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Abstract

Daily Life is more and more affected by modern forms of communication and media. In the world of today,  

we  live  our  lives  within  network based environments.  We check e-mails,  make mobile  phone calls  and 

interact on social media platforms – starting from Facebook or Twitter up to Wikipedia. The high volume of  

raw computable data leads to research topics about social network analysis. Using this method, it is possible 

to reveal distinct patterns of interaction. Depending on the communication media, it allows the investigation 

of behavioral patterns of strong and weak relationships, relationships of liking and disliking someone, or even  

dividing important actors from less-important actors within a network system.

Besides, network technology does not stand still.  It is constantly expanding, enhancing and restructuring 

itself. A great new vision of the World Wide Web is the enhancement to uniform standards on the underlying  

data to a Web of Data. The Web of Data, or Linked Data, already has a huge community and a fast growing  

amount of freely accessible, machine-readable data. The nucleus and crystallization point of the Web of Data 

is DBpedia, which provides a machine-readable representation of the entire Wikipedia contents as Linked 

Data on the Web.

This thesis seeks to connect the data of Linked Data with the method of the social network analysis. In order 

to achieve this, we would like to extract networks from DBpedia and analyze the extracted actors to draw a 

valid conclusion about using DBpedia as a source of data for social network analysis. To assure that social  

network analysis on DBpedia is possible and reasonable, we will exemplarily analyze networks of writers,  

scientists, soccer players and architects to answer questions like “Who is the most important writer/scientist 

in history?”, “Which transfer patterns do soccer players follow?” or “Do architects work in teams?”. Another  

topic of this thesis is the usability and usefulness of this whole approach in social science.
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Zusammenfassung

Unser Leben verlagert  sich immer mehr in Richtung netzbasierter  Umgebungen. Wir schreiben E-Mails, 

telefonieren mit Mobiltelefonen und kommunizieren mit Freunden in Social Media Plattformen, von Facebook 

bis Wikipedia. Das schafft eine große Anzahl an verwertbaren Daten für die Soziale Netzwerkanalyse. Diese 

Methode  erlaubt  es,  basierend  auf  dem  Medium  spezielle  Kommunikations-Schemata  zu  analysieren,  

Verhaltensmuster bei starken und schwachen Beziehungen, Beziehungen bei denen sich Akteure mögen 

oder ablehnen zu untersuchen. Mit ihr kann man auch Aussagen treffen, wie wichtig einzelne Akteure in  

Relation zu anderen im Netzwerk sind.

Netzwerk Technologien entwickeln sich kontinuierlich weiter. Ein gutes Beispiel dafür ist die Erweiterung des 

World Wide Web zum sogenannten Web of Data. Hier werden Standards geschaffen, um die den Webseiten 

zugrunde liegenden Daten einheitlich,  offen und maschinenlesbar zu gestalten.  Das Web of  Data,  auch 

Linked Data genannt, hat eine große Gemeinde und eine schnell wachsende Anzahl an frei verfügbaren, 

maschinenlesbaren Daten. Das leuchtende Zentrum dieser verlinkten Daten ist die DBpedia, welche Daten 

aus der Wikipedia extrahiert und anhand der Linked Data Prinzipien aufbereitet.

Diese  Arbeit  versucht  die  frei  verfügbaren  Daten  des  Web  of  Data  mit  der  Methode  der  Sozialen 

Netzwerkanalyse zu verbinden. Um das umzusetzen, wollen wir Daten von der DBpedia extrahieren und die 

extrahierten Akteure analysieren, um daraus konkrete Aussagen herleiten zu können. Konkret möchten wir 

jeweils ein Netzwerk von Schriftstellern, Wissenschaftlern, Fußballspielern und Architekten extrahieren um, 

unter  anderem,  Fragen  zu  beantworten  wie  „Wer  ist  der  wichtigste  Schriftsteller/Wissenschaftler  der 

Geschichte?“, „Welchen Transfermustern folgen Fußballspieler?“ und „Arbeiten Architekten in Teams?“. 

Die Beantwortung solcher Fragen gibt Aufschluss darüber, ob die Soziale Netzwerkanalyse in Verbindung 

mit der DBpedia grundsätzlich möglich ist. Auch Ziel dieser Studie ist es, herauszufinden ob dieser Ansatz 

brauchbar ist  für die Sozialwissenschaft. 
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1 Introduction
Social network analysis represents an interdisciplinary research area, where sociologists and computer 

scientists bring their  competence together. Sociologists possess particular knowledge in the accurate 

editing  and  correct  interpreting  of  empirical  data  in  their  research  fields.  Computer  scientists  have, 

amongst others, the knowledge for parsing and processing the needed data from the web.

Social network analysis is used within communication networks, especially in economical contexts, and 

relationship networks. Communication networks depend on e-mail data, chat histories, mobile phone call 

records, etc.. Relationship networks can either be simple ones like networks of “who knows whom”, or 

friendship networks. More complex relationship networks have different relationship attributes, such as 

networks of liking and disliking, strong or weak relationship networks, etc..

Within  the  social  web,  human-to-human  communication  is  shifting  more  and  more  towards  online 

communication possibilities. Online communication data is usually recorded and can be computed to big-

scale social networks. Social software, such as Facebook, Orkut, StudiVZ or Frienster, provides an even 

greater dimension of creating social networks.

However,  social  networks do not  have to be about living people in the first  place.  There is also the 

possibility to use this method with historical data. Data on the Roman Empire, for example; every year  

two consuls were elected, who served and worked in an administration of the highest political office. We 

can say, every consul is connected to the other consul he served with. This assumption is the base of a 

social network.

In this thesis, we want to apply social network analysis methods on Linked Data. Linked Data is part of 

Tim  Berners-Lee's  Semantic  Web  vision.  It  unites  the  underlying  data  of  websites,  makes  them 

accessible,  interlinks  them and (most  importantly  for  this  thesis)  exposes information  in  a  machine-

readable  way.  Linked  Data  has  a  growing  research  community  and  an  increasing  number  of  data 

sources. 

One of the biggest and most famous Linked Data sets is the DBpedia [67,68]. This project processes data 

from Wikipedia and transforms it according to the Linked Data principles. This leads to an ample amount  

of informational data.

Until  now,  social  network  analysis  in  the  area  of  Linked  Data  is  only  applied  on  personal  profiles  

expressed in the FOAF vocabulary, which is the underlying vocabulary of social software data. This thesis 

will  investigate the possibilities of  using the method of  social  network analysis  on other  Linked Data 

sources.  As  a  proof  of  concept  we will  specially  focus on analyzing social  networks  extracted from 

DBpedia.
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1.1 Problem Description
The aim of this thesis is to investigate whether or not data from DBpedia is usable and useful for the 

social network analysis. In order to do so, we need to show that it is possible to properly extract and 

analyze social networks. Thus, we need a framework and an application that uses the interfaces from 

Linked Data sets. It should convert the data to a network and then compute and present the analysis  

results.

As a proof of concept we exemplarily extract four networks: A network of influential writers with the aim of  

investigating  the  most  famous and  important  writers  in  history.  Another  network  depends on soccer  

players to investigate their transfer patterns. We want to answer the question, if soccer player transfers 

are regional or international. The third network refers to historical scientists. There we will find out, who is,  

retrospectively,  the  most  important  scientist.  The fourth  network  concerns  a  network  of  architects  to 

investigate which buildings architects work on in teams. The network of soccer players and the network of 

architects are especially suited for finding errors in the extraction data and their heritage.

Additionally, to make sure this approach is not only useable but also useful for social research, a usability  

study will be conducted to theoretically assure or disprove whether it is eligible for social research or not.

1.2 Contribution
The contribution  of  this  thesis  is  the  expansion  of  social  network  analysis  on  arbitrary  Linked  Data 

sources. Furthermore, the thesis should find out, whether DBpedia data is interesting for social research  

according to social network analysis. We will provide a framework for extracting, converting and analyzing 

data from Linked Data sources. Data extraction capabilities are on single RDF sources, which could be 

one single file or a single SPARQL endpoint. The data will be converted to an internal graph structure. To  

be compatible with other software, the graph is convertible to a specific format. Furthermore, there are  

also proper analysis algorithms integrated within the framework.

1.3 Organization
The thesis is structured into two major parts and seven chapters. The first part covers the theoretical 

background and related work. Here aspects on social networks will be introduced, with respect to their  

practical use for observing communication and relationship patterns of human beings, their classification 

into complete, partial and ego-centric networks, as well as a common extraction methods (chapter 2). 

Thereafter, the topic of the graph theory and its methods will be explored more detailed and statistical  

metrics for social network analysis will be introduced (chapter 3). Finally, within this part we introduce the 

second main issue of this thesis – the topic of Linked Data. Here we present the underlying concepts and 

working technologies. Furthermore, we take a closer look at DBpedia and present extraction possibilities 

on Linked Data sources.

The second part deals with Methodology, Implementation and the Proof of Concept. Within this part, we 

present the methodology of our approach, divided into the approach for our extraction and analysis tool,  
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the network  analysis  procedure,  and the approach for the usability  study (chapter  5).  Afterwards  we 

present  the  implementation  of  the  SocioCatcher  framework  and  application  (chapter  6).  Finally,  we 

analyze the extracted networks and present the results of the usability study (chapter 7).

-  3 -





Part 1

Background and Related Work
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2 Social Networks
This  chapter  gives  an  introduction  to  social  networks,  their  ancestry,  definition,  categorization  and 

research  topics.  It  also  illustrates  a  very  common  extraction  method.  In  this  thesis,  the  term social 

network is used for graphs with special properties to investigate living beings and therefore it is mainly a 

topic of social science.

2.1 Origin
Social science investigates the aspects of human society. According to this, social science is an ample  

field with very interdisciplinary characteristics. Amongst others, the main branches of social science are 

sociology,  communication  studies,  education,  political  science,  economics,  anthropology,  geography, 

history, law and linguistics. There are, however, also other scientific research areas of social science. For 

instance,  social  science  is  also  integrated  within  health  care,  environment,  work,  arts,  education, 

demography,  culture,  economy,  commerce,  sports,  police,  traffic,  urbanity,  (governmental  and  non-

governmental) organizations, youth culture, globalization, technology and even within scholarship itself  

[63].

The quantitative methodology of social science generally consists of creating, surveying, and analyzing 

questionnaires. The most commonly used qualitative methods are observations, field experiments, artifact  

or text analysis and oral or written inquiries (e.g. interviews). 

All methods take examples from an investigated group. This means, we have, for instance, a group of 8 

million people, which is about the population of Austria, and, according to Alemann [4], take a random 

sample of 2.000, in consideration of an equal amount of all  demographic groups. The social network  

analysis is the only method in social science which has the nature to investigate data of complete groups 

[34].

2.2 Definition
A network has two properties, vertices (or nodes) and edges (or arcs/links). Vertices are visualized as  

nodes with edges in between. Figure 1 is a simple directed network of vertices and edges.

The vertices of social networks are called actors and can be of the following types [2]: 
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Figure 1: Vertices and edges of a directed network

Ed
ge

 2

Vertex 1 Vertex 2

Vertex 3 Vertex 4

Edge 3

Edge 1

Edge 4



Human beings Animals

Small groups Economic organisations

Social classes Occupations

Nations World alliances

Table 1: Vertices of social networks

The  edges  are  called  relationships  and  can  be  signed  or  unsigned.  Unsigned  networks  are  simple 

relationship  or  communication  networks.  Signed networks  give  models  a  more realistic  behavior  [9]. 

Signed edges can be weak or strong ties, like or dislike, or even more capabilities for more complex  

networks.

Social network analysis focuses on patterns of actors and their relationships. It is used for many different  

kind  of  networks,  like  communication  networks,  friendship  networks,  enterprise  networks,  health 

networks, networks of innovation, etc. [3].

2.3 Social Network Research
Social  networks are part  of  the social  science since its beginning in the middle of  the 19th century.

The  famous  philosopher  Karl  Marx  already  wrote  in  1857:  "Society  is  not  merely  an  aggregate  of  

individuals; it is the sum of the relations in which these individuals stand to one another." [1]. These Social 

network metaphors were used intuitively over a long time [2]. Social networks are, in most cases, very  

ample (many actors with many connections), so over the last few centuries they were too complex to  

visualize and compute.

Technical possibilities changed and a new computational social science appeared [5] with its flagship, the 

social network analysis. With the advent of social media, social software and the social web, a huge 

amount of recorded material is now appearing, which can be used for analyzing social behavior. There 

are e-mails, instant messengers, message boards and many other communication networks.  Besides 

this, friendship networks become more and more part of the daily routine for millions of people. With  

these networks it is possible to communicate in many different ways, play multiplayer games, organize  

events and invite friends, etc.

But  that's  not  everything.  Research  is  also  being  conducted  into  so-called  “sociometers”,  which  are 

electronic  devices  that  can  be  worn  by  people  to  record  movement,  location,  proximity,  and  other  

measures [6]. The data can be used to obtain knowledge about face-to-face group interaction and group-

dynamics, i.e. in companies, but also to analyze how diseases can spread. The proximity and time data of  

mobile phone calls are also collected and analyzed to get patterns on social communication behavior [8]. 

There is also research in simulating complex macro social networks to get a better overview on society 

and how society is changing over time [7]. There are different ways to reveal network complexity on large  

networks. One is to group nodes, another is to analyze grouped edges, so called “link communities” [10].

Phone companies collected records of phone calls made by their customers over many years. Social 

software providers have been recording data of chat and other interactions over a long period of time.  
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Computational social science analyzes this kind of data in order to draw conclusions based upon this.  

This leads to problems, for instance, if  Google Research or Yahoo Research work on their data, the 

knowledge they produce can not be reproduced by anyone within the scientific community, for fear of 

breaching privacy regulations.  For  example,  the Facebook API allows programs to fetch friends of  a 

Facebook user, but the policy does not allow it to store the data. It is the hardest challenge to respect  

access and privacy on the one side, but to still  get as much data as possible, because only a broad 

amount of raw data can lead to a profound knowledge.

2.4 Communication Networks
With social research, communication patterns are often used for analysis. There is a great amount of data 

available  like  phone call  lists,  e-mail  lists  from companies,  blogs  and webpages,  instant  messenger 

histories, social software records or even special devices and mobile phone lists for spatial data. 

To gain a better insight into online communication capabilities, Figure 2 lists a categorization for different 

kinds of communication types and their software in working or private environments.

Ressource: http://upload.wikimedia.org/wikipedia/commons/2/28/Cscwmatrix.jpg

The CSCW matrix  shows  different  communication  capabilities.  Communication  patterns  on  proximity 

communication  (the  first  column) is  commonly  used  in  economic  environments.  “Different  place” 

communication has a bigger focus in science, because this data can be easier recorded and computed 

for big scale networks.

2.4.1 Phone Call Networks
Mobile phone call lists or those of landline phones are often used for analyzing highly complex social  

networks but also for enterprise communication networks for optimizing workflows. This is often motivated 

by economical reasons, because communication is a very important way to optimize productivity and 

-  9 -

Figure 2: Computer Supported Cooperative Work Matrix (CSCW)



costs. First, there has to be knowledge about communication structure (phones, e-mail, chats, ...) in a 

company, followed by making it more effective, for instance, by training or even by finding employees who 

don't participate in the company structure and exchange them as a last resort.

Understanding phone call networks is also a broad section in research. Mobile phone calls especially are 

of great interest to the scientific community, which produced a large amount of literature on mobile phone  

networks [8,10-16]. Thus mobile phone calls are not the only possibility for social agents to interact, there  

is an effort to understand dynamics and behavior patterns on mobile phone users, because of the fact  

that nearly everyone owns at least one mobile phone. This leads to complete data sets. Mobile phone 

data has a potential value for public traffic engineers, safety managers, emergency response personnel,  

city  planning and resource management.  This  data  gives  insight  into  what  humans do in  their  daily  

routine,  into  group  dynamics  within  crowds  as  well  as  how  individuals  change  their  behavior  in 

emergencies like traffic jams, protests or riots [14,15]. For more details see Section 2.6.

A  scientific  study  has  conducted  research  into  the  persistence  and 

dynamics of communication ties between actors [11]. It shows that, among 

others,  reciprocal  “two-way”  links are the most  persistent.  Another  study 

analyzed the changes of the whole network over time and concluded that if 

complex communities, to be persistent, have to embed new actors very fast, 

which  means the network  need to be very dynamic.  Small  communities 

have to be static,  for persistence. Figure  3 illustrates a time stamp of a 

phone call network [13].

Even the largest social network in 2007 (3.9 million nodes) is a network of 

mobile phone calls  [16].  This  network  displayed interaction strength and 

cliques, or communities, arising from it and found a global manifestation of the weak-ties hypothesis.

2.4.2 Internet Networks
Online social networks are networks extracted from e-mail logs, blogs and other web pages or social  

software. Social networks from e-mail logs were first captured to demonstrate the differences between the 

command structure  and the communication  structure  in  organizations  [17],  differences  in  online and 

offline  communication [18], as well as to explain e-mail overload [19]. But research on e-mails is not as 

easy as it  appears at a first glance. E-mails have many functions.  They are for sending information, 

sharing files, act as a contact manager or a mass mailing outlet. All these functions are technically not  

distinguishable and therefore hard to extract properly.

There  are  two  approaches  for  capturing  e-mail  data,  server-side  and  client-side.  With  server-side 

captures, it is possible to get the network for a whole domain, such as in companies. Client-side captures 

are well  suited  for  personal  networks,  to  compare among themselves.  Normally  these  networks  are 

directed and weighted. To avoid privacy issues, e-mail bodies should be cut off.

Another type of communication network can be extracted via web pages like blogs. The web is naturally a  

hypertext network. In assumption that web pages stand for the opinions of certain people, social networks 
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Figure 3: Phone call 
network [13]



can be captured. In 2004 a social network of political blogs was built to show the spread of personal  

opinions. Figure 4 shows the community-separation between republicans and democrats [20]. This kind 

of data is collected by scrapers and spiders via hypertext analysis.

Social  software  like  Facebook,  LinkedIn,  Wikipedia  or  Friendster  can  also  be  used  to  extract 

communication social  networks.  A research on Facebook analyzed  4.2  million anonymized  nodes of 

college students and their 362 million messages and “pokes” during a 26 month interval. The data was 

observed  on  annual  routine  of  the  users  as  well  as  their  communication  and  social  lifes  including 

seasonal variations [21]. Another work analyzed communication networks to give more information on 

personal relationship of a Facebook “friend”. Especially reciprocal communication gives information of a 

friendship connection. On Figure  5 it is obvious, a network of all friends is not very valid for a persons 

friendship behavior. A better, informative fact for this is, that Facebook users have up to 10 “friends” with  

a reciprocal communication [22].

The blue nodes illustrate democrat -, red ones republican blogs [20].
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Figure 5: Ego-centric network of a facebook user [22]

Figure 4: Social network of political blogs



2.5 Relationship Networks
In the most cases, relationship networks are more intuitive than communication networks. Communication 

is strictly measurable, but friendship is not that easily measurable and scalable. How do we categorize 

the  relationship  between  two  persons? Simple  relationship  networks  are  family  trees  or  corporate 

networks (hierarchical enterprise networks, network of a corporative state, such as the traditional Indian 

caste  system),  where  a  relationship  is  predefined.  If  there  is  no  predefined  definition,  the  correct 

extraction of data has to be done carefully.

Regarding the Facebook example mentioned before (see Figure 5), where we have a network of friends, 

the  question  arises:  What  does  “friends”  mean  in  the  context  of  Facebook?  Some  people  collect 

Facebook-friends like  money,  the  more  the better.  A  network  of  Facebook friends does not  have  a 

reference to a person's social life, and his or her real-time friends. One indicator to use, as mentioned  

above, is reciprocal communication of two users to guess a real relationship [22].

2.5.1 Social Software Networks
In social software systems, such as Facebook, everyone has the possibility to create his own network of 

friends.  Several  social  networking  platforms  publish  anonymized  data  periodically.  Nevertheless, 

advanced analysis is only possible for research labs of the own company. 

Most  works  in  social  network  analysis  focus  on  positive  relationships  between two  actors.  Possible 

meanings of edges are “has a professional relationship”, “are friends” or “know each other”. But these 

edges are  not  very  realistic  for  elaborate  social  behavior.  Modern  social  network  analysis  focus  on  

complex weighted links.

A very famous link weighting is weak and strong ties [23]. This splits 

social behavior in friends and acquaintances. The renowned theory 

by Granovetter says, that weak ties are more important for getting a 

job than strong ties.  Another link weighting is the proof of the theory 

of  social  balance from 1958 by Heider  (Figure  6)  for large-scale 

networks [24]. Beside that, like and dislike triad networks and their 

temporal  evolution  are  focused  on  current  social  network 

researches [25].

Used data sources are the trust network of Epinions, where people link to other users indicating trust or 

distrust. This data set is used for instance by eBay. Special blogs, such as Slashdot, are used, where  

users can choose other users as “friends” or “foes”. Other social software that uses “yes or no” polls, like 

Wikipedia, is also a good source for extracting like and dislike networks. Wikipedia uses such polls when 

administrators are chosen and every user can decide if he pleads for or against him.
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Figure 6: Heider's social 
balance theory

my friend’s friend is my friend

my friend’s enemy is my enemy

my enemy’s friend is my enemy

my enemy’s enemy is my friend



2.5.2 FOAF Networks
Friend of a friend (FOAF) networks consist of RDF data and give the possibility to interlink different online 

social networks together. FOAF is one of the most used semantic web ontologies with nearly a million 

foaf:person attributes [28]. Although, this ontology is not fully established on the web, the consisting data  

is becoming more and more popular  in social  network research [27].  FOAF data sets can easily be 

searched by Swoogle, a crawler-based indexing retrieval engine for the semantic web [29]. For example,  

Flink, an ample online social network extracting tool, uses FOAF as one source for their social network,  

next to web and publication mining from Google and Google scholar and e-mail lists [30]. 

Since 2008 there is a new way to get data from FOAF networks very easily by using the Google Social  

Graph API [31]. This API uses public Facebook data and other social software and merges them to a new 

network with “me” and “friend” edges. So, for example, a Facebook account is connected through a “me” 

link to the MySpace account of the same person and each of the two nodes has his/her friends.  In 2010, 

Facebook launched its own graph API with  more specific features. Within this API there are events,  

groups, links, notes, photos, videos and users among other things as objects available [64]. 

In  this  thesis,  FOAF will  be  shown  as  being  not  the  only  semantic  web  ontology  to  capture  social 

networks.

2.5.3 Other Relationship Networks
As mentioned above, there is a use of historical data. An example of historical data captured from plain  

HTML is a project, in which every game and every player from the Dutch soccer team has been captured, 

beginning with Holland vs. Belgium in 1905 and, under the assumption that every player playing in the 

same game is related with the other players, this has been transformed to a social network [26].

Another famous approach in social  network research is the creation of a co-authorship network [13]. 

Compared to a communication network, a co-authorship network is much more clustered. Co-authorship 

networks  are  extracted  using  online  publication  libraries  or  publication  search  engines  like  Google 

scholar. The collected data is transformed to an undirected, weighted social graph. For an example see 

Figure 7.
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Figure 7: Co-authorship network [13]



2.6 Unusual Networks
There is a category of networks that are not social networks as described in Section  2.2, but are still 

usable networks for analyzing social behavior. One important type of network to analyze group behavior 

is a spatial network of movement. As described in Section  2.4.1 spatial data has a potential value for 

public traffic engineers, safety managers, emergency response personnel,  city planning and resource 

managements. This data gives an insight into what humans do on a daily basis, group dynamics within  

crowds  and  how individuals  change their  behavior  in  emergencies  like  traffic  jams,  protests  or  riots 

[14,15].

For instance, mobile phone data can be mapped in realtime to understand, prevent and avoid traffic jams. 

Nonetheless such innovations are greatly opposed to such “big brother” projects [31].  Another social 

study collected anonymized spatial data on 100,000 mobile phone users to analyze reproduceable travel 

patterns. This had the aim of gathering information on human movement within the daily routine of people  

[12]. As shown in Figure 8, most individuals travel only short distances, but some are also traveling many 

kilometers.

Other scientists are working on a sensor package for mobile phones to collect more relevant data than 

would be collected from merely the position of a human being. For instance, it collects pollution values 

[32].

An approach in such mobility patterns is the investigation into new computer viruses that spread via 

limited communication protocols (such as WLAN, Bluetooth, ...). The spread of these viruses depend on 

the proximity of two mobile phones, which closes the analogy to biological viruses [33].
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Figure 8: A week-long trajectory of 40 mobile phone users [12]



2.7 Network Extraction
So far, the existing networks have been categorized from a user's perspective. Now it is possible to take a 

closer look at the network creation and its main questions:

What kind of behavior will be observed? What underlying data is available? Is the data applicable or does 

it  need to  be computed  in  a  more  complicated  way?  Are  the  resources  readily  available  to  extract 

complete networks and would this process be appropriate for this concept? If not, are there any other 

opinions like partial or ego-centric networks being useful? This is only a few of many major questions that  

everyone who  extracts a social network has to deal with, but very essential ones nevertheless.

In the following, three types of networks will be presented and methods for transforming data to social 

networks described.

2.7.1 Complete Networks
Complete  social  networks  are  surveyed  by observation,  statistical  data  pooling,  questioning or  other 

methods as mentioned already in this chapter. Who belongs to the network and who does not? The 

researcher has to select his network-players carefully. For instance, a scientist can take the participants 

of his course for a social network, or he can take scientists that published in the past 5 years in the 5 

most renowned scientific journals. Figure 4 on page 11 shows such a a deliberate selection of blogs. The 

creator of this network chose consciously only political blogs and renounced non-political ones.

In an empirical survey, it is not only necessary to think about who the are actors are, but also how they  

are related. Do we wish to know who is (binary) related to whom, or do we even want to know how  

strongly they are related? Is the relationship one-way or reciprocal?

Most networks in social network analysis are complete ones.

2.7.2 Partial Networks
Partial networks are often used, if there are too many people to survey. For instance, if we wanted to  

make a network of all people of India, it would take a lot of work. Therefore it would be more efficient to 

take a selection of people. A commonly used principle is the pyramid scheme, where the first level of 

participants are asked “Who can you recommend for questioning?”. The resulted new participants are the 

second level participants, and so on. This kind of network is not used very often, because the chances of 

getting a specific demographic group rather than a representative example of the targeted group are very 

high. With a lack of examples on partial networks, Figure 8 on page 14 is indeed no usual social network, 

but it shows a selection of 40 mobile phone users and can be viewed as a partial network.
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2.7.3 Personal Networks
Personal, or ego-centric, networks are a subgroup of partial networks and are commonly used when huge 

amounts of data needs to be processed. For this kind of network, we have to choose one actor, called 

ego, of a network and take all his friends, called alter, and their relations amongst each other. Then we 

delete ego and analyze the new network. How dense is the network? How many connected components 

does the network have?

An example of ego-centric networks is illustrated on Figure 5 on page 11.

2.7.4 Indirect Extraction Procedure
A very common case is to have actors and events (or containers). For instance in a scientific research  

study, we had Dutch soccer players (actors) and of the dutch soccer games (events) [26]. Now every 

player is connected to the other players he played with in a game.

In Table  2 there is an example of CEO meetings (events, e1 to e3) and CEOs 

(actors, a1 to a4) viewed as affiliation matrix. There is an easy formula to get a 

person to person matrix out of this person to event matrix: A=M∗M T . 

If we insert the values we get the result matrix:

A=M∗M T=111
10 0
01 0
10 1110 1

101 0
100 1=3 1 1 2

1 1 0 1
1 0 1 0
2 1 0 2       x0 01

0 x00
0 0 x0
100 x

The result is called a “socio-matrix”. To get an affiliation matrix, the result matrix can be calculated by 

changing every value below a certain threshold  c  as zero, everything above  c  as 1 (the diagonal 

doesn't matter).

For huge, complex networks the matrix computation could take a lot of resources. For this, a very simple 

algorithm is mentioned in Listing 1.

1:

2:

3:

4:

5:

6:

7:

8:

9:

events //each event has all actors as array
result //a typical empty graph class
foreach events as event
 for i = 0; i < event.count; i++
  for j = i+1; j < event.count; j++
    if !result.edgeExists(i,j)
      result.addedge(i,j,1)
    else
      result.addedge(i,j,result.edgeWeight+1)

Listing 1: Algorithm to get weighted person to person edges
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CEO e1 e2 e3

a1 1 1 1

a2 1 0 0

a3 0 1 0

a4 1 0 1

Table 2: CEO 
meeting attendance

Then convert it to an 
affiliation matrix with 

c = 2:







3 Social Network Analysis
This chapter describes the characteristics and basic principles of networks and their metrics for analyzing 

social networks in particular.

3.1 Graph Theory
Graphs are a unified structure to model pairwise relations between objects from a designated collection. 

As mentioned in Section 2.2, networks are a collection of vertices (or nodes) and links (or edges, or arcs).  

Vertices are the agents, in social network analysis actors (see Table 1 on page 8), in technical networks 

clients,  hosts,  router,  bridges, in HTML DOM trees nodes are different tags like html,  head,  body,  p,  a, 

img, etc.

Links are the relationships between vertices. Clients in technical networks are connected to a router or 

switches, these are connected to a provider, and so on. As mentioned earlier, social networks are divided 

into two groups, communication networks and relationship networks. Communication networks have their  

links when two actors are communicating with each other, whilst relationship networks have a certain 

meaning  to  their  relation,  like  “has  a  professional  relationship”,  “are  friends”,  “know  each  other”, 

“likes/dislikes one another” or “has a strong/weak relationship”.

For a better understanding, the first paper on graph theory 

was used by Leonhard Euler in 1736. The issue was about 

finding a way around Königsberg, only being able to cross 

each bridge  once.  Euler  abstracted  every  isle  to  nodes 

and the bridges to edges (undirected links). Euler proved, 

that there is no possible solution to this problem [36].

3.1.1 Undirected Graphs
Graphs can be directed or undirected. Undirected means, 

that there is no direction given to the graph. This is used if  

agents  have  a  reciprocal  relationship.  These  links  are 

called edges. Undirected Networks are often used in social network analysis, but are very unusual in real 

life. A simple friendship network usually has no directed relations, but if a group of people (for example in  

school)  were  asked  “who  are  your  friends?”  some  directed  relations  would  almost  definitely  be 

discovered. Undirected relationships are very useful in graph theory if direction does not matter. With 

undirected networks we can analyze how centralized actors are with respect to the whole network, or how 

important they are when considering data flow through the network (see Section 3.2.3). The mathematical 

definition of an undirected graph G is:

Graph G=V , E  consists  of  vertices  V ≡v1 , v2 , v3 ,... , v N   and  edges  E≡e1 , e2 , e3 , ... , eK  , 
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Figure 9: Königsberg bridge problem [36]



where V ≠0  and every link consists of two (unordered) nodes. A node is usually referred to its order i  in 

the set of V . Each link is defined by a couple of nodes i  and j , denoted as i , j   or e i j . Undirected 

networks have e i j=e j i  [37].

3.1.2 Directed Graphs
Directed relationships are often denoted as arcs. Arcs give the possibility to give individual links different 

weighting and also to reduce them to one-way relationships. If we have a look on an asynchronous DSL 

connection  in  technical  networks,  the  arc  from the  provider  to  the  client  will  be  associated  with  its 

download capacity and the upload capacity is attached to the arc the other way around.  Another example 

would be a street network. Such a network has to be directed, because there could be one-way streets or 

streets, where we can only turn to the cross-road if  we are driving in the right direction. So, directed 

networks give a lot more possibilities for modeling complex behavior.

In social network analysis directed networks are dominant within communication networks.  For instance, 

an e-mail or a Facebook message is one-way. Only if a person answers to an e-mail or a Facebook 

message, it becomes a two-way conversation. 

According to the definition of undirected networks (in Section  3.1.1), directed networks are additionally 

denoted by the term e i j≠e j i .

3.1.3 Data structures
Graph data can be represented in different ways. The first, as mentioned 

above in the mathematical definitions, are lists. Figure 10 will be used as an 

example for the next listing of possible data structures.

Adjacency list

The most common list category for graphs is the adjacency list. Table 3 illustrates an example adjacency 

list of the graph in Figure 10. In this list, every node lists the neighbors it is directly linked with. Here the 

edges are not important and there is also no possibility for weighting the links. Nevertheless the space for 

this data structure is very small. It is also quick for many operations.

A: B

B: A, C, D

C: B, D

D: B, C

Table 3: Adjacency list

Incidence list

An adjacency list combined with an object oriented approach is called an 'incidence list'. Vertices are  
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Figure 10: Undirected graph
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stored with pointers on edges according to them, instead of other vertices. In this structure, edges can be 

easily weighted [38].

Adjacency matrix

Another data structure for representing a graph is the adjacency matrix. This matrix is a  n xn  matrix, 

where n  is the number of nodes. In directed networks, the row is the outgoing node, the column is the  

incoming one. The diagonal in this matrix is unimportant, because it would be an edge to a node itself. In  

case the graph is undirected, the adjacency matrix is symmetrical, as shown in the example in Table 4. 

This structure is suitable for small graphs and/or performing computation by linear algebra. If we use this 

structure for networks with 1000+ vertices, computation can become a problem.

A B C D

A 0 1 0 0

B 1 0 1 1

C 0 1 0 1

D 0 1 1 0

Table 4: Adjacency matrix

Incidence matrix

The incidence matrix is a rectangular  n xm  matrix, where the rows are indexed by vertices and the 

columns by edges. For directed graphs, values can be differed by +1 for an incoming edge, and -1 for an 

outgoing one. Table 5 gives an example for an incidence matrix.

a b c d

A 1 0 0 0

B 1 1 1 0

C 0 1 0 1

D 0 0 1 1

Table 5: Incidence matrix

Pajek NET format

Pajek is the Slovenian word for spider. The Pajek NET format is a very rich format with a lot of facets,  

which allow the representation of simple to complex networks as well as time event networks. A very  

simple Pajek file starts with the line “*Vertices n”“ where n is the amount of vertices. After this line, there is 

the possibility to describe the vertices as mentioned in Table 6.
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vertices_num label [x,y,z] [shape] [changes of default  
parameters]

Continuous vertex 
number 
1,2,3..n

Label of the 
vertex

“vertex xy”,... 

Coordinates 
of vertex

Shape of presented 
vertex 

ellipse, box, diamond, 
triangle, cross, empty

Change the shape- 
default parameters

Table 6: Vertices description of Pajek format

Next, a line with *Arcs for directed or *Edges for undirected networks follows. The description of arcs and 

edges are described in Table 7.

v1 v2 value [additional parameters]
Initial 

vertex number
Terminal 

vertex number Link weight Parameters for 
appearance of the edge

Table 7: Link description of Pajek format

In addition, there are other descriptors for links. *Matrix followed by an appropriate adjacency matrix (with 

blanks and EOL in between) or *Edgeslist / *Arcslist followed by a adjacency list (also with blanks and 

EOL in between). Other link presentations are UCINET, GEDCOM and chemical formats.

A whole example Pajek NET file illustrating the graph of Figure 10 is listed below in Listing 2.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

*Vertices 4
1 "A" 0.15 0.3 0.5
2 "B" 0.4  0.8 0.5
3 "C" 0.65 0.3 0.5
4 "D" 0.89 0.8 0.5
*Edges
1 2 1 l "a"
2 3 1 l "b"
2 4 1 l "c"
3 4 1 l "d"

Listing 2: Pajek basic example file

For further details, please refer to the Pajek manual [39].

3.2 Graph Analysis
After  capturing a  social  network,  two  further  steps are required to  analyze  a  network.  The first  is  a 

qualitative analysis combined with network visualization. The second is to analyze it  more accurately 

through the use of certain metrics. 
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3.2.1 Network visualization
Network visualization is the common first step in network analysis. It allows the human eye to recognize 

obvious patterns, for example, how important specific nodes are for the whole network, or how clusters 

are interacting with others. In social networks nothing can inspire imagination more than an applicable 

mapped network or, at least, the most important parts of it. But it is just the first step and a network only 

interpreted by its visual appearance has no validity to serious research. Nevertheless, a visual network 

should not be missing within presentations or scientific papers, because it helps understanding. The focus 

of this thesis is not on network visualization, therefore this topic will not be elaborated upon [71]. 

3.2.2 Metrics for the complete Network
This section introduces network metrics for the whole network,  which is the second step for network  

analysis.

Density

Density is the total number of edges in the network divided by the number of possible individual edges. Its 

value is within [0,1]. The maximum amount of arcs in a directed graph is the number of vertices multiplied  

by  the  number  of  vertices  minus  1.  The  maximum  amount  of  edges  in  undirected  networks  are  

additionally divided by 2. ∣E∣  is the number of edges, ∣V∣  is the number of vertices in the network.

DensityD=
∣E∣

∣V∣∗∣V∣−1
    DensityU=

2∣E∣
∣V∣∗∣V∣−1

This measure gives information about how dense or sparse a network is, compared to others. These 

other networks can be other existing networks or a fictional random network that becomes threshold for 

sparse and dense categorization.

For the undirected graph in Figure 10 the network density is:

DensityU=
2∣E∣

∣V∣∗∣V∣−1
=2∗4

4∗3
= 8

12
=2

3
=0.6̇

0, 6̇  is a very high value for network density.

Connected components

Another metric is to count the connected components of a network. Connected components can be of  

vital important for metrics on individual nodes. Some of them need a connected network to give proper 

information. Algorithms for connected components in graph theory can be straight forward with breadth-

first search or depth-first search. These two algorithms begin with a random vertex and then searches for  

the next one until the complete component is parsed. Then another, new vertex is chosen and the next  

component is analyzed, and so on until every vertex is allocated.
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Cliques and Clusters

Clustering measures correlations within the whole network and illustrates how interconnected the nodes 

are with  each other.  The local  clustering coefficient  determines how involved it  is  in  a  “clique”.  The 

network average clustering coefficient is the mean of the local clustering coefficients. Local clustering 

coefficients  are  described  in  Section  3.2.3.  Another  clustering  coefficient  is  the  global  clustering 

coefficient. This value is calculated by the number of closed triplets divided by the number of connected  

triplets of vertices. Triplets are either open triplets (three vertices, connected with two edges) or closed 

triplets  (three vertices,  connected with  three edges).  A triangle  consists  of  three closed triplets.  The 

formulae for these two values are:

Caverage=
1
n∑i=1

n

C i      C global=
3∗triangles

connected triplesof vertices
= closed triplets

connected triples of vertices

According to the undirected graph in Figure 10 the global clustering coefficient is:

C global=
closed triplets

connected triplesof vertices
=1

2
=0.5

3.2.3 Important Actors in Social Networks
The next step in analysis is to take a look at individual players. Who is important to the network or has a  

special function? For undirected networks, the measures used are called  centrality (degree, closeness 

and betweenness), for directed networks the measures are called prestige (i.e. proximity or page rank). 

With common knowledge, prestige has a positive indicator. Network prestige is not meant positively, it 

can also take negative meanings and therefore its overall meaning is neutral.

Degree values

Degree  centrality  illustrates  the  numbers  of  links  each  individual  node  owns  ( Cd v ).  The degree 

centrality for directed networks are for both, ingoing and outgoing degrees. To get a standardized degree 

centrality ( C ' d v  ) the values are divided by the possible total amount of links.

C ' d v undirected=
C d v 
∣V∣−1

      C ' d v directed=
C d v 

2∣V ∣−1

In the example graph in Figure 10 the degree centrality for node A is 1, for node B 3 and for node C and 

D it is 2. The standardized values are:

Node Cd v C ' d v 
A: 1 0.33

B: 3 1.00

C: 2 0.67

D: 2 0.67

Table 8: Degree centrality of the graph in Figure 10
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For directed networks there are two additional degree values, indegree and outdegree prestige. Indegree 

prestige only considers ingoing arcs, whereas outdegree prestige only respects outgoing arcs.

P ' indegree /outdegreev=
P indegree /outdegree v 

∣V∣−1

Additionally there is a centralization value for the whole network too. For this it is necessary to choose the 

actor v*  with the highest deegree centrality score. From this centrality score, the degree centrality score 

of every other node is subtracted and the results calculated. From this value, the number of nodes minus 

one is divided and multiplied by the number of nodes minus two.

Cd=
∑ Cd v

*−C d v 
∣V∣−1∣V∣−2

For Figure 10 the centralization value for the whole network would be

 Cd=
∑ Cd v

*−Cd v 
∣V∣−1∣V∣−2

=1−0. 6̇1−0. 6̇1−0.3̇
3∗2

=1. 3̇
6

=0. 2̇ .

Closeness centrality

A more complex measure is closeness centrality. This metric expresses how close an individual node is 

to all other nodes. The intent is to calculate the shortest distance to every other actor in the network. If  

this value is low, the node is very central, if it is high, the node is very far away from most other nodes. So 

the inverse of this value is required to get a dedicated measure. To standardize this measure the value is  

multiplied by the number of all other nodes.

CC v=
1

∑  path distances     C 'C v =∣V∣–1∗CC v =
∣V∣−1

∑  pathdistances 

For the network in Figure 10 the closeness centrality is

Node C c v  C ' cv 
A: 1/5 3/5

B: 1/3 1.00

C: 1/4 3/4

D: 1/4 3/4

Table 9: Closeness centrality of the graph in Figure 10

A closeness centralization value for the whole network is analogous to the degree centralization, but 

instead of ∣V∣−1∣V∣−2  the sum is divided by ∣V∣−1∣V∣−2/2∣V ∣−3 .

For the graph in Figure 10 this would be

C c=
∑ C c v

*−C c v 
∣V ∣−1∣V∣−2/2∣V∣−3

=1−0.61−0.751−0.75
3∗2∗1

=0.9
6

=0.15 .
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Betweenness centrality

Betweenness centrality expresses how many of the shortest paths of other nodes actually go through 

every individual node. To standardize this measure, it is divided by the possible maximum. The formulae 

is: 

C ' bv =
2∗Cbv 

∣V∣−1∗∣V∣−2

In the following table, a possible option is depicted, whereby the betweenness centrality ( Cbv  ) of a 

node can be manually computed with the example of a simple ring network (Figure 11 and Table 10).

In Table  10 for every lot the shortest path is computed and if this path goes through the node 1, the  

written value is 1, otherwise it is 0. If there are 2 shortest paths for a node, and only one goes through  

node 1, the value is 1/2. If there are 3 shortest paths and 2 go through node 1, the value would be 2/3, 

and so on. Every value will be calculated and the result for node 1 in Figure 11 is Cb1 = 4.5. In Figure 

11 every node is equal, so every node has the betweenness centrality of 4.5. 

The betweenness centralization value for the whole network is analogue to the degree centralization, but  

instead of ∣V∣−1∣V∣−2  we divide ∣V∣−2∣V∣−12 .

Proximity prestige

In Section  3.2.2, prestige was introduced. The Indegree or Outdegree prestige for directed networks is 

similar to the degree centrality for undirected ones. Hereby, proximity prestige for directed networks is like 

closeness centrality for undirected ones. The importance of a node depends on the distance of other 

nodes that can reach it. Many paths with a low path distance give high proximity prestige, less paths with 

a  high  path  distance  gives  low proximity  prestige.   Proximity  prestige  for  an  individual  node  v  is 

computed by counting every node w  that can reach v  ( M v ). The next step is to divide the sum of path 

distances  ( Sv )  between  w  and  v .  To  standardize  the  value  the  quotient  is  multiplied  by
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2 3 4 5 6 7 8

2 0 0 0 ½ 1 1

3 0 0 0 ½ 1

4 0 0 0 ½

5 0 0 0

6 0 0

7 0

8

Table 10: Path matrix for node 1 of Figure 11 Figure 11: Ring network with 8 nodes

8

7

6
5

4

3

2
1



M v /∣V ∣−1 .

P ' pv =
M v

S v
∗

M v

∣V∣−1

Rank prestige

Another kind of prestige is rank prestige, which gives weighting to the actors in a network based on their  

importance.  The concept behind this  kind of  prestige is to see links as votes.  Votes from important  

vertices have a higher  weighting than the votes of  unimportant  ones.  Every  prestige value an actor 

possesses  will  be  added to  the  prestige  of  every  actor  connected  with  an outgoing  edge.  The  first  

consideration to solve this problem is with arithmetic expression. If we take the example of Figure 12, we 

can compute rank prestige with these 5 expressions:

Vertex A: x A=0

Vertex B: x B=xCx E

Vertex C: xC=x Ax Bx D

Vertex D: x D= xB xC xE

Vertex E: x E=x Ax D

This  system  of  equations  has  no  other  solution  than  a  zero 

prestige vector, which leads to the formula AT x= x . A  is the adjacency matrix of the graph, x  is a 

vector with prestige values and   the proportionality factor between rank prestige values and the vote 

weightings.  Here it is hard to find a positive   that results in a solution that differs from zero vector. x  

of  Bx= x  is known as an eigenvalue of matrix  B . So, a positive eigenvalue of  AT  needs to be 

calculated. After this, we solve the system of equations with the calculated value of   in AT x= x  and 

reach a solution. x  is an eigenvector.

A modified, simpler solution to this problem is the page rank algorithm. Here a probability matrix  P  

includes the blur value   (normally 0.1) and is used in a continuous algorithm. The first thing that needs 

to be computed is the probability matrix. For this the adjacency matrix is required, each value of 1 is  

divided by the numbers of 1's in a row to get P1 . The next step is to multiply the whole result matrix by 

1-  . Finally /∣N∣  is added to every entry of the result matrix to obtain P . Next, a random starting 

row x0  of the matrix P1  is required, and then x0 P=x1 , x1 P=x2 , x2 P=x3 , and so on needs to be 

computed until an applicable value is reached. Table 11 shows a sample probability matrix and Table 12 

the results of the computation steps.
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Figure 12: Directed homogenous 
graph with 2 outdegrees
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Vertex A



Local clustering coefficient

The clustering coefficient is, as mentioned in Section  3.2.2, a measure for “cliquiness”. The  network 

average clustering coefficient uses local clustering coefficients to get a metric for the whole network. The 

local clustering coefficient is a measure for individual nodes.

In order to compute this metric, we take a node v i  and look at the interconnection of its neighbors. If 

every node related to v i  is connected, the cluster coefficient is 1 (see Figure 13). If none of the nodes 

related to v i  are connected, the coefficient is 0. The local clustering coefficient from a node v i , a set of 

neighbors N i , and a set of edges E i  between two nodes in N i , can be computed as follows:

LCC undirected v i=
2 E i

∣N i∣∗∣N i∣1
    LCC directed v i=

E i

∣N i∣∗∣N i∣1

The edges  E i  are divided by the maximum of possible edges, very similar to the network density in 

Section 3.2.2. Figure 13 illustrates 4 examples of a local clustering coefficient.

3.2.4 Groups in the Social Network
Aside from the extraction of network metrics for whole networks and metrics for individual players, it is  

also possible to detect cliques and groups affiliation. The purpose behind this detection method is to find 

very dense parts of the networks to gather information about potential groupings.

For an example on groups in the network, Figure 3 on page 10 and Figure 7 on page 13 show the groups 

and clusters in the network with different colors.

Common cohesive subgroup methods

The easiest way to analyze groups is to find cliques. Cliques are networks or sub-networks with maximum 

density.  Every  node is  interlinked with  every  other  node.  According to  this  a  clique-concept  can  be 
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0.02 0.02 0.45 0.02 0.45

0.02 0.02 0.45 0.45 0.02

0.02 0.45 0.02 0.45 0.02

0.02 0.02 0.45 0.02 0.45

0.02 0.45 0.02 0.45 0.02

Table 11: Probability matrix P

Figure 13: Clustering coefficient example

C = 0 C = 1/3 C = 2/3 C = 1

Prestige A B C D E

x0 0 0 0.5 0 0.5

x1 0.02 0.45 0.02 0.45 0.02

x2 0.18 0.04 0.41 0.23 0.22

….

x 0.00 0.22 0.28 0.33 0.17

Table 12: Page rank computation steps



relaxed to a k-plex where only the majority of the group or 

subgroup is interlinked. This method has not been established 

very  well  in  scientific  analysis,  with  only  one  notable 

exception. Figure  14 illustrates a clustering algorithm with k-

plex [40].

Community detection algorithms

Community detection algorithms are very frequently used in 

social  network  analysis.  The  most  popular  is  the  Girvan-

Newman algorithm.  This  algorithm continuously  deletes  the 

node  with  the  highest  betweenness.  The  assumption  for  this,  is  that  the  node  with  the  highest  

betweenness interlinks two very dense groups [41]. Nevertheless, this algorithm doesn't work well under 

all conditions and there is a slight arbitrariness to it.

Subsequently, Newman developed more comprehensive methods to find dense parts in the network with 

even more reliability [42]. Figure 15 illustrates a network of books, where the edges are readers who read 

the same book. The shapes illustrate the political attitude of the books. 

3.2.5 Membership Analysis
In social network analysis we should never forget to analyze the network members. The metrics above 

treated every vertex equally.  Actors, literal  authors, communication participants, bloggers etc. are not 

equal. 

One analysis criteria is homophily [43]. Figure 4 on page 11 demonstrates homophily as bloggers of the 

same  political  orientation  interlink  with  each  other  more  often  than  with  those  of  differing  political  

orientation. In this example the homophily would be politics. Another example is bloggers that are more  

famous who interlink amongst themselves more often than with  bloggers that  have no fame. A very 

important  question  about  homophily  is  not  whether  it  exists,  but  rather  which  criteria  organizes  the 

network (fame, politics, …).

Another approach is assortative mixing [44]. This theory assumes that nodes tend to connect to other 

-  29 -

Figure 14: Nested connectivity sets [40]

Figure 15: Network communities of books that were read by the 
same readers [42]



nodes that are like them in some way. If an actor has a high degree value, it tends to connect with other 

actors of high degree value. If an actor has a low degree value, it connects with other nodes of low 

degree values.

3.2.6 Additional Network Metrics
There are further metrics which will  not be considered as part of this thesis. Without focusing on the  

details, they are briefly mentioned and described below.

Average path length

The average path length is a metric for analyzing network interconnection. It is the average of all the  

shortest paths.

Bridges

A bridge is an edge or link whose erasing increases the number of connected components. Depending on 

the network, the actors of this links can be very important. A local bridge is a bridge whose actors share 

no mutual neighbors.

Reach

Reach is the degree any member can reach other members of the network with.

Structural equivalence

Structural equivalence states that nodes have common linkage to other nodes in the network.  To be 

structurally equivalent, nodes do not have to be linked with each other.

Structural hole

Linked  to  the  idea  of  social  capital  [61],  structural  holes  can  be  filled  with  an  actor  to  control  the 

communication of two people or groups. 

The research on metrics is far from being completed. Scientists keep the balance between research on 

metrics and research on social networks and their actors. The line between these two is also very blurred. 

Sometimes new views and new intentions on social networks lead to new metrics and new algorithms. 

But it isn't just social network researchers that invent new metrics, there are also many scientists working  

on biological, chemical or physical network analysis who have already provided and will provide input into 

social network analysis. For additional literature on Chapter 3 [34] and [35] are recommended.
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4 Linked Data
So far,  social  networks  have  been  introduced,  their  practical  use  for  observing  communication  and 

relationship patterns of human beings, their classification into complete, partial and ego-centric networks, 

and methods to statistically analyze them. This section presents the second main research field which is 

relevant to this thesis – Linked Data. Special focus will be given to the technical side of Linked Data in the  

context of data processing and extraction possibilities.

4.1 About Linked Data
The web is full of countless sites with information. These sites are designed for human consumption. The 

underlying data is mostly in hidden databases or storage (the so called “deep web”). If one wanted to 

read the information, there would be no difficulty in doing so, however problems would arise when trying  

to read and parse this data automatically with a machine. Every website is different, so the data has to be  

parsed out of HTML or  other (sometimes proprietary) formats with difficulty.

The movie “Tron” could be used as an example for this. There is informational data about “Tron” on 

Wikipedia1, additional information, especially on staff and actors, at the internet movie database 2, and 

even further additional information, this time especially reviews and the ratings of hundreds of users, can 

be found on Rotten Tomatoes3. There is a lot of redundant data on each server, but even more additional 

data to complement. 

An  external  machine  has  problems  in  finding  information  on,  for  example,  the  date  the  movie  was  

published, or on the actors of the film. The machine needs very specific knowledge of the individual 

1 http://www.wikipedia.org

2 http://www.imdb.com

3 http://www.rottentomatoes.com

-  33 -

Figure 16: Every website has its own, closed data storage

Data Storage Data Storage Data Storage

IMDB Rotten TomatoesWikipedia



HTML files, because the information embedded in the file is not well-structured. Figure 16 illustrates the 

whole situation.

Nevertheless, if we want to automatically extract data from the Web, we would have to use a plugin for at  

least every website to read the data. This is not applicable. The web would never have had success, if 

every  website  would  have  needed  its  own  plugin.  The  web  is  successful  because  of  the  uniform 

standards HTML [47] (for encoding), URI [48] (for addressing) and HTTP [49] (for transportation) for the  

exchange of hypertext multimedia documents. The vision of the Linked Data [50] movement,  a part of the 

Semantic  Web group  [51]  of  the   W3C (World  Wide  Web Consortium)  [45],  is  to  apply  the  same 

successful  concept  of  uniform standards to the underlying,  machine-readable data.  The Linked Data 

principles [50] are:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up an URI, provide useful information, using the standards (RDF*, SPARQL) 

4. Include links to other URIs. so that they can discover more things. 

Linked Data uses URIs for addressing, HTTP for transportation and (unlike the World Wide Web) RDF 

[52] and related standards for modeling and encoding. Synonyms for Linked Data are (Linked) Open 

Data, Web of Data or Web of Open Data.

4.2 Enabling Technologies

Figure  17 illustrates the underlying stack of Semantic Web technologies. Actual working groups have 

finished their research bottom-up to the ontology section and are now improving and working on the logic  

frameworks and additionally renewing existing concepts (OWL2 [56], RDFa [57], etc.).

In this Figure we can see vocabularies (ontologies, taxonomies and rules) that are based on an RDF data 
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Figure 17: Technologies of the Semantic Web

Trust

Proof

Logic framew ork

Rules

Sem antic Web applications

Cryptography

Taxonomies: RDFS

Ontologies: OWLQuerying:

SPARQL

Data interchange: RDF

Syntax: XML, N3

Character set: UNICODEIdentif iers: URI



model. This model is serialized in certain formats (XML [55], N3 [46], etc.) and  URIs can identify most 

parts of this model.

4.2.1 The RDF Data Model
The data model behind Linked Data is RDF which consists of special directed graph constructs. This data  

model consists of resources and literals. Resources are URIs and literals are text strings. A combination 

of resource, resource and resource or literal is called an RDF triple. This triple is denoted as a connection 

between two nodes, vertex – link – vertex, or, more often used: subject – predicate – object. Subjects and 

predicates, as mentioned before, are URIs (resources), the object can be an URI or a text-label. 

Figure 18 illustrates a small exemplary part of the DBpedia resource of the movie “Tron” and its director 

Steven  Lisberger.  In  this  Figure  we  can  see  the  resource  http://dbpedia.org/resource/Tron_(film)  with  some 

labels, its title “Tron”, its abstract in English and German and its link to the director of the movie. This 

resource  http://dbpedia.org/resource/Steven_Lisberger additionally has all  information about the person Steven 

Lisberger like his name, his SKOS [58] description, etc.. The result is a huge informational graph. 

With the RDF data model it is even easily possible to link databases. Figure  18 displays two nodes in 

different databases that are apparently the same. These are possibly interlinked with a “owl:sameAs”  

predicate, with a link from DBpedias Tron resource to the node of Freebase's Tron resource.

4.2.2 Semantic Web Vocabulary
The RDF Description Language, also called RDF Schema (RDFS) [53] is the basic vocabulary for the 

definition of classes, subclasses, properties, sub-properties, data types, literals and comments, among 

others.

The Web Ontology  Language (OWL)  [54] is  a  language for  defining  ontologies  and  vocabularies.  It 

extends RDF and RDFS with complex semantic expressiveness. The vocabulary of OWL includes the 

above mentioned owl:sameAs property. Because of their capabilities and similarity to cognitive relations, 

RDFS and OWL are also used in artificial intelligence research.

The Simple Knowledge Organization System (SKOS) [58] is a model for representing thesauri, controlled 

vocabularies, taxonomies, etc.. According to Figure 18, Steven Lisberger is linked via  skos:subject with 

-  35 -

Figure 18: DBpedia data of the movie Tron

http://dbpedia.org/resource/Tron_(f ilm)

dbpprop:title
 

“Tron“

dbpedia-ow l:abstract :en    “Tron is a 1982 American ...“

dbpedia-ow l:abstract :de “Tron ist ein US-amerikanischer Spielf ilm...“
dbpedia-ow l:director

http://dbpedia.org/resource/Steven_Lisberger
...

foaf :name  

“Steven Linsberger“

… 

category:American_f ilm_directors

   skos:subject

http://rdf .f reebase.com/ns/guid.9202a8c04000641f80000000001cb275

ow l: sameAs



category:American_film_directors.  The  SKOS  attribute  category:American_film_directors is  linked  via 

skos:broader with category:English-language_film_directors. So Steve Lisberger is indirect of the attribute 

category:English-language_film_directors.

Friend of a Friend (FOAF) already mentioned in Section  2.5.2 on page  13 is a vocabulary to interlink 

social software data. FOAF is one of the first Semantic Web ontologies. It  is used by social network 

platforms like LiveJournal, PeopleAggregator, Tribe.Net, etc..

4.2.3 Uniform Resource Identifier
Uniform Resource Identifiers [48] are unique names of RDF resources. Every resource must be identified 

with an URI. In Figure 18 the orange nodes and the edges are URIs. Some URIs are shortened with a 

namespace-prefix, like  owl,  dbpedia-owl,  dbprop or  category. These namespaces can be replaced by 

their long description. owl:sameAs, for instance is a short description for http://www.w3.org/2002/07/owl#sameAs 

with http://www.w3.org/2002/07/owl# as namespace. URIs are in most cases accessible via HTTP. 

4.2.4 The SPARQL Query language
SPARQL [59] is a query language and protocol to request data from an RDF database. Its structure is 

similar to SQL. Its request structure is a quadruple consisting of a graph pattern, search data, solution 

modifier and result.

Request=GP , SD ,SM , R

A basic example is described in Listing 3:

Serialization Formats

A very convenient, slim data structure is Notation 3 (N3). This data structure is very complex and includes  

the languages N Triples, Turtle, SPARQL Where and even more extras. A basic example of a N3 data 

structure is listed in Listing 4.

The structure in Listing 4 begins with a declaration of the prefixes, followed by the definition of the triples. 

Subjects,  predicates,  objects,  are  separated  with  a  blank.  Does a subject  has more predicates  and 

objects, they are declared behind the semicolon separator. If a subject and a predicate has more than 
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PREFIX dbpedia: <http://dbpedia.org/>

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?film ?title

FROM <http://dbpedia.org/>

WHERE

   { ?film dbprop:title ?title . 

     ?film rdf:type dbpedia-owl:Film }

ORDER BY ?title

Listing 3: Example SPARQL query

Result

Search Data

Graph Pattern

Solution Modif ier



one sequel, for example to declare a text for different languages, the separator is a comma. A dot finishes 

the declaration of one subject to start another.

Another frequently  used data structure is RDF/XML. For XML there is a lot  of  support  and powerful  

parsers. Listing  5 uses the the model of Figure  18 as example to give comparability to Notation 3 in 

Listing 4.This structure starts with a root node named “rdf:RDF” with namespace attributes. Subjects are 

“rdf:Description” nodes with an “rdf:about” attribute with its name. The next nodes are the predicate of the 

triples with the object as its value.
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Notation 3 data structure
1:
2:
3:
4:
5:
6:
7:

8:

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.
@prefix dbpprop: <http://dbpedia.org/property/>.
@prefix skos: <http://www.w3.org/2004/02/skos/core#>.
@prefix category: <http://dbpedia.org/resource/Category:>.
@prefix opencyc: <http://rdf.freebase.com/ns/guid.>.
@prefix foaf:<http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Tron_%28film%29> dbpprop:title "Tron"; dbpedia-owl:abstract 
"Tron is a 1982 American..."@en, "Tron ist ein US-amerik..."@de;  dbpedia-owl:director 
<http://dbpedia.org/resource/Steven_Lisberger>; = opencyc:Mx4rvddV6ZwpEbGdrcN5Y29ycA .
<http://dbpedia.org/resource/Steven_Lisberger> foaf:name "Steven Lisberger"; skos:subject 
category:American_film_directors .

Listing 4: N3 example of Figure 18

RDF/XML data structure
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

13:
14:
15:
16:

17:
18:
19:

20:
21:

<?xml version="1.0"?>
<rdf:RDF xmlns:dbpedia-owl="http://dbpedia.org/ontology/" 
xmlns:opencyc="http://rdf.freebase.com/ns/guid." 
xmlns:category="http://dbpedia.org/resource/Category:" 
xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:dbpprop="http://dbpedia.org/property/" 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:skos="http://www.w3.org/2004/02/skos/core#" 
xmlns:damloil="http://www.daml.org/2000/12/daml+oil#">
  <rdf:Description rdf:about="http://dbpedia.org/resource/Tron_%28film%29">
    <dbpprop:title>Tron</dbpprop:title>
       <dbpedia-owl:abstract xml:lang="en">Tron is a 1982 American...</dbpedia-owl:abstract>

<dbpedia-owl:abstract xml:lang="de">Tron ist ein US-amerik...</dbpedia-
owl:abstract>

<dbpedia-owl:director>
 <rdf:Description rdf:about="http://dbpedia.org/resource/Steven_Lisberger">
  <foaf:name>Steven Lisberger</foaf:name>

           <skos:subject 
rdf:resource="http://dbpedia.org/resource/Category:American_film_directors" />

 </rdf:Description>
</dbpedia-owl:director>

     <damloil:equivalentTo 
rdf:resource="http://rdf.freebase.com/ns/guid.Mx4rvddV6ZwpEbGdrcN5Y29ycA" />
  </rdf:Description>
</rdf:RDF>

Listing 5: RDF/XML example of Figure 18



4.3 DBpedia, the Nucleus of the Web of Open Data
Wikis are systems for collaborative authoring, versioning and publishing of texts and images. Wikipedia is  

the most famous and successful Wiki with the goal to build a large online encyclopedia. The Wikipedia  

succeeded  with  its  intentions  with  countless  authors  on  over  10  million  articles  in  more  than  250 

languages. 

The DBpedia4 project uses the information of Wikipedia templates to semantically interpret and extract 

information.  Figure  19 shows a template of  the city  Klosterneuburg in Lower Austria.  Templates are 

roughly categorized in [68]:

• Geographic : countries, cities, rivers, mountains,...

• Education: universities, schools, ...

• Plants : trees, flowers,...

• Organizations: companies, sport teams,...

• People: politicians, scientists, presidents, athletes, ...

This data is converted to RDF data and made freely available on the 

Web. So, DBpedia is the biggest Linked Data project, developed at the 

University of Leipzig, “Freie Universität Berlin” and OpenLink Software. 

The first available public data was published in 2007 with free licenses. 

It is a huge knowledge base for many musicians, politicians, athletes, 

media, regions, clubs, and many, many more. The dataset consists of 

3.4 million “things”, with 312,000 persons, 413,000 places, 94,000 music 

albums,  49,000  films,  15,000  video  games,  140,000  organizations, 

146,000 species and 4,600 diseases, among others, and over 1 billion 

facts (RDF triple). There are abstracts of 3.2 million things in 92 different 

languages,  841,000  links  to  images,  5  million  links  to  external  web-

pages, over 9 million interlinked RDF data to external sources (Yago, 

GeoData, …).

DBpedia  works  like  a  RESTful  server  with  every  resource  accessible  via  HTTP.  Additionally  to  the 

accessible resources, DBpedia provides a SPARQL endpoint. Serialization formats DBpedia can return 

are RDF/XML, N3/Turtle, JSON+RDF, OData/Atom and HTML.

An existing project on DBpedia is RelFinder [69], a project that searches for paths between two resources 

in the RDF data model. Nevertheless it is possible to search for a connection between two persons, it is 

no classical  approach for  social  network  analysis.  Paths can lead through non-person objects like a 

common profession or the a place one person was born, the other person died.

Other projects on DBpedia are DBpedia mobile [70], a Linked Data browser for the mobile phone, Search 

4 http://dbpedia.org/
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Figure 19: Wikipedia Template 
of Klosterneuburg



DBpedia [67], and Faceted Wikipedia Search [65] for searching DBpedia data, the DBpedia Query Builder 

for creating queries for DBpedia, and even more.

According to the headline, DBpedia is a nucleus and a crystallization point for the Web of Open Data.  

Figure 20 illustrates the importance of DBpedia to other Linked Data data sets and projects.

4.4 Retrieving Data from Linked Data Sources
There are two possible methods to extract data from Linked Data sources. The commonly used approach 

is to build a crawler. Such a crawler can go from source to source, using a predefined starting unit, or use  

an index by using a SPARQL query or a semantic web search engine. The second possibility is to use 

complex SPARQL queries to extract the needed information. This method has its benefits if we only use a 

single SPARQL endpoint. The more endpoints, the more complex it will become, because every endpoint  

has to be found and manually embedded to the extraction system. Another disadvantage of multiple  

SPARQL endpoints is the possible redundancy of data.

Table 13 displays a matrix of possible extraction methods and data sources on Linked Data.
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extraction method
data sources Crawler-based Query-based

Single data source
Use SPARQL for 

indexing first, then 
parse

Use complex 
SPARQL Queries to 

get information

Multiple data sources

Use semantic web 
search engines for 
indexing first, then 

parse

Know all SPARQL 
endpoints to send 
complex queries to 

get  information

Table 13: RDF extraction matrix

The main approach for social network analysis in the Web of Data is to use existing FOAF profiles. To 

create social networks out of FOAF profiles  [28], best practice is to use foaf:Person for nodes and the 

foaf:knows predicate  for  the  edges.  The extraction  of  FOAF consists  of  3  steps.  The fist  step is  to 

discover the instances of  foaf:Person, then to merge information about unique individuals and finally to 

interlink the persons with the foaf:knows attribute. To merge unique individuals, the most evident option is 

to compare  foaf:mbox, foaf:homepage,  foaf:name,  foaf:nick or  foaf:phone to analyze unique individuals 

out of foaf:Person data.

This thesis is about analyzing the possibility of extracting social network data on other Semantic Web's 

Linked Data sources. For this, we decided to take a single, extensive source and work with complex  

SPARQL queries.

Our source is the data of DBpedia, to be more exact the 312,000 persons illustrated in DBpedia. The goal  

for the next part of this thesis is, among others, the creation of a framework that extracts social networks  

out of a single Linked Data source via SPARQL endpoint with complex SPARQL queries. Additionally we 

illustrate the methodology and conception of the approach and finally the results we established.
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Part 2

Methodology, Implementation
and Proof of Concept
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5 Methodology and Concepts
In  the  first  part  of  the  thesis,  social  network  research,  the  distinction  between  communication  and 

relationship networks and different network analysis methods were introduced. Afterwards, theory of the 

network analysis with an introduction to graph theory and graph analysis, was depicted and finally an 

insight on Linked Data, their concepts and structure, the most important data sets and vocabularies for  

social networks and a theoretical section of network extraction, was given. 

The second part specifies the main content of this thesis – the extraction of social networks from the  

Linked Data source DBpedia, the analysis of the results and the investigation of the useability for social  

science research. In this part, concepts and methodology with a detailed technical implementation and 

respectable results of this approach will be presented.

This chapter figures the goal of the thesis with its main concepts and deliberations.

5.1 Goal
The goal is divided into three parts. The first one is the creation of a framework for extracting RDF data  

from single sources. The source can either be a single online SPARQL endpoint or a RDF dump file. The  

framework should be generic and applicable for any SPARQL-accessible data set, not only for DBpedia.

The second part  is  the extraction  of  four  meaningful  social  networks  from DBpedia  for  an accurate 

analysis.  Depending on a preliminary selection,  the networks are of  historical  writers  with  a directed  

“influencing” relationship, a network of scientists, to get to know who was the mentor of whom and a 

network of football players who played at the same three teams as threshold for a relationship. Within this  

network, we want to analyze if there is a specific dominant nationality, among others. The last network  

concentrates on architects and the buildings they created. 

The third part of the goal is to get feedback from social science students on the usefulness of social 

network extraction on DBpedia for scientific research.

5.1.1 Application
The  application  should  give  the  possibility  to  extract  and  analyze  social  networks  from linked  data 

sources.  Dedicated  networks  are  extracted  from  RDF  sources  of  single  Linked  Data  data  sets  or  

uploaded RDF dumps. The data is analyzed for important metrics and converted into a specific format for  

deeper analysis with expert tools. 
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The intention of this application is the creation of a web application that connects to single SPARQL 

endpoints or loads single RDF/XML files in order to analyze their usefulness on social network research. 

Nevertheless, this thesis is only about extracting data from DBpedia.

5.1.2 Usability
The investigation on usability  is carried through with  the social  network analysis  of  chosen DBpedia  

sources. This part follows the question: Are extracted social networks from DBpedia comprehensively 

analyzable?

A preliminary selection led to four networks that should be extracted and analyzed. A network of writers, a 

network  of  scientists,  a network  of  soccer-players  and a network  of  architects.  The analysis  metrics 

depend on the specification in Section 3.2 on page 22.

First  of  all,  the  network  should  be  visualized  to  get  an overview on it.  Secondly,  depending on the 

questions the network is created for, the focus lies on results of the main metrics of the entire network,  

individual nodes or specific connected components.

5.1.3 Usefulness
At last, advanced knowledge on the usability should be found. We want to know whether our approach is  

also applicable to the field of social science research. Therefore a survey with social science students  

should be made, with questions concerning specific topics. One topic focuses on the standing of social  

network analysis in social science, another one concentrates on Linked Data in general so that we can 

put their further answers in relation to their knowledge. Actually, it would be fine to get feedback on the 

extraction and analysis tools, the possibilities on research in this area and the overall feeling concerning 

this whole approach.

5.2 Application Overview
Social networks should be extracted from Linked Data sources 

and then analyzed. As mentioned before, we use an extraction 

method for single SPARQL endpoints to send queries to get 

nodes  and  edges.  As  shown  in  Figure  22,  the  result  is 

processed to a graph and analyzed in the main metrics to give 

an overview on the network and it's actors.

5.2.1 Data Flow
Figure 23 depicts a simplified data-flow model. The procedure 

starts with an input at the web application where the user can 

ask for a new network. This request is converted to a set of 

SPARQL queries that are processed to a predefined SPARQL endpoint. The results are converted to a 

network, a list of nodes and a list of edges. The network is analyzed and stored. The analysis results are  
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transferred to the web application and processed, so the user can view the results.

If the user asks for an existing network, it is easily loaded from the storage. To view single components of  

existing networks, the system either has to process the component out of the saved complete network, or 

it is already saved and just needs to be loaded.

5.2.2 Framework
The framework, with the name SocioCatcher, takes care of all network related processing steps. If the 

source is a RDF/XML file, the framework has to take care of it and create a small RDF storage on its own. 

If the source is a SPARQL endpoint, the framework connects directly to it and extracts and computes with  

complex  queries a list of nodes and a list of edges. The framework has to take care of different network  

types and different edge directions. The following analysis consists of all relevant metrics, depending on 

the network type and network direction, for a detailed first impression on the network. The framework 

offers metrics for the whole network, for its nodes and gives a possibility to analyze every connected  

component separately with these metrics. For further analysis, the generated network is convertible into 

the universal Pajek-Net format.

5.2.3 Web Application
The purpose behind the web application is to regulate the framework with easy controls, so that the social  

science students can use the tool. The website should have the following features: 

• information about the subject

• extracting networks with an input-form

• present network analysis results

• download networks

• permanently safe networks for sharing them with others

• a questionnaire for the usability study

An important aspect is on the optical web-page design to give a good first impression. Another important  

design aspect is represented by the input forms and the analysis website, to get competent results from 
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the usability study.

5.3 Network Analysis procedure
The network analysis procedure takes three steps within this thesis: network visualization, the analysis of 

the metrics and a background investigation on the nodes.

Network visualization

Network visualization helps to get a first  impression. The application allows to download the created 

networks to use professional tools for visualization. Figure 24 illustrates an example for visualization. This 

network is about musicians, that have a relationship, when they were on the same two record labels.

Statistical Analysis

The main part of the analysis process is represented by the statistical analysis. Metrics are the amount of  

nodes  and  edges,  as  well  as  the  network  density  and  the  number  of  connected  components.  For 

undirected  networks,  metrics  on  the  nodes  are  degree-,  closeness-  and  betweeness  centrality.  For 

directed networks, metrics are indegree-, outdegree- and rank prestige. Additional metrics like proximity 

prestige can be computed via Pajek.
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Figure 24: Visualized network of musicians at the same two record labels with Pajek



Background investigation

A background investigation on the network members helps to affirm and find specific patterns of the  

network or its components.

These  three  steps  are  processed  for  the  entire  network  and  also,  if  needed,  for  the  connected 

components. There are also no strict  separations of these steps, because we want to undertake our 

questions carefully.  The goal  is  to receive assumptions,  theories and patterns on social  networks  to  

confirm the usability. For more details on social network analysis, remember Section 3.2 on page 22.

If we can find patterns and statements on the social networks, the extraction and analysis tool, ergo, the 

whole approach of the technical work, will be investigated as usable.

5.4 Usability Study approach
The usability study contributes to the allocation of usefulness of the application. The questionnaire puts its 

focus on open questions, but also uses closed and multiple choice questions.

5.4.1 Target Group
The target group for this study are 7 students of sociology at the University of Vienna. 

To get a recall of 7 we sent an invitation within the request for taking part in the study to 25 students. The 

students were randomly chosen by former course contacts of a sociology student, we had an initial expert 

interview on social science and social network analysis [Appendix A].

5.4.2 Process flow of the Study
The first thing participants had to do, was reading the supplement of the usability study [Appendix B].

The supplement consists of 

• an overview on Linked Data and social network analysis,

• information on the web site's extraction and analysis tool and

• three concrete usage scenarios for the extraction tool.

The overview on Linked Data and social network analysis should introduce the thesis related topics to the  

participants. After reading it, even if he or she has never heard of network analysis and/or Linked Data 

before, they should know the basics and what this application is all about.

The information on the web site's extraction and analysis tool should be introducing all features. First of  

all, this part should give information on what's possible with the extraction tool and how to use it, secondly  

the part gives an overview of the analysis metrics.

Finally, two concrete usage scenarios give step by step instructions to network creation. The first network 

is a complete network of influenced writers. The second network is an affiliation network of musicians at 
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the same record label.

After completing the usage scenarios, the participants were requested to fill out the questionnaire.

5.4.3 Questionnaire 
The questionnaire features a combination of closed questions, specific questions and open questions. 

Because this is a qualitative study, we hoped to receive the best answers with the open questions. The 

other  question-types complement  the questionnaire  to ease intensity and detect  the overall  personal 

relation to the topics.

The questionnaire was divided into three parts:

Part 1: Knowledge of and attitude towards social network analysis

This part consists of 6 questions with the intention to get to know the opinion on social network analysis of  

the participant to put the questions of part 3 into the right context. All 6 questions influence the quality of  

questions on the social network analysis method.

Question 1: Did you know the methodology of social network analysis before this study?

Question 2: Is social network analysis with current paradigms applicable?

Question 3: Network analysis is ... (multiple choice and essay)

Question 4: Is social network analysis with actual questions convenient in social science?

Question 5: What do you think of computational social science?

Question 6: Should there be more interdisciplinary collaboration at the University of Vienna?

After analyzing these questions, we should be able to know about the participants knowledge and opinion  

on social network analysis and computational social science.

Part 2: Knowledge of and attitude towards DBpedia and Linked Data

This part consists of 7 questions. The intention of this part is to receive information on the attitude of  

DBpedia, Linked Data, Internet and technical knowledge in general of the participant. Here we find a set  

of questions for loosening the strictness in the questionnaire and to get a focus on the following part.  

These questions are of less use for the thesis.

Question 1: On a scale from 1 to 10, how would you rate your technical knowledge?

Question 2: Did you know DBpedia before this study?

Question 3: Do you think DBpedia is a good data source for extracting (historical) social networks?

Question 4: Do you think there are enough fields of research on the web in social science?

Question 5: Do you use social software?
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Question 6: Do you think social social software is an interesting field of research in social science?

Question 7: How do you think about privacy in social software?

With question 1 we should know about the technical self-assessment, which influences the quality of 

questions on DBpedia. Question 3 is a core-question which will  be asked in part  3 anew with small  

changes to check consistency. Questions 4 to 7 are loosening questions on social network related topics 

on the web to strengthen the answers of part 3. Additionally these questions give further guidance on the 

technical know how of the participant.

Part 3: SocioCatcher Usability

This part is the most important in this questionnaire. It consists of 5 questions:

Question 1: What do you think of automatically extracted data of DBpedia or other Linked Data sources? 

Question 2: Do you think, this website for extracting networks of DBpedia is usable for research in social 

science?

Question 3: What do you think of the extraction tool on this website?

Question 4: What do you think of the analysis interface on this website?

Question 5: Which aspects do you find ought to be improved?

Question 1 is a closed question to get the perception of the participant of our approach. Question 2 is also 

closed, with 5 possibilities to check whether the method and/or the raw data is useful or useless for  

research in social science, our main question on this part of the thesis. Question 3 and 4 is closed, with  

an open answer field, if the participant feels the part of the website is lacking in some aspects. The last 

question offers the participant the opportunity to give a concluding feedback in general.

The answers of the questionnaire gives information on how useful our tool will be, in combination with the  

selected data source, on social research.
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6 Implementation
This chapter contributes to the framework SocioCatcher, its features and how it processes and converts 

the data, and the Web application, it's development steps and technical implementation.

6.1 SocioCatcher Framework
The name of the class SocioCatcher is a combination of the words sociomatrix and dreamcatcher. The  

class takes care of all network processing steps. As seen in Figure 21 on page 45 it settles between the 

website, with an user interface for the end-user, and the plain RDF source. It  has an interfaces to a 

MySQL Database, the file system, a JAR (Java Archive) file for the advanced analysis procedure and 

includes ARC PHP1 classes.  The framework  itself  is  programmed in  the language PHP,  which  is  a 

recursive acronym for “PHP: Hypertext Preprocessor”.

6.1.1 Framework Features
The framework extracts, analyzes and even stores networks. There are three possibilities to create an 

instance of the class SocioCatcher:

• Create a new network

• Load a temporaryly saved network

• Load a permanently saved network

Input

The input for creating new networks is a complex issue. The extraction source, network type, network 

direction type, the nodes and edges definition and an option whether or not we want to include lonely  

nodes (nodes without an edge) have to be defined.

The value of the extraction source could be of an URL to an existing SPARQL endpoint or a destination  

point  of  a  locally  saved file.  The network  type defines if  the network  is  complete,  ego-centric  or  an 

affiliation network  (see Section  2.7.4 on page  16).  The network  direction type specifies whether  the 

network is directed or undirected. The declaration of the nodes and edges are listed in Table 14.

Table  14 describes the array structure of  the nodes and edges definition.  With undirected complete 

networks,  nodes are  described  with  one  predicate  and  object.  For  example,  we  want  “ALL  rdf:type 

dbpedia-owl:Writer”. If there is more than one description type, for instance writers and artists, the array is 

appended by another predicate and object. The edges are described by the predicate.

Additionally to the predicate, directed complete network edges have the network direction, defined by a  

string with value “left” or “right” appended.

1 http://arc.semsol.org/
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The nodes of ego-centric networks are defined by the ego node, while the the edges are computed by its 

predicate(s) and, in case of a directed network, the belonging direction.

The nodes of an affiliation network are defined by their common predicate and object, just like undirected 

networks. The edges are computed by a predicate which directs to an event or container, as mentioned in 

Section 2.7.4 on page 16. For example we take “ALL rdf:type dbpedia-owl:SoccerPlayer” as our nodes 

and  their  relations  are  depending  on  the  same containers  they  have  with  “<<SoccerPlayer  defined 

before>> dbpprop:club CONTAINER”. At the end of the edge-definition array a threshold is attached.  

Afterwards the data is computed and transformed to a social network as described in Listing 1 on page 

16.

Undirected 
complete network

Directed 
complete network

Undirected 
ego-centric network

Directed 
ego-centric network

Undirected 
affiliation network

Node: <predicate> <object>
[<predicate> <object>]

<predicate> <object>
[<predicate> <object>] <ego> <ego> <predicate> <object>

[<predicate> <object>]

Edge: <predicate>
[<predicate>]

<predicate> <dir>
[<predicate> <dir>]

<predicate>
[<predicate>]

<predicate> <dir>
[<predicate> <dir>]

<predicate>
[<predicate>]
<threshold>

Table 14: Nodes and edges definition for the framework input

After network creation, the network receives an identification number. In order to load temporary saved 

networks, an instance of the class SocioCatcher only needs to know the network identification number 

and the network type. For permanently saved networks, the class is instantiated automatically only with 

its identification number.

Output

The output metrics can refer to the whole network that is created or loaded, or to a specific component  

only. Analysis metrics are:

• Amount of vertices

• Amount of edges

• Network density

• Amount of connected components (only for the entire network)

In case the network is undirected

• Degree centrality for each node

• Closeness centrality for each node

• Betweenness centrality for each node

In case the network is directed

• Outdegree prestige for each node

• Indegree prestige for each node

• Rank prestige for each node

The results of the three additional metrics, that are depending on the direction type of the network, are 

represented in an array with its index as the index of the nodes. Additionally the framework creates a 

simple Pajek file for further analysis either for the entire network or for single connected components.
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6.1.2 Framework Processing Steps
Figure  25 gives a detailed overview of the interaction of the individual framework parts and the overall 

data flow in the framework. In this section we take a closer look at the steps, illustrated in Figure 25.

The framework shows three different inputs. The first input is “Create new Network”. As mentioned in 

Section  6.1.1 this input has to commit the extraction source, network type, network direction type, the  

nodes, the edges and a flag, if the network extraction should include lonely nodes or not. Depending on 

this flag, nodes and edges are extracted separately, or only edges are extracted and nodes computed 

from the result.

SPARQL Query Generation

Depending on the extraction type, there are different possibilities for query building and node extraction. 

As described in Section  6.1.1, ego-centric networks need a different input for nodes than complete or 

affiliation  networks.  With  complete  and  affiliation  networks,  nodes  are  extracted  by  a  triple:

?n <input> <input>. If there is than one node-definition, these triples are connected by an UNION. Listing 

6 figures a SPARQL query that returns all rdf:type dbpedia-owl:Writer and all rdf:type dbpedia-owl:Artist.
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Figure 25: Detailed data flow of the framework

Create new NetworkConvert to SPARQL 
Queries

Send Query              

Send Q
uer

y    
   

Intern RDF Data 
Storage

ARC PHP Classes

Convert to Networkget results                              

get results

File System

save

Analyze Network

sa
ve

SocioCatcher JAR File
with JUNG Framework

load

save

Network Values
and Output Functions

Analysis Results
Pajek File

MySQL
Database

save permanently

Load Componentrecompute Values

Load Network

extern

intern

SPARQL Endpoint

Way from/to



For building queries and extracting nodes of ego-centric networks we need to know the definition of the 

edges.  If  we  want  to  extract  a  personal  network  of  Aristotle,  we  define  the  edges  like:  ?n 

dbpprop:influences ?x with  ?n is  http://dbpedia.org/resource/Aristotle.  In  addition,  to  get  all  other  belonging 

nodes, we take the term {?n <edge> ?x} UNION {?x <edge> ?n} with ?x as our source for Aristotle. 

Listing 7 illustrates the SPARQL query of this example.

The query building for the edge extraction is slightly more difficult. Ego-centric edges are extracted very 

similar to the nodes. The edges from the ego-node are needed (?e1 dbpprop:influences ?e2 where ?e1 is 

ego)  and  to  the  ego-node  (?e1  dbpprop:influences  ?e2 where  ?e2 is  ego).  Additionally  the  edges 

between  the  alter-nodes  (nodes  in  ego-centric  networks  that  are  not  ego)  are  needed,

?e1 dbpprop:influences ?e2 where ?e1 dbpprop:influences <ego> and ?e2 dbpprop:influences <ego>. A 

complete example of an ego-centric network of Aristotle is illustrated in Listing 8.

Building queries for the edges of complete networks depend on the committed predicate(s) and the node-

definition (the predicate and object from the node definition).  ?e1 <predicate> ?e2 with  ?e1 and  ?e2 

<node-definition-predicate> <node-definition-object>. Listing  9 shows an example of a writer and artist 

network with 3 different influencing attributes.
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SELECT DISTINCT ?n

WHERE
{ { ?n dbpprop:influences ?x filter regex(?n,'http://dbpedia.org/resource/Aristotle') } UNION 
{ {?n dbpprop:influences ?x} UNION {?x dbpprop:influences ?n}  
           filter regex(?x,'http://dbpedia.org/resource/Aristotle') } }

Listing 7: SPARQL query for node extraction of an ego-centric network of Aristotle

SELECT DISTINCT ?e1, ?e2
WHERE
{ { ?e1 rdf:type dbpedia-owl:Writer } UNION { ?e1 rdf:type dbpedia-owl:Artist } .
  { ?e2 rdf:type dbpedia-owl:Writer } UNION { ?e2 rdf:type dbpedia-owl:Artist } .
  { ?e1 dbpprop:influenced ?e2 } UNION { ?e1 dbpedia-owl:influencedBy ?e2 } UNION { ?e1 dbpprop:influenced ?e2 } }

Listing 9: SPARQL query for edge extraction of a complete network of writers and artists

SELECT DISTINCT ?e1, ?e2
WHERE
{ { {?e1 dbpprop:influences ?e2} filter regex (?e1, 'http://dbpedia.org/resource/Aristotle') } UNION
  { {?e1 dbpprop:influences ?e2} filter regex (?e2, 'http://dbpedia.org/resource/Aristotle') } UNION   
  { {?e1 dbpedia-owl:influencedBy ?e2} . {
      {?e1 dbpprop:influences ?x} UNION {?x dbpprop:influences ?e1} .  
      {?e2 dbpprop:influences ?x} UNION {?x dbpprop:influences ?e2} 
    } filter regex (?x, 'http://dbpedia.org/resource/Aristotle') } }

Listing 8: SPARQL query for edge extraction of an ego-centric network of Aristotle 

SELECT DISTINCT ?n

WHERE

  { {?n rdf:type dbpedia-owl:Writer}  

       UNION  {?n rdf:type dbpedia-owl:Artist }}

Listing 6: SPARQL query for node extraction of writer and artists



To build an extraction query for the edges of an affiliation networks, the actors ?n and the predicate which 

connects the actors with the events/containers ?c are needed. First we have to define the actors, just like 

described in the node extraction and add ?n <predicate> ?c to the query to get a list of all actors and their 

allocated container. Listing  10 illustrates a SPARQL query for edge-extraction of musicians and their 

labels.

After extracting a list of relations between actors and containers we have to process the data with the 

algorithm illustrated in Listing 1 on page 16. Afterwards, the edges are filtered with a defined threshold.

RDF Source

The framework has to address an external SPARQL endpoint or has to load and compute a locally saved 

file with the ARC2 framework. While the results of the locally saved file are read automatically by the 

ARC2  framework,  the  external  SPARQL  endpoint  has  to  return  the  results  in  XML  format  for  the 

framework to compute and  transform them accurately.

Network Datastructure

The results of the SPARQL endpoints are converted to a list of nodes and a list of edges. We chose this  

kind of data structure in order to ease the conversion to the Pajek-Net format and to process the data 

efficiently. The nodes are saved in a simple array1 starting with index 1. The edges are stored in a two 

dimensional array with array[edge-index] [0] and array[edge-index] [1] containing the indices of the values 

of the nodes.

After conversion, the results are included in the class structure, saved to a file and sent to the analysis.

Network Analysis

After the creation of a network, the framework computes the amount of nodes, the amount of edges, the 

network density and the connected components.

Connected components are computed by using a “to-do-list” which contains all nodes, a random start 

node, and a simple breadth-first search algorithm which searches through the nodes and deletes them 

from the to-do-list. When the search is finished, another node from the to-do-list is taken. This is repeated 

until the to-do-list is empty. Finally the result is saved to a file with the index of the component and the  

index of the node with a blank in between per line. 

1 PHP treats arrays very similar to lists.
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SELECT DISTINCT ?n, ?c
WHERE
{ { ?n rdf:type dbpedia-owl:MusicalArtist }  .
  { ?n dbpedia-owl:recordLabel ?c } }

Listing 10: SPARQL query for edge extraction of an affiliation network of musicians



If  the network  is  a  complete  or  affiliation network,  there are three additional  metrics for each node, 

depending on the direction type of the edges. If the edges are directed, in-degree, out-degree and rank 

prestige are computed for each node. If the edges are undirected, every node is computed for degree, 

closeness and betweenness centrality. These metrics are computed by an external JAR file which uses 

the JUNG2 (Java Universal Network/Graph) framework. The interface between the PHP framework and 

the JAR file is a simple exec command. With this command, the JAR file loads the network from the file 

system, computes the metrics for each node and saves these metrics in return to the file system, where 

the SocioCatcher framework can load them.

Load Network

A network can be loaded by its identification number. If  the network is permanently saved, there are 

additional values: a network name, a network description and the name of the user. A permanently saved 

network receives an entry in the MySQL database, which is usually used for the ARC2 framework. Figure 

26 illustrates the Entity Relationship-diagram in IDEF1X notation.

6.1.3 Framework Variables and Functions
Identification Variables Technical Variables Statistical Variables

public
$uri
$networkName
$networkNotes
$creatorName

$networkType
$networkDir
$nodes
$edges

$nodesCount
$edgesCount
$networkDensity
$conComp

private $sparql

Table 15: Class-variables of SocioCatcher framework

$uri is the network identification number. On standard configuration, it is a random string of 15 characters. 

$networkName, $networkNotes and $creatorName are strings which have to be defined for permanently 

saved networks.  $networkType defines the extraction type of the network. Its values can be “complete” 

for complete networks, “ego” for ego-centric networks or “affiliation” for affiliation networks.

$networkDir defines the network direction type.  The value of  $networkDir can either  be “directed”  or 

2 http://jung.sourceforge.net/
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Figure 26: Entity Relationship diagram of 
permanently saved networks
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“undirected”. $nodesCount is the amount of nodes in the network. $edgesCount is the amount of edges of 

the network.  $networkDensity is the network density, computed as mentioned in Section 3.2.2 on page 

23.  $conComp is the amount of connected components the network possesses.  $nodes is an array of 

nodes with the node index as array index (so the array starts normally with 1 instead of 0) and the node  

name as value. $edges is a two-dimensional array with an edge index in the first dimension and the two  

indices  of  the  nodes in  the  second dimension  of  the array.  $sparql is  the location  of  the  SPARQL 

endpoint. If the source is a file, this value is set to “intern”.

Network Controls Statistical Functions Support Funktions

public

__construct($uri_or_type, $nwt="savedDB", $nwd="", 
$location="")
extractNetwork($nodes, $edges, 
$no_lonely_nodes=true)
saveNetwork($nwName, $nwNotes, $cName, $cIP)
getComponent($identifier)
getPossibleEdges($nodes)

getMetric($type)
getAltersCount() loadFromDB()

private
loadFromPajek($filename="self")
dump($file)

basicAnalysis()
advancedAnalysis()
connectedComponents($myNode
s= "self", $myEdges = "self")

createQueries($node,$edge)
XMLSPARQLResults($query)
dbSetUp()
randomName($nameLength) 

Table 16: Class-functions of SocioCatcher Framework

We restrict our detailed description on the functions displayed in Table 16 only to the ones that are public. 

Because PHP does not allow function overloading, the constructor is a complex construct and hast one to 

four parameters. If a new network is instantiated, $uri_or_type is set to “sparql” or “dump”, depending on 

the extraction source. The values of  $nwt and  $nwd are sent to the class-variables  $networkType and 

$networkDir directly. $location depends on $uri_or_type and is either the URL of the SPARQL endpoint or 

the file  position.  When the framework  should  load a temporary  saved  network,  the class  has to  be 

instantiated with  a network  identification number and the right  network type.  If  a permanently  saved 

network is loaded, the constructor needs only the network identification number.

For extracting a network, the function extractNetwork($nodes, $edges, $no_lonely_nodes) is called. The 

convention of $nodes and $edges are mentioned in Table 14 on page 54. The variable $no_lonely_nodes 

can be true or false and commits the framework if nodes without any edges should also be considered or  

not.  saveNetwork($nwName,  $nwNotes,  $cName,  $cIP) saves  a  network  permanently. 

getComponent($identifier) changes the network metrics to a single component. If  $identifier is zero or a 

bad value, getComponent sets the metrics back to the metrics of the entire network.

If the network is a complete one, the function getPossibleEdges($nodes) returns an array of all possible 

edges for the network. The getMetric($type) function return an array for a metric on each node. The value 

of  $type can  be  of  the  following:  “degree”,  “betweenness”,  “closeness”,  “indegree”,  “outdegree”  and 

“pagerank”. getAltersCount() returns the amount of alter-nodes in an ego-centric network.

loadFromDB() returns true if the network is saved permanently.
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6.1.4 Framework Usage
Here is a demonstration of the framework usage with two illustrative examples:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

<?php
    require_once("path/to/SocioCatcher.php")

    $sc = new SocioCatcher("sparql","complete","undirected","http://dbpedia.org/sparql?format=application%2Fxml&query=");

    $nodes = array(); $nodes[0] = "rdf:type"; $nodes[1] = "dbpedia-owl:Writer";
    $edges = array(); $edges[0] = "dbpprop:influenced";

    $sc->extractNetwork($nodes,$edges);

    echo "Network identification number: " . $sc->uri . "<br>";
    echo "Amount of connected components: " . $sc->conComp . "<br>";

    for($i=0;$i < $sc->conComp; $i++) {
        $sc->getComponent($i);
        echo "Component: " . $i . "<br>";
        echo "Amount of nodes: " . $sc->nodesCount . "<br>";
        echo "Amount of edges: " . $sc->edgesCount . "<br>";
        echo "Network density: " . $sc->networkDensity . "<br>";
        print_r($sc->getMetric("degree"));
        print_r($sc->getMetric("closeness"));
        print_r($sc->getMetric("betweenness"));

        // Download button for entire network and each component
        echo '
             <form method="POST" action="path/to/pajek.php" target="">
                <input type="submit" value="Download" />
                <input type="hidden" name="uri" value="' . $sc->uri . '">
            </form><br><br>';
    }
?>

Listing 11: Creating a network example-code

The example in Listing 11 extracts an undirected complete network of writers with influenced relationship. 

Afterwards,  the  code  outputs  the  network  identification  number  and  the  amount  of  connected 

components.  Thereafter,  the  for-loop  puts  out  all  metrics  for  the  whole  network  and  all  connected  

components with a download button for every component. With the download buttons it is possible to 

download the network (component) in Pajek-Net format. In the next example we load and save a network:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

<?php
    $sc = SocioCatcher("k0mycTkVgFRb6", "complete");
    $sc->saveNetwork("Influenced Writer", "A simple network of influenced writer", "MZ", "localhost");

    unset($sc);

    $sc = SocioCatcher("k0mycTkVgFRb6");
    echo "Creator name: " .     $sc->creatorName . "<br>";
    echo "Network name: " .     $sc->networkName . "<br>";
    echo "Network notes: " .     $sc->networkNotes . "<br>";
?>

Listing 12: Code-example for loading and saving a network

On line 2 and 3 in Listing  12 a temporary saved network is loaded and saved permanently. Line 7-10 

loads a permanently saved network and outputs the name of the creator, the name of the network and the 

network notes.
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6.1.5 Implemented Projects
As mentioned before, the framework uses two external projects, ARC2 for PHP and JUNG.

ARC2, RDF Classes for PHP

ARC23 is a free open source framework that runs with most server environments. It is a rewrite of ARC1 

with the intention to make an easily usable, powerful framework for RDF files. It has different parsers, 

different serializers, with the use of MySQL a RDF storage, a SPARQL endpoint class and many other  

features.

The second considered PHP framework for RDF files is RAP4 V0.9.6. We decided to use ARC2 because 

of its incomparably easily usable class structure and it features less errors.

JUNG Framework

JUNG5, the Java Universal Network/Graph Framework, is an open source software library designed to 

model, analyze, visualize graphs. It depicts many mathematical algorithms for analyzing and preparing 

networks. JUNG was created by three PhD students at the University of California.

We had to resort to a Java framework because PHP does not directly support multi-threading and related  

efficient analysis algorithms.

6.2 Web Application
The web application merges the framework and a well designed user interface.

6.2.1 Target Group
The main intent of the web application was an applicable presentation platform for the participants of the 

usability study. The participants are sociology students. In addition the platform is freely accessible to all 

interested parties.

6.2.2 Website Structure

Segmentation

With the website structure, we thought of a segment for the SocioCatcher logo and the symbol of the 

University of Vienna with a link to the homepage of it. Besides that, the website should have a classical  

menu and content structure. Figure 27 shows the website layout.

3 http://arc.semsol.org/

4   RAP - RDF API for PHP, http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/

5 http://jung.sourceforge.net/
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Menu Structure

News: The web application normally starts with the news page. Here are the obligatory steps of the 

website production listed.

About: This section gives an overview on the subject of the website.

Catch Network: This menu item leads to the extraction tool.

View Network: From this section we can watch all permanently saved networks.

Usability Study: This section presents the amount of questionnaires that are filled out. If the GET variable 

id is set, the website leads to the questionnaire.

Publications: With this menu item we can download all papers depending on this web application, or at 

least this master thesis. 

Guestbook: The guest book represents an addition for feedback or annotation on this website.

Additional Websites

Additional sections that are not within the menu structure:

Usability Study Analysis: This section lists the individual answers on the questionnaires. 

Supplement: The supplement is a PDF file in addition to the usability study. [Appendix B]

6.2.3 Website Design
The website design was carried through in separated CSS (Cascading Style Sheets) files. Thus, structure 

and design aspects are saved in separate files. We wanted to give the website a warm, fresh and inviting  

touch. We thought a good base color for the website would be a pale yellow, because yellow is the only 

color stimulating both brain hemispheres. Additionally it is a warm color demonstrating nearness to the  

user [62].
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Figure 27: Segmentation and design of the website
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Logo

As seen in Figure 28, the logo has an orange color. The color is 

received  as  fresh  and  bright.  We  chose  a  dreamcatcher  as 

symbol,  because,  as  mentioned  before,  SocioCatcher  is  a 

combination of the words sociomatrix and dreamcatcher.

Website Impression

We wanted an austere design with the focus on functionality. We took a normal black as font color, pale  

yellow as background color, and an orange color for everything we wanted to attract. Orange items that 

are not of current interest for the user are made transparent. In addition we created mouse-over effects 

on the transparent items to signalize possible actions by clicking onto them.

Usability Design

We wanted to make an intuitive user interface design. As seen in Figure 29, for the network extraction we 

created two screens, connected with a next button. 

First of all, we have to define the source of the RDF dump or SPARQL endpoint, the network type and  

network direction type. Secondly, we have to choose the nodes and edges, depending on our network  

type, with the direction of the edges and a check box for considering lonely nodes or not. 

We also thought about an extraction method with three steps. We wanted to split the second step in the 

selection of the nodes and then send a query to get a preselection of all possible edges. We struck to the 

two step method, because it takes much time to send queries to a SPARQL endpoint and the result of 

about 70 to 90 different possible edges would be more confusing than helping the user.
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Figure 28: SocioCatcher Logo

Step 1 Step 2

Figure 29: Usability design of catch network



With the network analysis screen, we can see in Figure 30, we parted the site into 5 parts. The first part 

gives an overview on the network and creator name, the network notes and some general statistics on  

the selected network partition or entire network. The second part is a control for switching between single  

components or the total network with the statistical value of how many components the network consists.

The third file is depending on the network type and network direction type. If the network type is ego-

centric,  there  will  be  no  statistics  on  the  nodes.  Affiliation  networks  and  complete  networks  have, 

depending on their network direction type, three different centrality or prestige values.

The fourth part is a form for saving the network permanently. It is only visible for not-permanently saved 

networks.

The last part is a button for downloading the selected component of the network in Pajek format.

-  64 -

Figure 30: Usability design of network analysis



6.2.4 Technical Implementation
The website runs on a standard Apache 2 server with PHP 5 and MySQL service. The command line 

should be accessible via PHP, which is activated by default after the installation. Java should also be 

installed and accessible via command line.

Network Extraction

The PHP script behind the menu item “Catch Network”, cn.php, outputs a simple PHP generated HTML 

and Javascript website. The script transfers all input data as POST variables to the vn.php script.

Network Analysis

The vn.php script takes all POST or GET variables to generate a network and prepare the output data for 

presentation. Strictly speaking, the script distinguishes between a new network, temporary saved and 

permanently saved network. It also checks whether a single component is chosen or the network should 

be saved permanently.

The output of this script is a HTML site according to Figure 30. The script extracts the names of the nodes 

from its URI and sorts the statistical values to rank the nodes.

Pajek File

If we click on the download button the pajek.php script is opened to output the wanted pajek.net file to the 

user. This script only gets a network identification number and outputs the appropriate saved data on the 

file system to the user.

Usability Study

The usability study is saved in a simple XML file. The structure of the file is illustrated in Listing 13. An 

entry contains the id of the participant, all questions with q11 stands for question part 1, question 1. If a  

question has separate information, it is saved in c0, c1, c2, etc. elements. The questionnaire related entry  

elements are q11 to q16, q21 to q27 and q31 to q35.
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1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

<us>
    <entry>
        <q11> Value </q11>
        <q12> Value </q12>
        <q13> 
            <c0> Value </c0>
            <c1> Value </c1>
            ....
            <c8> Value </c8>
        </q13>
        <q14> Value </q11>
        <q15> Value </q15>
        .....
        <datetime>YYYY-MM-DD hh:mm</datetime>
    </entry>
    <entry>
        ........
    </entry>
</us>

Listing 13: Example XML code for the usability study

Guestbook

The content of the guest book is also saved as XML file. Listing 14 demonstrates the XML structure.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

<gb>
    <entry>
        <name> Value </name>
        <text> Value </text>
        <datetime>YYYY-MM-DD hh:mm</datetime>
    </entry>
    <entry>
        ........
    </entry>
</gb>

Listing 14: Example XML code for the guest book
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7 Proof of Concept 
and Usability Study

This chapter deals with the answers to the questions accompanying this thesis: Is the extraction of social  

networks from DBpedia usable? In order to answer this question we have extracted social networks from 

the historical data of DBpedia and analyzed them to find patterns for making statements and conclusions 

on the networks.

The second question of this thesis is as follows: Is the extraction and analysis of data from DBpedia a 

useful  approach for  social  science?  Therefore,  we  set  up a  usability  study  with  the goal  to  receive  

feedback from sociology students to get to know their feeling concerning this approach.

7.1 Network Analysis on DBpedia
As mentioned earlier, the network analysis consists of three steps per each network: network visualization 

with Pajek, statistical analysis  of the network metrics and a background research on the actors. The 

results should be patterns and statements for the selected group of actors. These results were extracted 

on September the 23rd, 2010 and can differ from actual extractions.

7.1.1 Writer- Influential
The idea behind this network is to get all historical writers whom DBpedia offers, and interlink them with  

directed influenced attributes. Who influenced whom?

This leads to some questions:

• Which writer influenced most writers directly?

• Whose ideas represent the basis for most writers?

• Who is the most important writer of all time?

Network Extraction

The writers are identified with the predicate and object rdf:type dbpedia-owl:Writer.

For the arcs, DBpedia offers four different influential attributes:

• dbpedia-owl:influenced

• dbpedia-owl:influencedBy

• dbpprop:influenced

• dbpprop:influences
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The attributes with dbpprop as namespace are raw infobox properties from Wikipedia, properties with the 

dbpedia-owl namespace  are  ontology  properties  depending  on  information  retrieval  of  the  Wikipedia 

texts. These two are not equivalent, thus we chose to take both for our analysis. dbpedia-owl:influenced 

and  dbprop:influenced have  an  arc  direction  in  one  direction,  the  dbpedia-owl:influencedBy and 

dbprop:influences to the other direction.

The first intention of designing the edges would be an arc direction of how the influence “flows”. However,  

we have to arrange the edges as if we would ask every actor “Who influenced you?”. According to these 

imaginary “votes” of our actors,  we arrange the edges in a direction against the influence “flow”. Thus,  

the starting point of our arcs should be actual living writers and the more the arcs go deeper into the  

network, the earlier the writers should have lived.

First of all, we tried to extract all writers with all four influenced attributes. The result amounted to 8751  

writers and 2644 edges. Secondly, we tried to extract all writers that have edges with the result of 1546  

nodes and 2644 edges. Thus 7205 nodes have no relationship. In our further analysis we focus only on 

nodes with edges.

Network Visualization

The visualized network (without lonely nodes) shows many very small networks and one very big one. 

We explain the connected components with the focus on different regions and literature genres. The big 

network  consists  of  the  temporary  mainstream,  while  the  small  ones  embrace  regional  writers  like 

Chinese or Hungarian ones (e.g. the network of Attila József, Mihály Babits, Gyula Juhász, Gyula Illyés, 
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Figure 31: Visualized network of Writer influential



László Németh and János Pilinszky) or specific genres, such as genres of science fiction and fantasy  

(e.g. the network of C.J. Cherryh, Andre Norton, Marion Zimmer Bradley, Linnea Sinclaire and Mercedes 

Lackey).

Statistical Analysis

The complete network consists of 7329 connected components, with 8751 nodes and 2644 edges and 

shows a network density of 0.0035%, which is very low. Without the lonely nodes the networks has 1546  

nodes and 2644 edges with a network density of 0.1107%.

The connected components are:

Amount Nodes Edges

1 1252 2473

3 6 5

3 5 4

5 4 3

17 3 2

95 2 1

7205 1 0

Table 17: Connected components of influenced writer

The indegree allocation (without lonely nodes) of our actors shows a steep curve. 627 nodes have no 

incoming edge, 260 nodes have one incoming edge, up to one node with an indegree of 49.
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Figure 32: Indegree prestige allocation
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The more indegree prestige a person has, the more a person influences people directly.  With these  

metric, we can say, the most famous writer of his time and thereafter is Franz Kafka 1, a famous novelist at 

the beginning of the 20th century, with 49 writers whom he influenced directly. The next in line are William 

Falkner2, a Nobel-prize winning American novelist in the 20th century, William Shakespeare3, a famous 

poet and playwright, living from the 16th to the 17th century, and Ernest Hemingway4, an American author 

and journalist, with 40, 36 and 35 directly influenced persons. Table  18 depicts the 20 most important 

writers depending on the indegree prestige value.

Rank Writer Indegree Rank Writer Indegree

1. Franz Kafka 49 10. H. G. Wells 24

2. William Faulkner 40 12. Leo Tolstoy 23

3. William Shakespeare 36 13. Anton Chekhov 22

4. Ernest Hemingway 35 13. Gustave Flaubert 22

5. Edgar Allan Poe 28 15. Samuel Beckett 20

6. Robert E. Howard 27 15. Stephen King 20

6. Marcel Proust 27 15. John Milton 20

8. Jorge Luis Borges 25 18. Vladimir Nabokov 19

8. Fyodor Dostoyevsky 25 18. G. K. Chesterton 19

10. H. P. Lovecraft 24 18. Mark Twain 19

Table 18: 20 most important writers depending on indegree prestige

With the help of Pajek, it is easy to compute proximity prestige, as mentioned in Section 3.2.3 on page 

24. Proximity prestige on a node regards the surrounding of the node. This metric calculates every node 

that reaches it. Due to this method, we can get a closer look on how close an actor is to others that can  

reach  him,  and  can  get  a  clue  on  their  importance.  With  this  metric,  the  most  centered  node  is 

represented by William Shakespeare.  He is  followed by Ovid5,  or  Publius Ovidius Naso, who was a 

Roman poet between 43 BC and 17 or 18 AD. The third ranked is Edmund Spenser6, an English poet of 

the 16th century. The fourth is John Milton7, an English poet and author of the early 17th century, famous 

for his epic poem, Paradise Lost, followed by Victor-Marie Hugo8, a French poet, playwright,  novelist, 

essayist, visual artist, etc. of the 19th century.

1 http://dbpedia.org/resource/Franz_Kafka

2 http://dbpedia.org/resource/William_Falkner

3 http://dbpedia.org/resource/William_Shakespeare

4 http://dbpedia.org/resource/Ernest_Hemingway

5 http://dbpedia.org/resource/Ovid

6 http://dbpedia.org/resource/Edmund_Spenser

7 http://dbpedia.org/resource/John_Milton

8 http://dbpedia.org/resource/Victor_Hugo
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Rank Writer Proximity Rank Writer Proximity

1. William Shakespeare 0.136 11. François-René de Chateaubriand 0.111

2. Ovid 0.129 12. Petrarch 0.110

3. Edmund Spenser 0.126 13. Gustave Flaubert 0.109

4. John Milton 0.126 14. Alexander Pushkin 0.107

5. Victor Hugo 0.123 15. Edgar Allan Poe 0.107

6. Dante Alighiery 0.119 16. Christopher Marlowe 0.106

7. Virgil 0.118 17. Walter Scott 0.104

8. Lucian 0.114 18. Torquato Tasso 0.101

9. Geoffry Chaucer 0.112 19. Miguel de Cervantes 0.100

10. Cicero 0.111 20. Alphonse de Larmatine 0.990

Table 19: 20 most important writers depending on proximity prestige

The next factors we would like to analyze is which intellectual heritage accounts for our writers until today.  

We can analyze this by applying the factor of rank prestige, in our case page rank. The writers are  

significant earlier in time-line, than our indegree ranking. The first one in place is John Milton, followed by 

Victor-Marie Hugo. The third ranked is Lucian of Samosata9, an Assyrian rhetorician who wrote in Greek 

language in the 2nd century. In the fourth place is Ovid, before William Shakespeare. 

These actors are the most influencing people through out time, according to rank prestige:

Rank Writer Page Rank Rank Writer Page Rank 

1. John Milton 1.65 % 11. Johann Wolfgang von Goethe 0.82 %

2. Victor Hugo 1.11 % 12. Alexander Pushkin 0.80 %

3. Lucian 1.07 % 13. Daniel Defoe 0.79 %

4. Ovid 1.02 % 14. Cicero 0.76 %

5. William Shakespeare 1.00 % 15. Jonathan Swift 0.74 %

6. Virgil 1.00 % 16. Geoffrey Chaucer 0.69 %

7. George Gordon Byron 0.98 % 17. Petrarch 0.67 %

8. Ennius 0.93 % 18. Gustave Flaubert 0.66 %

9. Edgar Allan Poe 0.90 % 19. H. G. Wells 0.64 %

10. Dante Alighieri 0.87 % 20. Franz Kafka 0.63 %

Table 20: 20 most important writers depending on page rank

9 http://dbpedia.org/resource/Lucian
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We created a new chart, showing all writers that are in the top 20 of proximity prestige and rank prestige,  

treating both values equally. We get thirteen actors which are, nominally, the most important writers in 

history:

Rank Writer Proximity Page Rank Indegree

1. John Milton 4. 1. 15.

2. William Shakespeare 1. 5. 3.

3. Ovid 2. 4. 133.

4. Victor Hugo 5. 2. 33.

5. Lucian 8. 3. 72.

6. Virgil 7. 6. 72.

7. Dante Alighieri 6. 10. 32.

8. Edgar Allan Poe 15. 9. 5.

9. Alexander Pushkin 14. 12. 33.

10. Cicero 10. 14. 157.

11. Geoffrey Chaucer 9. 16. 133.

12. Petrarch 12. 17. 133.

13. Gustave Flaubert 13. 18. 13.

Table 21: Thirteen most important writer

7.1.2 Soccer-players on the same Teams
The next network we would like to analyze is a network of soccer players. The career of a soccer player is  

built up of many stations. We would like to analyze the transfer behavior of the soccer player. Are there  

any patterns of player movement? What are the common properties of network components?

Network Extraction

We extract an affiliation network with all  rdf:type dbpedia-owl:SoccerPlayer  as nodes. The edges  are 

extracted through the container attribute behind the property dbpprop:clubs. Therefore, in consideration of 

a threshold of three, all players that played for same three clubs, not imperative at the same time, are  

interconnected.

We chose three as threshold, because one mutual club is common, two mutual clubs are uncommon, 

even though possible, three mutual clubs we find conspicuous and see a pattern.

We also restrict our analysis to nodes that have an interconnection.
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Network Visualization

The  visualized  network  shows  three  major  components,  one  component  of  7  nodes  and  25  small  

components.

Results

Component with 63 nodes and 103 edges:

The biggest component exhibits a network density of 5 %. The middle of this component is the player 

Cornell Glen, with the highest degree, closeness and betweenness centrality. The second on in line is 

John Wolyniec, also having the second best scores in all three metrics.

We found all  players  are  playing  in  the  Major  League Soccer  in  the  USA.  The composition  of  this  

component is no surprise, because of their unusual league system. The teams in this league get mixed 

up among each other very often. The players change their team within the league nearly every season. 

As conclusion, our biggest network component focuses on Major League Soccer players.

Component with 38 nodes and 46 edges: 

This is the second-biggest component and has with 7 % a higher density than our component before. The  

most important  actor in this component is Craig Bellamy, with  the highest rank in all  three centrality  

metrics (degree, closeness, betweenness). After careful analysis of the nodes, we also saw a common 

pattern in this component. The common teams of this network are all  playing in the English Premier  

League.  Most  of  the players  are of  English nationality,  but  we  also find a  German,  a  Norwegian,  a 

Bermudian, etc. playing in the Premier League. This network is a network of Premier League players.
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Component with 34 nodes and 47 edges:

This is our third major component which with 8 % shows an even higher network density than the ones 

before.  This  network has also a key player  who is highest  ranked within  all  three centrality  metrics, 

Christian Vieri.  To find the common attributes here,  we analyzed  the actors with  the result  that  this  

network mainly consists of players that played in the Italian Serie A, but some players played also in the 

Spanish La Liga and the Portuguese league. We found out that especially Brazilian players, like Ronaldo,  

Rivaldo,  Roberto  Carlos,  Edmundo,  etc.  have  played  in  this  leagues  and  interconnected  them. 

Nevertheless the main part of the network is of players in the Italian league.

Other components:

The component with 7 nodes has a very high network density of 33%. This component is also a network  

of  soccer  players  in  the  English  Premier  League.  The  four  components  with  three  edges  are  also 

allocated  to  the  Premier  League.  Among  the  components  that  connect,  only  two  nodes  have  

miscellaneously common attributes, like a network of the French or Danish league.

As a conclusion on this entire  network  we can say,  that  most players change club within  the Major 

League Soccer, the Premier League and also within the Mediterranean Leagues (Italy, Spain, Portugal).  

With exception of the Mediterranean Leagues we haven't found any international transfer patterns. With 

exception of the Major League Soccer, this are nominally the best leagues in the world. It is conspicuous  

that there are no networks of other leagues, maybe there is no data available on them.

7.1.3 Scientist Advisers
The next network on DBpedia data deals with important historical scientists, their doctoral advisers and  

academic advisers and their influence. So, the main question concerning this network is, which scientist is  

the father of all scientists. Who is the most important scientist in history?

Network Extraction

Scientists in DBpedia data are identified via the  rdf:type dbpedia-owl:Scientist. For the interconnection 

there are six attributes:

• dbpedia-owl:academicAdvisor

• dbpedia-owl:doctoralStudent

• dbpedia-owl:doctoralAdvisor 

• dbpedia-owl:notableStudent

• dbpedia-owl:influenced

• dbpedia-owl:influencedBy

We arrange the arc-direction like the arcs in Section  7.1.1, so that it directs from the students to the 

advisers or from the scientists being influenced to the scientists who have an impact themselves.
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Network Visualization

The network is very similar to the network of writers in Section 7.1.1. It consists of one major component 

and many small components. The major components will be of mainstream science in the USA, Europe 

an Japan, while the small components will refer to regional scientists and side-topics in research. 

Results

The network consists of 8475 (2060 connected) nodes and 1842 edges with a very low network density of 

0.00002% (0.043%). 

Amount Nodes Edges

1 1044 1174

1 57 59

1 12 12

1 11 10

1 10 9

1 9 8

3 8 7

2 7 6

351 [2,6] 

6415 1 0

Table 22: Connected components of scientist network

The indegree allocation is illustrated in Figure 35. It is obvious that the allocation is a curve. About half of 

the nodes have an indegree of zero, followed by 700 with indegree 1. After that, the curve falls to 200 
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nodes with an indegree of two, and only about 50 nodes have indegree 3, and so on.

The top 20 scientists with the highest indegree prestige are:

Rank Scientist Indegree Rank Scientist Indegree

1. Ernest Rutherford 20 11. Hermann Emil Fischer 10

2. Robert Bunsen 17 11. Felix Klein 10

3. Charles Darwin 15 11. August Wilhelm von Hofmann 10

3. Justus von Liebig 15 14. Karl Weierstrass 9

5. J. J. Thomson 14 14. John Archibald Wheeler 9

6. Adolf von Baeyer 12 14. Werner Heisenberg 9

6. Arnold Sommerfeld 12 14. Sigmund Freud 9

8. Max Planck 11 18. Albert Einstein 8

8. Walther Nernst 11 18. Isaac Newton 8

8. Enrico Fermi 11 18. David Hilbert 8

Table 23: Top 20 indegree prestige of scientist network

Table  23 illustrates the most important scientists that directly advised or influenced others. The most 

important person for his surrounding was Ernest Rutherford10, the father of nuclear physics. The second 

one in place is Robert Bunsen11, a German chemist. The third place is shared by Charles Darwin12, an 

English naturalist, and Justus von Liebig13, also a German chemist.

10 http://dbpedia.org/resource/Ernest_Rutherford

11 http://dbpedia.org/resource/Robert_Bunsen

12 http://dbpedia.org/resource/Charles_Darwin

13 http://dbpedia.org/resource/Justus_von_Liebig
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Table  24 gives  a  more detailed impression on the surroundings  of  an actor.  Here we have Johann 

Friedrich Gmelin14 and his father Philipp Friedrich Gmelin15, both naturalists, in the proximity ranking on 

place 1 and 3. The second one in place is Friedrich Stromeyer16, a German Chemist.

Rank Scientist Proximity Rank Scientist Proximity

1. Johann Friedrich Gmelin 0.0226 11. Ernest Rutherford 0.0169

2. Friedrich Stromeyer 0.0225 12. Justus von Liebig 0.0164

3. Philipp Friedrich Gmelin 0.0198 13. Elias Rudolph Camerarius Jr. 0.0160

4. Louis Nicolas Vaquelin 0.0196 14. Johann Friedrich Pfaff 0.0159

5. Felix Klein 0.0183 15. Abraham Gotthelf Kästner 0.0159

6. Carl Friedrich Gauss 0.0182 16. Ferdinand von Lindemann 0.0157

7. J.J. Thomson 0.0181 17. Thomas Jones 0.0157

8. Burchard Mauchart 0.0177 18. John Strutt 0.0154

9. Antoine François 0.0173 19. Julius Plücker 0.0154

10. Adam Sedgwick 0.0171 19. Rudolf Lipschitz 0.0154

Table 24: Top 20 proximity prestige of scientist network

The ranking, which intellectual heritage accounts for our scientists until today, offers the opportunity for 

another issue for our investigation. It gives a clue on which scientist is the most important. In this ranking, 

Friedrich Stromeyer takes the lead before Abraham Gotthelf Kästner17, a German mathematician. Third is 

Christian  August  Hausen18,  mathematician,  astronomer  and  physician.  Fourth  is  Felix  Klein19,  also a 

German  mathematician.  With  Carl  Friedrich  Gauss20 there  is  even  a  fifth  German  and  fourth 

mathematician within the top 5 of this ranking.

Rank Scientist Page Rank Rank Scientist Page rank

1. Friedrich Stromeyer 1.16 % 11. Ferdinand von Lindemann 0.70 %

2. Abraham Gotthelf Kästner 1.07 % 12. Robert Bunsen 0.68 %

3. Christian August Hausen 0.98 % 13. Philipp Friedrich Gmelin 0.66 %

4. Felix Klein 0.95 % 14. Justus von Liebig 0.66 %

5. Carl Friedrich Gauss 0.94 % 15. Burchard Mauchart 0.65 %

6. Johann Friedrich Pfaff 0.92 % 16. J. J. Thomson 0.62 %

7. Ernest Rutherford 0.90 % 17. John Strutt 0.62 %

8. Johann Christoph 
Wichmannshausen

0.85 % 18. Karl Wilhelm Gottlob 
Kastner

0.61 %

9. Otto Mencke 0.73 % 19. Christoph Mangold 0.59 %

10. Johann Friedrich Gmelin 0.73 % 20. Elias Rudolph Camerarius Jr. 0.59 %

Table 25: Top 20 rank prestige of scientist network

14 http://dbpedia.org/resource/Johann_Friedrich_Gmelin

15 http://dbpedia.org/resource/Philipp_Friedrich_Gmelin

16 http://dbpedia.org/resource/Friedrich_Stromeyer

17 http://dbpedia.org/resource/Abraham_Gotthelf_K%C3%A4stner

18 http://dbpedia.org/resource/Christian_August_Hausen

19 http://dbpedia.org/resource/Felix_Klein

20 http://dbpedia.org/resource/Carl_Friedrich_Gauss
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For our final ranking, we treat proximity and rank prestige equal and compute a ranking, with indegree as  

decision base on an equal result. Table 26 illustrates the scientists that find themselves in the top 20 of 

proximity and rank prestige.  The most important  scientist  in this new ranking is Friedrich Stromeyer, 

followed by Felix Klein and Carl Gauss. Son and Father Gmelin are in the fourth and fifth place.

It is conspicuous, that most of the scientists in this list  are German. With Ernest Rutherford, the first 

British  scientist  is  ranked in  place 7.  This ranking nominally  shows that  German scientists are  most  

important in scientific history.

Rank Scientist Proximity Page Rank Indegree

1. Friedrich Stromeyer 2. 1. 85.

2. Felix Klein 5. 4. 11.

3. Carl Friedrich Gauss 6. 5. 18.

4. Johann Friedrich Gmelin 1. 10. 145.

5. Philipp Friedrich Gmelin 3. 13. 334.

6. Abraham Gotthelf Kästner 15. 2. 145.

7. Ernest Rutherford 11. 7. 1.

8. Johann Friedrich Pfaff 14. 6. 334.

9. J. J. Thomson 7. 16. 5.

10. Burchard Mauchart 8. 15. 334.

11. Justus von Liebig 12. 14. 3.

12. Ferdinand von Lindemann 16. 11. 54.

13. Christian August Hausen 24. 3. 334.

14. Elias Rudolph Camerarius Jr. 13. 20. 334.

15. John Strutt 17. 17. 85.

Table 26: Fifteen most important scientists

7.1.4 Architect Teams
The last network we deal with is a network of architects. Our leading question is: How many architects are 

working in teams and which size do these teams have?

Network Extraction

For this network we use  rdf:type dbpedia-owl:Architect for the definition of the nodes. We receive the 

edges  through  container  that  are  defined  through  the  attributes  dbpedia-owl:significantProject  and

dbpedia-owl:significantBuilding.

Network Visualization

This network has no complex parts,  therefore,  the analysis has no need for application of  advanced 

metrics. 
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Results

Within this network we have 26 components with more than one node. Some individual components are 

incorrect and some individual edges as well. For instance the node List_of_Gaudí_buildings is connected 

with Antoni Gaudí. Another discovery was a container property of only the country Belgium or the city of 

Vienna which falsely  interconnected two nodes. So we have 24 real  architect  teams and 602 single 

architects in our network. Typically each component shows a density of 100%. Table  27 illustrates the 

buildings where the architect teams worked together. Every team only worked on one project.

Amount Team of  Created Building

2 4 New England Biolabs, Palace of Soviets

22 2 Wembley Stadium, Seattle Central Library, Guthrie Theater, US Capitol, 
Royal Palace of Belgium, Iguada Cemetery, Eaton Hall, Centre 

Pompidou, National Museum of Finland, Hopetown House, Los Angeles 
City Hall, Ohio State House, Huntington Library, Moscow State University, 

Bath Abbey, Pearl River Tower, Burj Khalifa, PacBell Building, World’s 
Columbian Exposition, Commonwealth War Graves Commission, Kemp 

Town, Reston Virginia

Table 27: Architect teams by buildings
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7.2 Usability Study
In order to assure that the chosen approach is useful, we undertook a small usability study. This study  

reveals  the attitude of  sociology students to  the social  network  analysis  in general  and helps to  get 

knowledge on their  opinion and previous knowledge. In addition,  we asked questions concerning the 

previous knowledge of DBpedia, the general technical ability, and their opinion on the web and social  

software  (in  context  to  social  networks).  The  third  questionnaire  part  consists  of  questions  on  the 

technical and conceptual part of the master thesis. For the questions in detail see Section 5.4.3 on page 

50.

7.2.1 Accomplishment
For the accomplishment we used a pyramid scheme. Starting with the interview partner we had an expert 

interview at the start of this thesis [Appentix A]. We sent an e-mail template with text and a number of 

codes for the questionnaire identification-numbers. The interview partner forwarded the e-mail to another 

25 sociology students. The callback on this approach brought 9 filled in questionnaires. Considering our  

intention of receiving 7 filled in questionnaires, this proves a success.

7.2.2 Participants
We asked many questions in order to get to know the specific background of the participants. We wanted 

to  classify  them into  categories to  allow a better  rating of  their  answers.  The factors were previous 

knowledge and personal attitude on the main topics. Even if the previous knowledge was very low, an 

additional  document  gave  the basics  on both  main topics,  social  network  analysis  and Linked  Data 

[Appendix B].

7.2.3 Analysis

Previous Knowledge on Social Network Analysis

The previous knowledge of the participants on social network analysis is vague. Two people said they 

know the social network analysis very well, five said they at least know the name of this method and two  

said they had not heard of the social network analysis until receiving the questionnaire.

The two participants who know the social network analysis very well, also share the opinion that there will  

be a focus on this method in the future. The other participants point out its complexity, but nevertheless 

find it interesting. Others note that outside of sociology this method is already in use. Five people think 

that the method is only a side topic in social science, but moreover the majority thinks that they will be  

more often used in the future. Concerning the question whether social network analysis is convenient to 

answer actual questions of the social science, all participants agree.

The question on computational social science is also very clear for all protagonists. The majority is for a 

change to  computational  social  science and distinguish  that  quantitative  methods nowadays  are not 
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possible without the use of specific programs (for example SPSS).

At  the  question,  what  they  think  on  interdisciplinary  work  (e.g.  computer  science  and  sociology)  all  

participants agree. As a conclusion, even if the previous knowledge was not very high, the overall opinion 

on the social network analysis is absolutely positive.

Previous Technical Knowledge

We asked the participants, how they think about their technical abilities and how they would rate them on  

a scale between 1 and 10. The results showed an average result of 6. With the questions on social  

software, privacy and research fields on the web, the opinions are different. Four participants think that  

there are enough research fields on the web, four proposed input for more interesting topics, one gave no 

statement. Four people use social software and are very privacy affine, five people do not use social  

software at all. To the question, whether they had previous knowledge on DBpedia, all except one said  

they had none.  One participant  said  he or  she at  least  knows  the name.  Nevertheless,  four  people 

thought that DBpedia is a good source for extracting social networks, three had no opinion and one gave 

no statement.

As a conclusion, the majority has an average technical knowledge and does not know DBpedia. Half of 

the people is open minded about DBpedia and the internet, the other half is not very interested in internet-

related topics.

Usability

Seven participants think that automatic data extraction from DBpedia or other Linked Data sources is a 

good approach, two think it is a moderate approach. Five people think the website for the extraction of  

social networks from DBpedia is useable for research with the aid of more powerful programs. four people 

share the opinion that the raw data of DBpedia has to be eyed critically according to its correctness, so 

and thus it is not suitable for research.

The extraction tool of this website is sufficient for six participants, one thinks it is well chosen and two  

think it is inadequate. The people who think it is inadequate would have liked more help for easier use,  

because they found it very technical. The analysis tool is also sufficient for most people, one thinks it is 

well chosen, and one thinks that it is inadequate. The criticism of this person is, that with this part of the 

website, there is too less aid for users who do not know about the methodology of social network analysis  

at all.

In general, the participants pointed out the need of improvements about this website, that more help on 

the processing steps and data input would be important. More information on DBpedia would also help.  

Network visualization or even a better inclusion of Pajek should be improved, if possible. The data source 

should be displayed on the analysis window. Also better malfunction messages would be helpful.

A deeper criticism on the approach is the scrupulosity on the automatic extraction of relationships. These 

relations are a sensible thing. To abstract and generalize such relationships via automatically processed 
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algorithms is a problematic thing to do. Also the standing of the individual is a factor to be considered.

Two people also think that Wikipedia is not accepted in scientific communities and therefore, raw data 

obtained out of Wikipedia is questionable for scientific research.

7.3 Conclusion
We saw respectable results in this chapter. In Section 7.1 we saw four networks extracted and analyzed 

with the SocioCatcher framework and a little help of Pajek. This analysis tells us that the extraction and 

analysis is useable, and produces applicable results. We also saw that the data is not free of errors and, 

for a very sensitive analysis, the data should also be reviewed and corrected.

There  is  also  a  general  question  concerning  the  raw  data.  We have  no  evidence  that  the  data  is 

complete. With the network of soccer player in Section  7.1.2 we saw three major networks, one of the 

Major League Soccer, one of the Premier League an one of the Mediterranean Leagues. The French 

league as one of the top 5 leagues in Europe was not contained in the network. This holds also other  

leagues. Therefore, we have to choose the networks and handle the results and the ensuring knowledge  

with care.

The usability study was a success in most cases. We wanted to know whether students of sociology think  

that this method is applicable with DBpedia. As a surprise we found out that only a few participants know  

about the methodology of the social network analysis and even less know about DBpedia. Nevertheless 

the  overall  consensus  was  positive.  The two  participants  who  had  known  about  the  social  network 

analysis method before, gave a complete positive feedback.

Some  students  proposed  user  interface  improvements.  The  majority  wanted  more  information  on 

DBpedia and the social network analysis, which was not the intention of this tool (the tool was created for  

people with knowledge on both topics). No one questioned the approach itself.

The main critique was on the raw data of DBpedia. Is Wikipedia (and with that DBpedia) not useable for 

social research, because such data is not accepted in research? Five questioned people, including the 

two people with good knowledge on the social network analysis, think that it is capable, four think it is not, 

which would be a interesting controversial issue. According to the two sociology students who know the 

social network analysis well, we can assume that it is also applicable for social research.

Finally we can say, that social network extraction and analysis from DBpedia data is useable, which we  

saw in our analysis of the four networks. According to the two sociology students who have knowledge in  

social network analysis it is useful too.
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Summary and Future Work
Within this thesis we combined two emerging research areas, the social network analysis and Linked 

Data. Strictly speaking, we investigated the usability and usefulness of extracting and analyzing social 

networks out of DBpedia data. We created the SocioCatcher framework for extracting social networks  

from  single  Linked  Data  sources  via  their  SPARQL  endpoint,  and  the  necessary  infrastructure  for 

analyzing these networks by using common network measures. Additionally we created a web application 

with a simple user interface on-top of this framework. We extracted and analyzed four different networks 

and got remarkable results:

We extracted a network of writers and learned, that the most important writer in history is John Milton, the 

author of Paradise Lost.  The most directly influencing writer was Franz Kafka and the writer with the 

largest fame (according to proximity prestige) was William Shakespeare.

We used the same technique on a network  of  scientists with  a similar success.  The most important 

scientist of his time, who influenced the biggest amount of scientists, was Ernest Rutherford. Except for 

him, the most important scientists in history were mostly German. The best proximity prestige value, and 

thus the largest  fame, scored Johann Friedrich Gmelin,  a German medic and botanist.  The scientist 

whose intellectual heritage influenced most scientists was Friedrich Stromeyer, a German chemist.

For the two other networks we applied an indirect extraction method. We extracted a network of football  

players, who we defined as interlinked, if they were playing in the same clubs three times. As a result we  

received connected components with similarities on different national leagues. We received a network of 

the Major League Soccer, a network of the Premier League, and, even more interesting, a network of the  

Mediterranean leagues (Spain, Portugal and Italy).  For these networks it can be concluded, that while  

soccer  players  in  the  United  States  and  England  stay  in  their  leagues,  the  players  in  the  Spanish, 

Portuguese and Italian league transfer more often between these leagues. We also found out that many 

leagues are absent in the data.

The last network we extracted was about architects, working on buildings. We wanted to know whether 

architects work in groups or alone. This network was not complex, so it gave us the opportunity to inspect 

the extracted data in detail. We even found some errors in the raw data.

Especially the soccer player and the architect networks gave us insight into the quality of the underlying  

raw data. In the case of the architect network, we had to control nodes and edges manually. In case of  

the soccer player network, we may even think about another extraction method for absent raw data.

Additionally, we wanted to get an expert opinion from sociology students on our approach and made a 

usability study. We found out that social network analysis as a scientific method is not commonly known 

among sociology students. From nine participants, only two knew about this method in more detail. These 

two students and some others confirmed the approach completely. Others shared a critical opinion about 

this approach, especially on the quality of raw DBpedia data. Two participants even said that they were  
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not sure whether or not data from Wikipedia (and with that DBpedia) is acceptable for serious research.  

This is a really interesting outcome, whose answer is out of the scope of this thesis.

Given our extracted networks and the expert feedback we regard our approach as success. DBpedia can 

be used to extract and analyze social networks, even for research in social science.

We received a lot of positive feedback on our extraction and analysis tool, which we could improve in  

terms of user interface design and usability.  This tool can help social science students and scientists 

without any technical knowledge to extract networks, and on top of this, the tool can advance even the 

social network analysis method to make it  more popular. If  this is going to happen, the Linked Data  

community will also share an advancing popularity and receive a new focus for their data.

In this thesis only DBpedia was analyzed. There were many other Linked Data data sources that can be 

analyzed with the same framework.
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IMDB Internet Movie DataBase
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SKOS Simple Knowledge Organization System
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SQL Structured Query Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

XML eXtensible Markup Language
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Appendix A
Appendix A contains an expert interview on social science and social network analysis.

A: Hallo, danke dass du dir Zeit genommen hast. Ich möchte für meine Masterarbeit ein paar Informationen 
über die Sozialwissenschaft sammeln und dir deshalb ein paar Fragen stellen.

B: Gerne.

A: Welche Kerngebiete sind deiner Meinung nach in der Sozialwissenschaft relevant?

B: Ich würde sagen auf jeden Fall die Soziologie! Die Soziologie beschäftigt sich mit der Gesellschaft und 
gesellschaftlichen Zusammenhängen, mit zwischenmenschlichen Interaktionen und Handlungen Ich denke 
die Soziologie ist wichtig weil sie sich mit der sozialen Welt beschäftigt, sie beschäftigt sich schließlich sogar 
auf einer Metaebene mit der Wissenschaft selbst, die Soziologie sieht sich als Sozialwissenschaft selbst als 
Bestandteil  der  sozialen  Welt  und  der  Gesellschaft.  Aber  viele  andere  Wissenschaften  sind  in  der 
Sozialwissenschaft präsent, sie ist eine interdisziplinäre Wissenschaft. Auf jeden Fall Wissenschaften wie die 
Philosophie, die Kultur- und Sozialanthropologie, de Politikwissenschaft, die Kommunikationswissenschaft, 
aber auch Geographie und Geschichte würde ich dazu zählen.

A: Mit welchen Bereichen und Themen beschäftigen sich die Sozialwissenschaften?

B: Mit allen Bereichen des sozialen Lebens. Mit „großen“ Themen wie Globalisierung  oder der Ökonomie 
und Wirtschaft, mit dem Staat an sich, oder der Transnationalität, der Auflösung des Nationalstaates. Aber  
eigentlich einfach mit der Gesellschaft und ihrer Politik, dem Rechtssystem, der Wirtschaft, Städtebau und 
Urbanität,  den  Menschen,  Sub-  und  Jugendkulturen,  der  Religion.  Aber  auch  mit  Bereichen  wie  dem 
medizinischen Versorgungssystem,  der  Verteilung von Krankheit.  Die Sozialwissenschaften beschäftigen 
sich mit allem Möglichen. Mit der Technik, der Wissenschaft selbst, dem Bildungssystem und der Bildung an 
sich,  der  Kunst  und  der  Kultur,  der,  der  Mode,  dem  Sport,  dem  Internet...  alle  Erscheinungen  und 
Phänomene die  in  einer  Gesellschaft  beobachtbar  sind,  die  in  irgendeiner  Form sozial  erzeugt  werden, 
können Gegenstand der Sozialwissenschaften sein.

A: Welche Methoden werden in der Sozialwissenschaft verwendet?

B: Ich kann hier in erster Linie nur für die Soziologie sprechen, aber im allgemeinen sind diese Methoden in  
der Sozialwissenschaft auch anwendbar und werden auch verwendet. Eine wichtige Unterscheidung ist die 
zwischen  qualitativer  und  quantitativer  Forschung.  Die  quantitative  Sozialforschung  beschäftigt  sich 
sozusagen  mit  der  gesamten  Gesellschaft,  sie  versucht  einige  Merkmale  an  möglichst  vielen 
Merkmalsträgern  zu  untersuchen.  Also  z.B.  viele  Menschen  in  Österreich  über  ihren  Familienstand, 
Einkommen, Arbeitsverhältnis und demographische Daten befragen mit einem Fragebogen für ein Social 
Survey, um das etwas einfacher zu sagen. Quantitative Erhebungs- und Auswertungsverfahren sind stark 
strukturiert. Interviews und Befragungen, Beobachtungen diese Techniken kommen oft zum Einsatz. Auch 
Experimente, vor allem das Laborexperiment ist ein quantitatives Verfahren, weil ja alle Einflüsse konstant  
gehalten werden. In den Sozialwissenschaften kommen aber eher Feldexperimente vor weil  sie nicht so 
künstlich sind. Dabei beobachtet oder untersucht man quasi im Feld, also im Leben selbst, im Alltag quasi. 
Die Auswertung der Daten sind dann meistens statistische Verfahren um später von der Stichprobe auf die  
Grundgesamtheit zu schließen. Die quantitative Forschung ist hypothesenprüfend, diese typischen wenn-
dann-Hypothesen, wenn A dann B. Die qualitative Forschung ist hypothesengenerierend, man forscht eher 
in die Tiefe so zu sagen. Man versucht möglichst viel über einen oder einige wenige Fälle herauszufinden. 
Qualitative Techniken der Datenerhebung sind qualitative sehr offene Interviews, oft narrative Interviews und 
Befragungen,  Beobachtungen,  Artefaktanalyse.  In  der  Auswertung  dann  qualitative  Textanalyse, 
Diskursanalyse, hermeneutische Interpretation, es gibt da sehr viele Verfahren.



A: Kennst du die Technik der Netzwerkanalyse?

B: Ja, ich denke die Netzwerkanalyse kommt zu wenig zum Einsatz. Mit ihr kann man nachdem man Daten 
gesammelt hat recht rasch und übersichtlich quantitativ Gruppen darstellen und untersuchen - auch sehr 
große  Gruppen.  Man  kann  die  Zusammenhänge  und  Interaktionen  innerhalb  der  Gruppe,  aber  auch 
Zusammenhänge zwischen verschiedenen Gruppen darstellen.  Ich beschäftige mich gerade mit  Online-
Kommunikationsplattformen  und  gerade  da  ist  die  Netzwerkanalyse  sehr  praktisch.  Ich  habe  viele 
Fallstudien gefunden in denen es um die Kommunikationsnetzwerke und verschiedenen Freundeskreise der 
User ging, da wäre Netzwerkanalyse sehr hilfreich und wird soweit ich weiß auch verwendet. Es kommt 
einfach immer darauf an wie genaue Informationen und Erkenntnisse man erfahren und erhalten möchte,  
aber  für  eine  grundsätzliche  Darstellung  und  eine  Untersuchung  von  großen  Menschenmengen  ist  sie 
sicherlich ein gute Technik,  man benötigt  aber immer ausreichend Informationen über die Gruppen und 
deren Handlungen um sie anwenden zu können. 

A: Ist an der Netzwerkanalyse deiner Meinung nach etwas Besonderes, dass sie von anderen Techniken 
und Methoden unterscheidet?

B: Jede Methode hat ihre speziellen Vorzüge... aber ich denke die Netzwerkanalyse ist die einzige in der es 
möglich  ist  eine  große  Gruppe  in  ihrer  Gesamtheit  darzustellen  und  zu  erfassen.  Also  sowohl  jedes 
Individuum, als auch jedes Individuum als Teil der Gruppe und auch die Verbindungen zwischen ihnen. Und  
das Ganze funktioniert ohne mit Wahrscheinlichkeitsrechnung und Irrtumswahrscheinlichkeit hochrechnen 
zu müssen. Würde ich die Nutzer einer Online-Kommunikationsplattform wie Facebook in Bezug auf ihre 
Kommunikationsmuster  untersuchen wollen könnte ich mit  der  Netzwerkanalyse  theoretisch einfach alle  
Netzwerke und Nutzer erfassen, statt nur eine Stichprobe zu untersuchen. Die Netzwerkanalyse ist in der 
Hinsicht  sehr  sinnvoll,  das  Problem ist  allerdings  an die  benötigten  Daten zu  gelangen und Mitarbeiter 
aufzutreiben die Netzwerkanalyse an sich  und auch die entsprechenden Computerprogramme dafür kennen 
und verstehen, weil diese Technik eben computerunterstützt ist, manuell wäre das unmöglich.

A: Gut, Dankeschön, das wären alle Fragen gewesen, danke dass du dir Zeit genommen hast.

B:Bitteschön.

A: Interviewer

B: Soziologiestudentin an der Universität Wien, kurz vor dem Abschluss

Interview vom 03.08. 2010



Appendix B
Appendix B shows the text of the supplement for the usability study:
Danke, dass Sie sich dazu entschlossen haben, an der Studie, welche einen wichtigen Teil meiner Master-

arbeit  darstellt,  teilzunehmen. Dieser Leitfaden erklärt  Ihnen in 3 kompakten Teilen worum es in meiner 

Arbeit geht und zeigt Ihnen alle Facetten meines entwickelten Tools. Falls Sie sich nicht dafür interessieren,  

können Sie direkt zu den konkreten schritt-für-schritt Anwendungsszenarien auf Seite 4 springen.

Mein Tool bzw. meine Webseite bedient sich einer bestimmten Datenstruktur, Linked Data, und extrahiert 

daraus Soziale Netzwerke um sie zu analysieren. Die restliche Seite gibt Ihnen eine kurze Einführung in  

Soziale Netzwerke und Linked Data. Wenn Sie über diese zwei Punkte Bescheid wissen, dann überspringen 

Sie diese.

Teil 1 - Hintergrundwissen
Soziale Netzwerke
Die Soziale Netzwerkanalyse ist eine Methode, die auf der Graphentheorie basiert. In Abbildung 1 ist so ein 

graphentheoretisches Konstrukt dargestellt.  A, B, C, D sind die Knoten (im 

engl. Vertices od. Nodes) und a,b,c,d sind die Kanten (im engl. Edges, Arcs 

od. Links).

Knoten sind bei sozialen Netzwerken in der Regel Menschen. Es können aber 

auch Gruppen, soziale Klassen, wirtschaftliche Organisationen, Nationen, etc. 

sein. Kanten können gerichtet oder ungerichtet sein, ein und die selbe 

Bedeutung haben, oder aber auch verschiedene.  Eine sehr bekannte 

Unterscheidung von Kanten in der Sozialwissenschaft ist die der Weak 

und Strong Ties von Mark Granovetter. 

Eine andere gebräuchliche Unterscheidungsform ist die, um die Social 

Balance Theorie von Heider zu untermauern (Abbildung 2). Hier werden 

Kanten in Like und Dislike, oder + und -, unterteilt.

Linked Data
Linked Data ist eine bestimmte Art Daten für Webseiten oder andere Applikationen aufzubereiten. Diese 

Daten  sind  allgemein  über  das  Internet  direkt  (also  ohne  den  Umweg  einer  Webseiten-Präsentation) 

verfügbar. Zudem sind sie maschinen-lesbar und untereinander verlinkt.

Zur Erklärung eignet sich am besten ein Beispiel aus der Praxis:

DBpedia ist ein Projekt,  welches Daten aus der Wikipedia (das wiederum Daten nur über die Webseite  

anbietet,  welche  nur  sehr  eingeschränkt  maschinenlesbar  sind)  extrahiert  und aufbereitet.  Konkret  sind 

mittlerweile 3,4 Millionen Dinge aus der Wikipedia transferiert worden. Das sind 312.000 Personen, 413.000 

Orte, 94.000 Musikalben, 49.000 Filme, 150.000 Videospiele, 140.000 Organisationen, 146.000 Spezien und 

4.600 Krankheiten, und vieles mehr. Um so eine Resource zu betrachten klicken Sie bitte auf den folgenden  

Link um Informationen über Immanuel Kant einzusehen: http://dbpedia.org/page/Immanuel_Kant 

Ungerichteter Graph

CA

DB

 a b

c

d

Heider's social balance Theorie

my friend’s friend is my friend

my friend’s enemy is my enemy

my enemy’s friend is my enemy

my enemy’s enemy is my friend



Teil 2 – Catch Network
Klicken Sie auf der SocioCatcher Webseite auf den Menüpunkt  „Catch Network“.

Hier kommen Sie im ersten Abschnitt auf eine Eingabemaske 

um einerseits  die  Quelle  zu  wählen,  und  andererseits  um 

Einstellungen  zu  treffen,  wie  Ihr  Netzwerk  aussehen  und 

extrahiert werden soll.

SPARQL Endpoint
Geben Sie  einen Endpoint  einer  bestehenden Linked Data 

Quelle ein. (DBpedia Endpoint ist per Default eingestellt)

RDF/XML
Laden Sie eine RDF/XML Datei auf den Server.(Nur für fortgeschrittene Nutzer)

Extraction Type
Bei Extraction Type geben Sie an, ob Sie ein komplettes Netzwerk (Bspw. ALLE Schriftsteller), ein Ego-

Zentrisches  Netzwerk  (Bspw.  Kant  und  seine  umliegenden  „Freunde“)  oder  ein  Netzwerk  über 

Gemeinsamkeiten(Bspw.  ALLE  Musiker,  wobei  die  Musiker  die  bei  den  selben  Plattenlables  waren, 

„Freunde“ sind) extrahieren wollen. Zudem können Sie wählen, ob Ihr Netzwerk gerichtet oder ungerichtet 

sein soll.

Je nach Wahl erscheinen unterschiedliche Optionen um Ihre Knoten und Kanten zu wählen.

Nodes (Knoten)
Bei  „complete“  und  „affiliation“  bekommen  Sie  die  Wahl  einen  bestimmten  Knoten-Typ  zu  wählen. 

Beispielsweise geben Sie ein „rdf:type“ und „dbpedia-owl:Writer“ für alle Schriftsteller, oder „rdf:type“ und 

„dbpedia-owl:MusicalArtist“ für alle Musiker. 

Bei „ego-centric“ geben Sie einen spezifischen Ego-Knoten ein, bspw. http://dbpedia.org/resource/Immanuel_Kant für 

ein Ego-Zentrisches Netzwerk von Kant.

Edges (Kanten)
Bei „complete“ und „ego-centric“ wählen Sie die Kanten durch ein (oder merhere) bestimmte Prädikat(e), 

welches direkt auf ein anderes Objekt zeigt, das zu unserer Knotenmenge gehört. Bei einem Schriftsteller-

Netzwerk  kann man bspw.  das Prädikat  „dbpprop:influenced“ eingeben um dadurch Beziehungen (z.B.:  

welcher Schriftsteller hat wen beeinflusst) festzulegen.

Bei „affiliation“ werden die Kanten indirekt ermittelt. Man gibt eine Verbindung zu einer Organisation oder 

einem Event an, um daraus dann Gemeinsamkeiten und Freundschaften/ Bekanntschaften zu ermitteln. Bei 

einem Netzwerk von Musikern gibt  man bspw. das Attribut „dbpedia-owl:recordLabel“  an um daraus ein 

Netzwerk zu schaffen in dem alle Musiker (die im selben Record Label waren) eine Verbindung zueinander 

aufweisen.

Um das Netzwerk ein wenig auszudünnen gibt es noch die Möglichkeit einer Grenze (Threshold), um bspw. 

zu sagen: „Alle Musiker die bei 2 gleichen Plattenlabels waren, sind „Freunde“ “.



Teil 3 – View Network
Wenn man ein Netzwerk extrahiert hat, kommt man auf die Seite „View Network“.

Diese Seite zeigt an wieviele Knoten und Kanten das Netzwerk hat, welche Netzwerkdichte es besitzt und  

auch  wieviele  Komponenten  (also  zusammenhängende  Elemente)  so  ein  Netzwerk  besitzt  und  welche 

Komponente gerade angezeigt wird (T für Total network).

Ungerichtete Netzwerke haben Anzeigen zu den drei verschiedenen Werten, Degree(Grad jedes einzelnen 

Knoten), Closeness(wie nah ist der Knoten zu allen anderen Knoten) und Betweenness(wie wichtig ist der 

Knoten, wenn andere Knoten sich gegenseitig im Netzwerk erreichen wollen). So kann man sehen, welcher  

Knoten  sehr  zentral  ist,  oder  welcher  eine  strategisch  wichtige  Position  einnimmt.  Closeness  und 

Betweenness haben erst eine Aussagekraft, wenn man zusammenhängende Komponenten ansieht.

Gerichtete Netzwerke haben die Werte Indegree, Outdegree und Page Rank. Indegree und Outdegree zeigt 

an wieviele Kanten zu einem Knoten hin bzw. weggehen und Pagerank ist ein komplizierterer Algorithmus 

um wichtige Knoten zu erkennen. Der Grundgedanke von Pagerank ist der, dass Knoten die viele „stimmen“ 

erhalten, die also wichtig für das Netzwerk sind, das deren Stimme wiederum mehr zählt wenn diese für 

jemanden stimmen.

Zusätzlich  gibt  es  die  Möglichkeit  das  Netzwerk  in  dem für  Netzwerke  üblichen  Pajek-Format  (ein  frei  

verfügbares Programm zur Netzwerkanalyse) auf die Festplatte runter zu laden um zusätzliche Analysen 

durchzuführen zu können und/oder es zu visualisieren.



Konkrete Anwendungszenarien
Influenced Writer
1. Klicken Sie auf „Catch Network“. 

2. Lassen Sie alles unverändert und klicken Sie auf den Button .

3. Machen Sie ein Häkchen bei Erase lonely nodes, geben bei dem Feld „type...“, „dbpedia-owl:Writer“ ein 

und bei dem Feld „predicate...“, „dbpprop:influenced“ und klicken auf den Button .

Nach einer kurzen Verarbeitungszeit sehen Sie das fertige Netzwerk und können sich mit   durch die 

einzelnen Komponenten klicken.

Musicians at the same Label
1. Klicken Sie auf „Catch Network“.

2. Klicke bei Extraction Type auf Affiliation, lasse den Rest so wie er ist und klicke auf .

3. Mach ein Häkchen bei Erase lonely nodes, ändere das Feld „type...“ zu „dbpedia-owl:MusicalArtist“ und 

das Feld „relation...“ zu „dbpedia-owl:recordLabel“. Den Grenzwert kann man bei zwei belassen, oder auch 

auf 3 setzen, wenn man möchte. Klicke auf .

Wenn  Sie  eigene  Netzwerke  erstellen  wollen,  dann  empfehle  ich  Ihnen  sich  genauer  mit  DBpedia 

auseinander zu setzen. Mögliche weitere Szenarien die mit dem Tool zu extrahieren wären:

„Alle Fußballer die bei den 3 gleichen Vereinen gespielt haben, sind miteinander befreundet.“

„Alle Künstler haben sich gegenseitig beeinflusst“

„Alle Philosophen mit dem gleichen Geburts- oder Todesort haben eine Verbindung zu einander“

… …

Bei anderen „SPARQL Endpoints“ liesen sich auch sogenannte Co-Authorship Networks extrahieren. Das 

heißt, dass laut Netzwerk alle (wissenschaftlichen) Autoren, die gemeinsam publiziert haben, miteinander 

befreundet sind. Den Möglichkeiten sind also keine Grenzen gesetzt.

Wenn Sie sich weitgehender mit der Thematik befassen möchten, dann bitte schreiben Sie mir doch auf  

miki.zehetner@gmail.com. Ich würde mich freuen.

Danke, dass Sie sich Zeit genommen haben,

Miki Zehetner



Appendix C
Appendix C describes the multimedia supplement (CD) of this thesis:

Folder Networks

- Network-*.net the analyzed Pajek-Net Networks

- Statistics.ods OpenOffice Calc file for additional Statistics

Folder Software

- Project Data additional design supplements

- Server complete server data

Folder Thesis and Documents

- Usability Study this folder contains all filled-in questionnaires as PDF files (german)

- Supplement.pdf supplement used for the usability study, with use case scenarios (german)

- Installation.pdf a complete installation guide (german)

- Interview.pdf interview with sociology student about social science and social network analysis

- Expose.pdf expose at the start of the thesis

- masterthesis.pdf master thesis
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