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1. Introduction 

 

“German business confidence rises to three-year high in September: 

German business confidence rose unexpectedly to a three-year high in September, 

strengthening hopes that Europe's largest economy will not suffer a double-dip recession.” 

Telegraph (25
th
 Sept. 2010) 

 

 

Headlines like this can be found in press articles all over the world, whenever new values of 

leading economic indicators are released. In general, these leading indicators are measures 

which change before the economy is altered as a whole. Since Burns and Mitchell (1946) 

brought up the idea of economic indicator analysis in their paper “Measuring Business 

Cycles“, the importance of leading indicators has grown rapidly throughout the past century. 

Nowadays the additional value of these measures is mostly accepted in the academic 

discussion and they are often used in empirical research. The analysis of leading economic 

indicators has become a main feature for identifying business cycles and the prediction of 

turning points within an economy’s cycle. But leading indicators are not only important for 

the discipline of economic research. They are also well-known in public, because of the 

strong coverage in the media. The entire media landscape, from tabloid to scientific journal, is 

publishing the development of leading economic indicators and therefore these indicators play 

an important role for the expectation building process within the economy.   

 

On the fundamentals of Burns and Mitchell (1946), a large number of institutes, organisations 

and universities have constructed different leading indicators, which are used to predict the 

upcoming activity in the economy. Some are designed to reflect the supply side by asking 

thousands of managers about their beliefs. Others try to measure the optimism (or pessimism) 

of a large number of consumers to get an idea of the situation on the demand side. All these 

methods have one thing in common - they are expensive. In order to construct a useful 

leading economic indicator, it is necessary to gather a huge amount of information that can 

only be collected by using surveys. These surveys are extremely costly to conduct because of 

the large sample sizes and the high periodicity, which are required.  
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The question arises whether the benefits from leading economic indicators based on these 

surveys justify their costs? Therefore, one should hope that these additional measures will 

have good predictive power.  

    

The motivation for this diploma thesis is to analyse the performance of leading economic 

indicators in a European context. In order to do so, I will mostly focus on the Ifo Index, which 

seems to be the most noted and important leading indicator in Europe. This indicator is 

published by the well-known German Ifo Institute for Economic Research. The Ifo Index is 

based on approximately 7,000 monthly survey responses of firms in manufacturing, 

construction, wholesaling and retailing. The economists of the Ifo Institute explain the 

calculation of their index in the following way
1
. Using surveys, the firms are asked to give 

their assessments of the current business situation and their expectations for the next six 

months. They can characterise their situation as “good”, “satisfactory” or “poor” and their 

business expectations for the next six months as “more favourable”, “unchanged” or “more 

unfavourable”. The balance value of the current business situation is the difference between 

the percentages of the responses “good” and “poor”; the balance value of the expectations is 

the difference between the percentages of the responses “more favourable” and “more 

unfavourable”. The business climate is a transformed mean of the balances of the business 

situation and the expectations. For calculating the index values, the transformed balances are 

all normalised to the average of the year 2000. The so constructed indicator should give the 

condition and outlook of the supply side in the German economy.  

In order to get a reference value, I will also analyse an indicator that is constructed to reflect 

the demand side. The so called Consumer Confidence is the most well-known leading 

indicator in this category. In Germany the prestigious GfK Group is assigned by the European 

Union to determine Consumer Confidence in monthly intervals
2
. This demand side indicator 

is designed to measure the degree of optimism of the economy that consumers are expressing 

through their activities of savings and spending. The procedure is similar to the Ifo index. By 

using surveys, thousands of households are asked about their attitudes and buying intentions. 

The saldo of positive and negative answers gives the Consumer Confidence. This measure has 

become an important indicator of the consumption component of the gross domestic product 

(GDP). Therefore Consumer Confidence is very useful for National Banks in order to 

determine the need for changes in the level of interest rates.    

                                                 
1
 See http://www.cesifo-group.de/portal/page/portal/ifoHome.  

2
 See http://www.gfk.com/group/index.de.html   
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Figure 1.1. Balance of positive and negative answers of Ifo Business expectations and    

Consumer Confidence for Germany. 
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Beside these indicators, which are specially designed to predict future development in the 

economy, there are also some natural leading economic indicators, which seem to have good 

predictive quality.  Stock market returns are an example of such a natural leading indicator. In 

the past, stock markets usually tended to decline before the entire economy slumped and 

began to improve before the economy recovered from a recession. For this reason stock 

indexes are often used as leading indicators which should reflect expectations for future 

profits. Therefore I will include the German stock index (DAX) in my analysis. The German 

stock index, established in 1987, is a so called blue chip index
3
. It contains thirty major 

German firms
4
, which are part of the Frankfurt Stock exchange. DAX is said to measure the 

performance of these companies in terms of order book volume and market capitalization 

(Deutsche Börse
5
). The inclusion of the DAX in the analysis has a comparative impact. It 

should be interesting to see if there are differences in the predictive power of “natural” and 

specially designed leading indicators like Ifo Index and Consumer Confidence.  

 

                                                 
3
 A blue chip stock is a stock of a well-established company. These companies should have stable earnings and 

no extensive liabilities. Regular dividents are paid, even if the business is worse than usual. 
4
 Such as Adidas, BMW, Lufthansa, SAP, Siemens, Volkswagen etc. 

5
 see http://deutsche-boerse.com/dbag/dispatch/en/kir/gdb_navigation/home  
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Figure 1.2. German stock index (DAX)  
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Another interesting feature is the question whether the Ifo index is also capable of predicting 

Austrian and European development. In the media Ifo Business expectations are often 

regarded as a European leading indicator, because of Germany’s role as European driving 

force. Obviously Germany is by far the largest economy in the European Union and therefore 

it should be possible to extract some information about the future of the European economy 

from looking at the Ifo index. This should also be true for the development of the Austrian 

economy. Furthermore the strong foreign trade relations between Austria and Germany 

indicate a link between Ifo Business expectations and the future economic situation in 

Austria. For these reasons I will also cover the performance of Ifo Business expectations as a 

European and Austrian leading indicator in the thesis.   

  

By using different testing procedures I will perform an analysis of the predictive power of 

different leading economic indicators. The diploma thesis is divided into two main parts. In 

the first one I will use time series models to investigate the causal relation of leading 

indicators and production. In order to do so, I will adopt the concept of Granger Causality and 

how this kind of causality can be tested within time series models.  
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After the time domain analysis I will bring in a completely different way of analysing the 

relation between the two processes. I will use Fourier analysis in order to decompose the data 

series in their basic frequency components, which allows a more sophisticated view on the 

performance of leading indicators. But before all this can be done the data that is used for the 

analysis has to be considered.  

 

 

 

2. Data 

2.1. Description 

As already mentioned, the focus of this empirical work is on the potential predictive value of 

different leading indicators (Ifo index, Consumer Confidence Index, DAX) for German 

industrial production and the performance of the Ifo index as a European leading indicator. In 

order to accomplish this analysis, I will use time series models and spectral decomposition of 

economic variables. The used data series are publicly available and are provided by the 

European Federal Statistical Office (Eurostat)
6
 and the Ifo Institute of Economic Research

7
.   

 

The Ifo Business expectation index and Consumer Confidence index are given by the balance 

between positive and negative answers, which should reflect the respondents’ optimism or 

pessimism for the development of the German economy for the next six months
8
. The value 

for the German stock index is daily available and therefore had to be transformed to monthly 

data by simply using the value at the end of the month. Production account data are expressed 

as an index, with 2005 set as base index 1. I will use monthly data in the time span from 1991 

to 2010, which leads to a sample size of 230 observations
9
. All time series

10
 are already 

seasonally adjusted by the data providers.  

 

                                                 
6
 See http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database  

7
 See http://www.cesifo-group.de/portal/page/portal/ifoHome  

8
 See Chapter 1 for more information 

9
 Austrian production index is only available from 1996 to 2010 due the new accounting rules by the European 

commission. Therefore the sample size reduces to 170 observations in the Austrian case. 
10
 except the data for the German stock index (DAX), because there seems to be no seasonal pattern within the 

data. 



 8

2.2. Stationarity 

 

Before starting with the empirical work, all time series have to be tested for stationarity. 

Stationarity is an important prerequisite for using time series models and spectral analysis. A 

series is stationary if the underlying stochastic process that generated the time series can be 

assumed invariant with respect to time. Therefore the time series must fulfil the following 

properties: 

- constant mean 

- constant variance and covariance 

- short memory (i.e. rapidly declining ACF) 

 

2.3. Testing for stationarity 

 

It is always useful to look at the plot of the series. The visual observation can be seen as the 

first indicator to determine whether a series is stationary or not. In some cases it can be 

observed if the series shows signs of mean reverting behavior and constant variance. 

Furthermore a look at the Autocorrelation function (ACF) of the series will show if the 

prerequisite of short memory is fulfilled.  The ACF of a stationary series is expected to die out 

rapidly. 

After applying these methods to our data, it seems to be clear that the Ifo Business 

expectations are stationary. On the other hand the industrial production account data seems to 

be non-stationary. There is some evidence for a time trend and non-constant mean over the 

observed period of time. 

For further review, I will use Dickey Fuller test procedure to determine in a more formal way, 

if the series are stationary. This test, introduced by Dickey and Fuller in 1979, is a so called 

unit root
11

 test.  

 

. 

. 

 

                                                 
11
 A stochastic process has a unit root if 1 is a root of it’s characteristic equation. If this is the case, the process 

will be non-stationary.  
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2.3.1. Dickey Fuller test (DF) 

 

In order to run a DF test, we have to derive the following AR(1) model: 

 

ttt yy ερ += −1          (2.1) 

 

by subtracting 
1−ty  from both sides of the model, we obtain: 

 

tttt yyy ερ +−=− −− 11 )1(         (2.2) 

 

or equivalently: 

 

 ttt yy εβ +=∆ −12           (2.3) 

 

To test for the existence of  a unit root, we have the following hypothesis: 

 

 0: 20 =βH  ⇒ 1=ρ         (2.4) 

 0: 21 <βH  ⇒ 1<ρ         (2.5) 

 

where the null hypothesis is thus of a random walk (i.e. the series is integrated of order 1). 

 

Under the null hypothesis 
t

y  has a stochastic trend, but the non-stationarity condition of 
t

y  

implies that the OLS estimates of parameter ρ  is biased and the t-test for 
2

β  is not standard 

t-distributed. In order to deal with the problem, Dickey/Fuller (1979) derived critical values 

for their test using Monte Carlo simulations
12

. This procedure has some critical influences on 

the test results. 

 

 

 

 

 

                                                 
12
 Monte Carlo simulations are a stochastic way to compute solutions for complex systems by using repeated 

random sampling. This method strongly relies on the law of large numbers. 
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These critical influences are the following: 

- The computed critical values for the test are larger in their absolute value than those 

for the t-distribution. Therefore more evidence is needed to reject the unit root-

hypothesis (null hypothesis). 

- The critical values also highly depend on the sample size and also whether an intercept 

or a time trend is included in 
t

y . 

 

 

After estimating  

 

ttt yy εβ +=∆ −12          (2.6) 

 

we compare the t-statistic on 
2

β  with the critical values derived by the Dickey Fuller method. 

If the test statistic is less than the critical value, then the null hypothesis of a random walk can 

be rejected
13

. 

 

As mentioned before the estimation of the critical values are influenced by the existence of a 

time trend. Therefore alternative regressions should be taken into account:  

 

ttt yy εββ ++=∆ −121         (2.7) 

ttt tyy εβββ +++=∆ − 3121         (2.8) 

 

Note that the distribution is effected by using equations with constants or/and trend 

components as regressors in the test construction
14

.  

 

Under the corresponding alternatives, these three equations
15

 allow to test if 
t

y  is  

- A pure stationary process → (2.6) 

- A stationary process with a constant → (2.7) 

- A stationary process with a constant and a deterministic trend
16

 → (2.8) 

                                                 
13
 This is usually a test on left tails, therefore it is non-symmetrical. 

14
 This is the case in (2.7) and (2.8). 

15
 i.e. equations (2.6), (2.7) and (2.8). 

16
 such an equation can be used to test for trend stationarity, which is a weaker form of the concept of 

stationarity. 
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2.2.2. Augmented Dickey Fuller test (ADF) 

 

So far we have only considered the case of an AR(1) process. Now we want to apply the 

Dickey Fuller framework to higher order autoregressive models. If we do so, DF testing 

procedure will lead to serial correlation in the residuals. Therefore DF test would not be valid. 

To overcome this problem, the Dickey Fuller regression should be extended by adding lags of 

the difference of 
t

y . The new equation has the form: 

 

 tntnttt yyyy εααββ +∆++∆++=∆ −−− ...11121      (2.9) 

 

 

Once again it should be mentioned that the equation can be extended by adding constant or a 

time trend depending on the problem. 

 

The procedure to decide whether the null hypothesis can be rejected is the same as before. 

Again the coefficient on 
2

β  has to be compared to the critical values of the Dickey Fuller 

estimation. If the t-statistic on 
2

β  is smaller than the critical values, then the null hypothesis 

can be rejected. 

 

 

2.2.3. ADF-test results 

 

Table 2.1. shows the results of the Augmented Dickey Fuller tests (ADF) for the data in this 

empirical study. The appropriate number of lags used in the tests was determined by the 

Schwarz-Bayesian Information Criteria (SIC), such that the general models
17

 were fitted and 

the SIC was minimized. The appropriate test equations were determined by looking at the 

plotted series. 

 

 

 

 

                                                 
17
 i.e. the model under the null hypothesis. 
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Table 2.1. ADF – test results 

data series test statistic critical value at 5% level prob. stationary 

German production          

ADF - test with trend and intercept -2.892 -3.430 0.167 No 

German production (log. diff.)          

ADF - test -6.213 -1.942 0.000 Yes 

Austrian production          

ADF - test with trend and intercept -0.558 -3.437 0.980 No 

Austrian production (log. diff.)         

ADF - test -15.866 -1.943 0.000 Yes 

Production in the euro area         

ADF - test with trend and intercept -3.233 -3.430 0.081 No 

Production in the euroarea (log. diff.)         

ADF - test -4.171 -1.942 0.000 Yes 

Ifo Business expectations         

ADF - test -4.148 -1.942 0.000 Yes 

Ifo Business expectations (first diff.)         

ADF - test -7.038 -1.942 0.000 Yes 

Consumer Confidence          

ADF - test with intercept -2.127 -2.874 0.234 No 

Consumer Confidence (first diff.)         

ADF - test -13.821 -1.942 0.000 Yes 

DAX         

ADF - test with intercept -1.531 -2.874 0.516 No 

DAX (first diff.)         

ADF - test -13.917 -1.942 0.000 Yes 

 

 

As already expected, the ADF-tests for the industrial production series strongly suggest non-

stationarity. Because of this result I transformed the series by calculating the logarithmic first 

differences
18

, which lead to monthly growth rates. The ADF-tests for the transformed series 

show that the null hypothesis of a random walk can be rejected at the 1% level, i.e. the series 

                                                 
18
 Logarithm of the first differences have been taken, because this is resulting to monthly growth rates, which is 

more common when using Production data. Therefore taking the logarithm should only simplify the 

interpretation of the tranformed series and will not affect the causality analysis.   



 13

are stationary. Therefore I will use the logarithmic differences of the production series for 

further analysis.  

The ADF-tests for the leading indicators have different results. There is no transformation 

needed for Ifo business expectations index, because the time series is already stationary at the 

1% level. On the other hand, the null hypothesis of a random walk cannot be rejected for 

Consumer Confidence and the German stock index (DAX). Both series seem to be non-

stationary. This problem can be overcome by taking simple first differences. By doing so all 

series become stationary at the 1% level. In order to ensure homogeneity
19

, I will also use first 

differences for Ifo Business expectations, although this series is already stationary in the raw 

case. The fact that all time series are equally transformed will simplify the interpretation of 

the upcoming results. After the transformations, all data sets are stationary with zero mean. 

Note that there should not be any difficulties with seasonality after deriving first differences 

and logarithmic differences, because all series are already seasonally adjusted by data 

providers. From now on I will refer to these transformed data series for further analysis. 

 

2.3. Conclusions for chapter 2 

 

I have just discussed the concept of stationarity which is an important prerequisite for using 

time series models and spectral decomposition in our framework. In order to get stationary 

series, the different time series were transformed in the following way: 

 

Table 2.2. Data transformation  

data series transformation variable name 

      

German production logarithmic first differences dlprod_ger 

Austrian production logarithmic first differences dlprod_aut 

Production in the euroarea logarithmic first differences dlprod_eu 

      

Ifo Business expectations first differences difo 

Consumer Confidence first differences dcons 

DAX first differences ddax 

 

                                                 
19
 i.e. all variables are transformed the same way. 
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3. Causality 

3.1. Granger Causality 

 

In my thesis I refer to the concept of Granger Causality (GC) introduced by Clive W. J. 

Granger (1969). His 1969 paper “Investigating Causal Relations by Econometric Models and 

Cross-Spectral Methods” became a milestone for the study of causal relationship within the 

discipline of economic research. Although there have been a number of econometricians 

working on the topic of causality before (like Orcutt, Simon or Wiener), the concept 

developed by Granger is by far the most popular.  

In 2003 Clive W.J. Granger was awarded with the Nobel Prize for Economic Science. The 

Royal Swedish Academy honoured him because of his fundamental discoveries in the 

analysis of time series. Granger’s research had a huge impact on modern economics by 

changing the way economists analyse financial and macroeconomic data. His essays on the 

topic of causality are among his most important studies. Granger formulated his concept in a 

time when there was no causal measure, which was universally liked. His definition was 

elegant mathematically and also easy to implement for empirical research. Although there is 

still no complete consensus, Granger’s contributions on causality and causality testing are at 

least the most accepted ones. 

 

3.2. A Definition of Causality 

 

For Granger the phrase “ X  causes Y ” has to be handled with care, because the concept of 

causality is a subtle and difficult one. As mentioned before there was no universally accepted 

definition of causality. For this reason Granger tried to find a definition that would be 

reasonable for almost everyone. In his famous paper “Investigating Causal Relations by 

Econometric Models and Cross-Spectral Methods (1969)” he suggested the following: 

 

Let nΩ  represent all the information available in the universe at time n. Suppose that at time 

n optimum forecasts are made of 1+nY  using all the information in nΩ  and also using all of 

this information apart from the past and present values 0, ≥− pX pn  of the series tX . If the 

first forecast, using all the information, is superior to the second, than the series tX  has some 
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special information about series tY , not available elsewhere, and tX  is said to cause tY  

(Ashley/Granger/Schmalensee 1980). 

 

Of course there has to be an assumption to determine which forecast is better than the other. 

Normally the criterion for a superior forecast is given by the comparison of the relative sizes 

of the forecast error variance. Therefore I will use the mean-square errors of the in-sample 

forecasts for this comparison.  

It is also necessary to make some simplifications on the suggested definition of causation in 

order to apply it for empirical use. First the forecast-method will be restricted to only linear 

forecasts. I also have to replace the theoretical information set nΩ  by the past and present 

values of some set of time series, such that the information set is reduced to 

{ }0,...,,,: ≥Ω −−− pZYX pnpnpnn . It is clear that any causation will be relative to the set nΩ , 

but it also important to mention that spurious results can occur if some relevant series is not in 

this set. For instance, if the information set nΩ  consists only of two different series tX  and 

tY , but there exists a third process tZ , which is causing both tX  and tY  within an enlarged 

information set 'nΩ  , then for the original set nΩ , there may occur spurious causality 

between processes tX  and tY . This case is similar to the problem of spurious regressions 

arising from excluding a well needed explanatory variable in a statistical model. 

In the context of this empirical work I can assume the simplest case of nΩ  consisting of just 

the values from series tX  and tY , because I will only test for causality in a bivariate 

framework. 

 

With these simplifications the definition given above can be reduced to the following: 

 

Definition 3.1.: Granger Causality 

Let )(YMSE  be the population mean-square of the one-step ahead forecast error of 1+nY  using 

the optimum linear forecast based on 0, ≥− pY pn  and let ),( YXMSE  be the population mean-

square of the one-step ahead forecast error of 1+nY  using the optimum linear forecast based on 

0,, ≥−− pYX pnpn . Then the process X  causes process Y  if )(),( YMSEYXMSE <  

(Ashley/Granger/Schmalensee 1980).       
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Granger Causality describes the extent to which a process Y  is leading another process X . 

Therefore GC reflects a restricted sense of causality. If both X  and Y  are driven by a 

common third process with different lags, their measure of Granger causality could still be 

statistically significant. Moreover in our framework the phrase “ X  causes Y ” does not really 

mean that Y  is the result of X . Granger causality in the definition given above is only a 

measure for precendence and information content and therefore does not by itself indicate 

causality in the more common use of the term.  

 

Definition 3.2.: Feedback 

If )(),( YMSEYXMSE < , and )(),( XMSEXYMSE < , we say that feedback is occuring. In 

the case of feedback not only X is causing process Y, but also Y is causing X. In other words 

there exists a causal relation from one process to the other and vice versa. 

 

Definition 3.3.: Instantaneous Causality 

Granger (1969) also introduced the so called Instantaneous Causality. This special case of 

causal relation is occuring if, in period t, adding 1+tx  to the information set helps to improve 

the forecast of 1+ty . The concept of Instantaneous Causality is completely symmetric. That 

means that if there exists the so called Instantaneous Causality from process Y to X, there has 

to be Instantaneous Causality from X to Y.  

 

Definition 3.4.: Causality Lag 

Granger defined (1969) the (integer) causality lag m to be the least value of a given 

subsample, so that knowing the values jnY −  with j = 0,1,…,m-1, will not improve the 

prediction of tY . 

 

The definitions above have assumed that only stationary time series are used, because there 

are some difficulties arising in the non-stationary case. As defined in the foregoing chapter 

stationary processes are invariant over time. Therefore in the case of non-stationary series the 

mean-square errors of the post sample forecasts will depend on time t and therefore the 

existence of Granger causality would alter over time. Of course there could be some 

generalisations in this case (such as defining causality for a specified time t) in order to find 
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an operative solution for non-stationary time series. Granger (1969) mentioned that one could 

probably think of the existence of causality at a certain moment of time, but such a framework 

would be hard or even impossible to test in a statistical way. For this reason all data series 

used in this empirical thesis are transformed to be stationary (see chapter 2). 

It can be argued that the use of the MSE as the criterion to measure the forecast precision is 

not the best one. It is obvious that this choice has a huge impact on the definition of causality. 

Using another measure may lead to different conclusions about the identification of causal 

relations between two series. To answer this criticism it should be mentioned that the concept 

of MSE seems to be the natural measurement in connection with linear forecasts. Moreover 

the MSE is easy to handle and simplifies the interpretation of the results. These advantages 

are good reasons for the use of mean squared forecast errors.         

 

 

3.3. A short Introduction to Vector Autoregressions (VAR) 

 

Before testing for Granger Causality in our data sets, I want to give a short introduction to 

Vector Autoregressions (VAR), because I will use this type of models for further causality 

analysis. 

 

 

3.3.1. Vector Autoregression (VAR) 

 

VAR models are the basic tool to analyse linear multiple time series generalizing the 

univariate AR models (Autoregressive models). 

A multiple time series is nothing else than a vector of time series. 

It consists of observations zkt for variables k = 1,…,K and for time points t = 1,…,T. 

All the variables in a VAR are treated symmetrically by including for each variable an 

equation explaining its evolution based on its own lags and the lags of all the other variables 

in the model, i.e. each variable influences any other variable.  

 

 

 

 



 18

A vector autoregressive process is defined as a special case of a multivariate time-series 

process, such that zt, a K-vector, depends on its past via the formula 

 

tptptt uzAzAz ++++= −− ...11ν        (3.1) 

 

where v is a constant K-vector for the intercept and all jA , j = 1,…,p are K K× -matrices, 

while tu  denotes a multivariate white noise process.  

In this scheme, any of the component variables zkt, k = 1,…,K depends on p lags of itself and 

of the other K-1 component variables. 

The individual equations are straightforward: 

 

mtjtKmK

p

j

jjtm

p

j

jjtm

p

j

jmmt zAzAzAz εν +++++= −
=

−
=

−
=

∑∑∑ ,

1

,22

1

,11

1

)(...)()(    (3.2) 

 

where lmjA )(  indicates the thlm  element of jA . 

 

 

3.3.2. Forecasting with VAR 

 

A basic result in forecasting is that the expected squared error 2)ˆ( htht yyE ++ −  is minimized 

among all predictors hty +ˆ  – given the information set at time point t ( tΩ ) – by using the 

conditional expectation 

 

)(ˆ
ththt zEz Ω= ++          (3.3) 

 

In a VAR model the conditional expectation looks as follows 

 

111 ...)( +−+ +++=Ω ptptht zAzAzE ν        (3.4) 

 

with tu  assumed to be independent and therefore 1( ) 0t tE u + Ω = . 
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And similarly 

 

22112 ...)()( +−++ +++Ω+=Ω ptpttttt zAzAzEAzE ν     (3.5) 

 

The prediction error can be represented as a moving average 
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where jΦ  denotes the moving average matrices with the following form A 'j

j J JΦ = . 

The evaluation of the variance of the error can be done in this form 
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Σ = Φ Σ Φ∑          (3.7) 

 

Of course this is only a brief introduction to the method of Vector Autoregression. It should 

only give a short overview. For further information on VAR models, see Lütkepohl (New 

Introduction to Multiple Time Series Analysis, 2006) or Brockwell/Davis (Introduction to 

Time Series and Forecasting, 1996). 

 

 

3.3.3. Model Specification  

 

To find the right lag length j , it is mostly better to use more rather than fewer lags. The 

simple reason for this rule of thumb is that the theory of Granger Causality relies on the 

relevance of all past information. So one should think about the lag length j  that corresponds 

to reasonable beliefs about the longest time over which process X could help to predict 

process Y. For instance, in the case of Ifo business expectations it is reasonable to use a lag 

length of six months ( 6=j ), because the Ifo Business Climate data reflect six months 

business expectations. 
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It also might be useful to look at the cross correlograms between dependant and explanatory 

variables. These show the cross correlation functions
20

 and should give a first impression for 

choosing the lag order in our framework, as well as the visual inspection can give some 

indication of possibly existing relation.  

As an example, Figure 3.1. shows the bivariate cross correlogram for German Industrial 

Production (logarithmic differences → dlprod_ger) and Ifo Business expectations (first 

differences → difo)
21

.  

 

Figure 3.1. Cross correlogram for German Production and Ifo Business expectations. 
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The cross correlogram indicates that the Ifo Business expectations are more of a short term 

indicator for German production. The correlation declines rapidly after the fourth lag. Note 

that the Ifo Index should reflect the management expectations for six months ahead. At lag six 

the correlation is already down at 0.18 (the highest value is at lag three). Therefore it can be 

                                                 
20
 The Cross correlation (function) is measures the linear dynamic interaction between two series. Consider two 

series ix  and iy  (with i = 0,1,2...N-1). The cross correlation r at delay d is defined as 
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 The plots for the other variables are available upon request. 
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said that the leading causal relation of the Ifo Business expectations might be shorter than 

expected. The result of rapidly declining cross correlations also holds for the other indicators 

(Consumer Confidence Index and DAX). The consumer confidence index seems to be equally 

linked to German production, although there is high correlation at 1+t . This could imply that 

Consumer Confidence is probably also caused by changes of the production level. If this is 

true, there should be feedback between the two series. This can be determined by causality 

tests and will be done later in this chapter.  

In the second part of my thesis I want to discuss the relevance of the Ifo Index for other 

European economies. To do so I estimated the cross correlation functions for Ifo Business 

expectations and the Austrian production, as well as for the Ifo Business expectations and the 

production within the Euro zone.  

 

Figure 3.2. Cross correlogram for Production in the Euro zone and Ifo Business 

expectations. 
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As observable in Figure 3.2., the cross correlogram of Production in the Euro area 

(logarithmic differences → dlprod_eu) and the Ifo Business expectations seems to be similar 

to cross correlogram in Figure 3.1.. The correlation is declining over time as seen before, but 

the speed of the decline is visibly different. The coefficient at lag six is as high as it is at lag 
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two. This might be interpreted as a longer lasting causal relation between the two series. The 

analysis of the cross correlogram for Ifo index and the Austrian production is also implying a 

longer relation as in the German production case, although the delay is not as long as in the 

case for the production in the euro zone.  

 

It is also notable that uncontrolled correlation exists in some of the cross correlograms at 

certain higher lags/leads. These results are hard to interpret. Probably they are due the 

seasonal adjustment of the data or simple coincidental. Therefore I will not analyse these 

results any further.  

 

In order to avoid overfitting the VAR model
22

, it is also useful to take a look at certain 

information criteria like AIC (Akaike information), BIC (Schwarz information criterion) or 

HQ (Hannan-Quinn information criterion) for lag-selection. These criteria are statistics that 

measure the goodness of fit of an estimated statistical model. Given the data set, the model 

with the lowest information criteria value should be chosen. AIC, BIC and HQ have a similar 

form. They consist of two parts. The first is a standard goodness of fit value
23

, which becomes 

smaller as the model becomes larger. Therefore there has to be a second part which penalizes 

the inclusion of additional lags. AIC, BIC and HQ differ in this penalty term. In general the 

AIC does not penalize larger models as strictly as the other two criteria. The milder penalty 

term results in a positive probability that the AIC asymptotically overestimates the VAR 

order, whereas the BIC and HQ criteria estimate the order consistently under quite general 

conditions if the actual data generation process (DGP) has a finite VAR order and the 

maximum tested order maxp  is larger than the true order p (Lütkepohl 2004). On the other side 

the AIC tends to imply better model choice in smaller samples, so that the final selection of 

the information criteria depends on the specific circumstances.     

 

In this thesis I refer to the concept of Granger causality and therefore I am more interested in 

the forecasting properties of the selected model. The final prediction error (FPE), introduced 

by Akaike (1969), is paying attention to this preference. The FPE is a calculation of the one 

step prediction mean squared error for a realisation of the process independent of the one 

observed (Lütkepohl 2004). When fitting different VAR models to the data, the maximum 

                                                 
22
 A VAR model is called to be overfitted, if there are too many lags included → i.e. an order higher than the 

optimal lag length is chosen. 
23
 AIC, BIC and HQ use the maximum likelihood estimate of the error variance . 
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likelihood estimate of the error variance will decrease with increasing lag order p, while the 

estimation errors in the expanded set of fitted parameters will increase the final prediction 

error. Following this procedure, the lag order p with the lowest FPE value has to be chosen. 

Note that FPE and AIC have the same large-sample and similar small-sample properties. As 

already mentioned, HQ and BIC have stronger penalty terms
24

. Thus, the decision for the FPE 

essentially is an AIC decision.     

Because of the proximity to the method in this thesis, I will refer to the FPE criterion, if the 

different information criteria do not provide a clear solution for finding the order of the 

respective models.   

 

Table 3.1. Lag Length criteria  

VAR model AIC BIC HQ FPE 

          

model 1: German Production, Ifo Index 3 lags 3 lags 3 lags 3 lags 

model 2: German Production, Consumer Confidence 3 lags 1 lag 3 lags 3 lags 

model 3: German Production, DAX 3 lags 1 lag 1 lag 3 lags 

model 4: Austrian Production, Ifo Index 4 lags 1 lag 2 lags 4 lags 

model 5: Production in the euro area, Ifo Index 9 lags 3 lags 3 lags 9 lags 

 

 

The results of the lag selection criteria are shown in the table above. Note, that all series are 

transformed as described in chapter 2. The maximum lag order maxp  was set to 8 lags for the 

first three models and 12 lags for model five, because of the longer lasting correlation 

observed in the cross correlogram. Most of the results are straightforward – for model one and 

model two there is strong evidence for a VAR(3) process. The suggestions for the other three 

models are not so obvious. The information criteria differ for model three, four and five. As 

mentioned before, I use the final prediction error (FPE) in such a situation. Therefore I will 

take a VAR(3) for model three, a VAR(4) for model four and a VAR(9) for model five. 

After determining the lag order p, I estimated the respective (unrestricted) VAR models
25

, 

which will be used for the causality analysis in the time domain. The coefficient structure for 

all models has been checked for their standard properties. It could be determined that all 

defined VAR processes are stable.  

 

                                                 
24
 BIC has the strongest penalty term. 

25
 The complete estimation results (such as coefficients etc.) are available upon request.  
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3.4. Testing for Granger Causality in the time domain 

 

There are different ways of testing for causal relations mostly depending on the exact 

definition of causality. A very common and simple test procedure for Granger Causality in the 

time domain is the so called Granger-Wald test. As already mentioned, Granger (1969) 

argued in his definition that it has to be determined how much of the current process Y is 

explained by its own past values and then whether adding another lagged value of X can 

improve the explanation. Process Y is Granger caused by process X if the addition of X 

improves the prediction of Y, or equivalently if the coefficients on the lagged X’s are zero or 

not.  

 

 

3.4.1. The Granger-Wald test 

 

One advantage of the concept of Granger Causality is the easy implementation within a VAR 

model. To show that, suppose that the K-variate process tz  (see 3.3.1.) consists of only two 

components ty  and tx  , with ( )ttt xyz ′′=′ , . Obviously we are now looking at a bivariate 

process. Further, suppose that this process has a moving average representation
26

 of the 

following form: 
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Then, the infinite MA model can be written in its partitioned form: 
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Now that we have defined Granger Causality and the partitioned form in an estimated VAR 

system (with MA representation), we can test for zero constraints of the estimated 

coefficients. It can easily be shown that X does not Granger Cause Y if and only if 012 ≡Φ ,  

i.e. if 0,12 =Φ j  ∀ ∞= ,...,1j . 

                                                 
26
 In the moving average (MA) representation of the process, tz  is expressed in terms of past and present error 

or innovation vectors tU  and the mean term µ . For more details see Lütkepohl (2006). 
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This result is more important for theoretical reasons and the implementation of other VAR 

methods (like Impulse Response Analysis), nevertheless it should be mentioned, because, 

based on this result, more common versions in the VAR context have been constructed. 

For applied purposes it is more important to know how a Granger-causal relation can be 

expressed in VAR models. Luckily, there exists a completely identical property for all finite 

order VAR systems, such as in the partitioned VAR representation: 
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⇒ x does not Granger cause y if and only if the operator 012 ≡A . Vice versa, Y does not 

Granger cause X (Feedback) if and only if  021 ≡A
27

.  

 

Therefore we have to test the null hypothesis  

0: 120 =AH                     (3.11) 

 

against the alternate hypothesis  

0: 121 ≠AH                     (3.12) 

 

Under the null-hypothesis x does not Granger cause y. Clearly under the alternate-hypothesis, 

there is evidence for Granger Causality. 

Note that (if feedback is not of interest) the second set of equations is completely irrelevant. 

For the Granger-Wald Causality test only the restricted equations are used.  

The hypothesis given above can be tested using different testing procedures. The most 

common are 2χ - and F-tests based on the Wald principle.  

Unfortunately, there are some problems arising from using these standard tests in our 

framework. Lütkepohl (2004) mentioned that 2χ - and F-tests may have non-standard 

asymptotic properties if the estimated VAR model consists of I(1) processes. As described in 

the previous chapter, I transformed the data to first and logarithmic first differences in order 

to get stationary time series. These transformations may influence the testing results. 

                                                 
27
 The proof of equivalence uses the facts that the inverse of a block triangular matrix is again block triangular 

and that the leading matrix KIA =0 .  
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Toda/Phillips (1993) showed that Wald tests for Granger causality can result in non-standard 

limiting distributions depending on the cointegration properties
28

 of the variables.  

Therefore Toda/Yamamoto (1995) suggest a more specific way to test for Granger causality. 

The issue is that there exists a singularity of the asymptotic distribution of the estimators, 

which lead to the non-standard asymptotic properties of the standard tests on the coefficients 

of cointegrated VAR processes (Lütkepohl 2004). Fortunately, this problem can be solved 

without much of an effort. The singularity can be removed by simple overfitting the VAR 

model. In other words, we estimate the VAR model of the order p+1 instead of the real order 

p. In doing so we ensure that the relevant parameters have a non-singular asymptotic 

distribution. As a consequence, the shortcomings of the standard tests are not a problem if the 

tests are based on the estimated parameters of an overfitted model, where the zero restrictions 

are only performed on the relevant parameters and the extra parameters are ignored. This 

procedure is universally applicable. It is not necessary to know the cointegration properties of 

the system in a great detail.  

After estimating the overfitted VAR(p+1) model, I will only use the first p coefficient 

matrices for testing the zero restrictions, which lead to the following null hypothesis: 

 

0:0 =iAH  with pi ,...,1=                   (3.13) 

 

Note, that although the test is based on a VAR(p+1) model, the augmented lags (p+1) are not 

relevant. The only reason for overfitting the model is to ensure the standard asymptotic 

properties.  

The Wald statistic has the usual 2χ (p) – distribution and can be used for the Granger 

causality test. Lütkepohl (2004) mentioned that it is advisable to use an F-version of the test, 

because of its better approximation of the desired size of the test. The denominator degrees of 

freedom are obtained as the total number of observations used for the estimation of the model 

(2T) minus the total number of estimated parameters.  

 

 

 

 

                                                 
28
 Two time series are said to be cointegrated if they have a common stochastic trend. If there is cointegration in 

the data sets, the VAR method may not be the proper technique for analysis. In such a case it might be better to 

use other types of models, which support the analysis of the cointegration structure.  
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3.4.2. Testing for instantaneous causality 

 

So far we have only talked about testing for Granger causality and did not discuss possible 

testing procedures for instantaneous causality. Tests for this kind of causal relation can be 

done similarly to the testing procedure already explained, because instantaneous causality can 

be expressed in terms of zero restrictions for the error terms. More precisely one has to   

determine if instantaneous residual correlation exists. This procedure does not lead to 

problems of non-standard properties like in the Granger Causality framework, because the 

asymptotic properties of the estimator of the residual covariance matrix of a VAR process are 

unaffected by the degree of integration and cointegration in the variables (Lütkepohl 2004). 

Therefore, under the standard assumptions, the estimated test statistic based on the already 

discussed Wald principle has an asymptotic 2χ - distribution.  

 

Hence, it is not necessary to estimate an overfitted model. The test for instantaneous causality 

is only based on the residuals of an VAR(p) model, where p is the optimal lag length. Unlike 

the Granger-Wald test, I will use the 2χ - approximation for the instantaneous causality test, 

instead of the F-version. The number of degrees of freedom of the approximating 2χ - 

distribution is equal to one, because only one correlation coefficient has to be tested to be 

equal to zero. As already mentioned earlier, the concept of instantaneous causality is 

completely symmetric. Therefore the direction of the instantaneous causal relation does not 

matter for the test result. Both directions are identical. If there is evidence for instantaneous 

causality from X to Y, then there exists the same relation from Y to X. 

 

 

 

: 
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3.5. Test results in the time domain 

 

The results of the previously explained causality tests are given in tables below.  

The first one provides the results for German leading indicators and German production. My 

analysis includes the Granger-Wald test for Granger Causality (GC), as well as testing for 

feedback and instantaneous causality. The estimated test statistics and p-values can be used to 

compare the performance of the different indicators in the time domain. I suggest that higher 

test statistics and the resulting lower p-values give more evidence for rejecting the null 

hypothesis of no existing Granger causality. Therefore I can compare the performance of the 

leading indicators by comparing their p-values. Note that the data is transformed as explained 

in part 2 – for instance the null hypothesis “Ifo Index does not cause German production” 

actually means that a change in Ifo business expectations does not cause a change in German 

production. 

 

Table 3.2. test results for German leading indicators. 

Null hypothesis Granger-Wald  p-value GC Feedback instant. 

  test statistic       causality 

            

Ifo Index does not cause German Production 8.312 0.000 Yes*** No No 

            

Consumer Confidence does not cause German Production 2.876 0.036 Yes** Yes*** Yes*** 

            

DAX does not cause German Production  4.728 0.003 Yes*** No Yes** 

 *,**,*** imply significance at the 10-, 5- and 1 % level  

 

A look at the results shows that there is evidence for Granger causality for each leading 

indicator and German production. The causal impact of the Ifo Index and the DAX for 

German production is significant at the 1% level, with Ifo Index having the highest test 

statistic at 8.3. These two indicators seem to have good statistical properties to predict the 

upcoming German production.  

The Consumer Confidence does not have the same properties in terms of statistical 

significance. Unlike the Ifo Business expectations and the DAX there is evidence for Granger 

causality only on the 5% level. Of course this result also implies good prediction properties 

for German production, but compared with the other two indicators, the Consumer 

Confidence Index has to be ranked last. Furthermore it is problematic that there is feedback 
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occurring between consumer confidence and German production. This result is in line with 

the findings in part 3.3.3., where the cross correlogram implied high correlation at 1+t . With 

existing feedback, it is not possible to distinguish between effect and cause variable. This is 

hard to take in our framework, because the causal direction for an appropriate leading 

indicator should be clear. The test result implicates that Consumer Confidence is also affected 

by changing production levels. Note that the feedback effect is highly significant at the 1% 

level, while the causal link from Consumer Confidence to German Production is only 

statistically significant at the 5% level. Therefore German production might be a better 

leading indicator for Consumer Confidence, not vice versa. It is also notable that there is 

instantaneous residual correlation between consumer confidence and German production, as 

well as for the German stock index and German production. The resulting instantaneous 

causality in these cases implies that there is an immediate impact from one series to the other.   

 

Table 3.3. The Ifo Index as an European indicator. 

Null hypothesis Granger-Wald  p-value GC Feedback instant. 

  test statistic       causality 

            

Ifo Index does not cause German Production 8.312 0.000 Yes*** No No 

            

Ifo Index does not cause Austrian Production 2.687 0.032 Yes** Yes** No 

            

Ifo Index does not cause Production in the euro area  3.592 0.000 Yes*** Yes*** No 

 *,**,*** imply significance at the 10-, 5- and 1 % level  

 

The table above provides the test results for the analysis of the performance of the Ifo Index 

as a leading indicator for European and Austrian production. We already witnessed a longer 

lasting causal link in this context. Remember that the correlograms showed prolonged 

correlation structure and that the chosen model types have been of a higher order than for the 

analysis for German production.  

 

The Granger-Wald tests give evidence for existing Granger causality. The Ifo Business 

expectations cause the production in the euro area at the 1% level. The significance level in 

the Austrian case is not so high, but there exists evidence for causality at least at the 5% level. 

These results suggest that the Ifo Business expectation Index seems to be an appropriate 

measure for the dynamics of the European production.  
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Beside these positive results, there are also some issues arising when applying the Ifo Index to 

European and Austrian production. In both models there is strong evidence for feedback. As 

discussed before in the case of consumer confidence, occurring feedback make it hard to 

distinguish between effect and cause. This scenario is not very convenient in our framework, 

because an efficient leading indicator is expected to cause the depending variable and not vice 

versa. Obviously the existence of feedback does not have a direct negative impact on the 

predictibility of the leading indicator in Granger’s concept, but in a more common sense of 

causality it is desireable to know the exact causal chain. Therefore these feedback 

mechanisms should be taken into account when using the Ifo business expectations index as 

an indicator for other countries than Germany
29

. 

 

 

3.6. Conclusions for chapter 3 

 

The following conclusions have been drawn in the previous chapter: 

 

- Ifo Business expectations index and DAX seem to be viable leading indicators for 

German production. 

 

- In terms of statistical properties the Ifo business expectation index can be ranked as 

the best leading indicator for German production.  

 

- There is evidence that consumer confidence is affected by German production, and 

therefore consumer confidence might not be a viable leading indicator in a more 

common sense of the term. 

 

- The Ifo business expectations also cause the Austrian production and the production in 

the euro zone, although the existing feedback in these cases should be taken into 

account.  

 

 

 

                                                 
29
 As well as applying Consumer Confidence on German production.  
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4. Spectral Methods 

4.1. Introduction  

 

So far I have used cross correlograms and causality tests in the time domain to analyse the 

performance of leading indicators in predicting the upcoming economic development. In the 

next step I will also use spectral methods to find lead-lag relations among our data sets. The 

origin of these methods is the so called Fourier analysis, which is named after the French 

mathematician Jean Baptiste Joseph Fourier (1768-1830), who tried to find rules when it was 

possible to write general functions by sums of simpler trigonometric functions
30

. In other 

words, Fourier analysis is a method to approximate functions by breaking them into their 

basic components, which should be easier to understand. These components are called Fourier 

series, which consist of sines and cosines (or complex exponentials).  

 

The spectral representation of a stationary time series tX  essentially decomposes tX  into a 

sum of sinusoidal components with uncorrelated random effects (Brockwell/Davis 1991). The 

idea of  decomposing economic time series allows a more detailed analysis of the correlation 

between them. It is possible to find correlations in specific frequency bands, which cannot be 

found in the raw data. The analysis of the spectral representation is also called the frequency 

domain analysis or spectral analysis. It is equivalent to the time domain approach based on the 

covariance function. The difference is that the time domain approach shows how a series 

changes over time, while the frequency domain approach indicates how much of the series 

lies within each given frequency band over a range of frequencies. The advantage of the 

frequency domain is that it gives a completely different way of viewing the process of 

interest. In the following I will discuss the estimation of the spectral representation and how it 

can be used to give a more insightful view on the structure of the underlying process. It is also 

necessary to give a brief introduction to filtering and smoothing techniques. Finally I will 

extend the framework to the bivariate case by using cross spectral methods. These methods 

will be used to analyse the causality (in the frequency domain) between economic leading 

indicators and production like in the previous chapter.         

 

 

                                                 
30
 In mathematics, the trigonometric functions are functions of an angle. Also known as sine, cosine and tangent. 
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4.2. The spectral estimation of an economic time series 

 

Economic theory suggests the possibility to decompose economic time series into three 

different main parts: long, medium and short run behaviour. These three main parts 

correspond to different kinds of movements. Usually in the case of an economic time series 

there exists a slowly evolving, often linear movement, a faster moving part and a rapidly 

varying and temporary component. These parts can be understood as the trend (long run), the 

business cycle (medium run) and the seasonality (short run). Of course this separation of the 

components is a very theoretical one. In reality it is not easy to distinguish between these 

parts, because of the uncertainty about the underlying data generating process.  

 

In modern econometrics there exist various techniques to isolate each of the mentioned 

characteristics within a time series. A number of smoothing methods have been introduced in 

order to extract business cycles. Simple methods like moving averages are often used to 

eliminate the rapid oscillating components, first differences can be taken to exclude the 

slowly evolving, long term components. Although all these techniques are not wrong in 

theory, they cannot be used to formally decompose the data series (Iacubucci 2003). One way 

to overcome these shortcomings is to use Fourier analysis in order to perform the separation 

of a signal
31

 into different periodic parts, which can be expressed as frequencies driven by 

sines and cosines. This might be seen as a system responding to different driving frequencies 

by estimating linear combinations of sine and cosine functions. In such an imagination the 

time domain approach may be thought as a regression of the present on the past, whereas the 

frequency domain approach may be considered as a regression of the data on periodic sines 

and cosines (Shumway/Stoffer 2006).  

 

The following theoretical part is mainly based on Shumway/Stoffer (2006), who provide an 

excellent introduction to the application of spectral methods. 

 

 

 

 

 

 

                                                 
31
 In our case the term signal means the time series, which is used for analysis. 
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4.2.1. Frequency measures 

 

Before we can discuss the process of transforming a time series to the frequency domain
32

 

more precisely, we have to identify the dominant frequencies in our data series. This objective 

is a fundamental task of spectral analysis. In many cases there will be a lot of different 

frequencies, which coexist. In order to keep the framework as simple as possible, I will use 

cycles per data point
33

 as the frequency measure (ω ) and discuss the implication of certain 

frequencies in the context of the different problems. For ω =1 the time series shows a cycle 

per time unit, ω =0.5 features a cycle within two time units, for ω =0.1 there is a cycle every 

tenth time unit, and so on. Obviously there have to be at least two data points to identify a 

circle. For this reason the frequency ω =0.5 is the highest frequency of interest and is called 

the folding frequency. This is the highest frequency, which can be observed in discrete 

sampling. Because of this limitation of the signal
34

, all higher frequencies will appear in lower 

frequencies. This effect is called aliasing.  

As an example for analysing the causal relation of leading economic indicators and 

production, we may assume a predominant frequency of one cycle per year. Because of the 

use of monthly data, this is corresponding to one cycle every twelve months, or 0.083 cycles 

per observation. Another important measure is the period of the time series (T ), which is 

defined as the number of data points in one cycle: 

 

ω
1=T           (4.1) 

 

Therefore the predominant period in our example is twelve months per cycle. This general 

definition of periodicity can be used in order to get a more precise notion by adding some 

terminology. To find the rate at which a time series oscillates, we can first define a cycle as 

one period of a sine or cosine function. This function is defined over the interval of length 

π2 .  

Now that we have introduced frequencies and the period of the time series, we can give a 

more sophisticated view on Fourier analysis and the spectral estimation methods.  

                                                 
32
 i.e. the linear transformations, which matches sines and cosines of different frequencies against the underlying 

data.   
33
 Alternatively it is common to use the frequency measure πωλ 2=  that would give radians per data point. 

This measure is more common in statistics. 
34
 i.e. sampling with some finite time period. 
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4.2.2. The Spectral Density 

 

Before applying spectral methods, we should think about the characteristics of these methods. 

The idea of decomposing a time series into different periodic components is fundamental in 

the spectral representation. Certainly the first problem that has to be covered is the 

applicability of this decomposition. Mathematically it can be proved that any stationary time 

series may be thought of as the random superposition of sines and cosines oscillating at 

various frequencies (Shumway/Stoffer 2006). In other words, spectral methods can be applied 

to every stationary time series. The next question of interest is whether there is any 

meaningful spectral representation for the autocovariance function in the time domain for 

each time series? This question can be answered positively – there exists such a 

representation. It is called the spectral density, which essentially measures the variance in a 

certain kind of periodic oscillation.      

The spectral density is a positive real function of a frequency variable (ω ), which is linked 

with a stationary stochastic process. To help understanding the procedure more intuitively, 

one can see the spectral density as a function that captures the frequency content of a process 

and helps to find underlying periodicities.  

 

First, consider a series tX . This series is a stationary time series with zero mean
35

 and an 

autocovariance function [ ]))(()( µµγ −−= + tht xxEh . Under these assumptions there exists 

the so called spectral distribution function )(ωF , which is unique monotonically increasing, 

such that the autocovariance function can be rewritten as 

  

)()(
5.0

5.0

2 ωγ ωπ dFeh hi∫−=         (4.2) 

 

where )sin()cos( ωωω ⋅+= iei  and 1−=i . Because of the absolute summability of the 

autocovariance function, it can be shown that the spectral distribution function is continuous 

and therefore there is a function )(ωf , such that 

 

ωωω dfdF )()( =          (4.3) 

 

                                                 
35
 This prerequisite is fulfilled for all transformed time series used in this thesis. 
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This leads to the following property. If the autocovariance function )(⋅γ  satisfies the 

condition ∞<∑∞

−∞=h
h)(γ , then it can be written as 

 

ωωγ ωπ dfeh hi )()(
5.0

5.0

2∫−=         (4.4) 

 

Under these assumptions the so called spectral density (or spectrum) of tX  at frequency ω  is 

defined by 

 

 )()( 2 hef hi γω ωπ∑
∞

∞−

−=  with 5.05.0 <<− ω      (4.5) 

 

The interval of interest can be limited to –0.5 and 0.5, which represent the folding frequency 

mentioned in the previous part (4.2.1.). The so defined spectral density is the spectral 

counterpart of the autocovariance function in the time domain. In other words, the 

autocovariance function )(hγ  and the spectral density function )(ωf  present the same 

information content, but expressed in a different manner. While the autocovariance function is 

expressed in terms of time lags, the spectral density shows the same information in terms of 

different cycles.     

 

For the fact that the covariance function )(hγ  is non-negative definite, we get the following 

basic properties of the spectral density )(ωf : 

- 0)( ≥ωf  ω∀  

- )(ωf  is an even function
36

 

- ∫−==
5.0

5.0
)()var()0( ωωγ dfxt , which shows the total variance as the integrated 

spectral density function )(ωf  over all feasible frequencies. 

 

 

                                                 
36
 i.e. )()( ωω −= ff  
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The formulas given for the autocovariance function in (4.4) and for the spectral density 

function in (4.5) are also called Fourier transform pairs. Such pairs are defined in the 

following way: 

Given a sequence of real numbers { },...2,1,0; ±±=tat , which fulfils the absolute summability 

condition, i.e. 

 

 ∞<∑
∞

−∞=t
ta ,          (4.6) 

 

a general Fourier transform pair can be defined as: 

 

 ti

t

teaA ωπω 2)( −
∞

−∞=
∑=         (4.7) 

and 

 

 ωω ωπ deAa ti
t ∫−=

5.0

5.0

2)(         (4.8) 

 

 

The Fourier transform pairs given in (4.4) and (4.5) are major parts in analysing discrete time 

series in the spectral domain. It can be shown that these Fourier transform pairs exist and are 

unique if the summability condition ∞<∑∞

−∞=h
h)(γ  is fulfilled. 
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4.2.3. The Periodogram 

 

The periodogram is the sample-based counterpart to the population based spectral density. 

Before explaining this concept more precisely, we have to define the discrete Fourier 

transform (DFT): 

 

Given a finite time series tX  with nxxx ,...,, 21 , the discrete Fourier transform (DFT) can be 

expressed by 

 

 
ti

n

t

tj
jex

n
d

ωπ
ω

2

1

1
)(

−

=
∑=   with 1,...,1,0 −= nj     (4.9) 

 

The frequencies 
n

j
j =ω  are known as the Fourier frequencies or fundamental frequencies. 

The inverse DFT can be estimated by simple linear transformation such that 

 

 
ti

n

j

jt
jed

n
x

ωπ
ω

2
1

1

)(
1

∑
−

=

=   with nt ,...,2,1=                           (4.10) 

 

The discrete Fourier transform (DFT) decomposes the data series into components of different 

frequencies. For a large enough sample size n, there exists the fast Fourier transform (FFT)
37

, 

which is an efficient algorithm to estimate the discrete Fourier transform (DFT) or its inverse 

and is used in the most statistical software packages, which provide spectral estimation.  

 

With the definitions given above, we can consider the periodogram as the squared modulus of 

the discrete Fourier transform given in (4.9): 

 

 
2

)()( jj dI ωω =    with 1,...,1,0 −= nj                   (4.11)    

 

The periodogram can be seen as some kind of sample density function of process tX .   

 

                                                 
37
 introduced in 1965 by Cooley/Tukey.  
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It is often useful to break down the discrete Fourier transform into real and imaginary parts. 

Therefore the next two transforms are presented: 

 

Like before, a finite time series tX  is given. Then the cosine transform is given by  

 

 ∑
=

=
n

t

jtjc tx
n

d

1

)2cos(
1

)( πωω                  (4.12) 

 

and analogue the sine transform is given by 

 

 )2sin(
1

)(

1

tx
n

d j

n

t

tjs πωω ∑
=

=                  (4.13) 

 

where 
n

j
j =ω   for 1,...,1,0 −= nj  are the Fourier frequencies.  

 

Because the discrete Fourier transform (DFT) can be written in terms of the sine and cosine 

transforms, such that  

 

 

 )()()( jsjcj iddd ωωω −= ,                  (4.14) 

 

 

the periodogram can be expressed as  

 

 

 )()()( 22
jsjcj ddI ωωω += .                  (4.15) 
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4.2.4. The smoothed periodogram 

 

In order to complete the discussion on univariate spectral methods, we have to introduce 

nonparametric spectral estimation for a more applied use, because the periodogram explained 

in the previous chapter is only asymptotically unbiased for the theoretical power spectrum. In 

our case of finite time series, the formula given in (4.11) is problematic since the variance at a 

given frequency does not decrease as the number of observations used in the estimation 

increases. Because of its instability the spectral estimation results are difficult to interpret. 

Fortunately there exists a more stable estimator
38

 without much of an extra effort. With the 

technique of windowing it is possible to smooth all abrupt variations and to minimize 

spurious fluctuations. The result of the windowing is the smoothed spectrum. In order to 

explain this concept we apply the so called frequency band B , which consists of  a number of 

L  fundamental frequencies
39

 situated around the Fourier frequency njj =ω  , that are near 

to the frequency of interest, ω , such that 

   

 }{
n

m
n

mB jj +≤≤−= ωωωω :                  (4.16) 

 

Note that L  has to be an odd number (i.e. 12 += mL ), such that the spectral values
40

 in B  are 

approximately equal to )(ωf . This definition can be approached with relatively large sample 

sizes and has the advantage of relatively constant spectral values.  

 

When using the defined frequency band, we need a new estimator for the periodogram. 

Instead of the concept introduced in the previous chapter, we use the smoothed periodogram 

)(ˆ ωf  as the average of the periodogram values over the frequency band B : 

 

 ∑
−=

− +=
m

mk

j nkILf )()(ˆ 1 ωω                   (4.17) 

 

It can be proved that the smoothed periodogram is equivalent to splitting the time series into 

different sub-series with the same length, estimating their spectra and then taking their mean. 

                                                 
38
 i.e. the estimator has a smaller variance. 

39
 Where L  has to be strictly smaller than n. 

40
 The spectral values in the frequency band are given by )( nkf j +ω , with mmk ,...,0,...,−= . 
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For a more visual interpretation one can think of the smoothed spectrum as the periodogram 

seen through a window opened on an appropriate interval around the Fourier frequency. The 

width of the window can be chosen by simple testing different sizes, i.e. starting at a 

relatively small value of L , and then widening the window until spectral stability is obtained, 

which means that the estimation remains nearly unchanged for higher values. This procedure 

is also known as window-closing. The choice of the frequency band is a rather difficult one, 

because it has to be large enough to let all the fundamental details of the spectrum appear, but 

not too large in order to prevent the generation of spurious peaks (Iacobucci 2003).  Therefore 

it is necessary to find a tradeoff between accuracy and stability of the spectral estimator. 

   

 

4.3. Cross-Spectral methods  

 

So far we only discussed univariate spectral techniques, which allow the identification of 

movements inside each series. The investigation of the relation of two different time series in 

the frequency is obviously linked to these concepts introduced in the previous chapters. For 

the study of causality between production and leading indicators, we refer to the bivariate 

extension of spectral analysis, i.e. cross-spectral analysis, which allows to describe pairs of 

stationary time series ( tt yx , ) in the frequency domain, by decomposing their covariance 

functions into frequency components. Therefore the difference between univariate and 

bivariate methods is simply substituting the covariance function for the autocovariance 

function. The covariance function of tx  and ty  is given by: 

 

 [ ]))(()( yhtxhtxy yxEh µµγ −−= ++                 (4.18) 

 

with xµ  and yµ  being the sample means of series tX  and tY . 
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The covariance function in (4.18) has the representation 

 

 ωωγ ωπ defh hi
xyxy ∫−=

5.0

5.0

2)()(  with ,...,2,1,0 ±±=h                            (4.19) 

 

and the cross-spectrum is given by the Fourier transform: 

 

 ∑
∞

−∞=

−=
h

hi
xyxy ehf ωπγω 2)()(  with 5.05.0 ≤≤− ω                        (4.20) 

 

When assuming that the absolute summability condition for the autocovariance function is 

also applicable for the covariance function, the cross-spectrum is in general a complex 

function
41

 and can be written as: 

 

 )()()( ωωω xyxyxy iqcf −=                   (4.21) 

with    

  ∑
∞

−∞=
=

h
xyxy hhc )2cos()()( πωγω                 (4.22) 

and    

  ∑
∞

−∞=
=

h
xyxy hhq )2sin()()( πωγω                 (4.23) 

 

The real part )(ωxyc  is also called the cospectrum, while the imaginary part )(ωxyq  is also 

known as the quadrature spectrum.  

 

The most important application of the cross-spectrum is the prediction of an output series tY  

from a certain input series tX  in the frequency domain. This is exactly what we are looking 

for in our framework and what we already investigated in the time domain
42

.  

 

 

 

                                                 
41
 i.e. a complex-valued function, since the autocovariance function is not even.  

42
 see chapter 3. 
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The measure for the strength of the relation of two time series in the frequency domain is 

given by the squared coherence function: 

 

 
)()(

)(
)(

2

2

ωω

ω
ωρ

yyxx

xy
xy

ff

f
=                    (4.24) 

 

where )(ωyxf  is the cross spectrum as given in (4.20)
43

, and the expressions )(ωxxf  and 

)(ωyyf  are the individual spectra of time series tX  and tY .   

The squared coherence function can be interpreted as the frequency equivalent to the 

conventional squared correlation or the R-squared measure in the time domain. This 

motivates the interpretation of the coherency as a frequency measure of the degree to which 

series tY  can be represented as a linear function of series tX .  

 

Another important measure in cross-spectral analysis is the phase spectrum, which measures 

the phase difference between the frequency components of processes tX  and tY . It is the 

frequency equivalent to the time lag in the time domain and is defined as:  

 

 













−=

)(

)(
arctan)(

ω

ω
ωφ

xy

xy
xy

c

q
                                         (4.25) 

    

The so defined phase spectrum indicates leading behaviour from process tY  (leading 

indicator) to tX  (production) if 0)( <ωφxy , and respectively there is a lagged relation 

occurring if 0)( >ωφxy . When one variable is leading the other, ωωφ )(xy  measure the 

extent of the time lag (Granger 1969). The plot of the phase spectrum xyφ  over all feasible 

frequencies ω  is called the phase diagram. 

 

 

 

                                                 
43
 Note that )()( ωω xyyx ff =  holds, because of the relation of the covariance functions,  

    i.e. )()( hh xyyx −= γγ . 
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Coherence and phase are the tools, which will be used in the following empirical analysis in 

order to determine the relation of production and leading indicators. Together with the auto-

spectrum of each series these will give an insightful view on the frequency interaction in the  

given framework. 

 

Now that we have finished the short introduction to spectral estimation and cross-spectral 

methods, we can advance to apply the theory to our framework.    

 

 

4.4. Spectral estimation and results 

 

Before starting the analysis in the spectral domain, we have to take a look at the data series, 

which are used, because it has to be determined if they fulfil the required properties, i.e. if the 

series are demeaned and detrended. If not, there are some difficulties in applying spectral 

estimation. The problem of using a series with non-zero sample mean is that there is an abrupt 

offset when the time series is padded with zeros for the fast Fourier transform
44

. On the other 

side any trend component in the series would produce a spectral peak at zero frequency, 

which may dominate the estimation such that other important features are getting lost. In our 

case we already solved these problems in chapter 2 by taking first differences in order to 

ensure stationarity. Because of the transformation all time series have zero mean and possible 

trend components have been removed. Therefore we can start the spectral analysis by 

estimating the Fourier transform (4.9) and the raw periodogram (4.11). As already mentioned 

before, the raw periodogram is only a rough estimate of the spectrum and is not very useful 

for interpretation, because of its high variance of the spectral estimates. Therefore I will use 

the smoothing method introduced in section 4.2.4. in order to get a more stable spectral 

estimate.  

 

 

 

 

 

 

                                                 
44
 The fast Fourier transform (FFT) is the computational algorithm to estimate the discrete Fourier transform 

(DFT), whereby zeros are added before computing the spectral estimators. 
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Bloomfield (2000) recommends the so called Daniell filter to smooth the spectrum, whereby 

the resulting Daniell window of length m , is given by 

 

 
)1(2

1

−
=

m
gi    for 1=i  and mi =  

and 

 
1

1

−
=

m
gi   otherwise. 

 

with m  being the number of weights, while ig  represents the thi  weight of the Daniell filter. 

Note that the first and the last weight are only half as large as the others, which leads to the 

typical trapezoid form of the weights. Using increasing lengths of Daniell filters is a popular 

method to estimate an increasingly smooth periodogram. One advantage of the Daniell filter 

is the relatively low leakage, which occurs because of the influence of the variance at non-

Fourier frequencies on the spectrum at the Fourier frequencies.  
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Figure 4.1. Raw and Smoothed periodogram of Ifo Business expectations  

(first differences → difo). 
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Figure 4.1. shows the raw and the smoothed periodogram for the Ifo Business expectations 

series. The plots should give a visual example for the better understanding of the estimation 

procedure. In the given example it seems that the raw periodogram is a very noisy estimate of 

the theoretical spectrum. Its interpretation is a lot harder because of the high fluctuations. The 

smoothed periodogram seems to be a convenient compromise between stability and accuracy. 

The difficulty of finding the right frequency band is to ensure a stable estimation without 

losing important information. For the example given in Figure 4.1. I used the already 

explained Daniell filter and tried different values of m , starting with a low value and 

increasing the number until the desired stability was obtained. I have finally chosen a value of 

5=m , which seemed to be reasonable, because at this point the spectrum looked quite stable 

without losing too much of the original shape of the raw periodogram and higher values, i.e. 

5>m , did not change the estimation by much.  
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I performed the same procedure for all other series, which are used for our analysis
45

. These 

smoothed versions are taken for the final cross-spectral analysis. The estimation of coherence 

and phase should give a more sophisticated view on the relation of leading economic 

indicators and production.  

 

Figure 4.2. Squared coherency and phase spectrum of German production (logarithmic 

differences → dlprod_ger) and Ifo Business expectations (first differences → difo). 
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In section 4.3. we defined the squared coherency as a measure of the relation between two 

signals at different frequencies, similar to the R-squared measure  in the time domain. Figure 

4.2. shows the squared coherency for German production and Ifo Business expectations, 

whereby high values suggest a strong relation at the given frequency. The baseline in the 

figure represents the critical value of a simple F-test for significance at the 5% level, such that 

the null hypothesis of zero coherence can be rejected at a squared coherence value above the 

critical value.  

                                                 
45
 i.e. production account series, DAX and Consumer Confidence series.  
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The interpretation of the squared coherency plot between German production and Ifo 

Business expectations is quite interesting. There seems to be a strong relation at low 

frequencies (corresponding to long-run components). The highest estimate for the squared 

coherency reaches more than 80% at 037.0=ω , which can be translated to a cycle every 27 

months. After this peak the coherence decreases rapidly and finally becomes insignificant. 

Only a few frequencies around 45.0=ω  are statistically significant. Therefore we can assume 

that (although there is strong long run relation) the predictive value of Ifo business 

expectations for German production is very limited at high frequency components 

(corresponding to the fast moving short run fluctuations). This result is in line with the 

findings of Lemmens/Croux/Dekimpe (2008), who targeted the performance of the European 

production expectation series, which are published by the Directorate General Economy and 

Finance of the European Union. These series are available for all EU member states and are 

constructed in a similar fashion to the German Ifo business expectations series. The authors 

analysed the causal relation of expectations and production in 12 European countries
46

. 

Lemmens/Croux/Dekimpe (2008) discovered that although most countries’ production 

expectations are found to have highly significant (incremental) predictive power with respect 

to the longer-run components in the production account series, they have much more 

difficulty in predicting the fast-moving components of the production series
47

. Therefore it 

seems that surveys like the Ifo business expectation or the European production expectation 

series are not the best way to predict the upcoming economic situation, because of their 

deficits to explain the short run fluctuations in production, which should be the main task of 

leading economic indicators.  

In the lower panel the phase spectrum gives some evidence for a leading behaviour of the Ifo 

business expectations on German production. This can be observed, because the values in the 

phase diagram are negative for nearly the entire frequency band
48

. The largest phase 

differences seem to be in the low and very high frequency components. At frequencies 

between 0.2 and 0.3 (corresponding to cycles between three and five months) the phase is 

shifting between positive and negative values, which makes the interpretation complicated. 

The most important result is that there seems to be leading behaviour of the Ifo business 

expectation series at the lower frequency components, where a strong relation between 

                                                 
46
  Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands 

and United Kingdom.  
47
  See Lemmens, Croux, Dekimpe – Measuring and testing Granger causality over the spectrum: An application 

to European production expectation surveys (2008). 
48
 See part 4.3. for definition and interpretation of the phase spectrum. 
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German production and Ifo business expectations was proved by estimating the squared 

coherency.  

 

It should also be mentioned that our findings in the frequency domain are not inconsistent 

with the findings in the time domain. Remember that the time domain analysis suggested the 

Ifo business expectations to be a good and valid predictor for production. The lack of 

explaining the short run, which has been investigated in the frequency analysis, does not 

necessarily imply non-causality in an overall (time domain) Granger causality test. The 

Granger Wald test in the previous chapter indicates a strong causal relation, because of the 

highly significant coherence in the lower frequency components. This effect is stronger than 

the weak coherence in the fast oscillating parts. Therefore tests in the time domain, which do 

not distinguish between different frequency components, can have a different result than their 

frequency domain counterparts. This shows the importance of spectral decomposition. 

Without the use of spectral methods, we would not be able to identify the deficit of the Ifo 

business expectations in predicting the short run variations in German production.      

 

The results for the other analysed economic leading indicators (i.e. consumer confidence and 

DAX) are similar. Although there is a rather strong coherence in the low frequency 

components, both indicators are mostly failing to explain the short and medium run oscillation 

in German production. The squared coherency plots are presented in Figure 4.3. and 4.4.  

 

The squared coherency for consumer confidence and German production has its peak at 

48/1=ω , which is equivalent to a cycle every four years. At this frequency the squared 

coherency reaches the maximum value of more than 60%. Note that this predominant cycle is 

at a much lower frequency than for Ifo Business expectation series, where the maximum of 

80% was reached at one cycle every 27 months. Another difference is the existence of  

significant frequency bands in the medium run, one around 15.0=ω , another at 21.0=ω . 

Beside these significant relations in the medium run, there seems to be no short run 

coherency.  

The phase spectrum has a very interesting shape. At higher frequencies the production series 

seems to lead consumer confidence. This seems to be consistent with the results in the time 

domain, where we noticed a causal effect from German production to consumer confidence. 

The phase spectrum gives more evidence for this feedback relation. Therefore the use of 

consumer confidence as a leading economic indicator should be regarded as problematic.    
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Figure 4.3. Squared coherency and phase spectrum of German production (logarithmic 

differences → dlprod_ger) and Consumer Confidence (first differences → dcons). 
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Figure 4.4. Squared coherency and phase spectrum of German production (logarithmic 

differences → dlprod_ger) and DAX (first differences → ddax).  
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Finally Figure 4.4. gives the squared coherency for German share index (DAX) and German 

production. Like for the other indicators there exists a low frequency coherency, but in a 

weaker form. The maximum coherency reaches only 50% at 033.0=ω , and the relation 

declines more rapidly as the frequency gets higher. Only a rather small low frequency band is 

statistically significant and there is no real evidence for medium or short run coherence. The 

phase spectrum suggests leading behaviour of the German stock index for almost the entire 

long and medium run components, although there are some phase shifts in the frequency band 

between 0.15 and 0.2 (corresponding to cycles between five and six months). The 

interpretation at high frequencies is tricky, because of the up and down movement starting at  

35.0=ω . In this band there also exists evidence for leading behaviour of production on 

German stock index. 

 

Like before
49

, I have also analysed the spectral performance of the Ifo business expectations 

as a leading indicator for Austrian and European production. The time domain analysis 

suggested that the Ifo Business expectation series is a valid predictor for both production 

accounts. The frequency domain analysis shows a similar picture as for German production. 

The phase diagrams show the leading character of Ifo business expectations on Austrian and 

European production in the long run. The evidence for leading behaviour decreases for higher 

frequencies, because of the larger phase shifts in these components.  

The coherence analysis between Ifo Business expectations and European/Austrian production 

confirms the same deficits as before in the German case. Although there is a statistically 

significant relation at the low frequency band, Ifo Business expectations cannot explain short 

run variations in Austrian or European production accounts. This result is straightforward, 

because there seems to be no reason, why the performance of Ifo Business expectations 

should be better for the foreign economic development.     
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 i.e. in the time domain analysis. 
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4.6. Conclusions for chapter 4 

 

- There exists a low frequency relation between all analysed leading economic 

indicators and production. The strongest relation can be found between Ifo business 

expectations and German production. 

 

- Although all leading indicators are viable in the low frequency parts (corresponding to 

long run movement), they have deficits in explaining the fast moving short run 

fluctuation in production account series.  

 

- These shortcomings are problematic, because in theory the leading economic 

indicators are mainly developed and used for short run prediction.   

 

- The findings in the frequency domain prove that positive results in the time domain 

causality tests are driven by low frequency coherence. Therefore the spectral analysis 

shows the limited predictive power of economic indicators over the spectrum, which is 

an insight that would not be recognised when using only time domain methods. 

 

- The investigation of the phase diagrams gives some evidence for leading behaviour of 

the Ifo Business expectations and German stock index on production. Ifo Business 

expectations seem to lead production nearly over the entire frequency band, while 

DAX seems to lead production at low and medium frequency components. 

 

- There is no evidence for leading behaviour of Consumer Confidence on German 

production. Moreover the phase diagram indicates that Consumer Confidence is 

lagging behind at high frequencies. 
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5. Summary and Conclusions 

 

The purpose of my diploma thesis was the analysis of leading economic indicators, which 

have become major instruments for predicting future developments within the economy. I 

have discussed the characteristics of leading indicators and distinguished between specially 

constructed survey based indicators (Ifo Business expectations, Consumer confidence) and 

“natural” indicators (German stock index).  

Different mathematical methods have been used to investigate the performance of all these 

measures, whereby the focus was mostly on the Ifo Business expectation survey, which seems 

to be the most important leading indicator in Europe.  

In chapter three I used bivariate VAR-models to analyse the causal relation between leading 

indicators and production in the time domain. Therefore I introduced the concepts of Granger 

Causality (GC), feedback and instantaneous causality. Testing procedures for all these 

measures have been discussed in detail. The test results gave a first impression of the 

predictive power of leading indicators in the time domain. It could be proved that all measures 

are Granger-causing German production, whereas Ifo Business expectations displayed the 

best statistical properties. The results for the Consumer confidence survey caused some 

problems due the existence of feedback. Therefore it was not possible to determine the causal 

direction between Consumer confidence and German production, which led to the conclusion 

that demand side indicators might not be viable leading indicators.  

I also dealt with the question whether Ifo Business expectations are able to predict Austrian 

and European
50

 production. In both cases I was able to establish a causal relation, which 

proves Germany’s huge impact on European economy. Nevertheless, I suggested that these 

results ought to be handled with care because of the feedback mechanism that was identified 

between Ifo Business expectations and European/Austrian production.  

 

After the analysis in the time domain, I gave a short theoretical introduction to spectral 

estimation of economic time series. I explained the decomposition of stationary series into 

their basic frequency components and the estimation of cross-spectra. Afterwards I used the 

concepts of squared coherency and phase diagrams to analyse the relation of economic 

leading indicators and production in the frequency domain. The use of spectral methods 

exhibited various implications. On one side these methods can give a more insightful view by 

formally decomposing the data in their basic components, on the other side I wanted to show 

                                                 
50
 i.e. the production in the euro zone. 
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an alternative way to the well-known time domain analysis. Of course the usefulness of time 

series models is undeniable for empirical research, but one should also take into account that 

there are other concepts, which can be used for further analysis and brighten the view on the 

research topic.  

In our case, the analysis in the frequency domain showed some interesting features of the 

relation between leading economic indicators and production. Despite a significant relation
51

 

in the low frequency components (corresponding to long run movement), all tested leading 

indicators had deficits in explaining higher frequency oscillation in production accounts. 

These results in the frequency domain indicate that the causality in the time domain is mostly 

driven by the low frequency coherence.   

The investigation of the phase diagrams showed some evidence for leading behaviour of Ifo 

Business expectations and German stock index on production, while the Consumer 

Confidence could not be identified as a leading indicator, which was in line with the time 

domain analysis.  

 

The main lesson that should be drawn from this diploma thesis is that although leading 

economic indicators seem to have good predictive power when using testing procedures in the 

time domain, limited predictive power can be noticed when applying spectral methods. The 

shortcomings of all analysed measures
52

 in explaining short run variations are a problem that 

should not be ignored because leading indicators like the Ifo Business expectations and the 

Consumer confidence are mainly constructed to predict short run development. If they are not 

able to give additional information about short run behaviour in production accounts, one 

could doubt the necessity of spending so much money on the conduct of large surveys. As a 

matter of fact it seems that Niels Bohr was right. Predictions are difficult, especially about the 

future. 
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Appendix A: Abstract 

 

A.1. English version 

 

In recent years leading economic indicators have become more and more important. 

Nowadays, the entire media landscape follows the development of these measures and their 

information content is often used by economists whenever future predictions are needed. 

Despite the fact that leading economic indicators are heavily utilized, their real predictive 

power is almost uninvestigated. This provides the motivation for analysing whether leading 

economic indicators are really useful tools for forecasting the upcoming economic 

development.  

 

The present diploma thesis covers and analyses some of the most important leading indicators 

in Europe (Ifo Index, Consumer Confidence and German Stock Index). Various statistical 

methods are used in order to test if there is a link between these measures and the upcoming 

production within the economy.  

 

In the first part of the analysis the well-known time series models are implemented. In the 

process the concept of Granger Causality is applied for investigating the existence of a causal 

relation between leading economic indicators and production in the time domain.    

 

Furthermore, in the second part spectral methods are utilized to get a more insightful view on 

the topic. These methods allow the formal decomposition of the data in their basic 

components, which enables me to investigate the relation of leading indicators and production 

over different frequencies. In this way it is possible to determine the exact frequency bands in 

which leading indicators contain useful information for the explanation of future economic 

developments.      
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A.2. German version 

 

In den letzten Jahren gewannen konjunkturelle Vorlaufindikatoren immer stärker an Gewicht. 

Sowohl in medialer als auch wissenschaftlicher Hinsicht sind sie zu wichtigen Werkzeugen 

für die Erstellung von Wirtschaftsprognosen geworden. Die Frage ob und wie gut 

konjunkturelle Vorlaufindikatoren wirklich zum besseren Verständnis zukünftiger Ereignisse 

beitragen können, ist allerdings weitgehend unerforscht. Dieser Umstand liefert die 

Motivation zur Analyse der Prognosefähigkeit von ausgewählten Indikatoren um dadurch die  

Sinnhaftigkeit ihrer Erstellung genauer zu hinterfragen. 

 

In der vorliegenden Diplomarbeit werden einige der wichtigsten Vorlaufindikatoren im 

europäischen Raum (Ifo Index, Konsumentenvertrauen und DAX) erläutert und analysiert. 

Mittels verschiedener statistischer Modelle wird getestet ob ein kausaler Zusammenhang 

zwischen den jeweiligen Vorlaufindikatoren und der Produktionsleistung innerhalb der 

Volkswirtschaft besteht.  

 

Um die Kausalitätsfrage zu beantworten werden zunächst gängige Zeitreihenmodelle (time 

domain) verwendet. Dabei wird das Konzept der sogenannten Granger-Kausalität auf die 

Fragestellung der Prognosefähigkeit von konjunkturellen Vorlaufindikatoren angewandt.   

 

Im zweiten Teil der Arbeit werden zusätzlich Methoden der Spektralanalyse herangezogen, 

Diese ermöglichen es den Zusammenhang zwischen konjunkturellen Vorlaufindikatoren und 

Produktion über verschiedene Frequenzintervalle zu bestimmen (frequency domain). Dadurch 

soll genauer untersucht werden, in welchen Frequenzkomponenten der Vorlaufindikatoren 

nützliche Informationen für die Erklärung zukünftiger wirtschaftlicher Entwicklungen 

enthalten sind. 
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