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ABSTRACT

A large number of the more important Lorentzian manifolds that are used as
models in general relativity fail to be geodesically complete. Our aim is to
use these so called space-times to establish theorems which prove geodesical
incompleteness and to develop the underlying causal structure. We �rst will
establish the necessary tools to formulate the Jacobian tensor calculus which
will be used to prove basic energy conditions. In the subsequent chapters we
will introduce achronal and acausal sets and prove that every boundary of
a future-set is an achronal closed topological hypersurface. The concept of
achronality will directly lead us to Cauchy developments. We will show that
the interior of the Cauchy development is a globally hyperbolic space-time,
as long as the underlying subset is achronal. With these tools we will be
able to formulate a basic singularity theorem, which will be used to prove
further strong results. We will also show the existence of piecewise smooth
future-inextendible timelike curves that are contained in the future Cauchy
development of the future-horismos. This fundamental result will allow us
to prove the famous Lemma of Hawking and Penrose, which may already be
viewed as a singularity theorem. A famous result in the calculus of variations
provides the necessary tool to formulate the �nal and strongest version of the
singularity theorem of Hawking and Penrose. In the next section we will use
Cauchy hypersurfaces to secure the global hyperbolicity of space-times. This
result provides an elegant proof of the singularity theorem of Penrose. We
will �nish this thesis by uncovering the underlying similarities of the given
results.
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ZUSAMMENFASSUNG

In der Allgemeinen Relativitätstheorie werden Modelle von Raumzeiten durch
abstrakte Lorentzmannigfaltigkeiten modelliert. Es stellt sich heraus, dass
eine groÿe Anzahl der wichtigsten Raumzeiten geodätisch unvollständig ist.
Wir werden in dieser Arbeit die wichtigsten Existenztheoreme von geodätisch
unvollständigen Raumzeiten formulieren und beweisen. Dabei werden wir die
zu Grunde liegende kausale Struktur mitentwickeln. In den ersten Kapiteln
de�nieren wir den Begri� der mathematischen Raumzeit und stellen die
notwendigen Werkzeuge bereit um den Jacobi-Tensorkalkül zu formulieren,
der es uns ermöglicht Aussagen über Energiebedingungen auf Raumzeiten
zu tre�en. In den späteren Kapiteln werden wir den Begri� der Achronal-
ität bzw. der Akausalität einführen und beweisen, dass jeder Rand einer
Zukunftsmenge eine abgeschlossene achronale topologische Hyper�äche ist.
Das Konzept von achronalen Mengen führt uns notwendigerweise zu den
Cauchy Entwicklungen. Wir werden zeigen, dass das Innere einer Cauchy
Entwicklung stets eine global hyperbolische Raumzeit modelliert, sofern die
zu Grunde liegende Menge achronal ist. Mit diesen Vorbereitungen werden
wir ein erstes starkes Resultat in der Singularitätentheorie beweisen kön-
nen. Mit groÿem Aufwand werden wir die Existenz von stückweise glatten
zukunfts-nichterweiterbaren zeitartigen Kurven zeigen, die vollständig in der
Zukunfts-Cauchy-Entwicklung des so genannten Zukunfts-Horismos liegen.
Dieses fundamentale Resultat wird ausreichen um das berühmte Lemma von
Hawking und Penrose zu beweisen, welches in der Literatur bereits häu�g
als Singularitätensatz angesehen wird. Ein bekanntes Resultat im Variation-
skalkül liefert den Beweis des stärksten Singularitätentheorems - des Singu-
laritätensatzes von Hawking und Penrose. Im nächsten Kapitel werden wir
so genannte Cauchy Hyper�ächen verwenden um die globale Hyperbolizität
von Raumzeiten zu erzwingen. Dieses Resultat führt uns auf einen eleganten
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Beweis des Singularitätensatzes von Penrose. Im letzten Kapitel analysieren
wir die gemeinsame Grundlage der zentralen Resultate in der Singularitäten-
theorie.
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CHAPTER 1

SPACE-TIMES

1.1 Basic concepts

In this chapter we develop some basic notions of space-times. In physics
space-times are introduced in the special theory of relativity, where the un-
derlying geometric structure is an a�ne space A with dim(A) = 4 together
with a scalar-product g of signature (− + ++). (A, g) is called Minkowski
space-time. It turns out that special relativity can only be expected to be
a good description locally. A remedy for this restriction was found in the
general theory of relativity. Here, every event in the universe has a neigh-
bourhood whose geometrical and topological structure is well described by
a Minkowski space-time, hence in general relativity space-times are locally
Euclidean spaces. A rigorous formulation of this idea requires smooth man-
ifolds. We will give a consistent de�nition for space-times later after some
preparations. To establish certain global properties we will employ partitions
of unity. To this end we will require that all manifolds are smooth and Haus-
dor� with a countable basis of the manifold topology. It is easy to show that
every Hausdor� manifold with countable basis is paracompact, which will be
needed in the course of the following chapters.

Let M be a manifold. Recall that a Lorentzian metric g on M is a smooth
section of the

(
0
2

)
-tensor bundle over TM such that for each p ∈ M , the(

0
2

)
-tensor gp ≡ g(p) : TpM × TpM → R is symmetric, nondegenerate and

its index equals 1. A Lorentzian manifold (M, g) is a manifold M as above
together with a Lorentzian metric g.

13



De�nition 1.1.1. Let p ∈ M and 0 6= v ∈ TpM ⊆ TM . v is said to be
timelike (non spacelike , null , spacelike ) if g(p)(v, v) < 0 (g(p)(v, v) ≤ 0,
g(p)(v, v) = 0, g(p)(v, v) > 0). We de�ne the zero-vector to be spacelike. We
will often abbreviate g(p)(v, w) by 〈v, w〉.

With De�nition 1.1.1 we can introduce the concept of time-orientation.
We recall that a Lorentzian vector space V is a scalar product space of index
1 and dimension ≥ 2. Let T be the set of all timelike vectors in V , i.e.

T := {v ∈ V : 〈v, v〉 < 0} ⊆ V.

We choose an arbitrary u ∈ T , i.e. u has to be timelike, and de�ne the
timecone of V containing u by

C(u) := {v ∈ T : 〈u, v〉 < 0} ⊆ T ⊆ V.

We further de�ne the opposite timecone by

C(−u) := {v ∈ T : 〈−u, v〉 < 0} = {v ∈ T : 〈u, v〉 > 0} = −C(u) ⊆ T ⊆ V.

Lemma 1.1.2. Let V be a Lorentzian vector space and let z be a timelike
vector in V , i.e. z ∈ T . Then the subspace z⊥ of V is spacelike and V =
Rz ⊕ z⊥, where z⊥ := (Rz)⊥.

Proof. The vector space Rz is non-degenerate with index 1, because it is
negative de�nite. Hence we conclude that V = Rz⊕ z⊥. Since 1 = ind(V ) =
ind(Rz) + ind(z⊥) and ind(Rz) = 1 it follows that ind(z⊥) = 0, i.e. z⊥ is
spacelike.

Lemma 1.1.3. Two timelike vectors v and w in a Lorentzian vector space
V , v, w ∈ T ⊆ V , are in the same timecone if and only if 〈v, w〉 < 0.

Proof. Let u be a timelike vector in V , i.e. u ∈ T , and let v ∈ C(u); in
particular v is timelike, i.e. v ∈ T . We show that if w is timelike, then
w ∈ C(u) if and only if 〈v, w〉 < 0. We �rst note that

C(u) = C(
u

‖u‖
).

Therefore, without restriction, we can assume that ‖u‖ = 1. Now we de�ne

au+ ~v := v and bu+ ~w := w,

where a, b ∈ R and ~v, ~w ∈ u⊥ as in 1.1.2. Since v and w are timelike vectors,
we can assume that |a| > ‖~v‖ and |b| > ‖~v‖. Since 〈u, u〉 = −1 and ~v, ~w ∈ u⊥
by assumption, we �nd

〈v, w〉 = 〈au+ ~v, bu+ ~w〉 = −ab+ 〈~v, ~w〉.

14



By the Cauchy-Schwarz inequality we further get

|〈~v, ~w〉| ≤ ‖v‖ ‖w‖ < |ab|.

By assumption v ∈ C(u), hence 〈u, v〉 = −a < 0, i.e. a > 0. Because of
sgn(〈v, w〉) = sgn(−ab) = sgn(−b), the signum of 〈v, w〉 depends only on the
signum of −b. This implies 〈v, w〉 < 0 if and only if b > 0 if and only if
w ∈ C(u).

Remark 1.1.4. Let u and v be timelike vectors, i.e. u, v ∈ T . Then u ∈ C(v)
if and only if v ∈ C(u) if and only if C(u) = C(v).

Proof. By de�nition we have that u ∈ C(v) if and only if 〈u, v〉 < 0 if and
only if v ∈ C(u), hence the �rst equivalence is proved. Now let C(u) = C(v),
then it follows that v ∈ C(v) and hence v ∈ C(u). Now let u ∈ C(v) and
w ∈ C(u). We show that w ∈ C(v). Therefore we proceed as just above. By
1.1.2 we can write dv+ ~w := w and cv+~u := u, where c, d ∈ R and ~u, ~w ∈ v⊥.
Again we have −1 = sgn(〈u,w〉) = −sgn(d) and we conclude that d > 0,
hence 〈v, w〉 = −d < 0 and by de�nition of the timecone we have w ∈ C(v).
So we have C(u) ⊆ C(v) and hence, by symmetry, C(u) = C(v).

Remark 1.1.5. Let V be a Lorentzian vector space. We show that there are
precisely two timecones in V . To this end we choose an arbitrary timelike u0,
i.e. u0 ∈ T ⊆ V . Now let v ∈ T . We �rst assume that 〈u0, v〉 < 0. By Lemma
1.1.3 the two timelike vectors u0 and v are in the same timecone, that is
u0 ∈ C(v) and v ∈ C(u0) and by Remark 1.1.4 it follows that C(u0) = C(v).
Now let 〈u0, v〉 > 0, then 〈−u0, v〉 < 0 and the two timelike vectors −u0

and v are in the same timecone, i.e. −u0 ∈ C(v) and v ∈ C(−u0). Again,
by Remark 1.1.4 it follows that C(−u0) = C(v). Lemma 1.1.2 shows that
the case 〈u0, v〉 = 0 cannot occur, because u0 is timelike and its orthogonal
complement is spacelike, but v is timelike.

Remark 1.1.6. Let V be a Lorentzian vector space. We choose an arbitrary
timelike vector u0 ∈ V and �nd that the disjoint union of C(u0) and C(−u0)
is the set of all timelike vectors in V , i.e. we have

T = C(u0) t C(−u0).

Proof. We assume that the intersection of C(u) and C(−u0) is nonempty,
hence there exists some w ∈ C(u0) ∩ C(−u0). By Remark 1.1.4 it follows
that

C(u0) = C(w) = C(−u0).

Therefore u0 and −u0 are in the same timecone and by Lemma 1.1.3 we �nd
〈u0,−u0〉 < 0, contradicting the fact that uo is timelike.
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Timecones are of utmost importance for studying causality. The following
de�nition is based on this concept.

De�nition 1.1.7. Let (M, g) be a Lorentzian manifold. A time orientation
of M is a map

τ : M → P(TM),

where P(TM) is the power set of the tangent bundle, such that τ maps every
p ∈M to a timecone τp in TpM and for all p ∈M there exists a neighbourhood
U ⊆M of p and a smooth vector �eld X ∈ X(U) with Xq ∈ τq for all q ∈ U.
If M possesses a time-orientation, we say that M is time-orientable.

Proposition 1.1.8. A Lorentzian manifold M is time-orientable if and only
if there exists a smooth timelike vector �eld X ∈ X(M).

Proof. (⇒) We assume thatM is time-orientable. Let τ be a time-orientation
for M . Since τ is smooth, for each p ∈ M we can �nd a neighbourhood Up
of p in M and a smooth vector �eld XUp de�ned on Up, i.e. XUp ∈ X(Up),
with XUp(q) ∈ τq for all q ∈ Uq ⊆M. We choose a smooth partition of unity
{χm : m ∈ N} subordinated to the set {Up : p ∈ M}. Since χm are positive
for all m ∈ N and all timecones are convex, we see that the smooth vector
�eld X :=

∑∞
m=1 χmXUpm is timelike, where suppχm ⊆ Upm for all m ∈ N.

(⇐) If there exists a smooth timelike vector �eld X ∈ X(M), then we may
take for τ the map that assigns to each p ∈ M the timecone that contains
Xp.

Remark 1.1.9. We recall that a Riemannian manifold M is a smooth man-
ifold together with a Riemannian metric tensor �eld, i.e. a smooth map
g̃ : M → T 2

0M with π2
0 ◦ g̃ = idM such that for each p ∈ M , the

(
0
2

)
-

tensor g̃p ≡ g̃(p) : TpM×TpM → R de�nes an inner product on each tangent
space.

Remark 1.1.10. Let U andX be smooth vector �elds on a semi-Riemannian
manifold (M, g). Recall that the map

Φ : X(M)→ Ω1(M)

Φ : U 7→ U∗, U∗(X) := 〈U,X〉 = g(U,X)

de�nes a C∞(M)-linear isomorphism between X(M) and Ω1(M). For further
considerations it is useful to mention that this result holds for vector and
covector �elds along smooth mappings. A proof can be found in [15], Chapter
3, Proposition 10.
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Proposition 1.1.11. Let U be a smooth unit vector �eld on a Riemannian
manifold M with metric tensor g̃. Then

g := g̃ − 2U∗ ⊗ U∗

is a Lorentzian metric for M , i.e. we can induce a Lorentzian metric tensor
by tensorizing the metric-equivalent 1-forms of U . Furthermore, U is timelike
w.r.t. g̃ and so the resulting Lorentzian manifold is time-orientable.

Proof. The
(

0
2

)
-tensor �eld g is symmetric, since

g(V,W ) = g̃(V,W )− 2 〈U, V 〉 〈U,W 〉
= g(W,V ).

We show that the index of M equals 1. For all p ∈ M we can locally �nd
smooth vector �elds Ej (j = 2, 3, ..., n) such that {U,E2, ..., En} is a frame
�eld relative to g̃. We �rst show that g(p)(Ei(p), Ej(p)) = δij for all p ∈ M.
We choose an arbitrary p ∈M and see that by de�nition of the tensor product
of tensor �elds

(U∗(p)⊗ U∗(p))(Ei(p), Ej(p)) = (U∗(p)(Ei(p)))(U
∗(p)(Ej(p)))

= (〈U(p), Ei(p)〉)(〈U(p), Ej(p)〉)
= 0

since {U,E2, ..., En} is a frame �eld relative to g̃. We now calculate that

g(p)(Ei(p), Ej(p)) = g̃(p)(Ei(p), Ej(p))− 2(U∗(p)⊗ U∗(p))(Ei(p), Ej(p))
= g̃(p)(Ei(p), Ej(p))

= δij

for all p ∈ M . Further we have g(p)(U(p), Ej(p)) = 0 for {j = 2, 3, ..., n},
because

g(p)(U(p), Ej(p)) = g̃(p)(U(p), Ej(p))− 2(U∗(p)⊗ U∗(p))(U(p), Ej(p))

= g̃(p)(U(p), Ej(p))

and g̃(p)(U(p), Ej(p)) = 0 for {j = 2, 3, ..., n} since {U,E2, ..., En} is a frame
�eld relative to g̃. Here we have used that

(U∗(p)⊗ U∗(p))(U(p), Ej(p)) = (U∗(p)(U(p)))(U∗(p)(Ej(p)))

= (〈U(p), U(p)〉)(〈U(p), Ej(p)〉)
= 0

17



for {j = 2, 3, ..., n}. Finally g(p)(U(p), U(p)) = −1 since g(p)(U(p), U(p)) =
g̃(p)(U(p), U(p)) − 2(U∗(p)U(p)U∗(p)U(p)) = −1. Remains to show that g̃
is non-degenerate. To this end we assume that g̃(V,W ) = g(V,W )− 2U∗ ⊗
U∗(V,W ) = 0 for all W ∈ X(M). We have to show that V is the zero vector
�eld. We choose a local frame as above and set W := U , hence we obtain
that 0 = g(V, U)− 2U∗ ⊗ U∗(V, U). Thus we have

g(V, U) = 2U∗ ⊗ U∗(V, U) = 2U∗(V )U∗(U)

= 2U∗(V ) = 2g(U, V ).

Since g is symmetric, we obtain that g(U, V ) = 0 and if we now set W := V
we have that g(V, V ) = 2(g(U, V ))2 = 0. Since g is a Riemannian tensor
�eld, it is non-degenerate and we �nally see that V must be the null vector
�eld. Proposition 1.1.8 guaranties that M has a time orientation, i.e. M is
time-orientable.

Time-oriented Lorentzian manifolds are called spacetimes. More pre-
cisely, we have

De�nition 1.1.12. Let (M, g) be a connected Lorentzian manifold of dimen-
sion ≥ 2. (M, g) is called a space-time if it is time-orientable.

We recall the following

De�nition 1.1.13. Let M and M̃ be smooth manifolds. A smooth map
κ : M̃ →M onto M is said to be a covering map provided each point p ∈M
has a connected neighbourhood U that is evenly covered by κ, i.e. κ maps
each component of κ−1(U) di�eomorphically onto U . The set Fp := κ−1(p)
for p ∈ M is called the �ber over p. A double covering is a covering map κ
such that each �ber over p contains precisely two elements.

We also recall the following Proposition (details can be found in [15],
Chapter 7).

Proposition 1.1.14. Let κ : Σ → M be a two-to-one map of a set Σ onto
a manifold M . Let Λ be a collection of functions λ : U → Σ, where U is an
open subset of M , such that the following conditions hold.

(i) κ ◦ λ = idU for all λ ∈ Λ.

(ii) If λ(p) = µ(p) for some p ∈M and λ, µ ∈ Λ, then λ = µ.

(iii) Every point in Σ is the image of some λ ∈ Λ.

18



Then there is a unique way to make Σ a manifold such that κ : Σ→M is a
double covering map.

Remark 1.1.15. We denote by MT the set of all timecones in the tangent
bundle of M . Obviously there is a natural two-to-one map κ : MT → M .
Since all conditions of Proposition 1.1.14 are satis�ed, κ : MT →M becomes
a double covering map. The pulled-back metric tensor on MT makes this a
Lorentzian covering, called the time-orientation covering of M .

Now we can show a fundamental result.

Proposition 1.1.16. Let M be a smooth manifold. Then the following are
equivalent.

(i) There exists a Lorentzian metric on M .

(ii) There exists a time-orientable Lorentzian metric on M .

(iii) There is a nonvanishing vector �eld on M .

(iv) Either M is noncompact, or M is compact and has Euler number
χ(M) = 0.

Proof. The equivalence between (iii) and (iv) is a Corollary of the theo-
rem of Poincaré and Hopf, which can be found in [22], Chapter 6, Theorem
6.27. Obviously (ii) implies (i). We assume that (iii) holds. Since every
smooth manifold admits a Riemannian metric tensor, we can apply Proposi-
tion 1.1.11 to the unit vector �eld X

|X| and obtain a Lorentzian metric tensor.
We assume that (ii) holds. Then Proposition 1.1.8 implies the existence of
a nonvanishing (even timelike) vector �eld on M . Now let condition (i) be
satis�ed. If M is time-orientable, the preceding results prove (iv). Hence
let M be not time-orientable. By Remark 1.1.15 M has a double-covering
Lorentzian manifold M̃ that is time-orientable, thus M̃ is either noncompact
or has χ(M̃) = 0. We show that M̃ is compact if and only if M is com-
pact. To this end let {Ui}i∈I be an open covering of M̃ . We show that we
can choose a �nite subcover. Let p ∈ M . Then Fp := κ−1(p) is �nite, i.e.
there is a �nite subset J ⊆ I such that Fp is covered by {Uj}j∈J . We set
Op := ∪j∈JUj. We show that for each Op there is an open neighbourhood
Vp of p such that κ−1(Vp) ⊆ Op. Since κ is a covering, we only have to set
Vp := κ(∪ni=1Ui ∩ Op). Obviously the set {Vp : p ∈ M} is an open covering
for M and since M is compact, there are Vp1 , ..., Vpn that cover M . Now the
corresponding Uj (j ∈ Jpi with i = 1, ..., n) of Vpi form a �nite subcover.
Hence M is compact if and only if M̃ is compact, since κ is continuous. In
the compact case we obtain that χ(M) = χ(M̃)

2
= 0.
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CHAPTER 2

JACOBIAN TENSOR FIELDS

2.1 Basics

Let (M, g) be a space-time of dimension ≥ 2 as in De�nition 1.1.12. For
a, b ∈ R we consider a timelike geodesic

c : [a, b] ⊆ R→M.

For all s ∈ [a, b] we de�ne N(c(s)) to be the set of all tangent vectors orthog-
onal to c′(s) ∈ Tc(s)M , i.e.

N(c(s)) := {v ∈ Tc(s)M : 〈v, c′(s)〉 = 0}.

N(c(s)) is a subspace of the R-vector space Tc(s)M for all s ∈ [a, b].

Remark 2.1.1. Let n := dim(M) ≥ 2 be the dimension of the space-time
(M, g). Then for all s ∈ [a, b] the R-vector space N(c(s)) is (n − 1) dimen-
sional. Furthermore, since c′(s) ∈ Tc(s)M is timelike by assumption, N(c(s))
consists of spacelike tangent vectors and thus {v ∈ N(c(s)) : 〈v, v〉 ≤ 1} is a
compact subset of N(c(s)) ⊆ Tc(s)M for all s ∈ [a, b].

Proof. All these statements follow directly from Lemma 1.1.2.

Remark 2.1.2. Let [a, b] ⊆ R and let (M, g) be an arbitrary spacetime of
dimension ≥ 2. For a timelike geodesic c : [a, b]→M we de�ne V ⊥(c) as the
set of all piecewise smooth vector �elds Y along c with 〈Y (s), c′(s)〉 = 0 for
all s ∈ [a, b]. V ⊥(c) is an R-subspace of the R-vector space of all piecewise
smooth vector �elds along the geodesic c. Furthermore we set V ⊥0 (c) := {Y ∈
V ⊥(c) : Y (a) = 0 and Y (b) = 0}.
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Remark 2.1.3. Let E1, ..., Ek and E be �nite dimensional vector spaces over
the �eld R. Recall that we de�ned Lk(E1, ..., Ek;F ) to be the R-vector space
of all multilinear maps T : E1 × ... × Ek → F . Furthermore we de�ned the
R-vector space T rsE := Lr+s(E∗× ...×E∗×E× ...×E;R) of r-times contra-
and s-times covariant tensors, or, for short,

(
r
s

)
-tensors. Here, E∗ occurs r

times and E occurs s times. Now we consider a bijective map ϕ ∈ L(E;F )
and de�ne the map

T rs (ϕ) ≡ ϕrs ∈ L(T rsE;T rsF )

(ϕrsT )(β1, ..., βr, f1, ..., fs) := T (ϕ∗(β1), ..., ϕ∗(βr), ϕ−1(f1), ..., ϕ−1(fs)),

where T ∈ T rsE, β1, ..., βr ∈ F ∗, f1, ..., fs ∈ F . Here, ϕ∗ denotes the adjoint
map of ϕ.

We also recall the following

Proposition 2.1.4. Let E,F and G be �nite dimensional R-vector spaces.
For linear maps ϕ : E → F and ψ : F → G we have

(i) (ϕ ◦ ψ)rs = ψrs ◦ ϕrs.

(ii) (idE)rs = idT rsE.

(iii) ϕrs : T rsE → T rsF is a linear isomorphism and (ϕrs)
−1 = (ϕ−1)rs.

(iv) If t1 ∈ T r1s1 E, t2 ∈ T
r2
s2
E, then ϕr1+r2

s1+s2(t1 ⊗ t2) = ϕr1s1(t1)⊗ ϕr2s2(t2).

Proof. A proof can be found in [7], Chapter 2, Proposition 2.6.6.

2.2 Tensor �elds along smooth mappings

It is standard in di�erential geometry texts to introduce tensor �elds as
smooth sections of tensor bundles. Furthermore the following theorem holds.

Theorem 2.2.1. Let M be a smooth manifold. We denote the C∞(M)-
module of all

(
r
s

)
-tensor �elds by T rs (M). Furthermore let

Lr+sC∞(M) := Lr+sC∞(M)(Ω
1(M)× ...× Ω1(M)︸ ︷︷ ︸

r−times

×X(M)× ...× X(M)︸ ︷︷ ︸
s−times

; C∞(M))

be the C∞(M)-module of all C∞(M)-multilinear maps t : Ω1(M) × ... ×
Ω1(M) × X(M) × ... × X(M) → C∞(M). Then there is a C∞(M)-linear
isomorphism

A : T rs (M)→ Lr+sC∞(M).
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Proof. A proof can be found in [7], Chapter 2, Theorem 2.6.19.

We recall that we have introduced an induced covariant derivation for
vector �elds along a smooth curve c : [a, b] → M . This concept has to be
generalized for our considerations concerning Jacobian tensor �elds. We start
by de�ning

(
r
s

)
-tensor �elds along a smooth map.

De�nition 2.2.2. Let M and N be smooth manifolds and let f ∈ C∞(N,M).
An
(
r
s

)
-tensor �eld along f is a smooth map A : N → T rsM such that πrs ◦A =

f , i.e. a map A : N 3 p 7→ A(p) : (Tf(p)M)∗ × ... × (Tf(p)M)∗ × (Tf(p)M) ×
... × (Tf(p)M) → R (where (Tf(p)M)∗ occurs r times and Tf(p)M occurs s
times in the cartesian product), hence A(p) ∈ Lr+s(Tf(p)M). For s = r = 0
we de�ne a

(
0
0

)
-tensor �eld along f to be a smooth map A : N → R, hence

A ∈ C∞(N). We will denote the space of all
(
r
s

)
-tensor �elds along f by

Γ(N, T rsM, f).

Remark 2.2.3. For r = 1, s = 0, De�nition 2.2.2 reduces to the de�nition
of vector �elds along smooth maps.

Remark 2.2.4. Recall that a module over a commutative ring (R,⊕,�)
with unit element I ∈ (R,⊕,�) is an abelian group (M,+) together with a
map (the scalar multiplication)

· : (R,⊕,�)× (M,+)→ (M,+)

(r,m) 7→ r ·m

such that

(i) r1 · (r2 ·m) = (r1 � r2) ·m,

(ii) (r1 ⊕ r2) ·m = r1 ·m+ r2 ·m and

(iii) r · (m1 +m2) = r ·m1 + r ·m2

for all r, r1, r2 ∈ (R,⊕,�) and for all m,m1,m2 ∈ (M,+). It is clear that
Γ(N, T rs (M), f) with the operations

(A1 + A2)(p) := A1(p) + A2(p) ∈ Tf(p)M and (fA)(p) := f(p)A(p),

is a C∞(N)-module.

Now let φ ∈ L2(E1, E2;E), i.e. φ : E1 × E2 → E is a bilinear map. For
all (e1, e2) ∈ E1 × E2 we de�ne two maps

rφ : E2 → L1(E1;E)
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rφ(e2)(e1) := φ(e1, e2)

and
lφ : E1 → L1(E2;E)

lφ(e1)(e2) := φ(e1, e2)

and see that rφ and lφ are R-linear. Now we consider the maps

r : L2(E1, E2;E)→ L1(E2;L1(E1;E))

r(φ) := rφ

and
l : L2(E1, E2;E)→ L1(E1;L1(E2;E))

l(φ) := lφ

and show the following

Proposition 2.2.5. Let E1, E2 and E be R-vector spaces. Then the maps r
and l de�ne R-isomorphisms.

Proof. It su�ces to show the �rst statement. Let α ∈ R and φ, ψ ∈ L2(E1, E2;E).
Then, for (e1, e2) ∈ E1 × E2 we have

r(αφ+ ψ)(e2)(e1) = rαφ+ψ(e2)(e1) = (αφ+ ψ)(e1, e2)

= αφ(e1, e2) + ψ(e1, e2) = αrφ(e2)(e1) + rψ(e2)(e1)

= αr(φ)(e2)(e1) + r(ψ)(e2)(e1) = (αr(φ) + r(ψ))(e2)(e1),

hence r is R-linear. Now let r(φ) = 0. Then we have for all (e1, e2) ∈ E1×E2

φ(e1, e2) = rφ(e2)(e1)

= r(φ)(e2)(e1) = 0,

hence φ = 0 and r is one-to-one. Now let u ∈ L1(E2;L1(E1;E)). Then we
set φ : E1 × E2 → E, φ(e1, e2) := u(e2)(e1), and see that φ is bilinear, hence
φ ∈ L1(E2;L1(E1;E)). Now we have

r(φ)(e2)(e1) = φ(e1, e2)

= u(e2)(e1),

i.e. r(φ) = u, so r is onto.
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De�nition 2.2.6. Let c : [a, b] → M be a timelike geodesic. A
(

1
1

)
-tensor

�eld A on V ⊥(c) is a
(

1
1

)
-tensor �eld along c such that the

(
1
1

)
-tensor A(s)

is de�ned on the restriction N(c(s)) of Tc(s)M , i.e. we have a smooth map
A : [a, b] 3 s 7→ A(s) : (N(c(s)))∗ × N(c(s)) → R such that A(s) is a(

1
1

)
-tensor for all s ∈ [a, b].

Remark 2.2.7. For our further considerations it is very useful that we can
write the

(
1
1

)
-tensor A(s) as a linear map N(c(s))→ N(c(s)) for all s ∈ [a, b]

(cf. Proposition 2.2.5).

Remark 2.2.8. Let A and B be two
(

1
1

)
-tensor �elds on V ⊥(c). Since A(s)

and B(s) are linear maps for all s ∈ [a, b], their matrix product A(s)B(s) is
de�ned.

Remark 2.2.9. Let (M, g) be a semi-Riemannian manifold with Levi-Civita-
connection ∇. Recall that the Riemannian curvature tensor R is the

(
1
3

)
-

tensor �eld
R : X(M)× X(M)× X(M)→ X(M)

de�ned by
R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

It should be noted that some authors use the sign convention

R(X, Y )Z := −∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z

for the curvature R.

De�nition 2.2.10. Let A be a
(

1
1

)
-tensor �eld. We de�ne a composite en-

domorphism RA(s) : N(c(s))→ N(c(s)) by

RA(s)(v) := R(A(s)(v), c′(s))c′(s) = RA(s)(v),c′(s)c
′(s)

for each s ∈ [a, b]. Here, R denotes the Riemannian curvature tensor. Since
RA(s) is linear, it again de�nes a

(
1
1

)
-tensor on N(c(s)) by Proposition 2.2.5.

Remark 2.2.11. In De�nition 2.2.10 R denotes the curvature-tensor R =
Rc′(s0),c′(s0) : Tc(s0)M → Tc(s0)M restricted to the subspaceN(c(s0)) of Tc(s0)M .
We �nd that 〈R(v, c′(s0))c′(s0), c′(s0)〉 = 〈R(c′(s0), c′(s0))v, c′(s0)〉 = 0, where
we have used anti-symmetry and pair-symmetry of the curvature-operator,
hence we obtain that indeed R(v, c′(s0))c′(s0) ∈ N(c(s0)).

We now de�ne the concept of the adjoint tensor �eld A∗ of A. To this
end we give the following
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De�nition 2.2.12. Let A and A∗ be
(

1
1

)
-tensor �elds on V ⊥(c) (cf. De�ni-

tion 2.2.6) such that the condition g(c(s))(A(s)(w), v) = g(c(s))(A∗(s)(v), w)
holds for all s ∈ [a, b]. Then A∗ is said to be an adjoint of A . We see that A∗

is uniquely determined by the above equation, i.e. we can write "the" adjoint
of A. We will not distinguish between A∗(s) and (A(s))∗.

2.3 Covariant derivations

Our next aim is to de�ne Jacobian tensor �elds. Our de�nition will use
induced covariant derivations for tensor �elds along smooth maps. We start
with the following

Remark 2.3.1. Let (U,ϕ = (x1, ..., xn)) be a chart for M. Recall that for all
t ∈ Γ(M,T rsM) we have the local representation

t|U = ti1,...,irj1,...,js

∂

∂xi1
⊗ ...⊗ ∂

∂xir
⊗ dxj1 ⊗ ...⊗ dxjs ,

hence for all A ∈ Γ(I, T rsM, c) and for all s ∈ J , where J ⊆ I is such that
c(J) ⊆ U , we �nd that

A(s) =Ai1...irj1...js
(s)

(
∂

∂xi1
◦ c)(s)⊗ ...⊗ (

∂

∂xir
◦ c)(s)⊗ (dxj1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s).

Convention 2.3.2. To simplify notations we will write ∂xi instead of ∂
∂xi

.
Furthermore we write ∂xi1 ⊗ ...⊗ dxjs for ∂

∂xi1
⊗ ...⊗ ∂

∂xir
⊗ dxj1 ⊗ ...⊗ dxjs

and (∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s) for ( ∂
∂xi1
◦ c)(s)⊗ ...⊗ ( ∂

∂xir
◦ c)(s)⊗ (dxj1 ◦

c)(s)⊗ ...⊗ (dxjs ◦ c)(s).
Proposition 2.3.3. Let M be a smooth manifold and let c ∈ C∞(I,M). We
consider the map A : I 3 s 7→ A(s) : (Tc(s)M)∗× ...× (Tc(s)M)∗× (Tc(s)M)×
...× (Tc(s)M)→ R. Then the following are equivalent:

(1) A is smooth, i.e. A ∈ Γ(I, T rsM, c).

(2) In every chart representation all coe�cient functions Ai1,...,irj1,...,js
of A are

smooth (cf. Remark 2.3.1).

Proof. For every chart (ψ, V ) we found vector bundle charts (Tψ)rs of the
tensor bundle T rsM . Let J ⊆ I such that c(J) ⊆ V . For s ∈ J we have

((Tψ)rs ◦ A(s)) = (Tψ)rs(A
i1,...,ir
j1,...,js

(s)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s))
= (s, (Tpψ)rs(A

i1,...,ir
j1,...,js

(s)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)))
= (s, Ai1,...,irj1,...,js

(s)(Tpψ)1
0(∂xi1 ◦ c)(s))⊗ ...⊗ (Tpψ)0

1(dxjs ◦ c)(s))
= (s, Ai1,...,irj1,...,js

(s))(ei1 ⊗ ...⊗ αjs).
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Proposition 2.3.4. Let M be a semi-Riemannian manifold and let c : R ⊇
I := [a, b]→M be a smooth curve in M . Then there is a unique map

∇
ds

: Γ(I, T rsM, c)→ Γ(I, T rsM, c),

A 7→ ∇A
ds
≡ ∇
ds

(A),

the induced covariant derivation, such that

(i) ∇
ds

(A1 + λA2) = ∇
ds

(A1) + λ∇
ds

(A2) for all A1, A2 ∈ Γ(I, T rsM, c) and
λ ∈ R.

(ii) ∇
ds

(hA) = dh
ds
A+ h∇

ds
(A) for all smooth mappings C∞(I) 3 h : s 7→ h(s)

and for all A ∈ Γ(I, T rsM, c).

(iii) ∇
ds

(δ ◦ c)(s) = (∇c′(s)δ)(s) for all δ ∈ Γ(M,T rsM) and s ∈ I.

Proof. We �rst show local uniqueness, i.e. uniqueness in a chart (ϕ = (x1, ...xn), U).
Suppose there exists an induced covariant derivation ∇

ds
: Γ(I, T rsM, c) →

Γ(I, T rsM, c), A 7→ ∇A
ds

with the above properties (i), (ii) and (iii). Since A
is a smooth map, all coe�cient functions Ai1,...,irj1,...,js

are smooth (cf. Proposition
2.3.3) and we �nd

∇A
ds

(s) =
dAi1,...,irj1,...,js

ds
(s)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ Ai1,...,irj1,...,js
(s)
∇
ds

((∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s))

=
dAi1,...,irj1,...,js

ds
(s)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ Ai1,...,irj1,...,js
(s)∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

Hence ∇
ds

is locally uniquely determined. To prove existence, we de�ne on
each J ⊆ I with c(J) ⊆ U the map ∇

ds
: A 7→ ∇A

ds
by the local representation

∇A
ds

(s) =
dAi1,...,irj1,...,js

ds
(s)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ Ai1,...,irj1,...,js
(s)∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

and show (i)− (iii):
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(i) Let A1, A2 ∈ Γ(I, T rsM, c). Then we �nd the following local represen-
tation for A1 + λA2 with respect to the chart (ϕ = (x1, ...xn), U).

(A1 + λA2)|J = (Ai1,...,irj1,...,js
+ λAi1

′,...,ir ′

j1′,...,js′
)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s).

By using the local representation we �nd that

∇
ds

(A1 + λA2)(s)

=
d(Ai1,...,irj1,...,js

+ λAi1,...,irj1,...,js
)(s)

ds
(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ ((Ai1,...,irj1,...,js
+ λAi1,...,irj1,...,js

)(s))∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

=
d(Ai1,...,irj1,...,js

)(s)

ds
(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ ((Ai1,...,irj1,...,js
)(s))∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

+ λ
d(Ai1,...,irj1,...,js

)(s)

ds
(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ λ(Ai1,...,irj1,...,js
)(s)∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

=
∇
ds

(A1)(s) + λ
∇
ds

(A2)(s).

(ii) Again, by using the local representation, we �nd

∇
ds

(hA)(s) =
d(hAi1,...,irj1,...,js

)(s)

ds
(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

+ ((hAi1,...,irj1,...,js
)(s))∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

=
dh

ds
(s)A(s) + h(s)

∇
ds

(A)(s)

(iii) We �rst recall the identity

d

ds
(δi1,...,irj1,...,js

◦ c)(s) = Tsc(
d

ds
)(δi1,...,irj1,...,js

) = c′(s)(δi1,...,irj1,...,js
)

for all s ∈ J and �nd

∇c′(s)(δ) = ∇c′(s)((δ
i1,...,ir
j1,...,js

)(∂xi1 ⊗ ...⊗ dxjs))
= c′(s)(δi1,...,irj1,...,js

)(∂xi1 ⊗ ...⊗ dxjs) + δi1,...,irj1,...,js
(c(s))∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

=
d

ds
(δi1,...,irj1,...,js

(c(s))(∂xi1 ⊗ ...⊗ dxjs) + δi1,...,irj1,...,js
(c(s))∇c′(s)(∂xi1 ⊗ ...⊗ dxjs)

= (
∇
ds

)(δ ◦ c)(s)
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Now let J1, J2 ⊆ I such that c(Ji) ⊆ U for i = 1, 2 and let F1 and F2 be the
corresponding induced covariant derivations s 7→ ∇A

ds
. Then both mappings,

F1 and F2, satisfy (1)− (3) for all s ∈ J1 ∩ J2. Due to the uniqueness proof,
they coincide on J1 ∩ J2. Therefore, ∇

ds
: Γ(I, T rsM, c) → Γ(I, T rsM, c) is a

well de�ned map. Hence all statements have been proved.

Remark 2.3.5. Let A be a
(

0
0

)
-tensor �eld along c (cf. De�nition 2.2.2).

Then the induced covariant derivation coincides with the "usual" derivation
for scalar-valued maps.

Remark 2.3.6. Let M be a smooth manifold. Remember that there is a
unique C∞(M)-linear map, the

(
1
1

)
-contraction

C : T 1
1 (M)→ C∞(M)

such that C(X ⊗ ω) = ω(X) holds for all smooth vector �elds X ∈ X(M)
and for all one-forms ω ∈ Ω1(M), where T 1

1 (M) := Γ(M,T 1
1 (M)) denotes

the C∞(M)-module of all smooth sections of the
(

1
1

)
-tensor bundle. Let

A ∈ T 1
1 (M) and let (ψ = (x1, ..., xn), V ) be a chart of M . Then we obtain

locally that
C(A) =

∑n

i=1
Aii = A(dxi, ∂xi).

The same results with analogous proofs hold if we write Γ(I, T 1
1 (M), c) in-

stead of T 1
1 (M) for I ⊆ R and c : I → M a smooth curve in M . In the

next Lemma we will derive a product-rule for tensor �elds along smooth
curves. Furthermore we will show that the induced covariant derivation (cf.
Proposition 2.3.4) commutes with contraction.

Lemma 2.3.7. Let M be a semi-Riemannian manifold and let c : R ⊇ I →
M be a smooth curve in M . Let A ∈ Γ(I, T rs (M), c), B ∈ Γ(I, T r

′

s′ (M), c)
and C ∈ Γ(I, T 1

1 (M), c). Then we have

(i) ∇
ds

(A⊗B) = (∇
ds

(A))⊗B + A⊗ ∇
ds

(B) and

(ii) ∇
ds

(C(C)) = C(∇
ds
C)

Proof. (i) By Remark 2.3.1 we have local representations

A(s) = (Ai1,...,irj1,...,js
)(s)(∂xi1 ◦ c)(s)⊗ ...⊗ (dxjs ◦ c)(s)

and
B(s) = (B

i′1,...,i
′
r′

j′1,...,j
′
s′

)(s)(∂
xi
′
1
◦ c)(s)⊗ ...⊗ (dxj

′
s′ ◦ c)(s).
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By Proposition 2.3.3 all coe�cient-functions are smooth. Then

∇
ds

((Ai1,...,irj1,...,js
(∂xi1 ◦ c)⊗ ...⊗ (dxjs ◦ c))⊗

(B
i′1,...,i

′
r′

j′1,...,j
′
s′

(∂
xi
′
1
◦ c)⊗ ...⊗ (dxj

′
s′ ◦ c)))

=
∇
ds

(Ai1,...,irj1,...,js
B
i′1,...,i

′
r′

j′1,...,j
′
s′

(∂xi1 ◦ c)⊗ ...⊗ (dxj
′
s′ ◦ c)).

The last expression becomes

(
d(Ai1,...,irj1,...,js

B
i′1,...,i

′
r′

j′1,...,j
′
s′

)

ds
(∂xi1 ◦ c)⊗ ...⊗ (dxj

′
s′ ◦ c))

+ ((Ai1,...,irj1,...,js
)(B

i′1,...,i
′
r′

j′1,...,j
′
s′

)
∇
ds

((∂xi1 ◦ c)⊗ ...⊗ (dxj
′
s′ ◦ c)))

and we obtain that this equals

(
dAi1,...,irj1,...,js

ds
B
i′1,...,i

′
r′

j′1,...,j
′
s′

(∂xi1 ◦ c)⊗ ...⊗ (dxj
′
s′ ◦ c))

+ (Ai1,...,irj1,...,js

dB
i′1,...,i

′
r′

j′1,...,j
′
s′

ds
(∂xi1 ◦ c)⊗ ...⊗ (dxj

′
s′ ◦ c))

+ (Ai1,...,irj1,...,js
B
i′1,...,i

′
r

j′1,...,j
′
s
∇c′(s)(∂xi1 ⊗ ...⊗ dxj

′
s′ )),

where we have used Proposition 2.3.4 (i), (ii) and (iii). The last term can be
split since ∇c′(s) is a tensor derivation. We �nally obtain

(
dAi1,...,irj1,...,js

ds
B
i′1,...,i

′
r′

j′1,...,j
′
s′

(∂xi1 ◦ c)⊗ ...⊗ (dxj
′
s′ ◦ c))

+ (Ai1,...,irj1,...,js

dB
i′1,...,i

′
r′

j′1,...,j
′
s′

ds
(∂xi1 ◦ c)⊗ ...⊗ (dxj

′
s′ ◦ c))

+ (Ai1,...,irj1,...,js
B
i′1,...,i

′
r

j′1,...,j
′
s
(∇c′(s)(∂xi1 ⊗ ...⊗ dxjs))⊗ (∂

xi
′
1
◦ c⊗ ...⊗ dxj′s′ ◦ c))

+ (Ai1,...,irj1,...,js
B
i′1,...,i

′
r

j′1,...,j
′
s
(∂xi1 ◦ c⊗ ...⊗ dxjs ◦ c)⊗ (∇c′(s)(∂xi′1 ⊗ ...⊗ dx

j′
s′ ))),

and we are done.

(ii)By Remark 2.3.6 we �nd that C(C) =
∑n

i=1C
i
i and obtain

∇
ds

(C(C)) =
∇
ds

(
∑n

i=1
Ci
i) =

d

ds
(
∑n

i=1
Ci
i)

=
∑n

i=1

d

ds
(Ci

i) = C(∇
ds
C),
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where we have used the local representation in the proof of Proposition 2.3.4
(ii).

De�nition 2.3.8. Let A be an
(
r
s

)
-tensor �eld along a smooth curve c : I →

M . Since ∇A
ds
∈ Γ(I, T rsM, c), we can use Proposition 2.3.4 to de�ne the

second induced covariant derivation of A by

A′′ :=
∇
ds

∇A
ds

.

2.4 Jacobian tensor �elds

De�nition 2.4.1. A
(

1
1

)
-tensor �eld A on V ⊥(c) is said to be a Jacobian

tensor �eld along c, if

(i) A′′(s) + RA(s) = 0 for all s ∈ I (cf. De�nition 2.2.10, Proposition
2.3.4 and De�nition 2.3.8) and

(ii) ker(A(s)) ∩ ker(∇A
ds

(s)) = {0} for all s ∈ I (cf. Proposition 2.3.4).

De�nition 2.4.2. Let A be a Jacobian tensor �eld along c. Then A is said
to be a Lagrangian tensor �eld, if

(
∇A
ds

)∗(s)A(s)− (A)∗(s)
∇A
ds

(s) = 0

for all s ∈ [a, b].

De�nition 2.4.3. Let A1 and A2 be Jacobian tensor �elds along c. Then
their Wronskian W (A1, A2) is the

(
1
1

)
-tensor �eld on V ⊥(c) given by

W (A1, A2)(s) := (
∇A1

ds
)∗(s)A2(s)− (A1)∗(s)

∇A2

ds
(s)

for all s ∈ [a, b] (cf. De�nition 2.2.12).

Lemma 2.4.4. Let A and B be
(

1
1

)
-tensor �elds on V ⊥(c). Then

(i) ∇
ds

(AB) = (∇
ds
A)B + A(∇

ds
B), cf. Remark 2.2.8,

(ii) R = R∗ for the Riemannian curvature operator,

(iii) (AB)∗ = B∗A∗, in particular we obtain that (RA)∗ = A∗R for the
composite endomorphism (cf. De�nition 2.2.10),

(iv) if A is invertible for all s ∈ I, then ∇
ds
A−1 = −A−1(∇A

ds
)A−1,
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(v) ∇
ds

(A∗) = (∇
ds
A)∗ and

(vi) ∇
ds
W (A,B) = 0 for all Jacobian tensor �elds A and B.

Proof. (i) By Remark A.3.7 we �nd a
(

1
1

)
-frame �eld along c on M . For

A(s) = Aij(s)Ei(s)⊗ E∗j(s) and B(s) = Bj
l (s)Ej(s)⊗ E∗l(s) we obtain that

A(s)B(s) = Aij(s)B
j
l (s)Ei(s) ⊗ E∗l(s). Since Ei and E∗j are parallel vector

�elds and one-forms we can use Proposition 2.3.4 (i), (ii), (iii) and Lemma
2.3.7 (i) to derive

∇
ds

(A(s)B(s)) =
d(Aij(s)B

j
l (s))

ds
Ei(s)⊗ E∗l(s)

+ Aij(s)B
j
l (s)∇c′(s)(Ei ⊗ E∗l)

=
dAij(s)

ds
Bj
l (s)Ei(s)⊗ E

∗l(s) + Aij(s)
dBj

l (s)

ds
Ei(s)⊗ E∗l(s)

= (
∇A
ds

(s))(B(s)) + A(s)(
∇B
ds

(s)).

(ii) By De�nition 2.2.12 we �nd

0 = g(c(s))(R(s)(z), v)− g(c(s))(R∗(s)(v), z)

= g(c(s))(R(s)(v), z)− g(c(s))(R∗(s)(v), z).

Thus R(s) = R∗(s).

(iii) This is clear by de�nition of the adjoint tensor �eld.

(iv) We have to show that

A(s)
∇
ds

(A−1(s)) = −∇
ds

(A(s))A−1(s).

By applying (i) to A(s)A−1(s) = I(s), where I(s) denotes the identity-
operator, we obtain

0 =
∇
ds

(A(s))(A−1(s)) + A(s)
∇
ds

(A−1(s)).

(v) By Remark A.3.7 we �nd a
(

1
1

)
-frame �eld along c onM . In terms of this

frame we may write

A(s) = Aij(s)Ei(s)⊗ E∗j(s),
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where all Aij : I → R are smooth. By Proposition 2.3.4 its induced covariant
derivation is

∇
ds
A(s) =

d(Aij)

ds
(s)Ei(s)⊗ E∗j(s) + Aij(s)∇c′(s)(Ei ⊗ E∗j),

where the last term vanishes. Since we operate with frame �elds, we �nd

A∗(s) =
∑n

i,j=1
Aji (s)Ei(s)⊗ E∗j(s)

for the adjoint tensor �eld A∗ of A. We obtain that

(
∇
ds
A(s))∗ =

∑n

i,j=1

d(Aji )

ds
(s)Ei(s)⊗ E∗j(s) = (

∇
ds
A∗(s)).

(vi) We use Proposition 2.3.4 (i) and �nd that

∇
ds
W (A,B)(s) =

∇
ds

((
∇
ds
A(s))∗B(s)− A(s)∗

∇
ds
B(s))

=
∇
ds

((
∇
ds
A(s))∗B(s))− ∇

ds
(A(s)∗

∇
ds
B(s)).

Using (i) we conclude that

∇
ds
W (A,B)(s) =

∇
ds

(
∇
ds

(A(s))∗)B(s) + (
∇
ds

(A(s)))∗
∇
ds

(B(s))

− ∇
ds

(A(s)∗)
∇
ds

(B(s))− A(s)∗B′′(s).

By (v) we obtain that

∇
ds
W (A,B)(s) =

∇
ds

(
∇
ds

(A(s))∗)B(s)− A(s)∗B′′(s)

= A′′∗(s)B(s)− A∗(s)B′′(s).

Since A∗(s)(B′′(s) +R(s)B(s)) = 0 we see that

A′′∗(s)B(s)− A∗(s)B′′(s)
= A′′∗(s)B(s) + A∗(s)B′′(s) + A∗(s)RB(s)− A∗(s)B′′(s)
= A′′(s)∗B(s) + A∗(s)RB(s)

= (A′′(s) +RA(s))∗B(s) = 0
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Proposition 2.4.5. Let A be a Jacobian tensor �eld. If A(s0) = 0 for some
s0 ∈ [a, b], then A is a Lagrangian tensor �eld, i.e.

(
∇A
ds

)∗(s)A(s) = (A)∗(s)
∇A
ds

(s)

for all s ∈ [a, b].

Proof. By Lemma 2.4.4 (vi) W (A,A) is a parallel
(

1
1

)
-tensor �eld on V ⊥(c).

By assumption there exists an s0 ∈ [a, b] such that the linear map

A(s0) : N(c(s0))→ N(c(s0)), v 7→ A(s0)(v)

vanishes (cf. De�nition 2.2.6 and Remark 2.2.7). Therefore

W (A,A)(s0) = (
∇A
ds

)∗(s0)A(s0)− (A)∗(s0)
∇A
ds

(s0) = 0,

hence
W (A,A)(s) = 0

for all s ∈ [a, b].

2.5 The Raychaudhuri equation

We now derive the Raychaudhuri equation for Jacobian tensor �elds along
timelike geodesics. We start with the de�nition of the expansion, vorticity
and shear of a Jacobian tensor �eld A. I will denote the

(
1
1

)
-tensor �eld along

V ⊥(c) such that I(s) = id : N(c(s))→ N(c(s)) for each s ∈ [a, b].

De�nition 2.5.1. Let A be a Jacobian tensor �eld along a timelike geodesic
c : [a, b] → M , where dim(M) = n. We assume that A(s)−1 exists for all
s ∈ I and set B(s) := (∇A

ds
)(s)A−1(s). Then we de�ne

(i) the expansion θ(s) := tr(B(s)),

(ii) the vorticity tensor ω(s) := 1
2
(B(s)−B(s)∗) and

(iii) the shear tensor σ(s) := 1
2
(B(s) +B(s)∗)− θ(s)

n−1
I(s)

for all s ∈ [a, b]

Proposition 2.5.2. Let A be a Jacobian tensor �eld along a timelike geodesic
c : [a, b]→M with dimM := n. Then the Raychaudhuri equation

dθ

ds
(s) = −Ric(c′(s), c′(s))− tr((ω(s))2)− tr((σ(s))2)− (θ(s))2

n− 1

holds on [a, b].

34



Proof. Let B(s) := (∇A
ds

)(s)A−1(s). By Lemma 2.4.4 (i) and (iv) we �nd
that

∇B
ds

(s) = −R(s)− (B(s))2.

A straightforward calculation shows that

tr(ω(s)2 + σ(s)2 +
θ(s)2

(n− 1)2
I(s)) = tr(B(s)2).

Therefore we obtain

dθ

ds
(s) = tr(

∇B
ds

(s))

= −tr(R(s))− tr((ω(s))2 + (σ(s))2 +
(θ(s))2

(n− 1)2
I(s))

= −tr(R(s))− tr(ω(s)2)− tr(σ(s)2)− (θ(s))2

n− 1

= −Ric(c′(s), c′(s))− tr(ω(s)2)− tr(σ(s)2)− (θ(s))2

n− 1

Proposition 2.5.3. Let A be a Lagrangian tensor �eld, then

B(s) :=
∇A
ds

(s)A(s)−1 = A(s)−1(
∇A
ds

)∗(s) = B(s)∗.

Proof. By De�nition 2.4.2,

(
∇A
ds

)∗(s)A(s) = (A)∗(s)
∇A
ds

(s)

for all s ∈ [a, b]. A right multiplication with (A(s))−1 and a left multiplication
with ((A(s))∗)−1 yields

B(s) = (
∇A
ds

)∗(s)(A(s))−1 = (A(s)∗)−1∇A∗

ds
(s) = B∗(s)

for all s ∈ [a, b]

Remark 2.5.4. Let B(s) := (∇A
ds

)(s)A−1(s). The shear tensor �eld (cf.
De�nition 2.5.1 (iii)) is self-adjoint with respect to the Lorentzian metric g
for arbitrary Jacobian tensor �elds, since both (B+B∗) and I are obviously
self-adjoint.
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Now let E1, ..., En be an orthonormal frame �eld at c(s) with En(s) = c′(s).
Then we can write σ(s) as a symmetric matrix (σij)1≤i≤n

1≤j≤n
. Furthermore,

tr((σ(s))2) = tr(
∑n−1

k=1
σik(s)σkj(s))

=
∑n−1

i=1

∑n−1

k=1
σik(s)σki(s)

=
∑n−1

i=1

∑n−1

k=1
(σik(s))

2 ≥ 0,

hence tr((σ(s))2) = 0 if and only if σ(s) = 0.

Corollary 2.5.5. Let A be a Lagrangian tensor �eld. Then the vorticity

ω(s) =
1

2
(B(s)− (B(s))∗)

vanishes along c.

Proof. Immediate from Proposition 2.5.3.

We now obtain the following version of the Raychaudhuri equation

Proposition 2.5.6. Let A be a Lagrangian tensor �eld along a timelike
geodesic c : [a, b] → M , where dimM = n. Then the vorticity free Ray-
chaudhuri equation

dθ

ds
(s) = −Ric(c′(s), c′(s))− tr((σ(s))2)− (θ(s))2

n− 1

holds for all s ∈ [a, b].

Proof. This follows from Proposition 2.5.2 and Lemma 2.5.5.
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CHAPTER 3

CAUSAL STRUCTURE

3.1 Causality conditions

Let V be a Lorentzian vector space, i.e. a scalar product space of index 1
and dimension ≥ 2. Let T be the set of all timelike vectors in V , i.e.

T := {v ∈ V : 〈v, v〉 < 0} ⊆ V

and let T be the set of all causal vectors in V , i.e.

T := {v ∈ V : 〈v, v〉 ≤ 0} ⊆ V.

Let v ∈ T . Then we de�ne the causal cone of V containing v to be the set

C(v) := {w ∈ T : 〈v, w〉 < 0}.

The opposite causal cone of V is de�ned to be the set

C(−v) := {w ∈ T : 〈v, w〉 > 0} = −C(v).

As in Remark 1.1.5 it can be shown that there are precisely two causal cones
in each Lorentzian vector space V , the so called future and past causal cone,
whose disjoint union is the set of all causal vectors in V . Now let (M, g) be
a space-time, p ∈ M and v ∈ TpM timelike. v is said to be future-directed
(or future-pointing), if v ∈ τp and past-directed (or past-pointing) if v is
contained in the opposite timecone of τp. A causal vector v ∈ TpM is called
future-directed (or future-pointing), if v is contained in the future causal
cone of TpM and past-directed (or past-pointing), if v is contained in the
past causal cone of TpM . A timelike (resp. causal) curve is future-directed
if all its tangent vectors are future-directed. By a curve we always mean a
piecewise smooth curve.
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De�nition 3.1.1. For p, q ∈M we de�ne

(i) p � q if there exists a piecewise smooth future-directed timelike curve
from p to q,

(ii) p < q if there is a piecewise smooth future-directed causal curve from p
to q,

(iii) p ≤ q if either p = q or there is a piecewise smooth future-directed
causal curve from p to q,

(iv) p � q or q � p if there is a piecewise smooth past-directed timelike
curve from p to q,

(v) p > q if there is a piecewise smooth past-directed causal curve from p
to q and

(vi) p ≥ q or q ≤ p if either p = q or there is a piecewise smooth past-
directed causal curve from p to q.

De�nition 3.1.2. The chronological future I+(p) of p is the set

I+(p) := {q ∈M : p� q}

and the chronological past I−(p) of p is the set

I−(p) := {q ∈M : q � p}.

The causal future J+(p) of p is the set

J+(p) := {q ∈M : p ≤ q}

and the causal past J−(p) is the set

J−(p) := {q ∈M : q ≤ p}.

It is often necessary to generalize De�nition 3.1.2 and consider the chrono-
logical future etc. of a subset A of M . Therefore we give the following

De�nition 3.1.3. Let A be an arbitrary subset of M . The chronological
future I+(A) of A is the set

I+(A) := {q ∈M : there is a p ∈ A with p� q}

and the chronological past I−(A) of A is the set

I−(A) := {q ∈M : there is a p ∈ A with q � p}.
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The causal future J+(A) of A is the set

J+(A) := {q ∈M : there is a p ∈ A with p ≤ q}

and the causal past J−(A) is the set

J−(A) := {q ∈M : there is a p ∈ A with q ≤ p}.

Remark 3.1.4. By De�nition 3.1.3 we �nd that

J+(A) ⊇ A ∪ I+(A)

and
J−(A) ⊇ A ∪ I−(A).

Furthermore we see that De�nition 3.1.3 is indeed a generalization of De�ni-
tion 3.1.2. In particular we �nd that

I+(A) =
⋃
p∈A

I+(p) and J+(A) =
⋃
p∈A

J+(p)

and
I−(A) =

⋃
p∈A

I−(p) and J−(A) =
⋃
p∈A

J−(p).

Remark 3.1.5. The concatenation of two piecewise smooth curves is still
piecewise smooth. Since the causal character does not change by linking
together two piecewise smooth curves, we obtain that the relations � and
≤ are transitive; for p1, p2 and q we �nd

p1 � q and q � p2 implies p1 � p2

and
p1 ≤ q and q ≤ p2 implies p1 ≤ p2

For the next Proposition we need the following

Lemma 3.1.6. Let M be a Lorentzian manifold and let α be a piecewise
smooth causal curve from p1 to p2 that is not a null pregeodesic. Then there
is a timelike curve from p1 to p2 arbitrarily close to α.

Proof. See [15], Chapter 10, Proposition 46.

Proposition 3.1.7. Let p1 � q and q ≤ p2 or p1 ≤ q and q � p2. Then we
�nd

p1 � p2.

41



Proof. We prove the �rst statement. The second statement is proven anal-
ogously. By assumption we �nd a future-directed timelike piecewise smooth
curve α1 from p1 to q and a future-directed causal piecewise smooth curve
α2 from q to p2. By Remark 3.1.5 we see that the concatenation α of α1 and
α2 is causal (not necessary timelike) and connects p1 and p2. Since α is not
a null geodesic, the statement follows from Lemma 3.1.6.

De�nition 3.1.8. Let A ⊆M and let U be an open subset ofM with A ⊆ U .
U is a space-time, too and we de�ne the chronological future of A relative to
U by

I+(A,U) :={p ∈M : there is a future-directed, timelike curve

α ⊆ U from A to p}

and the chronological past of A relative to U by

I−(A,U) :={p ∈M : there is a past-directed, timelike curve

α ⊆ U from A to p}

Furthermore we de�ne the causal future of A relative to U by

J+(A,U) :={p ∈M : p ∈ A or there is a future-directed, causal curve

α ⊆ U from A to p}

and the causal past of A relative to U by

J−(A,U) :={p ∈M : p ∈ A or there is a past-directed, causal curve

α ⊆ U from A to p}

Proposition 3.1.9. Let A be a subset of M . Then we �nd (cf. De�nition
3.1.3)

I+(A) = I+(I+(A)) = I+(J+(A)) = J+(I+(A)) ⊆ J+(J+(A)) = J+(A)

and

I−(A) = I−(I−(A)) = I−(J−(A)) = J−(I−(A)) ⊆ J−(J−(A)) = J−(A).

Proof. We �rst show that I+(A) = I+(I+(A)). To this end let p ∈ I+(A),
i.e. there is a piecewise smooth future-directed timelike curve c that connects
some a ∈ A with p. We choose an arbitrary element a1 ∈ {c} and obtain that
a1 ∈ I+(a) ⊆ I+(A). Since p ∈ I+(a1), we conclude that p ∈ I+(I+(A)).
Now let p ∈ I+(I+(A)). Then there exists some q ∈ I+(A) and a piecewise
smooth future-directed timelike curve c1 that connects q with p. We �nd
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some a ∈ A and a piecewise smooth future-directed timelike curve c2 that
connects a with q. The concatenation c2 ∪ c1 is a piecewise smooth future-
directed timelike curve that connects a with p and hence p ∈ I+(A).

Next we show that I+(I+(A)) = I+(J+(A)). Since I+(A) ⊆ J+(A) we
obviously have that I+(I+(A)) ⊆ I+(J+(A)). Now let p ∈ I+(J+(A)). There
exist q ∈ J+(A) and a ∈ A such that a ≤ q << p. By Proposition 3.1.7 we
obtain that a << p, which means that p ∈ I+(a) ⊆ I+(A). Part one of the
proof shows that p ∈ I+(I+(A)).

To see that I+(I+(A)) = J+(I+(A)), �rst note that the inclusion I+(I+(A))
⊆ J+(I+(A)) is obvious. For p ∈ J+(I+(A)) we �nd q ∈ I+(A) and a ∈ A
such that a << q ≤ p. By Proposition 3.1.7 we obtain that a << p, hence
p ∈ I+(a) ⊆ I+(A). Again, by part one of the proof we conclude that
p ∈ I+(I+(A)).

Since I+(A) ⊆ J+(A) by de�nition we trivially obtain that J+(I+(A)) ⊆
J+(J+(A)).

We �nally show that J+(J+(A)) = J+(A). To this end let p ∈ J+(A).
We �rst assume that p ∈ A ⊆ J+(A). In this case we obviously obtain that
p ∈ J+(J+(A)). For p ∈ J+(A) \ A there exists a piecewise smooth future-
directed causal curve c that connects some a ∈ A with p. We choose an
arbitrary a1 ∈ {c} \ {a, p} and obtain that a < a1 < p. Thus we have that
p ∈ J+(a1) and a1 ∈ J+(a) ⊆ J+(A). We conclude that p ∈ J+(J+(A)).
Now let p ∈ J+(J+(A)). We assume that p /∈ J+(A). By assumption there
exist some q ∈ J+(A) and a piecewise smooth future-directed causal curve
c1 that connects q and p. If q ∈ A, we obtain a contradiction, hence there
exists a piecewise smooth future-directed causal curve c2 that connects some
a ∈ A with q. The concatenation c2∪c1 is a piecewise smooth future-directed
causal curve that connects a and p and we conclude that p ∈ J+(A), which
is a contradicion. Thus p ∈ J+(A).

An analogous proof establishes the opposite time direction.

We now introduce several causality conditions.

De�nition 3.1.10. Let p ∈ M . The chronology condition holds at p if
p /∈ I+(p), i.e. there are no closed piecewise smooth future-directed timelike
curves through p.

De�nition 3.1.11. Let p ∈M . The causality condition holds at p if J+(p)∩
J−(p) = {p}. Hence the causality condition forbids the existence of closed
future-directed causal curves.

De�nition 3.1.12. A space-time (M, g) is called totally vicious if I+(p) ∩
I−(p) = M for some p ∈M .
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Proposition 3.1.13. Let (M, g) be totally vicious, then I±(A) = J±(A) =
M for all A ⊆M with A 6= ∅.

Proof. Since the space-time (M, g) is totally vicious, there exists some p ∈M
such that I+(p) ∩ I−(p) = M . For an arbitrary q ∈ M we obtain that q ∈
I−(p) = M and hence p ∈ I+(q). It follows that M = I+(p) ⊆ I+(I+(q)) =
I+(q). We furthermore obtain that q ∈ I+(p) = M and hence p ∈ I−(q).
Thus we have that M = I−(p) ⊆ I−(I−(q)) = I−(q). Since I+(q) ⊆ J+(q)
and I−(q) ⊆ J−(q) for all q ∈M we conclude that

I+(q) = J+(q) = M and I−(q) = J−(q) = M

for all q ∈M . The proposition now follows from Remark 3.1.4.

In general Lorentzian manifolds, it is possible for closed timelike curves
to exist.

De�nition 3.1.14. Let p ∈ M . We say that causality (resp. chronology) is
violated at p if there exists a closed, non trivial causal (resp. timelike) curve
from p to p. The chronology violating set is given by

{p ∈M : p ∈ I+(p)} = {p ∈M : p ∈ I−(p)}

and the causality violating set is given by

{p ∈M there is a non-trivial causal curve γ from p to p }

Remark 3.1.15. Now we can extend De�nitions 3.1.10 and 3.1.11 and say
that the chronology condition (resp. causality condition) holds on M if the
chronology violating set (resp. the causality violating set) is empty. We also
say that the space-time is chronological (resp. causal) if the chronological
condition (resp. causal condition) holds.

Proposition 3.1.16. The chronology (resp. causality) violating set of a
space-time (M, g) consists of connected components of the form I+(pi)∩I−(pi)
(resp. J+(pi) ∩ J−(pi)), where pi ∈M and i ∈ {1, 2, 3, ...}.

Proof. We only show the Proposition for the chronology violation. The proof
for the causality violation is completely analogous. Let C be a connected
component of the chronology violating set and let p ∈ C. Since C is connected
we �nd for any point q ∈ C a continuous curve {γ} ⊆ C which connects p and
q. Let γ : [0, a] → M , γ(0) = p and γ(a) = q. We claim that {γ} ⊆ I+(p).
Since I+(p) is an open neighbourhood of p = γ(0), there is some t0 > 0 such
that γ([0, t0]) ⊆ I+(p). Therefore,

s := sup{t ∈ [0, a] : γ([0, t]) ⊆ I+(p)} > 0.
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We set A := {t ∈ [0, a] : γ([0, t]) ⊆ I+(p)}. Now suppose that s < a. Since
I−(γ(s)) is an open neighbourhood of γ(s), there exists some s0 such that
γ(s0) ∈ I−(γ(s)) with s0 ∈ A. Hence γ(s) ∈ I+(γ(s0)) and γ(s0) ∈ I+(p), so
p << γ(s0) << γ(s), i.e. s ∈ A. But then I+(γ(s)) is an open neighbourhood
of γ(s), so there is some t > s with γ(t′) ∈ I+(γ(s)) ⊆ I+(p) for all t′ ∈ [s, t],
contradicting the de�nition of s. We conclude that s = a, so q ∈ I+(p). By
the same argument there is a piecewise smooth past-directed timelike curve
from q to p. We conclude that C ⊆ I+(p) ∩ I−(p) and since I+(p) ∩ I−(p)
is connected, C = I+(p) ∩ I−(p). Since M is second countable, the claim
follows.

Proposition 3.1.17. Let (M, g) be a compact space-time. Then the chronol-
ogy violating set of M is nonempty.

Proof. The set U := {I+(p) : p ∈ M} forms an open cover for (M, g). Since
(M, g) is a compact space-time by assumption, there exists a �nite subcover,
that is we �nd {p1, ..., pk} ∈ M such that {I+(p1), ..., I+(pk)} covers (M, g).
We may assume that this is the minimal number of such sets covering our
space-time. If p1 ∈ I+(pi) for some i 6= 1, we would obtain that I+(p1) ⊆
I+(I+(pi)) = I+(pi), which is a contradiction. Hence p1 ∈ I+(p1) and we
obtain a piecewise smooth future-directed timelike closed curve through p.

De�nition 3.1.18. A space-time (M, g) satis�es the future resp. past dis-
tinguishing condition at p ∈M if

I+(q) 6= I+(p) resp. I−(q) 6= I−(p)

for all q 6= p.

Remark 3.1.19. A space-time (M, g) is future- (resp. past-) distinguishing
if and only if for all points p, q ∈ M I+(p) = I+(q) (resp. I−(p) = I−(q))
implies p = q. Following [1], we furthermore de�ne a space-time (M, g)
to be distinguishing if for all points p, q ∈ M , either I+(p) = I+(q) or
I−(p) = I−(q) implies p = q, hence a space-time is distinguishing if it is
both future-distinguishing and past-distinguishing. Hawking and Ellis (cf.
[5]) give an alternative de�nition of a future- (resp. past-) distinguishing
space-time. A space-time should thus be future- (resp. past-) distinguishing
at p ∈M if every neighbourhood of p contains a neighbourhood of p which no
future- (resp. past-) directed piecewise smooth causal curve from p intersects
more than once. They don't mention a pure "`distinguishing-condition"', but
de�ne that the strong causality condition holds at p ∈M if and only if every
neighbourhood of p contains a neighbourhood of p which no piecewise smooth
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causal curve intersects more than once. Anyway, the next Proposition will
show that all these de�nitions are equivalent.

Proposition 3.1.20. Let (M, g) be a space-time and p ∈M . The following
are equivalent.

(i) The future- (or past-)distinguishing condition holds at p.

(ii) For any neighbourhood U of p there exists a neighbourhood V ⊆ U of p
such that no piecewise smooth future- (resp. past-)directed causal curve
from p intersects V more than once.

Proof. (ii) ⇒ (i) Let p ∈ M and let q ∈ M \ I+(p) with p 6= q. We choose
a neighbourhood Uq of q that does not intersect I+(p). Obviously we obtain
that I+(q) ∩ I+(p) ∩ Uq = ∅. We conclude that I+(q) 6= I+(p) and we are
�nished.

Now let q ∈ I+(p) and p 6= q. Since M is Hausdor� we can �nd neigh-
bourhoods Uq and Up of q and p such that Uq ∩ Up = ∅. Suppose that, no
matter how small we choose Up there exists some s ∈ I+(p)∩I+(q)∩Up. If we
can derive a contradiction from this assumption, then I+(q) 6= I+(p) and we
are �nished. Since s ∈ I+(q) we trivially have that q ∈ I−(s) and since I−(s)
is open by Proposition 3.1.34 (i) we �nd a neighbourhood Vq of q such that
Vq ⊆ Uq ∩ I−(s). By assumption q ∈ I+(p), hence Vq must intersect I+(p)
and there exists an r ∈ Vq ∩ I+(p). Any piecewise smooth future-directed
timelike curve γ that connects p and r will leave Up, since Vq ∩ Up = ∅. By
construction we have that r ∈ Vq ⊆ I−(s) and thus s ∈ I+(r), hence there
is a piecewise smooth future-directed timelike curve γ̃ that connects r and
s. The concatenation γ ∪ γ̃ of γ and γ̃ de�nes a piecewise smooth future-
directed timelike curve that leaves Up and returns to s ∈ Up. Summing up,
if s ∈ I+(p) ∩ I+(q) ∩ Up, we �nd piecewise smooth future-directed timelike
curves leaving and re-entering Up which is a contradiction to our assumption,
since Up above can be chosen arbitrarily small. Therefore we conclude that
I+(p) 6= I+(q).

(i) ⇒ (ii) Let p ∈ M and let q ∈ I+(p) with p 6= q. We �rst show that
there exists a neighbourhood Vp,q of p such that Vp,q∩J+(q) = ∅. By Lemma
3.1.36 (iii) we obtain that I+(q) ⊆ I+(p). By assumption we have that
I+(p) 6= I+(q), hence there exists some rq ∈ I+(p) \ I+(q). Since p ∈ I−(rq)
and I−(rq) is open by Proposition 3.1.34 (i) we �nd a neighbourhood Vp,q
of p such that Vp,q ⊆ I−(rq). Suppose there is a p′ ∈ Vp,q ∩ J+(q). Then
there is a piecewise smooth future-directed causal curve α that connects
q ∈ J+(q) and p′ ∈ Vp,q. Since Vp,q ⊆ I−(rq) there exists a piecewise smooth
future-directed timelike curve that connects p′ and rq, hence we obtain that
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q ≤ p′ << rq and thus q << rq by Proposition 3.1.7. This implies that
rq ∈ I+(q) which is a contradiction to rq ∈ I+(p)\I+(q) and we conclude that
Vp,q ∩ J+(q) = ∅. Now let Np be a normal neighbourhood of p and let Up be
an open neighbourhood of p with compact closure in Np. Let γ be a piecewise
smooth future-directed causal curve from p that is leaving Up. Let r ∈ Up be
the �rst point of γ which is not in Up. Then r ∈ J+(p) ⊆ J+(p) = I+(p) by
Lemma 3.1.36 (ii) and by the above there is a neighbourhood Vp,r of p with
Vp,r ⊆ Up and Vp,r ∩ J+(r) = ∅. γ from r to the future is itself in J+(r),
hence if γ has left Up through r it cannot return to Vp,r. By Lemma 3.1.30
(ii) causality in Np corresponds to causality in the Minkowski-space, hence
γ cannot return to Vp,r within Up either.

Corollary 3.1.21. The future- (or past-) distinguishing condition implies
the causality condition.

Proof. Immediate from Proposition 3.1.20.

De�nition 3.1.22. Let (M, g) be a space-time. The strong causality condi-
tion holds at p ∈M if for any neighbourhood V of p there is a neighbourhood
U ⊆ V of p such that any piecewise smooth causal curve intersects U at most
once.

Remark 3.1.23. It should be mentioned that De�nition 3.1.22 implies the
following weaker condition, which is often used as a de�nition of strong
causality (cf. [15], section 14, De�nition 11). Let (M, g) be a strongly causal
space-time and p ∈ M . Then for each neighbourhood V of p there exists a
neighbourhood U ⊆ V of p such that every piecewise smooth causal curve
with endpoints in U lies entirely in V .

Remark 3.1.24. A strongly causal space-time (M, g) is both future- and
past-distinguishing, since it is distinguishing by Proposition 3.1.20.

De�nition 3.1.25. A space-time (M, g) is said to be stably causal if there
exists a global time function, i.e. a smooth function t : M → R such that
grad(t) is timelike, i.e. 〈grad(t), grad(t)〉TpM(p) < 0 for all p ∈M .

Proposition 3.1.26. Let (M, g) be a stably causal space-time. Then (M, g)
satis�es the strong causality condition.

Proof. Let t : M → R be a global time function and let p ∈M . Let Np be a
normal neighbourhood of p, hence causality in Np corresponds to causality
in the Minkowski space Rn

1 (cf. Lemma 3.1.30 below). Let

N := {q ∈M : t(q) = t(p)}.
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Since 〈grad(t), grad(t)〉TpM < 0 for all p ∈M , we conclude that N is a hyper-
surface in M . Furthermore N is achronal (cf. De�nition 3.4.1 below), since
t is strictly monotonically increasing along every piecewise smooth future-
directed timelike curve. We choose some q0 ∈ M such that p ∈ I−(q0).
Obviously V := I−(q0)∩N is open in N . For each q ∈M and for each ε > 0
the sets Uε(q) are de�ned to be the future causal cones with height ε and
middle point q. Obviously the Uε(q) form a fundamental system of neigh-
bourhoods for q. Now let qε be the tip of Uε(q), hence Uε(q) = J+(qε) ∩ {q′ :
t(q′) ≤ t(qε) + ε}. Let p′ ∈ V . Then there exists some ε > 0 such that
Uε(p

′) ∩N ⊆ V .
We claim that Uε(p′)∩N = J+(pε)∩N . Obviously we have that Uε(p′)∩

N ⊆ J+(pε) ∩ N . We show the converse direction. Suppose there is some
z ∈ J+(p′ε) ∩ N \ (Uε(p

′) ∩ N) which implies that z ∈ J+(p′ε) \ (Uε(p
′)). So

t(z) > t(p′ε) + ε > t(p), thus z /∈ N . This is a contradiction.
For each p′ ∈ V we choose a suitable ε as above and set p′′ := p′ε and

Wp := Uε(p
′).

Finally we de�ne

W :=I−(q0) ∩ {q ∈M : t(q) ≥ t(p)}

∪ (
⋃
p∈V

Wp ∩ {q ∈M : t(q) ≤ t(p)}).

Each piecewise smooth future-directed causal curve γ can thus only enter W
in N− := {q ∈ M : t(q) ≤ t(p)} and leave it in N+ := {q ∈ M : t(q) ≥ t(p)}.
Since t increases along every piecewise smooth future-directed causal curve, if
any of these curves ever enters and leavesW , then it will not enter again.

De�nition 3.1.27. A space-time (M, g) is said to be causally simple if it is
distinguishing and J±(p) is closed for every p ∈M .

De�nition 3.1.28. Let (M, g) be a space-time. Let U be an open subset of
M and let A be an arbitrary subset of M . The future- resp. past-horismos
E+(A,U) resp. E−(A,U) of A relative to U is de�ned as

E+(A,U) := J+(A,U)\I+(A,U) resp. E−(A,U) := J−(A,U)\I−(A,U)

It is customary to write E+(A) resp. E−(A) for E+(A,M) resp. E−(A,M).

Lemma 3.1.29. Let M be a Lorentzian manifold and p ∈ M . Suppose that
β : [0, b] → TpM is a piecewise smooth curve starting at 0 ∈ TpM such that
α := expp ◦ β is causal. Then β remains in a single timecone of TpM .

Proof. A proof can be found in [15], Chapter 5, Proposition 33.
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Lemma 3.1.30. Let p ∈M and U be a normal neighbourhood of p such that
expp : Ũ → U is a di�eomorphism. Then we have

(i) I+(p,U) = expp(I
+(0) ∩ Ũ) and

(ii) J+(p,U) = expp(J
+(0) ∩ Ũ).

Proof. (i) (⊆) Let q ∈ I+(p,U). Then there is a piecewise smooth future-
directed timelike curve α : [0, 1]→M in U from α(0) = p to α(1) = q. Since
β := exp−1

p ◦ α : [0, 1]→ TpM ∩ Ũ is a piecewise smooth curve and β(0) = 0
Lemma 3.1.29 shows that β remains in I+(0). It follows that exp−1

p (q) ∈
I+(0) and we obtain that q ∈ expp(I

+(0)∩Ũ). (⊇) Let x ∈ I+(0)∩Ũ and let
γ : [0, 1] → Ũ , γ(s) := sx. γ is smooth and remains in I+(0) ∩ Ũ . We show
that c := expp ◦ γ is a future-directed timelike geodesic from p to expp(x) in
U . The map t 7→ expp(tx) is a geodesic and and by the Gauÿ - Lemma we
obtain

〈c′(s), c′(s)〉 =
〈
Ttxexpp(x), Ttxexpp(x)

〉
= 〈x, x〉 < 0

for all s ∈ [0, 1], hence c is timelike. By Proposition 1.1.8 we �nd a future-
directed timelike smooth vector �eld X ∈ X(M). Let f : [0, 1]→ R, f(s) :=
〈X(c(s)), c′(s)〉. f is smooth and we obtain that f(0) = 〈X(c(0)), c′(0)〉 =
〈X(p), x〉 < 0. By continuity of f we conclude that f is strictly negative since
otherwise there would be some s0 ∈ [0, 1] such that 〈X(c(s0)), c′(s0)〉 = 0.
Since c′(s) is timelike for all s ∈ [0, 1], Lemma 1.1.2 implies that X(c(s0))
is spacelike, which is a contradiction. It follows by Lemma 1.1.3 that c is
future-directed and we obtain expp(x) = c(1) ∈ I+(p, U).
(ii)(⊆) Let q ∈ J+(p,U) and let {qm}m ∈ N be a convergent sequence in
M with qm → q and qm >> q for all m ∈ N. Without loss of generality
let qm ∈ U for all m ∈ N. We obtain that p ≤ q << qm and Lemma 3.1.7
implies that p << qm for all m ∈ N, i.e. qm ∈ I+(p,U) for all m ∈ N. We
have exp−1

p (qm) ∈ I+(0) ∩ Ũ by (i). Therefore,

exp−1
p (q) = lim

m→∞
exp−1

p (qm) ∈ I+(0) ∩ Ũ

⊆ I+(0) ∩ Ũ = J+(0) ∩ Ũ .

Since q ∈ U , we have exp−1
p (q) ∈ Ũ , hence exp−1

p (q) ∈ J+(0) ∩ Ũ .
(⊇) We proceed as in the proof of (⊇) in (i). The same arguments show that
c := expp ◦γ is a causal geodesic. If c is timelike, we can use (i). If c is causal
and not timelike, the condition 〈X(c(s0)), c′(s0)〉 = 0 gives a contradiction
by using Lemma 1.1.2, since c′(s0) is null and X(c(s0))⊥ is spacelike.
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Remark 3.1.31. Let C be a convex open set in M . Then for any two points
p, q ∈ M there is a unique geodesic σpq : [0, 1] → C with σpq(0) = p and
σpq(1) = q. We set −→pq := σ′pq(0). It turns out that the map (p, q) 7→ −→pq is
continuous (cf. [15], section 5, Lemma 9).

Lemma 3.1.32. Let C be an open and convex subset of M .

(i) For p, q ∈ C, p 6= q we have q ∈ I+(p,C) (q ∈ J+(p,C)) if and only if
−→pq is future-directed timelike (−→pq is future-directed causal).

(ii) I+(p,C) is open in C and hence open in M .

(iii) J+(p,C) is the closure of I+(p,C) in C.

(iv) The relation ≤ is closed on C, i.e. for pn, p, qn, q ∈ C with pn → p and
qn → q and qn ∈ J+(pn,C) we have q ∈ J+(p,C).

(v) Let K b C, i.e. K is compact and K ⊆ M and let α : [0, b)→ K be a
piecewise smooth causal curve. Then we can extend α continuously to
[0, b].

Proof. (i) (⇒) Let α : [0, 1] → M be a piecewise smooth future-directed
timelike (causal) curve from p = α(0) to q = α(1). We de�ne β : [0, 1] →
TpM by β(s) := (exp−1

p ◦ α)(s). β is piecewise smooth and we have β(0) =
exp−1

p (α(0)) = 0. Since α = expp ◦ β is timelike we obtain that β remains
in a single timecone (causal cone) by Lemma 3.1.29. We furthermore obtain
that

β(1) = exp−1
p (α(1)) = exp−1

p (q) = −→pq

is timelike (causal) and future-directed. (⇐) σpq connects p and q within C
and is timelike (causal), since −→pq = σ′pq(0) is timelike (causal). The same
arguments as in the proof of Lemma 3.1.30 (i) and (ii) show that σpq is
future-directed.

(ii) and (iii) follow directly from Lemma 3.1.30 (i) and (ii), since expp is
a homeomorphism on C.

(iv) The case p = q is trivial, hence let p 6= q and without loss of generality
let pn 6= qn for all n ∈ N. By assumption and (i) we obtain that −−→pnqn is future-
directed causal for all n ∈ N. Since the map Φ : C × C → TM , (p, q) 7→ −→pq
is continuous (cf. Remark 3.1.31), we �nd that

lim
n→∞

(−−→pnqn) = lim
n→∞

(Φ(pn, qn)) = Φ( lim
n→∞

pn, lim
n→∞

qn)

= Φ(p, q) = −→pq.
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We show that −→pq is future-directed causal. To this end let X be some future-
directed timelike smooth vector �eld. Obviously we obtain that 〈−−→pnqn, X〉 < 0
for all n ∈ N, hence 〈−→pq,X〉 ≤ 0. If 〈−→pq,X〉 = 0, we would obtain that −→pq is
spacelike which is a contradiction. So 〈−→pq,X〉 < 0 and −→pq is future-directed
causal. By (i) it follows that q ∈ J+(p,C).

(v) Let {si}i∈N be a sequence with si → b and 0 ≤ s1 < s2 < .... SinceK is
a compact set we obtain that {α(si)}i∈N has at least one accumulation point.
We show that there is only one accumulation point p. To this end let q 6= p
be another accumulation point. We choose a subsequence {sik}k∈N such that
sik < sik+1

for all k ∈ N and α(si2k) → p and α(si2k+1
) → q. Then we have

α(si2k) ≤ α(si2k+1
) ≤ α(si2k+2

) for all k ∈ N. (iv) implies that p ≤ q ≤ p and
by (i) we see that −→pq is future- and past-directed. Let X ∈ X(M) be a future-
directed timelike vector �eld. It follows that 〈X,−→pq〉 ≥ 0 and 〈X,−→pq〉 ≤ 0,
hence 〈X,−→pq〉 = 0. This implies that −→pq is spacelike, which is a contradiction
to −→pq causal. It follows that p = q. Hence α(si) → p and we can extend α
continuously to [0, b].

Lemma 3.1.33. The relation << is open, that is for p << q there exist
neighbourhoods U of p and V of q such that p′ << q′ holds for all p′ ∈ U and
for all q′ ∈ V.

Proof. By assumption there is a piecewise smooth future-directed timelike
curve α : [0, 1] → M that connects p = α(0) and q = α(1). Let C and C′ be
convex neighbourhoods of q and p. Let q̃ ∈ C be a point on α in C and let
p̃ be a point on α in C′. By Lemma 3.1.32 (ii) the sets U := I−(p̃,C′) and
U ′ := I+(q̃,C) are open in M and U and V have the required property.

Proposition 3.1.34. Let (M, g) be a space-time and A ⊆M . Then

(i) the interior of J+(A) equals I+(A), in particular I+(A) is open.

(ii) J+(A) is a subset of the closure of I+(A).

(iii) J+(A) equals the closure of I+(A) if and only if J+(A) is closed.

Analogous results hold for I−(A) and J−(A)

Proof. (i) Let A 6= ∅. Obviously we have I+(A) ⊆ J+(A) and since I+(A)
is open by Lemma 3.1.33, we obtain that I+(A) ⊆ J+(A)◦. To prove the
converse let q ∈ J+(A)◦ and let C ⊆ J+(A)◦ be a convex neighbourhood
of q. By Lemma 3.1.30 (i) the set I−(q,C) is not empty, thus we �nd that
I−(q,C) ⊆ C ⊆ J+(A)◦. This shows that there is some p ∈ J+(A)∩ I−(q,C).
It follows that p ∈ J+(A) and q ∈ I+(p), hence q ∈ I+(J+(A)) = I+(A),
where we have used Proposition 3.1.9. We obtain that J+(A)◦ ⊆ I+(A).
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(ii) It su�ces to show that J+(p) ⊆ I+(p), since then we obtain J+(A) =⋃
p∈A J

+(p) ⊆
⋃
p∈A I

+(p) ⊆ I+(A). To this end let q ∈ J+(p). For p = q we
take an arbitrary piecewise smooth future-directed timelike curve α through
p = α(0) and see that α( 1

n
) ∈ I+(p) for all n ∈ N, hence p ∈ I+(p). Now

let p < q and let α be a piecewise smooth future-directed causal curve that
connects p and q and let C be a convex neighbourhood of q. Let q− be a point
of α in J−(q,C). Then we obtain that q ∈ J+(q−,C) ⊆ I+(q−,C), where we
have used Lemma 3.1.32. Since we have q− ∈ J+(p), we can use Proposition
3.1.9 to show that I+(q−,C) ⊆ I+(J+(p)) = I+(p), hence we have shown
that q ∈ I+(p).

(iii) Let J+(A) = I+(A). Then J+(A) is obviously closed. Now let J+(A)
be a closed set. By (ii) we obtain that J+(A) ⊆ I+(A). I+(A) ⊆ J+(A) and
since J+(A) is closed we �nally have that I+(A) = J+(A).

Proposition 3.1.35. A distinguishing space-time (M, g) is causally simple
if and only if

∂J+(p) = E+(p) and ∂J−(p) = E−(p)

for all p ∈M .

Proof. We �rst assume that the space-time (M, g) is causally simple, that is
in particular that J+(p) and J−(p) are closed subsets of M for every p ∈M .
Then

J±(p) = J±(p)

and we obtain ∂J±(p) = J±(p) \ J±(p)◦ = J±(p) \ I±(p) = E±(p) (where
we have used Proposition 3.1.34(i)). Conversely let ∂J+(p) = E+(p) and
∂J−(p) = E−(p). We obtain J±(p) \ I±(p) = E±(p) = ∂J±(p) = J±(p) \
J±(p)◦ = J±(p)\I±(p) (for the last equality see Proposition 3.1.34(i)), hence
J±(p) = J±(p) and we are �nished.

Lemma 3.1.36. Let (M, g) be an arbitrary space-time and let A be a nonempty
subset of M . Then

(i) I±(A) = I±(A),

(ii) J±(A) = I±(A),

(iii) I±(A) = {p ∈M : I±(p) ⊆ I±(A)} and

(iv) ∂J±(A) = ∂I±(A).
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Proof. (i) Obviously we have that I+(A) ⊆ I+(A). To show that I+(A) ⊆
I+(A) let q ∈ I+(A). Then there exists some p ∈ A such that p << q. Since
<< is an open relation by Lemma 3.1.33, we �nd neighbourhoods U and U ′
of p and q such that p̃ << q̃ for all (p̃, q̃) ∈ U × U ′. We only need to choose
p̃ ∈ A and q̃ = q.

(ii) By Proposition 3.1.34 (ii) J+(A) is a subset of the closure of I+(A),

hence J+(A) ⊆ I+(A) = I+(A). By de�nition of the chronological and causal
future we have that I+(A) ⊆ J+(A) and therefore I+(A) ⊆ J+(A).

(iii) We set V := {p ∈ M : I+(p) ⊆ I+(A)} and �rst show that V ⊆
I+(A). To this end let p ∈ V. We choose an arbitrary neighbourhood
U of p and obtain that U ∩ I+(p) 6= 0, hence U ∩ I+(A) 6= 0. Since U
is an arbitrary neighbourhood of p, we �nd that p ∈ I+(A), thus V ⊆
I+(A). Now let p ∈ I+(A). We show that I+(p) ⊆ I+(A). To this end we
assume that I+(p) * I+(A). Then there is some q ∈ I+(p) with q /∈ I+(A).
Since p ∈ I−(q) and I−(q) is open by Proposition 3.1.34 (i) we obtain that
I−(q) ∩ I+(A) 6= ∅. Let z ∈ I−(q) ∩ I+(A). Obviously we have that z << q
and a << z for some a ∈ A. We conclude that a << z << q and thus a << q
implying that q ∈ I+(A). This is a contradiction, hence I+(p) ⊆ I+(A).

(iv) By (ii) we have that J+(A)◦∪∂J+(A) = J+(A) = I+(A) = I+(A)◦∪
∂I+(A). Since I+(A) is open by Proposition 3.1.34 (i) we see that I+(A) =
I+(A)◦. We furthermore have J+(A)◦ = I+(A) (again by Proposition 3.1.34
(i)) and therefore we obtain that ∂J+(A) = ∂I+(A).

De�nition 3.1.37. A space-time (M, g) is said to be re�ecting if I+(q) ⊆
I+(p) implies I−(p) ⊆ I−(q) and I−(p) ⊆ I−(q) implies I+(q) ⊆ I+(p) for
all p, q ∈M . (M, g) is said to be strictly re�ecting, if I+(q) $ I+(p) implies
I−(p) $ I−(q) and I−(p) $ I−(q) implies I+(q) $ I+(p) for all p 6= q ∈M .

Proposition 3.1.38. Let (M, g) be a space-time that is causally simple.
Then it is stably causal.

Proof. See [21], Proposition 2.25.

De�nition 3.1.39. A space-time (M, g) is said to be globally hyperbolic if it
satis�es the strong causality condition and if

J(p, q) := J+(p) ∩ J−(q)

is compact for all p, q ∈M .

Remark 3.1.40. We can extend De�nition 3.1.39 for arbitrary subsets H of
M by additionally requiring that J+(p, q) is a subset of H for all p, q ∈ H.
Thus a subset H of M is called globally hyperbolic if it is strongly causal
and J(p, q) is a compact subset of H for all p, q ∈ H.
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Remark 3.1.41. The next Proposition will complete the causal chain by
showing that globally hyperbolic space-times are automatically causally sim-
ple. Hence global hyperbolicity is the 'strongest' causality condition.

Proposition 3.1.42. Let (M, g) be a globally hyperbolic space-time. Then
(M, g) is causally simple.

Proof. By De�nition 3.1.39 a globally hyperbolic space-time satis�es the
strong causality condition and hence is distinguishing by Remark 3.1.24. We
have to show that J+(p) and J−(p) are closed for every p ∈M . We only show
this for the former case. Suppose there exists a q ∈ J+(p) \ J+(p) for some
p ∈M . We show that this leads to a contradiction. We choose an r ∈ I+(q).
Then obviously we have q ∈ I−(r). We show that r ∈ I+(p). To this end we
choose a sequence {qn}n∈N with qn ∈ J+(p) for all n ∈ N that converges to q.
By Proposition 3.1.34 (i) I−(r) is an open neighbourhood of q and thus we
�nd p ≤ qn and qn << r for su�ciently large n ∈ N. By Proposition 3.1.7
we obtain p << r. Consequently we have q ∈ J+(p) ∩ J−(r)\J+(p)∩J−(r).
But this is impossible since J+(p) ∩ J−(r) is compact and hence closed.

Theorem 3.1.43. All causality conditions introduced in this chapter are
given in increasing order of restriction. This means we have the following im-
plications for an arbitrary space-time (M, g). "`M is globally hyperbolic"' ⇒
"`M is causally simple"' ⇒ "`M is stably causal"' ⇒ "`M is strongly causal"'
⇒ "`M is distinguishing"' ⇒ "`M is causal"' ⇒ "`M is chronological"'.

Proof. The statements follow directly from Proposition 3.1.42, Proposition
3.1.38, Proposition 3.1.26, Remark 3.1.24, Corollary 3.1.21 and De�nitions
3.1.11 and 3.1.10.

3.2 Energy conditions

De�nition 3.2.1. Let (M, g) be a space-time and let I := [a, b] ⊆ R, where
a, b ∈ R. A timelike geodesic c : I → M satis�es the generic condition if
there is an s0 ∈ I such that the curvature endomorphism

R : N(c(s0))→ N(c(s0)) N(c(s0)) 3 v 7→ R(v, c′(s0))c′(s0)

is not identically zero.

De�nition 3.2.2. Let (M, g) be an arbitrary space-time and let [a, b] =: I ⊆
R for a, b ∈ R. Let γ : I → M be a piecewise smooth curve in M . We say
that a point p ∈M is the endpoint of γ corresponding to s = b if

lim
s→b

γ(s) = p
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If γ is a piecewise smooth future- (resp. past-)directed causal curve with end-
point p corresponding to s = b, the point p is called a future- (resp. past-
)endpoint of γ. A piecewise smooth causal curve is said to be future (resp.
past) inextendible if it has no future- (resp. past-)endpoint. We say that a
piecewise smooth causal curve is inextendible if it is both future and past-
inextendible.

De�nition 3.2.3. A space-time (M, g) satis�es the generic condition if each
inextendible timelike geodesic satis�es the generic condition.

De�nition 3.2.4. A space-time (M, g) satis�es the strong energy condition
if Ric(v, v) ≥ 0 for all causal tangent vectors v ∈ TM .

Lemma 3.2.5. Let s 7→ A(s) be a di�erential map taking values in n × n-
matrices such that A(s)−1 exists for all s ∈ I ⊆ R. Then

det′(A(s))(A′(s)) = det(A(s))tr(A(s)−1A′(s))

Proof. We have the following chain of equations:

det′(A(s))(A′(s))

=
d

dt
|t=0det(A(s) + tA′(s))

=
d

dt
|t=0det(A(s)(E(s) + tA(s)−1A′(s)))

=
d

dt
|t=0det(tA(s)(

E(s)

t
+ A(s)−1A′(s)))

=
d

dt
|t=0det(tA(s))det(

E(s)

t
+ A(s)−1A′(s))

=
d

dt
|t=0t

ndet(A(s))(
1

tn
+

1

tn−1
tr(A(s)−1A′(s)) + ...+ det(A(s)−1A′(s)))

=
d

dt
|t=0det(A(s))(1 + ttr(A(s)−1A′(s)) + ...+ tndet(A(s)−1A′(s)))

= detA(s)tr(A(s)−1A′(s))

Lemma 3.2.6. Let A be an arbitrary
(

1
1

)
-tensor �eld such that A(s)−1 exists

for all s ∈ I ⊆ R. Then

d

ds
(detA(s))(detA(s))−1 = tr(

∇A
ds

(s) ◦ A(s)−1)
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Proof. By Remark A.3.7 we obtain a frame �eld for A such that

A(s) = Aij(s)Ei(s)⊗ E∗j(s).

By Proposition 2.3.3 all coe�cient functions Aij are smooth. We di�erentiate
the local representation and �nd

∇A
ds

(s) =
dAij
ds

(s)Ei(s)⊗ E∗j(s) + Aij(s)
∇
ds

(Ei(s)⊗ E∗j(s))

=
dAij
ds

(s)Ei(s)⊗ E∗j(s),

where Aij(s)
∇
ds

(Ei(s) ⊗ E∗j(s)) = 0 since Ei ∈ X(M) and E∗j ∈ Ω1(M) are
parallel. We see that

d

ds
(det(A(s))) = det′(A(s))((

dAij
ds

(s))ij)1≤i≤n
1≤j≤n

= det′(A(s))
∇A
ds

(s),

hence the induced covariant derivation and the 'usual' derivation coincide in
a frame �eld. Now the statement follows from Lemma 3.2.5.

Proposition 3.2.7. Let c : I → M be an inextendible timelike geodesic as
in De�nition 3.2.2 that satis�es Ric(c′(s), c′(s)) ≥ 0 for all s ∈ I. Let A
be a Lagrangian tensor �eld along c as in De�nition 2.4.2. Suppose that the
expansion θ(s) := tr((∇A

ds
)(s) ◦ A−1(s)) (cf. De�nition 2.5.1) has a negative

(resp. positive) value θ1 := θ(s1) at s1 ∈ I. Then det(A(s)) = 0 for some

s in the interval [s1, s1 − (n−1)
θ1

] (resp. some s in the interval [s1 − (n−1)
θ1

, s1],
provided that s ∈ I. Here, n denotes the dimension of the space-time, i.e.
n := dim(M).

Proof. By Lemma 3.2.6 θ remains �nite on any compact interval where
det(A(s)) 6= 0. Thus if we can show that |θ| → ∞ as s → s0, then nec-
essarily det(A(s0)) = 0.

For our further calculations we set

t1 :=
n− 1

θ1

.

Since Ric(c′(s), c′(s)) ≥ 0 by assumption and tr((σ(s))2) ≥ 0 by Remark
2.5.4 for all s ∈ I, the vorticity-free Raychaudhuri-equation (cf. Proposition
2.5.6) yields the inequality

dθ(s)

ds
≤ −(θ(s))2

n− 1
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and hence
dθ(s)

ds
< 0.

This means that θ is strictly monotonically decreasing.
We �rst assume that θ1 < 0, thus t1 < 0. Let s ∈ [s1, s1 − t1). We

obtain that s1 ≤ s < s1 − t1 and hence s + t1 − s1 < 0. Since θ is strictly
monotonically decreasing and since s1 ≤ s we obtain that θ(s) ≤ θ1 < 0 for
all s ∈ [s1, s1 − t1).

We integrate the above equation and obtain∫ θ(s)

θ(s1)

1

θ̃2
dθ̃ ≤ −(s− s1)

n− 1
=
s1 − s
n− 1

and hence

−(
1

θ(s)
− 1

θ1

) ≤ s1 − s
n− 1

.

This means that

t1 −
(n− 1)

θ(s)
≤ s1 − s

implying that s+t1−s1
n−1

≤ 1
θ(s)

and �nally

θ(s) ≤ n− 1

s+ t1 − s1

→ −∞

as s → s1 − t1. Since θ is strictly monotonically decreasing, the divergence
lims→s0 θ(s) = −∞ also implies lims→s′ θ(s) = −∞ for all s′ ≥ s. Hence
there is some s′ ∈ [s1, s1 − t1] such that lims→s′ θ(s) = −∞.

Now suppose that θ1 > 0 and let s ∈ [s1 − t1, s1]. Since θ is strictly
monotonically decreasing, we obtain that θ1 ≤ θ(s), so θ(s) > 0. We integrate
the above equation and obtain that∫ θ(s1)

θ(s)

1

θ̃2
dθ̃ ≤ −(s1 − s)

n− 1
=
s− s1

n− 1
.

Hence we conclude that − 1
θ1

+ 1
θ
≤ s−s1

n−1
and thus 1

θ
≤ s+t1−s1

n−1
. We �nally have

that θ ≥ n−1
s+t1−s1 → +∞ as s→ s1− t1. Again, there is some s′′ ∈ [s1− t1, s1]

with lims→s′′ θ(s) =∞.

Remark 3.2.8. The proof of the previous Proposition also holds for I = R,
i.e. if the geodesic becomes complete.
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Remark 3.2.9. Let (M, g) be an arbitrary space-time and let c : [a, b]→M
be a geodesic. Recall that two points c(s1) and c(s2) with s1 6= s2 are
conjugated along c if there is a non-vanishing Jacobian vector �eld J along
c with J(a) = 0 and J(b) = 0. Furthermore we have the following

Proposition 3.2.10. Let (M, g) be a space-time and let c : [0, b]→ M be a
geodesic starting at p ∈M . Then the following statements are equivalent.

(i) c(b) is a conjugate point of p = c(0) along c.

(ii) There is a nontrivial variation x of c through geodesics starting at p
such that xv(b, 0) = 0.

(iii) The exponential map expp : TpM → M is singular at bc′(0), that is,
there is a nonzero tangent vector z ∈ Tbc′(0)TpM such that Tbc′(0)expp(z) =
0.

Proof. See [15], section 10, Proposition 10.

Our next aim is to show that every timelike geodesic in a space-time
(M, g) that satis�es the generic condition and the strong energy condition
has to be incomplete or else has to have a pair of conjugate points. We will
follow [1].

Lemma 3.2.11. Let (M, g) be a space-time and let c : [a, b] → M be a
timelike geodesic with c(a) = p and let ϕ, ψ ∈ L(N(p)) such that the condition

ker(ϕ) ∩ ker(ψ) = {0}

holds. Then there is a unique Jacobian tensor �eld A on V ⊥(c) with A(a) = ϕ
and ∇A

ds
(a) = ψ. In particular if we set ϕ := 0, we obtain a unique Lagrangian

tensor �eld A on V ⊥(c) with A(a) = 0 and ∇A
ds

(a) = ψ by Proposition 2.4.5.

Proof. We can choose a parallel
(

1
0

)
-frame �eld {E1, ..., En−1} along c such

that {E1(t), ..., En−1(t)} is a basis for N(c(t)). In particular all Ei are space-
like for i = 1, ..., n − 1. Let J1, ..., Jn−1 denote the unique Jacobian vector
�elds along c with Ji(a) = ϕ(Ei(a)) and ∇

ds
Ji(a) = ψ(Ei(a)). Now let A be the

unique
(

1
1

)
-tensor �eld along c with A(t) : N(c(t))→ N(c(t)) and A(t)Ei(t) =

Ji(t). Then we obtain that (A′′ + RA)(t)Ei(t) = (AEi)
′′(t) + RA(t)Ei(t) =

J ′′i + RJi(t) = 0 for all i = 1, ..., n − 1 and all t ∈ [a, b]. So A′′ + RA = 0
and A satis�es the �rst condition of a Jacobian tensor �eld. In particular A
has the required initial values, since A(a)Ei(a) = Ji(a) = ϕ(a)Ei(a), hence
A(a) = ϕ and (∇

ds
A(a))Ei(a) = ∇

ds
Ji(a) = ψ(a)Ei(a), hence ∇

ds
A(a) = ψ.
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It remains to show that ker(A(t))∩ker(∇
ds
A(t)) = {0} for all t ∈ [a, b]. To

this end we suppose that there is some t ∈ [a, b] and some 0 6= v ∈ N(c(t))
such that A(t)v = 0 and (∇

ds
A(t))v = 0. We can use the parallel

(
1
0

)
-frame

�eld and obtain that v =
∑n−1

i=1 λiEi(t). Let V be the parallel vector �eld
along c with V (a) = v, hence V (s) =

∑n−1
i=1 λiEi(s). We show that J := AV

is a Jacobian vector �eld. We have that J ′′ = A′′V = −RAV = −RAV γ′ , γ
′ =

−RJγ′γ
′. By assumption we obtain that J(t) = (AV )(t) = 0 and ∇

ds
J(t) =

∇
ds

(AV )(t) = 0, hence AV = 0. We �nally arrive at

0 = (AV )(a) =
∑n−1

i=1
λiA(a)Ei(a) =

∑n−1

i=1
λiϕ(a)Ei(a) = ϕ(V (a))

and

0 =
∇
ds

(AV )(a) =
∑n−1

i=1
λi(
∇
ds
A(a))Ei(a) =

∑n−1

i=1
λψ(a)Ei(a) = ψ(V (a)).

We conclude that 0 6= v = V (a) ∈ ker(ϕ) ∩ ker(ψ), which is a contradiction
to our assumption.

We �nally have to prove uniqueness. It su�ces to show that A′′+RA = 0
and A(0) = 0 and ∇

ds
A(0) = 0 implies that A = 0. Now let Ji := AEi for

i = 1, ..., n−1. Obviously Ji is a Jacobian vector �eld that satis�es Ji(0) = 0
and ∇

ds
Ji(0) = 0. This means that Ji = 0 for all i = 1, ..., n − 1 and hence

A = 0.

Remark 3.2.12. The proof of Lemma 3.2.11 shows that for arbitrary ϕ, ψ ∈
L(N(c(s))) there exists a unique

(
1
1

)
-tensor �eld along a geodesic c with

A′′ + RA = 0 and A(0) = ϕ and ∇
ds
A(0) = ψ. Obviously A satis�es the �rst

condition of a Jacobian tensor �eld along a geodesic c. Therefore we will call
such tensor �elds pseudo Jacobian tensor �elds .

Lemma 3.2.13. Let (M, g) be a space-time and let c : [a, b] → M be a
timelike geodesic without conjugate points. Then there is a unique

(
1
1

)
-tensor

�eld A on V ⊥(c) (cf. De�nition 2.2.6) which satis�es the di�erential equation

A′′ +RA = 0

with given boundary conditions A(a) and A(b).

Proof. Let T denote the vector space of all
(

1
1

)
-tensor �elds A on V ⊥(c) with

A′′ + RA = 0 and let L(N(c(s))) be the set of all linear endomorphisms
ϕ : N(c(s))→ N(c(s)), where s ∈ [a, b]. We de�ne

φ : T→ L(N(c(a)))× L(N(c(b)))

59



by
φ : A 7→ (A(a), A(b)).

Obviously φ is a linear transformation. We �nd that

dim(T) = 2(n− 1)2 = dim(L(N(c(a)))) + dim(L(N(c(b)))),

where we have used Remark 3.2.12 Hence it su�ces to show that φ is in-
jective. Then we obtain that φ is an isomorphism and we have estab-
lished the existence of a unique solution A. To this end we assume that
φ(A) = (A(a), A(b)) = (0, 0). Let Y be an arbitrary parallel vector �eld
along c. We de�ne J(s) := A(s)Y (s) and �nd that J is a Jacobian vector
�eld, since J ′′ = A′′Y = −RAY = −RAY γ′ , γ

′ = −RJγ′γ
′. We furthermore

obtain that J(a) = 0 and J(b) = 0. Since there are no conjugate points
along c we obtain that J = 0. Y was an arbitrary parallel vector �eld along
c, therefore we conclude that A = 0. This shows that φ is one-to-one.

Remark 3.2.14. Let (M, g) be a space-time and let c : [s1,∞) → M be
a timelike geodesic without conjugate points. We choose an arbitrary t ∈
(s1,∞). By Lemma 3.2.13 we �nd a unique

(
1
1

)
-tensor �eld Dt on V ⊥(c) that

satis�es
D′′t +RDt = 0

with boundary conditions Dt(s1) = E and Dt(t) = 0, where E denotes the
(n − 1) × (n − 1) unit-matrix and 0 is the (n − 1) × (n − 1) null-matrix.
Since Dt(s1) = E, we have ker(Dt(s1)) ∩ ker(∇Dt

ds
(s1)) = {0} and we show

that Dt is a Jacobian tensor �eld. We have to show that ker(Dt(s0)) ∩
ker((∇

ds
Dt)(s0)) = {0} for all s0. We assume that there is some 0 6= v ∈

ker(Dt(s0))∩ ker((∇
ds
Dt)(s0)). Let V be the parallel vector �eld along c with

V (s0) = v and de�ne J(s) := Dt(s)V (s). J is a Jacobian vector �eld, since
J ′′ = A′′V = −RAV = −RAV γ′ , γ

′ = −RJγ′γ
′ holds. By assumption we

obtain that J(s0) = Dt(s0)V (s0) = 0 and ∇
ds
J(s0) = (∇

ds
(s0))V (s0) = 0,

hence J = 0 and we �nally conclude that 0 = Dt(s1)V (s1) = EV (s1) =
V (s1) 6= 0, which is a contradiction. By Proposition 2.4.5 we obtain, that Dt

is a Lagrangian tensor �eld, since Dt(t) = 0.

Lemma 3.2.15. Let (M, g) be a space-time and let c : [s1,∞) → M be a
timelike geodesic without conjugate points. Let A be the unique Lagrangian
tensor �eld on V ⊥(c) with initial conditions A(s1) = 0 and ∇A

ds
(s1) = E.

Then for each t ∈ (s1,∞) the unique Lagrangian tensor �eld Dt on V ⊥(c)
with Dt(s1) = E and Dt(t) = 0 satis�es the equation

Dt(s) = A(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ
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for all s ∈ (s1, t], where P(1,1;τ,s)(c) is the
(

1
1

)
-parallel transport along c (cf.

De�nition A.1.4). Moreover, Dt(s) is nonsingular for all s ∈ (s1, t), i.e.
Dt(s)(v) = 0 for some s ∈ (s1, t] implies that v = 0.

Proof. We set X(s) := A(s)
∫ t
s
P(1,1;τ,s)(c)((A

∗A)−1(τ))dτ and by Lemma
3.2.11 we have to show that X ′′ + RX = 0, X(t) = Dt(t) = 0 and ∇X

ds
(t) =

∇Dt
ds

(t). We �rst show that A(s)−1 exists for all t 6= s1. We have to
show that ker(A(t)) = 0 for all t 6= s1. This implies that A(t) is one-
to-one and hence bijective. We assume that there is some t 6= s1 and
some v 6= 0 with A(t)v = 0. Let V be the parallel vector �eld along c
with V (t) = v. We de�ne J := AV . J is a Jacobian vector �eld, since
J ′′ = A′′V = −RAV = −RAV γ′ , γ

′ = −RJγ′γ
′ holds. Furthermore we

have that J(t) = 0 and A(s1) = 0, hence J(s1) = 0. Since c does not
have any conjugate points by assumption, we obtain that J = 0. Finally
∇
ds
J(s1) = (∇

ds
A(s1))V (s1) = EV (s1) = V (s1) 6= 0 gives a contradiction.

We di�erentiate X(s). To this end let Ei⊗E∗j be a
(

1
1

)
-frame �eld along

c (cf. Remark A.3.7) such that (A∗A)−1(τ) = Aij(τ)(Ei⊗E∗j)(τ), where Aij :
(s, t) → R are smooth functions. We obtain that P(1,1;τ,s)(c)((A

∗A−1)(τ)) =
Aij(τ)(Ei ⊗ E∗j)(s) and hence

A(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ = A(s)

∫ t

s

Aij(τ)(Ei ⊗ E∗j)(s)dτ

= A(s)

∫ t

s

Aij(τ)dτ(Ei ⊗ E∗j)(s).

Now we have

∇X
ds

(s) =
∇A
ds

(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)− A(s)Aij(s)(Ei ⊗ E∗j)(s)

+ A(s)(

∫ t

s

Aij(τ)dτ)(
∇
ds

(Ei ⊗ E∗j)(s))

=
∇A
ds

(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)− A(s)Aij(s)(Ei ⊗ E∗j)(s)

=
∇A
ds

(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)− A(s)(A∗A)−1(s)
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and

X ′′ = A′′(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)

− ∇A
ds

(s)Aij(s)(Ei ⊗ E∗j)(s)−
∇
ds

((A∗)−1)(s)

= A′′(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)

− ∇A
ds

(s)(A∗A)−1(s)− ∇
ds

((A∗)−1)(s)

= A′′(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)

− ∇A
ds

(s)A−1(s)(A∗)−1(s) + (A∗)−1(s)
∇A∗

ds
(s)(A∗)−1(s),

where we have used Proposition 2.4.4 (iv). Since A is a Lagrangian ten-
sor �eld, we obtain that ∇A

∗

ds
= A∗∇A

ds
A−1 and thus (A∗)−1∇A∗

ds
(A∗)−1 =

∇A
ds
A−1(A∗)−1. We have shown that

X ′′(s) = A′′(s)(

∫ t

s

Aij(τ)dτ)(Ei ⊗ E∗j)(s)

= A′′(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ.

Since A is a Lagrangian tensor �eld, and in particular a Jacobian tensor �eld,
we can use A′′(s) +R(s)A(s) = 0 to show that

X ′′(s) +R(s)X(s) = A′′(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ

+R(s)A(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ

= (A′′(s) +R(s)A(s))

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ = 0.

By setting s = t we obtain that

X(t) = A(t)

∫ t

t

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ = 0

and

∇X
ds

(t) =
∇A
ds

(t)(

∫ t

t

Aij(τ)dτ)(Ei ⊗ E∗j)(t)

− A(t)(A∗A)−1(t)

= −A(t)(A∗A)−1(t) = −(A∗)−1(t).
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It remains to show that ∇Dt
ds

(t) = −(A∗)−1(t). Since R∗ = R we �nd

∇(∇A
∗

ds
Dt − A∗∇Dtds

)

ds
= (A∗)′′Dt +

∇A∗

ds

∇Dt

ds
− ∇
ds

(A∗)
∇Dt

ds
− A∗D′′t

= (A∗)′′Dt − A∗D′′t
= −A∗R∗Dt + A∗RDt = 0.

Therefore, ∇A
∗

ds
Dt−A∗∇Dtds

is parallel along c. At s = s1, the initial conditions
A(s1) = 0 and ∇A

ds
(s1) = E for A imply that A∗(s1) = 0 and ∇A∗

ds
(s1) =

(∇A
ds

)∗(s1) = E. Since Dt(s1) = E, we obtain

(
∇A∗

ds
Dt − A∗

∇Dt

ds
)(s1) = E.

Since ∇A∗
ds
Dt − A∗∇Dt

ds
is parallel along c we furthermore �nd (∇A

∗

ds
Dt −

A∗∇Dt
ds

)(s) = E for all s, where we have used that E = δjiEi⊗E∗j is parallel
along c and has the same initial value. By setting s = t we have

E = (
∇A∗

ds
Dt − A∗

∇Dt

ds
)(t) = −(A∗

∇Dt

ds
)(t),

which implies that

∇Dt

ds
(t) = −(A∗)−1(t) =

∇X
ds

(t).

It remains to show that Dt(s) is nonsingular for all s ∈ (s1, t). To this end
let Dt(s)v = 0 for some s ∈ (s1, t). We obtain that

0 = Dt(s)v = A(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτv

which is equivalent to

0 =

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτv

=

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))vdτ,

since A is a regular tensor �eld by what we have shown in the beginning of
the proof. Hence∫ t

s

〈
P(1,1;τ,s)(c)((A

∗A)−1(τ))v, v
〉
Tc(s)M

dτ = 0.
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We set B(τ) := P(1,1;τ,s)(c)((A
∗A)−1(τ)), so that∫ t

s

〈B(τ)v, v〉Tc(s)M dτ = 0.

Since B(τ) is positive de�nite and self-adjoint we obtain that

〈B(τ)v, v〉Tc(s)M ≥ 0

for all τ ∈ (s, t) and therefore 〈B(τ)v, v〉Tc(s)M = 0 for all τ ∈ [s, t]. In

particular we have 〈B(s)v, v〉Tc(s)M = 0, implying that〈
P(1,s;1,s)((A

∗A)−1(s))v, v
〉
Tc(s)M

=
〈
((A∗A)−1(s))v, v

〉
Tc(s)M

= 0.

Since A is self-adjoint, we have 〈((A)−1(s))∗v, ((A)−1(s))∗v〉Tc(s)M = 0 and

hence ((A)−1(s))∗v = 0. This means that v = 0.

Lemma 3.2.16. Let (M, g) be a space-time and let c : [a,∞) → M be a
timelike geodesic without conjugate points. For s1 > a and t ∈ [a,∞) \ {s1},
let Dt be the unique Lagrangian tensor �eld along c with initial conditions
Dt(s1) = E and Dt(t) = 0 (cf. Remark 3.2.14). Then

D(s) := lim
t→∞

Dt(s)

is a Lagrangian tensor �eld. Furthermore, D(s) is nonsingular for all s1 <
s <∞.

Proof. We choose an arbitrary sequence {tn}n∈N ∈ [a,∞)\{s1} with tn →∞
and without restriction we assume that tn ≥ 1. We show that {∇Dtn

ds
(s1)}n∈N

has a self-adjoint limit as tn → ∞. Since Dtn is a Lagrangian tensor �eld,
we have (∇(Dtn )∗

ds
Dtn)(s1) = (D∗tn

∇Dtn
ds

)(s1) and hence ∇(Dtn )∗

ds
(s1) = ∇Dtn

ds
(s1)

by assumption. Thus the limit of {∇Dtn
ds

(s1)}n∈N must be a self-adjoint map
which we will denote by ∇D

ds
(s1) : N(c(s1)) → N(c(s1)) if it exists. Con-

sequently, we only have to show that for each y ∈ N(c(s1)) the value of〈
∇Dtn
ds

(s1)y, y
〉
Tc(s1)M

converges to some value
〈∇D
ds

(s1)y, y
〉
Tc(s1)M

. We show

that the sequence n 7→
〈
∇Dtn
ds

(s1)y, y
〉
Tc(s1)M

is monotonically increasing for

all tn with s1 < tn < ∞ and is bounded from above by
〈∇Da

ds
(s1)y, y

〉
Tc(s1)M

to establish the existence of the limit. To this end let r ∈ (s1, t). By the
proof of Lemma 3.2.15 we have

∇Dt

ds
(s) =

∇A
ds

(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ − (A∗)−1(s),
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where A is the unique Lagrangian tensor �eld that satis�es A(s1) = 0 and
∇A
ds

(s1) = E. Thus for s ∈ (s1, t) we obtain that〈
∇Dt

ds
(s)Y (s), Y (s)

〉
Tc(s)M

=

〈
(
∇A
ds

(s)

∫ t

s

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ)Y (s), Y (s)

〉
Tc(s)M

−
〈
(A∗)−1(s)Y (s), Y (s)

〉
Tc(s)M

,

where Y is the unique parallel vector �eld along c with Y (s1) = y. Thus for
s with s1 < s < r it follows that〈

∇Dt

ds
(s)Y (s), Y (s)

〉
Tc(s)M

−
〈
∇Dr

ds
(s)Y (s), Y (s)

〉
Tc(s)M

is given by〈
(
∇A
ds

(s)

∫ t

r

P(1,1;τ,s)(c)((A
∗A)−1(τ))dτ)Y (s), Y (s)

〉
Tc(s)M

.

We let s→ s1 and use that Y (s1) = y and ∇A
ds

(s1) = E to obtain that〈
∇Dt

ds
(s1)y, y

〉
Tc(s1)M

−
〈
∇Dr

ds
(s1)y, y

〉
Tc(s1)M

=

〈
(

∫ t

r

P(1,1;τ,s1)(c)((A
∗A)−1(τ))dτ)Y (s1), Y (s1)

〉
Tc(s1)M

.

Since Y is parallel along c, we obtain that ∇
dτ
Y (τ) = 0. Thus we have that〈

(

∫ t

r

P(1,1;τ,s1)(c)((A
∗A)−1(τ))dτ)Y (s1), Y (s1)

〉
Tc(s1)M

=

〈
(

∫ t

r

Aij(τ)dτ(Ei ⊗ E∗j)(s1))Y (s1), Y (s1)

〉
Tc(s1)M

=

∫ t

r

Aij(τ)
〈
(Ei ⊗ E∗j)(s1)Y (s1), Y (s1)

〉
Tc(s1)M

dτ

=

∫ t

r

Aij(τ)
〈
(Ei ⊗ E∗j)(τ)Y (τ), Y (τ)

〉
Tc(τ)M

dτ

=

∫ t

r

〈
P(1,1;τ,τ)(c)((A

∗A)−1(τ)Y (τ), Y (τ)
〉
Tc(τ)M

dτ

=

∫ t

r

〈
(A∗A)−1(τ)Y (τ), Y (τ)

〉
Tc(τ)M

dτ.
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Moreover, ∫ t

r

〈
(A∗A)−1(τ)Y (τ), Y (τ)

〉
Tc(τ)M

dτ

=

∫ t

r

〈
A−1(τ)(A∗)−1(τ)Y (τ), Y (τ)

〉
Tc(τ)M

dτ

=

∫ t

r

〈
(A∗)−1(τ)Y (τ), (A∗)−1(τ)Y (τ)

〉
Tc(τ)M

dτ,

which must be positive because (A∗)−1(τ)Y (τ) is an element ofN(c(t)), hence
spacelike for each τ ∈ [r, t]. We �nally obtain that〈

∇Dt

ds
(s1)y, y

〉
Tc(s1)M

−
〈
∇Dr

ds
(s1)y, y

〉
Tc(s1)M

> 0

and the sequence n 7→
〈
∇Dtn
ds

(s1)y, y
〉
Tc(s1)M

is monotonically increasing for

all tn > s1 as required. We now show that〈
∇Dt

ds
(s1)y, y

〉
Tc(s1)M

<

〈
∇Da

ds
(s1)y, y

〉
Tc(s1)M

for all t > s1 and any y ∈ N(c(s1)). To this end let Y be (again) the unique
parallel vector �eld along c with Y (s1) = y. Let J be the piecewise smooth
Jacobian vector �eld along c|[a,t] given by

J(s) :=

{
Da(s)Y (s), for a ≤ s ≤ s1

Dt(s)Y (s), for s1 ≤ s ≤ t

J is well de�ned at s = s1 since Da(s1) = E and Dt(s1) = E. Recall that
for a smooth curve α : [a, b] → M the Index-form I on V ⊥(α) is de�ned to
be the symmetric bilinear form I : V ⊥(α)×V ⊥(α)→ R given by I(X, Y ) :=

−
∫ b
a
(
〈∇X
ds

(s), ∇Y
ds

(s)
〉

(Tα(s)M)
−〈R(X(s), α′(s))α′(s), Y (s)〉(Tα(s)M))ds (cf. [15],

section 10 for details). I(X, Y ) can be written as

I(X, Y ) = −
〈
∇X
ds

(s), Y (s)

〉
(Tα(s)M)

∣∣b
a

+

∫ b

a

〈X ′′(s) +R(X(s), α′(s))α′(s), Y (s)〉(Tα(s)M) ds

and one can show that for a future-directed timelike geodesic α : [a, b]→M
the nonexistence of a conjugate point in (a, b] implies negative de�niteness
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of the Index-form (cf. [15], section 10, Theorem 17). We set Ja := J|[a,s1]
and

Jt := J|[s1,t] . With these preparations we now obtain that

I(J, J)ta = I(J, J)s1a + I(J, J)ts1

= −
〈
∇Ja
ds

(s), Ja(s)

〉
Tc(s)M

|s1a −
〈
∇Jt
ds

(s), Jt(s)

〉
Tc(s)M

∣∣t
s1

= −
〈
∇Ja
ds

(s1), Ja(s1)

〉
Tc(s1)M

+

〈
∇Ja
ds

(a), Ja(a)

〉
Tc(a)M

−
〈
∇Jt
ds

(t), Jt(t)

〉
Tc(t)M

+

〈
∇Jt
ds

(s1), Jt(s1)

〉
Tc(s1)M

= −
〈
∇Ja
ds

(s1), Ja(s1)

〉
Tc(s1)M

+

〈
∇Jt
ds

(s1), Jt(s1)

〉
Tc(s1)M

,

where we have used that Ja(a) = 0 and Jt(t) = 0. Furthermore,

I(J, J)ta = −
〈
∇Ja
ds

(s1), Ja(s1)

〉
Tc(s1)M

+

〈
∇Jt
ds

(s1), Jt(s1)

〉
Tc(s1)M

= −
〈
∇Da

ds
(s1)Y (s1), Y (s1)

〉
Tc(s1)M

+

〈
∇Dt

ds
(s1)Y (s1), Y (s1)

〉
Tc(s1)M

= −
〈
∇Da

ds
(s1)y, y

〉
Tc(s1)M

+

〈
∇Dt

ds
(s1)y, y

〉
Tc(s1)M

,

where we have used that Y (s1) = y. Since c has no conjugate points in [a,∞)
by assumption, we have I(J, J) < 0 and hence〈

∇Dt

ds
(s1)y, y

〉
Tc(s1)M

<

〈
∇Da

ds
(s1)y, y

〉
Tc(s1)M

for all t > s1. Hence the tensor ∇D
ds

(s1) := limtn→∞
∇Dtn
ds

(s1) exists. Now
we de�ne D(s) by setting D(s) equal to the unique Jacobian tensor �eld
along c which satis�es D(s1) = E and ∇D

ds
(s1) = limtn→∞

∇Dtn
ds

(s1). Since
D(s) and Dtn(s) both satisfy the di�erential equation A′′ +RA = 0 and the
initial conditions of Dtn approach the initial conditions of D as tn → ∞,
it follows that D(s) = limtn→∞Dtn(s) and ∇D

ds
(s) = limtn→∞

∇Dtn
ds

(s). This
implies that the limit D(s) of the Lagrangian tensor �elds Dt(s) must be a
Lagrangian tensor �eld. The last statement follows as in the proof of Lemma
3.2.15 from the representation formula

D(s) = A(s)

∫ ∞
s

P(1,1;τ,s)((A
∗A)−1(τ))dτ.
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Remark and De�nition 3.2.17. For our further considerations, it turns
out to be useful to divide the Lagrangian tensor �elds along a complete
timelike geodesic c : (−∞,+∞)→ (M, g) that satisfy the generic and strong
energy conditions into two classes L+ and L−. Let L denote the set of all
Lagrangian tensor �elds along c with A(s1) = E for some s1 ∈ R that satisfy
Ric(c′, c′) ≥ 0 and R(−, c′(s1))c′(s1) 6= 0. Then we de�ne

L+ := {A : A ∈ L and tr(
∇A
ds

(s1)) ≥ 0}

and

L− := {A : A ∈ L and tr(
∇A
ds

(s1)) ≤ 0}.

Obviously we have

L = L+ ∪ L− and in general L+ ∩ L− 6= ∅

Lemma 3.2.18. Let (M, g) be a space-time. Then every A ∈ L− satis�es
det(A(s)) = 0 for some R 3 s > s1 and each A ∈ L+ satis�es det(A(s)) = 0
for some R 3 s < s1.

Proof. It su�ces to prove the statement for A ∈ L−. Since A(s1) = E we ob-
tain A−1(s1) = E and �nd that θ(s1) = tr(∇A

ds
(s1)A−1(s1)) = tr(∇A

ds
(s1)) ≤ 0.

Since c satis�es the strong energy condition, i.e. Ric(c′, c′) ≥ 0 and tr(σ2) ≥ 0
by Remark 2.5.4, the vorticity-free Raychaudhuri equation (cf. Proposition
2.5.6) reduces to

dθ

ds
(s) ≤ 0

for all s and we �nd θ(s) ≤ 0 for all s ≥ s1. Now assume θ(s0) < 0 for
some s0 > s1. Then the Lemma is established by Proposition 3.2.7 resp. by
Remark 3.2.8. Therefore we consider the case where θ(s) = 0 for all s ≥ s1.
Then

dθ

ds
(s) = 0

for all s ≥ s1 and Proposition 2.5.6 implies that tr(σ2) = 0 and Ric(c′, c′) = 0.
We �nd that σ = 0 for s ≥ s1 by Remark 2.5.4. Since B is self-adjoint by
Proposition 2.5.3 and since σ and θ vanish for all s ≥ s1, B = 0 by De�nition
2.5.1 (iii). The proof of Proposition 2.5.2 now shows that R = −B2− ∇B

ds
= 0

for s ≥ s1, in contradiction to R(s1) 6= 0 by our assumption in Remark
3.2.17.

We are now ready to prove the following
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Theorem 3.2.19. Let (M, g) be a space-time and let c : R→M a complete
timelike geodesic that satis�es the generic and the strong energy condition,
then c has a pair of conjugate points.

Proof. By assumption c : R→M is a complete timelike geodesic that satis-
�es Ric(c′(s), c′(s)) ≥ 0 for all s ∈ R and R(−, c′(s1))c′(s1) 6= 0 for some s1 ∈
R. We now assume that c has no conjugate points. Let D(s) := limt→∞Dt(s)
be the Lagrangian tensor �eld with D(s1) = E from Lemma 3.2.16. Since
c|[s1,∞)

has no conjugate points, D(s) is non-singular for all s ≥ s1 (cf. Lemma
3.2.16). Lemma 3.2.18 now shows that D /∈ L−. By Remark 3.2.17 we �nd
that D ∈ L+ and since D /∈ L−, we obtain tr(∇D

ds
(s1)) > 0. The proof of

Lemma 3.2.16 shows that ∇D
ds

(s1) = limt→∞
∇Dt
ds

(s1), hence there is a t > s1

such that tr(∇Dt
ds

(s1)) > 0. Lemma 3.2.18 guarantees the existence of an
s2 < s1 and a nonzero tangent vector v ∈ N(c(s2)) with Dt(s2)(v) = 0. Re-
call from the proof of Lemma 3.2.15 that Dt(t) = 0, but ∇Dt

ds
(t)) = (A∗)−1(t)

is nonsingular. Now let Y ∈ V ⊥(c) be the unique parallel vector �eld along
c with Y (s2) = v and de�ne J := DtY . It turns out that J is a nontrivial
Jacobian vector �eld along c, since J ′′ = D′′t Y = −RDtY = −RDt(s)Y γ′ , γ

′ =
−RJγ′γ

′. Furthermore we obtain J(s2) = 0 and J(t) = 0. This is a contra-
diction.

Theorem 3.2.20. Let (M, g) be a space-time that satis�es the generic and
the strong energy condition (cf. De�nitions 3.2.3 and 3.2.4). Then each
timelike geodesic in (M, g) is either incomplete or else has a pair of conjugate
points.

Proof. This follows immediately from Theorem 3.2.19.

One can formulate the same results for null geodesics. A way how to do
this can be found in [1], section 9 and section 11.

Theorem 3.2.21. Let (M, g) be a space-time of dimension at least three
which satis�es the generic and the strong energy condition. Then each causal
geodesic in (M, g) is either incomplete or else has a pair of conjugate points.
Thus every causal geodesic in M without conjugate points is incomplete.

3.3 Cluster and limit curves

In this section we will use the concept of continuous causal curves to study se-
quences of causal curves and their limits. Nonetheless, to reach more general
conclusions many results will be stated for piecewise smooth causal curves.

We will follow [6]. (M, g) denotes an arbitrary space-time. We start with
the following
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De�nition 3.3.1. A continuous curve γ is called causal (timelike) if every
point p on γ has a convex neighbourhood C such that any point q 6= p on {γ}∩
C can be connected to p by a causal (timelike) C1 curve which is contained in
C.

Remark 3.3.2. De�nition 3.3.1 generalizes the concept of piecewise smooth
causal curves treated in the past sections. By a timelike (or causal) curve we
will mean a continuous timelike (or causal) curve. Di�erentiability will be
additionally emphasized.

Lemma 3.3.3. Let q ∈M . Then there is a convex coordinate neighbourhood
C of q, a constant k > 0 and coordinates (x0, ..., xn−1) such that all contin-
uous causal curves γ in C can be parametrized by t = x0 and the coordinate
inequality

(
n−1∑
a=0

(γa(t1)− γa(t2))2)
1
2 ≤ k |t1 − t2|

holds for all t1, t2.

Proof. By Lemma 3.1.30 causality in C corresponds to causality in Rn
1 and

we choose the coordinate system such that e0 := (1, 0, ..., 0) is timelike and
ei := (0, ..., 1, ..., 0) is spacelike, where i = 1, ..., n− 1.

We show that there exists some k0 > 0 such that every vector v ∈ TpM
that is causal relative to gp (the standard metric) for some p ∈ C is also
causal relative to the metric

hk0 := −k0dt⊗ dt+
n−1∑
i=1

(dxi ⊗ dxi).

We show this for future-directed causal vectors. The proof for past-
directed causal vectors is analogous. Let

A := {(p, v) ∈ C× Sn−1 : gp(v, v) ≤ 0}.

Since C × Sn−1 is compact and A is closed, A is compact. Let (p, v) ∈ A
and let v be future-directed. Then we obtain that gp(v, e0) < 0, since e0 is
timelike. Let f : A→ R, f(p, v) := gp(v, e0). Obviously f is continuous and
negative. Since A is compact and f is continuous, we obtain that f assumes
a maximum which we will denote by c ∈ R, hence c := max

(p,v)∈A
{f((p, v))}.

Thus we have gp(v, e0) ≤ c < 0.
Let

W := {v ∈ Sn−1 : there is some p ∈ C : gp(v, e0) ≤ c}.

70



Together with the above we obtain that Sn−1∩J+
g (C) ⊆ W . We furthermore

have that W ∩ ({0} × Rn−1) = ∅ and since W is closed and hence compact
there is some k0 ∈ R such that k0 > 0 and W ⊆ Jhk0

∩ Sn−1. Hence every
future-directed causal vector relative to g is future-directed causal relative to
hk0 .

Now let γ be a continuous causal curve from γ(t1) to γ(t2). By de�ni-
tion there is some causal C1-curve µ with µ(t1) = γ(t1) and µ(t2) = γ(t2).
We assume that µ is causal future-directed with µ(t) = (x0(t), ..., xn−1(t)).
Since e0 is timelike and µ′(t) is a causal vector, we obtain that −k0x

0′(t) =
〈µ′(t), e0〉 < 0 for all t. Hence we can parameterize µ by x0. The same pro-
cedure holds for causal past-directed C1-curves. Thus without restriction we
can assume that µ0 = t, hence µ̇0 = 1.

We �nd that k0 = k0(µ̇0)2 ≥
∑n−1

i=1 (µ̇i)2. By de�nition of the euclidean
norm we have ‖vaea‖eucl = (

∑n−1
i=0 (µ̇a)2)

1
2 and we obtain

‖γa(t1)ea − γa(t2)ea‖eucl = ‖µa(t1)ea − µa(t2)ea‖eucl

=

∥∥∥∥∫ t2

t1

µ̇a(τ)dτea

∥∥∥∥
eucl

≤
∫ t2

t1

‖µ̇a(τ)ea‖eucl dτ

=

∫ t2

t1

(
n−1∑
a=0

(µ̇a)2(τ))
1
2dτ =

∫ t2

t1

((µ̇0)2 +
n−1∑
a=1

(µ̇a)2(τ))
1
2dτ

≤
∫ t2

t1

(1 + k0)
1
2dτ ≤ (1 + k0)

1
2 (t2 − t1).

Now we set k := (1 + k0)
1
2 and the lemma is proved.

De�nition 3.3.4. Let (X, dX) and (Y, dY ) be metric spaces. A map f :
X → Y is called Lipschitz continuous if there exists a real constant k ≥ 0
such that dY (f(x1), f(x2)) ≤ kdX(x1, x2) holds for all x1, x2 ∈ X. k is called
the (a) Lipschitz constant of the map f . f : X → Y is called locally Lipschitz
continuous if for each x ∈ X there is some neighbourhood U on which f is
Lipschitz continuous.

Corollary 3.3.5. Causal curves are locally Lipschitz continuous and there-
fore di�erentiable almost everywhere.

Proof. This is Rademacher's Theorem. See [2], section 5, Theorem 6 for a
proof.

The concept of limit curves is closely related to the Hausdor� closed limit.
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De�nition 3.3.6. Let {An}n∈N be an arbitrary sequence of subsets (not nec-
essarily curves) of M . The Hausdor� upper and lower limits of {An}n∈N
are de�ned by

limsup{An} :={p ∈M : each neighbourhood of p

intersects in�nitely many of the sets An}

and

liminf{An} :={p ∈M : each neighbourhood of p

intersects all but a �nite number of the sets An}.

Remark 3.3.7. The Hausdor� upper and lower limits always exist, although
they may be empty. Obviously we have

liminf{An}n∈N ⊆ limsup{An}n∈N.

If these limits are equal, then the Hausdor� closed limit of {An}n∈N, denoted
by lim{An}n∈N, is de�ned to be

lim{An}n∈N := liminf{An}n∈N = limsup{An}n∈N.

De�nition 3.3.8. Let x, y ∈ M . We denote the space of all continuous
causal curves from x to y by C0

causal(x, y). We de�ne C1
time(x, y) to be the

space of all timelike curves from x to y that are C1(cf. Remark 3.3.2).

The following de�nition is based on De�nition 3.3.6.

De�nition 3.3.9. Let γ : [a, b]→M and γi : [a, b]→M (i ∈ N) be arbitrary
curves in the space-time M . The sequence {γi}i∈N converges to γ in the C0-
topology if for every neighbourhood U of γ in M there exists an i0 ∈ N such
that γi ⊆ U for all i > i0. The curve γ is called the limit curve of the sequence
{γi}i∈N.

De�nition 3.3.10. Let γ : [a, b] → M and γi : [a, b] → M (i ∈ N) be arbi-
trary curves in M . γ is said to be a cluster curve of the sequence {γi}i∈N if
there exists a subsequence {γij}j∈N such that for all x ∈ {γ} each neighbour-
hood of x intersects all but �nitely many of the curves γij . We will say that
the sequence {γij}j∈N distinguishes the cluster curve γ.

Proposition 3.3.11. Let (M, g) be a strongly causal space-time (cf. De�-
nition 3.1.22) and γ a cluster curve of a sequence {γi}i∈N of causal curves,
then γ is causal.
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Proof. Since {γ} is compact and (M, g) is strongly causal, we can cover
{γ} by �nitely many convex neighbourhoods {C1, ...,Cn} such that no causal
curve can enter any of these neighbourhoods twice. We choose an arbitrary
convex set Ci (i ∈ {1, ..., n}), and denote it by C. Let p, q ∈ {γ} ∩ C and
denote by {γij}j∈N a subsequence which distinguishes γ. We �nd sequences
{xj}j∈N, {yj}j∈N ∈ {γij}j∈N∩C with xj → x and yj → y. Since yj ∈ J+(xj,C)
Lemma 3.1.30 (ii) implies the existence of a causal vector vj with expxj(vj) =
yj. These vectors have an accumulation point v with expp(v) = y. The vector
v must be causal since the set of causal vectors is closed by Lemma 3.1.32
(iii). This implies y ∈ J+(x,C). If x and y are arbitrary points on {γ}, there
are �nitely many neighbourhoods C1, ...,Ck such that the segment from x to
y is covered by

⋃k
i=1 Ci. We can now apply the preceding argument �nitely

often to conclude that x and y are causally related.

De�nition 3.3.12. Let A ⊆ Rk be a compact set, i.e. A b Rk. We de�ne

C0(A,Rl) := {f : A→ Rl : f is continuous}

to be the space of all continuous functions de�ned on A.

Remark 3.3.13. (C0(A,Rl), ‖·‖∞), where ‖f‖∞ := sup
x∈A
{|f(x)|}, is a Banach

space.

Lemma 3.3.14. Let B ⊆ C0(A,Rl) be a closed set and assume that for every

ε > 0 there are �nitely many balls {B1
ε (x1), ..., B

j(ε)
ε (xj(ε))} with radius ε and

B ⊆
⋃j(ε)
i=1 B

i
ε(xi). Then B is compact in C0(A,Rl).

Proof. If the lemma is not true, then there exists an open cover (Uλ)λ∈Λ

of B such that there is no �nite subset {Uι1 , ...,Uιk} that covers B. Let
{B1

1(x1), ..., B
j(1)
1 (xj(1))} be a �nite set of balls of radius 1 which cover B.

By our assumption one of these balls cannot be covered by �nitely many Uι
(otherwise we would obtain a �nite cover of B by �nitely many sets which are
in turn �nitely covered by sets Uι). We denote this ball by B0 and assume
that we have constructed balls {Bi}i=0,...,k−1 such that the following three
conditions hold.

(i) Any two consecutive balls intersect.

(ii) Each ball Bi has radius 2−i.

(iii) None of these balls can be covered by �nitely many Uι.
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Obviously B0 satis�es the conditions (ii) and (iii). We can �nd balls

{B1
2−k(x1), ..., B

j(2−k)

2−k
(xj(2−k))}

which cover B and therefore also Bk−1. Since Bk−1 cannot be covered by
�nitely many Uι there exists at least one Bm

2−k(xm) which intersects Bk−1 and
cannot be covered by �nitely many Uι. Denoting Bm

2−k(xm) by Bk we have
inductively de�ned a sequence {Bi}i∈N∪{0} of balls which satisfy conditions
(i), (ii) and (iii). We denote the centers of these balls by yi (i ∈ {0, ..., k}).
For any natural number m < n we obtain

‖yn − ym‖ ≤
∑n

i=m+1
‖yi − yi−1‖

≤
∑n

i=m+1
(2−i + 2−i+1) ≤ 3 · 2−m.

This shows that {yi}i∈N∪{0} is a Cauchy sequence. Since (C0(A,Rl), ‖·‖∞)
is a Banach space (cf. Remark 3.3.13) {yi}i∈N∪{0} converges. We denote the
limit of {yi}i∈N∪{0} by y and �nd an Uι which contains y and a number
r ∈ N such that the ball B4(2−(r+1))(y) is contained in Uι. But this implies
B2−r−1(yr+1) ⊆ Uι in contradiction to (iii).

De�nition 3.3.15. Let (X, dX) and (Y, dY ) be metric spaces. A set F of
functions f : X → Y is called equi-continuous in x0 ∈ X, if for each ε > 0
there exists a δ > 0 such that

sup
f∈F

dY (f(x), f(x0)) ≤ ε

for all x ∈ X with dX(x, x0) ≤ δ. The set F is said to be equi-continuous if
it is equi-continuous in each point x0 ∈ X.

With these preparations we can now prove the theorem of Ascoli.

Theorem 3.3.16. Let A ⊆ Rk be a compact set and fi : A→ Rl (i ∈ N) be
an equi-continuous sequence of continuous functions such that for all a ∈ A
the set

⋃
i∈N fi(a) is compact. Then there is a continuous function f : A→ Rl

and a subsequence {fij}j∈N of {fi}i∈N which converges uniformly to f .

Proof. We �rst show that the subset
⋃∞
i=1{fi} is compact in the Banach

space (C0(A,Rl), ‖·‖∞). By Lemma 3.3.14 we only have to show that for any
ε > 0 there is a �nite number of balls with diameter less than ε which cover⋃∞
i=1{fi}. Let ε > 0 and a ∈ A. By assumption {fi}i∈N is equi-continuous.
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Therefore, for each a ∈ A there exists a neighbourhood Ua of a such that for
all fj (j ∈ N) and all y ∈ Ua the inequality

‖fj(a)− fj(y)‖ < ε

4

holds, where ‖·‖ denotes the standard norm on Rl. The set {Ua : a ∈ A}
forms an open cover for A. Since A is compact we can cover A with �nitely
many such neighbourhoods Ual (l ∈ {1, ..., k}). The union

K :=
k⋃
l=1

∞⋃
i=1

{fi(al)}

is compact since
⋃∞
i=1{fi(a)} is compact for each a ∈ A. We cover K by

�nitely many balls of radius ε
4
and denote their centers by xs ∈ K, where

s ∈ {1, ..., r} for some r ∈ N. We consider the �nite set of all maps

σ : {1, ..., k} → {1, ..., r}

and de�ne

Vσ :={h ∈
∞⋃
i=1

{fi} :
∥∥h(al)− xσ(l)

∥∥ < ε

4
for all l ∈ {1, ..., k}}.

Let f̂ ∈
⋃∞
i=1{fi}. Then we �nd a subsequence of functions {fij}j∈N with

fij ∈
⋃∞
i=1{fi} and fij → f̂ . Since K is covered by �nitely many balls of

radius ε
4
and with centers x1, ..., xr and since f̂(al) ∈ K for all l ∈ {1, ..., k}

there is for each l ∈ {1, ..., k} an xsl such that∥∥∥f̂(al)− xsl
∥∥∥ < ε

4
.

Furthermore f̂ is continuous.
By de�ning σ̂(l) := sl we see that f̂ ∈ Vσ̂. Hence the sets Vσ cover all

of
⋃∞
i=1{fi}. Now let h ∈ Vσ ⊆

⋃∞
i=1{fi}. Then ‖h− fir‖∞ → 0 and with

a ∈ Ual we obtain that

‖fir(a)− fir(al)‖ <
ε

4
,

hence
‖h(a)− h(al)‖ <

ε

4
.
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Likewise, for ĥ, we obtain that∥∥∥ĥ(a)− ĥ(al)
∥∥∥ < ε

4
.

This implies ∥∥∥h(a)− ĥ(a)
∥∥∥ ≤ ‖h(a)− h(al)‖+

∥∥h(al)− xσ(l)

∥∥
+
∥∥∥xσ(l) − ĥ(al)

∥∥∥+
∥∥∥ĥ(al)− ĥ(a)

∥∥∥
≤ 4 · ε

4
= ε.

Hence each set Vσ is contained in a ball of radius ε > 0. This implies that⋃∞
i=1{fi} is covered by �nitely many balls of radius ε > 0 and therefore

compact. The theorem follows since in a compact subset of a normed space
every sequence has a convergent subsequence.

Proposition 3.3.17. Let C ⊆ M be a convex neighbourhood of some point
q ∈ M with compact closure and let {γi}i∈N be a sequence of causal curves
in C which are inextendible in C. If p ∈ M is an accumulation point of this
sequence, i.e. each neighbourhood of p intersects in�nitely many curves of
{γi}i∈N, then there is a causal cluster curve γ through p which is inextendible
in C.

Proof. By considering a subsequence we can assume without loss of generality
that for each i ∈ N there is an si such that γi(si)→ p. We choose the same
coordinates as in Lemma 3.3.3 and view the curves γi (i ∈ N) as continuous
maps from �nite intervals [ai, bi] to Rn

1 (i ∈ N). In order to apply Theorem
3.3.16 all curves γi (i ∈ N) have to be de�ned on a common interval [a, b].
To this end we trivially enlarge the domain [ai, bi] of the curve γi (i ∈ N) to
[a, b] := [infi∈N{ai}, supi∈N{bi}] by setting γi(s) := γi(ai) for s ∈ [a, ai] and
γi(s) := γi(bi) for s ∈ [bi, b]. These curves are equi-continuous by Lemma
3.3.3. For all s ∈ [a, b] the sets

⋃
i∈N γi(s) are compact since they are closed

subsets of the compact set C. Theorem 3.3.16 now implies that a subsequence
of these curves converges uniformly to a continuous curve γ, hence γ is a
cluster curve. Furthermore p ∈ {γ}, since the so obtained subsequence, which
we denote by {γij}j∈N, converges uniformly to γ: suppose that p /∈ {γ}. Then
we �nd neighbourhoods U of γ and V of p with U ∩ V = ∅ such that all but
�nitely many curves of the subsequence are contained in U and p ∈ V . But
then we have that γij(sij) ∈ U does not converge to p ∈ V as j →∞, which
is a contradiction to our assumption.

We show that γ is causal. To this end let s, t ∈ [a, b] with s < t. Since γi
(i ∈ N) is causal we have γi(t) ∈ J+(γi(s),C) (i ∈ N). Furthermore we have
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γi(t) → γ(t) and γi(s) → γ(s). The relation ≤ is closed by Lemma 3.1.32
(iv) and we obtain γ(t) ∈ J+(γ(s),C). Since s and t were arbitrary in [a, b] γ
must be a causal curve. Since γ(a) is an accumulation point of γi(a) ∈ C \ C
this point must also lie in C \C. Analogously for γ(b). This implies that γ is
inextendible in C.

Note that all previous results that have been established in this section
were proved for continuous causal curves. We now have to switch to piecewise
smooth causal curves to obtain more global results. We will follow [1].

To this end we recall the following

De�nition 3.3.18. Let (M, g) be a semi-Riemannian manifold with dim(M)
= n and let α : [a, b]→M be a piecewise smooth curve in M . The arc-length
of α, L(α), is de�ned by

L(α) :=

∫ b

a

‖α′(s)‖ ds,

where ‖α′(s)‖ := |〈α′(s), α′(s)〉|
1
2 . For a chart (U , ϕ := (x1, ..., xn)) we obtain

that

‖α′(s)‖ =

∣∣∣∣gij(α(s))
d(xi ◦ α)

ds
(s)

d(xj ◦ α)

ds
(s)

∣∣∣∣ 1
2

.

De�nition 3.3.19. Let (M,h) be a Riemannian manifold and let p, q ∈M .
We de�ne Ω(p, q) to be the set

Ω(p, q) := {α : α is a piecewise smooth curve that connects p and q}.

We de�ne the Riemannian distance d0(p, q) of p and q to be

d0(p, q) := infα∈Ω(p,q){L(α)}.

Now we recall the theorem of Hopf and Rinow

Theorem 3.3.20. Let (N, h) be a connected Riemannian manifold. Then
the following are equivalent.

(i) The metric space (N, d0) is complete.

(ii) For any v ∈ TN , the geodesic c in N with c′(0) = v is de�ned for all
real numbers s ∈ R.

(iii) For some p ∈ N , the exponential map expp is de�ned on the entire
tangent space TpN to N at p.
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(iv) Every subset K of N that is d0-bounded, i.e. sup{d0(p, q) : p, q ∈ K} <
∞ has compact closure.

Furthermore, if any of (i) to (iv) holds, then there is for each p, q ∈ M
a geodesic segment c from p to q with L0(c) = d0(p, q), where L0 is the
Riemannian arc length.

Proof. For a proof see [15], section 5, Theorem 21 and Proposition 22.

A Riemannian manifold (N, h) is said to be complete provided any one
(and hence all) of conditions (i) through (iv) in the theorem of Hopf and
Rinow is satis�ed. By the theorem of Nomizu and Ozeki (cf. [14], Theorem
1) it is even possible to obtain that (N, h) is a complete Riemannian manifold.

Remark 3.3.21. Let (M, g) be a space-time and let h be a complete Rie-
mannian metric on M with distance function d0. By the theorem of Hopf
and Rinow we obtain that the closed balls

{q ∈M : d0(p, q) ≤ r}

are compact for all �xed p ∈ M and 0 ≤ r < ∞. Let U be a relatively
compact convex neighbourhood of p. By Lemma 3.3.3 we obtain that all
piecewise smooth causal curves γ : [a, b]→ U can be parametrised by t = x0

such that the coordinate inequality

(
n−1∑
a=0

(xa(t)− xa(s))2)
1
2 ≤ k |t− s|

holds for all t, s ∈ [a, b]. Thus γ is even Lipschitz continuous with Lipschitz
constant k ≥ 0. We furthermore obtain that |x′i| ≤ k and we conclude that

L0(γ) ≤ nH
1
2k |a− b| ,

where L0 is the Riemannian arc length (cf. De�nition 3.3.18) and H is the
maximum of |hij| on the compact set U for 0 ≤ i, j ≤ n − 1. Thus, we can
parametrize γ such that

d0(γ(s1), γ(s2)) ≤ |s1 − s2|

for all s1, s2 ∈ [a, b]

The next proposition is based on a more general version of the theorem
of Ascoli.
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Theorem 3.3.22. Let X be a locally compact Hausdor� space with a count-
able basis and let (M,h) be a complete Riemannian manifold with distance
function d0. Assume that the sequence {fn}n∈N of functions fn : X → M is
equi-continuous and that for each x0 ∈ X the set

⋃
n∈N{fn(x0)} is bounded

with respect to d0. Then there exists a continuous function f : X → M and
a subsequence {fm}m∈N of {fn}n∈N which converges to f uniformly on each
compact subset of X.

Proof. See [12], section 6, Theorem 6.1.

Lemma 3.3.23. Let (M, g) be a space-time and let h be a complete Rieman-
nian metric on M with distance function d0. Let γ : R → M be a piecewise
smooth causal curve. Then there exists a parametrization of γ such that

d0(γ(s), γ(t)) ≤ |s− t|

for all s, t ∈ R.

Proof. By Remark 3.3.21 we can cover γ by countably many relatively com-
pact convex sets {Ci}i∈N with arbitrarily chosen Lipschitz constants. In par-
ticular we can choose the Lipschitz constants less than 2−i−1 on Ci and by
the triangle unequality we obtain that

d0(γ(s), γ(t)) ≤
∑∞

i=0
2−i−1 |s− t| = |s− t| .

Lemma 3.3.24. Let (M, g) be a space-time and let h be a complete Rieman-
nian metric on M . Let γ : R→ M be a continuous causal and hence locally
Lipschitz continuous curve. Then γ possesses a parametrization by arc length
relative to h.

Proof. Without loss of generality, we can assume that M = Rn
1 . Since γ is

locally Lipschitz, its derivation γ′ exists almost everywhere and γ′ ∈ L∞loc.
Now let ϕ : R→ R,

ϕ(t) :=

∫ t

0

‖γ′(s)‖h ds.

Obviously ϕ is di�erentiable almost everywhere and ϕ′ = ‖γ′‖h. We show
that γ′(s) 6= 0 almost everywhere. Suppose that γ′ = 0 on an open set.
Then we obtain that γ(s) = p on a whole interval I = [s0, s1] for suitable
s0, s1. Since γ is continuous causal, there exists a causal C1-curve µ that
connects γ(s0) and γ(s1). For su�ciently small intervals |s0 − s1|, the curve
segment γ|[s0,s1]

is contained in a convex neighbourhood and the corresponding

79



causality is Minkowskian (cf. Lemma 3.1.30). But then µ obviously cannot
be causal. Hence γ′(s) 6= 0 almost everywhere implying that ϕ is strictly
monotonically increasing. Thus ϕ is invertible. We now de�ne γ̃(τ) :=
γ(ϕ−1(τ)). We obtain that γ̃(τ) = γ′(ϕ−1(τ))(ϕ−1)′(τ) and since (ϕ−1)′(τ) =

1
ϕ′(ϕ−1(τ))

= 1
‖γ′(ϕ−1(τ))‖h

, we �nally conclude that ‖γ̃(τ)‖h = 1 for all τ .

Proposition 3.3.25. Let {γn}n∈N be a sequence of piecewise smooth (future-
) inextendible causal curves in (M, g). If p ∈ M is an accumulation point
of the sequence {γn}n∈N, then there is a continuous causal cluster curve γ
of the sequence {γn}n∈N such that p ∈ {γ}. Furthermore γ is a (future-)
inextendible causal curve.

Proof. We only show the result for piecewise smooth inextendible curves since
the proof for piecewise smooth future-inextendible curves is very similar.

Let h be a complete Riemannian metric for M with distance function d0

as above. Without loss of generality we can assume that the domain of each
γn with n ∈ N is R since they are inextendible by assumption. By shifting
parameterizations if necessary, we may then choose a subsequence {γnm}m∈N
of {γn}n∈N such that γnm(0) → p for m → ∞ since p is an accumulation
point of the sequence {γn}n∈N. Now for each m ∈ N and each s1, s2 ∈ R we
obtain that

d0(γnm(s1), γnm(s2)) ≤ |s1 − s2|

by Lemma 3.3.23. Thus the piecewise smooth curves {γnm}m∈N form an
equi-continuous family.

Furthermore, since γnm(0) → p for m → ∞ there exists some N ∈ N
such that d0(γnm(0), p) < 1 whenever m ≥ N . This implies that for each
�xed s0 ∈ R and each m ∈ N the curve γnm : [−s0, s0] → M of the subse-
quence {γnm}m∈N lies in the compact set A := {q ∈ M : d0(p, q) ≤ s0 + 1}
whenever m ≥ N . This follows since we have that d0(p, q) ≤ d0(p, γnm(0)) +
d0(γnm(0), q = γnm(s0)) < 1 + s0. A is compact by the theorem of Hopf and
Rinow (cf. Remark 3.3.21). Hence the family {γnm}m∈N satis�es all assump-
tions in Theorem 3.3.22 and we thus obtain a continuous curve γ : R → M
and a subsequence {γnmk}k∈N of {γnm}m∈N such that {γnmk}k∈N converges
to γ uniformly on each compact subset of R. Obviously we have that
γnmk (0) → p = γ(0). The convergence of {γnmk}k∈N to γ also yields the
inequality

d0(γ(s1), γ(s2)) ≤ |s1 − s2|

for all s1, s2 ∈ R.
Hence it remains to show that γ is causal and inextendible. We show that

γ is causal. To this end we �x s1 ∈ R. Let U be a convex neighbourhood
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of (M, g) that contains γ(s1). We choose some δ > 0 such that the set
{q ∈ M : d0(γ(s1), q) < δ} is contained in U . If s1 < s2 < s1 + δ holds,
we can use d0(γnmk (s1), γnmk (s2)) ≤ |s1 − s2| and the uniform convergence
on compact subsets to obtain that γnmk (s1, s2) lies in U for large k ∈ N.
Since γnmk (s1) → γ(s1), γnmk (s2) → γ(s2) and γnmk (s1) ≤ γnmk (s2) in U
for all large k ∈ N and since U is a convex neighbourhood, we conclude
that γ(s1) ≤ γ(s2) in U by Proposition 3.3.11. Thus γ : [s1, s2] → M is a
continuous future-directed causal curve in U . It follows that γ is a continuous
future-directed causal curve in (M, g).

It remains to show that γ is inextendible. We only give the proof of
the future-inextendibility since the past-inextendibility is proved similarly.
To this end we assume that γ is not future-inextendible. Then γ(s) → q0

for some q0 ∈ M as s → ∞. Let U be a convex neighbourhood of q0

such that U is a compact set contained in a chart (V, x) of M with local
coordinates x0, ..., xn−1 such that f = x0 : U → R is a time function for U .
Let γ : [s1,∞)→ U . By Remark 3.3.21, there exists some δ > 0 such that no
piecewise smooth causal curve in U from the level set f−1(f(γ(s1))) to the
level set f−1(f(q0)) can have arc length with respect to h greater than δ. On
the other hand we have that f(γnmk (s1))→ f(γ(s1)) and f(γnmk (s1 + 1))→
f(γ(s1 + 1)). Since f(γ(s1)) < f(γ(s1 + 1)) , we �nd some k ∈ N such that
f(γ(s1)) ≤ f(γnmk (s1 + 1)). Likewise we obtain that f(γnmk (s1 + δ + 2)) ≤
f(q0) and we clearly have f(γnmk (s1 + 1)) ≤ f(γnmk (s1 + δ + 2)). Summing
up, we obtain that

f(γ(s1)) ≤ f(γnmk (s1 + 1)) ≤ f(γnmk (s1 + δ + 2)) ≤ f(q0)

and we conclude that γnmk (s1 + 1, s1 + δ + 2) ⊆ f−1(f(γ(s1)), f(q0)). By
Lemma 3.3.24 we �nd reparameterizations of {γnmk}k∈N such that

L0(γnmk (s1 + 1, s1 + δ + 2)) = δ + 1

for all k ∈ N. This is a contradiction.

Remark 3.3.26. Proposition 3.3.25 now ensures the existence of a causal
cluster limit γ in the sense of De�nition 3.3.1. In particular γ is a priori not
even piecewise smooth. This will lead us to obvious problems in the further
sections (cf. the proof of Theorem 3.5.5). The point is that our literature uses
piecewise smooth cluster curves by quoting results like Proposition 3.3.25 (cf.
for instance [1], section 11, Proposition 11.39). At least there is no trivial
reason why one could always obtain di�erentiability on cluster curves as
in Proposition 3.3.25. A carefully thought out alternative approach to limit
curves is given in [15], which leads us away from the previous ideas of studying
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continuous cluster curves. The following quite technical and �nicky results
do safe our proofs of the singularity theorems in the �nal chapter. We start
with a

De�nition 3.3.27. Let (M, g) be a semi-Riemannian manifold. A convex
covering U of (M, g) is a covering of (M, g) by convex open sets such that if
elements U and V of U meet then U ∩ V is convex.

Lemma 3.3.28. Let (M, g) be a semi-Riemannian manifold and let C be an
open covering of M . Then there exists a convex covering U of M such that
each element in U is contained in some element of C.

Proof. See [15], section 5, Lemma 10.

De�nition 3.3.29. Let {αn}n∈N be an in�nite sequence of piecewise smooth
future-directed causal curves in M and let U be a convex covering of M . A
limit sequence for {αn}n∈N relative to U is a �nite or in�nite sequence

p = p0 < p1 < ...

in M such that there are a subsequence {αnm}m∈N and, for each m ∈ N,
numbers tm,0 < tm,1 < ... such that

(L1) (a) limm→∞ αnm(tm,j) = pj for all j ∈ N0 := N ∪ {0} and
(b) for each j ∈ N0 there is a Uj ∈ U and some m(j) such that

pj, pj+1 ∈ Uj and αnm([tm,j, tm,j+1]) ⊆ Uj for all m ≥ m(j).

(L2) If the sequence p = p0 < p1 < ... is in�nite, it is nonconvergent. If
p = p0 < p1 < ... < pk (for some k ∈ N) is �nite, it contains more than
one point and no strictly longer sequence satis�es (L1).

To show the existence of limit curves, we have to establish a

Lemma 3.3.30. Let α : [0, b) → M be a piecewise smooth future-directed
causal curve with α(0) = p. Let α̃ : [0, b] → M be a continuous extension of
α with α̃(b) = q. Then we have

(i) p ≤ q.

(ii) If U is a neighbourhood of α̃([0, b]), there exists a piecewise smooth
future-directed causal curve β in U that connects p with q.
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Proof. (i) Let C be a convex neighbourhood of q and let bi ↗ b as i → ∞
such that α(bi) ∈ C for all i ∈ N. We obviously have that p ≤ α(bi) for all
i ∈ N. Now let i0 ∈ N be arbitrary. We obtain that p ≤ α(bi0) ≤ α(bi) → q
for all i ≥ i0 and hence p ≤ q by Lemma 3.1.32 (iv).

(ii) Let C be a convex neighbourhood of q such that C ⊆ U . We choose
some t0 ∈ [0, b] such that α(t0) ∈ C for all t ≥ t0. As in the proof of (i)
we obtain that α(t0) ≤ q. By Lemma 3.1.32 (i) we conclude that the radial
geodesic γ that connects α(t0) and q is future-directed and causal, since
−−−→
α(t0)q is future-directed and causal by assumption that α(t0) ≤ q and since
−−−→
α(t0)q is the initial speed of γ. Now we can set β := α|[0,b] ∪γ and the lemma
is proved.

The following result shows the existence of limit curves as in De�nition
3.3.29 under mild prerequisites.

Proposition 3.3.31. Let {αn}n∈N be a sequence of piecewise smooth future-
directed causal curves such that the following conditions hold.

(i) αn(0) converges to some p ∈M .

(ii) There is some neighbourhood of p that contains only �nitely many of
the curves αn (n ∈ N).

Let U be a convex covering of M . Then {αn}n∈N has a limit sequence relative
to U starting at p.

Proof. Since M is paracompact, there is a locally �nite re�nement V of U,
such that for each V ∈ V the closure V of V is compact and contained in
some U ∈ U. We furthermore set tm,0 := 0 for all m ∈ N.

By (i) and (ii) we can assume that there exists a neighbourhood V0 ∈ V of
p ∈M such that in�nitely many (even all but �nitely many) αn (n ∈ N) start
in V0 and leave V0. We denote this subsequence of {αn}n∈N by {αf1(m)}m∈N,
where f1 : N→ N is strictly monotonically increasing.

We set
t̃m,1 := inf{t > 0 : αf1(m)(t) /∈ V0}

for m ∈ N, hence αf1(m)(t̃m,1) is the �rst point of αf1(m) in the boundary
of V0. Since ∂V0 is compact, there is a subsequence of {αf1(m)(t̃m,1)}m∈N,
without restriction of generality the sequence itself, that converges to some
point p1 in the boundary ∂V0.

We now choose some V1 ∈ V such that p1 ∈ V1. In the case that there
are in�nitely many αf1(m) that leave V1, the same procedure as above gives
us a subsequence {αf1(f2(m))}m∈N of {αf1(m)}m∈N. We again de�ne

t̃m,2 := inf{t > 0 : αf1(f2(m))(t) /∈ V1}
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and since ∂V1 is compact, a subsequence of {αf1(f2(m))}m∈N, without loss of
generality {αf1(f2(m))}m∈N itself, converges to some point p2 ∈ ∂V1.

We now proceed by induction and repeat this procedure as long as pos-
sible, i.e. as long as there are in�nitely many curves αf1◦...◦fk(m) that leave
Vk for some k ∈ N. During this process we follow the following selection
procedure of the Vk (k ∈ N). If there is more then one V ∈ V such that
pk ∈ V , then let Vk be the element of V that has been used the least often
(if there are more than one with that property then choose any of these).

We can now construct a certain subsequence of {αn}n∈N and de�ne tm,j for
m ∈ N and j ∈ N0 such that all conditions of De�nition 3.3.29 are satis�ed.
To this end we have to distinguish between two cases.

In the �rst case the above procedure does not end. In this case we de�ne

nm := f1 ◦ ... ◦ fm(m)

for all m ∈ N and set

tm,j :=

{
arbitrary, but so that tm,j < tm,j+1 < ..., for m ≤ j

t̃fj+1◦...◦fm(m),j, for m > j

for all m ∈ N and for all j ∈ N0. We show that {αnm}m∈N is a subsequence
of {αn}n∈N that satis�es (L1) in De�nition 3.3.29. To this end let j ∈ N0 be
arbitrary. For m > j we obtain that

αnm(tm,j) = αf1◦...◦fj(fj+1◦...◦fm(m))(t̃fj+1◦...◦fm(m),j)

is a subsequence of
αf1◦...◦fj(m)(t̃m,j).

Hence it converges to pj. This shows (L1)(a). (L1)(b) is obvious by con-
struction.

In the second case the above procedure does end after k steps. In this
case we de�ne

nm := f1 ◦ ... ◦ fk(m)

for all m ∈ N and set

tm,j :=


arbitrary, but so that tm,j < tm,j+1 < ..., for m ≤ k

t̃fj+1◦...◦fk(m),j, for j < k < m
t̃m,k, for j = k < m

.

We show that {αnm}m∈N is a subsequence of {αn}n∈N that satis�es (L1) in
De�nition 3.3.29. In fact, let m > k. Then we obtain that

αnm(tm,j) =

{
αf1◦...◦fj(fj+1◦...◦fk(m))(t̃fj+1◦...◦fk(m),j), for j < k

αf1◦...◦fk(m)(t̃m,k), for j = k
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is a subsequence of αf1◦...◦fj(m)(t̃m,j), hence converges to pj. This shows
(L1)(a). (L2)(b) is again obvious by construction.

Furthermore, by construction we obtain that αnm(tm,j) < αnm(tm,j+1) for
all j < m. Since αnm(tm,j)→ pj and αnm(tm,j+1)→ pj+1, we can use Lemma
3.1.32 (iv) and conclude that pj ≤ pj+1 for all j ∈ N0. Since pj 6= pj+1 for all
j ∈ N0, we obtain that pj < pj+1.

It remains to show (L2). We distinguish two cases. In the �rst case we
assume that the sequence {pi}i∈N0 is in�nite, hence the above procedure does
not terminate. We have to show that {pi}i∈N0 does not converge. We assume
that {pi}i∈N0 converges to some q ∈ M . We �nd some V ∈ V such that
q ∈ V , hence all but �nitely many pi are contained in V . Since V is compact
and since V is locally �nite, there are only �nitely many elements of V that
have nonempty intersection with V . Hence there is some W ∈ V that has
been chosen in�nitely often to be Vi. We show that V has only been chosen
�nitely many times to be Vi. At each time when V = Vi we obtain that
pi+1 ∈ ∂V . But all but �nitely many of the pi are contained in V , hence not
in ∂V . This leads to a contradiction, since V was in�nitely many often a
candidate for Vi, but W was always chosen instead of V .

In the second case we assume that the sequence {pi}i∈N0 is �nite, hence
the above procedure terminates. Obviously only �nitely many of the curves
αf1◦...◦fk(m) can leave the set Vk (k ∈ N). We de�ne {αf1◦...◦fk+1(m)}m∈N to be
the subsequence of piecewise smooth future-directed causal curve that remain
in Vk. By a reparametrization we can obtain that each αf1◦...◦fk+1(m) (m ∈ N)
is de�ned on a �nite interval [0, bm) with bm <∞. By Lemma 3.1.32 (v) we
can extend each αf1◦...◦fk+1(m) (m ∈ N) continuously to [0, bm]. By Lemma
3.3.30 (ii) we can even assume that αf1◦...◦fk+1(m) (m ∈ N) is de�ned on
[0, bm]. Since Vk is compact, there exists a subsequence of {αf1◦...◦fk+1(m)}m∈N,
without restriction the sequence itself, that converges to some q ∈ Vk. We
�rst assume that q = pk and show that in this case we can not extend
p0 < ... < pk without violating (L1). Let us suppose that we can extend this
sequence. Then there is a pk+1 > pk such that p0 < ... < pk < pk+1. On the
other hand,

αf1◦...◦fk+1(m)(t̃m,k+1) ≤ αf1◦...◦fk+1(m)(bm),

and αf1◦...◦fk+1(m)(t̃m,k+1) → pk+1 and αf1◦...◦fk+1(m)(bm) → pk, hence pk+1 ≤
pk by Lemma 3.1.32 (iv). This is a contradiction since it would result (by
Lemma 3.1.32 (iv)) in the existence of a closed causal curve within a convex
set from U (containing Vk). On the other hand, if q 6= pk, then (L1) and (L2)
are satis�ed for p0 < ... < pk < pk+1 := q. As in the �rst case it follows that
the sequence cannot be extended without violating (L1).

Finally, the sequence {pi}i∈N0 must contain more then one single point
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by assumptions (i) and (ii).

De�nition 3.3.32. If {pi}i∈N0 is a limit sequence for {αn}n∈N as in Propo-
sition 3.3.31, let λi with i ∈ N0 be the (future-directed causal) geodesic from
pi to pi+1 in a convex set Ui as in (L1). Assembling these segments for all
i ∈ N0 gives a broken geodesic λ :=

∑∞
i=0 λi. λ is called the quasi-limit of

{αn}n∈N with vertices pi (i ∈ N0). Thus λ is a future-directed causal broken
geodesic that starts in p ∈M .

Remark 3.3.33. If {pi}i∈N0 is in�nite, then by (L2), λ is future-inextendible.
In the �nite case p0 < ... < pk (with k ∈ N0), the quasi-limit λ connects p0

with pk.

3.4 Achronal and acausal sets

De�nition 3.4.1. A set A ⊆M is said to be achronal if there are no points
p, q ∈ A with p << q, i.e. if no two points in A are chronologically related.
This means that no piecewise smooth timelike curve meets A in two di�erent
points. A subset A′ of M is called acausal if there are no points p, q ∈ A′

with p < q, i.e. if no piecewise smooth causal curve meets A′ in two di�erent
points. Every acausal subset of M is achronal, but not conversely.

Remark 3.4.2. Let A ⊆ M be an achronal set and let B ⊆ A. Then
obviously B is achronal. The closure A of an achronal set A is achronal. To
see this assume that there are p, q ∈ A with p << q. We choose sequences
{pn}n∈N and {qn}n∈N in A with pn → p and qn → q. For su�ciently large
n ∈ N we have pn << qn by Lemma 3.1.33, which is a contradiction to the
achronality of A. We also mention that a subset A of M is achronal if and
only if A∩ I+(A) = ∅ if and only if A∩ I−(A) = ∅. The latter two conditions
are used as a de�nition of achronality in several books.

De�nition 3.4.3. Let A be an achronal set. Then the edge of A , edge(A),
is the set of all points p ∈ A such that for any neighbourhood U of p there
exists a pair of points p± in I±(p,U) that can be joined by a piecewise smooth
timelike curve which is contained in U and does not intersect A.

Our next aim is to prove that the boundary of so called future (or past)
sets are achronal topological hypersurfaces. To make this precise, we need
some preparations. We start with the following

Lemma 3.4.4. Let A ⊆M be an achronal set. Then we have

(i) A \ A is a subset of the edge of A and
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(ii) the edge of A is closed.

Proof. (i) Let p ∈ A \ A and let U be a neighbourhood of p. By Lemma
3.1.30 (i) there exists a piecewise smooth future-directed timelike curve α
through p that intersects I−(p,U) and I+(p,U). By Remark 3.4.2 we obtain
that A is achronal, hence α intersects A only in p. Since p ∈ A \ A, α does
not intersect A and it follows that p ∈ edge(A).
(ii) Let p ∈ edge(A). We show that p ∈ edge(A). Let U be an open neigh-
bourhood of p inM . By construction and Proposition 3.1.34 (i) the intersec-
tion I := I+(I−(p,U),U)∩I−(I+(p,U),U) is an open neighbourhood of p and
we can �nd an open neighbourhood V such that V ⊆ I. Since p ∈ edge(A),
the set V∩edge(A) is nonempty. Let p′ ∈ V∩edge(A). By De�nition 3.4.3 we
�nd a a piecewise smooth future-directed timelike curve α : [−1, 1]→ V with
p− := α(−1) ∈ I−(p′,V) and p+ := α(1) ∈ I+(p′,V) that does not intersect
A. Since p− ∈ V ⊆ I+(I−(p,U),U), we can extend α to a piecewise smooth
timelike curve α− : [−2, 1] → U with α−(−2) ∈ I−(p,U). Analogously we
can extend α− to a piecewise smooth timelike curve α̃ : [−2, 2] → U with
α̃(2) ∈ I+(p,U). We show that α̃|[−2,−1]

and α̃|[1,2]
are not meeting A. We only

show this for the former restriction and assume that α̃|[−2,−1]
meets A. We

have p− ∈ I−(p′,V), hence p′ ∈ I+(p−,V). Since I+(p−,V) is open by Propo-
sition 3.1.34 (i) and p′ ∈ edge(A) ⊆ A we �nd a p′′ ∈ A∩I+(p−,V). Let β be
a piecewise smooth future-directed timelike curve from p− to p′′. Then the
concatenation α̃|[−2,−1]

∪ β is a piecewise smooth timelike curve that meets A
twice. This is a contradiction to the achronality of A. Hence α̃ : [−2, 2]→ U
starts in I−(p,U) and ends in I+(p,U) without intersecting A. We obtain
that p ∈ edge(A).

De�nition 3.4.5. A subset S of a smooth manifold M with n := dim(M)
is said to be a topological hypersurface if for each point p ∈ S there is an
open neighbourhood U of p in M , an open V ⊆ Rn and a homeomorphism
ϕ : U → V such that ϕ(U ∩ S) = V ∩ ({0} ∩ Rn−1).

De�nition 3.4.6. An n-dimensional topological manifold T is a Hausdor�
space such that each point has a neighbourhood homeomorphic to an open set
in Rn.

Remark 3.4.7. For the next proof we now state a theorem of Brouwer: let
U ⊆ Rn be open and let f : U → Rn be a one-to-one and continuous map.
Then f(U) is open and f is a homeomorphism f : U → f(U). A proof can
be found in [11], section 7, Theorem 7.12.

Proposition 3.4.8. Let A be an achronal subset of M . Then the set A ∩
edge(A) is empty if and only if A is a topological hypersurface.
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Proof. Let A∩ edge(A) = ∅ and let p ∈ A. Since p /∈ edge(A) there exists an
open neighbourhood U of p such that every piecewise smooth timelike curve
from I−(p,U) to I+(p,U) that remains in U intersects A. Without restriction
let U be a chart neighbourhood of the chart (ϕ,U) with ϕ : U → ϕ(U) ⊆ Rn

and ϕ = (x0, ..., xn−1). By choosing ϕ := expp we can reach by Lemma 3.1.30
(i) that ∂x0 is future-directed timelike. By Lemma 3.1.30 (i) we choose an
open subset V of U such that the following holds for some a, b ∈ R and for
some δ > 0.

(i) ϕ(V) = (a− δ, b+ δ)×N ⊂ R× Rn−1 for an open subset N of Rn−1.

(ii) {x ∈ V : x0 = a} ⊆ I−(p,U) and {x ∈ V : x0 = b} ⊆ I+(p,U).

Let y ∈ N ⊆ Rn−1. Then the piecewise smooth curve α : [a, b]→ V , de�ned
by s 7→ ϕ−1(s, y) is timelike, starts in I−(p,U), ends in I+(p,U) and hence
intersects the set A by de�nition of U . Since A is achronal there is a unique
h(y) ∈ (a, b) such that ϕ−1(h(y), y) ∈ A. We show that h : N → (a, b) is
continuous. To this end let {ym}m∈N be a sequence in N that converges to
y ∈ N. We assume that {h(ym)}m∈N does not converge to h(y). Since [a, b]
is compact and h(N) ⊆ [a, b] there exists a subsequence, without restriction
{ym}m∈N itself such that {h(ym)}m∈N converges to r ∈ [a, b] with r 6= h(y).
Let q := ϕ−1(h(y), y) ∈ A. Since the curve s 7→ ϕ−1(s, y) is timelike and
contains q and ϕ−1(r, y) 6= q, we obtain

ϕ−1(r, y) ∈ I−(q,V) ∪ I+(q,V).

By Lemma 3.1.34 (i) this set is open and since exp−1
p is continuous, the

sequence {ϕ−1(h(ym), ym)}m∈N converges to ϕ−1(r, y). Hence there exists
an m0 ∈ N with A 3 ϕ−1(h(ym0), ym0) ∈ I−(q,V) ∪ I+(q,V), but this is a
contradiction to the achronality of A. This shows that h is continuous. We
obtain that

V ∩ A = ϕ−1({(h(y), y) : y ∈ N}),
that is with respect to ϕ V ∩ A is the graph of the continuous map h. Let
(ϕ0, ϕ1, ..., ϕn−1) = (ϕ0, ϕ′) be the component functions of ϕ and let ψ :
V → Rn, ψ(p) := (ϕ0(p)−h(ϕ′(p)), ϕ′(p)). Obviously ψ is continuous. Then
ψ−1(x0, x′) = ϕ−1(x0 + h(x′), x′). Indeed,

ψ(ψ−1(x0, x′)) = ψ(ϕ−1(x0 + h(x′), x′)) = (ϕ0(ϕ−1(x0 + h(x′), x′))

− h(ϕ′(ϕ−1(x0 + h(x′), x′))), ϕ′(ϕ−1(x0 + h(x′), x′)))

= (x0 + h(x′)− h(x′), x′) = (x0, x′).

Similarly we verify that ψ−1(ψ(p)) = p, hence ψ is bijective. ψ(V) is open
since ϕ(V) is open and ψ◦ϕ−1(x) = (x0−h(x′), x′) is continuous and injective
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on ψ(V). By the theorem of Brouwer we obtain that ψ : V → ψ(V) is a
homeomorphism and ψ(V) is open. Now we have

ψ(V ∩ A) = ψ ◦ ϕ−1({(h(y), y) : y ∈ N})
= {(0, y) : y ∈ N}
= ψ(V) ∩ ({0} × Rn−1).

To prove the converse statement let p ∈ A. Since we show a local statement
we can assume without restriction that M = Rn

1 (cf. Lemma 3.1.30 (i)). Let
(ϕ,U) be a chart as in De�nition 3.4.5. We can assume that U is connected.
Since A is a topological hypersurface, we have

ϕ(U ∩ A) = V ∩ ({0} × Rn−1) =: V1.

In particular there is a homeomorphism

ϕ1 := ϕ|U∩A : U ∩ A→ V1.

Let π : Rn → Rn−1 be the canonical projection, π : R×Rn−1 3 (x0, x′) 7→ x′ ∈
Rn−1. Since A is achronal and every vertical straight line g : R 3 t 7→ (t, x′) ∈
R×Rn−1 is timelike, g intersects A at most once, hence π|A : A→ Rn−1 is one-
to-one, implying that π|U∩A : U ∩ A → Rn−1 is one-to-one. We furthermore
obtain that π ◦ ϕ−1

1 : V1 → π(U ∩ A) is bijective and continuous. By the
theorem of Brouwer (cf. Remark 3.4.7) π ◦ ϕ−1

1 is a homeomorphism and
π(U ∩ A) is an open subset of Rn−1, hence π : U ∩ A → π(U ∩ A) is a
homeomorphism. Let pr0 : Rn → R, pr0 : (x0, x′) 7→ x0 be the projection
onto the �rst factor. We de�ne the map f : π(U ∩ A) → R by f(x′) :=
pr0 ◦ π−1(x′). Since pr0 and π−1 are continuous, so is f . We obtain that

U ∩ A = graph(f) = {(f(x′), x′) : x′ ∈ π(A ∩ U)},

hence U \ A splits in the following two connected components

(i) U+ := {(x0, x′) ∈ U : x0 > f(x′)} and

(ii) U− := {(x0, x′) ∈ U : x0 < f(x′)}.

By Proposition 3.1.34 (i) the sets I+(p,U) and I−(p,U) are open and con-
nected (cf. also Lemma 3.1.30 (i)) and since A is achronal they are subsets of
U \ A, hence they lie in U+ or U−. The vertical straight line through p ∈ A
intersects I+(p,U), I−(p,U), U+ and U−. It follows that I−(p,U) ∩ U− 6= ∅
and hence we have I−(p,U) ⊆ U−. Analogously we obtain that I+(p,U) ⊆
U+. Hence every piecewise smooth curve α that remains in U and con-
nects I+(p,U) with I−(p,U) has to intersect A ∩ U , but that means that
p /∈ edge(A).
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Corollary 3.4.9. Let A be an achronal subset of M . Then the edge of A,
edge(A) is empty if and only if A is a closed topological hypersurface.

Proof. Let edge(A) = ∅. Obviously A ∩ edge(A) = ∅. By Proposition 3.4.8
A is a topological hypersurface. With Lemma 3.4.4 (i) we �nd that A \
A ⊆ edge(A) = ∅, hence A = A and A is closed. Now let A be a closed
topological hypersurface. By Proposition 3.4.8 we obtain that A∩edge(A) =
∅. By De�nition 3.4.3 we have edge(A) ⊆ A. Since A = A we �nally have
edge(A) = ∅.

De�nition 3.4.10. Let B be a subset ofM . B is called future-set if I+(B) ⊆
B. B is called past-set if I−(B) ⊆ B.

Remark 3.4.11. Let B be a future-set. We show that M \ B is a past-set.
We have to show that I−(M \B) ⊆M \B. To this end we assume there was
some q ∈M\B such that I−(q) is not a subset ofM\B. We �nd a b ∈ B such
that b ∈ I−(q) and hence q ∈ I+(b). It follows that q ∈ I+(B) ⊆ B, since
B is a future-set. This gives a contradiction. Of course the dual statement
holds as well, hence if B is a past-set, then M \B is a future-set.

With these preparations we can now prove that the boundary of a future-
set (past-set) is a hypersurface.

Proposition 3.4.12. Let B be a nonempty future-set of M with B 6= M .
Then its boundary ∂B is an achronal closed topological hypersurface.

Proof. By Corollary 3.4.9 we have to show that the boundary of B is achronal
and its edge is empty. To this end let p ∈ ∂B and q ∈ I+(p). Obviously
p ∈ I−(q) and I−(q) is an open neighbourhood of p ∈ ∂B by Proposition
3.1.34 (i). It follows that I−(q)∩B 6= ∅ and since B is a future-set we obtain
that q ∈ I+(B) ⊆ B, hence I+(p) ⊆ I+(B) ⊆ B. Since I+(p) is open,
we even have I+(p) ⊆ int(B) = B◦. On the other hand let p ∈ ∂B and
q ∈ I−(p). It follows that I+(q) is an open neighbourhood of p ∈ ∂B and we
obtain that I+(q)∩M \B 6= ∅. Hence q ∈ I−(M \B) and by Remark 3.4.11
we have q ∈ M \ B. Since I−(M \ B) is open by Proposition 3.1.34 (i), we
obtain that q ∈ (M \ B)◦ and it follows that I−(p) ⊆ (M \ B)◦. Therefore
I+(p)∩∂B = ∅ and I−(p)∩∂B = ∅ for all p ∈ ∂B and hence ∂B is achronal.
We show that the edge of the boundary of B is empty. To this end let p ∈ ∂B
and let α be a piecewise smooth timelike curve from I−(p) to I+(p). α starts
in (M \B)◦ and ends in B◦, hence it intersects the boundary of B. It follows
that p /∈ edge(∂B), hence edge(∂B) = ∅.
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Corollary 3.4.13. Let A be an arbitrary subset of M such that J±(A) is
not empty and J±(A) 6= M . Then ∂J±(A) is a closed achronal topological
hypersurface.

Proof. By Proposition 3.1.9 we obtain that I±(J±(A)) = I±(A) ⊆ J±(A),
hence J±(A) is a future-set. By Proposition 3.4.12 ∂J±(A) is an achronal
closed topological hypersurface.

Proposition 3.4.14. Let A be a spacelike topological hypersurface. Then the
edge of A, edge(A), is a subset of the boundary of A.

Proof. Let p ∈ A \ ∂A. Since A is spacelike, by Lemma 3.1.30 there exists a
neighbourhood U of p such that

(I+(p,U) ∪ I−(p,U)) ∩ A = ∅.

The same argument as in the second part of the proof of Proposition 3.4.8
shows that U \ A splits into two connected components U+ and U− which
contain I+(p,U) and I−(p,U). But this implies that every piecewise smooth
causal curve from I−(p,U) to I+(p,U) intersects A.

Proposition 3.4.15. Let A ⊆M be a spacelike submanifold and let p ∈M .
Then p ∈ E+(A,U) (cf. De�nition 3.1.28) holds if and only if there is a null
geodesic from A to p which is completely contained in U and does not have
focal points before p.

Proof. A proof can be found in [6], section 8, Lemma 8.3.4.

3.5 Cauchy developments

De�nition 3.5.1. Let A ⊆ M . The future Cauchy development (or the
future domain of dependence) D+(A) is the set of all points p ∈M such that
all past-inextendible piecewise smooth causal curves through p intersect A.
The past Cauchy development (or the past domain of dependence) D−(A) is
the set of all points p ∈M such that all future-inextendible piecewise smooth
causal curves through p intersect A. The union

D(A) := D+(A) ∪D−(A)

is called the Cauchy development of A (or the domain of dependence). It
should be mentioned that in some books Cauchy developments are only de�ned
for achronal sets.
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Proposition 3.5.2. Let A be an achronal set. Then we have

I−(D+(A)) ∩ I+(A) ⊆ D+(A).

Proof. Let p ∈ I−(D+(A)) ∩ I+(A). Since p ∈ I−(D+(A)), there exists a
q̃ ∈ D+(A) such that p ∈ I−(q̃), hence q̃ ∈ I+(p). Since I+(p) is open
by Proposition 3.1.34 (i) it follows that it intersects D+(A). Therefore we
�nd a p̃ ∈ D+(A) ∩ I+(p). Let γ be a piecewise smooth future-directed
timelike curve from p to p̃. We assume that p /∈ D+(A). Then there is a
past-inextendible piecewise smooth causal curve µ through p which does not
intersect A. The concatenation γ̃ of µ and γ is a past-inextendible piecewise
smooth causal curve through p̃ and hence intersects A at some point z ∈ A.
We obtain z ∈ I+(p) and since p ∈ I+(A) we have z ∈ I+(A) by Lemma
3.1.36 (iii). This implies that there is a piecewise smooth timelike curve
which intersects A twice, but this is a contradiction to the achronality of
A.

Our next aim is to prove that the interior of the Cauchy development of
an achronal set is either globally hyperbolic (cf. De�nition 3.1.39) or empty.
This will require some preparations. We start with the following

Lemma 3.5.3. Let A ⊆ M be a closed set and let α : [0, b) → M \ A be
a piecewise smooth past-directed causal curve with α(0) = p that is past-
inextendible in M . Then for each q ∈ I+(p,M \ A) there exists a piecewise
smooth past-directed timelike curve α̃ : [0, b) → M \ A with α̃(0) = q that is
past-inextendible in M .

Proof. Since α is past-inextendible, we can assume without loss of general-
ity that b = ∞ and {α(n)}n∈N is not convergent. Let d be a metric that
generates the topology of M . Since A is closed, M \ A is open and there-
fore a submanifold of M . By << we denote the relation on M \ A (that
implies the relation << in M). Let M \ A 3 p0 := q >> p = α(0). By
de�nition of α we have α(1) ≤ α(0) = p << q = p0 and by Lemma 3.1.7
we obtain that α(1) << p0, hence there exists a piecewise smooth past-
directed timelike curve α1 that starts at p0 and ends at α(1). We choose
some p1 ∈ M \ A on α1 with 0 < d(p1, α(1)) < 1. Again, by de�nition
of α we have α(2) ≤ α(1) << p1, hence α(2) << p1 and we can choose
some p2 ∈M \A on a piecewise smooth past-directed timelike curve α2 that
connects α(2) with p1 and satis�es d(p2, α(2)) < 1

2
. By induction we �nd

pk ∈M \ A (k ≥ 3) with α(k) << pk << pk−1 and d(α(k), pk) <
1
k
. Now we

can connect all pi (i ≥ 0) by a piecewise smooth past-directed timelike curve
α̃ in M \A, that contains all pi (i ≥ 0) and satis�es α̃(k) = pk for all k ≥ 0.
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We show that α̃ is past-inextendible. Assume that α̃ was past extendible.
Then we could �nd some p∞ ∈ M such that α̃(k) → p∞. But then we have
d(α(k), p∞) ≤ d(α(k), pk) + d(pk, p∞) → 0 for k → ∞, hence α(k) → p∞
which contradicts our assumption.

Lemma 3.5.4. Let A ⊆ M be an achronal set. Then every past- (future-
)inextendible piecewise smooth causal curve which passes through p ∈ int(D(A))
intersects I−(A) (I+(A)).

Proof. We only prove this for the past-inextendible case. Let α : [0, b)→M
be a piecewise smooth past-inextendible causal curve that starts at α(0) =
p ∈ intD(A). Since α is past-inextendible we can assume that it is de�ned
on [0,∞). We �rst show that D(A) ⊆ I−(A) ∪ I+(A) ∪ A. To this end let
p̃ ∈ D+(A). Let α̃ be a piecewise smooth past-inextendible timelike curve
through p̃. By de�nition of the future Cauchy development α̃ intersects A,
hence p̃ ∈ A ∪ I+(A) and we obtain D+(A) ⊆ A ∪ I+(A). An analogous
argument holds for p̃ ∈ D−(A) and we have D−(A) ⊆ A ∪ I−(A). Since
D(A) = D+(A) ∪D−(A) we obtain D(A) ⊆ I−(A) ∪ I+(A) ∪ A.

If p ∈ I−(A), then we are �nished. Assume that p ∈ I+(A) ∪ A. Recall
that every neighbourhood of p intersects I+(p) by Lemma 3.1.30. Since
p ∈ intD(A), D(A) is a neighbourhood of p and therefore there exists some
q ∈ I+(p) ∩ D(A). We show that I+(p) ∩ D(A) = I+(p) ∩ D+(A). To this
end we show that I+(p) ∩ D−(A) = ∅. Let p̃ ∈ I+(p) ∩ D−(A) and �rst
assume that p ∈ A. Then we have p̃ ∈ D−(A) ∩ I+(A) and in particular
p̃ ∈ I+(A), hence there exists a piecewise smooth future-directed timelike
curve α̃ that connects q ∈ A and p̃. We �nd a piecewise smooth future-
inextendible timelike curve β with β(0) = p̃. Since p̃ ∈ D−(A), β intersects
A and hence the concatenation of α̃ and β intersects A twice. But this
gives a contradiction to the achronality of A. Now assume that p ∈ I+(A).
Then we have p̃ ∈ D−(A) ∩ I+(I+(A)) = D−(A) ∩ I+(A) and we can use
the same argument to obtain a contradiction. Hence we have proved that
I+(p) ∩ D(A) = I+(p) ∩ D+(A). By Lemma 3.5.3 there exists a piecewise
smooth past-inextendible timelike curve γ : [0,∞) → M that starts in q ∈
I+(p) ∩ D(A). In addition, the proof of Lemma 3.5.3 shows that for every
s ∈ [0,∞) there exists a k ∈ N with α(k) ∈ I−(γ(s)) since by construction
for k > s we have that α(k) << pk = γ(k) << γ(s). Since q ∈ D+(A), γ
intersects the set A in some point γ(s). The corresponding α(k) therefore
lies in I−(A).

Theorem 3.5.5. Let A be an achronal set. Then the interior of the Cauchy
development, intD(A) = D(A)◦, is globally hyperbolic or empty.

Proof. We will divide the proof into four parts.

93



(i) We show that intD(A) satis�es the causality condition. To this end we
assume that there is a closed piecewise smooth causal curve α through
some p ∈ intD(A). By Lemma 3.5.4 α contains points q+ and q−
such that q+ ∈ I+(A) and q− ∈ I−(A). We choose q′+, q

′
− ∈ A such

that q+ ∈ I+(q′+) and q− ∈ I−(q′−). Since q+, q− ∈ {α} and since
α is closed and causal, we obtain that q+ ≤ q−. We conclude that
q′+ << q+ ≤ q− << q′− and hence q′+ << q′−. This is a contradiction to
the achronality of A and we have proved the claim.

(ii) We show that intD(A) satis�es the strong causality condition. To this
end we assume that the strong causality condition is violated. Then
there exist some p ∈ D(A)◦, a neighbourhood U of p and a sequence
{αn}n∈N of piecewise smooth future-directed causal curves αn : [0, 1]→
M with αn(0) → p, αn(1) → p and αn([0, 1]) * U for all n ∈ N. Thus
{αn}n∈N has a limit sequence p = p0 < p1 < ... by Proposition 3.3.31.

We �rst assume that the limit sequence is �nite, hence p =: p0 < p1 <
... < pk for some k ∈ N. We set q := limn→∞αn(1) = p and obtain that
pk = limn→∞ αn(1) = p (cf. the proof of Proposition 3.3.31). We �nd
that p = p0 < pk = p which is a contradiction to (i).

Thus the limit sequence is in�nite and we denote the corresponding
quasi-limit by λ (cf. De�nition 3.3.32). By Remark 3.3.33 λ is future-
inextendible, hence by Lemma 3.5.4 it intersects the open set I+(A).
Therefore there exists some s0 in the domain of λ such that λ(s0) ∈
I+(A). We also have that λ(s) ≥ λ(s0) for all s ≥ s0 and since λ(s0) ∈
I+(A), we obtain that λ(s) ∈ J+(λ(s0)) ⊆ J+(I+(A)) = I+(A), where
we have used Proposition 3.1.9. This means that λ remains in I+(A)
after it has passed λ(s0). In particular there is some i0 > 0 such that
pi0 ∈ I+(A).

By De�nition 3.3.29 (L1)(a) resp. Proposition 3.3.31 there are a sub-
sequence of {αn}n∈N, without restriction {αn}n∈N itself, and numbers
tn,i0 ∈ [0, 1] such that αn(tn,i0) → pi0 , where i0 ∈ N0 (even i0 ∈ N) is
�xed. By reparameterizations we can achieve that tn,i0 = t0,i0 ∈ [0, 1]
for all n ∈ N, hence there is some t0 := t0,i0 ∈ [0, 1] such that αn(t0)→
pi0 . In particular we obtain that αn(t0) ∈ I+(A) for suitable n ∈ N.
Since p < pi0 , p 6= pi0 . Now let βn : [t0, 1]→ M be de�ned by βn(t) :=
αn(t0+1−t). Obviously βn is piecewise smooth and past-directed causal
for all n ∈ N, since αn is piecewise smooth and future-directed causal
for all n ∈ N. We furthermore obtain that βn(t0) = αn(1)→ p and since
βn(1) = αn(t0) → pi0 6= p, we conclude that there is a neighbourhood
of p that contains only �nitely many of the curves βn. By Proposition
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3.3.31 (resp. by its analogue for piecewise smooth past-directed causal
curves) the sequence {βn}n∈N has a limit sequence p =: q0 > q1 > ....

We �rst assume that the limit sequence is �nite, hence there exists
some l ∈ N0 such that q0 > q1 > ... > ql. By the same argument as
above, we would obtain that ql = pi0 , hence p < pi0 = ql < ... < q0 = p.
This is a contradiction to (i).

Hence we conclude that the limit sequence is in�nite and the corre-
sponding quasi-limit, we denote it by λ̃, is a past-inextendible causal
piecewise geodesic that starts in D(A)◦. By Lemma 3.5.4 λ̃ intersects
I−(A). By (L1)(a) in De�nition 3.3.31 there exist an n ∈ N and some
t ∈ [0, 1] with αn(t0 + 1− t) = βn(t) ∈ I−(A)

We have shown that there is some αn (n ∈ N suitable) that intersects
I−(A) and I+(A). We set t1 := t0 + 1 − t ∈ [t0, 1] and obtain that
αn(t0) ≤ αn(t1). Now we choose some a0 ∈ A such that a0 << αn(t0)
and some a1 ∈ A such that αn(t1) << a1. But this means that a0 <<
αn(t0) ≤ αn(t1) << a1 and hence a0 << a1. This is a contradiction to
the achronality of A. Hence we have proved claim (ii).

(iii) We show that J(p, q) = J+(p) ∩ J−(q) is a compact set for arbitrary
p, q ∈ D(A)◦. We �rst assume that p 6≤ q. In this case we obtain
that J(p, q) = ∅, hence J(p, q) is compact. Now let p = q. We show
that J(p, q) = J(p, p) = {p}, hence J(p, q) is compact. To this end we
assume that there is some r ∈ J(p, q) with r 6= p. This means that
p < r < p which is a contradiction to (i).

Hence it su�ces to show the case where p 6= q and p < q. Let
{xn}n∈N be a sequence in J(p, q). We show that there is a subse-
quence of {xn}n∈N that converges to some element in J(p, q). For each
xn ∈ J(p, q) with n ∈ N there exists a piecewise smooth future-directed
causal curve αn : [0, 1] → M that connects p and q and intersects xn.
Now let U be a convex covering of M such that each U ∈ U is convex,
open and has a compact closure that is contained in some convex set.
By Proposition 3.3.31 {αn}n∈N has a limit sequence p =: p0 < p1 < ...
relative to U. We distinguish two cases.

In the �rst case we assume that at least one limit sequence is �nite,
hence p0 < p1 < ... < pN for some N ∈ N. The same procedure as
above shows that pN = q. Now let 0 = tm,0 < tm,1 < ... < tm,N = 1
as in De�nition 3.3.29 (note that by the proof of Proposition 3.3.31,
tm,N = 1 is really achievable). For each m ∈ N the point xm is con-
tained in αm([0, 1]) and in particular contained in one of the intervals

95



αm([tm,j, tm,j+1]) for a suitable 0 ≤ j ≤ N − 1. By the pigeonhole prin-
ciple there is one j ∈ {0, ..., N − 1} such that in�nitely many of the xm
are contained in αm([tm,j, tm,j+1]). Possibly restricting to a subsequence
we can assume without loss of generality that xn ∈ αm([tm,j, tm,j+1])
for this certain j ∈ {0, ..., N − 1} and all m ∈ N. By (L1)(b) we obtain
that all xm are contained in only one U ∈ U. Since U is compact,
there is a subsequence of {xm}m∈N, without restriction the sequence
{xm}m∈N itself, such that {xm}m∈N converges to some x ∈ U ⊆ V ∈ V,
where V was chosen as a convex covering such that U is a re�nement of
V. Since V is convex and since αm(tm,j) ≤ xm ≤ αm(tm,j+1), Lemma
3.1.32 (iv) implies that pj ≤ x ≤ pj+1 and hence p ≤ x ≤ q. We obtain
that x ∈ J(p, q)

In the second case we assume that all limit sequences are in�nite and
construct a contradiction, hence we show that this case cannot obtain.
Now let p = p0 < p1 < ... be such a limit sequence. As in the proof
of statement (ii) we obtain a future-inextendible causal quasi-limit λ
and (by a reparameterization and choosing a subsequence) some t0 ∈
[0, 1] such that αn(t0) → pi0 ∈ I+(A). As q is the endpoint of all αn
and since p = p0 < p1 < ... does not end, we obtain that q 6= pi0 .
Again, as in the proof of statement (ii) we de�ne βn := −(αn|[t0,1]),
βn : [t0, 1] → M . Then we have that βn(t0) = αn(1) = q for all n ∈ N
and βn(1) = αn(t0) → pi0 6= q, hence there is a neighbourhood of
q that contains only �nitely many of the curves βn. By Proposition
3.3.31 {βn}n∈N has a limit sequence q =: q0 > q1 > .... We �rst assume
that this sequence is �nite, hence q0 > ... > qN for some N ∈ N. As
in the proof of (ii) we would obtain that qN = pi0 . But this means
that p = p0 < p1 < ... < pi0 = qN > ... > q0 = q, which is a �nite
limit sequence of {αn}n∈N in contradiction to our assumption. Hence
q0 > q1 > ... is in�nite. The corresponding quasi-limit will be denoted
by λ̃. λ̃ is past-inextendible and intersects (with the same proof as in
(ii)) I−(A). As in (ii) we obtain a contradiction to the achronality of
A.

(iv) We �nally show that J(p, q) ⊆ D(A)◦ for arbitrary p, q ∈ D(A)◦. For
p = q as well as for p 6≤ q there is nothing to show (cf. the proof of
(iii)). Now let p < q and p 6= q. By the proof of Lemma 3.5.4 we have
that D+(A) ⊆ A ∪ I+(A) and D−(A) ⊆ A ∪ I−(A). Hence p and q are
contained in I+(A) or p and q are contained in I−(A) or p is contained
in J−(A) and q is contained in J+(A). By symmetry reasons the case
that p ∈ J+(A) and q ∈ J−(A) does not have to be treated. Therefore
we distinguish the following cases.
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In the �rst case we assume that p, q ∈ I+(A). The same proof holds for
p, q ∈ I−(A) by interchanging p and q and + and −. By Proposition
3.1.30 (i) each neighbourhood of p (in particularD(A)) intersects I+(q),
hence there exists some q+ ∈ I+(q) ∩ D(A) and since I+(q) ⊆ I+(A)
by assumption, we obtain that q+ ∈ D+(A). We now de�ne

U := I+(A) ∩ I−(q+).

Then J(p, q) = J+(p) ∩ J−(q) ⊆ J+(I+(A)) ∩ J−(I−(q+)) = I+(A) ∩
I−(q+) = U .
Hence it su�ces to show that U ⊆ D(A). To this end let x ∈ U . Since
U ⊆ I−(q+) there is a piecewise smooth future-directed timelike curve
α that connects x with q+ and since x ∈ I+(A) there is a piecewise
smooth future-directed timelike curve β that connects some a ∈ A with
x. We assume that α intersects A. Then we de�ne the concatenation
of α and β, α∪β, which is a piecewise smooth future-directed timelike
curve that intersects A twice. This is a contradiction to the achronality
of A. Hence α does not intersect A.

Now let γ be a piecewise smooth past-inextendible causal curve that
starts in x. Then the concatenation (−α) ∪ γ is a piecewise smooth
past-inextendible causal curve through q+ ∈ D+(A), hence it intersects
A. This means that γ intersects A and hence x ∈ D+(A).

We now consider the second case, i.e. we let p ∈ J−(A) and q ∈ J+(A).
As in the �rst case we can choose a p− ∈ I−(p) ∩ D(A) and a q+ ∈
I+(q) ∩D(A). We de�ne

U := I+(p−) ∩ I−(q+).

Obviously U is open and clearly p ∈ I+(p−) and q ∈ I−(q+). Hence we
conclude that J(p, q) = J+(p) ∩ J−(q) ⊆ J+(I+(p−)) ∩ J−(I−(q+)) =
I+(p−) ∩ I−(q+) = U .
Again, it su�ces to show that U ⊆ D(A). To this end let x ∈ U . Since
A ⊆ D(A), we can assume that x /∈ A. Since x ∈ I+(p−) there is a
piecewise smooth future-directed timelike curve α− that connects p−
with x and since x ∈ I−(q+) there is a piecewise smooth future-directed
timelike curve α+ that connects x with q+. Since A is achronal, the
concatenation α := α−∪α+ intersects A at most once. Hence, since x /∈
A, α− or α+ does not intersect A. Without loss of generality we assume
that the curve α+ does not intersect A. Let γ be a piecewise smooth
past-inextendible causal curve that starts in x. Then the concatenation
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(−α+)∪γ is a piecewise smooth past-inextendible causal curve through
q+ ∈ D+(A), hence it intersects A. This means that γ intersects A and
it follows that x ∈ D+(A).

3.6 Causal Disconnectedness

De�nition 3.6.1. Let (X, τ) be a noncompact topological space. An in�nite
sequence of points in X is said to diverge to in�nity if given any compact
subset C, only �nitely many elements of this sequence are contained in C

De�nition 3.6.2. A noncompact space-time (M, g) is said to be causally
disconnected by a compact set K if there exist two in�nite sequences {pn}n∈N
and {qn}n∈N diverging to in�nity such that for each n ∈ N, pn ≤ qn, pn 6= qn
and all future-directed piecewise smooth causal curves from pn to qn meet K.
A space-time (M, g) that is causally disconnected by some compact K is said
to be causally disconnected.

De�nition 3.6.3. Let (M, g) be an arbitrary space-time. We denote by
Ω(p, q) the set of all piecewise smooth future-directed causal curves from p
to q. The Lorentzian distance function (or time-separation) d(p, q) is de�ned
by

d(p, q) =

{
sup{L(c) : c ∈ Ω(p, q)} for p < q

0 else

De�nition 3.6.4. Let (M, g) be an arbitrary space-time. A past- and future-
inextendible future-directed causal geodesic γ : (a, b) → M is said to be a
causal geodesic line , if

L(γ|[s,t]) = d(γ(s), γ(t))

holds for all s, t with a < s ≤ t < b. d denotes the Lorentzian distance
function.

For completeness we will quote an important statement. The proof can
be found [1], section 7, Theorem 7.13.

Theorem 3.6.5. Let (M, g) be a strongly causal space-time (cf. De�nition
3.1.22) which is causally disconnected by a compact set K. Then, for numbers
a, b ∈ R, M contains a piecewise smooth inextendible causal geodesic line
γ : (a, b)→M which intersects K.
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Remark 3.6.6. The space-time (M, g) in Theorem 3.6.5 is not completely
arbitrary. We need noncompactness for causal disconnectedness. But since
(M, g) satis�es the strong causality condition, it automatically satis�es the
chronology condition by Theorem 3.1.43, thus there are no closed piecewise
smooth timelike curves in (M, g), hence (M, g) is not compact by Proposition
3.1.17.

De�nition 3.6.7. Let (M, g) be an arbitrary space-time and let S be an
achronal and closed subset of M . S is called future-trapped (past-trapped), if
its future-horismos E+(S) (past-horismos E−(S)) (cf. De�nition 3.1.28) is
compact.

Theorem 3.6.8. Let (M, g) be a strongly causal space-time. If S is future-
trapped in (M, g), then there is some piecewise smooth future-inextendible
timelike curve γ contained in D+(E+(S)) (cf. De�nitions 3.1.28 and 3.5.1).

Proof. We will prove a more general statement later (cf. Corollary 4.2.18).

Remark 3.6.9. This section follows the book of Beem and Ehrlich. It should
be mentioned that their de�nition of the Cauchy development is a bit weaker
then ours, since they only de�ne D+(S), D−(S) and hence D(S) for closed
subsets S ⊆ M . Since S is future-trapped in Theorem 3.6.8, D+(E+(S)) is
nonetheless well de�ned.
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CHAPTER 4

SINGULARITIES

In this section we �nally study singularity theorems. By the existence of a
singularity we mean timelike or causal geodesically incompleteness, which is
caused by natural assumptions on the space-times. Singularity theorems are
thus existence theorems for singularities. We will formulate and prove the
most important singularity theorems in general relativity.

In the entire chapter we follow [1], [4] [5], [6], [15] and [21]. We start with

4.1 A �rst singularity theorem

The following rudimentary result already yields a �rst existence theorem of
singularities. A (sketch of a) proof was found in [4], Lemma 2.10.

Proposition 4.1.1. If (M, g) is a chronological (cf. De�nition 3.1.10) space-
time such that each inextendible null geodesic has a pair of conjugate points,
then (M, g) is strongly causal.

Proof. We assume that (M, g) fails to be strongly causal at some point p ∈M
and derive a contradiction. We divide the proof into �ve parts.

(i) Since strong causality is violated (cf. Remark 3.1.23), there exists an
open neighbourhood U of p such that U is compact and the following
holds. There are a sequence of neighbourhoods Vk ⊆ U (k ∈ N) which
converges to p and piecewise smooth causal curves ck (k ∈ N) connect-
ing some xk ∈ Vk with some yk ∈ Vk which leave U and return to Vk
(k ∈ N). Furthermore we can shrink U such that there exists some
convex neighbourhood U ′ of p with U $ U ′. Hence these curves inter-
sect the boundary of U , ∂U . Let qk (k ∈ N) be the �rst intersection
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point of the curve ck with ∂U (k ∈ N). Since ∂U is compact, there is
a subsequence of the sequence {qk}k∈N, without loss of generality the
sequence {qk}k∈N itself, such that qk → q ∈ ∂U . Since U ′ is convex by
assumption, there is a geodesic γpq that connects p and q. We show
that γpq is a null geodesic. For each k ∈ N we obtain that xk ≤ qk,
since ck is causal, hence qk ∈ J+(xk,U ′). Since qk → q and xk → p, we
obtain that q ∈ J+(p,U ′) and the vector −→pq is causal. The latter two
statements follow from Lemma 3.1.32 (i) and (iv). We show that −→pq is
null. We assume that −→pq is timelike. By Lemma 3.1.33 there exist some
k ∈ N and a neighbourhood W of q such that Vk << Wk. By Propo-
sition 3.1.7 we conclude for yk ∈ Vk and qk ∈ Wk that yk << qk ≤ yk
and thus yk << yk. This gives a contradiction to the assumption that
(M, g) is chronological.

(ii) We show that strong causality is violated in each point of γpq. We
�rst show that strong causality fails in q itself. To see this, choose a
sequence {Ṽk}k∈N of neighbourhoods of q that converge to q, whose
closure is contained in some �xed convex neighbourhood Ũ of q and
such that yk /∈ Ũ for all k ∈ N.
Choose q̃k ∈ Ṽk ∩ I+(q). Then q ∈ I−(q̃k) and (by choosing a subse-
quence of {qk}k∈N if necessary) we may assume without loss of gener-
ality that qk ∈ I−(q̃k) ∩ Ṽk for all k ∈ N (since qk → q). Moreover,
I−(q̃k) is an open neighbourhood of p (since p ≤ q << q̃k) and yk → p,
so again without loss of generality we may assume that yk ∈ I−(q̃k)
for all k ∈ N. Let c̃k be a piecewise smooth future-directed timelike
curve from yk to q̃k. Then ĉk := ck ∪ c̃k (where we let ck start in qk)is
a piecewise smooth future-directed causal curve from qk to q̃k which
contains yk /∈ Ṽk. This sequence of curves shows that strong causality
fails at q.

Next we show that strong causality in fact fails at each q′′ on γpq. To
show this we �rst note that each such q′′ lies on the boundary of a
suitable neighbourhood U ′′ of U with the same properties as U above.
In addition, we may assume that {γpq}∩∂U ′′ = {q′′}. Further, without
restriction Vk ⊆ U ′′ for all k ∈ N. Finally, we may replace the initial
part of ck from xk to qk by the unique geodesic γxkqk connecting xk and
qk in U ′. Denote by q′′k the �rst point where γxkqk intersects ∂U ′′.
Then the initial velocity of γxkqk is the causal vector −−→xkqk and by

construction there exists some λk ∈]0, 1] such that
−−→
xkq

′′
k = λk

−−→xkqk.
Since ∂U ′′ is compact, we may without loss of generality suppose that
λk → λ ∈ [0, 1] and q′′k → q̃′′ ∈ ∂U ′′. Thus

−→
pq̃′′ = λ−→pq, so q̃′′ ∈ {γpq}.
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Since also q̃′′ ∈ ∂U ′′ it follows that q̃′′ ∈ ∂U ′′∩{γpq} = {q′′}, i.e. q̃′′ = q′′.
By what we have shown above, strong causality is violated in q̃′′ = q′′.

(iii) As we have seen in (ii), there exists a convex neighbourhood Ṽ1 of q such
that the curves ĉk, starting from qk leave Ṽ1 and re-enter Ṽk. Therefore
we may repeat the construction from (i) with q instead of p and Ṽ1

instead of U . Note that ĉk coincides with ck within Ṽ1 (in fact, up to
yk), so the curves used to obtain the new sequence of boundary points
{rk}k∈N are in fact the ck themselves. In this way we obtain a point
r = limk→∞rk ∈ M and a null geodesic γqr such that strong causality
fails along γqr. We show that γqr extends γpq as an unbroken null
geodesic. We assume that this is not the case. By Proposition 4.2.14
below we obtain that p << r, hence there exists a neighbourhood W̃
of r and some k ∈ N such that Vk << W̃ by Lemma 3.1.33. For some
rk ∈ W̃∩{ck} we obtain that rk ≤ yk << rk. This means that rk << rk
for some k ∈ N by Proposition 3.1.7 which is a contradiction.

(iv) Now we can iterate this procedure both into the future and into the past
to obtain an inextendible null geodesic γ along which strong causality
fails.

(v) By assumption γ has conjugate points, hence there exist points p̃, r̃ ∈
{γ} with p̃ << r̃ (cf. Proposition 4.2.14 below). We �rst assume that
p̃ is contained in the future-inextendible part of γ and r̃ is contained in
the past-inextendible part of γ. By construction we have that p ≤ p̃.
Since p̃ << r̃, we obtain that p << r̃, hence by Lemma 3.1.33 we �nd
some k ∈ N and neighbourhoods Vk of p and Ṽ of r̃ such that Vk << Ṽ .
By construction of Vk and since Vk << Ṽ there is some r̃k ∈ Ṽ ∩ {ck}
such that yk << r̃k. Since r̃k ≤ yk by construction of the curve ck, we
conclude that yk << yk by Proposition 3.1.7, which is a contradiction.

Now we assume that both points p̃ and r̃ are contained in the future-
inextendible part of γ. Then p̃ << r̃ and by construction p ≤ p̃, hence
p << r̃ by Proposition 3.1.7. Again, we can �nd some k ∈ N and
neighbourhoods Vk of p and Ṽ of r̃ such that Vk << Ṽ . Obviously
there is some k ∈ N and some r̃k ∈ {ck} such that yk << r̃k. By
construction of ck we have that r̃k ≤ yk. By Proposition 3.1.7 we
obtain that yk << yk, which is a contradiction.

We �nally assume that both points p̃ and r̃ are contained in the past-
inextendible part of γ. Then p̃ << r̃ and by construction we obtain
that r̃ ≤ p, hence p̃ << p by Proposition 3.1.7. We �nd some neigh-
bourhoods Ũ of p̃ and Vk (for some k ∈ N suitable) such that Ũ << Vk.
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Choose k and p̃k such that p̃k ∈ Ũ ∩ {ck}. Then by construction,
xk ≤ p̃k << xk, so xk << xk, contradiction.

The proof of the previous Proposition 4.1.1 establishes the following

Corollary 4.1.2. Assume that (M, g) is chronological. If it fails to be
strongly causal at some p ∈ M , then there is an achronal, inextendible null
geodesic γ through p along which strong causality is violated. In particular
we have that for chronological space-times the set where strong causality is
violated is always generated by null geodesics.

Theorem 4.1.3. Let (M, g) be a chronological space-time with dim(M) ≥ 3
which satis�es the generic condition and the strong energy condition (cf.
De�nitions 3.2.1 and 3.2.4). Then (M, g) is either strongly causal or null
incomplete.

Proof. This follows directly from Proposition 4.1.1 and Theorem 3.2.21.

With Theorem 3.6.5 one can prove a very similar result found in [1] The-
orem 11.41.

Theorem 4.1.4. Let (M, g) be a chronological space-time with dim(M) ≥ 3
which is causally disconnected (cf. De�nition 3.6.2). If (M, g) satis�es the
generic condition and the strong energy condition, then (M, g) is causally
incomplete.

4.2 The singularity theorem of Hawking and

Penrose, Version 1

De�nition 4.2.1. Let F be a future-set of M . The null-boundary ∂nullF is
de�ned to be the set

∂nullF := {p ∈ ∂F : there is a neighbourhood Uof p with I+(F \U) = I+(F )}.

The acausal boundary of F is de�ned to be

∂acF := ∂F \ ∂nullF.

De�nition 4.2.2. Let B be a nonempty future-set of M with B 6= M . Then
its boundary ∂B is called a proper achronal boundary .

104



Remark 4.2.3. Recall the de�nition of a future-endpoint (cf. De�nition
3.2.2). We give a slightly di�erent but equivalent de�nition. Let (M, g) be
an arbitrary space-time. A point p ∈ M is a future-endpoint of a piecewise
smooth future-directed causal curve γ : [a, b]→M if for every neighbourhood
Up of p there exists some u0 ∈ [a, b] such that γ(u) ∈ Up for every u ∈ [a, b]
with u ≥ u0. Similarly we de�ne a past-endpoint.

Remark 4.2.4. In De�nition 4.2.2 we could have assumed that the future-
set is open by simply taking its interior, since I+(B◦) ⊆ I+(B) ⊆ B◦ (cf.
the proof of Proposition 3.4.12). Thus, every nonempty proper achronal
boundary ∂B is the boundary of an open future-set. We denote this open
future-set by B+. Any proper achronal boundary can be divided into four
disjoint subsets BA, BN , BF and BP according to the following classi�cation.
BA is acausal. BN is the set of all points through which there passes a null
geodesic segment contained in ∂B. BF is the set of all future-endpoints of
null geodesic segments in ∂B that are not in BN . BP is the set of all past-
endpoints of null geodesic segments in ∂B that are not in BN . For more
details see [21], section 2. The following Proposition characterizes these
subsets.

Proposition 4.2.5. Let ∂B be the boundary of the open future set B+. If
there is a neighbourhood Up of p ∈ ∂B such that B+ = I+(B+ \ Up) (i.e.
p ∈ ∂nullB+) then p ∈ BN ∪BF .

Proof. A proof can be found in [21], section 2, Proposition 2.17.

Corollary 4.2.6. Let A ⊆ M and let B := ∂J+(A) = ∂I+(A) (cf. Lemma
3.1.36 (iv)). Then, B \ A ⊆ BN ∪BF .

Proof. For a proof see [21], section 2, Corollary 2.3.

De�nition 4.2.7. Let A be an achronal subset of M . The future Cauchy
horizon H+(A) is de�ned to be the set

H+(A) := D+(A) \ I−(D+(A)).

The past Cauchy horizon H−(A) is de�ned to be the set

H−(A) := D−(A) \ I+(D−(A)).

The Cauchy horizon H(A) is the union H(A) = H+(A)∪H−(A) of the future
and past Cauchy horizon.
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Remark 4.2.8. Let p ∈ D+(A). Obviously we have p ∈ H+(A) = D+(A) \
I−(D+(A)) if and only if p /∈ I−(D+(A)) if and only if there is no q ∈ D+(A)
such that q >> p if and only if I+(p) ∩ D+(A) = ∅. Hence we obtain
that H+(A) = {p ∈ D+(A) : I+(p) ∩ D+(A) = ∅}. Similarly we have that
H−(A) = {p ∈ D−(A) : I−(p) ∩D−(A) = ∅}.

Lemma 4.2.9. Let A be a closed achronal subset of M . Then the following
hold.

(i) The closure of the future Cauchy development is the set of all points
p ∈M such that every piecewise smooth past-inextendible timelike curve
from p meets A and

(ii) I+(H+(A)) = I+(A) \D+(A).

Proof. (i) We de�ne X to be the set

X :={p ∈M : every piecewise smooth past-inextendible

timelike curve through p intersects A}

and show that D+(A) = X.
We show that D+(A) ⊆ X. To this end assume that p ∈ D+(A) \ X.

Then there exists a piecewise smooth past-inextendible timelike curve α :
[0, b) → M with α(0) = p, that does not intersect A. In particular we
obtain that p /∈ A. Since A is closed there is a convex neighbourhood U of
p with U ∩ A = ∅. Obviously there is some s ∈ [0, b) such that p ∈ I+(q,U)
with q := α(s). Since I+(q,U) is an open neighbourhood of p ∈ D+(A) by
Proposition 3.1.34 (i), we �nd some r ∈ I+(q,U)∩D+(A). Let γ be the unique
past-directed timelike geodesic that connects r and q in U (cf. Proposition
3.1.30). Since U∩A = ∅, γ does not intersect A. The concatenation γ∪α|[s,b) is
a piecewise smooth past-inextendible timelike curve that starts in r ∈ D+(A),
hence it must intersect A by de�nition of D+(A). Since γ does not intersect
A, α|[s,b) has to intersect A, but this is a contradiction.

We show that X ⊆ D+(A). Let p /∈ D+(A). We show that p /∈ X.
To this end we choose some q ∈ I−(p,M \ D+(A)). In particular we have
that q ∈ M \ D+(A). Since q /∈ D+(A) we �nd a piecewise smooth past-
inextendible causal curve α in M that starts in q and does not intersect
A. Since A ⊆ D+(A) and q ∈ I−(p,M \ D+(A)), we obviously have that
p ∈ I+(q,M \ D+(A)) ⊆ I+(q,M \ A). By Lemma 3.5.3 there is some
piecewise smooth past-inextendible timelike curve through p that does not
intersect A. But this means that p /∈ X.

(ii) We �rst show that I+(H+(A)) ⊆ I+(A)\D+(A). By Remark 4.2.8 we
have that I+(H+(A))∩D+(A) = ∅. Since I+(H+(A)) is open by Proposition
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3.1.34 (i) we obtain that I+(H+(A)) ∩D+(A) = ∅, hence it su�ces to show
that I+(H+(A)) ⊆ I+(A). To this end let p ∈ I+(H+(A)), thus we �nd
some q ∈ H+(A) such that q << p. Since q ∈ H+(A) we in particular have
that q ∈ D+(A). By part (i) of the Lemma there exists a piecewise smooth
past-inextendible timelike curve through q that intersects A, hence there is
some a ∈ A with a << q. We conclude that a << q << p and hence a << p.
This means that p ∈ I+(a) ⊆ I+(A).

We show that I+(H+(A)) ⊇ I+(A) \D+(A). To this end let p ∈ I+(A) \
D+(A). Then there exists some a ∈ A with a << p, i.e. p ∈ I+(a). We
show that there exists some q ∈ H+(A) such that q << p. Let α be a
piecewise smooth future-directed timelike curve that connects a with p. Since
A ⊆ D+(A) ⊆ D+(A) and p /∈ D+(A), α intersects ∂D+(A) in some point
q ∈ ∂D+(A). We show that q ∈ H+(A). To this end we assume that
q ∈ D+(A) \H+(A). Then there exists some r ∈ I+(q) ∩D+(A). Obviously
q ∈ I−(r) and I+(A) ∩ I−(r) is an open neighbourhood of q. We show that
I+(A)∩ I−(r) ⊆ D+(A) implying that q ∈ D+(A)◦, which is a contradiction
to q ∈ ∂D+(A). Hence let r′ ∈ I+(A) ∩ I−(r) and let α be a piecewise
smooth past-inextendible causal curve that starts in r′. Since r′ ∈ I−(r),
there exists a piecewise smooth past-directed timelike curve γ that connects
r and r′. Since γ is timelike and r′ ∈ I+(A), γ is contained in I+(A). Since
A is achronal we have that A ∩ I+(A) = ∅, hence γ does not intersect A.
Since r ∈ D+(A), the concatenation γ ∪ α intersects A, hence α intersects
A. But this means that r′ ∈ D+(A). Since q << p we obtain that p ∈
I+(H+(A)).

Lemma 4.2.10. Let A be a closed and achronal subset ofM . Then we obtain
that

(i) I+(edge(A)) ∩D+(A) = ∅ and

(ii) edge(H+(A)) = edge(A).

Proof. (i) Let s ∈ I+(edge(A)). Since A is closed there exists some p ∈
edge(A) ⊆ A = A such that s ∈ I+(p). By Lemma 3.1.33 the relation << is
open, hence we �nd a neighbourhood Up of p such that Up << s. Since p ∈
edge(A), there exist r ∈ I+(p,Up) and q ∈ I−(p,Up) and a piecewise smooth
past-directed timelike curve β that connects r and q such that {β} ∩A = ∅.
By the above we have that Up << s and thus r << s, hence there exists
some piecewise smooth past-directed timelike curve α that connects s and r.
Now let γ be a piecewise smooth past-inextendible timelike curve that starts
in q. Since {α} ⊆ I+(A) and since A is achronal, we obtain that {α}∩A = ∅.
Similarly we have that {γ} ∩ A = ∅. We conclude that the concatenation
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α ∪ β ∪ γ is a piecewise smooth past-inextendible timelike curve that does
not intersect A, hence s /∈ D+(A) by Lemma 4.2.9 (i). This proves (i).

(ii) We �rst show that edge(A) ⊆ D+(A). Obviously A ⊆ D+(A), since
for p ∈ A every piecewise smooth past-inextendible causal curve through
p intersects A, hence we obtain that edge(A) ⊆ A ⊆ D+(A). Let p ∈
edge(A). By (i) we obtain that I+(p)∩D+(A) = ∅ so that p /∈ I−(D+(A)) =
I−(D+(A)) (cf. Lemma 3.1.36 (i)). We then have p ∈ D+(A) \ I−(D+(A)) =
H+(A). We show that in fact p ∈ edge(H+(A)). Since p ∈ edge(A), there
exists a piecewise smooth past-directed timelike curve γ that connects some
r ∈ I+(p,Up) with q ∈ I−(p,Up) such that {γ}∩A = ∅. Let γ1 be a piecewise
smooth past-inextendible timelike curve that starts in q. We assume that γ
intersects H+(A) in some point s. Then the concatenation γ̃ := γ|[s,q] ∪ γ1 is
a piecewise smooth past-inextendible timelike curve and since s ∈ H+(A) ⊆
D+(A), γ̃ intersects A by Lemma 4.2.9 (i). Since {γ1} ∩ A = ∅, γ already
intersects A. This is a contradiction, hence p ∈ edge(H+(A)). The converse
direction is very similar.

Now we can show a fundamental result

Proposition 4.2.11. Let A be a closed achronal subset of M . Then H+(A)
is generated by null geodesic segments which are either past-inextendible or
have past-endpoint at edge(A)

Proof. We only give a sketch of the proof (cf. also [21], Proposition 2.27).
The set B+ := I+(H+(A)) = I+(A) \ D+(A) is open by Lemma 4.2.9 and
Proposition 3.1.34 (i). Furthermore B+ is an open future-set by Proposition
3.1.9. Its boundary ∂B+ is a proper achronal boundary in the sense of
De�nition 4.2.2. We show that H+(A) is closed. Obviously D+(A) is closed
and by Proposition 3.1.34 (i) the set I−(D+(A)) is open. Hence H+(A) =
D+(A)\ I−(D+(A)) is closed. We show that H+(A) is achronal. By Remark
4.2.8 we have that I+(H+(A)) ∩ D+(A) = ∅. Since I+(H+(A)) is open by
Proposition 3.1.34 (i) we obtain that I+(H+(A))∩D+(A) = ∅. By de�nition
of H+(A) we have H+(A) ⊆ D+(A) and hence I+(H+(A)) ∩ H+(A) = ∅.
Thus H+(A) is achronal by Remark 3.4.2. Obviously we have the following
chain of inclusions. H+(A) ⊆ J+(H+(A)) ⊆ I+(H+(A)) = B+ and since
I+(H+(A)) ∩H+(A) = ∅ we obtain that H+(A) ⊆ B+ \ B+ = ∂B+. Hence
H+(A) is a closed subset of ∂B+. Let p ∈ H+(A) \ A. Since p ∈ D+(A) by
de�nition of the future Cauchy horizon, we obtain a piecewise smooth future-
directed timelike curve γ from A to p by Lemma 4.2.9. Let q ∈ γ∩I−(p). We
�nd a neighbourhood Up of p such that Up ⊆ I+(q). From every r ∈ Up∩B+,
since B+ = I+(A)\D+(A), there exists a piecewise smooth past-inextendible
timelike curve that does not intersect A (by Lemma 4.2.9 (i)) and therefore
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does not meet H+(A). This curve has to intersect Up in some point s ∈ Up.
Since s ∈ I+(q), we �nd a piecewise smooth future-directed timelike curve
γ̃ that connects q and s and does not intersect Up. γ̃ is necessarily crossing
H+(A), since p /∈ edge(H+(A)). By joining γ̃ and γ we obtain a piecewise
smooth future-directed timelike curve from H+(A) \ Up to any r ∈ Up ∩ B+

and we have that Up ∩B+ ⊆ I+(H+(A) \ Up) This means that the condition
of Corollary 4.2.6 holds and we obtain that p ∈ BN ∪BF . Analogously, if p ∈
(H+(A)∩A)\edge(A), we choose the neighbourhood Up within I+(q)∩I−(r)
for some points q ∈ I−(A) and r ∈ I+(A), and such that every timelike curve
in I+(q) ∩ I−(r) meets H+(A) and A. Then, the same reasoning as before
proves that p ∈ BN ∪BF .

Lemma 4.2.12. Let A be a closed and achronal subset of M . Let p ∈
D−(A) \ H−(A). Then every piecewise smooth future-inextendible causal
curve from p intersects A \H−(A) and I+(A).

Proof. Let γ be a piecewise smooth future-inextendible causal curve that
starts at p ∈ D−(A) \ H−(A). Since p /∈ H−(A), the set I−(p) ∩ D−(A) is
nonempty by Remark 4.2.8. Let q ∈ I−(p) ∩ D−(A). Let λ be a piecewise
smooth future-inextendible timelike curve from q. Then for each r ∈ λ
there is an rλ ∈ γ ∩ I+(r). Since q ∈ D−(A), λ intersects A at some point
s ∈ A. We show that s cannot be in H−(A). To this end we assume that
s ∈ H−(A). We obviously have that q ∈ I−(s) ⊆ I−(H+(A)) and since
q ∈ D−(A) ⊆ D−(A), we obtain that q ∈ I−(H−(A))∩D−(A) = ∅. This is a
contradiction. Furthermore there is a point sλ ∈ γ ∩ I+(s) by construction,
thus γ enters into I+(A).

Lemma 4.2.13. Let K be a strongly causal compact subset of an arbitrary
space-time (M, g). Then there is no piecewise smooth future-inextendible
causal curve remaining in K or which enters and re-enters in�nitely many
times in K.

Proof. We cover K with normal neighbourhoods and extract a �nite cover
Ui with i = {1, ..., n}. Since strong causality holds every piecewise smooth
future-directed causal curve cannot re-enter into any of the Ui (i ∈ {1, ..., n})
once it has left it. Consequently, any piecewise smooth future-inextendible
causal curve γ cannot remain in K. Similarly, γ can leave K and then re-
enter into K through some Ui (i ∈ {1, ..., n}) not yet crossed by γ, but this
can be done only a �nite number of times.

For the next lemma we need the following result from the calculus of
variations.
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Proposition 4.2.14. Let M be a Lorentzian manifold and let p ∈M . Let α
be a piecewise smooth causal curve that connects p with some q ∈ M . Then
there exists a piecewise smooth timelike curve from p to q arbitrarily close
to α unless α is a null pregeodesic along which there are no conjugate points
from p to q.

Proof. See [15], section 10, Theorem 51.

Lemma 4.2.15. Let (M, g) be a space-time and let A ⊆ M . Let α be a
piecewise smooth future-directed causal curve that connects p ∈ A with some
q ∈ E+(A) = J+(A) \ I+(A). Then α is a null geodesic without conjugate
points before q that does not intersect I+(A).

Proof. We assume that α is not a null geodesic without conjugate points
before q. By Proposition 4.2.14 there exists a piecewise smooth timelike
curve β that connects p and q which is arbitrarily close to α. β is a variation
of α, hence it is future-directed as well. But this means that q ∈ I+(A) which
is a contradiction.

Now we assume that α intersects I+(A) in some point α(s0) ∈ I+(A).
Obviously there is a piecewise smooth future-directed timelike curve β that
connects some p1 ∈ A with α(s0). The concatenation γ := β ∪ α|[s0,1]

de�nes
a piecewise smooth causal curve that connects p1 and q. Since γ is not
a null pregeodesic, we obtain that q ∈ I+(A) by Lemma 3.1.6. This is a
contradiction and we have proved the lemma.

The next result will be fundamental to what follows.

Proposition 4.2.16. Let A be a closed and achronal subset of M . If the
strong causality condition holds on J+(A), then H+(E+(A)) is non-compact
or empty.

Proof. We only give a sketch of the proof (cf. [21], Lemma 2.7 (iv)). By
Corollary 4.2.6 we obtain that ∂J+(A) \A = ∂J+(A) \A ⊆ BN ∪BF , where
∂J+(A) is the proper achronal boundary that can be divided into four disjoint
subsets BA, BN , BF and BP (cf. Remark 4.2.4).

Now let p ∈ ∂J+(A) \A and let p ∈ E+(A) = J+(A) \ I+(A). Obviously
there is some piecewise smooth future-directed causal curve α and some q ∈ A
such that α connects q and p. Since p ∈ E+(A) we conclude that α is
a null geodesic that does not intersect I+(A) by Lemma 4.2.15 and since
J+(A)◦ = I+(A) by Proposition 3.1.34 we have that α remains in ∂J+(A).
Hence p ∈ BN and there is a past-directed null geodesic through p with
past-endpoint q that remains in ∂J+(A).
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Now assume that p ∈ (∂J+(A) \ A) \ E+(A). We obtain that

∂J+(A) \ E+(A) = ∂J+(A) \ (J+(A) \ I+(A))

= ∂J+(A) ∩ (J+(A) ∩ I+(A)c)c

= ∂J+(A) ∩ (J+(A)c ∪ I+(A))

= ∂J+(A) ∩ J+(A)c,

hence p ∈ ∂J+(A)∩J+(A)c. Hence there is no geodesic segment that connects
some a ∈ A with p. We obtain that p /∈ BN , thus p ∈ BF . The past-directed
null geodesic segment through p lying in ∂J+(A) can be maximally extended
to the past, hence there is a piecewise smooth past-inextendible null geodesic
through p ∈ ∂J+(A).

We show that p /∈ D+(∂J+(A)) \ H+(∂J+(A)) in the case that p ∈
∂J+(A)\A and p ∈ ∂J+(A)\E+(A). The piecewise smooth past-inextendible
null segment remains in ∂J+(A) and thus it cannot enter in I−(∂J+(A)). By
Lemma 4.2.12 we obtain that p /∈ D+(∂J+(A)) \H+(∂J+(A)). Furthermore
we have proved that

∂J+(A) \ E+(A) ⊆ H+(∂J+(A)).

From this equation it follows that

D+(∂J+(A)) \D+(E+(A)) = ∂J+(A) \ E+(A) ⊆ H+(∂J+(A)),

because this is the set of points from which there is a piecewise smooth past-
inextendible timelike curve γ that intersects ∂J+(A)\E+(A). γ must in fact
start in ∂J+(A) \E+(A) due to the achronality of H+(∂J+(A)) and Lemma
4.2.9 (i).

We also have that

intD+(E+(A)) = intD+(∂J+(A))

and

H+(∂J+(A)) \H+(E+(A)) = ∂J+(A) \ E+(A).

We now suppose that H+(E+(A)) is compact. We can cover H+(E+(A))
with a �nite number of convex neighbourhoods {Ui}i=1,...,n with compact
closure such that the closure K of their union would still be compact and
K ⊇ H+(E+(A)).

We show that I−(∂J+(A))∩A = ∅. To this end we assume that p ∈ A and
p ∈ I−(∂J+(A)). Then there is some piecewise smooth past-directed timelike
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curve that connects p with q ∈ ∂J+(A), i.e. p ∈ I−(q). Obviously we have
that q ∈ I+(p) and we �nally obtain that q ∈ I+(p) ⊆ I+(A) = J+(A)◦.
This is a contradiction since q ∈ ∂J+(A).

Every piecewise smooth past-directed causal curve from any q ∈ J+(A)
to A must intersect D+(E+(A)) because of the above properties and the fact
that I−(∂J+(A)) ∩ A = ∅.

Now suppose thatH+(E+(A)) is nonempty. We will show a contradiction.
We �rst obtain that J+(A) \ D+(∂J+(A)) ∩ K 6= ∅. Hence there would be
some piecewise smooth past-inextendible causal curve α1 from this set that
would not intersect ∂J+(A) and thus remaining in J+(A). In addition α1

would not intersect D+(E+(A)).
If α1 remained in K, it would contradict strong causality by Lemma

4.2.13, hence α1 leaves K. Obviously there is some point q1 ∈ {α1} \K and
since q1 ∈ J+(A), there is some piecewise smooth past-directed causal curve
α̃1 that connects q1 with some point a ∈ A. But this means that α̃1 intersects
D+(E+(A)) which in turns means that α̃1 would have previously entered
into J+(A) \D+(∂J+(A)) ∩K again. We choose another piecewise smooth
past-directed causal curve α2 with the same properties as α1 and repeat the
procedure. This yields to α̃2. We proceed by induction. The combination of
all these curves would produce a piecewise smooth past-inextendible causal
curve that enters, re-enters or remains in K, which is a contradiction to
Lemma 4.2.13.

De�nition 4.2.17. Let (M, g) be a space-time and let O be an open subset
of M . A congruence in O is a family of piecewise smooth curves such that
through each p ∈ O there passes precisely one such curve in this family. Thus,
the tangent vectors to a congruence yield a vector �eld in O and, conversely
every smooth vector �eld generates a congruence of curves. The congruence
is said to be smooth if the corresponding vector �eld is smooth. A future-
(past-)directed timelike congruence in O is a congruence in O such that all
curves are future- (past-)directed timelike.

Corollary 4.2.18. Let (M, g) be a space-time such that there exists some
future-trapped set A. If the strong causality condition holds on J+(A), then
there is a piecewise smooth future-inextendible timelike curve γ contained in
D+(E+(A)).

Proof. We only give a sketch of the proof (cf. [21], Lemma 4.1). We show that
E+(A) 6= ∅. Suppose that E+(A) = ∅. Then J+(A) = I+(A) and we obtain
that A ⊆ J+(A) = I+(A), hence A ∩ I+(A) 6= ∅, which is a contradiction
to the achronality of A. By Proposition 4.2.16 the set H+(E+(A)) is non-
compact or empty. If H+(E+(A)) is empty, then the result is trivial. Thus
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we assume that H+(E+(A)) is nonempty and non-compact. Since (M, g)
is time-oriented, we can choose a future-directed timelike congruence in M .
Since H+(E+(A)) is achronal, each piecewise smooth curve of the congruence
that passes through E+(A) can intersect H+(E+(A)) at most once. If all of
them intersected H+(E+(A)), there would be a one-to-one continuous map
from E+(A) to H+(E+(A)), which is impossible because E+(A) is compact
(since it is future-trapped) and H+(E+(A)) is not by assumption. Hence
there must be some curves of the congruence not intersecting H+(E+(A))
and thus remaining in D+(E+(A)).

De�nition 4.2.19. Let (M, g) be a spacetime. A piecewise smooth inex-
tendible causal curve which has compact closure and hence is contained in a
compact set is said to be imprisoned. Let K ⊆M be a compact subset of M .
A piecewise smooth future-directed causal curve γ : [a, b) → M is said to be
future imprisoned in K if there is some a ≤ s0 < b such that γ(s) ∈ K for all
s0 < s < b. γ is said to be partially future imprisoned in K if there exists an
in�nite sequence {sn}n∈N that converges to b with γ(sn) ∈ K for each n ∈ N.
A similar de�nition is given for past imprisoned.

Remark 4.2.20. Let (M, g) be a strongly causal space-time and let K be a
compact subset ofM . ThenK may be covered with a �nite number of normal
neighbourhoods Ui (i = 1, ..., n) such that no piecewise smooth causal curve
which leaves some Ui (i ∈ {1, ..., n}) ever returns to that Ui (i ∈ {1, ..., n}).
This implies the following

Proposition 4.2.21. Let (M, g) be a strongly causal space-time. Then no
piecewise smooth inextendible causal curve can be partially future (or past)
imprisoned in any compact set.

Proposition 4.2.22. Let (M, g) be a chronological space-time with dim(M) ≥
3 such that each inextendible null geodesic has a pair of conjugate points. If
(M, g) contains a future- (past-)trapped set S, then (M, g) is causally discon-
nected by E+(S) (E−(S)).

Proof. Let S be a future-trapped subset of M . By Theorem 3.6.8 we �nd a
piecewise smooth future-inextendible timelike curve γ in the Cauchy devel-
opment D+(E+(S)). We can extend γ to a piecewise smooth future and
past-inextendible timelike curve in (M, g). This extension will again be
denoted by γ. We show that E+(S) is an achronal set. To this end let
p ∈ I+(E+(S)) = I+(J+(S) \ I+(S)) ⊆ I+(J+(S)) = I+(S), where we have
used Proposition 3.1.9, hence p /∈ J+(S)\I+(S) and therefore we obtain that

E+(S) ∩ I+(E+(S)) = (J+(S) \ I+(S)) ∩ (I+(J+(S) \ I+(S))) = ∅,
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(cf. Remark 3.4.2). Since γ is a piecewise smooth inextendible and causal
curve, it intersects by de�nition of the future Cauchy development the future-
horismos and since E+(S) is achronal, γ intersects it in a unique point r ∈
E+(S) ∩ {γ}. Since (M, g) is strongly causal, we can use Proposition 4.2.21
and choose two sequences {pn}n∈N and {qn}n∈N on γ which diverge to in�nity
and satisfy pn << r << qn for each n ∈ N. We show that {pn}n∈N, {qn}n∈N
and E+(S) causally disconnect (M, g). To this end we show that for each
n ∈ N every piecewise smooth causal curve λ : [0, 1] → M with λ(0) = pn
and λ(1) = qn meets E+(S). We can extend such a given λ to a piecewise
smooth past-inextendible curve λ̃ by traversing γ up to pn (n ∈ N) and then
traversing λ from pn to qn (n ∈ N). Since qn ∈ D+(E+(S)), the piecewise
smooth curve λ̃ must intersect E+(S). Since γ meets E+(S) only at r, it
follows that λ intersects E+(S). If S is past-trapped, we can use an analogous
argument.

De�nition 4.2.23. A geodesic σ in M is cospacelike provided the subspace
σ′(s)⊥ of Tσ(s)M is spacelike for one (hence every) s. In particular every
timelike geodesic is cospacelike.

Proposition 4.2.24. Let σ : [0, b] → M be a cospacelike geodesic that con-
nects p and q. If there is a conjugate point σ(r) of p along σ with 0 < r < b,
then σ does not maximize the distance after it has passed its �rst conjugate
point.

Proof. For a proof see [15], section 10, Theorem 17 and Remark 18.

Now we can prove the �rst singularity theorem of Hawking and Penrose.

Theorem 4.2.25. Let (M, g) be a space-time with dim(M) ≥ 3 that satis�es
the generic condition and the strong energy condition. Then (M, g) cannot
satisfy all of the following three requirements together.

(i) (M, g) contains no closed timelike curves.

(ii) Every inextendible causal geodesic in (M, g) contains a pair of conjugate
points.

(iii) There exists a future- or past-trapped set S in (M, g).

Proof. We assume that all three conditions are satis�es and show a contra-
diction. We �rst notice that (M, g) is strongly causal by Proposition 4.1.1.
Without restriction we can assume that there exists a future-trapped set S
in (M, g), hence by Proposition 4.2.22 we obtain that (M, g) is causally dis-
connected by E+(S). By Theorem 3.6.5 there exists an inextendible causal

114



geodesic line γ and by assumption (ii) γ possesses a pair of conjugate points.
We �rst assume that γ is timelike. By Proposition 4.2.24 γ does not maximize
the distance which is a contradiction. Now let γ be a null geodesic. By 4.2.14
there exists a timelike curve arbitrarily close to γ. Again, γ does not max-
imize the distance, which gives a contradiction. Hence all three conditions
cannot hold simultaneously.

4.3 The singularity theorem of Hawking and

Penrose, Version 2

A slight variation of Theorem 4.2.25 gives a statement similar to Theorem
4.1.4

Theorem 4.3.1. Let (M, g) be a chronological space-time with dim(M) ≥
3 which satis�es the generic condition and the strong energy condition. If
(M, g) contains a trapped set, then (M, g) is causally incomplete.

Proof. Since (M, g) is chronological and contains a trapped set, there exists
an inextendible causal geodesic γ that contains a pair of conjugate points (cf.
Theorem 4.2.25). Hence γ is incomplete by Theorem 3.2.21.

4.4 The singularity theorem of Hawking and

Penrose, Version 3

Recall the �rst version of the singularity theorem of Hawking and Penrose
(cf. Theorem 4.2.25). In parts of the literature this Theorem is called the
Lemma of Hawking and Penrose. Since it will be the crucial statement in the
proof of the third version of the singularity theorem of Hawking and Penrose,
we state it again.

Theorem 4.4.1. (Lemma of Hawking and Penrose) The following three
statements cannot hold simultaneously in any space-time (M, g) with dim(M)
≥ 3 that satis�es the generic condition and the strong energy condition.

(i) Every piecewise smooth inextendible causal geodesic has a pair of con-
jugate points,

(ii) the chronology condition is satis�ed and

(iii) there is a trapped set A ⊆M .
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De�nition 4.4.2. Let A : X(M) → X(M) be C∞(M)-linear, hence A is a(
1
1

)
-tensor �eld. Then the trace of A tr(A) is de�ned as the

(
1
1

)
-contraction

of A, hence
tr(A) := C1

1(A).

Remark 4.4.3. Let n := dim(M) and let E1, ..., En be a local
(

1
0

)
-frame

�eld. Let A be a
(

1
1

)
-tensor �eld. Then one easily shows that

tr(A) =
∑n

i=1
εi 〈Ei, A(Ei)〉 .

Now let P be a semi-Riemannian submanifold of M and let

II : X(P )× X(P )→ X(P )⊥,

II(V,W ) := nor∇VW

be its second fundamental form. We can contract the second fundamental
form II to obtain the mean curvature vector �eld H . For p ∈ P Hp is
de�ned as

Hp :=
1

l

∑l

i=1
εiII(ei, ei),

where l := dim(P ) and e1, ..., el is a
(

1
0

)
-frame at p. With these preparations

we can give the next

De�nition 4.4.4. Let P be a semi-Riemannian submanifold ofM with mean
curvature vector �eld H. The convergence of P is the real valued function k
on the normal bundle NP such that

k(z) := 〈z,H(p)〉 ,

where z ∈ TpP⊥

Remark 4.4.5. Recall that for V ∈ X(P ) and Z ∈ X(P )⊥ we can de�ne

ĨI : X(P )× X(P )⊥ → X(P ),

ĨI(V, Z) := tan∇VZ

and one easily shows that this is C∞-bilinear. By setting SZV := −ĨI(V, Z),
we obtain that

〈SZV,W 〉 = 〈V, SZW 〉 ,
whereW ∈ X(P ). SZ : X(P )→ X(P ) is called the form operator in direction
Z and we conclude that

k(z) =
1

l
tr(Sz)

for l := dim(P ) and z ∈ TpP⊥. Details on this remark can be found in [15],
section 10. We also recall the following
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Proposition 4.4.6. Let (M, g) be a space-time with dim(M) = n and let
P be a spacelike n − 2-dimensional submanifold of M with mean curvature
vector �eld H of P . Let σ be a null geodesic normal to P at p = σ(0) such
that the following conditions hold.

(i) k(σ′(0)) = 〈σ′(0), Hp〉TM > 0 and

(ii) Ric(σ′, σ′) ≥ 0.

Then there is a �rst focal point σ(r) of P along σ with 0 < r ≤ 1
k
, where

k = k(σ′(0)), provided σ is de�ned on this interval.

Proof. See [15], section 10, Proposition 43.

De�nition 4.4.7. Let S be a compact spacelike submanifold of (M, g) without
boundary and with dim(S) = n− 2. Let En−1 and En be future-directed null
vector �elds on S such that (En−1, En) ∈ X(S)⊥ × X(S)⊥ and such that
{En−1(p), En(p)} form a basis of TpM

⊥ for all p ∈M . Let S1 and S2 be the
form operators in direction En and En−1. S is said to be a closed trapped
surface if tr(S1) and tr(S2) are both either always positive or always negative
on S.

Remark 4.4.8. Note that in general, a closed trapped surface need not be
a trapped set and vice versa (cf. De�nition 3.6.7).

De�nition 4.4.9. Let (M, g) be a space-time. (M, g) satis�es the null con-
vergence condition if Ric(v, v) ≥ 0 for all null vectors v ∈ TM .

Proposition 4.4.10. Let (M, g) be a space-time with dim(M) ≥ 3 that
satis�es the null convergence condition. If (M, g) contains a closed trapped
surface S, then one of the following two conditions holds.

(i) At least one of the sets E+(S) or E−(S) is compact.

(ii) (M, g) is null incomplete.

Proof. Let tr(S1) > 0 and tr(S2) > 0. We assume that (M, g) is null complete
and show that E+(S) is compact. By Proposition 4.4.6 each null geodesic
σ with σ′(0)⊥S contains a geodesic segment which goes from a point q ∈ S
to a �rst focal point p. Furthermore, the derivation of each null geodesic
orthogonal to S is proportional to En−1 or En. Again, using Proposition
4.4.6 and the compactness of S, it follows that the union of all such null
geodesic segments from S to a focal point is contained in a compact set K
consisting of null geodesic segments starting in S.
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Now let r ∈ E+(S). Then r can be joined to S by a past-directed
null geodesic but not by a piecewise smooth past-directed timelike curve
(cf. Lemma 4.2.15). Thus r ∈ K and hence E+(S) ⊆ K. To show that
E+(S) is closed let {pn}n∈N be a sequence of points of E+(S) with limit p.
Since K is closed, p ∈ K. From the de�nition of K we have p ∈ J+(S).
We assume that p ∈ I+(S). Then the open set I+(S) must contain some
elements of the sequence {pn}n∈N, contradicting pn ∈ E+(S) for all n ∈ N.
Thus p /∈ I+(S) which yields p ∈ E+(S). This shows that E+(S) is a closed
subset of the compact set K and hence is compact.

If we assume that (M, g) is null complete and that tr(S1) < 0 and tr(S2) <
0, then the same arguments show that E−(S) is compact. Hence we have
proved the Proposition.

Proposition 4.4.11. Let (M, g) be a strongly causal space-time with dim(M)
≥ 3 that satis�es the null convergence condition. If (M, g) contains a closed
trapped surface S, then at least one of the following conditions hold.

(i) H := E+(S) ∩ S (or H := E−(S) ∩ S) is a trapped set.

(ii) (M, g) is null incomplete.

Proof. We assume that (M, g) is null complete and show that H is a trapped
set. Then the proposition is proved. By Proposition 4.4.10 we obtain that
either E+(S) or E−(S) is compact. We consider the case that E+(S) is
compact. Obviously H is compact as a closed subset of the compact set
E+(S). By Remark 3.4.2 H is achronal, since it is a subset of the achronal
set E+(S) (cf. the proof of Proposition 4.2.22).

We show that H is nonempty. Since E+(S) = J+(S) \ I+(S), the set
H = S \ I+(S) will be nonempty if and only if S contains some points which
are not in I+(S). But if S was contained in I+(S), there would be a �nite
cover of the compact set S by open sets I+(p1), ..., I+(pn) with all pi ∈ S. By
the proof of Proposition 3.1.17 this would imply the existence of a piecewise
smooth closed timelike curve in (M, g) which would contradict the strong
causality of (M, g). Hence H 6= ∅.

It remains to show that E+(H) is compact. We show that E+(H) =
E+(S). We will demonstrate this by showing that I+(H) = I+(S) and
J+(H) = J+(S). To this end we cover the compact set S by a �nite number
of open sets U1, ...,Uk of (M, g) such that each Ui with i ∈ {1, ..., k} is a
normal neighbourhood and no piecewise smooth causal curve which leaves
Ui with i ∈ {1, ..., k} ever returns.

Since S is spacelike by assumption, we may in addition assume that each
Ui ∩ S with i ∈ {1, ..., k} is achronal by choosing the Ui with i ∈ {1, ..., k}
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su�ciently small. Since H ⊆ S, we obviously obtain that I+(H) ⊆ I+(S).
We show that I+(S) ⊆ I+(H). To this end suppose there exists some q ∈
I+(S)\I+(H). Then there exists some p1 ∈ S with p1 << q and we conclude
that p1 ∈ Ui(1) ∩ S for some index i(1). Since q /∈ I+(H), we obtain that
p1 /∈ H and hence p1 /∈ E+(S). Thus there exists p2 ∈ S with p2 << p1.
Since Ui(1)∩S is achronal, p2 /∈ Ui(1). Now p2 ∈ Ui(2)∩S for some i(2) 6= i(1).
Again q /∈ I+(H) yields p2 /∈ E+(S). Thus there exists p3 ∈ S with p3 << p2.
Furthermore, by construction of the sets Ui (with i ∈ {1, ..., k}) we have
p3 /∈ Ui(1) ∪ Ui(2). Thus p3 ∈ Ui(3) ∩ S for some i(3) di�erent from i(1) and
i(2). If we proceed in this manner we obtain an in�nite sequence p1, p2, ...
in S with corresponding sets Ui(1),Ui(2), ... such that i(j1) 6= i(j2) if j1 6= j2.
This contradicts the �niteness of the number of sets Ui (with i ∈ {1, ..., k})
of the given cover. Hence I+(H) ⊇ I+(S).

It remains to show that J+(H) = J+(S). Since H ⊆ S we obviously
obtain that J+(H) ⊆ J+(S). We show that J+(S) ⊆ J+(H). To this end
suppose there exists some q ∈ J+(S)\J+(H). By the above we conclude that
q /∈ I+(H) = I+(S) and hence there is a piecewise smooth future-directed
null curve from some point p ∈ S to the point q by Lemma 4.2.15. Since
p ∈ S and p ≤ q, p /∈ I+(S) (otherwise it would follow that q ∈ I+(H)) and
we have that p ∈ E+(S). Thus p ∈ E+(S)∩ S = H which yields q ∈ J+(H).
But this is a contradiction.

Now we conclude that

E+(H) = E+(S)

which is compact by assumption.

Lemma 4.4.12. Let (M, g) be a space-time and let Σ ⊆ M be a closed
achronal set without edge. Then

E+(Σ) = E−(Σ) = Σ.

In particular, if Σ is compact, then Σ is both future- and past-trapped.

Proof. We �rst show that Σ ⊆ E+(Σ). Since Σ is achronal, we obtain that
Σ ∩ I+(Σ) = ∅ by Remark 3.4.2, hence Σ ⊆ J+(Σ) \ I+(Σ) = E+(Σ).

Next we show that E+(Σ) ⊆ Σ. Suppose there exists p ∈ ∂J+(Σ) \ Σ.
Then there is a past-directed null geodesic segment γ through p that remains
in ∂J+(Σ) and has a past-endpoint in Σ (cf. the proof of Proposition 4.2.16).
Let y ∈ Σ be a past-endpoint of γ. We show that y ∈ edge(Σ). Since
edge(Σ) = ∅ this will show that ∂J+(Σ) \ Σ = ∅

We �rst note that we can �nd a neighbourhoodW of {γ}\{y} which does
not intersect Σ. Assume that y ∈ Σ\ edge(Σ). We will show a contradiction.
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Since y /∈ edge(Σ), we can �nd a convex neighbourhood U of y such
that for every pair of points z̃± in I±(y,U) every piecewise smooth timelike
curve λ which connects z̃− and z̃+ intersects Σ. Note that causality in U
corresponds to causality in the Minkowski-space.

Now let x ∈ U ∩ ∂J+(Σ) \ Σ and let z− ∈ I−(y,U) ⊆ I−(x,U). We can
choose some z+ ∈ I+(y,U) such that the set

I+(z−,U) ∩ I−(z+,U) ∩ {γ} ∩W 6= ∅.

Let z0 ∈ I+(z−,U) ∩ I−(z+,U) ∩ {γ} ∩ W . Obviously there is a piecewise
smooth future-directed timelike curve λ1 that connects z− with z0. Further-
more there exists some point ẑ+ ∈ I+(y,U) ∩ W and a piecewise smooth
future-directed timelike curve λ2 ⊆ W from z0 to ẑ+. We de�ne λ to be the
concatenation of λ1 and λ2, λ := λ1 ∪ λ2. Since y ∈ Σ \ edge(Σ), λ intersects
Σ. By construction of W we obtain that λ2 cannot intersect Σ. Hence there
is some point z ∈ λ1 ∩ Σ. We �nally conclude that

x ∈ J+(z0) ⊆ J+(I+(z)) = I+(z) ⊆ I+(Σ)

in contradiction to x ∈ ∂J+(Σ).
Since edge(Σ) = ∅ by assumption, there cannot be any past-directed null

geodesic segments that have past-endpoints in edge(Σ), hence ∂J+(Σ)\Σ = ∅
and we conclude that

E+(Σ) = J+(Σ) \ I+(Σ) = J+(Σ) \ J+(Σ)◦ ⊆ Σ.

Very similar arguments show that E−(Σ) = Σ. This �nishes the proof.

Let us brie�y summarize our results about the set ∂J+(A)\A for a closed
set A ⊆M .

Corollary 4.4.13. Let A ⊆M be a closed set. Then ∂J+(A) is an achronal
topological hypersurface. Through every p ∈ ∂J+(A) \ A there passes a
null geodesic segment that is either past-inextendible or has past-endpoint
in edge(A).

Proof. By Corollary 3.4.13 we have that A is an achronal topological hyper-
surface. By the proof of Proposition 4.2.16 we obtain that through every
p ∈ ∂J+(A) \ A there passes some null geodesic segment that is either past-
inextendible or has past-endpoint in A. By the proof of Lemma 4.4.12 we
�nally conclude that these past-endpoints must be contained in edge(A).

120



Now we can show the fundamental result of this section.

Theorem 4.4.14. (Singularity theorem of Hawking and Penrose) Let (M, g)
be a space-time with dim(M) ≥ 3 that satis�es the chronology condition, the
generic condition and the strong energy condition. If one of the following
conditions holds, then (M, g) is causally geodesically incomplete.

(i) There exists a compact achronal set Σ without edge.

(ii) There exists a closed trapped surface S.

Proof. We �rst assume that there exists a compact achronal set Σ without
edge. Suppose that (M, g) is causally geodesically complete. By Theorem
3.2.21 we obtain that each inextendible causal geodesic has a pair of conjugate
points. By Lemma 4.4.12 Σ is both past- and future-trapped. Since (M, g) is
chronological by assumption, we arrive at a contradiction to Theorem 4.4.1.

We now assume that there exists a closed trapped surface S. Again, sup-
pose that (M, g) is causally geodesically complete. By Theorem 4.1.3 (M, g)
is strongly causal. Since the strong energy condition implies the null conver-
gence condition (cf. De�nitions 3.2.4 and 4.4.9) Proposition 4.4.11 proves the
existence of a trapped set H which is given by H = E+(S)∩S. By Theorem
3.2.21 each inextendible causal geodesic has a pair of conjugate points. This
is again a contradiction to Theorem 4.4.1.

4.5 Singularities in globally hyperbolic space-

times

De�nition 4.5.1. Let (M, g) be a space-time. A subset Σ of M is said to be
a Cauchy hypersurface , if every piecewise smooth inextendible timelike curve
intersects Σ precisely once.

Proposition 4.5.2. Let Σ ⊆M be a Cauchy hypersurface. Then

(i) Σ is achronal,

(ii) Σ is a closed topological hypersurface and

(iii) every piecewise smooth inextendible causal curve intersects Σ.

Proof. (i) We assume that there exists some piecewise smooth timelike curve
α that intersects Σ twice. We can extend α to a a piecewise smooth inex-
tendible timelike curve α̃. Obviously α̃ intersects Σ at least twice. This is a
contradiction to the de�nition of a Cauchy hypersurface, hence Σ is achronal.
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(ii) We �rst show that

M = I−(Σ) t Σ t I+(Σ).

To this end let p ∈M and let α be a piecewise smooth inextendible timelike
curve through p. Let q ∈ M be the unique intersection point of α with Σ,
hence q ∈ Σ. We obtain that p ∈ I−(q)∪{q}∪I+(q) ⊆ I−(Σ)∪S∪I+(Σ) and
therefore M ⊆ I−(Σ) ∪ Σ ∪ I+(Σ). Obviously the converse direction holds,
i.e. I−(Σ) ∪ S ∪ I+(Σ) ⊆M . Thus we obtain that M = I−(Σ) ∪ Σ ∪ I+(Σ).
We show that this union is disjoint. Assume there was some q ∈ I±(Σ) ∩ Σ
or there was some q ∈ I−(Σ) ∩ I+(Σ). Then there exists some piecewise
smooth timelike curve that intersects Σ twice which is a contradiction to the
achronality of Σ. It follows that

Σ = M \ (I−(Σ) ∪ I+(Σ))

is closed. We show that

Σ = ∂I+(Σ) = ∂I−(Σ).

By the previous part we have that I±(Σ) t Σ = M \ I∓(Σ) is closed, hence
I±(Σ)tΣ = I±(Σ) t Σ and we conclude that ∂I±(Σ) = I±(Σ)∩M \ I±(Σ) ⊆
(I±(Σ) t Σ) ∩ (I∓(Σ) t Σ) = Σ. On the other hand we obviously have that
Σ ⊆ ∂I±(Σ). We show that

edge(Σ) = ∅.

To this end we show that even every piecewise smooth timelike curve α from
I−(Σ) to I+(Σ) intersects Σ. Assume that α did not intersect Σ, then we
would obtain that α([a, b]) = (α([a, b])∩ I−(Σ))t (α([a, b])∩ I+(Σ)) which is
a contradiction since α([a, b]) is connected. Hence (ii) follows from Corollary
3.4.9.

(iii) We suppose that there is some piecewise smooth inextendible causal
curve α that does not intersect Σ. Since M = I−(Σ) t Σ t I+(Σ), we can
assume without loss of generality that α is contained in I+(Σ). We choose
a point p ∈ {α} and some q ∈ I+(p,M \ Σ). Since Σ is a closed set, we
can use Lemma 3.5.3 to obtain a piecewise smooth past-directed timelike
curve α̃ : [0, b) → M \ Σ such that α̃ is past-inextendible in M . α̃ does not
intersect Σ, hence it is contained in I+(Σ). Now we can extend α̃ to the
future such that it becomes a piecewise smooth inextendible timelike curve
that remains in I+(Σ), thus it does not intersect Σ. This is a contradiction
to the de�nition of a Cauchy hypersurface. This proves (iii).
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Proposition 4.5.3. Let Σ be an achronal subset of M . Σ is a Cauchy
hypersurface if and only if its domain of dependence equals M , i.e. D(Σ) =
M .

Proof. Let Σ be a Cauchy hypersurface ofM . The proof of Proposition 4.5.2
states that M = I−(Σ) t Σ t I+(Σ). Furthermore we show that

D±(Σ) = Σ ∪ I±(Σ).

We only show this for the future-case. By the proof of Lemma 3.5.4 we
obtain that D+(Σ) ⊆ Σ ∪ I+(Σ). We also have Σ ⊆ D+(Σ) (cf. the proof of
Lemma 4.2.10). It remains to show that I+(Σ) ⊆ D+(Σ). To this end let
q ∈ I+(Σ) and let α be a piecewise smooth past-inextendible causal curve
through q. Let α̃ be a piecewise smooth future-inextendible extension of α
such that α̃ = α ∪ β. By Proposition 4.5.2 (iii) α̃ intersects the set Σ. If
β intersected Σ in some point q1 ∈ Σ, we would obtain that q1 ∈ J+(q) ⊆
J+(I+(Σ)) = I+(Σ), where we have used Proposition 3.1.9, implying that
q1 ∈ I+(Σ) and q1 ∈ Σ. This is a contradiction to Σ ∩ I+(Σ) = ∅. Hence α
intersects Σ, that is q ∈ D+(Σ). A very similar proof shows that Σ ⊆ D−(Σ)
and I−(Σ) ⊆ D−(Σ). Hence we obtain that D(Σ) = D+(Σ) ∪D−(Σ) = M .

Conversely, let D(Σ) = M . By de�nition of the Cauchy development
D(Σ) every piecewise smooth inextendible timelike curve intersects Σ. Since
Σ is achronal by Proposition 4.5.2 (i), this curve intersects Σ at most once,
hence precisely once. This shows that Σ is a Cauchy hypersurface.

Corollary 4.5.4. Let (M, g) be a space-time that contains a Cauchy hyper-
surface Σ. Then (M, g) is globally hyperbolic.

Proof. By Theorem 3.5.5 and Proposition 4.5.2 (i) we obtain that intD(Σ) =
D(Σ)◦ is globally hyperbolic. By Proposition 4.5.3 we have that D(Σ) = M ,
hence D(Σ)◦ = M .

Proposition 4.5.5. Let Σ ⊆ M be a Cauchy hypersurface and let X be a
smooth timelike vector �eld on M . For each p ∈ M let ρ(p) be the unique
intersection point of the maximal integral curve of X through p with Σ. Then
ρ is well de�ned, continuous and open. Furthermore we obtain that ρ|Σ = idΣ

and that Σ is connected.

Proof. Let p ∈ M and let c be the unique maximal integral curve of X
through p. If the domain of c is �nite, then c cannot be continuously ex-
tended. Hence we assume that the domain of c is not bounded (for instance
to the right). We have to show that the limit limt→∞ c(t) does not exist. To
this end we assume that the limit exists, hence there is some p ∈ M such
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that p = limt→∞ c(t). We show that in this case X(p) = 0, which contradicts
the fact that X is timelike. We assume that X(p) 6= 0. By the straightening
out theorem there exists a chart (Ṽ , ψ = (y1, ..., yn)) such that X = ∂y1 . In
these coordinates the geodesic c can be written as t 7→ x0 + te1, hence it
does not converge as t → ∞. This is a contradiction. Hence c has a unique
intersection point ρ(p) with Σ. Furthermore ρ is well-de�ned.

Let U ⊆ R × M be the maximal open domain of the �ow FlX of the
vector �eld X. By Proposition 4.5.2 (ii) Σ is a topological hypersurface, so
R×Σ is a topological hypersurface in R×M and thus U(Σ) := (R×Σ)∩U
is a topological hypersurface in U .

We show that the map Ψ := FlX |U(Σ)
: U(Σ) → M is bijective. To

this end let p ∈ M . The map t → FlXt (p) intersects Σ precisely once,
hence there exists a t0 such that FlXt0 (p) = q ∈ Σ implying that p =
FlX(−t0, q) with (−t0, q) ∈ U(Σ). This means that Ψ is onto. We assume
that FlX(t1, q1) = FlX(t2, q2) with (ti, qi) ∈ U(Σ) (i = 1, 2), hence we obtain
that q2 = FlX(t1 − t2, q1). This means that the �ow line through q1 ∈ Σ
intersects Σ in q2 implying that q1 = q2 and t1 = t2. This shows that Ψ is
one-to-one. Furthermore we obtain that Ψ is continuous.

We show that Ψ is an open mapping. To this end let (W , ϕ) be a chart of
the topological hypersurface U(Σ) and let (V , χ) be a chart of M . Without
restriction we can assume that Ψ(W) ⊆ V . Obviously the map χ ◦Ψ ◦ ϕ−1 :
ϕ(W) → Rn is continuous and one-to-one, hence a homeomorphism by a
theorem of Brouwer (cf. Remark 3.4.7). This shows that Ψ(W) is open.
Summing up, the map Ψ : U(Σ)→M is a homeomorphism.

Let pr2 : R ×M → M the projection. pr2 is continuous and an open
mapping. Since ρ = pr2 ◦ Ψ−1, ρ is continuous and an open mapping. If
p ∈ Σ, then p itself is the unique intersection point of the unique integral
curve through p with Σ, i.e. ρ(p) = p and we obtain that ρ|Σ = idΣ. Since
M is connected as a space-time and since ρ is continuous with ρ(M) = Σ, Σ
is connected.

Theorem 4.5.6. (Singularity theorem of Penrose) Let (M, g) be a space-
time that satis�es the null convergence condition. If (M, g) contains a non-
compact Cauchy hypersurface Σ and a closed trapped surface S, then the
space-time is null geodesically incomplete.

Proof. We assume that S is a future-trapped submanifold ofM . If the space-
time (M, g) was null geodesically complete, its future-horismos E+(S) would
be a compact set by Remark 4.4.10. Since (M, g) contains a Cauchy hy-
persurface Σ, it is globally hyperbolic by Corollary 4.5.4 and therefore it is
causally simple by Proposition 3.1.42. By Proposition 3.1.35 we �nd that
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E+(S) = ∂J+(S), hence the future-horismos of S equals the boundary of the
causal future of S. By De�nition 4.2.2 E+(S) is a compact proper achronal
boundary.

Let X be a smooth timelike vector �eld on M . For p ∈M let ρ(p) be the
unique intersection point of the unique maximal integral curve of X through
p with Σ (cf. Proposition 4.5.5). Now we consider ρ|E+(S)

: E+(S) → Σ.

Since E+(S) is achronal, ρ is one-to-one: we suppose that FLX(t1, q1) =
FlX(t2, q2) with qi ∈ E+(S). As in the proof of Proposition 4.5.5 we obtain
that q2 = FlX(t1 − t2, q1), hence the timelike �ow line of X through q1 ∈
E+(S) intersects E+(S) again in q2, which is a contradiction in the case
that q1 6= q2. Hence ρ|E+(S)

: E+(S) → Σ is one-to-one and continuous
(again, cf. the proof of Proposition 4.5.5). Since E+(S) and Σ are topological
hypersurfaces, we can use the same proof as in Proposition 4.5.5 to obtain
that ρ|E+(S)

is an open mapping. Hence ρ(E+(S)) is open in Σ and since
E+(S) is compact we obtain that ρ(E+(S)) is compact, hence closed in Σ.
By Proposition 4.5.5 Σ is connected, hence Σ = ρ(E+(S)) is compact, which
is a contradiction.

For our further considerations it will be necessary to extend the de�ni-
tion of global hyperbolicity (cf. De�nition 3.1.39). To this end we give the
following

De�nition 4.5.7. Let (M, g) be a space-time. M is said to be globally hy-
perbolic if it is stably causal (cf. De�nition 3.1.25) and if there exists a time
function t : M → R such that the time slices Sa := t−1(a) (for a ∈ R) satisfy
D(Sa) = M , hence the Cauchy development of Sa is the whole space-time
(cf. De�nition 3.5.1).

Remark 4.5.8. Since the time function t : M → R is smooth and satis�es
〈gradt, gradt〉 < 0 everywhere, we obtain that for arbitrary a ∈ R the set Sa
is a semi Riemannian hypersurface with signum −1. In particular it possesses
a global unit normal vector �eld which we will denote by n := gradt

‖gradt‖ .

Remark 4.5.9. Let (M, g) be a globally hyperbolic space-time and let S
be an arbitrary time slice. One can show that for p ∈ D+(S) the set
D+(S) ∩ J−(p) is compact. As a Corollary of this we obtain that J(p, q) =
J+(p) ∩ J−(q) is compact and J+(p) is closed, hence De�nition 4.5.7 in-
deed generalizes De�nition 3.1.39. For more details on this remark see [13],
Proposition 3.11 and Corollary 3.12.

Remark 4.5.10. In what follows we denote by θ the trace of the second
fundamental form or the extrinsic curvature, which is also called the ex-
pansion. We furthermore recall the following three Propositions from the
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calculus of variations. For the proofs see [13], Proposition 3.8, Proposition
3.9 and Theorem 3.13.

Proposition 4.5.11. Let (M, g) be a globally hyperbolic space-time satisfying
the strong energy condition (cf. De�nition 3.2.4) and let S be an arbitrary
time slice and p ∈ S a point where θ := θ0 < 0. Denote by cp the unique
timelike geodesic with cp(0) = p and c′p(0) = np = n(p), where n is the global
unit normal vector �eld from Remark 4.5.8. If the geodesic cp can be extended
to a distance t0 := − n

θ0
to the future of S, then it contains at least one point

conjugate to S.

Proposition 4.5.12. Let (M, g) be a globally hyperbolic space-time, S a time
slice, p ∈M and c a piecewise smooth timelike geodesic through p orthogonal
to S. If there exists some conjugate point between S and p then c does not
maximize length (among the timelike curves connecting S to p).

Proposition 4.5.13. Let (M, g) be a globally hyperbolic space-time with time
slice S and p ∈ D+(S). Then among all timelike curves connecting p to S
there exists a timelike curve with maximal length. This curve is a timelike
geodesic that is orthogonal to S.

With these preparations we can now formulate a fundamental result in
singularity theory that is based on global hyperbolicity.

Theorem 4.5.14. Let (M, g) be a globally hyperbolic space-time satisfying
the strong energy condition (cf. De�nition 3.2.4) and suppose that the ex-
pansion satis�es θ ≤ θ0 < 0 on a time slice S. Then (M, g) is not timelike
geodesically complete.

Proof. Let c : [a, b] → M be a future-directed timelike geodesic orthogonal
to S. Recall that the length of c is given by τ(c) :=

∫ b
a
‖ċ(t)‖ dt. τ(c) is

interpreted as the proper time measured by the particle between events c(a)
and c(b). We will show that no future-directed timelike geodesic orthogonal
to S can be extended to proper time greater than τ0 := − n

θ0
to the future of

S, where n is the dimension of M . We assume that this was wrong. Then
there would exist some future-directed timelike geodesic c orthogonal to S
de�ned on the interval [0, τ0 + ε] for some ε > 0. We set p := c(τ0 + ε).
Since M = D+(S) we can use Proposition 4.5.13 to obtain some piecewise
smooth timelike geodesic γ with maximal length connecting S and p ∈ M
that is orthogonal to S. Since τ(c) = τ0 + ε, we would necessarily have
τ(γ) ≥ τ0+ε. Proposition 4.5.11 guaranties that γ would develop a conjugate
point at a distance of at most τ0 to the future of S. Proposition 4.5.12 states
that γ would cease to be maximizing beyond this point. This leads to a
contradiction.
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4.6 The basic structure of singularity theorems

We �nally investigate the general structure of a singularity theorem. As we
have seen, all singularity theorems have the same basic structure: given some
space-time (M, g) that satis�es

(i) an energy condition,

(ii) a causality condition and

(iii) a boundary or initial condition,

then (M, g) contains at least one incomplete causal geodesic.
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APPENDIX A

PARALLEL TRANSPORTS AND FRAMES

A.1 General parallel transports

De�nition A.1.1. An
(
r
s

)
-tensor �eld T along a smooth curve α : I →M is

said to be parallel along α if its �rst induced covariant derivation vanishes,
i.e. if

∇T
ds

= 0.

Now let α : I → M (with n := dim(M)) be a smooth curve and let T ∈
Γ(I, T rsM,α). We derive a local representation for ∇T

ds
in terms of Christo�el-

symbols. We �rst recall that by de�nition of the Christo�el-symbols we have
that

∇∂xi
∂xj = Γkij∂xk .

The next lemma gives us a local representation of the dual expression.

Lemma A.1.2. Let α be a smooth curve and let ω ∈ Γ(I, T 0
1M,α). Then

we obtain that
∇∂xi

dxj = −Γjikdx
k.

Proof. We �rst observe that for m ∈ N we have ∇∂
xj

(m) = ∂xj(m) = 0,
hence 0 = ∇∂

xj
(δik) = ∇∂

xj
(dxi(∂xk)) = (∇∂

xj
(dxi))(∂xk) + dxi(∇∂

xj
(∂xk)).

From this we conclude that

(∇∂
xj

(dxi))(∂xk) = −dxi(∇∂
xj

(∂xk)) = −dxi(Γljk∂xl) = −Γijk.
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By using that ∇∂
xj

is a tensor derivation we now conclude that

(∇∂
xj

(∂xi1 ⊗ ...⊗ dxjs))
= Γk1

ji1
(∂xk1 ⊗ ...⊗ dxjs)

+ ...+

+ Γkrjir(∂xi1 ⊗ ...⊗ ∂xkr ⊗ dx
j1 ⊗ ...⊗ dxjs)

− Γj1jk1
(∂xi1 ⊗ ...⊗ ∂xir ⊗ dxk1 ⊗ dxj2 ⊗ ...⊗ dxjs)

− ...−
− Γjsjks(∂xi1 ⊗ ...⊗ dx

ks).

For T = T i1,...,irj1,...,js
∂xi1 ⊗ ...⊗ dxjs we obtain

∇∂
xj

(T i1,...,irj1,...,js
∂xi1 ⊗ ...⊗ dxjs)

= (∂xj(T
i1,...,ir
j1,...,js

))∂xi1 ⊗ ...⊗ dxjs + T i1,...,irj1,...,js
∇∂

xj
(∂xi1 ⊗ ...⊗ dxjs)

= (∂xj(T
i1,...,ir
j1,...,js

))∂xi1 ⊗ ...⊗ dxjs

+ T i1,...,irj1,...,js
(Γk1

ji1
(∂xk1 ⊗ ...⊗ dxjs)

+ ...+

+ Γkrjir(∂xi1 ⊗ ...⊗ ∂xkr ⊗ dx
j1 ⊗ ...⊗ dxjs)

− Γj1jk1
(∂xi1 ⊗ ...⊗ ∂xir ⊗ dxk1 ⊗ dxj2 ⊗ ...⊗ dxjs)

− ...−
− Γjsjks(∂xi1 ⊗ ...⊗ dx

ks)).

Locally we have that (cf. the uniqueness proof of Proposition 2.3.4)

∇T
ds

(s) =
dT i1,...,irj1,...,js

ds
(s)(∂xi1 ◦ α)(s)⊗ ...⊗ (dxjs ◦ α)(s)

+ T i1,...,irj1,...,js
(s)∇α′(s)(∂xi1 ⊗ ...⊗ dxjs).

Furthermore we obtain that

∇α′(s)(∂xi1 ⊗ ...⊗ dxjs)
= ∇ d(xj◦α)

ds
∂
xj

(∂xi1 ⊗ ...⊗ dxjs)

=
d(xj ◦ α)

ds
∇∂

xj
(∂xi1 ⊗ ...⊗ dxjs),
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thus we �nd that

∇T
ds

(s) =
dT i1,...,irj1,...,js

ds
(s)(∂xi1 ◦ α)(s)⊗ ...⊗ (dxjs ◦ α)(s)

+ T i1,...,irj1,...,js
(s)

d(xj ◦ α)

ds
(s)∇∂

xj
(∂xi1 ⊗ ...⊗ dxjs)

=
dT i1,...,irj1,...,js

ds
(s)(∂xi1 ◦ α)(s)⊗ ...⊗ (dxjs ◦ α)(s)

+ T i1,...,irj1,...,js
(s)

d(xj ◦ α)

ds
(s)(Γk1

ji1
(∂xk1 ⊗ ...⊗ dxjs)

+ ...+

+ Γkrjir(∂xi1 ⊗ ...⊗ ∂xkr ⊗ dx
j1 ⊗ ...⊗ dxjs)

− Γj1jk1
(∂xi1 ⊗ ...⊗ ∂xir ⊗ dxk1 ⊗ dxj2 ⊗ ...⊗ dxjs)

− ...−
− Γjsjks(∂xi1 ⊗ ...⊗ dx

ks))

Hence locally ∇T
ds

= 0 is a system of linear ordinary di�erential equations
and we obtain the following

Proposition A.1.3. Let α : I →M be a smooth curve in a semi-Riemannian
manifold (M, g). For a ∈ I and t ∈ Tα(a)M ⊗ ...⊗ Tα(a)M ⊗ Tα(a)M

∗ ⊗ ...⊗
Tα(a)M

∗ there is a unique parallel tensor �eld T ∈ Γ(I, T rsM,α) such that
T (a) = t.

Now we can de�ne the
(
r
s

)
- parallel transport.

De�nition A.1.4. Let α : I →M be a smooth curve in a semi-Riemannian
manifold (M, g) and let a, b ∈ I. We set p := α(a) and q := α(b). For
t ∈ TpM ⊗ ... ⊗ TpM ⊗ TpM

∗ ⊗ ... ⊗ TpM
∗ let Tt be the unique parallel(

r
s

)
-tensor �eld along α with Tt(a) = t. The map

P(r,s) := P(r,s;a,b)(α) : TpM ⊗ ...⊗ TpM∗ → TqM ⊗ ...⊗ TqM∗,

P(r,s)(t) := Tt(b)

is called the
(
r
s

)
- parallel transport of t along α from p to q.

A.2 Examples

In the previous section we have derived the
(
r
s

)
- parallel transport. For our

further considerations it is necessary to treat
(

1
0

)
- and

(
0
1

)
- parallel transports.
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We proceed in the same manner as in the previous section and show that the
parallel transport equations take an easy form.

Let A ∈ Γ(I, T 1
0M,α) be a smooth vector �eld along a smooth curve

α : I →M . Locally, A is given by

∇A
ds

(s) = (
dAk

ds
(s) + Γkij(α(s))

d(xj ◦ α)

ds
(s)Ai(s))∂xk(α(s)),

which follows immediately from the previous section.

Remark A.2.1. It should be noted that we obtained the local representation
for A directly from the previous section. An alternative approach is the
following. For A ∈ Γ(I, T 1

0M,α), the proof of Proposition 2.3.4 shows that
A is locally given by

∇A
ds

(s) =
dAi

ds
(s)(∂xi ◦ α)(s) + Ai(s)∇α′(s)∂xi .

By using that

∇α′(s)∂xi = ∇ d(xj◦α)
ds

∂
xj
∂xi =

d(xj ◦ α)

ds
∇∂

xj
∂xi

=
d(xj ◦ α)

ds
Γkij∂xk ,

we obtain that

∇A
ds

(s) = (
dAk

ds
(s) + Γkij(α(s))

d(xj ◦ α)

ds
(s)Ai(s))∂xk(α(s)),

which coincides with the above.

Now let ω be a smooth covector �eld along a smooth curve α. Again, by
the previous section we obtain that

∇
ds
ω(s) =

dωl
ds

(s)(dxl ◦ α)(s)− ωl(s)
d(xj ◦ α)

ds
(s)Γljk(α(s))dxk(α(s)).

Our next aim is to show that
(
r
s

)
- parallel transport is a linear isometry.

To this end we will develop general frames along smooth curves. This will
be done in the next section.
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A.3 Frames

We �rst recall the following lemma from Linear Algebra.

Lemma A.3.1. Let E and F be �nite dimensional vector spaces over the
�eld R. Let a := {ai}i∈I be a basis of E, b := {bj}j∈J a basis of F and let
{ci,j}(i,j)∈I×J be an arbitrary matrix over R. Then there is a unique bilinear
map φ : E × F → R such that φ(ai, bj) = ci,j holds for all (i, j) ∈ I × J .

Remark A.3.2. LetM be a semi -Riemannian manifold and TM its tangent
bundle , i.e.

TM :=
⊔
p∈M

TpM =
⋃
p∈M

{p} × TpM.

Recall that the triple (TM,M, πM) is a vector bundle. The map πM : TM →
M, (p, v) 7→ p is called the canonical projection. For all p ∈ M we have
TpM = (πM)−1(p). We set (TpM)rs := T rs (TpM) (cf. Remark 2.1.3) and
de�ne the

(
r
s

)
-tensor bundle over TM by

T rs (TM) :=
⊔
p∈M

T rs ((πM)−1(p)) =
⊔
p∈M

T rs (TpM)

=
⋃
p∈M

{p} × T rs (TpM) =
⋃
p∈M

{p} × (TpM)rs.

Let πrs : T rs (TM)→M, πrs(t) := p ∈M for t ∈ (TpM)rs denote the canonical
projection. Then (T rs (TM),M, πrs) is a vector bundle. Let P : TpM →
(TpM)∗, P (v)(v′) := 〈v, v′〉TpM be the canonical isomorphism. We de�ne the
(unique) scalar product g0

1(p) on (TpM)∗, the cotangent space by g0
1(p) :=

〈P (v), P (v′)〉(TpM)∗ := 〈v, v′〉TpM , where v, v′ ∈ TpM . We also denote the
scalar product on TpM by g1

0(p) := 〈v, v′〉TpM . Uniqueness of g0
1(p) follows

directly from Lemma A.3.1. Thus we constructed a unique scalar product
on (TpM)∗ by declaring the canonical isomorphism P to be an isometry.
Now we can extend the scalar product g0

1(p) on (TpM)∗ pointwise to (TM)∗,
the cotangent bundle. We will denote the scalar product on (TM)∗ by g0

1.
Our next aim is to de�ne a scalar product grs on (T rs (TM),M, πrs), so that
((T rs (TM),M, πrs), g

r
s) is semi-Riemannian. We �rst de�ne a scalar product

on T rs (TpM) = TpM ⊗ ... ⊗ TpM ⊗ (TpM)∗ ⊗ ... ⊗ (TpM)∗. To this end we
de�ne grs(p) ≡ 〈, 〉T rs (TpM) by〈

α1 ⊗ ...⊗ αr ⊗ f1 ⊗ ...⊗ fs, β1 ⊗ ...⊗ βr ⊗ g1 ⊗ ...⊗ gs
〉
T rs (TpM)

:=
〈
α1, β1

〉
TpM

...〈αr, βr〉TpM〈f1, g1〉(TpM)∗ ...〈fs, gs〉(TpM)∗ ,
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where α1⊗ ...⊗αr⊗ f1⊗ ...⊗ fs ∈ T rs (TpM) and β1⊗ ...⊗βr⊗ g1⊗ ...⊗ gs ∈
T rs (TpM). Clearly grs(p) : T rs (TpM) × T rs (TpM) → R is bilinear, symmetric
and nondegenerate. Lemma A.3.1 shows that grs(p) is unique such that {ei1⊗
... ⊗ eir ⊗ e∗j1 ⊗ ... ⊗ e

∗
js : 1 ≤ ik ≤ n, 1 ≤ jl ≤ n} is an orthonormal basis of

T rs (TpM). Now we can pointwise extend our scalar product construction to
T rs (TM) and we have proved the following Proposition.

Proposition A.3.3. Let (M, g) be a semi-Riemannian manifold. Then the
manifold (T rs (TM), grs) is semi-Riemannian.

De�nition A.3.4. Let (M, g) be a semi-Riemannian manifold with n :=
dim(M).

(i) An
(
r
s

)
-frame on M at p ∈ M is an orthonormal basis for the tensor

product TpM ⊗ ...⊗ TpM ⊗ (TpM)∗ ⊗ ...⊗ (TpM)∗.

(ii) A set of nr+s orthonormal tensor �elds on some U ⊆M open is called
an
(
r
s

)
-frame �eld on U . An

(
r
s

)
-frame �eld assigns an

(
r
s

)
-frame to

each point p ∈ U .

(iii) Let α : I → M be a smooth curve in M . A set of nr+s orthonormal
tensor �elds along α is called an

(
r
s

)
-frame �eld along α.

Our next aim is to prove that there always exists a parallel
(
r
s

)
-frame

�eld along a given smooth curve α. A standard procedure (which can be
found in [15] Chapter 3) shows that

(
1
0

)
-parallel transports are always linear

isometries. Existence and uniqueness of (even parallel)
(

1
0

)
-frame �elds along

α is ensured by the following

Proposition A.3.5. Let (M, g) be a semi-Riemannian manifold with n :=
dim(M) and α : I →M a smooth curve in M . Let {e1, ..., en} be a

(
1
0

)
-frame

at α(0). Then there exists a unique parallel
(

1
0

)
-frame �eld {E1, ..., En} along

α with Ei(0) = ei for all i ∈ {1, ..., n}.

Proof. A proof can be found in [15], Chapter 3, Corollary 46.

We now show that there is always a
(

0
1

)
-frame �eld along a smooth curve.

Remark A.3.6. Let {E1, ..., En} be a parallel
(

1
0

)
-frame �eld along α. Let

{E∗1, ..., E∗n} ∈ Γ(I, T 0
1M,α) be the metrically equivalent covector �elds

along α (cf. Remark 1.1.10). By de�nition of grs(α(s)) it follows that〈
E∗j(s), E∗i(s)

〉
(TpM)∗

= 〈Ej(s), Ei(s)〉TpM = δij
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for all s ∈ I, hence {E∗1, ..., E∗n} is a
(

0
1

)
-frame �eld. Furthermore

0 =
∇
ds

(E∗j(Ei)) =
∇
ds

(C(Ei ⊗ E∗j))

= C(∇
ds

(Ei ⊗ E∗j)) = C(∇
ds

(Ei)⊗ E∗j + Ei ⊗
∇
ds

(E∗j))

= E∗j(
∇
ds

(Ei)) +
∇
ds

(E∗j)(Ei)

by Proposition 2.3.7 (i) and (ii). By assumption all Ei are parallel for i ∈
{1, ..., n}, i.e. ∇

ds
(Ei) = 0. We conclude that ∇

ds
(E∗j) = 0 for an arbitrary

j ∈ {1, ..., n}, hence {E∗1, ..., E∗n} is a parallel
(

0
1

)
-frame �eld.

Remark A.3.7. By induction we can now construct a general frame �eld
for
(
r
s

)
-tensor �elds along smooth curves by tensorizing frame �elds and dual

frame �elds. The scalar product on the spaces T rs (TpM) and T rs (TpM)∗ are
then well de�ned by Remark A.3.2. This concept will be needed below.

Before we can prove the main result of this section, we have to state the
following

Lemma A.3.8. Let A,B ∈ Γ(I, T rsM,α). Then

d

ds
〈A,B〉T rs (Tα(s)M) =

〈
∇
ds
A,B

〉
T rs (Tα(s)M)

+

〈
A,
∇
ds
B

〉
T rs (Tα(s)M)

.

Proof. By Remark A.3.7 we can choose a parallel
(
r
s

)
-frame �eld

{Ei1 ⊗ ...⊗ Eir ⊗ E∗j1 ⊗ ...⊗ E∗js : 1 ≤ ik, jk ≤ n}

along α such that

A = Ai1,...,irj1,...,js
Ei1 ⊗ ...⊗ Eir ⊗ E∗j1 ⊗ ...⊗ E∗js

and
B = Bi1,...,ir

j1,...,js
Ei1 ⊗ ...⊗ Eir ⊗ E∗j1 ⊗ ...⊗ E∗js .

We obtain that

d

ds
(〈A,B〉) =

d

ds
(
〈
Ai1,...,irj1,...,js

Ei1 ⊗ ...⊗ E∗js , B
i1,...,ir
j1,...,js

Ei1 ⊗ ...⊗ E∗js
〉
)

=
d

ds
(
∑

i1,...,ir,
j1,...,js

Ai1,...,irj1,...,js
Bi1,...,ir
j1,...,js

)

=

〈
∇
ds
A,B

〉
T rs (Tα(s)M)

+

〈
A,
∇
ds
B

〉
T rs (Tα(s)M)

.
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Proposition A.3.9.
(
r
s

)
- parallel transport is a linear isometry.

Proof. Let α : I → M be a smooth curve in a semi-Riemannian manifold
(M, g) and let a, b ∈ I. We set p := α(a) and q := α(b). For t1, t2 ∈
TpM⊗...⊗TpM⊗(TpM)∗⊗...⊗(TpM)∗ let T1, T2 ∈ Γ(I, T rsM,α) be the unique
parallel

(
r
s

)
-tensor �elds along α that satisfy T1(a) = t1 and T2(a) = t2. Then

we have ∇
ds

(T1 +T2) = ∇
ds

(T1)+ ∇
ds

(T2) = 0 and (T1 +T2)(a) = T1(a)+T2(a) =
t1 + t2 and we obtain that P(r,s)(t1 + t2) = (T1 + T2)(b) = T1(b) + T2(b) =
P(r,s)(t1)+P(r,s)(t2). Let t ∈ TpM⊗ ...⊗TpM⊗ (TpM)∗⊗ ...⊗ (TpM)∗ and let
T ∈ Γ(I, T rsM,α) be the unique parallel

(
r
s

)
-tensor �eld along α that satis�es

T (a) = t. For λ ∈ R we obtain that ∇
ds

(λT ) = λ∇
ds
T = 0 and (λT )(a) =

λT (a) = λt. Hence we have that P(r,s)(λt) = (λT )(b) = λT (b) = λP(r,s)(t).
Thus P(r,s) : TpM ⊗ ... ⊗ (TpM)∗ → TqM ⊗ ... ⊗ (TqM)∗ is linear. Now let
P(r,s)(t) = 0 for some t ∈ TpM ⊗ ... ⊗ TpM ⊗ (TpM)∗ ⊗ ... ⊗ (TpM)∗. By
uniqueness of the corresponding

(
r
s

)
-tensor �eld T along α we obtain that

T = 0, hence t = 0 and P(r,s) : TpM ⊗ ...⊗ (TpM)∗ → TqM ⊗ ...⊗ (TqM)∗ is a
linear isomorphism, since dim(TpM ⊗ ...⊗ TpM ⊗ (TpM)∗ ⊗ ...⊗ (TpM)∗) =
dim(TqM ⊗ ...⊗TqM ⊗ (TqM)∗⊗ ...⊗ (TqM)∗) = nr+s, where n := dim(M).
By Lemma A.3.8 we have that d

ds
〈T1, T2〉T rs (Tα(s)M) =

〈∇
ds
T1, T2

〉
T rs (Tα(s)M)

+〈
T1,

∇
ds
T2

〉
T rs (Tα(s)M)

= 0, hence 〈T1, T2〉T rs (Tα(s)M) is constant for all s ∈ I.

Therefore we �nd that

〈t1, t2〉T rs (TpM) = 〈T1(a), T2(a)〉T rs (TpM)

= 〈T1(b), T2(b)〉T rs (TqM) =
〈
P(r,s)(t1), P(r,s)(t2)

〉
T rs (TqM)

which shows that P(r,s) : TpM⊗ ...⊗ (TpM)∗ → TqM⊗ ...⊗ (TqM)∗ is a linear
isometry.

The following proposition shows that the constructed
(
r
s

)
-frame �eld (cf.

Remark A.3.7) are in fact unique.

Proposition A.3.10. Let α : I → M be a smooth curve in some semi-
Riemannian manifold (M, g) and let {ei1 ⊗ ... ⊗ eir ⊗ αj1 ⊗ ... ⊗ αjs : 1 ≤
ik, jl ≤ n} be a chosen

(
r
s

)
-frame on M at α(0) ∈M . Let Eik be the parallel

vector �elds along α with Eik(0) = eik . By Remark A.3.6 E∗jl are the parallel
covector �elds along α. Then {Ei1⊗...⊗Eir⊗E∗j1⊗...⊗E∗js : 1 ≤ ik, jl ≤ n}
is the unique

(
r
s

)
-frame �eld along α with (Ei1⊗...⊗Eir⊗E∗j1⊗...⊗E∗js)(0) =

ei1 ⊗ ...⊗ eir ⊗ αj1 ⊗ ...⊗ αjs for all 1 ≤ ik, jl ≤ n.

Proof. We obviously have that (Ei1 ⊗ ... ⊗ Eir ⊗ E∗j1 ⊗ ... ⊗ E∗js)(0) =
ei1 ⊗ ... ⊗ eir ⊗ αj1 ⊗ ... ⊗ αjs for all 1 ≤ ik, jl ≤ n. Since Eik and E∗jl are
parallel we obtain that {Ei1 ⊗ ...⊗Eir ⊗E∗j1 ⊗ ...⊗E∗js : 1 ≤ ik, jl ≤ n} are
parallel.
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(
1
1

)
-contraction, 29

C0-topology, 72
p < q, 40
p ≤ q, 40
p� q, 40

acausal boundary, 104
achronal, 86
adjoint tensor �eld, 26
arc-length, 77

Cauchy development, 91
Cauchy horizon, 105
Cauchy hypersurface, 121
causal future, 40
causal geodesic line, 98
causal past, 40
causal simple, 48
causality condition, 43
causality violating set, 44
causally disconnected space-time, 98
chronological future, 40
chronological past, 40
chronology condition, 43
chronology violating set, 44
closed trapped surface, 117
cluster curve, 72
continuous causal curve, 70
continuous timelike curve, 70
convergence, 116

covering map, 18

edge of an achronal set, 86
equi-continuous, 74
expansion, 34

future Cauchy development, 91
future Cauchy horizon, 105
future distinguishing condition, 45
future-horismos, 48
future-inextendible, 55
future-set, 90

generic condition, 54
generic condition for space-times, 55
globally hyperbolic, 53

Hausdor� lower limit, 72
Hausdor� upper limit, 72

limit sequence, 82
Lipschitz constant, 71
Lipschitz continuous, 71
Lorentzian manifold, 13
Lorentzian metric, 13

mean curvature vector �eld, 116
module, 23

non spacelike vector, 14
null convergence condition, 117
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null vector, 14
null-boundary, 104

past Cauchy development, 91
past Cauchy horizon, 105
past distinguishing condition, 45
past-horismos, 48
past-inextendible, 55
past-set, 90
proper achronal boundary, 104
pseudo Jacobian tensor �eld, 59

quasi-limit, 86

re�ecting space-time, 53
Riemannian curvature tensor, 25
Riemannian manifold, 16

second induced covariant derivation,
31

shear tensor, 34
space-time, 18
spacelike vector, 14
stably causal, 47
strong energy condition for space-times,

55
strongly causal, 47

tangent bundle, 133
tensor �eld along a smooth map, 23
tensor �eld on V ⊥(c), 25
time orientation, 16
timecone, 14
timelike vector, 14
topological hypersurface, 87
totally vicious space-time, 43

vorticity tensor, 34

144



145



146



CURRICULUM VITAE

Personal Information

Name Christian Haderer

Date of Birth 17th of October, 1985

Place of Birth Vienna, Austria

Education

10.05.2010 First part of the second diploma examination in Mathe-
matics passed with honors

11.12.2009 Second diploma examination in Physics passed with hon-
ors

06.02.2008 Scholarship for excellent studies in Mathematics

02.10.2007 First diploma examination in Mathematics passed with
honors

28.09.2006 First diploma examination in Physics

October 2005 Diploma studies at the University of Vienna
Mathematics and Physics

09.2004-08.2005 Civil service at the Bundespolizei Wien and recess of
studying

26.08.2004 Call-up for civil service

24.08.2004 Bachelor study at the University of Vienna
Astronomy

147



17.06.2004 Matura (school leaving examination) passed with honors

1998-2004 Bundesrealgymnasium Draschestrasse, 1230 Wien, gram-
mar school

1996-1998 Bundesrealgymnasium Singrinergasse, 1120 Wien, gram-
mar school

1992-1996 Volksschule Basler Gasse 43, 1230 Wien, primary school

Employment

2009-2010 Tutor at the Faculty of Mathematics, University of Vi-
enna

August 9, 2010

148


