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Abstract

This thesis is about mapping climate change in a novel way. Climate models simulate
the complex energy and matter fluxes of the climate system within an uncertainty
range and produce a huge amount of data with a very high temporal resolution,
which are used to derive integrated indicators like temperature means, precipitation
totals for a certain time range - a year, a season valid for a certain area. Cli-
mate change is indicated through differences between the indicators for time ranges
presenting current climate and a future climate scenario. But these integrated indi-
cators do not provide a complete overview of the climate changes and the impacts
which will be expected.

To experience the expected changes in a more “tangible” way, the Austrian Insti-
tute of Technology (AIT) has developed the Climate Twin application (Loibl et al.
2010). By selecting a certain location (“source region”) in an interactive map an
algorithm is initialized which compares a set of climate indicators of current climate
and future climate and generates a second map showing the matching Climate Twin
areas (“target regions”) according to their current climate conditions compared to
the future climate conditions in the source region.

The main objective of this work is to elaborate a suitable matching method to
better identify Climate Twin regions. By using mean values in the description of
a whole year’s climate conditions, some unfavorable simplifications occur. A mean
value by itself does not include other main properties like temperature amplitudes
with its peaks and sinks or extreme precipitation events. A suitable similarity mea-
sure therefore should also contain basic distribution properties like range, skewness,
bipolarity, etc. A comparative analysis of similarity measures for distributions was
done by Jan Vegelius et al. (1986) in which two of the reviewed measures, the Pro-
portional Similarity (PD, formula 2.1) and the Hellinger Coefficient (ry, formula
2.2), were tested to have the most suitable properties.

The approach of comparing the statistical distributions of climate indicators with
the methods mentioned above starts with an exploration of the main parameters
by analyzing their properties in sample locations (Vienna, Copenhagen, Munich
and Rome) in different climate regions. The main questions among others are the
selection of suitable climate indicators, their applicability for this approach, the
bandwidths of similarity (uncertainty ranges) and the combination and weighting of
the similarity (r) indicators to achieve appropriate Climate Twin results.






Zusammenfassung

Diese Arbeit beschéftigt sich mit einem neuen Ansatz, Klimadnderungen interak-
tiv kartographisch darzustellen. In der Regel werden Klimadnderungen mittels der
Darstellung von Verdanderungen der Durchschnittstemperaturen zwischen zwei Zeit-
punkten kommuniziert, womit mogliche Erwédrmungen und Abkiihlungen im lang-
jahrigen Mittel offenbart werden. Methodisch ist dieser Ansatz zwar korrekt, jedoch
erschwert er die Interpretation der tatséchlichen Bedeutung und der Effekte, welche
Klimaédnderungen mit sich bringen und zwar sowohl fiir Laien als auch Experten.

Klimamodelle simulieren die komplizierten physikalischen Zusammenhéange inner-
halb der Atmosphére und mit der Erdoberfliche. Sie produzieren somit eine Fiille
zeitlich hochaufgeldster Daten, mit welchen integrierte Indikatoren wie Temperatur-
mittelwerte und Niederschlagssummen fiir eine bestimtme Zeitspanne (Jahr, Jahres-
zeit, Monat) fiir eine bestimmte Fliche berechnet werden. Effekte des Klimawandels
werden dann mittels der Differenzen der Indikatoren die Zeitspannen des aktuellen
und eines kiinftigen Klimas beschreiben, quantifiziert. Doch diese integrierten In-
dikatoren liefern keinen gesamten Uberblick iiber den zu erwartenden Klimawandel
und die sich daraus ergebenden regoinalen Effekte. Aus diesem Grund hat das Austri-
an Institute of Technology (AIT) die ,Climate Twins Applikation* entwickelt (Loibl
et al. 2010), in welcher es dem Nutzer ermoglicht wird, Regionen zu identifizieren,
welche jetzt bereits ein dhnliches Klima aufweisen, wie ein Ort in einem zukiinftigen
Zeitraum.

Das vorrangige Ziel dieser Arbeit ist es also, eine geeignete Methode zu entwickeln,
um aus vorhandenen Datenséitzen Regionen mit dhnlichen klimatischen Eigenschaf-
ten auszumachen. Normalerweise werden Klimata anhand von Mittelwerten (Tem-
peratur) oder Summenwerten (Niederschlag) iiber grofere Zeitrdume gebildet. Ein
Mittelwert beinhaltet jedoch keine Informationen iiber die Amplituden von Tempe-
raturkurven oder iiber Extremwerten von Niederschlagsereignissen. In ein geeigne-
tes Ahnlichkeitsmaf sollten also die wesentlichen Eigenschaften einer statistischen
Verteilung wie deren Varianz, Schiefe, Krimmung oder Bipolaritdt einflieken. Eine
Evaluierung gegebener Ahnlichkeitsmafke fiir Verteilungen wurde von Jan Vegelius
et al. (1986) durchgefiihrt, bei der sich zwei Make, die Proportional Similarity (PD,
Formel 2.1) und der Hellinger Koeffizient (rp, Formel 2.2) herauskristallisierten,
welche die besten Moglichkeiten fiir derartige Anwendungen bieten.

Die Verwendung derartiger Ahnlichkeitsmafe fiir Klimadaten erfordert deren Prii-
fung anhand von Testdatensétzen. Dafiir wurden die Stadte Wien, Miinchen, Kopen-
hagen und Rom herangezogen. Wichtige weitere Schritte sind die Auswahl geeigneter
Klimaindikatoren, deren Anwendbarkeit auf die Ahnlichkeitsmafke, die (Unsicherheits-
)Bandbreiten der Ahnlichkeit, sowie die Kombination und Gewichtung der einzel-
nen Ahnlichkeitswerte um aussagekriftige Ergebnisse, nicht nur anhand weniger
integrierter Indikatoren sondern anhand des Vergleichs der gesamten Verteilung der
Temperatur- und Niederschlagsdaten iiber eine aktuelle und einer kiinftige Zeitspan-
ne, zu produzieren.
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1 Introduction

Although terms like “global warming” or “anthropogenic forced warming” lead
to heated debates between “the scientific consensus” and global warming “deniers”,
a change in the main climatological variables during time is being accepted by a
vast majority of both researchers and the public. The climate system is highly
dynamic, complex and has changed steadily over the known history. Therefore it
is feasible to assume that change whatsoever is to be expected again in the future.
Anticipating the forms of changes is important to estimate the possible future state
of the environment and to evaluate which kinds of new challenges they bear.

The evaluation of climate change and developing adaption strategies is related
to climate model results, which simulate the climate-relevant physical processes
and produce a vast amount of quantitative data. To gain thorough understanding
of the implications of expected upcoming climate changes, ways have to be found
to communicate the model results in a more “tangible” way. The Climate Twins
application, developed by the AIT, is an attempt to translate the climate model
results into easily understandable information. A user who is interested in the
future climate conditions of his hometown selects a certain location in an intuitively
usable web application and a map shows regions in Europe which now have similar
climate conditions as the future climate conditions of the selected “source” location.
In this way the scientific output is directly related to real world conditions and is
therefore more easily understandable.

Climate can be seen as the amount of statistical distributions of various climate
indicators like temperature, precipitation, air humidity and many others through
space and time. Talking of climate within the context of quantitative data analysis
requires the careful selection of the right climate indicators and their statistical
parameters representing “climate”.

In the current Climate Twins version, climate is represented by monthly mean
temperatures and precipitation sums. The matching algorithm compares the future
climate of the source location with the current climates of every region in Europe
month by month. A region—or raster cell given by the climate model—is identified
as Climate Twin if the deviations of the monthly indicator values lie within a given
threshold for 6 to 8 (low similarity), 9 to 10 (high similarity) or 11 to 12 (very high
similarity) months of the year for each climate indicator respectively.

This matching method is a first approximation of evaluating climate similarity
and has a few drawbacks. In fact, the accuracy and applicability of the similarity
identification strongly depends on the selection of the climate indicators and the
similarity thresholds or uncertainty ranges. Too few climate indicators and too
wide uncertainty ranges will identify too many and too large Climate Twin regions,
whereas too many indicators and too narrow uncertainty ranges will identify little
or no Climate Twin regions. Using monthly mean values also leads to problems as
it does not incorporate the variability, peaks or range of the indicator’s distribution
which could also be interesting properties.

The problem on seeking regions with similar climates for the Climate Twins Ap-
plication leads to four basic research questions:

1. Which climate indicators could be used according applicability and availabil-
ity?
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2. Which possibilities exist to compare two regions and their climate indicators?
3. Which is a suitable uncertainty range or threshold to define similarity?
4. Which is the best way to measure similarity for this application?

The first question addresses the problem described above. The climate indica-
tors chosen have to “describe” the climate in an appropriate and feasible way for
the Climate Twins application. The second question is about the methods being
used to describe similarity between the climate indicators proved to be sufficient
by question 1 and is to be answered with statistical methods. As similarity always
depends on subjective decisions, the (third) question arises on how to quantify and
define thresholds where a “common sense” of similarity is considered. The fourth
question is about combining the findings into an applicable method including the
logic behind the query or the aggregation and weighting of the indicators.

The main objective of the thesis is to develop a working matching method ready to
be implemented into a working Climate Twins prototype. According to the research
questions given, some basic objectives have to be accomplished. First, meaningful
and applicable climate indicators have to be selected. Established types of climate
classification give useful inputs in selecting these indicators. To quantify similari-
ties between two data vectors a statistical function has to be chosen which deter-
mines their relative (dis)similarity in a normalized—"unit” free—form to facilitate
the combination of different indicator similarity values. A further objective is the
determination of applicable thresholds and matching conditions including weighting
and combination of the indicator similarity values.

For declaring similarity two measures are tested and evaluated. Both the Propor-
tional Similarity (PD) and the Hellinger Coefficient (rg) compute a similarity value
between 0 (no similarity) and 1 (identical) between two statistical distributions.
Based on these measures a computation process was designed and implemented
into the Climate Twins Application. Because of the nature of the available test
data—COSMO-CLM modeled climate data—and its raster structure the matching
algorithm is applied between the corresponding source location cell with every other
cell in a sequential way.

To evaluate the method, first tests were done using modeled climate data of the
four sample locations Vienna, Copenhagen, Munich and Rome. In a second step
a working prototype to identify similarities was developed using the current basic
Climate Twins application’s architecture. Therefore, the climate data had to be
restructured in the data base and a new version of the matching algorithm had to
be written in Java.

This thesis is structured into five chapters. The first—this—Chapter should de-
scribe the basic idea behind the Climate Twins and formulate the research questions
which had been the driving forces during the last year. The second Chapter shall
give an overview of the theoretical basics needed to approach the topic. It is divided
into two sections, one providing definitions and ideas about climate focusing on clas-
sification, modeling and indicators and the other giving short insights on approaches
of measuring similarities with statistical methods. In this chapter, also the subjects
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of the first two research questions are discussed. The third Chapter is about cal-
ibrating the similarity measures and exploring their potential by testing them on
modeled climate data from the cities of Vienna, Copenhagen, Munich and Rome.
Furthermore the whole logical structure of the Climate Twins matching method is
elaborated. In the fourth Chapter, the existing Climate Twins tool is described fo-
cusing on the technological infrastructure and functionality leading to the changes
and improvements which had to be done to implement the method worked out in the
prior chapters. Chapter five presents result maps, their interpretations and discusses
the problems, strengths and weaknesses of the method and discusses the subjects
of the last two research questions before giving a conclusion and proposing further
improvements.

In addition all of the produced and used scripts including R-scripts for preparing,
analyzing and rendering and the Java program implemented into the web appli-
cation are to be found in the appendices. This should make the research process
and its milestones transparent as the reader is enabled to retrace the single steps
of this work. The programming work is meant to be open source so if there are
any questions or improvements on the code, feel free to contact the author via
joachim.ungar@gmail.com.
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2.1 Climate

The term climate originates from the ancient Greeks and means inclination which
refers to the angle the sunbeams hit the earth’s surface. The Greeks recognized this
inclination as one of the most important drivers for temperature, wind and precipi-
tation patterns varying between the seasons. On a global scale this definition implies
a meridional classification of climate types as the sunbeams have a stronger impact
around the equator than towards the poles. On a first glimpse this may be correct
but there are many other influences which result in climate variations between the
western and eastern edges of continents, between maritime and continental zones or
between highlands and lowlands. (Malberg 2002, p. 271ff.)

In the last centuries the definitions got a little bit more deliberate:

The German climatologist Koppen pointed out in 1923 that “climate is the mean
condition and ordinarily progress of the weather at a place.” (Malberg 2002, p. 272).

Malberg himself gives a more statistical definition of climate as “the whole at-
mospheric conditions and processes defined by the means, the variations and the
extreme values within an adequate period of time.” (Malberg 2002, p. 272)

Oliver further argues, that “climate fluctuates on all time scales: monthly, yearly,
decadally, centennially, and millennially. Thus, climate is a statistical collective. It
has often been described in terms of mean values of particular climatic elements, but
it encompasses a wide range of values, including occasional extremes.” (Oliver 2005,
p. 272)

These statements imply that climate is a complex statistical term which strongly
depends in both the time and the space scale given. In fact there are many spatial
scales from where climate can be described like microclimate, local climate, mesocli-
mate and macroclimate. Furthermore, an atmospheric condition (which leads to the
term climate) is described by a composition of many climate variables like temper-
ature, precipitation, humidity, wind speed and others. Therefore it depends on the
context in which the term climate is used as it can describe e.g. the urban climate
in the summer of 2009 in Vienna or the global climate within the next twenty years.

2.1.1 Climate classification

Classification is about aggregating entities with similar characteristics described by
attributes. As the term climate is not only defined within a highly varying temporal
and spatial scale, it is also defined by a wide range of physical parameters. Some
parameters are easy to measure, most of them are not. Some parameters have
been considered more important in characterizing a certain region by it’s climate
conditions than others. Therefore, there have been many attempts to use a certain
combination of parameters to characterize the climate conditions in a region.

The most obvious variable is the sun. The Greeks combined their knowledge about
a spherical earth and the earth traveling through seasons, to postulate a five-zone-
classification of the earth, and another classification depending on the day length. In
the early 19*® century there were more climatic data available, so more classifications
emerged depending mainly on temperature and precipitation or a combination of
various variables. The main idea behind the combination of variables was to describe
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the distribution of vegetation. (Oliver 2005, p. 218ff)

Besides the “mathematical” (Malberg 2002, p. 274ff) classification according to
the sunbeam angles done by the Greeks, other methods arose in the last two centuries
due to better data availability. The availability of more climate indicators lead to
possibilities classifying by certain thresholds and the more sophisticated method of
using indices.

Gaile and Willmott (1984) worked out some objectives of climate classification.
The most important objective is to simplify the complexity of the climate system.
Therefore it provides an intellectual shorthand where huge amounts of information
can be concentrated to few simple labels. Furthermore elaborating boundaries of
various climate types helps to understand the underlying physical processes and their
spatial distribution. Last but not least the knowledge of the spatial distribution of
climatic similarity helps to avoid expensive redundancies when building up a climatic
data collection network. (Gaile and Willmott 1984, p. 82ff)

2.1.1.1 The Koppen system

One of the most important works in this area still is the classification of climate by
Wladimir Képpen. He defined five main climate zones with up to three sub zones de-
pending on temperature and precipitation. The system is based on a combination of
average, minimum and maximum values and their range. The Képpen classification
was steadily improved by himself and others and became so dominant that nearly
no other vegetation-related systems gained recognition. (Oliver 2005, p.220ff)

Koppen used a combination of upper-case letters A (tropical) to E (polar) to
name the main climate zones and lower-case letters to add some basic hydrological
or thermal characteristics. A Cf climate for example has an average temperature
of below 18°C and above -3°C in the coolest and an average temperature of above
10°C in the warmest month indicated by the letter C. The optional letter f means
that there is at least 3 cm precipitation every month in this climate zone (Oliver
2005, p. 220). With this system it is possible to characterize many different climate
types in a very structured manner.

Recently attempts are observed to rebuild the climate classification maps by using
gridded climate model data by Kottek et al. (2006) and using the automatic classi-
fication system to represent climate shifts in classification maps of various periods
by Rubel and Kottek (2010).

2.1.1.2 Other classic systems

Another approach was published by Thornthwaite (1948). He focused on evapo-
transpiration, which is the water loss by transpiration through the vegetation and
evaporation from the surface. Evapotranspiration is the reverse process of precipi-
tation and therefore the mechanism that transfers water back into the atmosphere.
Thornthwaite argued that one cannot know whether the climate is moist or dry if
we had no idea of the evapotranspiration rate. (Oliver 2005, p. 223ff)

Approaches to classify climates not by their effects but by their causes arose in the
middle of the 20" century. Before, these approaches were just approximations to

7
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the complexity of the climate system. The most popular work was done by Strahler
(1951) where he differentiated three main groups:

1. “Group I. Climates dominated by equatorial and tropical airmasses
all the year.

2. Group II. Climates that occur between groups I and III and that are
influenced by the interaction between tropical airmasses (group 1)
and polar airmasses (group I11).

3. Group III. Climates controlled by polar airmasses.”

(Oliver 2005, p.224)

2.1.1.3 Numerical classification

Early classification systems were later criticized because of several fundamental dis-
advantages. Willmott (found in Gaile and Willmott (1984, p. 81)) discussed in 1977
the huge influences arbitrary decisions have on classification regarding

1. the number of regions,

2. the criteria used to delineate between climatic types,

3. the variables chosen to characterize climate, and

4. strategies used to develop indices out of the selected variables.

Numerical classification is a systematical approach where classification is defined
by rules and done by statistical methods or certain threshold values. For example
the Koppen system can also be seen as a numerical classification scheme because
he defined some rules and thresholds which have to be applied. The most popular
statistical methods according to Gaile and Willmott (1984) are the Principal Com-
ponent Transformation, correlation coefficients and Euclidean distance measures.

However, Rohli and Vega (2007, p. 187) mentioned that no mathematician has
found a method to combine atmospheric data, spatial variables and temporal vari-
ables so that all variables can be analyzed simultaneously.

2.1.2 Climate data, variables and indicators

Climate is a spatio-temporal process where the condition can be determined by split-
ting it into various climate elements which are influenced by certain climate factors.
Climate elements are therefore spatio-temporal variables presented by climate data
and can be determined by measurement, estimations (if no measurement is possible)
or observation of the atmosphere (e.g. a thunderstorm). Furthermore there are var-
ious variables like the wet bulb temperature combined by the climate variables air
temperature, air humidity and wind. Last but not least there are climate parameters
or indicators which are mathematically or statistically combined climate elements,
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e.g. the annual mean temperature or the monthly precipitation sum. (Schonwiese
2008, p. 65ff)
Some of the major climate variables are

e air temperature
® air pressure

e wind

e air humidity

e cloud cover

e precipitation

e sunshine duration

(Schonwiese 2008, p. 671f)

2.1.3 Modeling

The climate system which has to be modeled contains an innumerable amount of
system components and processes. It was defined by the World Meteorological
Organization (WMO) in 1975 as the “composition of the atmosphere, hydrosphere,
cryosphere, land surface and the biosphere” (Henderson-Sellers and McGuffie 1988,
p. 4). These layers interact and exchange energy and matter, mainly water. A cli-
mate model represents the most important and influential components and processes
to simulate the whole system.

A model is always a purpose-related simplification of the real world. Therefore
all the results of a model have an inherent uncertainty. In climate models the main
sources of uncertainty are that not all atmospheric processes are fully understood
and that the observational data the models are calibrated with, are not complete
and sometimes not accurate enough (see Section 2.2.4). The simplifications that
have to be made can be distinguished into two sets. (1) Not all of the processes can
be modeled in detail, some have to be treated in an approximate way. The main two
reasons are because of our lack of understanding and the limited computer resources.
(2) The limits of the resolution of the model in both space and time have a direct
influence in the reliability of the results. On the other hand there are constraints in
the computability and data availability as the resolution increases. Furthermore not
all the modeled processes are acting the exact same way in a more detailed spatial
resolution than they were designed to. (Henderson-Sellers and McGuffie 1988, p.
35)

Besides other types of climate models the GCM (either for general circulation
model or global climate model) is the most complete description of the climate system
as it is capable to simulate the exchange of energy and mass in all three dimensions.
There are four fundamental equations solved in a GCM (Henderson-Sellers and

McGuffie 1988, p. 35):
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Figure 2.1: Basic structure of a cartesian grid GCM (Henderson-Sellers and
McGuffie 1988, p. 138)

1. Conservation of energy: the first law of thermodynamics
2. Conservation of momentum: Newton’s second law of motion
3. Conservation of mass: the continuity equation

4. Ideal gas law: an approximation to the equation of state

2.1.3.1 Cartesian grid GCM

In a cartesian grid GCM the atmospheric condition is calculated for points located
on a grid. The grid includes a couple of layers or levels representing the vertical
structure of the earth from the atmosphere to the deeper layers of the ocean. This
structure allows to calculate both the horizontal exchange between the grid cells
and the vertical exchange between the levels (Figure 2.1). At every given time step,
which could be seconds to minutes, the basic atmospheric variables of every grid
point is being calculated. These calculations are complex and intense for every
computer system. Therefore many compromises have to be made in the spatial and
temporal resolution, depending on the facilities available. (Henderson-Sellers and
McGuffie 1988, p. 41)
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2.1.3.2 Spectral GCM

Spectral GCMs represent the atmospheric fields not in a grid but in waves. These
waves are also just an approximation of the real atmospheric states but as they are
combination of sine and cosine waves it takes less computing resources than the grid
approach. However, the model’s surface remains as a grid and the vertical exchange
transfers are also modeled in a rectangular grid. (Henderson-Sellers and McGuffie
1988, p. 140ff.)

2.1.3.3 Regional Climate Model (RCM)

GCM resolutions with grid spacing of around 100 km are relatively coarse so that
local topographical effects, water bodies or regionally important circulations are un-
considered. Therefore, Regional Climate Models (RCM) simulate the atmospheric
conditions in a better resolution (usually around 10 to 50 km) while receiving in-
put data at the sub-domain’s boundaries from the GCM. Regional models simulate

smaller processes more accurately and produce therefore more realistic results. (In-
dia and Bonillo 2001, p. 454 and Barry and Chorley 1992, p. 168)

2.2 Statistics of time series data and spatial data

As we saw in Section 2.1, climate can be seen as a statistical collective of various
climate variables. These variables are either measured or modeled in periodical time
steps and therefore can be seen as a list of values. The aim of this chapter is to
describe the possibilities to compare these data sets and to compute the similarity
between them.

2.2.1 Measures describing datasets

A statistical distribution can be described by three main attributes: the dispersion,
skewness and kurtosis. These attributes can be measured, especially for measur-
ing the dispersion there are several methods like computing the variance, standard
deviation, range or the Gini coefficient. Measuring skewness and kurtosis is much
more a challenge and unfortunately the results are not always satisfactory. For
example different skewness measurements of the same distribution could produce
contradictory results. As climate data is rather not normally distributed and can
have multiple peaks it leads to major problems in describing the distributions just
by the dispersion, skewness and kurtosis with conventional methods. Furthermore
the attributes have to be combined in a single indicator which would also lead to
problems in weighting them in an appropriate manner.

2.2.2 Similarity conditions, indicators

Similarity is an often used, basic and intuitive concept which is hard to define and to
measure. Vosniadou and Ortony differentiate between literal similarity and analogy.
Literal similarity includes identical both relational properties and object attributes

11
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of a system, an analogy only the relational properties (Vosniadou and Ortony 1989,
p. 206). A more formal approach comes from Lin, where the following intuitions
are stated (Lin 1998):

1. The similarity between A and B is related to their commonality. The more
commonality they share, the more similar they are.

2. The similarity between A and B is related to the differences between them.
The more differences they have, the less similar they are.

3. The maximum similarity between A and B is reached when A and B are
identical, no matter how much commonality they share.

The most obvious and most used way to quantify similarity is to make choices
how to measure similarity and then to define a certain threshold that divides the
areas of similarity and non-similarity. Once the attributes of two or more entities
are brought into a metric scale, it would be possible to measure the similarity by the
distance lying between the attribute values. However there are always inherent prob-
lems caused by the subjectiveness of the attribute’s definition, similarity threshold’s
definition and with generic basic problems of measuring anything. These uncertain-
ties (see chapter 2.2.4) of the data therefore lead to an uncertainty of the similarity
measure. All in all there may be three main challenges in declaring similarity.

1. The choice which attributes are defined and measured is a subjective process
and can lead to different results.

2. The definition of the similarity threshold is subjective and therefore “arbitrary”.

3. The data used, especially climate data as described here, vary within an un-
certainty range and do not represent the “true” values.

2.2.3 Appropriate measures for data set comparison:
similarity

Usually, statistical tests are used to confirm or reject a hypothesis. Therefore, some

of them compare two distributions or samples of distributions which could help for

a certain research question. Unfortunately the most used tests are not dedicated

to prove or quantify similarity and before making any choices towards one or more

tests a few basic requirements have to be defined.
The test should ...

1. not require a normal distribution,

2. include the basic properties of the distributions like the ranges, mean values,
skewness etc.,

3. and deliver a standardized value between 0 and 1 as a result.

12
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2.2.3.1 Descriptive statistic tests

A glimpse on the main tests in literature about descriptive statistics reveals the
following problems:

t-test for computing the difference of two mean values. This test requires a normal
distribution and a stochastic independence (Giifsefeldt 1999, p. 206) and is
therefore not suitable.

Confidence intervals of the two distribution’s mean values. Here, just the quality
of the mean values is being tested, not the rest of the distribution’s properties.
(Giikefeldt 1999, p. 203)

F-test for computing the difference of two dispersions (Giifsefeldt 1999, p. 205).
The F-test also compares just one property and is also not suitable.

Kolmogorov-Smirnov (KS) test . This test does not require a normal distribu-
tion. It compares the cumulated frequencies of two distributions and checks
whether the maximum distance between them exceeds a certain value, the
p-value (Giifsefeldt 1999, p. 210). This test would satisfy the first two require-
ments but it is quite imprecise as it delivers only a binary result (yes or no)
and does not quantify the amount of similarity.

Coefficient of determination, R? . The R? describes the goodness of a regression
model between two or more variables. If there is a perfect linear relationship
between two variables the R? has a value of 1, if there is little or no linear
relationship the value goes towards 0. This method satisfies the first and third
requirements but it fails on the second requirement as it does not incorporate
the absolute values which means that if e.g. the temperature in region A
is constantly 5°C higher than in region B, the R? would be 1 and therefore
indicate a perfect similarity. (Hutcheson and Sofroniou 1999, p. 65)

None of the tests satisfies all of the requirements. The KS test seems to fit but
it would fail in an extreme situation where two distributions are identical except
for one extreme difference between two values. Here the extreme difference would
exceed the p-value and the distributions would be marked as not similar.

2.2.3.2 Similarity measures

A comparative study on similarity measures of distributions was done by Jan Veg-
elius et al. (1986). They defined relevant criteria a similarity measure has to provide,
whereas U, V are two distributions and r similarity measure:

L [r(U, V)| <1
The result of r has to be a value between 0 and 1.
2. r(U,U) =1

r of two identical distributions has to be 1.

13
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3. r(U, V) =r(V,U)

the similarity measure has to lead to the same result in both directions.
4. If r(U,V) =1 and (U, W) = 1 then r(V, W) = 1 must also be equal to 1.

5. A correlation matrix based on r is positive semidefinite. Every value has to
be greater than or equal to 0.

6. r is an F-Coeflicient.
7. r has minimum, if and only if, 220:1 fuix fvi=0
8. The minimum value of r is 0.

9. If a category is divided into two, in such a way that the frequencies in these
two new categories are equal to each to each other (for both distributions
separately), then r should not be changed.

10. If a category is empty in both compared distributions, it may be deleted with-
out affecting the value of r.

11. r(U,V) =1, if, and only if, fy; = fv; for each i.

VEGELIUS analyses the similarity measures and finds out that two measures fit
to all eleven criteria. These two are the Proportional Similarity (PD, 2.1) and the
Hellinger Coefficient (rp, 2.2).

C C
PD(UV)=1-— 2in1 ’f;“ — Sl _ mem(fm, fvi) (2.1)

c
TH(UaV>:Z\/fUi*fVi (2.2)

Both measures work quite similar. Both of them calculate with the relative fre-
quencies of predefined categories in the two distributions. The PD summarizes the
smaller relative frequencies of each category, the rg summarizes the square root of
the both relative frequencies products per category. VEGELIUS advises to use the
PD rather than the rig because it is easier to understand and PD values are smaller
than rp values (Vegelius et al. 1986).

2.2.4 Uncertainty range

The term uncertainty is used in various different contexts. Very often it is used
in the context of measuring, where there are two different types of uncertainties.
Measurements never represent “true” values but only approximations where the dif-
ference between the true value and the approximation is called accuracy. Depending
on the method of measuring, the measured values may show a slight variation which
is called precision.
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Douglas Hubbard (Hubbard 2007, S. 46) gives a viable definition of uncertainty:

“Uncertainty: The lack of complete certainty, that is, the existence of
more than one possibility. the ‘true’ outcome/state/result/value is not
known.

Measurement of Uncertainty: A set of probabilities assigned to a set of
possibilities. ...”

Manfred Drosg, a physicist in Vienna, states that uncertainties are not only the
fault of the measurement but the “trademark of science” (Drosg 2009, p. 1). As
models or theories have to be used in science to approach reality but there will
never be a model or a theory representing reality in all its complexity. Drosg cites
Nobel Price laureate Richard P. Feynman who said “Scientific knowledge is a body of
statements of varying degree of certainty - some most unsure, some nearly sure, but
none absolutely certain” (Feynman et al. 1997). A famous example of uncertainty as
an integral part of reality is the Uncertainty Principle stated by Werner Heisenberg
in his work on Quantum Mechanics in 1927 (found in Heisenberg (1969)).

Climate models therefore are also to be seen in the context Drosg mentioned
above. The IPCC therefore distinguishes between three simple types of uncertainties
(Table 2.1). As a climate model strongly depends on input parameters and processes
producing values within an uncertainty range, the results are also computed within
an uncertainty range. The second part of Hubbard’s definition above reveals an
approach to quantify and deal with these uncertainties, named probability density
functions (pdf). Various research groups attempt to evaluate and quantify climate
model uncertainty (e.g. Andronova and Schlesinger (2001), Forest et al. (2002)).

In the context of this work, uncertainty is used as the range within similarity can
be stated. A region is similar to another according to some selected indicators as
long as its value lies within a given uncertainty range. For the Climate Twins idea
it means that every region or every raster cell has a grade of similarity characterized
by a similarity measure. The results are therefore from a mathematical point of
view not uncertain in the sense of probable but continuous instead of discrete.
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3 Methods exploration, analysis &
selection, operationalization
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3.1 Exploration of approaches to define similarity
measures

The challenge in using the similarity measures described by Vegelius et al. (1986)
in Subsection 2.2.3.2 is to examine the best working parameters in terms of the
amount and ranges of “categories” the distributions are to be split into. Too many
categories lower the r-value, too few rise the r-value and both ways produce an
imprecise result. For example, in an extreme case where just one category is defined,
the r-value will always be equal to 1 and an extremely high number of categories,
the r value would shrink towards 0. Another choice has to be made in defining the
range, where the categories have to be built. In all cases the range has to include
all possible values. For this purpose, where the similarities of many distributions
are calculated and afterwards compared, this range could be static for every single
similarity measurement (minimum and maximum value of the whole data set) or
dynamic defining always different ranges for every single similarity measurement
(minimum and maximum values of the two current distributions).

Another problem occurs because by comparing distributions the temporal infor-
mation gets lost. Two regions with the same distribution of precipitation sums over
the year but with one having the peak in spring and the other in autumn would be
defined similar without coping with the problem. This problem could be solved by
splitting the data into seasons and compare season by season.

Oliver (2005) defines season as a “period of time during the calendar year charac-
terized by or associated with a set of coherent climatic activities or weather phenom-
ena.” (p. 651). Usually these four seasons are spring, summer, autumn and winter
of three months each. On page 655, Oliver (2005) also presents other concepts of
splitting the year into seasons but for this application the standard classification
(spring: MAM, summer: JJA, autumn: SON and winter: DJF) should be sufficient.

Combining the seasonal r values to an average value for the whole year may not
be enough. Depending on the query, a certain threshold of minimum similarity for
every season must be defined because there is no reason to show similarity of two
locations, where one season is not similar at all.

The methods used have two main advantages to prior attempts. First, it is possible
to quantify similarity by generating a value between 0 and 1. A pair of regions can
be “more” or “less” similar than another one. For the cartographic representation
this means, that coloring similar regions can be continuous as the similarity value
can be translated to the saturation value of a certain color. Therefore the visual
representation of Climate Twins can be continuous instead of discrete. The second
advantage is that more r values from different points of time and even different
climate indicators can be combined to an overall measure of similarity.

3.1.1 Test data

The test data and the data implemented into the application is from the COSMO-
CLM (COnsortium for Small-scale MOdelling - Climate Local Model) model 2.4.11
which receives it’s boundary input from the ECHAMS5/MPIOM global model. The
climate of the 20" century was modeled three times with different initialization
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Testsites

Figure 3.1: Locations used to explore similarity measures

times, the 215 century was modeled according to the A1B IPCC scenario, which
is based on moderate demographical, economical and ecological assumptions. The
horizontal resolution is 0.165°, or around 18 to 20 km on a rotated grid. (Lauten-
schlager et al. 2009)

The selected testsites (see Figure 3.1) are the cities of Vienna, Copenhagen, Mu-
nich and Rome. It is assumed that they differ in climate because of their maritime
(Copenhagen, Rome) vs. continental (Vienna, Munich) and their unequal latitudinal
(Copenhagen vs. Rome) position. This should affect both temperature and precipi-
tation patterns. Because Vienna and Munich are quite close, it is also expected that
they show more similarity than the other locations.

3.2 Analysis of similarity coefficients regarding
performance and applicability

3.2.1 Algorithm programming - test version developed in R

The PD and the rg were implemented in the open source statistic software environ-
ment R (http://www.r-project.org). Both similarity measures are not well-known
and therefore no standard functions of R or any similar software exist. The Appendix
Section A.1.1 contains the source code of the scripts.

As the calculation of the inices is quite similar, it was possible to carry out both
within one script. Optional it is possible to “smoothen” the distributions by applying
a moving average filter (ma=x, where x is the width of the filter) or a log filter, which
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lowers extreme high values. The exact meaning and exploration of these filters is
described in Subsections 3.2.4.2 and 3.2.4.3.

For developing purposes a debugging output can be created by adding the param-
eter debug=TRUE. Here, additional information to the category borders, the absolute
and relative frequencies and other can be found. All of the calculations and graphs
made for this thesis were calculated by applying this one script.

3.2.2 Generic requirements exploring similarity of
distributions

As input, both functions need the two value vectors of the distributions and the
number of categories. Furthermore the range to distinguish the categories has to
be defined. In any case the parameters have to be selected in a way where as much
categories as possible are filled with as much values as possible to achieve serious
results (see theory Subsection 2.2.3.2). The choice of setting the parameters is also
influenced by the decision towards a static or dynamic range. A dynamic range
would better fulfill the demands above, but a static range secures the comparability
of multiple similarity measures.

In Figure 3.2 two functions and their respective frequency distributions are shown.
Although the functions are mirrored and peaks occur at different days over time,
the frequency distributions are exactly the same which means that the r value de-
rived will be 1. As mentioned before, when having two different temperature or
precipitation curves over a year, a similarity would be found although the summers
for example are completely different. For including sequence information, which
gets lost in frequency distributions, the data has to be split in subsets of certain
time-spans. For this application splitting the data into spring, summer, autumn
and winter subsets gives an easy and transparent method.

Comparing the seasons reveals dissimilarity as season 1 and 4 have an r value of
0.44 and Season 2 and 3 just 0.017. Applying the approach of measuring seasonal
similarity a big amount of incorrect climate twin regions is being filtered out. For the
final application minimum similarity thresholds for every season have to be fulfilled
and a minimum threshold of the combined r values will delimit the query results
further.

The values of both data sets lie within 0 and 73.25, the PD was calculated with
50 categories between 0 and 100. This means that for every single measurement, the
framework was the same. My R Script provides another option (dyn=TRUE) to build
the categories not within fixed borders (e.g. 0 and 100) but between the minimum
and the maximum value of both distributions. For this application where many r
values are computed, a static framework is necessary to keep the integrity.
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Example functions
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Figure 3.2: Example: Functions and their distributions

Also, the number of categories plays an important role. Comparing Season 1 data
with 50 categories revealed a value of 0.44, but computed with 2 categories the result
is 0.68, with 3 it is 0.45 and with 1000 categories it is 0.43. A more exact analysis of
an applicable category framework is done in the next section but before determining
an applicable framework, some requirements have to be defined:

1. The framework has to provide accurate r values in a way that a slight variation
on parameters must not change the r value totally.

2. The similarity measurement should be kept as less complex as possible not only
because of transparency but also because of the technical implementation in
the Climate Twins application, allows to compute results within an acceptable
calculation time.

3. The r values produced should be dispersed widely to facilitate the query of
similar regions.
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Figure 3.3: Frequency distributions of daily mean temperatures 2001 to 2010

3.2.3 Tests applying temperature data

Temperature is one of the most important climate variables. It is easy to measure
and a key variable in every weather report. Temperature varies not only within a
year but also within day and night. These data are modeled daily mean temperatures
within 2001 and 2010. With this data it is possible to discover the amplitude within
a year but not the amplitude between day and night. The difference between day
and night temperatures is also an important indicator of a location’s climate but
only an optional step further after examining the annual temperature curve and
therefore not realized in this work.

Figure 3.3 shows the frequency distribution of the modeled daily mean tempera-
tures of the four test locations. A visual interpretation of the temperature properties
can be done quickly: The more values there are distributed toward the right side,
the warmer is the location (e.g. Rome). Also the annual temperature amplitude can
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be read easily as it is the same as the range or width of the histograms. Therefore,
Vienna and Munich have a wider range and higher annual temperature amplitude
which correlates with the fact that they are located in a more continental climate
zone. Rome and Copenhagen have a more maritime climate because the sea de-
creases temperature amplitudes. A bipolar distribution indicates two strong and
distinct seasons like winter and summer with short and alternating changeovers in
spring and autumn (Rome), whereas a Gauss-like distribution indicates a more ho-
mogeneous climate (Vienna, Copenhagen, Munich). A histogram of temperature
data therefore can provide information of the variability, total intensity and season-
ality of the climate.

3.2.3.1 Determining an usable amount of categories

As shown in Subsection 3.2.2, an appropriate number of categories must be defined
to get valid results. Figure 3.4 shows the behavior of the r value depending on the
number of categories.

The r values start at 1 and decrease as the number of categories increases. The
reason why it starts at 1 is clear: when a frequency distribution is calculated over
just one category and this category includes all the data, the frequency is 100%
which leads to a similarity of 1 between two distributions. An interesting property
of the curve is that it runs not steadily and fluctuates due to the values swapping the
categories. The r value should approach 0 if the number of categories goes towards
infinity but it should only meet the 0 line if every value is unique and “occupies” its
own category. In fact with the data used here, the curve remains static applying
600 or more categories. An interesting fact is that both similarity measures in the
area of the first 5-10 categories the r value drops rapidly and the fluctuation of the
curve is very strong (up to 30%).

The curves can be divided into three sections: the first section is the beginning
of the curve, where the PD/ry drops rapidly and fluctuates strongly and in the
second section it declines more steadily with fewer fluctuations and reaches after
about 600 categories the third, constant section. The borders can not be drawn
mathematically exact but visually. In general the PD and rg curves show the same
pattern, but the ry seems to run more smoother and more stable in the first section.

The saisonal r values behave similar to the annual values used above. As ex-
pected, saisonal differences are greater than differences in the annual temperatures.
Especially in the most recognizable seasons summer and winter, the r values disperse
much and provide a good conclusion about similarity and dissimilarity. In winter,
Rome behaves totally different than the other three locations, which are all three
quite similar during this season. In summer the distances between the similarity
curves are more regularly but provide a similar picture of Rome being less similar
to the other three cities. Vienna and Munich show the most similar temperature
patterns in summer and in the winter it is, depending on the category width, either
Vienna and Copenhagen or Vienna and Munich again.

According to the data used here, the number of categories should not be below 20
as there would be too unstable conditions for the framework like defined in Subsec-
tion 3.2.2. Estimating minimum and maximum values, category borders of -30° and
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Proportional Similarity vs. number of categories
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40° should be sufficient. For all values outside the category borders, a < —30° and
> 40° category are introduced to be sure all values are included. Therefore a range
of 70 with two lower and higher categories is set. Dividing the range into categories
of 2°C width leads to 35 plus the two outer categories. The line of 37 is drawn in
the figures to show that it is an applicable amount for temperature data.

The two similarity measures differ but over a small extent. In every case, the
PD disperses the r values more than the ri which makes the PD as a measure of
similarity more applicable to temperature data. This conforms to Vegelius, who also
supports PD.

3.2.4 Tests applying precipitation data

Handling precipitation data is a challenge in itself because the most interesting
indices are the cumulated amount of precipitation within a fixed period and the
occurrence of droughts and extreme precipitation events. Regarding vegetation
the proportion of precipitation and evapotranspiration is an interesting indicator
because it provides information on the water balance and therefore the growing
conditions. The most common illustration of a location’s climate condition is the
Walter-Lieth-Diagram, merging temperature and precipitation into one diagram in
which precipitation is presented by the monthly precipitation sum (Figure 3.10).
Normally, the monthly average temperature curve would have to be added.

The major difference in temperature and precipitation data is that temperature
is an omnipresent condition which means that at every moment the value temper-
ature can be determined. Within this perspective precipitation at a certain point
on a time line can only be determined by a binary value either “precipitation” or
“no precipitation” which is not useful for most applications. Therefore quantifying
precipitation is about determining the amount of rain or snow falling from the sky
within a defined timespan. Hence similarity between two precipitation patterns has
to be measured in another way. A glimpse on a simple histogram of the ten-year
daily precipitation in Munich and Rome reveals the main problem in applying the
PD and ry (Figure 3.11).

Histograms of precipitation data have a disadvantageous shape for the PD and
rg because the first category of less than 1 mm, which is the definition of a day
without rain, has exorbitant more entries than the other ones. Therefore this cat-
egory has an extremely high relative frequency and if all frequency categories are
weighted equally, the r value is higher and not well dispersed. Therefore, some data
and category modifications have to be made.

3.2.4.1 Categorization

Both similarity measures PD and ryg don’t require the categories having the same
width as long as the sum of the categories include all of both distribution’s values.
Therefore it is possible to predefine the categories according to the precipitation
distributions. Precipitation data is saved in millimeters with one decimal place but
this is only the raw model data and in reality a measurement below one millimeter
is irrelevant. However, ranges of higher and lower priority categorizations have to
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Summer: Proportional Similarity vs. number of categories
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Autumn: Proportional Similarity vs. number of categories
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Figure 3.10: Monthly average precipitation sums, 2001 to 2010

be made which means that the most interesting part from 0 to 10 mm has to be
more exact than the part of 21 mm and more. Daily precipitation over 100 mm is
very sparse and can be merged into one category.

For this application the following categorization was selected (see source code in
Appendix A.1.1): from 0 to 10 there are categories of 1 mm width, from 10 upwards
to 100 the category width is 5 mm and for days with precipitation events exceeding
100 mm there is an extra category. In total there are 29 categories which is roughly
the same as the number of temperature categories.

3.2.4.2 Moving average and moving sum filters

There are some methods to smoothen distributions, two of them are the moving
average and the moving sum method. Given a certain day both methods compute
either the average or the total precipitation within a given range of days before and
after. The higher the range is set, the smoother the distribution occurs. Applying
filters on a data set is always connected to a loss of accuracy, the uncertainty rises.
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Figure 3.11: Yearly precipitation histograms of Munich and Rome, 2001 to 2010

Here, though, it is expected to emboss the characteristics as it moves the values
away from the first category and leads to a wider distribution into more categories.

Using the moving sum filter won’t provide any advantage as the moving average
is the moving sum divided by the filter width. The values therefore would have to
be multiplied by e.g. 7 (one week filter width) and afterwards the total range where
the similarity measures compute the relative frequencies (now 0 - 100 mm) would
also have to be extended sevenfold. Both similarity measures would lead to the same
result.

3.2.4.3 Logarithmic flattening

Another possibility tried to work out precipitation characteristics was applying
the log() function of R to the raw absolute frequencies by adding the parame-
ter 1og=TRUE. The logarithmic function squeezes high values more than low values
so it was expected to have a positive impact to the test data.

Applying the logarithmic filter seems not to improve the results at all. According
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Figure 3.12: Comparison of filters and the r values of precipitation data (2001-2010)

to the test results of the four test locations in Figure 3.11, only the moving average
provides a little improvement to the dispersion of the r values. There could be
the assumption that the four locations could have similar precipitation patterns but
according to the precipitation sum diagram in Figure 3.10 this is highly implausible
as both, the sums and the temporal distribution, is highly dissimilar.

3.2.5 Combining similarity measures

As mentioned above the r values represent an “unit’-free index of similarity which
allows combinations of r values from different indicators. For this application two
kinds of combinations have been applied. One combines the respective saisonal
values to a value for the whole year and the second one combines the values of the
different climate indicators measured. In both ways the values are combined by
averaging them, as an average of values between 0 and 1 again computes a value
between 0 and 1 which could be easily processed further.

A problem arises when combining the values from different climate indicators.
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As shown in Subsections 3.2.3 and 3.2.4 the statistical distributions of temperature
and precipitation data are different and therefore the similarity indices are different.
A r value of 0.8 in temperature similarity shows a higher coincidence as the same
value of 0.8 for precipitation similarity because precipitation based r values seem
to disperse less than temperature values. Besides there is the question whether a
statistical distribution represents temperature characteristics in the same quality
like it does with precipitation characteristics.

Combining similarity measures

daily average daily precipitation
temperature sums

) no similarity )
r_prec (winter
i | r_prec(spring

) > Xp |

) > xp |

else else r_prec (summer) > Xp |
3 r_prec (autumn) > xp |

r_temp = average (r_temp (winter), r_prec = average (r_prec (winter),
r_temp (spring), r_prec (spring),
r_temp (summer), r_prec (summer),
r_temp (autumn)) r_prec (autumn))

—}{ r = Wt (r_temp) *Wp (r_prec) kﬁ

similarity = r

xt: similarity threshold for temperature
Xp: similarity threshold for precipitation
Wit: temperature weight

Wp: precipitation weight

Figure 3.13: Logical structure of combining r values

If precipitation similarity values are in general higher than temperature values,
they have more impact when merging them to a combined climatic similarity value.
The evaluation of these similarity differences is complicated and requires more time
and data to re-check the classification. For this application the weighting of the
indicators can only be estimated.

Figure 3.13 shows the basic logic of the similarity exploration implemented in the
Climate Twins application. First all of the seasons (temperature and precipitation
data) have to show a minimum similarity according to the thresholds xt (temper-
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ature) and xp (precipitation). If any condition is not resolved, the current region
will not be identified as a Climate Twin region. If all seasons match, the r values
of the seasons are averaged to aggregate them. After this step, there are only two
r values left, one for each climate indicator. These two values are combined by
multiplying them after weighting them with the factors Wt (temperature) and Wp
(precipitation). The resulting r value is a value between 0 and 1 and influences the
saturation of the target cell’s color, thus a continuous gradient from “low similarity”
to “high similarity” can be shown.

3.2.5.1 Aggregating saisonal values

Both similarity measures work well as expected in comparing saisonal temperature
patterns. This reveals the possibility to implement a basic inclusion of the temporal
distributions when combining the particular r values of the seasons to one year. The
most simple option is to build an average r value of the four season values to compare
annual temperature patterns. To assess the temporal distribution’s influence on the
similarity, the averaged r values are compared to the r values calculated for the
whole year distribution.

The result is shown in Figure 3.14. Averaging the saisonal values provides a more
exact picture of similarity than a measurement of the whole year’s data as the factor
time is included. As the distinct saisonal r values were computed with the same
parameters like the identical categories, a combination by averaging them is a valid
way. In addition introducing a filter, which excludes regions where the r value falls
below a certain threshold in any of the seasons would make sense. There is no point
in presenting a similar region, where one season is not similar at all and by the way
the drop-out rate of potential Climate Twin regions could also be increased.

For precipitation patterns (Figure 3.15) r values derived by PD disperse more
than the ones from ry and therefore should be preferred. The aggregation can be
done the same way as with the temperature values but a separate threshold shall
be found.

3.3 Defining similarity coefficient thresholds

The thresholds at this stage can only be defined arbitrarily in a meaning that no
calculation or estimation method could be found and Vegelius et al. (1986) do not
recommend any threshold value. The threshold should of course be tight enough
to provide a reliable similarity result but on the other hand not so tight that no
Climate Twin region can be found. As mentioned above, the thresholds should also
be estimated individually for every climate indicator. A glimpse on the graphs in
Subsections 3.2.3 and 3.2.4 reveals that a value of around 0.9 could be sufficient.
In order to let the user participate in the decision of the accuracy of his map, the
actual threshold values are able to be modified by a slider in the web application’s
front end.
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Figure 3.14: Similarity values per season, average of seasons and similarity for whole
year’s daily temperature

3.4 Discussion

This analysis showed that concerning temperature data, the Hellinger Coefficient is
more practicable as there are less categories needed and the curves turn out smoother
indicating stability. The category number according to the data used here should be
at least 10 but as the different climate types of a larger (COnsortium for Small-scale
MOdelling - Climate Local Model) area are expected to be more variable, a number
of 20 to 40 should bring satisfying results.

However, there are some points left to describe temperature variation, namely
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Precipitation similarity — Proportional Similarity
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Figure 3.15: Similarity values per season, average of seasons and similarity for whole
year’s daily precipitation
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the daily minimum and maximum values. They are important indicators as certain
minimum and maximum temperatures affect vegetation. Also the daily temperature
amplitude is being well recognized by people, especially when going out in summer
nights. The daily temperature range should be therefore considered in describing
climate. These data should behave similar to the daily mean values.
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4.1 Climate Twins tool

The Climate Twins application is an interactive web mapping application basically
consisting of climate data stored in a database, the matching algorithm and the front
end with a query map and the result map. The climate data currently used are the
German COSMO-CLM simulated data from 1960 to 2100 covering Europe. In a first
version the matching was done by comparing the monthly mean temperature and
precipitation sums. A region was defined similar if the differences between monthly
mean temperatures did not exceed an uncertainty range of +£4°C' and the monthly
precipitation sums +40%. (Loibl et al. 2010)

In future the Climate Twins Viewer should provide a broader functionality, though.
As the intention is to create a tool for exploring future climate conditions and as
mentioned above, modeling cannot be done without uncertainties, results from dif-
ferent climate models or approaches are planned to be implemented. In addition
some focus has to be spent in optimizing the infrastructure because now it takes
up to half a minute—depending on the similarity parameters—to get a result map.
This is due to the fact that a lot of data has to be extracted out of the database,
processed in a Java snippet and written to a PostGIS layer with an attribute ta-
ble. Therefore the aim is to translate the similarity algorithm directly into the
database query because the database engine can handle these kinds of calculations
much faster. In order to optimize the database itself it could be transformed into a
SOLAP (Spatial OnLine Analytical Processing) cube. An OLAP system (OnLine
Analytical Processing) is designed to query and process huge and multidimensional
data sets. SOLAP is a spatial extension and enhances the system with the ability to
handle georeferenced data. By improving the speed of the application, unprocessed
climate data could be stored within the cube on at least a daily if not an hourly
basis which enhances the accuracy of the similarity measure (comparing frequencies
of hourly climate data adds day and night values, hence the daily amplitude) and
the possibility to add further tools like rendering climate diagrams.

4.2 Practical application

The application itself follows the basic structure of any non-static web page. The
data in the background is stored in a database and is being presented via a web
browser depending on some parameters given by the user. In this case it means
that the database contains the results of the climate models and the front-end map
shows the information depending on the parameters like the time spans, climate
indicators or thresholds given by the user. However, the data has to be processed to
show the desired information. In this case it is the similarity algorithm computing
the similarity maps out of the stored distributions.

Figure 4.1 shows the logic behind the Climate Twins query. A click in the front-
end’s map selects a cell whose future climate patterns are used to compute similarity
values between them and the present climate patterns of every single cell of the
current climate. The result therefore is a similarity value for every cell that can be
translated into a color optically representing regions of higher similarity by a darker
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Figure 4.1: Schematic representation of the similarity matching module

color and lower similarity by a brighter color. The reason the color purple is used is
because purple is a color with almost no distinct association. Most other relatively
strong colors like red for example would indicate “heat” or “danger” or blue would
indicate “coldness” or “moistness”. The usage of a color associated strongly with
other adjectives would mislead the understanding of the result map.

4.2.1 Database organization

In order to optimize computation time, the data was preprocessed inserted into
the PostGIS database. The original calculation shown in chapter 3 requires daily
climate data. The dataset contains 140 years which leads to over 50 000 entries for
daily data. As every single cell contains daily data and there are over 60 000 cells,
just the storage of the data in an effective and applicable way would be a challenge.
Furthermore nearly all of the raw data is needed to calculate one Climate Twin
query, so preprocessing had to be done where possible.

The most obvious way to optimize the query is to preprocess the parts of the
calculations which are similar in every query. Every query requires the frequencies
of predefined categories so the data inserted into the database were compressed
in a way that every raster cell contains data vectors for every season combined in
blocks of 10 years each. Every cell contains an array with the multiple values of the
absolute frequencies. In other words there are 14 x4 = 56 columns (14 blocks of ten
years each, e.g. 1961 to 1970 multiplied by four seasons) for both climate indicators
temperature and precipitation.

| ID | 1961_1970_winter | 1961 _1970_spring | ... [ 2091 _2100_autumn |
1001 | templ0,2,154,253,...] | temp[0,0,17,45,...] | ... [ temp[0,1,45,98,..]
255241 | temp[2,5,94,178,...] | temp[0,3,67,125,...] | ... | temp][1,4,35,74,...|

Table 4.1: Data structure
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4.2.2 Algorithm integration, reprogramming in Java

The part of processing the data is being done by a Java program running on the
server. According to given parameters it extracts the corresponding data from the
database, executes the similarity measurement and writes the result back into the
database. The parameters it needs are:

e ID of the source cell

e source region time period (one of 14 ten-year blocks)
e target regions time period (one of 14 ten-year blocks)
e temperature threshold value (0 - 100)

e precipitation threshold value (0 - 100)

e indicator weighting value (from 0 (100% temperature, 0% precipitation) to 1
(0% temperature, 100% precipitation))

e cntire climate or one of the two climate indicators to be queried (ENTIRE_CLIMATE,
TEMP or PREC)

e entire year or one of the four seasons to be queried (ENTIRE_YEAR, SPRING,
SUMMER, AUTUMN or WINTER)

e similarity measure to be used (PD for the Proportional Similarity or RH for the
Hellinger Coefficient)

The developed source code of the Java module called ClimateConnector can be
found in the Appendix section A.2.1.

4.2.3 Climate Twins adaptation

The adaption of the new method is done by implementing the structures described
above. It affects all parts of the application beginning at the data structure shown in
Table 4.1, the new version of the ClimateConnector Java program and the updated
front-end capable of providing the algorithm with required parameters. All changes
did not affect the basic structure built for the first Climate Twins version although
some weaknesses according the occurred which can be fixed by rebuilding the whole
application considering the new challenges.

4.2.4 Application

The final application’s front-end has all options implemented in a graphical user
interface (GUI). Before selecting the desired source location, both time periods in-
cluding the choice between a seasonal and an entire year matching, thresholds and
weighting and the choice between indicators or an entire climate matching as well
as the desired similarity measure has to be chosen. According to the inputs, the
matching progress starts and shows the results in the map on the right side (Figure
4.2).
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Vienna Vienna
2001 - 2010, temperature and precipitation 2061 - 2070, temperature and precipitation

similar highly similar

Figure 5.1: Vienna’s Climate Twins now and in the period 2061 - 2070 (threshold
temperature: 0.8, threshold precipitation: 0.9, PD)

5.1 Results

In this chapter the main results of the practical adaption are described and dis-
cussed. The problem in discussing a dynamic application is that a more or less
random sample out of the variety on input parameters has to be drawn. Therefore
this analysis is based on subjective assumptions on the similarity parameters and
predilections for some test locations.

A further quantitative validation of the results was not possible because there were
no research projects found answering similar questions. There are some attempts to
examine future climates with modeled data as found in Rubel and Kottek (2010).
Aggregating “cells” or regions with similar climate parameters as done in climate
classifications (see Subsection 2.1.1) is a different approach as there is a “statically”
defined framework like certain predefined minimum or maximum temperature or
precipitation values. The Climate Twins method queries regions on the basis of a
framework given by an example region and cannot produce an overall map of Europe
showing similar climate zones. So the method used here and its results should and
can only be seen as a first approximation in solving such a problem.

The results show, as expected, in general a southward shift of the Climate Twin
Regions as time progresses. According to the results, major climate changes occur for
the 2060s and later on as seen in Figure 5.1 where the corresponding Climate Twins
of Vienna are located at the continental regions of the Balkans. In comparison, the
current Climate Twin Regions (by comparing the period of 2001 to 2010) of Vienna
are, of course, located in and around Vienna and its eastern adjacent regions mainly
in Hungary, Slovakia and Slovenia and smaller regions in western Romania and
northern Croatia due to the effect of spatial autocorrelation.
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5.1 Results

Copenhagen Copenhagen
2001 - 2010, temperature and precipitation 2061 - 2070, temperature and precipitation

similar highly similar

Figure 5.2: Copenhagen’s Climate Twins now and in the period 2061 - 2070 (thresh-
old temperature: 0.8, threshold precipitation: 0.9, PD)

Munich Munich
2001 - 2010, temperature and precipitation 2061 - 2070, temperature and precipitation

similar highly similar

Figure 5.3: Munich’s Climate Twins now and in the period 2061 - 2070 (threshold
temperature: 0.8, threshold precipitation: 0.9, PD)
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Rome Rome
2001 - 2010, temperature and precipitation 2061 - 2070, temperature and precipitation

similar highly similar

Figure 5.4: Rome’s Climate Twins now and in the period 2061 - 2070 (threshold
temperature: 0.8, threshold precipitation: 0.9, PD)

The biggest change of climate conditions can—also in the context of this work—
be interpreted as a change that exceeds the used thresholds within this method
so that the resulting regions do not cover the source region anymore. The further
away a Climate Twin Region is (at least on a Europe-wide scale), the more distinct
the changes are. There is some friction though: As the method uses daily average
values, the diurnal amplitude of temperature is neglected so that regions located in
northern Africa are marked as similar although they have colder nights and warmer
days. Averaging these values leads to a daily average temperature that is the same
as in a region with less extreme values. This happens for example in Figure 5.4
where some of Rome’s Climate Twin regions are located in Northern Africa.

5.1.1 Climate indicators and seasonal results

To dig a little deeper into the process of generating the Climate Twins maps it
makes sense to look at the intermediate results of the distinct indicator and seasonal
similarities. The Climate Twin Regions are always the intersection of the regions
with similar temperature and precipitation patterns but with the option to weight
both climate indicators and thus change slightly the intersecting areas. The maps
in Figure 5.1 were calculated with a 1:1 weight relation between temperature and
precipitation. The seasonal aggregation to the annual similarity value is also equal
weighted. So the process of combining the distinct results can be seen as simple
GIS-like intersection of two or more layers. Comparing the overall common result
maps with the single result maps reveals that more basic input parameters (e.g.
winter precipitation similarity) achieve a larger coverage of matching regions. In
almost all result maps the similar regions change drastically between the distinct
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Vienna Vienna
2061 - 2070, temperature 2061 - 2070, precipitation .

similar highly similar

Figure 5.5: Regions with similar current temperature and precipitation patterns
compared to Vienna 2061 - 2070

seasons, especially between summer and winter. Therefore the meaning of seasonal
layer intersection and its influence on the final result should be accentuated.

A small example should illustrate this influence. Figure 5.5 shows both single
result maps of the climate indicators for Vienna. Obviously the major similarities
occur at the Balkan area but there are regions with similar climate in north central
Spain, south western France, parts of Italy and south-eastern Ukraine. In these
zones similarities occur in both climate indicators but just intersect in loose cells
and thus are not visualized as eye-catching large Climate Twin Regions. Shifting the
thresholds to widen the match range uncovers these regions and turns into Climate
Twins.

5.1.2 Thresholds

The applied thresholds of 0.8 (temperature) and 0.9 (precipitation) used with the
Proportional Similarity measurement seem to work well within the example of Vi-
enna and both of the used time spans of 2001 to 2010 and 2061 to 2070 in the sense
that a reasonable amount of Climate Twin areas are found. Reasonable in this con-
text means on the one hand that there is at least one Climate Twin Region found
on the one hand and on the other hand that there are not too many regions marked
as Climate Twins to show characteristically similar regions.

As mentioned in Subsection 5.1.1, wider threshold ranges of 0.75 and 0.85 reveal
more distinct Climate Twin regions in Spain, France, Italy, Romania and Ukraine.
Within the former thresholds of 0.8 and 0.9, just a continental zone in the Balkan
area was marked, within the new thresholds both continental (Spain) and maritime
(Italy and areas around the Black Sea) zones are Vienna’s Climate Twins in this
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Vienna Vienna
2061 - 2070, spring temperature 2061 - 2070, summer tempea;u

Vienna Vienna
2061 - 2070, autumn tempert'ur 2061 - 2070, winter tempera;e ]

similar highly similar

Figure 5.6: Regions with similar current seasonal temperature patterns compared to
Vienna 2061 - 2070
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5.1 Results

Vienna Vienna
2061 - 2070, spring precipitation_ 2061 - 2070, summer precipigti

Vienna Vienna
2061 - 2070, autumn precipitation - 2061 - 2070, winter precipitation

similar highly similar

Figure 5.7: Regions with similar current seasonal precipitation patterns compared
to Vienna 2061 - 2070
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Copenhagen Copenhagen
2061 - 2070, spring temperature 2061 - 2070, summer temperature

Copenhagen Copenhagen
2061 - 2070, autumn temperature 2061 - 2070, winter temperature

o

similar highly similar

Figure 5.8: Regions with similar current seasonal temperature patterns compared to
Copenhagen 2061 - 2070
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5.1 Results

Copenhagen Copenhagen
2061 - 2070, spring precipittipn 2061 - 2070, summer precipit ton

| 5

Copenhagen
2061 - 2070, winter precipitaip ]

o

similar highly similar

Figure 5.9: Regions with similar current seasonal precipitation patterns compared
to Copenhagen 2061 - 2070
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Munich Munich
2061-2070, spring temperare 2061-2070, summer tempeture

Munich Munich
2061-2070, autumn temperature_ . 2061-2970, winter temperature

o

similar highly similar

Figure 5.10: Regions with similar current seasonal temperature patterns compared
to Munich 2061 - 2070
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5.1 Results

Munich Munich
2061-2070, spring precipitation 2061-2070, summer precipiat_ipn

Munich Munich
2061-2070, autumn precipitation 2061-2070, winter precipitation

¥
£
£

similar highly similar

Figure 5.11: Regions with similar current seasonal precipitation patterns compared
to Munich 2061 - 2070
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Rome Rome
2061-2070, spring temperature

Rome Rome

similar highly similar

Figure 5.12: Regions with similar current seasonal temperature patterns compared
to Rome 2061 - 2070
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Rome Rome
2061-2070, spring precipitati 2061-2070, summer precipiation

7

Rome Rome
2061-2970, autumn precipitation

similar highly similar

Figure 5.13: Regions with similar current seasonal precipitation patterns compared
to Rome 2061 - 2070
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Vienna Vienna
2001-291 0, temperature and precipitation 2061-2070, temperature and precipitation

¥ ST
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similar highly similar

Figure 5.14: Vienna’s Climate Twins now and in the period 2061 - 2070 (threshold
temperature: 0.75, threshold precipitation: 0.85, PD)

time span.

For the other three examples the default thresholds do not work that well. Copen-
hagen has a huge future Climate Twin area covering a region between northern Eng-
land to Southern France with parts in northern Spain, central Italy, Greece, Turkey
and even northern parts of Algeria. Munich and Rome in contrast have almost no
future Climate Twin Regions except some smaller ones in central France (Munich)
and the southern border region between Portugal and Spain (Rome). One reason
could be that these points have a very unique climate situation which is hard to find
in Europe. Broadening the thresholds would generate more Climate Twin Regions
but the threshold or uncertainty width is always related indirectly proportionally
with accuracy and consequently the relevance of the result.

5.1.3 Proportional similarity vs. Hellinger Coefficient

Basically the results (Figure 5.1 and Figure 5.15) agree between both used similarity
measures PD and rg. Using ry requires much higher thresholds of 0.95 for tem-
perature and 0.97 for precipitation to get a more or less similar amount of Climate
Twin cells. This was expected from the evaluation of the similarity measures shown
in Section 3.2. As there are similar results and the PD seems to meet the require-
ments discussed in Subsection 3.2.2, the default measure was used for further result
evaluation.
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Vienna Vienna
2001-291 0, temperature and precipitation 2061-2070, temperature and pre:

¥

cipitation

5

5

similar highly similar

Figure 5.15: Vienna’s Climate Twins now and in the period 2061 - 2070 (threshold
temperature: 0.95, threshold precipitation: 0.97, )

5.2 Final statement

5.2.1 Discussion

This work evaluated the possibilities to quantify similarities between regions ac-
cording to their climate conditions by measuring the similarities between statistical
distributions. As there were no research projects covering a similar topic found in
the literature it can be seen as a first exploration of cautious steps towards an al-
gorithm to seek similar entities of a source entity in a complex data structure with
the help of statistical similarity measures.

The first problem was to find parameters describing climate conditions which are
suitable to be implemented in the Climate Twins application. Normally climate is
defined by a number of climate variables like air temperature and pressure, wind or
precipitation averaged over a significant timespan. Mostly a period of 30 years is
covered. In this work 10 year datasets are used as a compromise between a significant
minimum period and an adequate number of decadal datasets (14 altogether) to test
the method and its results.

The climate indicators used are the daily mean temperatures and daily precipita-
tion sums. The usage of daily data was expected to be more accurate than monthly
or yearly mean data. The consistent spatio-temporal resolution of climate model
data made the usage of daily data possible. The reason not to use an even finer
temporal resolution like hourly data were the challenges of handling it within a
common PC environment. More climate indicators like the diurnal temperature
amplitude were left aside because daily mean temperatures and precipitation sums
are the most used indicators to describe climate. A well-known example are the
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almost omnipresent Walter-Lieth climate diagrams. As the aim of the work was
to elaborate an example method, the two most important indicators were used to
reduce the complexity and to focus on its fundamental applicability. The method’s
structure allows to implement more parameters, though.

The next step was to find suitable similarity measures. Common tests of descrip-
tive statistics were not applicable because none of them could fulfill the essential
requirements. Two almost identical working methods of measuring the similarity be-
tween two statistical distributions were found in the library of social sciences. The
Proportional Similarity (PD) and the Hellinger Coefficient (ry) compute a normal-
ized value between 0 (not at all similar) and 1 (identical) which is perfect as it can
be easily implemented in a fully automated process. Furthermore, statements like
“region A is more similar to C than B is to C” can be made so the similarity values
can be brought to an ordinal scale. In addition these values can be derived from
several unlike indicators and be combined to an overall similarity measure.

It is a major advantage in using statistical distributions rather than derivations
like mean values, ranges, deviations, etc. to parametrize climate indicators as these
derivations are implicitly included. For example using only the monthly mean tem-
perature to compare two regions would mean to ignore possible differences in the
minimum and maximum values or having four days where in one region there is
10 mm precipitation per day and in the other 40 mm in the first day and the other
three are dry. The daily mean precipitation occurs as the same although there are
completely different climate conditions. A statistical distribution is a more compre-
hensive way to characterize a dataset.

There are also disadvantages. Most of all, the temporal information of the indi-
cator (its variation through time) will be lost. Therefore the data subsets compared
at the lowest level are not yearly distributions but seasonal distributions. With this
solution at least the seasonal distributions of the climate indicators are taken into
account. Another interesting outcome was that though the temperature distribution
worked well, the precipitation comparison showed problems because a precipitation
sum distribution’s shape is not as characteristic as a temperature’s shape and there-
fore produces higher similarity values. Yet, the application of the similarity measures
on precipitation data is not quite satisfying. Other possible indicators have not been
tested yet beyond moving averages over sums and applying a logarithmic filter on
precipitation distribution.

The method was implemented by programming the algorithm in Java for the
existing Climate Twins web application. The results showed that the method pro-
duces conclusive results although it strongly depends on the selected thresholds. It
was not possible to completely validate the results against existing data or similar
research results. Comparing it with climate classification systems would not have
made sense because the fundamental idea in the background and the approach to
combine similar climates within a predefined framework is a different one than to
seek similar entities on the basis of characteristics of a given entity. Further research
should be done to confirm the applicability or to point out serious methodological
errors committed here.
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5.2.2 QOutlook

The Climate Twins application can be seen as an educational tool showing the mostly
non-transparent process of preparing data before generating results and visualizing
them with the help of maps or graphs. Giving the user the choice of specifying
thresholds and measures should ensure that he/she will be aware of the method’s
fragility and its direct impact on the final result. In a world where an unprecedented
amount of preprocessed information is available, a sort of “literacy” in the interpre-
tation of statistics, graphs or maps seems to be an important skill. Most of the time
preprocessed information regarding complex topics is being accepted by the public.

On the technical side, the IT infrastructure is yet more basic and could be im-
proved to extend the accuracy, usability and calculation speed. The currently used
structure with a common PostgreSQL database in the background and a Java pro-
gram conducting the actual calculations is not the most effective way to realize this
project. In the current version it takes approximately one minute to produce the
query result and as long as there are possibilities to shorten the retrieval time it
should be done. One possibility would be to implement a multidimensional data
cube, where all of the daily data is stored for every point—up to now just the
absolute frequencies are stored to optimize the processing time—and where the cal-
culations run, rather than using Java. Such a cube can be designed to handle huge
amounts of multidimensional (also spatial) data and is optimized in extracting and
calculating data so it could also handle the challenges of this project. Another
advantage would be adding other climate indicators and implementing additional
functionality like rendering climate diagrams.

Last but not least the method could be used on measured climate data to locate
similar climates and analyze the reason for the similarity but it should also be able to
handle other kinds of data besides climate data. As long as it is possible to acquire
enough data, for example on land usage, employment rates, criminal records, etc.
the query for similar entities would work and produce interesting insights. A mayor
e.g. could seek other cities with similar economical or demographical characteristics
to find out how other cities deal with similar problems.

The challenge though is neither the math nor the programming but the definition
and parametrization of the characteristic properties and collecting sufficient and
accurate data. Focusing on the example given in this work, it means that even if
the maps seem to show plausible results, a clean description of climate—if possible
at all-—cannot be done by just picking daily mean temperatures and precipitation
sums. As Thornthwaite (1948) showed in his critique of the choice of parameters for
climate classification without considering the evapotranspiration, emphasis should
be put on evaluating meaningful parameters.

All in all there could be some useful applications for this method depending on
the research question. Further testing especially in other scientific areas should be
done to evaluate the possible potential or point out methodological weaknesses.
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A Appendix

A.1 R Scripts

One of the major tools used in this thesis was R, because of it’s versatility and
flexibility. To make all the calculations for this thesis transparent and traceable, the
original scripts used are added in this section.

A.1.1 Similarity Measures
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# #
# | similarity measures function for R | #
# [ | #
# | tested and designed to compare daily temperature or | #
# | daily precipitation distributions of two locations | #
# | [ #
# | by Joachim Ungar 2010 | #
# #
# #
# based on the Proportional Similarity and the Hellinger #
# Coefficient found in #
# #
# Jan Vegelius, Svante Janson, and Folke Johansson, Measures of #
# similarity between distributions, Quality and Quantity 20, #
# no. 4 (December 1, 1986): 437—441. #
# #
# #
sim <— function (x, y, ¢ = 0, rh = FALSE, prec = FALSE, log = FALSE, ma = 0, dyn =
FALSE, debug = FALSE, min tem = —30, max tem = 40, min_pre = 0, max pre = 100)
# calculating temperature data
if (prec =— FALSE) {
# convert celsius to kelvin degrees
xk <— x + 273.15
vk <— y + 273.15
if (dyn = FALSE) {
# define static boundaries
low <— min tem + 273.15
high <— max tem + 273.15
} else { a
# set dynamic boundaries
low <— min(xk,yk)
high <— max(xk,yk)
# calculating precipitation data
} else {
xk <— x
vk <=y
if (dyn = FALSE) {
# define static boundaries
low <— min pre
high <— max pre
} else { -
# set dynamic boundaries
low <— min(xk,yk)
high <— max(xk,yk)
}
}
# cumulated frequency
xk cum <— 0
yk cum <— 0
# absolute frequency
xk abs <— 0
vk abs <— 0
# log of absolute frequency
xk abs log <— 0
yk:abs:log <— 0

# relative frequency
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A.1 R Scripts

xk rel <— 0
yk:rel <- 0
# current cumulated frequency
xk old <— 0
yk_old <— 0

# minimum relative frequency

sim min <— 0

# 1 value

sim <— 0

# temporary value for Hellinger Coefficient

sim cat <— 0

# apply optional moving average filter

if (ma !'=0) {
xk <— na.exclude(filter (xk, rep(l/ma,ma), sides=2))
vk <— na.exclude(filter (yk, rep(l/ma,ma), sides=2))

# wvalues of category borders
if (prec = TRUE) {
category borders <— c(c(1:9),c(2:20)%*5)
c <— length(category borders)
} else { o
category borders <— 0
# define category width
category width <— (high—low)/c
}
# other debugging variables
xsim <— NULL
ysim <— NULL
# check data and calculate if wvalid
if (min(xk,yk)<low) {

print ("Error — minimum value out of bounds")
} else {
if (max(xk,yk)>high) {
print ("Error — maximum value out of bounds")
} else {
i<-1

# set cumulated frequency
while (i<c+1) {
if (prec = FALSE) {
xk cum|[i] <— length (xk|[xk<(low+i*category width)])
yk cum[i]| <— length (yk[yk<(low+i*category width)])
# debug category borders -
category borders|[i] <— (low—category width+ikcategory width) —273.15
} else { o o
xk cum[i] <— length (xk[xk<(category borders[i]) ]
|

)
yk cum[i] <— length(yk|[yk<(category borders[i])])

}
# set absolute frequency
if (i =1) {

xk abs[i] <— xk cum]i]
yk_abs[i] <— yk cum][i]

} else {
xk_abs[i] <— xk cum[i] — xk _old
yk abs[i] <— yk cum[i] — yk old

if (log = TRUE)
if (xk abs[i]| !=
xk abs log[i] <— log(xk abs[i])
} else { -
xk _abs log[i] <- 0

if (yk_abs[i] != 0)
vk abs log[i]| <— log(yk abs[i])
} else { -
vk _abs log[i] <— 0
}
# save current cumulated frequency to derive absolute frequency in next

loop
xk old <— xk cumf|i]
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vk old <— yk cum]|i|
i<— il
}
i<-1
while (i<c+1) {
if (log = TRUE) {
# set relative frequency and apply optional log filter

xk rel[i] <= 100 % xk abs log[i]| / sum(log(xk abs[xk abs != 0]))
vk rel[i] <— 100 % yk abs log[i]| / sum(log(yk abs|[yk abs != 0]))
} else {

# set relative frequency
xk rel[i] <— 100 % xk abs[i] / length(xk)
yk rel[i] <— 100 % yk abs[i| / length(yk)
}
xsim <— xsim + xk rel|[i]
ysim <— ysim + yk:rel[i]
# chose between Proportional Similarity and Hellinger Coefficient
if (rh = FALSE) {
# pick minimum relative frequency from x and y’s current category
# (the core calculation of the Proportional Similarity)
sim min|[i] <— min(xk rel[i],yk rel[i])
sim <— sim + sim minTi] -
} else { -
# square root of the z’s and y’s relative frequencies product
# (the core calculation of the Hellinger Coefficient)
sim cat[i| <— sqrt(xk rel[i] % yk rel[i])
sim <— sim + sim_cat [1] -
}
i <— i+l
}
# print v value (sim) with or without debugging information
if (debug =— TRUE) {
return(list (sim, xk abs, yk abs, xk abs log, yk abs log, xk rel, yk rel,
category borders, sum(xk abs log), sum(yk abs log))) - -
} else { - - -
return (sim/100)

A.1.2 CPU intensive calculations

#

# read input files
#

## data

climate <— read.csv(file="csv/rr_tm day 2001 2010.csv")

## functions

source("csv/similarity.r")

#

# set wariables

#

## precipitation

vie pre <— climate$vie pre
cop_pre <— climate$cop_pre
mun pre <— climate$mun pre
rom:pre <— climate$rom:pre

sp vie pre <— subset(climate$vie pre, climate$mm %in% c("3","4","5"))
sp cop pre <— subset(climate$cop pre, climate$mm %in% c("3","4" ,"5"))
sp_mun pre <— subset(climate$mun pre, climate$mm %in% c("3","4" "5"))
sp rom pre <— subset(climate$rom pre, climate$mm %in% c("3","4" ,"5"))
su:vie:pre <— subset(climate$vie:pre , climate$mm %in% c("6","7","8"))
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H6||’II7H7||8"))
H6||7II7H7||8H))
"6","7","8”))

su cop pre <— subset(climate$cop pre, climate$mm %in% c(

su mun pre <— subset(climate$mun pre, climate$mm %in% c(

su rom pre <— subset(climate$rom pre, climate$mm %in% c(

au vie pre <— subset(climate$vie pre, climate$mm %in% c("9","10","11")

au cop pre <— subset(climate$cop pre, climate$mm %in% c("9","10","11")

au mun pre <— subset(climate$mun pre, climate$mm %in% c("9","10" ,"11")

au:rom:pre <— subset(climate$rom:pre , climate$mm %in% c("9","10" ,"11")
o )
o )
c( )
o )

A~~~

wi vie pre <— subset(climate$vie pre, climate$mm %in% rp2m mgn o)
wi cop pre <— subset(climate$cop pre, climate$mm %in% rp2m i 2
wi mun pre <— subset(climate$mun pre, climate$mm %in% AN LA
Wi:rom:pre <— subset(climate$rom:pre , climate$mm %in% ry2m i 2

36
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40

42

## temperature

vie tem <—
cop_tem <—
mun:tem <—
rom tem <—

climate$vie tem
climate$cop tem
climate$mun:tem
climate$rom tem

sp vie tem <— subset(climate$vie tem, climate$mm %in% ,T4" "5
sp cop tem <— subset(climate$cop tem, climate$mm %in% ,T4" "5
sp mun tem <— subset(climate$mun_tem, climate$mm %in% "3n, 4 "5y
sp rom tem <— subset(climate$rom tem, climate$mm %in% B D)
su_vie tem <— subset(climate$vie tem, climate$mm %in% 6", "T","8"))
su:cop:tem <— subset(climate$cop tem, climate$mm %in% 6", "T","8"))

H6|| ’”7!! 7||8ll))
H6|| 7ll’?” 7||8ll))

su_mun_tem <— subset(climate$mun tem, climateS$mm %in%
su_rom_tem <— subset(climate$rom tem, climate$mm %in%

au vie tem <— subset(climate$vie tem, climate$mm %in% "on om10","11"))
au cop tem <— subset(climate$cop_tem, climate$mm %in% tgn o mio","11"))
au mun tem <— subset(climate$mun tem, climate$mm %in% "gn o m10","11"))
au_rom_tem <— subset(climate$rom tem, climate$mm %in% c("9","10","11"))

wi vie tem <— subset(climate$vie tem, climate$mm %in%
wi cop tem <— subset(climate$cop tem, climate$mm %in%
wi_mun_tem <— subset(climate$mun tem, climate$mm %in%
wi_rom_tem <— subset(climate$rom tem, climate$mm %in%

Hl2" ll1|| "2")
H12" 7ll1|| 7"2")

)
)
)
) )
H12" ’ll1|| 7"2"))
)
)
Hl2" ’ll1|| 7"2"))
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## calculated wvariables
pd vie cop <— NULL

pd vie mun <— NULL

pd vie rom <— NULL
pd:cop:mun <— NULL

pd cop rom <— NULL
pd:mun:rom <— NULL
#H#H# spring

sp pd vie cop <— NULL
sp pd vie mun <— NULL
sp pd vie rom <— NULL
sp:pd:cop:mun <— NULL
sp pd cop rom <— NULL
sp:pd:mun:rom <— NULL
#H# summer

su pd vie cop <— NULL
su pd vie mun <— NULL
su pd vie rom <— NULL
su pd cop mun <— NULL
su pd cop rom <— NULL
su:pd:mun:rom <— NULL
#4 autumn

au pd vie cop <— NULL
au pd vie mun <— NULL
au pd vie rom <— NULL
au pd cop mun <— NULL
au pd cop rom <— NULL
au:pd:rnun:rom <— NULL
#E winter

wi pd vie cop <— NULL
wi pd vie mun <— NULL
Wi_pd_vie_rom <— NULL
wi pd cop mun <— NULL
wi pd cop rom <— NULL
wi:pd:rnun:rom <— NULL
## rh
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rh vie cop <—
rh™ vie mun <—
rh™ vie rom <—
rh” cop mun <—
rh™ cop rom <—
rh” mun rom <—
#H4# spring

sp rh vie cop
sp rh vie mun
sp rh vie rom
sp rh cop mun
sp rh cop rom
sp rh mun rom
A summer

su rh vie cop
su rh vie mun
su rh vie rom
su rh cop mun
su rh cop rom
su rh mun rom
A qutumn

au rh vie cop
au rh vie mun
au rh vie rom
au:rh:cop:mun
au_rh_cop_rom
au rh mun rom
A winter

wi rh vie cop
wi rh” vie mun
wi rh” vie rom
wi rh cop mun
wi rh cop rom
Wi:rh:mun:rom

NULL

NULL

NULL

NULL

NULL

NULL

<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL
<— NULL

## output variable
r catl000 <— NULL

#

# calculate

#

## r values vs.
### pd

for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
HHHA spring

for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
A summer

for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
A autumn

for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)
for (i in 1:1000)

B e Y Y e e L T T T N S S s L LYo S

categories

pd vie cop|i]| <—
pd_vie mun[i]| <-
pd vie rom[i] <-—
pd_cop mun[i]| <-
pd cop rom[i]| <—
pd mun rom[i]| <-

sp pd vie cop]|
sp pd vie mun]|
sp pd vie rom [1
sp:pd:cop:mun[ i
sp pd cop rom]|i
sp:pd:mun:rom [1

i
i

su pd vie cop]|i]
su:pd:vie:mun[ i]
su_pd vie rom]i]
su_pd cop mun]i|
su pd cop rom]|i]
su_pd mun rom|i|

au pd vie cop]|i
au pd vie mun|i
au pd vie rom|i
au:pd:cop:mun[ i
au_pd cop rom]i

sim(vie tem,cop tem,i)
sim (vie tem,mun tem, i)
sim (vie tem,rom tem,i)
sim ( cop:tem ,mun:tem ,1)
sim (cop tem,rom tem, i)
sim (mun_tem ,rom tem, i)

o e e e e

<— sim(sp vie tem,sp cop tem, i
<— sim( sp_vie_tem R sp_mun_tem , i
<— sim( sp_vie_tem s sp_rom_tem , i
<— sim( sp:cop:tem R sp:rnun:tem , 1
<— sim(sp cop tem,sp rom tem, i
<— sim( sp:mun:tem s sp:rom:tem , 1
<— sim(su vie tem,su cop tem,i
<— sim( su vie tem R su mun tem , i
<— sim( su vie tem s su rom tem , i
<— sim( su:cop:tem R su:rnun:tem , i
<— sim(su cop tem,su rom tem, i
<— sim( su:mun:tem R su:rom:tem , 1
<— sim(au vie tem,au cop tem, i
<— sim( au vie tem s au mun tem , i
<— sim (au_vie_tem s au rom tem , i
<— sim ( au:cop:tem R au:mun:tem , i
<— sim(au_cop_ tem,au rom_ tem, i

e e e e e I e e e o
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for (i in 1:1000)
166 | #4444 winter

au_pd mun rom|[i] <— sim(au_mun tem,au rom tem,i)

{ }
for (i in 1:1000) { wi_pd vie cop[i] <— sim(wi_vie_ tem,wi_ cop tem,i) }
168| for (i in 1:1000) { wi pd vie mun[i] <- sim(w1 vie tem,wi mun tem,i) }
for (i in 1:1000) { wi pd vie rom[i] <— sim(w vle_tem Wi_rom_tem ,i) }
170| for (i in 1:1000) { wi pd cop mun[i] <— sim(w1 cop_tem,wi mun tem,i) }
for (i in 1:1000) { wi pd cop rom|[i] <— sim (wi_cop_tem ,wi_rom | tem,i) }
172 for (i in 1:1000) { wi:pd:mun:rom[i] <— sim(w1 mun_| | tem , wi _rom tem7 i) }
174| 444 rh
for (i in 1:1000) rh vie cop|i] <— sim(rh=TRUE, vie tem,cop tem,i) }
176| for (i in 1:1000) rh” vie mun|[i] <— sim(rh=TRUE, vie tem,mun tem,i) }
for (i in 1:1000) rh” vie rom|[i] <— sim (rh=TRUE, vie_tem rom_tem7i) }
178| for (i in 1:1000) rh” cop mun|[i] <— sim (rh=TRUE, cop_ " tem ,mun L tem , 1) }
for (i in 1:1000) rh_cop rom[i] <~ sim (rh=TRUE, cop_tem,rom tem,i) }
180| for (i in 1:1000) rh” mun rom[i] <— sim(rh=TRUE,mun tem,rom tem,i) }
A spring
182| for (i in 1:1000) sp_rh_vie cop[i] <— sim(rh=TRUE,sp_ vie tem,sp cop_ tem,i)
for (i in 1:1000) sp_rh vie mun[i] <— sim (rh=TRUE, sp_vie tem sp_mun_tem, i)
184| for (i in 1:1000) sp rh vie rom[i] <— sim (rh=TRUE, sp_vie tem ,Sp_rom_ tem, i)
for (i in 1:1000) sp_rh cop mun[i] <— sim (rh=TRUE, Sp_cop_| " tem , Sp_mun | tem, i)
186| for (i in 1:1000) sp_rh_cop _rom|[i] <— sim (rh=TRUE,sp cop tem,sp rom tem,l)
for (i in 1:1000) sp_rh mun rom[i| <~ sim(rh=TRUE,sp mun tem,sp rom tem, i)
188 | #44# summer
for (i in 1000) su_rh_vie cop[i] <— sim(rh=TRUE,su_vie_ tem,su cop_ tem,i)
190| for (i in 1000) su_ “th vie mun[1] <= sim (rh=TRUE, su_vie tem su_mun tem,l)
for (i in 1000) su rh vie rom[i] <— sim (rh=TRUE, su_vie tem su_rom tem, i)
192| for (i in 1000) su_rh cop mun[i] <— sim (rh=TRUE, su _cop_| " tem, su _mun | tem, i)
for (i in 1000) su_rh cop rom[i] <— sim (rh=TRUE, su _cop_| " tem, su _rom tem,l)
194| for (i in 1000) su:rh:mun:rom[i] <~ sim (rh=TRUE, su_mun_tem,su_rom_tem, i)

196| for (i in 1000) au_rh vie cop[i] <- sim(rh=TRUE,au_vie tem,au cop_ tem,i)
for (i in 1000) au__ " rh vie mun[ i] <= sim(rh=TRUE,au_vie tem,au mun tem,i)
198| for (i in ) au_rh_vie rom[i] <— sim(rh=TRUE,au_vie tem,au rom tem, i)
for (i in 1000) au__ " rh _cop mun[l] <~ sim (rh=TRUE, au_cop_: " tem, au _mun_| | tem, i)
200| for (i in 1000) au rh cop ~rom|[i] <— sim (rh=TRUE,au_cop_ tem,au_ rom tem, i)
for (i in 1000) au_rh_mun_rom[l] <~ sim (rh=TRUE, au_mun_tem ,au_rom tem,l)

202 | #4444 winte

i e e e e e e
—_
o
o
o
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for (i in 1000) wi_rh_vie cop[i] <- sim(rh=TRUE,wi_ vie tem,wi cop tem,i)
204| for (i in 1000) wi rh vie mun[l] <= sim (rh=TRUE, wi_vie tem ,wi_mun tem, i)
for (i in 1000) wi_rh_vie rom[i] <— sim (rh=TRUE,wi_ vie tem,wi rom tem, i)
206| for (i in 1000) wi_rh _cop mun[1] <~ sim (rh=TRUE, wi_cop_: " tem , wi _mun_tem, i)
for (i in 1000) wi rh cop ~rom|[i] <— sim (rh=TRUE, wi_cop_ tem,wi rom tem,l)
208| for (i in 1000) w1_rh_mun_r0m[1] <~ sim (rh=TRUE, wi_mun_tem , wi_rom_tem, i)
210| #
# save and output
212| #

214|r_cat10008x <— ¢(1:1000)

## pd

216|r_cat10008pd vie cop <— pd_vie cop

r cat1000$pd vie mun <-— pd vie mun

218 r cat1000$pd vie rom <— pd vie rom

r cat1000$pd cop_mun <— pd:cop:mun

220 r cat1000$pd cop_rom <— pd_cop_rom

r cat1000$pd mun rom <— pd mun rom

222 | AHA spring - o - -

r _cat10008sp pd vie cop <— sp_pd vie cop
224 r cat1000$sp _pd_vie_mun <- sp pd vie mun
r cat1000$sp pd vie_rom <— sp pd vie rom
226| r cat1000$sp ~pd_cop mun <-— sp:pd:cop:mun
r cat1000$sp _pd_cop_rom <— sp_pd_cop_rom
228 | r cat1000$sp ~pd mun rom <-— sp pd mun rom
L summer - T
230| r_cat10008su_pd vie cop <— su_pd vie cop
r catl0008$su _pd_vie_mun <- su pd vie mun
232 r cat10008$su | pd vie rom <— su pd vie rom
r_cat1000$su_pd_cop_mun <— su:pd:cop:mun
234| r_cat1000$su_pd cop rom <— su_pd cop_rom
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r_cat1000$su_pd mun rom
A qutumn

r_cat10008au_pd_vie cop
r cat10008au | _pd_vie mun
r catl000$au _pd_vie_rom
r cat10008au | pd cop_mun
r catl000$au _pd_cop_rom
r cat1000$au | pd mun_rom
S winter

r_catl0008wi_pd_ vie cop
r catl000$wi _pd_vie mun
r cat10008wi _pd_vie_rom
r cat10008$wi pd cop_mun
r catl000$wi _pd_cop_rom

r Cat1000$W1 pd mun_rom
## Th
r_cat1l0008rh_vie cop <-

r cat10008rh vie _mun <—
r cat1000$rh vie _rom <—
r catl000$rh __cop_mun <—
r catl000$rh cop rom <—
r:cat 1000$rh:mun:rom <—
##A spring

r_catl0008sp rh vie cop
r Cat1000$sp rh vie _mun
r cat1000$sp rh vie _rom
r cat1000$sp rh __cop_mun
r Cat1000$sp rh_cop rom
r cat1000$sp rh_mun_rom
A summer

r_catl0008su_rh vie cop
r catl000$su rh vie _mun
r cat10008su rh vie _rom
r cat10008su rh __cop_mun
r cat10008$su rh __cop_rom
r Cat1000$su rh_mun_rom
LA qutumn

r_catl0008au_rh vie cop
r catl000%au rh vie _mun
r cat10008au rh vie _rom
r catl000$au rh __cop_mun
r cat10008au rh __cop_rom
r cat1000$au rh_mun_rom
L winter

r_catl0008wi rh vie cop
r catl000$wi rh vie _mun
r cat10008wi rh vie _rom
r cat1l0008wi rh __cop_mun
r catl0008wi rh __cop_rom
r cat1000$w1 rh_mun_rom

write.csv(r_cat1000, file="csv/r_cat.csv")

<_

rh

rh:

rh
rh
rh

su pd mun rom

au_pd_vie_cop
au pd vie mun
au pd vie rom
au pd cop mun
au pd cop rom
au:pd:mun:rom

wi pd vie cop
wi pd vie mun
wi pd vie rom
wi pd cop mun
wi pd cop rom
wi pd mun rom

vie cop
vie mun
vie rom

cop mun
cop rom

rh

mun rom

sp rh vie cop
sp rh vie mun
sp_rh_vie_rom
sp rh cop mun
sp rh cop rom
sp:rh:mun:rom

su rh vie cop
su rh vie mun
su rh vie rom
su rh cop mun
su rh cop rom
s u:r h:mun:rom

au rh vie cop
au rh vie mun
au rh vie rom
au rh cop mun
au rh cop rom
au:r h:mun:rom

wi rh vie cop
wi rh vie mun
wi rh vie rom
wi_rh_cop_mun
wi rh cop rom
wi:rh:mun:rom

A.1.3 Graph generator

#
# read input files

#

## data

climate <— read.csv(file="csv/rr_tm day 2001 2010.csv")

r_cat <— read.csv(file="csv/r_cat.csv")

## functions

source("csv/similarity .

VIII

rH)




13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

"

79

81

A.1 R Scripts

#

# set wariables

#

#4# precipitation

vie pre <— climate$vie pre

cop_pre <—
mun_pre <—
rom pre <—

sp_vie_pre <-

climate$cop_ pre
climate$mun pre
climate$rom pre

subset (climate$vie pre

Ssp cop pre <—
sp_mun_pre <—
sp_rom_pre <—
su_vie_pre <—
su_cop_pre <—
su:mun:pre <—
su rom pre <—
au:vie:pre <—
au_cop_pre <—
au mun pre <—
au_rom_pre <—
Wi_vie_pre <—
Wi:cop:pre <—
wi mun pre <—
Wi:rom:pre <—

## temperature

subset(climate$cop pre
subset (climate$mun pre,
subset (climate$rom pre
subset (climate$vie pre
subset (climate$cop pre
subset ( climate$mun:pre s
subset (climate$rom pre,
subset (climate$vie pre,
subset ( climate$cop:pre s

(

(

(

subset (climate$mun pre,
subset (climate$rom pre,
subset (climate$vie pre,
subset ( climate$cop:pre s
subset (climate$mun pre,
subset ( climate$rom:pre s

vie tem <— climate$vie tem
cop_tem <— climate$c0p_tem
mun tem <— climate$mun_tem
rom:tem <— climate$rom tem

sp_vie tem <—
sp cop tem <—
sp_mun_tem <—
sp_rom_tem <-—
su vie tem <—
su_cop_tem <—
su mun tem <—
su:rom:tem <—
au vie tem <—
au_cop_tem <—
au mun tem <—
au rom tem <—
wi vie tem <—
Wi_cop_tem <—
Wi:mun:tem <—
wi_rom_tem <—

## calculated
pd vie cop <—
pd vie mun <—
pd vie rom <—
pd cop mun <—
pd cop rom <—
pd:mun:rorn <—
rh vie cop <—
rh vie mun <—
rh vie rom <—
rh” cop mun <—
rh™ cop rom <—
rh” mun rom <—

subset (climate$vie tem,
subset (climate$cop tem,
subset (climate$mun tem,
subset (climate$rom tem,
subset (climate$vie tem,
subset (climate$cop tem,
subset (climate$mun tem,
subset (climate$rom tem,
subset (climate$vie tem,
subset (climate$cop tem,
subset (climate$mun tem,
subset (climate$rom tem,
subset (climate$vie tem,
subset (climate$cop tem,
subset (climate$mun_tem,
subset (climate$rom tem,

variables
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

#4# precipitation sums
vie pre sum <— NULL
cop pre sum <— NULL
mun_pre_sum <— NULL
rom:pre:sum <— NULL

climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%

climate$mm %in%

climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%
climate$mm %in%

climate$mm %in%

7"4!!
7"4",
7"4"’
7II4:H7
7”7”,
7II7H
7”7”,
’"7!!7
7ll10||7
,"10“,
7ll10||7
7II]‘OU7

7ll]‘ ,
ll1||

ll1||
7II]‘H7

7"4”,
’"4!!7
7ll4:ll7
7"4!!’
7II7H7
7”7”,
7II7H7
7”7”,
’"10”7
7lllOH7
,"10“,
ll10||7
’ll1||7
7ll];”7
’ll1||7
7lll”7

#

# calculate
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A Appendix

#

## generate example functions

climate$mm %in%

t1 <— c(c(1:900)%1.5,¢c(1351:3150) ,c(900:1)%3.5) /43
t2 <— c(c(1:900)%3.5,¢(3150:1351) ,c(900:1)*1.5) /43
## mowving average filter
vie pre ma7 <— na.exclude(filter (vie pre, rep(1/7,7), sides=2))
cop:pre:ma7 <— na.exclude(filter (cop:pre , rep(1/7,7), sides=2))
mun pre ma7 <— na.exclude(filter (mun pre, rep(1/7,7), sides=2))
rom pre ma7 <— na.exclude(filter (rom pre, rep(1/7,7), sides=2))
#H spring B
sp vie pre ma7 <— na.exclude(subset(filter (climate$vie pre, rep(1/7,7),
" climate$mm %in% c("3","4","5"))) -
sp_cop_pre_ma7 <— na. exclude(subset(filter(Climate$cop pre, rep(1/7,7)
climate$mm %in% c("3","4","5"))) -
sp_mun_pre ma7 <— na. exclude(subset(filter(climate$mun pre, rep(1/7,7),
climate$mm %in% c("3","4","5"))) -
sp_rom_pre_ma7 <— na. exclude(subset(filter(climate$rom pre, rep(1/7,7),
climate$mm %in% c("3","4","5"))) -
#HA summer
su vie pre ma7 <— na.exclude(subset(filter (climate$vie pre, rep(1/7,7),
" climate$mm %in% c("6","7","8"))) -
su_cop_pre_ma7 <— na. exclude(subset(filter(climate$cop pre, rep(1/7,7)
climate$mm %in% c("6","7","8"))) -
su_mun_pre_ma7 <— na.exclude (subset( filter (climate$mun pre, rep(1/7,7),
climate$mm %in% c("6","7","8")))
su rom pre ma7 <— na.exclude(subset(filter (climate$rom pre, rep(1/7,7),
T climate$mm %in% c("6","7","8"))) -
#HA autumn
au_vie pre ma7 <— na.exclude (subset(filter (climate$vie pre, rep(1/7,7)
climate$mm %in% c("9","10","11")))
au cop pre ma7 <— na.exclude(subset(fllter(climate$cop pre, rep(1/7,7),
" climate$mm %in% c("9","10","11"))) o
au mun pre ma7 <— na.exclude(subset(filter (climate$mun pre, rep(1/7,7),
" climate$mm %in% c("9","10","11"))) -
au rom pre ma7 <— na.exclude(subset(filter (climate$rom pre, rep(1/7,7),
T climate$mm %in% c("9","10","11"))) -
#H# winter
wi_vie pre _ma7 <— na.exclude (subset(filter (climate$vie pre, rep(1/7,7)
climate$mm %in% c("12","1","2"))) -
wi_cop_pre_ma7 <— na.exclude (subset(filter (climate$cop_ pre, rep(1/7,7),
climate$mm %in% c("12","1","2"))) -
wi mun pre ma7 <— na.exclude (subset(filter (climate$mun pre, rep(1/7,7),
T climate$mm %in% c("12","1" "2"))) -
wi rom pre ma7 <— na.exclude(subset(filter (climate$rom pre, rep(1/7,7),
)))

(!'12" 7"1”

## combining r values

c <— 35
#4#E temperature
### pd

n ll
,"2

sides=2),
, sides=2),
sides=2),
sides=2),
sides=2),
, sides=2),
sides=2),
sides=2),
, sides=2),
sides=2),
sides=2),
sides=2),
, sides=2),
sides=2),
sides=2),
sides=2),

pd_tem_vie cop <— c(sim(su_vie_tem,su_cop_tem,c),sim(au_vie tem,au cop_tem,c),sim(
T wi vie tem,wi __cop_tem ,¢) 7sun(sp vie tem ,Sp_cop_tem ,c)) -7

pd_tem vie cop[5] <— mean(pd tem_ vie cop|[l: 4])

pd_tem_v1e_cop[6] <— sun(v1e_tem cop_tem,c)

#

pd_tem vie mun <— c(sim(su_vie_ tem,su_mun tem,c),sim(au_vie tem,au mun tem,c),sim(
wi vie tem,wi _mun_tem ,c), 51m(sp vie tem ,Sp_mun_tem ,c))

pd_ tem vie mun[5] T<— mean(pd tem vie mun[l 4])

pd_tem vie mun[6] <— sim(vie tem,mun tem,c)

#

pd_tem vie rom <— c(sim(su_vie tem,su_rom tem,c),sim(au_vie tem,au rom tem,c),sim(
wi_vie tem,wi rom tem,c), 51m(sp vie tem,sp rom tem,c))

pd_ tem vie rom[5] T<— mean(pd tem vie rom[l 4])

pd tem vie rom[6] <— sim(vie_f tem ,rom_tem,c)

#

pd_tem cop mun <- c(sim(su_cop tem,su mun tem,c),sim(au_cop tem,au mun tem,c),sim(
wi_cop tem,wi mun tem,c), 51m(sp cop_tem,sp mun tem,c))
pd_tem_ cop mun[5] T mean(pd tem_cop mun[l 4])

X
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pd tem cop mun[6] <— sim(cop tem,mun tem,c)
133|# o -
pd_tem_ cop rom <— c(sim(su_cop_ tem,su_rom tem,c),sim(au_cop_tem,au rom tem,c),sim (
wi_cop_tem,wi rom tem ), 51m(sp cop tem ,Sp_rom_tem,c))
135| pd_tem_cop rom[5] T<— mea.n(pd tem_cop rom[l 4])
pd_tem cop rom|[6] <— sim(cop_ tem,rom tem,c)
137| #
pd_tem mun rom <— c(sim(su_mun tem,su rom tem,c),sim(au_mun tem,au rom tem,c),sim (
wi_mun_tem,wi_rom tem,c), 81m(sp mun_tem,sp rom tem,c))
139| pd_tem mun rom[5] T<— mea.n(pd tem mun rom [1: 4])
pd_tem mun rom[6] <— sim(mun_tem,rom tem,c)
141| 42 rh~
rh tem vie cop <— c(sim(rh=TRUE,su vie tem,su cop tem,c) ,sim(rh=TRUE,au vie tem,au
" cop tem,c),sim (rh=TRUE,wi vie tem,wi cop tem,c),sim(rh=TRUE,sp vie tem,sp cop
tem, c)) - -7 - -7
143| rh_tem vie cop[5] <— mean(rh tem vie cop|[1:4])
rh tem vie cop[6] <— sim(rh =TRUE, vie _tem ,cop_tem,c)
145| #
rh tem vie mun <— c(sim (rh=TRUE,su vie tem,su mun tem,c),sim(rh=TRUE,au vie tem,au
~ mun terH,c) ,sim (rh=TRUE, wi vie tem , wi mun t_em,z) ,sim (rh=TRUE, sp vie tem,sp mun
tem, c)) - - - -
147| rh tem vie mun[5] <— mean(rh_tem vie mun[l 4])
rh_tem vie mun[6] <— sim (rh=TRUE, vie tem,mun tem,c)
149 #
rh tem vie rom <— c(sim(rh=TRUE,su vie tem,su rom tem,c),sim(rh=TRUE,au vie tem,au
" rom tem,c),sim (rh=TRUE, wi vie tem,wi rom tem,c),sim(rh=TRUE,sp vie tem,sp rom
tem, c)) -7 -7 -7 -7
151 rh_tem_ vie _rom[5] <— mean(rh_tem vie rom|[1:4])
rh_tem vie rom[6] <— sim (rh=TRUE, vie tem,rom tem,c)
153| #
rh tem cop mun <— c(sim(rh=TRUE,su cop tem,su mun tem,c) ,sim(rh=TRUE,au cop tem,au
- muH_terH,c) ,sim (rh=TRUE, wi_cop_aem ,@i_mun_t_em ,c) ,sim (rh=TRUE, sp_cop_aem ,gp_mun__
tem,c))
155| rh tem cop mun[5] <— mean(rh tem cop mun|[1:4])
rh” tem cop mun[6] <— sim (rh=TRUE, cop tem ,mun tem,c)
15704 - -
rh tem cop rom <— c(sim (rh=TRUE,su cop tem,su rom tem,c),sim(rh=TRUE,au cop tem,au
~ rom teI;,c) ,sim (rh=TRUE, wi cop tem,wi rom t_em,z) ,sim (rh=TRUE, sp cop tem,sp rom
tem,c)) - - - -
159| rh_tem cop rom|[5] <— mean(rh tem cop rom|[1:4])
rh tem cop rom[6] <— sim (rh=TRUE, cop tem,rom tem,c)
61 # - -
rh_tem mun rom <- c(sim (rh=TRUE,su_mun tem,su rom tem,c),sim(rh=TRUE,au mun tem,au
" rom tem,c),sim (rh=TRUE, wi mun tem,wi rom tem,c),sim(rh=TRUE,sp mun tem,sp rom
tem, c)) - -7 -7 -7
163| rh_tem mun rom[5] <— mean(rh tem mun rom|[1:4])
rh_tem mun rom[6] <— sim (rh=TRUE,mun tem,rom tem,c)
165
#E precipitation
167| 7#7# pd
pd pre vie cop <— c(sim(prec=TRUE,su vie pre ma7,su cop pre ma7) ,sim(prec=TRUE, au
T vie prg ma7,au_cop_pre_ma7), sim(srec:TRUE7 wi vie pre ma7,wi cop pre maT) 7sim(_
prec=TRUE,sp_vie_ pre_ma7,sp_ cop_pre_ma7)) - T - T
169| pd_pre_vie cop[5] <— mean(pd_pre vie cop[l:4])
pd pre vie cop[6] <— sim(prec=TRUE, vie pre ma7,cop pre ma7)
1 # - - -
pd_pre vie mun <-— c(sim(prec=TRUE,su_vie pre ma7,su mun pre ma?7),sim(prec=IRUE, au
T vie prg ma7,au_mun_pre_ma7) , snn(prec —TRUE, wi_vie pre ma7,wi_mun pre maf7) ,sim (—
prec=TRUE, sp_vie pre ma7,sp mun pre_ ma7))
173| pd_pre_vie mun[5] <— mea.n(pd pre_vie mun[1:4])
pd_pre_VIe_mun[G] <— SIm(prec TRUE Vle_pre_ma7,mun_pre_ma7)
175| #
pd_pre_vie rom <— c(sim(prec=TRUE,su_vie pre ma7,su_rom_ pre ma7) ,sim (prec=TRUE, au
vie pre ma7,au rom pre maf7), sim (prec=TRUE, wi_vie pre ma7,wi _rom pre ma7) ,sim (—
prec=TRUE, sp_vie_pre_ma7,sp rom_pre_ ma7))
177| pd_pre_vie rom[5] <— mean(pd pre_vie rom[l 4])
pd pre vie rom[6] <— sim(prec=TRUE, vie pre ma7,rom pre ma7)
19l # -~ T - -
pd_pre cop mun <— c(sim(prec=TRUE,su_cop_pre ma7,su mun pre ma7),sim(prec=TRUE, au
cop_pre_ma7,au_mun pre ma7),sim (prec=TRUE, wi_cop pre ma7,wi mun pre ma7) ,sim (
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prec=TRUE, sp_cop_pre_ma7,sp_mun_pre_ma7))

pd_pre_ cop mun[5] <— mean(pd_pre cop mun[1l:4])

pd_pre_cop_mun[ﬁ] <— sim (prec=TRUE, cop_pre_ma7,mun_pre_ma7)

#

pd pre cop rom <— c(sim(prec=IRUE,su cop pre ma7,su rom pre ma7) ,sim(prec=TRUE, au

- 005 prg ma7,au_rom_ pre ma7), sim(grec_TRUE wi co; prg ma?,wi rom pre maf7) ,sim(_

prec=TRUE, sp_cop_pre_ma7,sp rom_pre_ma7)) -7 - T

pd_pre_cop rom[5] <— mean(pd pre_cop rom[l 4])

pd_pre_cop_rom[ﬁ] <— sim(prec=TRUE, cop_pre_ma7,rom_pre_ma7)

#

pd _pre mun rom <-— c(sim(prec=TRUE,su_mun pre ma7,su_rom pre ma7),sim(prec=TRUE, au

" mun pre ma7,au rom pre ma7), s1m(prec =TRUE, wi _mun_pre_ma7,wi_rom_pre_maT7) ,sim

prec=TRUE, sp mun pre ma7,sp rom pre maT))

pd pre mun rom[5] <— mean(pd pre mun rom[1:4])

pd pre mun rom[6] <— sim(prec=TRUE,mun pre ma7,rom pre ma7)

#A rh - -

rh_pre vie cop <— c(sim(prec=TRUE, th=TRUE, su_vie_ pre ma7,su_cop_pre_ma7) ,sim(prec=
TRUE, rh=TRUE, au vie __pre_maf7,au_cop_pre ma?) 51m(prec =TRUE, rh=TRUE, wi vie pre
ma7,wi cop pre ma7), snn(prec =TRUE, th=TRUE, sp_vie pre_ma7,sp cop_pre ma?))

rh pre Vie_cop_[E)] <— mean(rh pre vie cop[1:4])

rh:pre:vie:cop [6] <— sim (prec=TRUE, rh=TRUE, vie_pre_ma7,cop_pre_maT7)

#

rh_pre vie mun <— c(sim(prec=TRUE, rh=TRUE,su_vie pre ma7,su mun pre ma7) ,sim(prec=
TRUE, rh=TRUE, au vie __pre_ma7,au_mun_pre ma?) sim (prec=TRUE, rh=TRUE, wi vie pre_
ma7,wi mun pre ma?) s1m(prec =TRUE, rh=TRUE, sp_vie pre ma7,sp mun pre ma?))

rh_pre vie mun[5] <- mean(rh pre_vie mun[l 4])

rh_pre_v1e_mun[6] <— snn(prec —TRUE, rh=TRUE, vie pre ma7,mun pre maf7)

#

rh _pre vie rom <- c(sim(prec=TRUE, rh=TRUE, su_vie pre ma7,su_rom pre ma7) ,sim(prec=
TRUE, rth=TRUE, au vie __pre_maf7,au_rom_pre ma?) sun(prec =TRUE, rh=TRUE, wi vie pre_
ma7,wi rom pre ma?) slm(prec =TRUE, th=TRUE, sp_vie pre ma7,sp rom_pre ma?))

rh_pre vie rom[5] <- mean(rh pre_vie rom[l 4])

rh_pre_v1e_rom[6] <— sun(prec —TRUE, rh=TRUE, vie_ pre_ma7,rom_pre_maT7)

#

rh_pre_cop_mun <— c(sim(prec=TRUE, th=TRUE, su_cop_ pre_ma7,su_mun_pre_ma7) ,sim(prec=
TRUE rh- =TRUE, au_cop pre ma7,au mun pre ma?) 51m(prec TRUE rh- =TRUE, wi_cop_pre__
ma7,wi mun pre ma7), snn(prec =TRUE, th=TRUE, sp_cop_pre_ma7,sp_mun_pre ma’?))

rh pre Cop_mun_[5] <— mean(rh pre cop mun[1:4])

rh:pre:cop:mun [6] <— sim (prec=TRUE, rh=TRUE, cop_pre_ma7,mun_pre_ma7)

#

rh_pre cop rom <— c(sim(prec=TRUE, rh=TRUE, su_cop_pre_ma7,su_rom pre ma7) ,sim(prec=
TRUE, rh=TRUE, au _cop_pre_ma7,au_rom_pre ma?) snn(prec =TRUE, rh=TRUE, wi _cop_pre__
ma7,wi rom pre ma?) 51m(prec —TRUE, th=TRUE, sp __cop_pre_ma7,sp_rom_pre ma7))

rh pre Cop_rom_[5] < mean(rh pre_cop rom[l 4])

rh:pre:cop:rom [6] <— sim (prec=TRUE, rh=TRUE, cop_pre_ma7,rom_pre_ma7)

7

rh _pre mun rom <— c(sim(prec=TRUE, th=TRUE, su_mun pre ma7,su_rom pre_ma7) ,sim(prec=
TRUE, rh=TRUE, au mun | pre_maf7,au_rom_pre ma?) glm(prec =TRUE, rh=TRUE, wi mun pre
ma7,wi rom pre ma?) sun(prec =TRUE, th=TRUE, Sp_mun_pre_ma7,sp_rom_pre ma?))

rh_pre mun rom[5| <— mean(rh pre mun rom[1:4])

rh™ _pre_mun_rom [6] <— sim ( prec=TRUE, rh=TRUE, mun |_pre_ma7,rom_pre_ma7)

## monthly precipitation sums

for (i in 1:12) { vie pre sum|i] <— sum(subset(climate$vie pre, climate$mm — i))/

for t? in 1:12) { cop_pre sum[i] <— sum(subset(climate$cop pre, climate$mm — i))/

for :E(l) in 1:12) { mun_pre sum[i] <— sum(subset(climate$mun pre, climate$mm — i))/

for t? ;n 1:12) { rom_pre sum[i] <- sum(subset(climate$rom pre, climate$mm — i))/
10

### r values comparing mormal, ma7 and log applied precipitation data

#HH# pd

AL summer

r pd su vie cop <— c(sim(prec=TRUE,su_vie pre,su _cop_ pre),sim(prec=TRUE,ma=7,su_vie
_pre,su_cop_pre) ,sim(prec=TRUE, log=TRUE, su_vie pre,su_cop_pre))

r pd su vie mun <— c(sim (prec=TRUE,su vie pre, Su mun pre), " sim (prec=TRUE, ma=7,su vie

a :pre_, su:mun_pre) ,sim ( prec=TRUE, log=TRUE, su_vTe_p?e , su_mun_pre) ) o
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r_pd su_vie rom <— c(sim(prec=TRUE,su_vie pre,su_rom pre) ,sim(prec=TRUE,ma=7,su_vie

- :pre_,su:rom_pre) ,sim ( prec=TRUE, log=TRUE, su_vie pre,su _rom pre))

r_pd_su_cop mun <— c(sim(prec=TRUE,su_cop_pre,su_mun pre) sim ( prec=TRUE, ma=7,su _cop
pre,su mun pre) ,sim(prec=TRUE, log=TRUE, su __cop_pre,su_mun_pre))

r pd su cop rom <— c(sim(prec=TRUE,su cop pre,su rom pre),sim(prec=IRUE,ma=7,su cop

- _pre_ su_rom . pre) ,sim (prec=TRUE, log=TRUE, su Cgp p?e su_rom_pre)) -

r_pd su_mun _rom <— c(81m(prec =TRUE, su_mun_pre ,su_rom pre) sim ( prec=TRUE, ma=7,su __mun
pre ,su_rom pre) ,sim (prec=TRUE, log=TRUE, su _mun_pre,su_rom_pre))

p winte? -

r pd wi vie cop <— c(sim

- :pre_,wi:cop_pre) ,sim

prec=TRUE, wi_vie pre,wi_cop_ pre),sim(prec=TRUE,ma=7,wi_vie

prec=TRUE, log=TRUE, wi_vie pre,wi cop_ pre)) -

r pd wi vie mun <— c(sim(prec=TRUE,wi vie pre,wi mun pre)_,sim_(prec:TRUE,ma:7,w1 vie

~ " pre,wi mun pre) ,sim ( prec=TRUE, log=TRUE, wi_ vie p?e wi_mun pre)) -

r pd wi vie rom <— c(sim(prec=TRUE, wi vie _pre,wi_rom pre) sim ( prec=TRUE, ma=7, wi_vie

~ “pre,wi rom pre) ,sim ( prec=ITRUE, log=TRUE, wi_vie_ pre,wi_rom pre))

r_pd:wi_cop:rnun_<f c(sim(prec=TRUE, wi_cop_ pre,wi_mun pre) sim ( prec=TRUE, ma=7,wi __cop
pre,wi mun pre),sim( prec=ITRUE, log=TRUE, wi _cop_pre,wi_mun_pre))

r pd wi cop rom <— c(sim(prec=TRUE, wi __cop_pre,wi_rom pre) sim ( prec=TRUE, ma=7,wi _cop

- :pre_,wi:rom_pre) ,sim ( prec=TRUE, log=TRUE, wi _cop_pre,wi_rom_pre))

(

(

A~~~

r pd wi mun rom <— c(sim(prec=TRUE, wi mun pre,wi rom pre) 51m(prec =TRUE,ma=7,wi mun
" " pre,wi rom pre),sim(prec=TRUE, log_:TRUE,wi mun pre,wi rom pre)) o
HHAA Th o - -

A summer

r_rh_su_vie cop <— c(sim (rh=TRUE, prec=TRUE,su_vie pre,su_cop_pre) ,sim (rh=TRUE, prec=
TRUE, ma=7 ,su_vie pre, su_cop_pre) 51m(rh =TRUE, prec=TRUE, log=TRUE, su_vie pre,su_
COp_pre))

r rh su vie mun <— c(sim (rh=TRUE, prec=TRUE,su vie pre,su mun pre) ,sim (rh=TRUE, prec=

~ TRUE,ma=7,su vie pre ,su mun pre) ,sim(rh:TRUE,Erec:TRUE, l(Tg:TRUE,su vie pre,su
mun_pre ) ) -7 -7 -7 -

r_rh_su_vie_rom <-— c(sim(rh=TRUE, prec=TRUE,su_vie_ pre,su_rom_pre) ,sim (rh=TRUE, prec=
TRUE ma=7,su_vie pre,su rom_ pre) ,sim (rh TRUE prec TRUE log =TRUE, su_vie_ pre,su_
rom_pre))

r rth su cop mun <— c(sim (rh=TRUE, prec=TRUE, su cop pre,su mun pre) ,sim (rh=TRUE, prec=

"~ TRUE,ma=7,su cop pre,su mun pre) ,sim(rh:TRUE,Erec:TRUE, log=TRUE, su cop pre,su
mun_pre) ) - - - -

r rh su cop rom <- c(sim (rh=TRUE, prec=TRUE,su_cop_pre,su_rom_pre) ,sim (rh=TRUE, prec=
TRUE, ma=7,su __cop_pre,su_rom pre) 81m(rh =TRUE, prec=TRUE, log=TRUE, su_cop_pre ,su__
rom_pre))

r rh su mun rom <- c(sim(rh=TRUE, prec=TRUE, su_mun pre,su_rom_ pre) ,sim(rh=TRUE, prec=
TRUE, ma=7,su _mun_pre,su_rom_pre) ,sim(rh —TRUE, prec=TRUE, log=TRUE, su _mun_pre ,su__
rom pre))

HHHAL winter

r rh wi vie cop <-— c(sim(rh=TRUE, prec=TRUE, wi_vie pre,wi cop pre) ,sim(rh=TRUE, prec=
TRUE, ma=7, wi_vie_pre,wi_cop pre), snn(rh ~TRUE, prec=TRUE, log=TRUE, wi_vie_pre ,wi_
cop_pre)) B -

r rh wi vie mun <— c(sim (rh=TRUE, prec=TRUE, wi_vie pre,wi mun pre) ,sim (rh=TRUE, prec=
TRUE, ma=7, wi_vie pre,wi mun pre) ,sim(rh =TRUE, prec=TRUE, log=TRUE, wi_vie pre,wi
mun_pre) )

r_rh_wi_vie rom <— c(sim (rh=TRUE, prec=TRUE, wi_vie pre,wi rom pre) ,sim (rh=TRUE, prec=
TRUE, ma=7, wi_vie pre,wi rom pre),sim(rh =TRUE, prec=TRUE, log=TRUE, wi_vie pre,wi
rom pre)) - - - -

r rh wi cop mun <- c(sim (rh=TRUE, prec=TRUE, wi_cop_pre,wi mun pre) ,sim (rh=TRUE, prec=
TRUE, ma=7,wi cop pre,wi mun pre) 81m(rh =TRUE, prec=TRUE, log =TRUE, wi_cop_pre ,wi__
mun pre)) - -

r_rh_wi:cop_rom <— c(sim (rh=TRUE, prec=TRUE, wi_cop_pre,wi _rom pre) ,sim (rh=TRUE, prec=
TRUE, ma=7,wi cop pre,wi rom pre) ,sim(rh=TRUE, prec=TRUE, log=TRUE, wi cop pre,wi
rom_pre)) - - - h

r_rh_wi_mun rom <— c(sim (rh=TRUE, prec=TRUE, wi_mun_pre ,wi_rom_pre) ,sim (rh=TRUE, prec=
TRUE ma=7,wi_mun pre,wi rom pre),sim(rh TRUE prec TRUE log =T'RUE, wi_mun pre,wi_
rom pre))

#
# plot
#

## example functions

#4# functions
pdf("img/example.pdf" ,width=10,height=5)
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plot (t1,type="1",xlab="time" ,ylab="value" ,main="Example functions",col="indianred",
xaxt="n yaxt*" ")

lines (t2,col="lightskyblue3")

abline (v=0,lty="solid")

abline (v=900,1ty="dashed")

abline (v=1800,1ty="dashed")

abline (v=2700,1ty="dashed")

abline (v=3600,1ty="solid")

axis (1, at=c(0.5:3.5)%900, labels=c(paste("Season 1 (PD=",format (sim (min tem=0,max
tem=100,t1[c(1:900)],t2[c(1:900)],50) ,digits=2),")") ,paste("Season 2 (PD=",
format (sim (min tem=0,max tem=100,t1[c(901:1800)],t2[c(901:1800)],50) ,digits=2),
")") ,paste("Season 3 (PD=", format (sim (min tem=0,max tem=100,t1[c(1801:2700)],t2
[c(1801:2700)],50) ,digits=2),")") ,paste("Season 4 (PD=",format(sim(min tem=0,
max tem=100,t1[c(2701:3600)],t2[c(2701:3600)],50) ,digits=2),")")), las=0)

mtext(p_aste(”PD for whole timespan: " ,sim(tl,t2,50,min tem=0,max tem=100,)),side=3,
line =0)

##7# histograms

pdf("img/ex hist_t1.pdf",width=>5height=5)

hist (t1,main="Function 1", col="indianred",xlab="value",ylim=c(60,120) ,breaks=40)

pdf("img/ex hist t2. pdf",Width:S,height:5)

hist (t2 ,main="Function 2", col="lightskyblue3" 6 xlab="value" ,ylim=c(60,120) ,breaks
=40)

## histograms

#4E temperature

pdf("img/hist vie tem.pdf",width=>5height=5)

hist(vie_tem,?nain;"\/ienna“ ,col="red" ,xlab="C" ,xlim=c(—30,40) ,ylim=c (0,250) ,breaks
=50)

mtext (paste (round (mean(vie_tem) ,1), " C"),side=3,line=0)

pdf("img/hist cop tem.pdf",width=>5height=5)

hist (cop_tem ,main="Copenhagen" col*"red" ,xlab="C" ,xlim=c(—30,40) ,ylim=c (0,250) ,
breakS*E)O)

mtext (paste (round (mean(cop_tem) ,1), " C"),side=3,line=0)

pdf("img/hist_mun tem.pdf",width=5,height=5)

hist (mun_tem ,main="Munich" ,col="red" ,xlab="C" ,xlim=c(—30,40) ,ylim=c(0,250) ,breaks
=50)

mtext (paste (round (mean(mun_tem) ,1), " C"),side=3,line=0)

pdf("img/hist rom tem.pdf",width=>5height=5)

hist (rom_tem ,main="Rome" , col="red" ,xlab="C" ,xlim=c(—30,40) ,ylim=c (0,250) ,breaks=50)

mtext(paste(round(mea.n(rom_tem) ,1), " C") ,sidezS,linezO)

#4## precipitation

#pdf("img/ hist wi vie pre.pdf",width=5height=5)

#hist (wi vie p?e,?nain_:”\/ienna”,col:”lightblue”,a:lab:”rmn”,zlim:c(O,QU),ylim:c(0,600)
,breaks=60)

#pdf("img/ hist_wi_cop_pre.pdf", width=>5,height=>5)

#hist (wi_cop_pre, mam*"Copenhagen”,col*”llghtblue”,mlab:"mm”,xlim:c((),QO),ylim:c
(0,600) ,breaks=60)

pdf("img/hist mun pre.pdf",width=>5height=5)

hist (mun pre , main="Munich",col="lightblue" ,xlab="mm" ,xlim=c (0,40) ,ylim=c (0,600) ,
breaks=60)

pdf("img/hist rom pre.pdf" ,width=>5height=5)

hist (rom pre ,main="Rome" ,col="lightblue" ,xlab="mm" , xlim=c (0 ,40) ,ylim=c(0,600) ,
breaks=80)

#EHE moving average

#pdf("img/ hist wi vie pre ma7.pdf",width=5,height=5)

#hist (wi vie pre ma7, main="Vienna, moving average over 7 days",col="lightblue ", zlab
:"rrm7,1:li_m:c_(0,20),ylim:c(0,600),breaks:l())

#pdf("img/ hist wi cop pre ma7.pdf",width=5,height=5)

#hist (wi cop pre ma7, main="Copenhagen, moving average over 7 days",col="lightblue ",
zlab="mm", zlim=c (0,20) ,ylim=c (0,600) , breaks=10)

pdf("img/hist mun pre ma7.pdf",width=>5,height=5)

hist (mun_pre ma7, main="Munich, moving average over 7 days",col="lightblue" 6 xlab="mm
" xlim=c (0, 40) ylim=c (0, 600) breaks=20)

pdf("img/hist rom pre ma7.pdf",width=>5height=5)

hist (rom_pre ma7, main="Rome, moving average over 7 days",col="lightblue", xlab="mm",
xlim=c (0,40) ,ylim=c (0,600) ,breaks=40)

### precipitation monthly sum
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pdf("img/vie pre sum.pdf",width=>5,height=5)

barplot (vie pre sum,main="Vienna" ,6col="lightblue" 6 xlab="",ylab="mm",ylim=c(0,200),
names . arg c ( "J n "F" ”M" s "A” "M" S HJ" s "J n R "A" s HS" s "OH R ||N” s HD“ ) )
mtext ( paste (round(sum( Vie_pre_sum) ), " mm"),side=3,line=0)
#
pdf("img/cop pre sum.pdf",width=5 height:5)
barplot (cop_pre_sum, main="Copenhagen" ,col="lightblue" ,xlab="",ylab="mm" ,ylim=c
g g y Yy
(0 200) ,l‘lames arg C(UJ" "F” ||M" ”AH , "M” ,||J" 7”‘]" , "A” ,||S" 7Ho" s "NH 7||I)") )
mtext ( paste (round (sum( cop_pre_sum) ), " mm"),side=3,line=0)

pdf("img/mun pre sum.pdf",width=>5,height=5)

barplot (mun_pre_sum, main="Munich",col="lightblue" ,xlab="" ylab="mm" ,ylim=c (0,200) ,
names. arg C ( "J” ||F" ”MH , "A” ||M" R "JH , "J" , ||A" s "SH , "O" , ||N" s "D" ) )
mtext ( paste (round(surn(mun_pre_surn) ), " mm"),side=3,line=0)

pdf("img/rom pre sum.pdf",width=>5,height=5)

barplot (rom_pre_sum, main="Rome",col="lightblue" ,xlab="" ylab="mm" , ylim=c (0,200) ,
names. arg C ( n J n ||F" ||M|| "AU ||M" n '] n n J n ||A" n S|| "O” ||N" HDH ) )
mtext ( paste (round(sum(rom_pre_sum) ), " mm" ), side:3, line :0)

#4# r values vs categories

#H## pd 100

pdf("img/pd100. pdf" ,width=10,height=7)

plot(r cat$x,r cat$pd vie cop,type="1" xlab="number of categories",6 ylab="
Proportional Similarity",main="Proportional Similarity vs. number of categories
,ylim=c(0.5,1) ,xlim=c(1,100) ,col="blue")

lines (r_cat$x,r cat$pd vie mun,col="red")

lines (r_cat$x,r_cat$pd vie rom, col="green")

lines (r__ “cat$x,r cat$pd cop_mun, col="black")
(

lines (r cat$x,r cat$pd cop_rom, col="orangeredl" )

lines (r_cat$x,r_cat$pd mun rom,col="chocolate4")

abline (v= 32,1ty:“dashed") -

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich","Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" 6 col=c("
blue" ,"red" ,"green" ,"black" ,"orangeredl","chocolate4") ,ncol=2)

HHAH spring

pdf("img/sp pdl00.pdf" ,width=10,height=7)

plot (r cat$x,r cat$sp pd vie cop,type="1", 6 xlab="number of categories" 6 ylab="
Proportional Similarity" K main="Spring: Proportional Similarity vs. number of
categories" ,ylim=c(0,1) ,xlim=c(1,100) ,col="blue")

lines (r_cat$x,r cat$sp pd vie mun,col="red")

lines (r__ “cat$x,r Cat$sp pd vie_rom,col="green")

lines (r__ “cat$x,r cat$sp _pd_cop_mun, col="black")

llnes(r T cat$x,r cat$sp pd cop_rom, col="orangered1" )

lines (r_cat$x,r cat$sp _pd mun rom, col="chocolate4")

abline (v=32, lty*“dashed")

legend("bottomrlght" ,c("Vienna — Copenhagen","Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" 6 col=c("
blue" ,"red" ,"green" ,"black" ,"orangered1","chocolate4") ,ncol=2)

A summer

pdf("img/su_pd100.pdf" ,width=10,height=7)

plot (r_ cat$x,r cat$su _pd_vie_ cop,type="1",xlab="number of categories",ylab="
Proportional Similarity ", main="Summer: Proportional Similarity vs. number of
categories" ,ylim=c(0,1) 7xlim:f:(l ,100) ,col="blue")

lines (r_cat$x,r cat$su _pd vie mun,col="red")

lines (r_cat$x,r_cat$su_pd vie rom,col="green")

lines (r_cat$x,r cat$su pd cop mun,col="black")

lines (r__ “cat$x,r cat$su | pd cop_rom, col="orangered1")

lines (r__ “cat$x,r cat$su_ _pd mun rom,col="chocolate4")

abllne(v 32, ltyf“dashed")

legend ("topright" ,c("Vienna — Copenhagen","Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" 6 col=c("
blue" ,"red" ,"green" ,"black" ,"orangeredl","chocolate4")  ncol=2)

A autumn

pdf("img/au_pd100.pdf" ,width=10,height=7)

plot (r__ cat$x,r cat$au . pd_vie cop,type="1",xlab="number of categories", ylab="
Proportional Similarity ", main="Autumn: Proportional Similarity vs. number of
categories" ,ylim=c(0,1) 7xlim:c(l ,100) ,col="blue")

lines (r_cat$x,r cat$au pd vie mun,col="red")

lines (r_cat$x,r cat$au pd vie rom,col="green")

_n

n
)
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lines (r_cat$x,r_ cat$au _pd cop mun, col="black")

lines (r__ “cat$x,r cat$au _pd_cop_rom,col="orangeredl")

lines (r__ “cat$x,r cat$au _pd_mun_rom, col="chocolate4")

abline (v=32 lty:"dashed")

legend(“bottommght"7 ("Vienna — Copenhagen","Vienna — Munich" ,"Vienna — Rome" ,
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid", col=c(
blue","red" ,"green" ,"black" ,"orangeredl","chocolate4") ,ncol=2)

#E winter

pdf("img/wi pd100.pdf" ,width=10,height=7)

plot (r_ cat$x,r cat$wi _pd_vie_cop,type="1",xlab="number of categories",6ylab="
Proportional Similarity",main="Winter: Proportional Similarity vs. number of
categories" ,ylim=c(0,1) ,xlim:c(l ,100) ,col="blue")

lines (r_cat$x,r cat$wi pd vie mun,col="red")

lines (r_cat$x,r_cat$wi_pd_vie rom,col="green")

lines (r_cat$x,r cat$wi_pd cop mun,col="black")

lines (r__ “cat$x,r cat$wi _pd_cop_rom,col="orangeredl")

lines (r cat$x,r cat$wi _pd_mun_rom, col="chocolate4")

abllne(v 32 lty:"dashed")

legend (" bottommght“7 ("Vienna — Copenhagen","Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid",col=c("
blue","red" ,"green" ,"black" ,"orangeredl","chocolate4") ,ncol=2)

"
)

A pd 1000

pdf("img/pd1000. pdf" ,width=10,height=7)

plot(r cat$x,r cat$pd vie cop,type="1" 6 xlab="number of categories" 6 ylab="
Proportional Similarity",main="Proportional Similarity vs. number of categories
", ylim=c(0.5,1) ,xlim=c(1,1000) ,col="blue")

lines(r_cat$x,r cat$pd vie mun,col="red")

lines (r_cat$x,r cat$pd vie rom,col="green")
lines (r_cat$x,r_cat$pd cop_mun, col="black")
lines (r__ “cat$x,r cat$pd cop_rom, col="orangeredl")

lines (r_cat$x,r cat$pd mun rom,col="chocolate4")
abline (v= 32,1ty*"dashed")

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome" ,"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid", col=c("
blue" ,"red" ,"green" ,"black" ,"orangeredl","chocolate4") ,ncol=2)

### rh 100

pdf("img/rh100.pdf" ,width=10,height=7)

plot (r_cat$x,r cat$rh_vie cop,type="1", 6 xlab="number of categories",ylab="Hellinger
Coeffl(:lent" ,main="Hellinger Coefficient vs. number of categorles",ylim:c
(0.5,1) ,xlim=c(1,100) ,col="blue")

lines (r__ cat$x r_cat$rh vie mun, col="red")

lines (r_cat$x,r_cat$rh_vie rom,col="green")

lines (r_cat$x,r cat$rh_cop mun, col="black")

lines (r__ “cat$x,r cat$rh_ ~_cop_rom, col="orangeredl")

lines (r cat$x,r cat$rh mun_rom, col="chocolate4")

abline (v=32 lty*"dashed")

legend(“bottomrlght“ c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid", col=c("
blue","red" ,"green" ,"black" ,"orangered1","chocolate4") ,ncol=2)

HHHH spring

pdf("img/sp_rh100.pdf" ,width=10,height=7)

plot (r_ cat$x,r _cat$sp rh_vie cop,type="1",xlab="number of categories",6 ylab=
Hellinger Coefficient" ,main="Spring: Hellinger Coefficient vs. number of
categories" ,ylim=c (0, 1),x11m c(1,100) ,col="blue")

lines (r_cat$x,r cat$sp rh vie mun,col="red")

lines (r_cat$x,r_cat$sp rh vie rom,col="green")

lines (r__ “cat$x,r cat$sp rh_ __cop_mun, col="black")

lines (r__ “cat$x,r cat$sp rh_cop rom,col="orangeredl")

lines (r_cat$x,r cat$sp_rh mun rom,col="chocolate4")

abline (v=32, lty—"dashed")

legend ("bottomright" ,c("Vienna — Copenhagen","Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid",col=c("
blue","red" ,"green" ,"black" ,"orangered1","chocolate4") ,ncol=2)

A summer

pdf("img/su_rh100.pdf" ,width=10,height=7)

plot (r_ cat$x,r cat$su rh vie _cop,type="1" ,xlab="number of categories",6 ylab="
Hellinger Coefficient" ,main="Summer: Hellinger Coefficient vs. number of
categories" ,yllmfc((),l) ,xlim=c(1,100) ,col="blue")

"
)

"
)
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A.1 R Scripts

415| lines (r_cat$x,r_cat$su_rh_vie mun,col="red")
lines (r__ “cat$x,r cat$su rh vie _rom, col="green")

417| lines (r__ “cat$x,r cat$su rh | __cop_mun, col="black")
lines (r__ “cat$x,r cat$su rh __cop_rom, col="orangered1")

419| lines (r__ “cat$x,r cat$su rh _mun_rom, col="chocolate4")

abline (v=32,1ty="dashed")

421 legend("bottomrlght" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ;"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" ,col=c("
blue" ,"red" ,"green","black" ,"orangeredl","chocolate4") ncol=2)

# autumn

423| pdf ("img/au_rh100.pdf" ,width=10,height=7)

plot (r_ cat$x,r cat$au rh vie _cop,type="1",xlab="number of categories",ylab="
Hellinger Coefficient" ,main="Autumn: Hellinger Coefficient vs. number of
categories" ,ylim=c (0, 1) xlim=c(1,100) ,col="blue")

425| lines (r_cat$x,r_cat$au rh vie mun,col="red")

lines (r__ “cat$x,r cat$au rh vie _rom, col="green")

427| lines (r__ “cat$x,r cat$au rh | __cop_mun, col="black")

lines (r__ “cat$x,r cat$au rh __cop_rom, col="orangered1")

429| lines (r_cat$x,r_cat$au_rh mun rom, col="chocolate4")

abline (v=32,1ty="dashed")

431 legend("bottomrlght" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" 6 col=c("
blue" ,"red" ,"green" ,"black" ,"orangeredl","chocolate4") ncol=2)

# winter

433| pdf ("img/wi_rh100.pdf" ,width=10,height=7)

plot (r_ cat$x,r cat$wi rh vie _cop,type="1" ,xlab="number of categories",ylab="
Hellinger Coefficient" ,main="Winter: Hellinger Coefficient vs. number of
categories" ,ylim=c (0, 1) xlim=c(1,100) ,col="blue")

435| lines (r_cat$x,r_cat$wi_rh vie mun,col="red")

lines (r_cat$x,r_cat$wi_rh_vie rom,col="green")

437| lines (r_cat$x,r_cat$wi_rh cop mun, col="black")

lines (r__ “cat$x,r cat$wi rh __cop_rom, col="orangeredl")

439| lines (r_cat$x,r_cat$wi_rh mun rom, col="chocolate4")

abline (v=32 lty*“dashed")

441 legend("bottomrlght" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome"

Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" 6 col=c("

blue" ,"red" ,"green","black" ,"orangeredl","chocolate4") ,ncol=2)

n
)

n
)

n
)

443 | ##7# rh 1000

pdf("img/rh1000. pdf" ,width=10,height =7)

445| plot (r_cat$x,r cat$rh vie cop,type="1",6 xlab="number of categories",ylab="Hellinger
Coefficient" ,main="Hellinger Coefficient vs. number of categorles",ylim:c
(0.5,1) ,xlim=c(1,1000) ,col="blue")

lines (r_ cat$x r_cat$rh_vie mun, col="red")

447| lines (r_cat$x,r_cat$rh vie rom,col="green")

lines (r_cat$x,r cat$rh cop mun, col="black")

449| lines (r__ “cat$x,r cat$rh __cop_rom, col="orangered1")

lines (r_cat$x,r cat$rh mun rom, col="chocolate4")

451| abline (v=32, lty*"dashed")

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich","Vienna — Rome" ,"
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,lty="solid" , col=c("
blue" ,"red" ,"green" ,"black" ,"orangeredl","chocolate4") ncol=2)

453
## combine T values
455 | ##4 temperature

#H#A# pd
457| pdf ("img/pd_temp.pdf" ,width=8,height=5)
plot (pd_tem_vie cop,ylim=c(0, 1),col "blue" ,xaxt= ,ylab="Proportional Similarity"
xlab=""",pch=19,main="Temperature similarity — Proportlonal Similarity")

459| points(pd tem vie mun,col="red" , pch=19)

points(pd_tem_vie_rom,col:”green" ,pch=19)

461 points(pd_tem_cop_mun col="black" ,pch=19)
points(pd_tem cop rom,col="orangeredl" ,pch=19)

463| points (pd_tem mun rom,col="chocolate4" , pch=19)

abline (v= 4‘5,1ty7"solld")

465| #abline (v=5.75,lty="so0lid ")

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich","Vienna — Rome"
Copenhagen — Munich" ,"Copenhagen — Rome","Munich — Rome") ,col=c("blue","red","
green" ,"black" "orangeredl" ,"chocolate4") ,ncol=2,pch=19,bg="white")

n
)
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axis (1, at=c(1:6), labels=c("Summer" ,"Autumn" ,"Winter" ,"Spring","Season average",k"
Whole year"), las=0)

#H#HA Th

pdf("img/rh_temp.pdf",width=8,height=5)

plot(rh tem vie cop,ylim=c(0,1),col="blue" ,xaxt="n",ylab="Hellinger Coefficient",
xlab="""pch=19,main="Temperature similarity — Hellinger Coefficient ")

points(rh tem vie mun,col="red" ,pch=19)

points(rh tem vie rom,col="green",pch=19)

points(rh” tem cop mun,col="black",pch=19)

points(rh tem cop rom,col="orangeredl" 6 pch=19)

points(rh” tem mun rom,col="chocolate4" ,pch=19)

abline (v=4.5,Tty="solid")

#abline (v=5.75,lty="solid")

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome" ,
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,col=c("blue","red",
green" ,"black" "orangeredl" ,"chocolate4") ,ncol=2,pch=19,bg="white")

axis (1, at=c(1:6), labels=c("Summer" ,"Autumn" ,"Winter"," Spring","Season average",
Whole year"), las=0)

n

## precipitation

### pd

pdf("img/pd_prec.pdf",width=8,height=5)

plot (pd pre vie cop,ylim=c(0.3,1),col="blue" ,xaxt="n",ylab="Proportional Similarity
", xlab="" ,pch=19,main="Precipitation similarity — Proportional Similarity ")

points(pd pre vie mun,col="red" ,pch=19)

points(pd pre vie rom,col="green",pch=19)

points (pd_pre_cop_rnun7 col="black" ,pch=19)

points (pd_pre_cop_rom, col="orangeredl" ,pch=19)

points (pd_pre_mun_rom ,col="chocolate4" ,pch=19)

abline (v=4.5,Tty="solid")

#abline (v=5.75,lty="solid")

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome" ,
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,col=c("blue","red","
green" ,"black" "orangeredl" ,"chocolate4") ,ncol=2,pch=19,bg="white")

axis (1, at=c(1:6), labels=c("Summer" ,"Autumn","Winter","Spring","Season average",k"
Whole year"), las=0)

w## rh

pdf("img/rh_prec.pdf",width=8,height=5)

plot (rh pre vie cop,ylim=c(0.3,1),col="blue" ,xaxt="n" 6 ylab="Hellinger Coefficient",
_ _ _ Yy y g
xlab="" pch=19,main="Precipitation similarity — Hellinger Coefficient")
points(rh_pre vie mun, col="red" ,pch=19)

points(rh pre vie rom,col="green" pch=19)
points ( rh™ pre cop mun,col="black" ,pch=19)
points ( rh” pre cop rom,col="orangeredl" ,pch=19)
points ( rh:pre_mun_rom ,col="chocolate4" ,pch=19)

abline (v=4.5,Tty="solid")

#abline (v=5.75,lty="solid ")

legend ("bottomright" ,c("Vienna — Copenhagen" ,"Vienna — Munich" ,"Vienna — Rome" ,
Copenhagen — Munich" ,"Copenhagen — Rome" ,"Munich — Rome") ,col=c("blue","red","
green" ,"black" "orangeredl" ,"chocolate4") ,ncol=2,pch=19,bg="white")

axis (1, at=c(1:6), labels=c("Summer" ,"Autumn","Winter","Spring","Season average",k"
Whole year"), las=0)

# precipitation filters

## pd

#H#E summer

pdf("img/pd pre su filters.pdf",width=>5,height=5)

plot(r pd su vie cop,ylim=c(0,1),col="blue",xaxt="n",ylab="Proportional Similarity"
,xlab="""pch=19,main="Proportional Similarity , summer" )

points(r pd su vie mun,col="red",pch=19)

points ( r pd su vie rom,col="green" ,pch=19)

points ( r:pd:su:cop:mun, col="black" ,pch=19)

points(r pd su cop rom,col="orangeredl" , pch=19)

points(r pd su mun rom,col="chocolate4" ,pch=19)

legend ("bottomleft" ,c("Vie. — Cop.","Vie. — Mun.","Vie. — Rome" ,"Cop. — Mun.","Cop.
— Rome" ,"Mun. — Rome") ,col=c("blue","red","green" ,"black" ,"orangeredl","
chocolate4") ,ncol=2,pch=19,bg="white")

axis (1, at=c(1:3), labels=c("Original","7 days moving average","log"), las=0)

#H# winter

pdf("img/pd pre wi_ filters.pdf",width=>5height=5)
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521| plot (r_pd_wi_vie_cop,ylim=c(0,1),col="blue" ,xaxt="n",ylab="Proportional Similarity
,xlab=""" pch=19,main="Proportional Slmllarlty, winter")

points(r _pd_wi_vie_mun, col="red" ,pch=19)

523| points (r_pd wi_vie rom,col="green" ,pch=19)

points(r_pd wi_cop_mun, col="black" ,pch=19)

525| points (r pd wi cop rom col*"orangeredl",pch:19)
points(r_pd_wi_mun_rom,col:“ chocolate4" ,pch=19)

527 legend("T)otTom_leftT,c("Vie. — Cop.","Vie. — Mun." ,"Vie. — Rome" ,"Cop. — Mun." ,"Cop.

— Rome" ,"Mun. — Rome") ,col=c("blue","red","green" ,"black" ,"orangeredl" "
chocolate4") ,ncol=2,pch=19,bg="white")

axis(1l, at=c(1:3), labels=c("Original","7 days moving average","log"), las=0)

529| ## rh

#H# summer

531| pdf("img/rh_pre_su_ filters.pdf",width=>5height=5)

plot(r_rh su vie COp ylim=c(0,1) ,col="blue" ,xaxt="n",ylab="Hellinger Coefficient",
xlab="" pch=19,main="Hellinger Coeff1c1ent , summer")

533| points(r_rh_su_vie mun, col="red" ,pch=19)

points(r_rh su vie rom,col="green",pch=19)

535| points (r_ rh su __cop_mun, col="black" ,pch=19)
points(r rh” su cop rom col*“orangeredl",pch:19)

537 points(r_rh_su_mun_rom,col:“chocolate4” ,pch=19)

legend("T)ot?om_leftv,c(“\/ie. — Cop.","Vie. — Mun." ,"Vie. — Rome" ,"Cop. — Mun." ,"Cop.
— Rome" ,"Mun. — Rome") ,col=c("blue","red","green" ,"black" ,"orangeredl","
chocolate4d") ;ncol=2,pch=19,bg="white")

539| axis (1, at=c(1:3), labels=c("Original","7 days moving average","log"), las=0)

#HE winter

541| pdf ("img/rh_pre wi filters.pdf" ,width=5,height=5)

plot (r_rh_wi_vie_cop,ylim=c(0,1),col="blue" ,xaxt="n",ylab="Hellinger Coefficient",
xlab="" pch=19,main="Hellinger Coefficient , winter")

543| points(r_rh_wi_vie mun, col="red" ,pch=19)

points(r rh wi_vie rom,col="green" , pch=19)

545| points (r__ rh wi __cop_mun, col="black" ,pch=19)
points(r__ rh wi _cop_rom, col="orangeredl" ,pch=19)

547| points(r_rh wi mun rom, col="chocolate4" ,pch=19)

("bottomleft " (“Vle — Cop.","Vie. — Mun." ,"Vie. — Rome" ,"Cop. — Mun." ,"Cop.

legend
— Rome" ,"Mun. — Rome“) ,col=c("blue","red" ,"green","black" ,"orangeredl",
chocolate4") ,ncol=2,pch=19,bg="white")

549| axis (1, at=c(1:3), labels=c("Original","7 days moving average","log"), las=0)

551

#
553|# export

#

dev. off ()

555

A.2 Java

A.2.1 Climate Twin Connector

This code was originally written by Jan Peters-Anders (AIT, jan.peters-andersQait.ac.at)
and just modified by the author, who implemented the similarity measures worked
out in this thesis.

package test;

import java.sql.Connection;

4| import java.io.*;

import java.sql.Array;

6| import java.sql.DriverManager;
import java.sql.ResultSet;

8| import java.sql.SQLException;
import java.sql.Statement;

10| import java.util.ArrayList;
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import
import
import
import
import
import
import

java.
java.
java.
java.
java.
.math . *;

java

java.

util . Arrays;
util . List;

util . Vector;
util . Random;
lang. String;

lang . Number;

public class ClimateConnector {

static

int errorLevel = 1;

final int ENTIRE CLIMATE = 0;

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

final

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

TEMP = 1;

SPRING = 2;

SUMMER

I
w

AUTUMN = 4;
f1961t1970 =
f1971t1980 =
f1981t1990 =
£1991t2000 =
f2001t2010 =
201162020 =
202162030 =
f2031t2040 =
f2041t2050 =
f2051t2060 =
£2061t2070 =
f2071t2080 =
f2081t2090 =
209162100 =
PD — 0;

RH = 1;

public String executeDQuery(int id, int thtemp, int thprec, int

double indicatorWeight ,
int season,

Connection theConnection

int sourcePeriod, int targetPeriod,

int simMeasure) {

null;

Connection theConnectionPostGIS = null;
ResultSet theResult;
String
boolean localhost =

XX

returnMessage = "EMPTY";
true;

indicator ,
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//

try {
Class . forName("org.postgresql.Driver");

} catch (ClassNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;
}
new ArrayList<int[][] >();
try {
if (localhost = false) {
// neu (ab Maerz 2010):
theConnection = DriverManager.getConnection (
"jdbc:postgresql://localhost:5432/ct dev", "jan",
n***n); -
theConnectionPostGIS = DriverManager. getConnection (
"jdbc:postgresql://localhost:5432/ct_postgis dev",
"jan"’ ll***ll);

// mneu (ab Maerz 2010):
if (localhost = true) {
theConnection = DriverManager.getConnection (
"jdbc:postgresql://localhost:5452/ct dev", "jan",
n***n); -
theConnectionPostGIS = DriverManager.getConnection (
"jdbc:postgresql://localhost:5452/ct_postgis_dev",
”jan”? ||***");

}

Statement theStatement = theConnection
.createStatement (ResultSet . TYPE SCROLL SENSITIVE,
ResultSet .CONCUR UPDATABLE) ; -
theConnection .setAutoCommit ( false);

Statement theStatementPostGIS = theConnectionPostGIS
.createStatement (ResultSet . TYPE SCROLL SENSITIVE,
ResultSet .CONCUR UPDATABLE); -
theConnectionPostGIS .setAutoCommit (false) ;

//

// start similarity function

// float || sourceArray = new float [28];
// float [][] scenarioArrays = new float [28][61456];

// indicator selector

String StrIndicator = "herbert";
int ArrayLength = 0;
String [| indicatorArray = { "climate", "tm", "rr" };

switch (indicator) {

case ENTIRE CLIMATE:
Strindicator = indicatorArray [ENTIRE CLIMATE];
break; -

case TEMP:
StrIndicator = indicatorArray [TEMP];

break;
case PREC:
StrIndicator = indicatorArray [PREC];

break;

}

// season selector
String StrSeason = "herbert";

n n n n n n n

String [| seasonArray = { "all", "wi", "sp", "su", "au" };

switch (season) {
case ENTIRE YEAR:

StrSeason = seasonArray [ENTIRE YEAR];
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break;

case WINTER:
StrSeason = seasonArray [WINTER];
break;

case SPRING:
StrSeason = seasonArray [SPRING|;
break;

case SUMMER
StrSeason = seasonArray [SUMMER];
break;

case AUTUMN
StrSeason = seasonArray [AUTUMN];

break;

}

// period selector

String StrSourcePeriod = "herbert";

String [] periodArray = { "1961_1970", "1971 1980", "1981 1990",
"1991 _2000", "2001_2010", "2011_2020", "2021 2030",
"2031_2040", "2041_2050", "2051_2060", "2061_2070",
"2071_2080", "2081 2090", "2091 2100" };

switch (sourcePeriod) {

case f1961t1970:
StrSourcePeriod = periodArray[f1961t1970 ];
break;

case f1971t1980:
StrSourcePeriod = periodArray[f1971t1980 ];
break;

case f1981t1990:
StrSourcePeriod = periodArray[f1981t1990 ];
break;

case f1991t2000:
StrSourcePeriod = periodArray[£1991t2000 ];
break;

case f2001t2010:
StrSourcePeriod = periodArray[f2001t2010 |;
break;

case f2011t2020:
StrSourcePeriod = periodArray [f2011t2020 ];
break;

case f2021t2030:
StrSourcePeriod = periodArray[f2021t2030 ];
break;

case f2031t2040:
StrSourcePeriod = periodArray[f2031t2040 |;
break;

case f2041t2050:
StrSourcePeriod = periodArray [f2041t2050 |;
break;

case f2051t2060:
StrSourcePeriod = periodArray[f2051t2060 |;
break;

case f2061t2070:
StrSourcePeriod = periodArray[f2061t2070 |;
break;

case f2071t2080:
StrSourcePeriod = periodArray [f2071t2080 |;
break;

case f2081t2090:
StrSourcePeriod = periodArray[f2081t2090 |;
break;

case f2091t2100:
StrSourcePeriod = periodArray[£2091t2100 |;
break;

}

String StrTargetPeriod = "herbert";
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switch (targetPeriod) {

case f1961t1970:
StrTargetPeriod = periodArray|[f1961t1970 ];
break;

case f1971t1980:
StrTargetPeriod = periodArray|[f1971t1980 ];
break;

case f1981t1990:
StrTargetPeriod = periodArray [f1981t1990 ];
break;

case f1991t2000:
StrTargetPeriod = periodArray [£1991t2000 ];
break;

case f2001t2010:
StrTargetPeriod = periodArray|[f2001t2010 |;
break;

case f2011t2020:
StrTargetPeriod = periodArray [f2011t2020 ];
break;

case f2021t2030:
StrTargetPeriod = periodArray [f2021t2030 ];
break;

case f2031t2040:
StrTargetPeriod = periodArray |[f2031t2040 |;
break;

case f2041t2050:
StrTargetPeriod = periodArray [f2041t2050 ];
break;

case f2051t2060:
StrTargetPeriod = periodArray [f2051t2060 ];
break;

case f2061t2070:
StrTargetPeriod = periodArray|[f2061t2070 |;
break;

case f2071t2080:
StrTargetPeriod = periodArray [f2071t2080 |;
break;

case f2081t2090:
StrTargetPeriod = periodArray [f2081t2090 ];
break;

case f2091t2100:
StrTargetPeriod = periodArray 209162100 ];

break;
}
// Variables for temporary and result values.
//
// int [][] seasonResult
/e

% is used to store temporary r—values. Values below threshold get
* "—999" . columns: [0] FID [1] r—value

*/

float [|[] seasonResult = new float [2][33080];

// ArrayList<int[][] > seasonResultList

/e

% temporary store of saisonal r—values. contains seasonResult

* arrays per column. columns: [0] winter [1] spring [2] summer [3]
* autumn

*/

ArrayList<float [][] > seasonResultList = new ArrayList<float[][] >();

for (int i = 0; 1 < 4; i++) {
seasonResultList.add (i, seasonResult);

}
// int [|[] indicatorResult
/e
* temporary store of whole year r—values. columns: [0] FID [1]

* r—value
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*/
float [|[] indicatorResult = new float [3][seasonResult [0].length + 1];

// ArrayList<int[|[] > indicatorResultList
VAL
* permanent store of whole year r—values per indicator. contains
* indicatorResult arrays per column. columns: [0] temperature [1]
% precipitation
*/
ArrayList<float [][] > indicatorResultList = new ArrayList<float[|[] >();
for (int i = 0; i < 3; i++) {
indicatorResultList .add (i, seasonResult);
}

// int [][] climateResult

/%

% array to store result data late to be written to database.

# columns: [0] FID —> cell ID [1] sim —> overall similarity [2]

* tm total —> whole year temperature similarity [3] tm wi —> winter

* teaperature similarity [4] tm sp —> spring temperatu?e similarity

* [5] tm su —> summer temperature similarity [6] tm au —> autumn

% temperature similarity [7] rr total —> whole year precipitation

* similarity [8] rr_wi —> winter precipitation similarity [9] rr_sp —>
* spring precipitation similarity [10] rr su —> summer
#* precipitation similarity [11] rr au —> ‘autumn precipitation
* similarity N
*

float [][] climateResult = new float [12][seasonResult[0].length + 1];
// int [][] climateTempList
/ ek

* temporary array for calculations. columns: [0] FID [1] r—value

*
int [][] climateTempList = new int [4][|seasonResult [0].length + 1];

int indicatorCountFrom = 0;

int indicatorCountTo = 0;

if (StrIndicator = "climate") {
sOP ("ENTIRE CLIMATE") ;
indicatorCountFrom = 0;
indicatorCountTo = 2;

} else if (StrIndicator = "tm") {
sOP ("TEMP" ) ;
indicatorCountFrom = 0;
indicatorCountTo = 1;

} else if (StrIndicator = "rr") {
sOP ("PREC" ) ;
indicatorCountFrom = 1;
indicatorCountTo = 2;

} else {

sOP("indicator select error!");

}

int seasonCountFrom = 0;

int seasonCountTo = 0;

if (StrSeason =— "all") {
sOP ("ENTIRE YEAR") ;
seasonCountFrom = 0;
seasonCountTo = 4;

} else if (StrSeason — "wi") {
sOP ("WINTER" ) ;
seasonCountFrom = 0;
seasonCountTo = 1;

} else if (StrSeason =— "sp") {
sOP ("SPRING") ;
seasonCountFrom = 1;
seasonCountTo = 2;

} else if (StrSeason — "su") {
sOP ( "SUMMER" ) ;
seasonCountFrom = 2;

)
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seasonCountTo = 3;

} else if (StrSeason =— "au") {
sOP ("AUTUMN" ) ;
seasonCountFrom = 3;
seasonCountTo = 4;

} else {

sOP("season select error!");

}

sOP("temperature threshold: " + thtemp);
sOP("precipitation threshold: " + thprec);
sOP("source region: " + id);
sOP("source period: " + StrSourcePeriod);
sOP("target period: " + StrTargetPeriod);
// BEGIN INDICATOR LOOP
for (int indicatorCount = indicatorCountFrom; indicatorCount <
indicatorCountTo; indicatorCount++) {
StrIndicator = indicatorArray [indicatorCount + 1];
int tolerance = 0;
if (indicatorCount = 0) {
tolerance = thtemp;
} else if (indicatorCount =— 1) {
tolerance = thprec;
} else {

sOP("indicatorCount error!");

}
// BEGIN SEASON LOOP

for (int seasonCount = seasonCountFrom; seasonCount < seasonCountTo;
seasonCount++) {
sOP("seasonCount: " + seasonCount);
StrSeason = seasonArray [seasonCount + 1];

sOP("get data " + StrIndicator + " for " + StrSeason);

// Build the SQL query code for the source region:

String query = "SELECT id, dist " + StrIndicator + " "
+ StrSourcePeriod + " " - -
+ seasonArray [seasonCount + 1]

+ " FROM dist_arrays europe WHERE id = " + id
+ ||;";
sOP(query) ;
if (indicatorCount =— 0) {
ArrayLength = 38;
} else if (indicatorCount — 1) {

ArrayLength = 28;

float [| sourceArray = new float|[ArrayLength];
float [|[] scenarioArrays = new float|[ArrayLength]|[33080];

for (theResult = theStatement.executeQuery(query); theResult
‘mext ()3) {
float idControl = (Float.valueOf(theResult.getFloat(1)))
.floatValue () ;
Array array = theResult.getArray(2);
sOP (array . getArray () . getClass () .toString ());
sOP("idControl: " 4+ idControl);
sourceArray [0] = idControl;
java.lang.Float || tempArray = (Float[|) array
.getArray (); // fuer Servlet
sOP("tempArray.length: " + tempArray.length);
for (int g = 0; g < tempArray.length; gt++) {
// sOP("tempArray:" + tempArray|g]|);
sourceArray[g + 1] = tempArray|[g];

}

// Build the SQL query code for the target regions:
query = "SELECT id,dist " + StrIndicator + " "

+ StrTargetPeriod + " " -

+ seasonArray [seasonCount + 1]

+ " FROM dist_ arrays europe;";
sOP (query) ;
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int rowCount = 0;
430 for (theResult = theStatement.executeQuery(query); theResult
‘mext()5) {
432 float idScenario = (Float.valueOf(theResult.getInt(1)))
.floatValue () ;
434 Array array = theResult.getArray(2);
scenarioArrays [0][rowCount| = idScenario;
436 java.lang.Float [] dArray2 = (Float|[]) array.getArray(); // fuer
// Servlet
438 for (int g = 0; g < dArray2.length; g++) {
// sOP("dArray2("+g+"):" + dArray2[g|+",");
440 scenarioArrays|[g + 1][rowCount]| = dArray2|g];
}
442 rowCount++;
444 sOP("begin similarity measurement ...");
sOP("seasonCount: " + seasonCount);
446 // BEGIN similarity measurement:
// Computes the r—value between the source region and the
448 // current
// target region.
450 seasonResult = sim(sourceArray , scenarioArrays, simMeasure,
ArrayLength, tolerance);
452 sOP("sim () done: " + seasonResult[1][12000]);
// write the results in the ArrayList seasonResultList.
454 seasonResultList .add (seasonCount, seasonResult);
sOP("writing done.");
456 theResult. close () ;
sOP("end similarity measurement ...");
458
// BEGIN DEBUGGING INFORMATION
460 // sOP("seasonResultList.get (seasonCount) [1].length: " +
// seasonResultList.get (seasonCount) [1].length);
462 if (indicatorCount =— 0) {
int temp = seasonCount + 3;
464 climateResult [temp| = seasonResultList.get(seasonCount) [1];
sOP("climateResult slot " + temp);
466 } else if (indicatorCount — 1) {
int temp = seasonCount + 8;
468 climateResult [temp| = seasonResultList.get(seasonCount) [1];
sOP("climateResult slot " + temp);
470 } else {
sOP("indicatorCount error!");
472 }
// END DEBUGGING INFORMATION
474 }
// END SEASON LOOP
476 // BEGIN merge seasons to year
for (int rowCount = 0; rowCount < seasonResultList
478 .get (seasonCountFrom) [0].length; rowCount++) {
// sOP("seasonCountFrom: " + seasonCountFrom);
480 indicatorResult [0] [rowCount| = seasonResultList
. get (seasonCountFrom) [0] [rowCount |; // get FID
482 indicatorResult [1][rowCount] = —999; // reset variable
float seasonSimilarity = 0;
484 for (int seasonCount = seasonCountFrom; seasonCount < seasonCountTo;
seasonCount++) {
// sOP("checking similarity value for seasonCount: " +
486 // seasonCount + " @Q rowCount " + rowCount);
if (indicatorResult [1][rowCount| != 0)
488 if (seasonResultList.get (seasonCount) [1][rowCount| < tolerance) {
indicatorResult [1][rowCount] = 0;
490 } else {
seasonSimilarity = seasonSimilarity
492 + seasonResultList.get (seasonCount) [1][rowCount |;
indicatorResult [1][rowCount] = seasonSimilarity
494 / (seasonCountTo — seasonCountFrom);
196 }
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// sOP("similarity value = " +
// indicatorResult [1][rowCount]) ;
// sOP("indicatorCount: " + indicatorCount);
// BEGIN DEBUGGING INFORMATION
if (indicatorCount = 0) {
// sOP("writing similarity value for indicator " +
// indicatorCount);
climateResult [2][rowCount]| = indicatorResult [1][rowCount |;
indicatorResultList
.add (indicatorCount , indicatorResult);
// SOP("OK") ;
} else if (indicatorCount =— 1) {
// sOP("writing similarity value for indicator
// indicatorCount);
climateResult [7][rowCount| = indicatorResult [1][rowCount |;
indicatorResultList
.add (indicatorCount , indicatorResult);

n +

// SOP("OK");
} else {

sOP("indicatorCount error!");
}
// sOP("climateResult [2][rowCount|: " +

// climateResult [2][rowCount]) ;
// END DEBUGGING INFORMATION
// indicatorResultList.add(indicatorCount, indicatorResult);

// END merge seasons to year.

}

// END INDICATOR. LOOP

// BEGIN combine indicator similarities to climate similarity
sOP("END indicator loop");
sOP("seasonResultList . get (seasonCountFrom) [0].length: "

+ seasonResultList.get (seasonCountFrom) [0].length);

for (int rowCount = 0; rowCount < seasonResultList
.get (seasonCountFrom) [0]. length; rowCount++) {
climateResult [0][rowCount| = indicatorResultList

.get (indicatorCountFrom) [0][rowCount]; // get FID
sOP("StrIndicator: " + StrIndicator);
sOP("indicator: " + indicator);

switch (indicator) {
case ENTIRE CLIMATE:
if (climateResult [2][rowCount] < thtemp
|| climateResult [7][rowCount] < thprec) {

climateResult [1][rowCount]| = 03
} else {
if (climateResult [2][rowCount| < climateResult [7][rowCount]) {
climateResult [1][rowCount| = climateResult [2][rowCount |
+ (climateResult [7][rowCount| — climateResult [2][rowCount])

* (float) indicatorWeight;

} else if (climateResult [2][rowCount] > climateResult [7][rowCount]) {

climateResult [1][rowCount| = climateResult [7]|[rowCount |
+ (climateResult [2][rowCount] — climateResult [7][rowCount])
% (float) (1 — indicatorWeight);
} else if (climateResult[2][rowCount] = climateResult [7][rowCount]) {
climateResult [1][rowCount| = climateResult [2][rowCount |;
} else {
climateResult [1][rowCount] = —999;
}
}
break;
case TEMP:
if (climateResult [2][rowCount| < thtemp) {
climateResult [1]|[rowCount| = 0;
} else {
climateResult [1][rowCount] = climateResult [2][rowCount |;
}
break;
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case PREC:
if (climateResult [7][rowCount| < thprec) {
climateResult [1][rowCount] = 0;
} else {
climateResult [1][rowCount| = climateResult [7]|[rowCount|;
}
break;
}

// END combine indicator similarities to climate similarity
sOP("END construction site");

ArrayList selectedItems = new ArrayList();

int regionCount = 0;

for (int i = 0; i < climateResult[0].length; i++) {
if (climateResult [1][i] > 0) {

selectedItems.add(String.valueOf(climateResult [0][i]));
regionCount++;
DriverManager. println (climateResult [0][1] + "(
+ climateResult [1][i] + ")");
}

}
//

// end similarity function

// sOP(String.valueOf(regionCount));
StringBuffer queryString = new StringBuffer ("");

theStatementPostGIS
.addBatch ("DROP TABLE result map europe_ yogi CASCADE;");

Random rand = new Random() ;
int rand_int = rand.nextInt();
if (rand_int < 0) {

rand int = rand int * —1;
}
sOP("rand_int: " + rand_int);

String createTempTable = ("CREATE TABLE test " + rand int

+ " (FID int4," + " sim float (24),"

+ " tm_total float (24)," + " tm wi float (24),"

+ " tm sp float(24)," + " tm su float (24),"

+ " tm au float (24)," + " rr total float (24),"

+ " rr wi float(24)," + " rr sp float (24),"

+ " rr:su float (24) ," + " rr:au float (24));");
sOP (createTempTable) ;

theStatementPostGIS.addBatch (createTempTable);
sOP("climateResult [0].length: " + climateResult [0].length);
for (int t = 0; t < climateResult[0].length — 1; t++) {

theStatementPostGIS
.addBatch ("INSERT INTO public. test "

rand int -

" (FTD, sim, tm total, tm wi, tm sp, tm su, tm au, rr total, rr
wi, rr sp, rr su, rr au)_ VALUES (" - - - -

climateResult [O][t] + ", "

climateResult [1][t] + ",

climateResult [2][t] + ", "

climateResult [3][t] +

++H++ ++

)
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+ climateResult [4][t] + ", "
638 + climateResult [5][t] + ", "
+ climateResult [6][t] + ", "
640 + climateResult [7][t] + ", "
+ climateResult [8][t] + ", "
642 + climateResult [9][t] + ", "
+ climateResult [10][t] + ", "
644 + climateResult [11][t] + ");");
// sOP("Batch No. "+t+" added!");
646 // sOP("similarity = " + climateResult [1][t]);
// sOP("temperature similarity = " + climateResult [2][t]);
648 // sOP("precipitation similarity = " + climateResult [7][t]);
650 sOP("insert table domne!");
652 if (selectedItems.size () = 0)
sOP("No Match! —> No Result Selection.");
654 queryString.append (" \"input_ fid\"< 0’");
}
656
if (selectedItems.size() = 1) {
658 sOP("selectedItems (0): " 4 (String) selectedItems.get (0));
queryString .append (" \"input fid\"=""
660 + (String) selectedItems.get (0) + "’");
} else {
662 for (int i = 0; i < selectedItems.size(); i++) {
// sOP("selectedItems ("+i+"): " +
664 // (String)selectedItems.get(i));
queryString .append (" \"input fid\"=""
666 + (String) selectedItems. get(i) + "’");
668 if (i < selectedItems.size() — 1) {
queryString .append (" OR ");
670
672 }
674 ArrayList record = new ArrayList();
676 record = executeQuery (theStatementPostGIS, theConnectionPostGIS);
678 theStatementPostGIS. clearBatch () ;
680 String createTable = ("CREATE TABLE result map europe yogi (FID) AS SELECT
a.FID," - -
+ " a.sim, "
682 + " a.tm total ,"
+ " a.tm wi,"
684 + " a.tm sp,"
+ " a.tm su,"
686 + " a.tm au,"
+ " a.rr total,"
688 + " a.rr wi,"
Lo a.rr_sp,"
690 + " a.rr su,"
+ " a.rr au,"
692 + " b.the geom FROM test "
+ rand int + " a INNER JOIN g rot b ON a.FID = b.g rot id;");//
694 String addPrimaryKey = "ALTER TABLE result map europe yogi ADD PRIMARY KEY
(FID) ;" .
696 sOP(createTable) ;
theStatementPostGIS.addBatch(createTable);
698
sOP (addPrimaryKey) ;
700 theStatementPostGIS.addBatch (addPrimaryKey) ;
702 theStatementPostGIS .addBatch ("DROP TABLE point of interest yogi;")
String poiCreateString = "CREATE TABLE point_ of interest yogi (id)
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AS SELECT g rot.g rot id, g rot.the geom FROM g rot WHERE g
_rot.g_rot_id_: "pidty " - - -
sOP("poi: " + poiCreateString);
theStatementPostGIS.addBatch(poiCreateString);

record = executeQuery (theStatementPostGIS, theConnectionPostGIS);

// theResult.close ();

theStatement . close () ;

theStatementPostGIS. close () ;

theConnection. close () ;

sOP ("DATABASE UPDATE DONE (PREC)!") ;
returnMessage = ("#DATABASE UPDATE DONE PREC#") ;

XML Writer xw = new XML Writer () ;
xw.writeXMLValues (String . valueOf(id) ,String.valueOf(thtemp) ,String.
valueOf(thprec),String.valueOf(indicator),
String .valueOf(indicatorWeight) ,String.valueOf(sourcePeriod) ,String.
valueOf (targetPeriod),String.valueOf(season),String.valueOf(
simMeasure) ) ;

} catch (Exception e) {
sOP(e.toString());
returnMessage = e.getLocalizedMessage () ;

}

return returnMessage;

}
// begin sim ()

/s
* calculates r—value. returns int[]|[] columns: [0] FID [1] r—value
v/
public float [][] sim(float|[] xArray, float[][] yArray, int simMeasure,
int ArrayLength, int threshold) { // output: array including id
// and r—value; input: x and y
// array (frequencies),
// similarity measure (pd/rh))
float regionID = 0.0f;
float [| sourceArray = new float|[ArrayLength|;
float [|[] scenarioArrays = new float |[ArrayLength|[33080];
float [|[] climateHitList = new float [2][scenarioArrays[0].length|;

sourceArray = xArray;

scenarioArrays = yArray;

for (int rows = 0; rows < scenarioArrays|[0].length; rows++) {
double sim = 0;
regionID = scenarioArrays|[0][rows];

for (int i = 1; i < ArrayLength; i++) {

float vall = scenarioArrays|i][rows];
float val2 = sourceArray|i];

// set variables

float targetArraysSum = O0;

float sourceArraySum = 0;

float [| scenarioArrayRel = new float|[ArrayLength];
float [| sourceArrayRel = new float|[ArrayLength];
sim = 0;

// calculate sum

for (int k = 1; k < ArrayLength; kt-+) {

targetArraysSum = targetArraysSum + scenarioArrays|k]|[rows];
sourceArraySum = sourceArraySum + sourceArray [k];
// sOP("control sum: " 4 controlArraySum + " scenario sum: "

// + scenarioArraysSum) ;
// calculate relative frequencies
for (int r = 1; r < ArrayLength; r++) {
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scenarioArrayRel[r|] = 100 * scenarioArrays|r|[rows]

/ targetArraysSum;
sourceArrayRel[r] = 100 * sourceArray|[r] / sourceArraySum;
// sOP(scenarioArrayRel[r]| + "," 4+ controlArrayRel[r]);

switch (simMeasure) {
case PD:
// Proportional Similarity
if (scenarioArrayRel[r] < sourceArrayRel[r]) {

sim = sim + scenarioArrayRel[r];
} else {
sim = sim + sourceArrayRel[r];
}
break;
case RH:
// Hellinger Coefficient
sim = Math
.sqrt (scenarioArrayRel[r] * sourceArrayRel[r])
+ sim;
}
}
}
// sOP("PD: " + sim);
// climateHitList [1][rows]| = sim;
// sOP("relative frequency: " + scenarioArrayRel);
climateHitList [0][rows] = (Integer.valueOf((int) regionID))

.intValue () ;
if (sim >= threshold) {
climateHitList [1][rows] = (float) sim;
} else {
climateHitList [1][rows]| = 0;
}

}

float result [|[] = climateHitList;
return result;

}
// end sim ()

public static ArrayList executeQuery(Statement stmt, Connection conn) {
// Connection theConnection;
ArrayList result = new ArrayList();

try {

stmt . executeBatch () ;
int [] updateCounts = stmt.executeBatch () ;
sOP ("updateCounts: " + updateCounts.length);

// sOP(stmt.executeBatch());

conn . commit () ;
result.add(0, "OK!");

} catch (SQLException e) {
// procees to the next exception
e = e.getNextException () ;
e.printStackTrace () ;
result.add (0, "Failed!");
return result;

}

return result;

}

private static void sOP(String text) {
if (errorLevel — 1) {
System.out.println (text);
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/s

* @param args

*/

public static void main(String []

// TODO Auto—generated method stub

final
final
final

final
final
final
final
final
final
final
final
final
final
final
final
final
final

final
final
final
final
final

final

final

int
int
int

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

int

ENTIRE _CLIMATE = 0;
TEMP = 1;
PREC = 2;

f1961t1970 =
f1971t1980 =
f1981t1990 =
£f1991t2000 =
f2001t2010 =
£2011t2020 =
£2021t2030 =
£2031t2040 =
f2041t2050 =
f2051t2060 =
f2061t2070 = 10;
f2071t2080 = 11;
f2081t2090 = 12;
£2091t2100 = 13;

© 00O Ui W~ O

ENTIRE YEAR = 0;
WINTER = 1;
SPRING = 2;
SUMMER = 3;
AUTUMN = 4;
PD = 0;

RH = 1;

args) {

ClimateConnector cp = new ClimateConnector () ;

cp.executeDQuery (181119, 80, 90, TEMP, 0.5,

SUMMER, PD) ;

f2001t2010 ,

f2001t2010 ,
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