c<a−b<0,
9 fp=Join [ {{1/3 ,1/3 ,1/3} ,{1 ,0 , 0} ,{0 ,1 , 0} ,{0 ,0 , 1}} , NestList [ RotateRight , { ( a−

b) /(2a−b−c ) ,1−(a−b) /(2a−b−c ) , 0 } , 2 ] ] ,
10 fp ={{1/3 ,1/3 ,1/3} ,{1 ,0 ,0} ,{0 ,1 ,0} ,{0 ,0 ,1}} ] ;
11 (∗ generate o r b i t s ∗)
12 s t a r t v a l=Flatten [ Table [ NestList [ RotateRight , s t a r t s [ [ k ] ] , 2 ] , { k , 1 ,Length [

s t a r t s ] } ] , 1 ] ;
13 Table [ gen [ g]=Table [Nest [ F , s t a r t v a l [ [ j ] ] , g ] , { j , 1 ,Length [ s t a r t v a l ] } ] , { g , 0 ,

s t ep s } ] ;
14 (∗ graph ic s ∗)
15 Show[ {
16 RegionPlot [ Sqrt [ 3 ] a1−a2<0,{a1 , 0 , . 5 } , { a2 , 0 , 1 } , DisplayFunction−>Identity ,

PlotStyle−>White , BoundaryStyle−>None ] ,
17 RegionPlot [ Sqrt [ 3 ] a1+a2>Sqrt [ 3 ] , { a1 , . 5 , 1 } , { a2 , 0 , 1 } , DisplayFunction−>

Identity , PlotStyle−>White , BoundaryStyle−>None ] ,
18 RegionPlot [ a2<0,{a1 , 0 , 1} , { a2 , − . 2 ,1} ,DisplayFunction−>Identity , PlotStyle

−>White , BoundaryStyle−>None ] ,
19 ListPlot [ { {0 , 0} , {1 , 0} , { . 5 , Sqrt [ 3 ] / 2} , {0 , 0}} , Joined−>True , PlotStyle−>{

Black , Thickness [ . 0 0 5 ] } ] ,
20 Table [ ListPlot [ Table [ t r a n s f [ x ] / . x−>gen [ g ] [ [ j ] ] , { j , 1 ,Length [ s t a r t v a l ] } ] ,

PlotStyle−>{RGBColor [ ( g/ s t ep s ) ^(1/2) ,0 ,1−( g/ s t ep s ) ^(1/2) ] } ] , { g , 0 ,
s t ep s } ] ,

21 ListPlot [ Table [ t r a n s f [ x ] / . x−>fp [ [ k ] ] , { k , 1 ,Length [ fp ] } ] , Joined−>False ,
PlotStyle−>{Black , PointSize [ Large ] } ]

22 } ,
23 AspectRatio−>Automatic ,Frame−>False ,PlotRange−>{{0 ,1} ,{0 ,1}}] ]
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Program Code 5.2.3 (Animated simulation). Specify the following data

A, B ... payoff matrices
n1, n2 ... niche proportions (adding up to 1)

d ... density of grid put upon ∆
timesteps ... number of timesteps performed
genstep ... number of generations passing in one timestep
speed ... speed of the animation (default value is 1).

Then the following lines will create a sequence of pictures consecutively
showing the initial values (green) with their succeeding points (red).

1 Simul [A_,B_,n1_ , n2_ ,d_, timesteps_ , genstep_ , speed_ ] :=
2 Block [
3 { f , pregr id , gr id , p l o tg r id , imggrid , p lot imggr id , t rans format ion , g raph i c s } ,
4 f [ x_] :=x∗(n1∗A. x/x .A. x+n2∗B. x/x .B. x ) ;
5 t rans fo rmat ion [ {a_,b_, c_}] :={b+c /2 ,Sqrt [ 3 ] c /2} ;
6 preg r id=Flatten [ Table [ { k/d , ( n−k ) /d , ( d−n) /d} ,{k , 0 , d} ,{n , k , d } ] , 1 ] ;
7 For [ z=1,z<t imes teps +1,z++,
8 (∗ i n i t i a l po in t s ∗)
9 g r id=preg r id ;

10 p l o t g r i d=Table [ t rans fo rmat ion [ g r i d [ [ j ] ] ] , { j , 1 ,Length [ g r i d ] } ] ;
11 (∗ po in t s a f t e r app ly ing f ∗)
12 imggrid=Table [Nest [ f , g r i d [ [ j ] ] , genstep ] , { j , 1 ,Length [ g r i d ] } ] ;
13 p lo t imggr id=Table [ t rans fo rmat ion [ imggrid [ [ j ] ] ] , { j , 1 ,Length [ g r i d ] } ] ;
14 (∗ crea t e graph ic s ∗)
15 graph i c s [ z ]=Show[ {
16 RegionPlot [ Sqrt [ 3 ] a1−a2<0,{a1 , 0 , . 5 } , { a2 , 0 , 1 } , DisplayFunction−>Identity

, PlotStyle−>White , BoundaryStyle−>None ] ,
17 RegionPlot [ Sqrt [ 3 ] a1+a2>Sqrt [ 3 ] , { a1 , . 5 , 1 } , { a2 , 0 , 1 } , DisplayFunction−>

Identity , PlotStyle−>White , BoundaryStyle−>None ] ,
18 RegionPlot [ a2<0,{a1 , 0 , 1} , { a2 , − . 2 ,1} ,DisplayFunction−>Identity ,

PlotStyle−>White , BoundaryStyle−>None ] ,
19 ListPlot [ { {0 , 0} , {1 , 0} , { . 5 , Sqrt [ 3 ] / 2 } , { 0 , 0}} , Joined−>True , PlotStyle−>{

Black , Thickness [ . 0 0 5 ] } ] ,
20 Table [ ListPlot [ { p l o t g r i d [ [ i ] ] , p l o t imggr id [ [ i ] ] } , Joined−>True , PlotStyle

−>{Green} ] , { i , 1 ,Length [ g r i d ] } ] ,
21 ListPlot [ p l o tg r id , Joined−>False , PlotStyle−>{Green} ] ,
22 ListPlot [ p lot imggr id , Joined−>False , PlotStyle−>{Red} ]
23 } ,
24 AspectRatio−>Automatic ,Frame−>False ,PlotRange−>{{0 ,1} ,{0 ,1}}] ;
25 preg r id=imggrid ] ;
26 ListAnimate [ Table [ g raph i c s [ x ] , { x , 1 , t imes teps } ] , AnimationRate−>speed ,

AnimationRepet it ions −>1]]
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For instance in the case of closed orbits it might be helpful to indicate
initial and end points by arrows, which can be done by replacing lines 15 to
25 by

1 graph i c s [ z ]=Show[ {
2 RegionPlot [ Sqrt [ 3 ] a1−a2<0,{a1 , 0 , . 5 } , { a2 , 0 , 1 } , DisplayFunction−>Identity

, PlotStyle−>White , BoundaryStyle−>None ] ,
3 RegionPlot [ Sqrt [ 3 ] a1+a2>Sqrt [ 3 ] , { a1 , . 5 , 1 } , { a2 , 0 , 1 } , DisplayFunction−>

Identity , PlotStyle−>White , BoundaryStyle−>None ] ,
4 RegionPlot [ a2<0,{a1 , 0 , 1} , { a2 , − . 2 ,1} ,DisplayFunction−>Identity ,

PlotStyle−>White , BoundaryStyle−>None ] ,
5 ListPlot [ { {0 , 0} , {1 , 0} , { . 5 , Sqrt [ 3 ] / 2} , {0 , 0}} , Joined−>True , PlotStyle−>{

Black , Thickness [ . 0 0 5 ] } ] ,
6 Graphics [ Table [ { Arrowheads [ Small ] , Arrow [ { p l o t g r i d [ [ i ] ] , p l o t imggr id [ [ i

] ] } ] } , { i , 1 ,Length [ g r i d ] } ] ] ,
7 ListPlot [ p l o tg r id , Joined−>False , PlotStyle−>{Green} ] ,
8 ListPlot [ p lot imggr id , Joined−>False , PlotStyle−>{Red} ]
9 } ,

10 AspectRatio−>Automatic ,Frame−>False ,PlotRange−>{{0 ,1} ,{0 ,1}}] ;
11 preg r id=imggrid ] ;
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