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Abstract

Despite major efforts the process of aging is one of the least understood phenomena in biology. This work
makes use of two important findings in the field of aging research: First of the conclusion that alterations in
the proliferation of stem cells might be linked to the aging process, second that caloric restriction is a powerful
intervention to extend life-span and delay aging associated diseases. In the first part we analysed a shRNA
based screening experiment to identify genes involved in the proliferation of stem cells and undertook first steps
towards establishing a flow cytometry based proliferation assay to validate candidates. Secondly we meta-analysed
microarray data on different experiments testing gene expression changes associated with caloric restriction. We
identified candidate genes enriched for differential expression in the datasets by employing a binomial-test based
value counting approach. By including datasets from different organisms, tissues, ages, etc. we aimed at detecting
robust and generalizable candidates. We further used different approaches to assign functional categories and
common features in terms of their role in signaling networks to the candidate genes. In general the obtained
163 candidate genes and 340 categories overlap with previous findings in the field such as the Ghr gene and
categories related to lipid metabolism, insulin signaling, collagen or immunity and therefore suggest biological
meaningfulness of the approach. On the other hand also novel and so far mainly neglected functions like xenobiotic
metabolism, circadian clock, retinol metabolism and copper ion detoxification emerged, that are promising to
follow up on in the future. Some of the significant genes might play major roles as regulators of important
signaling pathways, as for example Nfkbia, Airn (Igf2R antisense RNA) and the notch co-activator Zfp64.



Chapter 1

1. The role of stem cells in aging and
caloric restriction

1.1 The role of adult stem cells in aging

Many adult tissues as for example the skin, the intestine or the blood require extensive renewal and replacement
of cells throughout life time. The source for the generation of new cells is likely to be adult stem cells which could
be isolated from various tissues (Watt 2000) (Whitehead et al. 1999) (Weissman 2000). The renewal process is
expected to go through committed progenitor cells which themselves further proliferate and differentiate into the
required cells. The important property of self-renewal, i.e. the generation of at least one daughter cell identical
to the mother cell is however characteristic only for stem cells.

Very early experiments showing that transplanted hematopoietic stem cells (HSCs) could serial repopulate
up to 5 mice suggested a extremely long self-renewal capability of stem cells (Siminovitch et al. 1964). Note
however that after about the third serial transplant the host HSCs displayed a competitive advantage over the
serially passaged donor cells (Ogden & Mickliem 1976).

Other studies proposed the idea of stem cell aging by indicating that stem cells of aged individuals produce less
progeny or progeny biased towards proliferation to certain differentiated cell types (Wright et al. 2003). HSCs
of aged individuals for example seem to be biased towards the myeloid lineage, while less lymphoid progenitor
cells are produced (Rossi et al. 2005). Consistent with decreased numbers or function of HSCs is the well-known
increased incidence of anaemia in the elderly (Lipschitz et al. 1981).

Enwere et al. (Enwere et al. 2004) reported decreased olfactory neurogenesis in aged mice. Maslov et al.
(Maslov et al. 2004) compared neural stem cell populations in the subventricular zones of the brains of young
(2-4 months) and old (24-26 months) mice and detected an about twofold reduction in the older mice. The
number of neurospheres recovered in culture from old relative to young animals differed to a similar extent.
Further bone marrow mesenchymal stem cells isolated from older donors show decreased production of progenitor
cells and are limited in their differentiation potential. They also have been shown to age in vitro (Baxter et al.
2004).

Evidence if numbers of stem cells decrease with age or not is contradictory for satellite cells (Gibson & E. Schultz
1983) (Conboy et al. 2003) (Brack et al. 2005) and some studies on hematopoietic stem cells even reported an
increase in their number (Rossi et al. 2005) (Pearce et al. 2007). However these studies were based on cell surface
markers to identify stem cell populations, while a loss of function does become evident e.g. in transplantation
assays (Ogden & Mickliem 1976).

One of the most striking experiments in respect to the impact of aging on stem or progenitor cells was done
by Conboy et al. (Conboy et al. 2005) showing that circulatory coupling of old and young mice transferred both
satellite cells and hepatocytes in the old mouse to a more youthful state with profound changes on their gene
expression levels. This suggests that changes occurring with age in theses cells can be reversed by the exposure
to one or some serum factors. Note however that findings on satellite cells are not necessarily transferable to all
stem cells.

The age associated changes in stem cells may be attributed to accumulating DNA-damage, changes in their
niches, telomere shortening, cell senescence e.g. cause by increased p53 activity and / or other reasons (Sharpless
& DePinho 2007). Rossi et al. (Rossi et al. 2007) demonstrated loss of functional capacity of hematopoietic cells



in different DNA damage repair defective mouse mutants with age under stress. They further showed that DNA
damage accumulates with age in wild-type stem cells. Regarding cellular senescence it is interesting to note that
pl6INK4a-deficient mice show a significantly lower decline in subventricular zone proliferation, olfactory bulb
neurogenesis and the frequency and self-renewal potential of multipotent progenitors. The protein product of
pl6INK4a is a cycline dependent kinase inhibitor linked to senescence. However no significant changes in this
respect were found in progenitor function in the dentate gyrus or enteric nervous system (Molofsky et al. 2006).
Further it has been suggested that Bmi-1 prevents the premature senescence of neural stem cells by repressing
pl6INK4a and pl9Arf, a p53 activator (Molofsky et al. 2005). Nonetheless despite a constant expression of Bmi-
1 pl6INK4a and pl9Arf are found to steadily increase in expression throughout life (Bruggeman et al. 2005)
(Molofsky et al. 2006). In another study it was found that deletion of the cell cycle inhibitor p21, which gets
activated by telomere shortening, can prolong the life-span of telomerase deficient mice. At the same time the
proliferation of intestinal progenitor cells and repopulation capacity and self-renewal of hematopoietic stem cells
was restored (Choudhury et al. 2007).

With respect to replicative senescence it is interesting that for mice expressing an active form of p53 and
showing a premature aging phenotype it has been proposed that this is caused by replicative senescence of
stem cells (de Magalhaes & Faragher 2008) (Tyner et al. 2002). Similarly Halaschek-Wiener and Brooks-Wilson
(Halaschek-Wiener & Brooks-Wilson 2007) argue for a role of stem cell exhaustion in Hutchinson-Gilford progeria
(HGP), one of the most severe premature aging disorders. Possibly consistent with this idea may be the growth
retardation of HGP patients in their first years of life (Cox & Faragher 2007). Similarly for two other important
premature aging syndroms, Cockayne and Werner syndrom, this retardation is also found in early life and puberty
respectively (Henning et al. 1995) (Martin & Oshima 2000). However cellular senescence in these diseases is
probably not limited to stem cells and stem cell exhaustion in HGP might also be driven by increased apoptosis.
Therefore it might rather be the inability of stem cells to ensure tissue homeostasis due to increased senescence
and apoptosis of other cells, than specific alterations in the stem cells themselves.

In summary, even though it is not clear if or for which stem cell types there is a decrease in their amount with
age, there is growing evidence for functional changes in these cells. The term “stem cell hypothesis of aging” has
been coined and also tries to explain age associated conditions like atherosclerosis, type 2 diabetes and frailty
(Sharpless & DePinho 2007).

1.2 The influence of caloric restriction on stem cells

Since caloric restriction (CR) is a powerful intervention to extend life-span and delay aging associated diseases in
a wide range of organisms (see “3.1.1 The potential of caloric restriction to delay aging”) it is obvious to assume
an influence of CR on stem cells if you accept the stem cell hypothesis of aging. However not many studies have
been conducted in this direction so far.

Oue of the few was done by Kumar et al. (Kumar et al. 2009) reporting a significant increase in the proliferation
rate of neuronal progenitor cells in the brain of caloric restricted rats. Another study demonstrated that lowering
glucose concentrations in the medium for culturing mesenchymal stem cells lowered apoptosis and increased the
proliferation rate as well as the number and size of fibroblastic colonies in the colony-forming unit assay (Stolzing
et al. 2006). Interestingly studies by Yoshida et al. (Yoshida et al. 2006) and Schmuck et al. (Schmuck et al.
2010) described a decrease in hematopoietic progenitor cells and adipose tissue derived mesenchymal stem cells
respectively with CR in vivo.

Therefore, even though effects of caloric restriction on adult stem cells have been observed the nature of its
influence is but poorly understood. In this work we addressed both the underlying genetic mechanisms of stem
cell proliferation and CR, by two different approaches. In the next chapter we present a shRNA library screening
approach to identify key players involved in stem cell proliferation and first attempts towards confirming promising
candidates. Since cell culture work with adult stem cells is not well established we employed an embryonic stem
cell line for these experiments. Even though results obtained on this system still have to be tested for their
applicability in adult stem cells the important self-renewal capability is common between both embryonic and
adult stem cells and shared underlying mechanisms are expected.

In chapter 3, which accounts for the major part of this work, we meta-analysed existing gene expression data to
determine genes altered in their expression due to CR.

The two parts therefore start off from two different sides, one experimentally addressing the stem cell hypothesis
of aging, the other computationally exploring the life-span extending effect of caloric restriction. However both
demonstrate data-driven approaches to increase the knowledge and generate hypotheses about the riddle of aging.



Chapter 2

Determining genes implicated in stem cell
proliferation

2.1 Finding candidate genes responsive to oxidative stress and associ-
ated to proliferation of stem cells by shRNA library screening

The following screening experiment and preliminary analysis were performed by J.P. de Magalhaes and G. Jansens
and are only described in brief here.

2.1.1 Experimental design

To find candidate genes which are involved in the proliferation or ability of embryonic stem cells to survive under
oxidative stress the following experiment was performed in our group: 6 replicates of cells of the mouse embryonic
stem cell line CCE were virally transfected by adding a mixture of lentiviruses containing DNA representing a
part of the Hannon-Elledge shRNA whole-genome library (6144 shRNAs) (Chang et al. 2006). Since it contained
more than one shRNA per gene, around 2000 to 3000 genes were targeted. The genes targeted by this so called
“focus library” were chosen with focus on cancer research (i.e. targeting genes involved in signaling, cell cycle,
etc., as retrieved from gene ontology (GO) databases, and such genes where a phenotype was expected from
their knock-down). The shRNA sequences were predicted computationally and most had not yet been validated
experimentally. The mixture of plasmids containing these different shRNAs was obtained from S. Elledge. Viruses
were produced as described in “2.2.2 Materials and Methods”, but with this complex mixture of plasmids instead
of one single type of plasmid. The transfection was done as described in 2.2.2.

1 week after the transfection DNA was isolated from an aliquot of the cells while the rest of them were kept
in culture. PCR with limited cycle number was performed on the isolated DNA using primers binding to the
flanking regions of the sShRNA encoding DNA and expected to yield amplification products of the different shRNA
encoding sequences (in the following also simply called “shRNA sequences” or “shRNA genes”) in proportion to
the amount this sequence was present in the population. Cy3 was incorporated during the PCR so that the
product was labelled with green fluorescent dye. By culturing the cells for 1 week before the start of the assay it
was expected that cells rendered in-viable by the effect of a ShRNA were already largely diminished and shRNAs
found in the following assay were indeed affecting proliferation rate rather than cell survival. 3 of the replicates
were cultured as described in “2.2.2 Materials and Methods” (control), the other 3 were subjected to oxidative
stress by addition of hydrogen peroxide. After 2 weeks DNA was extracted and PCR performed as above, but
using Cy? instead of Cy3 for red fluorescent labelling of the PCR product.

A microarray experiment was performed, adding the PCR, products from the beginning of the experiment and
from after 2 weeks to a custom made spotted cDNA microarray platform, containing two probes per shRNA
(strictly speaking one of them is a concatenation of twice the same sequence as the other, however they are
referred to as “identical probes” in the following) in the library.

The green and red signal were detected and ln(g—;) (in the following also called “In-ratio”) calculated, where E is

the signal of emission (g in green and r in red).
The logic of this experiment was that the ratio of shRNAs knocking-down genes that have a positive effect on
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Figure 2.1: Outline of the screening experiment to find genes associated with stem cell proliferation and handling
of oxidative stress; ’3 + ox. stress”: 3 of the 6 samples were subjected to oxidative stress; see text for details

proliferation will diminish due to this effect, while of shRNAs knocking down genes with a negative effect on
proliferation will increase. Therefore the effect of the shRNA controls in which amount this shRNA will be
present in the population after two weeks.

For genes involved in oxidative stress however the ratio of sShRNA after two weeks to shRNA in the beginning
will be different between stressed samples and controls. An outline of the experiment is shown in fig. 2.1.

2.1.2 Preliminary analysis

For a preliminary analysis to find genes differentially expressed due to different survival under oxidative stress
the average value of ln(g—;) over three controls was subtracted from the average for the stressed samples. Genes
corresponding to probes with high values were assumed to have a negative, with low values to have a positive
effect on stress resistance.
E.g. assuming the In-ratio is positive for stressed and unstressed cells, but higher for stressed, the difference is
positive since the ratio of the shRNA increased more in the stressed cells. I.e. cells survive oxidative stress better
when the corresponding gene is knocked-down and the gene is therefore assumed to have a negative effect on stress
resistance. To determine genes for which knock-down had either a beneficial or detrimental effect on proliferation
!(independent of oxidative stress) the mean value of the In-ratio was calculated. Genes corresponding to high
values indicated a negative, to a low value a positive effect on proliferation.

Since results appeared to be much clearer for the testing of proliferation than oxidative stress it was decided
to test the following candidates for their effect on proliferation: Wnk2, Map3k13 and Dri1 for which shRNAs
were enriched in the screen and Psmal, Zfp828, Tcf23 and Pakl for which shRNAs were depleted in the screen.

2.1.3 Previous attempts to experimentally validate candidates

The following approach was used by G. Jansens to test the effect of these candidates on stem cell proliferation:
CCE cells were transfected with the plasmid pHAGE containing the sequence of a candidate or control shRNA
as described in “2.2.2 Materials and Methods”. In control lines the shRNA targets the firefly gene (FFL) which is
not present in mouse. Cells were plated at equal concentrations and allowed to grow for 4 days without splitting.
(Splitting (subculturing) is avoided in these proliferation experiments since it is considered a source of variation).
Then a single cell suspension was obtained by trypsinization and cells counted using an automatic cell counter
(Casey). The experiment was repeated with a growth period of 3 instead of 4 days. It was calculated which
percentage of the initial cell number was present after 3 or 4 days respectively. During this period the expected
red fluorescence from turboRFP encoded on pHAGE was found in all cell lines expect for the ones where pHAGE
contained the shRNA targeting Oct{ or Psmal. This suggests that these tow lines are either outgrown by

I To be precise at this point we cannot distinguish if the value was e.g. lower due to a prolonged cell cycle time, due to a lower
survival rate or another cause. Therefore we define proliferation here as what is measured, when comparing the number of cells
generated after a certain time to a starting number of cells.



untransfected cells which are left in the population or they silence the transcript for the sShRNA and turboRFP.
As a result no significant difference in proliferation was found between the control FFL-cell line and any of the
other lines. Also the tendency for many lines was not consistent between experiments and often not consistent
with the prediction from the screen.

Therefore we decided on two ways to improve finding candidates truly involved in cell proliferation:

1. Improving the candidate selection by a more sophisticated analysis of the screening data to find candidates
more likely to be linked to proliferation

2. Improving the method for validating candidates: The problem so far was that for meaningful results the
cells still have to be in their exponential proliferation phase when counted. Splitting the cells during this
procedure would however disturb the analysis since it can only be done with limited accuracy (i.e. the
number of cells dieing during trypsinization may vary). Therefore if subculturing was to be avoided, cells
could not be allowed to proliferate longer than 3 or 4 days even though a longer proliferation time would
most likely lead to more significant results if cells could be kept in exponential growth. Therefore we
decided to do an assay where shRNA lines are mixed with wild-type (wt) cells as an internal standard and
monitor their ratio over a longer time. When having an internal standard the matter of inaccurate splitting
is not expected to be a problem any more since the error appears to the same extent for both lines. This
approach will be described in “2.2 Experimental validation of candidate genes by proliferation assays”

2.1.4 Statistical procedure

As explained the main criterion for selecting candidates implicated in stem cell proliferation or handling of
oxidative stress should be the difference found in the microarray experiment in the beginning to end ratio or ratio
between stressed and non-stressed samples of DNA coding for the shRNA targeting a particular gene. Further
criteria were the association of a gene to gene ontology (GO) terms considering these GO terms” enrichment
among potential candidates and potential role in proliferation.

Because of the large number of genes tested compared to the small number of replicates we decided not to use
a t-test for the analysis of differential detection of PCR product between beginning and end of the experiment:
Considering the number of genes chances are high that for some genes values measured for the amount at the
beginning are very close together as well as for the ones in the end by random chance. This would suggest high
statistical significance even if there is only a small difference between the means of beginning and end and might
therefore lead to false positives with no true difference between the means of the population.
Instead we preferred an analysis that for each probe counts the number of times the ln(g—;
positive or negative threshold and obtains the probability that this or a higher number would be found by chance.
Therefore in contrast to the t-test this test is based on a fold-change criterion. The false discovery rate (FDR)
for all probes is then estimated using a scrambling approach. A disadvantage of this method compared to a
combination of a t-test and an effect size (fold-change) cutoff is that we do not account for the dispersion of
measured values, i.e. if there is a high or low variation. An advantage is the insensitivity of this test to outliers
compared to a t-test (since no mean values are calculated).

) exceeds a certain

2.1.5 Finding genes associated with stem cell proliferation

In a first step we concentrated on finding shRNAs over- / underrepresented after two weeks ignoring the fact
that some samples were under oxidative stress and the others were not. This is supposed to detect candidates for
genes associated with stem cell proliferation as detailed above. Later we used further information like functional
categories associated with the genes or their role in the network of candidate genes to select the candidates for
experimental testing.

2.1.5.1 Finding genes over-/ underrepresented after 2 weeks

2.1.5.1.1. Excluding low-signal data and annotation The starting point for this analysis were background
subtracted normalized intensities from the two color microarrays.

To remove data for which no sufficient amount of shRNA coding DNA integrated into cellular genomes, for
which the PCR product did not bind with sufficient affinity to the probe or for which the signal at t = 0 was
consistently low for other reasons we removed probes for which the signal of the green channel (in the following:
“green signal”) was < 200 (arbitrary units) in at least 3 of 6 replicates. (The 6 microarrays are considered



“replicates” in this approach even though the samples on 3 of them were exposed to stress and of 3 were not; the
maximum value for the green signal was around 295 000, the median around 1300.)

The program over200 annot.pl (supplementl) extracts those probes from a file (all arrays.txt in supple-
ment1) for which the signal is > 200 for at least 4 of the 6 signals at the beginning of the experiment (green
channel). After this selection 8845 of the original 12 288 probes were left. For these probes the gene symbol,
gene name, NCBI Entrez Gene ID and NCBI accession number is added from another file (Mm.ALL.bc.txt in
supplementl) by the same program. The file matching these annotations to the probe names was downloaded
from Codex (http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi) earlier, but the download was not available any
more at the time of this analysis. Annotations for some of the probes could not be found in the mentioned file.
Therefore the probe names not found were uploaded to the old version of codex? (Aug 2009), which in contrast
to the new version allows searches for probe names. ® Annotation was obtained and added to the probes for
which it was not found before. The 24 probes for which annotation still could not be found were discarded from
the analysis.

Probes matching more than one shRNA sequence were removed from the analysis since we wanted to avoid ob-
taining candidates for which the measured expression value was actually caused by another shRNA. The number
of probes excluded during this procedure was 214.

2.1.5.1.2. Collapsing probes targeting the same shRNA  Since there were two probes per shRNA on
the microarray (prefixes: HH  and mmFocus ) the two (if both passed the intensity threshold) were collapsed
by calculating the mean for each replicate. This is done by collapse two-probes.pl (supplementl).
In the next step the file was converted to a .xls and mean value and standard deviation (STDEV) for the ln(g—;)
of each experiment over all probes calculated by the corresponding Excel functions. (Means were -0.09 to -0.04,
standard deviations 0.98 to 1.16.)
Even though there were different shRNAs targeting the same gene for some genes, these were not collapsed since
different shRNAs were expected to perform differently. Collapsing might therefore obscure the effect of the better
shRNA by averaging with values of the worse.

The file containing probes selected by the signal intensity criteria mentioned above, annotated and collapsed
can be found in supplementl: two-col.txt.

2.1.5.1.3. Finding shRNAs over- and underrepresented after 2 weeks A shRNA gene was termed
overrepresented if the ln(%) was above a certain threshold for a certain number of replicates and underrepresented
g

if this number of replicates was below a certain threshold. (If in the following we talk about gene X being over- /
underrepresented this means the sShRNA targeting this gene was over- / underrepresented.) As threshold for each
replicate mean + standard deviation (STDEV) over all probes and mean — STDEV respectively were chosen. In
different runs those probes for which (at least) 4, 5 or 6 of 6 values for ln(g—;) were above / below the mentioned
thresholds were selected by the program mult aboveSTDEV.pl (supplementl). The occurrences of the number
of different probes for the same gene were counted with probes per gene.pl (supplementl).

2.1.5.1.4. Estimation of p-values and false discovery rate The probability p to find any probe above /
below mean +/- STDEV was calculated by dividing the mean number of probes found per sample by the number
of probes tested (p = 0.13 for any probe found above mean +/- STDEV, p = 0.14 for below mean +/- STDEV).
The probability P to find a probe at least 4, 5 or 6 times respectively above / below mean +/- STDEV (called
“40f6”, “50f6” and “60f6” criterion) by random chance was calculated using the binomial distribution:

k—1
P=1-) (M*p"«(1-p)"™ (2.1)
=0
with
p= probability to find a random gene above / below mean +/- STDEV (see above),
k= 4, 5 or 6 respectively,

2http://katahdin.cshl.org:9331 /rnai/repository /scripts/newmain.pl
3By the time of writing the old codex is not online anymore. Therefore the file obtained for the not found probes is attached in
supplementl: codex found.txt



| # candidates | P-value | FDR |

overrep.: 4of6 117 3.84E-03 | 0.158
overrep.: Hof6 23 2.29E-04 | 0.050
overrep.: 60f6 6 5.76E-06 | 0.005
underrep.: 40f6 216 4.95E-03 | 0.100
underrep.: 50f6 60 3.18E-04 | 0.024
underrep.: 60f6 10 8.62E-06 | 0.003

Table 2.1: Number, P-values and FDRs of candidate shRNAs found over- or underrepresented after 2 weeks at
different criteria. P-values were calculated using the binomial distribution and FDRs by comparing the found to
the expected number of candidates.

n= 6.

P corresponds to the P-value for finding a probe at the given criterion. Multiplying this probability with the
number of probes in the assay (giving the number expected to be found for this criterion by chance) and dividing
it by the found number for each criterion gives the FDR. The number and P-values for probes found at each
condition and corresponding FDRs are shown in table 2.1. The number of over- or underrepresented shRNA
candidates closely resembles the number of candidate target genes, since only very few genes (7 for the 40f6
overrepresented, 8 for 40f6 underrepresented, 1 for 50f6 over- and underrepresented each and 0 for the others)
met the criteria with more than one shRNA.

Since we aimed at a FDR <0.05 the 50f6 criterion appears to be the appropriate one to chose the candidates
to experimentally validate.

2.1.5.2 Relationship of proliferation associated candidate genes to aging

The initial idea of finding genes involved in stem cell proliferation or stress response was motivated by finding
genes involved in aging (see “1 The role of stem cells in aging and caloric restriction”). Therefore we tested if
our candidates could be found in GenAge (http://genomics.senescence.info) (de Magalhdes & Toussaint 2004),
a database of genes associated with human longevity or that modulate aging in model organisms. A list of all
those genes and their human homologs was downloaded and is _gene in list mod caseinsens.pl (supplement
1) was used to search for our candidates selected by the 50f6 criterion in this list. Since mouse homologues were
not available, we made use of the rule of thumb that the mouse homologue of a human gene annotated as XXX11
would be Xxx11 and the identifiers would therefore be equal in a case-insensitive search. We are aware that this
might miss genes in a few special cases.

There was no overlap found between our candidates with the 50f6 criteria and the genes listed in GenAge.

2.1.5.3 Functional analysis: Finding over- / underrepresented functional categories

We employed and compared different ways to find functional categories common to shRNAs associated with stem
cell proliferation. One analysis was done using a binomial test employing custom made Perl code, the others
were based on the freely available GSEA and DAVID tools.

2.1.5.3.1 Finding enriched GO-categories by a binomial test The first functional analysis was done by
searching for gene ontology (GO) terms that were represented significantly higher among over- / underrepresented
genes than expected by chance.

GO analysis was done on shRNA genes detected to be over- or underrepresented (in the following called “over-
or underrepresented genes”) by a method similar to the one described above. However to avoid counting genes
represented by two shRNAs twice collapsing was done using combine-select-highest withTest.pl (supplement 1).
This program first collapses signals corresponding to identical shRNAs by calculating the mean, then selects of
shRNAs targeting the same gene only the shRNA with the average ln(g—;) over all replicates which is furthest
from 0 (i.e. the shRNA that is most over- / underrepresented). This is because the silencing effect differs from
shRNA to shRNA and this approach selects the one with the most marked effect. The program prints warnings
if the mean In-ratio of one shRNA is strongly in the other direction than another shRNA for the same gene.
Specifically if for a gene the average ln(g—;) for a shRNAs is above mean+STDEYV and for another it is below



mean-STDEV or vice versa a warning is printed. After manual inspection all probes with warnings were removed.
Starting from this file over- and underrepresented genes were determined as above (“2.1.5.1 Finding shRNAs over-
and underrepresented after 2 weeks”) for the same criteria as described above.

To add GO categories to the corresponding gene a list mapping GO identifiers to all genes was downloaded

from NCBI* (25/08/2009) and all non-mouse genes were discarded. Since in this file each gene was repeatedly
listed for each GO identifier a new file was created with one gene and all its GO identifiers per row. All GO
identifiers were added to the list of probes for over- and for underrepresented genes. A small number (10 for
over-, 34 for underrepresented) of probes could not be found in the GO-list (and also not searching the database
by hand).
It was counted how many overrepresented and how many underrepresented genes were found for each GO identifier
and how many for the complete list of all genes after collapsing. Only GO identifiers with at least 3 corresponding
genes over- / underrepresented were used for further analysis. These steps were performed by GO _masterprog.pl
(supplement 1).

The probability P that an equal or higher number of genes than the actual is found over- or underrepresented
for a GO identifier by chance was calculated using a binomial test:

k—1
P=1-3% ()*p"+(1-p" "
=0
where
k is the number of times a GO identifier was found associated with the over- /underrepresented genes,
n is the number of times the GO identifier was found associated with all genes and
p the probability that GO identifiers are found over-/underrepresented.

Therefore p is calculated by dividing the sum of the number of times all GO identifiers are found associated with
over- / underrepresented genes by the sum of the number of times they are found associated with all genes after
collapsing.

The GO terms were added to the corresponding GO identifiers by using addGO _terms mult-files.pl (in supple-
mentl).

To assess the significance of the found GO terms and find an appropriate cutoff for P considering multiple
hypothesis testing we scrambled the In-ratios of each replicate with respect to each other replicate manually after
we had filtered out low intensity data. The analysis was repeated as with the unscrambled files. Different cutoff
values for P were tested to find reasonably low FDRs (FDR is the number of GO identifiers found significant
at the chosen P on scrambled divided by the number on actual data; FDR_ calc2 _over-undercount-inlfile.pl in
supplement1). Since we scrambled only once the FDR is a rough estimate. The GO identifiers and terms for the
40f6 criterion at the P-value of 0.005 (FDR = 0.08 and 0.06 for over- and underrepresented genes respectively)
are shown in table 2.2. Note that some of the GO terms appear for both over- and underrepresented genes. This
may biologically make sense depending on which genes of the GO terms are represented in each and how they
interact with each other.

2.1.5.3.2. Using GSEA to find enriched gene sets

2.1.5.3.2.1. Introduction to GSEA GSEA (Gene Set Enrichment Analysis) is a program that evaluates
microarray data at the level of gene sets. It is freely available at http://www.broadinstitute.org/gsea. The goal
of GSEA is to determine whether members of a gene set S tend to occur toward the top (or bottom) of a dataset
ranked in a certain way, in our case by In-ratio. Gene sets are defined based on prior biological knowledge,
e.g. genes encoding products in the same metabolic pathway, located in the same cytogenetic band, or sharing
the same GO category. A variety of gene sets to test for can be found at the Molecular Signature Database
(MSigDB).
The GSEA algorithm comprises the three following steps:

4ftp://ftp.ncbi.nih.gov/gene/DATA /gene2go.gz



| overrep. | | underrep. |
G0:0000287 magnesium ion binding G0:0000287 magnesium ion binding
G0:0003674 molecular function G0:0001843 neural tube closure
G0:0003676 nucleic acid binding G0:0003676 nucleic acid binding
G0:0004672 DNA binding GO0:0003677 DNA binding
GO:0004674 protein kinase activity GO:0003700 | transcription factor activity
G0:0004713 protein serine/threonine G0:0003713 transcription coactivator
kinase activity activity
G0:0004721 protein tyrosine kinase G0:0004842 ubiquitin-protein ligase
activity activity
G0O:0004725 phosphoprotein G0:0005515 protein binding
phosphatase activity
G0O:0005509 protein tyrosine GO:0005622 intracellular
phosphatase activity
G0:0005515 calcium ion binding G0:0005634 nucleus
G0:0005524 protein binding G0:0005829 cytosol
GO:0005737 ATP binding G0:0005839 proteasome core complex
GO:0005739 cytoplasm G0O:0006350 transcription
GO:0005794 Golgi apparatus GO:0008270 zinc ion binding
G0:0006468 protein amino acid G0:0045449 | regulation of transcription
phosphorylation
G0:0006810 transport G0:0046872 metal ion binding
G0:0006915 apoptosis G0:0051603 proteolysis involved in
cellular protein catabolic
process
G0:0007165 signal transduction
G0O:0007243 protein kinase cascade
G0:0007275 multicellular organismal
development
G0O:0007399 nervous system
development
GO0:0016301 kinase activity
G0:0016740 transferase activity
G0:0030145 manganese ion binding
G0:0030154 cell differentiation

Table 2.2: GO-identifiers and terms enriched after two weeks for over-/underrepresentation at FDR< 0.08 and
0.06 respectively.
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Figure 2.2: Example of the running sum method used by GSEA; bottom: ranking of genes according to
signal-to-noise ratio (in our case ln-ratio); middle: genes in the tested gene set are shown by vertical lines
at their rank position; top: running sum; Enrichment score is the maximum deviation from 0; picture from
http://www.broadinstitute.org/gsea.

1. An enrichment score is calculated by walking down the ranked list of genes, increasing a running-sum
statistic when a gene of a gene set is encountered and decreasing it when encountering genes not in the
gene set. The enrichment score is the maximum deviation from zero found in the random walk. See fig.
2.2.

2. A P-value is estimated by comparing the enrichment score to an enrichment score calculated from a per-
mutation of the ranked list of genes.

3. Since normally more than one gene set is tested multiple hypothesis testing is done. For this the enrichment
score is normalized by dividing by the number of genes in the given gene set and a false discovery rate is
estimated by comparing the normalized enrichment score to normalized enrichment scores calculated from
a permuted list of genes (Subramanian et al. 2005).

2.1.5.3.2.2. GSEA to find gene sets enriched in proliferation associated genes We started from a
file where probes for each gene were collapsed to the probe with the mean of ln(g—;) furthest from 0 as described
above. To create a ranked gene list the means of the In-ratio over the 6 replicates for each gene were calculated
and written in a tab-delimited table with the corresponding gene symbols. For GSEA to be able to recognize
the gene symbols all letters had to be changed to capitals. For the resulting file the .txt extension was changed
to .rnk.

As gene sets we downloaded msigdb.v2.5.symbols.gmt from MSigDB (Subramanian et al. 2005) which comprised
all available gene sets (7/9/09).

The ranked gene list .rnk file and the gene sets were loaded into the GSEA desktop application and the
analysis was run using the GseaPreranked tool. The “collapse dataset to gene symbols” option was set to false,
otherwise default settings were used.

As result we found no gene set enriched for underrepresented (enrichment score < 0) genes below a FDR
of 0.05. For overrepresented genes (enrichment score > 0) we found 5 sets for FDR <0.05: PHOSPHO-
RIC ESTER HYDROLASE ACTIVITY,PROTEIN AMINO ACID DEPHOSPHORYLATION, PHOSPHO-
PROTEIN PHOSPHATASE ACTIVITY, DEPHOSPHORYLATION and KERATINOCYTEPATHWAY).
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| | User Genes | Genome |

In Pathway 3-1 40
Not In Pathway 297 29960

Figure 2.3: Example for a contingency table created by the DAVID Functional annotation tool; from the DAVID
Introduction file (http://david.abce.nciferf.gov/helps/functional annotation.html#EXP2)

2.1.5.3.3. Using DAVID to find enriched biological themes and pathways

2.1.5.2.3.1. Introduction to DAVID  The Functional Annotation Tool of DAVID (Database for An-
notation, Visualization and Integrated Discovery) is based on a procedure similar to Fisher’s exact test. A 2x2
contingency table containing how many of the genes of interest and how many of the given background (genome)
associate with a functional term (or pathway) and how many do not is created (see fig. 2.3). To be conservative
1 is subtracted from the number of genes of interest associated with the term. The probability of a number of at
least this many genes associated with the category given the marginal distribution is calculated.

Functional terms here do not only include GO terms, but are also based on protein—protein interactions, pro-
tein functional domains, disease associations, biological pathways, sequence features, homology, gene functional
summaries, gene tissue expression and literature. The annotation categories can be flexibly included or excluded
from the analysis by the user.

2.5.1.3.3.2. DAVID to find enriched biological themes and pathways We made use of the Database
for Annotation, Visualization and Integrated Discovery (DAVID) to find enriched biological themes and pathways
in our candidates for proliferation associated genes. In particular we used the Functional Annotation algorithm
accessible at http://david.abcc.nciferf.gov /summary.jsp.
We separately uploaded the overrepresented and underrepresented candidates for the 4o0f6 criterion. As a back-
ground for the analysis we loaded all genes represented on the microarray. We ran the program and obtained the
Functional Annotation Clusters once for the default themes and once by selecting all pathway options only.
For overrepresented genes we obtained categories related to phosphate, ATP and phosphorylation, for underex-
pressed the proteasome below a FDR of 5% when searching for default categories. Searching for pathways MAPK
signaling was found for overrepresented genes below a FDR of 5%, the proteasome again for underrepresented.

2.5.1.3.4. Comparison of results from GO analysis, GSEA and DAVID While the numbers of sig-
nificant categories found with GSEA and DAVID are of comparable size the GO-terms found by the binomial
analysis is clearly higher. This might partially be due to the slightly more relaxed FDR~cutoff (0.08 and 0.06)
used owing to the discrete nature of the cutoff thresholds (40f6, 50f6 or 60f6), but is most likely due of inherent
differences between the methods.

The results of the GSEA and DAVID analysis both emphasize the role of phosphate in signalling for overrep-
resented genes, however, while in GSEA mainly results in terms related to dephosphorylation, DAVID detects
phosphorylation. The binomial analysis detects among others categories related to both phosphorylation and
dephosphorylation. The most concrete pathway, MAPK signaling, was discovered by DAVID analysis focusing
on pathways only.

While GSEA gives no significant category for underrepresented genes DAVID only detects the proteasome at a
FDR < 0.05. Again among other categories the binomial test also lists the “proteasome core complex”, “prote-
olysis involved in cellular protein catabolic process” and “ubiquitin-protein ligase activity”.

2.1.5.4 Mapping candidate genes to the STRING network

STRING is a database of physical and functional protein interactions and can be employed to build a network
from a gene list based on this information. We used STRING 8.3 at default settings on a combined list of genes
over- or underrepresented at the 4of6 criterion. See supplement 1 for a figure of the network. It can clearly be
seen that while many proteins are not or weakly connected there are two distinct dense parts of the network,
one built around T'c¢f/, Pparg and including edges to Hdac2 and Hdac3 and another around Psmal and Psma?,
strongly linked to Pakl. We assumed that a high degree of a gene in the network represents further evidence for
the importance of this gene in mechanisms related to stem cell proliferation.
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2.1.5.5 Decision on which candidates to test experimentally

Since only about 10 candidates could be experimentally tested for the effect of their knock-down on the pro-
liferation rate the most promising ones had to be chosen. We first demanded that the candidates were over- /
underrepresented at the 50f6 criterion (FDR <0.05) giving lists of 23 and 60 genes respectively. For the further
decision we took into account if a gene was also significant at the 60f6 criterion or significant at the 50f6 criterion
with more than one probe, if it was associated with “meaningful” functional categories, especially if they were
enriched in the functional analyses and if the gene was highly connected in the network of the candidate genes.
As a meaningful GO-category we understand one that describes a distinct cellular process, not a function that
can be found in many different pathways. Enriched meaningful functional categories were “cell differentiation”,
“apoptosis” or such related to proteasome function. If the category was not enriched we required that a possible
link between the category and proliferation existed as for example for the GO-term “positive regulation of cell
proliferation” or categories related to the cell cyclus, etc. Therefore at this point we departed from a purely
data-driven candidate selection approach.

For overrepresented candidates we selected Rnf21, Pkn2, Map4k5, Csnklal and Ppp3r2 since they all fulfilled
the 60f6 criterion, ClkI because it was found significant by two probes and Map3k! for its central role in the
network (6 connections) and its functional association with “apoptotic mitochondrial changes”.

For candidates for which the shRNA was underrepresented after 2 weeks we chose Fdd1, Hdac3, Phf17, Sqstm1,
Mbd2 and Zzda since they all were significant at the 60f6 criterion and associated with meaningful functional
categories. Psmad was chosen, because it was found significant for two probes, for its role in proteasome function
and high degree (7 connections) in the network.

We made sure not to select genes that had already been selected in the preliminary analysis (“2.1.2 Preliminary
analysis”) and for which plasmids had already been obtained. Interestingly only few of the candidates selected
there appeared also promising in this procedure. Wnk2 was detected at the 60f6 criterion for overrepresented,
Tcf23 and Pakl for underrepresented shRNAs. Pakl appeared to be a good candidate also in this approach due
to its high degree in the network.

2.1.5.6 Determining the expression of candidate genes in early embryonic stages and stem cell
lines

In a last step we checked the expression of the selected candidates in early embryonic stages and stem cell lines
according to public datasets to assess if their knock-down could be the reason for slower growth of these cells or if
the gene of interest is not even expressed in stem cells. Note that our original microarray screen did not test the
expression of the sShRNA target genes but only the level of sShRNAs. Changes in their amount could also be random
or due to off-target effects. In a first step we tested the expression in the Theiler Stage 4 (TS4) (Blastocyst, Inner
cell mass apparent, 2-4 days post coitum (dpc)) and TS5 (Blastocyst (zona-free), 3-5.5 dpc) embryonic stages
according to the Mouse Genome Informatics website (http://www.informatics.jax.org/expression.shtml) (Bult et
al. 2008) (Smith et al. 2007). In the next we checked the number of expressed sequence tags (ESTs) at the
Unigene website (http://www.ncbi.nlm.nih.gov/unigene) (Pontius, Wagner, Schuler 2003) for our genes in the
blastocyst stage and if not found there in the morula and other embryonic tissues. We also checked the candidate
list for their expression values in the microarray datasets GDS2666 and GDS2667, GDS2668 and GDS2669 as
well as GDS2905 and GDS2906 at the Gene Expression Omnibus (GEO). GDS2666 and GDS2667 (Hailesellasse
et al. 2007) compare the gene expression in cells of the embryonic stem cell line R1 at different time points
towards differentiation to embryoid bodies, GDS2668 and GDS2669 do the same for line J1 (Hailesellasse et al.
2007). GDS2905 and GDS2906 compare gene expression in J1 stem cells and embryoid bodies.

If the expression of a gene (more precisely: its percentile rank within the sample) was at a low level for t = 0 / for
undifferentiated cells and the level at other time points / in the embryoid body were clearly higher we considered
this gene as not expressed in stem cell lines, if it was at background level for most of the time points / also for
the embryoid body we did not directly assumed this gene not expressed in embryonic stem cells without further
hints from other analyses.

Expression information for none of the genes in our narrower candidate list except for Phf17 was found at
the Moue Genome Informatics website. Phf17 was indicated to be expressed at TS4. The results for the other
expression analyses (from Unigene and GEO) are shown in table 2.3.

For all genes except Ppp3r2 and Zzda there was at least one evidence of expression in embryonic stem cells,
either by ESTs or microarray data. Even though the data do not prove that Ppp3r2 and Zzda are not expressed
in stem cells we excluded these genes from the list of our candidates since none of our analyses gave evidence for
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Unigene: further Unigene GDS2666 and GDS2668 and GDS2905 and
Transcripts per results GDS2667(line GDS2669 (line GDS2906(line
million in R1) J1) J1)
blastocyst
Csnklal 71 >T75% >T75% >75%
Map4kb 486 >25% >25% >25%
Pkn2 100 >75% >75% >75%
Ppp3r2 0 0 in embryonic most low most low most low
tissue
Rnf31 0 13 in embryonic >75% >75% most low
tissue; 3 in
cleavage stage or
morula
Clk1 28 >75% >75% >75%
Sqstm1 271 >75% >75% >75%
Psmab 142 >75% >75% >75%
Phf17 185 >75% >75% >75%
Mbd2 14 human: 0 undifferentiated | undifferentiated | undifferentiated
low low low
Edd1 no unigene entry >75% >75% >75%
Hdac3 14 >T75% >75% >75%
Map3kl 0 13 in embryonic >50% >25% >50%
tissue; 0 in
cleavage stage or
morula
Zxda no unigene entry most low most low most low
Oct4 285 >75% >75% >50%
Psmal 371 >T75% >T75% not found

Table 2.3: Expression levels of selected candidate genes in the blastocyst or if not detected there in the morula and
embryonic tissues according to Unigene and percentile position in certain GEO datasets comparing embryonic
cells to differentiated cells; “human”: information for human homologue; “most low” means that the gene was
lowly (<<25%) expressed in both differentiated and stem cells; “undifferentiated low” means the expression of
the gene was low in stem cells and clearly higher in differentiated cells; genes in red were excluded from the
analysis; > x% means all replicates of at least one probe targeting this gene were detected at a higher percentile

than x
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Candidates for overrepresented genes:

Rni31 ring finger protein 31

Map3k1 mitoegen activated protein kinase Kinase Kinase 1
Csnkl1al casein Kinase 1, alpha 1

Pkn2 protein Kinase N2

Clk1 CDC-like kKinase 1

Mapdks mitegen activated protein kinase kKinase kinase kinase 3

Candidates for underrepresented genes:

Edd1 E3 ubiguitin protein ligase, HECT domain containing, 1
Hdac3 histone deacetylase 3

Phf17 PHD finger protein 7

Psmad  proteasome (prosome, macropain) subunit, alpha type 3
Sgstm1  sequestosome 1

Hdac2 histone deacetylase 2

Mbd2 Methy-CpG binding demain protein 2

Table 2.4: Candidate genes for which the shRNAs targeting these genes was significantly over- or underrepresented
after two weeks which were chosen for experimental validation.

their expression in embryonic stem cells. To compensate for the elimination of these two genes we included Hdac?2
into our list since it performed well for our selection criteria and the above analyses suggested its expression in
embryonic stem cells (e.g. it was consistently above the 50th percentile for GDS2668, etc).

For a final list of candidate genes see table 2.4.

2.1.6 Finding candidate genes involved in differential proliferation under stress
compared to non-stress conditions

As detailed above the original aim of the shRNA screening assay was not to detect shRNAs affecting stem cell
proliferation in general, but such over- or underrepresented in cells grown under stress vs. non-stress conditions.
In this approach we searched for shRNAs for which stressed samples exceeded a certain difference to the mean
fold-change of ln(g—;) over all genes while unstressed did not. Or, in simpler words, we searched for shRNAs
without effect under normal, but with detrimental or beneficial effect under stress conditions. This means that
they make cells more susceptible or protect them from stress.

For the analysis of the effects of sShRNAs under stress we started with data processed as described above, i.e.
after removal of probes with low signal intensity at t = 0 and collapsing of probes targeting the same shRNA
sequence.

We determined probes which had a signal above mean + STDEV for at least two stressed samples and below
for at least two controls (called overrepresented) or below mean - STDEV for at least two stressed and above
for at least two controls (called underrepresented). To determine false discovery rates (FDRs) we scrambled the
values obtained for the probes within each sample. Since we only aimed at a rough estimation of the FDR this
scrambling was only done once. FDRs were estimated by comparing the number of genes found after scrambling
to the number found for the unscrambled data.

Since the FDR for this analysis turned out to be too high we also tried different criteria: We varied the required
number of stressed samples that had to be above / below mean +/- STDEV and of controls that at the same
time had to be below / above mean -/+ STDEV. Instead of mean +/- STDEV we tried mean +/- 1.5 STDEV
and mean +/- 2 STDEV as alternative thresholds. The number of shRNAs found over- and underrepresented
with the different criteria and their FDR are shown in table 2.5.

None of the selected thresholds and no criteria allowed us to find shRNAs over- or underrepresented with
stress at a FDR < 0.10, except for the one overrepresented gene at threshold = mean-+1.5 and the ¢3s3 criterion,
which would most likely give a higher FDR if scrambling was done several times. This might indicate that 3
replicates are too few for the experimental design and the number of shRNAs tested here.

We therefore decided to focus on testing candidate genes for association with stem cell proliferation instead of
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overrepresented underrepresented

experiment  scramb. FDR experiment scramb. FDR
control > mean + STDEV, stressed < mean + STDEV control < mean + STDEV, stressed > mean + STDEV
c2s2 237 213 0.90 288 242 0.84
c2s3 24 7 0.29 35 17 0.49
c3s2 108 138 1.28 112 148 1.32
c3s3 11 4 0.36 10 12 1.09
control > mean + 2 STDEV, stressed < mean + 2 STDEV control < mean - 2 STDEV, stressed > mean - 2 STDEV
c2s2 6 5 15 0.27
c2s3 0 0 0/0 0 0 0/0
c3s2 13 6 0.46 24 14 0.58
c3s3 0 0 0/0 0 0 0/0
control > mean + STDEV, stressed < mean +1.5 STDEV control < mean - STDEV, stressed > mean - 1.5 STDEV
c2s2 47 52 1.11 90 45 0.50
c2s3 2 1 0.50 7 5 0.71
c3s2 19 30 1.58 26 34 1.31
c3s3 1 0 0.00 3 3 1.00

control > mean + STDEV, stressed < mean +2 STDEV control < mean - STDEV, stressed > mean - 2 STDEV
c2s2 1.67 28 13 0.46

6
c2s3 0 0 0/0 0 0 0/0
c3s2 1 4 4.00 10 11 1.10
c3s3 0 0 0/0 0 0 0/0

Table 2.5: Number of shRNAs found with In-ratios as indicated for the given number of control and stressed
replicates (e.g. ¢2s3: two control, 3 stressed replicates).

for association with stress response.

2.2 Experimental validation of candidate genes by proliferation assay

2.2.1 Introduction

Even though our primary interest in the shRNA screen was to find genes associated with stress response in
embryonic stem cells the much higher statistical significance for the analysis for only proliferation (while ignoring
the fact that 3 of the samples were stressed) made us decide to concentrate on validation of candidates for
proliferation. The reason that more genes were found significant by the proliferation assay is most likely the
higher number of replicates (n=6) compared to the analysis of stressed samples (n=3).

Previous analyses had been done by G. Jansens by plating cells on 6-well plates and comparing the number of
cells plated to the number of cells after about 3-5 days. The fold change of cells for the 9 shRNA-transfected lines
over this period was compared to that of untransfected cells using 3 replicates for each. These 9 lines included
one expressing Firefly (FFL) shRNA as a negative and Oct4 and Psmal shRNA as positive controls.

No significant changes in the proliferation rate between the lines could be detected.

2.2.2 Materials and Methods

2.2.2.1 Cloning of plasmids

Cloning of shRNA sequences into pHAGE was done with contribution of E. Hesketh of our lab.

Cloning was done to transfer sequences coding for candidate shRNAs (see table 2.4) from pSM2 (Silva et al.
2005) as kindly provided by the Elledge lab into the plasmid pHAGE-Mir2 (H. Pan et al. 2008), which is in the
following called pHAGE for simplicity. The shRNA sequence was cloned behind the Human Elongation Factor
1 alpha promoter (EF1la promoter) in a microRNA environment. The pHAGE plasmid contains turboRFP as
a fluorescent marker, constitutively expressed on the same transcript as the shRNA hairpin and was reported
to be superior in the knock-down effect (Elledge lab, personal communication). The plasmid contains genes for
ampicillin and puromycin resistance for selection in bacteria and eukaryotic cells respectively. By restriction
with Mlul and Hpal pSM2 and pHAGE gave the shRNA sequence and the pHAGE-backbone without shRNA
sequence respectively with compatible restriction sites. We called pHAGE after inserting a shRNA targeting
gene X pHAGE-X.

Transformation

The One Shot TOP10 Chemically Competent E. coli transformation kit (Invitrogen) was used to transform
originally obtained plasmids or ligation products according to the manufacturer “s instructions. Negative controls
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from ligation reactions (see below) were included as negative controls for the transformation.

Bacterial cultures

E.coli containing pSM2-plasmids with the shRNAs of interest were inoculated in LB medium with 50 pg/ml
chloramphenicol. E.coli with (modified) pHAGE plasmids were inoculated in LB medium with 100 pg/ml ampi-
cillin. Bacteria were grown for about 16h at 37°C, shaking at 170 rpm.

Plasmid preparation
Plasmids were extracted using the QIAprep Spin Miniprep Kit (QIAGEN) according to manufacturer ‘s in-
structions.

Measurement of DNA concentrations
DNA concentrations were measured via Nanodrop (Thermo Scientific).

Restrictions

Different pSM2 plasmids, each containing a specific sShRNA, were digested with Hpal and Mlul restriction
endonucleases (New England Biolabs (NEB)) in a double digest to obtain shRNA sequences. To obtain the
plasmid backbone pHAGE was digested with the same combination of enzymes. The backbone is called pHAGE-
Hpal Mlul in the following. For details on restriction setups see table 2.6.
Digestion reactions were heat inactivated at 65°C for 20 min and cooled on ice for 10 min. A 5 ul aliquot of the
pHAGE-Hpal Mlul digest was run on a 1% agarose gels to confirm complete digestion. A 10 ul aliquot of the
pSM2 digest was run on a 1.5% gel.

Dephosphorylation
The pHAGE-Hpal Mlul plasmid backbone was dephosphorylated by addition of 0.5 U CIP (calf intestinal
phosphatase; NEB) per 1 ng DNA and incubation at 37°C for 1.5 h.

DNA preciptiation

To reduce the volume pHAGE-Hpal-Mlul was precipitated by adding 10 pl 3M NaAc and 250 pl EtOH to
100 pl. The mixture was incubated at -20°C for at least 20 min and centrifuged at 4°C and 14000 rpm for 15
min. The supernatant was taken off and the pellet washed by addition of 500 nl EtOH and centrifugation at
4°C and 14000 rpm for 10 min. The supernatant was taken off, the pellet dried and resuspended in 30 ul TE-buffer.

Gel extraction

The dephosphorylated vector backbone was run on 1% agarose gels, the band at the expected size ( around
9kb) was cut out and gel extracted using the QIAquick Gel Extraction Kit (QIAGEN) according to manufac-
turer s instructions.
Clean-up of digestions to obtain shRNAs was not required since E.coli taking up reannealed pSM2 plasmids
would not grow under the ampicillin selection which was performed on bacteria transformed with the pHAGE-
Hpal-Mlul — shRNA ligation (see below).

Ligation

5 pl of the pSM2 digestion reaction and 100 ng of the gel extracted, dephosphorylated pHAGE-Hpal-Mlul
backbone were mixed with 1ul T4-ligase buffer, 1 pl T4-ligase (NEB) and filled up with water to a 10 pl reaction
volume. Ligation was carried out at 16°C over night.
Negative controls for ligation reactions contained water instead of the pSM2 digestion reaction.

Bacteria transformed with the ligation product were grown on LB-agar plates containing 100 pg/ml ampi-
cillin, then in liquid culture as described above. Plasmids were extracted as described above.

Restriction analysis
Restriction analysis on 400 ng aliquots of cloned plasmids was performed with Mlul and Hpal. Digests were

run on 1% agarose gels to confirm successful ligations.

Sequencing
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Restrictions

Preparation of pHAGE-backbone

pHAGE 20 pg 4h @ 37°C
buffer 4 10 pl

Hpal 0.25 uipl

Miul 0.25 uipl

water up to 100 pl

Preparation of sShRNAS

psSM2 1.9 4g 4h @ 37°c
buffer 4 3yl

BSA 1 pg/mil

Sall-HF 0.25 uipl

Motl-HF 0.25 uipl

water up to 30 pl

Restriction analysis

pHAGE-shRNA 400 ng 23h@avrc
buffer 4 2yl

Hpal 0.25 uipl

Miul 0.25 uipl

water up to 20 pl

Table 2.6: Setup of restrictions for cloning of pHAGE-shRNA plasmids

The inserts of cloned plasmids were Sanger sequenced by the University of Sheffield Core Genomics Facility
sequencing service. The primer sequence used was 5-CACGAGATGGCTGTGGCCAAG-3’. The resulting se-
quence was aligned with the expeced sequence as provided by the Elledge group using the Needle-algorithmus
offered by the EBI (http://www.ebi.ac.uk/Tools/emboss/align/index.html) (Needleman & Wunsch 1970). If the
sequences matched over the complete shRNA the sample was accepted as cloned correctly. The shRNAs target-
ing the following genes were successfully cloned: Eddi, Hdac3, Map3k1, Mbd2, Pkn2 and Map4k5. Even though
for all others bacterial colonies were also obtained after transformation none of the plasmids sequenced so far
contained the correct sequence.

2.2.2.2 ES cell culture

Mouse embryonic stem cells of the CCE line at around 50-70 passages were grown in ES-DMEM, which contains
per 500 ml:

e 410 ml KO-DMEM (knock-out Dulbecco’s modified Eagle’s medium)(Gibco)

75 ml HyClone fetal bovine serum (FBS) (ES-qualified) (Thermo Scientific)
e 5 ml GlutaMAX 200 mM (Gibco)

e 5 ml Non-essential amino acids (Gibco)

e 2.5 ml Penicillin/Streptomycin (50 U/ml Pen, 50 ug/ml Strep)

e 1 ml S-mercaptoethanol 50 mM (Gibco)

e 50 ul leukemia inhibitory factor (LIF) 50 mM

Cells were grown in in T25 cell culture flasks or 6-well plates (Greiner) in a volume of 5 or 1 ml ES-DMEM
respectively in a 37°C and 5% COs incubator. Cells were split (see below) about every other days and medium
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changed every day in between. Cells were regularly checked for signs of differentiation or infection under an
inverted light microscope.

Splitting

Cells were split at about 80% confluence: Medium was taken off, cells were washed twice with phosphate
buffered saline (PBS; pH 7.2; Gibco) prewarmed to 37°C, trypsinized with about 100 (per well of a 6-well plate)
to 300 pl (T25 flask) 0.05% trypsin-EDTA (Invitrogen) for about 2 min at 37°C and resuspended in ES-DMEM
by pipetting up and down several times. About 1/8 to 1/6 of this suspension was transferred to a new flask /
well that had been covered with 0.1% gelatin (Millipore) for at least 20 min and which was removed immediately
before. Flasks / wells were filled up to 5 / 1 ml with ES-DMEM and shaken gently.

Freezing

For storage cells were trypsinized as described above, resuspended in about 3 ml ES-DMEM and centrifuged
at 1000 rpm for 5 min. They were resuspended in 1lml pre-cooled freezing medium (50% FBS, 40% ES-DMEM,
10% DMSO) and frozen in pre-cooled cryo-tubes at -80°C.

Thawing

Frozen cells were thawed quickly at 37°C and the cell suspension in 1 ml freezing medium transferred into
about 5 ml KO-DMEM (Gibco). Cells were centrifuged for 5 min at 1000 rpm, resuspended in an appropriate
amount of ES-DMEM and plated on gelatinized cell culture flasks / 6-well plates.

2.2.2.3 Transfection

Transfection of packaging cell line

The 293T packaging (producer) cell line was transfected with vectors encoding virus particles and pHAGE-
shRNA by lipofection with the TransIT-293 Transfection Reagent (Mirus) according to manufacturer s instruc-
tions. We aimed at a cell density of 70% before transfection. We transfected plasmids at ratios of pHAGE-shRNA
:PM2: Rev: Tat: VSVG =10: 1:1: 1: 2, where PM2, Rev, Tat and VSVG stand for a expression plasmids
coding for viral Gag-Pol, Rev, Tat and G-protein of the vesicular stomatitis virus (VSVG).
Medium was changed the next day to DMEM-F12 (Gibco) with 10% FBS, penicillin and streptomycin. One
day later if cells appeared to be red due to the expression of turboRFP and (nearly) confluent apart from
some plaques the supernatant was taken off and used for transfection of ES cells. The supernatant contained
replication-incompetent lentivirus as described by Pan (H. Pan et al. 2008).

Viral transfection of embryonic stem cells

To virally transfect ES cells the supernatant from producer cells was centrifuged at 1000 rpm for 3 min and
the supernatant taken to get rid of remaining 293T cells. 10 mg/ml polybrene was diluted 1:10 with PBS and 9
nl of this were mixed with viral supernatant of one well of a 6-well plate (2 ml).
ES cells were trypsinized and resuspended in ES-DMEM. 100 000 cells (in 2 ml ES-DMEM) according to counting
with Coulter Counter Z1 (Beckman Coulter) were mixed with the viral supernatant in a gelatinized 6-well plate.
The plate was centrifuged at 2000 rpm at 25°C for 50 min. Cells were incubated at 37°C over night. Then the
medium was changed to ES-DMEM the next day and to ES-DMEM with 2 mg/ml puromycin the day after.
Cells were then cultured as described keeping them on ES-DMEM with 2 mg/ml puromycin for about one week
till sufficient fluorescence intensities were reached.
About 3 days after the end of antibiotic selection transfected cells were mixed with untransfected ones as de-
scribed below. The 3 day interval was chosen to on the one hand allow cells to recover from the stress induced
by puromycin selection, but on the other hand to not allow too much loss of fluorescence by either silencing of
the transgene or outgrowth of untransfected cells remaining after selection. The extended culturing time after
transfection is also a means not to detect shRNA function that renders cells in-viable instead of such slowing
their proliferation in the following assay.
Different cell lines were created this way each containing one kind of pHAGE-shRNA vector for all candidate
shRNAs we successfully cloned: Edd1, Hdac3, Map3kl, Mbd2, Pkn2 and Mapjk5 (see “2.2.2.1 Cloning of plas-
mids”). As a negative control pHAGE-FFL was used since shRNA targeting FFL does not have a target in
murine cells. As positive controls we used pHAGE-Oct4 and pHAGE-Psmal which had previously been shown
in our lab to significantly reduce stem cell proliferation.
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2.2.2.4 Proliferation assay by flow cytometry

Since splitting comes inherently with a relatively high error in the number of viable cells transferred to the new
plate we decided to use a different assay which employs untransfected cells as an internal standard and therefore
allows splitting. This method is supposed to be robust to slightly different treatment of samples, for example
that plating cells at different densities may lead to different differentiation rates of stem cells. When mixing
transfected cells with untransfected cells the differentiation which is not due to the effect of the siRNA is ex-
pected to be the same for both and proliferation ratios between them are therefore comparable even if different
replicates were not plated at exactly the same density. Also the ratio of cells dying due to the splitting procedure
is expected to be the same for both.

To use untransfected cells as an internal standard is possible because the plasmid containing the shRNA also
contains a gene for turboRFP which allows to distinguish transfected from untransfected cells. Furthermore
the shRNA and the fluorescent protein are expressed on the same transcript so that silencing of the shRNA
would automatically lead to loss of the fluorescence even though the kinetics of loss of the knock-down effect and
fluorescence might be somewhat different.

Mixing of cells

To compare growth rates of transfected cells to that of an internal standard of untransfected cells we aimed
at mixing them after trypsinization and resuspension at a ratio of 1:1. We aimed at obtaining a mixture of
about 700 000 cells. The concentrations of cells in the resuspensions were determined by counting with a Coulter
Counter Z1 (Beckman Coulter). For this resuspended cells were diluted 1:20 in PBS. The lower threshold for
particle size was set to 0.8 pm. Mixtures were obtained in triplicate.

Flow cytometry

For flow cytometry cells were trypsinized as described and resuspended in about 2 ml of KO-DMEM. To
obtain a single cell suspension cells were pipetted up and down vigorously several times. Flow cytometry was
done on FACSCALIBUR, (Becton, Dickinson (BD)) controlled by the Cell Quest Pro software. In a first run
a side scatter threshold separating presumably intact cells from debris was identified and the same threshold
applied in all further runs. 10000 cells above this threshold were measured per sample. The parameters side
scatter (SSC), forward scatter (FSC) and FL2 fluorescence (i.e. red fluorescence) were recorded. Before and after
each run the instrument was flushed with FACS rinse (BD) and water.
Flow cytometry data were analysed with WinMDI version 2.9. On a dot plot of SSC vs. FSC the cell population
containing presumed living, single cells and excluding dead cells and debris was gated. The same gate was applied
for different samples measured on the same day, but the best gate was selected at every day of measurement so
that they might differ slightly between time points. For the gated cells on a histogram displaying cell counts
vs. fluorescence intensity levels positive and negative populations were separated at the minimum between both
peaks. The intensity value for the border between the peaks was chosen once and kept for all further analyses
and always coincided well with the minimum between the peaks. The percentage of positive to negative cells was
given back by the program.

2.2.2.5 Proliferation assay by fluorescence microscopy

Despite the lack of a proper negative control (see “2.2.3.1 Flow cytometry results”) flow cytometry showed a
much stronger decrease of fluorescent cells in the cell line transfected with pHAGE-Edd1 than in all other cell
lines. Therefore the fluorescence level of cells transfected with pHAGE-Edd1l and pHAGE-FFL was observed
over two weeks by S. Silva of our group using fluorescence microscopy.

2.2.3 Results
2.2.3.1 Flow cytometry results

Results from one-color flow cytometry obtained from mixes of cell lines with pHAGE-shRNA plasmids and
untransfected cells were inconclusive. Cells with shRNAs targeting Oct4 and Psmal, which were expected to
have a strongly negative effect on stem cell proliferation did not show any significant difference to other lines in
many occasions. This could possibly be attributed to the fact that high transformation levels were never reached
for plasmids coding for these sShRNAs at the time of mixing. This is probably due to the averse effects of these
shRNAs on the cells. On the other hand we noted changes of the fluorescence ratio of lines transfected with
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Figure 2.4: Example illustrating the trend of increased proliferation rate in the pHAGE-FFL line. The ratio
of red (transfected) to non-red (untransfected) cells is depicted on the y-axis. Different colors indicate different
replicates. In another experiment the same line showed a trend towards a decreased proliferation rate.

pHAGE-FFL for which no effect was expected. These changes appeared to be not random fluctuations, but a
decrease of fluorescence in one, an increase over time (p-value for null hypothesis that no change: 0.05) in another
experiment (see fig. 2.4). A decrease of fluorescence could be explained by silencing of the turboRFP gene and
by general negative effects of transformation and an active RNAi machinery on proliferation rate. However we
did not find a reasonable explanation why proliferation should be increased in the transfected cells.

One concern about this approach was that untransfected cells could not be distinguished from transfected cells
that silenced the turboRFP transgene. Furthermore comparing fluorescent to non-fluorescent cells is sensitive to
possible day-to-day fluctuations in the sensitivity of the flow cytometer.

Therefore replacing the turboRFP gene in pHAGE-FFL by GFP and employing cells transfected with this vector
as new internal standard might solve this problem and allow comparing fluorescent with fluorescent cells. Mixing
the candidate lines with a green fluorescent line instead of a untransfected line has the advantage, that the same
effect of the transformation process and an active RNAi machinery is expected in both lines in the mixture.
Further if day-to-day fluctuations in the sensitivity of the flow cytometer are laser (color) independent these
would affect both cell lines in the same way. Therefore the ratio between the number red and green fluorescent
cells should stay constant in cases where the shRNAs in the corresponding vectors have no or both the same
effect on proliferation.

This kind of experiments were not finished at the time of this writing.

2.2.3.2 Fluorescence microscopy results

Despite the lack of a proper negative control flow cytometry showed a much stronger decrease of fluorescent cells
in the cell line transfected with pHAGE-Edd1 than in all other cell lines (see fig. 2.5). This finding could be
verified by S. Silva of our group by following the fluorescence loss of the pHAGE-Edd1 line compared to the
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Figure 2.5: Fluorescence ratio (log2-transformed) of Edd1 (blue) and FFL (black) cell lines over time; different
measurement of the FFL line than shown in fig. 2.4; different symbols represent different replicates

pHAGE-FFL line using fluorescence microscopy (unpulished).

2.3 Summary

From a shRNA library screen we could identify 23 / 60 shRNA genes for which ln(g—;) was above mean + STDEV
/ below mean - STDEV over all shRNAs for 5 of 6 replicates, where E, is the amount of shRNA coding DNA
in the population at the beginning and FE, at the end of two weeks of growth according to microarray analysis.
This corresponds to FDRs < 0.05. By their association to (enriched) functional categories, the number of probes
by which they were found and their degree in the network of all genes targeted by these 83 shRNA we selected
13 candidates for which to validate their role in stem cell proliferation.

Unfortunately further work is still necessary in establishing a flow cytometry based assay in which the fluorescent
to non-fluorescent cell ratio of pHAGE-FFL transfected and untransfected cells stays at a stable level. One
possible way to improve the control may be the use of cells transfected with pHAGE-GFP-FFL as internal
standard instead of untransfected cells.

The detection of significantly higher loss of fluorescence in pHAGE-Edd1 than in pHAGE-FFL transfected cells
simply by fluorescence microscopy suggests success in selecting at least one or some promising candidates.
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Chapter 3

Meta-analysis of caloric restriction
datasets

3.1 Introduction

3.1.1 The potential of caloric restriction to delay aging

Caloric restriction (CR; also called calorie restriction or dietary restriction) is defined as the reduction of caloric
intake below ad libitum level without malnutrition (ad libitum: an organism eats as much as it wants). It has
been described to extend (mean and median) life-span in a wide range of organisms from yeast (Lin et al. 2002)
to C. elegans (Klass 1977) and D.melanogaster (Loeb, & Northrop 1917) to rodents (McCay et al. 1989) and
some dog breeds (Kealy et al. 2002). The length by which life-span can be extended by CR differs between
organisms: 3-fold extension was found in yeast, 2-3 fold in worms, 2-fold in flies and still 30-60% in rodents.
In general life-span extension is more pronounced in females (Fontana et al. 2010). Studies on primates are
still ongoing, but intermediary results from a study on rhesus monkeys indicated that they lived on average 32
years on CR while controls lived 25 years (Bodkin et al. 2003). The degree of food restriction in CR studies of
mamimals is normally around 10-50% below ad libitum level (Fontana et al. 2010).

CR is the only known non-genetic intervention that robustly extends life-span in mammals (Bishop & Guarente
2007a). In addition to life-span extension it has been shown to delay signs of aging and the onset and progression
of age-related diseases like cardiovascular disease and stroke (Mattson & Wan 2005), cancer (Klebanov 2007),
neurodegenerative diseases (Maswood et al. 2004) and diabetes (Anson et al. 2003) as well as to reduce sarcopenia
and grey matter atrophy of the brain (Anderson et al. 2009) (Colman et al. 2009). One study reported that
around 30% of rats on CR did not show any obvious organ pathology at the time of death compared to 6% of
mice fed ad libitum (Shimokawa et al. 1993). !

Notably it has been shown that caloric restriction exerts its beneficial effects even in older animals (Spindler
2005) (Rae 2004). Effects on life-span in Drosophila seem to occur immediately after the switch to the low-
calorie dietary regime (Mair & Dillin 2008) (Giannakou et al. 2008).

Despite the effect of CR in many species it does not appear to extend the lifespan of the housefly (Cooper et
al. 2004). It was also reported that no aging delaying effect of CR was found in some mouse strains (Forster
et al. 2003). In particular, CR does not appear to extend average lifespan in wild-derived mice, even though it
protects against cancer to a certain degree as observed in other mouse strains (Harper et al. 2006).

A possible explanation for the life extending effect of CR in terms of evolution is that it may be preferable
for animals under conditions of limited food to delay growth and reproduction and enter a stage of low energy
requirement (like the Dauer stage in C.elegans) or to shift energy allocation towards body maintenance. As
detailed below there is growing evidence for conserved pathways working as anti-aging systems. Not surprisingly
reduced fertility was observed in animals under CR (Fontana et al. 2010).

Other frequently observed side effect of CR are decreased wound healing (Reed et al. 1996) and immune functions
rendering CR animals more susceptible to infections, although the age-dependent decay of some immune functions
appears to be slowed down by CR (Kristan 2008).

ISide note: Curiously fasting was shown to reduce the adverse effects of chemotherapy, seemingly by conferring increased stress
resistance to normal cells while not protecting cancer cells (Raffaghello et al. 2008) (Safdie et al. 2009)
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Alternative dietary regiments except reducing overall food intake without malnutrition have been tested in their
potential to delay aging and extend life-span. One of these is protein restriction, where a certain amount of
the protein content of the normal diet is replaced with carbohydrates and fat, i.e. not altering the calorie level
(Lopez-Torres & Barja 2008). Different studies on protein restriction obtained different results as to its ability to
extend life-span (Goodrick 1978) (Leto et al. 1976) (Miller & Payne 1968) (Min & Tatar 2006) (Yu et al. 1985).
The majority of these studies indicated the existence of a life-span extending effect however another study even
showed an increase in mortality under this diet (Ross & Bras 1973). Restrictions in only individual amino-acids
like tryptophan (Segall & Timiras 1976) or methionine (Orentreich et al. 1993) are also tested.

Some studies in Drosophila and C. elegans demonstrated that the smell of food alone can reduce the effect of
CR (Smith et al. 2008) (Libert et al. 2007).

Another dietary setup involving the reduction of calories is intermittent fasting. In contrast to classical CR where
the amount of calories is continuously low here periods of low caloric diet alter with periods of ad libitum intake.
In studies on intermittent fasting the degree of restriction is often similar to that in CR and time-spans of fasting
and ad libitum feeding are similar, normally in the range of days to a few weeks. Even though studies reported
reduced tumor formation in mouse tumor-models (Cleary et al. 2007) (Bonorden et al. 2009) and health benefits
in humans (Halberg et al. 2005) (Heilbronn et al. 2005) effects on life-span are still unclear. These alternative
dietary regiments will however not be the subject of this study.

A number of compounds are currently studied in the hope to find CR-mimetics, drugs that invoke similar effects
as CR. Among these are 2-deoxy-d-glucose (Ingram et al. 2006), rapamycin (Harrison et al. 2009), resveratrol
(Howitz et al. 2003) (Wood et al. 2004) and the diabetes drug metformin (Anisimov et al. 2003).

3.1.1.1 Physiological changes induced by CR

CR induces alterations in the physiology of many organ systems in mammals however it is not clear which of these
changes are causal for the effect of CR (Koubova & Guarente 2003). As expected one important physiological
change associated with CR is high insulin-sensitivity, which is particularly noteworthy since aging is generally
accompanied by elevated insulin-resistance (Anderson & Weindruch 2010).

The reduction of body weight under CR is usually proportional to the level of CR (i.e. 30% food restriction leads
to ~30% weight loss). The tissue displaying most loss of weight is normally white adipose tissue (Anderson &
Weindruch 2010). This is accompanied by size-reduction of adipocytes in mice. Due to the negative correlation
of fat mass to adiponectin levels the level of this hormone rises during CR in the adipose tissue and so does its
serum concentration (Zhu et al. 2004), especially of the high molecular weight form (Shinmura et al. 2007). This
hormonal change comes along with increased fatty acid oxidation in fat tissue and reduced lipid accumulation in
other tissues (Zhu et al. 2007). Further positive effects of adiponectin, in particular in mouse models for diabetes
are known, like increased insulin-sensitivity and reduced hyperglycemia, hypertriglyceridemia and adipose tissue
macrophage levels (Wang et al. 2006).

Further hormonal changes include the reduction of triiodothyronine, testosterone and insulin. Reductions of
blood cholesterol, C-reactive protein, blood pressure and intima-media thickness of the carotid arteries, which
are risk factors for cardiovascular disease were likewise observed (Fontana & Klein 2007) (Fontana et al. 2004).
An overview of tissue-specific changes with CR is given in table 3.1.

A study on Rhesus monkey muscle tissue using immunogold electron microscopy and biochemical assays

reported significantly reduced oxidative damage (reduced 4-hydroxy-2-nonenal-, nitrotyrosine- and carbonyl-
modified proteins) in the CR group (Zainal et al. 2000). A reduction in inflammation (Anderson et al. 2009)
and core body temperature (Mattison et al. 2003) was observed as well.
Another physiological effect of CR observed in rats is the reduced accumulation of advanced glycation endproducts
(AGEs) (Teillet et al. 2000). AGEs are created by the combination of glucose and proteins and accumulating
with age (Bunn et al. 1978). Notably another study found that a diet enriched in preformed AGEs abolished
the beneficial effects of CR (Cai et al. 2008).

3.1.1.2 The genetic basis of CR

Little is understood by now about the changes on molecular levels going on during CR. However some findings
in the last years are starting to shed light on its mechanisms.

A way to gain knowledge about which processes occurring during aging on the molecular level are prevented or
counteracted by CR is to test which gene expression changes with aging in ad libitum (AL) animals are not found
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Increase in secreted adiponectin

Tissue Effects of CR References
Liver Increase m gluconeu-genesm and glycogenolysis Weindruch, 1988
Decrease in glycolysis
Increase in mitochondrial biogenesis and respiration Koubova, 2003;
Muscle Increase in B-oxidation of fatty acids Misoli, 2003;
Increase in protein tumover Weindruch, 1988
Decrease in storage of triglycerides . .
Fat Decrease in secreted leptin Weindruch, 19885

Martin, 2007

Pancreatic B-cells

Decrease in secreted insulin

Weindruch, 1988

Decrease in pituitary secretion of growth hormone,

Weindruch, 1988;

Brain thyroid hqnnone, gunadotrppms _ Mobbs, 2001
Increase in adrenal secretion of corticoids
_ Increase in insulin sensitivity and decrease in blood Weindruch, 1988;
VWhole organism glucose

Misoli, 2005

Increase in metabolism

Table 3.1: Effects of CR on individual tissues and the whole mammalian organism. From Bishop, 2007.

under CR.

It is not yet clear if CR acts by reversing age associated transcriptional changes, since some studies reported
global or partial prevention of age-related changes by CR, while others did not find a significant such effect (Lee
et al. 1999) (Kayo et al. 2001) (Dhahbi et al. 2006) (Park & Prolla 2005). It seems however save to assume that
CR at least counteracts changes in some aging related transcriptional modules (Swindell 2009). In particular
alterations in the expression of components of the electron transport chain, which in an across-species study was
found to be the only age-related alteration occurring in flies, worms, mice and humans (Zahn et al. 2007), are
opposed by CR (Anderson & Weindruch 2007). It is generally important to note that (mitochondrial) energy
metabolism is dysregulated with age and that energy metabolism pathways are affected by the alterations due
to CR, especially in heart, skeletal muscle and white adipose tissue in mammals.

It was observed that respiratory capacity per isolated mitochondrion is lower in mitochondria of older mice (18
vs. 3 months old) and -probably as a compensatory mechanism- the number of mitochondria is increased in older
animals (observed in skeletal muscle) (Figueiredo et al. 2009). Most likely this is closely linked with elevated
levels of oxidative damage that may be a cause of the aging phenotype.

An alteration of metabolic state is invoked by CR which involves a shift from fat anabolism to catabolism
and changes in the production of reactive oxygen species (ROS). Notably uncoupling protein 2 UCP3 which is
presumably important for lowering ROS levels is overexpressed in CR (Asami et al. 2008).

A common regulatory system for the expression of uncoupling proteins, elements of fatty acid metabolism and
transport (e.g. by the transporter CPT1) may be provided by AMPK-signalling ((Anderson & Weindruch 2010);
see “3.1.1.2” and “3.1.1.2”).

Another common way of detecting genes related to the life-span prolonging effect of CR is by searching for genes
that alter (increase or decrease) this effect when mutated, deleted, knocked-down or overexpressed.

In this way many proteins that were already known to extend life-span when altered in their expression level
or function were linked to CR. In particular decreased insulin / insulin-like signalling, decreased TOR and /
or increased AMPK and increased activity of sirtuins were among the genetic alterations to extend life-span
(Bishop & Guarente 2007a). Evidence of relation of these and some other (mainly nutrient sensing) pathways to
CR in different model organisms will be discussed, starting with yeast and then examining in how far homologous
mechanisms in higher animals exist.

3.1.1.2.1 Genes involved in CR mediated life-span extension in yeast

Life-span in yeast can be measured in two different ways: replicative life-span is the number of daughter cells
a mother cell can produce before senescing and chronological life-span is the duration of viability of stationary
phase cells. It has been suggested that replicative lifespan is a better model of ageing for mitotically active animal

2uncoupling proteins are proteins that lower the proton gradient over the inner mitochondrial membrane
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cells and that chronological lifespan is a better model for postmitotic animal cells (Bishop & Guarente 2007a).
Both moderate (0.5% glucose medium) and severe CR (0.05% glucose) increase replicative life-span in yeast.

In yeast moderate CR (0.5% glucose instead of 2%) has been shown to increase replicative life-span through a
pathway dependent on shifting metabolism from anaerobe to aerobic (Lin et al. 2002). Contributing evidence to
this finding is the fact that deletion of cytochrome C1 (CYT1) or LAT1 (a pyruvate dehydrogenase subunit) which
in both cases suppresses respiration abolishes the life-span increase with moderate CR. In addition overexpression
of LAT1 increases yeast life-span under 2%, but not under 0.5% glucose conditions. The anaerobe to aerobic
shift increases the NADT /NADH ratio which has been shown to be necessary and sufficient for an increase
in life-span. Interestingly high levels of NAD™ activate the (histone) deacetylase SIR2 and its homologues,
which are known to drive life-span extension (Lin et al. 2004). If however the triple deletion of SIR2 and its
homologues HST1 and HSTZ2 is sufficient to suppresses longevity caused by moderate CR is still a matter of
debate (Longo & Kennedy 2006). In yeast recombination between rDNA repeats can lead to excision of self-
replicating extrachromosomal rDNA circles, which accumulate in the aging mother-cell, a process that is toxic
for the cells (Sinclair & Guarente 1997). The ability of Sir2 to suppress recombination (by leading to higher
density chromatin packing) and therefore limiting this process is one important mechanism by which it extends
life-span (Lin et al. 2000). Even though this process was not found to occur in other organisms Sir2 homologues
are still linked to longevity in higher organisms (Guarente 2005).

The mechanism of severe (0.05% glucose) CR seems to be distinct from that of moderate CR and has been
reported to neither involve the electron transport chain nor SIR2 or its homologues (Tsuchiya et al. 2006).
Unlike for moderate CR SIR2 deletion does not seem to abolish the effects of severe CR (Lamming et al. 2005),
but on the contrary to even enhance them (Kaeberlein et al. 2004) and severe CR does not invoke such a strong
increase in the NAD' /NADH ratio (Easlon et al. 2007).

Instead the Akt homologue SCHY9 and TOR1 have been proposed to be involved in the process, since their
deletion leads to life-span extension that cannot further be improved by severe CR (Kaeberlein et al. 2005).
Both proteins act in the S. cervisiae amino acid sensing pathway and transcription factor Gisl was reported
to be essential for the life-span extension by reduced Torl-signalling (Wei et al. 2009) (Fabrizio et al. 2001).
In general mutations activating the severe CR response also prolong chronological life-span in stationary yeast
cells with no access to nutrients, which is not true for genes extending replicative life-span under moderate CR,
(Powers et al. 2006).

It is interesting that the increase of life-span both under moderate and severe CR seems to require the pyruvate
dehydrogenase subunit Latl especially since a functional electron transport chain is not required in severe CR
(Easlon et al. 2007).

It is not yet clear if indeed two different pathways are underlying moderate and severe CR in yeast. If so, the
fact that worms and mice under CR also show increased respiration (Nisoli et al. 2005) might indicate that the
mechanism of moderate CR in yeast more closely resembles that in higher organisms, whereas severe CR might
rather resemble survival mechanisms triggered by famine (Bishop & Guarente 2007a).

Another nutrient sensing pathway linked to life-span regulation in several studies is the Ras-AC-PKA pathway
(Fabrizio et al. 2001) (Medvedik et al. 2007). This pathway is largely homologous to the insulin / insulin-like
growth factor signalling pathway in higher organisms (Fontana et al. 2010).

Downstream effects of reduced activity of the Torl/Sch9 and the Ras-AC-PKA are the activation of oxidative
stress protective enzymes like Mn-SOD (superoxide dismutase) via transcription factors as Gisl (Wei et al.
2008). This would suggest an easy explanation for the anti-aging effect of reduced signalling via these pathways,
especially since it was found that superoxide levels rise during yeast aging. However overexpression of both
superoxide dismutases or catalase only lead to a minor increase in life-span (Fabrizio et al. 2001) (Fabrizio et al.
2005), so that their increased activity is most likely only one effect of CR.

Another downstream effect of reduced signalling via both pathways mentioned is the expression of PNC1, which
by increasing NAD' /NADH and reducing nicotinamide in turn activates Sir2 (Medvedik et al. 2007) (Kaeberlein
et al. 2007).

3.1.1.2.2 Genes involved in CR mediated life-span extension in metazoa

Probably the most important genes associated with life-span in C.elegans are genes of the insulin signalling
pathway, especially the insulin receptor homologue daf-2 and FOXO homologue daf-16 acting downstream in
this pathway. Mutants in daf-2 are well-established to be long-lived, however this longevity is abolished in doube-
mutants with daf-16 (Kenyon et al. 1993). The fact that CR was shown to increase life-span in daf-16 mutants
to a similar extent than in wild type worms suggests that CR does not act via the insulin signalling pathway
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in worms (Houthoofd et al. 2003) (Lakowski & Hekimi 1998). However a more recent study assaying different
CR-regiments concluded that daf-16 is necessary in some and not in others (Greer & Brunet 2009). Interestingly
it is necessary for such regiments in which also AMPK is required. However deletion of the homologous protein
in Drosophila, dFOXO, shortens life-span and these flies continue to respond to CR (Giannakou et al. 2008) (Min
et al. 2008). Another forkhead family transcription factor, PHA-4, has been found to be required for life-span
extension by CR in C. elegans (Panowski et al. 2007). This gene is an orthologue of the mammalian FOXA
genes that are involved in the production of glucagon and in gluconeogenesis during fasting.

Insulin / insulin-like growth factor signalling was also found to control life-span in flies and mammals (Kenyon
2005). The signalling factors in Drosophila are called Drosophila insulin like peptides (dilps) and the gene
expression level of one of the seven known dilps, dilp5, can be modulated by diet (Min et al. 2008). The chico
gene is a homologue to insulin receptor substrate genes and the chicol mutation both increases life-span and
reduces insulin signalling (Clancy et al. 2001). CR was found to gradually increase life-span with increasing
levels of food restriction up to a certain point where it starts to decrease probably due to starvation. Observing
this dose-response curve in chicol mutants showed that it was shifted towards higher nutrient levels compared
to the wild type (Clancy et al. 2002). Therefore an overlap between the mechanisms of CR, and reduced insulin
signalling was suggested, even though a CR response that is normal apart for the mentioned shift in a mutant
background would argue against the role of the mutated gene in CR (Bishop & Guarente 2007a).

Experimental results in mice of testing the link between CR and the growth hormone (GH) — insulin-like growth
factor 1 (IGF1) axis, disruption of which leads to increased life-span (Flurkey et al. 2001), are confusing. On the
one hand mice with a reduced production of GH due to a mutation in Prop! show an increased life-span (Brown-
Borg et al. 1996) that could be further prolonged by CR (Bartke et al. 2001), on the other hand longevity
due to disruption of the GH receptor (Coschigano et al. 2000) was not further extended by CR (Bonkowski
et al. 2006). The first finding argues against, the second for an overlap between genes involved in the CR
response and the GH-IGF1 axis. A decrease in GH was linked to elevated levels of antioxidant enzymes and
stress response (Brown-Borg 2007). It was also found that IGF1 levels in the blood were lowered by CR in mice
(18% restriction, 24 weeks) (Huffman et al. 2008), whereas no changes were detected in humans (20%, 1 year)
unless dietary protein levels were strongly reduced (Fontana et al. 2008).

Heterozygous mutations in IGF1-receptor (Suh et al. 2008) and polymorphisms related to reduced plasma IGF1
levels (Bonafé et al. 2003) are overrepresented among long-lived humans. Also human genetic variants of daf-16
homologous FOXO genes were also associated with life-span (Kuningas et al. 2007).

Another regulatory system most likely involved in CR-dependent life-span extension is built around AMPK. A
very simplified view of this network is shown in fig. 3.1.

AMPK, a important protein for sensing energy levels in worms and a homologue in yeast have been shown to
be implicated in longevity (Apfeld et al. 2004) (Ashrafi et al. 2000). Deletion of a AMPK subunit gene (aak-2)
in worms did not alter the effect of CR on life-span (Curtis et al. 2006), which however may be attributed to
redundancy of this protein.

AMPK directly activates PGC-1a by phosphorylation and also through its indirect positive influence on the
NAD*/NADH ratio which in turn enhances the activity of SIRT1, the enzyme that deacetylates and thereby
activates PGC-1la (Canto et al. 2009). PGC-la , a master-regulator of nuclear encoded mitochondrial genes,
itself was found to be upregulated with CR in skeletal muscle (Civitarese et al. 2007). Overexpression of PGC-1a
also promotes signalling through HIF-1a (O’Hagan et al. 2009) which is downregulated in adipose tissue of mice
upon CR (Yoshikazu Higami et al. 2006) and a C.elegans homologue of which is associated with CR and longevity
(Chen et al. 2009).

AMPK can also activate eNOS in response to adiponectin (Kondo et al. 2009) which is implicated in mitochondrial
biogenesis and SIRT1 expression in CR. Consistently eNOS knock-out mice were found not to undergo the normal
metabolic shift associated with CR (Nisoli et al. 2005) and the life extending effect of CR is abolished in mice
in which eNOS is inhibited (which also prevents activation of SIRT1). SIRT1 in turn is an activator of PGC-1a,
which is consistent with the reported upregulation of PGC-1a coinciding with the upregulation of eNOS upon
CR in many tissues (Nisoli et al. 2005).

NAMPT is a protein involved in the depletion of nicotinamide and therefore similar to yeast PNC1. As PNC1
it is expected to favour activation of SIRT1 by changing the NAD"/NADH ratio and decreasing nicotinamide
levels.

Homologues of yeast SIRZ also play roles in CR in metazoa. Sir2 in Drosophila is required for longevity caused
by CR (Rogina & Helfand 2004) and Sirt! in mammals for the increase in spontaneous movement observed in
animals under CR, suggesting a neuronal implication (Chen et al. 2005). Knock-out mice of Sirtl are short lived
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Figure 3.1: Simplistic model of the AMPK signalling pathway with a central role in CR; adapted from Anderson
& Weindruch, 2010; Ac: acetyl group; numbers indicate references for the interaction: 1: Civitarese, et al. 2006,
2: Canto, et al. 2009, 3: Andrews, et al. 2008, 4: Kondo, et al. 2009, 5: Nisoli, et al. 2005, 6: Gwinn, et al.
2008, 7: Anderson & Weindruch, 2010
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and do not respond to CR (Boily et al. 2008), are however of limited informative value due to the vast number
of pathologies caused by this knock-out. The levels of SIRT1 are increased in mouse fat tissue during CR (Cohen
et al. 2004), but there is disagreement on the impact of CR on SIRT1 in liver and skeletal muscle (Chen et al.
2008) (Cohen et al. 2004) (Shinmura et al. 2008). SIRT1 activation in mice on a diet rich in fat supports lipid
oxidation and the expression of genes of the electron transport chain (Feige et al. 2008).

Even though the implication of sir2-1, the only of four SIR2 homologues in worms tested for its role in CR,
remains controversial (Lamming et al. 2005) sir2 homologues were reported as life-span regulators also in
invertebrates (Longo & Kennedy 2006)(Tissenbaum & Guarente 2001).

AMPK, a sensor of cellular energy levels, inhibits mTOR, (Complex I) via TSC2 or raptor (Gwinn et al. 2008).
It should however be emphasized that mTOR also receives inputs from the insulin / Igf-pathway. As in yeast
reduced TOR-signalling leads to an extension in life-span of worms and flies that cannot be further enhanced by
CR so that an overlap in the mechanisms is likely (Vellai et al. 2003). A hint towards the mechanism of life-span
extension by reduction in TOR-signalling may be that it decreases ribosomal biogenesis. This is interesting, since
lower expression of certain ribosomal genes is associated with longevity in yeast and worms (M. Kaeberlein et al.
2005). Disruption of the mTOR pathway in mice leads to longevity associated with reduced insulin resistance
and age-related pathologies (Bartke 2005) (Harrison et al. 2009) (Selman et al. 2009). However since in mice
the increased expression of genes of the electron transport chain, as observed in skeletal muscle in CR, appears
unlikely when mTOR activity is reduced Anderson proposed different tissue-specific effects of CR on mTOR, with
decreased signalling in liver, but not some other tissues. Downstream mTOR positively regulates the expression
of PGC-1a (Anderson & Weindruch 2010) and importantly it inhibits autophagy. Autophagy is the process
of digestion of cellular components by so called phago-lysosomes and was reported to be necessary for life-span
extension (Hansen et al. 2008). Other targets indirectly transcriptonally regulated by mTOR-signalling in mouse
are heat shock proteins, proteins involved in ER-stress and apoptosis and in xenobiotics metabolism (Amador-
Noguez et al. 2007). The detoxification process of xenobiotics became a target of CR related research after it was
discovered that long-lived fly, worm and mouse mutants in the insulin / IGF-signalling showed altered expression
of genes of this system and proved largely resistant to xenobiotics. Furthermore upregulation of transcription
factors involved in xenobiotics metabolism invoked longevity of worms and flies (Piper et al. 2008) (Tullet et al.
2008) (McElwee et al. 2007).

A further important change with age that is counteracted by CR is the increased activity of the tumor-suppressor
p53 (Edwards et al. 2007). Even though it is not clear how this relates to CR and aging, a link between p53
and mitochondrial metabolism is provided by the fact that deficiency of p53 in mice leads to a reduction in
mitochondrial content, a switch from respiration to anaerobic metabolism and increased ROS levels (Matoba et
al. 2006) (Saleem et al. 2009).

3.1.1.2.3 The role of neurons in CR

Some curious recent findings have linked the life-span extending CR response to neurons in invertebrates: In
Drosophila and Caenorhabditis elegans it was observed that the odour of food is sufficient to reduce the longevity
resulting form CR and in Drosophila the mutation of OR83B, a neuronal chemoreceptor, was reported to in-
crease life-span and render CR less efficient in this mutant background (Libert et al. 2007) (Smith et al. 2008).
Further it was shown that neuron-specific overexpression of human UCP2 in flies leads to longevity (Fridell et al.
2005). Even though the link between UCP2 and CR is largely unknown it is interesting that in humans UCP2 is
involved in nutrient sensing and that a related fly protein, UCP35, is necessary in neurons to adapt to low nutrient
levels (Sanchez-Blanco et al. 2006). Deletion of 3 of 7 Drosophila insulin like peptides in neuroendocrine brain
cells resulted in longevity (Gronke et al. 2010). In C.elegans the transcription factor gene skn-1 was shown to
play a role in ASI neurons in CR-related increased respiration and life-span extension (N. A. Bishop & Leonard
Guarente 2007b). These two neurons are important in regulating fat metabolism in adult worms in response to
nutrient levels and energy status and CR-related longevity is not invoked in worms in which the ASI neurons are
ablated (Bargmann & Horvitz 1991b) (Bargmann & Horvitz 1991a).
It is intriguing to assume that CR related longevity in metazoans may be caused in a similar way as in yeast with
a central role for energy sensing neurons. Direct sensing of extracellular glucose concentrations e.g. by G-protein
coupled receptors in yeast would be replaced by the input of sensory neurons in higher organisms. Intracellular
energy levels may be detected in a similar way involving AKT- and TOR-homologues, supplemented by systemic
signals from other cells in metazoans. The output would differ in the way that yeast cells would only respond
to nutrient levels in a cell-intrinsic way, while neurons in higher organisms have to send appropriate signals to
other cells (Bishop & Guarente 2007a).
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The brain region corresponding to the energy sensing neurons in invertebrates is the hypothalamus in mammals
which senses and responds to energy availability by nervous and hormonal signals. Indeed many homologues of
the genes described as involved in longevity in lower organisms have implications in energy sensing in the hy-
pothalamus (e.g. TOR, AMPK, AKT) (Bishop & Guarente 2007a). Note that growth hormone (GH) mentioned
above is a signal triggered by the hypothalamus via the pituitary gland.

Even though there is no direct evidence of the role of the hypothalamus in CR one study has provided a link be-
tween the hypothalamus and life-span: Uncoupling protein UCP2 was overexpressed specifically in the so called
orexigenic hypocretin (appetite-stimulating) neurons of the hypothalamus of mice. This did not only lead to a
core body-temperature reduction and mild hyperphagia, but also to an increase in mean and maximum life-span
(12% in males and 20% in females) (Conti et al. 2006).

3.1.1.2.4 Rationale for an unbiased cross-tissue analysis

Even though microarray data comparing samples from individuals of different age indicated that aging related
gene expression changes are mainly tissue-specific it has also been shown that the rate of aging of all tissues
tested seems to be coordinated, which agrees with the idea of a set of common underlying changes in all tissues
(Zahn et al. 2007). In this case besides all the tissue-specific changes a common aging delaying effect of CR on
all tissues would also be expected.
As detailed the knowledge about important players and pathways as effectors of CR is growing. However to
understand the underlying mechanisms many more components of the complete picture will have to be detected.
Especially an explanation of which mechanisms downstream of nutrient sensing pathways lead to life-span extend-
ing processes is largely unknown. Since much research was focused so far on candidates known to be involved
in nutrient sensing it seems to be advisable to also include unbiased high-throughput studies. Studies so far
conducted and deposited to this end used microarrays.

3.1.2 Meta-analysis of microarray data

Meta-analysis is here defined as the quantitative review and synthesis of the results of related but independent
studies (Normand, 1999). Meta-analyses can be used to assess the variability between studies or more commonly
—as here is the case- to facilitate finding genes differentially expressed between two conditions by integrating
different studies.

Microarray results are well-known to be associated with a relatively low signal-to-noise ratio and finding significant
results is made difficult by the large number of variables compared to the relatively low number of replicates.
Since microarrays became a more and more common tool over the last years there are results for several microarray
analyses available for many biological questions, even though the experimental setup of the individual studies may
be more or less different. These differences can however not only be seen as a problem in comparing the analyses,
but also as a chance since genes found differentially expressed under similar, but not identical conditions can
be considered more reliable in their association with the tested variable, since they are affected under different
circumstances. Therefore the “generalizeability” (Ramasamy et al. 2008) of a candidate gene is shown when
it is found in more than one tissue, organism, strain, diet composition, for different durations of CR and ages
of animals, but also microarray platforms and even different ways of handling samples in different laboratories.
Meta-analyses are therefore likely to eliminate false-positives of individual studies. To determine genes showing
that kind of robustness is the aim of our meta-analysis. It is a matter of debate if mechanistic candidate genes
for CR are expected to be generalizable across tissues, but as detailed above we argue there should be at least
some.

Besides that meta-analyses eliminate the idiosyncrasies of the different analyses, they are also a valuable tool to
increase statistical power and find genes with small, but consistent differential expression that are not found in
the individual analyses.

3.1.2.1 Methods for meta-analysis of microarray experiments

Several meta-analysis techniques have been applied to microarray data (Rhodes et al. 2002) (Rhodes et al. 2004)
(Choi et al. 2003) (Choi et al. 2004) (Lottaz et al. 2006) (Smid et al. 2003) (Stuart et al. 2003) (Parmigiani et
al. 2004) (Warnat et al. 2005) (Yang et al. 2005) (Aggarwal et al. 2006) (DeConde et al. 2006) (Wang et al.
2006) (Zintzaras & Ioannidis 2008).

According to Ramasay (Ramasamy et al. 2008) the statistical approaches can be classified by the single-study
statistics they use for combining the studies: Ranks, p-values, effect sizes or counts, i.e. the number of studies
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in which a significance threshold is passed.

Three typical methods out of the first three categories were reviewed by Hong and Breitling (F. Hong & Breitling
2008): A t-based approach, a non-parametric rank product method and Fisher “s inverse chi-square method using
P-values from either the t-based or rank-product method. These and other approaches are briefly introduced in
the next sections:

In the following T stands for treatment and C for control condition and i = 1,...,I numbers individual datasets.
n;T and n;C are the number of replicates for the i-th dataset of the treatment and control condition. T;; /
C;; represents the (logged) gene expression of a given gene for study i and replicate j. The terms “dataset” and
“study” are used interchangeably in this sub-chapter.

3.1.2.1.1 Combining effect-sizes: t-based (hierarchical modeling) approach A standardized mean

difference for a given gene in study i can be calculated as an effect-size measure d; = Tis;pci where Sp indicates

the estimated variation. By means of an effect size model the overall (i.e. over all studies) effect size and
the corresponding variance can be estimated (Hong & Breitling 2008) (DerSimonian & Laird 1986). A z-score
can be derived from these to calculate the standardized average treatment effect for each gene across datasets.
Permutation z-scores are calculated by column-wise permutation within each study. These can be used to
estimate a false discovery rate (FDR) (by dividing the mean number of genes found by scrambling by the number
found for the real data for a given z-score) and a P-value representing the probability that a gene is found more
differentially expressed by scrambling than in the real analysis. (P values could also be calculated from the
standard normal distribution, but scrambling better accounts for small sample size and avoids violation of the
assumption of normality). This t-test based method was for example used by Choi (Choi et al. 2003).

3.1.2.1.2 Combining ranks: Rank product approach In this approach fold-changes are calculated for
each gene in each study, pairwise for each treatment with each control replicate for one-channel arrays. For two
channel arrays the fold changes are calculated as treatment to control ratios for each array. These fold changes
are ranked and rg;, denotes the rank of the fold-change of gene g in study i and pairwise comparison k. Then
for each gene the rank-product is calculated as RP; = ([[, I], rgik)%

with K = K7 + K5. To assess the significance of these values rank-products are calculated in the same way
after scrambling data within each array several times. Similarly as above p-values for a certain rank product
are computed as the average ratio of genes with a rank at least this high in the scrambled data and FDRs by
dividing the number of genes with a rank at least this high in the scrambled data by that in the actual data.
To test for overexpression with treatment fold-changes are calculated by dividing the treatment by the control
expression value, for underexpression the other way round.
Another method meta-analyzing data by their rank was proposed and implemented in the bioconductor package
OrderedList by Lottaz (Lottaz et al. 2006).

3.1.2.1.3 Combining p-values: Fisher s inverse chi-square method Fisher s inverse chi-square method
(also called Fisher s sum of logs method; (Fisher 1925)) calculates a combined statistic S = —21log([[, P;) with
i=1,...,n from the p-values of the individual studies. S follows a chi-square distribution with 2n degrees of freedom
under the joint null-hypothesis and therefore allows the calculation of a combined p-value. Since the t-based and
rank-product approach can also be used on single datasets, single study p-values from these methods can be used
to calculate the combined statistic. The Fisher’s inverse chi-square method has to be applied testing for over-
and underexpression separately.
Variations of this method include weighting single study p-values by their reliability (Good 1955) or calculating
the combined statistic only from single-study p-values below a certain cutoff (truncated product method; (Zaykin
et al. 2002)). The FDR, can for example be controlled by introducing experiment specific p-value cutoffs according
to e.g. the Benjamini-Hochberg method (Pyne et al. 2006) (Benjamini & Hochberg 1995).

Such a p-value based meta-analysis approach was presented by Rhodes et al. determining p-values by com-
parison of the actual with scrambled data (Rhodes et al. 2002).
In the first step the p-value for each gene in each study was calculated by a random permutation t-test, i.e. they
obtained the p-value as the fraction of t-statistics obtained by randomly permuting sample labels that are greater
than the actual t-statistic.
They then determined a p summary statistic for each gene in each possible combination of studies, i.e. comparing
study A to study B, but also comparing studies A and B to C or B to C, etc.. Summary statistics were calculated

30



for each gene appearing in all studies from the individual-study p-values and were the higher, the smaller all p-
values and vice versa. The summary statistic p-values were again obtained by comparing the summary statistics
from the actual data to such from data scrambling p-values over genes in each study.

To determine an appropriate summary statistic p-value cutoff accounting for multiple testing genes were ranked
and a g-value (FDR) was defined as the p-value divided by the fraction of genes with a lower or equal p-value.
This is sensible since a FDR is the number of genes that would be found by chance divided by those actually
found, which is the same as dividing the probability of finding a gene by chance (FDR) by the fraction of genes
found.

Finally the lowest g-value of all combinations was taken for each gene.

This approach has the advantages that using scrambling no assumptions like normal distribution of data need to
be made and that p-values of individual studies are combined without the need of setting a threshold on them.
The problem however is that calculating summary statistics for each combination of studies is computationally
intensive. It is feasible for meta-analyses like this one, including 4 studies, but might not be for larger ones.

By working with p-values it is not possible in this method to estimate the mean magnitude of differential expres-
sion.

3.1.2.1.4 Limitations of methods combining effect-sizes, p-values and ranks All three of the presented
methods (at least if no truncation for single study p-values is used in Fisher s chi-square approach), as well as
other methods combining ranks, p-values or effect-sizes do not seem very likely to detect genes differentially
expressed in only a subset of datasets with large variations as they might appear in a combination of a cross-
platform, cross-species and cross-organism approach. For example they seem not apt to detect a gene differentially
expressed in some tissues, but not in others from datasets from different tissues. This is because the effect-size
estimate over all studies and the between-study variance in the t-test based approach, the rank-product in the
rank-product approach and the combined statistic in the Fisher “s inverse chi-square method are sensitive to the
(few) cases where the gene is not differentially expressed.

On the other hand combining only some of the ranks, p-values or effect-sizes (e.g. only such found significant)
and ignoring others may be hard to justify.

To overcome this problem thresholding on the single-study statistic and counting how often the threshold is passed
would be useful. This is the procedure applied by vote / value counting approaches (Ramasamy et al. 2008).
The disadvantage of these approaches is that statistical values have to be classified as to if they are above or
below a chosen rank-, effect-size, or p-value-cutoff and all further information is lost. Therefore the big advantage
of counting a gene as only differentially expressed or not in each study, which prevents strong contribution of
studies where a gene is clearly non significant is at the same time the probably biggest disadvantage of not allowing
studies to contribute with different weights for that gene. Therefore if a gene is found extremely significant in
one study it will only contribute with one count, as does a gene with significance close to the set threshold.

3.1.2.1.5 Value-counting approaches Rhodes et al. (Rhodes et al. 2004) presented one such value-counting
approach termed “comparative meta-profiling”. The aim of this analysis was to find a meta-signature common
to different kinds of cancer and therefore to develop a strategy that does not detect genes only differentially
expressed in one or very few datasets, but find those differentially expressed in more datasets than expected by
chance. By this they hoped to find a meta-signature typical for cancer per se, not a certain type of cancer.
Comparing statistical measures for each dataset rather than gene expression measures was supposed to help
overcoming the challenges of comparing data from different microarray platforms. In the first step differential
expression in individual datasets was assayed by a t-test. The genes of each set were sorted by the p-value and a
Q-value calculated as the number of expected differentially expressed genes (p-value) divided by the number of
actually differentially expressed genes (number of genes in the ranking with lower or equal p-value). The Q-value
was used for comparing the datasets.

For both over- and underexpression the number of datasets in which each gene was present below a Q-value thresh-
old of 0.1 was counted and the number of genes in each possible number of datasets tallied (Ng, N1, Na, ..., N).
(S is the total number of datasets). The same steps were repeated on datasets with scrambled Q-values, obtaining
a tally (Eo, F1, Ea, ..., Eg). A minimium meta-false discovery rate was calculated as mF DR, = Mm(%)
for i=0..S. '

If the mF DR, > 0.1 the analysis was repeated with the Q-value threshold lowered by 50% until a mEF D R, <
0.1 is reached or the number of genes below the Q-value threshold is 0 for at least 2 datasets. In the second case
the meta-analysis is defined not to have found a significant overlap between differentially expressed genes in the
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datasets. This procedure assures that the highest possible, but still sufficiently low Q-value threshold is chosen.
If a mFDR,,;, < 0.1 is found, genes enriched for over- / underexpression (meta-signature) were defined as
the number of genes appearing in at least i datasets below the Q-value threshold, where i is the same used for
calculating this mF DRy, .

The major drawback of this approach is that it is unlikely to detect genes only tested in a subset of the datasets.
This is because the number of datasets in which a gene has to be found below a certain Q-value is determined by
considering all genes also such that were tested in a different number of datasets. An alternative value-counting
approach to overcome this problem uses a binomial test to both take the number of times the single-study statis-
tic for a gene exceeds a threshold and the number of studies its gene-expression was measured into account (de
Magalhaes et al. 2009).

Since the sources for our datasets were very diverse, i.e. different tissues, organisms, ages, durations of CR,
microarray platforms, etc. we decided to employ a value counting approach. Because the microarray experiments
were performed over the course of some years, while annotation of the genomes of model organisms improved
and therefore probes for newly discovered genes were included on the platforms over time (and for other reasons)
we expected that not each gene was represented in a similar number of studies so that we found the binomial
approach best suited for our meta-analysis.

Another advantage of using a value-counting approach is that we could include datasets for which only lists of
differentially expressed genes were available (Ramasamy et al. 2008).

Ramasamy “s concern that the results of value-counting approaches are rather granular compared to those ob-
tained by other techniques was not considered a major problem, since ranking the final results was of less
importance to us than classifying them as significant or not.

Last but not least Magalhaes showed that in a situation with similar aims (i.e. finding genes robustly differen-
tially expressed in different organisms, tissues, etc.) a binomial value counting approach performed better than
Fisher s chi-square method in terms of the number of genes identified. For the top genes of both approaches
there was strong overlap (de Magalhaes et al. 2009).

3.1.3 Other meta-analyses of gene expression data for CR

3 important meta-analyses of caloric restriction gene expression data were existent at the time of this writing:
Hong 2010, Swindell 2008a (further analysed in Swindell 2008b) and Swindell 2009. These will be briefly intro-
duced here and their results compared to ours in the discussion-section (“3.4.2 Comparison with results from
other meta-analyses”).

3.1.3.1 Swindell, 2008a

In “Comparative analysis of microarray data identifies common responses to caloric restriction among mouse
tissues” Swindell created 23 contrasts comparing caloric restriction to control samples from 13 studies on mouse
(Swindell 2008a). For two studies only information in supplemental data were used. In the data used the age of
mice at time of killing were 4 to 31 months (or unknown for two studies), duration of CR 2 days to 24 months
(or unknown for one study), the level of CR 10-66% (or unknown for one study) and data were from 10 different
tissues.

Method: Swindell started off with raw data, processed them by normalization by Robust Multichip Average
(RMA) (Irizarry et al. 2003), determined differentially expressed genes using the Bioconductor Limma package
(Smyth 2004) and adjusted P-values by the Benjamini-Hochberg method (Benjamini & Hochberg 1995). A
significance level of 0.05 was used to identify differentially expressed genes in each study. The number of different
tissues in which a gene was differentially expressed was counted. This study therefore emphasizes robustness
of differential expression over different tissues. The approach is a value counting approach with the problem of
ignoring that different genes may have been tested in different numbers of studies.

A differential expression signature was created for each dataset by assigning -1 to downregulated, 0 to non-
significantly differentially expressed and 1 to upregulated genes. A similarity score for each pair of datasets was
calculated by

_ Ny ++n— —

T ong4tn— —+ng —+n_ +Min[(ny 0+n—0),(no,++n0,-)
in both sets, etc. The similarity score was used for clustering datasets.
The significance of the overlap between two datasets was assessed by scrambling of the assigned +1, -1, 0 marks.

The test statistic T = n4 1 +n_ _ for the real data was compared to the null-distribution of T from the scrambled

T where ny represents a gene significantly upregulated
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data. The calculated P-value was adjusted by the Benjamini-Hochberg method and the threshold set at p =
0.05.

Functional analysis was performed based on GO-terms by a method implemented in the GOstats package
(Falcon & Gentleman 2007): GO-terms overrepresented among differentially expressed genes were determined and
pooled for contrasts of the same tissues. The number of tissues for which a GO-term was found overrepresented
was counted. Additionally GO-terms overrepresented among the genes identified as differentially expressed in 5
or more tissues were determined.

Only for liver-datasets genes were determined that were significantly differentially expressed in at least 3
datasets and differentially expressed with aging in the other direction in at least 1 out of 5 independent liver-
datasets on aging.

Results: Swindell found that CR in most cases had an effect on less than 5% of genes, with the maximum found
to be 23% in one study.

Clustering showed that the datasets in first instance clustered according to tissue type, but also different datasets
from the same study were likely to cluster (even when from different tissues). The intersection between differen-
tially expressed gene sets was around 30% or less, however commonly greater than expected by chance.

Among all tissue types examined, CR most commonly led to upregulation of genes involved in lipid metabolism
and metal ion response, and downregulation of genes associated with immunity and protein folding.

16 genes were found over- and 12 underexpressed in 5 or more different tissues. Among the overexpressed
were two metallothionein genes (Mtl and Mt1) involved in stress response (Thirumoorthy et al. 2007) and
two period homologues (Per! and Per2) recognized for their role in manipulating the biological clock, but
that also exhibit tumor suppression activity (Cheng Chi Lee 2006). Two procollagen (Collal and Col3al)
genes were found among the underexpressed. GO-terms enriched among these were nitric oxide mediated signal
transduction (G0O:0007263), zinc ion homeostasis (GO:0006882) and circadian rhythm (G0:0007623) for over- and
response to heat (G0:0009408), unfolded protein (GO:0006986), biotic stimuli (GO:0009607), chemical stimuli
(G0O:00042221) and response to pest, pathogen and parasite (GO:0009613) for underrepresented genes.

Igf! and mTOR each were only found differentially expressed in three contrasts and Sirt! in none.

GO-terms enriched among genes differentially expressed with CR and in the opposite direction for aging in
liver were electron transport (GO:0006118) and cellular metabolism (GO:0044237).

3.1.3.1.1 Further analysis by Swindell, 2008b  Swindell 's publication “Genes regulated by caloric restric-
tion have unique roles within transcriptional networks” (Swindell 2008b) is a continuation of the study presented
in Swindell, 2008a, in which 16 genes were identified as consistently up- and 12 as downregulated.
Overrepresentation of transcription factor binding sites in the genes enriched for differential expression with
CR were determined by sequence analysis of the 500 bp upstream promoter region using the CisView database
(http://lgsun.gre.nia.nih.gov/cisview/) (Sharov et al. 2006).

Furthermore a co-expression analysis was performed each: In brief, co-expression of each gene was determined
from a large number of microarray measurements by Pearson correlation coefficients for each pair of gene. For
each gene the magnitude of its absolute correlation coefficients indicated its connectivity strength. Local (strong)
connectivity patterns were calculated as an average over the top absolute correlation coefficients for each gene,
non-local (weak) connectivity patterns as the correlation coefficient at a certain high percentile.

Results: Enriched transcription factor binding sites in mouse were:

o for overexpressed genes:

— TF _MIF, TF_STAT, TF ZIC, TF _HENI1, TF HNF4, TF SREBP, TF OLF1, ADD MTF1A,
ADD MTF1B, MIT 051TATA, TF MYB, ADD PAXS for metallothioneins

e for underexpressed genes:

— ADD PAX8, TF NFY, TF MAZR, TF MZF, MIT O013LEF for immunity related genes
— TF MAF, TF_MYB, TF MEIS, TF NFKB for collagen related genes
Swindell also showed that in mice the connectivity of genes determined as enriched for downregulation with CR,

was high for local network regions, however for those for upregulation it was low for both local and non-local
network regions.
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3.1.3.2 Swindell, 2009

In his 2009 study “Genes and gene expression modules associated with caloric restriction and aging in the labo-
ratory mouse” Swindell meta-analysed microarray data on CR of 17 different mouse tissues from 40 experiments
(Swindell 2009). Most of the datasets used in this study plus some additional were also used in our meta-analysis.
GSE11845 was not used in our study, since it is based on intermittent fasting, not classical CR. The LIMMA
package for linear model analysis (Smyth 2004) was employed to determine the p-values for differential expression
of each probe within the datasets. Fisher s inverse chi-square approach was used for each gene to first combine
different datasets of the same tissue (if more than one dataset present) and again to combine the p-values ob-
tained from this over all tissues. Due to the large number of genes found this way a threshold for the number of
tissues in which a gene had to be differentially expressed was set for further analysis (GO-analysis, mapping to
KEGG-pathways). This introduces a value-counting component into the analysis.

Co-expression analysis was performed similar to that in Swindell, 2008b and genes clustered by their co-expression
into modules of 2, 3, 5, 10, 20 and 40 genes. Each module was then scored for the differential expression of the
genes contained based on their single-study p-values and the significance assessed by scrambling.

Results: Overall 29.7% (6330) of the genes were up- and 27.6% (5884) downreguated over different tissues. The
gene significantly upregulated in most tissues was SgkI. As in Swindell s previous meta-analysis (Swindell 2008)
Mt2 was found up- and Serpinhl downregulated when combining evidence from different tissues.

Genes most strongly increased by CR across tissues were associated with the KEGG-pathways fatty acid metabolism,
citrate cycle, PPAR signalling, oxidative phophorylation, amino acid degradation and metabolism, circadian
rhythm, renal cell carcinoma, fatty acid elongation in mitochondria and the insulin signalling pathway . Genes
commonly down regulated by CR were associated with focal adhesion, antigen processing and presentation, ECM-
receptor interaction, DNA replication, MAPK signalling, cell communication, VEGF signalling and natural killer
cell mediated cytotoxicity (P < 0.01).

A total of 3, 5, 22, 39 and 28 significant CR-responsive modules with 3, 5, 10, 20 and 40 genes, respectively, were
identified.

3.1.3.3 Hong, 2010

In “Revealing system-level correlations between aging and calorie restriction using a mouse transcriptome” Hong
performed GO-, co-expression and transcription factor binding site analyses (Hong, S. et al. 2010).

Datasets from 6 different studies, comprising 5 tissues were used. Within single studies differentially expressed
genes were identified by unpaired two-class analysis using significance analysis for microarray (SAM) (Tusher
et al. 2001). No analysis was conducted to detect enrichment of differentially expressed genes over the studies,
but all genes found differentially expressed in any study were considered as “CR-transcriptome”. The number
of times a GO-category was found associated with the genes differentially expressed with CR was compared to
the number it was found associated with any of the genes in the study using chi-square analysis. Co-expression
analysis was based on correlation coefficients calculated from 131 microarrays from GEO and transcription factor
binding site analysis was performed using TRANSFAC (Hinrichs et al. 2006). The relevance of the determined
transcription factors was assessed by testing if they were significantly co-expressed with genes found differentially
expressed with CR.

Results: GO-terms found enriched in the CR-transcriptome (up- and downregulated genes) were immune re-
sponse, lipid metabolism, response to stimulus, cell proliferation, glucose catabolism, cholesterol metabolism,
angiogenesis, cell adhesion, cell cycle, electron transport, muscle development, cytoskeleton organization, chemo-
taxis, amino acid metabolism and as for compartments extracellular space, lysosome, mitochondrion and endo-
plasmic reticulum. The co-expression modules from the aging transcriptome showed strong correlations with the
CR-results in both metabolism (e.g., citrate cycle and lipid metabolism) and the immune response. Binding sites
for 12 transcription factors were found overrepresented in upregulated genes (v-Myb, HNF-4«, TAL1, E4BP4,
HLF, CCAAT box, FOXO1, MAZ, VBP, Tal-lalpha:E47, HNF-38 (FOXA2), Max) and 5 in downregulated
(IRF-1, Pax, PAX6, YY1, NKX3A) however non of these was significantly co-expressed with its target genes.

3.1.4 Overview of our study — value-counting approach

In order to better understand the individual steps of our meta-analysis described further below a short overview
of the concept is given here: In large our meta-analysis follows the 7 step approach proposed by Ramasamy
(Ramasamy et al. 2008):
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With student t-test, determine genes
over- and underexpressed with CR in
each experiment at a p < 0.05 and fold-
change > 1.5 cutoff

Data_collection

CR-related expression supplemental gene
profiles (CR vs. AL) from lists
GAN, GEO and ArrayExpress

Annotate..________

with mouse Entrez IDs
(BioMart, HomoloGene)

select fold-change >1.5

count number of datasets Select p that FDR
where gene . . <0.05
- is tested —  » Binomialtesta, +

For different p-values:

FDR=#a/#b
count number of datasets

where gene

- is differentially expressed \

100 simulations —— _ js tested — Binomial test b,

6.
7.

The statistical analysis of our meta-analysis is based on a value-counting approach, i.e. we counted the number
of times a gene is found over- / underexpressed in different datasets and determine the probability that this is
due to random chance using a binomial test. The threshold for the p-values of the binomial test is determined
by repeating the analysis on scrambled data and chosen so that the associated false discovery rate (FDR= mean
number of genes significant at this cutoff after scrambling / number of significant genes on unscrambled data) is

- is differentially expressed

Figure 3.2: Simplified overview of the meta-analysis work-flow. See text for details.

. Identify suitable microarray studies

Extract the data from studies

Prepare the individual datasets

Annotate the individual datasets

Resolve the many-to-many relationship between probes and genes
Combine the study-specific estimates

Analyze, present, and interpret results

acceptably low. The principle of the study is therefore similar to that in Magalhaes 2009.

Datasets for our meta-analysis are mainly created from probe-level microarray data from which CR — AL pairs
for the same co-variates are extracted. Differential expression for each gene is determined by an unpaired student
t-test. Since for a non-negligible number of studies expression data could not be obtained we also included the

information on differential expression for lists of genes determined by the original studies.
See fig. 3.2 for a simplified work-flow of the meta-analysis.
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3.1.5 Aims of our study

As for other meta-analyses of microarray data this study aims to find genes which are detected as significantly
differentially expressed with the increased sample size after combining studies, but are not found in the individual
studies. For example Choi et. al (Choi et al. 2003) define integration driven discovery (IDD) as finding a gene
differentially expressed in the meta-analysis, but in none of the underlying studies. The integration driven
discovery rate (IDR) is the number of such genes divided by the total number of discoveries and is about 44-63%
in their study. IDD-genes are therefore such with small but consistent differential expression for which the sample
sizes in individual studies was too low for them to be detected to be significant. Therefore the statistical power
of the meta-analysis is increased compared to the single studies (the false negative rate is lower) at the same false
positive rate. On the other hand the higher statistical power would also increase the significance threshold and
therefore reduce the Type I error.

Admittedly in a value-counting approach the level of differential expression in the original study must be high
enough that the gene is found differentially expressed in the first place, however thresholds in our study for
defining a gene as differentially expressed are more relaxed here than in the original studies.

By including data on a wide range of organisms, tissues and other co-variates we eliminate idiosyncrasies between
studies and aim to detect genes differentially expressed with CR under different conditions (even though a
sufficient number of detections can also be reached from one frequent organism or tissue). It was shown by
Dhabi (Dhahbi et al. 2004) that different genes change their expression after different time-spans of CR. Since
we also include data from experiments using a wide range of time-spans our analysis is likely to identify genes
that change their expression quickly and stably.

The genes enriched for over- / underexpression serve as candidate genes for further studies, can be examined for
an already known role in CR or aging or can be searched for enrichment of transcription factor binding sites.
The network of genes can be extended by determining genes co-expressed with them.

Information on functional categories associated with CR can then be retrieved by both detecting enrichment of
such categories among the candidate genes or by repeating the described analysis on functional terms instead
of genes. A term would in this case be considered over- / underexpressed if the associated gene is over- /
underexpressed.

3.2 Materials and methods

3.2.1 Microarray studies used in the meta-analysis

To obtain high-throughput data on caloric restriction we searched the databases “Gene Expression Omnibus”
(GEO; from NCBI), “ArrayExpress” (from EBI) and “Gene Aging Nexus” (GAN) for the terms “caloric restric-
tion”, “calorie restriction” and “dietary restriction”. We further checked other meta-analyses of CR for further
datasets for which we requested expression data from the authors of the studies.

For studies for which gene expression data from none of these sources was available we attempted to retrieve
published lists of genes differentially expressed according to the statistical criteria in the original study.

The only high-throughput data found were from microarray experiments. Since almost no non-mammalian data
were among the studies found and mammalian data are more likely to resemble the situation in humans we
decided to focus this meta-analysis only on data from mammals. Data were furthermore excluded if we could not
extract data from one group being on CR a corresponding one on AL or high caloric, but otherwise comparable
diet with no other differences between the groups. CR is here defined as restriction in the amount of calories
consumed without malnutrition. One study comparing humans before and after bariatric surgery (GSE9157) was
excluded since it was not clear how much nutrient uptake was restricted by this measure and if it could therefore
be defined as CR. Another study on humans (GSE11975) comparing gene expression data from people during
diet and the following weight-maintainance period was also excluded since the dietary setups could not clearly
be defined as AL vs CR. Finally datasets were not used if the experiment was accompanied by the application
of drugs or infection of the animals (GSE15344).

We further checked that the microarray platforms used in all studies were a unbiased representation of the tran-
scriptome and not e.g. representing only selected pathways.
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3.2.1.1 Studies for which expression data could be obtained

For the 23 studies shown in table 3.2, expression datasets could be obtained. That means the preprocessed (i.e.
background subtracted and normalized) microarray signals for the conditions of interest were given for all probes
on the array except when excluded for low quality.

Subsets used organism | duration (end) tissue amount of food
age
GEO
GDS1261; Ames dwarf and Mus 4 months 6 liver 90% of the AL intake* of
(Tsuchiya, normal mice muscu- months animals of the same
2004) lus genotype for 1 wk, to
80% for the next week,
and to 70% for the rest
(*average amount
consumed daily by AL
mice during the
preceding week);
GDS1808; CR8-AL and Mus CR&: 22 liver CON 93kcal/wk; LTCR:
(Dhahbi, LTCR-AL; have muscu- 2month; | months 52.2; CR8: 77 for 2
2005) CON in common lus LTCR: 17 weeks, 52.2 for 6 weeks
months
GDS2612; 25 months old Mus 23.5 25 skeletal CON 84kcal/wk, CR
(Edwards, muscu- months | months muscle 26% less (62kcal/wk)
2007) lus
GDS2681; 15 months old; Mus 3 months 15 cochlea CON 84kcal/wk, CR
(Someya, excluded: 4 muscu- months 26% less (62kcal/wk)
2007) months: CR lus
missing
GDS2961 + 6, 16 and 24 Mus 11, 41 6.5, thymus Up to 13 weeks of age,
GDS2962; months old; muscu- and 83 13.5, 100% regular feed,
(Lustig, excluded: 1 lus weeks 24 followed by 90% fortified
2007) months old: CR months feed for 1 week, 75% for
missing 1 week, then 60%
fortified feed after that
until the age at which
the mice were sacrificed
GDS355 + >30 months old; Mus ? > 30 kidney ?
GDS356; excluded: 5 muscu- months
(Kayo, un- months old; CR lus
published) missing
GSE11244; FHC-CR, Mus 14 days 9.5 liver true ad libitum: as much
(Estep, TAL-CR; have muscu- months as wanted (about
2009) CR in common lus 125kcal/wk); CR:
73kcal /wk; fixed high
cal: 110 keal/wk
GSE11291; 3 tissues; Mus 16 30 Heart, CON: 84 kcal/week, CR:
(Barger, excluded: 5 muscu- months | months | neocortex, 63 kcal /week
2008) months: CR lus gastrocne-
missing mius
GSE14202; exercise and Mus 6 weeks 4 mammary 30% restriction
(Padovani, non-exercise muscu- months gland
2009) lus
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GSE18297; 1 week or 1 Rattus | one week | 1.5 or liver 5, 10, 20, 30% restriction
(Saito, un- month CR; 5, 10, | norvegi- or one "2
published) 20, 30% food cus month months
restriction; same
controls for
different
restriction levels
GSE6110; 24 months old; Rattus 22.5 25 kidney CR begins at 10 wk, 10%
(Chen, excluded: 4 norvegi- months | months restriction until 15 wk
2007) months old: CR cus where it is increased to
missing 25 and to 40% at 4
months
GSEG6718; 2 tissues; Rattus 20 24 Heart and 60% of AL
(Linford, excluded: 4 norvegi- months months Adipose
2007) months cus Tissue
GSE7502; 2 tissues; ages: 6, Mus 2.5, 12.5, 6, 16, Testis and 40% restriction
(Sharov, 16, 24 months; muscu- 20.5 24 Ovary
2008) excluded: 1 lus months | months
month: CR
missing
GSE8426; 5 tissues; 6, 16, 24 Mus 2.5, 12.5, 6, 16, | Cerebellum, at 14 weeks of age at
(Xu, 2007) months; excluded: | muscu- 20.5 24 Hippocam- 10% restriction, and
“1mo samples: lus months months | pus, Spinal | then changed to 25% at
CR missing Cord, 15 weeks and 40%
Striatum, restriction at 16 weeks
Cortex onward
GSE9917; no subsets Homo 4-wk T27-48 skeletal 4 weeks: 3.3 MJ/d, 3-6
(Larrouy, sapiens | very-low- | years muscle weeks: 4-5 MJ/d, 4
2008) calorie week: 5.8 MJ/d
diet, a
3-6-wk
low-
calorie
diet, and
a 4-wk
weight-
maintenande
GSE17309; no subsets Sus 211 days 7 liver 25% restriction
(Fernandez, scrofa months
unpub- ?
lished)
GSE12853; timepoint 1d Bos 12 weeks; 11 liver 60-70% of AL
(Connor, before taurus 8 weeks | months
2010) realimentation realimen-
tation
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GSE241; 2, 4, 12h CR; Mus 2-96h; adult lung reduction by 66%
(Massaro, excluded: other muscu- time-
2004) timepoints: miss lus points
controls >12h
miss
controls;
there is a
14/15d
timepoint
in the
paper,
but not
in the file
GSE9121; adipose tissue: 10 | Rattus | liver: 4 or 34 liver, restricted: 4 day:
(Pohjan- d CR; liver: 4 and | norvegi- 10 days; | months adipose 18-12-9-6 g; 10 day: ad
virta, 10 d CR (controls cus WAT: 4 tissue libi-
2008) for timepoints days tum-16-14-11-8-6-4-4-2+
pooled) g
GSE904; 170 d old; Mus ? ? liver ?
(Becker, un- excluded: 17d muscu-
published) old: no CR lus
GAN
Expression 30 months old, Mus 28 30 neocortex 26% less than AL
Profile of Neocortex; muscu- months months
Aging and excluded: lus
CR Hippocampus:
Retardation, CR missing, 5
Neocortex; months: CR
(Lee, 2000) missing
Array
Express
E-MEXP- 4 tissues Mus 16 days 4 liver, reduced to 90% of AL
748; muscu- months skeletal mice at 14 wk, 80% at 15
(Selman, lus muscle, wk, and 70% at 16 wk of
2006) colon, age
hypothala-
mus
Provided by
Hu; (Wu, no subsets Mus 4 months 8 forebrain 70% less than AL
P., 2008) muscu- months
lus

Table 3.2: Microarray studies and their characteristics used in the meta-analysis. Fields

underlied in red were excluded at later steps. The “subsets used "-column gives subsets of the
dataset used for the meta-analvsis and which were excluded and why; AL: ad libitum, CR:

caloric restriction, LTCR: long term CR, CRS: 8 weeks CR, CON: control, WAT: white adipose

tissie

Two of the studies were excluded in the course of the meta-analysis as described later. From each study one
to fifteen datasets / subsets were extracted, so that we obtained a total of 61 datasets. Data in each subsets
consisted of AL and CR samples from animals of the same age and CR setup and of the same tissue. The
only co-variate for which we did not split data into different datasets was sex, since we did not expect a large
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difference in the effect of caloric restriction between male and female animals and we did not want to reduce
replicate numbers of each dataset more than necessary. Also the number of subsets of individual studies should
not get too large, since this study would gain too much influence in the meta-analysis.The vast majority of 48
datasets was from mouse (Mus musculus), 12 from rat (Rattus norvegicus) and one from pig (Sus scrofa). These
include different strains of mice and rats. The biggest group for the tissue co-variate was liver (18) and brain was
represented by many different tissues. In the list of 19 different tissues 6 are represented by only one dataset.
The duration of CR ranged from less than one day (5 datasets) to 23.5 months and the ages at which tissues were
obtained from 1.5 to over 30 (exact age unknown) months for mouse and 1.5 to 24 months for rats. Histograms
of the distribution of datasets over these co-variables after including datasets for which expression measurements
could not be obtained are shown in fig. S.1.

3.2.1.2 Studies for which expression measurements could not be obtained

For the following studies the microarray signal intensities for all probes was not available, but rather lists of genes
found differentially expressed by the statistical method used in the original study. For some of them p-values
and / or effect-sizes were given. We requested expression data from the (corresponding) authors of these studies,
but were not able to obtain them. Some of the studies were eventually not used for the reasons described.

(Fu et al. 2006): Genes differentially expressed according to a t-test assuming equal variances at a Benjamini-
Hochberg FDR, adjusted p-value <0.05 in heart, liver and hypothalamus could be obtained from the supple-
mentary materials of the corresponding publication. The data are from 4-6 months old male mice in which CR,
animals were restricted to 60% of caloric intake of AL-animals for 2.5 to 4.5 months.

(Wu, P. et al. 2009): A list of differentially expressed genes in the hypothalamus of caloric-restricted vs. ad
libitum fed animals was kindly provided to us by the authors. This dataset had to be excluded later on due to
annotation problems (see: “3.2.3 Processing gene lists from studies for which expression data were not obtained).
(Higami et al. 2004): Data from Higami were not used since only selected genes differentially expressed with
CR could be found in the paper or its supplement. Allowing lists of genes selected for particular criteria would
introduce bias to our work.

(Cao et al. 2001): Data for genes differentially expressed with CR at a 1.7-fold change criterion were listed in the
corresponding publication. Only data for genes differentially expressed in CR, but not differentially expressed
with age in the opposite direction in the same study were used for reasons described in “3.2.2.5 Excluding genes
differentially expressed with age”. Furthermore we only used data for long term CR, but excluded data for short
time CR since the control used in the paper was not age matched. Data were given for liver of 7 and 27 months
old female mice of the long lived strain C3B10RF1 which had been on CR for 6 or 26 months respectively.
(Dhahbi et al. 2004): CR data from livers of male mice of the long lived F1 hybrid strain B6C3F1 were obtained
from the corresponding publication. Data were obtained for 2, 4 and 8 weeks as well as 27 months of CR. CR
of 77kcal/week for 2 weeks and 52.2 kcal /week afterwards (except mice on 2 week CR, which were one week on
77kcal/week and one week on 52.2 kcal/week) compared to 93 kcal/week for control animals was induced at an
age so that mice were 34 months old at time of killing. Data from CR-mice were compared to data from 34
months old controls and a 1.5-fold change was considered significant.

(Corton et al. 2004): CR data from livers of mice on a SV129 background, caloric-restricted for 5 weeks were
available in the supplement of the corresponding publication. Calories were reduced to 90% of the AL group for
one week and 65% for another 4 weeks. All data of mice treated with chemicals were ignored. The threshold
for significance was set at p <=0.001 with Bonferroni correction and a at least 1.5-fold change in expression was
required.

(Lu et al. 2007): Data from Lu were excluded since mice were treated with TPA, a diacylglycerol mimetic and
tumor promoting substance.

Data from Wong, 2002 comparing gene expression in the liver of male C57BL/6 ad libitum fed mice to such
restricted to 60-70% of their caloric intake could not be obtained from the corresponding publication or supple-
mentary data. A link in the paper that is supposed to direct to the expression data was not functional.

(Kayo et al. 2001): Kayo provided data on differential gene expression in skeletal muscle of rhesus monkeys
on CR for 9 years and sampled at an age of around 20 years. The threshold was selected so that the average
fold-change had to exceed 1 standard error from a 1.3-fold change.

Eleven gene lists were created from these studies in addition to the 63 created by analysing gene expression

measurements by ourselves. After combining these data more than half of the now 74 datasets were from mice
and more than one third from liver. The distribution of the number of datasets over different co-variates is shown
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in fig. 3.2.
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Fig. 3.2. Datasets used for the meta-analysis in terms of co-variate
arganisms, tissues, duration of CR (mice and rats only) and age of
sampling for (mice and rats). Datasets for which the value for a co-
variate is not given are not shown.

3.2.2 Analysing gene expression data from complete datasets
3.2.2.1 Obtaining and assembling microarray data files

3.2.2.1.1 Obtaining files from GEO

3.2.2.1.1.1 Downloading files and selecting samples GDS (GEO dataSet) and GSE (GEO series)

files were obtained from NCBI Gene Expression Omnibus (GEO) (http://www.ncbinlm.nih.gov/geo/; (Barrett
et al. 2009)) and processed in a similar way using R (R Development Core Team 2009). In supplement2
metaan R _GDS.txt and metaan R GSE.txt examples for selecting and processing samples from normal (as
opposed to Ames dwarf) mice for GDS1261 and heart tissue samples for GSE11291) are attached. All GEO files
exist in a preprocessed form, i.e. they are background subtracted and normalized. The files were downloaded
from GEO and converted to ExpressionSet objects using the GEOquery Bioconductor package (Gentleman et
al. 2004) (Sean & Meltzer 2007). Samples that differ only in calorie intake (i.e. caloric restriction vs. control
conditions) but keeping all other observed variables constant (e.g. only from one tissue type or age group) were
selected by pattern matching on the “description”- or “title”’-variable (or in rare cases also other variables like
“age”) of the ExpressionSet created from GDS or GSE files respectively.
The only other variable (except calorie intake) for which we did not split the data in different files according to
the value of the variable was the sex of the animals. We did not make a difference between samples from males
or females, but checked that the distribution between male and female for CON and CR within each dataset did
not differ significantly.

In GSE9121 data for liver samples after 4 or 10 days of caloric restriction were given together with data for
their controls. We created data sets for 4 and 10 days of CR, however used a combination of the controls for both
time points for both of them to increase statistical power. We considered this justified since we did not expect
major gene expression changes due to a 6 day difference of age for rats which are 11-15 weeks old. In all other
cases CR datasets of one time point would only be compared to CON datasets of the same time point.

If available the Entrez Gene ID, Ref. Seq. Transcript ID and Gene Bank accession number for each probe were
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obtained from the GPL-file for the microarray platform used in the corresponding experiment. A tab-delimited
file was created appending the expression value columns to these three annotation columns. The column names
for all control samples were “CON” and CR-samples were “CR”.

Most experiments of this study used one-color microarrays, so that separate values for controls and caloric
restriction (CR)-samples were given. For the only microarray where CON and CR samples were measured on
the same (two-color) array, GSE9917, data were given as ratios of Cy5:Cy3. Relevant values were extracted and
stored in this form. Unfortunately this dataset had to be excluded subsequently due to annotation problems
(see: “3.2.2.2 Mapping non-mouse Entrez IDs to mouse Entrez IDs”).

3.2.2.1.1.2 Binding annotation with different number of lines to expression values In most cases
the number of probes in the GSE files matched the number of probes in the corresponding GPL-file since the GSE
files contained all probes including those with low signal etc. In the case of GSE7502 probes were excluded from
the GSE-file, but the annotation contained all probes of the array. Therefore a table containing the annotation
and another containing the expression values were saved in files and expression values bound to their annotation
via the common identifier “ID” using Perl (vlookup mod4 3.pm and use vlookup mod4.pl in supplement 2).

3.2.2.1.1.3 Combining files separated into different list elements In the cases of GSE7502 and
GSE904 the GSE-file was downloaded to R as a list with two instead of only one element, because different
microarray platforms (GPL2552 and GPL4358) or parts of the same platform (GPL738 and GPL782) were used.
For GSE7502 different versions of a microarray chip were used. The same number of CON-samples as CR-samples
was tested on each platform, so that we did not expect a bias from the use of different platforms.
In this case we bound the annotation in the corresponding GPL-file to each list element, wrote these tables to
files and further processed them in Perl by combining values with identical Entrez ID or if no Entrez ID was
given for a probe by GeneBank accession number. Since by manual inspection we did not find any case in which
a different number of probes for one gene existed in one than the other array (and would therefore lead to lines
with values for only some samples, which would most likely lead to discarding the line in further analysis) we did
not care which probe of one gene is linked with which probe for the same gene on the other platform. Due to the
way collapsing of probes targeting the same gene was done later it would not cause trouble if columns of different
probes targeting the same gene were linked here (see “3.2.2.3 Collapsing probes targeting the same gene”).
This linking was done with all samples relevant for our analysis and samples corresponding to the same CON
— CR pair (e.g. one pair for 6 months caloric restricted animals versus their controls another for 16 months
restricted animals versus their controls) were extracted to one file each manually using Excel.
For GSE904 the list of probes in the first file was continued in a second one. Each file was therefore treated
as an independent one and then both combined by binding the rows together. In the case of GSE8426 four list
elements were obtained since the probes were distributed to two different platforms (GPL738 and GPL782) and
for each of those the samples were distributed to two files each. Therefore the samples divided to different files
were combined by binding the columns together as for GSE7502 and the probes from the different platforms by
binding the rows as for GSE904 after adding the corresponding annotation.

3.2.2.1.1.4 Detecting and reversing transformation of data  Since the values in some of the datasets
were transformed (mainly log-transformed ), but were not in others and we wanted to calculate comparable effect-
size measures for all the datasets the transformation of transformed data was reversed: To determine if values
in the GEO data files were transformed the value of the value type field of GDS files or the data processing
field of GSM files corresponding to GSE files were obtained. The value type “count” tells that there was no
transformation done on the data, the value _type “transformed count” indicates some kind of transformation. The
data_processing field gives information by which algorithm /software the data were processed so that in doubt
it can be found out if this method applies transformation. Furthermore the mean of all samples was calculated
for each probe and the median value of these means used as an estimate. E.g. if it was above 10 this supported
that there was no log-transformation. For further indications we used the histogram of the sample means, which
e.g. indicate log-transformation if values below 0 appear. (For GDS files these further criteria were only used if
value type did not give back “count”). In doubt we checked if it was likely to obtain the given values the way
described in the GEO-files from the raw data without log-transformation or contacted the authors.

3.2.2.1.1.5 Handling non-globally normalized data We aimed at creating files with untransformed
values which were between-array normalized by global normalization, i.e. adjusting the median (or mean) of all

43



signals to the same value for all arrays. We did not expect that different ways of normalization would critically
impact our p-value and effect size calculation, however there were cases when normalization was intermingled with
log-transformation, so that log-transformed could not be reversed easily. For GDS2961/GDS2962 and GSE8426
data were first loglO transformed, then normalized to a mean of 0 by subtraction and then the z-score of the
probe in the distribution of all probe signals was calculated (z-score normalization; (Cheadle et al. 2003)).
Since in this case also “RAW” values were given in the separate GSM-files, these files were downloaded and
the “RAW” (background subtracted and within-array normalized) values of each sample divided by the mean
expression value over all probes and multiplied by the grand mean (mean of the means over all samples relevant
for our analysis), which resembles global normalization.

In GSE11244 the Cy3-signal was normalized to the Cy5-signal of Stratagene Universal Mouse Reference RNA in
a two-color hybridization and the result log2 transformed. We reversed the log2 transformation by raising the
value to the power of 2, but we accepted this way of normalization and expected similar p-values and effect sizes
than for globally normalized arrays, even though the values in this file were lower (distributed around a mean of

1).

3.2.2.1.1.6 Combining datasets corresponding to the same experiment In cases where two files for
a single experiment existed (the probes of one microarray were divided to these files; e.g. GDS2961 + GDS2962
and GDS355 + GDS356) we combined the files before continuing the analysis in Perl.

3.2.2.1.2 Obtaining data from Gene Aging Nexus (GAN) In GAN (http://gan.usc.edu/public/index.jsp;
(Pan et al. 2007)) “Expression Profile of Aging and CR retardation, Hippocampus” and “Expression Profile of
Aging and CR retardation, Neocortex” were the only studies on CR not found in GEO. Unfortunately the
Hippocampus entry only contained data from controls and was therefore of no use for us. The Neocortex data
were downloaded manually for 30 months old animals only since for 5 months old no CR group existed. Column
names were changed to “CON” and “CR”.

3.2.2.1.3 Obtaining data from ArrayExpress E-MEXP748 was the only file that had to be obtained from
ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/; (Parkinson et al. 2009)), since no dataset corresponding
to this study was found in GEO. We used the ArrayExpress Bioconductor package (Kauffmann et al. 2009) for
obtaining these data. In contrast to most GEO-files the annotation in the .adf file was not in the same order
as the probes in the file containing the expression values, so that the columns of the files could not be directly
bound together. Instead both files were sorted according to the column containing the probe IDs before binding
annotation columns to the expression values.

3.2.2.1.4 Obtaining and processing data directly from authors For all CR microarray studies we knew
about that could not be found in one of the databases we contacted the (corresponding) author and requested
the data. Unfortunately Hu was the only one to provide these (Wu et al. 2008). (For another study (Wu, P. et
al. 2009), for which they could not supply the original data we obtained a list of differentially expressed genes.
We tried to include it in “3.2.3 Processing gene lists from studies for which expression data were not obtained”,
but had to drop it due to annotation problems).

For all studies for which we could not obtain expression data we searched for lists of differentially expressed genes
in the corresponding publications and supplementary materials (see 3.2.3).

3.2.2.2 Annotating data with identifiers common between all data files

3.2.2.2.1 Aim and overview To integrate different datasets we needed the same kind of annotation for all
of them. The annotation found in the gene expression databases (e.g. the GPL files in GEO) varies between
database entries. Many of our datasets were annotated with Entrez IDs, for others e.g. only GeneBank accession
numbers and Unigene IDs were available.

Since by far most of the datasets in this analysis were from mouse we aimed at displaying our results annotated
with mouse Entrez IDs. We expected Entrez IDs to facilitate the mapping between different organisms, e.g.
compared to Unigene IDs. We therefore conducted a gene-centered rather than a transcript centered analysis
(which would be done i.e. when using Unigene IDs) and accepted to loose information from probes targeting
sequences that do not correspond to annotated genes (or expressed sequence tags (ESTs)) or for which no ho-
mology mapping between the organism of the study and mouse existed (as of April 2010).
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For this annotation with identifiers common between all data files we needed at several stages a program
that looked up the given annotation in another file that matches this annotation to another one. We used
use_vlookup mod4.pl together with vlookup mod4 3.pm (supplement 2).

vlookup mod4 3.pm is a subroutine which takes character strings (common identifier) of a specified column of
file 1, searches an exact match of this string in a user-specified column of file 2 and adds the value in another
specified column of the same line to filel (fig. 3.3).

If the strings you search for are comma-separated lists of elements the user can specify if he/she wants to
search for the complete string or each element of the string individually. In the second case all found strings are
combined to a comma-separated one. If the same string is found twice it will occur only once in this list. This
list is added to filel as the found string.

If a common identifier matches to more than one value in the second file, the user can choose if he/she wants
to combine all found elements in a comma-separated list, create a new line for each or treat this situation as if
nothing was found.

For all values in file 1 for which no corresponding value in file 2 is found the user can specify other columns of
common identifiers several times. The program can be run on multiple files at once.

3.2.2.2.2 Adding Entrez IDs to mouse datasets where missing For some mouse data sets Entrez IDs
were not available in the platform annotation. Annotation files matching mouse GenBank accession numbers
and MGI Automatic Gene Symbol (or if appropriate other identifiers like Ensembl Gene ID, Unigene ID, RefSeq
DNA ID, etc.) to Entrez IDs were downloaded from Ensembl (BioMart: Ensembl Genes 57: Mus musculus genes
(NCBIMS3T); April 2010) (http://www.ensembl.org/; (Hubbard et al. 2009)). Entrez IDs were added by searching
them in the annotation file by looking up which one matched the GenBank accession number (GB_ACC) in
our data files and if not found, other identifiers. For this process we used use _vlookup mod4.pl together with
vlookup mod4 3.pm. For probes annotated with more than one GB ACC we obtained all available Entrez
IDs. In later steps however we preferred signals mapped to Entrez IDs unambiguously to those with more than
one Entrez ID (see: “3.2.2.3 Handling probes targeting more than one gene”).

A certain number of lines in the datafiles (8926 of 19200) were lost during this process, e.g. for genes, which were
not yet annotated with Entrez IDs.

3.2.2.2.3 Mapping non-mouse Entrez IDs to mouse Entrez IDs For datafiles from species other than
mouse we added the Entrez IDs of the homologue mouse gene by searching for the given non-mouse En-
trez IDs to obtain uniform annotation for all files. To do this we downloaded the HomoloGene data file
(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/current : homologene.data from 08/08/09) matching annotation of
homologue genes between different organisms (Sayers et al. 2010).

Files were created containing only Mus musculus or the organism of interest “s data. We used use vlookup mod4.pl
with vlookup mod4 3.pm to first match all Mus musculus Entrez IDs with the annotation of the organism of
interest into the same line using the homology group ID as common identifier and then again to add the mouse
Entrez ID to the organism of interest 's datafile using this organism “s Entrez ID as common identifier. Again if
more than one identifier was matched to a probe in the original file a comma-separated string of all correspond-
ingly found mouse Entrez IDs was added. In later steps however we preferred signals mapped to Entrez 1Ds
unambiguously to those with more than one Entrez ID (see: “3.2.2.3 Handling probes targeting more than one
gene” and fig. 3.4)

Since we did not want any non-mouse gene in our analysis with homology to more than one mouse gene
and therefore creating ambiguity, we deleted all homology groups comprising more than one gene in the mouse
annotation file using only one allowed.pl (supplement 2). We however accepted if Entrez IDs of the organism
of interest were in more than one homology group, i.e. if more than one of them matched to only one mouse
Entrez ID.

This procedure was highly ineffective for the bos taurus dataset GSE12853 and would have lost all but one
probe. Therefore we annotated this file in a different way that is described below (“3.2.2.2 Special annotation
procedure for GSE12853”). For GSE6110 rat Entrez IDs were not given in the data file and the given Unigene
IDs were not part of the HomoloGene files. Therefore the mouse Entrez ID was added first by looking up
the corresponding rat Entrez ID in a rat BioMart file (BioMart: Ensembl Genes 57:/ Rattus norvegicus genes
(RGSC3.4)) (as described for mouse in “3.2.2.2 Adding Entrez IDs to mouse datasets where missing”) and
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Add-from file

Add-to file
CID1 | |CID21 AE
SF1| SF2 B - 1
A K2 "B - 2
B P2 D - 3
C,F| L2,M2 G G2 | 4
D Q2 J - 6
G N2,02 - K2 | 7
| K2,02 - M2 | 3
N2 | 8
) Q21 7
Not found SF1 SE2 AE
found SF1 BF2 A K2 7
g Eg CF M2 3
G N2 8 *x*1
SF1 SF2 AE C,F [L2,M2 G 02 7 *x*1
D Q2 3 | G N2,02 | K2 7 **2
I K2,02 | 02 7 *x*2
SF1 SF2 AE
| D Q2 3 |_
A K2 7 |
CF M2 3
G N2,02 8,7
| K2,02 7

Figure 3.3: Workflow of the vlookup mod4 3.pm subroutine with options used in this study. SF are columns
containing values to search for, CID (common identifier) represents the corresponding value in the file to add
from. AE is the element to add. The general flow is from top to bottom; First SF1 from the “Add-to” file
is looked up in the “Add-from” file. For lines for which SF1 is not found SF2 is looked up. The results of
both searches are combined; green arrowheads indicate examples for special situations: 1, common identifiers
matched to different values to add: these values will be ignored; 2, comma-separated lists of elements to search
for: individual elements of comma-separated lists are searched; *x*[number]| is a marker for multiple lines created

SF1 SF2 AE

A

K2 7

C,F M2 3

G
I

N2,02 8,7
K2,02 7

from one probe; these will be combined again to their corresponding probes; see text for details.

46




Data file HomoloGene file

Non-mouse expression Non-mouse Mouse
EntrezID values EntrezID EntrezID
123,124 VL 121 A
123,121 w 122 B
124 X 123 A
125 y 124 C
125 D
l vliookup_mod2.pm
Non-mouse Mouse expression
EntrezID EntrezID values
123,124 AC eV
123,121 AA - A e W
124 C e X
125 D oy
l metaanalysis2.pl
Mouse expression p-value
EntrezID values
A e W 05
C e X 0.3
D e Y 0.05

Figure 3.4: Example for the pipeline for adding mouse Entrez IDs to non-mouse expression values and processing
of data. The way values are displayed does not resemble their real format. For clarity non-mouse and mouse
Entrez IDs were depicted in different formats. Mouse Entrez IDs are added to the datafiles via non-mouse Entrez
IDs as common identifiers employing the subroutine vlookup mod4 3.pm. AA—>A indicates that two identical
identifiers in one line are merged. Lines corresponding to the same gene are collapsed and p-values calculated as
described in the text using meta-analysis v3.2.pl. “Expression values” represents lists of expression values both
for CON and CR in each line.
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using this to find the mouse Entrez ID in the HomoloGene file. Similarly for GSE9917 the annotation in the
file (GB_ACC) was not given in the file obtained from HomoloGene. Therefore we downloaded the BioMart
annotation file for homo sapiens (BioMart: Ensembl Genes 57: / Homo sapiens genes (GRCh37)) intending to
first add the human Entrez ID, which then should have been used to find the mouse Entrez ID. However only
two of the GB__ ACCs given in the datafile could be found in the BioMart file. We also were not able to obtain
further annotation from the authors and therefore had to exclude the dataset.

Annotation of GSE17309 was more complex since this contained data from sus scrofa, for which no homology file
was available at HomoloGene. Therefore we obtained homology information from BioMart in which however only
Ensembl IDs (Ensembl Gene ID, Ensembl Transcript ID, etc.) were available. Therefore we also obtained the
necessary BioMart annotation files on mouse and pig and first mapped the given pig-identifiers to pig Ensembl
Gene ID, from there to mouse Gene Ensembl ID and finally to mouse Entrez ID. All but 357 of original 24123
(mainly poorly annotated) probes were lost during this process.

3.2.2.2.4 Special annotation procedure for GSE12853 Since we were not able to map mouse Entrez IDs
to the steer data GSE12853 for the given annotation (GB__ACC, probe ID and Gene name) directly via files from
HomoloGene, we tried to obtain Bos Taurus Entrez IDs first and map these to mouse Entrez IDs similar to what
is described above for GSE6110 and GSE9917. However for no probe we first found bovine Entrez ID and then
also the corresponding mouse Entrez ID. This was probably to the poor annotation of Bos Taurus GB_ACCs
and Gene names with Entrez IDs.

To overcome this problem the authors (Erin Connor et al.) kindly provided us with further and more recent
annotation. See fig. 3.5 for the annotation process using this file: Since this annotation only contained nucleotide
RefSeq IDs and the HomoloGene file only protein RefSeq IDs a file was downloaded from BioMart matching bos
taurus nucleotide to protein RefSeqIDs. The nucleotide RefSeq IDs were added to the HomoloGene file containing
bos taurus protein RefSeqIDs mapped to mouse Entrez IDs (vlookup homologeneSteer.txt) using a modification
of vlookup mod4 3.pm and the file was now called vlookup vlookup homologeneSteer.txt. (The modification
of the program was necessary since RefSeqIDs contained version numbers in one file, but not the other).

The annotation provided by the authors was mapped to the experiment data via probe IDs specific for this ex-
periment so that the data were annotated with nucleotide RefSeqID and GB__ACC identifiers (vlookup _vlookup
_ GSE12853.txt). Finally mouse Entrez IDs were added to this file from vlookup vlookup homologeneSteer.txt
via the common nucleotide RefSeq ID identifier. Even with this procedure not more than one gene could be
annotated. The same is true when searching for GB_ACC additionally to nucleotide RefSeq ID. Therefore the
dataset was excluded form the analysis.

3.2.2.3 Processing datasets, performing a t-test and calculating effect sizes

After annotation the dataset files were further processed and t-test p-values and effect-sizes for the CR — CON
comparison were calculated. These steps were done in batch-mode for all datasets using meta-analysis _v3.2.pl
(supplement 2).

3.2.2.3.1 Handling missing values and annotation In each individual microarray experiment lines that
contained more than 30% missing values or for which no Entrez ID annotation was found were eliminated. To
facilitate subsequent analysis all remaining missing values were replaced by the row mean, i.e. calculated from
values for control and CR samples. This procedure in general lowers the chance to find this gene differentially
expressed, reflecting the doubts about it due to the missing value.

3.2.2.3.2 Collapsing probes targeting the same gene Probes targeting transcripts of the same gene
(and i.e. having the same Entrez ID) were collapsed by using the mean over each probe (employing the Statis-
tics::Descriptive CPAN package by Colin Kuskie and Shlomi Fish). That probes with higher value therefore
contribute more strongly to the final result is justified by the assumption that probes with higher values are more
reliable since they probably bind transcripts with higher affinity and their signal to noise ratio is higher. This
procedure is therefore more conservative than e.g. the one used by Swindell (Swindell, 2009) which selects the
most differentially expressed probe.
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HoemoloGene file
Mouse:EntreziD, mouse protein RefSeq 1D
Bovine:EntreziD, bov. protein RefSeq 10

Experiment data Authors annotation
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/ Bov. Hucleatide RefSeqlD W guse EntreziD,bov. proiein RefSeq iD
Bov.Protein HefSeq ID

viookup viookup GSEL2853 x e
Bov.Mucleatide RefSeq 1D i
Cynression valies viookup vieokup homologeneSteer

M auseEntrezid
Baw Nucieotide Aefsaq D

mouselD GSEL2853
M ouse Entrezid
Expression values

Figure 3.5: Annotation procedure for GSE12853. File descriptions or names are in bold print. See text for
details.

expression expression
Entrez IDs value EntrezlDs value
1 a 1 a
1.2 b 2 b

—=> collapsing —=

3.4 C 3 mean (c,d)
3,9 d 4 C
] d

Figure 3.6: Illustration of collapsing of probes. Left table: before, right: after collapsing; each line represents a
probe. The expression value of Entrez ID “1” is “a” since this is the only unambiguous mapping of a probe to
“1”. Since no probe is mapped unambiguously to “3”, its expression value is the mean over the values of both

probes mapping to it. Symbols do not resemble true formats.

3.2.2.3.3 Handling probes targeting more than one gene If probes mapped to more than one Entrez
ID we ignored them if other probes existed which only mapped to this Entrez ID, but collapsed them if no such
probes existed (Fig. 3.6). We preferred unambiguous probes since the expression values for a gene would not be
disturbed by the expression values of other genes. On the other hand we preferred to use ambiguous values if
there was no other option to loosing genes from our analysis, especially such with high homology to others, so
that no unique probe for them existed.

This approach is therefore more conservative than expanding every entry to all its identifiers before collapsing
as suggested by Ramasamy (Ramasamy et al. 2008).

3.2.2.3.4 Performing a t-test and calculating effect sizes For each gene the p-value of an unpaired
student t-test assuming equal variances was calculated using the Statistics::Distributions CPAN package by
Michael Kospach and Matthias Trautner Kromann. As an effect size measure we calculated the fold change by
dividing the mean of CR by the mean of CON values.

For the two datasets that consisted of only one replicate (GSE904 and data from Hu on forebrain (Wu et al.
2008)) we only calculated effect-sizes.
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3.2.2.4 Quality control

3.2.2.4.1 Extracting quality control parameters A file containing certain characteristic values for each
dataset was built to control the quality of the original data and the quality of processing (The full table is found
in tab. 3.3):

“Probes before processing” is the number of probes after obtaining and annotating files for individual exper-

iments. “Genes after processing” is the number of genes for an experiment after processing it as described in
“3.2.2.3 Processing datasets, performing a t-test and calculating effect sizes”. “CON-samples” and “CR-samples”
are the numbers of microarray samples (replicates) for control and CR animals. “mean  CON” and “mean_CR”
are the mean expression values over all probes of control and CR samples respectively and “STDEV _CON” and
“STDEV _CR?” the corresponding standard deviations over the probes (not to be mixed up with STDEVs over
replicates). “percent overexpressed” and “percent underexpressed” give the number of genes over- and underex-
pressed at a p-value <0.05 according to the t-test and “effect size at 1-percentile” and “effect-size at 99-percentile”
are the 1. and 99. percentile of the effect size. The experiment names include the GEO-, ArrayExpress or ab-
breviated GAN-accession of the the record, they were created from and the selected experimental conditions if
more there was more than one in the study.
The quality was checked by searching the list for outliers. The number of probes on the arrays was between
about 9000 and 45000 and was lowered to a number of genes after processing which was about half of it, pre-
sumably mainly due to different probes targeting the same gene. Replicate numbers were between 1 an 11 and
about the same for control and CR samples in each dataset. The average expression value was between about
100 and 10000. Exceptions are the two datasets of the GSE11244 study which is because the expression values
were normalized to internal standard RNA values. In the dataset of the GSE6110 study expression values were
normalized to 1 so that the average is also lower than for the other studies here. The STDEV over the signal of
all probes normally was about two to three times the average signal. Between 1 and 25% of genes were found
differentially expressed at a p-value cutoff of 0.05 with the effect-size at the 1-percentile being about 0.9 to 0.5
(i.e. downregulation by 1/10 to %) and at the 99-percentile about 1.1 to 3.0 with the exception of GSE904 for
which these values were more extreme. This is probably due to the fact that there is only one replicate and
outliers have a higher impact on these values. For the other study with only one replicate by Hu this is not the
case, probably because the study was done on pooled samples which reduces variation.

3.2.2.4.2 Comparison to genes found differentially expressed in the original study To further check
against any flaws in our analysis we checked the genes found against those published as differentially expressed
in each corresponding study. 100% overlap was however not expected since the studies often used different sta-
tistical approaches from ours.

To compare findings we downloaded lists of genes described as differentially expressed from tables in the corre-
sponding publications or their supplementary materials.

For Dhahbi, 2005 and Edwards, 2007 no list of differentially expressed genes from the original study could be
found. For some other studies only differentially expressed genes for some conditions (e.g. ages) could be ob-
tained. In these cases we tried to extract information on genes found differentially expressed form the text of the
original publication. Studies for which no information at all about genes differentially expressed with caloric re-
striction was given are GSE904, GSE6110, GSE18297, GSE14202, GSE17309, GDS355+GDS356 and GDS2612.
This analysis was done taking about 4 random genes published to be differentially expressed and checking them
against the p-values and effect sizes found in our study. Considering that the statistical approach between the
original and our study differed we only required about 2 or 3 of these genes to be statistically significant or nearly
statistically significantly expressed in the same direction and accepted 1 or 2 genes not found significant in our
analysis.

We investigated the case more closely if genes were found statistically significant in the other direction (up or
down) than in the original study, which was the case for GDS1808 (Dhahbi, 2005) where 4 of 10 genes mentioned
in the paper were found statistically significantly differentially expressed in the other direction in our study. The
authors of the original study kindly provided us the original data and these were consistent with our findings
calculated from the GEO data rather than the results presented in the publication. Therefore we kept our results
for further steps.

All other studies were of satisfying consistency with our results.

30



over- under-
probes (CON- expresse [expresse [effect size |effect-size
before genes after [sample |CR- mean_C|STDEV _C|mean_ [STDEV C |d d at 1- at 99-

File processing [processing |s samples ON ON CR R (p<0.05) [(p<0.05) [percentile |percentile

EMEXP-748_liver.csv 19445 10538 3 3] 138.2] 498.3] 1375 498.6 10.1 10.7 0.5 2.2
EMEXP-748 hypothalamus.csv 19445 10538 3 3] 188.6] 397.8 189.1 396.3 4.8 5.3 0.6 1.6
EMEXP-748 muscle.txt 19445 10538 3 3] 163.6] 498.6] 164.3 500.5 7.9 7.2 0.5 2.0]
EMEXP-748_colon.csv 19445 10538 3 3] 171.5[ 425.1] 1714 423.7 5.8 5.2 0.6] 1.6
GSE11244fixed.high.cal.txt 10264 3215 11 8 11.3 80.2] 10.7 73.7 15.2 17.1 0.6 1.6
GSE11244true.ad.libitum.txt 10264 3215 4 8 10.5 65.3] 10.7 73.7 12.3 13.0] 0.6] 1.8
GAN_EPACRR_Neocortex_30mo.txt 9257 9257 3 3| 657.7] 1243.0] 690.7 1461.9| 15.2 12,8 0.5 1.9
GSE6110 aged.txt 9942 7655 4 4 1.0 0.4] 1.0] 0.4 9.3 23.3 0.5 1.4
GDS1261Amesdwarf.txt 12488 10533 8 8| 914.5| 2297.2| 919.9] 2296.6 3.1 3.9] 0.7 1.3
GDS1261normal.txt 12488 10533 7 8] 913.5| 2322.9] 933.6] 2376.8 7.5 8.2 0.6] 1.4
GDS1808CR8.txt 12488 10533 4 4 948.1] 2508.8] 975.8] 2644.3 4.5 4.4 0.6 1.5
GDS1808LTCR.txt 12488 10533 4 4] 948.1] 2508.8/1006.5] 2854.2 10.5 11.7 0.6] 1.7
GDS5241 2h.txt 12488| 10533 2 2] 1431.8] 3431.6/1599.6] 4348.2 49| 3.9| 0.5 1.9
GDS5241 4h.txt 124@‘ 10533 2 2] 1454.7] 3460.1]1397.0] 3177.7 3.4 33| 0.7 1.9
GDS241 12h.txt 12488 10533 2 2] 1538.7] 4132.3[1499.2[ 3989.3 2.7 2.5 0.5 2.0]
GDS52612.txt 22690 15253 5 5] 852.8] 2420.2] 892.4] 2685.3 11.4] 9.§] 0.6 1.8
GDS2681.txt 45101 23339| 3 3| 3042.1]12186.7/2969.3] 9568.1 QEI 17.5] 0.2 1.8
GDS2961_2962_16months.txt 16896 8265 10 10] 1276.2] 1813.2|1277.0] 1844.1 0.9] 3‘2<| 0.7 1.2
GDS2961 2962 24months.txt 16896 8265 10 8/ 1278.4] 1919.5[1278.8] 1742.3 8.4] 5.9] 0.7 1.8
GDS52961 2962 6months.txt 16896 8265 10 9] 1284.1] 1931.2/1280.7] 1881.7 5.7 5.6] 0.8] 1.4
GDS5355_356.txt 13179] 7089| 5 5] 5056.8[10789.8]5168.5[ 11212.6) 5.4 5.0] 0.6] 1.6
GSE11291gastroecnemius.txt 45101 23339 5 5[ 1196.9] 4280.1]1281.8] 4634.1 231 9.7 0.6 3.0]
GSE1129Theart.txt 45101 23339 5 5[ 1320.3] 4979.4[1313.9] 5063.9| 15.3 11.7 0.6 2.6
GSE11291neocortex.txt 45101 23339 5 5| 832.3| 2094.9] 853.3] 2244.6 12.7 15.0] 0.6 1.6
GSE14202exercise.txt 22690 15253 9 9| 889.6] 2727.3] 867.2] 2515.0 5.4 6.1 0.6] 1.3
GSE14202no_exercise.txt 22690 15253 10 9| 880.3| 2674.6| 878.3] 2587.6 4.7 7.7 0.7 1.3
GSE8426Cerebellumlbémonths.txt 16896 8265 10] 10[ 884.4] 1293.5] 890.5] 12455 0.7 0.2 0.8] 1.3
GSE8426Cerebellum24months.txt 16896 8265 9 8] 877.0] 1233.0] 884.7| 1228.0 2.1 0.3 0.8] 1.5
GSE8426Cerebellumémonths.txt 16896 8265 10 9| 885.5] 1197.5] 883.0] 12351 0.0] 0.1 0.8 1.2
GSEB8426Cortex16months.txt 16896 8265 10 10| 903.6] 983.2] 898.3 981.6) 0.3 0.4] 0.9] 1.1
GSEB426Cortex24months.txt 16896 8265 10 8] 903.0[ 1051I.1] 905.0[ 1005.1 1.3 0.5 0.9] 1.2
GSE8426Cortexbmonths.txt 16896 8265 10 9] 902.2[ 990.1] 901.7] 1010.0 0.5 0.8] 0.9] 1.1
GSE8426Hippocampuslbémonths.txt 16896 8265 10] 10[ 893.5] 1201.1] 878.3] 10935 20.7 9.2 0.8] 13
GSE8426Hippocampus24months.txt 16896 8265 10] 8] 885.0] 1169.0] 879.3] 1145.6 0.6] 0.9] 0.9] 1.1
GSE8426Hippocampusémonths.txt 16896 8265 10 9] 883.7| 1123.4] 882.9] 1127.0 0.7 0.4] 0.9] 1.1
GSEB4265pinal.cordl6months.txt 16896 8265 10 10| 878.9] 1497.2| 875.8] 1487.1 2.3 2.4 0.9] 1.1
GSEB84265pinal.cord24months.txt 16896 8265 10 7] 874.1] 1493.6] 873.3] 1607.2 1.7 5.3 0.8] 1.2
GSEB4265pinal.cordémonths.txt 16896 8265 10 8] 873.7] 1358.2] 874.8] 1393.0 3.0] 35 0.8] 1.2
GSEB4265triatuml6months.txt 16896 8265 10 10[ 882.5] 1438.5[ 878.9] 14822 0.1 1.1 0.9] 1.1
GSE84265triatum24months Ext 16896 8265 10] 8] 916.8] 1345.8] 888.9] 14436 0.1 0.2 0.5 1.2
GSE84265triatumémonths.txt 16896 8265 10 9] 890.9] 1472.6 893‘9_| 1373.9 0.8 0.0] 0.9] 1.2
GSE18297 Imonth I0perc.txt 10912 8941 2 2] 100.3] 335.5] 128.§ 424.4 5.1 0.8 0.5 2.5
GSE18297 1month_20perc.txt 10912 8941 2 2| 100.3] 335.5] 130.4] 425.1 4.8] 0.7 0.6] 2.5
GSE18297 1month_30perc.txt 10912 8941 2 2| 100.3] 335.5] 129.1 422.1 0.8] 0‘5<| 0.5 2.5
GSE18297 1month_5perc.txt 10912 8941 2 2| 100.3] 335.5] 146.5 472.7 1.3 0.8] 0.5 2.7
GSE18297 lweek 10perc.ixt 10912 8941 2 2] 104.6[ 358.7] 125.6 414.5 EE‘ 1.0 0.6 2.5
GSE18297 lweek 20perc.ixt 10912 8941 2 2] 104.6[ 358.2] 133.2 441.1 10.9 1.4 0.6] 2.6
GSE18297 Iweek 30perc.txt 10912 8941 2 2] 104.6] 3582 99.7 336.6] 1.7 25 0.5 2.4
GSE18297 Iweek Sperc.txt 10912 8941 2 2] 104.6] 358.2] 88.4 299.3 1.5 2.7 0.5 2.2
GSE6718adipose_tissue.txt 17034 11834 5 7] 283.7] 1054.2] 306.7] 1080.4 20.2 11.5 0.7 1.8
GSE6718heart.txt 17034 11834 7 7] 334.3] 1404.0] 342.2] 1419.0 5.2 25 0.9] 1.2
vlookup_table GSE9121 liv4.txt 17034 11834 9] 4] 631.0] 2681.8] 581.3][ 2607.0 9.9 29.2 0.5 1.3
vlookup_table GSE9121 adip.txt 17034 11834 4 4] 733.0] 2641.8] 683.3] 2538.9] 1.7 5.8 0.7 1.2
viookup table GSE9121 liv10.txt 17034 11834 9 5| 631.0] 2681.8| 681.0] 2786.8 25.6 11.9] 0.7 1.6
GSE7502testisemonths.txt 25577 10217 2 2] 9390.7]29877.7]9243.4] 28859.3 3.2 1.7 0.8] 1.2
GSE75020vary24months.txt 21264 12163 2 2| 5145.5/16535.8/5107.2| 17335.3 2.6] 3.3 0.7 1.3
GSE7502testis1 6months.txt 25577 10217 2 2| 9094.2|29409.3[9115.9| 29452.9] 3.3 4.0] 0.8] 1.3
GSE7502testis24months.txt 25577 10217 2 2| 9126.6[28631.7/9017.7| 29227.0 4.0] 5.6] 0.7 1.3
GSE75020varybmonths.txt 21264 12163 2 2] 5671.3[17624.75523.2| 19762.5 31 5.7 0.6] 1.3
GSE75020varylbmonths.txt 21264 12163 2 2] 5225.2[17119.5/5289.9] 17062.5 43 4.8] 0.7 1.3
GSE17309.txt 357 265 4] 4] 566.6] 1906.9] 538.5[ 1970.5 1.5 3.8 0.7 1.2
oneReplicate_ tabGSE904.txt 16896 11345 1.0 1.0 399.7] 947.1] 408.8 735.7]-- -- 0.4] 6.1
oneReplicate_CR PS RAW DATA.xIs (Hu) 8882 8237 1.0 1.0/ 4183.3 13641.8 4088.7 12427.3- - 0.5 2.4

Table 3.3: Table listing characteristics for each dataset for quality control. See text for details.
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3.2.2.5 Excluding genes differentially expressed with age

Since CR is a mechanism known to counteract the effects of aging it is expected that some of the gene expression
changes by CR in older organisms are due to the reversal of changes normally occurring with age, e.g. while
the expression of a certain gene goes down with age in ad libitum fed animals, it does not in CR fed animals.
This gene would then be found differentially expressed between old CR and AL-animals (Fig. 3.7). We aim at
distinguishing those genes from others found differentially expressed with CR which are supposed to provide a
mechanistic explanation for the effects of CR rather than are a consequence of it.

We therefore decided to remove all genes found differentially expressed between older and younger AL animals

from the genes differentially expressed with CR in the opposite direction in the older animals. This was done
using exclude on_ criteria_ v2.1.pl (supplement 2). The younger animals (mice or rats) chosen for the comparison
were normally about 4 months old and from the same study. If the study did only contain old animals no genes
differentially expressed with age were excluded, since it is nearly impossible to find other studies on changes with
aging under the same conditions (same strain, age, etc). We chose about 4 months old animals as a control even
if younger animals were available, so that the results were not disturbed by changes between non-fully grown and
adult animals.
The t-test for the old vs. young comparison was done the same way and applying the same cutoffs as the one for
the CR vs. AL comparison, following the logic that if the gene is significantly differentially expressed in CR only
because of ameliorating changes in age dependent gene expression, then these age dependent changes should be
significant at the same threshold, given that the sample sizes are similar. This was the case for all datasets. The
percentages of genes differentially expressed in opposite direction with age and CR (at p <0.05 and effect size >
1.5-fold) and therefore excluded is given in table 3.4.

For more information on the number of genes differentially expressed with CR, age and with CR and age in
opposite direction see “3.2.5 Relationship between differential expression with CR and age”.

3.2.3 Processing gene lists from studies for which expression data were not ob-
tained

For studies for which we could not obtain expression data, but only lists of genes differentially expressed according
to the statistical test in the original study, we downloaded these lists plus any statistical parameter (e.g. effect-
size) if available. Since these lists were extracted from publications or especially corresponding supplementary
material these studies are also called “supplemental studies” and corresponding genes “supplemental genes” in
the following.

Using expression data is preferable to these data since they are obtained by different statistical methods and
criteria and data on non-differentially expressed genes are missing.

Annotation to mouse Entrez IDs was done as for the raw data. For the only non-mouse dataset on rhesus monkey
transcripts, assayed on a human microarray platform (Kayo, 2001), human Entrez IDs were added first using
annotation from BioMart and those mapped to mouse Entrez IDs using mapping files from HomoloGene. Mouse
Entrez IDs were added to all other files by looking up mouse Entrez IDs corresponding to the GBACCs (and
if given Gene Symbols) in BioMart mapping files using use vlookup mod4.pl with vlookup mod4 3.pm (See
“3.2.2.2 Annotating data with identifiers common to all data files” and sub-chapters for details).

For lists of genes differentially expressed in hypothalamus provided by Hu ((Wu, P. et al. 2009); note: these are
different data than the raw data provided by Hu on forebrain (Wu et al. 2008) mentioned above) the only given
identifiers were Gene Names and Affymetrix probe IDs. We were not able to map any of them to Entrez IDs.
Therefore datasets from this study had to be excluded from further analysis.

Since p-values -if given- were determined by different statistical tests, some of them multiple testing corrected,
others not, we replaced -or added- them as p = 0.001, i.e. a significant p-value and therefore only evaluated
the genes by their effect-sizes and the fact that they were stated as over- or underexpressed. (If effect sizes
for underexpresed genes were given as negative values, e.g. -2 we converted them to the corresponding values
between 0 and 1, e.g. —(_—12) = 0.5. We accepted that supplement genes may have been chosen with stricter or
less strict statistical criteria than in our analysis. For attempts to assimilate our statistical criteria to those used
for supplemental data see “3.2.4.2 Combining expression data prepared from raw data and supplemental lists of
differentially expressed genes”.
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Figure 3.7: (Dummy figure) Example demonstrating the reasoning, why genes differentially expressed with
age were excluded. a, No differential expression with age, but with CR; this gene is expected to contribute as
mechanistic reason to the effect of CR; b, Difference between old AL and old CR, because the gene is differentially
expressed with age under AL, but not CR conditions; this gene is expected to be differentially expressed only as
an effect of CR
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CR data | total genes | % excluded |

GSE8426Cortex24months.txt 8265 0
GSE8426Spinal.cord16months.txt 8265 0
GSE8426Hippocampus24months.txt 8265 0
GSE8426Striatum24months.txt 8265 0
GSE8426Cerebellum24months.txt 8265 0
GSE8426Striatum16months.txt 8265 0
GSE8426Spinal.cord24months.txt 8265 0
GSE8426Cortex16months.txt 8265 0
GSE8426Hippocampuslémonths.txt 8265 0.01
GSE8426Cerebellum16months.txt 8265 0.04
GSE7502testis16months.txt 10217 0.04
GSET75020varyl16months.txt 12163 0.04
GSE6718heart.txt 11834 0.08
GSET75020vary24months.txt 12163 0.18
GSE7502testis24months.txt 10217 0.26
GSE11291neocortex.txt 23339 0.32
GAN_ Expr Profile Aging CR_Retar- 9257 0.86
dation Neocortex 30months.txt
GDS2681.txt 23339 1.00
GDS355 356.txt 7089 1.18
GDS2961 2962 24months.txt 8265 1.56
GSE11291gastrocnemius.txt 23339 1.73
GDS2612.txt 15253 1.86
GSE11291heart.txt 23339 1.90
GSE6110.txt 7653 2.21
GSE6718wat.txt 11834 4.69

Table 3.4: Number of genes excluded because of differential expression with age in opposite direction. For all
datasets for which data on younger AL-animals existed genes were excluded that were differentially expressed
with age in AL-animals in opposite direction of differential expression with CR in the older animals. The total
number of genes in the dataset and percentage of genes excluded are given.
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3.2.4 Estimating the significance of the number of studies in which genes were
differentially expressed

To determine if a gene was found differentially expressed in more studies than expected by chance we first
counted for each gene in how many studies its expression was measured and in how many it was found over-
or underexpressed at a p-value of p <0.05 and a fold-change of at least 1.5 (see “3.2.4.1 Determining t-test
p-value and effect-size cutoft” on how these cutoffs were chosen). We obtained the probability of finding a gene
over- / underexpressed at least this often by random chance (binomial p-value) from the cumulative binomial
distribution:

B
|
—

P=1=Y (3)spl=(1l—ps) " (3.1)
0

8
Il

For this we used the success probability (ps) calculated by dividing the number of genes appearing over- /
underexpressed in all studies by the total number of appearances of genes in all studies (i.e. a gene differentially
expressed / tested more than once is counted for each time it was differentially expressed / tested).?

To find an appropriate cutoff for the binomial p-value we repeated the binomial test 100 times on scrambled
data. By dividing the mean of the number of genes found with scrambling below a certain binomial p-value by
the number of genes found below it on the real data we obtained a FDR estimate. We calculated the FDR for
some different binomial p-values and decided on a cutoff of 0.0005 which corresponds to a FDR of 0.041 for over-
and 0.062 for underexpressed genes. These calculations were done using CR_binomial UN scrambled v3.1.pl
(supplement 2).

Two important decisions had to be made for the binomial test:

1. How to choose the t-test p-value and effect size cutoff.

2. How to combine the genes from supplemental data with those for which the t-test was performed.

3.2.4.1 Determining t-test p-value and effect-size cutoff

In order to determine which genes to consider over- and underexpressed we needed cutoff values for the t-test
p-value and / or the effect-size. Note that the criterion for the final results of our analysis is not the t-test
combined with effect-sizes, but are the p-values of a binomial test performed on the number of studies in which a
gene is found under- / overexpressed by the t-test and / or effect-sizes in relation to the total number of studies
in which the gene was tested. Therefore there was no need to select the t-test p-value cutoff in the common way,
e.g. as p <0.05 after multiple testing correction. Instead the binomial test is expected to buffer the choice of the
t-test p-value and effect-size cutoffs, i.e. if the thresholds are set relaxed, the success probability (ps in formula
3.1) in the binomial test will be higher, so the number of times a gene is found differentially expressed (k) in
relation to tested (n) has to be high to be significant for the tested gene. If on the other hand strict cutoffs are
selected ps will be low, so that the k may be smaller in relation to n and still be significant in the binomial test.
Nonetheless, as considering extreme cases shows, the choice of these cutoffs is not completely deliberate.

If choosing extremely relaxed cutoffs ps might get so low that () with low n (e.g. (g)) may not be meaningful
and not significant, while e.g. (Z) will be significant, therefore discriminating against genes tested less often and
increasing false negative rates. It would be preferable to find cutoffs so that (?) with low (but not too low) n
are meaningful. If however extremely strict cutoffs are chosen finding a gene differentially expressed in only one
or two studies might suffice for considering it significant. This would contradict the aim of the meta-analysis. It
would allow false positives in the original studies to also become false positives in the meta-analysis which is to
be avoided. This may be one of the reasons why rather relaxed cutoffs were chosen in Magalhaes, 2009.

The choice of t-test p-value and effect-size thresholds is therefore a way to determine if the significant results of
the meta-analysis should rather be such that were found very reliable in only a few studies or such that were
found under more relaxed conditions in a higher number of studies. For our aims the emphasis is on the second
point which suggests the use of relatively relaxed cutoffs. However as mentioned above the analysis should still
be sensitive enough to detect genes only tested in a relatively low number of studies.

A means to control for false positives is the FDR, calculated by dividing the number of genes below a certain

3 A more accurate mathematical procedure would include using the hypergeometric instead of binomial distribution. However as
n is small compared to the total number of genes the use of the binomial distribution is justified.
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binomial p-value cutoff found on scrambled data by the number found on the real data. To assay different cutoff
criteria we examined the FDRs for three given binomial p-value cutoffs (0.0001, 0.0005 and 0.001) for different
t-test p-value and effect-size pairs (0.05,2; 0.1,2; 0.05,1.5; 0.1,1.5; 0.1,1), to see which settings in general lead to
higher or lower FDRs and to maximise the number of genes found differentially expressed at a given FDR (i.e.
Type II error for a given Type I error rate). As depicted in fig.. there is no clear trend over the different binomial
p-values that either the strict or relaxed ones of our cutoffs are preferential as to their FDR or number of genes
found. This supports the argumentation that the binomial test is rather robust to the chosen t-test p-value and
effect-size cutoff.

Importantly however we had to consider that this study includes lists of genes obtained from publications or
supplements, for which the analysis was not done by ourselves and therefore statistical tests with different cutoffs
were applied. If we wish that all studies contribute with a similar weight to the meta-analysis, we had to make
sure cutoffs were chosen in our study that resemble those as closely as possible. We expected that to achieve
this, the percentage of genes found over- or underexpressed should be similar. For the studies obtained from
literature we calculated these numbers from the numbers of genes given as differentially expressed and the total
number of genes on each particular array. We used the number of genes given as differentially expressed before
annotation since there was no way of estimating the total number of genes in the datasets after annotation (i.e.
how many of the total genes would have been lost during annotation). We assumed a similar probability of loss
of a gene during annotation for the complete dataset as for the differentially expressed genes.

For our own study the percentage of over- and underexpressed genes in each dataset was calculated from the
number of genes found differentially expressed and the total number of genes after annotation.

We used datasets with more than one replicate (all but two datasets), because a t-test is not possible on
datasets with only one replicate.

Results are shown in fig. 3.8. It was found that the percentages of genes from literature found over- or
underexpressed resemble percentages we obtained with rather strict cutoff settings.

Even though the numbers of genes differentially expressed at a t-test p-value cutoff of 0.05 and an effect-size cutoff
of 2 would better fit the results of the supplemental data, we chose 0.05 for the p-value and 1.5 for the effect size.
This is because of the argument above that with very low success probabilities a gene can be found significant
in the binomial test even when only over-/underexpressed in very few studies. The aim of the meta-analysis is
however to find genes consistently differentially expressed over several studies (and conditions). For the 0.05, 2
selection the average percentage of differentially expressed genes (= success probability * 100) is around 0.85%
before and 1.0% after including supplemental data, for the 0.05, 1.5 selection about 2.0% before and 2.4% after
adding supplemental data. (Success probabilities rise when including supplemental data since these only consist
of differentially expressed genes.)

Two datasets (data from Hu on Hypothalamus and GSE904) were based on unreplicated samples. Therefore
no t-test could be performed and i.e. no p-value cutoff used for selecting over- or underexpressed genes. Since
genes would be selected in a less strict way if only using the same effect-size cutoff as for the other data, we
decided that a stricter effect-size threshold should be chosen. The way to find an appropriate threshold was to
choose it in a way that a similar number of genes would be found over-/underexpressed as in the other studies.
However the percentage of genes found differentially expressed for different thresholds in the two datasets was
always much higher for GSE904, especially for overexpressed genes. The fact that data from Hu were from pools
of 3 hypothalami, while the data in GSE904 were not pooled suggests higher reliability of the first and the use
of different cutoffs for the two datasets. We decided on an effect-size cutoff of 1.7 for the data from Hu, at which
2.1% of genes are overexpressed and 1.4 underexpressed and of 4.0 for GSE904, at which 3.9% are over- and 0.6
are underexpressed.

3.2.4.2 Combining expression data prepared from raw data and supplemental lists of differentially
expressed genes

The issue of how to combine lists of genes on the one hand created by calculating effect sizes and t-test p-values
from expression data and on the other hand obtained directly as a list of differentially expressed genes from
publications and supplements (“supplemental genes”) is not trivial.

It is essential for the binomial analysis not only to have data of differentially expressed genes, but also on non-
differentially expressed ones, so that both the “number of successes” (k) and of “trials” (n) (in 3.1) for each gene
can be given. The data of non-differentially expressed genes were however not available from published lists.
There are several possibilities to combine the data, all with their own drawbacks:
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Figure 3.8: FDRs (red columns) and percentages of genes found (a,) over- or (b,) underexpressed in significantly more studies than expected by chance.
Different columns show, when genes are selected at different t-test p-value and effect size cutoffs (0.05,2; 0.1,2; 0.05,1.5; 0.1,1.5; 0.1,1). Different panels
show different binomial test p-value cutoffs. Created from studies with at least 2 replicates



1. The differentially expressed supplemental genes are added to the genes from raw data, ignoring that other
unknown genes were tested in the supplemental studies. This is therefore an analysis as if no other genes
than those given in the lists were studied. The success probability ps in the binomial test is the number
of over- / underexpressed genes in these combined data divided by the size of the data. The probability
ps is therefore greater than the probability of finding a gene differentially expressed in a microarray study.
The binomial probability cannot be interpreted as the probability of finding the gene at least this often
differentially expressed by chance, when tested in the given number of studies. As a consequence the
binomial p-value rises for genes not in the supplemental data, when including supplemental genes. However
the FDR is estimated by scrambling the same data, so that the binomial p-value cutoff will be higher at
the same FDR compared to when supplemental data are not included.

2. Since the total number of genes tested in supplemental studies can be found in the literature, the analysis
in 1. can be modified: Instead of p, as described above, a ps can be used which is the number of genes
found over- / underexpressed divided by the number of genes tested in all studies. Therefore p, is smaller
than the frequency of differentially expressed genes in the combined list, which is used for scrambling. This
interpretation of ps accounts for the fact that more genes were tested in the supplemental data than those
given as differentially expressed. However since we do not know which genes were tested in the supplemental
studies and found non-differentially expressed, their binomial p-value would be calculated too low using the
lower ps (i-e. this approach is inconsistent in that ps accounts for the unknown non-differentially expressed
genes, but n cannot). However, as in 1., choosing the p-value cutoff from a FDR calculated by scrambling
will ameliorate the problem of generally underestimated binomial p-values.

So far scrambling was always done on a list, that is enriched in differentially expressed genes, because it
does not contain the unknown non-differentially expressed genes from the supplemental data. Considering
the existence of these genes might lead to generally lower FDRs. Two possibilities are:

3. Lists from supplemental data are filled up with Entrez ID substitutes with non significant effect sizes.
Because they are not significant, they will have binomial p-values = 1 in the analysis and act as non-
significant genes in the scrambling process. However this is an approach assuming that all unknown genes
in the supplemental data are different from the genes in the other studies. In reality probably most are the
same as in the other studies. Therefore this approach increases the number of non-differentially expressed
genes, but it does not account for the fact that these might be the same as other genes in the analysis.
Therefore this approach does not fit for this situation.

4. In order to overcome the problem of 3. the incomplete lists of supplemental data has to be filled with
random Entrez IDs, already existing in the lists of obtained data, with non-significant effect-sizes. However
this would introduce randomness already at the level of unscrambled data and is therefore to be avoided.

The problems in 3. and 4. show that it is not feasible to include the non-differentially expressed genes of the
supplemental studies as long as they are not known.

We decided that the accuracy and interpretation of the binomial p-values is of minor importance for our study, as
long as the FDR, can be correctly estimated (in contrast to the drawbacks of 3. and 4.) and used to decide on an
appropriate p-value cutoff. Since 2. assumes that more than the given number of tests were done (decreasing ps),
but cannot increase the number of times certain genes were tested (increasing n) we choose 1. as more consistent
within itself and defined ps as the probability of a gene being differentially expressed within the combined data.

3.2.5 Relationship between differential expression with CR and age

The importance of CR comes from its ability to extend life-span in several organisms. Therefore we examined
the relationship between differential expression with CR and age. In particular we tested if more genes are
differentially expressed in opposite direction with age and CR than expected by chance in each dataset. We
argued that a gene will be differentially expressed between AL and CR in old animals if differential expression
with age in AL animals is ameliorated by CR. Differential expression will be in opposite directions in this case.
See “3.2.2.5 Excluding genes differentially expressed with age” for a detailed explanation. Note that this approach
does not draw conclusions from negative results, as it is the case when looking for genes that are differentially
expressed with age under AL, but not under CR conditions.

For each gene in an annotated dataset we did a t-test for caloric restriction vs. ad libitum fed for old animals
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and another t-test for young vs. old AL-animals. For p < 0.05 (without multiple testing correction) and a fold-
change of at lest 1.5 we extracted genes found differentially expressed in both tests and for which the direction
of differential expression was opposite, so that therefore the expression in an old animal under CR resembles
that of a young animal. (See “3.2.4.1 Determining t-test p-value and effect-size cutoft” for an explanation why
binomial test procedures are robust for the choice of cutoff values.) The genes obtained here are the same as
those excluded from the meta-analysis of CR in “3.2.2.5 Excluding genes differentially expressed with age”. See
this section for details.
We found that for our settings depending on the dataset between 0 and 67% of genes differentially expressed with
CR were differentially expressed in opposite direction with age. (However only up to 4.69% of all studied genes
were differentially expressed with CR and age in opposite directions. See “4.2.2.5. Excluding genes differentially
expressed with age” and table 3.4 therein).
We calculated the probability of obtaining an overlap at least this great by random chance by using the cumulative
binomial distribution, taking the number of genes over- / underexpressed with CR and differentially expressed
in opposite direction with age as successful trials, the number of genes over- / underexpressed with CR alone as
trials and the probability of a gene being under- / overexpressed with age as the probability of success. For these
calculations we used exclude on_ criteria_v2.1.pl (supplement).
P-values obtained were <0.005 in most cases (table. 3.5). The number of studies is not high enough to draw
conclusions e.g. in which tissues expression changes are most ameliorated with age, etc. since each tissue was
only tested a few times and there are other variables that vary between the studies. Nonetheless the data suggest
that there is indeed a CR-effect on the level of gene expression for all tissues except some brain tissues. However
it should be noted that the number of genes changing expression with age in these brain tissues is generally
low so that there is little need for CR action. Interestingly the CR-effect is also less marked in the two ovary
datasets. A possible interpretation might be that many genes changing expression in these datasets may do so
in a tissue-specific programmed way which is not counteracted by CR.

Note however that this short section on the relationship between differential expression with CR and age is
only meant to give a rough idea what can be achieved from such a study and must still be done in a more in
depth way.

3.2.6 Functional analyses
3.2.6.1 Determining functional categories enriched in the meta-analysis datasets - GO-analysis

In contrast to determining functional categories in which determined candidate genes were enriched (as in “3.2.6.2
Putting genes found differentially expressed with CR into functional categories - DAVID-analysis”) we here asked
if the functional (gene ontology (GO)) categories themselves, as the basic units of the binomial test, were found
overrepresented (for over- or underexpression) more often than expected by random chance. We therefore com-
pared the number of times a GO-category is found associated with an over- / underexpressed gene in the datasets
to the number of times it is found associated with any gene:

A table matching GO-IDs to genes was prepared the following way: A file mapping each Entrez ID to corre-
sponding GO-IDs with one GO-ID per line was downloaded from the NCBI FTP* (19/07/10). We created a file
mapping each Entrez ID to a comma-separated list of all corresponding GO-IDs using GOparser _modified.pl and
CR_GO_UN _scrambled v1.2.pl (supplement 2). Independently from this we created a list of only those genes
appearing in the datafiles using CR_binomial UN _scrambled v3.1.pl (supplement 2) and added the GOs to
this list with vlookup mod4.3.pm (supplement 2).

We counted a GO-ID each time it appeared associated with any over- / underexpressed genes in any dataset
(counting it twice if the same gene associated with this GO was found in different studies). Then we counted the
number of times it appeared associated with any gene studied. We performed a binomial test on those numbers
(see 3.1), calculating probabilities (p-values) that a gene would be found over- / underexpressed at least this often
(k) by random chance. The number of trials (n) was the total number the GO appeared associated with any gene
in the datasets and the success probability (ps) the ratio of GO-IDs associated with over- / underexpressed genes
to GO-IDs associated with any gene. The cutoffs for over- / underexpression were the same as in “3.2.4.1 Deter-
mining t-test p-value and effect-size cutoff”. This process was done using CR_ GO _UN _scrambled v1.2.pl.
FDRs as a criterion for deciding on cutoffs for the binomial p-value were calculated by dividing the mean number

4ftp://ftp.ncbi.nih.gov/gene/DATA /gene2go.gz
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09

CR data total genes CR up aging CR up, CR up, p-value CR aging CR down, CR down, p-value
down aging aging down up aging up aging up/
down down / aging up
aging
down
GSE11291heart.txt 23339 2015 673 239 0.36 <0.001 974 660 204 0.31 <0.001
GSE6718WA'T.txt 11834 876 616 374 0.61 <0.001 316 545 181 0.33 <0.001
GDS2612.txt (skeletal muscle) 15253 693 427 183 0.43 <0.001 448 230 101 0.44 <0.001
GSE11291neo- cortex.txt 23339 431 267 31 0.12 <0.001 1175 293 43 0.15 <0.001
GSE7502testis24mo.txt 10217 45 37 10 0.27 <0.001 64 85 17 0.20 <0.001
GDS2961 2962 24mo.txt 8265 304 115 63 0.55 <0.001 97 278 66 0.24 <0.001
(thymus)

GSE11291gastro- cnemius.txt 23339 4150 685 351 0.51 <0.001 1119 368 52 0.14 <0.001
GDS2681.txt (cochlea) 23339 1445 111 50 0.45 <0.001 3651 275 184 0.67 <0.001
GSE6110.txt (kidney) 7653 176 900 59 0.07 <0.001 354 566 110 0.19 <0.001

GDS355 356.txt (kidney) 7089 196 168 28 0.17 <0.001 193 200 56 0.28 <0.001

GAN_Expr Profile Aging 9257 683 169 31 0.18 <0.001 637 229 49 0.21 <0.001

CR_ Retardation  Neocortex

30mo.txt
GSE7502testis16mo.txt 10217 31 6 2 0.33 <0.001 10 57 2 0.04 0.001
GSE8426Hippocampusl6émo.txt 8265 23 1 1 1.00 0.003 2 0 0 / /
GSE6718heart.txt 11834 7 203 1 0.00 0.11 12 574 9 0.02 <0.001
GSE75020varyl6mo.txt 12163 32 458 3 0.01 0.12 57 302 2 0.01 0.42
GSET75020vary24mo.txt 12163 26 651 2 0.00 0.41 74 302 20 0.07 0.00

GSE8426Spinal.cord16mo.txt 8265 2 6 0 0.00 1 2 3 0 0.00 1

GSE8426Cerebellum?24mo.txt 8265 8 7 0 0.00 1 3 270 0 0.00 1

GSE8426Spinal.cord24mo.txt 8265 1 39 0 0.00 1 15 55 0 0.00 1

GSE8426Cerebellum16mo.txt 8265 3 8 0 0.00 1 7 35 3 0.09 <0.001

GSE8426Cortex24mo.txt 8265 3 0 0 / / 0 0 0 / /
GSE8426Hippocampus24mo.txt 8265 0 1 0 0.00 / 1 0 0 / /
GSE8426Striatum24mo. txt 8265 0 0 0 7 / 0 2 0 0.00 /
GSE8426Striatum16mo.txt 8265 0 1 0 0.00 / 2 0 0 7 /
GSE8426Cortex16mo.txt 8265 0 1 0 0.00 / 1 1 0 0.00 1.00

Table 3.5: Number of genes changing expression with CR, aging and ’aging and CR in opposite direction’. Ratios of genes changing in opposite direction
of all genes changing with age and probabilities (p-value), that at least this many would be found by chance are also shown. "/" indicates cases in which
a binomial test is not reasonable since either the number of trials or the success probability is 0.




of GOs found over- / underexpressed by scrambling 100 times by the number found for the unscrambled data.
We selected a binomial p-value threshold of 0.001 which corresponded to a FDR of 0.023 for GOs for over- and
0.029 for GOs for underexpressed genes.

While the enrichment analysis on candidate genes (see next section) tries to classify the genes found in the
meta-analysis and therefore to find a possible explanation, why they might have been found, this one might find
categories important for the mechanism of CR which might exhibit their action through different members of
this category in different circumstances. E.g. while gene A might be overexpressed with CR in liver, gene B of
the same category might be overexpressed with CR in kidney.

3.2.6.2 Putting genes found differentially expressed with CR into functional categories - DAVID-
analysis

Since the relative large lists of genes differentially expressed with CR are hard to interpret, we used the Functional
Annotation Tool of the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Dennis et
al. 2003) to put them into functional categories (21/07/10)(see also “2.1.5.3 Introduction to DAVID”).

We separately uploaded the lists of genes enriched for overexpression and underexpression (binomial p-value <
0.0005) and a list of all genes used in the studies in the form of mouse Entrez IDs and ran the analysis under
default settings.

We obtained the “Functional Annotation Chart”, a list of functional categories enriched in the input genes, and
“Functional Annotation Clustering”, clusters of those categories according to the genes they have in common.
We acquired them by running the program first on the databases (e.g. for GO-terms, pathways, diseases, tissues
etc.) selected by default and then specifically for KEGG and BIOCARTA pathways.

3.2.7 Determining tissues contributing to enrichment of genes for over- or under-
expression

As already mentioned there are several covariates, varying between the different datasets in our meta-analysis, as
for example organism and strain, age, CR regime and duration of CR. Our meta-analysis provides an opportunity
to explore how genes overrepresented for over- or underexpression are associated with those variables. Of par-
ticular interest is the covariate tissue. This is on the one hand because the meta-analysis aimed at finding genes
differentially expressed with CR under multiple conditions and, due to the high number of datasets from liver, it
is a concern that genes may be found significant, even though only differentially expressed in liver. On the other
hand it may also be interesting if genes only found differentially expressed in one tissue in this meta-analysis
indeed exert a tissue-specific CR effect. In fact the liver would be a good candidate for harbouring tissue specific
effects of CR due to its important role in metabolism.

We pursued the following approach to shed light on the tissue expression of the genes found significant in the
meta-analysis:

We used create table.pl (supplement 2) to create a table with the genes in the rows and the datasets in the
columns and each field displaying the t-test p-value and effect-size of the gene in this dataset. Using mark fields.pl
(supplement 2) on the part of the table that contained significant results of the meta-analysis, we indicated fields
with t-test p-values and effect-size values that corresponded to over- or underexpression according to the relaxed
thresholds used in the meta-analyses (p <0.05, effect-size: 1.5 fold-change). The identified fields were manually
color coded red for over- and green for underexpression and the column-header was color coded according to the
tissue the corresponding dataset was obtained from. We then identified genes that were over- (for genes enriched
for overexpression) or underexpressed (for genes enriched for underexpression) in only one, two or more than two
different tissues (Fig. 3.10).

3.2.8 DAVID-analysis on presumably tissue-independent and liver-specific candi-
dates

Because we found that a large number of genes in our final result were differentially expressed only in liver
datasets or in datasets from only liver and one other tissue, we repeated the DAVID-analysis on genes differentially
expressed at least in 3 different tissues to find the functional categories behind genes important for the mechanism
of CR in a truly tissue independent manner. We also ran DAVID on these candidates only differentially expressed
in liver to find truly liver-specific mechanisms of CR.
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3.2.9 Co-expression analysis of CR-associated genes

Besides determining functional categories of genes associated with a certain trait it is often useful to determine
genes significantly more strongly co-expressed with the genes of interest than with other genes. These detected
genes may therefore be important upstream regulators or downstream targets of the studied process.

The co-expression analysis of the genes associated with CR was done with software developed by S. van Damm
of our group (unpublished). In brief, from a large number of microarray datasets on mouse in GEO for each
gene, similarity scores to the expression of all other genes were calculated and genes ranked by these scores. The
top 5% of genes with highest similarity for each gene were considered co-expressed with this gene.

Each mouse gene g; was then tested for overrepresentation in the number of times it was found co-expressed
(i.e. in the top 5%-list) with a certain-subset of genes, compared to the number of times it was co-expressed
with all mouse genes. In our case this subset was once genes enriched for overexpression with CR and once for
underexpression. More precisely a binomial test 3.1 was done with the number of tests (n) being the number
of genes in the subset and the number of hits (k) being the number of times g; is co-expressed with genes of
this subset. The success probability (ps) of g; being co-expressed with any gene was ps = number of times g; is
co-expressed with any gene / number of all genes.

The genes were ranked by their p-values of the binomial test and a FDR estimated (as in (Rhodes et al. 2002))
as the number of genes found divided by the number of genes expected at each p-value, which is the ratio of
genes found with smaller or equal p-value divided by the p-value itself.

Since a large number (1576 and 1069; given in supplement 2) of genes were found co-expressed with genes enriched
for over- and underexpression we performed DAVID-analysis under default settings on them.

3.2.10 Transcription factors regulating expression of candidate genes

To detect enriched transcription factor (TF) binding sites in our candidate genes we used WebMOTIFS® (Romer
et al. 2007). This program acts as an interface to the motif discovery programs MEME (Bailey & Elkan 1994),
AlignACE (Hughes et al. 2000), MDscan (Liu et al. 2002), Weeder (Pavesi et al. 2004) and THEME (Macisaac
et al. 2006). The downside of using this program was that input genes had to be given as RefSeq-IDs. The
conversion process lead to loss of about 20 genes each for over- and underexpressed candidates. However we
expect that the lost genes represented rather poorly annotated ones, so that not much information was expected
form them anyway. Sequence motifs were searched between 1000 bp downstream to 200 bp upstream with an
expected motif length of <12 bp, strict significance filtering and trying all initial hypotheses for the search in
THEME.

3.2.11 Detecting overlap with CR-essential genes, their orthologues and interaction
partners

Genes experimentally identified to be essential for the effect of CR to induce life-span extension in different model
organisms were recently extracted from literature and summarized in the database GeneDR by D. Wuttke of
our group (unpublished). Essential here means that manipulation of the transcription levels of the genes (e.g.
knock-out by deletion, knock-down via RNAIi or transposition, or overexpression) significantly modified the effect
of CR on life-span extension.

The only mouse gene known to be essential for CR-induced life-span extension in this database was Ghr (Growth
hormone receptor; Entrez ID: 14600) and this gene was found enriched for downregulation in our meta-analyses.
The following further comparisons between the results of the meta-analysis and genes in GeneDR, undertaken
by D. Wuttke, are only described in brief:

1. The results of the meta-analysis were also compared to murine orthologues of genes essential for CR in S.
cerevisiae and C.elegans.

2. A network of murine CR-essential gene orthologues and Ghr was built according to information on physical
protein-protein and genetic interactions retrieved and integrated from IntAct (Hermjakob et al. 2004), DIP
(Xenarios et al. 2000), MINT (Zanzoni et al. 2002), BIND (Bader et al. 2001), BioGRID (Stark et al.
2006), MPACT (Giildener et al. 2006), DroID (Jingkai Yu et al. 2008), Reactome (Stein 2004), HPRD
(Prasad et al. 2009), PDZBase (Beuming et al. 2005), CORUM (Ruepp et al. 2008), iRefIndex (Razick

Shttp://fraenkel.mit.edu/webmotifs
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et al. 2008), PhosphoSitePlus (Hornbeck et al. 2004), PhosphoGRID (Stark et al. 2010), I2D (Brown &
Jurisica 2007), InteroPorc (Michaut et al. 2008), InterologFinder (Wiles et al. 2010), MiMI (Jayapandian
et al. 2007) and PINA (Wu, J. et al. 2009), extended by direct interaction partners and analyzed using
Cytoscape (Shannon et al. 2003). The specificity of an interaction partner was defined as the number
of this protein‘s interactions with CR-essential genes as percentage of its total number of interactions. A
p-value for the specificity was calculated using a binomial test 3.1, calculating the by chance probability
for this many interactions with CR-essential genes (k) at the given number of interactions (n). Interaction
partners significantly overlapping with results of the meta-analysis were extracted.

3.2.12 Testing the association of individual datasets to the meta-signature of CR

Genes differentially expressed under a certain condition are often defined as the signature of this condition. Genes
enriched for differential expression in these datasets can be called the corresponding meta-signature (Rhodes et
al. 2004). To test how well the individual datasets in our analysis associate with the final meta-signature we
employed a chi-square test. To create contingency tables for each dataset specifying how many genes are in the
meta-signature and how many are not and how many genes are differentially expressed and how many not we
used metasignature test v1.2.pl (supplement 2).

The chi-square test therefore assesses if genes of each dataset are significantly more likely to be differentially
expressed, when they are in the meta-signature. To check that the p-value of the chi-square test indicates genes
to be more, not less likely to be differentially expressed, when they are in the meta signature we calculated

YHdif f.exp.,in meta—signature”
P#notdif f. exp.,in meta—signature”
PH#dif f.exp., notin meta—signature”

"H#notdif f.exp., not in meta—signature”

and checked that the result was >1.

3.3 Results

3.3.1 Genes enriched in the number of studies they are found over- / underex-
pressed

97 and 65 genes were found over- and underexpressed respectively in more datasets than expected by chance
below a threshold of the binomial p-value of 0.0005. (In the following these are called “genes enriched for over-
/ underexpression” or sometimes simply “over- / underexpressed genes”). The full lists of genes are displayed in
table 3.6 and 3.7.

MGI MGI Description Entrez | total| overexp| underexp.p_ overexp.
Symbol ID
Mt2 metallothionein 2 Gene 17750 59 14 5 1.85E-10
Adhl alcohol dehydrogenase 1 (class I) Gene 11522 42 12 0 3.50E-10
Per2 period homolog 2 (Drosophila) Gene 18627 44 12 1 6.38E-10
Por P450 (cytochrome) oxidoreductase Gene 18984 61 13 0 3.41E-9
Inmt indolethylamine N-methyltransferase Gene | 21743 33 10 4 5.51E-9
Dbp D site albumin promoter binding protein 13170 34 10 4 7.63E-9
Gene
Nat8 N-acetyltransferase 8 (GCN5-related, 68396 26 9 0 8.53E-9
putative) Gene
Ehhadh | enoyl-Coenzyme A, 74147 39 10 0 3.30E-8
hydratase/3-hydroxyacyl Coenzyme A
dehydrogenase Gene
Mt1 metallothionein 1 Gene 17748 61 12 2 3.54E-8
Cyp2j6 | cytochrome P450, family 2, subfamily j, 13110 30 9 0 3.56E-8
polypeptide 6 Gene
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Abcgh ATP-binding cassette, sub-family G 27409 30 9 0 3.56E-8
(WHITE), member 5 Gene
Fam107a | family with sequence similarity 107, 268709 22 8 0 3.73E-8
member A Gene
Klf15 Kruppel-like factor 15 Gene 66277 32 9 0 6.68E-8
Sds serine dehydratase Gene 231691 25 8 0 1.18E-7
Fkbpb FK506 binding protein 5 Gene 14229 59 11 1 2.34E-7
Zbtb16 | zinc finger and BTB domain containing 16 | 235320 19 7 0 2.46E-7
Gene
Angptld | angiopoietin-like 4 Gene 57875 37 9 2 2.64E-7
Usp2 ubiquitin specific peptidase 2 Gene 53376 60 11 0 2.79E-7
Coblll | Cobl-like 1 Gene 319876 28 8 0 3.17E-7
Fmo3 flavin containing monooxygenase 3 Gene 14262 29 8 0 4.28E-7
Cyp7al | cytochrome P450, family 7, subfamily a, 13122 39 9 2 4.30E-7
polypeptide 1 Gene
Ablim3 | actin binding LIM protein family, member | 319713 21 7 1 5.42E-7
3 Gene
Nrl1i3 nuclear receptor subfamily 1, group I, 12355 40 9 0 5.43E-7
member 3 Gene
Cypdald | cytochrome P450, family 4, subfamily a, 13119 32 8 0 9.80E-7
polypeptide 14 Gene
Sultldl | sulfotransferase family 1D, member 1 53315 45 9 3 1.57E-6
Gene
Herpudl | homocysteine-inducible, endoplasmic 64209 45 9 2 1.57E-6
reticulum stress-inducible, ubiquitin-like
domain member 1 Gene
LOC similar to apolipoprotein D 100047583 5 4 0 1.96E-6
100047583
Ctgf connective tissue growth factor Gene 14219 35 8 0 2.05E-6
Slc37a4 | solute carrier family 37 14385 35 8 0 2.05E-6
(glucose-6-phosphate transporter),
member 4 Gene
Tencl tensin like C1 domain-containing 209039 60 10 0 2.41E-6
phosphatase Gene
Weel WEE 1 homolog 1 (S. pombe) Gene 22390 37 8 2 3.22E-6
KI1f9 Kruppel-like factor 9 Gene 16601 51 9 0 4.70E-6
Ppara peroxisome proliferator activated receptor 19013 40 8 1 5.99E-6
alpha Gene
Trp53i13 | transformation related protein 53 216964 29 7 1 6.10E-6
inducible protein 13 Gene
Irs2 insulin receptor substrate 2 Gene 384783 29 7 1 6.10E-6
Fam195a | family with sequence similarity 195, 68241 20 6 0 7.23E-6
member A Gene
Acot4 acyl-CoA thioesterase 4 Gene 171282 30 7 0 7.78E-6
Ntf3 neurotrophin 3 Gene 18205 42 8 0 8.79E-6
Tmem218| transmembrane protein 218 Gene 66279 21 6 0 9.91E-6
Aldhlal | aldehyde dehydrogenase family 1, 11668 56 9 2 1.05E-5
subfamily A1 Gene
Gm6957 | predicted gene 6957 Gene 629219 13 5 0 1.09E-5
Pim3 proviral integration site 3 Gene 223775 57 9 0 1.21E-5
KIf9 Kruppel-like factor 9 Gene 70273 14 5 0 1.67E-5
Aqp6 aquaporin 6 Gene 11831 23 6 2 1.77E-5
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Cyp2bl13 | cytochrome P450, family 2, subfamily b, 13089 23 6 1 1.77E-5
polypeptide 13 Gene
Decr2 2-4-dienoyl-Coenzyme A reductase 2, 26378 24 6 0 2.30E-5
peroxisomal Gene
Cryl cryptochrome 1 (photolyase-like) Gene 12952 49 8 0 2.87E-5
Tsc22d3 | TSC22 domain family, member 3 Gene 14605 26 6 0 3.7T7TE-5
Chbrl carbonyl reductase 1 Gene 12408 38 7 0 4.04E-5
Rgs16 regulator of G-protein signaling 16 Gene 19734 27 6 2 4.75E-5
Hacll 2-hydroxyacyl-CoA lyase 1 Gene 56794 27 6 0 4.75E-5
Sultlc2 | sulfotransferase family, cytosolic, 1C, 69083 27 6 1 4.75E-5
member 2 Gene
Gys2 glycogen synthase 2 Gene 232493 27 6 0 4.75E-5
Cyp2el | cytochrome P450, family 2, subfamily e, 13106 39 7 0 4.82E-5
polypeptide 1 Gene
Plin5 perilipin 5 Gene 66968 17 5 1 4.83E-5
Cptla carnitine palmitoyltransferase 1a, liver 12894 53 8 1 5.16E-5
Gene
Igfbp2 insulin-like growth factor binding protein 16008 40 7 1 5.72E-5
2 Gene
Arrdc2 | arrestin domain containing 2 Gene 70807 40 7 0 5.72E-5
4833417 | 4833417J20Rik RIKEN cDNA 4833417J20 | 74604 4 3 0 6.24E-5
J20Rik | gene
4432414 | 4432414F05Rik RIKEN ¢cDNA 77027 4 3 0 6.24E-5
FO5Rik | 4432414F05 gene
Agxt2]1 | alanine-glyoxylate aminotransferase 2-like 71760 18 5 0 6.55E-5
1 Gene
St3gals | ST3 beta-galactoside 20454 41 7 1 6.74E-5
alpha-2,3-sialyltransferase 5 Gene
Sle25a25 | solute carrier family 25 (mitochondrial 227731 41 7 0 6.74E-5
carrier, phosphate carrier), member 25
Gene
Lpinl lipin 1 Gene 14245 29 6 1 7.30E-5
Gprl46 | G protein-coupled receptor 146 Gene 80290 31 6 0 1.08E-4
Adeyl adenylate cyclase 1 Gene 432530 11 4 0 1.15E-4
Ifrd1l interferon-related developmental regulator 15982 45 7 0 1.25E-4
1 Gene
Matla methionine adenosyltransferase I, alpha 11720 60 8 0 1.28E-4
Gene
Acot12 | acyl-CoA thioesterase 12 Gene 74156 32 6 0 1.31E-4
Nfkbia | nuclear factor of kappa light polypeptide 18035 61 8 0 1.44E-4
gene enhancer in B-cells inhibitor, alpha
Gene
Epb4.1 | erythrocyte protein band 4.1 Gene 269587 61 8 1 1.44E-4
Hsd17b2 | hydroxysteroid (17-beta) dehydrogenase 2 15486 46 7 5 1.44E-4
Gene
Sun2 Sadl and UNC84 domain containing 2 223697 34 6 1 1.86E-4
Gene
Mgp matrix Gla protein Gene 17313 48 7 1 1.89E-4
Aldhla7 | aldehyde dehydrogenase family 1, 26358 35 6 2 2.19E-4
subfamily A7 Gene
Sult3al | sulfotransferase family 3A, member 1 57430 23 5 1 2.32E-4
Gene
Niacrl niacin receptor 1 Gene 80885 13 4 0 2.38E-4
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BC089597 ¢cDNA sequence BC089597 Gene 216454 13 4 0 2.38E-4
Duspl dual specificity phosphatase 1 Gene 19252 36 6 0 2.57E-4
KIf10 Kruppel-like factor 10 Gene 21847 36 6 0 2.57E-4

Rhbdd2 | rhomboid domain containing 2 Gene 215160 51 7 0 2.79E-4

Sultlal | sulfotransferase family 1A, 20887 37 6 0 3.01E-4
phenol-preferring, member 1 Gene
Decrl 2.4-dienoyl CoA reductase 1, 67460 37 6 0 3.01E-4
mitochondrial Gene
Cd163 CD163 antigen Gene 93671 14 4 1 3.27TE-4
Plexd3 | phosphatidylinositol-specific 239318 14 4 0 3.27TE-4
phospholipase C, X domain containing 3
Gene
Bnip3 BCL2/adenovirus E1B interacting protein | 100042570 14 4 0 3.27TE-4
3 Gene
Fzdl frizzled homolog 1 (Drosophila) Gene 14362 38 6 2 3.50E-4
Perl period homolog 1 (Drosophila) Gene 18626 38 6 1 3.50E-4
Enpep glutamyl aminopeptidase Gene 13809 25 5 0 3.51E-4
Salll sal-like 1 (Drosophila) Gene 58198 25 5 0 3.51E-4

Slc25a42 | solute carrier family 25, member 42 Gene 73095 25 5 1 3.51E-4

Zfp354a | zinc finger protein 354A Gene 21408 54 7 0 4.00E-4

Pla2g12a | phospholipase A2, group XITA Gene 66350 39 6 1 4.04E-4

Map3k6 | mitogen-activated protein kinase kinase 53608 26 5 0 4.25E-4

kinase 6 Gene
Rbp7 retinol binding protein 7, cellular Gene 63954 26 ) 3 4.25E-4
Rhobtb1l | Rho-related BTB domain containing 1 69288 26 5 0 4.25E-4
Gene
Crym crystallin, mu Gene 12971 15 4 0 4.37E-4
Plin4 perilipin 4 Gene 57435 15 4 0 4.37TE-4
LOC similar to acyl-CoA thioesterase 100044830 15 4 0 4.37E-4
100044830)
Smocl SPARC related modular calcium binding 64075 55 7 0 4.48E-4
1 Gene
Tobl transducer of ErbB-2.1 Gene 22057 40 6 0 4.66E-4
Table 3.6 Genes found overexpressed in more datasets than expected by chance below the
threshold of the binomial p-value af 0.0005. The total number of datasets the gene was studied
in, the number af datasets in which it was over- and underexpressed and the binomial p-value for
enrichment for overexpression are shown.
MGI MGI Description EntrezlDtotal| overexpy underexp.p under
Symbol exp.
Slc6a6 solute carrier family 6 (neurotransmitter 21366 60 1 12 7.66E-9
transporter, taurine), member 6 Gene
Car3 carbonic anhydrase 3 Gene 12350 49 0 11 8.86E-9
Cyp2j5 cytochrome P450, family 2, subfamily j, 13109 25 0 8 4.64E-8
polypeptide 5 Gene
Dher7 7-dehydrocholesterol reductase Gene 13360 49 0 10 1.11E-7
Arntl aryl hydrocarbon receptor nuclear 11865 63 3 11 1.41E-7
translocator-like Gene
7fp64 zinc finger protein 64 Gene 22722 34 1 8 6.52E-7
Srebfl sterol regulatory element binding 20787 60 1 10 8.13E-7
transcription factor 1 Gene
Es31 esterase 31 Gene 382053 25 1 7 9.14E-7
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Gek glucokinase Gene 103988 41 1 8 2.98E-6
Collbal collagen, type XV, alpha 1 Gene 12819 32 1 7 5.58E-6
GO0s2 GO0/G1 switch gene 2 Gene 14373 33 3 7 6.95E-6
Insigl insulin induced gene 1 Gene 231070 33 1 7 6.95E-6
C9 complement component 9 Gene 12279 36 1 7 1.28E-5
Phldal pleckstrin homology-like domain, family 21664 39 1 7 2.23E-5
A, member 1 Gene
Hspab heat shock protein 5 Gene 14828 69 0 9 2.27E-5
Irgm1 immunity-related GTPase family M 15944 28 0 6 3.00E-5
member 1 Gene
Dpp9 dipeptidylpeptidase 9 Gene 224897 28 0 6 3.00E-5
Alas2 aminolevulinic acid synthase 2, erythroid 11656 58 3 8 4.28E-5
Gene
Tmem transmembrane protein 132D Gene 243274 4 0 3 4.34E-5
132d
Irf7 interferon regulatory factor 7 Gene 54123 30 1 6 4.56E-5
Fabpb fatty acid binding protein 5, epidermal 16592 59 3 8 4.85E-5
Gene
Tnfsfl0 | tumor necrosis factor (ligand) superfamily, | 22035 19 0 5 4.89E-5
member 10 Gene
Acly ATP citrate lyase Gene 104112 60 2 8 5.49E-5
Scly selenocysteine lyase Gene 50880 31 1 6 5.04E-5
C4bp complement component 4 binding protein 12269 20 0 5 6.40E-5
Gene
Ifi2712a | interferon, alpha-inducible protein 27 like 76933 20 0 5 6.40E-5
2A Gene
Casch cancer susceptibility candidate 5 Gene 76464 11 1 4 7.14E-5
Serpinh1 serine (or cysteine) peptidase inhibitor, 12406 63 4 8 7.83E-5
clade H, member 1 Gene
Ifih1l interferon induced with helicase C domain | 71586 33 0 6 8.03E-5
1 Gene
1110051 RIKEN ¢DNA 1110051M20 gene Gene 228356 33 0 6 8.03E-5
M20Rik
Ttll12 tubulin tyrosine ligase-like family, member | 223723 21 0 5 8.25E-5
12 Gene
Aqp8 aquaporin 8 Gene 11833 34 1 6 9.56E-5
Cldnl claudin 1 Gene 12737 34 1 6 9.56E-5
Nr1d1l nuclear receptor subfamily 1, group D, 217166 34 3 6 9.56E-5
member 1 Gene
Ghr growth hormone receptor Gene 14600 65 0 8 9.82E-5
R3hdm?2 R3H domain containing 2 Gene 71750 49 0 7 1.02E4
Hipk2 homeodomain interacting protein kinase 2 15258 36 0 6 1.33E-4
Gene
Rsclal regulatory solute carrier protein, family 1, 69994 13 0 4 1.49E-4
member 1 Gene
Cyp2f2 cytochrome P450, family 2, subfamily f, 13107 37 0 6 1.56E-4
polypeptide 2 Gene
Cxcl9 chemokine (C-X-C motif) ligand 9 Gene 17329 37 0 6 1.56E-4
Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3 15493 24 0 5 1.63E-4
beta- and steroid delta-isomerase 2 Gene
Mup4 major urinary protein 4 Gene 17843 24 0 ) 1.63E-4
Extll exostoses (multiple)-like 1 Gene 56219 24 1 5 1.63E-4
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Scod sterol-Ch-desaturase (fungal ERG3, 235293 38 0 6 1.82E-4
delta-5-desaturase) homolog (S. cerevisae)
Gene
Go6pdx glucose-6-phosphate dehydrogenase 14381 54 2 7 1.92E-4
X-linked Gene
Scrtl scratch homolog 1, zinc finger protein 170729 25 0 5 2.00E-4
(Drosophila) Gene
Ptprj protein tyrosine phosphatase, receptor 668629 14 1 4 2.05E-4
type, J Gene
Psmb8 proteasome (prosome, macropain) 16913 39 0 6 2.11E-4
subunit, beta type 8 (large
multifunctional peptidase 7) Gene
Sle10a2 solute carrier family 10, member 2 Gene 20494 39 0 6 2.11E-4
Actgl actin, gamma, cytoplasmic 1 Gene 11465 55 1 7 2.15E-4
Comt1 catechol-O-methyltransferase 1 Gene 12846 55 2 7 2.15E-4
Ntn3 netrin 3 Gene 18209 15 0 4 2.75E-4
2900086 RIKEN cDNA 2900086B20 gene 73074 15 0 4 2.75E-4
B20Rik
Stac3 SH3 and cysteine rich domain 3 Gene 237611 15 0 4 2.75E-4
Mmpl5 matrix metallopeptidase 15 Gene 17388 27 0 5 2.93E-4
Gtf2ird1l general transcription factor II I repeat 57080 27 0 5 2.93E-4
domain-containing 1 Gene
Phf19 PHD finger protein 19 Gene 74016 27 0 5 2.93E-4
Inhbe inhibin beta E Gene 16326 42 2 6 3.20E-4
Col3al collagen, type III, alpha 1 Gene 12825 59 1 7 3.35E-4
Cdc42ep2 CDC42 effector protein (Rho GTPase 104252 28 1 5 3.50E-4
binding) 2 Gene
1110054 RIKEN ¢DNA 1110054MO08 gene 68841 16 1 4 3.60E-4
MO8Rik
2810051 RIKEN c¢cDNA 2810051F02 gene 72704 7 0 3 3.61E-4
F0O2Rik
Gm13768 predicted gene 13768 627525 7 0 3 3.61E-4
Gm7450 predicted gene 7450 665017 7 0 3 3.61E-4
LOC similar to Ornithine decarboxylase (ODC) | 677259 7 0 3 3.61E-4
677259
LOC similar to Deltex3 100045005 7 0 3 3.61E-4
100045005
Dnasell2 deoxyribonuclease 1-like 2 Gene 100047816 7 0 3 3.61E-4
LOC similar to WAP four-disulfide core domain | 100048733 7 0 3 3.61E-4
100048733 2
DOH4S5114 DNA segment, human D4S114 Gene 27528 60 0 7 3.72E-4
Litaf LPS-induced TN factor Gene 56722 60 0 7 3.72E-4
Pdia3 protein disulfide isomerase associated 3 14827 62 0 7 4.56E-4
Gene
Ly6e lymphocyte antigen 6 complex, locus E 17069 62 2 7 4.56E-4
Gene
Hspb7 heat shock protein family, member 7 29818 30 1 5 4.89E-4
(cardiovascular) Gene

Table 3.7.: Genes found underexpressed in maore datasets than expected by chance below the
threshold of the binomial p-value of 0.0005. The total number of datasets the gene was studied
in, the mumber of datasets in which it was over- and underexpressed and the binomial p-value for
enrichment for underexpression are shown

Besides providing researchers with a list of well-known genes, for some giving a first hint towards association
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with CR, for others contributing to the already existing evidence for such association, the aim of our meta-analysis
is also to find interesting behaviour of sequences with unknown function, often annotated as ESTs or pseudogenes.
To this end we found LOC100047583 (Entrez ID: 100047583, similar to apolipoprotein D), 4833417J20Rik (74604,
RIKEN ¢cDNA 4833417J20 gene) and 4432414F05Rik (77027, RIKEN cDNA 4432414F05 gene) among the genes
enriched for overexpression, which are classified as protein coding genes, but are on RefSeq status “model” or
without any, miss annotation on the reference assembly and generally seem to be studied little (22/07/10). Also
found among the genes enriched for overexpression was the pseudogene LOC100044830 (100044830, similar to
acyl-CoA thioesterase).

Similarly among genes enriched for underexpression we detected 1110051M20Rik (67829, meanwhile replaced
by 228356, RIKEN ¢cDNA  1110051M20 gene), 2900086B20Rik (73074, RIKEN c¢cDNA 2900086820
gene), 1110054MO8Rik (68841, RIKEN c¢cDNA 1110054MO08 gene), LOC677259 (677259, similar to Ornithine
decarboxylase (ODC)), LOC100045005 (100045005, similar to Deltex3) and LOC100048733 (100048733, similar
to WAP four-disulfide core domain 2). These findings might assign interesting functions as transcribed genes to
these sequences, however note that the detection of expression of (pseudo)genes similar to other genes might also
result from the lack of specificity of the microarray probe to distinguish between the two sequences. We also
found 2810051F02Rik (72704, RIKEN c¢cDNA 2810051F02 gene) among the genes enriched for underexpression,
which is meanwhile replaced by the validated NCBI entry “antisense Igf2r RNA” (Airn, 104103), which might
therefore be an interesting non-coding RNA contributing to the mechanism of CR.

Table 3.85 presents the 10 genes most significantly enriched for over- / underexpression, a description of their
function and indications of known relationships with CR.

Most of these genes are somehow associated with candidate GOs as found in the functional analysis (“3.3.2
Functional categories of genes differentially expressed with CR”), especially circadian clock, lipid metabolism and
xenobiotic metabolism. Some of these genes have important regulatory functions in these categories, in particular
Per2 as master-regulator and Dbp as another transcription factor regulating the circadian clock and Srebf1 as a
transcription factor regulating sterol metabolism.

Transcriptional levels of Per2 oscillate diurnally in the suprachiasmatic nucleus (SCN) of the hypothalamus and
are supposedly set by light (Lamont et al. 2007). The timing of oscillators in peripheral tissues is controlled
by the SCN when food is available ad libitum. If feeding is however temporally limited the time of feeding is a
more important regulator for peripheral oscillators (Girotti et al. 2009). If additionally the level of food intake is
altered also the timing of clock gene expression in the SCN changes, arguing for metabolic regulation. Therefore
both the changed amount of food, but also the fact that CR might also change the timing of food availability
compared to AL might have an important influence on changed expression levels of clock genes. Srebfl is an
interesting candidate, since it has been linked to the mechanism, by which resveratrol could increase life-span in
obese mice (Wang, G. et al. 2009). Its expression levels also have been already studied in the context of CR,
showing that, while its liver specific expression does not change in the first week of CR (Mulligan et al. 2008),
its levels are influenced by CR and refeeding in adipose tissue (Stelmanska et al. 2004).

Zfpb4, as a little understood co-activator in the notch pathway, also has the potential to be an interesting
candidate concerning the mechanism of CR.

All of the top 10 genes enriched for overexpression were overexpressed in more than 3 different tissues, while many
of the underexpressed were only found underexpressed in one or two tissues. This may however also have to do
with the fact that they were generally underexpressed in less datasets than the overexpressed were overexpressed.
That Gck was found underexpressed in liver only makes sense, since this gene is assumed to be liver and beta-cell
specific and pancreas was not tested in our datasets.

It is also noteworthy that many of the top overexpressed genes were found underexpressed in a considerable
number of datasets and vice versa, even though among all significant genes the number of datasets of opposite
differential expression is rather low (on average around 1). This might mean that the top genes are highly
regulated.

6Table 3.8: The 10 genes most significantly enriched for over- and underexpression and description of their function; it is given
which enriched functional category, as determined in the functional analysis (“3.3.2. Functional categories of genes differentially
expressed with CR”) they are related to. (This does not necessarily mean that they are directly classified with a GO-term exactly
like this). The number of different tissues they are over- / underexpressed in is shown. Information not from stated references is
from www.genecards.org; references: 1: (Waddington Lamont et al. 2007), 2: (Girotti et al. 2009), 3: (Kranendonk et al. 2008), 4:
(H. Saito et al. 2008), 5: (Sakamoto et al. 2008), 6: (Guang-Li Wang et al. 2009), 7: (Mulligan et al. 2008), 8: (Stelmanska et al.
2004)
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0.

microvessels and muscle cells

Gene Gene Name Function related candidate GOs F£tissues comment ref.
Symbol
Mt2 metallothionein 2 Gene binds various metals cellular copper ion homeostasis 7 most significant gene; also reported
by Swindell, 2008 and 2009;
underexpressed in 5 tissues
Adhl alcohol dehydrogenase 1 (class I) Gene metabolizes besides ethanol also 5
retinol, etc.
Per2 period homolog 2 (Drosophila) Gene master regulator of circadian clock circadian clock 6 transcriptional levels oscillate 1,2
diurnally
Por P450 (cytochrome) oxidoreductase Gene transfers electrons from NADPH to xenobiotic metabolism 4 3
among others P450 and heme
oxigenase
Inmt indolethylamine N-methyltransferase N-methylation of indoles (endogenous xenobiotic metabolism 4 underexpressed in 4 datasets
Gene and xenobiotic)
Dbp D site albumin promoter binding protein transcription factor that modulates circadian clock 4 clock-controlled gene; 4
Gene clock-output genes underexpressed in 4 datasets
Nat8 N-acetyltransferase 8 (GCNb-related, not yet clear 3
putative) Gene
Ehhadh enoyl-Coenzyme A, part of the peroxisomal lipid metabolism 4
hydratase/3-hydroxyacyl Coenzyme A beta-oxidation pathway
dehydrogenase Gene
Mtl metallothionein 1 Gene binds various metals copper ion binding 4 also reported by Swindell, 2008;
underexpressed in 2 datasets
Cyp2j6 cytochrome P450, family 2, subfamily j, arachidonic and linoleic acid and lipid metabolism, retinol 4
polypeptide 6 Gene retinoid metabolism metabolism
ba
Gene Gene Name Function related candidate GOs F#tissues comment ref.
Symbol
Slc6ab solute carrier family 6 transports both taurine and beta-alanine 2 most significant gene; overexpressed in
(neurotransmitter transporter, 1 dataset
taurine), member 6 Gene
Car3 carbonic anhydrase 3 Gene catalyze the reversible hydration of carbon only in
dioxide liver
Cyp2j5 cytochrome P450, family 2, arachidonic acid epoxygenase lipid metabolism 2
subfamily j, polypeptide 5 Gene
Dher7 7-dehydrocholesterol reductase Production of cholesterol by reduction of C7-C8 lipid metabolism; 3
Gene double bond of 7-dehydrocholesterol cholesterol metabolism
Arntl aryl hydrocarbon receptor heterodimer with Clock is transcription factor circadian clock 4 overexpressed in 4 datasets
nuclear translocator-like Gene that regulates Perl and other clock-gens
Zfp64 zinc finger protein 64 Gene coactivator of Notch; regulates differentiation 4 overexpressed in 1 dataset 5
Srebfl sterol regulatory element transcription factor that regulates genes lipid metabolism, sterol 2 resveratrol inhibits expr. of SREBP1 6
binding transcription factor 1 involved in sterol biosynthesis metabolism in cell model of steatosis; change in -
Gene Srebf-1 levels in adip. tissue during CR | 8
and refeeding; overexp. in 2 datasets
Es31 esterase 31 Gene hydrolysis of esters and amide bonds; involved xenobiotic metabolism 2 overexpressed in 1 dataset
in detoxification of xenobiotics and maybe in
lipid metabolism
Gcek glucokinase Gene catalyzes initial step of glucose utilization by only in overexpressed in 1 dataset
the beta-cell and liver; effective when glucose is liver
abundant
Col 15al | collagen, type XV, alpha 1 Gene structural protein, especially stabilizing 4 overexpressed in 4 datasets

Table 3.8: see footnote 6




3.3.2 Functional categories of genes differentially expressed with CR

3.3.2.1 GO-terms enriched in studies in which associated genes are found over- / underexpressed
- GO-analysis

187 and 153 GO-terms were found enriched for studies in which their associated genes were over- and underex-
pressed respectively according to the analysis described in “3.2.6.1 Determining functional categories enriched in
the meta-analysis datasets - GO-analysis” (binomial p-value < 0.001). These GO-terms are shown in table 3.9
and 3.10.

| GO term | GO | total | overexp. | underexp. | p_overexp. |
lipid metabolic process GO:0006629 8255 352 216 8.01E-24
rhythmic process GO:0048511 899 73 27 6.52E-19
monooxygenase activity G0:0004497 2803 147 96 8.69E-18
circadian rhythm GO:0007623 1025 72 45 2.15E-15
detoxification of copper ion GO:0010273 181 26 8 3.77E-13
retinol metabolic process GO:0042572 298 33 5 5.46E-13
cellular _component GO:0005575 | 219270 5771 4906 6.54E-13
molecular _function GO:0003674 | 232675 6087 4986 4.46E-12
NADPH-hemoprotein reductase activity G0:0003958 149 22 0 1.34E-11
microsome GO:0005792 | 10612 366 316 1.57E-11
acyl-CoA metabolic process GO:0006637 749 51 9 6.73E-11
oxidoreductase activity GO:0016491 | 20263 630 469 1.21E-10
nitric oxide mediated signal transduction GO0O:0007263 307 30 9 1.35E-10
oxidation reduction GO:0055114 | 19926 620 461 1.49E-10
acetaldehyde biosynthetic process G0:0046186 42 12 0 2.03E-10
retinoic acid metabolic process GO:0042573 456 37 11 2.27E-10
extracellular region GO:0005576 42731 1227 1102 2.51E-10
fatty acid metabolic process G0:0006631 3408 143 83 3.03E-10
catalytic activity GO:0003824 | 28555 850 617 3.43E-10
biological _process GO:0008150 | 237351 6151 5091 4.41E-10
cellular zinc ion homeostasis GO0O:0006882 306 29 10 5.55E-10
metabolic process GO:0008152 | 22860 694 523 6.80E-10
tyrosine-ester sulfotransferase activity GO:0017067 82 15 3 1.08E-9
nitric oxide catabolic process GO0:0046210 61 13 0 1.92E-9
flavin-containing monooxygenase activity G0:0004499 132 18 1 3.44E-9
amine N-methyltransferase activity GO0O:0030748 33 10 4 3.49E-9
iron ion binding G0:0005506 4581 175 145 3.74E-9
alkane 1-monooxygenase activity GO0:0018685 54 12 1 4.82E-9
benzaldehyde dehydrogenase (NAD™) activity G0:0018479 91 15 4 4.85E-9
retinoid metabolic process GO0O:0001523 185 21 2 5.25E-9
carboxylesterase activity G0:0004091 1170 63 30 5.60E-9
late recombination nodule GO:0005715 26 9 0 5.63E-9
2,4-dienoyl-CoA reductase (NADPH) activity G0:0008670 61 12 0 2.10E-8
intrinsic to endoplasmic reticulum membrane GO0O:0031227 480 34 10 3.47E-8
palmitoyl-CoA hydrolase activity G0O:0016290 368 29 3 3.52E-8
ethanol catabolic process GO:0006068 81 13 0 7.03E-8
DNA photolyase activity G0:0003913 84 13 1 1.10E-7
ethanol binding GO:0035276 118 15 2 1.74E-7
negative regulation of lipoprotein lipase activity | GO:0051005 37 9 2 1.76E-7
MDM2 binding GO0:0070215 88 13 1 1.92E-7
aryl sulfotransferase activity GO:0004062 136 16 4 2.03E-7
lyase activity G0:0016829 4802 173 128 2.04E-7
drug metabolic process GO:0017144 249 22 6 2.13E-7
steroid metabolic process GO:0008202 2076 89 73 2.33E-7
dodecenoyl-CoA delta-isomerase activity GO:0004165 155 17 0 2.38E-7
cholesterol 7-alpha-monooxygenase activity G0:0008123 39 9 2 2.88E-7
regulation of bile acid biosynthetic process GO:0070857 39 9 2 2.88E-7
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positive regulation of bile acid biosynthetic GO:0070859 39 9 2 2.88E-7
process

cellular response to cholesterol GO:0071397 39 9 2 2.88E-7
extracellular space GO:0005615 | 18369 548 484 2.91E-7
electron carrier activity G0:0009055 3478 132 96 3.79E-7
L-serine ammonia-lyase activity G0:0003941 52 10 0 3.93E-7
L-threonine ammonia-lyase activity GO:0004794 52 10 0 3.93E-7
aromatase activity GO:0070330 711 41 31 4.05E-7
cellular metal ion homeostasis GO:0006875 161 17 4 4.11E-7
transporter activity G0:0005215 7159 239 192 4.78E-7
regulation of cholesterol metabolic process G0:0090181 222 20 3 5.45E-7
peroxisome GO:0005777 4072 149 76 5.72E-7
acyl-CoA thioesterase activity GO:0016291 265 22 1 6.17E-7
fatty acid (omega-1)-hydroxylase activity G0:0008393 32 8 0 6.84E-7
icosanoid biosynthetic process GO0:0046456 32 8 0 6.84E-7
behavioral response to ethanol GO:0048149 186 18 2 6.97E-7
myeloid progenitor cell differentiation GO0O:0002318 151 16 0 8.49E-7
pyridoxal phosphate binding GO0O:0030170 1959 83 60 9.06E-7
glucose-6-phosphate transport GO:0015760 134 15 5 9.18E-7
histone phosphorylation GO0O:0016572 152 16 3 9.28E-7
oxidoreductase activity, acting on paired donors, | GO:0016712 534 33 26 1.18E-6
with incorporation or reduction of molecular

oxygen, reduced flavin or flavoprotein as one

donor, and incorporation of one atom of oxygen

ethanol oxidation GO:0006069 120 14 2 1.27E-6
glucose-6-phosphate transmembrane transporter | GO:0015152 35 8 0 1.43E-6
activity

negative regulation of chemokine production GO:0032682 35 8 0 1.43E-6
cytosolic calcium ion transport G0:0060401 35 8 0 1.43E-6
positive regulation of cardiac muscle contraction | GO:0060452 35 8 0 1.43E-6
extracellular matrix constituent secretion GO0O:0070278 35 8 0 1.43E-6
positive regulation of GO to G1 transition GO:0070318 35 8 0 1.43E-6
cholesterol catabolic process GO:0006707 176 17 2 1.44E-6
steroid hormone receptor activity GO:0003707 1859 79 40 1.45E-6
cellular homeostasis GO0:0019725 60 10 0 1.57E-6
multicellular organismal homeostasis G0:0048871 60 10 0 1.57E-6
methionine adenosyltransterase activity G0O:0004478 123 14 0 1.71E-6
S-adenosylmethionine biosynthetic process GO:0006556 123 14 0 1.71E-6
heme binding G0:0020037 3600 132 111 2.15E-6
3-chloroallyl aldehyde dehydrogenase activity GO:0004028 266 21 5 2.44E-6
ligand-dependent nuclear receptor activity G0:0004879 1889 79 41 2.60E-6
nerve development GO0:0021675 204 18 3 2.64E-6
positive regulation of cholesterol esterification GO0O:0010873 78 11 3 2.65E-6
thiolester hydrolase activity GO:0016790 314 23 1 2.97E-6
insulin-like growth factor binding G0:0005520 886 45 28 3.45E-6
symporter activity G0:0015293 3572 130 100 3.63E-6
regulation of fatty acid oxidation G0O:0046320 82 11 1 4.37E-6
long-chain fatty acid metabolic process GO:0001676 443 28 7 4.75E-6
response to glucocorticoid stimulus GO:0051384 1021 49 16 6.09E-6
neurotrophin receptor binding GO0O:0005165 42 8 0 6.20E-6
9-cis-retinoic acid metabolic process G0O:0042905 56 9 2 7.13E-6
alcohol dehydrogenase (NAD) activity GO0:0004022 159 15 2 7.79E-6
linoleic acid metabolic process GO:0043651 87 11 1 7.84E-6
glycogen (starch) synthase activity GO0:0004373 57 9 1 8.28E-6
optic cup morphogenesis involved in GO0O:0002072 88 11 2 8.76E-6
camera-type eye development

lauric acid metabolic process GO:0048252 46 8 2 1.26E-5
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9-cis-retinoic acid biosynthetic process G0:0042904 207 17 4 1.28E-5
carbon-carbon lyase activity GO:0016830 60 9 1 1.28E-5
amino acid binding G0:0016597 1110 51 16 1.29E-5
nitrate transmembrane transporter activity GO:0015112 23 6 2 1.35E-5
nitrate transport GO:0015706 23 6 2 1.35E-5
fatty acid beta-oxidation GO:0006635 834 41 7 1.91E-5
carnitine O-palmitoyltransferase activity G0:0004095 172 15 2 2.00E-5
cholesterol homeostasis GO0O:0042632 1160 52 22 2.05E-5
leg morphogenesis GO0:0035110 36 7 0 2.06E-5
retinol dehydrogenase activity GO:0004745 330 22 0 2.09E-5
growth factor activity GO:0008083 4826 162 112 2.16E-5
water transport GO:0006833 508 29 22 2.20E-5
positive regulation of lipid metabolic process GO0O:0045834 65 9 2 2.48E-5
protein homotetramerization GO:0051289 1146 51 23 2.93E-5
15-hydroxyprostaglandin dehydrogenase GO0O:0047021 38 7 0 2.98E-5
(NADP+) activity

prostaglandin-E2 9-reductase activity GO:0050221 38 7 0 2.98E-5
water channel activity G0:0015250 363 23 19 3.06E-5
ectoplasm G0:0043265 27 6 0 3.63E-5
progesterone receptor signaling pathway GO:0050847 85 10 1 3.79E-5
lactosylceramide alpha-2,3-sialyltransferase GO:0047291 41 7 1 4.99E-5
activity

regulation of cell growth GO:0001558 1295 55 38 5.13E-5
brown fat cell differentiation GO:0050873 1236 53 34 5.44E-5
succinate transmembrane transporter activity GO:0015141 107 11 4 5.60E-5
succinate transport GO:0015744 107 11 4 5.60E-5
NADP or NADPH binding GO:0050661 1152 50 21 6.44E-5
neutrophil homeostasis GO0O:0001780 75 9 1 7.85E-5
drug binding G0:0008144 1877 72 41 1.03E-4
arachidonic acid monooxygenase activity G0:0008391 96 10 2 1.08E-4
cytoplasmic sequestering of NF-kappaB GO:0007253 97 10 0 1.18E-4
phosphatidate phosphatase activity GO:0008195 373 22 11 1.27E-4
male germ-line stem cell division GO0:0048133 63 8 0 1.30E-4
endocrine pancreas development GO:0031018 429 24 9 1.44E-4
polysaccharide binding G0:0030247 430 24 21 1.49E-4
arachidonic acid metabolic process G0O:0019369 352 21 12 1.52E-4
protein homooligomerization G0O:0051260 2177 80 50 1.72E-4
negative regulation of astrocyte differentiation GO0:0048712 208 15 10 1.73E-4
amine sulfotransferase activity GO:0047685 23 5 1 1.85E-4
positive regulation of adiponectin secretion GO:0070165 13 4 0 1.98E-4
nicotinic acid receptor activity GO:0070553 13 4 0 1.98E-4
3-hydroxyacyl-CoA dehydrogenase activity GO0:0003857 308 19 1 2.01E-4
interleukin-6-mediated signaling pathway GO:0070102 124 11 3 2.11E-4
response to steroid hormone stimulus GO:0048545 496 26 14 2.18E-4
sulfate assimilation G0:0000103 168 13 5 2.31E-4
4-nitrophenol metabolic process G0O:0018960 37 6 0 2.32E-4
3’-phosphoadenosine 5’-phosphosulfate binding GO:0050656 37 6 0 2.32E-4
sulfation GO0:0051923 37 6 0 2.32E-4
pancreatic ribonuclease activity GO:0004522 214 15 1 2.36E-4
positive regulation of collagen biosynthetic GO0O:0032967 193 14 5 2.64E-4
process

short-chain fatty acid metabolic process G0O:0046459 53 7 2 2.66E-4
inductive cell-cell signaling GO0:0031129 25 5 0 2.81E-4
nucleolar fragmentation GO:0007576 54 7 0 2.99E-4
glutathione transferase activity GO0O:0004364 890 39 17 3.15E-4
cellular amino acid metabolic process G0O:0006520 741 34 15 3.27E-4
enoyl-CoA hydratase activity GO:0004300 245 16 1 3.30E-4
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glucose homeostasis G0:0042593 1562 60 42 3.48E-4
negative regulation of epidermal growth factor GO:0007175 56 7 0 3.76E-4
receptor activity
respounse to testosterone stimulus GO:0033574 178 13 1 4.04E-4
lipid catabolic process GO0O:0016042 2862 98 78 4.12E-4
detection of mechanical stimulus involved in GO0O:0050973 57 7 1 4.20E-4
equilibrioception
nerve growth factor binding G0:0048406 75 8 1 4.40E-4
regulation of insulin secretion GO0O:0050796 607 29 27 4.54E-4
sodium ion transport GO0O:0006814 3788 124 94 4.59E-4
thiosulfate transmembrane transporter activity GO:0015117 58 7 2 4.68E-4
malate transmembrane transporter activity GO:0015140 58 7 2 4.68E-4
secondary active transmembrane transporter GO:0015291 58 7 2 4.68E-4
activity
thiosulfate transport GO:0015709 58 7 2 4.68E-4
malate transport GO:0015743 58 7 2 4.68E-4
urea transport GO:0015840 181 13 3 4.73E-4
cholesterol esterification GO0O:0034435 42 6 3 4.74E-4
proline racemase activity GO:0018112 28 5 0 4.90E-4
endosomal lumen acidification GO0O:0048388 59 7 0 5.20E-4
mitochondrial inner membrane GO:0005743 12407 355 162 5.42E-4
FMN binding GO0:0010181 388 21 11 5.54E-4
ligand-regulated transcription factor activity GO0O:0003706 97 9 4 5.58E-4
negative regulation of thymocyte apoptosis GO:0070244 78 8 2 5.74E-4
aconitate hydratase activity G0:0003994 118 10 1 5.79E-4
glycerol transport GO:0015793 118 10 3 5.79E-4
ammonia assimilation cycle GO:0019676 98 9 0 6.02E-4
aldehyde dehydrogenase (NAD) activity G0:0004029 446 23 8 6.06E-4
sensory perception of chemical stimulus GO:0007606 163 12 11 6.18E-4
response to muscle activity GO:0014850 119 10 1 6.19E-4
positive regulation of fatty acid beta-oxidation G0:0032000 141 11 2 6.34E-4
nucleotide-binding oligomerization domain GO:0070427 80 8 0 6.80E-4
containing 1 signaling pathway
photoreceptor outer segment GO0O:0001750 928 39 17 6.93E-4
respounse to stress GO:0006950 4085 131 113 7.07E-4
NF-kappaB binding GO0O:0051059 214 14 2 7.41E-4
chaperone-mediated protein folding GO0O:0061077 64 7 1 8.53E-4
negative regulation of B cell apoptosis G0O:0002903 65 7 2 9.37E-4
photoreceptor activity GO:0009881 324 18 6 9.85E-4
Table 3.9: GO-terms enriched in the number of studies in which their associated genes were

found everexpressed. The total menber of times genes were found associated with each GO-

term, the numbers in which they were over- and underexpressed and the binomial p-value for the

enrichment r'J_}'-ﬂ'I-'&’n"t’.‘L'Ji‘J‘i"L’.'F.FF.t'-lH are shown.

| GO term GO | total | overexp. | underep. | p__underexp |

sterol biosynthetic process GO:0016126 | 1091 29 59 5.57E-10
plasma membrane GO:0005886 | 68511 1690 1722 6.14E-9
beta-alanine transmembrane transporter G0:0001761 60 1 12 6.32E-9
activity

beta-alanine transport G0:0001762 60 1 12 6.32E-9
taurine transmembrane transporter activity | G0O:0005368 60 1 12 6.32E-9
taurine:sodium symporter activity G0O:0005369 60 1 12 6.32E-9
taurine transport GO:0015734 60 1 12 6.32E-9
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taurine binding G0:0030977 60 1 12 6.32E-9
cholesterol biosynthetic process GO:0006695 1022 31 53 1.59E-8
innate immune response GO:0045087 | 3356 85 125 1.80E-8
response to sterol depletion G0:0006991 68 3 12 2.80E-8
steroid biosynthetic process GO:0006694 | 2298 65 93 2.97E-8
extracellular region GO:0005576 | 42731 1227 1102 3.84E-8
microsome GO:0005792 | 10612 366 316 7.15E-8
7-dehydrocholesterol reductase activity GO:0047598 49 0 10 9.43E-8
response to virus G0O:0009615 1706 46 73 1.06E-7
positive regulation of transcription via sterol | G0O:0035104 92 2 13 1.17E-7
regulatory element binding

pheromone binding GO:0005550 164 9 17 1.52E-7
ISG15-protein conjugation G0:0032020 132 2 15 2.42E-7
lipid biosynthetic process G0O:0008610 | 4030 121 139 2.50E-7
collagen fibril organization G0:0030199 856 24 44 3.11E-7
regulation of heart rate by chemical signal G0O:0003062 60 1 10 6.95E-7
sterol response element binding G0:0032810 60 1 10 6.95E-7
glucose 6-phosphate metabolic process G0O:0051156 250 12 20 8.76E-7
positive regulation of glycolysis GO0:0045821 148 3 15 1.07E-6
3-beta-hydroxy-deltas-steroid dehydrogenase | GO:0003854 283 7 21 1.59E-6
activity

fatty acid biosynthetic process GO:0006633 | 2216 72 84 1.74E-6
citrate metabolic process G0:0006101 309 8 22 1.80E-6
cell cortex part G0:0044448 41 1 8 2.63E-6
detection of glucose G0O:0051594 41 1 8 2.63E-6
endoplasmic reticulum G0:0005783 | 30121 749 778 2.64E-6
antigen processing and presentation G0O:0019882 | 1004 10 46 3.77E-6
complement activation, classical pathway G0:0006958 853 15 41 3.96E-6
cellular response to mycophenolic acid GO:0071506 74 0 10 5.01E-6
negative regulation of steroid biosynthetic G0O:0010894 110 5 12 5.79E-6
process

creatine metabolic process G0O:0006600 133 0 13 8.12E-6
creatinine metabolic process G0:0046449 133 0 13 8.12E-6
positive regulation of cholesterol GO:0045542 197 5 16 8.60E-6
biosynthetic process

modification-dependent protein catabolic G0:0019941 97 1 11 9.66E-6
process

sugar binding GO:0005529 | 5415 112 167 1.19E-5
iron ion binding GO:0005506 | 4581 175 145 1.24E-5
circadian rhythm GO:0007623 | 1025 72 45 1.37E-5
cholesterol metabolic process G0O:0008203 | 2037 69 75 1.56E-5
20-alpha-hydroxysteroid dehydrogenase G0O:0047006 68 1 9 1.76E-5
activity

allantoin metabolic process G0:0000255 144 1 13 1.92E-5
glucokinase activity G0:0004340 86 1 10 1.95E-5
activation of signaling protein activity GO:0006987 69 0 9 1.98E-5
involved in unfolded protein response

FasL biosynthetic process G0O:0045210 39 1 7 1.99E-5
monooxygenase activity GO:0004497 | 2803 147 96 2.02E-5
syndecan binding GO:0045545 105 3 11 2.06E-5
immune response GO:0006955 | 4261 110 135 2.29E-5
defense response to virus G0O:0051607 451 11 25 2.94E-5
extracellular space GO:0005615 | 18369 548 484 3.11E-5
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positive regulation of fatty acid biosynthetic | GO:0045723 177 8 14 4.10E-5
process

positive regulation of triglyceride GO:0010867 201 3 15 4.35E-5
biosynthetic process

choline binding G0:0033265 156 10 13 4.45E-5
glucose binding G0:0005536 464 17 25 4.65E-5
cytokine receptor activity GO:0004896 | 1148 30 47 4.94E-5
selenocysteine lyase activity G0O:0009000 31 1 6 5.03E-5
positive regulation of histone deacetylation GO:0031065 204 5 15 5.15E-5
steroid delta-isomerase activity G0:0004769 117 3 11 5.66E-5
regulation of transforming growth factor G0:0017015 232 4 16 6.35E-5
beta receptor signaling pathway

carbohydrate phosphorylation G0O:0046835 283 11 18 6.56E-5
collagen biosynthetic process G0O:0032964 63 4 8 6.94E-5
collagen GO:0005581 626 16 30 7.52E-5
steroid metabolic process G0O:0008202 | 2076 89 73 8.26E-5
extracellular matrix GO:0031012 | 3665 104 116 8.37E-5
growth hormone receptor activity G0:0004903 65 0 8 8.71E-5
growth hormone receptor signaling pathway | G0:0060396 65 0 8 8.7T1E-5
cranial suture morphogenesis G0:0060363 192 5 14 9.87E-5
isoleucine metabolic process G0:0006549 195 2 14 1.16E-4
naphthalene metabolic process G0:0018931 37 0 6 1.42E-4
trichloroethylene metabolic process GO:0018979 37 0 6 1.42E-4
acetyl-CoA biosynthetic process G0O:0006085 175 9 13 1.43E-4
positive regulation of programmed cell death | GO:0043068 152 4 12 1.44E-4
C-5 sterol desaturase activity G0:0000248 38 0 6 1.66E-4
cholesterol biosynthetic process via G0O:0033490 38 0 6 1.66E-4
lathosterol

lathosterol oxidase activity GO:0050046 38 0 6 1.66E-4
oxidoreductase activity, acting on paired GO0:0016712 534 33 26 1.70E-4
donors, with incorporation or reduction of

molecular oxygen, reduced flavin or

flavoprotein as one donor, and incorporation

of one atom of oxygen

NADP biosynthetic process G0:0006741 54 2 7 1.72E-4
integral to membrane G0:0016021 | 133096 3156 3104 1.78E-4
protein disulfide isomerase activity G0O:0003756 335 3 19 1.87E-4
positive regulation of homocysteine GO:0050668 55 2 7 1.94E-4
metabolic process

proteinaceous extracellular matrix G0O:0005578 | 8619 238 239 1.94E-4
defense response to Gram-positive bacterium | GO:0050830 | 1018 24 41 1.99E-4
calcium ion transport G0O:0006816 | 3675 94 114 2.03E-4
regulation of angiogenesis GO:0045765 423 8 22 2.10E-4
misfolded protein binding GO:0051787 183 2 13 2.23E-4
cellular response to glucose starvation G0:0042149 137 2 11 2.32E-4
membrane G0O:0016020 | 176738 4222 4083 2.35E-4
second-messenger-mediated signaling G0:0019932 75 2 8 2.40E-4
endoplasmic reticulum lumen G0O:0005788 1061 25 42 2.40E-4
basement membrane GO:0005604 | 2976 76 95 2.56E-4
NADPH oxidase complex G0O:0043020 188 1 13 2.89E-4
protein secretion G0O:0009306 239 2 15 2.95E-4
purinergic nucleotide receptor activity, G0:0045028 376 7 20 2.97E-4

G-protein coupled
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heme binding G0:0020037 | 3600 132 111 3.00E-4
collagen type III GO:0005586 59 1 7 3.02E-4
aromatase activity G0O:0070330 711 41 31 3.02E-4
oxidoreductase activity, acting on paired GO:0016717 240 13 15 3.08E-4
donors, with oxidation of a pair of donors

resulting in the reduction of molecular

oxygen to two molecules of water

integral to plasma membrane GO:0005887 | 10052 278 272 3.26E-4
catechol O-methyltransferase activity G0:0016206 60 2 7 3.35E-4
phosphoinositide 3-kinase cascade G0:0014065 79 3 8 3.43E-4
negative regulation of epinephrine secretion | G0O:0032811 121 3 10 3.49E-4
nickel ion binding G0:0016151 168 1 12 3.64E-4
epinephrine secretion G0:0048242 62 2 7 4.11E-4
hexokinase activity G0O:0004396 171 3 12 4.27E-4
polyspecific organic cation transmembrane GO:0015354 82 0 8 4.43E-4
transporter activity

positive regulation of activated T cell G0:0042104 303 3 17 4.47E-4
proliferation

mRNA modification G0O:0016556 331 5 18 4.47E-4
response to ethanol GO0:0045471 1337 42 49 4.50E-4
mitotic cell cycle G2/M transition DNA GO:0007095 172 2 12 4.50E-4
damage checkpoint

organic cation transmembrane transporter GO:0015101 125 1 10 4.53E-4
activity

cellular response to interferon-alpha GO:0035457 63 2 7 4.53E-4
fructose 2,6-bisphosphate metabolic process | GO:0006003 223 11 14 4.60E-4
JAK-STAT cascade G0:0007259 795 12 33 4.67E-4
cell adhesion GO:0007155 | 14943 360 388 4.73E-4
taurine metabolic process G0:0019530 277 12 16 4.74E-4
negative regulation of cell-matrix adhesion G0:0001953 149 10 11 4.77E-4
leukemia inhibitory factor receptor activity G0O:0004923 46 0 6 4.84E-4
establishment or maintenance of G0:0010248 46 0 6 4.84E-4
transmembrane electrochemical gradient

epinephrine transport G0:0048241 46 0 6 4.84E-4
water channel activity G0:0015250 363 23 19 5.04E-4
regulation of insulin secretion GO:0050796 607 29 27 5.26E-4
proton-dependent oligopeptide secondary GO:0005427 47 0 6 5.45E-4
active transmembrane transporter activity

cerebellar Purkinje cell layer development G0:0021680 281 2 16 5.53E-4
5-aminolevulinate synthase activity G0O:0003870 106 6 9 5.58E-4
protein import into nucleus, translocation G0O:0000060 310 14 17 5.78E-4
cholinesterase activity G0O:0004104 107 8 9 5.98E-4
substrate-bound cell migration G0:0006929 66 0 7 6.03E-4
polysaccharide binding GO:0030247 430 24 21 6.50E-4
positive regulation of natural killer cell G0:0032819 33 0 5 7.13E-4
proliferation

response to interleukin-15 G0O:0070672 33 0 5 7.13E-4
left-handed Z-DNA binding G0:0003692 68 0 7 7.23E-4
elevation of cytosolic calcium ion GO:0007204 | 2698 73 85 7.54E-4
concentration

osteoblast differentiation G0O:0001649 | 1264 26 46 7.55E-4
dopamine transport GO:0015872 158 2 11 7.78E-4
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dopamine transmembrane transporter G0O:0005329 111 2 9 7.80E-4
activity

cytolysis G0:0019835 721 24 30 7.88E-4
regulation of neuron differentiation G0:0045664 529 10 24 7.91E-4
cyclin binding G0:0030332 263 6 15 7.96E-4
chemokine activity GO:0008009 | 1024 31 39 8.00E-4
negative regulation of female receptivity GO:0007621 184 6 12 8.17E-4
female pregnancy G0O:0007565 531 14 24 8.33E-4
positive regulation of prostaglandin G0:0031394 266 5 15 8.92E-4
biosynthetic process

membrane attack complex G0O:0005579 137 3 10 9.25E-4
phosphatidylcholine biosynthetic process G0O:0006656 353 9 18 9.38E-4
regulation of natriuresis G0O:0003078 35 1 5 9.40E-4
V1B vasopressin receptor binding G0O:0031895 35 1 5 9.40E-4
multicellular organismal water homeostasis GO:0050891 35 1 5 9.40E-4
acyl carrier activity G0O:0000036 114 2 9 9.44E-4
organic cation transport GO:0015695 138 1 10 9.78E-4
blood vessel development G0O:0001568 | 2009 43 66 9.98E-4

Table 3.10: GO-terms enriched in the monber af studies in which their associated genes were

found underexpressed. The total number of times genes were found associated with each GO-

term, the numbers in which they were over- and underexpressed and the binomial p-value for the

enrichment of undererexpression are shown.

Such a large number of significant GO-terms is difficult to interpret as to their role in CR. Therefore we

focused on categories represented by similar GO-terms (at different levels of specificity) and GO-terms that were
found with lowest p-values or were already known to be associated with CR. The possible use of these lists
therefore exceeds what is described here by allowing to also investigate the relevance in respect to CR of all the
other GO-terms not explicitly described here as.
The top GO-term for overexpressed genes with a highly significant p-value of p <1022 is “lipid metabolic
process”. Also other, more specific GO-terms related to lipid metabolism like “acyl-CoA metabolic process” or
“fatty acid metabolic process” were found. Some similar functional categories (“fatty acid metabolic process”,
“lipid metabolism”, etc.) were also obtained in the DAVID analysis (“3.2.6.2 Putting genes found differentially
expressed with CR into functional categories — DAVID-analysis”) with low p-values, however not significant after
Benjamini-Hochberg correction (p-values before / after correction: ~0.005 / 70.3). Interestingly 3 of the 6 genes
associated with “fatty acid metabolic process” in the DAVID-analysis were also associated with peroxisomes.
These 6 genes are

e enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase,

2-hydroxyacyl-CoA lyase 1,

acyl-CoA thioesterase

e carnitine palmitoyltransferase la, liver,

acyl-CoA thioesterase 12 and

e peroxisome proliferator activated receptor alpha, knock-out of which was reported to protect mice from
high-fat-diet induced insulin resistance (Cha et al. 2007).

Interestingly Hong (Hong, S. et al. 2010) found genes of the GO-category “lipid metabolism” enriched for
downregulation with aging in a meta-analysis of microarray data on aging.

For underexpressed genes the top GO-term is “sterol biosynthetic process” with a p-value of <1079, Also related
to lipid synthesis “cholesterol biosynthetic process” and “lipid biosynthetic process” itself are among the top GO-
terms. Interestingly also “response to sterol depletion” is detected, represented by insulin induced gene 1 Gene
(Entrez ID 231070) among the significant genes. Also among the most significant GO-terms for upregulated genes
are “rhythmic process” and “circadian rhythm”, the second of which was also found for downregulated genes. A
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GO term GO | total | overexp. | underexp. | P overexp. | p underexp |
monooxygenase activity GO:0004497 | 2803 147 96 8.69E-18 2.02E-5
circadian rhythm GO:0007623 | 1025 72 45 2.15E-15 1.37E-5
microsome GO:0005792 | 10612 366 316 1.57E-11 7.15E-8
extracellular region GO:0005576 | 42731 1227 1102 2.51E-10 3.84E-8
iron ion binding GO:0005506 | 4581 175 145 3.74E-9 1.24E-5
steroid metabolic process GO0O:0008202 | 2076 89 73 2.33E-7 8.26E-5
extracellular space GO:0005615 | 18369 548 484 2.91E-7 3.11E-5
aromatase activity GO:0070330 711 41 31 4.05E-7 3.02E-4
oxidoreductase activity, acting GO:0016712 534 33 26 1.18E-6 1.70E-4
on paired donors, with
incorporation or reduction of
molecular oxygen, reduced flavin
or flavoprotein as one donor,
and incorporation of one atom
of oxygen
heme binding G0:0020037 | 3600 132 111 2.15E-6 3.00E-4
water channel activity GO0:0015250 363 23 19 3.06E-5 5.04E-4
polysaccharide binding G0:0030247 430 24 21 1.49E-4 6.50E-4
regulation of insulin secretion GO0O:0050796 607 29 27 4.54E-4 5.26E-4

Table 3.11: GO-terms enriched in the number of studies both in which their associated genes were found over- and
underexpressed. The total number of times genes were found associated with each GO-term, the numbers in which
they were over- and underexpressed and the binomial p-values for the enrichment of over- and undererexpression
are shown.

link between circadian rhythm and both CR and aging has already been noticed in several instances (see e.g.
(Froy & Miskin 2010)).

Several categories related to immune response were found for downregulated genes: “innate immune response”,
“antigen processing and presentation”, “complement activation, classical pathway”.
Even though the GO-term “xenobiotic metabolism” itself was not enriched among our candidate genes, enzyme
activities related to this process were represented by monooxygenase activity (for up- and downregulated genes)
and NADPH-hemoprotein reductase activity (up). Some of the genes found in categories related to oxidation
and reduction fall into this category. Xenobiotic metabolism (see e.g. (Gourley & C. J. Kennedy 2009)) and in
particular monooxygenases (Schmucker et al. 1991) have been previously associated with CR, even thought their
exact role remains unclear.
“Positive regulation of collagen biosynthetic process” was among the enriched terms for over- and “collagen”,
“collagen type III“, “collagen fibril organization” and “collagen biosynthetic process” for underexpressed genes. It
has been shown previously that caloric restriction to a certain degree prevents collagen accumulation and collagen
aging (see (Frey 2004)).
The findings of “growth hormone receptor activity” and “growth hormone receptor signaling pathway” for down-
regulated genes and “regulation of insulin secretion” for both up- and down-, as well as “insulin-like growth factor
binding” for upregulated genes argues for involvement of the growth factor and insulin / IGF signalling pathways
in CR.
“Retinol metabolism”, which was found enriched for upregulated genes, has been linked to CR in a broader sense
by a study reporting the decrease of retinol during fasting in humans (Séderlund et al. 2003).
Of the top 10 categories for overexpression to our knowledge no known link exists between CR, and “copper ion
detoxification”. The GO-category “beta-alanine transmembrane transporter activity”, found for downregulated
genes, contains only 1 gene, Slc6a6. 5 other of the top 10 GO-categories for underexpressed genes were also found
due to this single gene, found downregulated 12 of 60 times it was studied. To our knowledge this gene has not
yet been associated with CR.
Out of the GO-terms shown there are 13 which meet the selection criteria for both over- and underexpressed
genes. These are shown in table 3.11.

Since these terms are relatively broad it seems acceptable that their activities are changed by upregulation of
some of their members and downregulation of others. Interestingly “steroid metabolic process” appears among
those, while “steroid biosynthesis” is one of the top GO-terms for underexpressed genes and is only found at a
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binomial p-value of 0.1 for overexpressed genes, i.e. much less emphasized. This suggests that while genes in-
volved in steroid metabolism can be both up- or downregulated by CR, the ones responsible for the biosynthesis
tend more towards downregulation.

Note that “steroid hormone receptor activity” and “response to steroid hormone stimulus” appear among the
significant GO-terms for upregulated genes. This suggests that the alteration of steroid hormone levels and the
effect of this alteration on cells is an important mechanism of CR.

Even though a single GO-category related to sterol / cholesterol metabolism is not found for both up- and
downregulated genes, there are different such categories in both cases (e.g. “cholesterol 7-alpha-monooxygenase
activity” and “regulation of cholesterol metabolic process” for over- and “sterol biosynthetic process” and “choles-
terol biosynthetic process” for underexpressed genes).

3.3.2.2 Functional classification of genes enriched in the number of studies they are found over-
/ underexpressed - DAVID-analysis

We used the DAVID Functional Annotation tool to group genes enriched in studies in which they were found
over- / underexpressed into functional categories. We obtained groups of such (often similar) categories clustered
according to genes which they had in common (functional annotation clusters).

These clusters for the overexpressed genes containing at least one category with a Benjamini-Hochberg FDR
below 0.05 contained categories related to sulfotransferase-activity, NAD(P) involving processes, oxidoreductases
-of which a large fraction was also associated with endoplasmatic reticulum- and to biological rhythms. Even
though not significant after multiple-testing correction the finding of the GO-term “response to nutrient levels”
at a Benjamini-Hochberg corrected FDR of 0.16 acts as a prove of concept for successfully detecting functional
categories determined by feeding levels. This term was represented by the genes: ATP-binding cassette, sub-
family G (WHITE), member 5 (Entrez ID: 27409), alcohol dehydrogenase 1 (class I)(11522), angiopoietin-like 4
(57875), matrix Gla protein (17313), peroxisome proliferator activated receptor alpha (19013) and solute carrier
family 37 (glucose-6-phosphate transporter), member 4 (14385).

The only functional annotation cluster with categories below a Benjamini-Hochberg FDR, of 0.05 for underex-
pressed genes was related to endoplasmic reticulum.

A problem about the DAVID procedure under default options seems to be that so many hypotheses are tested
that extremely low p-values are necessary for categories to remain significant after Benjamini-Hochberg correc-
tion. The number of significant functional categories was much lower than that found in the GO-analysis.

One significant Biocarta and 3 KEGG (Kanehisa et al. 2010) pathways were found below a Benjamini-Hochberg
FDR of 0.05 for genes enriched for overexpression, none for those enriched with underexpression. (The analysis
only for Biocarta and KEGG pathways tests less hypotheses as for all default categories and allows therefore path-
ways to be significant that were not, when testing more hypotheses). The Biocarta pathway “Nuclear Receptors
in Lipid Metabolism and Toxicity” is shown in fig. 3.9, the illustrations of the KEGG pathways “PPAR signaling
pathway”, “Arachidonic acid metabolism” and “Retinol metabolism in animals” can be found in supplement 2.

3.3.2.3 Overlap between GO-analysis on original data and DAVID functional analysis on result
genes

There is strong overlap between the functional categories found using DAVID on the genes found in the meta-
analysis and meta-analysing GO-terms themselves. For example the significant DAVID functional clusters related
to sulfotransferase-activity, NAD(P) involving processes, oxidoreductases and biological rhythms are represented
by some of the most highly significant GO-terms, e.g. “tyrosine-ester sulfontransferase activity”, “NADPH-
hemprotein reductase activity”, “oxidoreductase activity”, “rhythmic process”, “circadian rhythm” and others.
“Endoplasmic reticulum” which is found in the DAVID analysis for underexpressed genes is also found signifi-
cant for the GO-analysis, even though not among the very top genes. “Sterol metabolism” is found among the
top GO-terms and also among the top DAVID categories, even when not significant after Benjamini-Hochberg
correction.

Note that a profound difference between meta-analysis on the level of GO-terms and DAVID-analysis on the
significant results of meta-analysis on gene level is that a single gene found in many datasets can lead to signif-
icance of its GO-terms, while a GO-term has to be associated with different significant genes to be significant
in the DAVID-analysis. GO-analysis is in theory able to detect functional categories associated with CR, even
though no single gene of the category is itself significantly enriched for over- or underexpression. A strong overlap
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Figure 3.9: Biocarta pathway "Nuclear Receptors in Lipid Metabolism and Toxicity", found associated with
genes enriched for overexpression by the DAVID functional analysis tool. Genes enriched for overexpression are
indicated by red arrows. For further information see http://www.biocarta.com/genes/index.asp.
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between the GO-terms and the DAVID categories however implies a strong overlap of the GO-terms with genes
found significantly enriched, since DAVID is based on these genes.

3.3.3 Tissues contributing to enrichment of a gene for over- or underexpression

As described in “3.2.7 Determining tissues contributing to enrichment of genes for over- or underexpression”, we
determined if the enrichment of a gene for over- / underexpression was due to its over- / underexpression in one,
two or more than two tissues. Complete matrices showing the tissue specific differential-expression profiles of
these genes are shown in Fig. 3.10.

It can be seen, that different datasets contribute to a different extent to the number of genes found enriched for
over- / underexpression, especially liver-datasets (particularly GSE18297) can be found to contribute more and
brain-tissue datasets less strongly. This is surprising in the sense that the brain-datasets contributing least are
from GSE8426, a study among the highest in terms of the number of replicates.

13% and 16% of genes enriched for over- and underexpression respectively were found over- or underexpressed
only in liver and 34% and 49% in less than three tissues (and mainly in liver and one other tissue). Since
liver-specific signatures might mask tissue-independent ones we performed functional analysis (using DAVID)
besides for the complete list of significant genes also for the list subtracted of genes over- / underexpressed in less
than 3 tissues. Looking for liver-specific signatures we did the analysis for genes only over- / underexpressed in
liver. The procedure is described in “4.7.1. Putting genes found differentially expressed with CR into functional
categories”.
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Fig. 3.10: Matrix view af genes (rows) vs. datasets (calumns) for genes enviched for a,
overexpression and b, underexpression. Red fields indicate over-, green underexpression (p
<(1.03, effect size =1 .5-fold). See legend for colour coding of different tissues in the top row. For
hrain tissues and “others " vertical lines separate datasets from different tissues, for all ather
tissuwes datasets from different studies. Font colors in the first column: black: the gene is (a,)
aver- /(b ) underexpressed in at least 3 different tissues; orange: the gene is {a,) over-/ (h,)
underexpressed in less than 3 different tissues; purple: the gene is only differentially expressed in
tissues liver.

3.3.4 Results of the analysis of non-liver and liver-only datasets

To determine genes differentially expressed on the one hand in a tissue tissue-independent manner, on the
other hand liver specifically we repeated the DAVID-analysis first on genes found over- / underexpressed in
at least 3 different tissues then on such found over- / underexpressed in liver-datasets only. For the second no
categories were found at a Benjamini-Hochberg FDR < 0.05. Categories determined for genes enriched for over- /
underexpression in at least 3 different tissues compared to these found for candidates resulting from the all-tissue
meta-analysis are shown in tab. 3.12.

While functional categories related to sulfotransferase, vesicular transport, retinol and arachidonic acid
metabolism were enriched for overexpressed genes and to endoplasmatic reticulum for underexpressed genes,
these were not found enriched among the genes found over- / underexpressed in at least 3 different tissues. This
does however not necessarily mean that these categories cannot be associated with CR, cross-tissues, but might
mean that by restricting to genes over- / underexpressed in > 2 different tissues the statistical power is simply
too reduced to detect this association.

On the other hand this analysis showed that categories related to “NADP” and “circadian rhythm” were also
found for only genes differentially expressed in at least 3 different tissues and can therefore be assumed to be
truly tissue-independent. Interestingly two categories, “metal binding” and “vesicular transport” that were not
significantly enriched among all genes were found significant for genes differentially expressed in at least 3 differ-
ent tissues.

Note that some categories (like lipid metabolism) detected by the GO-analysis were not found by the DAVID-
analysis on all-tissue candidates and it is therefore not possible to draw conclusions about their tissue-specificity
or tissue-independence by this method.

3.3.5 Co-expression analysis of CR-associated genes

Genes enriched in the co-expression with genes overrepresented for up- / downregulation are given in supplement.
2. Since a large number of genes (1576 for over- and 1069 for underexpression) were found, we performed DAVID-
analysis under default settings on them.

Interestingly we found that the functional categories obtained for upregulated genes were en large the same as for
downregulated genes. Some of the most significant functional categories retrieved for both up- and downregulated
genes were related to extracellular space, lipid metabolism, amino acid catabolism, inflammation / immunity,
peroxisomes, steroid / sterol / cholesterol metabolism, endopeptidase inhibitor activity, lipoprotein particles,
response to hormons, mitochondria, xenobiotics metabolism / cytochrome P450, blood coagulation.

Therefore, after we had already detected some functional categories that appeared associated both with genes
overrepresented for over- and underexpression, we found this overlap even more pronounced on the level of their
interaction partners. This might also have to do with the increased statistical power due to the large number
of genes in this test. It suggests that pathways important for the effect of CR are upregulated in some and
downregulated in other genes.

3.3.6 Transcription factors regulating expression of candidate genes

Transcription factor (TF) binding sites enriched for our candidate genes were searched using WebMotifs which
acts as an interface to different TF-binding site detection softwares. The only one that obtained significant results
was THEME which uses reported transcription factor binding sites and optimizes them to fit best fit to our data.
The optimized sequences found significantly enriched for overexpressed genes were derived from binding sites for
CBFB_NFYA (CCAAT-binding transcription factor subunit B), CUT and PBC domains (Fig. 3.10). According
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Table 3.12: This table shows under which conditions certain functional categories are enriched for genes overex-
pressed (+) or underexpressed (-) according to DAVID-analysis on all candidate genes from the meta-analysis
and on such over- / underexpressed in more than two different tissues.

overexpressed genes underexpressed genes
..  CBFB_NFYA TheTlL bZIP
Mg Al CUT olrel_ .G .. RFX_DNA _
binding
MM PBC Teaclr  Toncl:  zfc4
A YTCA zf-C4
il CUT
CACAI - Myc N term

Figure 3.10: WebLogos (Crooks et al. 2004) of binding sites and corresponding TF-domains / domain families
enriched in our candidate over- and underexpressed genes.

to PFAM CBFB_NFYA binds to a CCAAT motif in the promoters of a wide variety of genes, including type I
collagen (pfam.sanger.co.uk).

For underexpressed genes we detected binding sites for bZIP (Basic Leucine Zipper), RFX (Regulatory Factor
binding to X box), zf-C4 (Zinc finger, C4 type/Nuclear Hormone Receptor; for which two optimized sequences
were found), CUT and Myc_ N-term (Myc animo-terminal region) (Fig. 3.10). Myc forms a heterodimer with
Max, and this complex regulates cell growth through direct activation of genes involved in cell replication. An
especially interesting candidate domain is zf-C4 since it appears in steroid hormone receptors (according to
PFAM). It therefore fits well with our functional analysis in which steroid metabolism and regulation by steroid
hormones were recurrent topics.

3.3.7 Overlap with CR-essential genes, their orthologues and interaction partners

The only mouse gene in the database for genes experimentally identified to be essential for CR, GeneDR, is Ghr
(Growth hormone receptor; Entrez ID: 14600). It was shown that mutating this gene cancels out the life-span
extension effect of CR (Coschigano et al. 2003) (Bonkowski et al. 2006). In our meta-analysis this genes was
enriched for underexpression, which is both a convincing argument for the biological meaningfulness of our results

86



and for the implication of Ghr in the mechanism of CR.
Further 4 of our candidates have CR-essential gene orthologues in lower model orgainsms: Of the genes enriched
for overexpression these were Irs2 (insulin-receptor substrate 2; an ortholog of chico in Drosophila melanogaster)
and Matla (methionine adenosyltransferase I, alpha; the ortholog of sams-1 in Caenorhabditis elegans) and for
those enriched for downregulation Gck (Glucokinase) and Sedd (sterol-C5-desaturase) which are orthologues of
HXK2 and ERGS3 in S. cerevisiae, respectively (Clancy et al. 2002) (Hansen et al. 2005) (Lin, S. J. et al. 2000)
(Tang et al. 2008). Note than the detection of genes associated with CR in these organisms in a meta-analysis
of mammalian datasets suggests at least some degree of conservation in the mechanism of CR from yeast to
mammals.
Additional 42 genes were direct interaction partners of murine CR-essential gene orthologues as determined by
the procedure described in “3.2.11 Detecting overlap with CR-essential genes, their orthologues and interaction
partners”. The complete list of these genes with their specificity measure and p-value is shown in table 3.13.
Moreover, 3 of these 47 genes were also implicated in aging according to the GenAge database (de Magalhaes
& Toussaint 2004): Ghr, Irs2 and Arntl (aryl hydrocarbon receptor nuclear translocator-like Gene), an important
circadian clock transcription factor (Coschigano et al. 2000) (Kondratov et al. 2006) (Taguchi et al. 2007).

3.3.8 Association of individual datasets to the meta-signature of CR

The p-values obtained in the chi-square test assessing the association between each dataset and the meta-signature
of CR as described in “3.2.12 Testing the association of individual datasets to the meta-signature of CR” are
given in table 3.14. The test was not done for datasets obtained form literature and supplements, since they only
provide differentially expressed genes.

It can be seen, that many datasets show a strong association with the meta-signature. This is especially
true for liver datasets, while for many of the brain-tissue datasets no gene in the meta-signature was found
differentially expressed. However the correlation between the strength of the association and the study from
which the datasets came from seems relatively strong. Therefore, for tissues that only contain datasets from
one or a few studies (e.g. most brain tissues are from GSE8426) it is hard to conclude if they are especially
well / weakly represented by the meta-signature or if the corresponding study (studies) show strong / weak
association(s) for other reasons. Because liver was tested by many individual studies and for most low p-values
in the chi-square test were obtained, it appears save to conclude that at least the effect of CR on liver is well
represented by our meta-signature.

3.4 Discussion

3.4.1 Summary and interpretation

CR is the most promising non-genetic intervention to extend life-span and delay aging associated diseases in a
range of organisms. To understand the genetic basis of CR we aimed at determining robust changes in gene
expression linked to CR by meta-analysing microarray data on CR with wide variation in different experimental
variables. To on the one hand find genes differentially expressed under different conditions, but on the other
hand to also allow transcription levels not to be affected or to be affected in opposite direction under a few
circumstances we chose a value-counting approach. To account for the fact that different genes were tested in a
different number of datasets we chose a binomial test.

As microarray analyses themselves also this meta-analysis of microarray data in the first place provides a
source of candidate genes and functional categories that may be implicated in the CR-process. The found genes
and categories can be broadly divided into such providing further evidence for genes and functions already
associated with CR and such not yet tested for their role in CR. Genes and categories for which we are aware of
their relation to CR will be discussed in the following as will the most outstanding novel ones. For all others we
refer you to the complete lists as provided in tables 3.6, 3.7, 3.9, 3.10.

It is interesting to note that considering all experiments less genes were found under- than overexpressed.
Even though this decreases the success probability (ps) in the binomial test (eqation3.1)7, also less genes / GOs
were found enriched in studies in which they / their associated genes were found over- than underexpressed. This
result is somewhat expected if you assume that CR induces a transcriptional response, e.g. to more strongly
pronounce alternative metabolic pathways.

7A lower pg requires a lower number of hits (k) for the same number of trials (n) to give the same binomial p-value
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Entrez| Gene MGI Description speci | specificity comment

ID Sym- ficity p-value
bol (%)
11833 Aqp8 aquaporin 8 Gene 41 1.48E-06
11831 Aqpb aquaporin 6 Gene 37 3.58E-06
232493 | Gys2 glycogen synthase 2 Gene 17 5.61E-05
384783 | Irs2 insulin receptor substrate 2 Gene 13 8.07E-05 CR-associated
ortholog,
aging-associated
15982 Ifrd1 interferon-related developmental regulator 1 Gene 27 0.01
14381 G6pdx glucose-6-phosphate dehydrogenase X-linked Gene 13 0.03
58198 Salll sal-like 1 (Drosophila) Gene 25 0.03
29818 Hspb7 heat shock protein family, member 7 (cardiovascular) Gene 100 0.04
11668 Aldhlal | aldehyde dehydrogenase family 1, subfamily A1l Gene 8 0.05
12846 Comtl catechol-O-methyltransferase 1 Gene 15 0.08
11865 Arntl aryl hydrocarbon receptor nuclear translocator-like Gene 11 0.09 aging-associated
22390 | Weel WEE 1 homolog 1 (S. pombe) Gene 7 0.12
70807 Arrdc2 arrestin domain containing 2 Gene 25 0.14
15258 Hipk2 homeodomain interacting protein kinase 2 Gene 9 0.14
26358 Aldhla7 | aldehyde dehydrogenase family 1, subfamily A7 Gene 7 0.15
18035 Nfkbia nuclear factor of kappa light polypeptide gene enhancer in 6 0.15
B-cells inhibitor, alpha Gene
57080 Gtf2irdl | general transcription factor 1I I repeat domain-containing 1 14 0.24
Gene
67460 Decrl 2,4-dienoyl CoA reductase 1, mitochondrial Gene 13 0.26
235293 | Scbd sterol-Ch-desaturase (fungal ERG3, delta-5-desaturase) 6 0.27 CR-associated
homolog (S. cerevisae) Gene ortholog
1000425 0Bnip3 BCL2/adenovirus E1B interacting protein 3 Gene 11 0.29
235320 | Zbtbl6 zinc finger and BTB domain containing 16 Gene 5 0.31
269587 | Epb4.1 erythrocyte protein band 4.1 Gene 5 0.33
223697 | Sun2 Sadl and UNC84 domain containing 2 Gene 5 0.34
14600 Ghr growth hormone receptor Gene 6 0.39 CR-associated,
aging-associated
14828 Hspab heat shock protein 5 Gene 4 0.40
103988 | Gck glucokinase Gene 5 0.41 CR-associated
ortholog
12406 Serpinhl | serine (or cysteine) peptidase inhibitor, clade H, member 1 7 0.44
Gene
14229 Fkbpb FK506 binding protein 5 Gene 4 0.47
13170 Dbp D site albumin promoter binding protein Gene 6 0.48
19013 Ppara peroxisome proliferator activated receptor alpha Gene 5 0.50
11465 Actgl actin, gamma, cytoplasmic 1 Gene 4 0.55
215160 | Rhbdd2 | rhomboid domain containing 2 Gene 4 0.60
18627 Per2 period homolog 2 (Drosophila) Gene 4 0.62
18626 Perl period homolog 1 (Drosophila) Gene 4 0.66
14827 Pdia3 protein disulfide isomerase associated 3 Gene 3 0.67
20787 Srebfl sterol regulatory element binding transcription factor 1 Gene 3 0.78
104112 | Acly ATP citrate lyase Gene 3 0.78
668629 | Ptprj protein tyrosine phosphatase, receptor type, J Gene 2 0.81
54123 Irf7 interferon regulatory factor 7 Gene 2 0.85
13360 Dher7 7-dehydrocholesterol reductase Gene 2 0.87
15493 Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid 2 0.88
delta-isomerase 2 Gene
71586 Ifih1l interferon induced with helicase C domain 1 Gene 2 0.88
69288 Rhobtbl | Rho-related BTB domain containing 1 Gene 1 0.98
11720 Matla methionine adenosyltransferase I, alpha Gene 1 0.98 CR-associated
ortholog
13809 Enpep glutamyl aminopeptidase Gene 1 1.00
80885 Niacrl niacin receptor 1 Gene 1 1.00
73074 Cxcl9 RIKEN cDNA 2900086B20 gene 1 1.00

Table 3.13: Genes found in the meta-analysis that are interaction partners of genes experimentally associated
with CR. See text (“3.2.11 Detecting overlap with CR-essential genes, their orthologues and interaction partners”)
for definition of specificity and specificity p-value. Analysis by D. Wuttke.
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chi-square chi-square
tissue |dataset p-value tissue dataset p-value
GDS1261Amesdwart. txt 1.7E13 adipose tissue GSES121_adip.ixt 3.9E-27
GDS1261normal.txt 1.2E-15 GSEGT18wat.txt 0.28
GDS1808LTCR. txt 1.8E-35 GDS2961 2962 16months_txt 0inMS
GDS1808CRa.txt 3.0E-17 thymus GDS2961_2962_6months.txt 0inMS
GSE11244true ad.libiturm.txt 1.3E-25 GDS2961 2062 24months fxt 0.80
GSE11244fixed.high.cal.txt 3.7E-31 GSET302ovary 16months. txt 1.2E-03
GSE17300.txt 0.52 ovary G3ET75302ovaryémonths. txt 2.2E-04
GSE18297_1week _Sperc.ixt 2.59E-31 GSET302ovary 24months.txt 0.32
GSE18297 1month_Sperc.txt 0.01 GDS241_2h.ixt 0.76
GSE18297_1week_20perc.txt 3.1E-78 lung GDS241_12h.txt 0.00
GSE18297 1month_30perc.ixt 0.01 GDS241 4h.ixt 0.57
GSE18297_1week_30perc.txt 1.5E-67 cochlea |GDS2681.txt 0.04
GSE18297 1month_10perc.ixt 3.3E-97 mammary |GSE14202exercise.txt 8.3E-14
GSE18297 1month_20perc.txt 2.2E-81 gland GSE14202no_exercize.txt 1.4E-9
liver |GSE18297 1week 10perc.ixi 8.0E-47 GSET302testis 16months.txt 0.04
oneReplicate GSES04.txt 0.13 testis GSET302testis24months. txt 0.82
GSE9121_liv4.txt 1.2E-59 GSET302testisémonths. ixt 0inMS
GSE9121 _liv10.txt 3.1E-85 colon EMEXP-748 colon.csv 6.3E-30
EMEXP-748 liver.csv 3.1E-36 GSE8426Cerebellum24months. txt 0in MS
prep_Cao_7months.csv suppl. cerebellum |GSE8426Cerebellumbmonths.txt 0in M3
prep Cao 2¥months.csv suppl. GSE#426Cerebellum16months.ixt 0in M8
prep_Corton2004.csv suppl. GSEd426Cortex6months.txt 0in M3
prep_Dhabi temporal2weeks.csv suppl. GSEd426Cortex24months. txt 0in M8
prep_Dhabi_temporaldweeks.csv suppl. GSE#426Cortex16months.txt 0in M3
prep_Dhabi_temporalBweeks.csv suppl. coteX  |5sE11291neocortex.txt 2.3E-15
GAN_Expr_Profile_Aging CR_Retardat
prep_Dhabi_temporal27mo.csv suppl. ion_Meocortex 30months.txt 0.22
prep Fu liver.csv suppl. forebrain  |oneReplicate CR PS RAW DATA txt 0.26
kidney GDS355_3596.txt 9.5E-04 GSE8426HippocampusGmonths. txt 0in M3
GSEB110.txt 0.91 Hippocampus |GSEB8426Hippocampus16months txt 0in M8
GSEGV18heart.txt 0in M3 GSEf426Hippocampus24months.fxt 0in M3
heart |GSE11291hear txt 1.7E-20 hypothalamus EMEXP-748_hypothalamus.csv T.2E-T
prep_Fu_heart.csv suppl. prep_Fu_hypothalamus.csv suppl.
GSE11291gastrocnemius.ixt 2.2E-04 GSE84265pinal.cordémonths. txt 0in M3
skeletal [prep Kayo 2001.csv suppl. spinal cord |GSE84265pinal.cord16months txt 0in M3
muscle |GDS2612.txt 0.03 GSE84265pinal.cord24months. txt 0in M3
EMEXP-748 muscle.txt 4.2E-23 GSE84265triatum24months. txt 0in M3
striatum  |GSE84265triatum16months. txt 0in MS
GSE84265triaturnémonths txt 0inMS

Table 3.14: Association of individual datasets with the meta-signature of CR. Datasets are sorted according to
tissue; datasets of different studies are separated from those of another study within tissue entries; “0 in MS”:
none of the genes in the meta-signature was found differentially expressed in this dataset; “suppl.”: dataset from
literature or supplement.

89



We also detected that many of the top functional categories appear enriched for both over- and underexpressed
genes, e.g. categories related to lipid, steroid, sterol / cholesterol metabolism, circadian clock and xenobiotic
metabolism. We expect that especially in these rather broad categories overexpression of some and underex-
pression of other genes might lead to the same outcome (e.g. if an activator of a gene is up- and a suppressor
downregulated this both leads to activation of the gene). Of course this assumption has to be further validated
by closer examination of the underlying signalling networks.

The appearance of many lipid metabolism and sterol biosynthesis related GO-terms among the ones of highest
significance fits well with the idea of different metabolic states of AL and CR animals. It is not at all surprising
that lipid metabolism and related categories emerge as results since it is expected that animals with significantly
reduced caloric intake rather catabolize than anabolize fat. Besides the intuitive understanding that caloric re-
striction alters lipid metabolism there is plenty of literature linking lipid metabolism with possible mechanisms
of CR. For an overview see e.g. (Puca et al. 2008). It has also been reported that CR prevents age related
changes in cholesterol metabolism (Martini et al. 2008). Sc5d (sterol-C5-desaturase) was one of the candidates
for downregulation involved in sterol metabolism and is a homologue of ERGS3, which is important for life-span
extension by CR in S. cerevisiae. Also finding the endoplasmic reticulum as a category significant for both
over- and underexpressed genes is in agreement with this idea since this is an important compartment for lipid
synthesis (Hong, S. et al. 2010).

Our functional analysis detected categories related to the growth hormone and insulin / IGF-signalling path-
ways, mutations in which have effects on longevity and the life-span extending effect of CR. Ghr (growth hormon
receptor) is the only known mouse gene that cancels out the life-span extending effect of CR upon mutation
(Bonkowski et al. 2006). This gene was enriched for underexpression in our analysis. Irs2 (insulin-receptor
substrate 2) was found for overexpression and is an ortholog of chico in Drosophila melanogaster, which was
experimentally associated with aging and CR. In this respect one of our most interesting candidates enriched for
underexpression is Airn (antisense Igf2r RNA), which might be a ncRNA with an important role in the regulation
of insulin / IGF-signalling. Note that this gene until recently was annotated as a RIKEN ¢cDNA gene and that
therefore others of our candidate genes with unknown function might also promise interesting roles in the CR
mechanism. In general the role of ncRNAs in the context of CR is widely unknown.

We determined categories related to circadian rhythm and xenobiotic metabolism both for over- and underex-
pressed genes, which had both already been associated with CR (Froy & Miskin 2010) (Gourley & Kennedy
2009) (Schmucker et al. 1991), however for which deeper understanding of their role in CR remains elusive. Two
of our candidate genes, Arntl (aryl hydrocarbon receptor nuclear translocator-like Gene) and Dbp (albumin D
site-binding protein), are important circadian clock transcription factors of which the first was already associated
with the aging process, while Dbp has not yet received much attention with respect to aging or CR.

One of the major side effects of CR is the repression of immune functions and an important physiological change
with aging is increased inflammation and alterations in collagen deposition. Therefore it is noteworthy that our
meta-analysis also established relations between CR and these functional categories.

A process less well established as to its role in CR is retinol metabolism and to our knowledge no reports on
copper ion detoxification exist in respect to CR. Still both processes were found among the most significantly
enriched for genes overexpressed with CR. Especially since many of the functional categories detected are mean-
ingful in the light of existing knowledge we also believe in the relevance of these terms.

Note that even though not found in the context of an enriched functional category Nfkbia, which was found en-
riched for overexpression is such a central molecule in NfkB-signalling, that it might by itself render this pathway
important for the mechanism of CR. Zfp64 as a little understood co-activator in the notch pathway also has the
potential to be an interesting candidate concerning the mechanism of CR.

When extending the number of genes by obtaining genes significantly co-expressed with the determined can-
didates and therefore increasing the power of the approaches determining underlying functional categories, we
noted that basically all these categories were found for both over- and underexpressed genes. Some of the ad-
ditional categories found this way were “mitochondria” and “peroxisomes” as subcellular locations, “response to
hormones” and others. “Xenobiotic metabolism” was found explicitly as a GO-term as well as categories related
to P450.

Due to the overrepresentation of liver-datasets in our analysis we cannot claim that all genes found in the
meta-analysis over all tissues are associated with CR in a tissue-independent manner. However is seems save
to assume that out of these genes those found over- / underexpressed in at least three different tissues are
truly tissue-independent. Nonetheless, even when tissue-specific, we expect that genes found in the (all-tissue)
meta-analysis are robustly associated with CR due to the large variation in different co-variates (e.g. organism,
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duration of CR, ...) between the original studies. Of the functional categories found in the DAVID-analysis
of the all-tissue candidates “circadian rhythm” and “NADP” related categories can be strongly assumed to be
tissue-independent, since they were also found significantly enriched among genes found overexpressed in at least
3 different tissues.

3.4.2 Comparison with results from other meta-analyses

The other meta-analyses on CR presented in “3.1.3 Other meta-analyses of gene expression data for CR” were
somewhat different from ours as far as the aim was concerned. While our focus was on determining genes with a
mechanistic effect in CR other studies set out to find any genes differentially expressed with CR, no matter if due
to the role of the gene in the mechanism of CR or due to the effect of CR on the expression of the gene. Hong
(Hong, S. et al. 2010) even explicitly reported genes and modules for which differential expression was opposite
of the change found with aging. Their expression changes are more likely to be an effect than a cause of the
mechanism of CR. Even though in this kind of analysis there is of course no way to determine if a gene really
mechanistically contributes to CR we expected to make this more likely by excluding genes, which we suspected
were only found differentially expressed with CR in old animals due to the lack of the normal expression change
with age as an effect of CR (see “3.2.2.5 Excluding genes differentially expressed with age”). Even though we
could only do this for studies on old animals that also provided microarray data from young AL animals this is
one of the major differences of our analysis to these of others.

A summary of other meta-analyses of CR microarray data in comparison with our meta-analysis is shown in
table 3.15.

Since our study is more recent than the other ones mentioned, we were able to include more datasets into the
meta-analysis. This makes especially a difference compared to Swindell, 2008a and Hong, 2010, while Swindell,
2009 included a comparable number of studies. Importantly while all meta-analyses (in at least part of the
study) used data from different tissues all but ours focused only on data from mouse. In this respect we have to
admit that also the fast majority of datasets in our study was from mice and that in some cases data-loss during
annotation with mouse gene identifiers limited the contribution of non-mouse studies. While we expect that the
use of different organisms strengthened the robustness of our findings we cannot claim all determined candidates
to be organism-independent.

Our meta-analysis was not so focused on tissue-independence of the findings as Swindell, 2008a. While
Swindell accepted to loose information by only counting if a gene was differentially expressed in any dataset of a
certain tissue and ignoring in how many of these datasets it was detected, we counted occurrences of differential
expression independently of the tissue arguing that variability in other covariates introduced sufficient robustness.

As for the statistical procedure we used a value-counting approach as did Swindell, 2008a. Since this study
counted the number of tissues in which a gene was over- / underexpressed, but did not account for the number
of datasets in which a gene was studied a bias for detecting genes studied more often is introduced. We tried to
overcome this problem by employing a binomial test. Swindell, 2009 used Fisher “s inverse chi-square approach
which is, since it is based on p-values, relatively sensitive to single datasets not fitting a certain differential
expression trend in other datasets. This might e.g. lead to not detecting a gene that is robustly differentially
expressed over many studies in animals up to a certain age, but not any more in very old animals. Since it is
not sure if CR exerts its effect over all the life, every tissue, etc. it seems to be reasonable to want to find such
a gene significant. Therefore we chose a value-counting approach which is not sensitive to these cases. Hong,
2010 simply pooled genes found in different studies and then e.g. searched for enriched functional categories.
Therefore this can be understood as a meta-analysis on the level of e.g. the functional categories, but not on
gene level.

Surprisingly many genes were found differentially expressed in Swindell, 2009. For many of the top genes there
was contradicting evidence (upregulation in some, downregulation in other datasets) rather than indicating some
of them as non-significant. The number of non-significant results was generally very low. It appears likely that
the high number of significant results in the individual studies, rather than much higher power of the Fisher s
chi-square over the value-counting approach lead to the large number of detected genes.

As Swindell (Swindell, 2008a) we found Perl, Per2, Mt1, Mt2, Fkbp5, Sultlal (and additionally Sultlc2, Sult1d1
and Sult8al), Ppara and Nfkbia enriched for overexpression and Col8al (but not Collal, however Col5al), for
underexpression. We did not find Hsp10 for underexpression, but Hsp5 and Hsp7, not Ifi27, but Ifi2712«
(interferon, alpha-inducible protein 27 like 2A Gene). The overlap with the genes he found overrepresented for
overexpression was therefore much bigger than with those he found for underexpression. Note that finding similar
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meta-analysis Swindell, 2008a | Swindell, 2009 | Hong, 2010 this
meta-analysis
number of 13 21 6 23
studies
number of 10 17 b} 19
tissues
organism(s) mouse mouse mouse mouse, rat, pig,
rhesus monkey
meta-analysis | value counting Fisher’s inverse | pooling diff. value counting
technique chi-square exp. genes
number of 28 12114 N.A. (pool: 586) | 175
significant
genes
comment seperately for liver | seperately for seperately for
liver, heart and liver and all but
muscle liver

Table 3.15: Comparison of different meta-analyses of microarray studies on CR. Since Hong, 2010 only pooled
the data from different studies and performed analyses on those, this can be understood as a meta-analysis on
the level of underlying categories, but not on gene level.

genes could result from not unambiguously matching probes as well as from that the genes may have similar
functions.

Overall there was good agreement between the functional categories determined in our and the other meta-
analyses. Especially all of them reported lipid metabolism or similar categories to be among of the most signifi-
cant findings. Apart from that Swindell, 2009 mentioned “circadian rhythm” as another important result. As for
subcellular localization the lysosome, mitochondria and endoplasmatic reticulum were enriched among genes dif-
ferentially expressed with CR. On the other hand the studies also displayed differences to one another. Apparently
no other study than ours assigned an important role to copper-ion detoxification and retinol metabolism.

3.4.3 Perspective

This meta-analysis provides a large number of candidate genes that are robustly differentially expressed with
CR and functional categories associated with such genes. These genes and categories range from such already
extensively studied for their role in CR, which suggests that our results are biologically meaningful, to such that
received less attention and some that were not at all associated with CR before. For further studies on the
relationship of these categories with CR the candidates associated within them, their co-expressed genes and
transcription factors regulating their expression can serve as a starting point.

Meta-analyses are already a powerful and inexpensive method to draw information from already existing data. We
expect that meta-analyses on high throughput studies will become even more valuable once e.g. next generation
sequencing and proteomics data are added to the microarray data already deposited in public databases.

For meta-analyses on CR increasing availability of studies on invertebrates might allow a better understanding
of evolutionary conserved pathways acting during CR.

Meta-analyses like this would be more powerful if raw data from all studies performed would be provided in
databases or at least by the researchers upon request, so that there is no need to include supplemental data,
requiring many compromises in the approach.
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Zusammenfassung

Trotz groferer Anstrengungen is der Alterungsprozess eines der am wenigsten verstandenen Phinomene der Bi-
ologie. Diese Arbeit bedient sich zweier bedeutenden Erkentnisse der Altersforschung: Zum einen der Schlussfol-
gerung, dass Verdnderungen der Stammzell-Proliferation mit dem Alterungsprozess gekoppelt sein konnten,
zum anderen dass Calorische Restriktion eine wirksame Mafsnahme zur Verldngerung der Lebensspanne und
zur Verzogerung alters-assoziierter Krankheiten darstellt. Im ersten Teil dieser Arbeit analysieten wir ein
shRNA-basiertes Screening-Experiment um Gene zu identifizieren, die eine Rolle in der Stammzell-Proliferation
spielen und unternahmen erste Schritte zur Etablierung eines Durchfluss-Cytometrie basierten Proliferations-
Tests um Kandidaten zu validieren. Zweitens meta-analysierten wir Microarray-Daten aus verschiedenen Ex-
perimenten, die die Anderungen der Genexpression in Folge von Calorischer Restriktion untersuchten. Wir
identifizierten mit Hilfe einer Binomial-Test basierenden Abz&hl-Methode (“value counting approach”) Kan-
didatengene, die hinsichtlich differentieller Expression in den Datensétzen angereichert waren. Wir zielten
durch die Verwendung von Datensétzen von verschiedenen Organismen, Geweben, Altern, usw. darauf ab ro-
buste und generalisierbare Kandidaten zu finden. Wir verwendeten ferner verschiedene Vorgehensweisen um
den Kandidaten zugrunde liegende funktionelle Kategorien und Gemeinsamkeiten hinsichtlich ihrer Rolle in
Signaltransduktions-Netzwerken zu detektieren. Im Ganzen iiberlappen die 163 gefundenen Kandidaten-Gene
und 340 Kategorien mit fritheren Erkenntnissen auf diesem Gebiet, wie zum Beispiel das Ghr Gen und Kategorien
aus dem Bereich Lipid-Stoffwechsel, Insulin-Signalwege, Kollagen oder Immunitét und suggerieren daher einen
biologischen Bedeutunggehalt unserer Methode. Andererseits traten auch neue und bisher vernachlissigte Funk-
tionen wie Fremdstoff-Metabolismus, Biorhythmus, Retinol-Metabolismus und Kupfer-Ionen-Entgiftung zum
Vorschein, welche vielversprechende Gegenstinde zukunftiger Forschung sein konnten. Einige der signifikan-
ten Gene spielen moglicherweise eine tragende Rolle als Regulatoren wichtiger Signalwege, wie z.B. Nfkbia, Airn
(Igf2R antisense RNA) und der Notch Co-Aktivator Zfp64.
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