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Abstract

In this diploma thesis in the class of inverse semigroups four particular types of
semigroups are considered. Their consideration is motivated first by particular
restrictions of the natural partial order of the inverse semigroups and also by the
existence of certain representations of them. These four classes are the following:

1. Primitive inverse semigroups (any two non-zero idempotents are incompa-
rable – orthogonal sums of Brandt semigroups)

2. Simple or bisimple inverse ω-semigroups (idempotents are order isomorphic
to the set of natural numbers in the dual order – Bruck-Reilly semigroups)

3. E-unitary inverse semigroups (every element greater than an idempotent
is again idempotent – McAlister’s P-semigroups)

4. F-inverse semigroups (each class of the least group congruence contains a
maximum element – P-semigroups over semilattices containing a particular
order ideal, that is, particular E-unitary inverse semigroups)

In addition, several connections between these classes are established, for ex-
ample: Simple or bisimple ω-semigroups versus E-unitary inverse semigroups
respectively F-inverse semigroups; primitive inverse semigroups versus E-unitary
inverse semigroups respectively F-inverse semigroups.
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Zusammenfassung

In dieser Diplomarbeit wählen wir aus der Klasse der inversen Halbgruppen vier
spezielle Unterklassen aus. Die Auswahl erfolgt einerseits aufgrund bestimmter
Forderungen, die wir an die natürliche partielle Ordnung der inversen Halbgrup-
pen stellen, andererseits existiert für jede der vier Klassen eine gewisse explizite
Darstellung. Die vier Klassen sind die Folgenden:

1. Primitive inverse Halbgruppen (je zwei Idempotente ungleich Null sind
unvergleichbar - orthogonale Summen von Brandt Halbgruppen)

2. Einfache oder bisimple inverse ω-Halbgruppen (Idempotente sind ordnungs-
isomorph zur Menge der natürlichen Zahlen mit der dualen Ordnung –
Bruck-Reilly-Halbgruppen)

3. E-unitäre inverse Halbgruppen (jedes Element größer als ein Idempotentes
ist selbst idempotent – McAlisters P-Halbgruppen)

4. F-inverse Halbgruppen (jede Klasse der minimalen Gruppenkongruenz be-
sitzt ein Maximum – P-Halbgruppen über Halbverbänden mit speziellem
Ordnungsideal, also insbesondere E-unitär)

Darüber hinaus stellen wir Beziehungen zwischen diesen Klassen her, etwa zwi-
schen einfachen oder bisimplen ω-Halbgruppen und E-unitären inversen Halb-
gruppen bzw. F-inversen Halbgruppen, sowie zwischen primitiven inversen Halb-
gruppen und E-unitären inversen Halbgruppen bzw. F-inversen Halbgruppen.
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1 Introduction

The subject of this diploma thesis is inverse semigroups or more precisely, spe-
cial classes of them. Inverse semigroups emerged in the 1950s, when Wagner and
Preston independently started to study them. In both cases the origin being the
study of semigroups of partial one-one mappings of a set. Inverse semigroups
are particularly useful when it comes to partial symmetries, i.e. symmetries be-
tween parts of a structure, much like the link between groups and symmetries.
They have applications in many branches of mathematics including: algebra,
differential geometry, C*-algebras, tilings, quasicrystals and solid-state physics,
combinatorial group theory, model theory and linear logic. The theory of in-
verse semigroups is a vast and steadily growing field. For this reason we confine
ourselves to four special classes of inverse semigroups. The selection has been
made in view of the so-called natural partial order which can be defined for every
inverse semigroup. Each class is restricted by a particular form or condition of
the natural partial order. Moreover, we are able to present a general method of
construction for each of our classes. This is something that cannot be taken for
granted in general.
The core of the thesis consists of the chapters 4 to 7 where we investigate the
special classes. In the preliminaries we provide basic concepts of semigroup the-
ory that will be needed later on. Many of the presented concepts will be familiar
to the reader. A special focus lies on the Rees theorem which characterises
completely 0-simple semigroups. The result is required in section 4.1 when we
describe Brandt semigroups as Rees matrix semigroups of a particular easy form.
The third chapter introduces inverse semigroups. Although they do have many
idempotents in general they can be seen as generalised groups. Every element
in an inverse semigroup possesses a uniquely determined generalised inverse.
We establish several equivalent definitions for inverse semigroups. In particular
we describe them in terms of regularity and Green’s relations. Idempotents
are of great importance. In the case of an inverse semigroup they do form
a semilattice and we often speak of the ‘semilattice of idempotents’. Section
3.1 presents important examples, including the symmetric inverse monoid, the
bicyclic semigroup and Clifford semigroups. In section 3.2 we define the natural
partial order relation that can be defined on each inverse semigroup. It extends
the partial order of idempotents in an arbitrary semigroup. The natural partial
order is compatible with multiplication and taking inverses. Section 3.3 presents
the Wagner-Preston representation theorem 3.3.1 which states that any inverse
semigroup can be embedded in a symmetric inverse monoid. The remaining two
sections in chapter 3 deal with the compatibility relation, the minimum group
congruence and the maximum idempotent-separating congruence.
The first special class that we cover in this thesis are primitive inverse semigroups.
They resemble groups insofar as the natural partial order relation is equality when
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1 Introduction

restricted to non-zero elements. Brandt semigroups are defined as completely
0-simple inverse semigroups. In 4.0.13 we prove that they are primitive. In
4.0.15 we show that every primitive inverse semigroup is an orthogonal sum of
Brandt semigroups, which is why we focus on the study of Brandt semigroups
in the remainder of the chapter. The Rees theorem states that every completely
0-simple semigroup is isomorphic to some Rees matrix semigroupM0[G; I,Λ;P ].
Since a Brandt semigroup is also inverse we obtain an easy characterisation of
Brandt semigroups. To establish another characterisation of Brandt semigroups
we define a particular semigroup obeying two axioms and then show that the
semigroups constructed in this way are exactly the Brandt semigroups.
For primitive inverse semigroups all non-zero idempotents are incomparable.
With inverse ω-semigroups we consider the other extreme in chapter 5. Here the
idempotents do form a particular chain. The aim of the chapter is to present con-
struction methods for simple and bisimple ω-inverse semigroups. In both cases
so called Bruck-Reilly extensions play an important part. These semigroups help
us to tackle the non-fundamental cases wherein the result for bisimple inverse
ω-semigroups is easier to obtain.
Chapter 6 is devoted to E-unitary inverse semigroups. For every inverse semi-
group the semilattice of idempotents E is a lower ideal with respect to the natural
partial order. E-unitary semigroups have the property that E is an upper ideal
as well, i.e. every element greater than an idempotent is itself an idempotent.
This is only one of many definitions we present throughout the chapter. McAl-
ister’s covering theorem gives a first hint of why E-unitary inverse semigroups
are important. It states that every inverse semigroup is a particular morphic
image of an E-unitary inverse semigroup. Another reason for the importance of
E-unitary inverse semigroups is that many ‘naturally’ occuring semigroups are
E-unitary. In section 6.1 we list various examples such as the bicyclic semigroup,
free semigroups and semidirect products of semilattices by groups. We also ex-
amine when a bisimple inverse ω-semigroup is E-unitary. The same is done for
simple inverse ω-semigroups and Clifford semigroups. In section 6.2 we develop
a construction due to McAlister which yields all E-unitary inverse semigroups.
The final chapter deals with F-inverse semigroups. These are E-unitary inverse
semigroups in which each σ-class has a maximum element. Every E-unitary in-
verse semigroup can be embedded in an F-inverse semigroup. This shows that
F-inverse semigroups are in a sense as big as E-unitary inverse ones. In the first
part of the chapter we present examples and characterise for familiar semigroups
when they are F-inverse. Perhaps surprisingly we can show that bisimple as well
as simple E-unitary inverse ω-semigroups are always F-inverse. We also mention
a modification of the McAlister covering theorem in 7.1.6. In section 7.2 we
set about establishing a result analogous to 6.2.5. The particular structure of
F-inverse semigroups admits considerable simplification in its McAlister repre-
sentation. In order to achieve this we need to introduce R-inverse semigroups. A
construction method is given in 7.2.7 and we prove in 7.2.12 that every R-inverse
semigroup is obtained in such a way. This enables us to give a construction
method for any F-inverse semigroups in 7.2.16.
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2 Preliminaries

This chapter serves as a collection of basic concepts that will be used throughout
the thesis. The intention is to create a manual that can be used to look up the
respective definitions when they do occur later on in the main text. In particular
we present regular semigroups and (0-)simple ones. A reader familiar with the
fundamentals of semigroup theory might want to skip this chapter for the time
being and come back to it if necessary. An exception of this is section 2.7 in
which we prove Rees’ theorem.

Definition 2.0.1 A semigroup is a non-empty set S equipped with an associative
binary operation ·.

Definition 2.0.2 Let (S, ·) be a semigroup. A subset A of S is a subsemigroup
if A is itself a semigroup with respect to ·.

A special case occurs if the subsemigroup of S is also a group. We then call A a
subgroup of S. A semigroup S might or might not contain an identity element.
In the latter case we can make S into a semigroup having an identity element by
formally adding an element 1 with the properties

1 · 1 = 1,

∀s ∈ S : 1 · s = s = s · 1.

We thus get a new semigroup denoted by S1. If the semigroup S had an identity
element in the first place we put S1 = S.
A similar thing can be done for a semigroup without a zero element. We define
S0 = S ∪ {0}, where 0 denotes a formal element such that

∀s ∈ S : 0 · s = s · 0 = 0 · 0 = 0.

For a semigroup with zero we put S0 = S.

Definition 2.0.3 Let G be a group. We call the semigroup G0 a 0-group.

Definition 2.0.4 A semigroup with an identity element is called a monoid.

Definition 2.0.5 Let S be a monoid. An element u is called unit if there exists
an element u′ such that uu′ = 1 = u′u.

It is easy to see that the set of all units forms a subgroup, the so-called group of
units of S.

3



2 Preliminaries

Definition 2.0.6 A semigroup S with zero is called null semigroup if S2 = {0},
i.e. if ∀a, b ∈ S : ab = 0.

Definition 2.0.7 Let (S, ·) and (T,⊗) be semigroups. A mapping φ : S → T is
called a (semigroup) morphism if

∀a, b ∈ S : φ(a · b) = φ(a)⊗ φ(b).

Definition 2.0.8 Let S be a semigroup. An idempotent is an element e of S
such that e2 = e. We denote the set of all idempotents of S by ES.

Definition 2.0.9 Let S be a semigroup. An equivalence relation ρ on S is called
a congruence relation if a ρ b and c ρ d implies ac ρ bd.
It is called a left congruence if a ρ b implies ca ρ cb for all c ∈ S. Right congru-
ences are defined analogously.

Remark 2.0.10 It is not difficult to check that an equivalence relation is a con-
gruence relation if and only if it is both a left and a right congruence.

A congruence ρ on a semigroup S partitions the semigroup in its equivalence
classes. We denote the set of equivalence classes by S/ρ and define a multiplica-
tion ⊗ on it by

ρ(a)⊗ ρ(b) = ρ(ab).

The following proposition is well known and we will therefore omit the proof.

Proposition 2.0.11 The set S/ρ equipped with the multiplication ⊗ is a semi-
group, the so-called factor semigroup (or quotient semigroup) of S modulo ρ.

In particular the resulting class ρ(ab) does not depend on the chosen represen-
tatives a and b.

Definition 2.0.12 Let S be a semigroup with zero and let there be given a system
of subsemigroups {Sα}α∈A such that Sα ∩ Sβ = SαSβ = 0 if α 6= β and S =⋃
α∈A Sα. In such a case, S is called an orthogonal sum1 of semigroups Sα to be

denoted by S =
∑

α∈A Sα.

2.1 Partially ordered sets and semilattices

A partially ordered set (or poset) is a set P endowed with an order relation ≤.
The order relation satisfies the following axioms:
∀a, b, c ∈ P :

(O1) a ≤ a

(O2) a ≤ b, b ≤ a =⇒ a = b

(O3) a ≤ b, b ≤ c =⇒ a ≤ c

1In the literature orthogonal sums are often called 0-direct unions
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2.1 Partially ordered sets and semilattices

We will write (P,≤) for the poset or—if no misunderstandings are to be expected—
merely P .

Proposition 2.1.1 Let S be a semigroup. Then the relation

e ρ f ⇐⇒ ef = fe = e (2.1.1)

is an order relation on ES.

Proof (O1) and (O2) are obvious. To show transitivity suppose that e ρ f, f ρ g.
Then eg = (ef)g = e(fg) = ef = e and ge = g(fe) = (gf)e = fe = e.

2

After we have shown that ρ is an order relation we prefer to write ≤ instead of
ρ as usual.
If l ≤ a, b for some l, a, b ∈ P we call l a lower bound of a and b. If in addition
l = max{x ∈ P : x is a lower bound of a and b} we say that l is the greatest lower
bound of a and b. Notice that the greatest lower bound of two elements does not
necessarily exist. For example the set {a, b, c, d} together with the order relation
≤ determined by a ≤ c, d and b ≤ c, d is a poset. Both a and b are lower bounds
of c and d. But a and b are not comparable with respect to ≤ and so there is no
greatest lower bound of c and d. If there exists a greatest lower bound however
it is unique.
We are now ready to introduce semilattices. We will see that one can think of
them as particular posets or as particular semigroups.
We start with an order theoretical definition:

Definition 2.1.2 We call a poset (P,≤) semilattice if for each pair (a, b) the
greatest lower bound of a and b exists.

Now we characterise semilattices in algebraic terms.

Proposition 2.1.3 Let (P,≤) be a semilattice. Define a binary operation ∧ on
P by the rule that a ∧ b is the greatest lower bound of a and b. Then (P,∧) is a
commutative idempotent semigroup.

Proof The following properties for a, b, c in P are easily verified:

(A) (a ∧ b) ∧ c = a ∧ (b ∧ c),

(I) a ∧ a = a,

(C) a ∧ b = b ∧ a.

Property (A) states that ∧ is associative. By (I) all elements of P are idempo-
tents and by (C) the binary relation is commutative. Hence (P,∧) is a commu-
tative idempotent semigroup.

2
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2 Preliminaries

The converse of 2.1.3 is also true. This is the content of the following proposition.

Proposition 2.1.4 Let (S, ·) be a commutative idempotent semigroup. Define a
relation ≤ on S by the rule

a ≤ b ⇐⇒ a = a · b. (2.1.2)

Then ≤ is an order relation and (S,≤) is a semilattice.

Proof We will use juxtaposition. All elements in S are idempotents. Thus a = aa
and so a ≤ a. This is (O1). Suppose that a ≤ b, b ≤ a. Hence a = ab = ba = b
since S is commutative. This is (O2). Finally suppose that a ≤ b, b ≤ c. Then
ac = (ab)c = a(bc) = ab = a and so a ≤ c. This is (O3). We have proved that
(S, ·) is a poset. It remains to show that for each pair (a, b) the greatest lower
bound of a and b exists. We claim that ab is this greatest lower bound. Certainly
ab ≤ a, b since S is commutative. Now assume that c ≤ a, b for some c. Then
ca = c = cb by assumption. Hence c(ab) = (ca)b = cb = c and so c ≤ ab.

2

Remark 2.1.5 We have seen that semilattices and commutative idempotent semi-
groups are essentially the same thing. Thus we shall not distinguish rigorously
between the ‘semilattices’ (P,≤) and (P,∧). If we emphasise on the algebraic
aspect we often call a ∧ b the meet of a and b and say that (P,∧) is a meet
semilattice.

Remark 2.1.6 We defined a semilattice via greatest lower bounds. This defi-
nition is somewhat arbitrary. We could have used least upper bounds as well in
which case we would have gotten the same algebraic structure.

We explained earlier how a congruence partitions a semigroup into its congruence
classes. A special case occurs when the congruence classes are subsemigroups and
the resulting factor semigroup S/ρ is a semilattice.

Definition 2.1.7 Let S be a semigroup and let ρ be a congruence such that S/ρ
(regarded as a set) consists of subsemigroups of S and such that the resulting
factor semigroup is a semilattice. We then say that the semigroup S is the semi-
lattice of its subsemigroups. We may likewise define semilattices of subgroups.

We conclude this section with a lemma.

Lemma 2.1.8 Let X be a semilattice and let x, y ∈ X. Then

bx ∧ yc = bxc ∩ byc,

where bsc = {t ∈ X : t ≤ s}.

Proof This follows directly from the definition of the greatest lower bound.

2
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2.2 Ideals

2.2 Ideals

Definition 2.2.1 Let S be a semigroup. A non-empty subset A is called a left
ideal of S if sA ⊆ A for all s ∈ S. It is called a right ideal if As ⊆ A for all
s ∈ S. The subset A is called an ideal if it is both a left and a right ideal.

An ideal is thus a subsemigroup of S which is also closed under multiplication
of elements in S. Of particular interest are those ideals which are generated by
a single element. The proof of the following lemma is straightforward.

Lemma 2.2.2 Let S be a semigroup and let a ∈ S. Then S1a is the smallest left
ideal, aS1 is the smallest right ideal and S1aS1 is the smallest ideal containing a.

Definition 2.2.3 We call the ideals appearing in the previous lemma the prin-
cipal left, principal right and principal ideal of a respectively.

The following definition will be needed in chapter 7.

Definition 2.2.4 Let A be a subsemigroup of a semigroup S. We call A a
retract of S if there exists a morphism from S onto A which lets elements in A
fixed. If in addition to that, A is an ideal of S, then A is a retract ideal of S.

2.3 Green’s relations

Definition 2.3.1 Let S be a semigroup. We call two elements a and b
L-equivalent if S1a = S1b, that is if they constitute the same principal left ide-
als. We call them R-equivalent if they constitute the same principal right ideals
and we call them J -equivalent if they constitute the same principal (two-sided)
ideals. Moreover we say that a and b are H-equivalent if they are both L- and
R-equivalent. Finally a and b are said to be D-equivalent if there exists some
x ∈ S such that aLx and xR b. The relations L,R,J ,H,D are called Green’s
relations.

Remark 2.3.2 (i) It is more or less easy to see that all Green’s relations are
equivalences2.

(ii) D is defined such that it is the smallest equivalence containing L and R.

(iii) If we regard relations as subsets of S × S we have the inclusions

H ⊆ L,R ⊆ D ⊆ J .

The last inclusion follows from (ii) and the fact that L,R ⊆ J .

2A proof of this can be found for example in [3]
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2 Preliminaries

In contrast to other relations we write for example La instead of L(a) to denote
the L-class containing the element a. We do this because we want to reserve the
notation L(a) for the set S1a. While it is true that aL b ⇐⇒ L(a) = L(b) it is
important to note that in general we only have La ⊆ L(a). The notation L(a)
enables us to define a partial order ≤ for L-classes:

La ≤ Lb ⇐⇒ L(a) ⊆ L(b)

By La < Lb we shall mean that L(a) ⊂ L(b). Analogously we define R(a),J (a),
D(a),H(a) and ≤ for the other Green’s relations.
Green’s relations are very important in semigroup theory as we will soon see.
The following results all belong to the requisite know-how of semigroup theory
and we will therefore omit the proofs. The next proposition is usually known as
Green’s Lemma.

Proposition 2.3.3 ([3], Lemma 2.2.1) Let a, b be elements of a semigroup S
such that aR b and let s, ŝ ∈ S1 be such that a = bs, b = aŝ. Then the right
translations x 7→ xŝ and y 7→ ys are mutually inverse R-class preserving bijec-
tions from La onto Lb and from Lb onto La respectively.

There is an obvious counterpart of the previous lemma given by

Proposition 2.3.4 ([3], Lemma 2.2.2) Let a, b be elements of a semigroup S
such that aL b and let s, ŝ ∈ S1 be such that a = sb, b = ŝa. Then the left
translations are mutually inverse L-class preserving bijections from Ra onto Rb

and from Rb onto Ra respectively.

Proposition 2.3.5 ([3], Lemma 2.3.7) Let a, b be elements in a D-class D.
Then ab ∈ Ra ∩ Lb ⇐⇒ La ∩Rb contains an idempotent.

The following result is usually called Green’s Theorem.

Theorem 2.3.6 ([3], Theorem 2.2.5) Let S be a semigroup and H be an
H-class. Then either H2 ∩H = ∅ or H2 = H and H is a subgroup of S.

Corollary 2.3.7 ([3], Corollary 2.2.6) Every H-class containing an idempotent
is a group.

2.4 Group actions on partially ordered sets

In this section our main goal is to define group actions on partially ordered sets.
This is basically what we need in chapters 6 and 7. If not said otherwise, X shall
denote a poset in the following.

Definition 2.4.1 We shall say that a bijection α : X → X is an order automor-
phism if, for all a, b in X, a ≤ b ⇐⇒ α(a) ≤ α(b).

The set of all order automorphisms of X can easily be seen to form a group under
composition of functions. We shall denote this group by Aut(X).

8



2.4 Group actions on partially ordered sets

Definition 2.4.2 Let G be a group and (X,≤) be a poset. We shall say that G
acts on X by order automorphisms if there exists a group morphism θ from G
to Aut(X).

For reasons of convenience we shall always write gx (g ∈ G, a ∈ X) instead of
θ(g)(x) and think of G itself as acting on X (on the left). The fact that it does
so by means of order automorphisms is expressed by saying that

gx = gy ⇐⇒ x = y (g ∈ G, x, y ∈ X),

∀g ∈ G ∀y ∈ X ∃x ∈ X : gx = y,

x ≤ y ⇐⇒ gx ≤ gy (g ∈ G, x, y ∈ X). (2.4.1)

The first line states that the action of g on X is one-one, the second tells us that
it is also onto and the third describes the order morphism property.

To avoid any misconceptions we point out that for instance by ghx we mean in
fact θ(g) (θ(h)(x)). To get a feeling for group actions we prove two lemmas.

Lemma 2.4.3 Let G act on (X,≤) by order automorphisms. Fix some g ∈ G
and suppose that x ∧ y exists. Then gx ∧ gy also exists and gx ∧ gy = g(x ∧ y).

Proof Clearly g(x ∧ y) ≤ gx and g(x ∧ y) ≤ gy. Let z ≤ gx, gy for some z ∈ X.
Now g−1z ≤ g−1gx = 1x = x and similarly g−1z ≤ y. Hence g−1z ≤ x ∧ y and
consequently z ≤ g(x∧ y). This means that g(x∧ y) is indeed the greatest lower
bound of gx and gy.

2

For A ⊆ X we define gA := {gx : x ∈ A}.

Lemma 2.4.4 Let G act on (X,≤) by order automorphisms. Then

∀g ∈ G ∀x ∈ X : gbxc = bgxc.

Proof Let y ∈ bgxc, i.e. y ≤ gx. Hence g−1y ≤ x or to put it differently
g−1y ∈ bxc. Consequently y = 1y = gg−1y ∈ gbxc.
Conversely, suppose that y ∈ gbxc. Then y = gz for some z ≤ x. But z ≤ x
implies gz ≤ gx and so y ∈ bgxc as required.

2

Group actions are not restricted to posets. If we have more structure we usually
want the group action to respect this additional structure.
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2 Preliminaries

2.5 Direct and semidirect products

Direct products are a common concept throughout mathematics. They serve as
a means of building new structures from given building blocks.
Let (S, ·) and (T,⊗) be semigroups. We define a new semigroup S×T by the rule
(s, t)(s′, t′) = (s · s′, t⊗ t′). It is immediate from the properties of the semigroups
S and T that S × T is also a semigroup.

Definition 2.5.1 For given semigroups S and T we call the semigroup S × T
as defined above the direct product of S and T .

Direct products can be seen as a special case of what are called semidirect prod-
ucts. We confine ourselves to the case where one factor is a group and one is a
semilattice.
Let G be a group and (E,∧) be a semilattice. Further, let G act on E by group
automorphisms. Consider the set E ×G equipped with the multiplication

(e, g)(f, h) = (e ∧ (g · f), gh).

We must show that this multiplication is associative:

((e, g)(f, h)) (i, k) =(e ∧ gf, gh)(i, k) = (e ∧ gf ∧ (gh)i, ghk) =
2.4.3

(e ∧ g(f ∧ hi), ghk) = (e, g)(f ∧ hi, hk) = (e, g) ((f, h)(i, k)) .

Definition 2.5.2 The semigroup defined above is called the semidirect product
of E by G and denoted by E oG.

2.6 Regular semigroups

Regular semigroups are of course interesting on their own account. We need a
little more than the definition to fulfil our later requirements.

Definition 2.6.1 Let S be a semigroup and let a ∈ S. We say that a is a regular
element if there exists an element x in S such that axa = a. S is called regular
if all elements in S are regular.

Proposition 2.6.2 ([3], Proposition 2.3.1) Let S be a semigroup and D be a
D-class. If D contains a regular element, then all elements of D are regular.

Proof We are first going to prove that the statement is true for L-classes and
R-classes. Having achieved this the assertion becomes trivial. Let a be a reg-
ular element and let b ∈ La. By assumption ∃x : axa = a. Since a and b are
L-equivalent there exist s, t in S1 such that a = sb, b = ta. Now

b = ta = (ta)xa = bxa = b(xs)b

and so b is regular. A similar argument can be applied to the R-class case.

10



2.7 The Rees theorem

Combining both cases completes the proof.

2

We shall therefore call a D-class regular if it contains a regular element.

Proposition 2.6.3 ([3], Proposition 2.3.2) Let S be a semigroup. Every L- and
every R-class lying in a regular D-class contains an idempotent.

Proof Let Da be a regular D-class, then a is a regular element and so ∃x ∈
S : axa = a. In effect xa ∈ ES and aLxa. Hence La contains an idempotent.
A similar argument shows that Ra also contains an idempotent. Since a was
arbitrarily chosen, this completes the proof.

2

2.7 The Rees theorem

In this section we define simple and 0-simple semigroups. Very soon we focus
on completely 0-simple semigroups which admit an elegant characterisation due
to Rees. The corresponding result is known as the Rees theorem. The Rees
theorem is crucial in one of our characterisations of Brandt semigroups featuring
in section 4.1. This justifies the considerable amount of work we have to put in
the proof of it.

Definition 2.7.1 A semigroup without zero is called simple if it has no proper
ideals. A semigroup S with zero is called 0-simple if

(i) S and {0} are its only ideals,

(ii) S2 6= {0}.

The second condition serves only to exclude the two-element null semigroup,
since any larger null semigroup fails to qualify on the grounds of having proper
ideals (every set A with {0} ⊂ A ⊂ S is an ideal).

Lemma 2.7.2 (i) S is simple if and only if J = S × S.

(ii) S is 0-simple if and only if S2 6= {0} and {0}, S\{0} are the only J -classes.

Proof
(i): First assume that S is simple. Let a, b ∈ S. Both S1aS1 and S1bS1 are ideals
and so we have S1aS1 = S = S1bS1 by assumption. Since a, b were arbitrary if
follows aJ b and consequently J = S × S.

11



2 Preliminaries

To show the converse suppose now that A ⊂ S is a proper ideal. Then b 6=
S1aS1 ⊆ A for a ∈ A, b ∈ S \ A. Thus S1aS1 6= S1bS1 which means that a and
b lie in different J -classes.
The proof of (ii) is similar.

2

A simple semigroup can be made into a 0-simple one by adjoining a zero, that is
by considering S0 instead of S. The converse is not true in general. More pre-
cisely, a 0-simple semigroup becomes a simple semigroup by removing the zero
element if S \ {0} is still a semigroup. This might not be the case since there
might be a, b 6= 0: ab = 0. We have seen that not all 0-simple semigroups can
be derived from simple ones. It is always possible however to deduce a theorem
about simple semigroups from one about 0-simple semigroups by specialising to
the case where the semigroup has no proper zero-divisors. The next proposition
and the subsequent corollary provide an example for such a strategy. They give
an important alternative characterisation for simplicity and 0-simplicity respec-
tively.

Remark 2.7.3 Notice that in contrast to group or ring theory, a simple semi-
group can have proper morphic images. This is because not every congruence on
a semigroup is associated with an ideal.

Proposition 2.7.4 ([3], Proposition 3.1.1) A semigroup S with zero is 0-simple
if and only if

∀a 6= 0: SaS = S and S 6= {0}.

Proof Suppose first that S is 0-simple. Then, by definition, S2 6= {0} and thus
S2 = S since S2 is an ideal. Consequently S 6= {0} and S3 = S2S = SS = S.
Letting a 6= 0, SaS clearly is an ideal and hence either SaS = {0} or SaS = S
by assumption. Assume, by way of contradiction, that SaS = {0}. It follows
easily that the subset {x : SxS = {0}} is then an ideal which equals S since
it contains by construction the non-zero element a. This implies S3 = {0} in
contrast to our observation at the beginning. We have shown that SaS = S for
every a 6= 0, as required.
Conversely, suppose that SaS = S for every a 6= 0. For S = {0} this holds
trivially but then S2 = {0} and S is not 0-simple which is why we have to
exclude this case. In our situation it is clear that S2 6= {0}. Assume that
A 6= {0} is an ideal of S. We can find an element 0 6= a ∈ A and it follows

S = SaS ⊆ SAS ⊆ A.

Hence S does not contain proper ideals apart from {0} and so S is indeed
0-simple.

2
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2.7 The Rees theorem

Corollary 2.7.5 ([3], Corollary 3.1.2) A semigroup S without zero is simple if
and only if

∀a ∈ S : SaS = S.

Proof Suppose that S is simple. Then S0 is 0-simple and hence S0aS0 = S0 for
all a in S0 \ {0} = S by 2.7.4. It follows that SaS = S for all a ∈ S.

Conversely, suppose that ∀a ∈ S : SaS = S. Then S ⊂ S0 6= {0} and S0aS0 = S0

for all a in S0 \ {0} = S. We conclude from 2.7.4 that S0 is 0-simple. Hence S
is simple since the removal of the zero-element does not destroy the semigroup
structure.

2

We now want to prove Rees’ theorem. It gives a characterisation of completely
0-simple semigroups in terms of so-called Rees matrix semigroups. We will need
this result urgently in chapter 4 where we investigate Brandt semigroups, i.e.
particular primitive inverse semigroups.

not only primitive inverse semigroups but also Brandt semigroups.

Definition 2.7.6 A non-zero idempotent in a semigroup with zero is said to be
primitive if it is minimal in ES \ {0} with respect to (2.1.1).

Thus a primitive idempotent f has the property that

ee = e, ef = fe = e 6= 0 =⇒ e = f .

Definition 2.7.7 A semigroup S is said to be completely 0-simple if it is
0-simple and has a primitive idempotent.

Rees gives a fairly easy method for constructing such semigroups:

Construction 2.7.8 Let G be a group with identity element e and let I,Λ be
non-empty sets. Let P = (pλi) be a Λ× I-Matrix with entries in the 0-group G0

which is regular in the sense that each column and each row contains at least
one element 6= 0. Define an operation on S = (I ×G× Λ) ∪ {0} as follows

(i, a, λ)(j, b, κ) =

{
(i, apλjb, κ) pλj 6= 0

0 pλj = 0

0(i, a, λ) = (i, a, λ)0 = 0 · 0 = 0. (2.7.1)

With the above definition we have

Proposition 2.7.9 ([3], Lemma 3.2.2) S is a completely 0-simple semigroup.

13



2 Preliminaries

Proof First we have to show that the multiplication defined in (2.7.1) is asso-
ciative. To do this we establish a bijection between the set S \ {0} and the set
of I ×Λ-matrices (a)iλ (a ∈ G), where (a)iλ denotes the I ×Λ-matrix with entry
a in the position (i, λ) and zeros elsewhere, in the obvious way. Since (0)iλ is
independent of i and λ, the correspondence can be extended to one between S
and the set

T := {(a)iλ : a ∈ G0, i ∈ I, λ ∈ Λ}.

A simple calculation shows that

(a)iλP (b)jκ = (apλjb)iκ,

where the juxtaposition on the left denotes matrix multiplication. Bearing in
mind that we are calculation in a 0-group rather than a ring, the appearance of
sums should not bother us, since owing to the high density of zero entries we
have in fact only one summand. The composition (2.7.1) corresponds in T to
the composition ◦ given by

(a)iλ ◦ (b)jκ = (a)iλP (b)jκ,

which is apparently associative.
Next we show that S is 0-simple. Using 2.7.4 what we have to show is that for
any two non-zero elements (i, a, λ) and (j, b, κ) there are elements x, y ∈ S such
that x(i, a, λ)y = (j, b, κ) holds. The regulariy of P allows us to find non-zero
elements pµi and pjν and it is easily shown that(

j, a−1p−1µi , µ
)

(i, a, λ)
(
ν, p−1λν b, κ

)
= (j, b, κ).

Hence S is 0-simple. To complete the proof we have to detect a primitive idem-
potent. We are going to prove a bit more. In fact every idempotent is primitive.
To see this we must first identify the idempotents. The equation

(i, a, λ) = (i, a, λ)(i, a, λ) = (i, apλia, λ)

yields that pλi = a−1. If we now take two non-zero idempotents e = (i, p−1λi , λ)
and f = (j, p−1κj , κ) then

e ≤ f ⇐⇒ ef = fe = e ⇐⇒
(
i, p−1λi pλjp

−1
κj , κ

)
=
(
j, p−1κj pκip

−1
λi , λ

)
=
(
i, p−1λi , λ

)
⇐⇒ i = j, λ = κ ⇐⇒ e = f .

In total we have shown that S is a completely 0-simple semigroup.

2

Definition 2.7.10 We call the semigroup constructed above the I×Λ Rees ma-
trix semigroup over the 0-group G0 with the regular sandwich matrix P and
denote it by M0[G; I,Λ;P ].

14



2.7 The Rees theorem

Lemma 2.7.11 For (i, a, λ), (j, b, κ) ∈M0[G; I,Λ;P ]\{0} we have the following
equivalency:

(i, a, λ)L (j, b, κ) ⇐⇒ λ = κ.

Proof Suppose first that (i, a, λ)L (j, b, κ). Then either (i, a, λ) = (j, b, κ), in
which case there is nothing to prove, or there exists some element (k, c, µ) such
that (j, b, κ) = (k, c, µ)(i, a, λ) = (k, cpµia, λ). Particularly we have κ = λ.
To show the converse suppose that κ = λ. The regularity of P ensures that we
can find elements µ(i) ∈ Λ: pµ(i)i 6= 0 and µ(j) ∈ Λ: pµ(j)j 6= 0. Now a simple
computation yields

(j, ba−1p−1µ(i)i, µ(i))(i, a, λ) = (j, b, λ)

and
(i, ab−1p−1µ(j)j, µ(j))(j, b, λ) = (i, a, λ).

Hence (i, a, λ)L (j, b, κ), as required.

2

The construction given in 2.7.8 is of great importance since the converse of 2.7.9
also holds. Before we can prove this we need some preparation. In the following,
S shall always denote a completely 0-simple semigroup.

Lemma 2.7.12 ([3], Lemma 3.2.4) Let e ∈ S be a primitive idempotent. Then
Re = eS \ {0}.

Proof The inclusion Re ⊆ eS \ {0} is evident by the definition of the R-relation
and the fact that zero forms an R-class of its own. To show the other inclusion
let a = es be a non-zero element in eS. By the 0-simplicity of S there exist u, v
in S such that e = uav. Notice that

(eue)a(ve) = eu ea︸︷︷︸
=ees

ve = euave = e(uav)e = eee = e

so that we may use ũ = eue and ṽ = ve instead of u and v. Clearly we have
eũ = ũe = ũ, ṽe = ṽ. Put f = aṽũ and observe that it is an idempotent:

f 2 = aṽ ũaṽ︸︷︷︸
=e

ũ = aṽũ = f .

The equations

ef = eaṽũ = aṽũ = f and fe = aṽũe = aṽũ = f

tell us that f ≤ e. Moreover by

e = e2 = ũ(aṽũ)aṽ = ũfaṽ

we see that f 6= 0 since we know by assumption that e 6= 0. We conclude that

15
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e = f = a(ṽũ) and so e ∈ aS. Together with a = es we have proved the desired
aR e.

2

The next lemma shows that the assertion is in fact also true for arbitrary a in
S \ {0}.

Lemma 2.7.13 ([3], Lemma 3.2.5) Let a be any element in S \ {0}. Then
Ra = aS \ {0}.

Proof It is immediate that Ra ⊆ aS \ {0}. Conversely, suppose that b is a non-
zero element in aS. Fix some primitive element e. The 0-simplicity of S yields
elements u and v such that a = uev. Combined with the assumption we get
b = uew for some w ∈ S. By virtue of the previous lemma we deduce evR ew
and therefore uev︸︷︷︸

a

R uew︸︷︷︸
b

since R is apparently a left congruence. Hence we

have also shown that aS \ {0} ⊆ Ra.

2

Of course the right-handed nature of the previous lemmas is only apparent and
we have the dual version as well:

Lemma 2.7.14 ([3], Lemma 3.2.6) Let a be any element in S \ {0}. Then
La = Sa \ {0}.

Proposition 2.7.15 ([3], Lemma 3.2.7) S is regular and consists of just two
D-classes, namely {0} and S \ {0}. If a, b are non-zero elements, then either
ab = 0 or ab ∈ Ra ∩ Lb where the latter happens exactly when La ∩Rb contains
an idempotent.

Proof Let a, b ∈ S \ {0}. By 2.7.4 then SaS = S = SbS. We claim that aSb
contains a non-zero element. Suppose, by way of contradiction, that aSb = {0}.
Then S2 = (SaS)(SbS) ⊆ S(aSb)S = {0}. This is a contradiction to the
definition of 0-simplicity. Hence there exists some element u such that aub = c 6=
0. By the previous two lemmas it follows that c ∈ (aS\{0})∩(Sb\{0}) = Ra∩Lb.
Thus aD b and so D := S \ {0} is a D-class. It is straightforward to confirm
that {0} forms a D-class of its own. In particular, the J - and the D-relations
are equal for completely 0-simple semigroups.
Next we show regularity. We know that D contains a primitive idempotent, so
in particular, it contains a regular element. As a consequence of 2.6.2, every
element of D is then regular and since 0 is also regular S is a regular semigroup.
Let finally a, b 6= 0 such that ab = c 6= 0. Then c ∈ aS \ {0} = Ra and
c ∈ Sb \ {0} = Lb by 2.7.13 and 2.7.14. Proposition 2.3.5 deals with the rest.

2
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Now we have assembled all the ingredients necessary to shape S into the form of
a Rees matrix semigroup.
Let a, b ∈ H, where H ⊆ D is an H-class and D is defined as in the proof of
2.7.15. Then either ab = 0 or ab ∈ Ra ∩ Lb = H. Thus, in the latter case,
H2 ∩ H 6= ∅. Using Green’s theorem 2.3.6 we deduce that H is a group. Since
the elements a, b ∈ H were arbitrarily chosen we have H2 = {0}, where H is
not a group. We shall subsequently distinguish between group H-classes and
zero H-classes. The non-zero L- and R-classes will play an important part in
our endeavours to establish a Rees-like structure. We shall denote the set of
non-zero R-classes by I and the set of non-zero L-classes by Λ but treat them as
index sets rather than sets of classes. That is to say we will write theR-classes as
Ri (i ∈ I) and the L-classes as Lλ (λ ∈ Λ) respectively by means of convenience.
Accordingly, by Hiλ we mean Ri ∩ Lλ.
By 2.6.3 and 2.3.7, for every L-class Lλ there exists some i in I such that Hiλ is
a group and analogously for every R-class Rj there exists µ ∈ Λ such that Hjµ

is a group. Without loss of generality we suppose that there exists an element
I 3 1 ∈ Λ such that H11 is a group with identity element e. This group H11 will
feature as the group G in our construction of the Rees matrix semigroup.
For each i ∈ I and each λ ∈ Λ we choose in an arbitrary way an element ri ∈ Hi1

and an element sλ ∈ H1λ. In view of ri L e and sλR e we have rie = ri for all
i ∈ I and esλ = sλ for all λ ∈ Λ since e ∈ ES. Hence Green’s Lemmas 2.3.4 and
2.3.3 imply that x 7→ rix maps H11 onto Hi1, that y 7→ ysλ maps Hi1 onto Hiλ

and that the mappings are one-one. Notice that

D =
⋃
{Hiλ : i ∈ I, λ ∈ Λ},

where D is again as in the proof of 2.7.15 and the union is disjoint. Together
with the preceding considerations we have successfully established a bijection

φ : (I ×H11 × Λ) ∪ {0} → S

given by
φ(ri, a, sλ) = riasλ, φ(0) = 0.

It remains to set up a multiplication which makes (I × H11 × Λ) ∪ {0} into a
regular Rees matrix semigroup. The equation

(riasλ)(rjbsµ) = ri(asλrjb)sµ

encourages us to define the sandwich matrix P as pλi = sλri (i ∈ I, λ ∈ Λ). At
this point, 2.7.15 tells us that

pλi ∈ Rsλ ∩ Lri = H11

if and only if the H-class

Lsλ ∩Rri = Lλ ∩Ri = Hiλ

contains an idempotent. But an H-class contains an idempotent if and only if
it is a group H-class. If Hiλ is not a group however, then pλi = 0. Thus the
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sandwich matrix P as defined above has indeed entries in H0
11 and it is moreover

regular by virtue of 2.6.3. To prove that φ is an isomorphism from the Rees
matrix semigroup M0[H11; I,Λ;P ] onto S is entirely straightforward.
Eventually we have proved the prominent Rees theorem which will figure in one
of our characterisations of Brandt semigroups.

Theorem 2.7.16 ([3], Theorem 3.2.3) Let G0 be a 0-group, let I,Λ be non-
empty sets and let P = (pλi) be a Λ× I matrix with entries in G0. Suppose that
P is regular. Let S = (I × G × Λ) ∪ {0} and define a multiplication on S by
(2.7.1). Then S is a completely 0-simple semigroup.
Conversely, every completely 0-simple semigroup is isomorphic to one constructed
in this way.

To conclude this section we establish an isomorphism theorem for Rees matrix
semigroups which tells us more about the relationship between a completely
0-simple semigroup and a representation of it as a Rees matrix semigroup. In-
deed, our construction of such a representation given a completely 0-simple semi-
group has been fairly arbitrary. Our choice of an H-class group was arbitrary
and so was our choice of elements ri and sλ. These choices amount in differ-
ent sandwich matrices and so it is natural to ask when two regular Rees matrix
semigroups are essentially the same, i.e. isomorphic. The next theorem answers
this question. We will revert to it in section 4.1.

Theorem 2.7.17 ([3], Theorem 3.4.1) Two regular Rees matrix semigroups

S =M0[G; I,Λ;P ] and T =M0[K; J,M ;Q]

are isomorphic if and only if there exist an isomorphism θ : G → K, bijections
ψ : I → J, χ : Λ→M and elements ui (i ∈ I), vλ (λ ∈ Λ) ∈ K such that

θ(pλi) = vλqχ(λ)ψ(i)ui (2.7.2)

whenever pλi 6= 0.

Proof Our needs only require us to prove the direct half. Suppose that we are
given θ, ψ, χ, {ui : i ∈ I}, {vλ : λ ∈ Λ} with the properties stated in the theorem.
Consider the mapping

φ : S → T, φ(i, a, λ) = (ψ(i), uiθ(a)vλ, χ(λ)).

Certainly, it is well-defined. The morphism property follows from the assumption
as do injectivity and surjectivity. Hence φ is indeed the isomorphism we are
looking for.

2
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3 Basics of inverse semigroups

As pointed out in the introduction, the aim of this thesis is to investigate four
special classes of inverse semigroups. Before we can do that however, we need
to prepare ourselves by covering the fundamental concepts of general inverse
semigroups. These include the natural partial ordering which can be defined
for any inverse semigroup and the Wagner-Preston representation. Green’s re-
lations admit an easier characterisation for inverse semigroups. We also deal
with the compatibility relation as well as the minimum group congruence and
the maximum idempotent-separating congruence.

Definition 3.0.18 Let S be a semigroup and let a in S. We call an element a′

an inverse of a if aa′a = a and a′aa′ = a′.

In an arbitrary semigroup there might exist no or more than one inverse for an
element. Consider (N,+) as an example for the former case. For the latter,
consider a left-zero semigroup, i.e. a semigroup such that ∀a, b ∈ S : ab = a. We
have however

Remark 3.0.19 Every regular element of a semigroup possesses an inverse.

Proof Let a denote the regular element and let x be such that axa = a. Consider
the element xax. Then

a(xax)a = (axa)xa = axa = a

and
(xax)a(xax) = x(axa)xax = x(axa)x = xax.

Hence xax is an inverse of a.

2

Definition 3.0.20 We call a semigroup S an inverse semigroup if every element
of S has a unique inverse.

Examples of inverse semigroups will follow soon. We first give alternative char-
acterisations of inverse semigroups.

Theorem 3.0.21 ([3], Theorem 5.1.1) Let S be a semigroup. Then the following
statements are equivalent:

(i) S is an inverse semigroup.
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(ii) For every element a in S there is a uniquely determined element a−1 such
that (a−1)−1 = a and aa−1a = a and the following equation holds for all
x, y ∈ S:

xx−1yy−1 = yy−1xx−1. (3.0.1)

(iii) S is regular and its idempotents commute.

(iv) Every L-class and every R-class contains exactly one idempotent.

Proof
(i) ⇒ (ii): Denote the unique inverse of x by x−1. This element x−1 obviously
satisfies the first conditions in (ii). We merely have to prove that (3.0.1) holds
for all x, y ∈ S. If we write e for xx−1, f for yy−1 and define z to be the unique
inverse of ef we get

(ef)(fze)(ef) = ef 2ze2f = efzef = ef

and
(fze)(ef)(fze) = f(zefz)e = fze,

so that fze is an inverse of ef as well. By uniqueness it follows that z = fze. In
particular this yields that z is an idempotent since

z2 = (fze)(fze) = f(zefz)e = fze = z.

But then z = ef since every idempotent is self-inverse. Furthermore, fe is also
an idempotent by a similar argument. Since we now have

(ef)(fe)(ef) = (ef)(ef) = ef and (fe)(ef)(fe) = (fe)(fe) = fe,

both fe and ef are inverses of ef . Hence, by uniqueness, ef = fe, i.e.(
xx−1

) (
yy−1

)
=
(
yy−1

) (
xx−1

)
.

(ii)⇒ (iii): Regularity follows from the assumption. We show that every idem-
potent in S can be expressed in the form xx−1 for some x ∈ S. Accordingly, let
e ∈ ES. By assumption there is an element e−1 such that ee−1e = e and (e−1)−1.
Hence

e−1 =e−1
(
e−1
)−1

e−1 = e−1ee−1 = e−1(ee)e−1 =
(
e−1e

) (
ee−1

)
=(

e−1
(
e−1
)−1) (

ee−1
)

=
(
ee−1

) (
e−1
(
e−1
)−1)

=
(
ee−1

) (
e−1e

)
.

It then follows that

e = ee−1e = e
(
ee−1

) (
e−1e

)
e =

(
e2e−1

) (
e−1e2

)
=
(
ee−1

) (
e−1e

)
= e−1

and therefore e = ee = ee−1. The same is true for any f ∈ ES and so we have

ef =
(
ee−1

) (
ff−1

)
=
(
ff−1

) (
ee−1

)
= fe

by assumption.
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(iii)⇒ (iv): Suppose that S is a regular semigroup in which idempotents com-
mute and let L denote an L-class. Now L contains at least one idempotent, since
for an arbitrary a ∈ L regularity gives us an element x such that a(xa) = a.
Apparently xaL a and xa ∈ ES. Next we show that there cannot be more than
one idempotent in a single L-class. Assume that e, f are idempotents, both lying
in L. Because e and f are L-equivalent, e can be written as af for some a ∈ S
and hence ef = (af)f = a(ff) = af = e. Similarly we get fe = f and since by
assumption idempotents commute this yields e = f . Thus each L-class contains
exactly one idempotent and the same goes for R-classes as can be seen by a dual
argument.
(iv)⇒ (i): We start by showing that every element in S has at least one inverse.
D-classes consist of L-classes. Every such L-class contains an idempotent, i.e. a
regular element. Hence, by 2.6.2, all D-classes are regular and so also is S. But
then there exist inverses for all elements due to 3.0.19.
Next we show that for every element there is at most one inverse. Let x̂ and x̃
denote inverses of x. Clearly xx̂ and xx̃ are idempotents R-equivalent to x and
thus xx̂ = xx̃ by assumption. Just as easily we can show x̂x = x̃x using the fact
that L-classes also contain exactly one idempotent. Now

x̂ = x̂xx̂ = x̂xx̃ = x̃xx̃ = x̃

and so every element in S has a unique inverse.

2

Trying to decide whether a given semigroup is inverse the best way usually is to
show (iii).
The idempotents of an inverse semigroup are of great importance. The following
corollary gives a first hint why.

Corollary 3.0.22 Let ES denote the set of idempotents of S. Then ES is a
semilattice with respect to the operation inherited from S.

Proof Clearly ES is closed under multiplication since idempotents commute in
inverse semigroups as we have seen in 3.0.21. Hence (ES, ·) is a commutative
idempotent semigroup and thus a semilattice by 2.1.4.

2

The following proposition lists some basic properties of inverse semigroups.

Proposition 3.0.23 ([3], Proposition 5.1.2) Let S be an inverse semigroup.
Then

(i) ∀a ∈ S : aa−1, a−1a ∈ ES.

(ii) e ∈ ES =⇒ e = e−1.

(iii) ∀a, b ∈ S : (ab)−1 = b−1a−1.
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3 Basics of inverse semigroups

Proof
(i): (aa−1) (aa−1) = (aa−1a) a−1 = aa−1 and similarly for a−1a.
(ii): See the proof of 3.0.21.
(iii): Notice that by (i) both bb−1 and a−1a are idempotents and recall that
idempotents commute in inverse semigroups. Thus

(ab)
(
b−1a−1

)
(ab) = a

(
bb−1

) (
a−1a

)
b = a

(
a−1a

) (
bb−1

)
b =

(
aa−1a

) (
bb−1b

)
= ab

and(
b−1a−1

)
(ab)

(
b−1a−1

)
=b−1

(
a−1a

) (
bb−1

)
a−1 = b−1

(
bb−1

) (
a−1a

)
a−1 =(

b−1bb−1
) (
a−1aa−1

)
= b−1a−1

We have shown that b−1a−1 is the unique inverse of ab.

2

By induction property (iii) generalises in an obvious way:

Corollary 3.0.24 ([3], Corollary 5.1.3) Let S be an inverse semigroup and let
a1, . . . , an ∈ S. Then

(a1 · . . . · an)−1 = a−1n · . . . · a−11

In particular we have (an)−1 = (a−1)
n

for all a in S and so the notation a−n can
be used unambiguously. It is however important to realise that the index law
apaq = ap+q cannot be assumed for all p, q in Z.
The next proposition states that a morphism on an inverse semigroup is auto-
matically an ‘inverse semigroup morphism’. The preceding preparatory lemma
remains true for just a regular semigroup S and is sometimes referred to as
Lallement’s Lemma.

Lemma 3.0.25 1 Let S be an inverse semigroup, let T be a semigroup and let
φ be a morphism from S onto T . If f is an idempotent in T then there exists an
idempotent e in S such that φ(e) = f .

Proof Since φ is surjective, f may be expressed as φ(s) for some (not necessarily
idempotent) s in S. By assumption

φ(s) = f = f 2 = φ(s)2 = φ
(
s2
)

.

Now S is inverse and so there exists x in S such that s2xs2 = s2 and xs2x = x.
Clearly then sxs ∈ ES and using the above,

φ(sxs) = φ(s)φ(x)φ(s) = φ
(
s2
)
φ(x)φ

(
s2
)

= φ
(
s2xs2

)
= φ

(
s2
)

= φ(s) = f .

2

1Compare to ([3], Lemma 2.4.4)
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Proposition 3.0.26 ([3], Theorem 5.1.4) Let S be an inverse semigroup, let T
be a semigroup and let φ be a morphism from S onto T . Then T is an inverse
semigroup and we have

∀s ∈ S : φ(s)−1 = φ
(
s−1
)

. (3.0.2)

Proof Every element t in T is (not necessarily uniquely) expressible as φ(s) for
some s in S. Then

φ(s)φ
(
s−1
)
φ(s) = φ

(
ss−1s

)
= φ(s)

and
φ
(
s−1
)
φ(s)φ

(
s−1
)

= φ
(
s−1ss−1

)
= φ

(
s−1
)

.

Hence φ (s−1) is an inverse of t = φ(s) and T is thus regular. Now suppose that g
and h are idempotents of T . By virtue of 3.0.25 there exist idempotents e, f ∈ S
such that φ(e) = g, φ(f) = h. Since in the inverse semigroup S idempotents
commute, by

gh = φ(e)φ(f) = φ(ef) = φ(fe) = φ(f)φ(e) = hg,

they do as well in T . Hence T is an inverse semigroup.

2

Corollary 3.0.27 Let ρ be a congruence on an inverse semigroup S. Then S/ρ
is also inverse and ρ (s−1) = ρ(s)−1.

Proof Consider the natural morphism \ which maps S onto S/ρ by the rule

s 7→ ρ(s).

Now it is clear from the previous proposition that the factor semigroup is inverse.
In addition to that (3.0.2) translates into ρ (s−1) = ρ(s)−1.

2

The next few lemmas supply further properties of inverse semigroups that are
easy to prove.

Lemma 3.0.28 ([3], Lemma 5.1.6) Let S be an inverse semigroup. Let e, f ∈
ES, a ∈ S. Then

(i) eS ∩ fS = efS.

(ii) aS = aa−1S.

Proof
(i): Suppose that a ∈ eS ∩ fS. Then there are elements s, t in S such that
es = a = ft. Now a = es = e(es) = ea = eft and hence a ∈ efS. Conversely,
suppose that a ∈ efS. Then a ∈ efS ⊆ eS and a ∈ efS = feS ⊆ fS since
idempotents commute.

23



3 Basics of inverse semigroups

(ii): Clearly we have aa−1S ⊆ aS. The reverse inclusion is just as easy:

aS = aa−1aS ⊆ aa−1S.

2

We could have also proved the analogue for principal left ideals:

Se ∩ Sf = Sef and Sa = Sa−1a.

Fairly often we want an idempotent to ‘switch sides’ with an element. The next
lemma tells us how to do it.

Lemma 3.0.29 ([5], Lemma 1.4.2) Let S be an inverse semigroup. Consider
x = ae with e ∈ ES and a ∈ S. Then x = fa for some idempotent f .

Proof It is straightforward to check that f = aea−1 is an idempotent. Hence

ae = a a−1a︸︷︷︸
∈ES

e =
(
aea−1

)
a = fa.

2

We are already familiar with Green’s relations from section 2.3. They are easier to
handle for inverse semigroups. First of all, principal ideals are of easier form here.
Exemplarily consider the principal left ideal La generated by a. We found earlier
that it equals S1a. In an inverse semigroup (aa−1)a = a and thus Sa = S1a = La.
Analogously, we do not need S1 for right or two-sided ideals either.

Proposition 3.0.30 ([3], Proposition 5.1.2) Let S be an inverse semigroup.
Then

(i) aL b ⇐⇒ a−1a = b−1b.

(ii) aR b ⇐⇒ aa−1 = bb−1.

(iii) For idempotents e, f we have eD f ⇐⇒ ∃a ∈ S : aa−1 = e and a−1a = f .

Proof
(i): Suppose that aL b, i.e. Sa = Sb. Then a = xb and b = ya for some x, y ∈ S.
Now a−1a = (xb)−1(xb) = b−1 (x−1x) b ≤ b−1b. We may show analogously that
b−1b ≤ a−1a which establishes equality.
Conversely, suppose that a−1a = b−1b. Then a = aa−1a = ab−1b and thus
Sa = (Sab−1)b ⊆ Sb. Similarly, Sb ⊆ Sa and hence aL b.
The proof of (ii) is similar.
(iii): Suppose that e, f ∈ ES. Using (i) and (ii) we have

eD f ⇐⇒ ∃a : eR a, aL f ⇐⇒ e = ee−1 = aa−1, f = f−1f = a−1a.

2
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3.1 Important examples

3.1 Important examples

Of course groups are inverse semigroups having only one idempotent, namely
the identity element. Groups are certainly important but it is hardly surprising
that they appear in our list of inverse semigroups. Less trivial is that inverse
semigroups having only one idempotent are in fact groups. This is why we
referred to inverse semigroups as generalised groups in the introduction.

Proposition 3.1.1 ([5], Proposition 1.4.4) Groups are precisely the inverse semi-
groups with exactly one idempotent.

Proof Obviously a group is an inverse semigroup which contains exactly one
idempotent.
Conversely, suppose that S is an inverse semigroup containing exactly one idem-
potent e. Then for every s in S we have

ss−1 = e = s−1s and es =
(
ss−1

)
s = s, se = s

(
s−1s

)
= s.

Hence S is a group with identity e.

2

Semilattices are also inverse semigroups. They are commutative and consist
entirely of idempotents. Moreover, they are regular since aaa = a for all a. By
3.0.21 we deduce that semilattices are inverse semigroups. The next examples
are more interesting and deserve to be dealt with in subsections.

The symmetric inverse monoid

Let X be a set. A partial bijection f of X is a bijection from some A ⊆ X
onto some B ⊆ X. The set A is called the domain of f and denoted by dom(f),
whereas B is called the image of f and denoted by im(f).
The composite g ◦ f of f and g is defined as the partial bijection given by

g ◦ f : f−1 (im(f) ∩ dom(g))→ g (im(f) ∩ dom(g))

x 7→ g (f(x)) .

This means that g ◦ f is the familiar functional composition whenever defined,
but we are not as restrictive as usual. This way we can define a composite for
each pair of partial bijections regardless of the respective domains and images. It
is usually the case that the composite is not defined on the whole domain of the
first partial bijection. It might even be the case that we get in effect the ‘empty
mapping’, i.e. the ‘mapping’ which maps the empty set on the empty set.

Proposition 3.1.2 ([3], Theorem 5.1.5) For a set X let IX denote the set of
all partial bijections of X. Then IX is an inverse monoid with respect to the
composite ◦ as defined above.

25



3 Basics of inverse semigroups

Proof We shall show associativity first. It is convenient in this case to write
the mappings as relations. For example we write (x, y) ∈ f instead of f(x) = y.
With this notation we have

(x, y) ∈ (h ◦ g) ◦ f ⇐⇒ ∃z ∈ X : (x, z) ∈ f, (z, y) ∈ h ◦ g ⇐⇒
∃z, u ∈ X : (x, z) ∈ f, (z, u) ∈ g, (u, y) ∈ h ⇐⇒

∃u ∈ X : (x, u) ∈ g ◦ f, (u, y) ∈ h ⇐⇒ (x, y) ∈ h ◦ (g ◦ f) .

Hence ◦ is associative and thus IX is a semigroup.
Next we show that IX is inverse. Each f in IX is a bijection from dom(f) onto
im(f) and so there is an inverse map f−1, also an element of IX , such that

dom
(
f−1
)

= im(f), im
(
f−1
)

= dom(f),

f−1 ◦ f = iddom(f), f ◦ f−1 = idim(f)

Certainly then f ◦ f−1 ◦ f = f and f−1 ◦ f ◦ f−1 = f−1 and thus IX is regular.
If we are able to verify that idempotents commute, then the proof is finished by
virtue of 3.0.21. Of course we must first identify the idempotents. If f is an
idempotent then

f−1 (dom(f) ∩ im(f)) = dom
(
f 2
)

= dom(f) = f−1(im(f)).

Since f−1 is one-one it follows that dom(f) ∩ im(f) = im(f). In particular we
have im(f) ⊆ dom(f). Similarly we can show

f (dom(f) ∩ im(f)) = im
(
f 2
)

= im(f) = f(dom(f)),

which yields dom(f) ⊆ im(f). Hence dom(f) = im(f) = A ⊆ X (say) and
f (f(x)) = f 2(x) = f(x) for all x in A by assumption that f is an idempotent.
Since f is one-one this implies f(x) = x for all x in A and thus f = idA. It is
obvious that conversely, idA is an idempotent for every subset A of X. It is easy
to see that idB ◦ idA = idA∩B for all A,B ⊆ X. We deduce that idempotents
commute and therefore IX is an inverse semigroup. It is also a monoid with
identity idX . Hence IX is an inverse monoid, as required.

2

Definition 3.1.3 The inverse semigroup IX is called the symmetric inverse
monoid.

As said at the beginning of this chapter, inverse semigroups were first investi-
gated in connection with partial bijections, i.e. mathematicians like Wagner and
Preston studied the symmetric inverse monoid IX . The significance of this par-
ticular semigroup rests with an important embedding theorem for inverse semi-
groups, which we are going to prove in 3.3.1. It is called the ‘Wagner-Preston
representation theorem’ in honour of the two previous mentioned.
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3.1 Important examples

The bicyclic semigroup

This subsection revolves around the bicyclic semigroup that will appear several
times in this thesis. For example it serves us as an example for an E-unitary
inverse semigroup. In a wider scale the bicyclic semigroup has important appli-
cations in ring theory, formal languages and λ-calculus. We will not cover this
here and refer the interested reader to [5].

Proposition 3.1.4 Let B be the set N × N equipped with a binary operation
given by

(m,n)(p, q) := (m− n+ max(n, p), q − p+ max(n, p)) . (3.1.1)

Then B forms an inverse monoid.

Proof We ought to show that the operation defined on B is associative but will
postpone the proof of this for the moment and refer to 5.1.3 instead. The as-
sociativity will come naturally, whereas here the verification of it requires not
particular difficult but tedious work. Let us thus assume we already know that
B is a semigroup. We claim that it is also inverse. Indeed, it is certainly regular
since for every a, b ∈ N one easily finds (a, b)(b, a)(a, b) = (a, b). It is straight-
forward to check that the idempotents are precisely the elements of the form
(a, a). We have yet to show that idempotents commute. In view of that let
(a, a), (b, b) ∈ B and suppose without loss of generality that a ≤ b. Then

(a, a)(b, b) = (b, b) = (b, b)(a, a).

Finally notice that (0, 0)(a, b) = (a, b) = (a, b)(0, 0) for each element (a, b) ∈ B .
Thus B is an inverse monoid with identity (0, 0).

2

Definition 3.1.5 The semigroup B appearing above is called the bicyclic semi-
group.

It is usually referred to as simply a semigroup although we have seen that it is
in fact a monoid.

Clifford semigroups

Clifford semigroups can be defined in various ways. A taste of this is given
in 3.1.11. We choose an approach that makes it easy to recognise Clifford semi-
groups as particular inverse semigroups. We will come across Clifford semigroups
once more in sections 5.3 and 6.1.

Definition 3.1.6 An element a of a semigroup S is called central if ax = xa
for all x in S.
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3 Basics of inverse semigroups

Definition 3.1.7 We shall call a semigroup a Clifford semigroup if it is regular
and its idempotents are central.

Obviously, a Clifford semigroup is inverse, since in particular its idempotents
commute. We will shortly see that a Clifford semigroup is always a semilattice
of groups2. Therefore we need the following construction:

Construction 3.1.8 Let E be a semilattice and let {Ge : e ∈ E} be a family of
disjoint groups indexed by the elements of E. We denote the identity element of
Ge by 1e. For each pair e, f ∈ E such that e ≥ f let φe,f : Ge → Gf be a group
morphism such that the following two axioms hold:

(C1) φe,e is the identity morphism on Ge

(C2) If e ≥ f ≥ g then φf,g ◦ φe,f = φe,g

We endow the set
⋃
e∈E Ge with a product ⊗ defined by

x⊗ y = φe,ef (x)φf,ef (y) (x ∈ Ge, y ∈ Gf ) . (3.1.2)

Proposition 3.1.9 ([5], Proposition 5.2.11)
With the above notation,

(⋃
e∈E Ge,⊗

)
is a Clifford semigroup.

Proof The multiplication ⊗ is well-defined, since ef ≤ e, f . Let x ∈ Ge, y ∈ Gf

and z ∈ Gg and put i = efg. By (3.1.2) we have

(x⊗ y)⊗ z = φef,i (φe,ef (x)φf,ef (y))φg,i(z) =

φef,i (φe,ef (x))φef,i (φf,ef (y))φg,i(z) =
(C2)

φe,i(x)φf,i(y)φg,i(z).

A similar argument shows that x⊗ (y ⊗ z) also reduces to the right-hand side of
the above equation. Hence ⊗ is associative and (S,⊗) is a semigroup.
Now let x, y denote elements lying in the same group Ge. Then

x⊗ y = φe,ee(x)φe,ee(y) = φe,e(x)φe,e(y) = xy

due to (C1). Consequently the inverse x−1 of x in Ge is also an inverse with
respect to ⊗ since we are only calculating within the group Ge:

x = x⊗ x−1 ⊗ x, x−1 = x−1 ⊗ x⊗ x−1.

In particular we have demonstrated that S is a regular semigroup. Next we
consider the idempotents of S. These are just the identity elements of the groups
in which they are contained. Finally, let 1e be any idempotent and x ∈ Gf an
arbitrary element of S. Then 1e ⊗ x = φe,ef (1e)φf,ef (x). The right-hand side is
equal to φf,ef (x) because a group morphism maps the identity element of one
group to the identity element of the other. We have in effect:

1e ⊗ x = φf,ef (x) = x⊗ 1e.

2For a definition see 2.1.7
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Hence, idempotents are central and together with the regularity we have proved
that S is indeed a Clifford semigroup.

2

Definition 3.1.10 The semigroup constructed above is called a strong semilat-
tice of groups and is denoted by S (E;Ge;φe,f ).

The notion ‘strong semilattice of groups’ indicates that S (E;Ge;φe,f ) is a par-
ticular semilattice of groups. This is indeed the case. The next theorem also
demonstrates that the converse of 3.1.9 is true as well, i.e. each Clifford semi-
group can be interpreted as a strong semilattice of groups.

Theorem 3.1.11 3 For an inverse semigroup S the following statements are
equivalent:

(i) S is a Clifford semigroup.

(ii) Every H-class is a group.

(iii) S is a semilattice of groups.

(iv) S is a strong semilattice of groups.

Proof
(i) ⇒ (ii): Let H be an H-class and let a ∈ H. We claim that aH a2. By
3.0.30,

aa−1 = aa−1 aa−1︸︷︷︸
∈ES

= a
(
aa−1

)
a−1 = a2a−2 = a2

(
a2
)−1

shows that aR a2 and the verification of aL a2 is similar. Hence H ∩ H2 6= ∅
and H is therefore a group due to 2.3.6.
(ii)⇒ (iii): We are going to show that H is a congruence. To this end let aH b
and cH d. Notice that hh−1 = h−1h for every h ∈ S, since we are calculating in
the group Hh. Also notice that a−1a = b−1b and e := cc−1 = dd−1 because a, b
and c, d do lie in the same respective groups by assumption. Hence

(ac) (ac)−1 =acc−1a−1 = aea−1 = aeea−1 = (ae) (ae)−1 = (ae)−1 (ae) =

ea−1ae = eea−1a = ea−1a = eb−1b = eeb−1b = eb−1be =

(be)−1 (be) = (be) (be)−1 = beeb−1 = beb−1 = bdd−1b−1 = (bd) (bd)−1

(3.1.3)

and so acR bd. The verification of acL bd is similar and H is thus a congruence
in which the congruence classes are groups. It remains to show that the factor
semigroup is a semilattice. First it is idempotent since we have aH a2 for every
a ∈ S because Ha is a group by assumption. It is also commutative. To see this

3Compare to ([5], Theorem 5.2.12) and ([3], Theorem 4.2.1)
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3 Basics of inverse semigroups

let a, b ∈ S. Certainly bb−1 and aa−1 are idempotents and using twice the same
trick as in (3.1.3) we get

(ab) (ab)−1 =a
(
bb−1

)
a−1 =

(
bb−1

) (
a−1a

)
=
(
b−1b

) (
aa−1

)
=(

aa−1
) (
b−1b

)
= b

(
aa−1

)
b−1 = (ba) (ba)−1 .

Hence abR ba. In a similar way we obtain abL ba and so abH ba, i.e. Hab = Hba.
(iii) ⇒ (iv): By assumption there exists a congruence ρ such that S/ρ is a
semilattice and such that the congruence classes are groups. For ρ(a) ≥ ρ(b), i.e.
ρ(a)ρ(b) = ρ(b) = ρ(b)ρ(a), we define a mapping

φa,b : ρ(a)→ ρ(b)

x 7→ 1bx,

where 1b denotes the identity element of ρ(b). It is easy to see that this is a
morphism, since

φa,b(x)φa,b(y) = 1bx︸︷︷︸
∈ρ(b)

1by = 1bxy = φa,b(xy) (x, y ∈ ρ(a)) ,

where xy ∈ ρ(a) because S/ρ is idempotent. Property (C1) in 3.1.8 is immediate.
Suppose now that ρ(a) ≥ ρ(b) ≥ ρ(c). Then, for every x ∈ ρ(a),

(φb,c ◦ φa,b) (x) = 1c1bx = φb,c(1b)x = 1cx = φa,c(x).

This is (C2). We have used here that a group morphism maps the identity of
one group to the identity of the other.
We are going to show that S ∼= S (S/ρ; ρ(a);φa,b). The only thing left to do is to
verify that

∀a, b ∈ S : ab = φa,ab(a)φb,ab(b).

The following calculation does the job.

φa,ab(a)φb,ab(b) = 1aba︸︷︷︸
∈ρ(ab)

1abb = 1ab ab︸︷︷︸
∈ρ(ab)

= ab.

(iv)⇒ (i): See 3.1.9.

2

3.2 The natural partial order relation

In this section we define a far-reaching concept for inverse semigroups: the nat-
ural partial order relation. As mentioned before the idempotents of an inverse
semigroup are of great importance. We have already seen that they form a semi-
lattice in 3.0.22. From 2.1.4 we know that the ‘natural’ order relation for them
is (2.1.2). To spell it out:

e ≤ f ⇐⇒ e = ef .

Although it is not yet clear this motivates
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3.2 The natural partial order relation

Definition 3.2.1 Let S be an inverse semigroup. The natural parial order ≤
on S is defined as follows:

s ≤ t ⇐⇒ s = te

for some idempotent e.

Before showing that this does indeed define a partial order on S we prove a useful
lemma. It provides alternative definitions for the natural partial order and will
be used extensively in further discussions.

Lemma 3.2.2 ([5], Lemma 1.4.6) Let S be an inverse semigroup. Then the
following statements are equivalent:

(i) s ≤ t.

(ii) s = ft for some idempotent f .

(iii) s−1 ≤ t−1.

(iv) s = ss−1t.

(v) s = ts−1s.

Proof
(i)⇒ (ii): This follows directly from 3.0.29.
(ii) ⇒ (iii): By assumption s = ft with f ∈ ES. Hence s−1 = (ft)−1 = t−1f ,
that is s−1 ≤ t−1.
(iii)⇒ (iv): By assumption we have s−1 = t−1e for some idempotent e. Taking
inverses yields s = et. Then es = eet = et = s and thus

ss−1t = (es)s−1t = e
(
ss−1

)
t = ss−1(et) = ss−1s = s.

(iv) ⇒ (v): Let s = ss−1t. By using 3.0.29 we get s = te for some idempotent
e. Hence

ts−1s = t(te)−1(te) = tet−1te = tt−1tee = te = s.

(v)⇒ (i): This is immediate since s−1s is an idempotent.

2

Note that by (ii), the side on which the idempotent appears in the definition is
irrelevant. Notice also that by (iii), taking inverses does not reverse the relation.
We are now ready to prove

Proposition 3.2.3 ([5], Proposition 1.4.7) Let S be an inverse semigroup. The
relation ≤ defines a partial order on S.

Proof Since s = s(s−1s) for every s in S the relation is reflexive. Let s ≤ t and
t ≤ s. Then s = ts−1s and t = st−1t. The following chain of equalities shows
that ≤ is antisymmetric:

s = ts−1s =
(
st−1t

)
s−1s = ss−1st−1t = st−1t = t.

Finally, suppose that s ≤ t and t ≤ u. Then s = te and t = uf for some
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3 Basics of inverse semigroups

idempotents e and f . Hence s = te = (uf)e = u(fe) and thus s ≤ u and ≤ is
transitive since fe is an idempotent.

2

The next proposition is a simple consequence of the definition of the natural
partial order.

Proposition 3.2.4 ([5], Proposition 1.4.7) Let S be an inverse semigroup and
let ≤ denote the natural partial order.

(i) For idempotents e, f ∈ S we have that e ≤ f if and only if e = ef = fe.

(ii) If s ≤ t and u ≤ v then su ≤ tv.

(iii) If s ≤ t then ss−1 ≤ tt−1 and s−1s ≤ t−1t.

Proof
(i): Suppose that e ≤ f . Then e = gf = fh for some idempotents g, h. Then

ef = (gf)f = gf = e, fe = f(fh) = fh = e.

The converse is immediate.
(ii): Suppose that s = te and u = vf , where e, f ∈ ES. Then

su = tevf = tevv−1vf = tv v−1evf︸ ︷︷ ︸
∈ES

and hence su ≤ tv, as required.
(iii): This is a simple consequence of (ii) and 3.2.2(iii).

2

Observe that property (ii) tells us that ≤ is compatible with multiplication. This
is a strong indication that our definition of ≤ is a ‘good’ one.

Remark 3.2.5 The natural order relation is called ‘natural’ because it extends
the natural order relation (2.1.2) defined only on its semilattice of idempotents.
The term ‘natural’ is justified there by 2.1.4.

Proposition 3.2.6 ([5], Proposition 1.4.10) Let S be an inverse semigroup.
Then the natural partial order is the equality relation if and only if S is a group.

Proof Suppose that the natural order is the equality relation and let e, f be
idempotents. Then ef ≤ e, f . But the natural order is the equality relation and
so e = ef = f . We have shown that S is an inverse semigroup having exactly
one idempotent. Hence S is a group by 3.1.1. The converse is clear.

2
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3.3 The Wagner-Preston representation theorem

3.3 The Wagner-Preston representation

theorem

In section 3.1 we encountered the symmetric inverse monoid IX . Now we are
going to prove a classic result known as the Wagner-Preston representation the-
orem. It states that every inverse semigroup S can be interpreted as a subsemi-
group of some symmetric inverse monoid. The Wagner-Preston representation
theorem should be seen as an analogue of Cayley’s theorem in group theory. A
similar theorem states that every semigroup is isomorphic to a subsemigroup of
a full transformation semigroup.

Theorem 3.3.1 ([5], Theorem 1.5.1) Let S be an inverse semigroup. Then there
exists an injective morphism θ : S → IS such that

a ≤ b ⇐⇒ θ(a) is a restriction of θ(b). (3.3.1)

Proof For each element a ∈ S define a mapping

θa : a−1aS → aa−1S

x 7→ ax.

This map is well-defined since for x = a−1ax′ ∈ a−1aS we have ax = aa−1(ax′) ∈
aa−1S. Consider θa−1 : aa−1S → a−1aS. Then

θa−1 (θa(x)) = θa−1

(
θa(a

−1ax′)
)

= θa−1

(
aa−1ax′

)
= a−1ax′ = x

and
θa (θa−1(y)) = θa

(
θa−1

(
aa−1y′

))
= θa(a

−1aa−1y′) = aa−1y′ = y.

Thus θa is a bijection for every a ∈ S with θa
−1 = θa−1 .

Define θ : S → I(S) by θ(a) = θa. We show the morphism property θa ◦ θb = θab:

dom(θa) ∩ im(θb) = a−1aS ∩ bb−1S = a−1abb−1S,

where the last equality holds due to 3.0.28. Hence,

dom(θa ◦ θb) = θb−1

(
a−1abb−1S

)
= b−1a−1abb−1S =

3.0.28(ii)

b−1a−1ab(b−1b)S = b−1a−1abS = (ab)−1abS = dom(θab).

Thus dom (θa ◦ θb) = dom(θab). It is obvious that θab and θa ◦ θb have the same
effect on elements and so θ is a morphism.
Suppose now that a ≤ b. This is equivalent to ba−1a = a by 3.2.2. We also have
a−1a ≤ b−1b by 3.2.4 and so a−1a = b−1be for an idempotent e. It follows that
a−1aS = b−1beS ⊆ b−1bS. For x ∈ a−1aS we then have

θb(x) = bx = b
(
a−1ax′

)
= b

(
a−1aa−1ax′

)
=
(
ba−1a

)
x = ax = θa(x).

Hence θa is a restriction of θb.
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3 Basics of inverse semigroups

Conversely, suppose that θa is a restriction of θb. By assumption then a−1aS ⊆
b−1bS. Clearly, a−1 = a−1aa−1 ∈ a−1aS and therefore a−1 ∈ dom(θa), dom(θb).
Again by assumption we have aa−1 = θa(a

−1) = θb(a
−1) = ba−1. Multiplying on

the right with a yields a = ba−1a, i.e. a ≤ b by 3.2.2.
In particular, (3.3.1) implies that θ is one-one and θ is therefore an embedding
of S into IS.

2

3.4 The compatibility relation

Definition 3.4.1 Let S be an inverse semigroup. For all s, t ∈ S the compati-
bility relation is defined by

s ∼ t ⇐⇒ st−1, s−1t ∈ ES.

It is clear that∼ is reflexive and symmetric. It is generally not transitive however.
We will characterise those inverse semigroups having a transitive compatibility
relation in chapter 6. The proof of the following remark is straightforward.

Remark 3.4.2 The notion ‘compatibility relation’ stems from the fact that the
relation ∼ is compatible with multiplication in the sense that

∀c ∈ S : a ∼ b =⇒ ac ∼ bc, ca ∼ cb.

The definition of the compatibility relation leads naturally to the following

Definition 3.4.3 We call a non-empty subset A of an inverse semigroup S com-
patible if every two elements of A are compatible, that is if ∀a, b ∈ A : a ∼ b.

Definition 3.4.4 We call a non-empty subset A of an inverse semigroup S an
order ideal if it satisfies the following property:

a ∈ A, s ≤ a =⇒ s ∈ A.

Take for example the set of idempotents of an inverse semigroup. The idem-
potents do not only form a semilattice, they are an order ideal as well. This
is immediate by the definition of the natural partial order and the fact that
idempotents commute.
The next definition combines the previous ones.

Definition 3.4.5 A subset A of an inverse semigroup S is said to be permissible
if it is a compatible order ideal. The set of all permissible subsets of S is denoted
C (S).
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3.4 The compatibility relation

Proposition 3.4.6 ([5], Theorem 1.4.23) For an inverse semigroup S, the set
C (S) is an inverse semigroup under multiplication of subsets of S. The mapping

ι : S → C (S)

s 7→ bsc

is an injective morphism.

Proof Let A,B ∈ C (S). To show closure we have to verify that AB =
{ab : a ∈ A, b ∈ B} is a compatible order ideal. Let x ≤ ab for some a ∈ A, b ∈ B.
By 3.2.2, x = a (bx−1x). But B is an order ideal and so bx−1x = b̂ ∈ B. Hence
x = ab̂ ∈ AB and AB is an order ideal. To show that AB is a compatible subset
of S let ab, cd ∈ AB. Then (ab)−1cd = b−1 (a−1c) d. By assumption, a ∼ c and
thus a−1c is an idempotent. This implies that b−1 (a−1c) d ≤ b−1d. But b−1d is
an idempotent and so b−1 (a−1c) d = (ab)−1cd is itself an idempotent. We may
similarly show that ab(cd)−1 is an idempotent and so ab ∼ cd. Hence AB is
indeed a compatible subset of S and thus AB ∈ C (S).
To show that C (S) is inverse we verify that it is regular and that its idempotents
commute. First note that for a permissible subset A, the set A−1 = {a−1 : a ∈ A}
is also permissible. This set turns out to be the inverse of A. Indeed, it is
immediate that A ⊆ AA−1A. To prove the reverse inclusion consider ab−1c,
where a, b, c ∈ A. As a first step we want to write ab−1 as uu−1 for some u ∈ A.
Consider u = ab−1b. This element is certainly smaller than a and thus in A since
A is an order ideal. Notice also that ab−1 is an idempotent since a and b are
compatible. We obtain

uu−1 =
(
ab−1b

) (
ab−1b

)−1
= ab−1bb−1ba−1 = ab−1ba−1 = ab−1

(
ab−1

)−1
= ab−1

and may thus write ab−1c = uu−1c ≤ c. But A is an order ideal and so ab−1c ∈ A.
Hence A = AA−1A and C (S) is regular.
Next we show that idempotents commute. To this end we must first locate
them. Suppose that A2 = A for a permissible subset A. Then for every a ∈ A
there exist elements b, c ∈ A such that a = bc. Now a ∼ c and b ∼ a and by
a = aa−1a = a(bc)−1a = (ac−1) (b−1a) we have in effect A ⊆ ES. Conversely, let
A ∈ C (S) such that A ⊆ ES. Then clearly A ⊆ A2 but also A2 ⊆ A since A is
an order ideal. We have shown that the idempotents of C (S) are precisely the
order ideals of ES. It is immediate that they commute. Hence C (S) is an inverse
semigroup.
It remains to demonstrate that ι is an injective morphism. For all s ∈ S the set
bsc is a permissible subset. Indeed, it is obviously an order ideal. To see that
it is also compatible let a, b ≤ s. Then a = se, b = sf for some idempotents
e, f ∈ ES. Clearly,

a−1b = (se)−1(sf) = es−1sf ∈ ES

and
ab−1 = sefs−1 ∈ ES.

It is easy to see that bsc · btc = bstc holds for all s, t ∈ S, which means that ι

35



3 Basics of inverse semigroups

is a morphism. It is also one-one, since bsc = btc yields in particular s ≤ t and
t ≤ s from which we deduce s = t by antisymmetry.

2

3.5 Minimum group congruence and maximum

idempotent-separating congruence

In this section we define two special congruences that play a prominent rôle in
the theory of inverse semigroups, namely the minimum group congruence and
the maximum idempotent-separating congruence. The key idea of the minimum
group congruence is to relate an inverse semigroup S to a group via factor semi-
groups. The minimum group congruence appears in one of our characterisations
of so-called E-unitary inverse semigroups in chapter 6.

Definition 3.5.1 Let S be an inverse semigroup and let a, b ∈ S. We define a
relation σ by

a σ b ⇐⇒ ∃x ∈ S : x ≤ a, b.

The next theorem tells us amongst other things that σ is the smallest congruence
such that S/σ is a group.

Theorem 3.5.2 ([5], Theorem 2.4.1) Let S be an inverse semigroup.

(i) σ is the smallest congruence on S containing the compatibility relation ∼.

(ii) S/σ is a group.

(iii) If ρ is any congruence on S such that S/ρ is a group then σ ⊆ ρ.

Proof
(i): We start by showing that σ is an equivalence relation. Reflexity and sym-
metry are immediate. To show that σ is transitive suppose that a σ b and b σ c,
where a, b, c ∈ S. Then there are elements u, v ∈ S such that u ≤ a, b and
v ≤ b, c. In particular we have u, v ≤ b or to put it differently u, v ∈ bbc. We
already know from the proof of 3.4.6 that bbc is a compatible subset of S and
therefore u ∼ v. Consider the element uu−1v. It is certainly smaller than v but
also smaller than u because u−1v is an idempotent. This implies uu−1v ≤ a, c
and thus a ∼ c. That σ is a congruence follows from 2.0.10 and the fact that the
natural partial order is compatible with multiplication:

a σ b =⇒ ∃x : x ≤ a, b =⇒ ∀c : xc ≤ ac, bc and ∀c : cx ≤ ca, cb.

Next we verify that ∼⊆ σ holds. Let a ∼ b. Hence in particular a−1b ∈ ES.
Then aa−1b ≤ a, b and thus a σ b. Now we show that σ is the smallest such
congruence. Let ρ be any congruence such that ∼⊆ ρ and let a σ b. Then
u ≤ a, b for some u. From the definition of the natural partial order it follows
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3.5 Minimum group congruence and maximum idempotent-separating congruence

easily that u ∼ a, b which yields a ρ u and u ρ b by assumption. But ρ, being a
congruence, is transitive and thus a ρ b. We have proved that σ ⊆ ρ, as required.
(ii): Consider the natural morphism \ : S → S/σ, s 7→ σ(s). By 3.0.27 we
conclude that S/σ is an inverse semigroup. Let σ(a) ∈ S/σ be an idempotent.
Then σ(a) = σ(a)σ(a)−1 = σ(a)σ (a−1) = σ (aa−1). Hence every idempotent
σ(a) in S/σ can be represented as σ(e) for an idempotent e. For every pair
e, f ∈ ES we have ef ≤ e, f and so all idempotents are contained in a single
σ-class (possibly together with non-idempotent elements). Thus S/σ is an inverse
semigroup with a single idempotent and hence a group by 3.1.1.
(iii): Let ρ be any congruence such that S/ρ is a group and let a σ b. Then
u ≤ a, b for some u in S and there exist idempotents e, f such that ae = u = bf .
Hence ρ(u) = ρ(ae) = ρ(a)ρ(e) and ρ(u) = ρ(bf) = ρ(b)ρ(f), where ρ(e) and ρ(f)
are idempotents in S/ρ. But S/ρ, being a group, contains only one idempotent,
namely the identity element. It follows that ρ(a) = ρ(u) = ρ(b) and thus a ρ b.

2

The following remark is a simple consequence of the preceding proof.

Remark 3.5.3 All idempotents of S are contained in the same σ-class, namely
the identity element of S/σ.

Sometimes it is convenient to have the definition of the σ-relation in the following
form:

Lemma 3.5.4 Let S be an inverse semigroup. Then a σ b if and only if there
exists an idempotent i such that ai = bi.

Proof Suppose that a σ b. Then ae = x = bf for some idempotents e and f .
Multiplying on the right with ef yields

a(ef) = ae(ef) = bf(ef) = b(ef).

Consequently, ef is the element we are looking for. The converse is trivial.

2

We now turn to the other important congruence mentioned at the beginning of
this section, the maximum idempotent-separating congruence µ.

Definition 3.5.5 Let S be an inverse semigroup. A congruence ρ is called
idempotent-separating if distinct idempotents lie in different congruence classes,
that is if

ρ(e) = ρ(f) =⇒ e = f (e, f ∈ ES).

Apparently, the larger a congruence is, the more difficult to be idempotent-
separating it will be. We are thus interested in the maximum idempotent-
separating congruence which we shall call µ. Notice that the situation is contrary
to the one for group congruences. There, we were interested in the smallest con-
gruence such that the factor semigroup is a group.
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3 Basics of inverse semigroups

Proposition 3.5.6 For an inverse semigroup S the maximum idempotent-
separating congruence µ is given by

(a, b) ∈ µ ⇐⇒ ∀e ∈ ES : a−1ea = b−1eb. (3.5.1)

Proof We first demonstrate that µ is an idempotent-separating congruence.
Routine verification shows that it is an equivalence. To show the congruence
property let a µ b and c µ d and let e denote any idempotent. Then, by assump-
tion,

(ac)−1e(ac) = c−1
(
a−1ea

)
c = d−1

(
a−1ea

)
d = d−1

(
b−1eb

)
d = (bd)−1e(bd).

The second equality holds since a−1ea is an idempotent. It follows that µ is a
congruence. To see that it is also idempotent-separating assume that e µ f for
idempotents e and f . Choosing e and f respectively in (3.5.1) we get

e = e−1ee = f−1ef = ef = e−1fe = f−1ff = f ,

where we have used that idempotents commute in inverse semigroups. Hence
µ is indeed an idempotent-separating congruence. The next step is to show
that it is also the largest such congruence. Let ρ be an idempotent-separating
congruence and let e ∈ ES. For (a, b) ∈ ρ, 3.0.27 implies that a−1 ρ b−1 too and
thus a−1ea ρ b−1eb since ρ is a congruence. But ρ is idempotent-separating and
so a−1ea = b−1eb. It follows (a, b) ∈ µ and therefore ρ ⊆ µ.

2

For later purposes we prove that µ is always contained in the Green’s relation
H. In fact we have even more:

Proposition 3.5.7 ([3], Proposition 5.3.7) Let S be an inverse semigroup. Then
µ is the largest congruence contained in H.

Proof We start by showing that µ ⊆ H. Suppose that a µ b, i.e. ∀e ∈ ES : a−1ea =
b−1eb. In particular a−1 (bb−1) a = b−1 (bb−1) b = b−1b and thus ba−1bb−1a =
bb−1b = b. Hence b ∈ Sa. Interchanging the rôles of a and b we also get a ∈ Sb
and therefore aL b. We may similarly show that aR b and therefore aH b. Con-
sider now a congruence ρ with ρ ⊆ H and let a ρ b. Then by 3.0.27 we also
have a−1 ρ b−1 and hence a−1ea ρ b−1eb for every idempotent e. Now a−1ea and
b−1eb are both idempotents and they do lie in the same H-class. But an H-class
can contain at most one idempotent by 2.3.7. It follows that a−1ea = b−1eb
which implies a µ b since e was arbitrary. We have shown that ρ ⊆ µ for every
congruence ρ contained in H.

2

The maximum idempotent-separating congruence µ can be used to define a prop-
erty of inverse semigroups which will feature in chapter 5.
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Definition 3.5.8 An inverse semigroup is said to be fundamental if µ is the
equality relation.

Every inverse semigroup can be made into a fundamental one by building the
factor semigroup with respect to µ. The semilattice of idempotents is not affected
by this composition.

Proposition 3.5.9 ([3], Proposition 5.3.8) Let S be an inverse semigroup and
let µ be the maximum idempotent-separating congruence on S. Then S/µ is
fundamental and has semilattice of idempotents isomorphic to ES.

Proof Consider the natural morphism \ which maps S onto S/µ. Due to 3.0.25
every idempotent in S/µ can be written as µ(e), where e is an idempotent in S.
Conversely, it is clear that µ(e) is an idempotent in S/µ for every e ∈ ES. Using
an obvious notation, suppose that µ(a)µS/µ µ(b). Then

µ
(
a−1ea

)
=µ
(
a−1
)
µ(e)µ(a) =

3.0.27
µ(a)−1µ(e)µ(a)µS/µ µ(b)−1µ(e)µ(b) =

µ
(
b−1
)
µ(e)µ(b) = µ

(
b−1eb

)
.

But µS/µ is idempotent-separating and hence µ (a−1ea) = µ (b−1eb). By the same
argument applied to µ we eventually get the property

∀e ∈ ES : a−1ea = b−1eb

and hence µ(a) = µ(b).

2
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4 Primitive inverse semigroups
and Brandt semigroups

This chapter deals with primitive inverse semigroups and Brandt semigroups.
Immediately after an initial definition we see that primitive inverse semigroups
resemble groups insofar as their natural partial order is equality when restricted
to non-zero elements. In particular the idempotents are all incomparable ex-
cept for the zero. Brandt semigroups are introduced as completely 0-simple in-
verse semigroups and are revealed to be the building blocks of primitive inverse
semigroups. Another two characterisations are presented, in particular using
0-minimal ideals. The result motivates to focus on Brandt semigroups rather
than primitive inverse semigroups. Using the Rees theorem we find a representa-
tion of Brandt semigroups as Rees matrix semigroups of a special form. At this
point we turn to investigate a seemingly unrelated semigroup which obeys two
axioms. This semigroup arises from Brandt’s original approach. The chapter is
concluded by the proof that the arising semigroups are in fact exactly the Brandt
semigroups.

Definition 4.0.10 An inverse semigroup S with zero is said to be primitive if
every non-zero idempotent is primitive in the sense of 2.7.6.

In the case of an inverse semigroup S without zero, a primitive idempotent is just
a minimal idempotent and we could define S to be primitive if every idempotent
is minimal. But then the proof of 3.2.6 tells us that such a semigroup is in fact a
group. As our concern is with semigroups, we are merely interested in primitive
inverse semigroups as defined above. The zero is always the smallest element of
the semigroup with respect to the natural partial order. Thus if we required the
order to be equality then the semigroup would consist of just a zero. We have,
however, the following proposition which should be compared to 3.2.6.

Proposition 4.0.11 ([5], Proposition 3.3.1) Let S be an inverse semigroup with
zero. Then the natural partial order is equality when restricted to S \ {0} if and
only if S is primitive.

Proof If the natural partial order is equality when restricted to S \{0} then it is
immediate that every non-zero idempotent is primitive. To prove the converse,
suppose that every non-zero idempotent is minimal in ES \ {0}. Let s ≤ t. Then
s−1s ≤ t−1t. By assumption either s−1s = 0 or s−1s = t−1t. In the former case
we have that s = s(s−1s) = 0 whereas in the latter we get s = ts−1s = tt−1t = t.

2
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In the following definition we encounter the so-called Brandt semigroups which
will turn out to be the building blocks of primitive inverse semigroups.

Definition 4.0.12 A Brandt semigroup is a completely 0-simple inverse semi-
group.

Proposition 4.0.13 ([7], Lemma II.3.2) Let S be a Brandt semigroup.

(i) If e is a primitive idempotent of S and x, y ∈ S are such that
f = xey ∈ ES \ {0}, then e = eyfxe. In particular, every non-zero idem-
potent contained in the principal ideal generated by a primitive idempotent
e is J -equivalent to e.

(ii) All non-zero idempotents of S are primitive.

Proof
(i): We first demonstrate that eyfxe is an idempotent:

(eyfxe)2 = eyf xey︸︷︷︸
=f

fxe = eyfxe.

This implies eyfxe = (eyfxe)e ≤ e. By

x(eyfxe)y = (xey)f(xey) = fff = f 6= 0

we conclude that eyfxe 6= 0. Using this and the fact that e is primitive this
entails e = eyfxe.
(ii): Assume that 0 6= f ≤ g for non-zero idempotents f, g. Fix a primitive
idempotent e. Since S is 0-simple there exist x, y ∈ S : xey = g. By (i) we have
e = eygxe. Now f = fg = fxey and therefore e = eyffxe = eyfxe again by
(i). Multiplying eygxe = e = eyfxe with x on the left and with y on the right
and using f ≤ g provides f = g.

2

We have shown that Brandt semigroups are particular primitive inverse semi-
groups. The converse is not true in general as the next theorem tells us. It
uses orthogonal sums1 to make the relationship between Brandt semigroups and
primitive inverse semigroups precise.

Lemma 4.0.14 ([7], Lemma II.4.1) Let S be an inverse semigroup and let a, b ∈
S such that Ja < Jb. Then, for every idempotent f ∈ Jb, there exists an
idempotent e ∈ Ja with e < f .

Proof By assumption we have Ja < Jb, i.e. SaS ⊂ SbS. Due to bJ f this
yields a = xfy for some x, y ∈ S. Putting e = x−1xfyy−1 we clearly have
e ≤ f and e2 = e. Furthermore, by the definition of e we have e = x−1ay−1 and
xey = xx−1xfyy−1y = xfy = a. Hence aJ e. If now e = f , then aJ e = f J b—
1For a definition see 2.0.12
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a contradiction to the assumption. Thus e < f , as required.

2

Theorem 4.0.15 ([7], Theorem II.4.3) A semigroup S is a primitive inverse
semigroup if and only if it is an orthogonal sum of Brandt semigroups.

Proof First let S be a primitive inverse semigroup. Let a, b ∈ S : Ja < Jb. The
J -class Jb contains an idempotent f = bb−1. By virtue of 4.0.14 e < f for some
idempotent e ∈ Ja. Since f is a primitive idempotent we conclude that e = 0
and therefore Ja = {0}. Let now a 6= 0 be any element and suppose there exists
some c in J (a) such that a and c are not J -equivalent. Then Jc < Ja and hence
Jc = {0} by the same argument as before. Consequently, J (a) = Ja∪{0}. Now
let Ja 6= Jb for a, b ∈ S \ {0}. Because Jab ≤ Ja,Jb we get, say, Jab < Ja and so
ab = 0. This shows that S is an orthogonal sum of its non-zero principal ideals,
each of which is a Brandt semigroup by 2.7.4: S =

∑
a6=0 J (a).

The converse is a simple consequence of 4.0.13(ii) and the way in which orthog-
onal sums are defined.

2

Now it becomes apparent that a primitive inverse semigroup S is a Brandt semi-
group if and only if there is only one summand in the representation of S as an
orthogonal sum of Brandt semigroups.

Definition 4.0.16 For a semigroup with zero a 0-minimal right ideal is a right
ideal which is minimal in the set of non-zero right ideals.

The following proposition is an extension of 4.0.15. It presents another two
equivalent conditions. The proof is omitted since conditions (C) and (D) play
no further role in this thesis. See [10] for the equivalence of (A), (B) and (C)
and [8] as well as [9] for the equivalence of (A), (B) and (D).

Proposition 4.0.17 ([2], Exercise 6.5.6) The following conditions on a semi-
group S with zero are equivalent.

(A) S is a primitive inverse semigroup.

(B) S is an orthogonal sum of Brandt semigroups.

(C) If a ∈ S \{0}, then there exists a unique element x of S such that axa = a.

(D) S is an inverse semigroup which is the union of its 0-minimal right ideals.

Theorem 4.0.15 entitles us to confine our investigations to Brandt semigroups
henceforth.
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4.1 A structure theorem for Brandt semigroups

Since we defined Brandt semigroups to be completely 0-simple inverse semigroups
it seems reasonable to base our discussion of them on the Rees theorem and adapt
it for inverse semigroups. In particular, a Brandt semigroup B is a completely
0-simple semigroup and therefore of the form M0[G; I,Λ;P ] for some group G,
non-empty sets I and Λ and a regular sandwich matrix P . We know from 3.0.21
that in an inverse semigroup each L-class and each R-class contains exactly one
idempotent. This causes P to contain in each row and each column exactly one
non-zero entry:

Proof Suppose, by way of contradiction, that pλi 6= 0 6= pλj, where i 6= j. Then
(i, p−1λi , λ) and (j, p−1λj , λ) are (distinct) idempotents, lying in the same L-class
by 2.7.11 a contradiction to 3.0.21. Hence every row of P contains exactly one
non-zero entry. An analogous argument applies to columns.

2

Thus, there is a bijection mapping I onto Λ by the rule that i 7→ λ if and only
if pλi 6= 0. Since we interpreted I and Λ as index sets there is really no need to
distinguish between the two of them and we can safely put Λ = I which makes
P a ‘square’ matrix. Using our new notion we can go even further and assume
without loss of generality that pij 6= 0 ⇐⇒ i = j. We thus obtain a ‘diagonal’
matrix. Again we do not need to stop here. A diagonal matrix is nice but even
nicer would be the ‘identity matrix’ over G0 by which we mean a diagonal matrix
whose non-zero entries consist entirely of the identity element e ∈ G. To spell it
out we define the I × I matrix

∆ := (δij),

where δ denotes the ‘Kronecker-symbol’, i.e.

δij =

{
e i = j

0 i 6= j

We are going to prove that this makes no essential difference, since the resulting
Rees matrix semigroup is isomorphic to the original one:

Proof For all i, j ∈ I there exist ui, vj, namely pii and e, such that vjδijui =
eδijpii = pij. Thus the preconditions of 2.7.17 are satisfied and therefore S ∼=
M0[G; I, I; ∆].

2

The converse is also true. In total we have

Theorem 4.1.1 ([3], Theorem 5.1.8)
A semigroup is both completely 0-simple and an inverse semigroup, i.e. a Brandt
semigroup, if and only if S ∼= M0[G; I, I; ∆] for some group G and some index
set I.
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4.2 Another structure theorem

Proof We have already proved the difficult half of the assertion but have yet to
show thatM0[G; I, I; ∆] is an inverse semigroup. It is certainly regular by 2.7.15.
It remains to point out that idempotents commute. Within M0[G; I, I; ∆], the
idempotents are easily detected. They are the elements of the form (i, e, i), where
i is any element in I. By the definition of δij it follows that

(i, e, i)(j, e, j) = (j, e, j)(i, e, i) =

{
0 i 6= j

(i, e, i) i = j

2

By means of 4.1.1 a Brandt semigroup is, up to isomorphism, uniquely deter-
mined by a group G and an index set I which is why we occasionally denote it as
B(G, I). Note that it is not possible for two index sets I, J with |I| 6= |J |
to appear in isomorphic Brandt semigroup representations M0(G; I, I; ∆) ∼=
M0(H; J, J ; ∆) since 2.7.11 would amount in the two Brandt semigroups having
a different number of L-classes.
In the special case of a Brandt semigroup, the multiplication introduced in (2.7.1)
simplifies to

(g, i)(h, j) =

{
(gh, i) i = j

0 i 6= j

0(g, i) = (g, i)0 = 0 · 0 = 0, (4.1.1)

where we have used the abbreviation (g, i) := (i, g, i). For reasons that will
become clear soon, we present the following lemma before we go on and head for
another characterisation of Brandt semigroups. The proof is omitted since it is
a simple consequence of (4.1.1).

Lemma 4.1.2 Let B(G, I) be a Brandt semigroup. Then, for every non-zero
element a ∈ B(G, I), there exist unique elements e, f, a′ ∈ B(G, I), such that
ea = a = af and a′a = f .

4.2 Another structure theorem

In the last section we described Brandt semigroups as Rees matrix semigroups
of particularly easy form. In this section we choose an alternative approach
and account for the name Brandt semigroup. Historically the name stems from
the german mathematician H. Brandt who in 1927 introduced so-called Brandt
groupoids. These are binary systems in which products are not always defined
and which obey a fairly restrictive set of rules. If we adjoin an element 0 and
define the undefined products to be 0, then we get a semigroup which turns out
to be what we called a Brandt semigroup. We will, however, not bother about
Brandt groupoids and define instead

Definition 4.2.1 A Br-semigroup is a semigroup S with zero satisfying the fol-
lowing axioms:
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4 Primitive inverse semigroups and Brandt semigroups

(A1) To each element a 6= 0 of S there correspond a unique element e of S such
that ea = a, a unique element f of S such that af = a and a unique
element a′ of S such that a′a = f .

(A2) If e and f are non-zero idempotents of S, then eSf 6= {0}.

We will account for the suggestive notation after a short lemma.

Lemma 4.2.2 With the preceding notation we have

(i) e, f ∈ ES

(ii) aa′ = e

Proof
(i): e2a = e(ea) = ea = a together with the uniqueness of the left identity
implies e2 = e. Similarly we can show f 2 = f .
(ii): a = af = a(a′a) = (aa′)a and a = ea together with the uniqueness of the
left identity implies aa′ = e.

2

Now we are able to prove

Proposition 4.2.3 Br-semigroups are Brandt-semigroups.

Proof We need to show that S is a completely 0-simple inverse semigroup. We
begin with 0-simplicity. By 2.7.4 it suffices to confirm that

∀a, b ∈ S \ {0} ∃x, y ∈ S : xay = b.

Let e denote the unique left identity of a and let f denote the unique right
identity of b denoted in (A1). By (A2) there exists a non-zero element c ∈ eSf .
Applying (A1) to this c we get an element c′ such that c′c is the unique right
identity element of c. Because of the particular form of c we have c′c = f . Again
by the particular form of c we know ec = c and we arrive finally at

b = bf = b(c′c) = bc′(ec) =
4.2.2(ii)

bc′(aa′)c = bc′︸︷︷︸
:=x

a a′c︸︷︷︸
:=y

.

Axiom (A1) assures the existence of non-zero idempotents. To prove that S
contains primitive idempotents, let e and f be idempotents such that 0 < e ≤ f .
It follows that ef = fe = e = ee. The uniqueness of the right identity gives us
e = f . Consequently S is a completely 0-simple semigroup. Notice that we do
not yet know that S is an inverse semigroup and so ≤ denotes the order relation
(2.1.1), which is defined on ES for every semigroup.
We still have to demonstrate that S is inverse. Let R be a (non-zero) R-class
containing idempotents e and f . Hence e is a left identity of R and in particular
of f which yields ef = f = ff . From (A1) it follows that e = f and so
everyR-class contains merely one idempotent. An analogous statement holds for
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L-classes and by virtue of 3.0.21 we have proved that S is a completely 0-simple
inverse semigroup.

2

Collecting all the pieces 4.2.3, 4.1.1 and 4.1.2 we have finally established the
instructive

Theorem 4.2.4 ([1], Theorem 3.9) The following three conditions on a semi-
group S with zero are equivalent.

(i) S is a Br-semigroup.

(ii) S is a Brandt semigroup.

(iii) S is isomorphic to a (regular) Rees I × I matrix semigroup M0[G; I, I; ∆]
over a 0-group G0 and with the I×I identity matrix ∆ as sandwich matrix.
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5 Inverse ω-semigroups

This chapter is concerned with inverse ω-semigroups. These are inverse semi-
groups whose idempotents form a chain with respect to the natural partial or-
der. Our goal is to present a universal construction method for them but we
confine ourselves to the cases of bisimple and simple semigroups. We start off by
introducing Munn semigroups, which are particularly significant inverse semi-
groups that can be constructed from arbitrary semilattices. What sets them
apart is that for any inverse semigroup there exists a morphism into the related
Munn semigroup, having the maximum idempotent-separating congruence µ as
its kernel. For fundamental inverse semigroups this morphism even constitutes
an embedding, enabling us to show that there is only one fundamental bisimple
inverse ω-semigroup, namely the bicyclic semigroup. We then describe a method
due to Bruck and Reilly for constructing a new and interesting semigroup from a
given monoid. This so-called Bruck-Reilly extension makes it possible to deter-
mine all bisimple inverse ω-semigroups. Things get more complicated for simple
inverse ω-semigroups and we have to work considerably to adapt our methods
from the bisimple case. In the end we also obtain a nice characterisation again
using Bruck-Reilly extensions.

5.1 The Munn semigroup

Definition 5.1.1 Let (E, ·) be a semilattice. The uniformity relation U on E is
given by

U = {(e, f) ∈ E × E : bec ∼= bfc}, (5.1.1)

where ∼= denotes an isomorphism between (sub)semilattices, that is an isomor-
phism between the respective commutative idempotent semigroups.
For each (e, f) ∈ U we define Te,f to be the set of all isomorphisms from bec onto
bfc. Let

TE =
⋃
{Te,f : (e, f) ∈ U}. (5.1.2)

We call TE the Munn semigroup of the semilattice E.

To justify our notation we have to furnish TE with an associative operation.
First note that TE ⊆ IE, where IE is the symmetric inverse monoid. We shall
show that TE is in fact an inverse subsemigroup of IE. Let α : bec → bfc and
β : bgc → bhc be elements of TE. The product β ◦ α of α and β in IE maps
α−1 (bfc ∩ bgc) = α−1 (bfgc) onto β (bfc ∩ bgc) = β (bfgc). If we write α−1 (fg)
as i and β (fg) as j we see that

x ∈ α−1 (bfgc) ⇐⇒ α(x) ∈ bfgc ⇐⇒ α(x) ≤ fg ⇐⇒
x ≤ α−1(fg) ⇐⇒ x ∈ bic
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5 Inverse ω-semigroups

and similarly β (bfgc) = bjc. Thus

dom(β ◦ α) = bic

and
im(β ◦ α) = bjc.

It is easy to see that β ◦ α is an isomorphism and so β ◦ α ∈ TE. Moreover, for
every α : bec → bfc in TE, the inverse α−1 : bfc → bec is also in TE. Consider
the semilattice of idempotents of TE. A typical idempotent of TE is the identical
map idbec and since idbfc ◦ idbec = idbec∩bfc = idbefc, the map e 7→ idbec is an
isomorphism. We have established

Proposition 5.1.2 ([3], Proposition 5.4.1) For every semilattice E, the Munn
semigroup TE is an inverse semigroup whose semilattice of idempotents is iso-
morphic to E.

The above result allows us to identify idbec with e and to think of TE as an inverse
semigroup having E as its semilattice of idempotents.
Next we describe for TE the Green’s relations L and R. Let α : bec → bfc ∈ TE.
Then α−1 ◦ α = idbec and α ◦ α−1 = idbfc. The fact that functional composition
reads from right to left, implies

αR β ⇐⇒ dom(α) = dom(β)

and
αL β ⇐⇒ im(α) = im(β) (5.1.3)

in TE.
We shall illustrate this concept with an example.

Example 5.1.3 ([3], Example 5.4.3) Let E = Cω = {e0, e1, e2, . . .} be a semilat-
tice with e0 > e1 > e2 > . . . Then benc = {en, en+1, en+2, . . .}. An isomorphism
is in particular order-preserving. It follows that there is only one isomorphism
αm,n which maps bemc onto benc. This isomorphism is given by

αm,n(ek) = ek−m+n (m ≤ k).

If αm,n and αp,q are elements of TE, then their product αp,q◦αm,n maps α−1m,n(benc∩
bepc) = α−1m,n(ben ∧ epc) onto αp,q(benc ∩ bepc) = αp,q(ben ∧ epc). If we write
t = max(n, p) we can say that αp,q ◦ αm,n maps bet−n+mc onto bet−p+qc. By
uniqueness this yields

αp,q ◦ αm,n = αm−n+t,q−p+t. (5.1.4)

We can thus identify the Munn semigroup of the semilattice Cω with the bicyclic
semigroup already encountered in 3.1.4.

Remark 5.1.4 In particular, the operation defined in (3.1.1) is indeed associa-
tive and the name bicyclic ‘semigroup’ is therefore justified. This closes the gap
in the proof of 3.1.4.
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5.1 The Munn semigroup

The previous example features an inverse semigroup having Cω as its semilattice
of idempotents. These semigroups are the topic of our current chapter and so
we give them a name.

Definition 5.1.5 An inverse semigroup with semilattice of idempotents isomor-
phic to Cω is called an inverse ω-semigroup.

In the literature such semigroups are often called ω-regular semigroups (for ex-
ample in [7]). We prefer to call them inverse ω-semigroups, since a regular
semigroup S, whose idempotents form a semilattice isomorphic to Cω with re-
spect to the partial order (2.1.1), is necessarily inverse. To see this let e, f be
arbitrarily chosen idempotents in S. Without loss of generality e ≤ f and hence
ef = e = fe. Thus idempotents commute and S is inverse by 3.0.21.
Example 5.1.3 motivates yet another definition.

Definition 5.1.6 If a semilattice E has the property that U = E × E we call it
uniform.

The Munn semigroup plays a prominent role in the theory of inverse semigroups
and it is second only to the symmetric inverse monoid in its importance. In
the case of the symmetric inverse monoid we have proved that every inverse
semigroup can be embedded in such a semigroup. Here we may also formulate a
significant representation theorem.

Definition 5.1.7 Let φ : X → Y be a map. The kernel of φ is defined to be the
equivalence relation on X given by (a, b) ∈ ker(φ) ⇐⇒ φ(a) = φ(b).

Theorem 5.1.8 ([3], Theorem 5.4.4) For every inverse semigroup S with semi-
lattice of idempotents E there is a morphism φ : S → TE whose kernel is µ, the
maximum idempotent-separating congruence on S.

Proof Let a ∈ S. We define a map αa : baa−1c → ba−1ac by the rule that

αa(x) = a−1xa.

The image is contained in ba−1ac since a−1ea = (a−1ea) a−1a. A straightforward
calculation shows that the map αa−1 is a two-sided inverse of αa and so αa is a
bijection. It is even an isomorphism. We have to verify the morphic property:

∀e, f ∈ E :
(
a−1

(
eaa−1

)
a
) (
a−1

(
faa−1

)
a
)

=a−1aa−1
(
eaa−1faa−1

)
a =

a−1
(
eaa−1faa−1

)
a.

We have shown that αa ∈ TE for all a ∈ S. Now we define a map

φ : S → TE

a 7→ αa.

Let a, b ∈ S. If we write i := αa−1 (a−1abb−1) = aa−1abb−1a−1 = (ab)(ab)−1 and
j := αb (a−1abb−1) = b−1a−1abb−1b = (ab)−1(ab) then, by the multiplication rule
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in TE, the product αb ◦ αa is an isomorphism from bic onto bjc. Moreover, for
every x ∈ bic,

αb (αa (x)) = b−1a−1xab = (ab)−1x(ab),

and so αb ◦ αa = αab. This shows that φ is a morphism.
We have still to prove that the kernel of φ is µ. Let (a, b) ∈ µ, then (a, b) ∈ H
as demonstrated in 3.5.7. We deduce that

dom(αa) = baa−1c = bbb−1c = dom(αb)

and
im(αa) = ba−1ac = bb−1bc = im(αb).

Also, for all x = eaa−1 ∈ baa−1c = dom(αa) we get

αa(x) = a−1
(
eaa−1

)
a = a−1ea = b−1eb = b−1

(
ebb−1

)
b = b−1

(
eaa−1

)
b = αb(x)

by the definition of µ and so φ(a) = φ(b). Hence µ ⊆ ker(φ).
Conversely, suppose that φ(a) = φ(b), i.e. αa = αb. Since the domains and
images must agree we have

baa−1c = dom(αa) = dom(αb) = bbb−1c

and thus aa−1 = bb−1. For all e ∈ ES then

a−1ea = a−1
(
eaa−1

)
a = αa

(
eaa−1

)
= αb

(
ebb−1

)
= b−1

(
ebb−1

)
b = b−1eb

and so (a, b) ∈ µ.

2

In contrast to the Wagner-Preston embedding 3.3.1, the morphism φ is not nec-
essarily one-one. In fact it is one-one if and only if S is fundamental1.

Definition 5.1.9 Let S be an inverse semigroup. An inverse subsemigroup of
S is called full if it contains all idempotents of S.

This notion allows us to obtain a useful alternative description of fundamental
inverse semigroups.

Theorem 5.1.10 ([3], Theorem 5.4.5) An inverse semigroup with semilattice
of idempotents E is fundamental if and only if it is isomorphic to a full inverse
subsemigroup of TE.

Proof Let S be a fundamental inverse semigroup with semilattice of idempo-
tents E. By 5.1.8 and the remark following the proof of it, φ(S) is an inverse
subsemigroup of TE. Now consider for e ∈ E the map

φ(e) = αe : bee−1c = bec → be−1ec = bec,
1For a definition see 3.5.8
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5.1 The Munn semigroup

where φ is as in the proof of 5.1.8. It maps x ∈ bec to e−1xe = x. We see that
φ(e) = idbec for every e ∈ E and so φ(S) is a full inverse subsemigroup of TE as
required.
Conversely, suppose that S is a full inverse subsemigroup of TE. In an obvious
notation let (α, β) ∈ µS. Hence, using (5.1.3) and 3.5.7, dom(α) = dom(β) = bec
and im(α) = im(β) = bfc (say). Also, for every x ∈ E,

α ◦ idbxc ◦ α−1 = β ◦ idbxc ◦ β−1,

since S is full and µ is idempotent-separating by definition. In particular the
domains agree and therefore

bα(ex)c = bβ(ex)c

for all x ∈ E. Hence α(ex) = β(ex) for all ex ∈ bec and so α = β.

2

This entails a corollary.

Corollary 5.1.11 ([3], Corollary 5.4.6) The Munn semigroup TE is fundamen-
tal for every semilattice E.

The next proposition is designed to provide an example of a concrete Munn
semigroup. It demonstrates that in a sense, Munn semigroups are ‘big enough’
to comprise all inverse semigroups.

Proposition 5.1.12 ([3], Exercise 5.23) Let X be a set and let E = 2X be the
semilattice (under intersection) of all subsets of X. Then TE is isomorphic to
IX .

Proof First note that within the semilattice (E ,∩) the corresponding order re-
lation ≤ coincides with ⊆. Thus, for each A ⊆ X, the order ideal bAc consists of
all the subsets of A. Now consider an element φ ∈ TE . It maps {U ∈ X : U ⊆ A}
onto {V ∈ X : V ⊆ B} (say). We shall assign to φ a partial bijection of X
which maps A onto B. In order to do that consider the singleton sets {x}, where
x ∈ A. Such a singleton subset of A is mapped to a singleton subset of B. To
see this, suppose that the image φ({x}) is not a singleton. Then there exists
a set D such that ∅ ⊂ D ⊂ φ({x}). Because φ is an (order-)isomorphism the
inverse image φ−1(D) must be a strict subset of {x} but it cannot be ∅, since the
empty set is mapped to the empty set by φ—a contradiction. Conversely, con-
sider the inverse image φ−1({b}), where b ∈ B. Suppose that φ−1({b}) is not a
singleton. Then there exists a set C such that ∅ ⊂ C ⊂ φ−1({b}). Consequently,
∅ = φ(∅) ⊂ φ(C) ⊂ φ (φ−1 ({b})) = {b} which is a contradiction. This reasoning
prompts us to define a partial mapping αφ from A to B by

αφ(a) = b ⇐⇒ φ({a}) = ({b}).
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We have already shown that it is well-defined, one-one and onto. Hence αφ is a
partial bijection for every φ ∈ TE . We claim that

φ 7→ αφ

defines an isomorphism Φ from TE onto IX . An element φ in TE is uniquely
determined by the images of the singleton sets, since it is easy to see that for
every U ⊆ A we have

φ(U) =
⋃
a∈U

φ(a).

It follows that Φ is both one-one and onto. The morphism property is a con-
sequence of the way in which partial mappings are composed in the symmetric
inverse monoid.

2

Using 5.1.11 this gives us

Corollary 5.1.13 The symmetric inverse monoid IX is fundamental for every
set X.

5.2 Bisimple inverse ω-semigroups

Let S be an inverse semigroup with semilattice of idempotents E. By 3.0.30(iii)
two idempotents e, f ∈ S are D-equivalent if and only if there exists an element
a ∈ S such that aa−1 = e and a−1a = f . In such a case it is easy to verify that
the map

φ : bec → bfc
x 7→ a−1xa

is an isomorphism with inverse map y 7→ aya−1. Accordingly we have

D ∩ (E × E) ⊆ U . (5.2.1)

In the special case of a Munn semigroup TE we can say more. By definition,
eU f implies the existence of an isomorphism α ∈ TE, which maps bec onto
bfc. Clearly then α−1 ◦ α = idbec and α ◦ α−1 = idbfc. If we decide to identify
the idempotents idbec with e as suggested by 5.1.2, this yields eD f . We have
therefore a stronger version of (5.2.1) for Munn semigroups:

D ∩ (E × E) = U . (5.2.2)

In this chapter we deal with bisimple inverse semigroups, i.e. inverse semigroups
in which every two elements are D-equivalent2. In particular every two idempo-
tents are D-equivalent and so we deduce that E is uniform for every bisimple in-
verse semigroup by virtue of (5.2.1). The converse is not true in general; not every

2Compare this to the the corresponding definition of simplicity in 2.7.2(i)
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inverse semigroup having a uniform semilattice as its semilattice of idempotents
is bisimple. Take for example a uniform semilattice E (that contains more than
one element) and consider it as an inverse semigroup (having itself as its semilat-
tice of idempotents). Then it is certainly not bisimple, since from eD f it follows
by 3.0.30(iii) that e = f . In the Munn semigroup TE however we benefit from
(5.2.2), which yields that every two idempotents areD-equivalent in TE when E is
uniform. Consequently, every two elements are D-equivalent, since every element
is
D-equivalent (even L-equivalent) to an idempotent and the Green’s relations
are transitive. Thus for a uniform semilattice E there is at least one bisimple in-
verse semigroup having E as its semilattice of idempotents. We may summarise
these observations in

Proposition 5.2.1 3 A semilattice E can be the semilattice of idempotents of a
bisimple inverse semigroup if and only if it is uniform.

Taking the Munn semigroup of uniform semilattices gives us a useful recipe for
constructing bisimple inverse semigroups but it is certainly no universal recipe,
since 5.1.11 states that Munn semigroups are always fundamental and we can
easily produce non-fundamental bisimple inverse semigroups. Simply take the
direct product of some Munn semigroup (having a uniform semilattice) and a
non-trivial group.
Let us for the moment focus on fundamental bisimple inverse semigroups. Recall
that by 5.1.10, a fundamental inverse semigroup is isomorphic to a full inverse
subsemigroup of the corresponding Munn semigroup. Using the additional prop-
erty of bisimplicity we can specify this further. If the full inverse subsemigroup
S ′ = φ(S) is to be bisimple, then for every e, f ∈ E there is bound to be an
element α ∈ S ′ with the property that dom(α) = bec and im(α) = bfc (we are
using (5.1.3) here). This leads to the following

Definition 5.2.2 Let E be a semilattice. An inverse subsemigroup S ′ of TE is
called transitive if

∀e, f ∈ E : S ′ ∩ Te,f 6= ∅. (5.2.3)

We have shown that a fundamental bisimple inverse semigroup regarded as a
full inverse subsemigroup of the according Munn semigroup is transitive. On the
other hand it is easy to see that a transitive subsemigroup of TE is bisimple,
which makes transitivity a necessary and sufficient condition for bisimplicity.
Finally note that a transitive subsemigroup S ′ is always full as it contains an
isomorphism α from bec onto bfc for all e, f ∈ E and hence

∀e ∈ E : idbec = α−1 ◦ α ∈ S ′.

Combining 5.1.10 with 5.2.1 we thus obtain

Theorem 5.2.3 ([3], Theorem 5.6.2) An inverse semigroup S with semilattice
of idempotents E is fundamental and bisimple if and only if E is uniform and S
is isomorphic to a transitive inverse subsemigroup of TE.

3Compare to ([3], Proposition 5.6.1)
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Now consider the uniform semilattice Cω. We already know that

∀e, f ∈ Cω ∃!α ∈ TCω : bec → bfc (5.2.4)

and so the condition (5.2.3) can be satisfied only if

∀e, f ∈ E : S ′ ∩ Te,f = Te,f ,

that is if S ′ = TCω . In 5.1.3 we have identified TCω with the bicyclic semigroup.
We thus have

Corollary 5.2.4 ([3], Corollary 5.6.3) Up to isomorphism, the only fundamen-
tal bisimple inverse ω-semigroup is the bicyclic semigroup.

At this point we turn to investigate the relationship between the maximum
idempotent-separating congruence µ and the Green’s relation H in an inverse
ω-semigroup. In 3.5.7 we have seen that in an inverse semigroup, µ is the
largest congruence contained in H. Now we are going to show that for inverse
ω-semigroups we have in fact equality.

Proposition 5.2.5 ([3], Theorem 5.6.5) In an inverse ω-semigroup we have
H = µ.

Proof We have already dealt with µ ⊆ H in 3.5.7. To show that H ⊆ µ suppose
that (a, b) ∈ H. Then aa−1 = bb−1, a−1a = b−1b and so, following the notation
of 5.1.8,

dom(αa) = baa−1c = bbb−1c = dom(αb),

im(αa) = ba−1ac = bb−1bc = im(αb).

By (5.2.4) it follows that αa = αb and so a µ b again by 5.1.8.

2

Corollary 5.2.6 In an inverse ω-semigroup the equivalence relation H is even
a congruence.

The Bruck-Reilly extension

Construction 5.2.7 Let T be a monoid with identity 1 and let H1 be the group
of units of T . Let θ be a morphism from T into H1. Then we can make N×T ×N
into a semigroup S by defining

(m, a, n) · (p, b, q) :=
(
m− n+ t, θt−n(a)θt−p(b), q − p+ t

)
, (5.2.5)

where t := max(n, p) and where θ0 is interpreted as the identity map of T .
To justify this assertion we have to check that · is associative. Let there-
fore (m, a, n), (p, b, q), (r, c, s) ∈ S and compute ((m, a, n) · (p, b, q)) · (r, c, s) and
(m, a, n) · ((p, b, q) · (r, c, s)) respectively. Putting

u := max(q − p+ max(n, p), r)
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5.2 Bisimple inverse ω-semigroups

and
w := max(n, p− q + max(q, r)),

the former computes to(
m− n− q + p+ u, θu−n−q+p(a)θu−q(b)θu−r(c), s− r + u

)
whereas the latter results in(

m− n+ w, θw−n(a)θw−p(b)θw−r−p+q(c), s− r − p+ q + w
)

.

Observe that the outer coordinates combine exactly as in the bicyclic semigroup
which we know to be associative. Hence m− n− q + p+ u = m− n+ w, which
yields w = u+ p− q. From this we easily obtain that the middle coordinates are
also equal and we have thus shown that · is associative.

Definition 5.2.8 Let T, θ be as above. We denote the semigroup (S, ·) by BR(T, θ)
and call it the Bruck-Reilly extension of T determined by θ.

Remark 5.2.9 One ought to think of the Bruck-Reilly extension as a generali-
sation of the bicyclic semigroup B. Indeed, if we choose the trivial group G = {e}
and consider the Bruck-Reilly extension of it, then we obtain B.

For reasons of convenience we shall omit · and use juxtaposition instead at all
times. The next lemma lists some basic properties of BR(T, θ) in view of later
purposes.

Lemma 5.2.10 ([3], Proposition 5.6.6) Let S = BR(T, θ) be the Bruck-Reilly
extension for some monoid T and some morphism θ. Then we have

(i) S is a simple semigroup with identity (0, 1, 0).

(ii) (m, a, n)DS (p, b, q) ⇐⇒ aDT b.

(iii) The element (m, a, n) is an idempotent in S if and only if m = n and a is
an idempotent in T .

(iv) The Bruck-Reilly extension S is inverse if and only if T is inverse.

(v) (m, a, n) ≥ (p, b, q) if and only if m+ t = p, n+ t = q for some t ∈ N and
θt(a)e = b for some e ∈ ET .

Proof
(i): For arbitrary elements (m, a, n), (p, b, q) ∈ S a straightforward calculation
shows that (

p, θ(a)−1,m+ 1
)

(m, a, n)(n+ 1, b, q) = (p, b, q).

Therefore S is simple due to 2.7.5.
(ii): As in the assertion we shall use subscripts to distinguish between the
Green’s relations in T and those in S. We start by considering the Green’s
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relation RS. Assume that (m, a, n)RS (p, b, q). Then there exists (r, c, s) ∈ S
such that (m, a, n)(r, c, s) = (p, b, q). Thus(

m− n+ t, θt−n (a) θt−r (c) , s− r + t
)

= (p, b, q), (5.2.6)

where t := max(n, r). This implies m ≤ p. For symmetry reasons we also have
p ≤ m and thus m = p. Now, from m− n+ t = m we deduce that n = t and by
equating the middle coordinates in (5.2.6) we get aθn−r (c) = b. Hence Rb ≤ Ra.
A dual argument shows that we also have Ra ≤ Rb.
Conversely, suppose that aRT b. Then ax = b and bx′ = a for some x, x′ ∈ T .
As a result

(m, a, n)(n, x, q) = (m, b, q) and (m, b, q)(q, x′, n) = (m, a, n).

We have shown that

(m, a, n)RS (p, b, q) ⇐⇒ m = p, aRT b. (5.2.7)

It is evident that the dual statement also holds:

(m, a, n)LS (p, b, q) ⇐⇒ n = q, aLT b. (5.2.8)

Eventually we are able to deal with the D-relations. Suppose that

(m, a, n)DS (p, b, q).

This implies the existence of an element (r, c, s) such that (m, a, n)RS (r, c, s)
and (r, c, s)LS (p, b, q). A look at (5.2.7) and (5.2.8) makes it instantly clear that
aRT cLT b, i.e. aDT b.
If on the other hand aDT b, then aRT cLT b for some c ∈ T . Then

(m, a, n)RS (m, c, q)LS (p, b, q)

and hence (m, a, n)DS (p, b, q), regardless of the choice of m,n, p, q. In total we
have (m, a, n)DS (p, b, q) ⇐⇒ aDT b. This is (ii).
(iii): An element of the form (m, e,m), where e is an idempotent, is obviously
idempotent. Conversely, assume that (m, a, n) is an idempotent in S. Then

(m, a, n) = (m, a, n)(m, a, n) =
(
m− n+ t, θt−n (a) θt−m (a) , n−m+ t

)
,

where t denotes the maximum of n and m. From comparing left and right-hand
sides it follows that m = n and consequently a2 = a, as required.
(iv): Suppose that S is an inverse semigroup and (m, a, n) ∈ S. Let (p, b, q)
denote the unique inverse element of (m, a, n). Then

(m, a, n)(p, b, q) =
(
m− n+ t, θt−n (a) θt−p (b) , q − p+ t

)
is an idempotent RS-equivalent to (m, a, n) and LS-equivalent to (p, b, q). From
(5.2.7) and (5.2.8) it follows that n = p. We get m − n + t = q − n + t by (iii)
and thus m = q. Since (m, a, n)−1 = (p, b, q) = (n, b,m) we have (m, aba, n) =
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(m, a, n) and so aba = a. We have shown that T is regular. Now let e, f be arbi-
trary idempotents in T . We know that in the inverse semigroup S idempotents
commute. Thus (0, ef, 0) = (0, e, 0)(0, f, 0) = (0, f, 0)(0, e, 0) = (0, fe, 0) and so
ef = fe. In effect T is a regular semigroup in which idempotents commute, i.e.
an inverse semigroup.
Conversely, suppose that T is an inverse semigroup. Fix an element (m, a, n) in
S. It is easy to see that (n, a−1,m) is an inverse of (m, a, n) which makes S a
regular semigroup. Let (m, e,m), (n, f, n) be idempotents in S. Without loss of
generality let m ≤ n. Then

(m, e,m)(n, f, n) =
(
n, θn−m (e) f, n

)
,

(n, f, n)(m, e,m) =
(
n, fθn−m (e) , n

)
. (5.2.9)

Using that morphisms map idempotents to idempotents we obtain θn−m(e)f =
fθn−m(e) since T is inverse. As a result of (5.2.9) S is then inverse as well.
(v): Using (iii) we have by definition,

(m, a, n) ≥ (p, b, q) ⇐⇒ ∃k ∈ N ∃e ∈ ET : (m, a, n)(k, e, k) = (p, b, q).

If n > k then the left-hand side multiplies to (m, a, n) because idempotents are
mapped to the identity element by θ. If on the other hand n ≤ k, then, putting
t := k − n, we have

(m, a, n)(k, e, k) =
(
m+ t, θt (a) e, n+ t

)
.

If, conversely, the conditions on the right-hand side of (v) are satisfied, it is
clear that (m, a, n) ≥ (m+ t, θt (a) e, n+ t), since (m, a, n)(n + t, e, n + t) =
(m+ t, θt (a) e, n+ t).

2

Consider the special case of a Bruck-Reilly extension where T is a group (with
identity e). By (ii) and (iv) BR(T, θ) then becomes a bisimple inverse semigroup
with identity (0, e, 0) and θ an endomorphism of T .
A look at (v) shows that

(0, e, 0) > (1, e, 1) > (2, e, 2) > . . .

since a group morphism maps the identity element to the identity element. Hence
BR(T, θ) is a bicyclic inverse ω-semigroup. Perhaps more surprisingly the con-
verse also holds.

Theorem 5.2.11 ([3], Theorem 5.6.7) Let G be a group and let θ be an endo-
morphism of G. Let S = BR(G, θ) be the Bruck-Reilly extension of G determined
by θ. Then S is a bisimple inverse ω-semigroup. Conversely, every bisimple in-
verse ω-semigroup is isomorphic to some BR(G, θ).

Proof It remains to establish the converse. Let S be a bisimple inverse semigroup
with semilattice of idempotents (isomorphic to) Cω. We discussed the Munn
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semigroup TCω in example 5.1.3 and found it to be isomorphic to the bicyclic
semigroup B . Recall that

TCω = {αm,n : m,n ∈ N},

where αm,n is the unique isomorphism from bemc onto benc given by

αm,n (ek) = ek−m+n (k ≥ m).

By 5.1.8 there exists a morphism φ : S → B , whose kernel is µ. In fact we may
apply 5.2.5, which supplies

φ(s) = φ(t) ⇐⇒ sH t. (5.2.10)

Accordingly, consider an H-class of S. It is of the form

Hm,n :=
{
a ∈ S : aa−1 = em, a

−1a = en
}

. (5.2.11)

Every element a ∈ Hm,n maps to an element αa ∈ TCω with domain baa−1c =
bemc and codomain ba−1ac = benc. There is only one such element, namely αm,n.
We thus have

φ (Hm,n) = {αm,n}

and apparently also
Hm,n = φ−1 (αm,n) . (5.2.12)

Let now a ∈ Hm,n and b ∈ Hp,q. Then

φ (ab) = φ(b) ◦ φ(a) = αp,q ◦ αm,n = αm−n+t,q−p+t (t := max(n, p)) .

Hence, using (5.2.12), ab ∈ Hm−n+t,q−p+t and therefore

Hm,nHp,q ⊆ Hm−n+t,q−p+t. (5.2.13)

Let us denote H0,0 by G. As suggested by our notation, G is a group, since
it contains the idempotent e0 (see 2.3.7). Choose and fix an element a ∈ H0,1.
Then a2 ∈ H0,2 by (5.2.13) and an ∈ H0,n for every n ∈ N by induction (we put
a0 := e0). Additionally, a look at (5.2.11) tells us that a−1 ∈ H1,0 and further
a−n ∈ Hn,0 by the same line of reasoning as before.
Notice that ana−n is an idempotent in H0,0 = G for every n ∈ N and thus
equal to e0. Similarly, a−nan = en. Furthermore e0a

n = ana−nan = an and
a−me0 = a−mama−m = a−m. This yields e0R an and e0 L a−m respectively.
We may apply Green’s Lemmas 2.3.3, 2.3.4 and conclude that the maps

G = H0,0 → H0,n, g 7→ gan

and
H0,n → Hm,n, x 7→ a−mx

are bijections. Combining these we get a bijection φ : G→ Hm,n given by

g 7→ a−mgan
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with inverse mapping x 7→ amxa−n. Since n,m ∈ N were arbitrarily chosen,
every element in S can thus be written as a−mgan in a unique way. We have
thus established a bijection

Φ: S → N×G× N
a−mgan 7→ (m, g, n).

In the end we want to show that Φ is a morphism from S to BR(G, θ) for
some θ. Due to formula (5.2.13), ag ∈ H0,1. Hence we may express ag as
a0g′a1 = e0g

′a = g′a for exactly one g′ ∈ G. Implicitly, this defines a map
θ : G→ G via

ag = θ(g)a. (5.2.14)

We claim that θ is an endomorphism of G. To verify this, let g1, g2 ∈ G. Then

θ(g1g2)a = a(g1g2) = (ag1)g2 = θ(g1)(ag2) = θ(g1) (θ(g2)a) = (θ(g1)θ(g2)) a.

Multiplying both sides with a−1 and recalling that aa−1 = e0 is the identity
element of G we thus get

θ(g1g2) = θ(g1)θ(g2). (5.2.15)

We may extend (5.2.14) as follows:

∀g ∈ G : a2g = a(ag) = a (θ(g)a) = (aθ(g)) a =
(
θ2(g)a

)
a = θ2(g)a2.

Using induction we further get

∀g ∈ G ∀n ∈ N : ang = θn(g)an. (5.2.16)

Here, as always, θ0 is interpreted as the identity map on G. Also from (5.2.14)
we deduce

∀g ∈ G : g−1a−1 = (ag)−1 = (θ(g)a)−1 = a−1θ(g)−1 = a−1θ
(
g−1
)

.

If we substitute g−1 by g and perform induction again we get

ga−n = a−nθn(g). (5.2.17)

Eventually we are able to prove that Φ is a morphism:
Let s, t ∈ S. Then s = a−mgan and t = a−phaq for certain m,n, p, q ∈ N, g, h ∈
G. We have to distinguish between two cases. Suppose first that n ≥ p. Then(

a−mgan
) (
a−phaq

)
=a−mgan−p apa−p︸ ︷︷ ︸

=e0

haq =
(5.2.16)

a−mgθn−p(h)an−paq =

a−mgθn−p(h)an−p+q.

If on the other hand n ≤ p, then(
a−mgan

) (
a−phaq

)
=a−mg ana−n︸ ︷︷ ︸

=e0

a−(p−n)haq =
(5.2.17)

a−ma−(p−n)θp−n(g)haq =

a−(m+p−n)θp−n(g)haq.
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These two formulae combine to the one formula

(a−mgan)(a−phaq) = a−(m−n+t)θt−n(g)θt−p(h)aq−p+t,

where t := max(n, p) as usual. We have finally shown that Φ is a morphism and
hence S ∼= BR(G, θ).

2

5.3 Simple inverse ω-semigroups

In this section we are aiming for a theorem analogous to 5.2.11, i.e. we want
to establish a structure theorem for simple inverse ω-semigroups. The theory is
developed in a similar way as in the previous section and it is worth comparing
the corresponding interim results. We shall add however, that the situation for
simple inverse ω-semigroups is slightly more complicated than in the bisimple
case.
We first describe simple inverse semigroups in terms of the natural partial order
relation and the Green’s relationD, which constitutes the property of bisimplicity
when there is only one D-class.

Lemma 5.3.1 ([3], Lemma 5.7.1) Let S be an inverse semigroup with semilat-
tice of idempotents E. Then S is simple if and only if

∀e, f ∈ E ∃g ∈ E : g ≤ f and eD g. (5.3.1)

Proof Suppose first that S is a simple inverse semigroup. Let e, f ∈ E. Then
e = xfy for some x, y ∈ S by 2.7.5. Put g := fyex. Now

(fyex)2 = fye xfy︸︷︷︸
=e

ex = fyex

shows that g is an idempotent. By

fg = ff︸︷︷︸
=f

yex = g

it is also clear that g ≤ f . It remains to show that eD g. Accordingly, we must
find an element u ∈ S such that eLu and uR g. Consider u := x−1e. Then

xu = xx−1e =
(
xx−1x

)
fy = xfy = e

and so eLu. Furthermore,

ux = x−1ex = x−1e2x = x−1x(fyex) = x−1xg = gx−1x = fyexx−1x = fyex = g

and

gx−1 =gx−1xx−1 = x−1xgx−1 = x−1 xfy︸︷︷︸
=e

exx−1 = x−1exx−1 = x−1xx−1e =

x−1e = u.
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That is uR g. Hence eD g, as required.
Conversely, suppose that we have property (5.3.1) for an inverse semigroup S.
It follows that

Je = Jg ≤ Jf .
Interchanging the rôles of e and f we also obtain

Jf ≤ Je.

Hence Je = Jf and so all idempotents in S are J -equivalent. But then all
elements in S are J -equivalent, since J is transitive and for every element a ∈ S
we have aJ aa−1 (even aR aa−1). This means that there is only one J -class,
i.e. S is simple.

2

We defined a semilattice E to be uniform if the uniformity relation U is max-
imal, i.e. U = E × E. Taking 5.3.1 as a model we now define a weaker prop-
erty that is better suited for establishing a structure theorem for simple inverse
ω-semigroups.

Definition 5.3.2 A semilattice E is said to be subuniform if

∀e, f ∈ E ∃g ∈ E : g ≤ f, bec ∼= bgc. (5.3.2)

The name suggests that a uniform semilattice is also subuniform. This is indeed
the case and easy to see: just put g = f in (5.3.2).
In 5.2.1 we saw that a semilattice can be the semilattice of idempotents of a
bisimple inverse semigroup if and only if it is uniform. The next proposition
shows that subuniformity is a suitable counterpart to uniformity if we deal with
simple inverse semigroups instead of bisimple ones.

Proposition 5.3.3 ([3], Proposition 5.7.2) A semilattice E can be the semilat-
tice of idempotents of a simple inverse semigroup if and only if it is subuniform.

Proof Let S be a simple inverse semigroup with semilattice of idempotents E.
We have already seen in (5.2.1) that for e, g ∈ E, eD g implies bec ∼= bgc. Hence,
using 5.3.1, we have established half of the proposition.
To show the converse, suppose that E is a subuniform semilattice. Consider the
Munn semigroup TE. Here we have the benefits of (5.2.2) available. If e, f ∈ E
then bec ∼= bgc for some g ≤ f . In the Munn semigroup TE this is equivalent to
eD g. Thus TE is simple by 5.3.1.

2

For a semilattice E we defined in 5.2.2 an inverse subsemigroup S of TE to be
transitive if S∩Te,f 6= ∅ for all e, f ∈ E. In other words S is said to be transitive
if

∀e, f ∈ E ∃α ∈ S : dom(α) = bec, im(α) = bfc.
As in the case of subuniformity we now formulate a weaker version of transitivity
that matches our purposes for simple inverse semigroups.
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Definition 5.3.4 Let E be a semilattice. An inverse subsemigroup S of TE is
called subtransitive if

∀e, f ∈ E ∃α ∈ S : dom(α) = bec, im(α) ⊆ bfc. (5.3.3)

It is apparent that a transitive subsemigroup is also subtransitive. Hardly less
apparent is the fact that a subtransitive subsemigroup S of TE is necessarily
full. To see this, let e ∈ E. By definition we find an element α ∈ S such that
dom(α) = bec. Consequently α−1 ◦ α = idbec ∈ S and so S is a full inverse
subsemigroup of TE. By 5.1.10 we know now that S is a fundamental inverse
semigroup with semilattice of idempotents isomorphic to E. If E is a subuniform
semilattice, then S is simple:
Let e, f ∈ E. Subuniformity guarantees the existence of an element α ∈ S such
that dom(α) = bec and im(α) = bgc ⊆ bfc. Clearly, g ≤ f and by α−1◦α = idbec
and α ◦ α−1 = idbgc it follows that eD g in S. Lemma 5.3.1 now implies that S
is simple.
The converse is also true. Suppose that S is a fundamental simple inverse semi-
group. Using again 5.1.10 we have that S ∼= S ′ where S ′ is a full inverse sub-
semigroup of TE. Now S ′ is simple because S is, and so, by 5.3.1, for e, f ∈ E
there exists an element g ∈ E such that

g ≤ f ,

idbecD idbgc. (5.3.4)

We are operating in a subsemigroup of the Munn semigroup TE and may thus
use (5.2.2). Hence (5.3.4) translates to

dom(α) = bec, im(α) = bgc ⊆ bfc

for some α ∈ S ′. In other words, S ′ is subtransitive.
We have established

Theorem 5.3.5 ([3], Theorem 5.7.3) If E is a subuniform semilattice, then
every subtransitive inverse subsemigroup of TE is a fundamental simple inverse
semigroup with semilattice of idempotents isomorphic to E. Conversely, if S is a
fundamental simple inverse semigroup with (necessarily subuniform) semilattice
of idempotents E, then S is isomorphic to a subtransitive inverse subsemigroup
of TE.

Recall that, up to isomorphism, the only fundamental bisimple inverse ω-semigroup
is the bicyclic semigroup B (see 5.2.4). We want to achieve a similar result for
simple inverse ω-semigroups.
For d = 1, 2, 3, . . . consider Bd, the restriction of the bicyclic semigroup B to

{(m,n) ∈ N× N : m ≡ n mod d}. (5.3.5)

It is straightforward to check that it is an inverse subsemigroup of B . The inverse
semigroup Bd is a full subsemigroup of B , since for every idempotent (m,m) ∈ Bd

we have the trivial m ≡ m mod d. We claim that Bd is simple. Before we can
prove that, we have to describe the Green’s relations R and L on Bd.
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Lemma 5.3.6 ([3], Lemma 5.7.4) Let d ∈ N\{0} and (m,n), (p, q) ∈ Bd. Then

(m,n)R (p, q) ⇐⇒ m = p,

(m,n)L (p, q) ⇐⇒ n = q. (5.3.6)

Proof We only prove the first assertion. The proof of the second is similar. Let
(m,n)R (p, q). By 3.0.30 this is equivalent to (m,n)(m,n)−1 = (p, q)(p, q)−1.
The left-hand side multiplies to (m,m) and the right-hand side to (p, p). Hence
(m,n)R (p, q) ⇐⇒ m = p, as required.

2

Now we can go on to investigate the D-classes of Bd. Let (m,m) and (n, n) be
idempotents of Bd. By definition,

(m,m)D (n, n) ⇐⇒ ∃(r, s) ∈ Bd : (m,m)R (r, s)L (n, n).

According to (5.3.6) this element (r, s) could only be (m,n). But (m,n) does
not necessarily lie in Bd. Indeed, by definition we have

(m,n) ∈ Bd ⇐⇒ m ≡ n mod d.

It follows that Bd consists of exactly d D-classes, which we denote as

D(0,0), D(1,1), D(2,2), . . . , D(d−1,d−1).

We can now formulate the analogue of 5.2.4.

Proposition 5.3.7 ([3], Theorem 5.7.5) Up to isomorphism, the only funda-
mental simple inverse ω - semigroups are the semigroups Bd (d = 1, 2, 3, . . .).

Proof By virtue of 5.3.5, what we have to show is that the semigroups

B ′d = {αm,n : m ≡ n mod d}

are the only subtransitive inverse subsemigroups of the bicyclic semigroup

TCω = {αm,n : m,n ∈ N}.

First we show that B ′d is subtransitive. Consider em, en ∈ Cω and let

p ≥ n : m ≡ p mod d.

Then certainly αm,p ∈ B ′d and

dom(αm,p) = bemc, im(αm,p) = bepc ⊆ benc.

We have shown that B ′d is a subtransitive inverse subsemigroup of TCω for every
d ∈ N \ {0}. To demonstrate that these are the only ones suppose that S is a
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subtransitive inverse subsemigroup of TCω . Choosing e0, e1 ∈ Cω and using the
subtransitivity property we get

∃α ∈ S : dom(α) = be0c, im(α) ⊆ be1c,

where im(α) = bedc for some d ≥ 1. Since α0,d is the only element in TCω having
domain be0c and image bedc, we deduce that S contains α0,d. Suppose that d
is the least positive integer for which this holds. Using the multiplication rule
(5.1.4) we get α2

0,d = α0,2d ∈ S and more generally αk0,d = α0,kd ∈ S for k ≥ 1.
Now, since S is a subtransitive inverse subsemigroup of TCω it is necessarily full
(as we have already seen in the proof of 5.3.5) and so αm,m ∈ S for all m ∈ N.
Hence,

α0,kd ◦ αm,m = αm,m+kd ∈ S. (5.3.7)

Owing to equation (5.3.7) we can conclude that B ′d ⊆ S. To show that this is
in fact an equality, suppose, by way of contradiction, that there exists αm,n ∈ S
such that m 6≡ n mod d. Writing n as m+kd+r, with 0 < r < d, by the division
algorithm, we deduce that S contains

αm+kd,m ◦ αm,m+kd+r = αm,m+r.

If m = 0, we have obtained a contradiction since r < d and d was defined to be
the least positive integer such that α0,d ∈ S. If on the other hand m > 0 then
we observe next that

αm−1+d,m−1 ◦ αm,m+r ◦ αm−1,m−1+d = αm−1,m−1+r

and we can descend further and further until the contradiction α0,r ∈ S arises.
Hence S = B ′d for some d and S is indeed of the form (5.3.5).

2

In 5.2.11 we observed that the Bruck-Reilly extension BR(T, θ) of a group T is a
bisimple inverse ω-semigroup. In our effort to find a structure theorem for simple
ω-semigroups it proves wise to examine Bruck-Reilly extensions of a particular
type of Clifford semigroups instead.

Construction 5.3.8 Let Y = {0, 1, . . . , d − 1} be a chain with the reversed
usual order. To simplify the notation we shall use the convention to denote by
≤ the usual order of the natural numbers, whereas by ∧ we refer to the order
of the chain, for example 4 ≤ 5 but 4 ∧ 5 = 5. For every i ∈ Y let Gi denote
a group such that all the groups Gi are disjoint. Put T :=

⋃
i=0,1,...,d−1Gi. For

every 0 ≤ i ≤ d − 2 choose and fix a morphism γi : Gi → Gi+1. Moreover, we
define for 0 ≤ i < j ≤ d− 1 a new morphism αi,j : Gi → Gj by the rule

αi,j = γj−1 ◦ γj−2 ◦ . . . ◦ γi.

Putting αi,i = idGi we thus have

αj,k ◦ αi,j = αi,k (i ≤ j ≤ k).
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By virtue of 3.1.9 we conclude that the strong semilattice of groups (T,⊗) is
a Clifford semigroup. In fact the semilattice is even a chain isomorphic to Y .
The idempotents of T are the identity elements of the groups Gi denoted by
e0, e1, . . . , ed−1. Recall that identity elements are mapped to identity elements
by group morphisms and notice that e0 is the identity element of the monoid T :

∀i ∀x ∈ Gi : e0x = α0,0∧i(e0)αi,0∧i(x) = α0,i(e0)︸ ︷︷ ︸
=ei

αi,i(x)︸ ︷︷ ︸
=x

= eix = x.

A similar argument shows that xe0 = x for all x ∈ T . Furthermore, a straight-
forward calculation yields e0 > e1 > . . . > ed−1.
We shall refer to T as a finite chain of groups of length d.

Let T be a finite chain of groups of length d. Notice that the group of units
of T is G0 because a product in which an element x ∈ Gi is involved does
necessarily lie in Gj for some j ≥ i. Accordingly, let S = BR(T, θ), where θ
is a morphism from T to G0. By 5.2.10, S is a simple inverse semigroup since
T is inverse. Note that because of 5.2.10(ii) the D-classes of S are the subsets
N × Gi × N (i = 0, 1, . . . , d − 1). We shall show that S is an ω-semigroup. Let
(m, ei,m), (n, ej, n) be two idempotents. We assume without loss of generality
that m ≥ n and distinguish between two cases:
For m = n we have

(m, ei,m) ≤ (m, ej,m) ⇐⇒ (m, ei,m)(m, ej,m) = (m, ei,m).

Bearing in mind that (m, ei,m)(m, ej,m) = (m, eiej,m), this is the case if and
only if ei ≤ ej in T , i.e. if and only if i ∧ j = i.
For m > n we have θm−n(ej) = e0, the identity of T . Hence

(m, ei,m)(n, ej, n) =
(
m, eiθ

m−n(ej),m
)

= (m, ei,m)

and so (m, ei,m) < (n, ej, n) regardless of the values of i and j. In effect, the
idempotents of S form a chain

(0, e0, 0) > (0, e1, 0) > . . . > (0, ed−1, 0) >

(1, e0, 1) > (1, e1, 1) > . . . > (1, ed−1, 1) >

...

(d− 1, e0, d− 1) > (d− 1, e1, d− 1) > . . . > (d− 1, ed−1, d− 1).

Thus S = BR(T, θ) is a simple inverse ω-semigroup. Remarkably, as with 5.2.11,
the converse also holds. We sum this up in a theorem:

Theorem 5.3.9 ([3], Theorem 5.7.6) Let T be a finite chain of groups of length
d (≥ 1). If θ is a morphism from T into the group of units of T , then the Bruck-
Reilly extension BR(T, θ) of T determined by θ is a simple inverse ω-semigroup
with d D-classes. Conversely, every simple inverse ω-semigroup is isomorphic to
one of this type.
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5 Inverse ω-semigroups

Proof It remains to prove the converse half. Let S be a simple inverse semigroup
whose semilattice of idempotents is Cω = {f0, f1, f2, . . .}. Following the notation
of the proof of 5.1.8, there is a morphism φ : S → TCω with kernel µ, mapping a
in S to the element

αa : baa−1c → ba−1ac,
x 7→ a−1xa.

Since S is an inverse ω-semigroup, by 5.2.5, the maximum idempotent-separating
congruence µ coincides with the Green’s relation H and so the kernel of φ equals
H. The image of S in TCω is an inverse subsemigroup according to 3.0.26. It
is also subtransitive. To see this let e, f ∈ Cω. We may apply 5.3.1 since S
is simple and are thus given an element g ∈ Cω, such that eD g and g ≤ f .
Now eD g amounts in the existence of an element a ∈ S such that aa−1 =
e, a−1a = g. Moreover, it is easy to see that g ≤ f translates into bgc ⊆ bfc.
Hence, φ(a) ∈ φ(S) maps baa−1c = bec onto ba−1ac = bgc ⊆ bfc, i.e. φ(S) is
subtransitive. Because φ(S) is an ω-semigroup there are strong restrictions on
the subtransitive subsemigroups of TCω . Indeed, as shown in the proof of 5.3.7,
φ(S) is isomorphic to Bd for some d ≥ 1. We regard φ(S) and Bd as equal and
write as a reminder:

φ(S) = {αm,n : m,n ∈ N,m ≡ n mod d},

αm,n : bfmc → bfnc, fk 7→ fk−m+n (k ≥ m).

Also recall that

αp,q ◦ αm,n = αm−n+t,q−p+t (t := max(n, p)).

As in the bisimple case we define

Hm,n := {a ∈ S : aa−1 = fm, a
−1a = fn},

where Hm,n is an H-class or the empty set. Other than in the bisimple case the
latter can occur here. In fact we can say precisely when Hm,n is an H-class for
if Hm,n 6= ∅, then φ(Hm,n) = αm,n ∈ φ(S) = Bd and hence

Hm,n 6= ∅ ⇐⇒ m ≡ n mod d.

We would like to use 5.2.11. To this end we investigate which H-classes build up
to D-classes. Let a ∈ Hm,n and b ∈ Hp,q (say). In particular, the respective sets
are to be non-empty and so m ≡ n mod d and p ≡ q mod d. Then

aa−1 = fm, a
−1a = fn and bb−1 = fp, b

−1b = fq.

Now suppose that aD b, i.e. ∃c ∈ S : aR cL b. Then cc−1 = aa−1 = fm and
c−1c = b−1b = fq. This means that c would need to be in Hm,q. Such a c can
only be found if Hm,q 6= ∅, i.e. if m ≡ q mod d. Conversely, every two such
elements are D-equivalent. Summarising, we have

aD b ⇐⇒ n ≡ m ≡ q ≡ p mod d.
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In effect, S consists of the d D-classes

D0, D1, . . . , Dd−1,

where

Di =
⋃
{Hm,n : m ≡ n ≡ i mod d} =

⋃
{Hpd+i,qd+i : p, q ∈ N}.

These D-classes are worth a lemma:

Lemma 5.3.10 ([3], Lemma 5.7.7) For i = 0, 1, . . . , d − 1, the D-class Di is a
bisimple inverse ω-semigroup with identity element fi.

Proof Since φ(Hm,n) = αm,n for m ≡ n mod d, the multiplication formula (5.1.4)
yields that

Hm,nHp,q ⊆ Hm−n+t,q−p+t (t := max(n, p)). (5.3.8)

Let Hm,n, Hp,q ⊆ Di, i.e. let m ≡ n ≡ p ≡ q ≡ i mod d. Then certainly

m− n+ t ≡ q − p+ t ≡ t ≡ i mod d

and therefore Hm,nHp,q ⊆ Di. Hence Di is a semigroup. The inverse of an
element a ∈ Hm,n is of course contained in Hn,m and since it is clear that Hm,n ⊆
Di ⇐⇒ Hn,m ⊆ Di, it is also an inverse semigroup. Next we are going to show
that Di is an ω-semigroup. Accordingly we must locate the idempotents first.
Let g denote an idempotent in Hpd+i,qd+i ⊆ Di. We have

fpd+i = gg−1 = g = g−1g = fqd+i.

The only idempotents in Di are thus the elements fpd+i in Hpd+i,pd+i. We know
that they form a chain

fi > fd+i > f2d+i > . . .

and so Di is an inverse ω-semigroup.
Next we verify that Di is bisimple. This might appear trivial, since Di is a
D-class after all but it is a D-class in S, which means that the connecting element
might lie in S \ Di. It suffices to demonstrate that all the idempotents in Di

are D-equivalent. This is easily done. Just notice that for all elements a ∈
Hpd+i,qd+i ⊆ Di we have aa−1 = fpd+i, a

−1a = fqd+i and thus fpd+i and fqd+i are
D-equivalent by 3.0.30(iii).
The only thing left to show is that fi is the identity element of Di. Accordingly,
let a ∈ Hpd+i,qd+i ⊆ Di. We wish to establish the identity fia = a. By uniqueness
of inverses it suffices to show that a−1 is the inverse of fia:

(fia)a−1(fia) = fifpd+ifia = fifpd+ia = fiaa
−1a = fia,

a−1(fia)a−1 = a−1fifpd+i = a−1fpd+i = a−1aa−1 = a−1.

Hence fi is the identity element of Di.
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5 Inverse ω-semigroups

All in all, Di is a bisimple inverse ω-semigroup with identity element fi.

2

We return now to the proof of 5.3.9. As a straightforward consequence of (5.3.8)
we observe that the group of units of Di is Hi,i, which we shall denote by Gi.
Let

T :=
d−1⋃
i=0

Gi.

We are going to demonstrate that T is a finite chain of groups (of length d). For
this purpose we show that T agrees with the construction given in 5.3.8. For
0 ≤ i ≤ j ≤ d− 1 let φi,j : Gi → Gj be defined by the rule

x 7→ fjx.

A look at (5.3.8) reveals that this is well-defined. In particular, for i = j we have
φi,i(x) = fix = x, since fi is the identity of Gi and so φi,i is the identity map on
Gi. The map φi,j is a morphism:

φi,j(x)φi,j(y) = (fjx)(fjy) = fjx︸︷︷︸
∈Gj

fjy = fj(xy) = φi,j(xy).

Next, suppose that 0 ≤ i ≤ j ≤ k ≤ d− 1. For all x ∈ Gi we have

φj,k (φi,j (x)) = fk(fjx) = (fkfj)x = fkx = φi,k(x)

and so φj,k ◦ φi,j = φi,k. Finally we verify that the operation ⊗ defined in (3.1.2)
agrees with the multiplication on T inherited from S. Let x ∈ Gi, y ∈ Gj and
assume first that i ≤ j. Then

x⊗ y = φi,i∧j(x)φj,i∧j(y) = φi,j(x)φj,j(y) = (fjx)y = fj xy︸︷︷︸
∈Gj

= xy.

If on the other hand i ≥ j, then similar

x⊗ y = φi,i∧j(x)φj,i∧j(y) = φi,i(x)φj,i(y) = x(fiy) = x
∈Gi

fiy = xy.

Hence T is a strong semilattice of groups and consequently a Clifford semigroup
by 3.1.9. It is even a finite chain (of length d) as can be seen easily by considering
formula (5.3.8). At this point it is worth observing that f0 is the identity element
of T . Let x ∈ Gi ⊆ T (say), then

xf0 = x⊗ f0 = φi,i∧0(x)φ0,i∧0(f0) = φi,i(x)φ0,i(f0) = x(fif0) = xfi = x

and
f0x = φ0,0∧i(f0)φi,0∧i(x) = φ0,i(f0)φi,i(x) = (fif0)x = fix = x.

We should mention as well that the group of units of T is G0. This follows from
(5.3.8) and the fact that G0 is a group containing the identity f0.
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Lemma 5.3.10 suggests that we should apply 5.2.11 to each D-class Di. This is
almost what we do. In the proof of 5.2.11 we chose an a ∈ H0,1 and expressed
each element of Hm,n uniquely as a−mgan (g ∈ G). Analogously, we would
choose for each i an element ai in Hi,d+i and then express each element of Di as
a−mi gia

n
i ∈ Hmd+i,nd+i, with m,n ∈ N, gi ∈ Gi. It makes things easier however

to make the elements ai depend on an arbitrarily chosen element a0 = a in H0,d.
We immediately have a−1 ∈ Hd,0 and by definition of H0,d,

aa−1 = f0, a
−1a = fd.

Moreover, for i ∈ {0, 1, . . . , d− 1}, we have

fia ∈ Hi,iH0,d ⊆ Hi,d+i.

Since fi is the identity of Di it follows that (fia)fi = fia and thus (fia)2 = fia
2.

This generalises to
(fia)n = fia

n (n ∈ N \ {0}).

Taking inverses yields

(fia)−n = a−nfi (n ∈ N \ {0}) .

Using fia as ai in the way indicated above, we express each element ofDi uniquely
as

(fia)−mgi(fia)n = a−mfigifia
n = a−mgia

n (m,n ∈ N \ {0}, gi ∈ Gi). (5.3.9)

The last equality stems from the fact that fi is the identity of Gi. The element
a−mgia

n belongs to the H-class Hmd+i,nd+i. If we agree to formally interpret a0

as 1 we may extend the validity of (5.3.9) by allowing m,n ∈ N. We have thus
established a bijection Ψ: S → N× T × N defined by

Ψ(a−mgia
n) = (m, gi, n).

In order to make Ψ an isomorphism we ought to find a suitable morphism θ which
maps T into its group of units G0. Again we are trying to imitate the proof of
5.2.11. Note that for all gi ∈ Gi (i = 0, 1, . . . , d−1) we have agi ∈ H0,dHi,i ⊆ H0,d.
Further, we know from the proof of 5.2.11 that agi is uniquely expressible as g0a
with g0 ∈ G0. This implicitly defines a map φi from Gi to G0 by

agi = φi(gi)a.

Since the groups G0, G1, . . . , Gd−1 are disjoint we can piece together a map
θ : T → G0:

θ(x) = φi(x) (x ∈ Gi). (5.3.10)

This map θ will turn out to be the morphism we are looking for. To show the
morphic property, consider, without loss of generality x ∈ Gi, y ∈ Gj with i ≤ j.
Then xy ∈ Gj and so by (5.3.10),

a(xy) = φj(xy)a = θ(xy)a.
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On the other hand

a(xy) = (ax)y = φi(x)(ay) = φi(x)φj(y)a = (θ(x)θ(y)) a.

Hence θ(xy)a = (θ(x)θ(y)) a. Multiplying both sides with a−1 on the right we
get

θ(xy) aa−1︸︷︷︸
=f0

= (θ(x)θ(y)) aa−1︸︷︷︸
=f0

and thus the desired θ(xy) = (θ(x)θ(y)), since f0 is the identity element of T .
Exactly as in the proof of 5.2.11 we deduce for every x ∈ T and every k ∈ N that

akx = θk(x)ak and xa−k = a−kθk(x),

where a0 is interpreted as f0 and θ0(x) as x.
Now we have prepared all ingredients to finish off the proof:
Let x, y ∈ T and let m,n, p, q ∈ N. We have to distinguish between the two cases
n ≥ p and n ≤ p.
Remembering that f0 is the identity element of T , suppose first that n ≥ p. Then(
a−mxan

) (
a−pyaq

)
=a−mxan−p

(
aa−1

)
yaq = a−mxan−p(f0y)aq = a−mxan−pyaq =

a−mxθn−p(y)an−paq = a−mxθn−p(y)aq−p+n.

If on the other hand n ≤ p, then(
a−mxan

) (
a−pyaq

)
=a−m(xf0)a

−(p−n)yaq = a−mxa−(p−n)yaq =

a−ma−(p−n)θp−n(x)yaq = a−(m−n+p)θp−n(x)yaq.

Writing t := max(n, p) as usual, we can combine these two statements into a
single one:

(a−mxan)(a−pyaq) = a−(m−n+t)θt−n(x)θt−p(y)aq−p+t.

It is now clear that Ψ is an isomorphism from S onto BR(T, θ).

2

We have successfully characterised both bisimple and simple inverse ω-semigroups.
For a more general approach on inverse ω-semigroups see for example [5].
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This chapter revolves around E-unitary inverse semigroups, which indisputably
form one of the most important classes in inverse semigroup theory. One of the
reasons for this is McAlister’s covering theorem which is presented briefly. In
addition to that, E-unitary inverse semigroups tend to pop up in many ‘prac-
tical’ contexts, but we do not cover these applications in this thesis. E-unitary
inverse semigroups are distinguished among inverse semigroups by having the
property that every element greater than an idempotent (with respect to the
natural partial order) is itself idempotent. In general inverse semigroups we can
merely presuppose that elements smaller than idempotent are idempotents. In
the course of the chapter we gather several further (equivalent) conditions, involv-
ing in particular the compatibility relation ∼ and the minimum group congruence
σ, which might as well serve as a defining property for an inverse semigroup to
be E-unitary. Some examples of E-unitary inverse semigroups are assembled
in an own section, many of which should be familiar from earlier parts of the
thesis. In particular we investigate Clifford semigroups and Bruck-Reilly exten-
sions and determine exactly when they are E-unitary. This allows us in turn
to give nice characterisations of E-unitary bisimple inverse ω-semigroups and
E-unitary simple inverse ω-semigroups respectively. The final section is dedi-
cated to P-semigroups, a special type of E-unitary inverse semigroups arising
from a slightly sophisticated construction due to McAlister. The main result
states that every E-unitary inverse semigroup is isomorphic to one of this kind.
Eventually, some easy verified properties of P-semigroups are proven.

Definition 6.0.11 A subset A of an inverse semigroup S is said to be left [right]
unitary if a ∈ A, s ∈ S and as ∈ A [sa ∈ A] imply s ∈ A.

Proposition 6.0.12 1 Let S be an inverse semigroup and let σ be the minimum
group congruence on S. The following statements are equivalent:

(i) ES is left unitary.

(ii) ES is right unitary.

(iii) If e is an idempotent and e ≤ s, then s is an idempotent.

(iv) L ∩ σ is the identity relation.

Proof
(i) ⇒ (ii): Suppose first that ES is left unitary and that e and se are both in
ES. By 3.0.29, se = fs for some f ∈ ES. Hence s ∈ ES by assumption.

1Compare to ([3], Theorem 5.9.1) and ([5], Theorem 2.4.3)
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(ii)⇒ (iii): Suppose that ES is right unitary and that e ≤ s for an idempotent
e. Then se = e ∈ ES and thus s ∈ ES as required.
(iii) ⇒ (iv): Suppose that every element greater than an idempotent is an
idempotent and let a, b in S such that aL b, a σ b. Then a−1a = b−1b because a
and b are L-equivalent. Since a σ b, there exists an element c ∈ S so that c ≤ a, b.
Consequently ea = c = fb for certain idempotents e, f . Now we have

ES 3 cc−1 = ea(fb)−1 = e
(
ab−1

)
f ≤ ab−1.

Hence ab−1 ∈ ES. It follows that

a = aa−1a = ab−1b = (ab−1)−1
(
ab−1

)
b = b

(
a−1a

)
b−1b = b

(
b−1b

)
b−1b = b.

(iv)⇒ (i): Suppose that e, es ∈ ES. Note that sL s−1s. Let i be any idempo-
tent. Clearly, (es)i ≤ i and (es)i ≤ si ≤ s. Hence ∀i ∈ ES : s σ i. In particular
we have s σ s−1s. Combining both considerations gives (s, s−1s) ∈ L ∩ σ. By
assumption this yields s = s−1s and thus s ∈ ES.

2

Definition 6.0.13 We call an inverse semigroup E-unitary if it satisfies one
(and thus all) of the properties in 6.0.12.

An interesting feature of E-unitary inverse semigroups is that their compatibility
relations are congruences. More specifically we have

Theorem 6.0.14 ([5], Theorem 2.4.4) Let S be an inverse semigroup. Then
the compatibility relation is transitive if and only if S is E-unitary.

Proof Suppose that ∼ is transitive and that e ≤ s for an idempotent e and some
s ∈ S. Clearly, se−1 = se = e ∈ ES. Moreover we have s−1e ≤ s−1s and so also
s−1e in ES. Hence s ∼ e. On the other hand we have e ∼ s−1s since both e and
s−1s are idempotents. Thus s ∼ s−1s by our assumption that ∼ is transitive. It
follows that S is E-unitary, since s = ss−1s = s(s−1s)−1 ∈ ES.
Suppose conversely that S is E-unitary and that s ∼ t and t ∼ u. By assumption
s−1t and t−1u are idempotents and therefore (s−1t) (t−1u) is one as well. Now,(

s−1t
) (
t−1u

)
= s−1

(
tt−1

)
u ≤ s−1u

and similarly
ES 3

(
st−1

) (
tu−1

)
≤ su−1.

But we assumed S to be E-unitary and so both s−1u and su−1 are idempotents.
Hence s ∼ u and ∼ is transitive.

2

Corollary 6.0.15 Let S be an E-unitary inverse semigroup. Then the compat-
ibility relation ∼ is a congruence.
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Proof The compatibility relation is apparently reflexive and symmetric. By
virtue of 6.0.14 it is also transitive. In addition to that, it is compatible with
multiplication by 3.4.2 and thus a congruence.

2

Definition 6.0.16 Let S and T denote inverse semigroups. We say that S is a
cover of T if there exists a surjective morphism from S onto T .

Definition 6.0.17 Let S and T be inverse semigroups. A morphism θ : S → T
is said to be idempotent-separating if ker(θ) is idempotent-separating (in the
sense of 3.5.5).

The theorem below is known as the McAlister covering theorem. It states that
every inverse semigroup has an E-unitary cover. More precisely we have

Theorem 6.0.18 ([5], Theorem 2.2.4) For every (finite) inverse semigroup S
there is a (finite) E-unitary inverse semigroup P and a surjective, idempotent-
separating morphism θ from P onto S.

The McAlister covering theorem gives a first insight into the importance of
E-unitary semigroups. Their class is large enough to comprise all inverse semi-
groups as idempotent-separating morphic images. A related result is mentioned
in chapter 7. The proof is omitted.

Definition 6.0.19 A congruence ρ on an inverse semigroup S is said to be
idempotent-pure if e ∈ ES, (e, s) ∈ ρ =⇒ s ∈ ES.

Lemma 6.0.20 ([5], Proposition 2.4.5) Let S be an inverse semigroup. Then a
congruence ρ is idempotent-pure if and only if ρ ⊆∼.

Proof Suppose that ρ is an idempotent-pure congruence and consider a, b ∈ S
so that a ρ b. Then also ab−1 ρ bb−1 and ab−1 is an idempotent, since bb−1 is one.
We may similarly show that a−1b is an idempotent and so a ∼ b. Hence ρ ⊆∼.
Conversely, suppose that ρ ⊆∼ for a congruence ρ. Suppose further that e ρ s,
where e is an idempotent. Then by 3.0.27, e−1 ρ s−1 and thus e = e−1e ρ s−1s.
Now ρ is in particular transitive and we have therefore s ρ s−1s. By assumption
ρ ⊆∼ and thus s ∼ s−1s. But then s = ss−1s = s (s−1s)

−1 ∈ ES. As a result ρ
is idempotent-pure.

2

The next theorem provides quite a few alternative characterisations of E-unitary
inverse semigroups. Properties (v) and (vi) are needed in chapter 7.

Theorem 6.0.21 2 Let S be an inverse semigroup. Then the following condi-
tions are equivalent:

2Compare to ([5], Theorem 2.4.6)
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(i) S is E-unitary.

(ii) ∼= σ.

(iii) σ is idempotent-pure.

(iv) ∀e ∈ ES : σ(e) = ES.

(v) HH−1 is an ideal of ES for every σ-class H.

(vi) HeH−1 is an ideal of ES for every e ∈ ES and every σ-class H.

Proof
(i)⇒ (ii): By 3.5.2(i) we already know that ∼⊆ σ. For the other inclusion let
a σ b, i.e. ∃x ∈ S : x ≤ a, b. Hence ea = x = fb for some idempotents e, f and

ES 3 xx−1 = ea(fb)−1 = e
(
ab−1

)
f ≤ ab−1.

But S is E-unitary and so ab−1 ∈ ES. We may similarly show that a−1b ∈ ES

and thus a ∼ b.

(ii)⇒ (iii): This follows immediately from 6.0.20.

(iii) ⇒ (iv): By the definition of an idempotent-pure congruence the σ-class
σ(e) consists of idempotents only. On the other hand it contains all of them
since idempotents are always σ-equivalent. We conclude that σ(e) = ES for
every e ∈ ES.

(iv) ⇒ (v): Let a σ b. Then ab−1 σ bb−1. It follows that ab−1 is an idempotent
by assumption. Thus HH−1 ⊆ ES. Let e ∈ ES. Then

eab−1 = ab−1e = a(eb)−1 ∈ HH−1,

since b σ eb. Hence HH−1 is indeed an ideal of ES.

(v) ⇒ (vi): Let s, t ∈ H and e ∈ ES. Then by the hypothesis st−1 ∈ ES and
thus, using 3.0.29,

set−1 = st−1e′ ∈ ES.

It follows that HeH−1 ⊆ ES. For all idempotents f we have f (set−1) =
(fs)et−1 ∈ HeH−1 since fs σ s. Hence HeH−1 is an ideal of ES for every e ∈ ES.

(vi) ⇒ (i): Let ae, e ∈ ES. Clearly we have a σ ae. Also by ae = (ae)e we
have ae ≤ e and thus ae σ e. Hence a σ e and so a σ e = e−1e σ a−1a. Putting
H = σ(a) we get

a = a
(
a−1a

) (
a−1a

)−1 ∈ σ(a)
(
a−1a

)
(σ(a))−1 = H

(
a−1a

)
H−1 ⊆ ES

by assumption. It follows that S is E-unitary.

2
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6.1 Examples of E-unitary inverse semigroups

Example 6.1.1 Consider the bicyclic semigroup B already encountered in 3.1.4.
We are going to show that it is an E-unitary semigroup. Before we do that we
have to locate the idempotents and describe the natural partial order on B .
Accordingly, suppose that (m,n) is an idempotent in B . Then

(m,n) = (m,n)(m,n) = (m− n+ max(m,n), n−m+ max(m,n)).

Comparing left and right coordinates of the respective left and right-hand sides
yields m = max(m,n) = n. Conversely it is immediate that every element
(m,m) ∈ B is an idempotent of B . Hence EB = {(m,m) : m ∈ N}.
Next we describe the natural partial order. Suppose that (m,n) ≤ (p, q) with
(m,n), (p, q) ∈ B . By definition (m,n) = (p, q)(s, s) for some s ∈ N. The right-
hand side mulitiplies to (p−q+max(q, s),max(q, s)). Thus m = p−q+max(q, s)
and n = max(q, s). The latter implies in particular that n ≥ q. Substituting n for
max(q, s) in the former equation gives m = p− q + n or to express it differently,
m − n = p − q. We conclude that m − n = p − q and n ≥ q are necessary
conditions for (m,n) ≤ (p, q). This conditions are also sufficient. Suppose that
m− n = p− q and n ≥ q. Then

(p, q)(n, n) = (p− q + max(q, n),max(q, n)) = (p− q + n, n) = (m,n)

and therefore (m,n) ≤ (p, q).
Now we can show that B is E-unitary. Let (s, s) ≤ (m,n). Then by the above we
have in particular s−s = m−n and hence m = n. Consequently, (m,n) = (m,m)
is an idempotent and B is E-unitary.

Corollary 6.1.2 Recall Bd, the inverse semigroup we already encountered in
(5.3.5). We have seen there that it is an inverse subsemigroup of the E-unitary
inverse semigroup B. As such it is E-unitary too.

Our next example features semidirect products of semilattices by groups3.

Proposition 6.1.3 4 Let the group G act on the semilattice E by order au-
tomorphisms. Then the semidirect product of E by G is an E-unitary inverse
semigroup.

Proof We start by showing that the semidirect product is inverse. Note that

∀e ∈ E ∀g ∈ G : (e, g)(g−1e, g−1)(e, g) = (e, g).

Hence E oG is regular. It is straightforward to check that the idempotents are
the elements of the form (e, 1), where 1 is the identity element of G and e is any
element of E. By

(e, 1)(f, 1) = (e ∧ f, 1) = (f ∧ e, 1) = (f, 1)(e, 1),

3For a definition of these see 2.5.2
4Compare to ([5], Theorem 7.1.1)
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idempotents do commute.
Suppose now that (e, 1) ≤ (f, g). Then by 3.2.2(iv),

(e, 1) = (e, 1)(f, g).

The right-hand side multiplies to (e ∧ f, g) which yields g = 1. Hence (f, g) =
(f, 1) is an idempotent and E oG is indeed E-unitary.

2

Corollary 6.1.4 A direct product of a semilattice and a group is E-unitary.

Proof Just notice that a direct product of a group and a semilattice can be
interpreted as a special case of a semidirect product of a semilattice by a group
by assuming that each group element acts as the identity mapping.

2

Remark 6.1.5 Inverse subsemigroups of semidirect products of semilattices by
groups are also E-unitary. We omit the proof of this and refer the reader to [5].

In fact one can say exactly which E-unitary inverse semigroups are semidirect
products of semilattices by groups:

Proposition 6.1.6 ([5], Theorem 7.1.2) Let S be an inverse semigroup. Then
S is isomorphic to a semidirect product of a semilattice by a group if and only if
S is E-unitary and for each a ∈ S, e ∈ ES there exists b ∈ S such that a ∼ b and
b−1b = e.

Definition 6.1.7 Let X be a non-empty set. An inverse semigroup FIS (X),
equipped with a function ι : X → FIS (X), is said to be a free inverse semigroup
on X if for every inverse semigroup S and function κ : X → S there exists a
unique morphism θ : FIS (X) → S such that θ ◦ ι = κ. We may likewise define
free inverse monoids.

Free inverse semigroups are prominent examples of E-unitary semigroups. A
proof of a stronger version of the following proposition can be found in
([5], Theorem 6.3.3).

Proposition 6.1.8 Free inverse semigroups are E-unitary. Furthermore, each
non-idempotent σ-class contains a maximum element.

We discussed primitive inverse semigroups in chapter 4. It is an easy task to de-
termine which of these are E-unitary. An E-unitary primitive inverse semigroup
S has a zero element by definition and we know that a zero element is always
the smallest element of an inverse semigroup with respect to the natural partial
order. This implies that S consists only of idempotents because S is E-unitary.
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It is thus a semilattice such that e ∧ f = 0 whenever e 6= f . Conversely, it is
obvious that all such semilattices are E-unitary primitive inverse semigroups.
Recall the Bruck-Reilly extension5 BR(T, θ), where T is a monoid and θ is a
morphism from T into its group of units. The next proposition establishes a
connection between E-unitariness of T and BR(T, θ).

Proposition 6.1.9 ([3], Exercise 5.20) Let T be an inverse monoid and let θ be
an endomorphism into the group of units of T . Then the Bruck-Reilly extension
S = BR(T, θ) is E-unitary if and only if T is E-unitary and σ = ker(θ).

Proof Suppose first that BR(T, θ) is E-unitary. From 5.2.10(iii) we know that
the idempotents of S are the elements of the form (m, e,m), where e is an idem-
potent in T .
Let e, ae ∈ ET . Then (0, e, 0) and (0, ae, 0) are idempotents in S. But (0, ae, 0) =
(0, a, 0)(0, e, 0) ≤ (0, a, 0) and so (0, a, 0) ∈ ES by assumption. This implies in
particular that a ∈ ET . Hence T is E-unitary.
Let a, b ∈ T such that a σ b. Then ae = bf for certain e, f ∈ ET . Since idempo-
tents are mapped to idempotents and since the only idempotent in the group of
units is the identity element, we get

θ(a) = θ(a)θ(e) = θ(ae) = θ(bf) = θ(b)θ(f) = θ(b).

Hence σ ⊆ ker(θ).
To show the reverse inclusion let a, b ∈ ker(θ), i.e. θ(a) = θ(b). Then

(1, 1, 1)(0, a, 0)
(
0, b−1, 0

)
(1, 1, 1) =(1, θ(a), 1)

(
1, θ
(
b−1
)
, 1
)

=(
1, θ(a)θ(b)−1, 1

)
= (1, 1, 1).

Hence, since BR(T, θ) is E-unitary, (0, ab−1, 0) = (0, a, 0)(0, b−1, 0) is an idempo-
tent. This implies that ab−1 ∈ ET . We may similarly show that a−1b is also an
idempotent and we thus have a ∼ b. But T is E-unitary and thus, by 6.0.21(ii),
a σ b. As a result, ker(θ) = σ.
Conversely, suppose that T is an E-unitary inverse semigroup and ker(θ) = σ.
Let (p, a, q) ≥ (m, e,m). We have to show that (p, a, q) is idempotent. By
assumption we have

(m, e,m) = (p, a, q)(m, e,m) =
(
p− q + t, θt−q(a)θt−m(e), t

)
,

where t := max(q,m). By comparing left and right-hand sides we obtain p = q
and e = θt−q(a)θt−m(e). Now θt−m(e) is an idempotent since idempotents are
mapped to idempotents by morphisms. Hence θt−q(a) is an idempotent because
T was assumed to be E-unitary. If m ≤ q then θt−q(a) = a and we are finished.
If on the other hand m > q, then we have

θt−q(a) = θm−q(a) = θm−q(a)2 = θm−q
(
a2
)

,

where m− q is a positive integer. By assumption we conclude that

θm−q−1(a)σ θm−q−1
(
a2
)

= θm−q−1(a)2.

5For a definition see 5.2.8
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This implies that
θm−q−1(a) = θm−q−1(a)2,

since in an E-unitary inverse semigroup we have

Lemma 6.1.10 x σ x2 =⇒ x = x2.

Proof The assumption is equivalent to x ∼ x2. In particular, x−1x2 = (x−1x)x ≤
x is an idempotent and thus x is one too. Hence x = x2.

2

We may repeat the argument and get θm−q−2(a)σ θm−q−2 (a2) from which we
deduce θm−q−2(a) = θm−q−2(a)2 using the lemma. Descending further and further
we finally arrive at a = a2. Combined with p = q from above this implies that
BR(T, θ) is indeed E-unitary.

2

As an application of the previous proposition we can easily characterise E-unitary
bisimple inverse ω-semigroups. Remember that we have proved in 5.2.11 that
every bisimple inverse ω-semigroup is isomorphic to some BR(T, θ) for a group
T .

Theorem 6.1.11 A bisimple inverse ω-semigroup is E-unitary if and only if θ
is one-one.

Proof We merely have to check the conditions in 6.1.9. This is quickly done:
Every group is E-unitary with the σ-relation being the equality relation due to
3.2.6.

2

Our next goal is to characterise the E-unitary simple inverse ω-semigroups. In
5.3.9 we proved that each simple inverse ω-semigroup is isomorphic to some
Bruck-Reilly extension BR(T, θ), where T is a finite chain of groups of length d
and θ is a morphism from T into its group of units. Within T the multiplication
is defined via morphism γi : Gi → Gi+1 (i = 0, . . . , d− 2). With the help of 6.1.9
we can say exactly when BR(T, θ) is E-unitary, namely when T is E-unitary
and σT = ker(θ). In order to obtain a more elegant criterion we formulate a
proposition that tells us when a Clifford semigroup is E-unitary—which is also
of independent interest—and investigate the σ-relation on finite chains of groups.
Recall that each Clifford semigroup is (up to isomorphism) a strong semilattice
of groups (see 3.1.11).

Theorem 6.1.12 ([3], Exercise 5.20) Let S = S (E;Ge;φe,f ) be a strong semi-
lattice of groups, i.e. a Clifford semigroup.

(i) S is E-unitary if and only if the connecting morphisms φe,f (e, f ∈ E,
e ≥ f) are all one-one.

80



6.1 Examples of E-unitary inverse semigroups

(ii) a σ b ⇐⇒ ∃l ∈ E : φe,l(a) = φf,l(b) (a ∈ Ge, b ∈ Gf ).

Proof
(i): First notice that the idempotents of S are the group identities, since for
a, b in the same group, a ⊗ b = ab, where juxtaposition on the right denotes
multiplication in the group. Let a ≥ b for a ∈ Ge, b ∈ Gf . Then, by definition,

b = a1l = φe,el(a)φl,el(1l) (6.1.1)

for some l ∈ E with 1l the identity element of Gl. The right-hand side simplifies
to φe,el(a), since identities are mapped to identities by group morphisms and
φe,el(a) ∈ Gel. The codomain of φe,el is Gel whereas b ∈ Gf . Thus f = el and
consequently e ≥ f . As a result, (6.1.1) becomes

b = φe,f (a). (6.1.2)

On the other hand it is easy to see that (6.1.2) implies a ≥ b. We summarise

a ≥ b ⇐⇒ e ≥ f, φe,f (a) = b (a ∈ Ge, b ∈ Gf ). (6.1.3)

Suppose now that S is E-unitary and fix elements e, f ∈ E such that e ≥ f . By
(6.1.3) we get in this case

a ≥ 1f ⇐⇒ φe,f (a) = 1f . (6.1.4)

By assumption a ∈ Ge is idempotent and therefore a = 1e. We have shown that
the only element in Ge which is mapped to 1f by φe,f is 1e, i.e. ker(φe,f ) = {1e}
(here of course ker means the notion for groups). Hence φe,f is one-one.
Conversely, suppose that φe,f is one-one for every pair e, f ∈ E such that e ≥ f .
Let a ≥ 1f for an idempotent 1f with a ∈ Ge (say). By (6.1.4) this is equivalent
to φe,f (a) = 1f . But φe,f (1e) = 1f and φe,f is one-one by assumption. We
conclude that a = 1e. Hence a is an idempotent and S is E-unitary, as required.
(ii): Suppose that a σ b for a ∈ Ge, b ∈ Gf . Then there exists x ∈ S such
that a ≥ x and b ≥ x for some x ∈ Gl. By (6.1.3) this yields e, f ≥ l and
φe,l(a) = φf,l(b).
If on the other hand there exists an element l ∈ E such that φe,l(a) = φf,l(b),
then clearly a1l = b1l and hence a σ b.

2

Theorem 6.1.13 With the notation used in 5.3.8, a simple inverse ω-semigroup
BR(T, θ) is E-unitary if and only if γi is one-one for all i ∈ {0, . . . , d − 2} and
θ(a) = θ(b) ⇐⇒ αj,k(a) = b (a ∈ Gj, b ∈ Gk, j ≤ k).

Proof By 6.1.9 S = BR(T, θ) is E-unitary if and only if T is E-unitary and
ker(θ) = σT . From 6.1.12 it follows that this is the case exactly when all con-
necting morphisms are one-one and θ(a) = θ(b) ⇐⇒ ∃l ≥ j, k : αj,l(a) =
αk,l(b) (a ∈ Gj, b ∈ Gk). But S = BR(T, θ) is not just any Clifford semigroup.
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It is a finite chain of groups. By our definition of the connecting morphisms α, the
first condition is satisfied if γi is one-one for i ∈ {0, . . . , d− 2}. The second con-
dition simplifies as well. Suppose without loss of generality that a ∈ Gj, b ∈ Gk,
with j ≤ k. Then αj,l(a) = αk,l(b). Since the morphisms are one-one this implies
αj,l−1(a) = αk,l−1(b) from which it follows that αj,l−2(a) = αk,l−2(b) and so on
until we get αj,k(a) = αk,k(b) = b. This completes the proof.

2

The next proposition gives a further example for an E-unitary inverse semigroup.

Proposition 6.1.14 ([5], Proposition 7.1.3) Let S be an inverse semigroup in
which each σ-class contains a maximum element. Then S is an E-unitary inverse
monoid.

Proof Let e be any idempotent of S. Then

σ(e) = σ(ee) = σ(e)σ(e)

and so σ(e) is the identity element of the group S/σ. Hence ES ⊆ σ(e). By
assumption σ(e) contains a maximum element denoted by i. We have seen that i
is larger than every idempotent and we shall show that it is an idempotent itself.
Clearly i−1i σ e−1e = e and therefore i−1i ≤ i since i is the maximum element.
Multiplying on the left with i yields i ≤ i2. On the other hand i2 σ ee = e and
so i2 ≤ i. It follows that i = i2. As a result all elements of σ(e) are idempotents
since i is the maximum element. Combining this with the observation above we
obtain σ(e) = ES. Thus S is E-unitary by 6.0.21.

At last we show that i is the identity element of S. For every s ∈ S we have

is = i(ss−1)s = (ss−1)s = s

and

si = s(s−1s)i = s(s−1s) = s.

To sum it up, S is an E-unitary inverse monoid, as required.

2

This motivates the following

Definition 6.1.15 An F-inverse semigroup is an inverse semigroup in which
every σ-class has a greatest element.

Keep in mind that an F-inverse semigroup is always a monoid. We will embark
on F-inverse semigroups in detail in chapter 7.
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6.2 The P-theorem

We now present a recipe due to McAllister for constructing E-unitary inverse
semigroups. The strong point of the seemingly arbitrary construction becomes
apparent when we show that the E-unitary inverse semigroups constructed in
such a way constitute in fact all of them.

Construction 6.2.1 Let X be a poset and let Y be a subset of X . Let G be
a group which acts on X by order automorphisms6. Suppose that the triple
(G,X ,Y) satisfies the following properties:

(P1) Y is a semilattice with respect to ≤.

(P2) Y is an order ideal, i.e.

A ∈ Y , X ≤ A =⇒ X ∈ Y .

(P3) GY = X , i.e. ∀X ∈ X ∃g ∈ G,A ∈ Y : gA = X.

(P4) g ∈ G =⇒ gY ∩ Y 6= ∅, where gY denotes the set {gY : Y ∈ Y}.

Definition 6.2.2 A triple (G,X ,Y) having the properties (P1)–(P4) is called a
McAlister triple.

We can use McAlister triples to define a particularly interesting semigroup:

Proposition 6.2.3 Let (G,X ,Y) be a McAlister triple. Then the set

S = P(G,X ,Y) := {(A, g) ∈ Y ×G : g−1A ∈ Y} (6.2.1)

becomes an E-unitary inverse semigroup under the multiplication rule

(A, g)(B, h) = (A ∧ gB, gh). (6.2.2)

Proof We start by showing that the multiplication is well-defined. Note first
that g−1A ∧ B exists since both g−1A and B are elements of the semilattice Y .
Applying 2.4.3 yields that A ∧ gB = g(g−1A ∧ B) also exists. It is in Y since
A ∧ gB ≤ A ∈ Y and Y is an order ideal. Also using 2.4.3 we get

(gh)−1(A ∧ gB) = h−1g−1(A ∧ gB) = h−1g−1A ∧ h−1B ≤ h−1B ∈ Y

and thus (gh)−1(A ∧ gB) ∈ Y , since Y is an order ideal. We have shown that
(A, g)(B, h) is indeed in S = P(G,X ,Y).
Next we show that the multiplication is associative. Accordingly, let (A, g), (B, h),
(C, i) ∈ S. It suffices to verify that the first coordinates of the products
((A, g)(B, h)) (C, i) and (A, g) ((B, h)(C, i)) agree. The left-hand side of the first
term computes to (A∧gB)∧ghC, whereas the left-hand side of the second comes
down to A∧ g (B ∧ hC). This is of course equal and S is therefore a semigroup.

6For a definition see 2.4.2
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It is also inverse. To this end we check that it is regular and that idempotents
commute. By definition, (A, g) ∈ S ⇐⇒ (g−1A, g−1) ∈ S. Now by

(A, g)
(
g−1A, g−1

)
(A, g) = (A ∧ gg−1︸︷︷︸

=1

A, 1)(A, g) = (A ∧ 1A, 1g) = (A, g)

and (
g−1A, g−1

)
(A, g)

(
g−1A, g−1

)
=
(
g−1A, 1

) (
g−1A, g−1

)
=
(
g−1A, g−1

)
we see that S is regular. To show that idempotents commute we must first
identify them:

(A, g) = (A, g)2 =
(
A ∧ gA, g2

)
=⇒ g = 1.

Conversely, every element of the form (A, 1) is idempotent. It follows that

(A, 1)(B, 1) = (A ∧ 1B, 1) = (A ∧B, 1) = (B ∧ A, 1) = (B, 1)(A, 1)

and thus idempotents do indeed commute. We have shown that S is an inverse
semigroup.
It remains to show that S is E-unitary. In view of that suppose that
(A, 1) ≤ (B, g) which means that there exists an idempotent (C, 1) such that
(A, 1) = (B, g)(C, 1). But (B, g)(C, 1) = (B ∧ gC, g) and we have in particular
g = 1. In effect (B, g) = (B, 1) is an idempotent and S is indeed E-unitary.

2

Definition 6.2.4 Semigroups of the form P(G,X ,Y), where (G,X ,Y) is a McAl-
ister triple, are called P-semigroups.

We have proved that the semigroup S as defined above is an E-unitary inverse
semigroup. This provides some justification for the expensive and seemingly
arbitrary construction of S. The next theorem however does even more so:

Theorem 6.2.5 ([3], Theorem 5.9.2) Let (G,X ,Y) be a McAlister triple. Then
P(G,X ,Y) is an E-unitary inverse semigroup. Conversely, every E-unitary in-
verse semigroup is isomorphic to a P-semigroup.

Proof We have already proved the easy half. The converse requires consider-
ably more effort. Let S be an E-unitary inverse semigroup. We have to find a
McAlister triple (G,X ,Y) such that S ∼= P(G,X ,Y). Put G := S/σ and for
each s ∈ S define s0 in ES ×G by

s0 :=
(
s−1s, σ(s)

)
.

If T is a subset of S, then by T 0 we mean {t0 : t ∈ T}. Notice that by virtue of
6.0.12(iv),

s0 = t0 =⇒ s = t. (6.2.3)
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Recall that a principal right ideal of S is a set of the form aS for some a ∈ S.
By the very definition of the Green’s relation R we have aS = bS ⇐⇒ aR b.
By 3.0.21(iv) every principal right ideal can thus be uniquely written as eS with
e ∈ ES. As a result the set R of all principal right ideals of S is in one-one
correspondence with ES and so is

Y := {A0 : A ∈ R}

by (6.2.3). The correspondence is even a semilattice isomorphism between ES and
(Y ,∩), since for e, f ∈ ES we have (efS)0 = (eS)0 ∩ (fS)0 ⇐⇒ efS = eS ∩ fS
by (6.2.3), where the right-hand side holds because of 3.0.28.
We define an action of G on ES ×G by

g(e, h) := (e, gh). (6.2.4)

More generally by gA0 (g ∈ G,A0 ∈ Y) we mean {g(e, h) : (e, h) ∈ A0}. This
enables us to define

X := GY = {gA0 : g ∈ G,A0 ∈ Y}.

Both Y and X are sets of subsets of E×G and partially ordered by set inclusion.
Moreover we have Y ⊆ X .
Next, using (6.2.4), we define a group action of G on X by

g
(
hA0

)
:= (gh)A0

(
g ∈ G, hA0 ∈ X

)
. (6.2.5)

Of course we have to check that this definition is well-defined and does not
depend on the particular representation of the element in X . In view of that let
hA0 = kB0 with h, k ∈ G,A0, B0 ∈ Y . Then within Y we have

A0 =
(
h−1k

)
B0 =

(
(gh)−1(gk)

)
B0

and therefore (gh)A0 = (gk)B0.
Now it is easy to verify the conditions in (2.4.1) and it follows that (6.2.5)
defines a group action on X . We have already shown that (G,X ,Y) satisfies
(P1) and (P3). Next we take care of (P2). We have to prove that Y is an order
ideal of X . Accordingly, let g(eS)0 be a typical element of X and suppose that
g(eS)0 ⊆ (fS)0 for some f in E. Among the elements of (eS)0 is the element
(ee)0 = e0 = (e, σ(e)) = (e, 1), where 1 denotes the identity element of G. The
last equality holds due to 3.5.3. Hence

(e, g) = g(e, 1) = u0 =
(
u−1u, σ(u)

)
for some u in fS. Comparinig left- and right-hand sides we get g = σ(u) and
e = u−1u. This yields

g(eS)0 = σ(u)
(
u−1uS

)0
= σ(u){

(
u−1us

)0
: s ∈ S} =

σ(u)
{(
s−1u−1us, σ

(
u−1us

))
: s ∈ S

}
= {((us)−1us, σ(uu−1u︸ ︷︷ ︸

=u

s)) : s ∈ S} = (uS)0.
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6 E-unitary inverse semigroups

Hence g(eS)0 ∈ Y and Y is an order ideal of X . This is (P2).
Eventually we deal with (P4). Let g ∈ G and choose s ∈ S such that σ(s)−1 = g.
Then

g(sS)0 =σ(s)−1{
(
(st)−1(st), σ(st)

)
: t ∈ S} = {

(
(st)−1(st), σ

(
s−1st

))
: t ∈ S} =

{
((
s−1st

)−1 (
s−1st

)
, σ
(
s−1st

))
: t ∈ S} =

(
s−1sS

)0 ∈ Y .

Hence gY ∩ Y 6= ∅, i.e. (P4). Summarising, (G,X ,Y) is a McAlister triple.
It remains to show that S ∼= P(G,X ,Y). Accordingly, we define a map by

φ : S → P(G,X ,Y),

s 7→
(
(sS)0, σ(s)

)
.

It is well-defined as can be seen from the verification of (P4). We claim that
φ is the isomorphism we are looking for. First of all it is one-one, since for all
s, t ∈ S,

φ(s) = φ(t) =⇒ (sS)0 = (tS)0, s σ t =⇒ sS = tS, s σ t =⇒ (s, t) ∈ σ∩R =⇒ s = t.

The last implication follows from 6.0.12(iv) (the appearance of R instead of L
makes no difference). It is also onto:
Suppose that ((sS)0, g) ∈ P(G,X ,Y). By definition, this is equivalent to
g−1(sS)0 ∈ Y . Hence there exists t ∈ ES such that g−1(sS)0 = (tS)0. In
particular,(

ss−1, g−1
)

=
3.5.3

(
ss−1, g−1σ

(
ss−1

))
= g−1

(
ss−1

)0
= u0 =

(
u−1u, σ(u)

)
for some u ∈ tS. Comparing left- and right-hand sides we see that sRu−1 and
g−1 = σ(u). Using 3.0.27 and our first definition of the Green’s relation R this
implies (

(sS)0, g
)

=
((
u−1S

)0
, σ
(
u−1
))

= φ
(
u−1
)

.

Hence φ is onto. The only thing left to show is the morphism property of φ. In
P(G,X ,Y) we have(

(sS)0, σ(s)
) (

(tS)0, σ(t)
)

=
(
(sS)0 ∩ (σ(s))(tS)0, σ(st)

)
and it suffices therefore to show that

(sS)0 ∩ (σ(s))(tS)0 = (stS)0.

Suppose first that (e, g) ∈ (sS)0 ∩ (σ(s))(tS)0. Then

(e, g) = (su)0 = σ(s)(tv)0

for some u, v ∈ S. Applying σ(s)−1, this yields σ(s)−1(su)0 = (tv)0 and thus

(tv)0 =σ(s)−1
(
(su)−1su, σ(su)

)
=
(
(su)−1su, σ

(
s−1
)
σ(su)

)
=((

s−1su
)−1

s−1su, σ
(
s−1su

))
=
(
s−1su

)0
.
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By (6.2.3) we thus get tv = s−1su and consequently stv = ss−1su = su. It
follows that (e, g) = (stv)0 ∈ (stS)0 as required.
Conversely, suppose that (e, g) ∈ (stS)0. Obviously (e, g) ∈ (sS)0 and (e, g) =
(stu)0 for some u in S. Put v := (st)−1(st)u. A straightforward calculation
shows that (tv)−1(tv) = (stu)−1(stu). Since (st)−1(st)u ≤ u we also have uσ v
and therefore stu σ stv. Hence

(e, g) =(stu)0 =
(
(stu)−1(stu), σ(stu)

)
=
(
(tv)−1(tv), σ(s)σ(tv)

)
=

σ(s)
(
(tv)−1(tv), σ(tv)

)
∈ σ(s)(tS)0.

Thus (e, g) is indeed in (sS)0 ∩ (σ(s))(tS)0 and φ is the desired isomorphism:
S ∼= P(G,X ,Y).

2

In 6.1.12(i) we characterised those Clifford semigroups which are also E-unitary
taking a general strong semilattice of groups as our starting point. One can also
do it the other way round and begin with a P-semigroup:

Proposition 6.2.6 ([7], Proposition VII.5.18) An E-unitary inverse semigroup
S = P(G,X ,Y) is a Clifford semigroup if and only if the action of G on Y is
trivial, in the sense that gA = A for every g in G and A in Y.

Remark 6.2.7 In fact, the E-unitary P-semigroup appearing in the proposition
above is the direct product of G and Y. This can be seen from the definition of
the set P(G,X ,Y) in (6.2.1) and the fact that

A, g−1A ∈ Y ⇐⇒ A ∈ Y ∩ gY = Y ∩ Y = Y

in our case.

We conclude this chapter with a lemma that provides basic properties of the
P-semigroup P(G,X ,Y).

Proposition 6.2.8 7 Let S = P(G,X ,Y) be a P-semigroup and let (A, g), (B, h) ∈
S. Then we have the following basic properties:

(i) ES
∼= Y

(ii) (A, g) ≤ (B, h) ⇐⇒ A ≤ B, g = h

(iii) (A, g)σ (B, h) ⇐⇒ g = h

(iv) S/σ ∼= G

(v) (A, g)−1 = (g−1A, g−1)

7Compare to ([3], Proposition 5.9.4) and ([5], Theorem 7.1.1)
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6 E-unitary inverse semigroups

Proof
(i): Let (A, g) be an idempotent in S. Then (A, g) = (A, g)2 = (A ∧ gA, g2).
Hence it is necessary for an idempotent to have the identity 1 as its group co-
ordinate. Conversely, it is clear that each such element in P(G,X ,Y) is an
idempotent. Since the multiplication in ES concerns therefore only the first co-
ordinate we thus have an isomorphism from ES onto Y via (A, 1) 7→ A.
(ii): Suppose that (A, g) ≤ (B, h). Then (A, g) = (C, 1)(B, h) = (C ∧ B, h) for
some C in Y . Hence A ≤ B and g = h. If conversely A ≤ B and g = h, then
A = A ∧B and thus (A, g) = (A, 1)(B, g). That is (A, g) ≤ (B, g) = (B, h).
(iii): Suppose that (A, g)σ (B, h). Then (C, k) ≤ (A, g), (B, h) for some (C, k)
in S. By (ii) this implies g = k = h.
To establish the converse note that (A∧B, g) ≤ (A, g), (B, g), also by (ii). Hence
(A, g)σ (B, g) for every pair (A, g), (B, g) ∈ S.
(iv): We have shown in (iii) that there is a one-one correspondence between σ-
classes in S and elements in the group G. Since the multiplication in the second
coordinate coincides with the one in G, the mapping {(A, g) ∈ P(G,X ,Y)} 7→ g
is the isomorphism we are looking for.
(v): Straightforward calculation shows that both (A, g)(g−1A, g−1)(A, g) = (A, g)
and (g−1A, g−1)(A, g)(g−1A, g−1) = (g−1A, g−1) hold. We know further that S is
an inverse semigroup. Hence (g−1A, g−1) is the unique inverse of (A, g).

2
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This chapter is about F-inverse semigroups. We have already defined them in
6.1.15 and know that they are particular E-unitary inverse semigroups. Ul-
timately, we wish to establish a result analogous to 6.2.5 for F-inverse semi-
groups making use of the P-theorem and the fact that the semigroup is actually
F-inverse. Before we embark on this task, we give criteria of F-inversibility for
many of the semigroups featuring earlier in this thesis, including bisimple and
simple inverse ω-semigroups and we list some F-inverse semigroups such as the
bicyclic semigroup.

Theorem 7.0.9 ([5], Proposition 7.1.4) Every E-unitary inverse semigroup S
can be embedded in an F-inverse semigroup T such that T/σT is isomorphic to
S/σS.

Proof Recall that for an inverse semigroup S we defined C (S) to be the in-
verse semigroup consisting of all permissible subsets1 of S. Recall also that the
idempotents of C (S) are the order ideals of ES. By virtue of 3.4.6 we have an
embedding ι of S in C (S) with ι(s) = bsc. We are going to show that C (S) is
in fact the F-inverse monoid we are looking for.
We first characterise the natural partial order in C (S). Let A,B ∈ C (S). By
3.2.2, A ≤ B ⇐⇒ A = AA−1B. From the proof of 3.4.6 we know that
AA−1 = {aa−1 : a ∈ A} consists entirely of idempotents. Hence every element of
A is less or equal than an element in B. It follows that A ⊆ B since B is an order
ideal. Conversely, suppose that A ⊆ B. Then clearly A = AA−1A ⊆ AA−1B. To
prove that the reverse inclusion also holds let aa−1b ∈ AA−1B. By assumption a
and b are both elements of the compatible subset B and thus a−1b ∈ ES. Hence
a (a−1b) ≤ a and so aa−1b ∈ A, since A is an order ideal. We have shown that in
C (S) the natural parial order coincides with subset inclusion.
Now we are able to show that C (S) is F-inverse. We will use subscripts to avoid
any ambiguity regarding the respective σ-relations. Let s ∈ S. Then the σ-class
σ(s), regarded as a set, is compatible, since for the E-unitary inverse semigroup S
we have that σ =∼. It is also an order ideal. To see this let t ∈ σ(s) and u ≤ t.
Clearly uσ t, which together with t σ s and the transitivity of σ yields uσ s.
Hence u ∈ σ(s) and σ(s) is an order ideal. We prove that σ(s) is the maximum
element of its σC (S)-class. Let A ∈ C (S) such that AσC (S) σ(s). Then B ⊆
A, σ(s) for some permissible subset B. An element b ∈ B is compatible both with
every element in A and in σ(s). But S is E-unitary and thus the compatibility
relation is transitive. It follows that every element in A is compatible with s.
In an E-unitary inverse semigroup we have ∼= σ which yields A ⊆ σ(s). Hence

1For a definition see 3.4.5
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7 F-inverse semigroups

σ(s) is indeed the maximum element of its σC (S)-class. On the other hand it is
easy to see that every σC (S)-class contains an element of the form σ(s) for some
s ∈ S. Thus C (S) is F-inverse.
It remains to verify that S/σ is isomorphic to C (S)/σC (S). We define a map θ
by

θ : S/σ → C (S)/σC (S)

σ(s) 7→ σC (S) (σ(s)) .

By the considerations above θ is both one-one and onto. To show the morphism
property let σ(s), σ(t) ∈ S/σ. Then

θ (σ(s)) θ (σ(t)) =σC (S) (σ(s))σC (S) (σ(t)) = σC (S) (σ(s)σ(t)) = σC (S) (σ(st)) =

θ (σ(st)) .

Thus θ is indeed an isomorphism and the proof is completed.

2

The theorem states in a sense that the class of F-inverse semigroups, although
strictly smaller than the class of E-unitary ones, is essentially as ‘big’.

7.1 Examples of F-inverse semigroups

Groups are of course F-inverse, since for them the σ-relation is the identity re-
lation due to 3.2.6. Primitive inverse semigroups on the other hand are almost
never F-inverse; the only primitive F-inverse semigroup is the two-element semi-
group ({0, 1}, ·). To see this assume that there exist distinct non-zero elements a
and b. Obviously, a and b do lie in the same σ-class, since 0 ≤ a, b. The natural
partial order is equality when restricted to non-zero elements due to 4.0.11 and
so there is no maximum element in this σ-class (not even an upper bound for
a and b). This means that if a primitive inverse semigroup S is to be F-inverse
there can only be one non-zero element. This element must be the primitive
idempotent and thus S ∼= ({0, 1}, ·).
Clifford semigroups are not F-inverse in general, even if they are assumed to
be E-unitary and therefore have injective morphisms when regarded as a strong
semilattice of groups S (E;Ge;φe,f ) (see 6.1.12(i)). Just consider the semilattice
(N,≤) with copies of the trivial group {e} attached to each element. Then, all
elements are σ-equivalent, but there is no maximum.
In 6.1.12(ii) we saw that in a Clifford semigroup S = S (E;Ge;φe,f ),

a σ b ⇐⇒ ∃l ∈ E : φe,l(a) = φf,l(b) (a ∈ Ge, b ∈ Gf ).

For an E-unitary Clifford semigroup, by 6.1.12(i), this translates to

a σ b ⇐⇒ φe,e∧f (a) = φf,e∧f (b).

Hence S is F-inverse if, for every a ∈ S, there exists an element i ∈ Gi with
i ≥ e, such that
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(i) φi,e(i) = a (a ∈ Ge),

(ii) φx,i∧x(x) = φi,i∧x(i) =⇒ φi,x(i) = x (x ∈ Gx).

In the special case of a finite chain of groups T =
⋃
i=0,1,...,d−1Gi we only need to

demand that the connecting morphisms are one-one. The reason is that we can
only descend finitely many times in the natural partial order and the injective
nature of the morphisms guarantees that our ‘way up’ (with respect to the order
in T ) is uniquely determined. The σ-classes are in fact chains. For g ∈ G0 the
corresponding σ-class is

g > g11 > g12 > . . . > g1d−1.

By 6.1.12(i) and 6.1.14 this yields

Corollary 7.1.1 A finite chain of groups is F-inverse if and only if it is
E-unitary.

Next we want to find out which bisimple inverse ω-semigroups are F-inverse.

Theorem 7.1.2 A bisimple inverse ω-semigroup S is F-inverse if and only if it
is E-unitary.

Proof Thanks to 6.1.14 we only need to establish the converse half. Suppose
that S ∼= BR(G, θ) is E-unitary, where G is a group and θ is an endomorphism of
G. By 6.1.9 this is equivalent to θ being one-one, since the σ-relation coincides
with the identity relation for a group. Let (m, a, n)σ (p, b, q). Without loss of
generality we deduce from 5.2.10(v) that m+t = p, n+t = q and θk+t(a) = θk(b)
for certain k, t ∈ N. But θ is one-one and so θt(a) = b. Hence

(m, a, n)(n+ t, 1, n+ t) = (p, b, q),

i.e. (m, a, n) ≥ (p, b, q). In effect the σ-classes are actually chains and these
chains must terminate because an infinite regression is not possible in N. Thus
BR(G, θ) is F-inverse.

2

The following corollary deals with the already familiar bicyclic semigroup.

Corollary 7.1.3 The bicyclic semigroup B is F-inverse.

Proof Consider the trivial group G = {e}. Then BR({e}, θ) ∼= B , where—most
trivially—θ is not only uniquely determined but also one-one. As shown in the
preceding proof, BR({e}, θ) is then E-unitary and thus F-inverse.

2

Encouraged by the easy characterisation of F-inverse bisimple inverse ω-semigroups
we investigate simple inverse ω-semigroups next. Although slightly more com-
plicated to prove, the result is essentially the same for them:
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Theorem 7.1.4 A simple inverse ω-semigroup S is F-inverse if and only if it
is E-unitary.

Proof As for the bisimple case we need of course only to prove the converse half.
Accordingly, suppose that S ∼= BR(T, θ) is E-unitary, where T =

⋃
i=0,1,...,d−1Gi

is a finite chain of groups and θ is a morphism from T into its group of units G0.
As in the previous theorem we may use 6.1.9 to obtain more information. From
this it follows that T is E-unitary and so the morphisms αi,j are all one-one.
Moreover, we know the kernel of θ to be σT .
We are now ready to investigate the σ-relation on S (we identify S with BR(T, θ)).
Suppose that (m, a, n)σS (p, b, q), where m ≤ p, a ∈ Gi, b ∈ Gj. Then 5.2.10(v)
yields that m − n = p − q and θk+t(a)e = θk(b)f , where t := p − m, k ∈ N
and e, f ∈ ET . Multiplying on the right with ef and using that idempotents
commute we get

θk+t(a)ef = θk(b)ef .

The idempotent ef is a group identity for some group Gl, hence ef = 1l. We
assume without loss of generality that k > 0. Thus θk+t(a), θk(b) ∈ G0. In effect,
the above equation translates to

α0,l

(
θk+t(a)

)
= α0,l

(
θk(b)

)
.

But α0,l is one-one and so θk+t(a) = θk(b). Now we make use of the fact that
ker (θ) = σT and conclude θk+t−1(a)σ θk−1(b). We may repeat the above argu-
ment until we get

θt(a)σ b. (7.1.1)

If t > 0, then θt(a) ∈ G0 (and b ∈ Gj). From (7.1.1) we deduce

α0,j

(
θt(a)

)
= θt(a)1j = b,

using again that the connecting morphisms are one-one. Hence (m, a, n) ≥
(p, b, q) by 5.2.10(v).
If on the other hand t = 0, then m = p and n = q and we may assume without
loss of generality that i ∧ j = j. We get in this case

(m, a, n)(n, 1j, n) = (m,αi,j (a) , n) = (m, b, n) = (p, b, q)

and thus (m, a, n) ≥ (p, b, q). We have shown that for simple inverse ω-semigroups
we also have that the σ-classes are chains. We can even write them down. There
exist |G0| σ-classes. For g ∈ G0 the corresponding σ-class is

(0, g, 0) > (0, g11, 0) > (0, g12, 0) > . . . > (0, g1d−1, 0) > (1, θ(g), 1) >

(1, θ(g)11, 1) > . . . > (1, θ(g)1d−1, 1) >
(
2, θ2(g), 2

)
> . . . >

(
2, θ2(g)1d−1, 2

)
> . . .

In particular, we see that each σ-class has a maximum.

2
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In 6.1.8 we saw that any free inverse semigroup is ‘almost’ F-inverse. The only
thing that might prevent the semigroup from being F-inverse is the absence of
an identity element. Indeed, if there is an identity element, it is plainly the
maximum element of the σ-class of idempotents. We thus have

Proposition 7.1.5 Free inverse monoids are F-inverse.

Using the above result Lawson proved a modification of McAlister’s covering
theorem.

Theorem 7.1.6 ([5], Theorem 7.5.7) Every inverse semigroup has an F-inverse
cover.

Notice that in contrast to 6.0.18 we did not claim that there exists an idempotent-
separating covering morphism.

7.2 A McAlister-like construction

We might hope that the construction in 6.2.1 allows some simplification for
F-inverse semigroups. We shall determine the consequences of the additional
structure of an F-inverse semigroup compared to an E-unitary inverse one on the
sets X and Y featuring in the McAlister triple.
We start with a lemma:

Lemma 7.2.1 ([7], Lemma VII.5.2) In an E-unitary inverse semigroup S we
have for every σ-class H and every e ∈ ES:

(i) HeH−1 = {heh−1 : h ∈ H}.

(ii) HH−1 = {hh−1 : h ∈ H}.

Proof
Obviously it suffices to prove that HeH−1 ⊆ {heh−1 : h ∈ H} and that HH−1 ⊆
{hh−1 : h ∈ H} respectively.
(i): Let a, b ∈ H. Then ab−1, b−1a ∈ ES, since in a E-unitary inverse semigroup
the compatibility relation and the σ-relation coincide due to 6.0.21(ii). This
implies that aeb−1 is an idempotent as well. Because of a σ ab−1b it follows that

aeb−1 =
(
aeb−1

) (
aeb−1

)−1
= aeb−1bea−1 = aeb−1bb−1bea−1 =

ab−1beeb−1ba−1 =
(
ab−1b

)
e
(
ab−1b

)−1 ∈ {heh−1 : h ∈ H}.

The proof of (ii) is similar.

2

The next lemma is more or less a consequence of 7.2.1. It tells us more about
the behaviour of σ-classes in a P-semigroup.
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Lemma 7.2.2 ([7], Lemma VII.5.3) Let S = P(G,X, Y ) be a P-semigroup and
let e = (α, 1) be an idempotent in S. Furthermore let g ∈ G and denote by H
the corresponding σ-class of S. Then

(i) H = {(β, g) : g−1β ∈ Y },

(ii) HH−1 = {(β, 1) : g−1β ∈ Y },

(iii) HeH−1 = {(β, 1) : β ∈ bgαc ∩ Y }.

Proof
(i): This is the content of 6.2.8(iii).
(ii): From (i), 6.2.8(v) and 7.2.1(ii) we get

HH−1 =
{

(β, g)
(
g−1β, g−1

)
: g−1β ∈ Y

}
=
{

(β, 1) : g−1β ∈ Y
}

.

(iii): By 7.2.1(i) and 6.2.8(v) it follows that

HeH−1 =
{

(γ, g)(α, 1)
(
g−1γ, g−1

)
: g−1γ ∈ Y

}
=
{

(γ ∧ gα, 1) : g−1γ ∈ Y
}

.

Letting β := γ ∧ gα we obtain β ∈ bgαc ∩ Y since γ ∈ Y and Y an order
ideal. Hence {(γ ∧ gα, 1) : g−1γ ∈ Y } ⊆ {(β, 1) : β ∈ bgαc ∩ Y }. Conversely, if
β ∈ bgαc ∩ Y , we must find γ ∈ Y such that g−1γ ∈ Y and β = γ ∧ gα. It turns
out that β itself does the job:
By assumption β ≤ gα. On the one hand this yields β = β ∧ gα. On the other
hand we get g−1β ≤ α. Hence g−1β ∈ Y since Y is an order ideal and α ∈ Y . It
follows that HeH−1 = {(β, 1) : bgαc ∩ Y }, as required.

2

The following lemma will prove useful in our subsequent investigations.

Lemma 7.2.3 Let (X,∧) be a semilattice and let Y ⊆ X.

(i) If Y is a principal ideal of X then it is also a retract ideal2 of X.

(ii) Y is a retract ideal of X if and only if Y ∩bxc is a principal ideal of X for
all x in X.

Proof
(i): By assumption Y = byc for some y in X. We need to show that Y is also
a retract. Consider the mapping φ : X → Y , x 7→ x ∧ y for this y. This is
well-defined since y ∈ Y and Y is an ideal. It is immediate that φ(x) = x for all
x ∈ Y . Also,

φ(x ∧ z) = x ∧ z ∧ y = (x ∧ y) ∧ (z ∧ y) = φ(x) ∧ φ(z) (x, z ∈ X).

Hence Y is a retract ideal.

2For a definition see 2.2.4
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(ii): Suppose first that Y is a retract ideal of X with endomorphism φ : X → Y
such that ∀y ∈ Y : φ(y) = y. Let x in X. We claim that Y ∩ bxc = bφ(x)c. Let
x ≥ y ∈ Y . Then

y = φ(y) = φ(y ∧ x) = φ(y) ∧ φ(x) ≤ φ(x).

Hence Y ∩ bxc ⊆ bφ(x)c. Using that Y is an ideal and that φ fixes the elements
of Y we get

φ(x)︸︷︷︸
∈Y

∧x = φ (φ(x) ∧ x) = φ2(x)︸ ︷︷ ︸
=φ(x)

∧φ(x) = φ(x).

This implies bφ(x)c ⊆ Y ∩ bxc. We have shown that Y ∩ bzc is a principal ideal
for all z ∈ X.

Conversely, suppose that Y ∩bxc = bx̂c is a principal ideal of X for every x ∈ X.
Let y ∈ Y, x ∈ X. Trivially, y is contained in the ideal Y ∩ byc and thus also
y ∧ x ∈ Y ∩ byc. In particular y ∧ x ∈ Y for every x ∈ X and so Y is an ideal. It
remains to demonstrate that it is a retract as well. By assumption Y ∩bxc = bx̂c
for an element x̂ in Y . This defines a mapping

φ : X → Y

x 7→ x̂.

Using the fact that Y is an ideal we have for x ∈ Y that Y ∩ bxc = bxc which
implies x = x̂ in this case. Consequently, the mapping φ lets the elements of Y
fixed. Next we verify that φ is a morphism. We need to show x̂∧ ŷ = x̂ ∧ y. Let
x, y ∈ X. Obviously we have a ≤ b =⇒ â ≤ b̂ for all a, b ∈ X. Hence x̂ ∧ y ≤ x̂, ŷ
and thus x̂ ∧ y ≤ x̂ ∧ ŷ. To show the reverse direction suppose that z ≤ x̂, ŷ for
some z. It follows that z ∈ Y ∩ bxc and z ∈ Y ∩ byc. We conclude that z ≤ x, y
and thus z ≤ x ∧ y with z ∈ Y . But x̂ ∧ y is the largest element in Y such that
x̂ ∧ y ≤ x ∧ y. It follows that z ≤ x̂ ∧ y. This completes the proof.

2

Proposition 7.2.4 ([7], Proposition VII.5.5) The following conditions on a
P-semigroup S = P(G,X, Y ) are equivalent:

(i) HH−1 is a retract ideal of ES for all σ-classes H.

(ii) gY ∩ Y is a retract ideal of Y for all g ∈ G.

(iii) Let H be a σ-class and let e = (α, 1) ∈ ES. Then HeH−1 is a principal
ideal of ES.

(iv) bαc ∩ Y is a principal ideal of Y for all α ∈ X.

(v) X is a semilattice and Y is a retract ideal of X.
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7 F-inverse semigroups

Proof
(i) ⇐⇒ (ii): Recall that by 7.2.2(ii),

HH−1 =
{

(β, 1) : β ∈ Y, g−1β ∈ Y
}

= {(β, 1) : β ∈ gY ∩ Y } .

The equivalence of (i) and (ii) then follows from 6.2.8(i).
(iii) ⇒ (iv): Let α ∈ X. Since GY = X there exist g in G and κ ∈ Y such
that gκ = α. Denote by H the σ-class corresponding to g and let e = (κ, 1). By
assumption HeH−1 is a principal ideal of ES and hence, using 6.2.8(ii),

HeH−1 =
7.2.2(iii)

{(β, 1) : β ∈ bgκc∩Y } = {(β, 1) : β ∈ bαc∩Y } = {(β, 1) : β ≤ γ}

for some γ ∈ Y . We deduce that bαc ∩ Y is a principal ideal of Y .
(iv)⇒ (iii): Let g ∈ G and α ∈ Y . Put e := (g−1α, 1) ∈ ES. Let further H be
the σ-class corresponding to g. Then by 7.2.2(iii) we get

HeH−1 = {(β, 1) : β ∈ bgg−1αc ∩ Y } = {(β, 1) : β ∈ bαc ∩ Y }.

But bαc ∩ Y = bγc by assumption for some γ ∈ Y . Hence

HeH−1 = {(β, 1) : β ≤ γ} = b(γ, 1)c.

(ii)⇒ (iv): Since GY = X it suffices to show that bgαc∩Y is a principal ideal
of Y for all g ∈ G,α ∈ Y . In view of the fact that Y is an order ideal we have
bαc ∩ Y = bαc. Using 7.2.3 we thus get

g−1Y ∩ bαc =
(
g−1Y ∩ Y

)
∩ bαc = bβc

for some β ∈ Y since the expression in the brackets is a retract ideal by assump-
tion. Applying 2.4.4 two times we get

bgαc ∩ Y = gbαc ∩ Y = g
(
bαc ∩ g−1Y

)
= gbβc = bgβc,

where gβ ∈ Y . Thus bgαc ∩ Y is indeed a principal ideal of Y .
(iv)⇒ (v): We start by showing that X is a semilattice. By GY = X it suffices
to verify that gα ∧ hβ exists for all g, h ∈ G,α, β ∈ Y . By assumption

bh−1gαc ∩ bβc︸︷︷︸
⊆Y

=
(
bh−1gαc ∩ Y

)
∩ bβc = bγc ∩ bβc

for some γ ∈ Y . But γ and β are both elements of the semilattice Y and thus
bγc ∩ bβc = bγ ∧ βc by 2.1.8. Consequently γ ∧ β is the greatest lower bound of
h−1gα and β. Since h acts on X as an order autormorphism this implies

h(γ ∧ β) = h
(
h−1gα ∧ β

)
= gα ∧ hβ

and thus X is a semilattice.
By assumption bαc∩Y is a principal ideal of Y and thus also of X for all α ∈ X.
By 7.2.3(ii) we deduce that Y is a retract ideal of X.
(v) ⇒ (ii): Suppose that X is a semilattice and Y is a retract ideal of X. Let
α ∈ Y, g ∈ G. As above, bαc ∩ Y = bαc. Using 7.2.3 we have by assumption,

bαc ∩ (gY ∩ Y ) = bαc ∩ gY =
2.4.4

g
(
bg−1αc ∩ Y

)
= gbβc = bgβc,
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7.2 A McAlister-like construction

for some β ∈ Y . Again by 7.2.3 we deduce that gY ∩ Y is a retract ideal of Y .

2

The previous proposition gives rise to a definition.

Definition 7.2.5 An R-inverse semigroup is an inverse semigroup in which
HH−1 is a retract ideal of ES for every σ-class H.

Remark 7.2.6 In particular for an R-inverse semigroup S, HH−1 is an ideal.
This is equivalent to S being an E-unitary semigroup by 6.0.21. Hence S can
be represented as a P-semigroup. As a consequence R-inverse semigroups are
precisely those appearing in 7.2.4. In naming these semigroups R-inverse we
follow [7]. The ‘R’ most likely stems from ‘retract ideal’. We use R-inverse
semigroups to tackle F-inverse semigroups.

Next we give a construction method for R-inverse semigroups.

Construction 7.2.7 ([7], Construction VII.5.7) Let G be a group and Y a semi-
lattice. Let (g, α) 7→ g · α be a mapping from G× Y to Y . For reasons of conve-
nience we shall write gα instead of g·α if no misunderstandings are to be expected.
Assume that the following axioms are satisfied for all g, h ∈ G,α, β ∈ Y .

(R1) 1α = α,

(R2) g(α ∧ β) = gα ∧ gβ,

(R3) bg(hα)c = b(gh)αc ∩ gY .

Let
S := {(α, g) ∈ Y ×G : α ∈ gY }

with multiplication given by

(α, g)(β, h) = (α ∧ gβ, gh). (7.2.1)

We shall denote this structure by R(G, Y ).

Remark 7.2.8 (i) A little sloppy we call a mapping obeying axioms (R1) to
(R3) a ‘group action of G on Y ’ although it is none in the sense of our
earlier definition (compare to 2.4.2).

(ii) The first and the second axiom seem very reasonable. The latter demands
that the action of G on Y respects the additional structure that the semi-
lattice Y carries compared to the set Y . However, at this point the third
axiom probably comes as a surprise. It is ‘to blame’ that we lack a group
action in the rigid sense.

(iii) One might have expected g−1α ∈ Y instead of α ∈ gY in the definition of
S as has been the case in (6.2.1). There, this is equivalent to the condition
α ∈ gY which means that we are not doing something completely new here.
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7 F-inverse semigroups

As promised above the semigroups thus built are indeed R-inverse. This is the
content of the next proposition. First we need two lemmas.

Lemma 7.2.9 Let S = R(G, Y ). Then gY is an order ideal of Y for all g in G.

Proof Let g ∈ G, α ∈ Y . Using (R1) and (R3) we have

bgαc = bg(1α)c = b(g1)αc ∩ gY = bgαc ∩ gY .

Hence all elements less than an element in gY are in gY which is therefore an
order ideal.

2

Lemma 2.4.4 remains true for a group action in the sense of 7.2.7. This is the
content of the next lemma.

Lemma 7.2.10 In R(G, Y ) we have the formula

∀g ∈ G ∀β ∈ Y : gbβc = bgβc. (7.2.2)

Proof Let α ∈ gbβc. Then α = gγ for some γ ≤ β. Hence, by (R2),

α = gγ = g(γ ∧ β) = gγ ∧ gβ ≤ gβ

and thus gbβc ⊆ bgβc.
Conversely, let α ∈ bgβc. Then α = gγ for some γ ∈ Y since, as we saw in 7.2.9,
bgβc ⊆ gY . Hence, by (R2),

α = gγ = gβ ∧ gγ = g(β ∧ γ) ∈ gbβc.

2

Proposition 7.2.11 ([7], Lemma VII.5.8) The structure R(G, Y ) is an R-inverse
semigroup.

Proof Let S = R(G, Y ). We begin by showing that S is closed under the
operation defined in (7.2.1). Let (α, g), (β, h) ∈ S. Then α ∈ Y ∩gY, β ∈ Y ∩hY .
Thus β = hγ for some γ ∈ Y . We have to show that α ∧ gβ ∈ Y ∩ (gh)Y . This
is established by the following chain of equalities where we use (R3) and the fact
that (gh)Y is an order ideal.

bα∧ gβc =
2.1.8
bαc ∩ bg(hγ)c = bαc ∩ b(gh)γc ∩ gY ⊆ bαc ∩ b(gh)γc ⊆ Y ∩ (gh)Y .

Next we verify associativity. On the one hand

((α, g)(β, h)) (γ, k) = (α ∧ gβ, gh)(γ, k) = (α ∧ gβ ∧ (gh)γ, ghk),
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whereas on the other hand

(α, g) ((β, h)(γ, k)) =(α, g)(β ∧ hγ, hk) = (α ∧ g(β ∧ hγ), ghk) =

(α ∧ gβ ∧ g(hγ)), ghk).

Therefore, we have proved associativity if we can show α ∧ gβ ∧ (gh)γ =
α ∧ gβ ∧ g(hγ)). Now (7.2.2) enters the scene enabling us to obtain the de-
sired

bα ∧ gβ ∧ (gh)γc =
2.1.8
bαc ∩ bgβc ∩ b(gh)γc = bαc ∩ gbβc ∩ gY ∩ b(gh)γc =

bαc ∩ bgβc ∩ bg(hγ)c = bα ∧ gβ ∧ g(hγ)c.

Hence S is a semigroup. We would like to show that it is also inverse and do this
by showing that it is regular and that idempotents commute. Let (α, g) ∈ S.
By definition α ∈ Y and consequently g−1α ∈ g−1Y . Hence (g−1α, g−1) ∈ S.
Then (α, g) (g−1α, g−1) (α, g) computes to (α ∧ g (g−1α) , g), where we would like
to cancel out but are not allowed to. We straighten this out with

bα ∧ g
(
g−1α

)
c = bαc ∩ bg

(
g−1α

)
c = bαc ∩ b

(
gg−1

)
αc ∩ gY = bαc, (7.2.3)

where α ∈ gY by the definition of S. It follows that S is regular. The idempotents
in S are easily found:

(β, g) = (β, g)(β, g) =
(
β ∧ gβ, g2

)
yields that g = 1 and conversely every such element is an idempotent by (R1).
Thus

ES = {(α, 1) : α ∈ Y }.

Obviously then

(α, 1)(β, 1) = (α ∧ β, 1) = (β ∧ α, 1) = (β, 1)(α, 1).

It is also not difficult to see that S is E-unitary since (α, 1) ≤ (β, g) implies
(α, 1) = (γ, 1)(β, g) = (γ ∧ β, g) for some γ ∈ Y and thus (β, g) = (β, 1) is an
idempotent. Moreover, it is straightforward to check that

(α, g) ≤ (β, h) ⇐⇒ g = h, α ≤ β (7.2.4)

and this entails

(α, g)σ (β, h) ⇐⇒ g = h, (7.2.5)

exactly like for P-semigroups.
Finally we can show that S = R(G, Y ) is R-inverse. Let H be the σ-class
corresponding to g ∈ G. Then by 7.2.1(ii) and (7.2.3) we obtain

HH−1 =
{

(α, g)
(
g−1α, g−1

)
: α ∈ gY

}
=
{

(α ∧ g
(
g−1α

)
, 1) : α ∈ gY

}
=

{(α, 1) : α ∈ gY } .
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7 F-inverse semigroups

In order to show that HH−1 is a retract ideal, by 7.2.3 it suffices to check that
HH−1 ∩ b(γ, 1)c is a primitive ideal for all idempotents (γ, 1). Now, due to
(7.2.4), we have

HH−1 ∩ b(γ, 1)c = {(α, 1) : α ∈ bγc ∩ gY } =
{

(α, 1) : α ∈
⌊(
gg−1

)
γ
⌋
∩ gY

}
={

(α, 1) : α ∈
⌊
g
(
g−1γ

)⌋}
=
⌊(
g
(
g−1γ

))⌋
and so S is an R-inverse semigroup.

2

The construction in 7.2.7 would be merely a nice example lest there was some-
thing more to it. Indeed, as with the Rees theorem, the converse is true here as
well.

Theorem 7.2.12 ([7], Lemma VII.5.10) Let a group G act on a semilattice Y
in the sense of 7.2.7. Then R(Y,G) is an R-inverse semigroup. Conversely,
every R-inverse semigroup is isomorphic to some R(Y,G).

Proof We have already established the direct half of the assertion. Conversely,
let S be an R-inverse semigroup. It is then an E-unitary inverse semigroup as
remarked in 7.2.6. Hence S is isomorphic to some P-semigroup P(G,X, Y ). We
are going to show that P(G,X, Y ) = R(G, Y ), where the action · of G on the
semilattice Y is given by

bg · αc = bgαc ∩ Y .

We distinguish here g · α from gα. As always, juxtaposition denotes the action
of G on X stemming from the P-semigroup P(G,X, Y ). By 7.2.4(v) we have
that X is a semilattice and Y is a retract ideal of X. Hence the definition of · is
well-defined by virtue of 7.2.3. We now verify the axioms (R1) to (R3). First

b1 · αc = b1αc ∩ Y = bαc,

since α ∈ Y and Y is an order ideal. This implies 1 · α = α for all α ∈ Y , i.e.
(R1).
Secondly,

bg · (α ∧ β)c =bg(α ∧ β)c ∩ Y = bgα ∧ gβc ∩ Y = bgαc ∩ bgβc ∩ Y =

(bgαc ∩ Y ) ∩ (bgβc ∩ Y ) = bg · αc ∩ bg · βc = bg · α ∧ g · βc.

It follows that g · (α ∧ β) = g · α ∧ g · β for all g ∈ G, α, β ∈ Y . This is (R2).
Finally we have for all g, h ∈ G, α ∈ Y ,

bg · (h · α)c =bg(h · α)c ∩ Y =
2.4.4

gbh · αc ∩ Y = g (bhαc ∩ Y ) ∩ Y =

gbhαc ∩ gY ∩ Y = (bg(hα)c ∩ Y ) ∩ (gY ∩ Y ) =

(b(gh)αc ∩ Y ) ∩ (gY ∩ Y ) = b(gh) · αc ∩ g · Y .

This is (R3).
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Moreover,

(α, g) ∈ S ⇐⇒ α ∈ Y, g−1α ∈ Y ⇐⇒ α ∈ Y ∩ gY ⇐⇒ α ∈ g · Y

and thus S = R(G, Y ) as sets. It remains to show that they have the same
multiplication as well:

bα ∧ gβc =bαc ∩ bgβc = (bαc ∩ Y ) ∩ bgβc = bαc ∩ (bgβc ∩ Y ) =

bαc ∩ bg · βc = bα ∧ g · βc.

2

Finally we can move on to F-inverse semigroups.

Proposition 7.2.13 ([7], Proposition VII.5.11) The following conditions on
S = P(G,X, Y ) are equivalent:

(i) HH−1 is a principal ideal of ES for all σ-classes H.

(ii) gY ∩ Y is a principal ideal of Y for all g ∈ G.

(iii) X is a semilattice and Y is a principal ideal of X.

Proof
(i) ⇐⇒ (ii): The proof of this is similar to the one in 7.2.4. We repeat the
essential part: by 7.2.2(ii) we have

HH−1 = {(β, 1) : β ∈ Y, g−1β ∈ Y } = {(β, 1) : β ∈ Y ∩ gY }.

The equivalence then follows from 6.2.8(i).
(ii)⇒ (iii): From the assumption it follows by 7.2.3(i) that gY ∩Y is a retract
ideal of Y . We deduce from 7.2.4 that X is a semilattice. For g = 1 we obtain
that Y = 1Y ∩Y is a principal ideal of Y and hence also of X since Y is an order
ideal.
(iii) ⇒ (ii): By hypothesis Y has a greatest element ε. In a semilattice this
means that ε is the identity element. For g ∈ G we get

gY ∩ Y = gbεc ∩ bεc = bgεc ∩ bεc = bgε ∧ εc.

Hence gY ∩ Y is a principal ideal of Y for all g ∈ G.

2

The conditions in the previous proposition will turn out to be necessary and
sufficient for a semigroup to be F-inverse. As for R-inverse semigroups we will
give a constructive method for building all such semigroups soon.

Proposition 7.2.14 ([7], Proposition VII.5.14) F-inverse semigroups are pre-
cisely those appearing in 7.2.13.
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Proof Let S be an F-inverse semigroup. We already know from 6.1.14 that S
is E-unitary and thus isomorphic to some P-semigroup P(G,X, Y ). Let H be a
σ-class. By definition H has a greatest element, h say. Then

HH−1 =bhcbhc−1 = (ESh) (ESh)−1 = (ESh)
(
h−1ES

)
= ES

(
hh−1

)
ES =

ESEShh
−1 = EShh

−1 = bhh−1c

which means that HH−1 is a principal ideal of ES. This is 7.2.13(i).
For the converse let S = P(G,X, Y ) be a P-semigroup and let H be a σ-class.
Suppose that condition 7.2.13(i) is satisfied, i.e. HH−1 = bec for some e ∈ ES.
We have H−1H ⊆ ES as can be shown analogously to 7.2.1(ii) and so for every
a ∈ H : h−1a ∈ H−1H ⊆ ES. Also by 7.2.1(ii) we can find an element h ∈ H
such that e = hh−1. Thus, by assumption, aa−1 ≤ e = hh−1. It follows

a =
(
aa−1

)
a ≤

(
hh−1

)
a = hh−1a︸︷︷︸

∈ES

≤ h.

Hence h is the greatest element of H and S is F-inverse.

2

Remark 7.2.15 By virtue of 7.2.13(i) and 7.2.1(ii) the set {tt−1 : t ∈ σ(s)}
contains a maximum element for every s in an F-inverse semigroup S. We have
here a special case of a so-called Billhardt congruence, that is a congruence ρ on
an inverse semigroup S such that for each s ∈ S the set {tt−1 : t ∈ ρ(s)} contains
a maximum element. Billhardt congruences can be used to build a more general
theory of ω-inverse semigroups than we have done in chapter 5. The key idea is
the bicyclic semigroup.

After we have established several equivalent characterisations of F-inverse semi-
groups we give a general construction method for them.

Construction 7.2.16 ([7], Construction VII.5.15) Let Y in 7.2.7 have an iden-
tity element ε. Clearly then bεc = Y and so bgεc = gbεc = gY by (7.2.2). This
yields

∀g, h ∈ G ∀α ∈ Y : bg(hα)c = b(gh)αc ∩ bgεc = b(gh)α ∧ gεc

and we may thus rewrite (R3) as

(F3) g(hα) = (gh)α ∧ gε (g, h ∈ G,α ∈ Y ).

Axioms (R1) and (R2) remain unchanged apart from the new names (F1) and
(F2) we want to give them in this context. We denote the semigroup R(G, Y )
by F (G, Y ) in this case.

Proposition 7.2.17 F (G, Y ) as defined above is an F-inverse semigroup.
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Proof By construction F (G, Y ) is an R-inverse semigroup. From (7.2.5) we
know that there is a one-one correspondence between group elements in G and
σ-classes in F (G, Y ). Let H be the σ-class corresponding to g ∈ G. Using
7.2.1(ii) we get

HH−1 = {(β, g)
(
g−1β, g−1

)
: β ∈ Y ∩ gY } =

(7.2.3)
{(β, 1) : β ∈ Y ∩ gY }.

Now, Y ∩ gY = bεc ∩ gbεc = bεc ∩ bgεc = bε ∧ gεc. Hence HH−1 is a principal
ideal of ES = {(β, 1) : β ∈ Y }. This implies that F (G, Y ) is F-inverse by 7.2.14.

2

At last we have put together everything necessary for a quick proof of

Theorem 7.2.18 ([7], Lemma VII.5.16) Let a group G act on a semilattice Y
obeying the axioms (F1), (F2) and (F3). Then F (G, Y ) is an F-inverse semi-
group. Conversely, every F-inverse semigroup is isomorphic to some F (G, Y ).

Proof We have just shown the direct part. For the converse let S be an F-
inverse semigroup. By 7.2.14, S satisfies the conditions of 7.2.13. In particular
the semilattice Y has an identity element ε. Comparing this with 7.2.4 and using
7.2.3(i) we deduce that S is R-inverse. Hence S is isomorphic to some R(G, Y ).
The observations in 7.2.16 complete the proof.

2
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