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Abstract

In this diploma thesis we investigate the Modified Embedded Atom Method (MEAM) with
the focus on its suitability for the simulation of vacancy diffusion in alloys, especially in
dimensionally limited settings. As test system we chose L1y FePts in order to build upon
the results of Jaesong Kim, Yangmo Koo, and Byeong-Joo Lee [13]. Under these premises
we have developed simulation tools which can be used as a basis for future researches. The

source code of the simulation tools is included as appendix.

Zusammenfassung

In dieser Diplomarbeit beschéaftigen wir uns mit der “Modified Embedded Atom“ Methode
(MEAM) mit dem Hauptaugenmerk auf ihrer Anwendbarkeit auf Leerstellendiffusion in
Legierungen, besonders in dimensional beschrinkten Situationen. Als Testsystem haben
wir L1y FePts gewahlt, um auf den Ergebnissen von Jaesong Kim, Yangmo Koo, and
Byeong-Joo Lee [13] aufzubauen. Unter diesen Voraussetzungen haben wir Simulation-
swerkzeuge entwickelt, die auch weiterfithrende Untersuchungen ermoglichen. Der Quellcode

der Simulationswerkzeuge befindet sich im Anhang.
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Chapter 1

Introduction

1.1 Objective

The ultimate objective of the work presented here is the simulation of atom diffusion in
dimensionally limited alloy systems like thin films or nano-wires. A model for the potential
is required, which can descibe such a system, including at least next nearest neighbour

interactions.

1.2 Options for Calculation of Potentials

1.2.1 Pair Potentials

The potential is described by the interactions of pairs of atoms. This method is no longer

considered adequate, because it fails to predict known physical properties [11]:

e Pair potentials predict the Cauchy Relation for the elastic constants (C1o = Cyq). This

relation is not a good approximation in general, and is wrong for most cubic metals.
e The vacancy formation energy differs from experiment.

e An inward relaxation of the metal surface is observed in experiment, which pair

potentials are incapable to reproduce.



e The melting point is overestimated about 20 %.

Pair potentials are incapable to reproduce these behaviours. Because the calculation is

simple by comparison pair potentials are however still in use for some simulations.

1.2.2 Ab Initio Calculations

Ab initio calculations use the density functional theory to quantum-mechanically solve the
many-body problem for the ground state [12] [16] [29]. Because the calculation method is
an iterative procedure, the method involves a large computational effort and is limited to a
system of at most 100 or 200 atoms. However it is the most accurate way to get the potential
and results of all other methods have to be compared with the experiment and ab initio

calculations.

1.2.3 Cluster Expansion

Using the cluster expansion a system of equations with correlation functions and effective
energies is adjusted to known results from ab initio calculations so that new results can
be successfully predicted [23] [18] [34]. The correlation functions refer to a hierarchy of
increasingly complex geometrical figures representing clusters of atoms, which occur in the
system, and the effective energies are contributions to the total energy from each kind of
figure. This method can be applied to a wide range of the phase diagram provided that the

atoms are sitting on the same crystal lattice across the whole composition range considered.

1.2.4 Virtual Neuronal Networks

A model of interacting atoms can be trained to reproduce ab initio results of energy provided
that one has a large amount of data as reference, so that weight factors can be correctly
adjusted. Once this training procedure has been performed, one can calculate the potential
very fast and accurately [12] [16] [29], nevertheless it is expensive to produce a large enough

data base for training a virtual neuronal network.
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1.2.5 Many-Body Potentials

In the literature there can be found a large number of potential forms containing many-body
contributions with adjustable parameters which have been proposed to calculate the potential
of a solid [10] [11]. Algebraic functions save calculation time so that they can also be applied
to large systems. Because there are a lot of many-body potentials one has to choose a specific

function according to the requirements of the material and the problem considered.

1.3 Selection of the Modified Embedded Atom Method

We decided to use a many-body potential suitable for the simulation of large systems on
and off lattice. Specifically we choose the modified embedded atom method because of the
wide range of possible applications. The modified embedded atom method was successfully
used for elements and alloys [20] [22] [13], for dimensionally limited systems [17] [13] [15] [24]
and for the investigation of defects [14] [21]. In addition the paramters are adjusted in order
to reproduce a lot of physical properties [22] (vacancy formation energy, elastic constants,
inward relaxation of the surface,...). Interactions up to the second coordination shell are

included.
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Chapter 2

Overview

2.1 Concepts of the Method

The basic concept of all embedded atom methods is that one atom ¢ is taken out of the host
lattice and embedded into the remaining local background electronic density p;, which is
caused by the environmental atoms. The necessary energy to do this is called embedding
energy and is given by the functional F[p;]. Additionally all pair interactions ¢;; between
the embedded atom ¢ and the environmental atoms j are considered. This will be done for
every atom in the lattice successively in order to receive the total energy E;,; of the system.

We illustrate the idea of the concept in Figure

Etot:Z[F[ﬁi]J’_%Zd)lj} (2.1)

i i

Because pure pair potentials are insufficient to calculate the total energy of an alloy the
additional embedding functional includes the many-body effects.

One can consider embedding atom methods as a further development of models which
were designed originally to calculate the energy needed to embed an impurity in a host lattice.
When calculating the total energy of the system every atom assumes the role of an impurity.

The various embedding atom models differ mainly in the way how the embedding energy

and the background electronic density are calculated. Some methods take more empirical
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approach and others use ab initio calculations to determine the wanted functional relationship
between the energy and the density.
The so called second nearest neighbour modified embedded atom method is made up of

the following components [5] [19] [13] [32]:

e For the embedding functional a logarithmic function is chosen for convenience as it
is the simplest function showing the expected qualitative behaviour, Section [3.1} It
includes the sublimation Energy FE, a reference background electronic density pg and

an adjustable factor A for each element included.

Fl5]=AE, (5/p0) n(5/po) (2.2)

e The model for the background electronic density includes angular dependent par-
O]

tial electronic densities p,”, which consist of atomic electronic densities p?(l) and

Legendre polynomials L) representing the angular dependence of the interactions,

Section [3.2.1] 3.2.2] and [3.2.3]

PV =305 00 (rig) 0p O (rin) LO (cos(©n)) (2.3)

Ji ki

e The pair potentials were calculated by a universal function E*(R) derived from ab
initio calculations, Section [3.3] Interactions up to the second coordination shell are
considered. Z; and Z, are the coordination numbers of the first and second nearest
neighbor shells, S is a screening factor and «a is a scaling factor given by the quotient

of the second and the first nearest neighbour distance .

_ Z 758
E"(R) = F[p(R)] + 2L 6(R) + Z22 g(aR) (2.4
A cut-off function f. and a screening function S;; are applied to the components and

explained in Section [3:4] and 3.5} Figure 2.2] shows the dependences of the components and a

summary of the needed parameters is given in Section [2.3]

14
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Figure 2.1: Illustration of the embedded atom method: Embed an atom ¢ of the lattice in
the remaining background electronic density p; , calculate the embedding function for it and
consider the pair interactions ¢;; between the embedded atom ¢ and its neighbouring atoms
j. Do this for every atom in the lattice to obtain the total energy of the system.
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Figure 2.2: The overview of the modified embedded atom method model shows the influence
of the included components.
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2.2 History

As it is well proven for the type of problems we have in mind we chose the second nearest
neighbour modified embedded atom method for our simulation program. It is well documented
and the needed parameters are published for a lot of systems [20] [22] [13]. We now give a

short overview of the historical development of the method.

1964 Density Functional Theory: The energy of the ground state is a functional of the

ground state electronic density (E = E[p] for T = 0K) [12].

1980 Quasiatom Theory: Estimation of the electrostatic interaction of an impurity with
a host electronic system. The impurity ion and its screening cloud is treated as a

quasiatom [30].

1980 Effective Medium Theory: Embedding an atom in an inhomogeneous host can be

described by replacing the host with an effective homogeneous local environment [25].

1984 Embedded Atom Method: The total energy of an metal can be calculated by embedding
each atom in the remaining host background electronic density and by considering the

local pair interactions [9].

1989 Modified Embedded Atom Method: Modification of of the background electronic

density by additional angular dependent terms [5].

2000 Second Nearest Neighbour Modified Embedded Atom Method: Involving second

nearest neighbour interactions with an additional screening function [19].

2003 Multistate Modified Embedded Atom Method: The model is almost exclusively using

functions and data derived from ab initio calculations [6].

2009 Concentration dependent and composition dependent embedded atom methods [31]
[28].

Almost always the quasi atom method and the effective medium theory were mentioned in
the literature together, because the essential ideas are practically the same. We recommend

the paper [8], model of metallic cohesion: The embedded atom method, by Murray S. Daw., to
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get a good idea of how the embedded atom method correlates with the previous publications

and to learn about the theoretical background.

2.3 Parameters

In order to make simulations with the modified embedded atom method a set of parameters
for each material is needed. We must distinguish if the parameters are determined directly
from physical quantities or if they are adjusted to reproduce known material properties.

The physical quantities refer to groundstate properties and are:

e The sublimation energy of the equilibrium state F,;. This is the energy needed to
separate all atomic bonds. The parameter appears in the universal function, Section[3.3.1]
Equation and in the embedding functional, Section [3:1] Equation [3.1]

e The equilibrium nearest neighbour distance r.,. The parameter appears in the universal

function, Section Equation and in the atomic electronic densities, Section|3.2.3

Equation [3.17]

e The equilibrium atomic volume €2g. This is the volume one atom has available if the
material is in the equilibrium state. If one knows the Wigner-Seitz radius r,s for
example, it is possible to determine it directly with Qg = %ﬂrﬁ,s. Otherwise one can

calculate the volume by the known properties of the unit cell also. The parameter

appears in the calculation of the universal function, Section [3.3.1] Equation [3.18]

e The isothermal bulk modulus B and its derivative with respect to the pressure 9B /0p.

The parameter is needed for the calculation of the universal function, Section [3.3.1

Equation [3.18]

To determine these quantities results from experiments as well as from ab initio calculations
are used. This way the semiempirical character of the modified embedded atom method
becomes apparent.

The parameters which have to be adjusted to known properties are:

e The parameter of the embedding functional A, Section [3.1

18



e The decay constants of the atomic electronic densities 39, ..., 3, Section

e The weighting factors to calculate the background electronic density t1,...,t3, Sec-

tion B.2.11

e The parameters Cyyin and Chua, to calculate the screening function, Section [3.5.0]
Equation [3:45]

e The atomic electronic density scaling factor p, Section For pure elements this
factor is often omitted, but for alloy systems this factor can have great effects on

calculations [13].

Some of the properties one wants to reproduce with the simulation parameters are elastic
constants, surface energy, vacancy formation energy, activation energy of vacancy diffusion,
stacking fault energy and structural energy differences. Support for adjusting the parameters
is offered by published tables [19], where the parameters and how they influence material
properties are noted. Additional information about the determination of the parameters is
given by M. I. Baskes [3].

For the simulation of a pure element one needs one set of physical parameters and one
set of adjustable parameters. For the simulation of a binary alloy for example, one needs
three sets of physical parameters. One for each involved element type and one for the alloy
type, in order to calculate the universal functions. From the adjustable parameters two sets
are needed, because there are two different atom types with different embedding functionals.
Additionally one needs more screening function parameters, because one has to consider
every possible arrangement of the atom types.

For pure elements we almost exclusively used the parameters published by Byeong-Joo
Lee and M. I. Baskes [20] [22]. The physical values of these sources correspond with the

tables given by James H. Rose, John R. Smith, Francisco Guinea and John Ferrante [27].
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Parameters used for L1y FePts

E[eV] ] req [A] | B [eV/A3] | 0B/0p | Qo [A3]

FePts 5.49 2.72 1.635 5.73 14.20
Fe 4.29 2.48 1.080 4.95 11.74
Pt 5.77 2.77 1.800 5.98 15.00

Table 2.1: Physical quantities given by Jaesong Kim, Yangmo Koo, and Byeong-Joo [13] for
L1, FePts. In this table 9B/dp is given instead of the parameter d, Section Qo was
calculated with the help of the nearest neighbour equilibrium distance r¢q.

A SO T M T 5@ T g6 ty to ts £0
Fe | 0.56 | 4.15 | 1.00 | 1.00 | 1.00 | 2.60 | 1.80 | -7.20 | 1.00
Pt | 090 | 4.92 | 2.20 | 6.00 | 2.20 | 3.90 | -2.20 | 3.84 | 1.00

Table 2.2: Adjustable parameters published by Jaesong Kim, Yangmo Koo, and Byeong-Joo
Leea [13] for L1y FePts.

Craz (F€) 2.80 Crras (P) 2.80
Cin(Fe— Fe— Fe) | 0.36 Cin(Pt — Pt — Pt) | 1.53
Cin(Fe— Fe — Pt) | 0.84 'min (Pt — Pt — Fe) | 0.84
Coin(Fe — Pt — Fe) | 0.36 Coin(Pt — Fe —Pt) | 1.53
Cin(Fe— Pt — Pt) | 0.84 Cpin(Pt — Fe— Fe) | 0.84

Table 2.3: Screening function parameters published by Jaesong Kim, Yangmo Koo, and
Byeong-Joo Leea [13] for L1y FePts.
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Chapter 3

Components

3.1 Embedding Functional

The energy needed to embed an atom ¢ in a local environment is a functional of the local
background electronic density [9]. As form for the embedding functional we take the following

formula [19]:

Fl5]=AE. (5/po) In(5/po) (3.1)

The factors one needs to calculate are: the background electronic density p, Section [3.2.1
Equation , the background electronic density of a reference structure pg, the sublimation
energy E and the adjustable parameter A.

The sublimation energy E, and the parameter A depend on the type of the embedded
atom i. Whereas the parameter A has to be adjusted, the sublimation Energy can determined
from ab initio calculations or by experiment. As reference structure for pg the structure
in equilibrium state of the material is commonly chosen. Thus the following behaviour is

ensured:

e If the local background electronic density is less than in the equilibrium state, it is

energetically favorable to embed another atom in the local environment (F[ p | < 0).

21



e If the local background electronic density is more than in the equilibrium state, it is

energetically unfavorable to embed another atom in the local environment (F[ g ] > 0).

e If the local background electronic density is the same as in the equilibrium state, the

embedding functional provides no contribution to the total energy (F[ p | = 0).

The form of the embedding functional is made plausible by the following argument. When
an atom participates in bonds, then with increasing number of bonds the bond length is
also increasing and vice versa. The quantitative experimental values yielding this qualitative
behaviour are quite well represented by a logarithmic function as illustrated in Figure [3.3

In the case of a cubic lattice with center of symmetry it is easy to determine the background
electronic density of the reference structure, because it is equal to the first partial electronic
density p;o)’ Section Equation . This is also the case for pure elements with a bce
or fce structure.

In the case of alloys the background electronic density of the reference structure depends
on the type of the embedded atom. For instance in L1y FePt3 the background electronic
density in equilibrium state differs, when an Fe-atom or an Pt-atom is embedded. Thus
one needs a reference density for an Fe-site and one for an Pt-site. The different local

environments are shown in Figure and

22



Figure 3.1: The equilibrium ref-
erence structure for L1y FePts
as seen from a Fe-site. The
green spheres represent Fe and
the bronze spheres represent Pt.

23

Figure 3.2: The equilibrium ref-
erence structure for Llg FePts
as seen from a Pt-site. The
green spheres represent F'e and
the bronze spheres represent Pt.



0.6

In(Z/Zyey)

Figure 3.3: Change in first nearest neighbour distance r — r;..¢ relative to diamond silicon
as a function of ratio of number of nearest neighbours to that in diamond silicon, Z/Z, ;.
Circles are density-functional calculations and squares are quantum-cluster calculations [2].
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— FFe[ pFe]
= Fpl Ppi

Embedding Energy [eV]

-2 | | |

0 0.5 1 1.5 2
p/po [1]

Figure 3.4: Embedding functional for Fe and for Pt in L1y FePts. Being in equilibrium
the the local electronic densities ppe and pp; are equal to the reference densities and the
embedding functionals contribute nothing to the total energy. In general, if the local densities
are not too low, the forces caused by the embedding functionals point towards locations with
lower electronic densities.
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3.2 Density Model

3.2.1 Background Electronic Density

In order to calculate the background electronic density at the position of atom i one needs the
partial electron densities pz(-l) with [ = 0...3 depending on the local environment, Section
Equation —, and the weighting factors t,Eh') with A = 1...3 depending on the type
of atom i. Then the squares of the partial electronic densities are superimposed with their

weighting factors to determine the gamma factor:

3
r ="t [p" /o) (3.2)
h=1

Now it is possible to calculate the background electronic density:

2p,”

3.3
1+e T (3:3)

ﬁ:

Because the gamma factor enters as an exponent the weighting factors may also be
negative. In the special case of a cubic lattice with center of symmetry the gamma factor
vanishes and the background electronic density becomes equal to the first partial electronic
density p(-O)

i

3.2.2 Partial Electronic Densities

The main progress of the modified embedded atom method was the consideration of additional

angular-dependent contributions. They were calculated by the partial electronic densities

pz(-l), p£2) and pz(-g). Their specific forms has to fulfill the following conditions [3]:

e They must be invariant to lattice translation and rotation.

e They scale in a simple manner with the atomic electronic densities for homogeneous

deformation.

e They must be equal to zero for a cubic lattice with a center of symmetry.
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Additionally there is a spherically symmetric partial electron density p(.o), which will

7

vanish only if there is no other atom within the local environment at all.

(o) [Z feSi05” r (3.4)

J#i

(oM = Z[Zx%fc ”p?(”} (3.5)

« V)

2
2 @ a(2 1 a(2
(h)? = Z[Z%ﬂfe ”p]”] —3[2 fcsz—jpj“} (3.6)
a, B - jFi Jj#i
2
3 «@ a(3
COMEEDS [Zw 1. upj”} (37)
o, B,y - jF
3 a(3
- gz |:Z"E” fc zgp]( ):| (38)
e’ VE
with
ro
= (3.9)
J rij
o,.B
r&py,
20 = Y (3.10)
ij
o,.B .7
réry.
a3 = 7”7:; i (3.11)

ij
In order to calculate all parts one has to know following factors for the neighbouring

atoms j within the local environment around the embedded atom i:
e The cut-off function f, described in Section Equation ([3.42)).
e The total screening factor S;; described in Section Equation (3.50)).

e The atomic electronic densities p?(l) with [ = 0...3 described in Section Equa-

tion (3.17)).

e The angular dependent terms z¢;, = ZO;B and xam described in Equation (3 .,
where 77; is the a component of the distance vector between the embedded atom i and

a neighbouring atom j.
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For example, let us assume a cubic lattice with a centre of symmetry with 6 nearest
neighbours in equilibrium distance r,, all having the same atom type. Let the next nearest
interaction be completely screened (S;; = 0) and the nearest neighbour interaction unscreened
(Si; = 1). Furthermore none of the neighbours is located within the cut-off area (f. = 1),
described in Section Figure Then all angular dependent contributions ,0( ), pEQ) and

pgg) vanish and pgo)

is equal to 6, because being in equilibrium distance the atomic electronic
densities of the atoms each contribute one, compare Section Figure

One can consider the partial electronic densities as the first two terms in an expansion of
spherical harmonics or as an expansion in gradients of the density [5]. The functions LM

with [ = 0...3 are the unnormalized Legendre polynomials and ©;; the angle between a

neighbouring atoms j, the embedded atom ¢ and a neighbouring atom k.

=33 00 )i (i) LO (cos () (3.12)

i ket
L% =1 (3.13)
LV() = =z (3.14)

1
LP(z) = z2—§ (3.15)
Oz = z3—§z (3.16)

The form of Equation (3.12)) differs from the Equations (3.4)-(3.8), because they are more
convenient for the calculation of the density considered here, but they are mathematically

equivalent [32]. Baskes, Nelson and Wright have shown the relationship between the angular

dependent factors (x%, Zaf and aco‘ﬂ 7, Equation . and the equivalent cosine

terms [5].

3.2.3 Atomic Electronic Densities

Each neighbour atom of the embedded atom provides contributions to the electronic density

with four atomic electronic densities. These are exponential functions p?(h) with h =0...3

28



0 1 2 3 4 5 6

6_||||||||||||||||||||||||||||||6
] — B =492
5 — B =5 =220 5
] 83 =6.00
_ 47 4
SN
= 37 3
T~ ]
2 2
1 1
O-||||I||||I||| ||||||||||I||| 0
0 1 2 3 4 5 6
7 [A]

Figure 3.5: Atomic electronic densities for Pt. In the equilibrium distance to the embedded
atom each density contributes exactly one.

which are needed for the partial electronic densities, Section For each type of element
one needs one set of parameters: the scaling factor pj;, the decay constants B with
h =0...3 and the equilibrium distance r.q. For pure elements one can assume p; to be equal
to one for every j, but for binary systems they have to be adjusted [13]. This scaling factor
and the decay constants have to be adapted when using the potential for other materials.
The equilibrium distance is given by experiment and ensures the following behavior. A
neighbouring atom j in equilibrium distance to the embedded atom i contributes p; to the
partial electronic densities. The physical reason for this form is the exponential decay of the

electron density distribution outside a ”jellium” surface [1].

pi " = 5 exp[—BM (1 /reg — 1)] (3.17)

Figure [3.5| shows the atomic electronic densities for a neighbouring Pt-Atom.
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3.3 Pair Potentials

3.3.1 Universal Binding-Energy Relation

If one compresses and expands the whole volume of the system, the configuration of the
system, all angles, all ratio of distances and the total screening factors remain constant. This
special deformation is called breathing mode. Ab initio calculations have shown that there is
a universal function describing the dependence of binding energy on interatomic separation
a for breathing modes in a metal at ground state [20] [27] [1].

E“(@a)=—(1+a+da*)e ® (3.18)

with

a = 9BO/Esu (3.19)

d - L(aB 1>_

— — 2
2a\ Op lT=0K (3.20)

Wl =

If one knows the equilibrium distance 7.4, the corresponding sublimation energy Fqys,
the equilibrium atomic volume €2, the bulk modulus B and its derivative with respect to the
pressure 0B/0p, then the binding energy relation for breathing modes can be determined.
Further information about the parameter d is given in Section [6.3

It is possible to apply this function to a large number of metals by rescaling both

coordinate axes, the axis of energy and the axis of distance.

E* = E“/Euu (3.21)

a = a(r/reg—1) (3.22)

Figure [3.7|and Figure|3.8|show this behaviour using the example of Fe, Pt and FePt3 [13].

This model suffers, however, from two weaknesses [1]:

1. If the breathing volume is much smaller or much greater than the equilibrium volume,
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the values of the function differ from the universal form. In such a case one has to

examine the function values for each metal separately.

2. If we want to examine for instance shear forces as well, we have to use an additional

model. By contracting and expanding the breathing volume no shear effects occur.

Despite its weaknesses this model has a wide range of applications. It was sucessfully used
for cohesion, adhesion, chemisorption and molecular binding [26]. In the modified embedded
atom method one can use it, because the distances involved are near the equilibrium distances
and the background electronic density, with its angular dependent terms, takes care of shear
effects, when the parameters are appropriately adjusted.

The universal function gives the energy each atom contributes to the total energy. With it
one can determine the pair potentials. The breathing volume consists of neighbouring atoms
up to the second coordination shell and the energy per atom depends only on the interatomic
spacing as well as the pair potentials. Because in the breathing volume the interatomic
spacing scales linearly the angles, the structure and the occupation remain constant. Thus

the total screening factor for a neighbouring atom remains constant too.

3.3.2 Pair Potential for a pure Element

In the case of a pure element the energy per atom E*, Section Equation , consists
of the embedding functional F[p;], Section Equation , and the pair potentials ¢ of
the nearest neighbours and of the next nearest neighbours.

Let Z; and Z, are the coordination numbers, a the factor scaling from the nearest
neighbour distance to the next nearest neighbour distance. In the special case of a breathing
mode, explained in Section the total screening factor S, Section m Equation ,
remains constant and the background electronic density p, Section Equation ,
depends only on the interatomic spacing R.

Z

EY(R) = F[p(R)] + —-o(R) +

ZyS

—5 9(aR) (3.23)

The angular dependent terms of the partial electronic densities, Section Equa-
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tion (3.5)-(3.8), vanish for a cubic system with center of symmetry and we get for the

background electronic density

p(R) = Z1p" O (R) + Z,9p"*) (aR) (3.24)

where p©) is the first atomic electronic density from Section Equation (3.17)).

Our strategy is now to solve Equation (3.23) to get the wanted pair potential ¢. Because
it is used with two different arguments one can not do this directly. In order to solve this

problem another pair potential ¢ was introduced [20].

b(R) = ¢<R>+Zzif¢<aR> (3.25)

Now it is possible to rewrite Equation (3.23]) and solve the equation for a given R value

to get the pair potential ¥ (R).

BYR) = Fla(R)]+ Zu(R) (3.26)
oB) = o (E®) - Flp®)]) (3:27)

Once ¥ (R) is determined one can make use of an expansion that can be derived from

recursive relations to calculate ¢ by successive approximation.

BB = B+ > D) R (3.28)

We begin by calculating an approximate ¢ by taking 7,4, = 1. Now one has to increase
Nmaz Successively by one until ¢(R) is approximately equal to ¢(R). Thus one has to choose

an exit condition as follows:
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24R) = FlaR)]+ 2o(r)+ Z220(R) (329)
BU(R) = Flp(R)]+ 2(R) + 22 5(R) (330)

I E*(R) — E“(R) |

IA
)

(3.31)

This procedure is descibed Byeong-Joo Lee and M. I. Baskes [19] and our simulation
program shows in Figure the same functional behaviour of i) and ¢ as they reported. In

the present work we chose an exit condition € = 0.001.

Because one has to recalculate ¢(R) for every R we recommend to save the values of the
wanted pair potential ¢(R) in a data file. Then it is possible to fit a simple function to the

datapoints and one can calculate derivatives easily as well.

3.3.3 Pair Potentials for Binary Alloys

Knowing the universal function of the alloy and the pair potentials of the pure elements ¢ 44
and ¢pg, one can determine the pair potential of the elements with different types ¢ap.

The pair potentials of the pure elements were determined as described in Section ((3.3.2]).

This treatment can be illustrated by the example of L1y FePts. We have to distinguish
if it is an Fe-atom or an Pt-atom which is embedded. The energy per atom of each site is
made up of the pair potentials ¢;; and the corresponding embedding functional, Fr.[ pre |
or Fre[ppt]. As mentioned before in Section one has to use different reference structures
when calculating the background electronic densities, ppe or pps, because of the different
local environments . Z; and Z5 are the coordination numbers and Sg. and Sp; are the total
screening factors, Section Equation 7 of an F'e neighbouring atom and of an Pt
neighbouring atom. The total screening factors are constant, but they can differ for each

neighbour, because of different screening function values S;x;, Section Equation (3.45).
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Epc(R) = Fre[pre(R)] (3.32)
+ %¢FePt(R)+%SFe¢FeFe(aR) (3.33)
Ep(R) = Fpilpru(R)] (3.34)
b DR (R) 4 Sopure(R) + R Spipppi(aR)  (3:39)

Accordingly the energy per atom of the alloy is made up in the proportion 1 : 3 as follows:

Erer(R) = 1 Ere(R)+ 5 Bp(R) (3.36)
Erepi(R) = Frelpre(B)]+ 5 Foul pra(R)] (3.37)
+ %[%chept(R)Jr%éptpt(R)} (3.38)
b+ 2 LSrcdrereaR) + 3 SpibpupaR) (3.39)

By setting Z; = 12 and Z5 = 6 one finally obtains the pair potential of Fe-atoms and

Pt-atoms [13].
1 1 1
brept(R) = gElqéePtg(R) - EFFe[PFe(R)] - EFPt[PPt(R)] (3.40)
— ¢ppi(R) — iSFeQZ)FeFe(aR) - %SPWPtPt(CLR) (3.41)

This calculation is representative for all L1y systems. Figure [3.10] illustrates the pair

potentials ¢pere, dpipt and ¢pepy for FePts.
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Figure 3.6: The potentials ¢ and ¢ for Fe reproduced by our simulation program. It shows
the same behaviour published originally by Byeong-Joo Lee and M. I. Baskes [19] using the
identical parameters.
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Interatomic Spacing r [4]

Figure 3.7: Binding energy relation of Fe, Pt and FePts for breathing modes at ground
state.
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Figure 3.8: Universal form of the binding energy relation of Fe, Pt and FePt3 for breathing
modes at ground state. Axes are rescaled and the units are dimensionless.
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Figure 3.9: Embedding functionals for Fe and Pt in L1y FePts as a function of interatomic
spacing applying breathing modes to the system. In this case the embedding energies only
depend on the interatomic spacing r.
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Figure 3.10: Pair potentials for L1, FePts extracted out of the universal functions (E},,
EY%, and E%_p,) and the embedding functionals (Fpe[pre] and Fp[pp:]). The pair potentials
Orere and ¢ pypy were first calculated for the pure elements. Then ¢ p.p; was calculated from
Equation . The additional local minimum for ¢p.p; is caused by the second partial
electronic density pgt) , which does not vanish by embedding a Pt-atom within its quilibrium
environment in the L1, system.
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3.4 Cut-Off Function

To save calculation time we follow previous authors [19] and calculate the embedding energy
and the contributions of pair potentials only within a local environment around the embedded
atom with cut-off radius r.. Interactions near the margin and further away are negligible
and are adjusted to zero by the cut-off function f. shown in Figure Its argument & is
the control parameter described by Equation .

1 1<¢
fe@)=q[1-1-9"" 0<e<1 (3.42)
0 £<0

The cut-off area with the width Ar is between the cut-off radius r. and r. — Ar [19] as

shown in Figure |3.12

E=(ro—1)/Ar (3.43)
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Figure 3.11: Behaviour of the cut-off function f. within the cut-off area.

Figure 3.12: The orange area discribes the cut-off area r. — Ar.
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3.5 Screening

The interaction between the embedded atom ¢ and one of its neighbours j also depends on
the local environment of both atoms. Another neighbour atom can intervene and screen the
interaction. This screening can be described by two spheroids through the atoms ¢ and j as
shown in Figure |3.13

The screening function is a sufficient factor to describe the influence of intervening atoms
on the second nearest-neighbour interaction. It appears as a factor both in the pair potentials,
Section [3.3] and in the atomic electronic densities, Section We have to mention that
there is sometimes a third nearest-neighbour interaction as well. But in most cases these are

negligibly small [19].

3.5.1 The Screening Function Sj;

Let ¢ and j be two atoms which interact with each other and k an atom of the local
environment which screens the interaction.
The implicit equation of an ellipse is given by:
1 1

a? + 592 = (57"1‘3‘)2 (3.44)

Here (x,y) are the point coordinates with (0, 0) being the center of the coordinate system.
The distance between atom 7 and atom j is given by r;;. C is the parameter which determines
the aspect ratio of an ellipse. Rotating the ellipse around the line through atom 7 and atom
J gives a spheroid.

Its influence is described by a factor called screening function S;;;. The formula of the

screening function is equivalent to the cut-off function, Section Equation [3.42]).

1 1<¢
Siei(§) =q[1—(1-¢*]* 0<¢<1 (3.45)
0 £<0

But they differ in the way how the argument is calculated.
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C - szn

_ 4
g Cmaw - szn (3 6)
Q(XikﬁLX'k)*(XikfX- )271
c = E ! 3.47
1 — (Xun — X;1)2 (3.47)
Xy = & (3.48)
Tij
X = Ik (3.49)
Tij

The argument of the screening function depends on the distances of the atoms (7, i,
and r;;) and the parameters Cr,in and Cinqz, which describe the two spheroids in Figure m
C' determines where atom k is located [4]. We can summarize the behaviour of the screening

function as follows:

e When £k is outside the bigger spheroid the interaction between atom ¢ and atom j is

unscreened S;; = 1 (Figure [3.14]).

e If k located in the space between the smaller and the bigger one, then the interaction

is partially screened 0 < S;; < 1 (Figure [3.15)).
e Being within the smaller one the interaction is totally screened S;i; = 0 (Figure [3.16]).

Both parameters C,,;, and C),4, depend on the atom types involved. C),q4; is usually
considered to be the same constant (2.80) for all cases [20] [22] [13]. For pure elements one
has to determine only one value for C,,;,,. In binary alloys one has to consider the different
atom types A and B. There are six cases for i-k-j: A-A-A, B-B-B, A-B-A, B-A-B, A-B-A =
B-B-A and B-A-A = A-A-B.

3.5.2 The Total Screening Factor S;;

Considering the whole environment around atom ¢ and j one gets the total screening factor

Sij. In other words one has to calculate the screening factor S;; for every atom & within
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the local environment which screens the interaction. Then one has to multiply the values to

get the total screening factor.

Sij = H Sikj (3.50)
kiti

e When all screening atoms k within the local environment are outside the bigger spheroid

then the interaction is unscreened (S;; = 1).

e If at least one screening atom is within the space between the smaller and the bigger

one, then the interaction is screened (0 < .S5;; < 1).

e The interaction is completely screened, when at least one atom is within the smaller

spheroid (S;; = 0).
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Figure 3.13: two spheroids
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Figure 3.15: atom k screens the
interaction between atom 7 and j:
0<S<1
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Figure 3.14: atom k leaves the
interaction between atom ¢ and j
unscreened: S =1

y [5745]
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Figure 3.16: atom k screens the
interaction between atom ¢ and j
completely: S =0
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Chapter 4

Results

In this work a computer code was developed and tested to calculate the atomic interaction
for L1, FePts with the modified embedded atom method. It is possible to simulate the
bulk material as well as dimensionally limited systems like thin films or nanowires. One only
has do adapt the periodic boundary conditions to the corresponding situation. Positions of
single atoms can be manipulated and also the whole calculation cell can be compressed and
expanded. The energy which each atom contributes to the total system and the forces which
affect each atom can be calculated. Interactions up two the second coordination shell are
included. The total energy can be updated each time when the configuration of the system
changes. In order to save calculation time, only those partial volumes of the calculation cell
are considered where changes take place. Additional programs were implemented in order to
validate the method and to examine the behaviour of the system. The two output formats
XYZ and XFS are supported to investigate the calculation cell and the local environments
with common structure visualisation programs like RasMol, VMD or XCrySDen. The code
is particularly suitable for L1s alloys and for bcc and fcc pure element structures. For other

cubic systems like L1j the calculation of the pair potentials has to be adapted.
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4.1 Energy per Atom of the Equilibrium State

The energy each atom contributes to the total system consists of the embedding energy
needed to embed the atom within its local environment and of the pair interactions with its
surrounding neighbouring atoms. For the equilibrium bulk system of L1y FePts only the
pair interactions contribute, because the background electronic density of each element is
equal to its corresponding reference density, compare Section Figure and
We expect a mean energy contribution of —5.49 eV for every atom, which is exactly the
sublimation energy of the system. This energy per atom is obtained by calculating the total
energy of the system divided by the number of atoms within the calculation cell.

For the bulk system in equilibrium state every Fe-atom is surrounded by the same
local environment. Ditto for Pt-atoms. In our simulation program an embedded Fe-atom
contributes —4.74 eV to the total energy and an Pt-atom —5.74 eV. Provided that the
calculation cell is occupied by Fe- and Pt-atoms in the ratio of 1 : 3, we obtain the mean
energy contribution indipendent of the size of the calculation cell and all forces on the atoms

vanish within given accuracy limits of 107.

1x(—4.74) eV +3 x (=5.74) eV

0 = (—5.49) eV (4.1)

4.2 Confirmation of Physical Quantities

What we expect from the model is at least to be capable to reproduce the physical parameters,
which were given as input parameters. We did this by compressing and expanding the
simulation cell in order to validate the universal relationship between the binding energy
and the interatomic spacing, Section Equation . As a test candidate L1s-ordered
FePts; was chosen as well as the constituent elements, body centered cubic Fe and face
centered cubic Pt. We have to mention, however, that by applying breathing modes to the
system the cut-off function, Section Equation , causes some points of discontinuity.
This is understandable, because the pair potentials, Section and were extracted

by considering the ideal case without the need of a cut-off function. Nevertheless, as one can
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see in the Figure and we were able to reproduce the universal functions quite
well. The points of discontinuity can be reduced by increasing the cut-off radius and can be
smoothed by increasing the cut-off area. One obtains the equilibrium bulk modulus By and
the derivative of it with respect to the pressure, 9By/dp by fitting the universal function E*
to the data points. The sublimation energy Fy and the equilibrium atomic volume g one
gets directly out of the energy minimum. Another possibility is to fit the Birch-Murnaghan
equation of state, Equation , to the data points [7]. One has to rescale the nearest
neighbour distance r to the atomic volume Q by dividing the volume of the unit cell by 4 for

fce systems and by 2 for bee systems. Figure shows the results for L1y FePts.
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Figure 4.1: A bce Fe calculation cell with 128 atoms compressed and expanded to validate
the universal function E}, dependent on the atomic volume 2. € is the atomic volume at
equilibrium state. Within the interval of [0.8,0.9] the energy values deviate more from the
universal function, because of the cut-off function described in Section For the cut-off
function we chose r, = 3.0 and Ar = 0.05. Periodic boundary conditions are applied in
all three dimensions. The points of strong discontinuity caused by the cut-off function are
marked with a circle.

50



-4

— Ep
® Breathing Mode for Pt FCC

1

=

at
]

Energy Per Atom [eV]
&
]

6 T T T

0.6 0.8 1 1.2
Q/Q [1]

Figure 4.2: A fcc Pt calculation cell with 256 atoms compressed and expanded to validate
the universal function E}, dependent on the atomic volume Q. € is the atomic volume
at equilibrium state. For the cut-off function we chose r. = 2.4 and Ar = 0.05. Periodic
boundary conditions are applied in all three dimensions.
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Figure 4.3: A L1, FePts calculation cell with 256 atoms compressed and expanded to
validate the universal function Ef. p,. dependent on the atomic volume Q. () is the atomic
volume at equilibrium state. For the cut-off function we chose r. = 2.4 and Ar = 0.05.
Periodic boundary conditions are applied in all three dimensions.
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Figure 4.4: A L1y FePts calculation cell with 256 atoms compressed and expanded to
calculate energy values dependent on the atomic volume 2. The Birch-Murnaghan equation
of state is fitted to extract the equilibrium bulk modulus, By = 1.63 eV//A?, and the derivative
of it with respect to the pressure, dBy/dp = 5.74. The sublimation energy, Ey = —5.49
eV, and the equilibrium volume, Q¢ = 14.20 A3, are constant parameters in the fit and are
given by the potential minimum. For the cut-off function we chose r. = 2.4 and Ar = 0.05.
Periodic boundary conditions are applied in all three dimensions.
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4.3 Vacancy Formation Energy

Also we introduced a vacancy into the system of the alloy and of the pure elements to
investigate the forces around the vacancy site and to calculate energy profiles for some

nearest neighbour jumps into the vacancy site.

To calculate the total Energy Fy:[N] of the system containing one vacancy and N atoms.
one has to know the energy contribution ¢; for each element 7 in the system. This is the
energy per atom for the pure elements in equilibrium state. N; being the number of type 4

atoms.

Ef = B[N — Z Nie; (4.3)
i

We calculated the unrelaxed vacancy formation energy F; for bee Fe and fec Pt and
compared the values with known relaxed results [20] [22]. Additionally we examined the unre-
laxed vacancy formation energies for L1s FePts as well. Table shows that the unrelaxed
values for Fe and Pt are about 13% and 11% greater than the relaxed reference values. For
the alloy no reference values were available for comparison but one can see that a vacancy
on a Fe-site is favoured by about 0.05 eV compared to a vacancy on a Pt-site. Further
investigations of neighbouring atoms jumping to the vacancy site, Section correspond

with this result.

System Vacancy Site | Ef [eV] | relaxed expected value [eV]
BCC Fe Fe 1.98 1.75
FCC Pt Pt 1.66 1.50
L12 F€Pt3 Fe 1.84 -
L1y FePts Pt 1.89 -

Table 4.1: Vacancy formation energies E; for pure Fe, pure Pt and a L1, FePt; alloy. The
reference values [20] [22] for the pure elements are smaller, because our values are not relaxed.
In the alloy it costs less energy to produce a vacancy on a Fe-site in comparison to a vacancy
on a Pt-site.
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4.4 Calculation of the Force

The calculation of the force of the potential entails derivatives of all parts containing the
position of the atom like the cut-off function, the screening function, the partial electronic
densities et cetera. In order to validate the results of this algebraically somewhat involved
calculation, we compared every derivative for each component with its corresponding difference
quotient.

Af(z) _ flz+Az) - f(z)

Ar Az (44)

This can be done for every derivative by output routines, which were implemented
particularly for this purpose.

In Section we illustrate the force affecting an Fe-atom, which jumps into a vacancy
on a Pt-site in L1y FePts. In general the results correspond quite well. Only a few values

show a greater deviation from each other, compare Figure |4.6
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4.4.1 Force during Atom Jump: Fe-Atom Jumps to Vacancy on
Pt-Site in L1,FePts
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4.5 Forces around a Vacancy

It is possible to calculate the forces exerted on each atom of the system. If for example we
take out an atom, producing a vacancy, all surrounding atoms feel forces, which deform the
lattice within a local environment.

We have calculated the forces acting on the neighbouring atoms of a vacancy, for bee Fle,
for fcc Pt and for L1, FePts. The naive expectation is that the forces always point towards

the vacancy site, but this turns out not always to be the case.

BCC Fe with vacancy: The forces on the nearest neighbours point towards the vacancy

and the forces which affect the next nearest neighbours point away, Section
FCC Pt with vacancy: All forces point towards the vacancy, Section 4.5

L1, FePt3 with vacancy on Fe-site: The forces which affect the nearest neighbours point
away of the vacancy and the forces which affect the next nearest neighbours point

towards it, Section [£.5]

L1y FePts; with vacancy on Pt-site: All forces point towards the vacancy, Section

In general one can say, that the embedding functional causes a component of the force,
which is directed towards the vacancy, and the pair potentials cause a component of the
force, which points away from the vacancy. Altogether the direction of the force depends on

which component prevails.

59



Forces around a Vacancy in BCC Fe

Atom | DWya | r[A] | E[eV] | F, [eV/A] | F, [eV/A] | F. [eV/A]
Fe | (2,0,0) | 2.86 | -4.17 0.17 0.00 0.00
Fe | (2,0,0) | 2.86 | 417 | -0.17 0.00 0.00
Fe (0,2,0) | 2.86 -4.17 0.00 0.17 0.00
Fe (0,-2,0) | 2.86 -4.17 0.00 -0.17 0.00
Fe (0,0,2) | 2.86 -4.17 0.00 0.00 0.17
Fe (0,0,-2) | 2.86 -4.17 0.00 0.00 -0.17

Table 4.2: Second nearest neighbour atoms around a vacancy in bce Fe.
direction vector DVy, 4 from the vacancy to the atom, distance r, energy contribution £ and

the components of the force F,, Fy and F, affecting the neighbour atom are shown.

Atom | DVya |1 [A] | E[eV] | Fy [eV/A] | Fy [eV/A] | F, [eV/A]
Fe (1,1,1) | 2.48 -4.13 -0.42 -0.42 -0.42
Fe (-1-1-1) | 2.48 -4.13 0.42 0.42 0.42
Fe (1,1,-1) | 2.48 -4.13 -0.42 -0.42 0.42
Fe (1-1,1) | 2.48 -4.13 -0.42 0.42 -0.42
Fe (-1,1,1) | 2.48 -4.13 0.42 -0.42 -0.42
Fe (-1-1, 1) | 2.48 -4.13 0.42 0.42 -0.42
Fe (-1, 1-1) | 2.48 -4.13 0.42 -0.42 0.42
Fe (1-1-1) | 2.48 -4.13 -0.42 0.42 0.42

Table 4.3: Nearest neighbour atoms around a vacancy in bce Fe. Atom type, direction vector
DVy 4 from the vacancy to the atom, distance r, energy contribution E and the components

of the force F,, Fy and F, affecting the neighbour atom are shown.
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Atom type,




Forces around a Vacancy in FCC Pt

Atom | DVya | r[A] | E[eV] | F, [eV/A] | F, [eV/A] | F. [eV/A]
Pt (2,0,0) | 3.92 -5.77 -0.41 0.00 0.00
Pt (-2,0,0) | 3.92 -0.77 0.41 0.00 0.00
Pt (0,2,0) | 3.92 -5.77 0.00 -0.41 0.00
Pt (0,-2,0) | 3.92 -5.77 0.00 0.41 0.00
Pt (0,0,2) | 3.92 -5.77 0.00 0.00 -0.41
Pt (0,0,2) | 3.92 -5.77 0.00 0.00 0.41

Table 4.4: Second nearest neighbour atoms around a vacancy in fcc Pt. Atom type, direction
vector DVy 4 from the vacancy to the atom, distance r, energy contribution F and the
components of the force Fy, F,, and F, affecting the neighbour atom are shown.

Atom | DVya |1 [A] | E[eV] | F, [eV/A] | F, [eV/A] | F, [eV/A]
Pt (1,1,0) | 2.77 -5.63 -0.20 -0.20 0.00
Pt (-1,-1,0) | 2.77 | -5.63 0.20 0.20 0.00
Pt (1-1,0) | 2.77 -5.63 -0.20 0.20 0.00
Pt (-1,1,0) | 2.77 | -5.63 0.20 -0.20 0.00
Pt (1,0,1) | 277 | -5.63 -0.20 0.00 -0.20
Pt (-1,0,-1) | 2.77 | -5.63 0.20 0.00 0.20
Pt (1,0,-1) | 2.77 | -5.63 -0.20 0.00 0.20
Pt (-1,0,1) | 2.77 -5.63 0.20 0.00 -0.20
Pt (0,1,1) | 277 | -5.63 0.00 -0.20 -0.20
Pt (0-1-1) | 2.77 -5.63 0.00 0.20 0.20
Pt (0,1,-1) | 2.77 | -5.63 0.00 -0.20 0.20
Pt (0,-1,1) | 2.77 -5.63 0.00 0.20 -0.20

Table 4.5: Nearest neighbour atoms around a vacancy in fecc Pt. Atom type, direction vector
DVy 4 from the vacancy to the atom, distance r, energy contribution E and the components
of the force Fy, F, and F, affecting the neighbour atom are shown.
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Forces around a Vacancy in L1, FePts sitting on a Fe-Site

Atom | DVya | r[A] | E[eV] | F, [eV/A] | F, [eV/A] | F. [eV/A]
Fe | (2,0,0) | 384 | 474 | -0.14 0.00 0.00
Fe | (-2,0,0) | 3.84 | -4.74 0.14 0.00 0.00
Fe (0,2,0) | 3.84 -4.74 0.00 -0.14 0.00
Fe (0,-2,0) | 3.84 -4.74 0.00 0.14 0.00
Fe (0,0,2) | 3.84 -4.74 0.00 0.00 -0.14
Fe (0,0,-2) | 3.84 -4.74 0.00 0.00 0.14

Table 4.6: Second nearest neighbour atoms around a vacancy in Lls FePts. The vacancy sits
on a Fe-site. Atom type, direction vector DVy 4 from the vacancy to the atom, distance r,
energy contribution £ and the components of the force F,, F, and F. affecting the neighbour
atom are shown.

Atom | DVya | r[A] | E [eV] | Fx [eV/A] | Fy [eV/A] | Fz [eV/A]
Pt (1,1,0) | 2.72 -5.59 0.06 0.06 0.00
Pt (-1,-1,0) | 2.72 | -5.59 -0.06 -0.06 0.00
Pt (1,-1,0) | 2.72 | -5.59 0.06 -0.06 0.00
Pt (-1,1,0) | 2.72 | -5.59 -0.06 0.06 0.00
Pt (1,0,1) | 2.72 | -5.59 0.06 0.00 0.06
Pt (-1, 0,-1) | 2.72 -5.59 -0.06 0.00 -0.06
Pt (1,0,-1) | 2.72 | -5.59 0.06 0.00 -0.06
Pt (-1,0,1) | 2.72 -5.59 -0.06 0.00 0.06
Pt (0,1,1) | 2.72 | -5.59 0.00 0.06 0.06
Pt (0,-1,-1) | 2.72 -5.59 0.00 -0.06 -0.06
Pt (0,1,-1) | 2.72 | -5.59 0.00 0.06 -0.06
Pt (0,-1,1) | 2.72 -5.59 0.00 -0.06 0.06

Table 4.7: Nearest neighbour atoms around a vacancy in L1y FePts. The vacancy sits on a
Fe-site. Atom type, direction vector DVy, 4 from the vacancy to the atom, distance r, energy
contribution F and the components of the force F,, Fy, and F), affecting the neighbour atom
are shown.
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Forces around a Vacancy in L1y FePts sitting on a Pt-Site

Atom | DVya | r[A] | E[eV] | F, [eV/A] | F, [eV/A] | F. [eV/A]
Pt (2,0,0) | 3.84 -5.74 -0.32 0.00 0.00
Pt (-2,0,0) | 3.84 -5.74 0.32 0.00 0.00
Pt (0,2,0) | 3.84 -5.74 0.00 -0.32 0.00
Pt (0,-2,0) | 3.84 -5.74 0.00 0.32 0.00
Pt (0,0,2) | 3.84 -5.74 0.00 0.00 -0.55
Pt (0,0,-2) | 3.84 -5.74 0.00 0.00 0.55

Table 4.8: Second nearest neighbour atoms around a vacancy in Lls FePts. The vacancy sits
on a Pt-site. Atom type, direction vector DVy 4 from the vacancy to the atom, distance r,
energy contribution £ and the components of the force Fy, F, and F, affecting the neighbour
atom are shown.

Atom | DVya |1 [A] | E[eV] | F, [eV/A] | F, [eV/A] | F, [eV/A]
Fe | (L 1,0) | 272 | 454 20,01 20.01 0.00
Fe | (-1,1,0) | 272 | -4.54 0.01 0.01 0.00
Fe | (1,1,0) | 272 | 454 0.01 0.01 0.00
Fe | (-1,1,0) | 272 | -4.54 0.01 20.01 0.00
Pt | (1,0,1)] 272 | -5.60 0.41 0.00 0.17
Pt (-1,0,-1) | 2.72 -5.60 0.41 0.00 0.17
Pt | (L, 0.1) | 272 | -5.60 0.41 0.00 0.17
Pt (-1,0,1) | 2.72 -5.60 0.41 0.00 -0.17
Pt (0,1,1) | 2.72 -5.60 0.00 -0.41 -0.17
Pt (0,-1,-1) | 2.72 -5.60 0.00 0.41 0.17
Pt (0,1-1) | 2.72 -5.60 0.00 -0.41 0.17
Pt (0,-1,1) | 2.72 -5.60 0.00 0.41 -0.17

Table 4.9: Nearest neighbour atoms around a vacancy in L1y FePts. The vacancy sits on a
Pt-site. Atom type, direction vector DVy, 4 from the vacancy to the atom, distance r, energy
contribution F and the components of the force F,, Fyy and F), affecting the neighbour atom
are shown.
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4.6 Atom Jumps to the Vacancy Site

In general we are interested in energy barriers for Monte Carlo simulations. Thus we
caclulated energy profiles of some unrelaxed atom jumps of neighbouring atoms into the
vacancy position in order to test the behaviour of the potential and the forces. This was
carried out for bee Fe, fcc Pt and L1y FePts. Although the system is unrelaxed the jumping
profiles show expected qualitative behaviours. Points of interest are marked with arrows.

Points of strong discontinuity caused by the cut-off function are marked with circles.

e Atom jumps which leave the state of long-range order of the alloy constant have got
the same energies at the initial state and at the final state, Section and

4.0.0l

e Atom jumps which change the state of long-range order of the alloy show different

energies at the initial state and at the final state, Section and
e At the equilibrium state and at a potential maximum the forces vanish.

e In the presence of a vacancy the equilibrium state does not lie exactly at the ideal lattice
positions, because the vacancy causes small forces shifting the equilibrium distance of
the jumping atoms a little bit, compare Section [£.5] The direction of the shift depends

on the local environment and on the vacancy site.

e The jump path in Section |4.6.5|is energetically unfavourable. The forces on the atom do
not vanish at the half-way point, because of the atomic occupation of four-atom window
consisting of common nearest neighbours to the initial and the final position. The
Pt-atom jumps through a window consisting of two Pt-atoms and two F'e-atoms side
by side, which introduces asymmetry, compare Section [3.1] Figure[3.2] The energetically

favourable path generally depends on the configuration of this four-atom window.

e A vacancy on a Fe-site in L1y FePts is energetically favoured, Section and
which corresponds with the results of Section Table

In order to make quantitative comparisons and conclusions one has to relax the positions of

the atoms in a certain environment of the defect, seeking a minimum of the total energy of
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the system.
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4.6.1 Fe-Atom jumps to Vacancy on Fe-Site in BCC Fe
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4.6.2 Pt-Atom jumps to Vacancy on Pi-Site in FCC Pt
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4.6.3 Fe-Atom jumps to Vacancy on Pt-Site in L1y FePts
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4.6.4 Pt-Atom jumps to Vacancy on Fe-Site in L1y FePt;s
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4.6.5 Pt-Atom jumps to Vacancy on Pt-Site in L1y FePts
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Chapter 5

Conclusions and Outlook

At the present state of work the question, if the modified embedded atom method is suitable
for Monte Carlo simulation of diffusion of atoms in dimensionally limited systems, cannot be
resolved. It is not possible to make appropriate statements about its applicability without at
least a working algorithm for the elastic relaxation of atoms, which was beyond the scope of
this work. Probably the main weakness of the method is that the parameters are adjusted
mostly to macroscopic physical quantitites, which may turn out to be insufficient to reproduce
behaviour at the atomic scale. Particularly near surfaces and if one needs to calculate energy
barriers for atom jumps this could be crucial. Scruples about the method occur because some
forces we calculated acting on atoms in the neighbourhood of a vacancy point away from
the vacancy. To further clarifiy this problem one should implement a relaxation algorithm
to have the possibility to compare with relaxed jump profiles from ab initio calculations. If
then the method is confirmed to contradict first principle calculations one has to decide if

the method can be improved or has to be discarded for the purposes envisioned.
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Chapter 6

Appendix

6.1 The Calculation of the Force

6.1.1 Gradient of the Total Energy

The force affecting an atom ¢’ is given by the negative gradient of the total energy Fy.
g

Fy = VB =~V [Z Flpi] + % > cmj} (6.1)

i

If one derives with respect to the atom 4’ different terms of the total energy are affected:

vi’E‘tot = 1’F + Z vz’¢1 ' + Z |: z’F p] + v2/¢J1’:| (62)
J#l’ J#Y

= ViFpil+ Y ViFlpl+ Y Vo (6.3)
J# J#V

e Because atom i’ is embedded one has to derive the embedding functional F[p;/] and the
pair potentials ¢;/; which describe the interactions between atom ¢’ and all neighbouring

atoms j.

e Because the neighbrouring atoms j of the atom i’ are embedded as well one has to
derive the embedding functional F'[p;] and the pair potential ¢;/; which interacts with

atom i’ for every neighbouring atom j.
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e Furthermore the screening function Sjx;, Section Equation and the cut-off

funcition f., Section Equation [3.42] cause additional terms.

6.1.2 Gradient of the Screening Factor

Let i be an atom which is located in the center of a local environment. Let j be one of
its neighbours, which interact with it. Let atom k be one of the atoms, which screens the
interaction. To know the force which affects an atom 7 we have to derive with respect to atom
i. Therefore we have to consider three cases. In each case there is an different derivative of

the screening function.

1. Atom i is the atom located in the center of the local environment (i = i). One must

consider the derivative with respect to the atom in the center:

ViSij = Z [Visikj H Sik/j:| (6.4)

ki, k' i,k

2. Atom 7 is the atom which interacts with the atom in the center i (i = j). One must
consider the derivative with respect to a neighbour atom which is interacting with the

atom in the center:

ViSi= Y [ijikj 11 Sik’j] (6.5)

k.5 k'#i.5,k

This formula is mathematically equivalent to the formula in case two. Only the role of

atom i and atom j is interchanged.

3. Atom ¢ screens the interaction between the atom in the center i an another neighbour

atom j (5 = k). One must consider the derivative with respect to a screening atom:

VirSij = VS [[ Sini (6.6)
ki g k!
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6.2 Periodic Boundary Conditions

As the memory and the calculation power of computers are limited, the size for the calculation
cell must be limited, too. To simulate an infinite solid periodic boundary conditions are used.
Let us imagine the calculation cell as a cube bounded by its six faces, so that for instance
face number one shall be opposite to number six. As in a conveyor belt, the two ends are
joined. Particles leaving the cell by crosssing the surface on one side reenter on the opposite

side.

e For simulating a bulk phase one must apply the periodic boundary conditions in all

three dimensions.

e For simulating a thin film one must apply the periodic boundary conditions in two

dimensions.

e For simulating a quantum wire one must apply the periodic boundary condition in

only one dimension.

In our simulation program we have to consider periodic boundary conditions in two cases
especially. When the position of an atom moves over the edge, and when we have to calculate
the distance between two atoms. The vectors of position and distance have to be adapted
accordingly. This is especially important when one is looking for the nearest neighbours of an
atom. With periodic boundary conditions one particle sitting on the edge of the simulation
box could be the nearest neighbour of an atom on the other side of the cell, whereas without
periodic boundary conditions this would not be the case. For further informations we refer

to the book Computational Physics by Franz J. Vesely [33].

Implementation of the Periodic Boundary Conditions

Periodic boundary conditions for a cubic system can be found in our simulation program
within the modules in PBC_CUBIC_SWITCH. With the “use”directive it is possible to
choose the dimensions which should be affected. Provided that cell size is initialized with

INI_.PBC_CUBIC the subroutines PBC_POSITION and PBC_DISTANCE adjust the vector
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of position and the vector of distance, respectively. The values one needs for calculation are

the atom position Z, the distance Az and the size of the calculation cell L.

PBC_DISTANCE:
AZ

Ar=Az—-L- mt(L—/Q)

(6.7)

PBC_POSITION: Because in Fortran 90/95 and in C++ there is no modulus operator

for floating type numbers we have to implement x = (Z 4 2L) mod L like:
Tz = (Z+42L)/L (6.8)
x = T—rea(int(z)) L (6.9)

6.3 Calculation of the Parameter d

The universal function is given by [20]:

E%(a") = —Euw(l+a*+da®)e (6.10)
a = or/reqg—1) (6.11)

o = V9%B/Esu (6.12)

By knowing €y = 3775, we can calulate [27]:

S

OB | Tus E“"(0)

— = — 6.13

OP |lr=0k 3l Ev'(0) (6.13)
Eeub

= 4’\ .14

l 127 Brys (6.14)
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E* (0) = E.uw

EY(0) = —Euu(6d+2)

Tws a =/(92B)/Eyuw

Finally we get an simple expression of the parameter d.

1 0B 1

d = —(=— -1 —-=
2a(€)PT:0K ) 3
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(6.18)
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