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Abstract

In this text we investigate the logic of the formal provability predi-
cate. A definition of this predicate is given. The notions of the classes
of always provable and always true sentences of PA - Peano Arithmetic
- are defined. We introduce the modal system GL. In chapter 2 we show
that in the propositional case that system completely axiomatizes the
class of always provable sentences. From there we introduce the system
GLS and show that this system does the same for the class of always true
sentences.
In chapter 3 we investigate the same question, but this time for the
quantificational case. Our results are negative. There are no systems
that axiomatize the class of the always true or the always provable sen-
tences. We show that these sets are Π0

ω+1- or Π0
2-complete respectively.

Abstract in deutscher Sprache

In diesem Text untersuchen wir die Logik des formalisierten Beweis-
barkeitsprädikates. Wir geben eine Definition dieses Prädikates. Wir
definieren die Begriffe von immer beweisbaren und immer wahren Sätzen
der Peano Arithmetik. Wir führen das modal-logische System GL ein.
In Kapitel 2 befassen wir uns mit den Klassen immer beweisbarer und
immer wahrer Sätze, die ohne Prädikate gebildet werden können. Wir
zeigen, dass GL erstere Klasse vollständig axiomatisiert. Aus GL gewin-
nen wir das System GLS und zeigen, dass dieses zweitere Klasse vollständig
axiomatisiert.
In Kapitel 3 befassen wir uns mit den Klassen immer beweisbarer und
immer wahrer Sätze, die mit Prädikaten gebildet werden können. Wir
suchen Systeme, die diese Klassen axiomatisieren. Wir zeigen, dass es
keine solchen Systeme gibt, da diese Klassen Π0

ω+1- bzw. Π0
2-komplett

sind.
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1 Preliminaries

1.1 Definitions and Notation

In this chapter I will define all notions that will occur in this text as

well as give a few remarks on some of the concepts. Let us start with

the most basic definitions:

Definition 1.1 (Basic definitions and notation). L denotes - as usual -

the language of arithmetic. That is: L = {0̄, s,+,×} .
The language M of propositional modal logic consists of: propositional

variables: p0, p1, p2, . . .; boolean connectives: →,>,⊥ and one unary

modality: �.

The language QML of quantified modal logic is M together with the

quantifier symbols ∀,∃ and predicate symbols: P0, P1, . . ..

We assume that the variables p0, p1, p2, . . . are common to the languages

L, M and QML.

PA is the usual formalization of Peano arithmetic.

Metavariables ranging over well-formed formulae in the language L are

denoted by capital Greek letters: Φ,Ψ,Ξ, . . ..

Metavariables ranging over well-formed formulae in the languagesM or

QML are denoted by Greek letters: ϕ,ψ, χ, . . .. There will be no danger

of confusion, since the two cases are handled in separate chapters.

Let n̄ be the term representing the number n (the numeral for n). That

is: n̄ = sn0̄.

For a formula Φ of PA the Gödel number of Φ will be denoted by pΦq.

The Gödel number of a finite sequence of PA formulae 〈Φ0, . . . ,Φn〉 - like

a PA proof - will be denoted by G.

We now come to the essential definition of the formalized proof pred-

icate. If a strong enough formal system like PA was to reason about its

own provability, it had to prove the formalized version of Gödel’s second

incompleteness theorem, ie.: ”‘if it is provable in PA that PA is consistent,

then PA is inconsistent”’. Hilbert and Bernays formulated three deriv-
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1.1 Definitions and Notation

ability conditions shown to be sufficient enough for the proof of Gödel’s

second incompleteness theorem. These conditions were strengthened by

Löb in 1950. But still, one had to construct a formalized proof predi-

cate, that met these conditions. I will just sketch the construction, for

an extensive overview see [4]

Definition 1.2. First we specify an elementary (i.e.: all quantifiers oc-

cur bounded) formula Ax (pΦq) which is true if and only if Φ is an axiom

of PA. From there one constructs in a standard way an elementary proof

predicate Prf (G, pΨq), which expresses ”G codes a proof 〈Φ0, . . . ,Φn〉 in

PA for the formula Ψ”. To that predicate a provability predicate and a

consistency assertion are associated:

Prov (pΨq) := ∃G : Prf (G, pΨq) and Con (PA) := ¬Prf (p⊥q) .

The so constructed provability predicate Prov satisfies the three deriv-

ability conditions of Bernays and Löb:

1) PA ` Φ ⇔ PA ` Prov (pΦq)

2) PA ` Prov (pΦ→ Ψq)→ (Prov (pΦq)→ Prov (pΨq))

3) PA ` Prov (pΦq)→ Prov (pProv (pΦq)q)

A corollary of the three derivability conditions is Löbs theorem, which

I will state here:

Theorem 1.1.

PA ` Prov (pΦq)→ Φ ⇔ PA ` Φ.

Proof. see [6]

Together with the Formalized Deduction Theorem due to Feferman

this theorem can be viewed as a version of Gödel’s second incompleteness
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1 Preliminaries

theorem for PA+¬Φ. On the other hand Gödel’s second incompleteness

theorem can be obtained from Löbs theorem by setting Φ = ⊥.

The boxed version of Löbs theorem is taken as an axiom for the prov-

ability logic GL, as we see in a moment:

Definition 1.3. GL, the Gödel - Löb provability logic, is the smallest

collection of modal formulae containing the following axiom schemata

and closed under the following rules of inference:

Axiom schemata:

A0) Boolean tautologies

A1) � (ϕ→ ψ)→ (�ϕ→ �ψ) (distribution)

A2) � (�ϕ→ ϕ)→ �ϕ (Löb´s axiom)

Rules of inference:

R1)
ϕ,ϕ→ ψ

ψ
(modus ponens)

R2)
ϕ

�ϕ
(necessitation)

Distribution and necessitation are essentially just boxed versions of

the derivability conditions. In the beginnings of provability logic GL was

requested to have the transitivity axiom �ϕ → ��ϕ as well, which is

now known to be redundant, as it is derivable from GL:

Lemma 1.1. 1. If GL ` ϕ→ ψ, then GL ` �ϕ→ �ψ.

2. GL ` � (ϕ ∧ ψ)↔ �ϕ ∧�ψ.

3. GL ` �ϕ→ ��ϕ

Proof. 1. Say GL ` ϕ → ψ. Then by necessitation: GL ` � (ϕ→ ψ).

By distribution: GL ` � (ϕ→ ψ) → �ϕ → �ψ. Therefore, by
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1.1 Definitions and Notation

modus ponens: GL ` �ϕ→ �ψ.

2. Since ϕ ∧ ψ → ϕ and ϕ ∧ ψ → ψ are tautologies, we have by 1) of

this lemma:

GL ` � (ϕ ∧ ψ)→ �ϕ;� (ϕ ∧ ψ)→ �ψ

GL ` � (ϕ ∧ ψ)→ �ϕ ∧�ψ by propositional logic

On the other hand one has:

GL ` �ϕ→ � (ψ → (ϕ ∧ ψ))

by (1)

GL ` � (ψ → (ϕ ∧ ψ)→ �ψ → � (ϕ ∧ ψ))

by distribution

GL ` �ϕ ∧�ψ → � (ϕ ∧ ψ)

by the two above and propositional logic

3. I will make use of 1) and 2) without further mention.

GL ` (ϕ ∧�ϕ)→ ϕ

GL ` � (ϕ ∧�ϕ)→ �ϕ

GL ` ϕ→ (� (ϕ ∧�ϕ)→ (ϕ ∧�ϕ))

GL ` �ϕ→ � (� (ϕ ∧�ϕ)→ (ϕ ∧�ϕ))

GL ` �ϕ→ � (ϕ ∧�ϕ) by Löb´s axiom (*)
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1 Preliminaries

One also has:

GL ` (ϕ ∧�ϕ)→ �ϕ

GL ` � (ϕ ∧�ϕ)→ ��ϕ

GL ` �ϕ→ ��ϕ by *

The semantics for GL are of course given by Kripke models.

Definition 1.4. A Kripke frame, or frame for short, is a pair 〈K,≺〉,where

K is a nonempty set of so-called worlds or nodes and ≺ is a binary Re-

lation on K, the so-called accessibility relation. A forcing relation 
 on

a frame is a binary relation between nodes and propositional variables,

which can uniquely be extended to a relation between nodes and all modal

formulae via the conditions:

1) k 1 ⊥, k 
 > ∀k ∈ K

2) k 
 ϕ→ ψ iff (k 1 ϕ or k 
 ψ)

3) k 
 �ϕ iff ∀k′
(
k ≺ k′ → k′ 
 ϕ

)
The triple K
=〈K,≺,
〉 is called a Kripke model. I will omit the sub-

script 
 whenever it leads to no confusion.

I will be saying ”‘ϕ is true at k”’ or ”‘ϕ holds at k”’ if k 
 ϕ.

K 
 ϕ means that ϕ is forced at the root of K. Note that there is not

necessarily a root.

K � ϕ is short for: ∀k ∈ K : k 
 ϕ

I will say that ϕ is valid in a frame 〈K,≺〉 if for every possible 
 there

is: K
 � ϕ

A very important concept is the one of an interpretation (some authors

call it realization), which is a mapping from M or QML into L. But
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1.2 A short review of recursion theory

here we have to be careful: The cases of M and QML are handled

differently, so I will be giving the definitions in chapter 2 and chapter

3 respectively. We will also be needing a concept of the length of a

propositional modal formula, which is a highly natural one:

Definition 1.5. For each well-formed modal formula ϕ we define the

length of the formula as a number l (ϕ) ∈ N as follows:

1. If p is a variable, l (p) = 1;

2. l (⊥) = 1 = l (>);

3. l (ψ → χ) = l (ψ) + l (χ) + 1;

4. l (�ϕ) = l (ϕ) + 1.

1.2 A short review of recursion theory

We will be needing some definitions and results of another branch of

logic, namely of recursion theory. I will give a short review in this

section. I will only be defining primitive recursive functions, since partial

recursive functions don´t occur in our context. Note that the primitive

recursive functions are fully contained in the class of the partial recursive

functions.

Throughout this section φ will denote a (partial) recursive function.

Definition 1.6. The class of primitive recursive functions is the the

smallest class C of functions such that:

1. All constant functions: λx1x2 · · ·xk [m] are in C 1 ≤ k, 0 ≤ m.

2. The successor function: λx [x+ 1] is in C.

3. All identity functions: λx1 · · ·xk [xi] are in C 1 ≤ i ≤ k.

7



1 Preliminaries

4. If f is a function of k variables in C and g1, . . . , gk are each func-

tions of m variables in C, then the function

λx1 · · ·xm [f (g1 (x1, . . . , xm) , . . . , gk (x1, . . . , xm))] is in C
1 ≤ k,m.

5. If h is a function of k+1 variables in C and g is a function of k−1

variables in C, then the unique function f of k variables satisfying

f (0, x2, . . . , xk) = g (x2, . . . , xk)

f (y + 1, x2, . . . , xk) = h (y, f (y, x2, . . . , xk) , x2, . . . , xk)

is in C 1 ≤ k.

In 5) if k = 1, then ”‘function of zero variables in C”’ means a fixed

integer.

It follows directly from this definition that a function f is primitive

recursive iff there is a finite sequence f1, . . . , fn of functions with fn = f

and for each j ≤ n fj is either in C by 1), 2) or 3) or fj is directly

obtainable from some fi, i < j by 4) or 5). Such a sequence f1, . . . , fn

is called a derivation for f as primitive recursive function. We use the

Turing characterization for partial recursive functions.

Definition 1.7. Consider a mechanical device which has associated with

it a paper tape of infinite length in both directions, which we will refer to

as L(eft) and R(ight). The tape is sectioned into spaces of equal length

which we will refer to as cells. A cell can either be blank or it has a 1

written in it. The device is arranged, so that the tape runs through it

and so that there is room for one cell to lie within it. At each calcula-

tion step the machine can perform exactly one of four basic operations:

It can write ”1” on the cell it is examining, if no ”1” already appears in

it; it can erase the cell it is examining - making it blank - if the cell is

not blank already; it can shift its attention one cell to the right or it can
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1.2 A short review of recursion theory

shift its attention one cell to the left.

The device begins its calculation in a certain internal configuration and

after each calculation step takes on one of a fixed finite set of possible

configurations. So the action the machine takes is determined by its in-

ternal configuration or state and the content of the examined cell. In

strict mathematical language:

Let T = {0, 1} and S = {0, 1, L,R}. Then a Turing machine is a map-

ping of a finite subset of N× T into S × N.

Here T represents conditions of a tape cell, N represents possible labels

for internal states and S represents operations to be performed; where

operation ”0” makes no change if the examined cell is already blank and

operation ”1” makes no change if the examined cell has already a ”1”

written in it.

It is possible to associate a (partial) recursive function with each Tur-

ing machine, moreover it has been shown, that the characterization of

Turing is equivalent to the characterization of Kleene, as well as to the

characterizations of Church, Post, Markov and others. It has also been

shown that these characterizations suffice to demonstrate a wide variety

of partial functions to be partial recursive functions.

Note that it is possible to effectively list all Turing machines in an algo-

rithmic way. Assume now that we have selected such a listing procedure

and we keep it fixed.

Definition 1.8. Tx is the Turing machine (i.e.: set of quadruples) as-

sociated with the integer x in the fixed list of all Turing machines. (It

comes at the (x+ 1)st place in the list.) x is called index or Gödel num-

ber of Tx.

φx is the partial recursive function determined by Tx. x is also called

the index or Gödel number of φx.

9



1 Preliminaries

We now give the shortest form of the recursion theorem and prove it.

Theorem 1.2. Let f be any recursive function; then there exists an n

such that:

φn = φf(n)

n is called a fixed-point value for f .

Proof. Let any u be given. Define a recursive function ψ by the follow-

ing instructions:

To compute ψ(x), first use Tu with input u. If this terminates and gives

output w, use Tw with input x. If this terminates, take its output as

ψ(x). This can be summarized:

ψ(x) =

φφu(u)(x), if φu(u) convergent;

divergent, if φu(u) divergent.

The instructions for ψ depend uniformly on u. Take g̃ to be the recursive

function which yields, from u, the Gödel number for these instructions

for ψ. Thus:

φg̃(u)(x) =

φφu(u)(x), if φu(u) convergent;

divergent, if φu(u) divergent.

Now let any recursive function f be given. Then fg̃ is a recursive func-

tion. Let v be a Gödel number for fg̃. Since φv = fg̃ is total, φv(v) is

convergent. Therefore by putting v for u in the definition of g̃ we have

φg̃(v) = φφv(v) = φfg̃(v).

Therefore n = g̃(v) is a fixed-point value.

We will also be needing some basic facts about the arithmetical hier-

archy, which I will state now.
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1.2 A short review of recursion theory

Definition 1.9. A set A (therefore also a relation R) is recursive if it

possesses a recursive characteristic function, i.e.: there exists a recursive

function f such that for all x:

x ∈ a⇒ f(x) = 1 and x ∈ A⇒ f(x) = 0.

Informally, A is recursive if there is an effective procedure which decides

for any given x if x ∈ A or x /∈ A.

A is called recursively enumerable (r.e.) if either A = ∅ or there ex-

ists a recursive f such that A = range f . Informally, A is recursively

enumerable, if there exists an effective procedure to list the members of

A.

Note that if A is recursive, so is A. There is a connection between

these two concepts

Theorem 1.3.

A is recursive ⇔ A and A are both recursively enumerable.

Proof. Can be found in [9].

Definition 1.10. A relation R is Σ0
0 in A, or Π0

0 in A if and only if R

is recursive in A.

A n-place relation R is Σ0
m+1 in A if for some (n+1)-place Relation S

that is Π0
m in A one has: R = {i|∃jS(i, j)}.

A n-place relation R is Π0
m+1 in A if for some (n+1)-place Relation S

that is Σ0
m in A one has: R = {i|∀jS(i, j)}.

Note that R is Σ0
m in A iff R̄ is Π0

m in A. Also the Σ0
1 relations in A,

are the recursively enumerable relations in A.

Theorem 1.4.

Σ0
m ∪Π0

m ⊂ Σ0
m+1 ∩Π0

m+1
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1 Preliminaries

Proof. Can be found in [9].

A set is called arithmetical if it can be defined by a formula in the

language L of arithmetic. One can show that a set is arithmetical iff it

is Σ0
m or Π0

m for some m.

Definition 1.11. A set S is called Π0
m-complete in A (m > 0), if it is

Π0
m in A and for every other set S′ that is Π0

m in A there is a recursive

function f , so that S′ = {i|f(i) ∈ S}.
”‘Σ0

m-complete”’ is defined analogously.

Kleene´s enumeration theorem, which I will not state here, allows one

to show, that if a set S is Π0
m-complete in A, then it is not Σ0

m in A.

Therefore a Π0
2-complete set is not Σ0

2, thus not Π0
1, Σ0

1 or recursive, and

a Π0
1-complete set is not Σ0

1, thus not recursive.
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2 Propositional provability logic:

The Solovay theorems
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2 Propositional provability logic: The Solovay theorems

In this chapter I will discuss the Solovay´s first and second arithmetic

completeness theorem, which basically state that propositional reasoning

about the formalized provability predicate can sufficiently be described

in arithmetic itself and even more, that it is decidable. I will stay closely

to Solovay´s paper [1], so all results are due to him, if not otherwise

noted. However I have changed his notation into a more contemporary

one, following the notation of [5]. As mentioned above we will need the

concept of an interpretation.

Definition 2.1. An interpretation of M in L is a mapping (.)∗ from

the set of the propositional variables to the set of arithmetical sentences,

additionally satisfying following requirements:

• (⊥)∗ = ⊥; (>)∗ = >

• (ϕ→ ψ)∗ = ϕ∗ → ψ∗

• (�ϕ)∗ = Prov (pϕ∗q)

We will say that a modal formula ϕ is PA-valid or always provable if for

every interpretation (.)∗; ϕ∗ is a theorem of PA. (i.e.: ∀ ∗ PA ` ϕ∗).

We call a modal formula ϕ always true or N-valid if it is true in the

standard model for every interpretation. (i.e.: ∀ ∗ N � ϕ∗).

At first I prove that GL is sound with respect to the arithmetical

interpretation and I do so, because in the proof we will see, that Löb´s

Axiom is essentially a reformulation of Gödel´s second incompleteness

theorem.

Lemma 2.1. Every theorem of GL is PA-valid, i.e.: for all interpreta-

tions ∗
If GL ` ϕ, then PA ` ϕ∗.

Proof. The proofs works by induction on the number of axioms and rules

of inference used in a GL-proof of ϕ. So we need to check different cases,

14



according to which rule or axiom scheme was the last to be cited in the

proof of ϕ.

The case of Boolean tautologies and of the modus ponens is evident.

It can be shown in PA that the theorems of PA are closed under the

modus ponens, which handles A1.

Note that Prov(pϕq) is a Σ0
1 formula. That means it is provably equiv-

alent in PA to a formula of the form ∃y : R (x, y), where R is a primitive

recursive predicate. It is a known fact about Σ0
1 sentences, that if they

are true in a model of PA, they are provable in PA. So the lemma is true,

if the last step in a GL proof is the necessitation rule.

It remains to show, what happens if the last instance of a GL proof

is Löb´s axiom. I argue in PA. Given a sentence ϕ such that PA `
Prov (pϕq)→ ϕ we must show PA ` ϕ. One has:

PA ` Prov (pϕq)→ ϕ ⇒

PA ` ¬ϕ→ ¬Prov (pϕq) ⇒

PA ` ¬ϕ→ Con (PA + p¬ϕq)

But then PA+¬ϕ proves its own consistency, so by Gödel´s second in-

completeness theorem the system PA+¬ϕ is inconsistent. So

PA ` ϕ

The next goal is to identify those Kripke frames in which the theorems

of GL are valid. Recall that this means to characterize those Kripke

frames 〈K,≺〉 so that for every possible corresponding Kripke model K
= 〈K,≺,
〉 and for every ϕ ∈ T , K � ϕ.

Definition 2.2. A partially ordered set P is said to satisfy the ascending

chain condition (acc) if every ascending chain of elements eventually

15



2 Propositional provability logic: The Solovay theorems

terminates. Equivalently, given any sequence of elements of P

a1 ≤ a2 ≤ a3 ≤ · · · ,

there exists a positive integer n such that

an = an+1 = an+2 = · · · .

Theorem 2.1. Let 〈K,≺〉 be a Kripke frame. Then the following are

equivalent:

1) Every theorem of GL is valid in 〈K,≺〉
2) ≺ is transitive and has the ascending chain condition (acc)

Proof. Let ∆ be the set of modal formulas valid in a frame 〈K,≺〉. It

is easy to check, that ∆ is closed under the two rules of inference and

contains all instances of the axiom schemata A0 and A1.

(⇒): Suppose A2 is valid in 〈K,≺〉 and that x ≺ y, y ≺ z.
Let p be some propositional variable. Choose 
 so, that w 
 p iff x ≺ w.

Then x 
 �p. By hypothesis and Lemma 1.1(3) x 
 ��p. That means

y 
 �p and therefore z 
 p. Hence x ≺ z. So ≺ is transitive.

Suppose now that ≺ has not got the acc.

Then there is an infinitively ascending chain a0 ≺ a1 ≺ a2 ≺ . . .. Let

A be the set containing precisely all the ai. Let p be a propositional

variable. Choose 
 so that x 1 p iff x ∈ A.

Since A is an infinite chain x 1 �p for all x ∈ A. That means �p → p

holds at every point in K. (The hypothesis is false at points in A, the

conclusion is true at points not in A.) So K
 � � (�p→ p). Finally

� (�p→ p) → �p is false at each point in A, which contradicts Löb´s

axiom.

(⇐): Now let ≺ be transitive and have the acc.

We need to show, that Löb´s axiom is valid in 〈K,≺〉. Suppose not.

Let x ∈ K, ϕ ∈ F and 
 be so, that: x 1 � (�ϕ→ ϕ) → �ϕ, which

16



means that x 
 � (�ϕ→ ϕ) and x 1 �ϕ.

Let A := {a ∈ K : x ≺ a and a 1 ϕ}. A is not empty and since ≺ has

the acc, A has a maximal element ā. Now let y ∈ K be arbitrary with:

ā ≺ y. Since ≺ is transitive and ā is maximal in A: x ≺ y and y /∈ A.

Hence y 
 ϕ. Since y was arbitrary ā 
 �ϕ. Because x 
 � (�ϕ→ ϕ)

we have that ā 
 �ϕ → ϕ and therefore ā 
 ϕ which contradicts

ā ∈ A.

Theorem 2.2. Let ϕ be a modal formula which is not a theorem of GL.

Then there is a model K = 〈K,≺,
〉 and a k0 ∈ K such that:

1. k0 1 ϕ

2. ≺ is transitive and has the acc. (So by the previous theorem GL is

valid in 〈K,≺〉)

3. If k ∈ K then k0 � k

4. K is finite

Proof. Fix a modal formula ϕ which is not a theorem of GL. Let E be the

set of subformulae of ϕ and let A ⊆ E consist of propositional variables

and formulae with principal connective �, say A = {χ1, . . . , χn}. Think

of A as the set of atomic subformulae of ϕ. Each truth assignment β

from the set A to the truth set 2 = {0, 1} has a canonical prolongation,

which I will again denote by β to a map β : E −→ 2. This follows from

the fact that each formula in E is a boolean combination of formulae

in A. Let B = {β|β : A −→ 2}. We construct a modal formula Φ (β)

associated to each truth assignment.

Φ (β) = χ′1 ∧ . . . ∧ χ′n, where: χ′i =

χi, if β (χi) = 1

¬χi, if β (χi) = 0

17



2 Propositional provability logic: The Solovay theorems

Let K1 ⊆ B be the subset

K1 := {β|β : A −→ 2 and ¬Φ (β) is not a theorem of GL} .

Note that for some β ∈ K1 one must have: β (ϕ) = 0, otherwise one

would have β (Φ (β)→ ϕ) = 1 for each β ∈ K1. But that would mean,

that ϕ is a theorem of GL.

Pick a β0 ∈ K1 so that β0 (ϕ) = 0.

For β ∈ K1 let rank (β) be the number of formulae in A of the form �ψ

such that β (�ψ) = 1.

Now for the definition of a binary relation / on K1:

Put β / β′ iff

1. rank (β) < rank (β′)

2. If β (�ψ) = 1, then β′ (�ψ) = 1 and β′ (ψ) = 1

It is easily checked, that / is transitive and has the ACC. Put K :=

{β ∈ K1|β0 E β}. Define a binary relation ≺ on K by putting β′ ≺ β iff

β′ / β for β, β′ ∈ K. Since A is a finite set so is K. Even more: A has

at most l (ϕ) elements, so K has at most 2l(ϕ) elements.

So we constructed the frame of our model. It remains to construct the

forcing relation, so that the condition 1) is met. To do so it is necessary

to prove an auxiliary lemmata and a helpful claim first.

Lemma 2.2. Let β ∈ K. Let �ψ ∈ A such that: β (�ψ) = 0. Then

there is a β′ ∈ K with β ≺ β′ and β′ (ψ) = 0.

Proof. Let ψ1, . . . , ψn be those formulae in E such that �ψi ∈ A and

β (�ψi) = 1. We show that there is a truth assignment β′ ∈ K1 such

that:

1. β′ (ψi) = 1 and β′ (�ψi) = 1

18



2. β′ (ψ) = 0 and β′ (�ψ) = 1

It then readily follows that rank (β) < rank (β′) and therefore β /β′, so

β0 / β
′ and finally β′ ∈ K.

So suppose now for every β′ which satisfies 1) and 2) we have β′ /∈ K1.

That means that Φ (β′) is refutable in GL. Let ϑ = ψ1∧ . . .∧ψn. Lemma

1.1 (2) shows that GL ` �ϑ ↔ (�ψ1 ∧ . . . ∧�ψn). Now if for every β′

satisfying 1) and 2) Φ (β′) is refutable, that means GL ` ¬�ϑ ∨ ¬�ψ.

Therefore:

GL ` �ϑ ∧ ϑ→ (�ψ → ψ) (i)

GL ` � (�ϑ ∧ ϑ)→ � (�ψ → ψ) by Lemma 1.1 (1) (ii)

GL ` � (�ψ → ψ)→ �ψ by Löb´s axiom (iii)

GL ` �ϑ→ ��ϑ by Lemma 1.1 (3) (iv)

GL ` �ϑ→ ��ϑ ∧�ϑ . (v)

GL ` �ϑ→ �(�ϑ ∧ ϑ) by Lemma 1.1(2). (vi)

GL ` �ϑ→ �ψ by (ii), (iii) and (vi).

But since Φ (β) has among others the conjuncts �ϑ and ¬�ψ this entails

that Φ (β) is refutable in GL, contradicting β ∈ K1. So the lemma is

proven.

We now define a forcing relation 
⊆ K × P , where K is the set we

earlier constructed and P is the set of propositional variables. If p ∈ E
we put β 
 p if β (p) = 1 and β 1 p if β (p) = 0. If p /∈ E we put β 
 p.

Claim 2.1. Let ψ ∈ E and β ∈ K. Then:

β 
 ψ ⇔ β (ψ) = 1

β 1 ψ ⇔ β (ψ) = 0
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2 Propositional provability logic: The Solovay theorems

The proof is by induction on the length of ψ. The cases were ψ

is a variable or ⊥ or has principal connective → are evident from the

definitions. Suppose now that ψ = �ϑ and consider two sub cases:

Case 1: β (�ϑ) = 1

By induction it suffices to show that for all β′ with β ≺ β′ we have

β′ (ϑ) = 1. But this follows from the definition of ≺ and the hypothesis.

Case 2: β (�ϑ) = 0

We have to show that there exists a β′ with β ≺ β′ such that β′ (ϑ) = 0.

We apply Lemma 2.2 to get such an β′. This proves the Claim.

Now since β0 (ϕ) = 0, this also finally proves assertion 1) of the theorem.

From the theorem two corollaries follow readily:

Corollary 2.1. GL ` ϕ iff ϕ is valid in every finite frame 〈K,≺〉 in which ≺
is transitive and has ACC.

This is straightforward, so I will omit the proof.

Corollary 2.2. The set of theorems of GL is recursive.

Proof. We will assume the formulae of M encoded as binary strings.

Now when given a modal formula ϕ let n be the length of the encoding

of this formula.

By the above theorem it suffices to check if K � ϕ for frames of size at

most 2n. There obviously is only a finite number of frames of size at

most 2n. All that matters about the forcing relation 
 is what happens

with pairs (k, p), where the variable p occurs in ϕ. So again, each frame

underlies a finite number of essentially different models. Given a certain

finite model it only takes a finite number of steps to check whether ϕ

holds at each node. Therefore we can efficiently test for validity in each

model in a finite number of steps.
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So from now on, if we talk about a binary relation ≺ it will be clear,

that ≺ is transitive and has ACC.

It is remarkable, that (3) of the theorem entails, that every constructed

Model has a root k0.

We will now work our way to the proof of a central result in provability

logic, known as Solovay´s theorem:

Theorem 2.3.

GL ` ϕ iff PA ` ϕ∗ for all *

For the proof of this theorem Solovay invented the method of ”em-

bedding” Kripke models into Peano arithmetic, a construction which I

will now describe.

Let K = 〈K,≺,
〉 be a finite Kripke model. Let´s assume without loss

of generality that K = {0, . . . , n} and that 0 is the root of K. With aid

of the recursion theorem a recursive function h : ω −→ K can be defined

to satisfy the following equations provably in PA:

h (0) = 0

h (m+ 1) =

z, if z ∈ K,h (m) ≺ z and Prf (m, pl 6= zq) ;

h (m) , otherwise.

Here l = z is short for the arithmetical formula ∃m∀n > m : h (n) = z

and l 6= z denotes ¬ (l = z). Artemov gives an informal illustration of

the behavior of the functionh.

Think of a refugee who is admitted to enter a country only if he/she

provides a proof not to stay in that country forever. But refugee also
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2 Propositional provability logic: The Solovay theorems

is not allowed to enter a country he/she has previously been to. Since

there are only a finite number of countries the refugee eventually must

stop somewhere. So, an honest refugee would never be able to leave

his/her country of origin. h (m) = z is the statement, that the refugee

is in the country z at the moment m.

The following lemma provides some basic facts about the behavior of

the function:

Lemma 2.3. The following statements are provable in PA:

(i)
∨
z∈K l = z;

(ii) ∀u, v (l = u ∧ l = v → u = v);

(iii) l = z→ Prov
(
p
∨
z≺w l = wq

)
, if z ∈ K and 0 ≺ z;

(iv) l = z→ ¬Prov (pl 6= uq), if z, u ∈ K and z ≺ u.

Proof. Statements (i) and (ii) readily follow from the facts that provably
in PA values of h belong to K and that h is weakly increasing in the sense
of the ordering �.
To prove (iii) we argue in PA as follows:
If l = z then for some m, h (m) = z. Then by Σ1-completeness (i.e.: the
fact that any true Σ1 sentence is provable in PA), PA ` ∃m : h (m) = z.
Since h is provably monotone PA ` ∃m∀n > m : h (n) � z. Therefore PA

`
∨
z�w l = w.

If on the other hand l = z and 0 ≺ z, then there is a least m such that
h (m+ 1) = z, which by definition of h means that PA ` l 6= z. So we
obtain PA `

∨
z≺w l = w.

To show (iv) we formalize the following argument in PA:

If l = z where z ≺ u, then for some m ∀k ≥ m : h (k) = z and
Prf(m, pl 6= uq). (This is due to the fact, that the usual Gödel num-
bering of proofs of PA has the property that each theorem has infinitely
many proofs.) But then, by definition of h, there is h (m+ 1) = u. So,
since h is weakly increasing that implies l 6= z, a contradiction.
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The function
f (p) =

∨
z∈K,z
p

l = z

is called Solovay realization. Here the right hand side is a finite disjunc-
tion. Should the right hand side be the empty disjunction, put f (p) = ⊥

We now prove an important technical lemma, concerning properties of
the Solovay realization.

Lemma 2.4. For all well-formed modal formulas ϕ and all z ∈ K; 0 ≺ z:
(i) If z 
 ϕ, then PA ` l = z→ f (ϕ);
(ii) If z 1 ϕ, then PA ` l = z→ ¬f (ϕ).

Proof. The proof of (i) and (ii) is simultaneously by induction on l (ϕ).
The case when ϕ is a variable p is clear from the definition of f (p). The
cases ϕ = ⊥,> and if ϕ has principal connective → are straightforward.
We consider the most important case when ϕ has the form �ψ.

(i) If z 
 �ψ, then ∀u � z : u 
 ψ. Hence by induction hypothesis:

PA `
∨
z≺u

l = u→ f (ψ) .

Using the previous Lemma (iii) we obtain:

PA ` l = z → Prov
(
p
∨
z≺u l = uq

)
→ Prov (pf (ψ)q)

→ f (�ψ).

(ii) If z 1 �ψ, then ∃u � z : u 1 ψ. By induction hypothesis

PA ` l = u→ ¬f (ψ) ,

therefore
PA ` ¬Prov (pl 6= uq)→ ¬Prov (pf (ψ)q) .
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2 Propositional provability logic: The Solovay theorems

Using the previous Lemma (iv) we obtain:

PA ` l = z → ¬Prov (pl = uq)

→ ¬Prov (pf (ψ)q)

→ ¬f (�ψ).

Claim 2.2. If 0 ≤ z ≤ n then Con(PA + ”l = z”)

Proof. Arguments in this proof cannot be completely formalized in PA

For z = 0 the standard model is a model of PA+”l = z”. For z ≥ 1
Lemma 2.3 (iv) provides the proof

Proof of theorem 2.3. One direction of the proof is already given by
Lemma 2.1. It remains to show that:

PA ` ϕ∗ ⇒ GL ` ϕ

We will do so by modus tollens.
If GL 0 ϕ, then by theorem 2 there is a finite Kripke model K′ such that
K′ 1 ϕ. We may assume that K0 = {1, . . . , n} and that 1 is the root
of K0. We extend K0 to a new model K by a new node 0 stipulating
K = K0 ∪ {0} and 0 ≺ z, for all z ∈ K0. The forcing of propositional
variables is defined at 0 arbitrarily. As arithmetical interpretation we
take the Solovay interpretation f applied to K. Since 1 1 ϕ this yields

PA ` l = 1→ ¬f (ϕ) .

By claim 2 Con(PA + ”l = 1”). Therefore Con(PA + ¬f (ϕ)), i.e.: f (ϕ) is
not a theorem of PA.

We have now characterized the modal schemata provable in PA.
What about the class of always true sentences? We begin by introducing
a new system of modal logic.

Definition 2.3. The system GLS has two axiom schemata and one rule
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of inference. Axiom schemata:

A3) All theorems of GL.

A4) �ϕ→ ϕ

Rule of inference:

R1)
ϕ,ϕ→ ψ

ψ
(modus ponens)

Then Solovay´s second arithmetic completeness theorem states:

Theorem 2.4.

GLS ` ϕ iff N � ϕ∗ for all *

Before we commence the proof two lemmata:

Lemma 2.5. Let ϕ be a formula. Suppose that for every subformula of
ϕ of the form �ψ 1 
 �ψ → ψ. Then if χ is a subformula of ϕ:

1. If 1 
 χ,
PA ` l = 0→ χ∗

2. If 1 1 χ,
PA ` l = 0→ ¬χ∗

Proof. The only problematic case is the one, where χ is of the form �θ.
As usual we have to look at two possible cases:
case 1 1 
 �θ
If 1 < i ≤ n then i 
 θ. Also by hypothesis of the lemma 1 
 θ. It follows
from Lemma 2.4. and the induction hypotheses that if 0 ≤ i ≤ n then
PA ` l = i → θ∗. By Lemma 2.3 (i) PA ` 0 ≤ l ≤ n. Therefore PA ` θ∗.
So (�θ)∗ = Prov(pθ∗q) is a true Σ0

1 sentence. Therefore PA ` (�θ)∗. So
even more PA ` l = 0→ (�θ)∗.
case 2 1 1 �θ
Then for some j with 1 < j ≤ n, j 1 θ. So by Lemma 2.4 PA ` l =
j → ¬θ∗ and by Lemma 2.3(iv) PA ` l = 0 → Con (PA + l = j). So
PA ` l = 0→ Con (PA + ¬θ∗). That is PA ` l = 0→ ¬(�θ)∗.
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2 Propositional provability logic: The Solovay theorems

Now let ϕ be a modal formula and let �ψ1, . . . ,�ψn enumerate all
the subformulae of ϕ with principal connective �. Then let:

S(ϕ) :=
n∧
i=1

(�ψi → ψi).

Lemma 2.6. Let ϕ be a modal formula. Then if

S(ϕ)→ ϕ

is not a theorem of GL, then there is an interpretation of M in PA such
that ϕ∗ is false in the standard model, i.e.: N.

Proof. Apply theorem 2.3 to S(ϕ) → ϕ. We get a model K as in the
theorem and additionally:

1 � �ψi → ψi (1 ≤ i ≤ n).

By the previous lemma:

PA ` l = 0→ ¬ϕ∗

It is not hard to prove that l = 0 is true (the honest refugee must stay
in his or her country). So ϕ∗ is false as desired.

proof of the theorem. ⇐:
Obviously the set of N-valid formulae is closed the modus ponens. By
Lemma 2.1 it contains all instances of A3. Since the theorems of PA all
hold in N, all instances of A4 are N-valid.
⇒:
If S(ϕ)→ ϕ is a theorem of GL, then ϕ is a theorem of GLS. So if ϕ is a
not theorem of GLS, then ϕ is not N-valid.
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After chapter 2, where we showed that propositional reasoning about
the formalized provability predicate is decidable and can moreover be
appropriately specified in arithmetic itself, it is only natural to ask,
whether there are formal systems that axiomatize the classes of always
true and always provable sentences of predicate modal logic, just as GL

and GLS do for the classes of always true and always provable sentences
of propositional modal logic.
After Solovay published his first and second arithmetic completeness
theorems in 1976, it was long believed that one could axiomatize the
class of always provable sentences by simply adding ordinary quantifi-
cational logic to the system GL. But Vardanyan´s Π0

2-completeness the-
orem, published in 1985, ended the search for possible axiomatizations
for quantified provability logic.
In fact we will show, that not only in the case of the set of Gödel num-
bers of always provable sentences but also in the case of set of Gödel
numbers of always true sentences, the worst possible case takes effect.
Informally: The set of Gödel numbers of always provable sentences is
Π0

2-complete at worst (∀ interpretations* ∃ a proof . . .) and the set of
Gödel numbers of always true sentences is Π0

1-complete relative to the
truth set V for arithmetic at worst (∀ interpretations*: ϕ∗ is true). And
this really is the case with both the former and the latter.
We now give the definition of an interpretation in the case of QML.
We need to be more careful than in the case of L, since a predicate
modal formula ϕ may contain a predicate P0 and we have to forbid P ∗0
to contain quantifiers which bind variables that appear in ϕ.

Definition 3.1. An interpretation (.)∗ for predicate modal formulae ϕ
is a function (.)∗ : QML → L that assigns to each predicate symbol Pi
that occurs in ϕ an arithmetic formula P ∗i (p0, . . . , pn−1), whose bound
variables do not occur in ϕ and whose free variables are just the first
n variables of the alphabetical list of the variables of L if n is the arity
of Pi. For any interpretation ∗ for ϕ we define ϕ∗ by the following
induction on the complexity of ϕ:

• In the atomic cases:
(Pi (x1, . . . , xn))∗ = P ∗i (x1, . . . , xn), (⊥)∗ = ⊥; (>)∗ = >

• (ϕ→ ψ)∗ = ϕ∗ → ψ∗
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• (∃xϕ)∗ = ∃x (ϕ∗)

• (�ϕ)∗ = Prov(pϕ∗q)

Note that ϕ∗ always contains the same free variables as ϕ.
We will call a sentence ϕ of QML always provable or PA-valid if for all
interpretations ∗, ϕ∗ is a theorem of PA.
We will call a sentence ϕ of QML always true or N-valid if for all
interpretations ∗, ϕ∗ is true in the standard model N.

Our first goal in this chapter is to prove that the set of always true
formulae of QML is not arithmetical. So there is no formula in the
language L that is true of exactly the Gödel numbers of the always true
sentences. We now develop the tools for doing so:

Let G be a one-place predicate letter. Then L+ = L ∪ {G}.
For each atomic formula Φ of L+, let Φ̂ be some standard logical equiv-
alent of Φ with the same free variables, built up by conjunction and
existential quantification from atomic formulae of one of the six forms:

u = v; 0 = u; su = v; u+ v = w; u× v = w; Gu

For example: If Φ is the formula ss0 + s0 = x then Φ̂ could be
∃y1∃y2∃y3 (0 = y1 ∧ sy1 = y2 ∧ sy2 = y3 ∧ y2 + y3 = x).

If Φ is a non-atomic formula, then Φ̂ is defined by letting (̂.) commute
with quantifiers and boolean connectives.
Now let P0 be a one-place predicate letter other than G, P= and Ps two
two-place predicate letters and P+ and P× two three-place predicate let-
ters.
For each formula Φ of L+ let Φ̃ be the formula obtained from Φ̂ by re-
placing each occurrence of u = v with P=uv; 0 = u with P0u; su = v
with Psuv; u+ v = w with P+uvw; u× v = w with P×uvw respectively.
Formulae Gu are left alone. Φ̃ is a formula of pure predicate calculus
that contains exactly the same free variables as Φ.

So (̃.) translates a formula of the language L+ into a formula of pure
predicate calculus. That means that L+ can be seen as fragment of
QML and therefore an interpretation * also determines interpretations
of the predicate symbols P=, Ps, P+ and P×, which then form ”the model

29



3 Quantified provability logic

determined by *”.

We now introduce a certain sentence Θ in the language L. We basi-
cally plug ”‘truths”’ about arithmetic into it, so it is a conjunction of
axioms of arithmetic, equality axioms, valid sentences that express that
s,+ and × define functions, recursion axioms for zero, successor, plus
and times and certain theorems of arithmetic. So Θ̃ is a sentence of
predicate calculus and if we choose an interpretation ∗,

(
Θ̃
)∗

, or Θ̃∗ for

short, makes sure the axioms of arithmetic and all the other conjuncts
in Θ are interpreted to be true in the model determined by ∗.

For any interpretation let R∗ (x, y) be the following formula of L:

∃s(FinS(s) ∧ lh(s) = x+ 1 ∧ end(s) = y ∧ P ∗0 (s0)∧
∧ ∀z < x P ∗s (sz, sz+1)).

Here FinS (s) is short for ”‘s is the code of a finite sequence”’, lh (s)
denotes the length of the sequence s and end (s) denotes the last ele-
ment of the sequence s. Informally R∗ (x, y) expresses that the number
x is represented by the term sy0 in the model determined by ∗. Most
of the time x will be represented by many sy0, but they turn out to be
an equivalence class with respect to P ∗=, because the axioms phrasing
reflexivity, transitivity and symmetry of the identity relation are con-
juncts in Θ.

Now let * be an arbitrary interpretation.

Lemma 3.1. PA ` Θ̃∗ → ∀x∃y R∗ (x, y).

Proof. We work in PA and assume that Θ̃∗ holds. We prove the lemma
by induction on x.
First set x = 0.
We may assume that one of the conjuncts of Θ is the sentence ∃x 0 = x.
Therefore one of the conjuncts of Θ̃ is ∃x P0x and thus one of the
conjuncts of Θ̃∗ is ∃x P ∗0 x. So for some y : P ∗0 y. Let s be the finite
sequence of length 1 such that s0 = y. Then R∗ (0, y)
For the induction step suppose that for some y; R∗ (x, y).
Let s be a finite sequence as in the definition of R such that s witnesses
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the truth of R∗ (x, y). Since we may assume that one of the conjuncts
of Θ is ∀x∃x′ sx = x′ one of the conjuncts of Θ̃∗ is ∀x∃x′ P ∗s (x, x′).
Thus for some y′;P ∗s (y, y′). Let s′ be the finite sequence of length x +
2 extending s such that s′x+1 = x′. Then s′ witnesses the truth of
R∗ (x+ 1, y′).

Lemma 3.2. PA ` Θ̃∗ ∧R∗ (x, y) ∧ P ∗= (y, y′)→ R∗ (x, y′)

Proof. This proof is an induction on x just like the one before.
For the basis step we assume that Θ contains
∀x∀x′ (0 = x ∧ x = x′ → 0 = x′).
For the induction step we assume that Θ contains
∀x∀x′∀x′′ (sx = x′ ∧ x′ = x′′ → sx = x′′)

Lemma 3.3.

1) PA `Θ̃∗ ∧R∗ (x, y) ∧R∗
(
x′, y′

)
→
(
x = x′ ↔ P ∗=

(
y, y′

))
2) PA `Θ̃∗ ∧R∗ (x, y)→ (0 = x↔ P ∗0 (y))

3) PA `Θ̃∗ ∧R∗ (x, y) ∧R∗
(
x′, y′

)
→
(
sx = x′ ↔ P ∗s

(
y, y′

))
4) PA `Θ̃∗ ∧R∗ (x, y) ∧R∗

(
x′, y′

)
∧R∗

(
x′′, y′′

)
→

→
(
x+ x′ = x′′ ↔ P ∗+

(
y, y′, y′′

))
5) PA `Θ̃∗ ∧R∗ (x, y) ∧R∗

(
x′, y′

)
∧R∗

(
x′′, y′′

)
→

→
(
x× x′ = x′′ ↔ P ∗×

(
y, y′, y′′

))
Proof. The proof of each of these is very similar to the proof of lemma
3.1. First we observe, that a certain finite number of simple theorems
about the natural numbers can be proved in PA. These theorems can
be assumed to be conjuncts of Θ, so their tilde and star versions may
be assumed to follow from Θ̃∗. One then uses the facts stated in these
versions to prove the lemma by induction

Now let x abbreviate (x1, . . . , xn), y abbreviate (y1, . . . , yn) and R(x,
y) abbreviate R∗ (x1, y1) ∧ . . . ∧R∗ (xn, yn).

Lemma 3.4. Let Φ (x) be any formula of L. Then

PA ` Θ̃∗ ∧ ∀y∃x R∗ (x, y) ∧ R(x, y)→
(

Φ (x)↔ Φ̃∗ (y)
)

.
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3 Quantified provability logic

Proof. Again, a proof by induction, this time on the construction of Φ.
We can assume that each atomic formula of Φ is of one of the forms
u = v; 0 = u; su = v;u+ v = w or u× v = w.
To these cases the previous lemma applies; truth-functional cases are
handled as ever.
For the quantifier case we have ∀x∃y R∗(x, y) following from Θ̃∗ by
Lemma 3.1 and we have ∀y∃x R∗(x, y), which is a conjunct of the an-
tecedent. These two formulae suffice for the deduction of the lemma for
∃Φ from the lemma for Φ.

We now want to find a formula ϑ of QML, so that its interpreted ver-
sion can replace the conjunct ∀y∃x R∗(x, y) of the antecedent in lemma
3.4.
A bounded formula of L is one that is built up from atomic formulae
and their negations by truth-functional operations and bounded quan-
tification.

Lemma 3.5. Let Φ(x) be a bounded formula of L. Then

PA ` Θ̃∗ ∧ R∗ (x, y)→
(

Φ (x)↔ Φ̃∗ (y)
)
.

Proof. Induction on the construction of Φ(x).
Lemma 3.3 handles atomic cases, truth-functional cases are handled as
usual.
In the bounded quantifier case suppose that Φ(x, x) is ∀z < x Ψ(x, z)
and that the Lemma holds for Ψ(x, z). Suppose that the formulae Θ̃∗,
R∗(x, y) and R∗(x, y) hold. Now proceed by induction on x in PA.
Suppose x = 0.
Then surely Φ(x, x). Since R∗(0, y) there is P ∗0 y (Lemma 3.3(2)). We
assume that ∀z ¬z < 0 is a conjunct of Θ. So we have ∀z ¬z <∗ y. But
then there is ∀z <∗ y Ψ∗(y, y) which is exactly Φ̃∗(y, y).
Now suppose x = sx′

Then for some y′: R∗(x′, y′) and P ∗s (y′, y). And then

Φ(x, x)⇔ Φ(x, x′) and Ψ(x, x′)

⇔ (by induction hypothesis and the Lemma for Ψ (x, x))

Φ̃∗(y, y′) and Ψ̃∗(y, y′)

⇔ ∀z <∗ y′ Ψ̃∗(y, z) and Ψ̃∗(y, y′).
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Since P ∗s (y, y′) and since we may take

∀x′∀z
(
z < sx↔ z < x′ ∨ z = x′

)
as a conjunct of Θ we have: z <∗ y iff z <∗ y′ or z =∗ y′. Obviously if
z =∗ y′ then Ψ̃∗(y, y′) ⇔ Ψ̃∗(y, z).
Thus ∀z <∗ y′ Ψ̃∗(y, z) and Ψ̃∗(y, y′) iff ∀z <∗ y Ψ̃∗(y, z)
which is exactly Φ̃∗(y, y).

Lemma 3.6. Let Φ(x) be any Σ formula of L. Then
PA ` Θ̃∗ ∧ R∗(x, y)→ (Φ(x)→ Φ̃∗(y)).

Proof. By Lemma 3.5 we only need to deduce this for ∃x Φ from the
hypotheses that the lemma holds for Φ = Φ(x, x).
Work in PA. Suppose Θ̃∗ and R∗(x, y).
By Lemma 3.1 we have for some y: R∗(x, y). Thus if Φ(x, x), then by this

lemma for Φ(x, x): Φ̃∗(y, y) and then also ∃x Φ̃∗(y, x), i.e.: (∃̃x Φ)∗.

Let ϑ be the following formula of QML:

¬�¬>∧
∀x (P0x→ �P0x) ∧ ∀x (¬P0x→ �¬P0x)∧
∀x∀y (P=xy → �P=xy) ∧ ∀x∀y (¬P=xy → �¬P=xy)∧
∀x∀y (Psxy → �Psxy) ∧ ∀x∀y (¬Psxy → �¬Psxy)∧
∀x∀y∀z (P+xyz → �P+xyz) ∧ ∀x∀y∀z (¬P+xyz → �¬P+xyz)∧
∀x∀y∀z (P×xyz → �P×xyz) ∧ ∀x∀y∀z (¬P×xyz → �¬P×xyz).

Let Φ(x) be any arithmetic formula. Then there is a formula of arith-
metic stating that Φ(x) defines a recursive relation. The formula states
that there is a Turing machine T that, when given a n-tuple of natural
numbers i as input, outputs 1 (yes) if Φ(i) holds and 0 (no) if Φ(i) does
not hold.

Lemma 3.7. PA ` ϑ∗ → P ∗0 , P
∗
=, P

∗
s , P

∗
+ and P ∗× define recursive rela-

tions.

Proof. Work in PA.
Suppose ϑ∗ holds. Then (¬�¬>)∗ holds, i.e.: arithmetic is consistent.
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3 Quantified provability logic

Now consider for example P ∗+.
Then we can effectively construct an algorithm that decides P ∗+:
Given any numbers x, y, z the algorithm runs through all the proofs in
PA until a proof of P ∗+(x,y, z) or a proof of ¬P ∗+(x,y, z) is found. If
a proof of the former is found first output 1; if a proof of the latter is
found first output 0. Since arithmetic is consistent not both of them
have a proof. Either one or the other holds by the law of the excluded
middle and by the conjuncts of ϑ∗ dealing with P ∗+ whichever holds has
a proof.

Lemma 3.8. PA ` Θ̃∗ ∧ ϑ∗ → ∀y∃x R∗(x, y).

Proof. Let Ξ(e, i,m) be a Σ formula stating: ”e is the Gödel number of
a Turing machine that halts on input i with output m”.
Let Ξ0(x) and Ξ1(x) abbreviate Ξ(x, x,0) and Ξ(x, x,1) respectively.
We may assume that Θ implies ∀x ¬(Ξ0(x) ∧ Ξ1(x)).
Let B0(a, b, i) and B1(a, b, i) be the formulae

∃q (q × (1 + (i+ 1)× b) = a)

and
∃q ((q × (1 + (i+ 1)× b)) + 1 = a).

β-function methods for coding sequences (see section 3.8 of [10]) show
that for any formula Φ(x) of arithmetic, the following sentence is a
theorem of PA:

∀k∃a∃b∀j < k ((Φ(j)↔ B0(a, b, j)) ∧ (¬Φ(j)↔ B1(a, b, j))).

In particular the sentence Γ:

∀k∃a∃b∀j < k ((Ξ0(j)↔ B0(a, b, j)) ∧ (¬Ξ0(j)↔ B1(a, b, j)))

is a theorem of PA. We assume that Θ implies Γ.
Now work in PA and assume that Θ̃∗ and ϑ∗ hold.
The proof is now by contradiction and the common method of con-
structing a Turing machine that yields a contradiction, when given its
own Gödel number as input. So suppose that ∀y∃x R∗(x, y) is false. Let
k be a witness for that, so there is no r such that R∗(r, k).
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Since Θ implies Γ, Θ̃∗ implies Γ̃∗ and Γ̃∗ yields numbers a, b such that
for every j <∗ k:

Ξ̃0
∗
(j) ⇔ B̃0

∗
(a, b, j) and

notΞ̃0
∗
(j) ⇔ B̃1

∗
(a, b, j)

By lemma 3.7 and since we assumed ϑ∗; P ∗0 , P
∗
=, P

∗
s , P

∗
+ and P ∗× define

recursive relations. Now since B̃0 and B̃1 are equivalent to formulae
built up from P0, P=, Ps, P+, P× by existential quantification, conjunc-

tion and disjunction, B̃0
∗

and B̃1
∗

define recursive enumerable relations.
R∗(x, y) apparently also defines a recursive enumerable relation. Now
we look at action of a certain Turing machine T .
When given any number ias input, T first finds a number j such that
R∗(i, j) holds. Because of Lemma 3.1 such a j will always exist and be-
cause R∗(x, y) defines a recursively enumerable relation T can find such
a j effectively.

Afterwards T searches witnesses for the truth of either B̃0
∗
(a, b, j) or

B̃1
∗
(a, b, j). If it finds a witness to truth of the former first it outputs 1;

if it finds a witness to the truth of the latter first it outputs 0.
T gives an output for every input; i. e. T is totally defined, as we will
see in a moment:
To show this it will suffice to show that R∗(i, j) ⇒ j <∗ k for if j <∗ k
then - since Ξ0(j) either holds or does not hold - a witness to the truth

of either B̃0
∗
(a, b, j) or B̃1

∗
(a, b, j) will exist and so T will give an output

for every input.

We may assume that Θ implies

∀x 0 ≤ x,∀x∀x′
(
x < x′ → sx ≤ x′

)
and

∀x∀x′
(
x ≤ x′ ∧ x 6= x′ → x < x′

)
.

If R∗(0, j) then by Θ̃∗ (Lemma 3.3(2)) there is j ≤∗ k. But by assump-
tion ¬R∗(0, k) and by Lemma 3.2 ¬P ∗=(j, k). Thus j <∗ k.
For the induction step suppose that R∗(i+ 1, j).
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3 Quantified provability logic

Then for some j′ we have that P ∗s (j′, j), R∗(i, j′) and by induction hy-
pothesis j′ <∗ k whence j′≤̃∗k. But since ¬R∗(i+1, k) there is ¬P ∗=(j, k)
and therefore j<̃

∗
k.

Thus for every i: If R∗(i, j) then j<̃
∗
k. So T is totally defined.

Now let i be an arbitrary number. Let j be the number that is found by
T when given input i. So R∗(i, j) and by the above j<̃

∗
k. If Ξ0(i) holds,

then by Lemma 3.6 Ξ̃0
∗

and therefore B̃0
∗
(a, b, j) but not B̃1

∗
(a, b, j) -

thus T outputs 1.

If Ξ1(i) holds then by Lemma 3.6 Ξ̃1
∗

and then - since Θ implies

∀x ¬ (Ξ0 (x) ∧ Ξ1 (x)) - not Ξ̃0
∗

therefore B̃1
∗
(a, b, j) and not B̃0

∗
(a, b, j)

- thus T outputs 0.
So for every natural number i:

T (i) = 1 ⇔ Ξ̃0
∗
(i)

T (i) = 0 ⇔ Ξ̃1
∗
(i)

Now let e be the Gödel number of the Turing machine T .
Then if

Ξ0(e) ⇔ T (e) = 1 ⇔ Ξ(e, e, 1) ⇔ Ξ1(e) ⇔ ¬Ξ0(e)

and if
¬Ξ0(e) ⇔ T (e) = 0 ⇔ Ξ(e, e, 0) ⇔ Ξ0(e)

This contradiction finally proves the Lemma.

Lemma 3.9 (Artemov´s lemma). Let Φ(x) be any formula of L. Then

PA ` Θ̃∗ ∧ ϑ∗ ∧ R∗(x, y)→
(

Φ (x)↔ Φ̃∗ (y)
)

.

Proof. Artemov´s lemma follows directly from lemmata 3.4 and 3.8.

Theorem 3.1. The class of always true sentences is not arithmetical.

Proof. We will show that there is a one-one effective function f , that
reduces the truth set V to the class of always true sentences of QML.
Since by Tarski´s theorem V is not arithmetical, neither the class of
always true sentences of QML will be.
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Define f as follows: for any sentence Ψ of L set f(Ψ):= Θ̃ ∧ ϑ → Ψ̃,
which is a sentence of QML. Ψ is true if and only if f(Ψ) is always
true:
Applying Artemov´s lemma to the case where Φ(x) is a sentence of L,

we see that for every interpretation ∗ the sentence Θ̃∗∧ϑ∗ →
(

Ψ↔ Ψ̃∗
)

is a theorem of PA and therefore true.
Suppose now that Ψ is true. Then Θ̃∗ ∧ϑ∗ → Ψ̃∗ is true for every ∗ and
therefore f(Ψ) is always true.
Conversely suppose that f(Ψ) is always true. Take ∗ as the special in-
terpretation that assigns 0 = p0, p0 = p1, sp0 = p1, p0+p1 = p2 and p0×
p1 = p2 to P0, P=, Ps, P+, P× respectively. Then Θ̃∗ ∧ ϑ∗ → Ψ̃∗ is true.
But Θ̃∗ is equivalent to Θ, hence true and by consistency of arithmetic
and provable Σ-completeness ϑ∗ is also true. Thus Ψ̃∗ is true. But Ψ̃∗

is equivalent to Ψ. Therefore Ψ is true.

Before we strengthen this theorem, we turn our attention to the class
of the always provable sentences of QML. As we informally stated
above the set of always provable sentences is Π0

2. In more detail: Let
R(i, j, k) hold if and only if i is the Gödel number of a sentence ϕ of
QML and j is the Gödel number of an interpretation of the predicate
symbols in ϕ and k is the Gödel number of a proof in PA for ϕ∗. R
is a recursive relation and the set of always provable sentences can be
written as {ϕ|∀j∃k R(pϕq, j, k)}. We are now going to show that this
set is in fact Π0

2-complete, so there is no simpler characterization for this
set, in particular there is no way of axiomatizing it.

To do so we will need an alternative characterization of Π0
2 sets.

Lemma 3.10. S is a Π0
2 set if and only if for some recursive relation

P : S = {n | ∀i∃j (i < j ∧ P (n, j))}.

Proof. First suppose that S = {n | ∀e∃m R(n, e,m)}, with R a recursive
relation. Define P (n, j) so that it holds iff j is the Gödel number of a
finite sequence such that for all e < |j| - where |j| denotes the length of
j - je is the least m such that R(n, e,m). Then P is a recursive relation.
If n ∈ S, then for every natural number e there will be such a finite
sequence of length e + 1 and thus there will be infinitely many such
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3 Quantified provability logic

sequences. And if there are infinitely many such sequences, then - since
any two of them have the same values for arguments less than their
length - there will be at least one such sequence y of length e+ 1. And
then R(n, e, je). Thus S = {n|∀i∃j (j > i ∧ P (n, j))}. Conversely, if
P is recursive and S = {n|∀i∃j (j > i ∧ P (n, j))}, then S is visibly
Π0

2.

Theorem 3.2. The class of always provable sentences is Π0
2-complete.

Proof. Since we know that the class of always provable sentences is Π0
2,

we need to show that for any other set S that is Π0
2, there exists a

recursive function f such that

S = {n|f(n) is an always provable sentence of QML} .

We will show how to effectively affiliate a sentence φn of QML with
every natural number n, such that S = {n| for all ∗ : PA ` φ∗n}.
We will write S = {n|∀i∃j (j > i ∧ P (n, j))}.
Since P is recursive by Lemma 3.10 it can be defined by some Σ formula.
Let Qn(y) be the formula holding iff P (n, y).
Let E be the following ofQML sentence ∀z∀z′ (P=zz

′ → (�Gz ↔ �Gz′)).
Let H(v, z) be the Σ formula formalizing ”v is the Gödel number of
a Turing machine that halts on input z”. H(v, z) can be written as
∃y Ξ(v, z, y) with Ξ as in the proof of Lemma 8.
Finally, define φn for each n ∈ S to be the following sentence of QML:

Θ̃ ∧ ϑ ∧ E → ∃v∃w
(
v<̃w ∧ Q̃n(w) ∧ ∀z

(
�Gz ↔ H̃(v, z)

))
.

We need to show that n ∈ S iff for every ∗: PA ` φ∗n.
Suppose n ∈ S and ∗ arbitrary. Then

Claim 3.1. For some natural number x:

PA ` ϑ∗ → ((∃z (R∗ (z0, z) ∧ Prov (pG∗ (z)q)))↔ H (x, z0)) .

Proof of the Claim. Work in PA. Suppose ϑ∗ holds. Then by arguments
we used to prove Lemma 3.7, P ∗0 , P

∗
=, P

∗
s , P

∗
+ and P ∗× define recursive re-

lations and are therefore equivalent to Σ formulae. For example: P ∗s (i, j)
iff there is a proof of P ∗s (i, j) with a smaller Gödel number than any proof
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of ¬P ∗s (i, j). This property for a pair of numbers can also be defined by a
Σ formula. Therefore R∗(z0, z) is a Σ formula and since Prov (pG∗ (z)q)
is also Σ, so is the left-hand side of the consequent. One can show by
the usual induction on the construction of strict Σ formulae, that for ev-
ery strict Σ formula Φ(z), there exists a Turing machine T with Gödel
number e with the property that it is provable in PA that T halts on just
those numbers that satisfy Φ(z). But the left side of the consequent is
a Σ formula and hence equivalent to some strict Σ formula.

Now fix the number x as in Claim 3.1.

Claim 3.2.

PA ` Θ̃∗ ∧ ϑ∗ ∧ E∗ ∧R∗(z0, z)→ (Prov(pG∗(z)q)↔ H(x, z0)).

Proof of the claim. Work in PAand assume Θ̃∗ ∧ ϑ∗ ∧ E∗ ∧R∗(z0, z).
By Claim 3.1: if Prov(pG∗(z)q) then H(x, z0).
On the other hand: if H(x, z0), then by Lemma 3.6 there is R∗(z0, z

′)
and Prov(pG∗(z′)q) for some z′. By Lemma 3.8 since R∗(z0, z) and
R∗(z0, z

′) there is P ∗=(z, z′). But then Prov(pG∗(z)q).

Claim 3.3.

PA ` Θ̃∗ ∧ ϑ∗ ∧R∗(x, z) ∧R∗(z0, z)→
(
H(x, z0)↔ H̃∗(v, z)

)
.

Proof of the claim. This is an instance of Artemovs Lemma (Lemma
3.9).

Now by Claim 3.2 and Claim 3.3 we have:

PA ` Θ̃∗ ∧ ϑ∗ ∧ E∗ ∧R∗(x, z) ∧R∗(z0, z)

→
(
Prov(pG∗(z)q)↔ H̃∗(v, z)

)
(1)

By Lemma 3.8 and (1):

PA ` Θ̃∗ ∧ ϑ∗ ∧ E∗ ∧R∗(x, z)

→ ∀z
(
Prov(pG∗(z)q)↔ H̃∗(v, z)

)
(2)
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3 Quantified provability logic

Since n ∈ S as we have supposed, there is a number y, such that x < y
and Qn(y) holds. We apply Artemov´s Lemma again:

PA ` Θ̃∗ ∧ ϑ∗ ∧R∗(x, v) ∧R∗(y, w)

→
(

(x < y ∧Qn(y))↔
(
v<̃
∗
w ∧ Q̃n

∗
(w)
))

(3)

Since Q and x < y are Σ-formulae:

PA ` x < y ∧Qn(y) (4)

From (3) and (4) we obtain:

PA ` Θ̃∗ ∧ ϑ∗ ∧R∗(x, v) ∧R∗(y, w)→
(
v<̃
∗
w ∧ Q̃n

∗
(w)
)

(5)

Which together with (2) yields:

PA ` Θ̃∗ ∧ ϑ∗ ∧R∗(x, v) ∧R∗(y, w)

→
(
v<̃
∗
w ∧ Q̃n

∗
(w) ∧ ∀z

(
Prov (pG∗ (z)q)↔ H̃∗ (v, z)

))
(6)

By predicate calculus:

PA ` Θ̃∗ ∧ ϑ∗ ∧ E∗ ∧ ∃v R∗ (x, v) ∧ ∃w R∗ (y, w)

→ ∃v∃w (v<̃
∗
w ∧ Q̃n

∗
(w)∧

∧ ∀z (Prov(pG∗(z)q)↔ H̃∗(v, z))) (7)

Since by Lemma 6 there is PA ` Θ̃∗ → ∃v R∗(x, v) ∧ ∃w R∗(y, w) it
follows from (7) that:

PA ` Θ̃∗ ∧ ϑ∗ ∧ E∗

→ ∃v∃w
(
v<̃
∗
w ∧ Q̃n

∗
(w) ∧ ∧∀z

(
Prov (pG∗ (z)q)↔ H̃∗ (v, z)

))
(8)

which is exactly PA ` φ∗n.

On the other hand assume that for all ∗, PA ` φ∗n. We need to show that
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n ∈ S.
Consider a family of interpretations ∗i, which all interpret ∗i P0, P=, Ps,
P+, P× in the standard way. (i.e.: P ∗i+ is the formula v0 + v1 = v2, etc.).
The only difference between these interpretations is what they assign to
G. G∗i(v0) is the formula v0 = i.
First observe that every theorem of PA is true and that for every in-
terpretation ∗ in which P0, P=, Ps, P+, P× are standardly interpreted
Θ̃∗ ∧ ϑ∗ ∧ E∗ is true. Thus for each i:(

∃v∃w
(
v<̃w ∧ Q̃n(w) ∧ ∀z

(
�Gz ↔ H̃(v, z)

)))∗i
is true. In English language that means that for every i, there exist
natural numbers v, w such that v < w, Qn(w) holds and for all z, z = i
is provable if and only if the Turing machine with Gödel number v halts
on z. By consistency of arithmetic, z = i is provable if and only if
z = i and therefore for each i there exist natural numbers v, w such that
v < w, Qn(w) holds and the Turing machine with Gödel number v halts
on i and i alone. Of course if the Turing machine with Gödel number v
halts on i and i alone, the Turing machine with Gödel number v′ halts
on i′ and i′ alone and i 6= i′, then v 6= v′. Thus for each i there exist
numbers v, w - with different v for different i - such that v < w and
Qn(w) holds. Thus there are infinitely many numbers v such that for
some w: v < w and Qn(w). Thus for every x, for some w: x < w and
Qn(w), which is exactly n ∈ S. This proves the theorem.

We now strengthen the result of Artemov and show, that the class of
always true sentences is Π0

1-complete in V , where V denotes the truth
set of arithmetic. To do so we will have to show some auxiliary lemmata
first. Let Φ (x) be any formula of L+. We say that Φ (a1, . . . , an) holds
at the set A ⊆ N if Φ (x) is satisfied by numbers a1, . . . , an when A is
assigned to the predicate letter G.
Let ζ = Θ̃ ∧ θ ∧ ∀x∀x′ (Gx′ ∧ P=xx

′ → Gx).

Lemma 3.11. Let Φ (x) be any formula of L+ and let * be any interpre-
tation of ζ. Suppose that ζ∗ is true and that R∗ (a1, b1) , . . . , R

∗ (an, bn)
hold.
Let A = {a|for some b, R∗ (a, b) and G∗ (b) hold}.
Then Φ (a1, . . . , an) holds at A if and only if Φ̃∗ (b1, . . . , bn) holds.
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3 Quantified provability logic

Proof. As usual the proof is by induction just like the proof of Lemma
3.4. The atomic cases - with exception of the one, where the formula is
of the form Gu - are handled by Lemma 3.3.
So we look at that case.
Suppose R∗ (a, b) holds. Assume that G (a) holds at A. Then we
have for some b′, R∗ (a, b′) and G∗ (b′). By Lemma 3.3(1) P ∗=bb

′ holds.
∀x∀y (Gx ∧ P=xy → Gy) is certainly true and therefore G∗b holds. The
other direction is straightforward from the definition of A.
Therefore if R∗ (a, b) holds, then G (a) holds at A iff G∗b holds.
Truth-functional cases are handled as always and since Θ̃∗ and θ∗ are
true, so are by Lemmata 3.1 and 3.8 ∀x∃y R∗ (x, y) and ∀y∃x R∗ (x, y).
This is enough to prove the quantifier cases.

Lemma 3.12. Let Φ be any sentence of L+ and let ∗ be any interpre-
tation of ζ. Suppose that ζ∗ is true and let

A = {a|for some b, R∗ (a, b) and G∗ (b) hold} .

Then Φ holds at A if and only if Φ̃∗ is true.

Proof. This is just the special case of the previous lemma.

We will say that two sets A,B ⊆ N are k-equivalent if for every m ≤
k,m ∈ A iff m ∈ B.
We will also be needing the relativized Kleene T-predicate. I will define
this concept for an oracle machine, which is a kind of Turing machine.

Definition 3.2. An oracle machine is a Turing machine, that is able
to stop its computation to gain information from an external source, an
oracle. To be more precise: In the table of an oracle machine there are
instructions 〈i, s, j1, j2〉. Given such an instruction the machine acts in
the following way. When in state i scanning a symbol of type s, the
machine stops and asks the oracle whether the number of 1s on its tape
belong to a certain set or not. If it receives a positive answer it will
enter the state j1 and continue its computation; if it receives a negative
answer it will enter the state j2 and continue its computation.
A halting computation by an oracle machine is correct for the set A, if
A is the set the oracle machine asks about.
We may assume, that we have chosen a formulation of the concept of an
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oracle machine that satisfies the following condition: if k is the Gödel
number of a computation by the oracle machine and n is a number about
which the machine asks the oracle, then n ≤ k.
The relativized Kleene T-predicate T is a relation among numbers e, i, k
and a set A. This relation holds if and only if k is the Gödel number of
a halting computation by the oracle machine with Gödel number e that
is correct for the set A when given input i. We will write TA (e, i, k),
when this relation holds.
(In this paper T also denotes a Turing machine, but there will be no
danger of confusion)

Lemma 3.13. If TA (e, i, k) and A and B are k-equivalent, then TB (e, i, k).

Proof. Since A and B are k-equivalent, any number about which the
oracle is questioned during a computation is less than the Gödel number
of that computation. Thus if k is correct forA, k is also correct forB.

We say that A m-approximates V if the following condition is met:

[(m is not (the Gödel number of) a sentence of L → m /∈ A)∧
(m is a sentence of L →
∀n(n is a subsentence of the sentence m→
[n is an atomic sentence → (n ∈ A↔ n ∈ V0)]∧
[n is a conditional Φ→ Φ′ →

(
n ∈ A↔

(
Φ ∈ A→ Φ′ ∈ A

))
]∧

[n is a universal quantification ∀xΦ→ (n ∈ A↔ for all i,Φx (i) ∈ A)]))]

Here V0 is the recursive set of the Gödel numbers of true atomic sen-
tences of L. Note that Φx (i) counts as a subsentence of ∀xΦ for each i.

Now let F (x, y,G) be the formula of L+ expressing:

∀m
(
∀j < m ¬TG (x, y, j)→ G m-approximates V

)
.

Lemma 3.14. Suppose that A is arithmetical and that F (e, i, A) holds.
Then for some k there is TA (e, i, k).

Proof. If for all k, ¬TA (e, i, k), then A would m-approximate V for all
m, hence be identical with V . But V is not arithmetical.

43



3 Quantified provability logic

For each e, i let ψe,i be the sentence ζ ∧ F̃ (e, i).

Lemma 3.15.

∃k T V (e, i, k) iff for some ∗, ψ∗e,i is true.

Proof. Suppose T V (e, i, k).
Let r be a number greater than the number of occurrences of logical
operators in any sentence of L with Gödel number ≤ k. Let A be the
set of Gödel numbers of true sentences of L that contain < r occurrences
of the logical operators. Now if m ≤ k and m is the Gödel number of a
sentence of L, then the number of occurrences of logical symbols in that
sentence is smaller than r and therefore m ∈ A iff m ∈ V .
On the other hand if m is not the Gödel number of a sentence then
neither m ∈ A nor m ∈ V .
So A is an arithmetical set that is k-equivalent to V .
Therefore by Lemma 3.13 TA(e, i, k). That means, that F (e, i, A) holds.
For if ∀j < m ¬TA (e, i, j), then there must be m ≤ k, and since A is the
set of Gödel numbers of true sentences of L that contain < r occurrences
of the logical operators, A m-approximates V .
We define ∗ as follows. Let P0, P=, Ps, P+, P× receive their standard in-
terpretations. (P ∗+p0p1p2 is p0 + p1 = p2, etc.) and let G∗ be B(p0),
where B(p0) is a formula of L that defines the set A. Under this condi-
tions ϑ∗, Θ̃∗ and ∀x∀x′ (Gx′ ∧ P=xx

′ → Gx)∗ are true, therefore ζ∗ is
true.
Since P= received the standard interpretation R∗(a, b) holds iff a = b
and therefore A = {a| for some b, R∗(a, b) and G∗(b) hold}. Hence by

Lemma 3.12 ˜F (e, i, A)
∗

is true and therefore also ψ∗e,i.
Conversely suppose that ψ∗e,i is true.
Let A = {a| for some b, R∗(a, b) and G∗(b) hold}. Since P ∗0 and P ∗= de-
fine arithmetical relations R∗(x, y) also does. Since G∗ also defines an

arithmetical set, A is arithmetical. Since I∗ and ˜F (e, i, A)
∗

are true
F (e, i, A) by Lemma 3.12. By Lemma 3.14 for some k: TA (e, i, k). Now
suppose m ≤ k. Then ∀j < m ¬TA(e, i, j) and since F (e, i, A) holds, A
m-approximates V . Thus if m is not the Gödel number of a sentence,
m is not in A or V , but if m is the Gödel number of a sentence Φ, then
by induction on sub sentences Φ′ of Φ, if n is the Gödel number of a
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subsentence Φ′ of Φ then n ∈ A iff Φ′ is true iff n ∈ V . Therefore m ∈ A
iff m ∈ V , A is k-equivalent to V and by Lemma 3.13 T V (e, i, k).

We can now prove:

Theorem 3.3. The class of always true sentences is Π0
1-complete in V.

Proof. Let U(i, j) hold if and only if:
i is the Gödel number of a sentence ϕ of QML and if j is the Gödel
number of an interpretation ∗ that assigns formulas of L to all and
only predicate letters of S, then the result of substituting in ϕ for those
predicate letters the formulae assigned to them by ∗ is true.
U is recursive in V and a sentence is always true iff its Gödel number is
in {i|∀j U(i, j)}.
Now let A be an arbitrary set that is Π0

1 in V . Then N\A is Σ0
1 in V and

thus for some e: N \ A =
{
i|∃k T V (e, i, k)

}
. By Lemma 3.15: N \ A ={

i| for some ∗, ψ∗e,i is true
}

. Therefore A = {i|¬ψe,i is always true}. So

we showed that we can construct a sentence ϕi of QML for an arbitrary
i such that A = {i|ϕi is always true}. Take ϕi = ¬ψe,i.
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