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Abstra
tDespite major e�orts the pro
ess of aging is one of the least understood phenomena in biology. This workmakes use of two important �ndings in the �eld of aging resear
h: First of the 
on
lusion that alterations inthe proliferation of stem 
ells might be linked to the aging pro
ess, se
ond that 
alori
 restri
tion is a powerfulintervention to extend life-span and delay aging asso
iated diseases. In the �rst part we analysed a shRNAbased s
reening experiment to identify genes involved in the proliferation of stem 
ells and undertook �rst stepstowards establishing a �ow 
ytometry based proliferation assay to validate 
andidates. Se
ondly we meta-analysedmi
roarray data on di�erent experiments testing gene expression 
hanges asso
iated with 
alori
 restri
tion. Weidenti�ed 
andidate genes enri
hed for di�erential expression in the datasets by employing a binomial-test basedvalue 
ounting approa
h. By in
luding datasets from di�erent organisms, tissues, ages, et
. we aimed at dete
tingrobust and generalizable 
andidates. We further used di�erent approa
hes to assign fun
tional 
ategories and
ommon features in terms of their role in signaling networks to the 
andidate genes. In general the obtained163 
andidate genes and 340 
ategories overlap with previous �ndings in the �eld su
h as the Ghr gene and
ategories related to lipid metabolism, insulin signaling, 
ollagen or immunity and therefore suggest biologi
almeaningfulness of the approa
h. On the other hand also novel and so far mainly negle
ted fun
tions like xenobioti
metabolism, 
ir
adian 
lo
k, retinol metabolism and 
opper ion detoxi�
ation emerged, that are promising tofollow up on in the future. Some of the signi�
ant genes might play major roles as regulators of importantsignaling pathways, as for example Nfkbia, Airn (Igf2R antisense RNA) and the not
h 
o-a
tivator Zfp64.



Chapter 11. The role of stem 
ells in aging and
alori
 restri
tion1.1 The role of adult stem 
ells in agingMany adult tissues as for example the skin, the intestine or the blood require extensive renewal and repla
ementof 
ells throughout life time. The sour
e for the generation of new 
ells is likely to be adult stem 
ells whi
h 
ouldbe isolated from various tissues (Watt 2000) (Whitehead et al. 1999) (Weissman 2000). The renewal pro
ess isexpe
ted to go through 
ommitted progenitor 
ells whi
h themselves further proliferate and di�erentiate into therequired 
ells. The important property of self-renewal, i.e. the generation of at least one daughter 
ell identi
alto the mother 
ell is however 
hara
teristi
 only for stem 
ells.Very early experiments showing that transplanted hematopoieti
 stem 
ells (HSCs) 
ould serial repopulateup to 5 mi
e suggested a extremely long self-renewal 
apability of stem 
ells (Siminovit
h et al. 1964). Notehowever that after about the third serial transplant the host HSCs displayed a 
ompetitive advantage over theserially passaged donor 
ells (Ogden & Mi
kliem 1976).Other studies proposed the idea of stem 
ell aging by indi
ating that stem 
ells of aged individuals produ
e lessprogeny or progeny biased towards proliferation to 
ertain di�erentiated 
ell types (Wright et al. 2003). HSCsof aged individuals for example seem to be biased towards the myeloid lineage, while less lymphoid progenitor
ells are produ
ed (Rossi et al. 2005). Consistent with de
reased numbers or fun
tion of HSCs is the well-knownin
reased in
iden
e of anaemia in the elderly (Lips
hitz et al. 1981).Enwere et al. (Enwere et al. 2004) reported de
reased olfa
tory neurogenesis in aged mi
e. Maslov et al.(Maslov et al. 2004) 
ompared neural stem 
ell populations in the subventri
ular zones of the brains of young(2-4 months) and old (24-26 months) mi
e and dete
ted an about twofold redu
tion in the older mi
e. Thenumber of neurospheres re
overed in 
ulture from old relative to young animals di�ered to a similar extent.Further bone marrow mesen
hymal stem 
ells isolated from older donors show de
reased produ
tion of progenitor
ells and are limited in their di�erentiation potential. They also have been shown to age in vitro (Baxter et al.2004).Eviden
e if numbers of stem 
ells de
rease with age or not is 
ontradi
tory for satellite 
ells (Gibson & E. S
hultz1983) (Conboy et al. 2003) (Bra
k et al. 2005) and some studies on hematopoieti
 stem 
ells even reported anin
rease in their number (Rossi et al. 2005) (Pear
e et al. 2007). However these studies were based on 
ell surfa
emarkers to identify stem 
ell populations, while a loss of fun
tion does be
ome evident e.g. in transplantationassays (Ogden & Mi
kliem 1976).One of the most striking experiments in respe
t to the impa
t of aging on stem or progenitor 
ells was doneby Conboy et al. (Conboy et al. 2005) showing that 
ir
ulatory 
oupling of old and young mi
e transferred bothsatellite 
ells and hepato
ytes in the old mouse to a more youthful state with profound 
hanges on their geneexpression levels. This suggests that 
hanges o

urring with age in theses 
ells 
an be reversed by the exposureto one or some serum fa
tors. Note however that �ndings on satellite 
ells are not ne
essarily transferable to allstem 
ells.The age asso
iated 
hanges in stem 
ells may be attributed to a

umulating DNA-damage, 
hanges in theirni
hes, telomere shortening, 
ell senes
en
e e.g. 
ause by in
reased p53 a
tivity and / or other reasons (Sharpless& DePinho 2007). Rossi et al. (Rossi et al. 2007) demonstrated loss of fun
tional 
apa
ity of hematopoieti
 
ells1



in di�erent DNA damage repair defe
tive mouse mutants with age under stress. They further showed that DNAdamage a

umulates with age in wild-type stem 
ells. Regarding 
ellular senes
en
e it is interesting to note thatp16INK4a-de�
ient mi
e show a signi�
antly lower de
line in subventri
ular zone proliferation, olfa
tory bulbneurogenesis and the frequen
y and self-renewal potential of multipotent progenitors. The protein produ
t ofp16INK4a is a 
y
line dependent kinase inhibitor linked to senes
en
e. However no signi�
ant 
hanges in thisrespe
t were found in progenitor fun
tion in the dentate gyrus or enteri
 nervous system (Molofsky et al. 2006).Further it has been suggested that Bmi-1 prevents the premature senes
en
e of neural stem 
ells by repressingp16INK4a and p19Arf, a p53 a
tivator (Molofsky et al. 2005). Nonetheless despite a 
onstant expression of Bmi-1 p16INK4a and p19Arf are found to steadily in
rease in expression throughout life (Bruggeman et al. 2005)(Molofsky et al. 2006). In another study it was found that deletion of the 
ell 
y
le inhibitor p21, whi
h getsa
tivated by telomere shortening, 
an prolong the life-span of telomerase de�
ient mi
e. At the same time theproliferation of intestinal progenitor 
ells and repopulation 
apa
ity and self-renewal of hematopoieti
 stem 
ellswas restored (Choudhury et al. 2007).With respe
t to repli
ative senes
en
e it is interesting that for mi
e expressing an a
tive form of p53 andshowing a premature aging phenotype it has been proposed that this is 
aused by repli
ative senes
en
e ofstem 
ells (de Magalhães & Faragher 2008) (Tyner et al. 2002). Similarly Halas
hek-Wiener and Brooks-Wilson(Halas
hek-Wiener & Brooks-Wilson 2007) argue for a role of stem 
ell exhaustion in Hut
hinson-Gilford progeria(HGP), one of the most severe premature aging disorders. Possibly 
onsistent with this idea may be the growthretardation of HGP patients in their �rst years of life (Cox & Faragher 2007). Similarly for two other importantpremature aging syndroms, Co
kayne and Werner syndrom, this retardation is also found in early life and pubertyrespe
tively (Henning et al. 1995) (Martin & Oshima 2000). However 
ellular senes
en
e in these diseases isprobably not limited to stem 
ells and stem 
ell exhaustion in HGP might also be driven by in
reased apoptosis.Therefore it might rather be the inability of stem 
ells to ensure tissue homeostasis due to in
reased senes
en
eand apoptosis of other 
ells, than spe
i�
 alterations in the stem 
ells themselves.In summary, even though it is not 
lear if or for whi
h stem 
ell types there is a de
rease in their amount withage, there is growing eviden
e for fun
tional 
hanges in these 
ells. The term �stem 
ell hypothesis of aging� hasbeen 
oined and also tries to explain age asso
iated 
onditions like atheros
lerosis, type 2 diabetes and frailty(Sharpless & DePinho 2007).1.2 The in�uen
e of 
alori
 restri
tion on stem 
ellsSin
e 
alori
 restri
tion (CR) is a powerful intervention to extend life-span and delay aging asso
iated diseases ina wide range of organisms (see �3.1.1 The potential of 
alori
 restri
tion to delay aging�) it is obvious to assumean in�uen
e of CR on stem 
ells if you a

ept the stem 
ell hypothesis of aging. However not many studies havebeen 
ondu
ted in this dire
tion so far.One of the few was done by Kumar et al. (Kumar et al. 2009) reporting a signi�
ant in
rease in the proliferationrate of neuronal progenitor 
ells in the brain of 
alori
 restri
ted rats. Another study demonstrated that loweringglu
ose 
on
entrations in the medium for 
ulturing mesen
hymal stem 
ells lowered apoptosis and in
reased theproliferation rate as well as the number and size of �broblasti
 
olonies in the 
olony-forming unit assay (Stolzinget al. 2006). Interestingly studies by Yoshida et al. (Yoshida et al. 2006) and S
hmu
k et al. (S
hmu
k et al.2010) des
ribed a de
rease in hematopoieti
 progenitor 
ells and adipose tissue derived mesen
hymal stem 
ellsrespe
tively with CR in vivo.Therefore, even though e�e
ts of 
alori
 restri
tion on adult stem 
ells have been observed the nature of itsin�uen
e is but poorly understood. In this work we addressed both the underlying geneti
 me
hanisms of stem
ell proliferation and CR by two di�erent approa
hes. In the next 
hapter we present a shRNA library s
reeningapproa
h to identify key players involved in stem 
ell proliferation and �rst attempts towards 
on�rming promising
andidates. Sin
e 
ell 
ulture work with adult stem 
ells is not well established we employed an embryoni
 stem
ell line for these experiments. Even though results obtained on this system still have to be tested for theirappli
ability in adult stem 
ells the important self-renewal 
apability is 
ommon between both embryoni
 andadult stem 
ells and shared underlying me
hanisms are expe
ted.In 
hapter 3, whi
h a

ounts for the major part of this work, we meta-analysed existing gene expression data todetermine genes altered in their expression due to CR.The two parts therefore start o� from two di�erent sides, one experimentally addressing the stem 
ell hypothesisof aging, the other 
omputationally exploring the life-span extending e�e
t of 
alori
 restri
tion. However bothdemonstrate data-driven approa
hes to in
rease the knowledge and generate hypotheses about the riddle of aging.2



Chapter 2Determining genes impli
ated in stem 
ellproliferation2.1 Finding 
andidate genes responsive to oxidative stress and asso
i-ated to proliferation of stem 
ells by shRNA library s
reeningThe following s
reening experiment and preliminary analysis were performed by J.P. de Magalhaes and G. Jansensand are only des
ribed in brief here.2.1.1 Experimental designTo �nd 
andidate genes whi
h are involved in the proliferation or ability of embryoni
 stem 
ells to survive underoxidative stress the following experiment was performed in our group: 6 repli
ates of 
ells of the mouse embryoni
stem 
ell line CCE were virally transfe
ted by adding a mixture of lentiviruses 
ontaining DNA representing apart of the Hannon-Elledge shRNA whole-genome library (6144 shRNAs) (Chang et al. 2006). Sin
e it 
ontainedmore than one shRNA per gene, around 2000 to 3000 genes were targeted. The genes targeted by this so 
alled�fo
us library� were 
hosen with fo
us on 
an
er resear
h (i.e. targeting genes involved in signaling, 
ell 
y
le,et
., as retrieved from gene ontology (GO) databases, and su
h genes where a phenotype was expe
ted fromtheir kno
k-down). The shRNA sequen
es were predi
ted 
omputationally and most had not yet been validatedexperimentally. The mixture of plasmids 
ontaining these di�erent shRNAs was obtained from S. Elledge. Viruseswere produ
ed as des
ribed in �2.2.2 Materials and Methods�, but with this 
omplex mixture of plasmids insteadof one single type of plasmid. The transfe
tion was done as des
ribed in 2.2.2.1 week after the transfe
tion DNA was isolated from an aliquot of the 
ells while the rest of them were keptin 
ulture. PCR with limited 
y
le number was performed on the isolated DNA using primers binding to the�anking regions of the shRNA en
oding DNA and expe
ted to yield ampli�
ation produ
ts of the di�erent shRNAen
oding sequen
es (in the following also simply 
alled �shRNA sequen
es� or �shRNA genes�) in proportion tothe amount this sequen
e was present in the population. Cy3 was in
orporated during the PCR so that theprodu
t was labelled with green �uores
ent dye. By 
ulturing the 
ells for 1 week before the start of the assay itwas expe
ted that 
ells rendered in-viable by the e�e
t of a shRNA were already largely diminished and shRNAsfound in the following assay were indeed a�e
ting proliferation rate rather than 
ell survival. 3 of the repli
ateswere 
ultured as des
ribed in �2.2.2 Materials and Methods� (
ontrol), the other 3 were subje
ted to oxidativestress by addition of hydrogen peroxide. After 2 weeks DNA was extra
ted and PCR performed as above, butusing Cy5 instead of Cy3 for red �uores
ent labelling of the PCR produ
t.A mi
roarray experiment was performed, adding the PCR produ
ts from the beginning of the experiment andfrom after 2 weeks to a 
ustom made spotted 
DNA mi
roarray platform, 
ontaining two probes per shRNA(stri
tly speaking one of them is a 
on
atenation of twi
e the same sequen
e as the other, however they arereferred to as �identi
al probes� in the following) in the library.The green and red signal were dete
ted and ln(Er

Eg
) (in the following also 
alled �ln-ratio�) 
al
ulated, where E isthe signal of emission (g in green and r in red).The logi
 of this experiment was that the ratio of shRNAs kno
king-down genes that have a positive e�e
t on3



Figure 2.1: Outline of the s
reening experiment to �nd genes asso
iated with stem 
ell proliferation and handlingof oxidative stress; �3 + ox. stress�: 3 of the 6 samples were subje
ted to oxidative stress; see text for detailsproliferation will diminish due to this e�e
t, while of shRNAs kno
king down genes with a negative e�e
t onproliferation will in
rease. Therefore the e�e
t of the shRNA 
ontrols in whi
h amount this shRNA will bepresent in the population after two weeks.For genes involved in oxidative stress however the ratio of shRNA after two weeks to shRNA in the beginningwill be di�erent between stressed samples and 
ontrols. An outline of the experiment is shown in �g. 2.1.2.1.2 Preliminary analysisFor a preliminary analysis to �nd genes di�erentially expressed due to di�erent survival under oxidative stressthe average value of ln(Er

Eg
) over three 
ontrols was subtra
ted from the average for the stressed samples. Genes
orresponding to probes with high values were assumed to have a negative, with low values to have a positivee�e
t on stress resistan
e.E.g. assuming the ln-ratio is positive for stressed and unstressed 
ells, but higher for stressed, the di�eren
e ispositive sin
e the ratio of the shRNA in
reased more in the stressed 
ells. I.e. 
ells survive oxidative stress betterwhen the 
orresponding gene is kno
ked-down and the gene is therefore assumed to have a negative e�e
t on stressresistan
e. To determine genes for whi
h kno
k-down had either a bene�
ial or detrimental e�e
t on proliferation1(independent of oxidative stress) the mean value of the ln-ratio was 
al
ulated. Genes 
orresponding to highvalues indi
ated a negative, to a low value a positive e�e
t on proliferation.Sin
e results appeared to be mu
h 
learer for the testing of proliferation than oxidative stress it was de
idedto test the following 
andidates for their e�e
t on proliferation: Wnk2, Map3k13 and Dr1 for whi
h shRNAswere enri
hed in the s
reen and Psma1, Zfp828, T
f23 and Pak1 for whi
h shRNAs were depleted in the s
reen.2.1.3 Previous attempts to experimentally validate 
andidatesThe following approa
h was used by G. Jansens to test the e�e
t of these 
andidates on stem 
ell proliferation:CCE 
ells were transfe
ted with the plasmid pHAGE 
ontaining the sequen
e of a 
andidate or 
ontrol shRNAas des
ribed in �2.2.2 Materials and Methods�. In 
ontrol lines the shRNA targets the �re�y gene (FFL) whi
h isnot present in mouse. Cells were plated at equal 
on
entrations and allowed to grow for 4 days without splitting.(Splitting (sub
ulturing) is avoided in these proliferation experiments sin
e it is 
onsidered a sour
e of variation).Then a single 
ell suspension was obtained by trypsinization and 
ells 
ounted using an automati
 
ell 
ounter(Casey). The experiment was repeated with a growth period of 3 instead of 4 days. It was 
al
ulated whi
hper
entage of the initial 
ell number was present after 3 or 4 days respe
tively. During this period the expe
tedred �uores
en
e from turboRFP en
oded on pHAGE was found in all 
ell lines expe
t for the ones where pHAGE
ontained the shRNA targeting O
t4 or Psma1. This suggests that these tow lines are either outgrown by1To be pre
ise at this point we 
annot distinguish if the value was e.g. lower due to a prolonged 
ell 
y
le time, due to a lowersurvival rate or another 
ause. Therefore we de�ne proliferation here as what is measured, when 
omparing the number of 
ellsgenerated after a 
ertain time to a starting number of 
ells. 4



untransfe
ted 
ells whi
h are left in the population or they silen
e the trans
ript for the shRNA and turboRFP.As a result no signi�
ant di�eren
e in proliferation was found between the 
ontrol FFL-
ell line and any of theother lines. Also the tenden
y for many lines was not 
onsistent between experiments and often not 
onsistentwith the predi
tion from the s
reen.Therefore we de
ided on two ways to improve �nding 
andidates truly involved in 
ell proliferation:1. Improving the 
andidate sele
tion by a more sophisti
ated analysis of the s
reening data to �nd 
andidatesmore likely to be linked to proliferation2. Improving the method for validating 
andidates: The problem so far was that for meaningful results the
ells still have to be in their exponential proliferation phase when 
ounted. Splitting the 
ells during thispro
edure would however disturb the analysis sin
e it 
an only be done with limited a

ura
y (i.e. thenumber of 
ells dieing during trypsinization may vary). Therefore if sub
ulturing was to be avoided, 
ells
ould not be allowed to proliferate longer than 3 or 4 days even though a longer proliferation time wouldmost likely lead to more signi�
ant results if 
ells 
ould be kept in exponential growth. Therefore wede
ided to do an assay where shRNA lines are mixed with wild-type (wt) 
ells as an internal standard andmonitor their ratio over a longer time. When having an internal standard the matter of ina

urate splittingis not expe
ted to be a problem any more sin
e the error appears to the same extent for both lines. Thisapproa
h will be des
ribed in �2.2 Experimental validation of 
andidate genes by proliferation assays�2.1.4 Statisti
al pro
edureAs explained the main 
riterion for sele
ting 
andidates impli
ated in stem 
ell proliferation or handling ofoxidative stress should be the di�eren
e found in the mi
roarray experiment in the beginning to end ratio or ratiobetween stressed and non-stressed samples of DNA 
oding for the shRNA targeting a parti
ular gene. Further
riteria were the asso
iation of a gene to gene ontology (GO) terms 
onsidering these GO terms´ enri
hmentamong potential 
andidates and potential role in proliferation.Be
ause of the large number of genes tested 
ompared to the small number of repli
ates we de
ided not to usea t-test for the analysis of di�erential dete
tion of PCR produ
t between beginning and end of the experiment:Considering the number of genes 
han
es are high that for some genes values measured for the amount at thebeginning are very 
lose together as well as for the ones in the end by random 
han
e. This would suggest highstatisti
al signi�
an
e even if there is only a small di�eren
e between the means of beginning and end and mighttherefore lead to false positives with no true di�eren
e between the means of the population.Instead we preferred an analysis that for ea
h probe 
ounts the number of times the ln(Er

Eg
) ex
eeds a 
ertainpositive or negative threshold and obtains the probability that this or a higher number would be found by 
han
e.Therefore in 
ontrast to the t-test this test is based on a fold-
hange 
riterion. The false dis
overy rate (FDR)for all probes is then estimated using a s
rambling approa
h. A disadvantage of this method 
ompared to a
ombination of a t-test and an e�e
t size (fold-
hange) 
uto� is that we do not a

ount for the dispersion ofmeasured values, i.e. if there is a high or low variation. An advantage is the insensitivity of this test to outliers
ompared to a t-test (sin
e no mean values are 
al
ulated).2.1.5 Finding genes asso
iated with stem 
ell proliferationIn a �rst step we 
on
entrated on �nding shRNAs over- / underrepresented after two weeks ignoring the fa
tthat some samples were under oxidative stress and the others were not. This is supposed to dete
t 
andidates forgenes asso
iated with stem 
ell proliferation as detailed above. Later we used further information like fun
tional
ategories asso
iated with the genes or their role in the network of 
andidate genes to sele
t the 
andidates forexperimental testing.2.1.5.1 Finding genes over-/ underrepresented after 2 weeks2.1.5.1.1. Ex
luding low-signal data and annotation The starting point for this analysis were ba
kgroundsubtra
ted normalized intensities from the two 
olor mi
roarrays.To remove data for whi
h no su�
ient amount of shRNA 
oding DNA integrated into 
ellular genomes, forwhi
h the PCR produ
t did not bind with su�
ient a�nity to the probe or for whi
h the signal at t = 0 was
onsistently low for other reasons we removed probes for whi
h the signal of the green 
hannel (in the following:�green signal�) was ≤ 200 (arbitrary units) in at least 3 of 6 repli
ates. (The 6 mi
roarrays are 
onsidered5



�repli
ates� in this approa
h even though the samples on 3 of them were exposed to stress and of 3 were not; themaximum value for the green signal was around 295 000, the median around 1300.)The program over200_annot.pl (supplement1) extra
ts those probes from a �le (all_arrays.txt in supple-ment1) for whi
h the signal is > 200 for at least 4 of the 6 signals at the beginning of the experiment (green
hannel). After this sele
tion 8845 of the original 12 288 probes were left. For these probes the gene symbol,gene name, NCBI Entrez Gene ID and NCBI a

ession number is added from another �le (Mm.ALL.b
.txt insupplement1) by the same program. The �le mat
hing these annotations to the probe names was downloadedfrom Codex (http://
an
an.
shl.edu/
gi-bin/Codex/Codex.
gi) earlier, but the download was not available anymore at the time of this analysis. Annotations for some of the probes 
ould not be found in the mentioned �le.Therefore the probe names not found were uploaded to the old version of 
odex2 (Aug 2009), whi
h in 
ontrastto the new version allows sear
hes for probe names. 3 Annotation was obtained and added to the probes forwhi
h it was not found before. The 24 probes for whi
h annotation still 
ould not be found were dis
arded fromthe analysis.Probes mat
hing more than one shRNA sequen
e were removed from the analysis sin
e we wanted to avoid ob-taining 
andidates for whi
h the measured expression value was a
tually 
aused by another shRNA. The numberof probes ex
luded during this pro
edure was 214.2.1.5.1.2. Collapsing probes targeting the same shRNA Sin
e there were two probes per shRNA onthe mi
roarray (pre�xes: HH_ and mmFo
us_) the two (if both passed the intensity threshold) were 
ollapsedby 
al
ulating the mean for ea
h repli
ate. This is done by 
ollapse_two-probes.pl (supplement1).In the next step the �le was 
onverted to a .xls and mean value and standard deviation (STDEV) for the ln(Er

Eg
)of ea
h experiment over all probes 
al
ulated by the 
orresponding Ex
el fun
tions. (Means were -0.09 to -0.04,standard deviations 0.98 to 1.16.)Even though there were di�erent shRNAs targeting the same gene for some genes, these were not 
ollapsed sin
edi�erent shRNAs were expe
ted to perform di�erently. Collapsing might therefore obs
ure the e�e
t of the bettershRNA by averaging with values of the worse.The �le 
ontaining probes sele
ted by the signal intensity 
riteria mentioned above, annotated and 
ollapsed
an be found in supplement1: two-
ol.txt.2.1.5.1.3. Finding shRNAs over- and underrepresented after 2 weeks A shRNA gene was termedoverrepresented if the ln(Er

Eg
) was above a 
ertain threshold for a 
ertain number of repli
ates and underrepresentedif this number of repli
ates was below a 
ertain threshold. (If in the following we talk about gene X being over- /underrepresented this means the shRNA targeting this gene was over- / underrepresented.) As threshold for ea
hrepli
ate mean + standard deviation (STDEV) over all probes and mean � STDEV respe
tively were 
hosen. Indi�erent runs those probes for whi
h (at least) 4, 5 or 6 of 6 values for ln(Er

Eg
) were above / below the mentionedthresholds were sele
ted by the program mult_aboveSTDEV.pl (supplement1). The o

urren
es of the numberof di�erent probes for the same gene were 
ounted with probes_per_gene.pl (supplement1).2.1.5.1.4. Estimation of p-values and false dis
overy rate The probability p to �nd any probe above /below mean +/- STDEV was 
al
ulated by dividing the mean number of probes found per sample by the numberof probes tested (p = 0.13 for any probe found above mean +/- STDEV, p = 0.14 for below mean +/- STDEV).The probability P to �nd a probe at least 4, 5 or 6 times respe
tively above / below mean +/- STDEV (
alled�4of6�, �5of6� and �6of6� 
riterion) by random 
han
e was 
al
ulated using the binomial distribution:

P = 1−

k−1
∑

x=0

(nx) ∗ p
x
∗ (1− p)(n−x) (2.1)withp= probability to �nd a random gene above / below mean +/- STDEV (see above),k= 4, 5 or 6 respe
tively,2http://katahdin.
shl.org:9331/rnai/repository/s
ripts/newmain.pl3By the time of writing the old 
odex is not online anymore. Therefore the �le obtained for the not found probes is atta
hed insupplement1: 
odex_found.txt 6



# 
andidates P-value FDRoverrep.: 4of6 117 3.84E-03 0.158overrep.: 5of6 23 2.29E-04 0.050overrep.: 6of6 6 5.76E-06 0.005underrep.: 4of6 216 4.95E-03 0.100underrep.: 5of6 60 3.18E-04 0.024underrep.: 6of6 10 8.62E-06 0.003Table 2.1: Number, P-values and FDRs of 
andidate shRNAs found over- or underrepresented after 2 weeks atdi�erent 
riteria. P-values were 
al
ulated using the binomial distribution and FDRs by 
omparing the found tothe expe
ted number of 
andidates.n= 6.P 
orresponds to the P-value for �nding a probe at the given 
riterion. Multiplying this probability with thenumber of probes in the assay (giving the number expe
ted to be found for this 
riterion by 
han
e) and dividingit by the found number for ea
h 
riterion gives the FDR. The number and P-values for probes found at ea
h
ondition and 
orresponding FDRs are shown in table 2.1. The number of over- or underrepresented shRNA
andidates 
losely resembles the number of 
andidate target genes, sin
e only very few genes (7 for the 4of6overrepresented, 8 for 4of6 underrepresented, 1 for 5of6 over- and underrepresented ea
h and 0 for the others)met the 
riteria with more than one shRNA.Sin
e we aimed at a FDR <0.05 the 5of6 
riterion appears to be the appropriate one to 
hose the 
andidatesto experimentally validate.2.1.5.2 Relationship of proliferation asso
iated 
andidate genes to agingThe initial idea of �nding genes involved in stem 
ell proliferation or stress response was motivated by �ndinggenes involved in aging (see �1 The role of stem 
ells in aging and 
alori
 restri
tion�). Therefore we tested ifour 
andidates 
ould be found in GenAge (http://genomi
s.senes
en
e.info) (de Magalhães & Toussaint 2004),a database of genes asso
iated with human longevity or that modulate aging in model organisms. A list of allthose genes and their human homologs was downloaded and is_gene_in_list_mod_
aseinsens.pl (supplement1) was used to sear
h for our 
andidates sele
ted by the 5of6 
riterion in this list. Sin
e mouse homologues werenot available, we made use of the rule of thumb that the mouse homologue of a human gene annotated as XXX11would be Xxx11 and the identi�ers would therefore be equal in a 
ase-insensitive sear
h. We are aware that thismight miss genes in a few spe
ial 
ases.There was no overlap found between our 
andidates with the 5of6 
riteria and the genes listed in GenAge.2.1.5.3 Fun
tional analysis: Finding over- / underrepresented fun
tional 
ategoriesWe employed and 
ompared di�erent ways to �nd fun
tional 
ategories 
ommon to shRNAs asso
iated with stem
ell proliferation. One analysis was done using a binomial test employing 
ustom made Perl 
ode, the otherswere based on the freely available GSEA and DAVID tools.2.1.5.3.1 Finding enri
hed GO-
ategories by a binomial test The �rst fun
tional analysis was done bysear
hing for gene ontology (GO) terms that were represented signi�
antly higher among over- / underrepresentedgenes than expe
ted by 
han
e.GO analysis was done on shRNA genes dete
ted to be over- or underrepresented (in the following 
alled �over-or underrepresented genes�) by a method similar to the one des
ribed above. However to avoid 
ounting genesrepresented by two shRNAs twi
e 
ollapsing was done using 
ombine-sele
t-highest_withTest.pl (supplement 1).This program �rst 
ollapses signals 
orresponding to identi
al shRNAs by 
al
ulating the mean, then sele
ts ofshRNAs targeting the same gene only the shRNA with the average ln(Er

Eg
) over all repli
ates whi
h is furthestfrom 0 (i.e. the shRNA that is most over- / underrepresented). This is be
ause the silen
ing e�e
t di�ers fromshRNA to shRNA and this approa
h sele
ts the one with the most marked e�e
t. The program prints warningsif the mean ln-ratio of one shRNA is strongly in the other dire
tion than another shRNA for the same gene.Spe
i�
ally if for a gene the average ln(Er

Eg
) for a shRNAs is above mean+STDEV and for another it is below7



mean-STDEV or vi
e versa a warning is printed. After manual inspe
tion all probes with warnings were removed.Starting from this �le over- and underrepresented genes were determined as above (�2.1.5.1 Finding shRNAs over-and underrepresented after 2 weeks�) for the same 
riteria as des
ribed above.To add GO 
ategories to the 
orresponding gene a list mapping GO identi�ers to all genes was downloadedfrom NCBI4 (25/08/2009) and all non-mouse genes were dis
arded. Sin
e in this �le ea
h gene was repeatedlylisted for ea
h GO identi�er a new �le was 
reated with one gene and all its GO identi�ers per row. All GOidenti�ers were added to the list of probes for over- and for underrepresented genes. A small number (10 forover-, 34 for underrepresented) of probes 
ould not be found in the GO-list (and also not sear
hing the databaseby hand).It was 
ounted howmany overrepresented and howmany underrepresented genes were found for ea
h GO identi�erand how many for the 
omplete list of all genes after 
ollapsing. Only GO identi�ers with at least 3 
orrespondinggenes over- / underrepresented were used for further analysis. These steps were performed by GO_masterprog.pl(supplement 1).The probability P that an equal or higher number of genes than the a
tual is found over- or underrepresentedfor a GO identi�er by 
han
e was 
al
ulated using a binomial test:
P = 1−

k−1
∑

x=0

(nx) ∗ p
x
∗ (1− p)(n−x)wherek is the number of times a GO identi�er was found asso
iated with the over-/underrepresented genes,n is the number of times the GO identi�er was found asso
iated with all genes andp the probability that GO identi�ers are found over-/underrepresented.Therefore p is 
al
ulated by dividing the sum of the number of times all GO identi�ers are found asso
iated withover- / underrepresented genes by the sum of the number of times they are found asso
iated with all genes after
ollapsing.The GO terms were added to the 
orresponding GO identi�ers by using addGO_terms_mult-�les.pl (in supple-ment1).To assess the signi�
an
e of the found GO terms and �nd an appropriate 
uto� for P 
onsidering multiplehypothesis testing we s
rambled the ln-ratios of ea
h repli
ate with respe
t to ea
h other repli
ate manually afterwe had �ltered out low intensity data. The analysis was repeated as with the uns
rambled �les. Di�erent 
uto�values for P were tested to �nd reasonably low FDRs (FDR is the number of GO identi�ers found signi�
antat the 
hosen P on s
rambled divided by the number on a
tual data; FDR_
al
2_over-under
ount-in1�le.pl insupplement1). Sin
e we s
rambled only on
e the FDR is a rough estimate. The GO identi�ers and terms for the4of6 
riterion at the P-value of 0.005 (FDR = 0.08 and 0.06 for over- and underrepresented genes respe
tively)are shown in table 2.2. Note that some of the GO terms appear for both over- and underrepresented genes. Thismay biologi
ally make sense depending on whi
h genes of the GO terms are represented in ea
h and how theyintera
t with ea
h other.2.1.5.3.2. Using GSEA to �nd enri
hed gene sets2.1.5.3.2.1. Introdu
tion to GSEA GSEA (Gene Set Enri
hment Analysis) is a program that evaluatesmi
roarray data at the level of gene sets. It is freely available at http://www.broadinstitute.org/gsea. The goalof GSEA is to determine whether members of a gene set S tend to o

ur toward the top (or bottom) of a datasetranked in a 
ertain way, in our 
ase by ln-ratio. Gene sets are de�ned based on prior biologi
al knowledge,e.g. genes en
oding produ
ts in the same metaboli
 pathway, lo
ated in the same 
ytogeneti
 band, or sharingthe same GO 
ategory. A variety of gene sets to test for 
an be found at the Mole
ular Signature Database(MSigDB).The GSEA algorithm 
omprises the three following steps:4ftp://ftp.n
bi.nih.gov/gene/DATA/gene2go.gz 8



overrep. underrep.GO:0000287 magnesium ion binding GO:0000287 magnesium ion bindingGO:0003674 mole
ular fun
tion GO:0001843 neural tube 
losureGO:0003676 nu
lei
 a
id binding GO:0003676 nu
lei
 a
id bindingGO:0004672 DNA binding GO:0003677 DNA bindingGO:0004674 protein kinase a
tivity GO:0003700 trans
ription fa
tor a
tivityGO:0004713 protein serine/threoninekinase a
tivity GO:0003713 trans
ription 
oa
tivatora
tivityGO:0004721 protein tyrosine kinasea
tivity GO:0004842 ubiquitin-protein ligasea
tivityGO:0004725 phosphoproteinphosphatase a
tivity GO:0005515 protein bindingGO:0005509 protein tyrosinephosphatase a
tivity GO:0005622 intra
ellularGO:0005515 
al
ium ion binding GO:0005634 nu
leusGO:0005524 protein binding GO:0005829 
ytosolGO:0005737 ATP binding GO:0005839 proteasome 
ore 
omplexGO:0005739 
ytoplasm GO:0006350 trans
riptionGO:0005794 Golgi apparatus GO:0008270 zin
 ion bindingGO:0006468 protein amino a
idphosphorylation GO:0045449 regulation of trans
riptionGO:0006810 transport GO:0046872 metal ion bindingGO:0006915 apoptosis GO:0051603 proteolysis involved in
ellular protein 
ataboli
pro
essGO:0007165 signal transdu
tionGO:0007243 protein kinase 
as
adeGO:0007275 multi
ellular organismaldevelopmentGO:0007399 nervous systemdevelopmentGO:0016301 kinase a
tivityGO:0016740 transferase a
tivityGO:0030145 manganese ion bindingGO:0030154 
ell di�erentiationTable 2.2: GO-identi�ers and terms enri
hed after two weeks for over-/underrepresentation at FDR< 0.08 and0.06 respe
tively.
9



Figure 2.2: Example of the running sum method used by GSEA; bottom: ranking of genes a

ording tosignal-to-noise ratio (in our 
ase ln-ratio); middle: genes in the tested gene set are shown by verti
al linesat their rank position; top: running sum; Enri
hment s
ore is the maximum deviation from 0; pi
ture fromhttp://www.broadinstitute.org/gsea.1. An enri
hment s
ore is 
al
ulated by walking down the ranked list of genes, in
reasing a running-sumstatisti
 when a gene of a gene set is en
ountered and de
reasing it when en
ountering genes not in thegene set. The enri
hment s
ore is the maximum deviation from zero found in the random walk. See �g.2.2.2. A P-value is estimated by 
omparing the enri
hment s
ore to an enri
hment s
ore 
al
ulated from a per-mutation of the ranked list of genes.3. Sin
e normally more than one gene set is tested multiple hypothesis testing is done. For this the enri
hments
ore is normalized by dividing by the number of genes in the given gene set and a false dis
overy rate isestimated by 
omparing the normalized enri
hment s
ore to normalized enri
hment s
ores 
al
ulated froma permuted list of genes (Subramanian et al. 2005).2.1.5.3.2.2. GSEA to �nd gene sets enri
hed in proliferation asso
iated genes We started from a�le where probes for ea
h gene were 
ollapsed to the probe with the mean of ln(Er

Eg
) furthest from 0 as des
ribedabove. To 
reate a ranked gene list the means of the ln-ratio over the 6 repli
ates for ea
h gene were 
al
ulatedand written in a tab-delimited table with the 
orresponding gene symbols. For GSEA to be able to re
ognizethe gene symbols all letters had to be 
hanged to 
apitals. For the resulting �le the .txt extension was 
hangedto .rnk.As gene sets we downloaded msigdb.v2.5.symbols.gmt from MSigDB (Subramanian et al. 2005) whi
h 
omprisedall available gene sets (7/9/09).The ranked gene list .rnk �le and the gene sets were loaded into the GSEA desktop appli
ation and theanalysis was run using the GseaPreranked tool. The �
ollapse dataset to gene symbols� option was set to false,otherwise default settings were used.As result we found no gene set enri
hed for underrepresented (enri
hment s
ore < 0) genes below a FDRof 0.05. For overrepresented genes (enri
hment s
ore > 0) we found 5 sets for FDR <0.05: PHOSPHO-RIC_ESTER_HYDROLASE_ACTIVITY, PROTEIN_AMINO_ACID_DEPHOSPHORYLATION, PHOSPHO-PROTEIN_PHOSPHATASE_ACTIVITY, DEPHOSPHORYLATION and KERATINOCYTEPATHWAY).10



User Genes GenomeIn Pathway 3-1 40Not In Pathway 297 29960Figure 2.3: Example for a 
ontingen
y table 
reated by the DAVID Fun
tional annotation tool; from the DAVIDIntrodu
tion �le (http://david.ab

.n
if
rf.gov/helps/fun
tional_annotation.html#EXP2)2.1.5.3.3. Using DAVID to �nd enri
hed biologi
al themes and pathways2.1.5.2.3.1. Introdu
tion to DAVID The Fun
tional Annotation Tool of DAVID (Database for An-notation, Visualization and Integrated Dis
overy) is based on a pro
edure similar to Fisher´s exa
t test. A 2x2
ontingen
y table 
ontaining how many of the genes of interest and how many of the given ba
kground (genome)asso
iate with a fun
tional term (or pathway) and how many do not is 
reated (see �g. 2.3). To be 
onservative1 is subtra
ted from the number of genes of interest asso
iated with the term. The probability of a number of atleast this many genes asso
iated with the 
ategory given the marginal distribution is 
al
ulated.Fun
tional terms here do not only in
lude GO terms, but are also based on protein�protein intera
tions, pro-tein fun
tional domains, disease asso
iations, biologi
al pathways, sequen
e features, homology, gene fun
tionalsummaries, gene tissue expression and literature. The annotation 
ategories 
an be �exibly in
luded or ex
ludedfrom the analysis by the user.2.5.1.3.3.2. DAVID to �nd enri
hed biologi
al themes and pathways We made use of the Databasefor Annotation, Visualization and Integrated Dis
overy (DAVID) to �nd enri
hed biologi
al themes and pathwaysin our 
andidates for proliferation asso
iated genes. In parti
ular we used the Fun
tional Annotation algorithma

essible at http://david.ab

.n
if
rf.gov/summary.jsp.We separately uploaded the overrepresented and underrepresented 
andidates for the 4of6 
riterion. As a ba
k-ground for the analysis we loaded all genes represented on the mi
roarray. We ran the program and obtained theFun
tional Annotation Clusters on
e for the default themes and on
e by sele
ting all pathway options only.For overrepresented genes we obtained 
ategories related to phosphate, ATP and phosphorylation, for underex-pressed the proteasome below a FDR of 5% when sear
hing for default 
ategories. Sear
hing for pathways MAPKsignaling was found for overrepresented genes below a FDR of 5%, the proteasome again for underrepresented.2.5.1.3.4. Comparison of results from GO analysis, GSEA and DAVID While the numbers of sig-ni�
ant 
ategories found with GSEA and DAVID are of 
omparable size the GO-terms found by the binomialanalysis is 
learly higher. This might partially be due to the slightly more relaxed FDR-
uto� (0.08 and 0.06)used owing to the dis
rete nature of the 
uto� thresholds (4of6, 5of6 or 6of6), but is most likely due of inherentdi�eren
es between the methods.The results of the GSEA and DAVID analysis both emphasize the role of phosphate in signalling for overrep-resented genes, however, while in GSEA mainly results in terms related to dephosphorylation, DAVID dete
tsphosphorylation. The binomial analysis dete
ts among others 
ategories related to both phosphorylation anddephosphorylation. The most 
on
rete pathway, MAPK signaling, was dis
overed by DAVID analysis fo
usingon pathways only.While GSEA gives no signi�
ant 
ategory for underrepresented genes DAVID only dete
ts the proteasome at aFDR < 0.05. Again among other 
ategories the binomial test also lists the �proteasome 
ore 
omplex�, �prote-olysis involved in 
ellular protein 
ataboli
 pro
ess� and �ubiquitin-protein ligase a
tivity�.2.1.5.4 Mapping 
andidate genes to the STRING networkSTRING is a database of physi
al and fun
tional protein intera
tions and 
an be employed to build a networkfrom a gene list based on this information. We used STRING 8.3 at default settings on a 
ombined list of genesover- or underrepresented at the 4of6 
riterion. See supplement 1 for a �gure of the network. It 
an 
learly beseen that while many proteins are not or weakly 
onne
ted there are two distin
t dense parts of the network,one built around T
f4, Pparg and in
luding edges to Hda
2 and Hda
3 and another around Psma1 and Psma5,strongly linked to Pak1. We assumed that a high degree of a gene in the network represents further eviden
e forthe importan
e of this gene in me
hanisms related to stem 
ell proliferation.11



2.1.5.5 De
ision on whi
h 
andidates to test experimentallySin
e only about 10 
andidates 
ould be experimentally tested for the e�e
t of their kno
k-down on the pro-liferation rate the most promising ones had to be 
hosen. We �rst demanded that the 
andidates were over- /underrepresented at the 5of6 
riterion (FDR <0.05) giving lists of 23 and 60 genes respe
tively. For the furtherde
ision we took into a

ount if a gene was also signi�
ant at the 6of6 
riterion or signi�
ant at the 5of6 
riterionwith more than one probe, if it was asso
iated with �meaningful� fun
tional 
ategories, espe
ially if they wereenri
hed in the fun
tional analyses and if the gene was highly 
onne
ted in the network of the 
andidate genes.As a meaningful GO-
ategory we understand one that des
ribes a distin
t 
ellular pro
ess, not a fun
tion that
an be found in many di�erent pathways. Enri
hed meaningful fun
tional 
ategories were �
ell di�erentiation�,�apoptosis� or su
h related to proteasome fun
tion. If the 
ategory was not enri
hed we required that a possiblelink between the 
ategory and proliferation existed as for example for the GO-term �positive regulation of 
ellproliferation� or 
ategories related to the 
ell 
y
lus, et
. Therefore at this point we departed from a purelydata-driven 
andidate sele
tion approa
h.For overrepresented 
andidates we sele
ted Rnf31, Pkn2, Map4k5, Csnk1a1 and Ppp3r2 sin
e they all ful�lledthe 6of6 
riterion, Clk1 be
ause it was found signi�
ant by two probes and Map3k1 for its 
entral role in thenetwork (6 
onne
tions) and its fun
tional asso
iation with �apoptoti
 mito
hondrial 
hanges�.For 
andidates for whi
h the shRNA was underrepresented after 2 weeks we 
hose Edd1, Hda
3, Phf17, Sqstm1,Mbd2 and Zxda sin
e they all were signi�
ant at the 6of6 
riterion and asso
iated with meaningful fun
tional
ategories. Psma5 was 
hosen, be
ause it was found signi�
ant for two probes, for its role in proteasome fun
tionand high degree (7 
onne
tions) in the network.We made sure not to sele
t genes that had already been sele
ted in the preliminary analysis (�2.1.2 Preliminaryanalysis�) and for whi
h plasmids had already been obtained. Interestingly only few of the 
andidates sele
tedthere appeared also promising in this pro
edure. Wnk2 was dete
ted at the 6of6 
riterion for overrepresented,T
f23 and Pak1 for underrepresented shRNAs. Pak1 appeared to be a good 
andidate also in this approa
h dueto its high degree in the network.2.1.5.6 Determining the expression of 
andidate genes in early embryoni
 stages and stem 
elllinesIn a last step we 
he
ked the expression of the sele
ted 
andidates in early embryoni
 stages and stem 
ell linesa

ording to publi
 datasets to assess if their kno
k-down 
ould be the reason for slower growth of these 
ells or ifthe gene of interest is not even expressed in stem 
ells. Note that our original mi
roarray s
reen did not test theexpression of the shRNA target genes but only the level of shRNAs. Changes in their amount 
ould also be randomor due to o�-target e�e
ts. In a �rst step we tested the expression in the Theiler Stage 4 (TS4) (Blasto
yst, Inner
ell mass apparent, 2-4 days post 
oitum (dp
)) and TS5 (Blasto
yst (zona-free), 3-5.5 dp
) embryoni
 stagesa

ording to the Mouse Genome Informati
s website (http://www.informati
s.jax.org/expression.shtml) (Bult etal. 2008) (Smith et al. 2007). In the next we 
he
ked the number of expressed sequen
e tags (ESTs) at theUnigene website (http://www.n
bi.nlm.nih.gov/unigene) (Pontius, Wagner, S
huler 2003) for our genes in theblasto
yst stage and if not found there in the morula and other embryoni
 tissues. We also 
he
ked the 
andidatelist for their expression values in the mi
roarray datasets GDS2666 and GDS2667, GDS2668 and GDS2669 aswell as GDS2905 and GDS2906 at the Gene Expression Omnibus (GEO). GDS2666 and GDS2667 (Hailesellasseet al. 2007) 
ompare the gene expression in 
ells of the embryoni
 stem 
ell line R1 at di�erent time pointstowards di�erentiation to embryoid bodies, GDS2668 and GDS2669 do the same for line J1 (Hailesellasse et al.2007). GDS2905 and GDS2906 
ompare gene expression in J1 stem 
ells and embryoid bodies.If the expression of a gene (more pre
isely: its per
entile rank within the sample) was at a low level for t = 0 / forundi�erentiated 
ells and the level at other time points / in the embryoid body were 
learly higher we 
onsideredthis gene as not expressed in stem 
ell lines, if it was at ba
kground level for most of the time points / also forthe embryoid body we did not dire
tly assumed this gene not expressed in embryoni
 stem 
ells without furtherhints from other analyses.Expression information for none of the genes in our narrower 
andidate list ex
ept for Phf17 was found atthe Moue Genome Informati
s website. Phf17 was indi
ated to be expressed at TS4. The results for the otherexpression analyses (from Unigene and GEO) are shown in table 2.3.For all genes ex
ept Ppp3r2 and Zxda there was at least one eviden
e of expression in embryoni
 stem 
ells,either by ESTs or mi
roarray data. Even though the data do not prove that Ppp3r2 and Zxda are not expressedin stem 
ells we ex
luded these genes from the list of our 
andidates sin
e none of our analyses gave eviden
e for12



Unigene:Trans
ripts permillion inblasto
yst further Unigeneresults GDS2666 andGDS2667(lineR1) GDS2668 andGDS2669 (lineJ1) GDS2905 andGDS2906(lineJ1)Csnk1a1 71 >75% >75% >75%Map4k5 486 >25% >25% >25%Pkn2 100 >75% >75% >75%Ppp3r2 0 0 in embryoni
tissue most low most low most lowRnf31 0 13 in embryoni
tissue; 3 in
leavage stage ormorula >75% >75% most lowClk1 28 >75% >75% >75%Sqstm1 271 >75% >75% >75%Psma5 142 >75% >75% >75%Phf17 185 >75% >75% >75%Mbd2 14 human: 0 undi�erentiatedlow undi�erentiatedlow undi�erentiatedlowEdd1 no unigene entry >75% >75% >75%Hda
3 14 >75% >75% >75%Map3k1 0 13 in embryoni
tissue; 0 in
leavage stage ormorula >50% >25% >50%Zxda no unigene entry most low most low most lowO
t4 285 >75% >75% >50%Psma1 371 >75% >75% not foundTable 2.3: Expression levels of sele
ted 
andidate genes in the blasto
yst or if not dete
ted there in the morula andembryoni
 tissues a

ording to Unigene and per
entile position in 
ertain GEO datasets 
omparing embryoni

ells to di�erentiated 
ells; �human�: information for human homologue; �most low� means that the gene waslowly (<�<25%) expressed in both di�erentiated and stem 
ells; �undi�erentiated low� means the expression ofthe gene was low in stem 
ells and 
learly higher in di�erentiated 
ells; genes in red were ex
luded from theanalysis; > x% means all repli
ates of at least one probe targeting this gene were dete
ted at a higher per
entilethan x
13



Table 2.4: Candidate genes for whi
h the shRNAs targeting these genes was signi�
antly over- or underrepresentedafter two weeks whi
h were 
hosen for experimental validation.their expression in embryoni
 stem 
ells. To 
ompensate for the elimination of these two genes we in
luded Hda
2into our list sin
e it performed well for our sele
tion 
riteria and the above analyses suggested its expression inembryoni
 stem 
ells (e.g. it was 
onsistently above the 50th per
entile for GDS2668, et
).For a �nal list of 
andidate genes see table 2.4.2.1.6 Finding 
andidate genes involved in di�erential proliferation under stress
ompared to non-stress 
onditionsAs detailed above the original aim of the shRNA s
reening assay was not to dete
t shRNAs a�e
ting stem 
ellproliferation in general, but su
h over- or underrepresented in 
ells grown under stress vs. non-stress 
onditions.In this approa
h we sear
hed for shRNAs for whi
h stressed samples ex
eeded a 
ertain di�eren
e to the meanfold-
hange of ln(Er

Eg
) over all genes while unstressed did not. Or, in simpler words, we sear
hed for shRNAswithout e�e
t under normal, but with detrimental or bene�
ial e�e
t under stress 
onditions. This means thatthey make 
ells more sus
eptible or prote
t them from stress.For the analysis of the e�e
ts of shRNAs under stress we started with data pro
essed as des
ribed above, i.e.after removal of probes with low signal intensity at t = 0 and 
ollapsing of probes targeting the same shRNAsequen
e.We determined probes whi
h had a signal above mean + STDEV for at least two stressed samples and belowfor at least two 
ontrols (
alled overrepresented) or below mean - STDEV for at least two stressed and abovefor at least two 
ontrols (
alled underrepresented). To determine false dis
overy rates (FDRs) we s
rambled thevalues obtained for the probes within ea
h sample. Sin
e we only aimed at a rough estimation of the FDR thiss
rambling was only done on
e. FDRs were estimated by 
omparing the number of genes found after s
ramblingto the number found for the uns
rambled data.Sin
e the FDR for this analysis turned out to be too high we also tried di�erent 
riteria: We varied the requirednumber of stressed samples that had to be above / below mean +/- STDEV and of 
ontrols that at the sametime had to be below / above mean -/+ STDEV. Instead of mean +/- STDEV we tried mean +/- 1.5 STDEVand mean +/- 2 STDEV as alternative thresholds. The number of shRNAs found over- and underrepresentedwith the di�erent 
riteria and their FDR are shown in table 2.5.None of the sele
ted thresholds and no 
riteria allowed us to �nd shRNAs over- or underrepresented withstress at a FDR < 0.10, ex
ept for the one overrepresented gene at threshold = mean+1.5 and the 
3s3 
riterion,whi
h would most likely give a higher FDR if s
rambling was done several times. This might indi
ate that 3repli
ates are too few for the experimental design and the number of shRNAs tested here.We therefore de
ided to fo
us on testing 
andidate genes for asso
iation with stem 
ell proliferation instead of14



Table 2.5: Number of shRNAs found with ln-ratios as indi
ated for the given number of 
ontrol and stressedrepli
ates (e.g. 
2s3: two 
ontrol, 3 stressed repli
ates).for asso
iation with stress response.2.2 Experimental validation of 
andidate genes by proliferation assay2.2.1 Introdu
tionEven though our primary interest in the shRNA s
reen was to �nd genes asso
iated with stress response inembryoni
 stem 
ells the mu
h higher statisti
al signi�
an
e for the analysis for only proliferation (while ignoringthe fa
t that 3 of the samples were stressed) made us de
ide to 
on
entrate on validation of 
andidates forproliferation. The reason that more genes were found signi�
ant by the proliferation assay is most likely thehigher number of repli
ates (n=6) 
ompared to the analysis of stressed samples (n=3).Previous analyses had been done by G. Jansens by plating 
ells on 6-well plates and 
omparing the number of
ells plated to the number of 
ells after about 3-5 days. The fold 
hange of 
ells for the 9 shRNA-transfe
ted linesover this period was 
ompared to that of untransfe
ted 
ells using 3 repli
ates for ea
h. These 9 lines in
ludedone expressing Fire�y (FFL) shRNA as a negative and O
t4 and Psma1 shRNA as positive 
ontrols.No signi�
ant 
hanges in the proliferation rate between the lines 
ould be dete
ted.2.2.2 Materials and Methods2.2.2.1 Cloning of plasmidsCloning of shRNA sequen
es into pHAGE was done with 
ontribution of E. Hesketh of our lab.Cloning was done to transfer sequen
es 
oding for 
andidate shRNAs (see table 2.4) from pSM2 (Silva et al.2005) as kindly provided by the Elledge lab into the plasmid pHAGE-Mir2 (H. Pan et al. 2008), whi
h is in thefollowing 
alled pHAGE for simpli
ity. The shRNA sequen
e was 
loned behind the Human Elongation Fa
tor1 alpha promoter (EF1a promoter) in a mi
roRNA environment. The pHAGE plasmid 
ontains turboRFP asa �uores
ent marker, 
onstitutively expressed on the same trans
ript as the shRNA hairpin and was reportedto be superior in the kno
k-down e�e
t (Elledge lab, personal 
ommuni
ation). The plasmid 
ontains genes forampi
illin and puromy
in resistan
e for sele
tion in ba
teria and eukaryoti
 
ells respe
tively. By restri
tionwith MluI and HpaI pSM2 and pHAGE gave the shRNA sequen
e and the pHAGE-ba
kbone without shRNAsequen
e respe
tively with 
ompatible restri
tion sites. We 
alled pHAGE after inserting a shRNA targetinggene X pHAGE-X.TransformationThe One Shot TOP10 Chemi
ally Competent E. 
oli transformation kit (Invitrogen) was used to transformoriginally obtained plasmids or ligation produ
ts a

ording to the manufa
turer´s instru
tions. Negative 
ontrols15



from ligation rea
tions (see below) were in
luded as negative 
ontrols for the transformation.Ba
terial 
ulturesE.
oli 
ontaining pSM2-plasmids with the shRNAs of interest were ino
ulated in LB medium with 50 µg/ml
hlorampheni
ol. E.
oli with (modi�ed) pHAGE plasmids were ino
ulated in LB medium with 100 µg/ml ampi-
illin. Ba
teria were grown for about 16h at 37°C, shaking at 170 rpm.Plasmid preparationPlasmids were extra
ted using the QIAprep Spin Miniprep Kit (QIAGEN) a

ording to manufa
turer´s in-stru
tions.Measurement of DNA 
on
entrationsDNA 
on
entrations were measured via Nanodrop (Thermo S
ienti�
).Restri
tionsDi�erent pSM2 plasmids, ea
h 
ontaining a spe
i�
 shRNA, were digested with HpaI and Mlul restri
tionendonu
leases (New England Biolabs (NEB)) in a double digest to obtain shRNA sequen
es. To obtain theplasmid ba
kbone pHAGE was digested with the same 
ombination of enzymes. The ba
kbone is 
alled pHAGE-HpaI_MluI in the following. For details on restri
tion setups see table 2.6.Digestion rea
tions were heat ina
tivated at 65°C for 20 min and 
ooled on i
e for 10 min. A 5 µl aliquot of thepHAGE-HpaI_MluI digest was run on a 1% agarose gels to 
on�rm 
omplete digestion. A 10 µl aliquot of thepSM2 digest was run on a 1.5% gel.DephosphorylationThe pHAGE-HpaI_MluI plasmid ba
kbone was dephosphorylated by addition of 0.5 U CIP (
alf intestinalphosphatase; NEB) per 1 µg DNA and in
ubation at 37°C for 1.5 h.DNA pre
iptiationTo redu
e the volume pHAGE-HpaI-MluI was pre
ipitated by adding 10 µl 3M NaA
 and 250 µl EtOH to100 µl. The mixture was in
ubated at -20°C for at least 20 min and 
entrifuged at 4°C and 14000 rpm for 15min. The supernatant was taken o� and the pellet washed by addition of 500 µl EtOH and 
entrifugation at4°C and 14000 rpm for 10 min. The supernatant was taken o�, the pellet dried and resuspended in 30 µl TE-bu�er.Gel extra
tionThe dephosphorylated ve
tor ba
kbone was run on 1% agarose gels, the band at the expe
ted size ( around9kb) was 
ut out and gel extra
ted using the QIAqui
k Gel Extra
tion Kit (QIAGEN) a

ording to manufa
-turer´s instru
tions.Clean-up of digestions to obtain shRNAs was not required sin
e E.
oli taking up reannealed pSM2 plasmidswould not grow under the ampi
illin sele
tion whi
h was performed on ba
teria transformed with the pHAGE-HpaI-MluI � shRNA ligation (see below).Ligation5 µl of the pSM2 digestion rea
tion and 100 ng of the gel extra
ted, dephosphorylated pHAGE-HpaI-MluIba
kbone were mixed with 1µl T4-ligase bu�er, 1 µl T4-ligase (NEB) and �lled up with water to a 10 µl rea
tionvolume. Ligation was 
arried out at 16°C over night.Negative 
ontrols for ligation rea
tions 
ontained water instead of the pSM2 digestion rea
tion.Ba
teria transformed with the ligation produ
t were grown on LB-agar plates 
ontaining 100 µg/ml ampi-
illin, then in liquid 
ulture as des
ribed above. Plasmids were extra
ted as des
ribed above.Restri
tion analysisRestri
tion analysis on 400 ng aliquots of 
loned plasmids was performed with MluI and HpaI. Digests wererun on 1% agarose gels to 
on�rm su

essful ligations.Sequen
ing 16



Table 2.6: Setup of restri
tions for 
loning of pHAGE-shRNA plasmidsThe inserts of 
loned plasmids were Sanger sequen
ed by the University of She�eld Core Genomi
s Fa
ilitysequen
ing servi
e. The primer sequen
e used was 5'-CACGAGATGGCTGTGGCCAAG-3'. The resulting se-quen
e was aligned with the expe
ed sequen
e as provided by the Elledge group using the Needle-algorithmuso�ered by the EBI (http://www.ebi.a
.uk/Tools/emboss/align/index.html) (Needleman & Wuns
h 1970). If thesequen
es mat
hed over the 
omplete shRNA the sample was a

epted as 
loned 
orre
tly. The shRNAs target-ing the following genes were su

essfully 
loned: Edd1, Hda
3, Map3k1, Mbd2, Pkn2 and Map4k5. Even thoughfor all others ba
terial 
olonies were also obtained after transformation none of the plasmids sequen
ed so far
ontained the 
orre
t sequen
e.2.2.2.2 ES 
ell 
ultureMouse embryoni
 stem 
ells of the CCE line at around 50-70 passages were grown in ES-DMEM, whi
h 
ontainsper 500 ml:� 410 ml KO-DMEM (kno
k-out Dulbe

o's modi�ed Eagle's medium)(Gib
o)� 75 ml HyClone fetal bovine serum (FBS) (ES-quali�ed) (Thermo S
ienti�
)� 5 ml GlutaMAX 200 mM (Gib
o)� 5 ml Non-essential amino a
ids (Gib
o)� 2.5 ml Peni
illin/Streptomy
in (50 U/ml Pen, 50 ug/ml Strep)� 1 ml β-mer
aptoethanol 50 mM (Gib
o)� 50 µl leukemia inhibitory fa
tor (LIF) 50 mMCells were grown in in T25 
ell 
ulture �asks or 6-well plates (Greiner) in a volume of 5 or 1 ml ES-DMEMrespe
tively in a 37°C and 5% CO2 in
ubator. Cells were split (see below) about every other days and medium17




hanged every day in between. Cells were regularly 
he
ked for signs of di�erentiation or infe
tion under aninverted light mi
ros
ope.SplittingCells were split at about 80% 
on�uen
e: Medium was taken o�, 
ells were washed twi
e with phosphatebu�ered saline (PBS; pH 7.2; Gib
o) prewarmed to 37°C, trypsinized with about 100 (per well of a 6-well plate)to 300 µl (T25 �ask) 0.05% trypsin-EDTA (Invitrogen) for about 2 min at 37°C and resuspended in ES-DMEMby pipetting up and down several times. About 1/8 to 1/6 of this suspension was transferred to a new �ask /well that had been 
overed with 0.1% gelatin (Millipore) for at least 20 min and whi
h was removed immediatelybefore. Flasks / wells were �lled up to 5 / 1 ml with ES-DMEM and shaken gently.FreezingFor storage 
ells were trypsinized as des
ribed above, resuspended in about 3 ml ES-DMEM and 
entrifugedat 1000 rpm for 5 min. They were resuspended in 1ml pre-
ooled freezing medium (50% FBS, 40% ES-DMEM,10% DMSO) and frozen in pre-
ooled 
ryo-tubes at -80°C.ThawingFrozen 
ells were thawed qui
kly at 37°C and the 
ell suspension in 1 ml freezing medium transferred intoabout 5 ml KO-DMEM (Gib
o). Cells were 
entrifuged for 5 min at 1000 rpm, resuspended in an appropriateamount of ES-DMEM and plated on gelatinized 
ell 
ulture �asks / 6-well plates.2.2.2.3 Transfe
tionTransfe
tion of pa
kaging 
ell lineThe 293T pa
kaging (produ
er) 
ell line was transfe
ted with ve
tors en
oding virus parti
les and pHAGE-shRNA by lipofe
tion with the TransIT-293 Transfe
tion Reagent (Mirus) a

ording to manufa
turer´s instru
-tions. We aimed at a 
ell density of 70% before transfe
tion. We transfe
ted plasmids at ratios of pHAGE-shRNA: PM2 : Rev : Tat : VSVG = 10 : 1 : 1 : 1 : 2, where PM2, Rev, Tat and VSVG stand for a expression plasmids
oding for viral Gag-Pol, Rev, Tat and G-protein of the vesi
ular stomatitis virus (VSVG).Medium was 
hanged the next day to DMEM-F12 (Gib
o) with 10% FBS, peni
illin and streptomy
in. Oneday later if 
ells appeared to be red due to the expression of turboRFP and (nearly) 
on�uent apart fromsome plaques the supernatant was taken o� and used for transfe
tion of ES 
ells. The supernatant 
ontainedrepli
ation-in
ompetent lentivirus as des
ribed by Pan (H. Pan et al. 2008).Viral transfe
tion of embryoni
 stem 
ellsTo virally transfe
t ES 
ells the supernatant from produ
er 
ells was 
entrifuged at 1000 rpm for 3 min andthe supernatant taken to get rid of remaining 293T 
ells. 10 mg/ml polybrene was diluted 1:10 with PBS and 9µl of this were mixed with viral supernatant of one well of a 6-well plate (2 ml).ES 
ells were trypsinized and resuspended in ES-DMEM. 100 000 
ells (in 2 ml ES-DMEM) a

ording to 
ountingwith Coulter Counter Z1 (Be
kman Coulter) were mixed with the viral supernatant in a gelatinized 6-well plate.The plate was 
entrifuged at 2000 rpm at 25°C for 50 min. Cells were in
ubated at 37°C over night. Then themedium was 
hanged to ES-DMEM the next day and to ES-DMEM with 2 mg/ml puromy
in the day after.Cells were then 
ultured as des
ribed keeping them on ES-DMEM with 2 mg/ml puromy
in for about one weektill su�
ient �uores
en
e intensities were rea
hed.About 3 days after the end of antibioti
 sele
tion transfe
ted 
ells were mixed with untransfe
ted ones as de-s
ribed below. The 3 day interval was 
hosen to on the one hand allow 
ells to re
over from the stress indu
edby puromy
in sele
tion, but on the other hand to not allow too mu
h loss of �uores
en
e by either silen
ing ofthe transgene or outgrowth of untransfe
ted 
ells remaining after sele
tion. The extended 
ulturing time aftertransfe
tion is also a means not to dete
t shRNA fun
tion that renders 
ells in-viable instead of su
h slowingtheir proliferation in the following assay.Di�erent 
ell lines were 
reated this way ea
h 
ontaining one kind of pHAGE-shRNA ve
tor for all 
andidateshRNAs we su

essfully 
loned: Edd1, Hda
3, Map3k1, Mbd2, Pkn2 and Map4k5 (see �2.2.2.1 Cloning of plas-mids�). As a negative 
ontrol pHAGE-FFL was used sin
e shRNA targeting FFL does not have a target inmurine 
ells. As positive 
ontrols we used pHAGE-O
t4 and pHAGE-Psma1 whi
h had previously been shownin our lab to signi�
antly redu
e stem 
ell proliferation.18



2.2.2.4 Proliferation assay by �ow 
ytometrySin
e splitting 
omes inherently with a relatively high error in the number of viable 
ells transferred to the newplate we de
ided to use a di�erent assay whi
h employs untransfe
ted 
ells as an internal standard and thereforeallows splitting. This method is supposed to be robust to slightly di�erent treatment of samples, for examplethat plating 
ells at di�erent densities may lead to di�erent di�erentiation rates of stem 
ells. When mixingtransfe
ted 
ells with untransfe
ted 
ells the di�erentiation whi
h is not due to the e�e
t of the siRNA is ex-pe
ted to be the same for both and proliferation ratios between them are therefore 
omparable even if di�erentrepli
ates were not plated at exa
tly the same density. Also the ratio of 
ells dying due to the splitting pro
edureis expe
ted to be the same for both.To use untransfe
ted 
ells as an internal standard is possible be
ause the plasmid 
ontaining the shRNA also
ontains a gene for turboRFP whi
h allows to distinguish transfe
ted from untransfe
ted 
ells. Furthermorethe shRNA and the �uores
ent protein are expressed on the same trans
ript so that silen
ing of the shRNAwould automati
ally lead to loss of the �uores
en
e even though the kineti
s of loss of the kno
k-down e�e
t and�uores
en
e might be somewhat di�erent.Mixing of 
ellsTo 
ompare growth rates of transfe
ted 
ells to that of an internal standard of untransfe
ted 
ells we aimedat mixing them after trypsinization and resuspension at a ratio of 1:1. We aimed at obtaining a mixture ofabout 700 000 
ells. The 
on
entrations of 
ells in the resuspensions were determined by 
ounting with a CoulterCounter Z1 (Be
kman Coulter). For this resuspended 
ells were diluted 1:20 in PBS. The lower threshold forparti
le size was set to 0.8 µm. Mixtures were obtained in tripli
ate.Flow 
ytometryFor �ow 
ytometry 
ells were trypsinized as des
ribed and resuspended in about 2 ml of KO-DMEM. Toobtain a single 
ell suspension 
ells were pipetted up and down vigorously several times. Flow 
ytometry wasdone on FACSCALIBUR (Be
ton, Di
kinson (BD)) 
ontrolled by the Cell Quest Pro software. In a �rst runa side s
atter threshold separating presumably inta
t 
ells from debris was identi�ed and the same thresholdapplied in all further runs. 10000 
ells above this threshold were measured per sample. The parameters sides
atter (SSC), forward s
atter (FSC) and FL2 �uores
en
e (i.e. red �uores
en
e) were re
orded. Before and afterea
h run the instrument was �ushed with FACS rinse (BD) and water.Flow 
ytometry data were analysed with WinMDI version 2.9. On a dot plot of SSC vs. FSC the 
ell population
ontaining presumed living, single 
ells and ex
luding dead 
ells and debris was gated. The same gate was appliedfor di�erent samples measured on the same day, but the best gate was sele
ted at every day of measurement sothat they might di�er slightly between time points. For the gated 
ells on a histogram displaying 
ell 
ountsvs. �uores
en
e intensity levels positive and negative populations were separated at the minimum between bothpeaks. The intensity value for the border between the peaks was 
hosen on
e and kept for all further analysesand always 
oin
ided well with the minimum between the peaks. The per
entage of positive to negative 
ells wasgiven ba
k by the program.2.2.2.5 Proliferation assay by �uores
en
e mi
ros
opyDespite the la
k of a proper negative 
ontrol (see �2.2.3.1 Flow 
ytometry results�) �ow 
ytometry showed amu
h stronger de
rease of �uores
ent 
ells in the 
ell line transfe
ted with pHAGE-Edd1 than in all other 
elllines. Therefore the �uores
en
e level of 
ells transfe
ted with pHAGE-Edd1 and pHAGE-FFL was observedover two weeks by S. Silva of our group using �uores
en
e mi
ros
opy.2.2.3 Results2.2.3.1 Flow 
ytometry resultsResults from one-
olor �ow 
ytometry obtained from mixes of 
ell lines with pHAGE-shRNA plasmids anduntransfe
ted 
ells were in
on
lusive. Cells with shRNAs targeting O
t4 and Psma1, whi
h were expe
ted tohave a strongly negative e�e
t on stem 
ell proliferation did not show any signi�
ant di�eren
e to other lines inmany o

asions. This 
ould possibly be attributed to the fa
t that high transformation levels were never rea
hedfor plasmids 
oding for these shRNAs at the time of mixing. This is probably due to the averse e�e
ts of theseshRNAs on the 
ells. On the other hand we noted 
hanges of the �uores
en
e ratio of lines transfe
ted with19



Figure 2.4: Example illustrating the trend of in
reased proliferation rate in the pHAGE-FFL line. The ratioof red (transfe
ted) to non-red (untransfe
ted) 
ells is depi
ted on the y-axis. Di�erent 
olors indi
ate di�erentrepli
ates. In another experiment the same line showed a trend towards a de
reased proliferation rate.pHAGE-FFL for whi
h no e�e
t was expe
ted. These 
hanges appeared to be not random �u
tuations, but ade
rease of �uores
en
e in one, an in
rease over time (p-value for null hypothesis that no 
hange: 0.05) in anotherexperiment (see �g. 2.4). A de
rease of �uores
en
e 
ould be explained by silen
ing of the turboRFP gene andby general negative e�e
ts of transformation and an a
tive RNAi ma
hinery on proliferation rate. However wedid not �nd a reasonable explanation why proliferation should be in
reased in the transfe
ted 
ells.One 
on
ern about this approa
h was that untransfe
ted 
ells 
ould not be distinguished from transfe
ted 
ellsthat silen
ed the turboRFP transgene. Furthermore 
omparing �uores
ent to non-�uores
ent 
ells is sensitive topossible day-to-day �u
tuations in the sensitivity of the �ow 
ytometer.Therefore repla
ing the turboRFP gene in pHAGE-FFL by GFP and employing 
ells transfe
ted with this ve
toras new internal standard might solve this problem and allow 
omparing �uores
ent with �uores
ent 
ells. Mixingthe 
andidate lines with a green �uores
ent line instead of a untransfe
ted line has the advantage, that the samee�e
t of the transformation pro
ess and an a
tive RNAi ma
hinery is expe
ted in both lines in the mixture.Further if day-to-day �u
tuations in the sensitivity of the �ow 
ytometer are laser (
olor) independent thesewould a�e
t both 
ell lines in the same way. Therefore the ratio between the number red and green �uores
ent
ells should stay 
onstant in 
ases where the shRNAs in the 
orresponding ve
tors have no or both the samee�e
t on proliferation.This kind of experiments were not �nished at the time of this writing.2.2.3.2 Fluores
en
e mi
ros
opy resultsDespite the la
k of a proper negative 
ontrol �ow 
ytometry showed a mu
h stronger de
rease of �uores
ent 
ellsin the 
ell line transfe
ted with pHAGE-Edd1 than in all other 
ell lines (see �g. 2.5). This �nding 
ould beveri�ed by S. Silva of our group by following the �uores
en
e loss of the pHAGE-Edd1 line 
ompared to the20



Figure 2.5: Fluores
en
e ratio (log2-transformed) of Edd1 (blue) and FFL (bla
k) 
ell lines over time; di�erentmeasurement of the FFL line than shown in �g. 2.4; di�erent symbols represent di�erent repli
atespHAGE-FFL line using �uores
en
e mi
ros
opy (unpulished).2.3 SummaryFrom a shRNA library s
reen we 
ould identify 23 / 60 shRNA genes for whi
h ln(Er

Eg
) was above mean + STDEV/ below mean - STDEV over all shRNAs for 5 of 6 repli
ates, where Eg is the amount of shRNA 
oding DNAin the population at the beginning and Er at the end of two weeks of growth a

ording to mi
roarray analysis.This 
orresponds to FDRs < 0.05. By their asso
iation to (enri
hed) fun
tional 
ategories, the number of probesby whi
h they were found and their degree in the network of all genes targeted by these 83 shRNA we sele
ted13 
andidates for whi
h to validate their role in stem 
ell proliferation.Unfortunately further work is still ne
essary in establishing a �ow 
ytometry based assay in whi
h the �uores
entto non-�uores
ent 
ell ratio of pHAGE-FFL transfe
ted and untransfe
ted 
ells stays at a stable level. Onepossible way to improve the 
ontrol may be the use of 
ells transfe
ted with pHAGE-GFP-FFL as internalstandard instead of untransfe
ted 
ells.The dete
tion of signi�
antly higher loss of �uores
en
e in pHAGE-Edd1 than in pHAGE-FFL transfe
ted 
ellssimply by �uores
en
e mi
ros
opy suggests su

ess in sele
ting at least one or some promising 
andidates.
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Chapter 3Meta-analysis of 
alori
 restri
tiondatasets3.1 Introdu
tion3.1.1 The potential of 
alori
 restri
tion to delay agingCalori
 restri
tion (CR; also 
alled 
alorie restri
tion or dietary restri
tion) is de�ned as the redu
tion of 
alori
intake below ad libitum level without malnutrition (ad libitum: an organism eats as mu
h as it wants). It hasbeen des
ribed to extend (mean and median) life-span in a wide range of organisms from yeast (Lin et al. 2002)to C. elegans (Klass 1977) and D.melanogaster (Loeb, & Northrop 1917) to rodents (M
Cay et al. 1989) andsome dog breeds (Kealy et al. 2002). The length by whi
h life-span 
an be extended by CR di�ers betweenorganisms: 3-fold extension was found in yeast, 2-3 fold in worms, 2-fold in �ies and still 30-60% in rodents.In general life-span extension is more pronoun
ed in females (Fontana et al. 2010). Studies on primates arestill ongoing, but intermediary results from a study on rhesus monkeys indi
ated that they lived on average 32years on CR while 
ontrols lived 25 years (Bodkin et al. 2003). The degree of food restri
tion in CR studies ofmammals is normally around 10-50% below ad libitum level (Fontana et al. 2010).CR is the only known non-geneti
 intervention that robustly extends life-span in mammals (Bishop & Guarente2007a). In addition to life-span extension it has been shown to delay signs of aging and the onset and progressionof age-related diseases like 
ardiovas
ular disease and stroke (Mattson & Wan 2005), 
an
er (Klebanov 2007),neurodegenerative diseases (Maswood et al. 2004) and diabetes (Anson et al. 2003) as well as to redu
e sar
openiaand grey matter atrophy of the brain (Anderson et al. 2009) (Colman et al. 2009). One study reported thataround 30% of rats on CR did not show any obvious organ pathology at the time of death 
ompared to 6% ofmi
e fed ad libitum (Shimokawa et al. 1993). 1Notably it has been shown that 
alori
 restri
tion exerts its bene�
ial e�e
ts even in older animals (Spindler2005) (Rae 2004). E�e
ts on life-span in Drosophila seem to o

ur immediately after the swit
h to the low-
alorie dietary regime (Mair & Dillin 2008) (Giannakou et al. 2008).Despite the e�e
t of CR in many spe
ies it does not appear to extend the lifespan of the house�y (Cooper etal. 2004). It was also reported that no aging delaying e�e
t of CR was found in some mouse strains (Forsteret al. 2003). In parti
ular, CR does not appear to extend average lifespan in wild-derived mi
e, even though itprote
ts against 
an
er to a 
ertain degree as observed in other mouse strains (Harper et al. 2006).A possible explanation for the life extending e�e
t of CR in terms of evolution is that it may be preferablefor animals under 
onditions of limited food to delay growth and reprodu
tion and enter a stage of low energyrequirement (like the Dauer stage in C.elegans) or to shift energy allo
ation towards body maintenan
e. Asdetailed below there is growing eviden
e for 
onserved pathways working as anti-aging systems. Not surprisinglyredu
ed fertility was observed in animals under CR (Fontana et al. 2010).Other frequently observed side e�e
t of CR are de
reased wound healing (Reed et al. 1996) and immune fun
tionsrendering CR animals more sus
eptible to infe
tions, although the age-dependent de
ay of some immune fun
tionsappears to be slowed down by CR (Kristan 2008).1Side note: Curiously fasting was shown to redu
e the adverse e�e
ts of 
hemotherapy, seemingly by 
onferring in
reased stressresistan
e to normal 
ells while not prote
ting 
an
er 
ells (Ra�aghello et al. 2008) (Safdie et al. 2009)22



Alternative dietary regiments ex
ept redu
ing overall food intake without malnutrition have been tested in theirpotential to delay aging and extend life-span. One of these is protein restri
tion, where a 
ertain amount ofthe protein 
ontent of the normal diet is repla
ed with 
arbohydrates and fat, i.e. not altering the 
alorie level(López-Torres & Barja 2008). Di�erent studies on protein restri
tion obtained di�erent results as to its ability toextend life-span (Goodri
k 1978) (Leto et al. 1976) (Miller & Payne 1968) (Min & Tatar 2006) (Yu et al. 1985).The majority of these studies indi
ated the existen
e of a life-span extending e�e
t however another study evenshowed an in
rease in mortality under this diet (Ross & Bras 1973). Restri
tions in only individual amino-a
idslike tryptophan (Segall & Timiras 1976) or methionine (Orentrei
h et al. 1993) are also tested.Some studies in Drosophila and C. elegans demonstrated that the smell of food alone 
an redu
e the e�e
t ofCR (Smith et al. 2008) (Libert et al. 2007).Another dietary setup involving the redu
tion of 
alories is intermittent fasting. In 
ontrast to 
lassi
al CR wherethe amount of 
alories is 
ontinuously low here periods of low 
alori
 diet alter with periods of ad libitum intake.In studies on intermittent fasting the degree of restri
tion is often similar to that in CR and time-spans of fastingand ad libitum feeding are similar, normally in the range of days to a few weeks. Even though studies reportedredu
ed tumor formation in mouse tumor-models (Cleary et al. 2007) (Bonorden et al. 2009) and health bene�tsin humans (Halberg et al. 2005) (Heilbronn et al. 2005) e�e
ts on life-span are still un
lear. These alternativedietary regiments will however not be the subje
t of this study.A number of 
ompounds are 
urrently studied in the hope to �nd CR-mimeti
s, drugs that invoke similar e�e
tsas CR. Among these are 2-deoxy-d-glu
ose (Ingram et al. 2006), rapamy
in (Harrison et al. 2009), resveratrol(Howitz et al. 2003) (Wood et al. 2004) and the diabetes drug metformin (Anisimov et al. 2003).3.1.1.1 Physiologi
al 
hanges indu
ed by CRCR indu
es alterations in the physiology of many organ systems in mammals however it is not 
lear whi
h of these
hanges are 
ausal for the e�e
t of CR (Koubova & Guarente 2003). As expe
ted one important physiologi
al
hange asso
iated with CR is high insulin-sensitivity, whi
h is parti
ularly noteworthy sin
e aging is generallya

ompanied by elevated insulin-resistan
e (Anderson & Weindru
h 2010).The redu
tion of body weight under CR is usually proportional to the level of CR (i.e. 30% food restri
tion leadsto ∼30% weight loss). The tissue displaying most loss of weight is normally white adipose tissue (Anderson &Weindru
h 2010). This is a

ompanied by size-redu
tion of adipo
ytes in mi
e. Due to the negative 
orrelationof fat mass to adipone
tin levels the level of this hormone rises during CR in the adipose tissue and so does itsserum 
on
entration (Zhu et al. 2004), espe
ially of the high mole
ular weight form (Shinmura et al. 2007). Thishormonal 
hange 
omes along with in
reased fatty a
id oxidation in fat tissue and redu
ed lipid a

umulation inother tissues (Zhu et al. 2007). Further positive e�e
ts of adipone
tin, in parti
ular in mouse models for diabetesare known, like in
reased insulin-sensitivity and redu
ed hypergly
emia, hypertrigly
eridemia and adipose tissuema
rophage levels (Wang et al. 2006).Further hormonal 
hanges in
lude the redu
tion of triiodothyronine, testosterone and insulin. Redu
tions ofblood 
holesterol, C-rea
tive protein, blood pressure and intima-media thi
kness of the 
arotid arteries, whi
hare risk fa
tors for 
ardiovas
ular disease were likewise observed (Fontana & Klein 2007) (Fontana et al. 2004).An overview of tissue-spe
i�
 
hanges with CR is given in table 3.1.A study on Rhesus monkey mus
le tissue using immunogold ele
tron mi
ros
opy and bio
hemi
al assaysreported signi�
antly redu
ed oxidative damage (redu
ed 4-hydroxy-2-nonenal-, nitrotyrosine- and 
arbonyl-modi�ed proteins) in the CR group (Zainal et al. 2000). A redu
tion in in�ammation (Anderson et al. 2009)and 
ore body temperature (Mattison et al. 2003) was observed as well.Another physiologi
al e�e
t of CR observed in rats is the redu
ed a

umulation of advan
ed gly
ation endprodu
ts(AGEs) (Teillet et al. 2000). AGEs are 
reated by the 
ombination of glu
ose and proteins and a

umulatingwith age (Bunn et al. 1978). Notably another study found that a diet enri
hed in preformed AGEs abolishedthe bene�
ial e�e
ts of CR (Cai et al. 2008).3.1.1.2 The geneti
 basis of CRLittle is understood by now about the 
hanges on mole
ular levels going on during CR. However some �ndingsin the last years are starting to shed light on its me
hanisms.A way to gain knowledge about whi
h pro
esses o

urring during aging on the mole
ular level are prevented or
ountera
ted by CR is to test whi
h gene expression 
hanges with aging in ad libitum (AL) animals are not found23



Table 3.1: E�e
ts of CR on individual tissues and the whole mammalian organism. From Bishop, 2007.under CR.It is not yet 
lear if CR a
ts by reversing age asso
iated trans
riptional 
hanges, sin
e some studies reportedglobal or partial prevention of age-related 
hanges by CR, while others did not �nd a signi�
ant su
h e�e
t (Leeet al. 1999) (Kayo et al. 2001) (Dhahbi et al. 2006) (Park & Prolla 2005). It seems however save to assume thatCR at least 
ountera
ts 
hanges in some aging related trans
riptional modules (Swindell 2009). In parti
ularalterations in the expression of 
omponents of the ele
tron transport 
hain, whi
h in an a
ross-spe
ies study wasfound to be the only age-related alteration o

urring in �ies, worms, mi
e and humans (Zahn et al. 2007), areopposed by CR (Anderson & Weindru
h 2007). It is generally important to note that (mito
hondrial) energymetabolism is dysregulated with age and that energy metabolism pathways are a�e
ted by the alterations dueto CR, espe
ially in heart, skeletal mus
le and white adipose tissue in mammals.It was observed that respiratory 
apa
ity per isolated mito
hondrion is lower in mito
hondria of older mi
e (18vs. 3 months old) and -probably as a 
ompensatory me
hanism- the number of mito
hondria is in
reased in olderanimals (observed in skeletal mus
le) (Figueiredo et al. 2009). Most likely this is 
losely linked with elevatedlevels of oxidative damage that may be a 
ause of the aging phenotype.An alteration of metaboli
 state is invoked by CR whi
h involves a shift from fat anabolism to 
atabolismand 
hanges in the produ
tion of rea
tive oxygen spe
ies (ROS). Notably un
oupling protein 2 UCP3 whi
h ispresumably important for lowering ROS levels is overexpressed in CR (Asami et al. 2008).A 
ommon regulatory system for the expression of un
oupling proteins, elements of fatty a
id metabolism andtransport (e.g. by the transporter CPT1) may be provided by AMPK-signalling ((Anderson & Weindru
h 2010);see �3.1.1.2� and �3.1.1.2�).Another 
ommon way of dete
ting genes related to the life-span prolonging e�e
t of CR is by sear
hing for genesthat alter (in
rease or de
rease) this e�e
t when mutated, deleted, kno
ked-down or overexpressed.In this way many proteins that were already known to extend life-span when altered in their expression levelor fun
tion were linked to CR. In parti
ular de
reased insulin / insulin-like signalling, de
reased TOR and /or in
reased AMPK and in
reased a
tivity of sirtuins were among the geneti
 alterations to extend life-span(Bishop & Guarente 2007a). Eviden
e of relation of these and some other (mainly nutrient sensing) pathways toCR in di�erent model organisms will be dis
ussed, starting with yeast and then examining in how far homologousme
hanisms in higher animals exist.3.1.1.2.1 Genes involved in CR mediated life-span extension in yeastLife-span in yeast 
an be measured in two di�erent ways: repli
ative life-span is the number of daughter 
ellsa mother 
ell 
an produ
e before senes
ing and 
hronologi
al life-span is the duration of viability of stationaryphase 
ells. It has been suggested that repli
ative lifespan is a better model of ageing for mitoti
ally a
tive animal2un
oupling proteins are proteins that lower the proton gradient over the inner mito
hondrial membrane24




ells and that 
hronologi
al lifespan is a better model for postmitoti
 animal 
ells (Bishop & Guarente 2007a).Both moderate (0.5% glu
ose medium) and severe CR (0.05% glu
ose) in
rease repli
ative life-span in yeast.In yeast moderate CR (0.5% glu
ose instead of 2%) has been shown to in
rease repli
ative life-span through apathway dependent on shifting metabolism from anaerobe to aerobi
 (Lin et al. 2002). Contributing eviden
e tothis �nding is the fa
t that deletion of 
yto
hrome C1 (CYT1 ) or LAT1 (a pyruvate dehydrogenase subunit) whi
hin both 
ases suppresses respiration abolishes the life-span in
rease with moderate CR. In addition overexpressionof LAT1 in
reases yeast life-span under 2%, but not under 0.5% glu
ose 
onditions. The anaerobe to aerobi
shift in
reases the NAD+/NADH ratio whi
h has been shown to be ne
essary and su�
ient for an in
reasein life-span. Interestingly high levels of NAD+ a
tivate the (histone) dea
etylase SIR2 and its homologues,whi
h are known to drive life-span extension (Lin et al. 2004). If however the triple deletion of SIR2 and itshomologues HST1 and HST2 is su�
ient to suppresses longevity 
aused by moderate CR is still a matter ofdebate (Longo & Kennedy 2006). In yeast re
ombination between rDNA repeats 
an lead to ex
ision of self-repli
ating extra
hromosomal rDNA 
ir
les, whi
h a

umulate in the aging mother-
ell, a pro
ess that is toxi
for the 
ells (Sin
lair & Guarente 1997). The ability of Sir2 to suppress re
ombination (by leading to higherdensity 
hromatin pa
king) and therefore limiting this pro
ess is one important me
hanism by whi
h it extendslife-span (Lin et al. 2000). Even though this pro
ess was not found to o

ur in other organisms Sir2 homologuesare still linked to longevity in higher organisms (Guarente 2005).The me
hanism of severe (0.05% glu
ose) CR seems to be distin
t from that of moderate CR and has beenreported to neither involve the ele
tron transport 
hain nor SIR2 or its homologues (Tsu
hiya et al. 2006).Unlike for moderate CR SIR2 deletion does not seem to abolish the e�e
ts of severe CR (Lamming et al. 2005),but on the 
ontrary to even enhan
e them (Kaeberlein et al. 2004) and severe CR does not invoke su
h a strongin
rease in the NAD+/NADH ratio (Easlon et al. 2007).Instead the Akt homologue SCH9 and TOR1 have been proposed to be involved in the pro
ess, sin
e theirdeletion leads to life-span extension that 
annot further be improved by severe CR (Kaeberlein et al. 2005).Both proteins a
t in the S. 
ervisiae amino a
id sensing pathway and trans
ription fa
tor Gis1 was reportedto be essential for the life-span extension by redu
ed Tor1-signalling (Wei et al. 2009) (Fabrizio et al. 2001).In general mutations a
tivating the severe CR response also prolong 
hronologi
al life-span in stationary yeast
ells with no a

ess to nutrients, whi
h is not true for genes extending repli
ative life-span under moderate CR(Powers et al. 2006).It is interesting that the in
rease of life-span both under moderate and severe CR seems to require the pyruvatedehydrogenase subunit Lat1 espe
ially sin
e a fun
tional ele
tron transport 
hain is not required in severe CR(Easlon et al. 2007).It is not yet 
lear if indeed two di�erent pathways are underlying moderate and severe CR in yeast. If so, thefa
t that worms and mi
e under CR also show in
reased respiration (Nisoli et al. 2005) might indi
ate that theme
hanism of moderate CR in yeast more 
losely resembles that in higher organisms, whereas severe CR mightrather resemble survival me
hanisms triggered by famine (Bishop & Guarente 2007a).Another nutrient sensing pathway linked to life-span regulation in several studies is the Ras-AC-PKA pathway(Fabrizio et al. 2001) (Medvedik et al. 2007). This pathway is largely homologous to the insulin / insulin-likegrowth fa
tor signalling pathway in higher organisms (Fontana et al. 2010).Downstream e�e
ts of redu
ed a
tivity of the Tor1/S
h9 and the Ras-AC-PKA are the a
tivation of oxidativestress prote
tive enzymes like Mn-SOD (superoxide dismutase) via trans
ription fa
tors as Gis1 (Wei et al.2008). This would suggest an easy explanation for the anti-aging e�e
t of redu
ed signalling via these pathways,espe
ially sin
e it was found that superoxide levels rise during yeast aging. However overexpression of bothsuperoxide dismutases or 
atalase only lead to a minor in
rease in life-span (Fabrizio et al. 2001) (Fabrizio et al.2005), so that their in
reased a
tivity is most likely only one e�e
t of CR.Another downstream e�e
t of redu
ed signalling via both pathways mentioned is the expression of PNC1, whi
hby in
reasing NAD+/NADH and redu
ing ni
otinamide in turn a
tivates Sir2 (Medvedik et al. 2007) (Kaeberleinet al. 2007).3.1.1.2.2 Genes involved in CR mediated life-span extension in metazoaProbably the most important genes asso
iated with life-span in C.elegans are genes of the insulin signallingpathway, espe
ially the insulin re
eptor homologue daf-2 and FOXO homologue daf-16 a
ting downstream inthis pathway. Mutants in daf-2 are well-established to be long-lived, however this longevity is abolished in doube-mutants with daf-16 (Kenyon et al. 1993). The fa
t that CR was shown to in
rease life-span in daf-16 mutantsto a similar extent than in wild type worms suggests that CR does not a
t via the insulin signalling pathway25



in worms (Houthoofd et al. 2003) (Lakowski & Hekimi 1998). However a more re
ent study assaying di�erentCR-regiments 
on
luded that daf-16 is ne
essary in some and not in others (Greer & Brunet 2009). Interestinglyit is ne
essary for su
h regiments in whi
h also AMPK is required. However deletion of the homologous proteinin Drosophila, dFOXO, shortens life-span and these �ies 
ontinue to respond to CR (Giannakou et al. 2008) (Minet al. 2008). Another forkhead family trans
ription fa
tor, PHA-4, has been found to be required for life-spanextension by CR in C. elegans (Panowski et al. 2007). This gene is an orthologue of the mammalian FOXAgenes that are involved in the produ
tion of glu
agon and in glu
oneogenesis during fasting.Insulin / insulin-like growth fa
tor signalling was also found to 
ontrol life-span in �ies and mammals (Kenyon2005). The signalling fa
tors in Drosophila are 
alled Drosophila insulin like peptides (dilps) and the geneexpression level of one of the seven known dilps, dilp5, 
an be modulated by diet (Min et al. 2008). The 
hi
ogene is a homologue to insulin re
eptor substrate genes and the 
hi
o1 mutation both in
reases life-span andredu
es insulin signalling (Clan
y et al. 2001). CR was found to gradually in
rease life-span with in
reasinglevels of food restri
tion up to a 
ertain point where it starts to de
rease probably due to starvation. Observingthis dose-response 
urve in 
hi
o1 mutants showed that it was shifted towards higher nutrient levels 
omparedto the wild type (Clan
y et al. 2002). Therefore an overlap between the me
hanisms of CR and redu
ed insulinsignalling was suggested, even though a CR response that is normal apart for the mentioned shift in a mutantba
kground would argue against the role of the mutated gene in CR (Bishop & Guarente 2007a).Experimental results in mi
e of testing the link between CR and the growth hormone (GH) � insulin-like growthfa
tor 1 (IGF1) axis, disruption of whi
h leads to in
reased life-span (Flurkey et al. 2001), are 
onfusing. On theone hand mi
e with a redu
ed produ
tion of GH due to a mutation in Prop1 show an in
reased life-span (Brown-Borg et al. 1996) that 
ould be further prolonged by CR (Bartke et al. 2001), on the other hand longevitydue to disruption of the GH re
eptor (Cos
higano et al. 2000) was not further extended by CR (Bonkowskiet al. 2006). The �rst �nding argues against, the se
ond for an overlap between genes involved in the CRresponse and the GH-IGF1 axis. A de
rease in GH was linked to elevated levels of antioxidant enzymes andstress response (Brown-Borg 2007). It was also found that IGF1 levels in the blood were lowered by CR in mi
e(18% restri
tion, 24 weeks) (Hu�man et al. 2008), whereas no 
hanges were dete
ted in humans (20%, 1 year)unless dietary protein levels were strongly redu
ed (Fontana et al. 2008).Heterozygous mutations in IGF1-re
eptor (Suh et al. 2008) and polymorphisms related to redu
ed plasma IGF1levels (Bonafè et al. 2003) are overrepresented among long-lived humans. Also human geneti
 variants of daf-16homologous FOXO genes were also asso
iated with life-span (Kuningas et al. 2007).Another regulatory system most likely involved in CR-dependent life-span extension is built around AMPK. Avery simpli�ed view of this network is shown in �g. 3.1.AMPK, a important protein for sensing energy levels in worms and a homologue in yeast have been shown tobe impli
ated in longevity (Apfeld et al. 2004) (Ashra� et al. 2000). Deletion of a AMPK subunit gene (aak-2 )in worms did not alter the e�e
t of CR on life-span (Curtis et al. 2006), whi
h however may be attributed toredundan
y of this protein.AMPK dire
tly a
tivates PGC-1α by phosphorylation and also through its indire
t positive in�uen
e on theNAD+/NADH ratio whi
h in turn enhan
es the a
tivity of SIRT1, the enzyme that dea
etylates and therebya
tivates PGC-1α (Cantó et al. 2009). PGC-1α , a master-regulator of nu
lear en
oded mito
hondrial genes,itself was found to be upregulated with CR in skeletal mus
le (Civitarese et al. 2007). Overexpression of PGC-1αalso promotes signalling through HIF-1α (O'Hagan et al. 2009) whi
h is downregulated in adipose tissue of mi
eupon CR (Yoshikazu Higami et al. 2006) and a C.elegans homologue of whi
h is asso
iated with CR and longevity(Chen et al. 2009).AMPK 
an also a
tivate eNOS in response to adipone
tin (Kondo et al. 2009) whi
h is impli
ated in mito
hondrialbiogenesis and SIRT1 expression in CR. Consistently eNOS kno
k-out mi
e were found not to undergo the normalmetaboli
 shift asso
iated with CR (Nisoli et al. 2005) and the life extending e�e
t of CR is abolished in mi
ein whi
h eNOS is inhibited (whi
h also prevents a
tivation of SIRT1). SIRT1 in turn is an a
tivator of PGC-1α,whi
h is 
onsistent with the reported upregulation of PGC-1α 
oin
iding with the upregulation of eNOS uponCR in many tissues (Nisoli et al. 2005).NAMPT is a protein involved in the depletion of ni
otinamide and therefore similar to yeast PNC1. As PNC1it is expe
ted to favour a
tivation of SIRT1 by 
hanging the NAD+/NADH ratio and de
reasing ni
otinamidelevels.Homologues of yeast SIR2 also play roles in CR in metazoa. Sir2 in Drosophila is required for longevity 
ausedby CR (Rogina & Helfand 2004) and Sirt1 in mammals for the in
rease in spontaneous movement observed inanimals under CR, suggesting a neuronal impli
ation (Chen et al. 2005). Kno
k-out mi
e of Sirt1 are short lived26



Figure 3.1: Simplisti
 model of the AMPK signalling pathway with a 
entral role in CR; adapted from Anderson& Weindru
h, 2010; A
: a
etyl group; numbers indi
ate referen
es for the intera
tion: 1: Civitarese, et al. 2006,2: Canto, et al. 2009, 3: Andrews, et al. 2008, 4: Kondo, et al. 2009, 5: Nisoli, et al. 2005, 6: Gwinn, et al.2008, 7: Anderson & Weindru
h, 2010
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and do not respond to CR (Boily et al. 2008), are however of limited informative value due to the vast numberof pathologies 
aused by this kno
k-out. The levels of SIRT1 are in
reased in mouse fat tissue during CR (Cohenet al. 2004), but there is disagreement on the impa
t of CR on SIRT1 in liver and skeletal mus
le (Chen et al.2008) (Cohen et al. 2004) (Shinmura et al. 2008). SIRT1 a
tivation in mi
e on a diet ri
h in fat supports lipidoxidation and the expression of genes of the ele
tron transport 
hain (Feige et al. 2008).Even though the impli
ation of sir2-1, the only of four SIR2 homologues in worms tested for its role in CR,remains 
ontroversial (Lamming et al. 2005) sir2 homologues were reported as life-span regulators also ininvertebrates (Longo & Kennedy 2006)(Tissenbaum & Guarente 2001).AMPK, a sensor of 
ellular energy levels, inhibits mTOR (Complex I) via TSC2 or raptor (Gwinn et al. 2008).It should however be emphasized that mTOR also re
eives inputs from the insulin / Igf-pathway. As in yeastredu
ed TOR-signalling leads to an extension in life-span of worms and �ies that 
annot be further enhan
ed byCR so that an overlap in the me
hanisms is likely (Vellai et al. 2003). A hint towards the me
hanism of life-spanextension by redu
tion in TOR-signalling may be that it de
reases ribosomal biogenesis. This is interesting, sin
elower expression of 
ertain ribosomal genes is asso
iated with longevity in yeast and worms (M. Kaeberlein et al.2005). Disruption of the mTOR pathway in mi
e leads to longevity asso
iated with redu
ed insulin resistan
eand age-related pathologies (Bartke 2005) (Harrison et al. 2009) (Selman et al. 2009). However sin
e in mi
ethe in
reased expression of genes of the ele
tron transport 
hain, as observed in skeletal mus
le in CR, appearsunlikely when mTOR a
tivity is redu
ed Anderson proposed di�erent tissue-spe
i�
 e�e
ts of CR on mTOR, withde
reased signalling in liver, but not some other tissues. Downstream mTOR positively regulates the expressionof PGC-1α (Anderson & Weindru
h 2010) and importantly it inhibits autophagy. Autophagy is the pro
essof digestion of 
ellular 
omponents by so 
alled phago-lysosomes and was reported to be ne
essary for life-spanextension (Hansen et al. 2008). Other targets indire
tly trans
riptonally regulated by mTOR-signalling in mouseare heat sho
k proteins, proteins involved in ER-stress and apoptosis and in xenobioti
s metabolism (Amador-Noguez et al. 2007). The detoxi�
ation pro
ess of xenobioti
s be
ame a target of CR related resear
h after it wasdis
overed that long-lived �y, worm and mouse mutants in the insulin / IGF-signalling showed altered expressionof genes of this system and proved largely resistant to xenobioti
s. Furthermore upregulation of trans
riptionfa
tors involved in xenobioti
s metabolism invoked longevity of worms and �ies (Piper et al. 2008) (Tullet et al.2008) (M
Elwee et al. 2007).A further important 
hange with age that is 
ountera
ted by CR is the in
reased a
tivity of the tumor-suppressorp53 (Edwards et al. 2007). Even though it is not 
lear how this relates to CR and aging, a link between p53and mito
hondrial metabolism is provided by the fa
t that de�
ien
y of p53 in mi
e leads to a redu
tion inmito
hondrial 
ontent, a swit
h from respiration to anaerobi
 metabolism and in
reased ROS levels (Matoba etal. 2006) (Saleem et al. 2009).3.1.1.2.3 The role of neurons in CRSome 
urious re
ent �ndings have linked the life-span extending CR response to neurons in invertebrates: InDrosophila and Caenorhabditis elegans it was observed that the odour of food is su�
ient to redu
e the longevityresulting form CR and in Drosophila the mutation of OR83B, a neuronal 
hemore
eptor, was reported to in-
rease life-span and render CR less e�
ient in this mutant ba
kground (Libert et al. 2007) (Smith et al. 2008).Further it was shown that neuron-spe
i�
 overexpression of human UCP2 in �ies leads to longevity (Fridell et al.2005). Even though the link between UCP2 and CR is largely unknown it is interesting that in humans UCP2 isinvolved in nutrient sensing and that a related �y protein, UCP5, is ne
essary in neurons to adapt to low nutrientlevels (Sán
hez-Blan
o et al. 2006). Deletion of 3 of 7 Drosophila insulin like peptides in neuroendo
rine brain
ells resulted in longevity (Grönke et al. 2010). In C.elegans the trans
ription fa
tor gene skn-1 was shown toplay a role in ASI neurons in CR-related in
reased respiration and life-span extension (N. A. Bishop & LeonardGuarente 2007b). These two neurons are important in regulating fat metabolism in adult worms in response tonutrient levels and energy status and CR-related longevity is not invoked in worms in whi
h the ASI neurons areablated (Bargmann & Horvitz 1991b) (Bargmann & Horvitz 1991a).It is intriguing to assume that CR related longevity in metazoans may be 
aused in a similar way as in yeast witha 
entral role for energy sensing neurons. Dire
t sensing of extra
ellular glu
ose 
on
entrations e.g. by G-protein
oupled re
eptors in yeast would be repla
ed by the input of sensory neurons in higher organisms. Intra
ellularenergy levels may be dete
ted in a similar way involving AKT- and TOR-homologues, supplemented by systemi
signals from other 
ells in metazoans. The output would di�er in the way that yeast 
ells would only respondto nutrient levels in a 
ell-intrinsi
 way, while neurons in higher organisms have to send appropriate signals toother 
ells (Bishop & Guarente 2007a). 28



The brain region 
orresponding to the energy sensing neurons in invertebrates is the hypothalamus in mammalswhi
h senses and responds to energy availability by nervous and hormonal signals. Indeed many homologues ofthe genes des
ribed as involved in longevity in lower organisms have impli
ations in energy sensing in the hy-pothalamus (e.g. TOR, AMPK, AKT) (Bishop & Guarente 2007a). Note that growth hormone (GH) mentionedabove is a signal triggered by the hypothalamus via the pituitary gland.Even though there is no dire
t eviden
e of the role of the hypothalamus in CR one study has provided a link be-tween the hypothalamus and life-span: Un
oupling protein UCP2 was overexpressed spe
i�
ally in the so 
alledorexigeni
 hypo
retin (appetite-stimulating) neurons of the hypothalamus of mi
e. This did not only lead to a
ore body-temperature redu
tion and mild hyperphagia, but also to an in
rease in mean and maximum life-span(12% in males and 20% in females) (Conti et al. 2006).3.1.1.2.4 Rationale for an unbiased 
ross-tissue analysisEven though mi
roarray data 
omparing samples from individuals of di�erent age indi
ated that aging relatedgene expression 
hanges are mainly tissue-spe
i�
 it has also been shown that the rate of aging of all tissuestested seems to be 
oordinated, whi
h agrees with the idea of a set of 
ommon underlying 
hanges in all tissues(Zahn et al. 2007). In this 
ase besides all the tissue-spe
i�
 
hanges a 
ommon aging delaying e�e
t of CR onall tissues would also be expe
ted.As detailed the knowledge about important players and pathways as e�e
tors of CR is growing. However tounderstand the underlying me
hanisms many more 
omponents of the 
omplete pi
ture will have to be dete
ted.Espe
ially an explanation of whi
h me
hanisms downstream of nutrient sensing pathways lead to life-span extend-ing pro
esses is largely unknown. Sin
e mu
h resear
h was fo
used so far on 
andidates known to be involvedin nutrient sensing it seems to be advisable to also in
lude unbiased high-throughput studies. Studies so far
ondu
ted and deposited to this end used mi
roarrays.3.1.2 Meta-analysis of mi
roarray dataMeta-analysis is here de�ned as the quantitative review and synthesis of the results of related but independentstudies (Normand, 1999). Meta-analyses 
an be used to assess the variability between studies or more 
ommonly�as here is the 
ase- to fa
ilitate �nding genes di�erentially expressed between two 
onditions by integratingdi�erent studies.Mi
roarray results are well-known to be asso
iated with a relatively low signal-to-noise ratio and �nding signi�
antresults is made di�
ult by the large number of variables 
ompared to the relatively low number of repli
ates.Sin
e mi
roarrays be
ame a more and more 
ommon tool over the last years there are results for several mi
roarrayanalyses available for many biologi
al questions, even though the experimental setup of the individual studies maybe more or less di�erent. These di�eren
es 
an however not only be seen as a problem in 
omparing the analyses,but also as a 
han
e sin
e genes found di�erentially expressed under similar, but not identi
al 
onditions 
anbe 
onsidered more reliable in their asso
iation with the tested variable, sin
e they are a�e
ted under di�erent
ir
umstan
es. Therefore the �generalizeability� (Ramasamy et al. 2008) of a 
andidate gene is shown whenit is found in more than one tissue, organism, strain, diet 
omposition, for di�erent durations of CR and agesof animals, but also mi
roarray platforms and even di�erent ways of handling samples in di�erent laboratories.Meta-analyses are therefore likely to eliminate false-positives of individual studies. To determine genes showingthat kind of robustness is the aim of our meta-analysis. It is a matter of debate if me
hanisti
 
andidate genesfor CR are expe
ted to be generalizable a
ross tissues, but as detailed above we argue there should be at leastsome.Besides that meta-analyses eliminate the idiosyn
rasies of the di�erent analyses, they are also a valuable tool toin
rease statisti
al power and �nd genes with small, but 
onsistent di�erential expression that are not found inthe individual analyses.3.1.2.1 Methods for meta-analysis of mi
roarray experimentsSeveral meta-analysis te
hniques have been applied to mi
roarray data (Rhodes et al. 2002) (Rhodes et al. 2004)(Choi et al. 2003) (Choi et al. 2004) (Lottaz et al. 2006) (Smid et al. 2003) (Stuart et al. 2003) (Parmigiani etal. 2004) (Warnat et al. 2005) (Yang et al. 2005) (Aggarwal et al. 2006) (DeConde et al. 2006) (Wang et al.2006) (Zintzaras & Ioannidis 2008).A

ording to Ramasay (Ramasamy et al. 2008) the statisti
al approa
hes 
an be 
lassi�ed by the single-studystatisti
s they use for 
ombining the studies: Ranks, p-values, e�e
t sizes or 
ounts, i.e. the number of studies29



in whi
h a signi�
an
e threshold is passed.Three typi
al methods out of the �rst three 
ategories were reviewed by Hong and Breitling (F. Hong & Breitling2008): A t-based approa
h, a non-parametri
 rank produ
t method and Fisher´s inverse 
hi-square method usingP-values from either the t-based or rank-produ
t method. These and other approa
hes are brie�y introdu
ed inthe next se
tions:In the following T stands for treatment and C for 
ontrol 
ondition and i = 1,. . . ,I numbers individual datasets.
niT and niC are the number of repli
ates for the i-th dataset of the treatment and 
ontrol 
ondition. Tij /
Cij represents the (logged) gene expression of a given gene for study i and repli
ate j. The terms �dataset� and�study� are used inter
hangeably in this sub-
hapter.3.1.2.1.1 Combining e�e
t-sizes: t-based (hierar
hi
al modeling) approa
h A standardized meandi�eren
e for a given gene in study i 
an be 
al
ulated as an e�e
t-size measure di =

T̄i−C̄i

Sp
where Sp indi
atesthe estimated variation. By means of an e�e
t size model the overall (i.e. over all studies) e�e
t size andthe 
orresponding varian
e 
an be estimated (Hong & Breitling 2008) (DerSimonian & Laird 1986). A z-s
ore
an be derived from these to 
al
ulate the standardized average treatment e�e
t for ea
h gene a
ross datasets.Permutation z-s
ores are 
al
ulated by 
olumn-wise permutation within ea
h study. These 
an be used toestimate a false dis
overy rate (FDR) (by dividing the mean number of genes found by s
rambling by the numberfound for the real data for a given z-s
ore) and a P-value representing the probability that a gene is found moredi�erentially expressed by s
rambling than in the real analysis. (P values 
ould also be 
al
ulated from thestandard normal distribution, but s
rambling better a

ounts for small sample size and avoids violation of theassumption of normality). This t-test based method was for example used by Choi (Choi et al. 2003).3.1.2.1.2 Combining ranks: Rank produ
t approa
h In this approa
h fold-
hanges are 
al
ulated forea
h gene in ea
h study, pairwise for ea
h treatment with ea
h 
ontrol repli
ate for one-
hannel arrays. For two
hannel arrays the fold 
hanges are 
al
ulated as treatment to 
ontrol ratios for ea
h array. These fold 
hangesare ranked and rgik denotes the rank of the fold-
hange of gene g in study i and pairwise 
omparison k. Thenfor ea
h gene the rank-produ
t is 
al
ulated as RPg = (

∏

i

∏

k rgik)
1
Kwith K = K1 +K2. To assess the signi�
an
e of these values rank-produ
ts are 
al
ulated in the same wayafter s
rambling data within ea
h array several times. Similarly as above p-values for a 
ertain rank produ
tare 
omputed as the average ratio of genes with a rank at least this high in the s
rambled data and FDRs bydividing the number of genes with a rank at least this high in the s
rambled data by that in the a
tual data.To test for overexpression with treatment fold-
hanges are 
al
ulated by dividing the treatment by the 
ontrolexpression value, for underexpression the other way round.Another method meta-analyzing data by their rank was proposed and implemented in the bio
ondu
tor pa
kageOrderedList by Lottaz (Lottaz et al. 2006).3.1.2.1.3 Combining p-values: Fisher´s inverse 
hi-square method Fisher´s inverse 
hi-square method(also 
alled Fisher´s sum of logs method; (Fisher 1925)) 
al
ulates a 
ombined statisti
 S = −2 log(

∏

i Pi) withi= 1,...,n from the p-values of the individual studies. S follows a 
hi-square distribution with 2n degrees of freedomunder the joint null-hypothesis and therefore allows the 
al
ulation of a 
ombined p-value. Sin
e the t-based andrank-produ
t approa
h 
an also be used on single datasets, single study p-values from these methods 
an be usedto 
al
ulate the 
ombined statisti
. The Fisher´s inverse 
hi-square method has to be applied testing for over-and underexpression separately.Variations of this method in
lude weighting single study p-values by their reliability (Good 1955) or 
al
ulatingthe 
ombined statisti
 only from single-study p-values below a 
ertain 
uto� (trun
ated produ
t method; (Zaykinet al. 2002)). The FDR 
an for example be 
ontrolled by introdu
ing experiment spe
i�
 p-value 
uto�s a

ordingto e.g. the Benjamini-Ho
hberg method (Pyne et al. 2006) (Benjamini & Ho
hberg 1995).Su
h a p-value based meta-analysis approa
h was presented by Rhodes et al. determining p-values by 
om-parison of the a
tual with s
rambled data (Rhodes et al. 2002).In the �rst step the p-value for ea
h gene in ea
h study was 
al
ulated by a random permutation t-test, i.e. theyobtained the p-value as the fra
tion of t-statisti
s obtained by randomly permuting sample labels that are greaterthan the a
tual t-statisti
.They then determined a p summary statisti
 for ea
h gene in ea
h possible 
ombination of studies, i.e. 
omparingstudy A to study B, but also 
omparing studies A and B to C or B to C, et
.. Summary statisti
s were 
al
ulated30



for ea
h gene appearing in all studies from the individual-study p-values and were the higher, the smaller all p-values and vi
e versa. The summary statisti
 p-values were again obtained by 
omparing the summary statisti
sfrom the a
tual data to su
h from data s
rambling p-values over genes in ea
h study.To determine an appropriate summary statisti
 p-value 
uto� a

ounting for multiple testing genes were rankedand a q-value (FDR) was de�ned as the p-value divided by the fra
tion of genes with a lower or equal p-value.This is sensible sin
e a FDR is the number of genes that would be found by 
han
e divided by those a
tuallyfound, whi
h is the same as dividing the probability of �nding a gene by 
han
e (FDR) by the fra
tion of genesfound.Finally the lowest q-value of all 
ombinations was taken for ea
h gene.This approa
h has the advantages that using s
rambling no assumptions like normal distribution of data need tobe made and that p-values of individual studies are 
ombined without the need of setting a threshold on them.The problem however is that 
al
ulating summary statisti
s for ea
h 
ombination of studies is 
omputationallyintensive. It is feasible for meta-analyses like this one, in
luding 4 studies, but might not be for larger ones.By working with p-values it is not possible in this method to estimate the mean magnitude of di�erential expres-sion.3.1.2.1.4 Limitations of methods 
ombining e�e
t-sizes, p-values and ranks All three of the presentedmethods (at least if no trun
ation for single study p-values is used in Fisher´s 
hi-square approa
h), as well asother methods 
ombining ranks, p-values or e�e
t-sizes do not seem very likely to dete
t genes di�erentiallyexpressed in only a subset of datasets with large variations as they might appear in a 
ombination of a 
ross-platform, 
ross-spe
ies and 
ross-organism approa
h. For example they seem not apt to dete
t a gene di�erentiallyexpressed in some tissues, but not in others from datasets from di�erent tissues. This is be
ause the e�e
t-sizeestimate over all studies and the between-study varian
e in the t-test based approa
h, the rank-produ
t in therank-produ
t approa
h and the 
ombined statisti
 in the Fisher´s inverse 
hi-square method are sensitive to the(few) 
ases where the gene is not di�erentially expressed.On the other hand 
ombining only some of the ranks, p-values or e�e
t-sizes (e.g. only su
h found signi�
ant)and ignoring others may be hard to justify.To over
ome this problem thresholding on the single-study statisti
 and 
ounting how often the threshold is passedwould be useful. This is the pro
edure applied by vote / value 
ounting approa
hes (Ramasamy et al. 2008).The disadvantage of these approa
hes is that statisti
al values have to be 
lassi�ed as to if they are above orbelow a 
hosen rank-, e�e
t-size, or p-value-
uto� and all further information is lost. Therefore the big advantageof 
ounting a gene as only di�erentially expressed or not in ea
h study, whi
h prevents strong 
ontribution ofstudies where a gene is 
learly non signi�
ant is at the same time the probably biggest disadvantage of not allowingstudies to 
ontribute with di�erent weights for that gene. Therefore if a gene is found extremely signi�
ant inone study it will only 
ontribute with one 
ount, as does a gene with signi�
an
e 
lose to the set threshold.3.1.2.1.5 Value-
ounting approa
hes Rhodes et al. (Rhodes et al. 2004) presented one su
h value-
ountingapproa
h termed �
omparative meta-pro�ling�. The aim of this analysis was to �nd a meta-signature 
ommonto di�erent kinds of 
an
er and therefore to develop a strategy that does not dete
t genes only di�erentiallyexpressed in one or very few datasets, but �nd those di�erentially expressed in more datasets than expe
ted by
han
e. By this they hoped to �nd a meta-signature typi
al for 
an
er per se, not a 
ertain type of 
an
er.Comparing statisti
al measures for ea
h dataset rather than gene expression measures was supposed to helpover
oming the 
hallenges of 
omparing data from di�erent mi
roarray platforms. In the �rst step di�erentialexpression in individual datasets was assayed by a t-test. The genes of ea
h set were sorted by the p-value and aQ-value 
al
ulated as the number of expe
ted di�erentially expressed genes (p-value) divided by the number ofa
tually di�erentially expressed genes (number of genes in the ranking with lower or equal p-value). The Q-valuewas used for 
omparing the datasets.For both over- and underexpression the number of datasets in whi
h ea
h gene was present below a Q-value thresh-old of 0.1 was 
ounted and the number of genes in ea
h possible number of datasets tallied (N0, N1, N2, ..., Ns).(S is the total number of datasets). The same steps were repeated on datasets with s
rambled Q-values, obtaininga tally (E0, E1, E2, ..., ES). A minimium meta-false dis
overy rate was 
al
ulated as mFDRmin = Min( (Ei+1)
Ni

)for i= 0..S.If themFDRmin > 0.1 the analysis was repeated with the Q-value threshold lowered by 50% until amFDRmin ≤

0.1 is rea
hed or the number of genes below the Q-value threshold is 0 for at least 2 datasets. In the se
ond 
asethe meta-analysis is de�ned not to have found a signi�
ant overlap between di�erentially expressed genes in the31



datasets. This pro
edure assures that the highest possible, but still su�
iently low Q-value threshold is 
hosen.If a mFDRmin ≤ 0.1 is found, genes enri
hed for over- / underexpression (meta-signature) were de�ned asthe number of genes appearing in at least i datasets below the Q-value threshold, where i is the same used for
al
ulating this mFDRmin.The major drawba
k of this approa
h is that it is unlikely to dete
t genes only tested in a subset of the datasets.This is be
ause the number of datasets in whi
h a gene has to be found below a 
ertain Q-value is determined by
onsidering all genes also su
h that were tested in a di�erent number of datasets. An alternative value-
ountingapproa
h to over
ome this problem uses a binomial test to both take the number of times the single-study statis-ti
 for a gene ex
eeds a threshold and the number of studies its gene-expression was measured into a

ount (deMagalhães et al. 2009).Sin
e the sour
es for our datasets were very diverse, i.e. di�erent tissues, organisms, ages, durations of CR,mi
roarray platforms, et
. we de
ided to employ a value 
ounting approa
h. Be
ause the mi
roarray experimentswere performed over the 
ourse of some years, while annotation of the genomes of model organisms improvedand therefore probes for newly dis
overed genes were in
luded on the platforms over time (and for other reasons)we expe
ted that not ea
h gene was represented in a similar number of studies so that we found the binomialapproa
h best suited for our meta-analysis.Another advantage of using a value-
ounting approa
h is that we 
ould in
lude datasets for whi
h only lists ofdi�erentially expressed genes were available (Ramasamy et al. 2008).Ramasamy´s 
on
ern that the results of value-
ounting approa
hes are rather granular 
ompared to those ob-tained by other te
hniques was not 
onsidered a major problem, sin
e ranking the �nal results was of lessimportan
e to us than 
lassifying them as signi�
ant or not.Last but not least Magalhaes showed that in a situation with similar aims (i.e. �nding genes robustly di�eren-tially expressed in di�erent organisms, tissues, et
.) a binomial value 
ounting approa
h performed better thanFisher´s 
hi-square method in terms of the number of genes identi�ed. For the top genes of both approa
hesthere was strong overlap (de Magalhães et al. 2009).3.1.3 Other meta-analyses of gene expression data for CR3 important meta-analyses of 
alori
 restri
tion gene expression data were existent at the time of this writing:Hong 2010, Swindell 2008a (further analysed in Swindell 2008b) and Swindell 2009. These will be brie�y intro-du
ed here and their results 
ompared to ours in the dis
ussion-se
tion (�3.4.2 Comparison with results fromother meta-analyses�).3.1.3.1 Swindell, 2008aIn �Comparative analysis of mi
roarray data identi�es 
ommon responses to 
alori
 restri
tion among mousetissues� Swindell 
reated 23 
ontrasts 
omparing 
alori
 restri
tion to 
ontrol samples from 13 studies on mouse(Swindell 2008a). For two studies only information in supplemental data were used. In the data used the age ofmi
e at time of killing were 4 to 31 months (or unknown for two studies), duration of CR 2 days to 24 months(or unknown for one study), the level of CR 10-66% (or unknown for one study) and data were from 10 di�erenttissues.Method: Swindell started o� with raw data, pro
essed them by normalization by Robust Multi
hip Average(RMA) (Irizarry et al. 2003), determined di�erentially expressed genes using the Bio
ondu
tor Limma pa
kage(Smyth 2004) and adjusted P-values by the Benjamini-Ho
hberg method (Benjamini & Ho
hberg 1995). Asigni�
an
e level of 0.05 was used to identify di�erentially expressed genes in ea
h study. The number of di�erenttissues in whi
h a gene was di�erentially expressed was 
ounted. This study therefore emphasizes robustnessof di�erential expression over di�erent tissues. The approa
h is a value 
ounting approa
h with the problem ofignoring that di�erent genes may have been tested in di�erent numbers of studies.A di�erential expression signature was 
reated for ea
h dataset by assigning -1 to downregulated, 0 to non-signi�
antly di�erentially expressed and 1 to upregulated genes. A similarity s
ore for ea
h pair of datasets was
al
ulated by
s =

n+,++n
−,−

n+,++n
−,−+n+,−+n

−,++Min[(n+,0+n
−,0),(n0,++n0,−)] , where n+,+represents a gene signi�
antly upregulatedin both sets, et
. The similarity s
ore was used for 
lustering datasets.The signi�
an
e of the overlap between two datasets was assessed by s
rambling of the assigned +1, -1, 0 marks.The test statisti
 T = n+,++n

−,− for the real data was 
ompared to the null-distribution of T from the s
rambled32



data. The 
al
ulated P-value was adjusted by the Benjamini-Ho
hberg method and the threshold set at p =0.05.Fun
tional analysis was performed based on GO-terms by a method implemented in the GOstats pa
kage(Fal
on & Gentleman 2007): GO-terms overrepresented among di�erentially expressed genes were determined andpooled for 
ontrasts of the same tissues. The number of tissues for whi
h a GO-term was found overrepresentedwas 
ounted. Additionally GO-terms overrepresented among the genes identi�ed as di�erentially expressed in 5or more tissues were determined.Only for liver-datasets genes were determined that were signi�
antly di�erentially expressed in at least 3datasets and di�erentially expressed with aging in the other dire
tion in at least 1 out of 5 independent liver-datasets on aging.Results: Swindell found that CR in most 
ases had an e�e
t on less than 5% of genes, with the maximum foundto be 23% in one study.Clustering showed that the datasets in �rst instan
e 
lustered a

ording to tissue type, but also di�erent datasetsfrom the same study were likely to 
luster (even when from di�erent tissues). The interse
tion between di�eren-tially expressed gene sets was around 30% or less, however 
ommonly greater than expe
ted by 
han
e.Among all tissue types examined, CR most 
ommonly led to upregulation of genes involved in lipid metabolismand metal ion response, and downregulation of genes asso
iated with immunity and protein folding.16 genes were found over- and 12 underexpressed in 5 or more di�erent tissues. Among the overexpressedwere two metallothionein genes (Mt1 and Mt1 ) involved in stress response (Thirumoorthy et al. 2007) andtwo period homologues (Per1 and Per2 ) re
ognized for their role in manipulating the biologi
al 
lo
k, butthat also exhibit tumor suppression a
tivity (Cheng Chi Lee 2006). Two pro
ollagen (Col1a1 and Col3a1 )genes were found among the underexpressed. GO-terms enri
hed among these were nitri
 oxide mediated signaltransdu
tion (GO:0007263), zin
 ion homeostasis (GO:0006882) and 
ir
adian rhythm (GO:0007623) for over- andresponse to heat (GO:0009408), unfolded protein (GO:0006986), bioti
 stimuli (GO:0009607), 
hemi
al stimuli(GO:00042221) and response to pest, pathogen and parasite (GO:0009613) for underrepresented genes.Igf1 and mTOR ea
h were only found di�erentially expressed in three 
ontrasts and Sirt1 in none.GO-terms enri
hed among genes di�erentially expressed with CR and in the opposite dire
tion for aging inliver were ele
tron transport (GO:0006118) and 
ellular metabolism (GO:0044237).3.1.3.1.1 Further analysis by Swindell, 2008b Swindell´s publi
ation �Genes regulated by 
alori
 restri
-tion have unique roles within trans
riptional networks� (Swindell 2008b) is a 
ontinuation of the study presentedin Swindell, 2008a, in whi
h 16 genes were identi�ed as 
onsistently up- and 12 as downregulated.Overrepresentation of trans
ription fa
tor binding sites in the genes enri
hed for di�erential expression withCR were determined by sequen
e analysis of the 500 bp upstream promoter region using the CisView database(http://lgsun.gr
.nia.nih.gov/
isview/) (Sharov et al. 2006).Furthermore a 
o-expression analysis was performed ea
h: In brief, 
o-expression of ea
h gene was determinedfrom a large number of mi
roarray measurements by Pearson 
orrelation 
oe�
ients for ea
h pair of gene. Forea
h gene the magnitude of its absolute 
orrelation 
oe�
ients indi
ated its 
onne
tivity strength. Lo
al (strong)
onne
tivity patterns were 
al
ulated as an average over the top absolute 
orrelation 
oe�
ients for ea
h gene,non-lo
al (weak) 
onne
tivity patterns as the 
orrelation 
oe�
ient at a 
ertain high per
entile.Results: Enri
hed trans
ription fa
tor binding sites in mouse were:� for overexpressed genes:� TF_MIF, TF_STAT, TF_ZIC, TF_HEN1, TF_HNF4, TF_SREBP, TF_OLF1, ADD_MTF1A,ADD_MTF1B, MIT_051TATA, TF_MYB, ADD_PAX8 for metallothioneins� for underexpressed genes:� ADD_PAX8, TF_NFY, TF_MAZR, TF_MZF, MIT_013LEF for immunity related genes� TF_MAF, TF_MYB, TF_MEIS, TF_NFKB for 
ollagen related genesSwindell also showed that in mi
e the 
onne
tivity of genes determined as enri
hed for downregulation with CRwas high for lo
al network regions, however for those for upregulation it was low for both lo
al and non-lo
alnetwork regions. 33



3.1.3.2 Swindell, 2009In his 2009 study �Genes and gene expression modules asso
iated with 
alori
 restri
tion and aging in the labo-ratory mouse� Swindell meta-analysed mi
roarray data on CR of 17 di�erent mouse tissues from 40 experiments(Swindell 2009). Most of the datasets used in this study plus some additional were also used in our meta-analysis.GSE11845 was not used in our study, sin
e it is based on intermittent fasting, not 
lassi
al CR. The LIMMApa
kage for linear model analysis (Smyth 2004) was employed to determine the p-values for di�erential expressionof ea
h probe within the datasets. Fisher´s inverse 
hi-square approa
h was used for ea
h gene to �rst 
ombinedi�erent datasets of the same tissue (if more than one dataset present) and again to 
ombine the p-values ob-tained from this over all tissues. Due to the large number of genes found this way a threshold for the number oftissues in whi
h a gene had to be di�erentially expressed was set for further analysis (GO-analysis, mapping toKEGG-pathways). This introdu
es a value-
ounting 
omponent into the analysis.Co-expression analysis was performed similar to that in Swindell, 2008b and genes 
lustered by their 
o-expressioninto modules of 2, 3, 5, 10, 20 and 40 genes. Ea
h module was then s
ored for the di�erential expression of thegenes 
ontained based on their single-study p-values and the signi�
an
e assessed by s
rambling.Results: Overall 29.7% (6330) of the genes were up- and 27.6% (5884) downreguated over di�erent tissues. Thegene signi�
antly upregulated in most tissues was Sgk1. As in Swindell´s previous meta-analysis (Swindell 2008)Mt2 was found up- and Serpinh1 downregulated when 
ombining eviden
e from di�erent tissues.Genes most strongly in
reased by CR a
ross tissues were asso
iated with the KEGG-pathways fatty a
id metabolism,
itrate 
y
le, PPAR signalling, oxidative phophorylation, amino a
id degradation and metabolism, 
ir
adianrhythm, renal 
ell 
ar
inoma, fatty a
id elongation in mito
hondria and the insulin signalling pathway . Genes
ommonly down regulated by CR were asso
iated with fo
al adhesion, antigen pro
essing and presentation, ECM-re
eptor intera
tion, DNA repli
ation, MAPK signalling, 
ell 
ommuni
ation, VEGF signalling and natural killer
ell mediated 
ytotoxi
ity (P < 0.01).A total of 3, 5, 22, 39 and 28 signi�
ant CR-responsive modules with 3, 5, 10, 20 and 40 genes, respe
tively, wereidenti�ed.3.1.3.3 Hong, 2010In �Revealing system-level 
orrelations between aging and 
alorie restri
tion using a mouse trans
riptome� Hongperformed GO-, 
o-expression and trans
ription fa
tor binding site analyses (Hong, S. et al. 2010).Datasets from 6 di�erent studies, 
omprising 5 tissues were used. Within single studies di�erentially expressedgenes were identi�ed by unpaired two-
lass analysis using signi�
an
e analysis for mi
roarray (SAM) (Tusheret al. 2001). No analysis was 
ondu
ted to dete
t enri
hment of di�erentially expressed genes over the studies,but all genes found di�erentially expressed in any study were 
onsidered as �CR-trans
riptome�. The numberof times a GO-
ategory was found asso
iated with the genes di�erentially expressed with CR was 
ompared tothe number it was found asso
iated with any of the genes in the study using 
hi-square analysis. Co-expressionanalysis was based on 
orrelation 
oe�
ients 
al
ulated from 131 mi
roarrays from GEO and trans
ription fa
torbinding site analysis was performed using TRANSFAC (Hinri
hs et al. 2006). The relevan
e of the determinedtrans
ription fa
tors was assessed by testing if they were signi�
antly 
o-expressed with genes found di�erentiallyexpressed with CR.Results: GO-terms found enri
hed in the CR-trans
riptome (up- and downregulated genes) were immune re-sponse, lipid metabolism, response to stimulus, 
ell proliferation, glu
ose 
atabolism, 
holesterol metabolism,angiogenesis, 
ell adhesion, 
ell 
y
le, ele
tron transport, mus
le development, 
ytoskeleton organization, 
hemo-taxis, amino a
id metabolism and as for 
ompartments extra
ellular spa
e, lysosome, mito
hondrion and endo-plasmi
 reti
ulum. The 
o-expression modules from the aging trans
riptome showed strong 
orrelations with theCR-results in both metabolism (e.g., 
itrate 
y
le and lipid metabolism) and the immune response. Binding sitesfor 12 trans
ription fa
tors were found overrepresented in upregulated genes (v-Myb, HNF-4α, TAL1, E4BP4,HLF, CCAAT box, FOXO1, MAZ, VBP, Tal-1alpha:E47, HNF-3β (FOXA2), Max) and 5 in downregulated(IRF-1, Pax, PAX6, YY1, NKX3A) however non of these was signi�
antly 
o-expressed with its target genes.3.1.4 Overview of our study � value-
ounting approa
hIn order to better understand the individual steps of our meta-analysis des
ribed further below a short overviewof the 
on
ept is given here: In large our meta-analysis follows the 7 step approa
h proposed by Ramasamy(Ramasamy et al. 2008): 34



Figure 3.2: Simpli�ed overview of the meta-analysis work-�ow. See text for details.1. Identify suitable mi
roarray studies2. Extra
t the data from studies3. Prepare the individual datasets4. Annotate the individual datasets5. Resolve the many-to-many relationship between probes and genes6. Combine the study-spe
i�
 estimates7. Analyze, present, and interpret resultsThe statisti
al analysis of our meta-analysis is based on a value-
ounting approa
h, i.e. we 
ounted the numberof times a gene is found over- / underexpressed in di�erent datasets and determine the probability that this isdue to random 
han
e using a binomial test. The threshold for the p-values of the binomial test is determinedby repeating the analysis on s
rambled data and 
hosen so that the asso
iated false dis
overy rate (FDR= meannumber of genes signi�
ant at this 
uto� after s
rambling / number of signi�
ant genes on uns
rambled data) isa

eptably low. The prin
iple of the study is therefore similar to that in Magalhaes 2009.Datasets for our meta-analysis are mainly 
reated from probe-level mi
roarray data from whi
h CR � AL pairsfor the same 
o-variates are extra
ted. Di�erential expression for ea
h gene is determined by an unpaired studentt-test. Sin
e for a non-negligible number of studies expression data 
ould not be obtained we also in
luded theinformation on di�erential expression for lists of genes determined by the original studies.See �g. 3.2 for a simpli�ed work-�ow of the meta-analysis.
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3.1.5 Aims of our studyAs for other meta-analyses of mi
roarray data this study aims to �nd genes whi
h are dete
ted as signi�
antlydi�erentially expressed with the in
reased sample size after 
ombining studies, but are not found in the individualstudies. For example Choi et. al (Choi et al. 2003) de�ne integration driven dis
overy (IDD) as �nding a genedi�erentially expressed in the meta-analysis, but in none of the underlying studies. The integration drivendis
overy rate (IDR) is the number of su
h genes divided by the total number of dis
overies and is about 44-63%in their study. IDD-genes are therefore su
h with small but 
onsistent di�erential expression for whi
h the samplesizes in individual studies was too low for them to be dete
ted to be signi�
ant. Therefore the statisti
al powerof the meta-analysis is in
reased 
ompared to the single studies (the false negative rate is lower) at the same falsepositive rate. On the other hand the higher statisti
al power would also in
rease the signi�
an
e threshold andtherefore redu
e the Type I error.Admittedly in a value-
ounting approa
h the level of di�erential expression in the original study must be highenough that the gene is found di�erentially expressed in the �rst pla
e, however thresholds in our study forde�ning a gene as di�erentially expressed are more relaxed here than in the original studies.By in
luding data on a wide range of organisms, tissues and other 
o-variates we eliminate idiosyn
rasies betweenstudies and aim to dete
t genes di�erentially expressed with CR under di�erent 
onditions (even though asu�
ient number of dete
tions 
an also be rea
hed from one frequent organism or tissue). It was shown byDhabi (Dhahbi et al. 2004) that di�erent genes 
hange their expression after di�erent time-spans of CR. Sin
ewe also in
lude data from experiments using a wide range of time-spans our analysis is likely to identify genesthat 
hange their expression qui
kly and stably.The genes enri
hed for over- / underexpression serve as 
andidate genes for further studies, 
an be examined foran already known role in CR or aging or 
an be sear
hed for enri
hment of trans
ription fa
tor binding sites.The network of genes 
an be extended by determining genes 
o-expressed with them.Information on fun
tional 
ategories asso
iated with CR 
an then be retrieved by both dete
ting enri
hment ofsu
h 
ategories among the 
andidate genes or by repeating the des
ribed analysis on fun
tional terms insteadof genes. A term would in this 
ase be 
onsidered over- / underexpressed if the asso
iated gene is over- /underexpressed.3.2 Materials and methods3.2.1 Mi
roarray studies used in the meta-analysisTo obtain high-throughput data on 
alori
 restri
tion we sear
hed the databases �Gene Expression Omnibus�(GEO; from NCBI), �ArrayExpress� (from EBI) and �Gene Aging Nexus� (GAN) for the terms �
alori
 restri
-tion�, �
alorie restri
tion� and �dietary restri
tion�. We further 
he
ked other meta-analyses of CR for furtherdatasets for whi
h we requested expression data from the authors of the studies.For studies for whi
h gene expression data from none of these sour
es was available we attempted to retrievepublished lists of genes di�erentially expressed a

ording to the statisti
al 
riteria in the original study.The only high-throughput data found were from mi
roarray experiments. Sin
e almost no non-mammalian datawere among the studies found and mammalian data are more likely to resemble the situation in humans wede
ided to fo
us this meta-analysis only on data from mammals. Data were furthermore ex
luded if we 
ould notextra
t data from one group being on CR a 
orresponding one on AL or high 
alori
, but otherwise 
omparablediet with no other di�eren
es between the groups. CR is here de�ned as restri
tion in the amount of 
alories
onsumed without malnutrition. One study 
omparing humans before and after bariatri
 surgery (GSE9157) wasex
luded sin
e it was not 
lear how mu
h nutrient uptake was restri
ted by this measure and if it 
ould thereforebe de�ned as CR. Another study on humans (GSE11975) 
omparing gene expression data from people duringdiet and the following weight-maintainan
e period was also ex
luded sin
e the dietary setups 
ould not 
learlybe de�ned as AL vs CR. Finally datasets were not used if the experiment was a

ompanied by the appli
ationof drugs or infe
tion of the animals (GSE15344).We further 
he
ked that the mi
roarray platforms used in all studies were a unbiased representation of the tran-s
riptome and not e.g. representing only sele
ted pathways.
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3.2.1.1 Studies for whi
h expression data 
ould be obtainedFor the 23 studies shown in table 3.2, expression datasets 
ould be obtained. That means the prepro
essed (i.e.ba
kground subtra
ted and normalized) mi
roarray signals for the 
onditions of interest were given for all probeson the array ex
ept when ex
luded for low quality.Subsets used organism duration (end)age tissue amount of foodGEOGDS1261;(Tsu
hiya,2004) Ames dwarf andnormal mi
e Musmus
u-lus 4 months 6months liver 90% of the AL intake* ofanimals of the samegenotype for 1 wk, to80% for the next week,and to 70% for the rest(*average amount
onsumed daily by ALmi
e during thepre
eding week);GDS1808;(Dhahbi,2005) CR8-AL andLTCR-AL; haveCON in 
ommon Musmus
u-lus CR8:2month;LTCR: 17months 22months liver CON 93k
al/wk; LTCR:52.2; CR8: 77 for 2weeks, 52.2 for 6 weeksGDS2612;(Edwards,2007) 25 months old Musmus
u-lus 23.5months ~25months skeletalmus
le CON 84k
al/wk, CR26% less (62k
al/wk)GDS2681;(Someya,2007) 15 months old;ex
luded: 4months: CRmissing Musmus
u-lus 3 months 15months 
o
hlea CON 84k
al/wk, CR26% less (62k
al/wk)GDS2961 +GDS2962;(Lustig,2007) 6, 16 and 24months old;ex
luded: 1months old: CRmissing Musmus
u-lus 11, 41and 83weeks 6.5,13.5,24months thymus Up to 13 weeks of age,100% regular feed,followed by 90% forti�edfeed for 1 week, 75% for1 week, then 60%forti�ed feed after thatuntil the age at whi
hthe mi
e were sa
ri�
edGDS355 +GDS356;(Kayo, un-published) >30 months old;ex
luded: 5months old; CRmissing Musmus
u-lus ? > 30months kidney ?GSE11244;(Estep,2009) FHC-CR,TAL-CR; haveCR in 
ommon Musmus
u-lus 14 days 9.5months liver true ad libitum: as mu
has wanted (about125k
al/wk); CR:73k
al/wk; �xed high
al: 110 k
al/wkGSE11291;(Barger,2008) 3 tissues;ex
luded: 5months: CRmissing Musmus
u-lus 16months 30months Heart,neo
ortex,gastro
ne-mius CON: 84 k
al/week, CR:63 k
al/weekGSE14202;(Padovani,2009) exer
ise andnon-exer
ise Musmus
u-lus 6 weeks 4months mammarygland 30% restri
tion
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GSE18297;(Saito, un-published) 1 week or 1month CR; 5, 10,20, 30% foodrestri
tion; same
ontrols fordi�erentrestri
tion levels
Rattusnorvegi-
us one weekor onemonth 1.5 or~2months liver 5, 10, 20, 30% restri
tion

GSE6110;(Chen,2007) 24 months old;ex
luded: 4months old: CRmissing Rattusnorvegi-
us 22.5months 25months kidney CR begins at 10 wk, 10%restri
tion until 15 wkwhere it is in
reased to25 and to 40% at 4monthsGSE6718;(Linford,2007) 2 tissues;ex
luded: 4months Rattusnorvegi-
us 20months 24months Heart andAdiposeTissue 60% of ALGSE7502;(Sharov,2008) 2 tissues; ages: 6,16, 24 months;ex
luded: 1month: CRmissing Musmus
u-lus 2.5, 12.5,20.5months 6, 16,24months Testis andOvary 40% restri
tion
GSE8426;(Xu, 2007) 5 tissues; 6, 16, 24months; ex
luded:~1mo samples:CR missing Musmus
u-lus 2.5, 12.5,20.5months 6, 16,24months Cerebellum,Hippo
am-pus, SpinalCord,Striatum,Cortex at 14 weeks of age at10% restri
tion, andthen 
hanged to 25% at15 weeks and 40%restri
tion at 16 weeksonwardGSE9917;(Larrouy,2008) no subsets Homosapiens 4-wkvery-low-
aloriediet, a3�6-wklow-
aloriediet, anda 4-wkweight-maintenan
e

~27-48years skeletalmus
le 4 weeks: 3.3 MJ/d, 3-6weeks: 4�5 MJ/d, 4week: 5.8 MJ/d
GSE17309;(Fernández,unpub-lished) no subsets Suss
rofa 211 days ~7months? liver 25% restri
tionGSE12853;(Connor,2010) timepoint 1dbeforerealimentation Bostaurus 12 weeks;8 weeksrealimen-tation 11months liver 60-70% of AL
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GSE241;(Massaro,2004) 2, 4, 12h CR;ex
luded: othertimepoints: miss
ontrols Musmus
u-lus 2-96h;time-points>12hmiss
ontrols;there is a14/15dtimepointin thepaper,but notin the �le
adult lung redu
tion by 66%

GSE9121;(Pohjan-virta,2008) adipose tissue: 10d CR; liver: 4 and10 d CR (
ontrolsfor timepointspooled) Rattusnorvegi-
us liver: 4 or10 days;WAT: 4days ~3-4months liver,adiposetissue restri
ted: 4 day:18�12�9�6 g; 10 day: adlibi-tum�16�14�11�8�6�4�4�2�1gGSE904;(Be
ker, un-published) ~170 d old;ex
luded: 17dold: no CR Musmus
u-lus ? ? liver ?GANExpressionPro�le ofAging andCRRetardation,Neo
ortex;(Lee, 2000)
30 months old,Neo
ortex;ex
luded:Hippo
ampus:CR missing, 5months: CRmissing

Musmus
u-lus 28months 30months neo
ortex 26% less than AL
ArrayExpressE-MEXP-748;(Selman,2006) 4 tissues Musmus
u-lus 16 days ~4months liver,skeletalmus
le,
olon,hypothala-mus redu
ed to 90% of ALmi
e at 14 wk, 80% at 15wk, and 70% at 16 wk ofageProvided byHu; (Wu,P., 2008) no subsets Musmus
u-lus 4 months 8months forebrain 70% less than AL

Two of the studies were ex
luded in the 
ourse of the meta-analysis as des
ribed later. From ea
h study oneto �fteen datasets / subsets were extra
ted, so that we obtained a total of 61 datasets. Data in ea
h subsets
onsisted of AL and CR samples from animals of the same age and CR setup and of the same tissue. Theonly 
o-variate for whi
h we did not split data into di�erent datasets was sex, sin
e we did not expe
t a large39



di�eren
e in the e�e
t of 
alori
 restri
tion between male and female animals and we did not want to redu
erepli
ate numbers of ea
h dataset more than ne
essary. Also the number of subsets of individual studies shouldnot get too large, sin
e this study would gain too mu
h in�uen
e in the meta-analysis.The vast majority of 48datasets was from mouse (Mus mus
ulus), 12 from rat (Rattus norvegi
us) and one from pig (Sus s
rofa). Thesein
lude di�erent strains of mi
e and rats. The biggest group for the tissue 
o-variate was liver (18) and brain wasrepresented by many di�erent tissues. In the list of 19 di�erent tissues 6 are represented by only one dataset.The duration of CR ranged from less than one day (5 datasets) to 23.5 months and the ages at whi
h tissues wereobtained from 1.5 to over 30 (exa
t age unknown) months for mouse and 1.5 to 24 months for rats. Histogramsof the distribution of datasets over these 
o-variables after in
luding datasets for whi
h expression measurements
ould not be obtained are shown in �g. S.1.3.2.1.2 Studies for whi
h expression measurements 
ould not be obtainedFor the following studies the mi
roarray signal intensities for all probes was not available, but rather lists of genesfound di�erentially expressed by the statisti
al method used in the original study. For some of them p-valuesand / or e�e
t-sizes were given. We requested expression data from the (
orresponding) authors of these studies,but were not able to obtain them. Some of the studies were eventually not used for the reasons des
ribed.(Fu et al. 2006): Genes di�erentially expressed a

ording to a t-test assuming equal varian
es at a Benjamini-Ho
hberg FDR adjusted p-value <0.05 in heart, liver and hypothalamus 
ould be obtained from the supple-mentary materials of the 
orresponding publi
ation. The data are from 4-6 months old male mi
e in whi
h CRanimals were restri
ted to 60% of 
alori
 intake of AL-animals for 2.5 to 4.5 months.(Wu, P. et al. 2009): A list of di�erentially expressed genes in the hypothalamus of 
alori
-restri
ted vs. adlibitum fed animals was kindly provided to us by the authors. This dataset had to be ex
luded later on due toannotation problems (see: �3.2.3 Pro
essing gene lists from studies for whi
h expression data were not obtained).(Higami et al. 2004): Data from Higami were not used sin
e only sele
ted genes di�erentially expressed withCR 
ould be found in the paper or its supplement. Allowing lists of genes sele
ted for parti
ular 
riteria wouldintrodu
e bias to our work.(Cao et al. 2001): Data for genes di�erentially expressed with CR at a 1.7-fold 
hange 
riterion were listed in the
orresponding publi
ation. Only data for genes di�erentially expressed in CR, but not di�erentially expressedwith age in the opposite dire
tion in the same study were used for reasons des
ribed in �3.2.2.5 Ex
luding genesdi�erentially expressed with age�. Furthermore we only used data for long term CR, but ex
luded data for shorttime CR sin
e the 
ontrol used in the paper was not age mat
hed. Data were given for liver of 7 and 27 monthsold female mi
e of the long lived strain C3B10RF1 whi
h had been on CR for 6 or 26 months respe
tively.(Dhahbi et al. 2004): CR data from livers of male mi
e of the long lived F1 hybrid strain B6C3F1 were obtainedfrom the 
orresponding publi
ation. Data were obtained for 2, 4 and 8 weeks as well as 27 months of CR. CRof 77k
al/week for 2 weeks and 52.2 k
al/week afterwards (ex
ept mi
e on 2 week CR, whi
h were one week on77k
al/week and one week on 52.2 k
al/week) 
ompared to 93 k
al/week for 
ontrol animals was indu
ed at anage so that mi
e were 34 months old at time of killing. Data from CR-mi
e were 
ompared to data from 34months old 
ontrols and a 1.5-fold 
hange was 
onsidered signi�
ant.(Corton et al. 2004): CR data from livers of mi
e on a SV129 ba
kground, 
alori
-restri
ted for 5 weeks wereavailable in the supplement of the 
orresponding publi
ation. Calories were redu
ed to 90% of the AL group forone week and 65% for another 4 weeks. All data of mi
e treated with 
hemi
als were ignored. The thresholdfor signi�
an
e was set at p <=0.001 with Bonferroni 
orre
tion and a at least 1.5-fold 
hange in expression wasrequired.(Lu et al. 2007): Data from Lu were ex
luded sin
e mi
e were treated with TPA, a dia
ylgly
erol mimeti
 andtumor promoting substan
e.Data from Wong, 2002 
omparing gene expression in the liver of male C57BL/6 ad libitum fed mi
e to su
hrestri
ted to 60-70% of their 
alori
 intake 
ould not be obtained from the 
orresponding publi
ation or supple-mentary data. A link in the paper that is supposed to dire
t to the expression data was not fun
tional.(Kayo et al. 2001): Kayo provided data on di�erential gene expression in skeletal mus
le of rhesus monkeyson CR for 9 years and sampled at an age of around 20 years. The threshold was sele
ted so that the averagefold-
hange had to ex
eed 1 standard error from a 1.3-fold 
hange.Eleven gene lists were 
reated from these studies in addition to the 63 
reated by analysing gene expressionmeasurements by ourselves. After 
ombining these data more than half of the now 74 datasets were from mi
eand more than one third from liver. The distribution of the number of datasets over di�erent 
o-variates is shown40



in �g. 3.2.
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3.2.2 Analysing gene expression data from 
omplete datasets3.2.2.1 Obtaining and assembling mi
roarray data �les3.2.2.1.1 Obtaining �les from GEO3.2.2.1.1.1 Downloading �les and sele
ting samples GDS (GEO dataSet) and GSE (GEO series)�les were obtained from NCBI Gene Expression Omnibus (GEO) (http://www.n
bi.nlm.nih.gov/geo/; (Barrettet al. 2009)) and pro
essed in a similar way using R (R Development Core Team 2009). In supplement2metaan_R_GDS.txt and metaan_R_GSE.txt examples for sele
ting and pro
essing samples from normal (asopposed to Ames dwarf) mi
e for GDS1261 and heart tissue samples for GSE11291) are atta
hed. All GEO �lesexist in a prepro
essed form, i.e. they are ba
kground subtra
ted and normalized. The �les were downloadedfrom GEO and 
onverted to ExpressionSet obje
ts using the GEOquery Bio
ondu
tor pa
kage (Gentleman etal. 2004) (Sean & Meltzer 2007). Samples that di�er only in 
alorie intake (i.e. 
alori
 restri
tion vs. 
ontrol
onditions) but keeping all other observed variables 
onstant (e.g. only from one tissue type or age group) weresele
ted by pattern mat
hing on the �des
ription�- or �title�-variable (or in rare 
ases also other variables like�age�) of the ExpressionSet 
reated from GDS or GSE �les respe
tively.The only other variable (ex
ept 
alorie intake) for whi
h we did not split the data in di�erent �les a

ording tothe value of the variable was the sex of the animals. We did not make a di�eren
e between samples from malesor females, but 
he
ked that the distribution between male and female for CON and CR within ea
h dataset didnot di�er signi�
antly.In GSE9121 data for liver samples after 4 or 10 days of 
alori
 restri
tion were given together with data fortheir 
ontrols. We 
reated data sets for 4 and 10 days of CR, however used a 
ombination of the 
ontrols for bothtime points for both of them to in
rease statisti
al power. We 
onsidered this justi�ed sin
e we did not expe
tmajor gene expression 
hanges due to a 6 day di�eren
e of age for rats whi
h are 11-15 weeks old. In all other
ases CR datasets of one time point would only be 
ompared to CON datasets of the same time point.If available the Entrez Gene ID, Ref. Seq. Trans
ript ID and Gene Bank a

ession number for ea
h probe were42



obtained from the GPL-�le for the mi
roarray platform used in the 
orresponding experiment. A tab-delimited�le was 
reated appending the expression value 
olumns to these three annotation 
olumns. The 
olumn namesfor all 
ontrol samples were �CON� and CR-samples were �CR�.Most experiments of this study used one-
olor mi
roarrays, so that separate values for 
ontrols and 
alori
restri
tion (CR)-samples were given. For the only mi
roarray where CON and CR samples were measured onthe same (two-
olor) array, GSE9917, data were given as ratios of Cy5:Cy3. Relevant values were extra
ted andstored in this form. Unfortunately this dataset had to be ex
luded subsequently due to annotation problems(see: �3.2.2.2 Mapping non-mouse Entrez IDs to mouse Entrez IDs�).3.2.2.1.1.2 Binding annotation with di�erent number of lines to expression values In most 
asesthe number of probes in the GSE �les mat
hed the number of probes in the 
orresponding GPL-�le sin
e the GSE�les 
ontained all probes in
luding those with low signal et
. In the 
ase of GSE7502 probes were ex
luded fromthe GSE-�le, but the annotation 
ontained all probes of the array. Therefore a table 
ontaining the annotationand another 
ontaining the expression values were saved in �les and expression values bound to their annotationvia the 
ommon identi�er �ID� using Perl (vlookup_mod4_3.pm and use_vlookup_mod4.pl in supplement 2).3.2.2.1.1.3 Combining �les separated into di�erent list elements In the 
ases of GSE7502 andGSE904 the GSE-�le was downloaded to R as a list with two instead of only one element, be
ause di�erentmi
roarray platforms (GPL2552 and GPL4358) or parts of the same platform (GPL738 and GPL782) were used.For GSE7502 di�erent versions of a mi
roarray 
hip were used. The same number of CON-samples as CR-sampleswas tested on ea
h platform, so that we did not expe
t a bias from the use of di�erent platforms.In this 
ase we bound the annotation in the 
orresponding GPL-�le to ea
h list element, wrote these tables to�les and further pro
essed them in Perl by 
ombining values with identi
al Entrez ID or if no Entrez ID wasgiven for a probe by GeneBank a

ession number. Sin
e by manual inspe
tion we did not �nd any 
ase in whi
ha di�erent number of probes for one gene existed in one than the other array (and would therefore lead to lineswith values for only some samples, whi
h would most likely lead to dis
arding the line in further analysis) we didnot 
are whi
h probe of one gene is linked with whi
h probe for the same gene on the other platform. Due to theway 
ollapsing of probes targeting the same gene was done later it would not 
ause trouble if 
olumns of di�erentprobes targeting the same gene were linked here (see �3.2.2.3 Collapsing probes targeting the same gene�).This linking was done with all samples relevant for our analysis and samples 
orresponding to the same CON� CR pair (e.g. one pair for 6 months 
alori
 restri
ted animals versus their 
ontrols another for 16 monthsrestri
ted animals versus their 
ontrols) were extra
ted to one �le ea
h manually using Ex
el.For GSE904 the list of probes in the �rst �le was 
ontinued in a se
ond one. Ea
h �le was therefore treatedas an independent one and then both 
ombined by binding the rows together. In the 
ase of GSE8426 four listelements were obtained sin
e the probes were distributed to two di�erent platforms (GPL738 and GPL782) andfor ea
h of those the samples were distributed to two �les ea
h. Therefore the samples divided to di�erent �leswere 
ombined by binding the 
olumns together as for GSE7502 and the probes from the di�erent platforms bybinding the rows as for GSE904 after adding the 
orresponding annotation.3.2.2.1.1.4 Dete
ting and reversing transformation of data Sin
e the values in some of the datasetswere transformed (mainly log-transformed ), but were not in others and we wanted to 
al
ulate 
omparable e�e
t-size measures for all the datasets the transformation of transformed data was reversed: To determine if valuesin the GEO data �les were transformed the value of the value_type �eld of GDS �les or the data_pro
essing�eld of GSM �les 
orresponding to GSE �les were obtained. The value_type �
ount� tells that there was notransformation done on the data, the value_type �transformed 
ount� indi
ates some kind of transformation. Thedata_pro
essing �eld gives information by whi
h algorithm/software the data were pro
essed so that in doubtit 
an be found out if this method applies transformation. Furthermore the mean of all samples was 
al
ulatedfor ea
h probe and the median value of these means used as an estimate. E.g. if it was above 10 this supportedthat there was no log-transformation. For further indi
ations we used the histogram of the sample means, whi
he.g. indi
ate log-transformation if values below 0 appear. (For GDS �les these further 
riteria were only used ifvalue_type did not give ba
k �
ount�). In doubt we 
he
ked if it was likely to obtain the given values the waydes
ribed in the GEO-�les from the raw data without log-transformation or 
onta
ted the authors.3.2.2.1.1.5 Handling non-globally normalized data We aimed at 
reating �les with untransformedvalues whi
h were between-array normalized by global normalization, i.e. adjusting the median (or mean) of all43



signals to the same value for all arrays. We did not expe
t that di�erent ways of normalization would 
riti
allyimpa
t our p-value and e�e
t size 
al
ulation, however there were 
ases when normalization was intermingled withlog-transformation, so that log-transformed 
ould not be reversed easily. For GDS2961/GDS2962 and GSE8426data were �rst log10 transformed, then normalized to a mean of 0 by subtra
tion and then the z-s
ore of theprobe in the distribution of all probe signals was 
al
ulated (z-s
ore normalization; (Cheadle et al. 2003)).Sin
e in this 
ase also �RAW� values were given in the separate GSM-�les, these �les were downloaded andthe �RAW� (ba
kground subtra
ted and within-array normalized) values of ea
h sample divided by the meanexpression value over all probes and multiplied by the grand mean (mean of the means over all samples relevantfor our analysis), whi
h resembles global normalization.In GSE11244 the Cy3-signal was normalized to the Cy5-signal of Stratagene Universal Mouse Referen
e RNA ina two-
olor hybridization and the result log2 transformed. We reversed the log2 transformation by raising thevalue to the power of 2, but we a

epted this way of normalization and expe
ted similar p-values and e�e
t sizesthan for globally normalized arrays, even though the values in this �le were lower (distributed around a mean of1). 3.2.2.1.1.6 Combining datasets 
orresponding to the same experiment In 
ases where two �les fora single experiment existed (the probes of one mi
roarray were divided to these �les; e.g. GDS2961 + GDS2962and GDS355 + GDS356) we 
ombined the �les before 
ontinuing the analysis in Perl.3.2.2.1.2 Obtaining data from Gene Aging Nexus (GAN) In GAN (http://gan.us
.edu/publi
/index.jsp;(Pan et al. 2007)) �Expression Pro�le of Aging and CR retardation, Hippo
ampus� and �Expression Pro�le ofAging and CR retardation, Neo
ortex� were the only studies on CR not found in GEO. Unfortunately theHippo
ampus entry only 
ontained data from 
ontrols and was therefore of no use for us. The Neo
ortex datawere downloaded manually for 30 months old animals only sin
e for 5 months old no CR group existed. Columnnames were 
hanged to �CON� and �CR�.3.2.2.1.3 Obtaining data from ArrayExpress E-MEXP748 was the only �le that had to be obtained fromArrayExpress (http://www.ebi.a
.uk/mi
roarray-as/ae/; (Parkinson et al. 2009)), sin
e no dataset 
orrespondingto this study was found in GEO. We used the ArrayExpress Bio
ondu
tor pa
kage (Kau�mann et al. 2009) forobtaining these data. In 
ontrast to most GEO-�les the annotation in the .adf �le was not in the same orderas the probes in the �le 
ontaining the expression values, so that the 
olumns of the �les 
ould not be dire
tlybound together. Instead both �les were sorted a

ording to the 
olumn 
ontaining the probe IDs before bindingannotation 
olumns to the expression values.3.2.2.1.4 Obtaining and pro
essing data dire
tly from authors For all CR mi
roarray studies we knewabout that 
ould not be found in one of the databases we 
onta
ted the (
orresponding) author and requestedthe data. Unfortunately Hu was the only one to provide these (Wu et al. 2008). (For another study (Wu, P. etal. 2009), for whi
h they 
ould not supply the original data we obtained a list of di�erentially expressed genes.We tried to in
lude it in �3.2.3 Pro
essing gene lists from studies for whi
h expression data were not obtained�,but had to drop it due to annotation problems).For all studies for whi
h we 
ould not obtain expression data we sear
hed for lists of di�erentially expressed genesin the 
orresponding publi
ations and supplementary materials (see 3.2.3).3.2.2.2 Annotating data with identi�ers 
ommon between all data �les3.2.2.2.1 Aim and overview To integrate di�erent datasets we needed the same kind of annotation for allof them. The annotation found in the gene expression databases (e.g. the GPL �les in GEO) varies betweendatabase entries. Many of our datasets were annotated with Entrez IDs, for others e.g. only GeneBank a

essionnumbers and Unigene IDs were available.Sin
e by far most of the datasets in this analysis were from mouse we aimed at displaying our results annotatedwith mouse Entrez IDs. We expe
ted Entrez IDs to fa
ilitate the mapping between di�erent organisms, e.g.
ompared to Unigene IDs. We therefore 
ondu
ted a gene-
entered rather than a trans
ript 
entered analysis(whi
h would be done i.e. when using Unigene IDs) and a

epted to loose information from probes targetingsequen
es that do not 
orrespond to annotated genes (or expressed sequen
e tags (ESTs)) or for whi
h no ho-mology mapping between the organism of the study and mouse existed (as of April 2010).44



For this annotation with identi�ers 
ommon between all data �les we needed at several stages a programthat looked up the given annotation in another �le that mat
hes this annotation to another one. We useduse_vlookup_mod4.pl together with vlookup_mod4_3.pm (supplement 2).vlookup_mod4_3.pm is a subroutine whi
h takes 
hara
ter strings (
ommon identi�er) of a spe
i�ed 
olumn of�le 1, sear
hes an exa
t mat
h of this string in a user-spe
i�ed 
olumn of �le 2 and adds the value in anotherspe
i�ed 
olumn of the same line to �le1 (�g. 3.3).If the strings you sear
h for are 
omma-separated lists of elements the user 
an spe
ify if he/she wants tosear
h for the 
omplete string or ea
h element of the string individually. In the se
ond 
ase all found strings are
ombined to a 
omma-separated one. If the same string is found twi
e it will o

ur only on
e in this list. Thislist is added to �le1 as the found string.If a 
ommon identi�er mat
hes to more than one value in the se
ond �le, the user 
an 
hoose if he/she wantsto 
ombine all found elements in a 
omma-separated list, 
reate a new line for ea
h or treat this situation as ifnothing was found.For all values in �le 1 for whi
h no 
orresponding value in �le 2 is found the user 
an spe
ify other 
olumns of
ommon identi�ers several times. The program 
an be run on multiple �les at on
e.3.2.2.2.2 Adding Entrez IDs to mouse datasets where missing For some mouse data sets Entrez IDswere not available in the platform annotation. Annotation �les mat
hing mouse GenBank a

ession numbersand MGI Automati
 Gene Symbol (or if appropriate other identi�ers like Ensembl Gene ID, Unigene ID, RefSeqDNA ID, et
.) to Entrez IDs were downloaded from Ensembl (BioMart: Ensembl Genes 57: Mus mus
ulus genes(NCBIM37); April 2010) (http://www.ensembl.org/; (Hubbard et al. 2009)). Entrez IDs were added by sear
hingthem in the annotation �le by looking up whi
h one mat
hed the GenBank a

ession number (GB_ACC) inour data �les and if not found, other identi�ers. For this pro
ess we used use_vlookup_mod4.pl together withvlookup_mod4_3.pm. For probes annotated with more than one GB_ACC we obtained all available EntrezIDs. In later steps however we preferred signals mapped to Entrez IDs unambiguously to those with more thanone Entrez ID (see: �3.2.2.3 Handling probes targeting more than one gene�).A 
ertain number of lines in the data�les (8926 of 19200) were lost during this pro
ess, e.g. for genes, whi
h werenot yet annotated with Entrez IDs.3.2.2.2.3 Mapping non-mouse Entrez IDs to mouse Entrez IDs For data�les from spe
ies other thanmouse we added the Entrez IDs of the homologue mouse gene by sear
hing for the given non-mouse En-trez IDs to obtain uniform annotation for all �les. To do this we downloaded the HomoloGene data �le(ftp://ftp.n
bi.nih.gov/pub/HomoloGene/
urrent : homologene.data from 08/08/09) mat
hing annotation ofhomologue genes between di�erent organisms (Sayers et al. 2010).Files were 
reated 
ontaining onlyMus mus
ulus or the organism of interest´s data. We used use_vlookup_mod4.plwith vlookup_mod4_3.pm to �rst mat
h all Mus mus
ulus Entrez IDs with the annotation of the organism ofinterest into the same line using the homology group ID as 
ommon identi�er and then again to add the mouseEntrez ID to the organism of interest´s data�le using this organism´s Entrez ID as 
ommon identi�er. Again ifmore than one identi�er was mat
hed to a probe in the original �le a 
omma-separated string of all 
orrespond-ingly found mouse Entrez IDs was added. In later steps however we preferred signals mapped to Entrez IDsunambiguously to those with more than one Entrez ID (see: �3.2.2.3 Handling probes targeting more than onegene� and �g. 3.4)Sin
e we did not want any non-mouse gene in our analysis with homology to more than one mouse geneand therefore 
reating ambiguity, we deleted all homology groups 
omprising more than one gene in the mouseannotation �le using only_one_allowed.pl (supplement 2). We however a

epted if Entrez IDs of the organismof interest were in more than one homology group, i.e. if more than one of them mat
hed to only one mouseEntrez ID.This pro
edure was highly ine�e
tive for the bos taurus dataset GSE12853 and would have lost all but oneprobe. Therefore we annotated this �le in a di�erent way that is des
ribed below (�3.2.2.2 Spe
ial annotationpro
edure for GSE12853�). For GSE6110 rat Entrez IDs were not given in the data �le and the given UnigeneIDs were not part of the HomoloGene �les. Therefore the mouse Entrez ID was added �rst by looking upthe 
orresponding rat Entrez ID in a rat BioMart �le (BioMart: Ensembl Genes 57:/ Rattus norvegi
us genes(RGSC3.4)) (as des
ribed for mouse in �3.2.2.2 Adding Entrez IDs to mouse datasets where missing�) and45



Figure 3.3: Work�ow of the vlookup_mod4_3.pm subroutine with options used in this study. SF are 
olumns
ontaining values to sear
h for, CID (
ommon identi�er) represents the 
orresponding value in the �le to addfrom. AE is the element to add. The general �ow is from top to bottom; First SF1 from the �Add-to� �leis looked up in the �Add-from� �le. For lines for whi
h SF1 is not found SF2 is looked up. The results ofboth sear
hes are 
ombined; green arrowheads indi
ate examples for spe
ial situations: 1, 
ommon identi�ersmat
hed to di�erent values to add: these values will be ignored; 2, 
omma-separated lists of elements to sear
hfor: individual elements of 
omma-separated lists are sear
hed; *x*[number℄ is a marker for multiple lines 
reatedfrom one probe; these will be 
ombined again to their 
orresponding probes; see text for details.
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Figure 3.4: Example for the pipeline for adding mouse Entrez IDs to non-mouse expression values and pro
essingof data. The way values are displayed does not resemble their real format. For 
larity non-mouse and mouseEntrez IDs were depi
ted in di�erent formats. Mouse Entrez IDs are added to the data�les via non-mouse EntrezIDs as 
ommon identi�ers employing the subroutine vlookup_mod4_3.pm. AA�>A indi
ates that two identi
alidenti�ers in one line are merged. Lines 
orresponding to the same gene are 
ollapsed and p-values 
al
ulated asdes
ribed in the text using meta-analysis_v3.2.pl. �Expression values� represents lists of expression values bothfor CON and CR in ea
h line.
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using this to �nd the mouse Entrez ID in the HomoloGene �le. Similarly for GSE9917 the annotation in the�le (GB_ACC) was not given in the �le obtained from HomoloGene. Therefore we downloaded the BioMartannotation �le for homo sapiens (BioMart: Ensembl Genes 57: / Homo sapiens genes (GRCh37)) intending to�rst add the human Entrez ID, whi
h then should have been used to �nd the mouse Entrez ID. However onlytwo of the GB_ACCs given in the data�le 
ould be found in the BioMart �le. We also were not able to obtainfurther annotation from the authors and therefore had to ex
lude the dataset.Annotation of GSE17309 was more 
omplex sin
e this 
ontained data from sus s
rofa, for whi
h no homology �lewas available at HomoloGene. Therefore we obtained homology information from BioMart in whi
h however onlyEnsembl IDs (Ensembl Gene ID, Ensembl Trans
ript ID, et
.) were available. Therefore we also obtained thene
essary BioMart annotation �les on mouse and pig and �rst mapped the given pig-identi�ers to pig EnsemblGene ID, from there to mouse Gene Ensembl ID and �nally to mouse Entrez ID. All but 357 of original 24123(mainly poorly annotated) probes were lost during this pro
ess.3.2.2.2.4 Spe
ial annotation pro
edure for GSE12853 Sin
e we were not able to map mouse Entrez IDsto the steer data GSE12853 for the given annotation (GB_ACC, probe ID and Gene name) dire
tly via �les fromHomoloGene, we tried to obtain Bos Taurus Entrez IDs �rst and map these to mouse Entrez IDs similar to whatis des
ribed above for GSE6110 and GSE9917. However for no probe we �rst found bovine Entrez ID and thenalso the 
orresponding mouse Entrez ID. This was probably to the poor annotation of Bos Taurus GB_ACCsand Gene names with Entrez IDs.To over
ome this problem the authors (Erin Connor et al.) kindly provided us with further and more re
entannotation. See �g. 3.5 for the annotation pro
ess using this �le: Sin
e this annotation only 
ontained nu
leotideRefSeq IDs and the HomoloGene �le only protein RefSeq IDs a �le was downloaded from BioMart mat
hing bostaurus nu
leotide to protein RefSeqIDs. The nu
leotide RefSeq IDs were added to the HomoloGene �le 
ontainingbos taurus protein RefSeqIDs mapped to mouse Entrez IDs (vlookup_homologeneSteer.txt) using a modi�
ationof vlookup_mod4_3.pm and the �le was now 
alled vlookup_vlookup_homologeneSteer.txt. (The modi�
ationof the program was ne
essary sin
e RefSeqIDs 
ontained version numbers in one �le, but not the other).The annotation provided by the authors was mapped to the experiment data via probe IDs spe
i�
 for this ex-periment so that the data were annotated with nu
leotide RefSeqID and GB_ACC identi�ers (vlookup_vlookup_GSE12853.txt). Finally mouse Entrez IDs were added to this �le from vlookup_vlookup_homologeneSteer.txtvia the 
ommon nu
leotide RefSeq ID identi�er. Even with this pro
edure not more than one gene 
ould beannotated. The same is true when sear
hing for GB_ACC additionally to nu
leotide RefSeq ID. Therefore thedataset was ex
luded form the analysis.3.2.2.3 Pro
essing datasets, performing a t-test and 
al
ulating e�e
t sizesAfter annotation the dataset �les were further pro
essed and t-test p-values and e�e
t-sizes for the CR � CON
omparison were 
al
ulated. These steps were done in bat
h-mode for all datasets using meta-analysis_v3.2.pl(supplement 2).3.2.2.3.1 Handling missing values and annotation In ea
h individual mi
roarray experiment lines that
ontained more than 30% missing values or for whi
h no Entrez ID annotation was found were eliminated. Tofa
ilitate subsequent analysis all remaining missing values were repla
ed by the row mean, i.e. 
al
ulated fromvalues for 
ontrol and CR samples. This pro
edure in general lowers the 
han
e to �nd this gene di�erentiallyexpressed, re�e
ting the doubts about it due to the missing value.3.2.2.3.2 Collapsing probes targeting the same gene Probes targeting trans
ripts of the same gene(and i.e. having the same Entrez ID) were 
ollapsed by using the mean over ea
h probe (employing the Statis-ti
s::Des
riptive CPAN pa
kage by Colin Kuskie and Shlomi Fish). That probes with higher value therefore
ontribute more strongly to the �nal result is justi�ed by the assumption that probes with higher values are morereliable sin
e they probably bind trans
ripts with higher a�nity and their signal to noise ratio is higher. Thispro
edure is therefore more 
onservative than e.g. the one used by Swindell (Swindell, 2009) whi
h sele
ts themost di�erentially expressed probe.
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Figure 3.5: Annotation pro
edure for GSE12853. File des
riptions or names are in bold print. See text fordetails.
Figure 3.6: Illustration of 
ollapsing of probes. Left table: before, right: after 
ollapsing; ea
h line represents aprobe. The expression value of Entrez ID �1� is �a� sin
e this is the only unambiguous mapping of a probe to�1�. Sin
e no probe is mapped unambiguously to �3�, its expression value is the mean over the values of bothprobes mapping to it. Symbols do not resemble true formats.3.2.2.3.3 Handling probes targeting more than one gene If probes mapped to more than one EntrezID we ignored them if other probes existed whi
h only mapped to this Entrez ID, but 
ollapsed them if no su
hprobes existed (Fig. 3.6). We preferred unambiguous probes sin
e the expression values for a gene would not bedisturbed by the expression values of other genes. On the other hand we preferred to use ambiguous values ifthere was no other option to loosing genes from our analysis, espe
ially su
h with high homology to others, sothat no unique probe for them existed.This approa
h is therefore more 
onservative than expanding every entry to all its identi�ers before 
ollapsingas suggested by Ramasamy (Ramasamy et al. 2008).3.2.2.3.4 Performing a t-test and 
al
ulating e�e
t sizes For ea
h gene the p-value of an unpairedstudent t-test assuming equal varian
es was 
al
ulated using the Statisti
s::Distributions CPAN pa
kage byMi
hael Kospa
h and Matthias Trautner Kromann. As an e�e
t size measure we 
al
ulated the fold 
hange bydividing the mean of CR by the mean of CON values.For the two datasets that 
onsisted of only one repli
ate (GSE904 and data from Hu on forebrain (Wu et al.2008)) we only 
al
ulated e�e
t-sizes. 49



3.2.2.4 Quality 
ontrol3.2.2.4.1 Extra
ting quality 
ontrol parameters A �le 
ontaining 
ertain 
hara
teristi
 values for ea
hdataset was built to 
ontrol the quality of the original data and the quality of pro
essing (The full table is foundin tab. 3.3):�Probes before pro
essing� is the number of probes after obtaining and annotating �les for individual exper-iments. �Genes after pro
essing� is the number of genes for an experiment after pro
essing it as des
ribed in�3.2.2.3 Pro
essing datasets, performing a t-test and 
al
ulating e�e
t sizes�. �CON-samples� and �CR-samples�are the numbers of mi
roarray samples (repli
ates) for 
ontrol and CR animals. �mean_CON� and �mean_CR�are the mean expression values over all probes of 
ontrol and CR samples respe
tively and �STDEV_CON� and�STDEV_CR� the 
orresponding standard deviations over the probes (not to be mixed up with STDEVs overrepli
ates). �per
ent overexpressed� and �per
ent underexpressed� give the number of genes over- and underex-pressed at a p-value <0.05 a

ording to the t-test and �e�e
t size at 1-per
entile� and �e�e
t-size at 99-per
entile�are the 1. and 99. per
entile of the e�e
t size. The experiment names in
lude the GEO-, ArrayExpress or ab-breviated GAN-a

ession of the the re
ord, they were 
reated from and the sele
ted experimental 
onditions ifmore there was more than one in the study.The quality was 
he
ked by sear
hing the list for outliers. The number of probes on the arrays was betweenabout 9000 and 45000 and was lowered to a number of genes after pro
essing whi
h was about half of it, pre-sumably mainly due to di�erent probes targeting the same gene. Repli
ate numbers were between 1 an 11 andabout the same for 
ontrol and CR samples in ea
h dataset. The average expression value was between about100 and 10000. Ex
eptions are the two datasets of the GSE11244 study whi
h is be
ause the expression valueswere normalized to internal standard RNA values. In the dataset of the GSE6110 study expression values werenormalized to 1 so that the average is also lower than for the other studies here. The STDEV over the signal ofall probes normally was about two to three times the average signal. Between 1 and 25% of genes were founddi�erentially expressed at a p-value 
uto� of 0.05 with the e�e
t-size at the 1-per
entile being about 0.9 to 0.5(i.e. downregulation by 1/10 to ½) and at the 99-per
entile about 1.1 to 3.0 with the ex
eption of GSE904 forwhi
h these values were more extreme. This is probably due to the fa
t that there is only one repli
ate andoutliers have a higher impa
t on these values. For the other study with only one repli
ate by Hu this is not the
ase, probably be
ause the study was done on pooled samples whi
h redu
es variation.3.2.2.4.2 Comparison to genes found di�erentially expressed in the original study To further 
he
kagainst any �aws in our analysis we 
he
ked the genes found against those published as di�erentially expressedin ea
h 
orresponding study. 100% overlap was however not expe
ted sin
e the studies often used di�erent sta-tisti
al approa
hes from ours.To 
ompare �ndings we downloaded lists of genes des
ribed as di�erentially expressed from tables in the 
orre-sponding publi
ations or their supplementary materials.For Dhahbi, 2005 and Edwards, 2007 no list of di�erentially expressed genes from the original study 
ould befound. For some other studies only di�erentially expressed genes for some 
onditions (e.g. ages) 
ould be ob-tained. In these 
ases we tried to extra
t information on genes found di�erentially expressed form the text of theoriginal publi
ation. Studies for whi
h no information at all about genes di�erentially expressed with 
alori
 re-stri
tion was given are GSE904, GSE6110, GSE18297, GSE14202, GSE17309, GDS355+GDS356 and GDS2612.This analysis was done taking about 4 random genes published to be di�erentially expressed and 
he
king themagainst the p-values and e�e
t sizes found in our study. Considering that the statisti
al approa
h between theoriginal and our study di�ered we only required about 2 or 3 of these genes to be statisti
ally signi�
ant or nearlystatisti
ally signi�
antly expressed in the same dire
tion and a

epted 1 or 2 genes not found signi�
ant in ouranalysis.We investigated the 
ase more 
losely if genes were found statisti
ally signi�
ant in the other dire
tion (up ordown) than in the original study, whi
h was the 
ase for GDS1808 (Dhahbi, 2005) where 4 of 10 genes mentionedin the paper were found statisti
ally signi�
antly di�erentially expressed in the other dire
tion in our study. Theauthors of the original study kindly provided us the original data and these were 
onsistent with our �ndings
al
ulated from the GEO data rather than the results presented in the publi
ation. Therefore we kept our resultsfor further steps.All other studies were of satisfying 
onsisten
y with our results.50



Table 3.3: Table listing 
hara
teristi
s for ea
h dataset for quality 
ontrol. See text for details.
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3.2.2.5 Ex
luding genes di�erentially expressed with ageSin
e CR is a me
hanism known to 
ountera
t the e�e
ts of aging it is expe
ted that some of the gene expression
hanges by CR in older organisms are due to the reversal of 
hanges normally o

urring with age, e.g. whilethe expression of a 
ertain gene goes down with age in ad libitum fed animals, it does not in CR fed animals.This gene would then be found di�erentially expressed between old CR and AL-animals (Fig. 3.7). We aim atdistinguishing those genes from others found di�erentially expressed with CR whi
h are supposed to provide ame
hanisti
 explanation for the e�e
ts of CR rather than are a 
onsequen
e of it.We therefore de
ided to remove all genes found di�erentially expressed between older and younger AL animalsfrom the genes di�erentially expressed with CR in the opposite dire
tion in the older animals. This was doneusing ex
lude_on_
riteria_v2.1.pl (supplement 2). The younger animals (mi
e or rats) 
hosen for the 
omparisonwere normally about 4 months old and from the same study. If the study did only 
ontain old animals no genesdi�erentially expressed with age were ex
luded, sin
e it is nearly impossible to �nd other studies on 
hanges withaging under the same 
onditions (same strain, age, et
). We 
hose about 4 months old animals as a 
ontrol evenif younger animals were available, so that the results were not disturbed by 
hanges between non-fully grown andadult animals.The t-test for the old vs. young 
omparison was done the same way and applying the same 
uto�s as the one forthe CR vs. AL 
omparison, following the logi
 that if the gene is signi�
antly di�erentially expressed in CR onlybe
ause of ameliorating 
hanges in age dependent gene expression, then these age dependent 
hanges should besigni�
ant at the same threshold, given that the sample sizes are similar. This was the 
ase for all datasets. Theper
entages of genes di�erentially expressed in opposite dire
tion with age and CR (at p <0.05 and e�e
t size >1.5-fold) and therefore ex
luded is given in table 3.4.For more information on the number of genes di�erentially expressed with CR, age and with CR and age inopposite dire
tion see �3.2.5 Relationship between di�erential expression with CR and age�.3.2.3 Pro
essing gene lists from studies for whi
h expression data were not ob-tainedFor studies for whi
h we 
ould not obtain expression data, but only lists of genes di�erentially expressed a

ordingto the statisti
al test in the original study, we downloaded these lists plus any statisti
al parameter (e.g. e�e
t-size) if available. Sin
e these lists were extra
ted from publi
ations or espe
ially 
orresponding supplementarymaterial these studies are also 
alled �supplemental studies� and 
orresponding genes �supplemental genes� inthe following.Using expression data is preferable to these data sin
e they are obtained by di�erent statisti
al methods and
riteria and data on non-di�erentially expressed genes are missing.Annotation to mouse Entrez IDs was done as for the raw data. For the only non-mouse dataset on rhesus monkeytrans
ripts, assayed on a human mi
roarray platform (Kayo, 2001), human Entrez IDs were added �rst usingannotation from BioMart and those mapped to mouse Entrez IDs using mapping �les from HomoloGene. MouseEntrez IDs were added to all other �les by looking up mouse Entrez IDs 
orresponding to the GBACCs (andif given Gene Symbols) in BioMart mapping �les using use_vlookup_mod4.pl with vlookup_mod4_3.pm (See�3.2.2.2 Annotating data with identi�ers 
ommon to all data �les� and sub-
hapters for details).For lists of genes di�erentially expressed in hypothalamus provided by Hu ((Wu, P. et al. 2009); note: these aredi�erent data than the raw data provided by Hu on forebrain (Wu et al. 2008) mentioned above) the only givenidenti�ers were Gene Names and A�ymetrix probe IDs. We were not able to map any of them to Entrez IDs.Therefore datasets from this study had to be ex
luded from further analysis.Sin
e p-values -if given- were determined by di�erent statisti
al tests, some of them multiple testing 
orre
ted,others not, we repla
ed -or added- them as p = 0.001, i.e. a signi�
ant p-value and therefore only evaluatedthe genes by their e�e
t-sizes and the fa
t that they were stated as over- or underexpressed. (If e�e
t sizesfor underexpresed genes were given as negative values, e.g. -2 we 
onverted them to the 
orresponding valuesbetween 0 and 1, e.g. −
1

(−2) = 0.5. We a

epted that supplement genes may have been 
hosen with stri
ter orless stri
t statisti
al 
riteria than in our analysis. For attempts to assimilate our statisti
al 
riteria to those usedfor supplemental data see �3.2.4.2 Combining expression data prepared from raw data and supplemental lists ofdi�erentially expressed genes�. 52



Figure 3.7: (Dummy �gure) Example demonstrating the reasoning, why genes di�erentially expressed withage were ex
luded. a, No di�erential expression with age, but with CR; this gene is expe
ted to 
ontribute asme
hanisti
 reason to the e�e
t of CR; b, Di�eren
e between old AL and old CR, be
ause the gene is di�erentiallyexpressed with age under AL, but not CR 
onditions; this gene is expe
ted to be di�erentially expressed only asan e�e
t of CR 53



CR data total genes % ex
ludedGSE8426Cortex24months.txt 8265 0GSE8426Spinal.
ord16months.txt 8265 0GSE8426Hippo
ampus24months.txt 8265 0GSE8426Striatum24months.txt 8265 0GSE8426Cerebellum24months.txt 8265 0GSE8426Striatum16months.txt 8265 0GSE8426Spinal.
ord24months.txt 8265 0GSE8426Cortex16months.txt 8265 0GSE8426Hippo
ampus16months.txt 8265 0.01GSE8426Cerebellum16months.txt 8265 0.04GSE7502testis16months.txt 10217 0.04GSE7502ovary16months.txt 12163 0.04GSE6718heart.txt 11834 0.08GSE7502ovary24months.txt 12163 0.18GSE7502testis24months.txt 10217 0.26GSE11291neo
ortex.txt 23339 0.32GAN_Expr_Pro�le_Aging_CR_Retar-dation_Neo
ortex_30months.txt 9257 0.86GDS2681.txt 23339 1.00GDS355_356.txt 7089 1.18GDS2961_2962_24months.txt 8265 1.56GSE11291gastro
nemius.txt 23339 1.73GDS2612.txt 15253 1.86GSE11291heart.txt 23339 1.90GSE6110.txt 7653 2.21GSE6718wat.txt 11834 4.69Table 3.4: Number of genes ex
luded be
ause of di�erential expression with age in opposite dire
tion. For alldatasets for whi
h data on younger AL-animals existed genes were ex
luded that were di�erentially expressedwith age in AL-animals in opposite dire
tion of di�erential expression with CR in the older animals. The totalnumber of genes in the dataset and per
entage of genes ex
luded are given.
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3.2.4 Estimating the signi�
an
e of the number of studies in whi
h genes weredi�erentially expressedTo determine if a gene was found di�erentially expressed in more studies than expe
ted by 
han
e we �rst
ounted for ea
h gene in how many studies its expression was measured and in how many it was found over-or underexpressed at a p-value of p <0.05 and a fold-
hange of at least 1.5 (see �3.2.4.1 Determining t-testp-value and e�e
t-size 
uto�� on how these 
uto�s were 
hosen). We obtained the probability of �nding a geneover- / underexpressed at least this often by random 
han
e (binomial p-value) from the 
umulative binomialdistribution:
P = 1−

k−1
∑

x=0

(nx) ∗ p
x
s ∗ (1 − ps)

(n−x) (3.1)For this we used the su

ess probability (ps) 
al
ulated by dividing the number of genes appearing over- /underexpressed in all studies by the total number of appearan
es of genes in all studies (i.e. a gene di�erentiallyexpressed / tested more than on
e is 
ounted for ea
h time it was di�erentially expressed / tested).3To �nd an appropriate 
uto� for the binomial p-value we repeated the binomial test 100 times on s
rambleddata. By dividing the mean of the number of genes found with s
rambling below a 
ertain binomial p-value bythe number of genes found below it on the real data we obtained a FDR estimate. We 
al
ulated the FDR forsome di�erent binomial p-values and de
ided on a 
uto� of 0.0005 whi
h 
orresponds to a FDR of 0.041 for over-and 0.062 for underexpressed genes. These 
al
ulations were done using CR_binomial_UN_s
rambled_v3.1.pl(supplement 2).Two important de
isions had to be made for the binomial test:1. How to 
hoose the t-test p-value and e�e
t size 
uto�.2. How to 
ombine the genes from supplemental data with those for whi
h the t-test was performed.3.2.4.1 Determining t-test p-value and e�e
t-size 
uto�In order to determine whi
h genes to 
onsider over- and underexpressed we needed 
uto� values for the t-testp-value and / or the e�e
t-size. Note that the 
riterion for the �nal results of our analysis is not the t-test
ombined with e�e
t-sizes, but are the p-values of a binomial test performed on the number of studies in whi
h agene is found under- / overexpressed by the t-test and / or e�e
t-sizes in relation to the total number of studiesin whi
h the gene was tested. Therefore there was no need to sele
t the t-test p-value 
uto� in the 
ommon way,e.g. as p <0.05 after multiple testing 
orre
tion. Instead the binomial test is expe
ted to bu�er the 
hoi
e of thet-test p-value and e�e
t-size 
uto�s, i.e. if the thresholds are set relaxed, the su

ess probability (ps in formula3.1) in the binomial test will be higher, so the number of times a gene is found di�erentially expressed (k) inrelation to tested (n) has to be high to be signi�
ant for the tested gene. If on the other hand stri
t 
uto�s aresele
ted ps will be low, so that the k may be smaller in relation to n and still be signi�
ant in the binomial test.Nonetheless, as 
onsidering extreme 
ases shows, the 
hoi
e of these 
uto�s is not 
ompletely deliberate.If 
hoosing extremely relaxed 
uto�s ps might get so low that (nk ) with low n (e.g. (

4
3

)) may not be meaningfuland not signi�
ant, while e.g. (76) will be signi�
ant, therefore dis
riminating against genes tested less often andin
reasing false negative rates. It would be preferable to �nd 
uto�s so that (nk ) with low (but not too low) nare meaningful. If however extremely stri
t 
uto�s are 
hosen �nding a gene di�erentially expressed in only oneor two studies might su�
e for 
onsidering it signi�
ant. This would 
ontradi
t the aim of the meta-analysis. Itwould allow false positives in the original studies to also be
ome false positives in the meta-analysis whi
h is tobe avoided. This may be one of the reasons why rather relaxed 
uto�s were 
hosen in Magalhaes, 2009.The 
hoi
e of t-test p-value and e�e
t-size thresholds is therefore a way to determine if the signi�
ant results ofthe meta-analysis should rather be su
h that were found very reliable in only a few studies or su
h that werefound under more relaxed 
onditions in a higher number of studies. For our aims the emphasis is on the se
ondpoint whi
h suggests the use of relatively relaxed 
uto�s. However as mentioned above the analysis should stillbe sensitive enough to dete
t genes only tested in a relatively low number of studies.A means to 
ontrol for false positives is the FDR, 
al
ulated by dividing the number of genes below a 
ertain3A more a

urate mathemati
al pro
edure would in
lude using the hypergeometri
 instead of binomial distribution. However asn is small 
ompared to the total number of genes the use of the binomial distribution is justi�ed.55



binomial p-value 
uto� found on s
rambled data by the number found on the real data. To assay di�erent 
uto�
riteria we examined the FDRs for three given binomial p-value 
uto�s (0.0001, 0.0005 and 0.001) for di�erentt-test p-value and e�e
t-size pairs (0.05,2; 0.1,2; 0.05,1.5; 0.1,1.5; 0.1,1), to see whi
h settings in general lead tohigher or lower FDRs and to maximise the number of genes found di�erentially expressed at a given FDR (i.e.Type II error for a given Type I error rate). As depi
ted in �g.. there is no 
lear trend over the di�erent binomialp-values that either the stri
t or relaxed ones of our 
uto�s are preferential as to their FDR or number of genesfound. This supports the argumentation that the binomial test is rather robust to the 
hosen t-test p-value ande�e
t-size 
uto�.Importantly however we had to 
onsider that this study in
ludes lists of genes obtained from publi
ations orsupplements, for whi
h the analysis was not done by ourselves and therefore statisti
al tests with di�erent 
uto�swere applied. If we wish that all studies 
ontribute with a similar weight to the meta-analysis, we had to makesure 
uto�s were 
hosen in our study that resemble those as 
losely as possible. We expe
ted that to a
hievethis, the per
entage of genes found over- or underexpressed should be similar. For the studies obtained fromliterature we 
al
ulated these numbers from the numbers of genes given as di�erentially expressed and the totalnumber of genes on ea
h parti
ular array. We used the number of genes given as di�erentially expressed beforeannotation sin
e there was no way of estimating the total number of genes in the datasets after annotation (i.e.how many of the total genes would have been lost during annotation). We assumed a similar probability of lossof a gene during annotation for the 
omplete dataset as for the di�erentially expressed genes.For our own study the per
entage of over- and underexpressed genes in ea
h dataset was 
al
ulated from thenumber of genes found di�erentially expressed and the total number of genes after annotation.We used datasets with more than one repli
ate (all but two datasets), be
ause a t-test is not possible ondatasets with only one repli
ate.Results are shown in �g. 3.8. It was found that the per
entages of genes from literature found over- orunderexpressed resemble per
entages we obtained with rather stri
t 
uto� settings.Even though the numbers of genes di�erentially expressed at a t-test p-value 
uto� of 0.05 and an e�e
t-size 
uto�of 2 would better �t the results of the supplemental data, we 
hose 0.05 for the p-value and 1.5 for the e�e
t size.This is be
ause of the argument above that with very low su

ess probabilities a gene 
an be found signi�
antin the binomial test even when only over-/underexpressed in very few studies. The aim of the meta-analysis ishowever to �nd genes 
onsistently di�erentially expressed over several studies (and 
onditions). For the 0.05, 2sele
tion the average per
entage of di�erentially expressed genes (= su

ess probability * 100) is around 0.85%before and 1.0% after in
luding supplemental data, for the 0.05, 1.5 sele
tion about 2.0% before and 2.4% afteradding supplemental data. (Su

ess probabilities rise when in
luding supplemental data sin
e these only 
onsistof di�erentially expressed genes.)Two datasets (data from Hu on Hypothalamus and GSE904) were based on unrepli
ated samples. Thereforeno t-test 
ould be performed and i.e. no p-value 
uto� used for sele
ting over- or underexpressed genes. Sin
egenes would be sele
ted in a less stri
t way if only using the same e�e
t-size 
uto� as for the other data, wede
ided that a stri
ter e�e
t-size threshold should be 
hosen. The way to �nd an appropriate threshold was to
hoose it in a way that a similar number of genes would be found over-/underexpressed as in the other studies.However the per
entage of genes found di�erentially expressed for di�erent thresholds in the two datasets wasalways mu
h higher for GSE904, espe
ially for overexpressed genes. The fa
t that data from Hu were from poolsof 3 hypothalami, while the data in GSE904 were not pooled suggests higher reliability of the �rst and the useof di�erent 
uto�s for the two datasets. We de
ided on an e�e
t-size 
uto� of 1.7 for the data from Hu, at whi
h2.1% of genes are overexpressed and 1.4 underexpressed and of 4.0 for GSE904, at whi
h 3.9% are over- and 0.6are underexpressed.3.2.4.2 Combining expression data prepared from raw data and supplemental lists of di�erentiallyexpressed genesThe issue of how to 
ombine lists of genes on the one hand 
reated by 
al
ulating e�e
t sizes and t-test p-valuesfrom expression data and on the other hand obtained dire
tly as a list of di�erentially expressed genes frompubli
ations and supplements (�supplemental genes�) is not trivial.It is essential for the binomial analysis not only to have data of di�erentially expressed genes, but also on non-di�erentially expressed ones, so that both the �number of su

esses� (k) and of �trials� (n) (in 3.1) for ea
h gene
an be given. The data of non-di�erentially expressed genes were however not available from published lists.There are several possibilities to 
ombine the data, all with their own drawba
ks:56



Figure 3.8: FDRs (red 
olumns) and per
entages of genes found (a,) over- or (b,) underexpressed in signi�
antly more studies than expe
ted by 
han
e.Di�erent 
olumns show, when genes are sele
ted at di�erent t-test p-value and e�e
t size 
uto�s (0.05,2; 0.1,2; 0.05,1.5; 0.1,1.5; 0.1,1). Di�erent panelsshow di�erent binomial test p-value 
uto�s. Created from studies with at least 2 repli
ates
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1. The di�erentially expressed supplemental genes are added to the genes from raw data, ignoring that otherunknown genes were tested in the supplemental studies. This is therefore an analysis as if no other genesthan those given in the lists were studied. The su

ess probability ps in the binomial test is the numberof over- / underexpressed genes in these 
ombined data divided by the size of the data. The probability
ps is therefore greater than the probability of �nding a gene di�erentially expressed in a mi
roarray study.The binomial probability 
annot be interpreted as the probability of �nding the gene at least this oftendi�erentially expressed by 
han
e, when tested in the given number of studies. As a 
onsequen
e thebinomial p-value rises for genes not in the supplemental data, when in
luding supplemental genes. Howeverthe FDR is estimated by s
rambling the same data, so that the binomial p-value 
uto� will be higher atthe same FDR 
ompared to when supplemental data are not in
luded.2. Sin
e the total number of genes tested in supplemental studies 
an be found in the literature, the analysisin 1. 
an be modi�ed: Instead of ps as des
ribed above, a ps 
an be used whi
h is the number of genesfound over- / underexpressed divided by the number of genes tested in all studies. Therefore ps is smallerthan the frequen
y of di�erentially expressed genes in the 
ombined list, whi
h is used for s
rambling. Thisinterpretation of ps a

ounts for the fa
t that more genes were tested in the supplemental data than thosegiven as di�erentially expressed. However sin
e we do not know whi
h genes were tested in the supplementalstudies and found non-di�erentially expressed, their binomial p-value would be 
al
ulated too low using thelower ps (i.e. this approa
h is in
onsistent in that ps a

ounts for the unknown non-di�erentially expressedgenes, but n 
annot). However, as in 1., 
hoosing the p-value 
uto� from a FDR 
al
ulated by s
ramblingwill ameliorate the problem of generally underestimated binomial p-values.So far s
rambling was always done on a list, that is enri
hed in di�erentially expressed genes, be
ause itdoes not 
ontain the unknown non-di�erentially expressed genes from the supplemental data. Consideringthe existen
e of these genes might lead to generally lower FDRs. Two possibilities are:3. Lists from supplemental data are �lled up with Entrez ID substitutes with non signi�
ant e�e
t sizes.Be
ause they are not signi�
ant, they will have binomial p-values = 1 in the analysis and a
t as non-signi�
ant genes in the s
rambling pro
ess. However this is an approa
h assuming that all unknown genesin the supplemental data are di�erent from the genes in the other studies. In reality probably most are thesame as in the other studies. Therefore this approa
h in
reases the number of non-di�erentially expressedgenes, but it does not a

ount for the fa
t that these might be the same as other genes in the analysis.Therefore this approa
h does not �t for this situation.4. In order to over
ome the problem of 3. the in
omplete lists of supplemental data has to be �lled withrandom Entrez IDs, already existing in the lists of obtained data, with non-signi�
ant e�e
t-sizes. Howeverthis would introdu
e randomness already at the level of uns
rambled data and is therefore to be avoided.The problems in 3. and 4. show that it is not feasible to in
lude the non-di�erentially expressed genes of thesupplemental studies as long as they are not known.We de
ided that the a

ura
y and interpretation of the binomial p-values is of minor importan
e for our study, aslong as the FDR 
an be 
orre
tly estimated (in 
ontrast to the drawba
ks of 3. and 4.) and used to de
ide on anappropriate p-value 
uto�. Sin
e 2. assumes that more than the given number of tests were done (de
reasing ps),but 
annot in
rease the number of times 
ertain genes were tested (in
reasing n) we 
hoose 1. as more 
onsistentwithin itself and de�ned ps as the probability of a gene being di�erentially expressed within the 
ombined data.3.2.5 Relationship between di�erential expression with CR and ageThe importan
e of CR 
omes from its ability to extend life-span in several organisms. Therefore we examinedthe relationship between di�erential expression with CR and age. In parti
ular we tested if more genes aredi�erentially expressed in opposite dire
tion with age and CR than expe
ted by 
han
e in ea
h dataset. Weargued that a gene will be di�erentially expressed between AL and CR in old animals if di�erential expressionwith age in AL animals is ameliorated by CR. Di�erential expression will be in opposite dire
tions in this 
ase.See �3.2.2.5 Ex
luding genes di�erentially expressed with age� for a detailed explanation. Note that this approa
hdoes not draw 
on
lusions from negative results, as it is the 
ase when looking for genes that are di�erentiallyexpressed with age under AL, but not under CR 
onditions.For ea
h gene in an annotated dataset we did a t-test for 
alori
 restri
tion vs. ad libitum fed for old animals58



and another t-test for young vs. old AL-animals. For p < 0.05 (without multiple testing 
orre
tion) and a fold-
hange of at lest 1.5 we extra
ted genes found di�erentially expressed in both tests and for whi
h the dire
tionof di�erential expression was opposite, so that therefore the expression in an old animal under CR resemblesthat of a young animal. (See �3.2.4.1 Determining t-test p-value and e�e
t-size 
uto�� for an explanation whybinomial test pro
edures are robust for the 
hoi
e of 
uto� values.) The genes obtained here are the same asthose ex
luded from the meta-analysis of CR in �3.2.2.5 Ex
luding genes di�erentially expressed with age�. Seethis se
tion for details.We found that for our settings depending on the dataset between 0 and 67% of genes di�erentially expressed withCR were di�erentially expressed in opposite dire
tion with age. (However only up to 4.69% of all studied geneswere di�erentially expressed with CR and age in opposite dire
tions. See �4.2.2.5. Ex
luding genes di�erentiallyexpressed with age� and table 3.4 therein).We 
al
ulated the probability of obtaining an overlap at least this great by random 
han
e by using the 
umulativebinomial distribution, taking the number of genes over- / underexpressed with CR and di�erentially expressedin opposite dire
tion with age as su

essful trials, the number of genes over- / underexpressed with CR alone astrials and the probability of a gene being under- / overexpressed with age as the probability of su

ess. For these
al
ulations we used ex
lude_on_
riteria_v2.1.pl (supplement).P-values obtained were <0.005 in most 
ases (table. 3.5). The number of studies is not high enough to draw
on
lusions e.g. in whi
h tissues expression 
hanges are most ameliorated with age, et
. sin
e ea
h tissue wasonly tested a few times and there are other variables that vary between the studies. Nonetheless the data suggestthat there is indeed a CR-e�e
t on the level of gene expression for all tissues ex
ept some brain tissues. Howeverit should be noted that the number of genes 
hanging expression with age in these brain tissues is generallylow so that there is little need for CR a
tion. Interestingly the CR-e�e
t is also less marked in the two ovarydatasets. A possible interpretation might be that many genes 
hanging expression in these datasets may do soin a tissue-spe
i�
 programmed way whi
h is not 
ountera
ted by CR.Note however that this short se
tion on the relationship between di�erential expression with CR and age isonly meant to give a rough idea what 
an be a
hieved from su
h a study and must still be done in a more indepth way.3.2.6 Fun
tional analyses3.2.6.1 Determining fun
tional 
ategories enri
hed in the meta-analysis datasets - GO-analysisIn 
ontrast to determining fun
tional 
ategories in whi
h determined 
andidate genes were enri
hed (as in �3.2.6.2Putting genes found di�erentially expressed with CR into fun
tional 
ategories - DAVID-analysis�) we here askedif the fun
tional (gene ontology (GO)) 
ategories themselves, as the basi
 units of the binomial test, were foundoverrepresented (for over- or underexpression) more often than expe
ted by random 
han
e. We therefore 
om-pared the number of times a GO-
ategory is found asso
iated with an over- / underexpressed gene in the datasetsto the number of times it is found asso
iated with any gene:A table mat
hing GO-IDs to genes was prepared the following way: A �le mapping ea
h Entrez ID to 
orre-sponding GO-IDs with one GO-ID per line was downloaded from the NCBI FTP4 (19/07/10). We 
reated a �lemapping ea
h Entrez ID to a 
omma-separated list of all 
orresponding GO-IDs using GOparser_modi�ed.pl andCR_GO_UN_s
rambled_v1.2.pl (supplement 2). Independently from this we 
reated a list of only those genesappearing in the data�les using CR_binomial_UN_s
rambled_v3.1.pl (supplement 2) and added the GOs tothis list with vlookup_mod4.3.pm (supplement 2).We 
ounted a GO-ID ea
h time it appeared asso
iated with any over- / underexpressed genes in any dataset(
ounting it twi
e if the same gene asso
iated with this GO was found in di�erent studies). Then we 
ounted thenumber of times it appeared asso
iated with any gene studied. We performed a binomial test on those numbers(see 3.1), 
al
ulating probabilities (p-values) that a gene would be found over- / underexpressed at least this often(k) by random 
han
e. The number of trials (n) was the total number the GO appeared asso
iated with any genein the datasets and the su

ess probability (ps) the ratio of GO-IDs asso
iated with over- / underexpressed genesto GO-IDs asso
iated with any gene. The 
uto�s for over- / underexpression were the same as in �3.2.4.1 Deter-mining t-test p-value and e�e
t-size 
uto��. This pro
ess was done using CR_GO_UN_s
rambled_v1.2.pl.FDRs as a 
riterion for de
iding on 
uto�s for the binomial p-value were 
al
ulated by dividing the mean number4ftp://ftp.n
bi.nih.gov/gene/DATA/gene2go.gz 59



CR data total genes CR up agingdown CR up,agingdown CR up,agingdown /agingdown p-value CRdown agingup CR down,aging up CR down,aging up/aging up p-valueGSE11291heart.txt 23339 2015 673 239 0.36 <0.001 974 660 204 0.31 <0.001GSE6718WAT.txt 11834 876 616 374 0.61 <0.001 316 545 181 0.33 <0.001GDS2612.txt (skeletal mus
le) 15253 693 427 183 0.43 <0.001 448 230 101 0.44 <0.001GSE11291neo- 
ortex.txt 23339 431 267 31 0.12 <0.001 1175 293 43 0.15 <0.001GSE7502testis24mo.txt 10217 45 37 10 0.27 <0.001 64 85 17 0.20 <0.001GDS2961_2962_24mo.txt(thymus) 8265 304 115 63 0.55 <0.001 97 278 66 0.24 <0.001GSE11291gastro- 
nemius.txt 23339 4150 685 351 0.51 <0.001 1119 368 52 0.14 <0.001GDS2681.txt (
o
hlea) 23339 1445 111 50 0.45 <0.001 3651 275 184 0.67 <0.001GSE6110.txt (kidney) 7653 176 900 59 0.07 <0.001 354 566 110 0.19 <0.001GDS355_356.txt (kidney) 7089 196 168 28 0.17 <0.001 193 200 56 0.28 <0.001GAN_Expr_Pro�le_Aging_CR_Retardation_ Neo
ortex_30mo.txt 9257 683 169 31 0.18 <0.001 637 229 49 0.21 <0.001GSE7502testis16mo.txt 10217 31 6 2 0.33 <0.001 10 57 2 0.04 0.001GSE8426Hippo
ampus16mo.txt 8265 23 1 1 1.00 0.003 2 0 0 / /GSE6718heart.txt 11834 7 203 1 0.00 0.11 12 574 9 0.02 <0.001GSE7502ovary16mo.txt 12163 32 458 3 0.01 0.12 57 302 2 0.01 0.42GSE7502ovary24mo.txt 12163 26 651 2 0.00 0.41 74 302 20 0.07 0.00GSE8426Spinal.
ord16mo.txt 8265 2 6 0 0.00 1 2 3 0 0.00 1GSE8426Cerebellum24mo.txt 8265 8 7 0 0.00 1 3 270 0 0.00 1GSE8426Spinal.
ord24mo.txt 8265 1 39 0 0.00 1 15 55 0 0.00 1GSE8426Cerebellum16mo.txt 8265 3 8 0 0.00 1 7 35 3 0.09 <0.001GSE8426Cortex24mo.txt 8265 3 0 0 / / 0 0 0 / /GSE8426Hippo
ampus24mo.txt 8265 0 1 0 0.00 / 1 0 0 / /GSE8426Striatum24mo.txt 8265 0 0 0 / / 0 2 0 0.00 /GSE8426Striatum16mo.txt 8265 0 1 0 0.00 / 2 0 0 / /GSE8426Cortex16mo.txt 8265 0 1 0 0.00 / 1 1 0 0.00 1.00Table 3.5: Number of genes 
hanging expression with CR, aging and 'aging and CR in opposite dire
tion'. Ratios of genes 
hanging in opposite dire
tionof all genes 
hanging with age and probabilities (p-value), that at least this many would be found by 
han
e are also shown. "/" indi
ates 
ases in whi
ha binomial test is not reasonable sin
e either the number of trials or the su

ess probability is 0.
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of GOs found over- / underexpressed by s
rambling 100 times by the number found for the uns
rambled data.We sele
ted a binomial p-value threshold of 0.001 whi
h 
orresponded to a FDR of 0.023 for GOs for over- and0.029 for GOs for underexpressed genes.While the enri
hment analysis on 
andidate genes (see next se
tion) tries to 
lassify the genes found in themeta-analysis and therefore to �nd a possible explanation, why they might have been found, this one might �nd
ategories important for the me
hanism of CR whi
h might exhibit their a
tion through di�erent members ofthis 
ategory in di�erent 
ir
umstan
es. E.g. while gene A might be overexpressed with CR in liver, gene B ofthe same 
ategory might be overexpressed with CR in kidney.3.2.6.2 Putting genes found di�erentially expressed with CR into fun
tional 
ategories - DAVID-analysisSin
e the relative large lists of genes di�erentially expressed with CR are hard to interpret, we used the Fun
tionalAnnotation Tool of the Database for Annotation, Visualization and Integrated Dis
overy (DAVID) (Dennis etal. 2003) to put them into fun
tional 
ategories (21/07/10)(see also �2.1.5.3 Introdu
tion to DAVID�).We separately uploaded the lists of genes enri
hed for overexpression and underexpression (binomial p-value <0.0005) and a list of all genes used in the studies in the form of mouse Entrez IDs and ran the analysis underdefault settings.We obtained the �Fun
tional Annotation Chart�, a list of fun
tional 
ategories enri
hed in the input genes, and�Fun
tional Annotation Clustering�, 
lusters of those 
ategories a

ording to the genes they have in 
ommon.We a
quired them by running the program �rst on the databases (e.g. for GO-terms, pathways, diseases, tissueset
.) sele
ted by default and then spe
i�
ally for KEGG and BIOCARTA pathways.3.2.7 Determining tissues 
ontributing to enri
hment of genes for over- or under-expressionAs already mentioned there are several 
ovariates, varying between the di�erent datasets in our meta-analysis, asfor example organism and strain, age, CR regime and duration of CR. Our meta-analysis provides an opportunityto explore how genes overrepresented for over- or underexpression are asso
iated with those variables. Of par-ti
ular interest is the 
ovariate tissue. This is on the one hand be
ause the meta-analysis aimed at �nding genesdi�erentially expressed with CR under multiple 
onditions and, due to the high number of datasets from liver, itis a 
on
ern that genes may be found signi�
ant, even though only di�erentially expressed in liver. On the otherhand it may also be interesting if genes only found di�erentially expressed in one tissue in this meta-analysisindeed exert a tissue-spe
i�
 CR e�e
t. In fa
t the liver would be a good 
andidate for harbouring tissue spe
i�
e�e
ts of CR due to its important role in metabolism.We pursued the following approa
h to shed light on the tissue expression of the genes found signi�
ant in themeta-analysis:We used 
reate_table.pl (supplement 2) to 
reate a table with the genes in the rows and the datasets in the
olumns and ea
h �eld displaying the t-test p-value and e�e
t-size of the gene in this dataset. Using mark_�elds.pl(supplement 2) on the part of the table that 
ontained signi�
ant results of the meta-analysis, we indi
ated �eldswith t-test p-values and e�e
t-size values that 
orresponded to over- or underexpression a

ording to the relaxedthresholds used in the meta-analyses (p <0.05, e�e
t-size: 1.5 fold-
hange). The identi�ed �elds were manually
olor 
oded red for over- and green for underexpression and the 
olumn-header was 
olor 
oded a

ording to thetissue the 
orresponding dataset was obtained from. We then identi�ed genes that were over- (for genes enri
hedfor overexpression) or underexpressed (for genes enri
hed for underexpression) in only one, two or more than twodi�erent tissues (Fig. 3.10).3.2.8 DAVID-analysis on presumably tissue-independent and liver-spe
i�
 
andi-datesBe
ause we found that a large number of genes in our �nal result were di�erentially expressed only in liverdatasets or in datasets from only liver and one other tissue, we repeated the DAVID-analysis on genes di�erentiallyexpressed at least in 3 di�erent tissues to �nd the fun
tional 
ategories behind genes important for the me
hanismof CR in a truly tissue independent manner. We also ran DAVID on these 
andidates only di�erentially expressedin liver to �nd truly liver-spe
i�
 me
hanisms of CR. 61



3.2.9 Co-expression analysis of CR-asso
iated genesBesides determining fun
tional 
ategories of genes asso
iated with a 
ertain trait it is often useful to determinegenes signi�
antly more strongly 
o-expressed with the genes of interest than with other genes. These dete
tedgenes may therefore be important upstream regulators or downstream targets of the studied pro
ess.The 
o-expression analysis of the genes asso
iated with CR was done with software developed by S. van Dammof our group (unpublished). In brief, from a large number of mi
roarray datasets on mouse in GEO for ea
hgene, similarity s
ores to the expression of all other genes were 
al
ulated and genes ranked by these s
ores. Thetop 5% of genes with highest similarity for ea
h gene were 
onsidered 
o-expressed with this gene.Ea
h mouse gene gi was then tested for overrepresentation in the number of times it was found 
o-expressed(i.e. in the top 5%-list) with a 
ertain-subset of genes, 
ompared to the number of times it was 
o-expressedwith all mouse genes. In our 
ase this subset was on
e genes enri
hed for overexpression with CR and on
e forunderexpression. More pre
isely a binomial test 3.1 was done with the number of tests (n) being the numberof genes in the subset and the number of hits (k) being the number of times gi is 
o-expressed with genes ofthis subset. The su

ess probability (ps) of gi being 
o-expressed with any gene was ps = number of times gi is
o-expressed with any gene / number of all genes.The genes were ranked by their p-values of the binomial test and a FDR estimated (as in (Rhodes et al. 2002))as the number of genes found divided by the number of genes expe
ted at ea
h p-value, whi
h is the ratio ofgenes found with smaller or equal p-value divided by the p-value itself.Sin
e a large number (1576 and 1069; given in supplement 2) of genes were found 
o-expressed with genes enri
hedfor over- and underexpression we performed DAVID-analysis under default settings on them.3.2.10 Trans
ription fa
tors regulating expression of 
andidate genesTo dete
t enri
hed trans
ription fa
tor (TF) binding sites in our 
andidate genes we used WebMOTIFS5 (Romeret al. 2007). This program a
ts as an interfa
e to the motif dis
overy programs MEME (Bailey & Elkan 1994),AlignACE (Hughes et al. 2000), MDs
an (Liu et al. 2002), Weeder (Pavesi et al. 2004) and THEME (Ma
isaa
et al. 2006). The downside of using this program was that input genes had to be given as RefSeq-IDs. The
onversion pro
ess lead to loss of about 20 genes ea
h for over- and underexpressed 
andidates. However weexpe
t that the lost genes represented rather poorly annotated ones, so that not mu
h information was expe
tedform them anyway. Sequen
e motifs were sear
hed between 1000 bp downstream to 200 bp upstream with anexpe
ted motif length of <12 bp, stri
t signi�
an
e �ltering and trying all initial hypotheses for the sear
h inTHEME.3.2.11 Dete
ting overlap with CR-essential genes, their orthologues and intera
tionpartnersGenes experimentally identi�ed to be essential for the e�e
t of CR to indu
e life-span extension in di�erent modelorganisms were re
ently extra
ted from literature and summarized in the database GeneDR by D. Wuttke ofour group (unpublished). Essential here means that manipulation of the trans
ription levels of the genes (e.g.kno
k-out by deletion, kno
k-down via RNAi or transposition, or overexpression) signi�
antly modi�ed the e�e
tof CR on life-span extension.The only mouse gene known to be essential for CR-indu
ed life-span extension in this database was Ghr (Growthhormone re
eptor; Entrez ID: 14600) and this gene was found enri
hed for downregulation in our meta-analyses.The following further 
omparisons between the results of the meta-analysis and genes in GeneDR, undertakenby D. Wuttke, are only des
ribed in brief:1. The results of the meta-analysis were also 
ompared to murine orthologues of genes essential for CR in S.
erevisiae and C.elegans.2. A network of murine CR-essential gene orthologues and Ghr was built a

ording to information on physi
alprotein-protein and geneti
 intera
tions retrieved and integrated from IntA
t (Hermjakob et al. 2004), DIP(Xenarios et al. 2000), MINT (Zanzoni et al. 2002), BIND (Bader et al. 2001), BioGRID (Stark et al.2006), MPACT (Güldener et al. 2006), DroID (Jingkai Yu et al. 2008), Rea
tome (Stein 2004), HPRD(Prasad et al. 2009), PDZBase (Beuming et al. 2005), CORUM (Ruepp et al. 2008), iRefIndex (Razi
k5http://fraenkel.mit.edu/webmotifs 62



et al. 2008), PhosphoSitePlus (Hornbe
k et al. 2004), PhosphoGRID (Stark et al. 2010), I2D (Brown &Jurisi
a 2007), InteroPor
 (Mi
haut et al. 2008), InterologFinder (Wiles et al. 2010), MiMI (Jayapandianet al. 2007) and PINA (Wu, J. et al. 2009), extended by dire
t intera
tion partners and analyzed usingCytos
ape (Shannon et al. 2003). The spe
i�
ity of an intera
tion partner was de�ned as the numberof this protein`s intera
tions with CR-essential genes as per
entage of its total number of intera
tions. Ap-value for the spe
i�
ity was 
al
ulated using a binomial test 3.1, 
al
ulating the by 
han
e probabilityfor this many intera
tions with CR-essential genes (k) at the given number of intera
tions (n). Intera
tionpartners signi�
antly overlapping with results of the meta-analysis were extra
ted.3.2.12 Testing the asso
iation of individual datasets to the meta-signature of CRGenes di�erentially expressed under a 
ertain 
ondition are often de�ned as the signature of this 
ondition. Genesenri
hed for di�erential expression in these datasets 
an be 
alled the 
orresponding meta-signature (Rhodes etal. 2004). To test how well the individual datasets in our analysis asso
iate with the �nal meta-signature weemployed a 
hi-square test. To 
reate 
ontingen
y tables for ea
h dataset spe
ifying how many genes are in themeta-signature and how many are not and how many genes are di�erentially expressed and how many not weused metasignature_test_v1.2.pl (supplement 2).The 
hi-square test therefore assesses if genes of ea
h dataset are signi�
antly more likely to be di�erentiallyexpressed, when they are in the meta-signature. To 
he
k that the p-value of the 
hi-square test indi
ates genesto be more, not less likely to be di�erentially expressed, when they are in the meta signature we 
al
ulated
”#diff. exp., inmeta−signature”

”#not diff. exp.,inmeta−signature”

”#diff. exp., not inmeta−signature”
”#not diff. exp., not inmeta−signature”and 
he
ked that the result was >1.3.3 Results3.3.1 Genes enri
hed in the number of studies they are found over- / underex-pressed97 and 65 genes were found over- and underexpressed respe
tively in more datasets than expe
ted by 
han
ebelow a threshold of the binomial p-value of 0.0005. (In the following these are 
alled �genes enri
hed for over-/ underexpression� or sometimes simply �over- / underexpressed genes�). The full lists of genes are displayed intable 3.6 and 3.7.MGISymbol MGI Des
ription EntrezID total overexp. underexp.p_overexp.Mt2 metallothionein 2 Gene 17750 59 14 5 1.85E-10Adh1 al
ohol dehydrogenase 1 (
lass I) Gene 11522 42 12 0 3.50E-10Per2 period homolog 2 (Drosophila) Gene 18627 44 12 1 6.38E-10Por P450 (
yto
hrome) oxidoredu
tase Gene 18984 61 13 0 3.41E-9Inmt indolethylamine N-methyltransferase Gene 21743 33 10 4 5.51E-9Dbp D site albumin promoter binding proteinGene 13170 34 10 4 7.63E-9Nat8 N-a
etyltransferase 8 (GCN5-related,putative) Gene 68396 26 9 0 8.53E-9Ehhadh enoyl-Coenzyme A,hydratase/3-hydroxya
yl Coenzyme Adehydrogenase Gene 74147 39 10 0 3.30E-8Mt1 metallothionein 1 Gene 17748 61 12 2 3.54E-8Cyp2j6 
yto
hrome P450, family 2, subfamily j,polypeptide 6 Gene 13110 30 9 0 3.56E-863



Ab
g5 ATP-binding 
assette, sub-family G(WHITE), member 5 Gene 27409 30 9 0 3.56E-8Fam107a family with sequen
e similarity 107,member A Gene 268709 22 8 0 3.73E-8Klf15 Kruppel-like fa
tor 15 Gene 66277 32 9 0 6.68E-8Sds serine dehydratase Gene 231691 25 8 0 1.18E-7Fkbp5 FK506 binding protein 5 Gene 14229 59 11 1 2.34E-7Zbtb16 zin
 �nger and BTB domain 
ontaining 16Gene 235320 19 7 0 2.46E-7Angptl4 angiopoietin-like 4 Gene 57875 37 9 2 2.64E-7Usp2 ubiquitin spe
i�
 peptidase 2 Gene 53376 60 11 0 2.79E-7Cobll1 Cobl-like 1 Gene 319876 28 8 0 3.17E-7Fmo3 �avin 
ontaining monooxygenase 3 Gene 14262 29 8 0 4.28E-7Cyp7a1 
yto
hrome P450, family 7, subfamily a,polypeptide 1 Gene 13122 39 9 2 4.30E-7Ablim3 a
tin binding LIM protein family, member3 Gene 319713 21 7 1 5.42E-7Nr1i3 nu
lear re
eptor subfamily 1, group I,member 3 Gene 12355 40 9 0 5.43E-7Cyp4a14 
yto
hrome P450, family 4, subfamily a,polypeptide 14 Gene 13119 32 8 0 9.80E-7Sult1d1 sulfotransferase family 1D, member 1Gene 53315 45 9 3 1.57E-6Herpud1 homo
ysteine-indu
ible, endoplasmi
reti
ulum stress-indu
ible, ubiquitin-likedomain member 1 Gene 64209 45 9 2 1.57E-6LOC100047583 similar to apolipoprotein D 100047583 5 4 0 1.96E-6Ctgf 
onne
tive tissue growth fa
tor Gene 14219 35 8 0 2.05E-6Sl
37a4 solute 
arrier family 37(glu
ose-6-phosphate transporter),member 4 Gene 14385 35 8 0 2.05E-6Ten
1 tensin like C1 domain-
ontainingphosphatase Gene 209039 60 10 0 2.41E-6Wee1 WEE 1 homolog 1 (S. pombe) Gene 22390 37 8 2 3.22E-6Klf9 Kruppel-like fa
tor 9 Gene 16601 51 9 0 4.70E-6Ppara peroxisome proliferator a
tivated re
eptoralpha Gene 19013 40 8 1 5.99E-6Trp53i13 transformation related protein 53indu
ible protein 13 Gene 216964 29 7 1 6.10E-6Irs2 insulin re
eptor substrate 2 Gene 384783 29 7 1 6.10E-6Fam195a family with sequen
e similarity 195,member A Gene 68241 20 6 0 7.23E-6A
ot4 a
yl-CoA thioesterase 4 Gene 171282 30 7 0 7.78E-6Ntf3 neurotrophin 3 Gene 18205 42 8 0 8.79E-6Tmem218 transmembrane protein 218 Gene 66279 21 6 0 9.91E-6Aldh1a1 aldehyde dehydrogenase family 1,subfamily A1 Gene 11668 56 9 2 1.05E-5Gm6957 predi
ted gene 6957 Gene 629219 13 5 0 1.09E-5Pim3 proviral integration site 3 Gene 223775 57 9 0 1.21E-5Klf9 Kruppel-like fa
tor 9 Gene 70273 14 5 0 1.67E-5Aqp6 aquaporin 6 Gene 11831 23 6 2 1.77E-564



Cyp2b13 
yto
hrome P450, family 2, subfamily b,polypeptide 13 Gene 13089 23 6 1 1.77E-5De
r2 2-4-dienoyl-Coenzyme A redu
tase 2,peroxisomal Gene 26378 24 6 0 2.30E-5Cry1 
rypto
hrome 1 (photolyase-like) Gene 12952 49 8 0 2.87E-5Ts
22d3 TSC22 domain family, member 3 Gene 14605 26 6 0 3.77E-5Cbr1 
arbonyl redu
tase 1 Gene 12408 38 7 0 4.04E-5Rgs16 regulator of G-protein signaling 16 Gene 19734 27 6 2 4.75E-5Ha
l1 2-hydroxya
yl-CoA lyase 1 Gene 56794 27 6 0 4.75E-5Sult1
2 sulfotransferase family, 
ytosoli
, 1C,member 2 Gene 69083 27 6 1 4.75E-5Gys2 gly
ogen synthase 2 Gene 232493 27 6 0 4.75E-5Cyp2e1 
yto
hrome P450, family 2, subfamily e,polypeptide 1 Gene 13106 39 7 0 4.82E-5Plin5 perilipin 5 Gene 66968 17 5 1 4.83E-5Cpt1a 
arnitine palmitoyltransferase 1a, liverGene 12894 53 8 1 5.16E-5Igfbp2 insulin-like growth fa
tor binding protein2 Gene 16008 40 7 1 5.72E-5Arrd
2 arrestin domain 
ontaining 2 Gene 70807 40 7 0 5.72E-54833417J20Rik 4833417J20Rik RIKEN 
DNA 4833417J20gene 74604 4 3 0 6.24E-54432414F05Rik 4432414F05Rik RIKEN 
DNA4432414F05 gene 77027 4 3 0 6.24E-5Agxt2l1 alanine-glyoxylate aminotransferase 2-like1 Gene 71760 18 5 0 6.55E-5St3gal5 ST3 beta-gala
tosidealpha-2,3-sialyltransferase 5 Gene 20454 41 7 1 6.74E-5Sl
25a25 solute 
arrier family 25 (mito
hondrial
arrier, phosphate 
arrier), member 25Gene 227731 41 7 0 6.74E-5Lpin1 lipin 1 Gene 14245 29 6 1 7.30E-5Gpr146 G protein-
oupled re
eptor 146 Gene 80290 31 6 0 1.08E-4Ad
y1 adenylate 
y
lase 1 Gene 432530 11 4 0 1.15E-4Ifrd1 interferon-related developmental regulator1 Gene 15982 45 7 0 1.25E-4Mat1a methionine adenosyltransferase I, alphaGene 11720 60 8 0 1.28E-4A
ot12 a
yl-CoA thioesterase 12 Gene 74156 32 6 0 1.31E-4Nfkbia nu
lear fa
tor of kappa light polypeptidegene enhan
er in B-
ells inhibitor, alphaGene 18035 61 8 0 1.44E-4Epb4.1 erythro
yte protein band 4.1 Gene 269587 61 8 1 1.44E-4Hsd17b2 hydroxysteroid (17-beta) dehydrogenase 2Gene 15486 46 7 5 1.44E-4Sun2 Sad1 and UNC84 domain 
ontaining 2Gene 223697 34 6 1 1.86E-4Mgp matrix Gla protein Gene 17313 48 7 1 1.89E-4Aldh1a7 aldehyde dehydrogenase family 1,subfamily A7 Gene 26358 35 6 2 2.19E-4Sult3a1 sulfotransferase family 3A, member 1Gene 57430 23 5 1 2.32E-4Nia
r1 nia
in re
eptor 1 Gene 80885 13 4 0 2.38E-465



BC089597 
DNA sequen
e BC089597 Gene 216454 13 4 0 2.38E-4Dusp1 dual spe
i�
ity phosphatase 1 Gene 19252 36 6 0 2.57E-4Klf10 Kruppel-like fa
tor 10 Gene 21847 36 6 0 2.57E-4Rhbdd2 rhomboid domain 
ontaining 2 Gene 215160 51 7 0 2.79E-4Sult1a1 sulfotransferase family 1A,phenol-preferring, member 1 Gene 20887 37 6 0 3.01E-4De
r1 2,4-dienoyl CoA redu
tase 1,mito
hondrial Gene 67460 37 6 0 3.01E-4Cd163 CD163 antigen Gene 93671 14 4 1 3.27E-4Pl
xd3 phosphatidylinositol-spe
i�
phospholipase C, X domain 
ontaining 3Gene 239318 14 4 0 3.27E-4Bnip3 BCL2/adenovirus E1B intera
ting protein3 Gene 100042570 14 4 0 3.27E-4Fzd1 frizzled homolog 1 (Drosophila) Gene 14362 38 6 2 3.50E-4Per1 period homolog 1 (Drosophila) Gene 18626 38 6 1 3.50E-4Enpep glutamyl aminopeptidase Gene 13809 25 5 0 3.51E-4Sall1 sal-like 1 (Drosophila) Gene 58198 25 5 0 3.51E-4Sl
25a42 solute 
arrier family 25, member 42 Gene 73095 25 5 1 3.51E-4Zfp354a zin
 �nger protein 354A Gene 21408 54 7 0 4.00E-4Pla2g12a phospholipase A2, group XIIA Gene 66350 39 6 1 4.04E-4Map3k6 mitogen-a
tivated protein kinase kinasekinase 6 Gene 53608 26 5 0 4.25E-4Rbp7 retinol binding protein 7, 
ellular Gene 63954 26 5 3 4.25E-4Rhobtb1 Rho-related BTB domain 
ontaining 1Gene 69288 26 5 0 4.25E-4Crym 
rystallin, mu Gene 12971 15 4 0 4.37E-4Plin4 perilipin 4 Gene 57435 15 4 0 4.37E-4LOC100044830 similar to a
yl-CoA thioesterase 100044830 15 4 0 4.37E-4Smo
1 SPARC related modular 
al
ium binding1 Gene 64075 55 7 0 4.48E-4Tob1 transdu
er of ErbB-2.1 Gene 22057 40 6 0 4.66E-4
MGISymbol MGI Des
ription EntrezIDtotal overexp. underexp.p_underexp.Sl
6a6 solute 
arrier family 6 (neurotransmittertransporter, taurine), member 6 Gene 21366 60 1 12 7.66E-9Car3 
arboni
 anhydrase 3 Gene 12350 49 0 11 8.86E-9Cyp2j5 
yto
hrome P450, family 2, subfamily j,polypeptide 5 Gene 13109 25 0 8 4.64E-8Dh
r7 7-dehydro
holesterol redu
tase Gene 13360 49 0 10 1.11E-7Arntl aryl hydro
arbon re
eptor nu
leartranslo
ator-like Gene 11865 63 3 11 1.41E-7Zfp64 zin
 �nger protein 64 Gene 22722 34 1 8 6.52E-7Srebf1 sterol regulatory element bindingtrans
ription fa
tor 1 Gene 20787 60 1 10 8.13E-7Es31 esterase 31 Gene 382053 25 1 7 9.14E-766



G
k glu
okinase Gene 103988 41 1 8 2.98E-6Col15a1 
ollagen, type XV, alpha 1 Gene 12819 32 1 7 5.58E-6G0s2 G0/G1 swit
h gene 2 Gene 14373 33 3 7 6.95E-6Insig1 insulin indu
ed gene 1 Gene 231070 33 1 7 6.95E-6C9 
omplement 
omponent 9 Gene 12279 36 1 7 1.28E-5Phlda1 ple
kstrin homology-like domain, familyA, member 1 Gene 21664 39 1 7 2.23E-5Hspa5 heat sho
k protein 5 Gene 14828 69 0 9 2.27E-5Irgm1 immunity-related GTPase family Mmember 1 Gene 15944 28 0 6 3.00E-5Dpp9 dipeptidylpeptidase 9 Gene 224897 28 0 6 3.00E-5Alas2 aminolevulini
 a
id synthase 2, erythroidGene 11656 58 3 8 4.28E-5Tmem132d transmembrane protein 132D Gene 243274 4 0 3 4.34E-5Irf7 interferon regulatory fa
tor 7 Gene 54123 30 1 6 4.56E-5Fabp5 fatty a
id binding protein 5, epidermalGene 16592 59 3 8 4.85E-5Tnfsf10 tumor ne
rosis fa
tor (ligand) superfamily,member 10 Gene 22035 19 0 5 4.89E-5A
ly ATP 
itrate lyase Gene 104112 60 2 8 5.49E-5S
ly seleno
ysteine lyase Gene 50880 31 1 6 5.54E-5C4bp 
omplement 
omponent 4 binding proteinGene 12269 20 0 5 6.40E-5I�27l2a interferon, alpha-indu
ible protein 27 like2A Gene 76933 20 0 5 6.40E-5Cas
5 
an
er sus
eptibility 
andidate 5 Gene 76464 11 1 4 7.14E-5Serpinh1 serine (or 
ysteine) peptidase inhibitor,
lade H, member 1 Gene 12406 63 4 8 7.83E-5I�h1 interferon indu
ed with heli
ase C domain1 Gene 71586 33 0 6 8.03E-51110051M20Rik RIKEN 
DNA 1110051M20 gene Gene 228356 33 0 6 8.03E-5Ttll12 tubulin tyrosine ligase-like family, member12 Gene 223723 21 0 5 8.25E-5Aqp8 aquaporin 8 Gene 11833 34 1 6 9.56E-5Cldn1 
laudin 1 Gene 12737 34 1 6 9.56E-5Nr1d1 nu
lear re
eptor subfamily 1, group D,member 1 Gene 217166 34 3 6 9.56E-5Ghr growth hormone re
eptor Gene 14600 65 0 8 9.82E-5R3hdm2 R3H domain 
ontaining 2 Gene 71750 49 0 7 1.02E-4Hipk2 homeodomain intera
ting protein kinase 2Gene 15258 36 0 6 1.33E-4Rs
1a1 regulatory solute 
arrier protein, family 1,member 1 Gene 69994 13 0 4 1.49E-4Cyp2f2 
yto
hrome P450, family 2, subfamily f,polypeptide 2 Gene 13107 37 0 6 1.56E-4Cx
l9 
hemokine (C-X-C motif) ligand 9 Gene 17329 37 0 6 1.56E-4Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3beta- and steroid delta-isomerase 2 Gene 15493 24 0 5 1.63E-4Mup4 major urinary protein 4 Gene 17843 24 0 5 1.63E-4Extl1 exostoses (multiple)-like 1 Gene 56219 24 1 5 1.63E-467



S
5d sterol-C5-desaturase (fungal ERG3,delta-5-desaturase) homolog (S. 
erevisae)Gene 235293 38 0 6 1.82E-4G6pdx glu
ose-6-phosphate dehydrogenaseX-linked Gene 14381 54 2 7 1.92E-4S
rt1 s
rat
h homolog 1, zin
 �nger protein(Drosophila) Gene 170729 25 0 5 2.00E-4Ptprj protein tyrosine phosphatase, re
eptortype, J Gene 668629 14 1 4 2.05E-4Psmb8 proteasome (prosome, ma
ropain)subunit, beta type 8 (largemultifun
tional peptidase 7) Gene 16913 39 0 6 2.11E-4Sl
10a2 solute 
arrier family 10, member 2 Gene 20494 39 0 6 2.11E-4A
tg1 a
tin, gamma, 
ytoplasmi
 1 Gene 11465 55 1 7 2.15E-4Comt1 
ate
hol-O-methyltransferase 1 Gene 12846 55 2 7 2.15E-4Ntn3 netrin 3 Gene 18209 15 0 4 2.75E-42900086B20Rik RIKEN 
DNA 2900086B20 gene 73074 15 0 4 2.75E-4Sta
3 SH3 and 
ysteine ri
h domain 3 Gene 237611 15 0 4 2.75E-4Mmp15 matrix metallopeptidase 15 Gene 17388 27 0 5 2.93E-4Gtf2ird1 general trans
ription fa
tor II I repeatdomain-
ontaining 1 Gene 57080 27 0 5 2.93E-4Phf19 PHD �nger protein 19 Gene 74016 27 0 5 2.93E-4Inhbe inhibin beta E Gene 16326 42 2 6 3.20E-4Col3a1 
ollagen, type III, alpha 1 Gene 12825 59 1 7 3.35E-4Cd
42ep2 CDC42 e�e
tor protein (Rho GTPasebinding) 2 Gene 104252 28 1 5 3.50E-41110054M08Rik RIKEN 
DNA 1110054M08 gene 68841 16 1 4 3.60E-42810051F02Rik RIKEN 
DNA 2810051F02 gene 72704 7 0 3 3.61E-4Gm13768 predi
ted gene 13768 627525 7 0 3 3.61E-4Gm7450 predi
ted gene 7450 665017 7 0 3 3.61E-4LOC677259 similar to Ornithine de
arboxylase (ODC) 677259 7 0 3 3.61E-4LOC100045005 similar to Deltex3 100045005 7 0 3 3.61E-4Dnase1l2 deoxyribonu
lease 1-like 2 Gene 100047816 7 0 3 3.61E-4LOC100048733 similar to WAP four-disul�de 
ore domain2 100048733 7 0 3 3.61E-4D0H4S114 DNA segment, human D4S114 Gene 27528 60 0 7 3.72E-4Litaf LPS-indu
ed TN fa
tor Gene 56722 60 0 7 3.72E-4Pdia3 protein disul�de isomerase asso
iated 3Gene 14827 62 0 7 4.56E-4Ly6e lympho
yte antigen 6 
omplex, lo
us EGene 17069 62 2 7 4.56E-4Hspb7 heat sho
k protein family, member 7(
ardiovas
ular) Gene 29818 30 1 5 4.89E-4
Besides providing resear
hers with a list of well-known genes, for some giving a �rst hint towards asso
iation68



with CR, for others 
ontributing to the already existing eviden
e for su
h asso
iation, the aim of our meta-analysisis also to �nd interesting behaviour of sequen
es with unknown fun
tion, often annotated as ESTs or pseudogenes.To this end we found LOC100047583 (Entrez ID: 100047583, similar to apolipoprotein D), 4833417J20Rik (74604,RIKEN 
DNA 4833417J20 gene) and 4432414F05Rik (77027, RIKEN 
DNA 4432414F05 gene) among the genesenri
hed for overexpression, whi
h are 
lassi�ed as protein 
oding genes, but are on RefSeq status �model� orwithout any, miss annotation on the referen
e assembly and generally seem to be studied little (22/07/10). Alsofound among the genes enri
hed for overexpression was the pseudogene LOC100044830 (100044830, similar toa
yl-CoA thioesterase).Similarly among genes enri
hed for underexpression we dete
ted 1110051M20Rik (67829, meanwhile repla
edby 228356, RIKEN 
DNA 1110051M20 gene), 2900086B20Rik (73074, RIKEN 
DNA 2900086B20gene), 1110054M08Rik (68841, RIKEN 
DNA 1110054M08 gene), LOC677259 (677259, similar to Ornithinede
arboxylase (ODC)), LOC100045005 (100045005, similar to Deltex3) and LOC100048733 (100048733, similarto WAP four-disul�de 
ore domain 2). These �ndings might assign interesting fun
tions as trans
ribed genes tothese sequen
es, however note that the dete
tion of expression of (pseudo)genes similar to other genes might alsoresult from the la
k of spe
i�
ity of the mi
roarray probe to distinguish between the two sequen
es. We alsofound 2810051F02Rik (72704, RIKEN 
DNA 2810051F02 gene) among the genes enri
hed for underexpression,whi
h is meanwhile repla
ed by the validated NCBI entry �antisense Igf2r RNA� (Airn, 104103), whi
h mighttherefore be an interesting non-
oding RNA 
ontributing to the me
hanism of CR.Table 3.86 presents the 10 genes most signi�
antly enri
hed for over- / underexpression, a des
ription of theirfun
tion and indi
ations of known relationships with CR.Most of these genes are somehow asso
iated with 
andidate GOs as found in the fun
tional analysis (�3.3.2Fun
tional 
ategories of genes di�erentially expressed with CR�), espe
ially 
ir
adian 
lo
k, lipid metabolism andxenobioti
 metabolism. Some of these genes have important regulatory fun
tions in these 
ategories, in parti
ularPer2 as master-regulator and Dbp as another trans
ription fa
tor regulating the 
ir
adian 
lo
k and Srebf1 as atrans
ription fa
tor regulating sterol metabolism.Trans
riptional levels of Per2 os
illate diurnally in the supra
hiasmati
 nu
leus (SCN) of the hypothalamus andare supposedly set by light (Lamont et al. 2007). The timing of os
illators in peripheral tissues is 
ontrolledby the SCN when food is available ad libitum. If feeding is however temporally limited the time of feeding is amore important regulator for peripheral os
illators (Girotti et al. 2009). If additionally the level of food intake isaltered also the timing of 
lo
k gene expression in the SCN 
hanges, arguing for metaboli
 regulation. Thereforeboth the 
hanged amount of food, but also the fa
t that CR might also 
hange the timing of food availability
ompared to AL might have an important in�uen
e on 
hanged expression levels of 
lo
k genes. Srebf1 is aninteresting 
andidate, sin
e it has been linked to the me
hanism, by whi
h resveratrol 
ould in
rease life-span inobese mi
e (Wang, G. et al. 2009). Its expression levels also have been already studied in the 
ontext of CR,showing that, while its liver spe
i�
 expression does not 
hange in the �rst week of CR (Mulligan et al. 2008),its levels are in�uen
ed by CR and refeeding in adipose tissue (Stelmanska et al. 2004).Zfp64, as a little understood 
o-a
tivator in the not
h pathway, also has the potential to be an interesting
andidate 
on
erning the me
hanism of CR.All of the top 10 genes enri
hed for overexpression were overexpressed in more than 3 di�erent tissues, while manyof the underexpressed were only found underexpressed in one or two tissues. This may however also have to dowith the fa
t that they were generally underexpressed in less datasets than the overexpressed were overexpressed.That G
k was found underexpressed in liver only makes sense, sin
e this gene is assumed to be liver and beta-
ellspe
i�
 and pan
reas was not tested in our datasets.It is also noteworthy that many of the top overexpressed genes were found underexpressed in a 
onsiderablenumber of datasets and vi
e versa, even though among all signi�
ant genes the number of datasets of oppositedi�erential expression is rather low (on average around 1). This might mean that the top genes are highlyregulated.6Table 3.8: The 10 genes most signi�
antly enri
hed for over- and underexpression and des
ription of their fun
tion; it is givenwhi
h enri
hed fun
tional 
ategory, as determined in the fun
tional analysis (�3.3.2. Fun
tional 
ategories of genes di�erentiallyexpressed with CR�) they are related to. (This does not ne
essarily mean that they are dire
tly 
lassi�ed with a GO-term exa
tlylike this). The number of di�erent tissues they are over- / underexpressed in is shown. Information not from stated referen
es isfrom www.gene
ards.org; referen
es: 1: (Waddington Lamont et al. 2007), 2: (Girotti et al. 2009), 3: (Kranendonk et al. 2008), 4:(H. Saito et al. 2008), 5: (Sakamoto et al. 2008), 6: (Guang-Li Wang et al. 2009), 7: (Mulligan et al. 2008), 8: (Stelmanska et al.2004)
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a, GeneSymbol Gene Name Fun
tion related 
andidate GOs #tissues 
omment ref.Mt2 metallothionein 2 Gene binds various metals 
ellular 
opper ion homeostasis 7 most signi�
ant gene; also reportedby Swindell, 2008 and 2009;underexpressed in 5 tissuesAdh1 al
ohol dehydrogenase 1 (
lass I) Gene metabolizes besides ethanol alsoretinol, et
. 5Per2 period homolog 2 (Drosophila) Gene master regulator of 
ir
adian 
lo
k 
ir
adian 
lo
k 6 trans
riptional levels os
illatediurnally 1,2Por P450 (
yto
hrome) oxidoredu
tase Gene transfers ele
trons from NADPH toamong others P450 and hemeoxigenase xenobioti
 metabolism 4 3Inmt indolethylamine N-methyltransferaseGene N-methylation of indoles (endogenousand xenobioti
) xenobioti
 metabolism 4 underexpressed in 4 datasetsDbp D site albumin promoter binding proteinGene trans
ription fa
tor that modulates
lo
k-output genes 
ir
adian 
lo
k 4 
lo
k-
ontrolled gene;underexpressed in 4 datasets 4Nat8 N-a
etyltransferase 8 (GCN5-related,putative) Gene not yet 
lear 3Ehhadh enoyl-Coenzyme A,hydratase/3-hydroxya
yl Coenzyme Adehydrogenase Gene part of the peroxisomalbeta-oxidation pathway lipid metabolism 4Mt1 metallothionein 1 Gene binds various metals 
opper ion binding 4 also reported by Swindell, 2008;underexpressed in 2 datasetsCyp2j6 
yto
hrome P450, family 2, subfamily j,polypeptide 6 Gene ara
hidoni
 and linolei
 a
id andretinoid metabolism lipid metabolism, retinolmetabolism 4b, GeneSymbol Gene Name Fun
tion related 
andidate GOs #tissues 
omment ref.Sl
6a6 solute 
arrier family 6(neurotransmitter transporter,taurine), member 6 Gene transports both taurine and beta-alanine 2 most signi�
ant gene; overexpressed in1 datasetCar3 
arboni
 anhydrase 3 Gene 
atalyze the reversible hydration of 
arbondioxide only inliverCyp2j5 
yto
hrome P450, family 2,subfamily j, polypeptide 5 Gene ara
hidoni
 a
id epoxygenase lipid metabolism 2Dh
r7 7-dehydro
holesterol redu
taseGene Produ
tion of 
holesterol by redu
tion of C7-C8double bond of 7-dehydro
holesterol lipid metabolism;
holesterol metabolism 3Arntl aryl hydro
arbon re
eptornu
lear translo
ator-like Gene heterodimer with Clo
k is trans
ription fa
torthat regulates Per1 and other 
lo
k-gens 
ir
adian 
lo
k 4 overexpressed in 4 datasetsZfp64 zin
 �nger protein 64 Gene 
oa
tivator of Not
h; regulates di�erentiation 4 overexpressed in 1 dataset 5Srebf1 sterol regulatory elementbinding trans
ription fa
tor 1Gene trans
ription fa
tor that regulates genesinvolved in sterol biosynthesis lipid metabolism, sterolmetabolism 2 resveratrol inhibits expr. of SREBP1in 
ell model of steatosis; 
hange inSrebf-1 levels in adip. tissue during CRand refeeding; overexp. in 2 datasets 6�8Es31 esterase 31 Gene hydrolysis of esters and amide bonds; involvedin detoxi�
ation of xenobioti
s and maybe inlipid metabolism xenobioti
 metabolism 2 overexpressed in 1 datasetG
k glu
okinase Gene 
atalyzes initial step of glu
ose utilization bythe beta-
ell and liver; e�e
tive when glu
ose isabundant only inliver overexpressed in 1 datasetCol 15a1 
ollagen, type XV, alpha 1 Gene stru
tural protein, espe
ially stabilizingmi
rovessels and mus
le 
ells 4 overexpressed in 4 datasetsTable 3.8: see footnote 6
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3.3.2 Fun
tional 
ategories of genes di�erentially expressed with CR3.3.2.1 GO-terms enri
hed in studies in whi
h asso
iated genes are found over- / underexpressed- GO-analysis187 and 153 GO-terms were found enri
hed for studies in whi
h their asso
iated genes were over- and underex-pressed respe
tively a

ording to the analysis des
ribed in �3.2.6.1 Determining fun
tional 
ategories enri
hed inthe meta-analysis datasets - GO-analysis� (binomial p-value < 0.001). These GO-terms are shown in table 3.9and 3.10.GO term GO total overexp. underexp. p_overexp.lipid metaboli
 pro
ess GO:0006629 8255 352 216 8.01E-24rhythmi
 pro
ess GO:0048511 899 73 27 6.52E-19monooxygenase a
tivity GO:0004497 2803 147 96 8.69E-18
ir
adian rhythm GO:0007623 1025 72 45 2.15E-15detoxi�
ation of 
opper ion GO:0010273 181 26 8 3.77E-13retinol metaboli
 pro
ess GO:0042572 298 33 5 5.46E-13
ellular_
omponent GO:0005575 219270 5771 4906 6.54E-13mole
ular_fun
tion GO:0003674 232675 6087 4986 4.46E-12NADPH-hemoprotein redu
tase a
tivity GO:0003958 149 22 0 1.34E-11mi
rosome GO:0005792 10612 366 316 1.57E-11a
yl-CoA metaboli
 pro
ess GO:0006637 749 51 9 6.73E-11oxidoredu
tase a
tivity GO:0016491 20263 630 469 1.21E-10nitri
 oxide mediated signal transdu
tion GO:0007263 307 30 9 1.35E-10oxidation redu
tion GO:0055114 19926 620 461 1.49E-10a
etaldehyde biosyntheti
 pro
ess GO:0046186 42 12 0 2.03E-10retinoi
 a
id metaboli
 pro
ess GO:0042573 456 37 11 2.27E-10extra
ellular region GO:0005576 42731 1227 1102 2.51E-10fatty a
id metaboli
 pro
ess GO:0006631 3408 143 83 3.03E-10
atalyti
 a
tivity GO:0003824 28555 850 617 3.43E-10biologi
al_pro
ess GO:0008150 237351 6151 5091 4.41E-10
ellular zin
 ion homeostasis GO:0006882 306 29 10 5.55E-10metaboli
 pro
ess GO:0008152 22860 694 523 6.80E-10tyrosine-ester sulfotransferase a
tivity GO:0017067 82 15 3 1.08E-9nitri
 oxide 
ataboli
 pro
ess GO:0046210 61 13 0 1.92E-9�avin-
ontaining monooxygenase a
tivity GO:0004499 132 18 1 3.44E-9amine N-methyltransferase a
tivity GO:0030748 33 10 4 3.49E-9iron ion binding GO:0005506 4581 175 145 3.74E-9alkane 1-monooxygenase a
tivity GO:0018685 54 12 1 4.82E-9benzaldehyde dehydrogenase (NAD+) a
tivity GO:0018479 91 15 4 4.85E-9retinoid metaboli
 pro
ess GO:0001523 185 21 2 5.25E-9
arboxylesterase a
tivity GO:0004091 1170 63 30 5.60E-9late re
ombination nodule GO:0005715 26 9 0 5.63E-92,4-dienoyl-CoA redu
tase (NADPH) a
tivity GO:0008670 61 12 0 2.10E-8intrinsi
 to endoplasmi
 reti
ulum membrane GO:0031227 480 34 10 3.47E-8palmitoyl-CoA hydrolase a
tivity GO:0016290 368 29 3 3.52E-8ethanol 
ataboli
 pro
ess GO:0006068 81 13 0 7.03E-8DNA photolyase a
tivity GO:0003913 84 13 1 1.10E-7ethanol binding GO:0035276 118 15 2 1.74E-7negative regulation of lipoprotein lipase a
tivity GO:0051005 37 9 2 1.76E-7MDM2 binding GO:0070215 88 13 1 1.92E-7aryl sulfotransferase a
tivity GO:0004062 136 16 4 2.03E-7lyase a
tivity GO:0016829 4802 173 128 2.04E-7drug metaboli
 pro
ess GO:0017144 249 22 6 2.13E-7steroid metaboli
 pro
ess GO:0008202 2076 89 73 2.33E-7dode
enoyl-CoA delta-isomerase a
tivity GO:0004165 155 17 0 2.38E-7
holesterol 7-alpha-monooxygenase a
tivity GO:0008123 39 9 2 2.88E-7regulation of bile a
id biosyntheti
 pro
ess GO:0070857 39 9 2 2.88E-771



positive regulation of bile a
id biosyntheti
pro
ess GO:0070859 39 9 2 2.88E-7
ellular response to 
holesterol GO:0071397 39 9 2 2.88E-7extra
ellular spa
e GO:0005615 18369 548 484 2.91E-7ele
tron 
arrier a
tivity GO:0009055 3478 132 96 3.79E-7L-serine ammonia-lyase a
tivity GO:0003941 52 10 0 3.93E-7L-threonine ammonia-lyase a
tivity GO:0004794 52 10 0 3.93E-7aromatase a
tivity GO:0070330 711 41 31 4.05E-7
ellular metal ion homeostasis GO:0006875 161 17 4 4.11E-7transporter a
tivity GO:0005215 7159 239 192 4.78E-7regulation of 
holesterol metaboli
 pro
ess GO:0090181 222 20 3 5.45E-7peroxisome GO:0005777 4072 149 76 5.72E-7a
yl-CoA thioesterase a
tivity GO:0016291 265 22 1 6.17E-7fatty a
id (omega-1)-hydroxylase a
tivity GO:0008393 32 8 0 6.84E-7i
osanoid biosyntheti
 pro
ess GO:0046456 32 8 0 6.84E-7behavioral response to ethanol GO:0048149 186 18 2 6.97E-7myeloid progenitor 
ell di�erentiation GO:0002318 151 16 0 8.49E-7pyridoxal phosphate binding GO:0030170 1959 83 60 9.06E-7glu
ose-6-phosphate transport GO:0015760 134 15 5 9.18E-7histone phosphorylation GO:0016572 152 16 3 9.28E-7oxidoredu
tase a
tivity, a
ting on paired donors,with in
orporation or redu
tion of mole
ularoxygen, redu
ed �avin or �avoprotein as onedonor, and in
orporation of one atom of oxygen GO:0016712 534 33 26 1.18E-6ethanol oxidation GO:0006069 120 14 2 1.27E-6glu
ose-6-phosphate transmembrane transportera
tivity GO:0015152 35 8 0 1.43E-6negative regulation of 
hemokine produ
tion GO:0032682 35 8 0 1.43E-6
ytosoli
 
al
ium ion transport GO:0060401 35 8 0 1.43E-6positive regulation of 
ardia
 mus
le 
ontra
tion GO:0060452 35 8 0 1.43E-6extra
ellular matrix 
onstituent se
retion GO:0070278 35 8 0 1.43E-6positive regulation of G0 to G1 transition GO:0070318 35 8 0 1.43E-6
holesterol 
ataboli
 pro
ess GO:0006707 176 17 2 1.44E-6steroid hormone re
eptor a
tivity GO:0003707 1859 79 40 1.45E-6
ellular homeostasis GO:0019725 60 10 0 1.57E-6multi
ellular organismal homeostasis GO:0048871 60 10 0 1.57E-6methionine adenosyltransferase a
tivity GO:0004478 123 14 0 1.71E-6S-adenosylmethionine biosyntheti
 pro
ess GO:0006556 123 14 0 1.71E-6heme binding GO:0020037 3600 132 111 2.15E-63-
hloroallyl aldehyde dehydrogenase a
tivity GO:0004028 266 21 5 2.44E-6ligand-dependent nu
lear re
eptor a
tivity GO:0004879 1889 79 41 2.60E-6nerve development GO:0021675 204 18 3 2.64E-6positive regulation of 
holesterol esteri�
ation GO:0010873 78 11 3 2.65E-6thiolester hydrolase a
tivity GO:0016790 314 23 1 2.97E-6insulin-like growth fa
tor binding GO:0005520 886 45 28 3.45E-6symporter a
tivity GO:0015293 3572 130 100 3.63E-6regulation of fatty a
id oxidation GO:0046320 82 11 1 4.37E-6long-
hain fatty a
id metaboli
 pro
ess GO:0001676 443 28 7 4.75E-6response to glu
o
orti
oid stimulus GO:0051384 1021 49 16 6.09E-6neurotrophin re
eptor binding GO:0005165 42 8 0 6.20E-69-
is-retinoi
 a
id metaboli
 pro
ess GO:0042905 56 9 2 7.13E-6al
ohol dehydrogenase (NAD) a
tivity GO:0004022 159 15 2 7.79E-6linolei
 a
id metaboli
 pro
ess GO:0043651 87 11 1 7.84E-6gly
ogen (star
h) synthase a
tivity GO:0004373 57 9 1 8.28E-6opti
 
up morphogenesis involved in
amera-type eye development GO:0002072 88 11 2 8.76E-6lauri
 a
id metaboli
 pro
ess GO:0048252 46 8 2 1.26E-572



9-
is-retinoi
 a
id biosyntheti
 pro
ess GO:0042904 207 17 4 1.28E-5
arbon-
arbon lyase a
tivity GO:0016830 60 9 1 1.28E-5amino a
id binding GO:0016597 1110 51 16 1.29E-5nitrate transmembrane transporter a
tivity GO:0015112 23 6 2 1.35E-5nitrate transport GO:0015706 23 6 2 1.35E-5fatty a
id beta-oxidation GO:0006635 834 41 7 1.91E-5
arnitine O-palmitoyltransferase a
tivity GO:0004095 172 15 2 2.00E-5
holesterol homeostasis GO:0042632 1160 52 22 2.05E-5leg morphogenesis GO:0035110 36 7 0 2.06E-5retinol dehydrogenase a
tivity GO:0004745 330 22 0 2.09E-5growth fa
tor a
tivity GO:0008083 4826 162 112 2.16E-5water transport GO:0006833 508 29 22 2.20E-5positive regulation of lipid metaboli
 pro
ess GO:0045834 65 9 2 2.48E-5protein homotetramerization GO:0051289 1146 51 23 2.93E-515-hydroxyprostaglandin dehydrogenase(NADP+) a
tivity GO:0047021 38 7 0 2.98E-5prostaglandin-E2 9-redu
tase a
tivity GO:0050221 38 7 0 2.98E-5water 
hannel a
tivity GO:0015250 363 23 19 3.06E-5e
toplasm GO:0043265 27 6 0 3.63E-5progesterone re
eptor signaling pathway GO:0050847 85 10 1 3.79E-5la
tosyl
eramide alpha-2,3-sialyltransferasea
tivity GO:0047291 41 7 1 4.99E-5regulation of 
ell growth GO:0001558 1295 55 38 5.13E-5brown fat 
ell di�erentiation GO:0050873 1236 53 34 5.44E-5su

inate transmembrane transporter a
tivity GO:0015141 107 11 4 5.60E-5su

inate transport GO:0015744 107 11 4 5.60E-5NADP or NADPH binding GO:0050661 1152 50 21 6.44E-5neutrophil homeostasis GO:0001780 75 9 1 7.85E-5drug binding GO:0008144 1877 72 41 1.03E-4ara
hidoni
 a
id monooxygenase a
tivity GO:0008391 96 10 2 1.08E-4
ytoplasmi
 sequestering of NF-kappaB GO:0007253 97 10 0 1.18E-4phosphatidate phosphatase a
tivity GO:0008195 373 22 11 1.27E-4male germ-line stem 
ell division GO:0048133 63 8 0 1.30E-4endo
rine pan
reas development GO:0031018 429 24 9 1.44E-4polysa

haride binding GO:0030247 430 24 21 1.49E-4ara
hidoni
 a
id metaboli
 pro
ess GO:0019369 352 21 12 1.52E-4protein homooligomerization GO:0051260 2177 80 50 1.72E-4negative regulation of astro
yte di�erentiation GO:0048712 208 15 10 1.73E-4amine sulfotransferase a
tivity GO:0047685 23 5 1 1.85E-4positive regulation of adipone
tin se
retion GO:0070165 13 4 0 1.98E-4ni
otini
 a
id re
eptor a
tivity GO:0070553 13 4 0 1.98E-43-hydroxya
yl-CoA dehydrogenase a
tivity GO:0003857 308 19 1 2.01E-4interleukin-6-mediated signaling pathway GO:0070102 124 11 3 2.11E-4response to steroid hormone stimulus GO:0048545 496 26 14 2.18E-4sulfate assimilation GO:0000103 168 13 5 2.31E-44-nitrophenol metaboli
 pro
ess GO:0018960 37 6 0 2.32E-43'-phosphoadenosine 5'-phosphosulfate binding GO:0050656 37 6 0 2.32E-4sulfation GO:0051923 37 6 0 2.32E-4pan
reati
 ribonu
lease a
tivity GO:0004522 214 15 1 2.36E-4positive regulation of 
ollagen biosyntheti
pro
ess GO:0032967 193 14 5 2.64E-4short-
hain fatty a
id metaboli
 pro
ess GO:0046459 53 7 2 2.66E-4indu
tive 
ell-
ell signaling GO:0031129 25 5 0 2.81E-4nu
leolar fragmentation GO:0007576 54 7 0 2.99E-4glutathione transferase a
tivity GO:0004364 890 39 17 3.15E-4
ellular amino a
id metaboli
 pro
ess GO:0006520 741 34 15 3.27E-4enoyl-CoA hydratase a
tivity GO:0004300 245 16 1 3.30E-473



glu
ose homeostasis GO:0042593 1562 60 42 3.48E-4negative regulation of epidermal growth fa
torre
eptor a
tivity GO:0007175 56 7 0 3.76E-4response to testosterone stimulus GO:0033574 178 13 1 4.04E-4lipid 
ataboli
 pro
ess GO:0016042 2862 98 78 4.12E-4dete
tion of me
hani
al stimulus involved inequilibrio
eption GO:0050973 57 7 1 4.20E-4nerve growth fa
tor binding GO:0048406 75 8 1 4.40E-4regulation of insulin se
retion GO:0050796 607 29 27 4.54E-4sodium ion transport GO:0006814 3788 124 94 4.59E-4thiosulfate transmembrane transporter a
tivity GO:0015117 58 7 2 4.68E-4malate transmembrane transporter a
tivity GO:0015140 58 7 2 4.68E-4se
ondary a
tive transmembrane transportera
tivity GO:0015291 58 7 2 4.68E-4thiosulfate transport GO:0015709 58 7 2 4.68E-4malate transport GO:0015743 58 7 2 4.68E-4urea transport GO:0015840 181 13 3 4.73E-4
holesterol esteri�
ation GO:0034435 42 6 3 4.74E-4proline ra
emase a
tivity GO:0018112 28 5 0 4.90E-4endosomal lumen a
idi�
ation GO:0048388 59 7 0 5.20E-4mito
hondrial inner membrane GO:0005743 12407 355 162 5.42E-4FMN binding GO:0010181 388 21 11 5.54E-4ligand-regulated trans
ription fa
tor a
tivity GO:0003706 97 9 4 5.58E-4negative regulation of thymo
yte apoptosis GO:0070244 78 8 2 5.74E-4a
onitate hydratase a
tivity GO:0003994 118 10 1 5.79E-4gly
erol transport GO:0015793 118 10 3 5.79E-4ammonia assimilation 
y
le GO:0019676 98 9 0 6.02E-4aldehyde dehydrogenase (NAD) a
tivity GO:0004029 446 23 8 6.06E-4sensory per
eption of 
hemi
al stimulus GO:0007606 163 12 11 6.18E-4response to mus
le a
tivity GO:0014850 119 10 1 6.19E-4positive regulation of fatty a
id beta-oxidation GO:0032000 141 11 2 6.34E-4nu
leotide-binding oligomerization domain
ontaining 1 signaling pathway GO:0070427 80 8 0 6.80E-4photore
eptor outer segment GO:0001750 928 39 17 6.93E-4response to stress GO:0006950 4085 131 113 7.07E-4NF-kappaB binding GO:0051059 214 14 2 7.41E-4
haperone-mediated protein folding GO:0061077 64 7 1 8.53E-4negative regulation of B 
ell apoptosis GO:0002903 65 7 2 9.37E-4photore
eptor a
tivity GO:0009881 324 18 6 9.85E-4
GO term GO total overexp. underep. p_underexpsterol biosyntheti
 pro
ess GO:0016126 1091 29 59 5.57E-10plasma membrane GO:0005886 68511 1690 1722 6.14E-9beta-alanine transmembrane transportera
tivity GO:0001761 60 1 12 6.32E-9beta-alanine transport GO:0001762 60 1 12 6.32E-9taurine transmembrane transporter a
tivity GO:0005368 60 1 12 6.32E-9taurine:sodium symporter a
tivity GO:0005369 60 1 12 6.32E-9taurine transport GO:0015734 60 1 12 6.32E-974



taurine binding GO:0030977 60 1 12 6.32E-9
holesterol biosyntheti
 pro
ess GO:0006695 1022 31 53 1.59E-8innate immune response GO:0045087 3356 85 125 1.80E-8response to sterol depletion GO:0006991 68 3 12 2.80E-8steroid biosyntheti
 pro
ess GO:0006694 2298 65 93 2.97E-8extra
ellular region GO:0005576 42731 1227 1102 3.84E-8mi
rosome GO:0005792 10612 366 316 7.15E-87-dehydro
holesterol redu
tase a
tivity GO:0047598 49 0 10 9.43E-8response to virus GO:0009615 1706 46 73 1.06E-7positive regulation of trans
ription via sterolregulatory element binding GO:0035104 92 2 13 1.17E-7pheromone binding GO:0005550 164 9 17 1.52E-7ISG15-protein 
onjugation GO:0032020 132 2 15 2.42E-7lipid biosyntheti
 pro
ess GO:0008610 4030 121 139 2.50E-7
ollagen �bril organization GO:0030199 856 24 44 3.11E-7regulation of heart rate by 
hemi
al signal GO:0003062 60 1 10 6.95E-7sterol response element binding GO:0032810 60 1 10 6.95E-7glu
ose 6-phosphate metaboli
 pro
ess GO:0051156 250 12 20 8.76E-7positive regulation of gly
olysis GO:0045821 148 3 15 1.07E-63-beta-hydroxy-delta5-steroid dehydrogenasea
tivity GO:0003854 283 7 21 1.59E-6fatty a
id biosyntheti
 pro
ess GO:0006633 2216 72 84 1.74E-6
itrate metaboli
 pro
ess GO:0006101 309 8 22 1.80E-6
ell 
ortex part GO:0044448 41 1 8 2.63E-6dete
tion of glu
ose GO:0051594 41 1 8 2.63E-6endoplasmi
 reti
ulum GO:0005783 30121 749 778 2.64E-6antigen pro
essing and presentation GO:0019882 1004 10 46 3.77E-6
omplement a
tivation, 
lassi
al pathway GO:0006958 853 15 41 3.96E-6
ellular response to my
ophenoli
 a
id GO:0071506 74 0 10 5.01E-6negative regulation of steroid biosyntheti
pro
ess GO:0010894 110 5 12 5.79E-6
reatine metaboli
 pro
ess GO:0006600 133 0 13 8.12E-6
reatinine metaboli
 pro
ess GO:0046449 133 0 13 8.12E-6positive regulation of 
holesterolbiosyntheti
 pro
ess GO:0045542 197 5 16 8.60E-6modi�
ation-dependent protein 
ataboli
pro
ess GO:0019941 97 1 11 9.66E-6sugar binding GO:0005529 5415 112 167 1.19E-5iron ion binding GO:0005506 4581 175 145 1.24E-5
ir
adian rhythm GO:0007623 1025 72 45 1.37E-5
holesterol metaboli
 pro
ess GO:0008203 2037 69 75 1.56E-520-alpha-hydroxysteroid dehydrogenasea
tivity GO:0047006 68 1 9 1.76E-5allantoin metaboli
 pro
ess GO:0000255 144 1 13 1.92E-5glu
okinase a
tivity GO:0004340 86 1 10 1.95E-5a
tivation of signaling protein a
tivityinvolved in unfolded protein response GO:0006987 69 0 9 1.98E-5FasL biosyntheti
 pro
ess GO:0045210 39 1 7 1.99E-5monooxygenase a
tivity GO:0004497 2803 147 96 2.02E-5synde
an binding GO:0045545 105 3 11 2.06E-5immune response GO:0006955 4261 110 135 2.29E-5defense response to virus GO:0051607 451 11 25 2.94E-5extra
ellular spa
e GO:0005615 18369 548 484 3.11E-575



positive regulation of fatty a
id biosyntheti
pro
ess GO:0045723 177 8 14 4.10E-5positive regulation of trigly
eridebiosyntheti
 pro
ess GO:0010867 201 3 15 4.35E-5
holine binding GO:0033265 156 10 13 4.45E-5glu
ose binding GO:0005536 464 17 25 4.65E-5
ytokine re
eptor a
tivity GO:0004896 1148 30 47 4.94E-5seleno
ysteine lyase a
tivity GO:0009000 31 1 6 5.03E-5positive regulation of histone dea
etylation GO:0031065 204 5 15 5.15E-5steroid delta-isomerase a
tivity GO:0004769 117 3 11 5.66E-5regulation of transforming growth fa
torbeta re
eptor signaling pathway GO:0017015 232 4 16 6.35E-5
arbohydrate phosphorylation GO:0046835 283 11 18 6.56E-5
ollagen biosyntheti
 pro
ess GO:0032964 63 4 8 6.94E-5
ollagen GO:0005581 626 16 30 7.52E-5steroid metaboli
 pro
ess GO:0008202 2076 89 73 8.26E-5extra
ellular matrix GO:0031012 3665 104 116 8.37E-5growth hormone re
eptor a
tivity GO:0004903 65 0 8 8.71E-5growth hormone re
eptor signaling pathway GO:0060396 65 0 8 8.71E-5
ranial suture morphogenesis GO:0060363 192 5 14 9.87E-5isoleu
ine metaboli
 pro
ess GO:0006549 195 2 14 1.16E-4naphthalene metaboli
 pro
ess GO:0018931 37 0 6 1.42E-4tri
hloroethylene metaboli
 pro
ess GO:0018979 37 0 6 1.42E-4a
etyl-CoA biosyntheti
 pro
ess GO:0006085 175 9 13 1.43E-4positive regulation of programmed 
ell death GO:0043068 152 4 12 1.44E-4C-5 sterol desaturase a
tivity GO:0000248 38 0 6 1.66E-4
holesterol biosyntheti
 pro
ess vialathosterol GO:0033490 38 0 6 1.66E-4lathosterol oxidase a
tivity GO:0050046 38 0 6 1.66E-4oxidoredu
tase a
tivity, a
ting on paireddonors, with in
orporation or redu
tion ofmole
ular oxygen, redu
ed �avin or�avoprotein as one donor, and in
orporationof one atom of oxygen GO:0016712 534 33 26 1.70E-4
NADP biosyntheti
 pro
ess GO:0006741 54 2 7 1.72E-4integral to membrane GO:0016021 133096 3156 3104 1.78E-4protein disul�de isomerase a
tivity GO:0003756 335 3 19 1.87E-4positive regulation of homo
ysteinemetaboli
 pro
ess GO:0050668 55 2 7 1.94E-4proteina
eous extra
ellular matrix GO:0005578 8619 238 239 1.94E-4defense response to Gram-positive ba
terium GO:0050830 1018 24 41 1.99E-4
al
ium ion transport GO:0006816 3675 94 114 2.03E-4regulation of angiogenesis GO:0045765 423 8 22 2.10E-4misfolded protein binding GO:0051787 183 2 13 2.23E-4
ellular response to glu
ose starvation GO:0042149 137 2 11 2.32E-4membrane GO:0016020 176738 4222 4083 2.35E-4se
ond-messenger-mediated signaling GO:0019932 75 2 8 2.40E-4endoplasmi
 reti
ulum lumen GO:0005788 1061 25 42 2.40E-4basement membrane GO:0005604 2976 76 95 2.56E-4NADPH oxidase 
omplex GO:0043020 188 1 13 2.89E-4protein se
retion GO:0009306 239 2 15 2.95E-4purinergi
 nu
leotide re
eptor a
tivity,G-protein 
oupled GO:0045028 376 7 20 2.97E-476



heme binding GO:0020037 3600 132 111 3.00E-4
ollagen type III GO:0005586 59 1 7 3.02E-4aromatase a
tivity GO:0070330 711 41 31 3.02E-4oxidoredu
tase a
tivity, a
ting on paireddonors, with oxidation of a pair of donorsresulting in the redu
tion of mole
ularoxygen to two mole
ules of water GO:0016717 240 13 15 3.08E-4integral to plasma membrane GO:0005887 10052 278 272 3.26E-4
ate
hol O-methyltransferase a
tivity GO:0016206 60 2 7 3.35E-4phosphoinositide 3-kinase 
as
ade GO:0014065 79 3 8 3.43E-4negative regulation of epinephrine se
retion GO:0032811 121 3 10 3.49E-4ni
kel ion binding GO:0016151 168 1 12 3.64E-4epinephrine se
retion GO:0048242 62 2 7 4.11E-4hexokinase a
tivity GO:0004396 171 3 12 4.27E-4polyspe
i�
 organi
 
ation transmembranetransporter a
tivity GO:0015354 82 0 8 4.43E-4positive regulation of a
tivated T 
ellproliferation GO:0042104 303 3 17 4.47E-4mRNA modi�
ation GO:0016556 331 5 18 4.47E-4response to ethanol GO:0045471 1337 42 49 4.50E-4mitoti
 
ell 
y
le G2/M transition DNAdamage 
he
kpoint GO:0007095 172 2 12 4.50E-4organi
 
ation transmembrane transportera
tivity GO:0015101 125 1 10 4.53E-4
ellular response to interferon-alpha GO:0035457 63 2 7 4.53E-4fru
tose 2,6-bisphosphate metaboli
 pro
ess GO:0006003 223 11 14 4.60E-4JAK-STAT 
as
ade GO:0007259 795 12 33 4.67E-4
ell adhesion GO:0007155 14943 360 388 4.73E-4taurine metaboli
 pro
ess GO:0019530 277 12 16 4.74E-4negative regulation of 
ell-matrix adhesion GO:0001953 149 10 11 4.77E-4leukemia inhibitory fa
tor re
eptor a
tivity GO:0004923 46 0 6 4.84E-4establishment or maintenan
e oftransmembrane ele
tro
hemi
al gradient GO:0010248 46 0 6 4.84E-4epinephrine transport GO:0048241 46 0 6 4.84E-4water 
hannel a
tivity GO:0015250 363 23 19 5.04E-4regulation of insulin se
retion GO:0050796 607 29 27 5.26E-4proton-dependent oligopeptide se
ondarya
tive transmembrane transporter a
tivity GO:0005427 47 0 6 5.45E-4
erebellar Purkinje 
ell layer development GO:0021680 281 2 16 5.53E-45-aminolevulinate synthase a
tivity GO:0003870 106 6 9 5.58E-4protein import into nu
leus, translo
ation GO:0000060 310 14 17 5.78E-4
holinesterase a
tivity GO:0004104 107 8 9 5.98E-4substrate-bound 
ell migration GO:0006929 66 0 7 6.03E-4polysa

haride binding GO:0030247 430 24 21 6.50E-4positive regulation of natural killer 
ellproliferation GO:0032819 33 0 5 7.13E-4response to interleukin-15 GO:0070672 33 0 5 7.13E-4left-handed Z-DNA binding GO:0003692 68 0 7 7.23E-4elevation of 
ytosoli
 
al
ium ion
on
entration GO:0007204 2698 73 85 7.54E-4osteoblast di�erentiation GO:0001649 1264 26 46 7.55E-4dopamine transport GO:0015872 158 2 11 7.78E-477



dopamine transmembrane transportera
tivity GO:0005329 111 2 9 7.80E-4
ytolysis GO:0019835 721 24 30 7.88E-4regulation of neuron di�erentiation GO:0045664 529 10 24 7.91E-4
y
lin binding GO:0030332 263 6 15 7.96E-4
hemokine a
tivity GO:0008009 1024 31 39 8.00E-4negative regulation of female re
eptivity GO:0007621 184 6 12 8.17E-4female pregnan
y GO:0007565 531 14 24 8.33E-4positive regulation of prostaglandinbiosyntheti
 pro
ess GO:0031394 266 5 15 8.92E-4membrane atta
k 
omplex GO:0005579 137 3 10 9.25E-4phosphatidyl
holine biosyntheti
 pro
ess GO:0006656 353 9 18 9.38E-4regulation of natriuresis GO:0003078 35 1 5 9.40E-4V1B vasopressin re
eptor binding GO:0031895 35 1 5 9.40E-4multi
ellular organismal water homeostasis GO:0050891 35 1 5 9.40E-4a
yl 
arrier a
tivity GO:0000036 114 2 9 9.44E-4organi
 
ation transport GO:0015695 138 1 10 9.78E-4blood vessel development GO:0001568 2009 43 66 9.98E-4
Su
h a large number of signi�
ant GO-terms is di�
ult to interpret as to their role in CR. Therefore wefo
used on 
ategories represented by similar GO-terms (at di�erent levels of spe
i�
ity) and GO-terms that werefound with lowest p-values or were already known to be asso
iated with CR. The possible use of these liststherefore ex
eeds what is des
ribed here by allowing to also investigate the relevan
e in respe
t to CR of all theother GO-terms not expli
itly des
ribed here as.The top GO-term for overexpressed genes with a highly signi�
ant p-value of p <10−23 is �lipid metaboli
pro
ess�. Also other, more spe
i�
 GO-terms related to lipid metabolism like �a
yl-CoA metaboli
 pro
ess� or�fatty a
id metaboli
 pro
ess� were found. Some similar fun
tional 
ategories (�fatty a
id metaboli
 pro
ess�,�lipid metabolism�, et
.) were also obtained in the DAVID analysis (�3.2.6.2 Putting genes found di�erentiallyexpressed with CR into fun
tional 
ategories � DAVID-analysis�) with low p-values, however not signi�
ant afterBenjamini-Ho
hberg 
orre
tion (p-values before / after 
orre
tion: ~0.005 / ~0.3). Interestingly 3 of the 6 genesasso
iated with �fatty a
id metaboli
 pro
ess� in the DAVID-analysis were also asso
iated with peroxisomes.These 6 genes are� enoyl-Coenzyme A, hydratase/3-hydroxya
yl Coenzyme A dehydrogenase,� 2-hydroxya
yl-CoA lyase 1,� a
yl-CoA thioesterase� 
arnitine palmitoyltransferase 1a, liver,� a
yl-CoA thioesterase 12 and� peroxisome proliferator a
tivated re
eptor alpha, kno
k-out of whi
h was reported to prote
t mi
e fromhigh-fat-diet indu
ed insulin resistan
e (Cha et al. 2007).Interestingly Hong (Hong, S. et al. 2010) found genes of the GO-
ategory �lipid metabolism� enri
hed fordownregulation with aging in a meta-analysis of mi
roarray data on aging.For underexpressed genes the top GO-term is �sterol biosyntheti
 pro
ess� with a p-value of <10−9. Also relatedto lipid synthesis �
holesterol biosyntheti
 pro
ess� and �lipid biosyntheti
 pro
ess� itself are among the top GO-terms. Interestingly also �response to sterol depletion� is dete
ted, represented by insulin indu
ed gene 1 Gene(Entrez ID 231070) among the signi�
ant genes. Also among the most signi�
ant GO-terms for upregulated genesare �rhythmi
 pro
ess� and �
ir
adian rhythm�, the se
ond of whi
h was also found for downregulated genes. A78



GO term GO total overexp. underexp. p_overexp. p_underexpmonooxygenase a
tivity GO:0004497 2803 147 96 8.69E-18 2.02E-5
ir
adian rhythm GO:0007623 1025 72 45 2.15E-15 1.37E-5mi
rosome GO:0005792 10612 366 316 1.57E-11 7.15E-8extra
ellular region GO:0005576 42731 1227 1102 2.51E-10 3.84E-8iron ion binding GO:0005506 4581 175 145 3.74E-9 1.24E-5steroid metaboli
 pro
ess GO:0008202 2076 89 73 2.33E-7 8.26E-5extra
ellular spa
e GO:0005615 18369 548 484 2.91E-7 3.11E-5aromatase a
tivity GO:0070330 711 41 31 4.05E-7 3.02E-4oxidoredu
tase a
tivity, a
tingon paired donors, within
orporation or redu
tion ofmole
ular oxygen, redu
ed �avinor �avoprotein as one donor,and in
orporation of one atomof oxygen
GO:0016712 534 33 26 1.18E-6 1.70E-4

heme binding GO:0020037 3600 132 111 2.15E-6 3.00E-4water 
hannel a
tivity GO:0015250 363 23 19 3.06E-5 5.04E-4polysa

haride binding GO:0030247 430 24 21 1.49E-4 6.50E-4regulation of insulin se
retion GO:0050796 607 29 27 4.54E-4 5.26E-4Table 3.11: GO-terms enri
hed in the number of studies both in whi
h their asso
iated genes were found over- andunderexpressed. The total number of times genes were found asso
iated with ea
h GO-term, the numbers in whi
hthey were over- and underexpressed and the binomial p-values for the enri
hment of over- and undererexpressionare shown.link between 
ir
adian rhythm and both CR and aging has already been noti
ed in several instan
es (see e.g.(Froy & Miskin 2010)).Several 
ategories related to immune response were found for downregulated genes: �innate immune response�,�antigen pro
essing and presentation�, �
omplement a
tivation, 
lassi
al pathway�.Even though the GO-term �xenobioti
 metabolism� itself was not enri
hed among our 
andidate genes, enzymea
tivities related to this pro
ess were represented by monooxygenase a
tivity (for up- and downregulated genes)and NADPH-hemoprotein redu
tase a
tivity (up). Some of the genes found in 
ategories related to oxidationand redu
tion fall into this 
ategory. Xenobioti
 metabolism (see e.g. (Gourley & C. J. Kennedy 2009)) and inparti
ular monooxygenases (S
hmu
ker et al. 1991) have been previously asso
iated with CR, even thought theirexa
t role remains un
lear.�Positive regulation of 
ollagen biosyntheti
 pro
ess� was among the enri
hed terms for over- and �
ollagen�,�
ollagen type III�, �
ollagen �bril organization� and �
ollagen biosyntheti
 pro
ess� for underexpressed genes. Ithas been shown previously that 
alori
 restri
tion to a 
ertain degree prevents 
ollagen a

umulation and 
ollagenaging (see (Frey 2004)).The �ndings of �growth hormone re
eptor a
tivity� and �growth hormone re
eptor signaling pathway� for down-regulated genes and �regulation of insulin se
retion� for both up- and down-, as well as �insulin-like growth fa
torbinding� for upregulated genes argues for involvement of the growth fa
tor and insulin / IGF signalling pathwaysin CR.�Retinol metabolism�, whi
h was found enri
hed for upregulated genes, has been linked to CR in a broader senseby a study reporting the de
rease of retinol during fasting in humans (Söderlund et al. 2003).Of the top 10 
ategories for overexpression to our knowledge no known link exists between CR and �
opper iondetoxi�
ation�. The GO-
ategory �beta-alanine transmembrane transporter a
tivity�, found for downregulatedgenes, 
ontains only 1 gene, Sl
6a6. 5 other of the top 10 GO-
ategories for underexpressed genes were also founddue to this single gene, found downregulated 12 of 60 times it was studied. To our knowledge this gene has notyet been asso
iated with CR.Out of the GO-terms shown there are 13 whi
h meet the sele
tion 
riteria for both over- and underexpressedgenes. These are shown in table 3.11.Sin
e these terms are relatively broad it seems a

eptable that their a
tivities are 
hanged by upregulation ofsome of their members and downregulation of others. Interestingly �steroid metaboli
 pro
ess� appears amongthose, while �steroid biosynthesis� is one of the top GO-terms for underexpressed genes and is only found at a79



binomial p-value of 0.1 for overexpressed genes, i.e. mu
h less emphasized. This suggests that while genes in-volved in steroid metabolism 
an be both up- or downregulated by CR, the ones responsible for the biosynthesistend more towards downregulation.Note that �steroid hormone re
eptor a
tivity� and �response to steroid hormone stimulus� appear among thesigni�
ant GO-terms for upregulated genes. This suggests that the alteration of steroid hormone levels and thee�e
t of this alteration on 
ells is an important me
hanism of CR.Even though a single GO-
ategory related to sterol / 
holesterol metabolism is not found for both up- anddownregulated genes, there are di�erent su
h 
ategories in both 
ases (e.g. �
holesterol 7-alpha-monooxygenasea
tivity� and �regulation of 
holesterol metaboli
 pro
ess� for over- and �sterol biosyntheti
 pro
ess� and �
holes-terol biosyntheti
 pro
ess� for underexpressed genes).3.3.2.2 Fun
tional 
lassi�
ation of genes enri
hed in the number of studies they are found over-/ underexpressed - DAVID-analysisWe used the DAVID Fun
tional Annotation tool to group genes enri
hed in studies in whi
h they were foundover- / underexpressed into fun
tional 
ategories. We obtained groups of su
h (often similar) 
ategories 
lustereda

ording to genes whi
h they had in 
ommon (fun
tional annotation 
lusters).These 
lusters for the overexpressed genes 
ontaining at least one 
ategory with a Benjamini-Ho
hberg FDRbelow 0.05 
ontained 
ategories related to sulfotransferase-a
tivity, NAD(P) involving pro
esses, oxidoredu
tases-of whi
h a large fra
tion was also asso
iated with endoplasmati
 reti
ulum- and to biologi
al rhythms. Eventhough not signi�
ant after multiple-testing 
orre
tion the �nding of the GO-term �response to nutrient levels�at a Benjamini-Ho
hberg 
orre
ted FDR of 0.16 a
ts as a prove of 
on
ept for su

essfully dete
ting fun
tional
ategories determined by feeding levels. This term was represented by the genes: ATP-binding 
assette, sub-family G (WHITE), member 5 (Entrez ID: 27409), al
ohol dehydrogenase 1 (
lass I)(11522), angiopoietin-like 4(57875), matrix Gla protein (17313), peroxisome proliferator a
tivated re
eptor alpha (19013) and solute 
arrierfamily 37 (glu
ose-6-phosphate transporter), member 4 (14385).The only fun
tional annotation 
luster with 
ategories below a Benjamini-Ho
hberg FDR of 0.05 for underex-pressed genes was related to endoplasmi
 reti
ulum.A problem about the DAVID pro
edure under default options seems to be that so many hypotheses are testedthat extremely low p-values are ne
essary for 
ategories to remain signi�
ant after Benjamini-Ho
hberg 
orre
-tion. The number of signi�
ant fun
tional 
ategories was mu
h lower than that found in the GO-analysis.One signi�
ant Bio
arta and 3 KEGG (Kanehisa et al. 2010) pathways were found below a Benjamini-Ho
hbergFDR of 0.05 for genes enri
hed for overexpression, none for those enri
hed with underexpression. (The analysisonly for Bio
arta and KEGG pathways tests less hypotheses as for all default 
ategories and allows therefore path-ways to be signi�
ant that were not, when testing more hypotheses). The Bio
arta pathway �Nu
lear Re
eptorsin Lipid Metabolism and Toxi
ity� is shown in �g. 3.9, the illustrations of the KEGG pathways �PPAR signalingpathway�, �Ara
hidoni
 a
id metabolism� and �Retinol metabolism in animals� 
an be found in supplement 2.3.3.2.3 Overlap between GO-analysis on original data and DAVID fun
tional analysis on resultgenesThere is strong overlap between the fun
tional 
ategories found using DAVID on the genes found in the meta-analysis and meta-analysing GO-terms themselves. For example the signi�
ant DAVID fun
tional 
lusters relatedto sulfotransferase-a
tivity, NAD(P) involving pro
esses, oxidoredu
tases and biologi
al rhythms are representedby some of the most highly signi�
ant GO-terms, e.g. �tyrosine-ester sulfontransferase a
tivity�, �NADPH-hemprotein redu
tase a
tivity�, �oxidoredu
tase a
tivity�, �rhythmi
 pro
ess�, �
ir
adian rhythm� and others.�Endoplasmi
 reti
ulum� whi
h is found in the DAVID analysis for underexpressed genes is also found signi�-
ant for the GO-analysis, even though not among the very top genes. �Sterol metabolism� is found among thetop GO-terms and also among the top DAVID 
ategories, even when not signi�
ant after Benjamini-Ho
hberg
orre
tion.Note that a profound di�eren
e between meta-analysis on the level of GO-terms and DAVID-analysis on thesigni�
ant results of meta-analysis on gene level is that a single gene found in many datasets 
an lead to signif-i
an
e of its GO-terms, while a GO-term has to be asso
iated with di�erent signi�
ant genes to be signi�
antin the DAVID-analysis. GO-analysis is in theory able to dete
t fun
tional 
ategories asso
iated with CR, eventhough no single gene of the 
ategory is itself signi�
antly enri
hed for over- or underexpression. A strong overlap80



relevant legend:
Figure 3.9: Bio
arta pathway "Nu
lear Re
eptors in Lipid Metabolism and Toxi
ity", found asso
iated withgenes enri
hed for overexpression by the DAVID fun
tional analysis tool. Genes enri
hed for overexpression areindi
ated by red arrows. For further information see http://www.bio
arta.
om/genes/index.asp.
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between the GO-terms and the DAVID 
ategories however implies a strong overlap of the GO-terms with genesfound signi�
antly enri
hed, sin
e DAVID is based on these genes.3.3.3 Tissues 
ontributing to enri
hment of a gene for over- or underexpressionAs des
ribed in �3.2.7 Determining tissues 
ontributing to enri
hment of genes for over- or underexpression�, wedetermined if the enri
hment of a gene for over- / underexpression was due to its over- / underexpression in one,two or more than two tissues. Complete matri
es showing the tissue spe
i�
 di�erential-expression pro�les ofthese genes are shown in Fig. 3.10.It 
an be seen, that di�erent datasets 
ontribute to a di�erent extent to the number of genes found enri
hed forover- / underexpression, espe
ially liver-datasets (parti
ularly GSE18297) 
an be found to 
ontribute more andbrain-tissue datasets less strongly. This is surprising in the sense that the brain-datasets 
ontributing least arefrom GSE8426, a study among the highest in terms of the number of repli
ates.13% and 16% of genes enri
hed for over- and underexpression respe
tively were found over- or underexpressedonly in liver and 34% and 49% in less than three tissues (and mainly in liver and one other tissue). Sin
eliver-spe
i�
 signatures might mask tissue-independent ones we performed fun
tional analysis (using DAVID)besides for the 
omplete list of signi�
ant genes also for the list subtra
ted of genes over- / underexpressed in lessthan 3 tissues. Looking for liver-spe
i�
 signatures we did the analysis for genes only over- / underexpressed inliver. The pro
edure is des
ribed in �4.7.1. Putting genes found di�erentially expressed with CR into fun
tional
ategories�.

82



83



84



3.3.4 Results of the analysis of non-liver and liver-only datasetsTo determine genes di�erentially expressed on the one hand in a tissue tissue-independent manner, on theother hand liver spe
i�
ally we repeated the DAVID-analysis �rst on genes found over- / underexpressed inat least 3 di�erent tissues then on su
h found over- / underexpressed in liver-datasets only. For the se
ond no
ategories were found at a Benjamini-Ho
hberg FDR < 0.05. Categories determined for genes enri
hed for over- /underexpression in at least 3 di�erent tissues 
ompared to these found for 
andidates resulting from the all-tissuemeta-analysis are shown in tab. 3.12.While fun
tional 
ategories related to sulfotransferase, vesi
ular transport, retinol and ara
hidoni
 a
idmetabolism were enri
hed for overexpressed genes and to endoplasmati
 reti
ulum for underexpressed genes,these were not found enri
hed among the genes found over- / underexpressed in at least 3 di�erent tissues. Thisdoes however not ne
essarily mean that these 
ategories 
annot be asso
iated with CR 
ross-tissues, but mightmean that by restri
ting to genes over- / underexpressed in > 2 di�erent tissues the statisti
al power is simplytoo redu
ed to dete
t this asso
iation.On the other hand this analysis showed that 
ategories related to �NADP� and �
ir
adian rhythm� were alsofound for only genes di�erentially expressed in at least 3 di�erent tissues and 
an therefore be assumed to betruly tissue-independent. Interestingly two 
ategories, �metal binding� and �vesi
ular transport� that were notsigni�
antly enri
hed among all genes were found signi�
ant for genes di�erentially expressed in at least 3 di�er-ent tissues.Note that some 
ategories (like lipid metabolism) dete
ted by the GO-analysis were not found by the DAVID-analysis on all-tissue 
andidates and it is therefore not possible to draw 
on
lusions about their tissue-spe
i�
ityor tissue-independen
e by this method.3.3.5 Co-expression analysis of CR-asso
iated genesGenes enri
hed in the 
o-expression with genes overrepresented for up- / downregulation are given in supplement.2. Sin
e a large number of genes (1576 for over- and 1069 for underexpression) were found, we performed DAVID-analysis under default settings on them.Interestingly we found that the fun
tional 
ategories obtained for upregulated genes were en large the same as fordownregulated genes. Some of the most signi�
ant fun
tional 
ategories retrieved for both up- and downregulatedgenes were related to extra
ellular spa
e, lipid metabolism, amino a
id 
atabolism, in�ammation / immunity,peroxisomes, steroid / sterol / 
holesterol metabolism, endopeptidase inhibitor a
tivity, lipoprotein parti
les,response to hormons, mito
hondria, xenobioti
s metabolism / 
yto
hrome P450, blood 
oagulation.Therefore, after we had already dete
ted some fun
tional 
ategories that appeared asso
iated both with genesoverrepresented for over- and underexpression, we found this overlap even more pronoun
ed on the level of theirintera
tion partners. This might also have to do with the in
reased statisti
al power due to the large numberof genes in this test. It suggests that pathways important for the e�e
t of CR are upregulated in some anddownregulated in other genes.3.3.6 Trans
ription fa
tors regulating expression of 
andidate genesTrans
ription fa
tor (TF) binding sites enri
hed for our 
andidate genes were sear
hed using WebMotifs whi
ha
ts as an interfa
e to di�erent TF-binding site dete
tion softwares. The only one that obtained signi�
ant resultswas THEME whi
h uses reported trans
ription fa
tor binding sites and optimizes them to �t best �t to our data.The optimized sequen
es found signi�
antly enri
hed for overexpressed genes were derived from binding sites forCBFB_NFYA (CCAAT-binding trans
ription fa
tor subunit B), CUT and PBC domains (Fig. 3.10). A
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all genes di�. exp. in >2 di�. tissuessulfotransferase +endoplasmati
 reti
ulum -
ir
adian rhythm + +xenobioti
 metabolism / oxidoredu
tase a
tivity +ara
hidoni
 a
id metabolism +retinol +metal binding +NADP + +vesi
ular fra
tion +vesi
ular tra�
 +Table 3.12: This table shows under whi
h 
onditions 
ertain fun
tional 
ategories are enri
hed for genes overex-pressed (+) or underexpressed (-) a

ording to DAVID-analysis on all 
andidate genes from the meta-analysisand on su
h over- / underexpressed in more than two di�erent tissues.

Figure 3.10: WebLogos (Crooks et al. 2004) of binding sites and 
orresponding TF-domains / domain familiesenri
hed in our 
andidate over- and underexpressed genes.to PFAM CBFB_NFYA binds to a CCAAT motif in the promoters of a wide variety of genes, in
luding type I
ollagen (pfam.sanger.
o.uk).For underexpressed genes we dete
ted binding sites for bZIP (Basi
 Leu
ine Zipper), RFX (Regulatory Fa
torbinding to X box), zf-C4 (Zin
 �nger, C4 type/Nu
lear Hormone Re
eptor; for whi
h two optimized sequen
eswere found), CUT and My
_N-term (My
 animo-terminal region) (Fig. 3.10). My
 forms a heterodimer withMax, and this 
omplex regulates 
ell growth through dire
t a
tivation of genes involved in 
ell repli
ation. Anespe
ially interesting 
andidate domain is zf-C4 sin
e it appears in steroid hormone re
eptors (a

ording toPFAM). It therefore �ts well with our fun
tional analysis in whi
h steroid metabolism and regulation by steroidhormones were re
urrent topi
s.3.3.7 Overlap with CR-essential genes, their orthologues and intera
tion partnersThe only mouse gene in the database for genes experimentally identi�ed to be essential for CR, GeneDR, is Ghr(Growth hormone re
eptor; Entrez ID: 14600). It was shown that mutating this gene 
an
els out the life-spanextension e�e
t of CR (Cos
higano et al. 2003) (Bonkowski et al. 2006). In our meta-analysis this genes wasenri
hed for underexpression, whi
h is both a 
onvin
ing argument for the biologi
al meaningfulness of our results86



and for the impli
ation of Ghr in the me
hanism of CR.Further 4 of our 
andidates have CR-essential gene orthologues in lower model orgainsms: Of the genes enri
hedfor overexpression these were Irs2 (insulin-re
eptor substrate 2; an ortholog of 
hi
o in Drosophila melanogaster)and Mat1α (methionine adenosyltransferase I, alpha; the ortholog of sams-1 in Caenorhabditis elegans) and forthose enri
hed for downregulation G
k (Glu
okinase) and S
5d (sterol-C5-desaturase) whi
h are orthologues ofHXK2 and ERG3 in S. 
erevisiae, respe
tively (Clan
y et al. 2002) (Hansen et al. 2005) (Lin, S. J. et al. 2000)(Tang et al. 2008). Note than the dete
tion of genes asso
iated with CR in these organisms in a meta-analysisof mammalian datasets suggests at least some degree of 
onservation in the me
hanism of CR from yeast tomammals.Additional 42 genes were dire
t intera
tion partners of murine CR-essential gene orthologues as determined bythe pro
edure des
ribed in �3.2.11 Dete
ting overlap with CR-essential genes, their orthologues and intera
tionpartners�. The 
omplete list of these genes with their spe
i�
ity measure and p-value is shown in table 3.13.Moreover, 3 of these 47 genes were also impli
ated in aging a

ording to the GenAge database (de Magalhães& Toussaint 2004): Ghr, Irs2 and Arntl (aryl hydro
arbon re
eptor nu
lear translo
ator-like Gene), an important
ir
adian 
lo
k trans
ription fa
tor (Cos
higano et al. 2000) (Kondratov et al. 2006) (Tagu
hi et al. 2007).3.3.8 Asso
iation of individual datasets to the meta-signature of CRThe p-values obtained in the 
hi-square test assessing the asso
iation between ea
h dataset and the meta-signatureof CR as des
ribed in �3.2.12 Testing the asso
iation of individual datasets to the meta-signature of CR� aregiven in table 3.14. The test was not done for datasets obtained form literature and supplements, sin
e they onlyprovide di�erentially expressed genes.It 
an be seen, that many datasets show a strong asso
iation with the meta-signature. This is espe
iallytrue for liver datasets, while for many of the brain-tissue datasets no gene in the meta-signature was founddi�erentially expressed. However the 
orrelation between the strength of the asso
iation and the study fromwhi
h the datasets 
ame from seems relatively strong. Therefore, for tissues that only 
ontain datasets fromone or a few studies (e.g. most brain tissues are from GSE8426) it is hard to 
on
lude if they are espe
iallywell / weakly represented by the meta-signature or if the 
orresponding study (studies) show strong / weakasso
iation(s) for other reasons. Be
ause liver was tested by many individual studies and for most low p-valuesin the 
hi-square test were obtained, it appears save to 
on
lude that at least the e�e
t of CR on liver is wellrepresented by our meta-signature.3.4 Dis
ussion3.4.1 Summary and interpretationCR is the most promising non-geneti
 intervention to extend life-span and delay aging asso
iated diseases in arange of organisms. To understand the geneti
 basis of CR we aimed at determining robust 
hanges in geneexpression linked to CR by meta-analysing mi
roarray data on CR with wide variation in di�erent experimentalvariables. To on the one hand �nd genes di�erentially expressed under di�erent 
onditions, but on the otherhand to also allow trans
ription levels not to be a�e
ted or to be a�e
ted in opposite dire
tion under a few
ir
umstan
es we 
hose a value-
ounting approa
h. To a

ount for the fa
t that di�erent genes were tested in adi�erent number of datasets we 
hose a binomial test.As mi
roarray analyses themselves also this meta-analysis of mi
roarray data in the �rst pla
e provides asour
e of 
andidate genes and fun
tional 
ategories that may be impli
ated in the CR-pro
ess. The found genesand 
ategories 
an be broadly divided into su
h providing further eviden
e for genes and fun
tions alreadyasso
iated with CR and su
h not yet tested for their role in CR. Genes and 
ategories for whi
h we are aware oftheir relation to CR will be dis
ussed in the following as will the most outstanding novel ones. For all others werefer you to the 
omplete lists as provided in tables 3.6, 3.7, 3.9, 3.10.It is interesting to note that 
onsidering all experiments less genes were found under- than overexpressed.Even though this de
reases the su

ess probability (ps) in the binomial test (eqation3.1)7, also less genes / GOswere found enri
hed in studies in whi
h they / their asso
iated genes were found over- than underexpressed. Thisresult is somewhat expe
ted if you assume that CR indu
es a trans
riptional response, e.g. to more stronglypronoun
e alternative metaboli
 pathways.7A lower pS requires a lower number of hits (k) for the same number of trials (n) to give the same binomial p-value87



EntrezID GeneSym-bol MGI Des
ription spe
i�
ity(%) spe
i�
ityp-value 
omment11833 Aqp8 aquaporin 8 Gene 41 1.48E-0611831 Aqp6 aquaporin 6 Gene 37 3.58E-06232493 Gys2 gly
ogen synthase 2 Gene 17 5.61E-05384783 Irs2 insulin re
eptor substrate 2 Gene 13 8.07E-05 CR-asso
iatedortholog,aging-asso
iated15982 Ifrd1 interferon-related developmental regulator 1 Gene 27 0.0114381 G6pdx glu
ose-6-phosphate dehydrogenase X-linked Gene 13 0.0358198 Sall1 sal-like 1 (Drosophila) Gene 25 0.0329818 Hspb7 heat sho
k protein family, member 7 (
ardiovas
ular) Gene 100 0.0411668 Aldh1a1 aldehyde dehydrogenase family 1, subfamily A1 Gene 8 0.0512846 Comt1 
ate
hol-O-methyltransferase 1 Gene 15 0.0811865 Arntl aryl hydro
arbon re
eptor nu
lear translo
ator-like Gene 11 0.09 aging-asso
iated22390 Wee1 WEE 1 homolog 1 (S. pombe) Gene 7 0.1270807 Arrd
2 arrestin domain 
ontaining 2 Gene 25 0.1415258 Hipk2 homeodomain intera
ting protein kinase 2 Gene 9 0.1426358 Aldh1a7 aldehyde dehydrogenase family 1, subfamily A7 Gene 7 0.1518035 Nfkbia nu
lear fa
tor of kappa light polypeptide gene enhan
er inB-
ells inhibitor, alpha Gene 6 0.1557080 Gtf2ird1 general trans
ription fa
tor II I repeat domain-
ontaining 1Gene 14 0.2467460 De
r1 2,4-dienoyl CoA redu
tase 1, mito
hondrial Gene 13 0.26235293 S
5d sterol-C5-desaturase (fungal ERG3, delta-5-desaturase)homolog (S. 
erevisae) Gene 6 0.27 CR-asso
iatedortholog100042570Bnip3 BCL2/adenovirus E1B intera
ting protein 3 Gene 11 0.29235320 Zbtb16 zin
 �nger and BTB domain 
ontaining 16 Gene 5 0.31269587 Epb4.1 erythro
yte protein band 4.1 Gene 5 0.33223697 Sun2 Sad1 and UNC84 domain 
ontaining 2 Gene 5 0.3414600 Ghr growth hormone re
eptor Gene 6 0.39 CR-asso
iated,aging-asso
iated14828 Hspa5 heat sho
k protein 5 Gene 4 0.40103988 G
k glu
okinase Gene 5 0.41 CR-asso
iatedortholog12406 Serpinh1 serine (or 
ysteine) peptidase inhibitor, 
lade H, member 1Gene 7 0.4414229 Fkbp5 FK506 binding protein 5 Gene 4 0.4713170 Dbp D site albumin promoter binding protein Gene 6 0.4819013 Ppara peroxisome proliferator a
tivated re
eptor alpha Gene 5 0.5011465 A
tg1 a
tin, gamma, 
ytoplasmi
 1 Gene 4 0.55215160 Rhbdd2 rhomboid domain 
ontaining 2 Gene 4 0.6018627 Per2 period homolog 2 (Drosophila) Gene 4 0.6218626 Per1 period homolog 1 (Drosophila) Gene 4 0.6614827 Pdia3 protein disul�de isomerase asso
iated 3 Gene 3 0.6720787 Srebf1 sterol regulatory element binding trans
ription fa
tor 1 Gene 3 0.78104112 A
ly ATP 
itrate lyase Gene 3 0.78668629 Ptprj protein tyrosine phosphatase, re
eptor type, J Gene 2 0.8154123 Irf7 interferon regulatory fa
tor 7 Gene 2 0.8513360 Dh
r7 7-dehydro
holesterol redu
tase Gene 2 0.8715493 Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroiddelta-isomerase 2 Gene 2 0.8871586 I�h1 interferon indu
ed with heli
ase C domain 1 Gene 2 0.8869288 Rhobtb1 Rho-related BTB domain 
ontaining 1 Gene 1 0.9811720 Mat1a methionine adenosyltransferase I, alpha Gene 1 0.98 CR-asso
iatedortholog13809 Enpep glutamyl aminopeptidase Gene 1 1.0080885 Nia
r1 nia
in re
eptor 1 Gene 1 1.0073074 Cx
l9 RIKEN 
DNA 2900086B20 gene 1 1.00Table 3.13: Genes found in the meta-analysis that are intera
tion partners of genes experimentally asso
iatedwith CR. See text (�3.2.11 Dete
ting overlap with CR-essential genes, their orthologues and intera
tion partners�)for de�nition of spe
i�
ity and spe
i�
ity p-value. Analysis by D. Wuttke.88



Table 3.14: Asso
iation of individual datasets with the meta-signature of CR. Datasets are sorted a

ording totissue; datasets of di�erent studies are separated from those of another study within tissue entries; �0 in MS�:none of the genes in the meta-signature was found di�erentially expressed in this dataset; �suppl.�: dataset fromliterature or supplement.
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We also dete
ted that many of the top fun
tional 
ategories appear enri
hed for both over- and underexpressedgenes, e.g. 
ategories related to lipid, steroid, sterol / 
holesterol metabolism, 
ir
adian 
lo
k and xenobioti
metabolism. We expe
t that espe
ially in these rather broad 
ategories overexpression of some and underex-pression of other genes might lead to the same out
ome (e.g. if an a
tivator of a gene is up- and a suppressordownregulated this both leads to a
tivation of the gene). Of 
ourse this assumption has to be further validatedby 
loser examination of the underlying signalling networks.The appearan
e of many lipid metabolism and sterol biosynthesis related GO-terms among the ones of highestsigni�
an
e �ts well with the idea of di�erent metaboli
 states of AL and CR animals. It is not at all surprisingthat lipid metabolism and related 
ategories emerge as results sin
e it is expe
ted that animals with signi�
antlyredu
ed 
alori
 intake rather 
atabolize than anabolize fat. Besides the intuitive understanding that 
alori
 re-stri
tion alters lipid metabolism there is plenty of literature linking lipid metabolism with possible me
hanismsof CR. For an overview see e.g. (Pu
a et al. 2008). It has also been reported that CR prevents age related
hanges in 
holesterol metabolism (Martini et al. 2008). S
5d (sterol-C5-desaturase) was one of the 
andidatesfor downregulation involved in sterol metabolism and is a homologue of ERG3, whi
h is important for life-spanextension by CR in S. 
erevisiae. Also �nding the endoplasmi
 reti
ulum as a 
ategory signi�
ant for bothover- and underexpressed genes is in agreement with this idea sin
e this is an important 
ompartment for lipidsynthesis (Hong, S. et al. 2010).Our fun
tional analysis dete
ted 
ategories related to the growth hormone and insulin / IGF-signalling path-ways, mutations in whi
h have e�e
ts on longevity and the life-span extending e�e
t of CR. Ghr (growth hormonre
eptor) is the only known mouse gene that 
an
els out the life-span extending e�e
t of CR upon mutation(Bonkowski et al. 2006). This gene was enri
hed for underexpression in our analysis. Irs2 (insulin-re
eptorsubstrate 2) was found for overexpression and is an ortholog of 
hi
o in Drosophila melanogaster, whi
h wasexperimentally asso
iated with aging and CR. In this respe
t one of our most interesting 
andidates enri
hed forunderexpression is Airn (antisense Igf2r RNA), whi
h might be a n
RNA with an important role in the regulationof insulin / IGF-signalling. Note that this gene until re
ently was annotated as a RIKEN 
DNA gene and thattherefore others of our 
andidate genes with unknown fun
tion might also promise interesting roles in the CRme
hanism. In general the role of n
RNAs in the 
ontext of CR is widely unknown.We determined 
ategories related to 
ir
adian rhythm and xenobioti
 metabolism both for over- and underex-pressed genes, whi
h had both already been asso
iated with CR (Froy & Miskin 2010) (Gourley & Kennedy2009) (S
hmu
ker et al. 1991), however for whi
h deeper understanding of their role in CR remains elusive. Twoof our 
andidate genes, Arntl (aryl hydro
arbon re
eptor nu
lear translo
ator-like Gene) and Dbp (albumin Dsite-binding protein), are important 
ir
adian 
lo
k trans
ription fa
tors of whi
h the �rst was already asso
iatedwith the aging pro
ess, while Dbp has not yet re
eived mu
h attention with respe
t to aging or CR.One of the major side e�e
ts of CR is the repression of immune fun
tions and an important physiologi
al 
hangewith aging is in
reased in�ammation and alterations in 
ollagen deposition. Therefore it is noteworthy that ourmeta-analysis also established relations between CR and these fun
tional 
ategories.A pro
ess less well established as to its role in CR is retinol metabolism and to our knowledge no reports on
opper ion detoxi�
ation exist in respe
t to CR. Still both pro
esses were found among the most signi�
antlyenri
hed for genes overexpressed with CR. Espe
ially sin
e many of the fun
tional 
ategories dete
ted are mean-ingful in the light of existing knowledge we also believe in the relevan
e of these terms.Note that even though not found in the 
ontext of an enri
hed fun
tional 
ategory Nfkbia, whi
h was found en-ri
hed for overexpression is su
h a 
entral mole
ule in NfkB-signalling, that it might by itself render this pathwayimportant for the me
hanism of CR. Zfp64 as a little understood 
o-a
tivator in the not
h pathway also has thepotential to be an interesting 
andidate 
on
erning the me
hanism of CR.When extending the number of genes by obtaining genes signi�
antly 
o-expressed with the determined 
an-didates and therefore in
reasing the power of the approa
hes determining underlying fun
tional 
ategories, wenoted that basi
ally all these 
ategories were found for both over- and underexpressed genes. Some of the ad-ditional 
ategories found this way were �mito
hondria� and �peroxisomes� as sub
ellular lo
ations, �response tohormones� and others. �Xenobioti
 metabolism� was found expli
itly as a GO-term as well as 
ategories relatedto P450.Due to the overrepresentation of liver-datasets in our analysis we 
annot 
laim that all genes found in themeta-analysis over all tissues are asso
iated with CR in a tissue-independent manner. However is seems saveto assume that out of these genes those found over- / underexpressed in at least three di�erent tissues aretruly tissue-independent. Nonetheless, even when tissue-spe
i�
, we expe
t that genes found in the (all-tissue)meta-analysis are robustly asso
iated with CR due to the large variation in di�erent 
o-variates (e.g. organism,90



duration of CR, . . . ) between the original studies. Of the fun
tional 
ategories found in the DAVID-analysisof the all-tissue 
andidates �
ir
adian rhythm� and �NADP� related 
ategories 
an be strongly assumed to betissue-independent, sin
e they were also found signi�
antly enri
hed among genes found overexpressed in at least3 di�erent tissues.3.4.2 Comparison with results from other meta-analysesThe other meta-analyses on CR presented in �3.1.3 Other meta-analyses of gene expression data for CR� weresomewhat di�erent from ours as far as the aim was 
on
erned. While our fo
us was on determining genes with ame
hanisti
 e�e
t in CR other studies set out to �nd any genes di�erentially expressed with CR, no matter if dueto the role of the gene in the me
hanism of CR or due to the e�e
t of CR on the expression of the gene. Hong(Hong, S. et al. 2010) even expli
itly reported genes and modules for whi
h di�erential expression was oppositeof the 
hange found with aging. Their expression 
hanges are more likely to be an e�e
t than a 
ause of theme
hanism of CR. Even though in this kind of analysis there is of 
ourse no way to determine if a gene reallyme
hanisti
ally 
ontributes to CR we expe
ted to make this more likely by ex
luding genes, whi
h we suspe
tedwere only found di�erentially expressed with CR in old animals due to the la
k of the normal expression 
hangewith age as an e�e
t of CR (see �3.2.2.5 Ex
luding genes di�erentially expressed with age�). Even though we
ould only do this for studies on old animals that also provided mi
roarray data from young AL animals this isone of the major di�eren
es of our analysis to these of others.A summary of other meta-analyses of CR mi
roarray data in 
omparison with our meta-analysis is shown intable 3.15.Sin
e our study is more re
ent than the other ones mentioned, we were able to in
lude more datasets into themeta-analysis. This makes espe
ially a di�eren
e 
ompared to Swindell, 2008a and Hong, 2010, while Swindell,2009 in
luded a 
omparable number of studies. Importantly while all meta-analyses (in at least part of thestudy) used data from di�erent tissues all but ours fo
used only on data from mouse. In this respe
t we have toadmit that also the fast majority of datasets in our study was from mi
e and that in some 
ases data-loss duringannotation with mouse gene identi�ers limited the 
ontribution of non-mouse studies. While we expe
t that theuse of di�erent organisms strengthened the robustness of our �ndings we 
annot 
laim all determined 
andidatesto be organism-independent.Our meta-analysis was not so fo
used on tissue-independen
e of the �ndings as Swindell, 2008a. WhileSwindell a

epted to loose information by only 
ounting if a gene was di�erentially expressed in any dataset of a
ertain tissue and ignoring in how many of these datasets it was dete
ted, we 
ounted o

urren
es of di�erentialexpression independently of the tissue arguing that variability in other 
ovariates introdu
ed su�
ient robustness.As for the statisti
al pro
edure we used a value-
ounting approa
h as did Swindell, 2008a. Sin
e this study
ounted the number of tissues in whi
h a gene was over- / underexpressed, but did not a

ount for the numberof datasets in whi
h a gene was studied a bias for dete
ting genes studied more often is introdu
ed. We tried toover
ome this problem by employing a binomial test. Swindell, 2009 used Fisher´s inverse 
hi-square approa
hwhi
h is, sin
e it is based on p-values, relatively sensitive to single datasets not �tting a 
ertain di�erentialexpression trend in other datasets. This might e.g. lead to not dete
ting a gene that is robustly di�erentiallyexpressed over many studies in animals up to a 
ertain age, but not any more in very old animals. Sin
e it isnot sure if CR exerts its e�e
t over all the life, every tissue, et
. it seems to be reasonable to want to �nd su
ha gene signi�
ant. Therefore we 
hose a value-
ounting approa
h whi
h is not sensitive to these 
ases. Hong,2010 simply pooled genes found in di�erent studies and then e.g. sear
hed for enri
hed fun
tional 
ategories.Therefore this 
an be understood as a meta-analysis on the level of e.g. the fun
tional 
ategories, but not ongene level.Surprisingly many genes were found di�erentially expressed in Swindell, 2009. For many of the top genes therewas 
ontradi
ting eviden
e (upregulation in some, downregulation in other datasets) rather than indi
ating someof them as non-signi�
ant. The number of non-signi�
ant results was generally very low. It appears likely thatthe high number of signi�
ant results in the individual studies, rather than mu
h higher power of the Fisher´s
hi-square over the value-
ounting approa
h lead to the large number of dete
ted genes.As Swindell (Swindell, 2008a) we found Per1, Per2, Mt1, Mt2, Fkbp5, Sult1a1 (and additionally Sult1
2, Sult1d1and Sult3a1 ), Ppara and Nfkbia enri
hed for overexpression and Col3a1 (but not Col1a1, however Col5a1 ), forunderexpression. We did not �nd Hsp10 for underexpression, but Hsp5 and Hsp7, not I�27, but I�27l2α(interferon, alpha-indu
ible protein 27 like 2A Gene). The overlap with the genes he found overrepresented foroverexpression was therefore mu
h bigger than with those he found for underexpression. Note that �nding similar91



meta-analysis Swindell, 2008a Swindell, 2009 Hong, 2010 thismeta-analysisnumber ofstudies 13 21 6 23number oftissues 10 17 5 19organism(s) mouse mouse mouse mouse, rat, pig,rhesus monkeymeta-analysiste
hnique value 
ounting Fisher´s inverse
hi-square pooling di�.exp. genes value 
ountingnumber ofsigni�
antgenes 28 12114 N.A. (pool: 586) 175
omment seperately for liver seperately forliver, heart andmus
le seperately forliver and all butliverTable 3.15: Comparison of di�erent meta-analyses of mi
roarray studies on CR. Sin
e Hong, 2010 only pooledthe data from di�erent studies and performed analyses on those, this 
an be understood as a meta-analysis onthe level of underlying 
ategories, but not on gene level.genes 
ould result from not unambiguously mat
hing probes as well as from that the genes may have similarfun
tions.Overall there was good agreement between the fun
tional 
ategories determined in our and the other meta-analyses. Espe
ially all of them reported lipid metabolism or similar 
ategories to be among of the most signi�-
ant �ndings. Apart from that Swindell, 2009 mentioned �
ir
adian rhythm� as another important result. As forsub
ellular lo
alization the lysosome, mito
hondria and endoplasmati
 reti
ulum were enri
hed among genes dif-ferentially expressed with CR. On the other hand the studies also displayed di�eren
es to one another. Apparentlyno other study than ours assigned an important role to 
opper-ion detoxi�
ation and retinol metabolism.3.4.3 Perspe
tiveThis meta-analysis provides a large number of 
andidate genes that are robustly di�erentially expressed withCR and fun
tional 
ategories asso
iated with su
h genes. These genes and 
ategories range from su
h alreadyextensively studied for their role in CR, whi
h suggests that our results are biologi
ally meaningful, to su
h thatre
eived less attention and some that were not at all asso
iated with CR before. For further studies on therelationship of these 
ategories with CR the 
andidates asso
iated within them, their 
o-expressed genes andtrans
ription fa
tors regulating their expression 
an serve as a starting point.Meta-analyses are already a powerful and inexpensive method to draw information from already existing data. Weexpe
t that meta-analyses on high throughput studies will be
ome even more valuable on
e e.g. next generationsequen
ing and proteomi
s data are added to the mi
roarray data already deposited in publi
 databases.For meta-analyses on CR in
reasing availability of studies on invertebrates might allow a better understandingof evolutionary 
onserved pathways a
ting during CR.Meta-analyses like this would be more powerful if raw data from all studies performed would be provided indatabases or at least by the resear
hers upon request, so that there is no need to in
lude supplemental data,requiring many 
ompromises in the approa
h.
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ZusammenfassungTrotz gröÿerer Anstrengungen is der Alterungsprozess eines der am wenigsten verstandenen Phänomene der Bi-ologie. Diese Arbeit bedient si
h zweier bedeutenden Erkentnisse der Altersfors
hung: Zum einen der S
hlussfol-gerung, dass Veränderungen der Stammzell-Proliferation mit dem Alterungsprozess gekoppelt sein könnten,zum anderen dass Caloris
he Restriktion eine wirksame Maÿnahme zur Verlängerung der Lebensspanne undzur Verzögerung alters-assoziierter Krankheiten darstellt. Im ersten Teil dieser Arbeit analysieten wir einshRNA-basiertes S
reening-Experiment um Gene zu identi�zieren, die eine Rolle in der Stammzell-Proliferationspielen und unternahmen erste S
hritte zur Etablierung eines Dur
h�uss-Cytometrie basierten Proliferations-Tests um Kandidaten zu validieren. Zweitens meta-analysierten wir Mi
roarray-Daten aus vers
hiedenen Ex-perimenten, die die Änderungen der Genexpression in Folge von Caloris
her Restriktion untersu
hten. Wiridenti�zierten mit Hilfe einer Binomial-Test basierenden Abzähl-Methode (�value 
ounting approa
h�) Kan-didatengene, die hinsi
htli
h di�erentieller Expression in den Datensätzen angerei
hert waren. Wir zieltendur
h die Verwendung von Datensätzen von vers
hiedenen Organismen, Geweben, Altern, usw. darauf ab ro-buste und generalisierbare Kandidaten zu �nden. Wir verwendeten ferner vers
hiedene Vorgehensweisen umden Kandidaten zugrunde liegende funktionelle Kategorien und Gemeinsamkeiten hinsi
htli
h ihrer Rolle inSignaltransduktions-Netzwerken zu detektieren. Im Ganzen überlappen die 163 gefundenen Kandidaten-Geneund 340 Kategorien mit früheren Erkenntnissen auf diesem Gebiet, wie zum Beispiel das Ghr Gen und Kategorienaus dem Berei
h Lipid-Sto�we
hsel, Insulin-Signalwege, Kollagen oder Immunität und suggerieren daher einenbiologis
hen Bedeutunggehalt unserer Methode. Andererseits traten au
h neue und bisher verna
hlässigte Funk-tionen wie Fremdsto�-Metabolismus, Biorhythmus, Retinol-Metabolismus und Kupfer-Ionen-Entgiftung zumVors
hein, wel
he vielverspre
hende Gegenstände zukunftiger Fors
hung sein könnten. Einige der signi�kan-ten Gene spielen mögli
herweise eine tragende Rolle als Regulatoren wi
htiger Signalwege, wie z.B. Nfkbia, Airn(Igf2R antisense RNA) und der Not
h Co-Aktivator Zfp64.
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