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Abstract

In this diploma thesis we investigate the Modified Embedded Atom Method (MEAM) with

the focus on its suitability for the simulation of vacancy diffusion in alloys, especially in

dimensionally limited settings. As test system we chose L12 FePt3 in order to build upon

the results of Jaesong Kim, Yangmo Koo, and Byeong-Joo Lee [13]. Under these premises

we have developed simulation tools which can be used as a basis for future researches. The

source code of the simulation tools is included as appendix.

Zusammenfassung

In dieser Diplomarbeit beschäftigen wir uns mit der “Modified Embedded Atom“ Methode

(MEAM) mit dem Hauptaugenmerk auf ihrer Anwendbarkeit auf Leerstellendiffusion in

Legierungen, besonders in dimensional beschränkten Situationen. Als Testsystem haben

wir L12 FePt3 gewählt, um auf den Ergebnissen von Jaesong Kim, Yangmo Koo, and

Byeong-Joo Lee [13] aufzubauen. Unter diesen Voraussetzungen haben wir Simulation-

swerkzeuge entwickelt, die auch weiterführende Untersuchungen ermöglichen. Der Quellcode

der Simulationswerkzeuge befindet sich im Anhang.
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Chapter 1

Introduction

1.1 Objective

The ultimate objective of the work presented here is the simulation of atom diffusion in

dimensionally limited alloy systems like thin films or nano-wires. A model for the potential

is required, which can descibe such a system, including at least next nearest neighbour

interactions.

1.2 Options for Calculation of Potentials

1.2.1 Pair Potentials

The potential is described by the interactions of pairs of atoms. This method is no longer

considered adequate, because it fails to predict known physical properties [11]:

• Pair potentials predict the Cauchy Relation for the elastic constants (C12 = C44). This

relation is not a good approximation in general, and is wrong for most cubic metals.

• The vacancy formation energy differs from experiment.

• An inward relaxation of the metal surface is observed in experiment, which pair

potentials are incapable to reproduce.
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• The melting point is overestimated about 20 %.

Pair potentials are incapable to reproduce these behaviours. Because the calculation is

simple by comparison pair potentials are however still in use for some simulations.

1.2.2 Ab Initio Calculations

Ab initio calculations use the density functional theory to quantum-mechanically solve the

many-body problem for the ground state [12] [16] [29]. Because the calculation method is

an iterative procedure, the method involves a large computational effort and is limited to a

system of at most 100 or 200 atoms. However it is the most accurate way to get the potential

and results of all other methods have to be compared with the experiment and ab initio

calculations.

1.2.3 Cluster Expansion

Using the cluster expansion a system of equations with correlation functions and effective

energies is adjusted to known results from ab initio calculations so that new results can

be successfully predicted [23] [18] [34]. The correlation functions refer to a hierarchy of

increasingly complex geometrical figures representing clusters of atoms, which occur in the

system, and the effective energies are contributions to the total energy from each kind of

figure. This method can be applied to a wide range of the phase diagram provided that the

atoms are sitting on the same crystal lattice across the whole composition range considered.

1.2.4 Virtual Neuronal Networks

A model of interacting atoms can be trained to reproduce ab initio results of energy provided

that one has a large amount of data as reference, so that weight factors can be correctly

adjusted. Once this training procedure has been performed, one can calculate the potential

very fast and accurately [12] [16] [29], nevertheless it is expensive to produce a large enough

data base for training a virtual neuronal network.
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1.2.5 Many-Body Potentials

In the literature there can be found a large number of potential forms containing many-body

contributions with adjustable parameters which have been proposed to calculate the potential

of a solid [10] [11]. Algebraic functions save calculation time so that they can also be applied

to large systems. Because there are a lot of many-body potentials one has to choose a specific

function according to the requirements of the material and the problem considered.

1.3 Selection of the Modified Embedded Atom Method

We decided to use a many-body potential suitable for the simulation of large systems on

and off lattice. Specifically we choose the modified embedded atom method because of the

wide range of possible applications. The modified embedded atom method was successfully

used for elements and alloys [20] [22] [13], for dimensionally limited systems [17] [13] [15] [24]

and for the investigation of defects [14] [21]. In addition the paramters are adjusted in order

to reproduce a lot of physical properties [22] (vacancy formation energy, elastic constants,

inward relaxation of the surface,. . . ). Interactions up to the second coordination shell are

included.
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Chapter 2

Overview

2.1 Concepts of the Method

The basic concept of all embedded atom methods is that one atom i is taken out of the host

lattice and embedded into the remaining local background electronic density ρ̄i, which is

caused by the environmental atoms. The necessary energy to do this is called embedding

energy and is given by the functional F [ ρ̄i ]. Additionally all pair interactions φij between

the embedded atom i and the environmental atoms j are considered. This will be done for

every atom in the lattice successively in order to receive the total energy Etot of the system.

We illustrate the idea of the concept in Figure 2.1.

Etot =
∑
i

[
F [ ρ̄i ] +

1
2

∑
j 6=i

φij

]
(2.1)

Because pure pair potentials are insufficient to calculate the total energy of an alloy the

additional embedding functional includes the many-body effects.

One can consider embedding atom methods as a further development of models which

were designed originally to calculate the energy needed to embed an impurity in a host lattice.

When calculating the total energy of the system every atom assumes the role of an impurity.

The various embedding atom models differ mainly in the way how the embedding energy

and the background electronic density are calculated. Some methods take more empirical
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approach and others use ab initio calculations to determine the wanted functional relationship

between the energy and the density.

The so called second nearest neighbour modified embedded atom method is made up of

the following components [5] [19] [13] [32]:

• For the embedding functional a logarithmic function is chosen for convenience as it

is the simplest function showing the expected qualitative behaviour, Section 3.1. It

includes the sublimation Energy Es, a reference background electronic density ρ0 and

an adjustable factor A for each element included.

F [ ρ̄ ] = A Es ( ρ̄/ρ0 ) ln( ρ̄/ρ0 ) (2.2)

• The model for the background electronic density includes angular dependent par-

tial electronic densities ρ(l)
i , which consist of atomic electronic densities ρa(l)

i and

Legendre polynomials L(l) representing the angular dependence of the interactions,

Section 3.2.1, 3.2.2 and 3.2.3.

ρ
(l)
i =

∑
j 6=i

∑
k 6=i

ρ
a(l)
j (rij) ρ

a(l)
k (rik)L(l)( cos(Θjik) ) (2.3)

• The pair potentials were calculated by a universal function Eu(R) derived from ab

initio calculations, Section 3.3. Interactions up to the second coordination shell are

considered. Z1 and Z2 are the coordination numbers of the first and second nearest

neighbor shells, S is a screening factor and a is a scaling factor given by the quotient

of the second and the first nearest neighbour distance .

Eu(R) = F [ ρ̄(R) ] +
Z1

2
φ(R) +

Z2S

2
φ(aR) (2.4)

A cut-off function fc and a screening function Sikj are applied to the components and

explained in Section 3.4 and 3.5. Figure 2.2 shows the dependences of the components and a

summary of the needed parameters is given in Section 2.3.
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for every
atom in

the lattice

Figure 2.1: Illustration of the embedded atom method: Embed an atom i of the lattice in
the remaining background electronic density ρ̄i , calculate the embedding function for it and
consider the pair interactions φij between the embedded atom i and its neighbouring atoms
j. Do this for every atom in the lattice to obtain the total energy of the system.
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Embedding Functional

F [ ρ̄i ] = AE
ρ̄i
ρ0

ln(
ρ̄i
ρ0

)

Pair Potentials
1
2

∑
j 6=i

φij

Universal Function

Ẽu(a) = −(1+a+da3) e−a

Background Electronic Density

ρ̄i =
2ρ(0)
i

1 + exp{−
∑3
l=1 tl [

ρ
(l)
i

ρ
(0)
i

]2 }

Partial Electronic Densities

(ρ(l)
i )2 =

∑
j 6=i

∑
k 6=i

ρ
a(l)
j ρ

a(l)
k L(l)(cos(Θjik))

Atomic Electronic Densities

ρ
a(l)
j = ρ̃j · exp{−βl(

r

req
− 1)}

Screening and Cut-Off

Sikj , fc

enters indirectly

enters

enter

enter

enter

enter

enters indirectly

Figure 2.2: The overview of the modified embedded atom method model shows the influence
of the included components.
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2.2 History

As it is well proven for the type of problems we have in mind we chose the second nearest

neighbour modified embedded atom method for our simulation program. It is well documented

and the needed parameters are published for a lot of systems [20] [22] [13]. We now give a

short overview of the historical development of the method.

1964 Density Functional Theory: The energy of the ground state is a functional of the

ground state electronic density (E = E[ ρ ] for T = 0K) [12].

1980 Quasiatom Theory: Estimation of the electrostatic interaction of an impurity with

a host electronic system. The impurity ion and its screening cloud is treated as a

quasiatom [30].

1980 Effective Medium Theory: Embedding an atom in an inhomogeneous host can be

described by replacing the host with an effective homogeneous local environment [25].

1984 Embedded Atom Method: The total energy of an metal can be calculated by embedding

each atom in the remaining host background electronic density and by considering the

local pair interactions [9].

1989 Modified Embedded Atom Method: Modification of of the background electronic

density by additional angular dependent terms [5].

2000 Second Nearest Neighbour Modified Embedded Atom Method: Involving second

nearest neighbour interactions with an additional screening function [19].

2003 Multistate Modified Embedded Atom Method: The model is almost exclusively using

functions and data derived from ab initio calculations [6].

2009 Concentration dependent and composition dependent embedded atom methods [31]

[28].

Almost always the quasi atom method and the effective medium theory were mentioned in

the literature together, because the essential ideas are practically the same. We recommend

the paper [8], model of metallic cohesion: The embedded atom method, by Murray S. Daw., to

17



get a good idea of how the embedded atom method correlates with the previous publications

and to learn about the theoretical background.

2.3 Parameters

In order to make simulations with the modified embedded atom method a set of parameters

for each material is needed. We must distinguish if the parameters are determined directly

from physical quantities or if they are adjusted to reproduce known material properties.

The physical quantities refer to groundstate properties and are:

• The sublimation energy of the equilibrium state Esub. This is the energy needed to

separate all atomic bonds. The parameter appears in the universal function, Section 3.3.1

Equation 3.18, and in the embedding functional, Section 3.1 Equation 3.1.

• The equilibrium nearest neighbour distance req. The parameter appears in the universal

function, Section 3.3.1 Equation 3.18, and in the atomic electronic densities, Section 3.2.3

Equation 3.17.

• The equilibrium atomic volume Ω0. This is the volume one atom has available if the

material is in the equilibrium state. If one knows the Wigner-Seitz radius rws for

example, it is possible to determine it directly with Ω0 = 4
3πr

3
ws. Otherwise one can

calculate the volume by the known properties of the unit cell also. The parameter

appears in the calculation of the universal function, Section 3.3.1 Equation 3.18.

• The isothermal bulk modulus B and its derivative with respect to the pressure ∂B/∂p.

The parameter is needed for the calculation of the universal function, Section 3.3.1

Equation 3.18.

To determine these quantities results from experiments as well as from ab initio calculations

are used. This way the semiempirical character of the modified embedded atom method

becomes apparent.

The parameters which have to be adjusted to known properties are:

• The parameter of the embedding functional A, Section 3.1.
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• The decay constants of the atomic electronic densities β(0), . . . , β(4), Section 3.2.3.

• The weighting factors to calculate the background electronic density t1, . . . , t3, Sec-

tion 3.2.1.

• The parameters Cmin and Cmax to calculate the screening function, Section 3.5.1

Equation 3.45.

• The atomic electronic density scaling factor ρ̃, Section 3.2.3. For pure elements this

factor is often omitted, but for alloy systems this factor can have great effects on

calculations [13].

Some of the properties one wants to reproduce with the simulation parameters are elastic

constants, surface energy, vacancy formation energy, activation energy of vacancy diffusion,

stacking fault energy and structural energy differences. Support for adjusting the parameters

is offered by published tables [19], where the parameters and how they influence material

properties are noted. Additional information about the determination of the parameters is

given by M. I. Baskes [3].

For the simulation of a pure element one needs one set of physical parameters and one

set of adjustable parameters. For the simulation of a binary alloy for example, one needs

three sets of physical parameters. One for each involved element type and one for the alloy

type, in order to calculate the universal functions. From the adjustable parameters two sets

are needed, because there are two different atom types with different embedding functionals.

Additionally one needs more screening function parameters, because one has to consider

every possible arrangement of the atom types.

For pure elements we almost exclusively used the parameters published by Byeong-Joo

Lee and M. I. Baskes [20] [22]. The physical values of these sources correspond with the

tables given by James H. Rose, John R. Smith, Francisco Guinea and John Ferrante [27].

19



Parameters used for L12 FePt3

E [eV ] req [A] B [eV/A3] ∂B/∂p Ω0 [A3]
FePt3 5.49 2.72 1.635 5.73 14.20
Fe 4.29 2.48 1.080 4.95 11.74
Pt 5.77 2.77 1.800 5.98 15.00

Table 2.1: Physical quantities given by Jaesong Kim, Yangmo Koo, and Byeong-Joo [13] for
L12 FePt3. In this table ∂B/∂p is given instead of the parameter d, Section 6.3. Ω0 was
calculated with the help of the nearest neighbour equilibrium distance req.

A β(0) β(1) β(2) β(3) t1 t2 t3 ρ0

Fe 0.56 4.15 1.00 1.00 1.00 2.60 1.80 -7.20 1.00
Pt 0.90 4.92 2.20 6.00 2.20 3.90 -2.20 3.84 1.00

Table 2.2: Adjustable parameters published by Jaesong Kim, Yangmo Koo, and Byeong-Joo
Leea [13] for L12 FePt3.

Cmax(Fe) 2.80
Cmin(Fe− Fe− Fe) 0.36
Cmin(Fe− Fe− Pt) 0.84
Cmin(Fe− Pt− Fe) 0.36
Cmin(Fe− Pt− Pt) 0.84

Cmax(Pt) 2.80
Cmin(Pt− Pt− Pt) 1.53
Cmin(Pt− Pt− Fe) 0.84
Cmin(Pt− Fe− Pt) 1.53
Cmin(Pt− Fe− Fe) 0.84

Table 2.3: Screening function parameters published by Jaesong Kim, Yangmo Koo, and
Byeong-Joo Leea [13] for L12 FePt3.
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Chapter 3

Components

3.1 Embedding Functional

The energy needed to embed an atom i in a local environment is a functional of the local

background electronic density [9]. As form for the embedding functional we take the following

formula [19]:

F [ ρ̄ ] = A Es ( ρ̄/ρ0 ) ln( ρ̄/ρ0 ) (3.1)

The factors one needs to calculate are: the background electronic density ρ̄, Section 3.2.1

Equation (3.3), the background electronic density of a reference structure ρ0, the sublimation

energy Es and the adjustable parameter A.

The sublimation energy Es and the parameter A depend on the type of the embedded

atom i. Whereas the parameter A has to be adjusted, the sublimation Energy can determined

from ab initio calculations or by experiment. As reference structure for ρ0 the structure

in equilibrium state of the material is commonly chosen. Thus the following behaviour is

ensured:

• If the local background electronic density is less than in the equilibrium state, it is

energetically favorable to embed another atom in the local environment (F [ ρ̄ ] < 0).
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• If the local background electronic density is more than in the equilibrium state, it is

energetically unfavorable to embed another atom in the local environment (F [ ρ̄ ] > 0).

• If the local background electronic density is the same as in the equilibrium state, the

embedding functional provides no contribution to the total energy (F [ ρ̄ ] = 0).

The form of the embedding functional is made plausible by the following argument. When

an atom participates in bonds, then with increasing number of bonds the bond length is

also increasing and vice versa. The quantitative experimental values yielding this qualitative

behaviour are quite well represented by a logarithmic function as illustrated in Figure 3.3.

In the case of a cubic lattice with center of symmetry it is easy to determine the background

electronic density of the reference structure, because it is equal to the first partial electronic

density ρ(0)
j , Section 3.2.2 Equation (3.4). This is also the case for pure elements with a bcc

or fcc structure.

In the case of alloys the background electronic density of the reference structure depends

on the type of the embedded atom. For instance in L10 FePt3 the background electronic

density in equilibrium state differs, when an Fe-atom or an Pt-atom is embedded. Thus

one needs a reference density for an Fe-site and one for an Pt-site. The different local

environments are shown in Figure 3.1 and 3.2.
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Figure 3.1: The equilibrium ref-
erence structure for L10 FePt3
as seen from a Fe-site. The
green spheres represent Fe and
the bronze spheres represent Pt.

Figure 3.2: The equilibrium ref-
erence structure for L10 FePt3
as seen from a Pt-site. The
green spheres represent Fe and
the bronze spheres represent Pt.
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Figure 3.3: Change in first nearest neighbour distance r − rref relative to diamond silicon
as a function of ratio of number of nearest neighbours to that in diamond silicon, Z/Zref .
Circles are density-functional calculations and squares are quantum-cluster calculations [2].
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3.2 Density Model

3.2.1 Background Electronic Density

In order to calculate the background electronic density at the position of atom i one needs the

partial electron densities ρ(l)
i with l = 0 . . . 3 depending on the local environment, Section 3.2.2

Equation (3.4)-(3.8), and the weighting factors t(h)
i with h = 1 . . . 3 depending on the type

of atom i. Then the squares of the partial electronic densities are superimposed with their

weighting factors to determine the gamma factor:

Γ =
3∑

h=1

t
(h)
i

[
ρ

(h)
i /ρ

(0)
i

]2 (3.2)

Now it is possible to calculate the background electronic density:

ρ̄ =
2ρ(0)
i

1 + e−Γ
(3.3)

Because the gamma factor enters as an exponent the weighting factors may also be

negative. In the special case of a cubic lattice with center of symmetry the gamma factor

vanishes and the background electronic density becomes equal to the first partial electronic

density ρ(0)
i .

3.2.2 Partial Electronic Densities

The main progress of the modified embedded atom method was the consideration of additional

angular-dependent contributions. They were calculated by the partial electronic densities

ρ
(1)
i , ρ(2)

i and ρ
(3)
i . Their specific forms has to fulfill the following conditions [3]:

• They must be invariant to lattice translation and rotation.

• They scale in a simple manner with the atomic electronic densities for homogeneous

deformation.

• They must be equal to zero for a cubic lattice with a center of symmetry.

26



Additionally there is a spherically symmetric partial electron density ρ
(0)
i , which will

vanish only if there is no other atom within the local environment at all.

( ρ(0)
i )2 =

[∑
j 6=i

fcSijρ
a(0)
j

]2

(3.4)

( ρ(1)
i )2 =

∑
α

[∑
j 6=i

xαij fcSijρ
a(1)
j

]2

(3.5)

( ρ(2)
i )2 =

∑
α, β

[∑
j 6=i

xαβij fcSijρ
a(2)
j

]2

− 1
3

[∑
j 6=i

fcSijρ
a(2)
j

]2

(3.6)

( ρ(3)
i )2 =

∑
α, β, γ

[∑
j 6=i

xαβγij fcSijρ
a(3)
j

]2

(3.7)

− 3
5

∑
α

[∑
j 6=i

xαij fcSijρ
a(3)
j

]2

(3.8)

with

xαij =
rαij
rij

(3.9)

xαβij =
rαijr

β
ij

r2
ij

(3.10)

xαβγij =
rαijr

β
ijr

γ
ij

r3
ij

(3.11)

In order to calculate all parts one has to know following factors for the neighbouring

atoms j within the local environment around the embedded atom i:

• The cut-off function fc described in Section 3.4 Equation (3.42).

• The total screening factor Sij described in Section 3.5.2 Equation (3.50).

• The atomic electronic densities ρa(l)
j with l = 0 . . . 3 described in Section 3.2.3 Equa-

tion (3.17).

• The angular dependent terms xαij , x
αβ
ij and xαβγij described in Equation (3.9)-(3.11),

where rαij is the α component of the distance vector between the embedded atom i and

a neighbouring atom j.
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For example, let us assume a cubic lattice with a centre of symmetry with 6 nearest

neighbours in equilibrium distance req, all having the same atom type. Let the next nearest

interaction be completely screened (Sij = 0) and the nearest neighbour interaction unscreened

(Sij = 1). Furthermore none of the neighbours is located within the cut-off area (fc = 1),

described in Section 3.4 Figure 3.12. Then all angular dependent contributions ρ(1)
i , ρ(2)

i and

ρ
(3)
i vanish and ρ(0)

i is equal to 6, because being in equilibrium distance the atomic electronic

densities of the atoms each contribute one, compare Section 3.2.3 Figure 3.5.

One can consider the partial electronic densities as the first two terms in an expansion of

spherical harmonics or as an expansion in gradients of the density [5]. The functions L(l)

with l = 0 . . . 3 are the unnormalized Legendre polynomials and Θjik the angle between a

neighbouring atoms j, the embedded atom i and a neighbouring atom k.

ρ
(l)
i =

∑
j 6=i

∑
k 6=i

ρ
a(l)
j (rij)ρ

a(l)
k (rik)L(l)(cos(Θjik)) (3.12)

L(0)(z) = 1 (3.13)

L(1)(z) = z (3.14)

L(2)(z) = z2 − 1
3

(3.15)

L(3)(z) = z3 − 3
5
z (3.16)

The form of Equation (3.12) differs from the Equations (3.4)-(3.8), because they are more

convenient for the calculation of the density considered here, but they are mathematically

equivalent [32]. Baskes, Nelson and Wright have shown the relationship between the angular

dependent factors (xαij , x
αβ
ij and xαβγij , Equation (3.9)-(3.11)) and the equivalent cosine

terms [5].

3.2.3 Atomic Electronic Densities

Each neighbour atom of the embedded atom provides contributions to the electronic density

with four atomic electronic densities. These are exponential functions ρa(h)
j with h = 0 . . . 3
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Figure 3.5: Atomic electronic densities for Pt. In the equilibrium distance to the embedded
atom each density contributes exactly one.

which are needed for the partial electronic densities, Section 3.2.2. For each type of element

one needs one set of parameters: the scaling factor ρ̃j , the decay constants β(h) with

h = 0 . . . 3 and the equilibrium distance req. For pure elements one can assume ρ̃j to be equal

to one for every j, but for binary systems they have to be adjusted [13]. This scaling factor

and the decay constants have to be adapted when using the potential for other materials.

The equilibrium distance is given by experiment and ensures the following behavior. A

neighbouring atom j in equilibrium distance to the embedded atom i contributes ρ̃j to the

partial electronic densities. The physical reason for this form is the exponential decay of the

electron density distribution outside a ”jellium” surface [1].

ρ
a(h)
j = ρ̃j exp[−β(h)(r/req − 1)] (3.17)

Figure 3.5 shows the atomic electronic densities for a neighbouring Pt-Atom.
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3.3 Pair Potentials

3.3.1 Universal Binding-Energy Relation

If one compresses and expands the whole volume of the system, the configuration of the

system, all angles, all ratio of distances and the total screening factors remain constant. This

special deformation is called breathing mode. Ab initio calculations have shown that there is

a universal function describing the dependence of binding energy on interatomic separation

ã for breathing modes in a metal at ground state [20] [27] [1].

Ẽu(ã) = −(1 + ã+ dã3)e−ã (3.18)

with

α =
√

9BΩ0/Esub (3.19)

d =
1

2α

( ∂B
∂p

∣∣∣
T=0K

− 1
)
− 1

3
(3.20)

If one knows the equilibrium distance req, the corresponding sublimation energy Esub,

the equilibrium atomic volume Ω0, the bulk modulus B and its derivative with respect to the

pressure ∂B/∂p, then the binding energy relation for breathing modes can be determined.

Further information about the parameter d is given in Section 6.3.

It is possible to apply this function to a large number of metals by rescaling both

coordinate axes, the axis of energy and the axis of distance.

Ẽu = Eu/Esub (3.21)

ã = α(r/req − 1) (3.22)

Figure 3.7 and Figure 3.8 show this behaviour using the example of Fe, Pt and FePt3 [13].

This model suffers, however, from two weaknesses [1]:

1. If the breathing volume is much smaller or much greater than the equilibrium volume,
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the values of the function differ from the universal form. In such a case one has to

examine the function values for each metal separately.

2. If we want to examine for instance shear forces as well, we have to use an additional

model. By contracting and expanding the breathing volume no shear effects occur.

Despite its weaknesses this model has a wide range of applications. It was sucessfully used

for cohesion, adhesion, chemisorption and molecular binding [26]. In the modified embedded

atom method one can use it, because the distances involved are near the equilibrium distances

and the background electronic density, with its angular dependent terms, takes care of shear

effects, when the parameters are appropriately adjusted.

The universal function gives the energy each atom contributes to the total energy. With it

one can determine the pair potentials. The breathing volume consists of neighbouring atoms

up to the second coordination shell and the energy per atom depends only on the interatomic

spacing as well as the pair potentials. Because in the breathing volume the interatomic

spacing scales linearly the angles, the structure and the occupation remain constant. Thus

the total screening factor for a neighbouring atom remains constant too.

3.3.2 Pair Potential for a pure Element

In the case of a pure element the energy per atom Eu, Section 3.3.1 Equation (3.18), consists

of the embedding functional F [ ρ̄i ], Section 3.1 Equation (3.1), and the pair potentials φ of

the nearest neighbours and of the next nearest neighbours.

Let Z1 and Z2 are the coordination numbers, a the factor scaling from the nearest

neighbour distance to the next nearest neighbour distance. In the special case of a breathing

mode, explained in Section 3.3.1, the total screening factor S, Section 3.5.2 Equation (3.50),

remains constant and the background electronic density ρ̄, Section 3.2.1 Equation (3.3),

depends only on the interatomic spacing R.

Eu(R) = F [ ρ̄(R) ] +
Z1

2
φ(R) +

Z2S

2
φ(aR) (3.23)

The angular dependent terms of the partial electronic densities, Section 3.2.2 Equa-
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tion (3.5)-(3.8), vanish for a cubic system with center of symmetry and we get for the

background electronic density

ρ̄(R) = Z1ρ
a(0)(R) + Z2Sρ

a(0)(aR) (3.24)

where ρa(0) is the first atomic electronic density from Section 3.2.3 Equation (3.17).

Our strategy is now to solve Equation (3.23) to get the wanted pair potential φ. Because

it is used with two different arguments one can not do this directly. In order to solve this

problem another pair potential ψ was introduced [20].

ψ(R) = φ(R) +
Z2S

Z1
φ(aR) (3.25)

Now it is possible to rewrite Equation (3.23) and solve the equation for a given R value

to get the pair potential ψ(R).

Eu(R) = F [ ρ̄(R) ] +
Z1

2
ψ(R) (3.26)

ψ(R) =
2
Z1

(
Eu(R)− F [ ρ̄(R) ]

)
(3.27)

Once ψ(R) is determined one can make use of an expansion that can be derived from

recursive relations to calculate φ by successive approximation.

φ̄(R) = ψ(R) +
nmax∑
n=1

(−1)n(
Z2S

Z1
)nψ(anR) (3.28)

We begin by calculating an approximate φ̄ by taking nmax = 1. Now one has to increase

nmax successively by one until φ̄(R) is approximately equal to φ(R). Thus one has to choose

an exit condition as follows:
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Eu(R) = F [ ρ̄(R) ] +
Z1

2
φ(R) +

Z2S

2
φ(R) (3.29)

Ēu(R) = F [ ρ̄(R) ] +
Z1

2
φ̄(R) +

Z2S

2
φ̄(R) (3.30)

‖ Eu(R)− Ēu(R) ‖ ≤ ε (3.31)

This procedure is descibed Byeong-Joo Lee and M. I. Baskes [19] and our simulation

program shows in Figure 3.6 the same functional behaviour of ψ and φ as they reported. In

the present work we chose an exit condition ε = 0.001.

Because one has to recalculate φ(R) for every R we recommend to save the values of the

wanted pair potential φ(R) in a data file. Then it is possible to fit a simple function to the

datapoints and one can calculate derivatives easily as well.

3.3.3 Pair Potentials for Binary Alloys

Knowing the universal function of the alloy and the pair potentials of the pure elements φAA

and φBB, one can determine the pair potential of the elements with different types φAB.

The pair potentials of the pure elements were determined as described in Section (3.3.2).

This treatment can be illustrated by the example of L12 FePt3. We have to distinguish

if it is an Fe-atom or an Pt-atom which is embedded. The energy per atom of each site is

made up of the pair potentials φij and the corresponding embedding functional, FFe[ ρFe ]

or FFe[ ρPt ]. As mentioned before in Section 3.1 one has to use different reference structures

when calculating the background electronic densities, ρ̄Fe or ρ̄Pt, because of the different

local environments . Z1 and Z2 are the coordination numbers and SFe and SPt are the total

screening factors, Section 3.5.2 Equation (3.50), of an Fe neighbouring atom and of an Pt

neighbouring atom. The total screening factors are constant, but they can differ for each

neighbour, because of different screening function values Sikj , Section 3.5.1 Equation (3.45).
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EFe(R) = FFe[ ρFe(R) ] (3.32)

+
Z1

2
φFePt(R) +

Z2

2
SFeφFeFe(aR) (3.33)

EPt(R) = FPt[ ρPt(R) ] (3.34)

+
Z1 − 4

2
φPtPt(R) +

4
2
φPtFe(R) +

Z2

2
SPtφPtPt(aR) (3.35)

Accordingly the energy per atom of the alloy is made up in the proportion 1 : 3 as follows:

EFePt3(R) =
1
4
· EFe(R) +

3
4
· EPt(R) (3.36)

EFePt3(R) =
1
4
FFe[ ρFe(R) ] +

3
4
FPt[ ρPt(R) ] (3.37)

+
Z1

2

[1
2
φFePt(R) +

1
2
φPtPt(R)

]
(3.38)

+
Z2

2

[1
4
SFeφFeFe(aR) +

3
4
SPtφPtPt(aR)

]
(3.39)

By setting Z1 = 12 and Z2 = 6 one finally obtains the pair potential of Fe-atoms and

Pt-atoms [13].

φFePt(R) =
1
3
EuFePt3(R)− 1

12
FFe[ ρFe(R) ]− 1

4
FPt[ ρPt(R) ] (3.40)

− φPtPt(R)− 1
4
SFeφFeFe(aR)− 3

4
SPtφPtPt(aR) (3.41)

This calculation is representative for all L12 systems. Figure 3.10 illustrates the pair

potentials φFeFe, φPtPt and φFePt for FePt3.

34



P
ai

r
P

ot
en

ti
al

[e
V

]

-3

-2

-1

0

1

2

3

4

5

-3

-2

-1

0

1

2

3

4

5

r [A]

1 1.5 2 2.5 3 3.5 4

1 1.5 2 2.5 3 3.5 4

φ

ψ

Figure 3.6: The potentials ψ and φ for Fe reproduced by our simulation program. It shows
the same behaviour published originally by Byeong-Joo Lee and M. I. Baskes [19] using the
identical parameters.
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3.4 Cut-Off Function

To save calculation time we follow previous authors [19] and calculate the embedding energy

and the contributions of pair potentials only within a local environment around the embedded

atom with cut-off radius rc. Interactions near the margin and further away are negligible

and are adjusted to zero by the cut-off function fc shown in Figure 3.11. Its argument ξ is

the control parameter described by Equation (3.43).

fc(ξ) =


1 1 ≤ ξ[

1− (1− ξ)4
]2 0 < ξ < 1

0 ξ ≤ 0

(3.42)

The cut-off area with the width ∆r is between the cut-off radius rc and rc −∆r [19] as

shown in Figure 3.12.

ξ = (rc − r)/∆r (3.43)
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Figure 3.11: Behaviour of the cut-off function fc within the cut-off area.
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Figure 3.12: The orange area discribes the cut-off area rc −∆r.
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3.5 Screening

The interaction between the embedded atom i and one of its neighbours j also depends on

the local environment of both atoms. Another neighbour atom can intervene and screen the

interaction. This screening can be described by two spheroids through the atoms i and j as

shown in Figure 3.13.

The screening function is a sufficient factor to describe the influence of intervening atoms

on the second nearest-neighbour interaction. It appears as a factor both in the pair potentials,

Section 3.3, and in the atomic electronic densities, Section 3.2.3. We have to mention that

there is sometimes a third nearest-neighbour interaction as well. But in most cases these are

negligibly small [19].

3.5.1 The Screening Function Sikj

Let i and j be two atoms which interact with each other and k an atom of the local

environment which screens the interaction.

The implicit equation of an ellipse is given by:

x2 +
1
C
y2 = (

1
2
rij)2 (3.44)

Here (x, y) are the point coordinates with (0, 0) being the center of the coordinate system.

The distance between atom i and atom j is given by rij . C is the parameter which determines

the aspect ratio of an ellipse. Rotating the ellipse around the line through atom i and atom

j gives a spheroid.

Its influence is described by a factor called screening function Sikj . The formula of the

screening function is equivalent to the cut-off function, Section 3.4 Equation 3.42).

Sikj(ξ) =


1 1 ≤ ξ[

1− (1− ξ)4
]2 0 < ξ < 1

0 ξ ≤ 0

(3.45)

But they differ in the way how the argument is calculated.
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ξ =
C − Cmin

Cmax − Cmin
(3.46)

C =
2(Xik +Xjk)− (Xik −Xjk)2 − 1

1− (Xik −Xjk)2
(3.47)

Xik =
rik
rij

(3.48)

Xjk =
rjk
rij

(3.49)

The argument of the screening function depends on the distances of the atoms (rij , rik,

and rjk) and the parameters Cmin and Cmax, which describe the two spheroids in Figure 3.13.

C determines where atom k is located [4]. We can summarize the behaviour of the screening

function as follows:

• When k is outside the bigger spheroid the interaction between atom i and atom j is

unscreened Sikj = 1 (Figure 3.14).

• If k located in the space between the smaller and the bigger one, then the interaction

is partially screened 0 < Sikj < 1 (Figure 3.15).

• Being within the smaller one the interaction is totally screened Sikj = 0 (Figure 3.16).

Both parameters Cmin and Cmax depend on the atom types involved. Cmax is usually

considered to be the same constant (2.80) for all cases [20] [22] [13]. For pure elements one

has to determine only one value for Cmin. In binary alloys one has to consider the different

atom types A and B. There are six cases for i-k-j: A-A-A, B-B-B, A-B-A, B-A-B, A-B-A =

B-B-A and B-A-A = A-A-B.

3.5.2 The Total Screening Factor Sij

Considering the whole environment around atom i and j one gets the total screening factor

Sij . In other words one has to calculate the screening factor Sikj for every atom k within
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the local environment which screens the interaction. Then one has to multiply the values to

get the total screening factor.

Sij =
∏
k 6=i,j

Sikj (3.50)

• When all screening atoms k within the local environment are outside the bigger spheroid

then the interaction is unscreened (Sij = 1).

• If at least one screening atom is within the space between the smaller and the bigger

one, then the interaction is screened (0 ≤ Sij < 1).

• The interaction is completely screened, when at least one atom is within the smaller

spheroid (Sij = 0).

44



x [ 1
2rij ]

y [ 1
2rij ]

-2 -1 0 1 2
-2

-1

0

1

2 Cmax
Cmin

i j

Figure 3.13: two spheroids
through atom i and atom j de-
scribed by the parameters Cmin
and Cmax

x [ 1
2rij ]

y [ 1
2rij ]

-2 -1 0 1 2
-2

-1

0

1

2

i j

k
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Figure 3.15: atom k screens the
interaction between atom i and j:
0 < S < 1

x [ 1
2rij ]

y [ 1
2rij ]

-2 -1 0 1 2
-2

-1

0

1

2

i j
k
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Chapter 4

Results

In this work a computer code was developed and tested to calculate the atomic interaction

for L12 FePt3 with the modified embedded atom method. It is possible to simulate the

bulk material as well as dimensionally limited systems like thin films or nanowires. One only

has do adapt the periodic boundary conditions to the corresponding situation. Positions of

single atoms can be manipulated and also the whole calculation cell can be compressed and

expanded. The energy which each atom contributes to the total system and the forces which

affect each atom can be calculated. Interactions up two the second coordination shell are

included. The total energy can be updated each time when the configuration of the system

changes. In order to save calculation time, only those partial volumes of the calculation cell

are considered where changes take place. Additional programs were implemented in order to

validate the method and to examine the behaviour of the system. The two output formats

XYZ and XFS are supported to investigate the calculation cell and the local environments

with common structure visualisation programs like RasMol, VMD or XCrySDen. The code

is particularly suitable for L12 alloys and for bcc and fcc pure element structures. For other

cubic systems like L10 the calculation of the pair potentials has to be adapted.
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4.1 Energy per Atom of the Equilibrium State

The energy each atom contributes to the total system consists of the embedding energy

needed to embed the atom within its local environment and of the pair interactions with its

surrounding neighbouring atoms. For the equilibrium bulk system of L12 FePt3 only the

pair interactions contribute, because the background electronic density of each element is

equal to its corresponding reference density, compare Section 3.1 Figure 3.4, 3.1 and 3.2.

We expect a mean energy contribution of −5.49 eV for every atom, which is exactly the

sublimation energy of the system. This energy per atom is obtained by calculating the total

energy of the system divided by the number of atoms within the calculation cell.

For the bulk system in equilibrium state every Fe-atom is surrounded by the same

local environment. Ditto for Pt-atoms. In our simulation program an embedded Fe-atom

contributes −4.74 eV to the total energy and an Pt-atom −5.74 eV . Provided that the

calculation cell is occupied by Fe- and Pt-atoms in the ratio of 1 : 3, we obtain the mean

energy contribution indipendent of the size of the calculation cell and all forces on the atoms

vanish within given accuracy limits of 10−6.

1× (−4.74) eV + 3× (−5.74) eV
4

= (−5.49) eV (4.1)

4.2 Confirmation of Physical Quantities

What we expect from the model is at least to be capable to reproduce the physical parameters,

which were given as input parameters. We did this by compressing and expanding the

simulation cell in order to validate the universal relationship between the binding energy

and the interatomic spacing, Section 3.3.1 Equation (3.18). As a test candidate L12-ordered

FePt3 was chosen as well as the constituent elements, body centered cubic Fe and face

centered cubic Pt. We have to mention, however, that by applying breathing modes to the

system the cut-off function, Section 3.4 Equation (3.42), causes some points of discontinuity.

This is understandable, because the pair potentials, Section 3.3.2 and 3.3.3, were extracted

by considering the ideal case without the need of a cut-off function. Nevertheless, as one can
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see in the Figure 4.1, 4.2 and 4.3, we were able to reproduce the universal functions quite

well. The points of discontinuity can be reduced by increasing the cut-off radius and can be

smoothed by increasing the cut-off area. One obtains the equilibrium bulk modulus B0 and

the derivative of it with respect to the pressure, ∂B0/∂p by fitting the universal function Eu

to the data points. The sublimation energy E0 and the equilibrium atomic volume Ω0 one

gets directly out of the energy minimum. Another possibility is to fit the Birch-Murnaghan

equation of state, Equation (4.2), to the data points [7]. One has to rescale the nearest

neighbour distance r to the atomic volume Ω by dividing the volume of the unit cell by 4 for

fcc systems and by 2 for bcc systems. Figure 4.4 shows the results for L12 FePt3.

E(Ω) = E0 +
9Ω0B0

16

{[(Ω0

Ω

) 2
3 − 1

]3 ∂B0

∂p
+
[(Ω0

Ω

) 2
3 − 1

]2[
6− 4

(Ω0

Ω

) 2
3
]}

(4.2)

49



E
n

er
gy

P
er

A
to

m
[e
V

]

-4.5

-4.25

-4

-3.75

-3.5

Ω/Ω0 [1]
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

EuFe
Breathing Mode for Fe BCC

Figure 4.1: A bcc Fe calculation cell with 128 atoms compressed and expanded to validate
the universal function EuFe dependent on the atomic volume Ω. Ω0 is the atomic volume at
equilibrium state. Within the interval of [0.8,0.9] the energy values deviate more from the
universal function, because of the cut-off function described in Section 3.4. For the cut-off
function we chose rc = 3.0 and ∆r = 0.05. Periodic boundary conditions are applied in
all three dimensions. The points of strong discontinuity caused by the cut-off function are
marked with a circle.
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Figure 4.2: A fcc Pt calculation cell with 256 atoms compressed and expanded to validate
the universal function EuPt dependent on the atomic volume Ω. Ω0 is the atomic volume
at equilibrium state. For the cut-off function we chose rc = 2.4 and ∆r = 0.05. Periodic
boundary conditions are applied in all three dimensions.
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Figure 4.3: A L12 FePt3 calculation cell with 256 atoms compressed and expanded to
validate the universal function EuFePt3 dependent on the atomic volume Ω. Ω0 is the atomic
volume at equilibrium state. For the cut-off function we chose rc = 2.4 and ∆r = 0.05.
Periodic boundary conditions are applied in all three dimensions.

52



E
n

er
gy

P
er

A
to

m
[e
V

]

-5.5

-5.4

-5.3

-5.2

-5.1

-5

Equilibrium Atomic Volume Ω [A3]
12 13 14 15 16 17 18

EuFePt3
Birch-Murnaghan Fit

Figure 4.4: A L12 FePt3 calculation cell with 256 atoms compressed and expanded to
calculate energy values dependent on the atomic volume Ω. The Birch-Murnaghan equation
of state is fitted to extract the equilibrium bulk modulus, B0 = 1.63 eV/A3, and the derivative
of it with respect to the pressure, ∂B0/∂p = 5.74. The sublimation energy, E0 = −5.49
eV , and the equilibrium volume, Ω0 = 14.20 A3, are constant parameters in the fit and are
given by the potential minimum. For the cut-off function we chose rc = 2.4 and ∆r = 0.05.
Periodic boundary conditions are applied in all three dimensions.
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4.3 Vacancy Formation Energy

Also we introduced a vacancy into the system of the alloy and of the pure elements to

investigate the forces around the vacancy site and to calculate energy profiles for some

nearest neighbour jumps into the vacancy site.

To calculate the total Energy Etot[N ] of the system containing one vacancy and N atoms.

one has to know the energy contribution εi for each element i in the system. This is the

energy per atom for the pure elements in equilibrium state. Ni being the number of type i

atoms.

Efv = Etot[N ]−
∑
i

Niεi (4.3)

We calculated the unrelaxed vacancy formation energy Efv for bcc Fe and fcc Pt and

compared the values with known relaxed results [20] [22]. Additionally we examined the unre-

laxed vacancy formation energies for L12 FePt3 as well. Table 4.1 shows that the unrelaxed

values for Fe and Pt are about 13% and 11% greater than the relaxed reference values. For

the alloy no reference values were available for comparison but one can see that a vacancy

on a Fe-site is favoured by about 0.05 eV compared to a vacancy on a Pt-site. Further

investigations of neighbouring atoms jumping to the vacancy site, Section 4.6, correspond

with this result.

System Vacancy Site Efv [eV ] relaxed expected value [eV ]
BCC Fe Fe 1.98 1.75
FCC Pt Pt 1.66 1.50
L12 FePt3 Fe 1.84 -
L12 FePt3 Pt 1.89 -

Table 4.1: Vacancy formation energies Efv for pure Fe, pure Pt and a L12 FePt3 alloy. The
reference values [20] [22] for the pure elements are smaller, because our values are not relaxed.
In the alloy it costs less energy to produce a vacancy on a Fe-site in comparison to a vacancy
on a Pt-site.
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4.4 Calculation of the Force

The calculation of the force of the potential entails derivatives of all parts containing the

position of the atom like the cut-off function, the screening function, the partial electronic

densities et cetera. In order to validate the results of this algebraically somewhat involved

calculation, we compared every derivative for each component with its corresponding difference

quotient.

∆f(x)
∆x

=
f(x+ ∆x)− f(x)

∆x
(4.4)

This can be done for every derivative by output routines, which were implemented

particularly for this purpose.

In Section 4.4.1 we illustrate the force affecting an Fe-atom, which jumps into a vacancy

on a Pt-site in L12 FePt3. In general the results correspond quite well. Only a few values

show a greater deviation from each other, compare Figure 4.6.
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4.4.1 Force during Atom Jump: Fe-Atom Jumps to Vacancy on

Pt-Site in L12FePt3
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4.5 Forces around a Vacancy

It is possible to calculate the forces exerted on each atom of the system. If for example we

take out an atom, producing a vacancy, all surrounding atoms feel forces, which deform the

lattice within a local environment.

We have calculated the forces acting on the neighbouring atoms of a vacancy, for bcc Fe,

for fcc Pt and for L12 FePt3. The naive expectation is that the forces always point towards

the vacancy site, but this turns out not always to be the case.

BCC Fe with vacancy: The forces on the nearest neighbours point towards the vacancy

and the forces which affect the next nearest neighbours point away, Section 4.5.

FCC Pt with vacancy: All forces point towards the vacancy, Section 4.5.

L12 FePt3 with vacancy on Fe-site: The forces which affect the nearest neighbours point

away of the vacancy and the forces which affect the next nearest neighbours point

towards it, Section 4.5.

L12 FePt3 with vacancy on Pt-site: All forces point towards the vacancy, Section 4.5.

In general one can say, that the embedding functional causes a component of the force,

which is directed towards the vacancy, and the pair potentials cause a component of the

force, which points away from the vacancy. Altogether the direction of the force depends on

which component prevails.
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Forces around a Vacancy in BCC Fe

Atom DVV A r [A] E [eV ] Fy [eV/A] Fy [eV/A] Fz [eV/A]
Fe ( 2, 0, 0) 2.86 -4.17 0.17 0.00 0.00
Fe (-2, 0, 0) 2.86 -4.17 -0.17 0.00 0.00
Fe ( 0, 2, 0) 2.86 -4.17 0.00 0.17 0.00
Fe ( 0,-2, 0) 2.86 -4.17 0.00 -0.17 0.00
Fe ( 0, 0, 2) 2.86 -4.17 0.00 0.00 0.17
Fe ( 0, 0,-2) 2.86 -4.17 0.00 0.00 -0.17

Table 4.2: Second nearest neighbour atoms around a vacancy in bcc Fe. Atom type,
direction vector DVV A from the vacancy to the atom, distance r, energy contribution E and
the components of the force Fx, Fy and Fz affecting the neighbour atom are shown.

Atom DVV A r [A] E [eV ] Fx [eV/A] Fy [eV/A] Fz [eV/A]
Fe ( 1, 1, 1) 2.48 -4.13 -0.42 -0.42 -0.42
Fe (-1,-1,-1) 2.48 -4.13 0.42 0.42 0.42
Fe ( 1, 1,-1) 2.48 -4.13 -0.42 -0.42 0.42
Fe ( 1,-1, 1) 2.48 -4.13 -0.42 0.42 -0.42
Fe (-1, 1, 1) 2.48 -4.13 0.42 -0.42 -0.42
Fe (-1,-1, 1) 2.48 -4.13 0.42 0.42 -0.42
Fe (-1, 1,-1) 2.48 -4.13 0.42 -0.42 0.42
Fe ( 1,-1,-1) 2.48 -4.13 -0.42 0.42 0.42

Table 4.3: Nearest neighbour atoms around a vacancy in bcc Fe. Atom type, direction vector
DVV A from the vacancy to the atom, distance r, energy contribution E and the components
of the force Fx, Fy and Fz affecting the neighbour atom are shown.
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Forces around a Vacancy in FCC Pt

Atom DVV A r [A] E [eV ] Fx [eV/A] Fy [eV/A] Fz [eV/A]
Pt ( 2, 0, 0) 3.92 -5.77 -0.41 0.00 0.00
Pt (-2, 0, 0) 3.92 -5.77 0.41 0.00 0.00
Pt ( 0, 2, 0) 3.92 -5.77 0.00 -0.41 0.00
Pt ( 0,-2, 0) 3.92 -5.77 0.00 0.41 0.00
Pt ( 0, 0, 2) 3.92 -5.77 0.00 0.00 -0.41
Pt ( 0, 0, 2) 3.92 -5.77 0.00 0.00 0.41

Table 4.4: Second nearest neighbour atoms around a vacancy in fcc Pt. Atom type, direction
vector DVV A from the vacancy to the atom, distance r, energy contribution E and the
components of the force Fx, Fy and Fz affecting the neighbour atom are shown.

Atom DVV A r [A] E [eV ] Fx [eV/A] Fy [eV/A] Fz [eV/A]
Pt ( 1, 1, 0) 2.77 -5.63 -0.20 -0.20 0.00
Pt (-1,-1, 0) 2.77 -5.63 0.20 0.20 0.00
Pt ( 1,-1, 0) 2.77 -5.63 -0.20 0.20 0.00
Pt (-1, 1, 0) 2.77 -5.63 0.20 -0.20 0.00
Pt ( 1, 0, 1) 2.77 -5.63 -0.20 0.00 -0.20
Pt (-1, 0,-1) 2.77 -5.63 0.20 0.00 0.20
Pt ( 1, 0,-1) 2.77 -5.63 -0.20 0.00 0.20
Pt (-1, 0, 1) 2.77 -5.63 0.20 0.00 -0.20
Pt ( 0, 1, 1) 2.77 -5.63 0.00 -0.20 -0.20
Pt ( 0,-1,-1) 2.77 -5.63 0.00 0.20 0.20
Pt ( 0, 1,-1) 2.77 -5.63 0.00 -0.20 0.20
Pt ( 0,-1, 1) 2.77 -5.63 0.00 0.20 -0.20

Table 4.5: Nearest neighbour atoms around a vacancy in fcc Pt. Atom type, direction vector
DVV A from the vacancy to the atom, distance r, energy contribution E and the components
of the force Fx, Fy and Fz affecting the neighbour atom are shown.
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Forces around a Vacancy in L12 FePt3 sitting on a Fe-Site

Atom DVV A r [A] E [eV ] Fx [eV/A] Fy [eV/A] Fz [eV/A]
Fe ( 2, 0, 0) 3.84 -4.74 -0.14 0.00 0.00
Fe (-2, 0, 0) 3.84 -4.74 0.14 0.00 0.00
Fe ( 0, 2, 0) 3.84 -4.74 0.00 -0.14 0.00
Fe ( 0,-2, 0) 3.84 -4.74 0.00 0.14 0.00
Fe ( 0, 0, 2) 3.84 -4.74 0.00 0.00 -0.14
Fe ( 0, 0,-2) 3.84 -4.74 0.00 0.00 0.14

Table 4.6: Second nearest neighbour atoms around a vacancy in L12 FePt3. The vacancy sits
on a Fe-site. Atom type, direction vector DVV A from the vacancy to the atom, distance r,
energy contribution E and the components of the force Fx, Fy and Fz affecting the neighbour
atom are shown.

Atom DVV A r [A] E [eV ] FX [eV/A] FY [eV/A] FZ [eV/A]
Pt ( 1, 1, 0) 2.72 -5.59 0.06 0.06 0.00
Pt (-1,-1, 0) 2.72 -5.59 -0.06 -0.06 0.00
Pt ( 1,-1, 0) 2.72 -5.59 0.06 -0.06 0.00
Pt (-1, 1, 0) 2.72 -5.59 -0.06 0.06 0.00
Pt ( 1, 0, 1) 2.72 -5.59 0.06 0.00 0.06
Pt (-1, 0,-1) 2.72 -5.59 -0.06 0.00 -0.06
Pt ( 1, 0,-1) 2.72 -5.59 0.06 0.00 -0.06
Pt (-1, 0, 1) 2.72 -5.59 -0.06 0.00 0.06
Pt ( 0, 1, 1) 2.72 -5.59 0.00 0.06 0.06
Pt ( 0,-1,-1) 2.72 -5.59 0.00 -0.06 -0.06
Pt ( 0, 1,-1) 2.72 -5.59 0.00 0.06 -0.06
Pt ( 0,-1, 1) 2.72 -5.59 0.00 -0.06 0.06

Table 4.7: Nearest neighbour atoms around a vacancy in L12 FePt3. The vacancy sits on a
Fe-site. Atom type, direction vector DVV A from the vacancy to the atom, distance r, energy
contribution E and the components of the force Fx, Fy and Fz affecting the neighbour atom
are shown.

62



Forces around a Vacancy in L12 FePt3 sitting on a Pt-Site

Atom DVV A r [A] E [eV ] Fx [eV/A] Fy [eV/A] Fz [eV/A]
Pt ( 2, 0, 0) 3.84 -5.74 -0.32 0.00 0.00
Pt (-2, 0, 0) 3.84 -5.74 0.32 0.00 0.00
Pt ( 0, 2, 0) 3.84 -5.74 0.00 -0.32 0.00
Pt ( 0,-2, 0) 3.84 -5.74 0.00 0.32 0.00
Pt ( 0, 0, 2) 3.84 -5.74 0.00 0.00 -0.55
Pt ( 0, 0,-2) 3.84 -5.74 0.00 0.00 0.55

Table 4.8: Second nearest neighbour atoms around a vacancy in L12 FePt3. The vacancy sits
on a Pt-site. Atom type, direction vector DVV A from the vacancy to the atom, distance r,
energy contribution E and the components of the force Fx, Fy and Fz affecting the neighbour
atom are shown.

Atom DVV A r [A] E [eV ] Fx [eV/A] Fy [eV/A] Fz [eV/A]
Fe ( 1, 1, 0) 2.72 -4.54 -0.01 -0.01 0.00
Fe (-1,-1, 0) 2.72 -4.54 0.01 0.01 0.00
Fe ( 1,-1, 0) 2.72 -4.54 -0.01 0.01 0.00
Fe (-1, 1, 0) 2.72 -4.54 0.01 -0.01 0.00
Pt ( 1, 0, 1) 2.72 -5.60 -0.41 0.00 -0.17
Pt (-1, 0,-1) 2.72 -5.60 0.41 0.00 0.17
Pt ( 1, 0,-1) 2.72 -5.60 -0.41 0.00 0.17
Pt (-1, 0, 1) 2.72 -5.60 0.41 0.00 -0.17
Pt ( 0, 1, 1) 2.72 -5.60 0.00 -0.41 -0.17
Pt ( 0,-1,-1) 2.72 -5.60 0.00 0.41 0.17
Pt ( 0, 1,-1) 2.72 -5.60 0.00 -0.41 0.17
Pt ( 0,-1, 1) 2.72 -5.60 0.00 0.41 -0.17

Table 4.9: Nearest neighbour atoms around a vacancy in L12 FePt3. The vacancy sits on a
Pt-site. Atom type, direction vector DVV A from the vacancy to the atom, distance r, energy
contribution E and the components of the force Fx, Fy and Fz affecting the neighbour atom
are shown.
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4.6 Atom Jumps to the Vacancy Site

In general we are interested in energy barriers for Monte Carlo simulations. Thus we

caclulated energy profiles of some unrelaxed atom jumps of neighbouring atoms into the

vacancy position in order to test the behaviour of the potential and the forces. This was

carried out for bcc Fe, fcc Pt and L12 FePt3. Although the system is unrelaxed the jumping

profiles show expected qualitative behaviours. Points of interest are marked with arrows.

Points of strong discontinuity caused by the cut-off function are marked with circles.

• Atom jumps which leave the state of long-range order of the alloy constant have got

the same energies at the initial state and at the final state, Section 4.6.1, 4.6.2 and

4.6.5.

• Atom jumps which change the state of long-range order of the alloy show different

energies at the initial state and at the final state, Section 4.6.3 and 4.6.4.

• At the equilibrium state and at a potential maximum the forces vanish.

• In the presence of a vacancy the equilibrium state does not lie exactly at the ideal lattice

positions, because the vacancy causes small forces shifting the equilibrium distance of

the jumping atoms a little bit, compare Section 4.5. The direction of the shift depends

on the local environment and on the vacancy site.

• The jump path in Section 4.6.5 is energetically unfavourable. The forces on the atom do

not vanish at the half-way point, because of the atomic occupation of four-atom window

consisting of common nearest neighbours to the initial and the final position. The

Pt-atom jumps through a window consisting of two Pt-atoms and two Fe-atoms side

by side, which introduces asymmetry, compare Section 3.1 Figure 3.2. The energetically

favourable path generally depends on the configuration of this four-atom window.

• A vacancy on a Fe-site in L12 FePt3 is energetically favoured, Section 4.6.3 and 4.6.4,

which corresponds with the results of Section 4.3 Table 4.1.

In order to make quantitative comparisons and conclusions one has to relax the positions of

the atoms in a certain environment of the defect, seeking a minimum of the total energy of
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the system.
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4.6.1 Fe-Atom jumps to Vacancy on Fe-Site in BCC Fe
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4.6.2 Pt-Atom jumps to Vacancy on Pt-Site in FCC Pt
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4.6.3 Fe-Atom jumps to Vacancy on Pt-Site in L12 FePt3
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4.6.4 Pt-Atom jumps to Vacancy on Fe-Site in L12 FePt3
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4.6.5 Pt-Atom jumps to Vacancy on Pt-Site in L12 FePt3
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Chapter 5

Conclusions and Outlook

At the present state of work the question, if the modified embedded atom method is suitable

for Monte Carlo simulation of diffusion of atoms in dimensionally limited systems, cannot be

resolved. It is not possible to make appropriate statements about its applicability without at

least a working algorithm for the elastic relaxation of atoms, which was beyond the scope of

this work. Probably the main weakness of the method is that the parameters are adjusted

mostly to macroscopic physical quantitites, which may turn out to be insufficient to reproduce

behaviour at the atomic scale. Particularly near surfaces and if one needs to calculate energy

barriers for atom jumps this could be crucial. Scruples about the method occur because some

forces we calculated acting on atoms in the neighbourhood of a vacancy point away from

the vacancy. To further clarifiy this problem one should implement a relaxation algorithm

to have the possibility to compare with relaxed jump profiles from ab initio calculations. If

then the method is confirmed to contradict first principle calculations one has to decide if

the method can be improved or has to be discarded for the purposes envisioned.
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Chapter 6

Appendix

6.1 The Calculation of the Force

6.1.1 Gradient of the Total Energy

The force affecting an atom i′ is given by the negative gradient of the total energy Etot.

Fi′ = −∇i′Etot = −∇i′
[∑

i

F [ρi] +
1
2

∑
j 6=i

φij

]
(6.1)

If one derives with respect to the atom i′ different terms of the total energy are affected:

∇i′Etot = ∇i′F [ρ̄i′ ] +
1
2

∑
j 6=i′
∇i′φi′j +

∑
j 6=i′

[
∇i′F [ρ̄j ] +

1
2
∇i′φji′

]
(6.2)

= ∇i′F [ρ̄i′ ] +
∑
j 6=i′
∇i′F [ρ̄j ] +

∑
j 6=i′
∇i′φi′j (6.3)

• Because atom i′ is embedded one has to derive the embedding functional F [ρ̄i′ ] and the

pair potentials φi′j which describe the interactions between atom i′ and all neighbouring

atoms j.

• Because the neighbrouring atoms j of the atom i′ are embedded as well one has to

derive the embedding functional F [ρ̄j ] and the pair potential φi′j which interacts with

atom i′ for every neighbouring atom j.
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• Furthermore the screening function Sikj , Section 3.5.1 Equation 3.45, and the cut-off

funcition fc, Section 3.4 Equation 3.42, cause additional terms.

6.1.2 Gradient of the Screening Factor

Let i be an atom which is located in the center of a local environment. Let j be one of

its neighbours, which interact with it. Let atom k be one of the atoms, which screens the

interaction. To know the force which affects an atom ĩ we have to derive with respect to atom

ĩ. Therefore we have to consider three cases. In each case there is an different derivative of

the screening function.

1. Atom ĩ is the atom located in the center of the local environment (̃i = i). One must

consider the derivative with respect to the atom in the center:

∇iSij =
∑
k 6=i,j

[
∇iSikj

∏
k′ 6=i,j,k

Sik′j

]
(6.4)

2. Atom ĩ is the atom which interacts with the atom in the center i (̃i = j). One must

consider the derivative with respect to a neighbour atom which is interacting with the

atom in the center:

∇jSij =
∑
k 6=i,j

[
∇jSikj

∏
k′ 6=i,j,k

Sik′j

]
(6.5)

This formula is mathematically equivalent to the formula in case two. Only the role of

atom i and atom j is interchanged.

3. Atom ĩ screens the interaction between the atom in the center i an another neighbour

atom j (̃i = k). One must consider the derivative with respect to a screening atom:

∇k′Sij = ∇k′Sik′j
∏

k 6=i,j,k′
Sikj (6.6)

88



6.2 Periodic Boundary Conditions

As the memory and the calculation power of computers are limited, the size for the calculation

cell must be limited, too. To simulate an infinite solid periodic boundary conditions are used.

Let us imagine the calculation cell as a cube bounded by its six faces, so that for instance

face number one shall be opposite to number six. As in a conveyor belt, the two ends are

joined. Particles leaving the cell by crosssing the surface on one side reenter on the opposite

side.

• For simulating a bulk phase one must apply the periodic boundary conditions in all

three dimensions.

• For simulating a thin film one must apply the periodic boundary conditions in two

dimensions.

• For simulating a quantum wire one must apply the periodic boundary condition in

only one dimension.

In our simulation program we have to consider periodic boundary conditions in two cases

especially. When the position of an atom moves over the edge, and when we have to calculate

the distance between two atoms. The vectors of position and distance have to be adapted

accordingly. This is especially important when one is looking for the nearest neighbours of an

atom. With periodic boundary conditions one particle sitting on the edge of the simulation

box could be the nearest neighbour of an atom on the other side of the cell, whereas without

periodic boundary conditions this would not be the case. For further informations we refer

to the book Computational Physics by Franz J. Vesely [33].

Implementation of the Periodic Boundary Conditions

Periodic boundary conditions for a cubic system can be found in our simulation program

within the modules in PBC CUBIC SWITCH. With the “use”directive it is possible to

choose the dimensions which should be affected. Provided that cell size is initialized with

INI PBC CUBIC the subroutines PBC POSITION and PBC DISTANCE adjust the vector
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of position and the vector of distance, respectively. The values one needs for calculation are

the atom position x̃, the distance ∆x̃ and the size of the calculation cell L.

PBC DISTANCE:

∆x = ∆x̃− L · int( ∆x̃
L/2

) (6.7)

PBC POSITION: Because in Fortran 90/95 and in C++ there is no modulus operator

for floating type numbers we have to implement x = (x̃+ 2L) mod L like:

x̄ = (x̃+ 2L)/L (6.8)

x = x̄− real( int(x̄) ) · L (6.9)

6.3 Calculation of the Parameter d

The universal function is given by [20]:

Eu(a∗) = −Esub(1 + a∗ + da∗3)e−a
∗

(6.10)

ã = α(r/req − 1) (6.11)

α =
√

9Ω0B/Esub (6.12)

By knowing Ω0 = 4
3πr

3
ws we can calulate [27]:

∂B

∂P

∣∣∣
T=0K

= 1− rws
3l

Eu
′′′

(0)
Eu′′(0)

(6.13)

l =
√

Esub
12πBrws

(6.14)
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Eu
′′
(0) = Esub (6.15)

Eu
′′′

(0) = −Esub(6d+ 2) (6.16)

rws
l

= α =
√

(9Ω0B)/Esub (6.17)

Finally we get an simple expression of the parameter d.

d =
1

2α
(
∂B

∂P

∣∣∣
T=0K

− 1)− 1
3

(6.18)
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