DIPLOMARBEIT

Titel der Diplomarbeit

Differential Operators on Manifolds

angestrebter akademischer Grad
Magister der Naturwissenschaften (Mag.rer.nat.)

Verfasser: Simon Rößler
Matrikelnummer: 0505903
Studienrichtung: A 405 Mathematik
Betreuer:
a.o. Prof. Dr. MMag. Michael Kunzinger

Abstract

In chapter 1 we give an overview of results from Differential Geometry, Distribution Theory, Functional Analyis and Measure Theory. Chapter 2 is dedicated to the algebraic definition of PDOs. We consider local operators, the principal symbol, elliptic operators and formal adjoints. In chapter 3 we introduce L^{2} and Sobolev spaces of sections and analytical realizations. We prove the Sobolev embedding theorem, Young inequality, Interpolation inequalities for Sobolev norms, elliptic estimates, elliptic regularity theorem, Weyl's Lemma, Rellich's Theorem, Poincaré inequality and finally the Spectral Theorem for selfadjoint elliptic operators. We use the Spectral Theorem to define the Functional Calculus. Finally we consider two applications to partial differential equations in chapter 4.

Zusammenfassung

In Kapitel 1 geben wir einen Überblick über Ergebnisse aus Differentialgeometrie, Distributionentheorie, Funktionalanalyis und Maßtheorie. Kapitel 2 ist der algebraischen Definition der PDOs gewidmet. Wir betrachten lokale Operatoren, das Hauptsymbol, elliptische Operatoren und formale Adjungierte. In Kapitel 3 führen wir L^{2} - und Sobolev Schnitt-Räume und analytische Realisierungen ein. Wir beweisen das Sobolev Einbettungs Theorem, die Young Ungleichung, Interpolations Ungleichungen für Sobolevnormen, elliptische Abschätzungen, das elliptische Regularitätstheorem, Weyls Lemma, Rellichs Theorem, die Poincaré Ungleichung and schließlich das Spektraltheorem für selbstadjungierte elliptische Operatoren. Wir benutzen das Spektraltheorem um den Funktionalkalkül zu definieren. Abschließend betrachten wir zwei Anwendungen auf partielle Differentialgleichungen in Kapitel 4.

Acknowledgement

I want to thank my supervisor Michael Kunzinger for introducing me to differential geometry, giving me the opportunity to write my diploma thesis in the interesting field of global analysis and for all the helpful hints and comments. Also, I want to thank Shantanu Dave, who gave me the first introduction to spectral theory of unbounded operators, and Roland Steinbauer for their comments and help. I want to thank Günther Hörmann and Hermann Schichl, who were one of the reasons for studying mathematics, by showing me the beauty of academic mathematics.

Great thanks to my parents Johanna and Kurt Rößler for backing up my interests and supporting me in every way. Especially I want to thank them and my grandparents Anna and Franz Rößler for their financial support, without which it would have been impossible for me to study, given the (anti-)educational politics in Austria.

Special thanks go to my girlfriend Tamara Rechberger for her emotional support and her patience with me while doing this work.

Contents

Abstract 3
Zusammenfassung 3
Acknowledgement 5
0 Introduction 9
1 Prerequisites 11
1.1 Measure Theory 11
1.2 Differential Geometry 13
1.3 Distribution Theory 20
1.4 Functional Analysis 23
2 PDOs on Manifolds 27
2.1 Differential/Local Operators 27
2.2 The Principal Symbol 37
2.3 Formal Adjoints 43
3 Spectral Theory for elliptic Operators 51
3.1 Analytical Realizations 51
3.2 Elliptic Operators 63
3.3 The Spectral Theorem 77
3.4 The Functional Calculus 83
4 Applications 87
4.1 The Heat Equation 87
4.2 The Wave Equation 90
Bibliography 93
Notation 95
Index 99
Curriculum Vitae 101

Chapter 0

Introduction

The theory of differential equations and the corresponding differential operators is a huge field of science. Since Isaac Newton (1643-1727) and Gottfried Wilhelm Leibniz (1646-1716) introduced the theory of calculus in the $17^{\text {th }}$ century, legions of mathematicians aim to examine and solve differential equations. The first who introduced differential operators (but not in their full meaning) was Joseph Fourier (1768-1830) in his Théorie de la Chaleur. ${ }^{1}$ The real advantage of the concept of differential operators became evident just around 1900 with the introduction of Functional Analysis.

Many differential equations and their associated initial/boundary value problems call for non-euclidean spaces (smooth manifolds). Nonetheless most of PDO Theory in the mathematical literature is done on \mathbb{R}^{n} for the sake of simplicity. In many cases this approach is sufficient, since differentiation is a local concept. But there are questions which can not be answered directly from the Euclidean case. In addition a definition which has a clear global meaning is important in itself.

The aim of this thesis is to give a precise introduction to differential operators on manifolds. We cover the main concepts of the smooth theory and Spectral Theory and discuss some applications.

Since this topic is intertwined with different mathematical areas we summarize the necessary results from Differential Geometry, Distribution Theory, Functional Analysis and Measure Theory in chapter 1.

In chapter 2 we introduce a purely algebraic approach to differential operators on manifolds. This definition is chart independent. We observe the equivalence of local operators, differential operators and their local representations. Afterwards we define the principal symbol and elliptic operators, which will get very important in chapter 3. The last part of chapter 2 is dedicated to the concept of formal adjoints.

In chapter 3 we generalize PDOs by their analytical realizations and use the concepts from chapter 2 to prove the Spectral Theorem. We introduce the Functional Calculus, which provides an existence and uniqueness result for initial value problems on smooth manifolds with elliptic differential operators in the "space direction". This is a strong result since existence and uniqueness theorems for partial differential equations are rather sophisticated.

[^0]We conclude this work with applications to the generalized heat equation and the generalized wave equation in chapter 4 .

Chapter 1

Prerequisites

In this chapter we will briefly summarize a few concepts from differential geometry, functional analysis, measure theory and the theory of distributions, which will be used throughout the whole thesis. Readers who are familiar with these topics can easily jump to chapter 2 for the main topic. The intention behind the summary is primarily to allow a wider branch of readers to follow the text and secondarily to make clear which versions of definitions and theorems are used (if there exist more than one).

1.1 Measure Theory

The basic notions σ-Algebra, measure, measure space and measureable function will be listed. Then we define the integral of measureable functions, L^{p}-spaces and state the Hölder inequality.
1.1.1 Definition: Let X be a set. A family of subsets $\mathcal{A} \subseteq \mathcal{P}(X)$ is called σ-Algebra on X, if
(A1) $X \in \mathcal{A}$
(A2) $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}$
(A3) $A_{n} \in \mathcal{A}(n \in \mathbb{N}) \Rightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$
1.1.2 Definition: Let (X, \mathcal{T}) be a topological space. The Borel- σ-Algebra \mathcal{B}_{X} is defined as the smallest σ-Algebra on X which contains the topology \mathcal{T}.
1.1.3 Definition: Let X be a set and \mathcal{A} a σ-Algebra on X. A map $\mu: \mathcal{A} \rightarrow$ $[0, \infty]$ is called measure on (X, \mathcal{A}), if
$(\mathrm{M} 1) \quad \mu(\emptyset)=0$
(M2) $A_{n}(n \in \mathbb{N})$ pairwise disjoint $\Rightarrow \mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n=0}^{\infty} \mu\left(A_{n}\right)$
In this case (X, \mathcal{A}, μ) is called measure space.
1.1.4 Definition: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. $f: X \rightarrow Y$ is called \mathcal{A} - \mathcal{B}-measureable, if $f^{-1} \mathcal{B} \subseteq \mathcal{A}$. A map $f: X \rightarrow\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ is called Borel-measureable if f is $A-\mathcal{B}_{\mathbb{R}}$-measureble.
1.1.5 Definition: Let (X, \mathcal{A}, μ) be a measure space and $f: X \rightarrow \mathbb{R}$ Borelmeasureable. Let f_{n} be a step function $\left(f_{n}=\sum_{i=1}^{k} \alpha_{i} \cdot 1_{A_{i}}, \alpha_{i} \in \mathbb{R}\right)$, then the integral over f_{n} is defined as

$$
\int_{X} f_{n} d \mu:=\sum_{i=1}^{k} \alpha_{i} \cdot \mu\left(A_{i}\right)
$$

The (Lebesgue)-integral of f is defined as

$$
\int_{X} f d \mu:=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

where $\left(f_{n}\right)$ is a sequence of step functions which converges to f pointwise. ${ }^{1}$
1.1.6 Definition: Let (X, \mathcal{A}, μ) be a measure space. A property is true almost everywhere (a.e.), if the set $A \in \mathcal{A}$ on which the property is false has measure zero, i.e. $\mu(A)=0$.
1.1.7 Definition: Let (X, \mathcal{A}, μ) be a measure space and $p \in[1, \infty[$. The space of L^{p}-functions on X is defined as

$$
L^{p}(X):=\left\{f: X \rightarrow \mathbb{R} \mid f \text { is Borel-measureable and } \int_{X}|f|^{p} d \mu<\infty\right\} / \mathcal{N}
$$

where $\mathcal{N}:=\{f: X \rightarrow \mathbb{R} \mid f$ is Borel-measureable and $f=0$ a.e. $\} .{ }^{2}$

$$
\|f\|_{L^{p}}:=\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}
$$

is called the p-norm of f. The space of L^{∞}-functions on X is defined as

$$
L^{\infty}(X):=\{f: X \rightarrow \mathbb{R} \mid f \text { is Borel-measureable and }|f|<\infty \text { a.e. }\} / \mathcal{N}
$$

with norm

$$
\|f\|_{L^{\infty}}:=\operatorname{essup}_{X}(|f|):=\inf _{A \in \mathcal{A}, \mu(A)=0}\left(\sup _{X \backslash A}(|f|)\right)
$$

1.1.8 Remark (Hölder inequality): Let $p, q \in] 1, \infty\left[\right.$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then ${ }^{3}$:

$$
\|f \cdot g\|_{L^{1}} \leq\|f\|_{L^{p}} \cdot\|g\|_{L^{q}}
$$

[^1]
1.2 Differential Geometry

To define PDOs on manifolds we first need to introduce some basic terminology and results on manifolds and vector bundles. Thereafter we will consider tensors and Riemannian manifolds.
1.2.1 Definition: Let M be a set. A $\operatorname{chart}(\psi, U)$ of M is a bijective map $\psi: M \supseteq U \rightarrow V$, where V is an open subset of \mathbb{R}^{n}. Two Charts $\left(\psi_{1}, U_{1}\right)$ and $\left(\psi_{2}, U_{2}\right)$ are called compatible if $\psi_{1} \circ \psi_{2}^{-1}: \psi_{2}\left(U_{1} \cap U_{2}\right) \rightarrow \psi_{1}\left(U_{1} \cap U_{2}\right)$ (and therefore $\psi_{2} \circ \psi_{1}^{-1}: \psi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \psi_{2}\left(U_{1} \cap U_{2}\right)$) is a diffeomorphism of open subsets of \mathbb{R}^{n}. An C^{∞}-atlas of M is a family $\left\{\left(\psi_{\alpha}, U_{\alpha}\right) \mid \alpha \in A\right\}$ of pairwise compatible charts, such that $M=\bigcup_{\alpha \in A} U_{\alpha}$. Two atlasses \mathcal{A}_{1} and \mathcal{A}_{2} are called equivalent if one (and hence every) chart of \mathcal{A}_{1} is compatible with one (and hence every) chart of \mathcal{A}_{2}. An equivalence class of atlasses of M is called a smooth structure on M. An atlas \mathcal{A} is called maximal if every atlas \mathcal{A}^{\prime} compatible to \mathcal{A} is a subset of \mathcal{A}.
1.2.2 Definition: A (smooth) manifold ($C^{\infty}{ }_{-} m f$) is a second countable Hausdorff space M, together with a smooth structure on M.
1.2.3 Remark: Every open subset of a smooth manifold is a smooth manifold.
1.2.4 Remark: Let M be a manifold, $\psi: U \rightarrow V \subseteq \mathbb{R}^{n}$ a chart of M and $W \subseteq V$, such that $\psi(W)$ is open in \mathbb{R}^{n}. Then $\left(\left.\psi\right|_{W}, \bar{W}\right)$ is also a chart of $M .{ }^{4}$
1.2.5 Definition: Let M, N be smooth manifolds, $\psi_{1}: U_{1} \rightarrow V_{1} \subseteq \mathbb{R}^{m}$ and $\psi_{2}: U_{2} \rightarrow V_{2} \subseteq \mathbb{R}^{n}$ chart maps of M at p resp. N at $f(p)$. A map $f: M \rightarrow N$ is called smooth if $\psi_{2} \circ f \circ \psi_{1}^{-1}: V_{1} \rightarrow V_{2}$ is smooth.
1.2.6 Remark: Let M be a C^{∞}-mf and $\mathcal{A}=\left\{\left(\psi_{\alpha}, U_{\alpha}\right) \mid \alpha \in A\right\}$ a maximal atlas of M . Then $\mathcal{B}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ is the basis of a topology on $M .{ }^{5}$
1.2.7 Definition: Let X be a topological space. A family of sets $\left\{V_{\alpha} \subseteq X \mid\right.$ $\alpha \in A\}$ is called locally finite if $\quad \forall p \in M \quad \exists$ a neighborhood U of p, such that $\left\{\alpha \in A \mid V_{\alpha} \cap U \neq \emptyset\right\}$ is finite.
1.2.8 Definition: Let M be a $C^{\infty}-\mathrm{mf}, \mathcal{U}$ an open covering of M . A partition of unity subordinate to \mathcal{U} is a family of smooth functions $\left\{\chi_{\alpha}: M \rightarrow[0,1] \mid \alpha \in A\right\}$ with the following properties:
(i) $\left\{\operatorname{supp}\left(\chi_{\alpha}\right) \mid \alpha \in A\right\}$ is locally finite
(ii) $\forall \alpha \in A \quad \exists U \in \mathcal{U}$ with $\operatorname{supp}\left(\chi_{\alpha}\right) \subseteq U$

[^2](iii) $\forall p \in M, \sum_{\alpha} \chi_{\alpha}=1$
1.2.9 Remark (Properties of $\boldsymbol{C}^{\infty}-\mathrm{mfs}^{6}$): Let M be a $C^{\infty}-\mathrm{mf}$. Then:
(i) For each open cover \mathcal{U} of M there exists a partition of unity subordinate to \mathcal{U}. It is even possible to choose the same index set for cover and partition of unity, i.e. if $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ we can have a partition of unity $\left\{\chi_{\alpha} \mid \alpha \in A\right\}$ with $\operatorname{supp}\left(\chi_{\alpha}\right) \subset U_{\alpha} \forall \alpha \in A$.
(ii) M is locally compact
1.2.10 Definition: Let M be a manifold, $p \in M$ and $\psi: U \rightarrow V \subseteq \mathbb{R}^{n}$ a chart around p. The dimension of a manifold M at p is defined as $\left.\operatorname{dim}(M)\right|_{p}:=n$ (V is open in \mathbb{R}^{n}). If $\left.\operatorname{dim}(M)\right|_{p}=\left.\operatorname{dim}(M)\right|_{q}$ for all $p, q \in M$ we define the dimension of the manifold M as $\operatorname{dim}(M)=\left.\operatorname{dim}(M)\right|_{p}$.
1.2.11 Remark: Let M be a manifold. $\left.\operatorname{dim}(M)\right|_{p}$ is well defined, because $\psi_{1} \circ \psi_{2}^{-1}$ is a diffeomorphism, for two charts $\left(\psi_{1}, U_{1}\right) \in \mathcal{A}_{1},\left(\psi_{2}, U_{2}\right) \in \mathcal{A}_{2}$, where \mathcal{A}_{1} and \mathcal{A}_{2} are atlasses in the smooth structure of M . A chart around a point $p \in M$ is also a chart for nearby points, so $\left.p \mapsto \operatorname{dim}(M)\right|_{p}$ is locally constant. Thus the dimension of a connected manifold is constant. Furthermore we will only consider manifolds with constant dimension.
1.2.12 Definition: Let M be a $C^{\infty}-\mathrm{mf}, p \in M$ and (ψ, U) a chart at p . The tangent space of M at p is defined as
$$
T_{p} M:=\left\{[c]_{p} \mid c: I \rightarrow M \quad C^{\infty}, \quad c(0)=p\right\}
$$
where $\left[c_{1}\right]_{p}=\left[c_{2}\right]_{p}$ if $\left(\psi \circ c_{1}\right)^{\prime}=\left(\psi \circ c_{2}\right)^{\prime}$ and $c_{1}(0)=p=c_{2}(0) .{ }^{7}$
1.2.13 Remark: $T_{p} M$ is an \mathbb{R}-vector space.
1.2.14 Definition: Let M, N be $C^{\infty}{ }_{-m f s}, p \in M, f: M \rightarrow N C^{\infty}$. The tangent map of f at p is defined as
$$
T_{p} f: T_{p} M \rightarrow T_{f(p)} N, \quad T_{p} f=[c]_{p} \mapsto[f \circ c]_{f(p)}
$$
1.2.15 Remark (chain rule ${ }^{8}$): Let M, N, P be $C^{\infty}-\mathrm{mfs}, p \in M, f: M \rightarrow$ $N, g: N \rightarrow P \quad C^{\infty}$. Then
\[

$$
\begin{equation*}
T_{p}(g \circ f)=T_{f(p)} g \circ T_{p} f \tag{1.1}
\end{equation*}
$$

\]

1.2.16 Definition: $T M:=\bigcup_{p \in M}\left(\{p\} \times T_{p} M\right)$ is called tangent space of M. $T f: T M \rightarrow T N, \quad T f(p, v):=\left(f(p), T_{p} f(v)\right)$ is called tangent map of $f: M \rightarrow$ N.

[^3]1.2.17 Definition: Let E and B be $C^{\infty}-\mathrm{mfs}$ and $\pi: E \rightarrow B$ a smooth surjection. (E, B, π) is called ($\mathbb{K}-$) vector bundle if $\quad \forall b \in B$:
(i) $E_{b}:=\pi^{-1}(b)$, the fibre over b , is a $(\mathbb{K}-)$ vector space.
(ii) \exists an open neighborhood $U^{(b)}$ of b in B and a fiberwise ($\mathbb{K}-$)linear diffeomorphism $\Phi: \pi^{-1}\left(U^{(b)}\right) \rightarrow U^{(b)} \times F$ (where F is a ($\mathbb{K}-$)vector space), such that $\pi=p r_{1} \circ \Phi$

We may identify B with the subset $\phi^{-1}\left(U^{(b)}\right)$ of E. A vector bundle is called trivial if $\quad \forall b \in B \quad U^{(b)}=B$ is possible.
1.2.18 Definition: Let (E, B, π) be a \mathbb{K}-vector bundle. A vector bundle chart is a fiberwise \mathbb{K}-linear diffeomorphism $\psi: E \supseteq U \rightarrow V \times \mathbb{K}^{q}(q \in \mathbb{N})$ such that V is an open subset of \mathbb{R}^{n}. Clearly $\left.\operatorname{pr}_{1} \circ \psi\right|_{\pi(U)}: \pi(U) \rightarrow V$ is a chart map for B.
1.2.19 Definition: Let (E, B, π) be a vector bundle. A smooth map $X: B \rightarrow$ E is called smooth section of (E, B, π) if $\pi \circ X=i d_{B}$. The space of smooth sections of (E, B, π) is denoted by $\Gamma^{\infty}(E)$.
1.2.20 Remark: Let M be a $C^{\infty}-\mathrm{mf}$ and $\pi: T M \rightarrow M, \pi(p, v):=p$. Then $(T M, M, \pi)$ is a vector bundle. $\mathfrak{X}(M):=\Gamma^{\infty}(T M)$
1.2.21 Definition: An \mathbb{R}-linear map $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is called derivation of $C^{\infty}(M)$, if the following equation holds:

$$
D(f \cdot g)=D(f) \cdot g+f \cdot D(g) \quad \forall f, g \in C^{\infty}(M)
$$

The space of derivations of $C^{\infty}(M)$ is called $\operatorname{Der}\left(C^{\infty}(M)\right)$.
1.2.22 Remark: $\operatorname{Der}\left(C^{\infty}(M)\right) \cong \mathfrak{X}(M)$ as $C^{\infty}(M)$-modules. ${ }^{9}$
1.2.23 Definition: Let V be a finite dimensional \mathbb{K}-vector space ($\mathbb{K}=\mathbb{R}$, $\mathbb{C}) . T_{s}^{r} V:=L^{r+s}(\overbrace{V^{*} \times \cdots \times V^{*}}^{r \text { times }} \times \overbrace{V \times \cdots \times V}^{s \text { times }} ; \mathbb{K})$ is called the space of (r, s) tensors over V. The tensor product of $t_{1} \in T_{r_{1}}^{s_{1}} V$ and $t_{2} \in T_{r_{2}}^{s_{2}} V$ is the tensor $t_{1} \otimes t_{2} \in T_{r_{1}+r_{2}}^{s_{1}+s_{2}} V$ defined by

$$
\begin{aligned}
& t_{1} \otimes t_{2}\left(\alpha^{1}, \ldots, \alpha^{r_{1}}, \beta^{1}, \ldots, \beta^{r_{2}}, v_{1}, \ldots, v_{s_{1}}, w_{1}, \ldots, w_{s_{2}}\right):= \\
& =t_{1}\left(\alpha^{1}, \ldots, \alpha^{r_{1}}, v_{1}, \ldots, v_{s_{1}}\right) \cdot t_{2}\left(\beta^{1}, \ldots, \beta^{r_{2}}, w_{1}, \ldots, w_{s_{2}}\right) \\
& \forall \alpha^{i}, \beta^{j} \in V^{*} \quad \forall v_{k}, w_{l} \in V
\end{aligned}
$$

[^4]1.2.24 Definition: Let (E, B, π) be a vector bundle. $T_{s}^{r} E:=\bigcup_{b \in B}(\{b\} \times$ $T_{s}^{r} E_{b}$) is called the (r, s)-tensor bundle over E. Let M be a $C^{\infty}-\mathrm{mf}$. Then $T_{s}^{r} M:=T_{s}^{r}(T M)$.
1.2.25 Definition: Let M be a C^{∞}-mf, $f \in C^{\infty}(M) . d f: M \rightarrow T M^{*}:=$ $T_{1}^{0} M, \quad d f:=p \mapsto T_{p} f$ is called exterior derivative of f.
1.2.26 Remark: Let M be a C^{∞}-mf, $f \in C^{\infty}(M), X \in \mathfrak{X}(M)$. Then ${ }^{10}$:
\[

$$
\begin{equation*}
d f(X)(p):=d f(p)(X(p))=T_{p} f(X(p)) \cong X(f)(p) \quad \forall p \in M \tag{1.2}
\end{equation*}
$$

\]

1.2.27 Definition: Let M be a $C^{\infty}{ }_{-m f}$. Elements of $\mathcal{T}_{s}^{r} M:=\Gamma^{\infty}\left(T_{s}^{r} M\right)$ are called (r, s)-tensor fields.
1.2.28 Definition: Let M and N be smooth manifolds, $F: M \rightarrow N$ a smooth map and $\omega \in \mathcal{T}_{s}^{0} N$. The pullback $F^{*} \omega$ of ω under F is defined by

$$
F^{*} \omega(p)\left(X_{1}, \ldots, X_{s}\right):=\omega(F(p))\left(T_{p} F\left(X_{1}\right), \ldots, T_{p} F\left(X_{s}\right)\right)
$$

where $X_{1}, \ldots, X_{s} \in T_{p} M$. If F is a diffeomorphism we define the push-forward of $\mu \in \mathcal{T}_{s}^{0} M$ under F by

$$
F_{*} \mu:=\left(F^{-1}\right)^{*} \mu
$$

1.2.29 Definition: Let V be a finite dimensional \mathbb{K}-vector space $(\mathbb{K}=\mathbb{R}, \mathbb{C})$. $\Lambda^{k} V^{*}:=L_{a l t}^{k}\left(V^{k} ; \mathbb{K}\right)$ is the space of alternating multilinear maps from V^{k} to \mathbb{K}.
1.2.30 Remark: The alternator Alt: $T_{k}^{0} V \rightarrow T_{k}^{0} V$,

$$
\operatorname{Alt}(t)\left(v_{1}, \ldots, v_{k}\right):=\frac{1}{k!} \cdot \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \cdot t\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

is a linear projection from $T_{k}^{0} V$ onto $\Lambda^{k} V^{*} .{ }^{11}$
1.2.31 Definition: Let $\alpha \in T_{k}^{0} V, \beta \in T_{l}^{0} V$. The exterior product (or wedge product) of α and β is defined as

$$
\begin{equation*}
\alpha \wedge \beta:=\frac{(k+l)!}{k!\cdot l!} \cdot \operatorname{Alt}(\alpha \otimes \beta) \tag{1.3}
\end{equation*}
$$

1.2.32 Definition: Let $\omega \in \Lambda^{k} V^{*}$ and $v \in V$. We define the interior product by $v, i_{v}: \Lambda^{k} V^{*} \rightarrow \Lambda^{k-1} V^{*}$ on monomials by

$$
\begin{equation*}
i_{v}\left(\omega_{1} \wedge \cdots \wedge \omega_{k}\right)=\sum_{i=1}^{k}(-1)^{i+1} \omega_{i}(v) \cdot \omega_{1} \wedge \cdots \wedge \widehat{\omega}_{i} \wedge \cdots \wedge \omega_{k} \tag{1.4}
\end{equation*}
$$

[^5]where $\widehat{\omega}_{i}$ means that ω_{i} is missing.
1.2.33 Definition: Let (E, B, π) be a vector bundle.
$$
\Lambda^{k} E:=\bigcup_{b \in B}\left(\{b\} \times \Lambda^{k} E_{b}\right)
$$

Let M be a smooth manifold. We set $\Lambda^{k} M:=\Lambda^{k}\left(T M^{*}\right)$ and call elements of $\Omega^{k}(M):=\Gamma^{\infty}\left(\Lambda^{k} M\right) k$-forms on M .
1.2.34 Remark (The exterior derivative ${ }^{12}$): Let M be a smooth manifold. For every open subset U of M, there exists a unique family of maps $d:=d^{k}(U): \Omega^{k}(U) \rightarrow \Omega^{k+1}(U)$, the exterior derivative on U, such that:
(i) d is \mathbb{R}-linear and

$$
\begin{equation*}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta \quad \forall \alpha \in \Omega^{k}(U), \beta \in \Omega^{l}(U) \tag{1.5}
\end{equation*}
$$

(ii) For $f \in \Omega^{0}(U)=C^{\infty}(U)$, $d f$ is the exterior derivative from 1.2.25
(iii) $d \circ d=0$
(iv) For $U \subseteq V, U, V$ open in $M, \quad d^{k}(U)=\left.d^{k}(V)\right|_{\Omega^{k}(U)}$
1.2.35 Definition: Let (E, M, π) be a \mathbb{K}-vector bundle $(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$. A (linear) connection on E is a \mathbb{K}-linear map $\nabla: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}\left(T M^{*} \otimes E\right)$, such that

$$
\begin{equation*}
\nabla(f \cdot u)=d f \otimes u+f \cdot \nabla(u) \quad \forall u \in \Gamma^{\infty}(E), \quad f \in C^{\infty}(M) \tag{1.6}
\end{equation*}
$$

Let $\nabla u=\omega \otimes v \in \Gamma^{\infty}\left(T M^{*} \otimes E\right)$. The covariant derivative of u by X is defined as $\nabla_{X} u:=\omega(X) \cdot v \in \Gamma^{\infty}(E)$.
1.2.36 Definition: Let M be a smooth manifold. A tensor field $g \in \mathcal{T}_{2}^{0} M$ is called metric (tensor), if $\forall p \in M: g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a non degenerate, symmetric bilinearform. A smooth manifold equipped with a metric tensor is called Semi-Riemannian manifold. If in addition g_{p} is positive definite in every point p, we call (M, g) a Riemannian manifold and g a Riemannian metric.
1.2.37 Definition: Let $X, Y \in \mathfrak{X}(M)$. The Lie bracket $[X, Y]$ is defined as

$$
[X, Y](f):=X(Y(f))-Y(X(f)) \quad \forall f \in C^{\infty}(M)
$$

1.2.38 Remark: Let (M, g) be a Semi-Riemannian manifold. There exists a unique connection ${ }^{13}$ on $T M$, named Levi-Civita connection which satisfies

[^6](i) $[X, Y]=\nabla_{X} Y-\nabla_{Y} X \quad \forall X, Y \in \mathfrak{X}(M)$
(ii) $Z(g(X, Y))=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y\right) \quad \forall X, Y, Z \in \mathfrak{X}(M)$
1.2.39 Definition: Let $\mathcal{A}=\left\{\left(\psi_{\alpha}, V_{\alpha}\right) \mid \alpha \in A\right\}$ be an atlas for the manifold M. \mathcal{A} is called oriented atlas if $\operatorname{det} D\left(\psi_{\alpha} \circ \psi_{\beta}^{-1}\right)>0 \quad \forall \alpha, \beta$ with $V_{\alpha} \cap V_{\beta} \neq 0$. A manifold together with an oriented atlas is called oriented manifold.
1.2.40 Definition: Let M be an n-dimensional oriented smooth manifold, $\mathcal{A}=$ $\left\{\left(\psi_{\alpha}, V_{\alpha}\right) \mid \alpha \in A\right\}$ the corresponding oriented atlas and $\left\{\chi_{\alpha} \mid \alpha \in A\right\}$ a partition of unity subordinate to $\left\{V_{\alpha} \mid \alpha \in A\right\}$. The integral ${ }^{14}$ of $\omega \in \Omega_{c}^{n}(M)=\{\omega \in$ $\Omega^{n}(M) \mid \operatorname{supp}(\omega)$ compact $\}$ is defined by
$$
\int_{M} \omega:=\sum_{\alpha \in A} \int_{\psi_{\alpha}\left(V_{\alpha}\right)} \psi_{\alpha *}\left(\chi_{\alpha} \cdot \omega\right)
$$
1.2.41 Definition: A manifold with boundary is defined in the same way as an ordinary manifold, but demanding that charts are bijective maps onto (relatively) open subsets in $H^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \leq 0\right\}$ instead of open subsets in \mathbb{R}^{n} like in 1.2.1.
1.2.42 Remark (Stokes' theorem ${ }^{15}$): Let M be an oriented n-dimensional manifold with boundary, $\omega \in \Omega^{n-1}(M)$ and $\iota: \partial M \rightarrow M$ the canonical inclusion. Then:
\[

$$
\begin{equation*}
\int_{\partial M} \iota^{*} \omega=\int_{M} d \omega \tag{1.7}
\end{equation*}
$$

\]

1.2.43 Definition: Let M be an n-dimensional manifold. An $\omega \in \Omega^{n}(M)$ with $\omega(p) \neq 0 \quad \forall p \in M$ is called volume form .
1.2.44 Remark: If (M, g) is an n-dimensional oriented Riemannian manifold there exists a canonical volume form, called the metric volume $d V_{g}$ on M. In addition we have an isomorphism $*$ from $\Omega^{k}(M)$ to $\Omega^{n-k}(M)$, the Hodge ${ }^{*}$ Operator, uniquely defined by

$$
\begin{equation*}
\alpha \wedge * \beta:=g_{k}(\alpha, \beta) \cdot d V_{g} \quad \forall \alpha, \beta \in \Omega^{k}(M) \tag{1.8}
\end{equation*}
$$

where the metric $g_{k}: \Omega^{k}(M) \times \Omega^{k}(M) \rightarrow C^{\infty}(M)$ is defined on monomials by

$$
\begin{align*}
g_{k}\left(\alpha_{1} \wedge \cdots \wedge \alpha_{k}, \beta_{1} \wedge \cdots \wedge \beta_{k}\right): & =\operatorname{det}\left(\left(g\left(\alpha_{i}^{*}, \beta_{j}^{*}\right)\right)_{1 \leq i, j \leq k}\right)= \\
& =\operatorname{det}\left(\left(\alpha_{i}\left(\beta_{j}^{*}\right)\right)_{1 \leq i, j \leq k}\right) \tag{1.9}
\end{align*}
$$

where α_{i}^{*} denotes the vector field equivalent to α_{i}, given by $\alpha_{i}=g\left(\alpha_{i}^{*},.\right)$ and analogous for $\beta_{j} .{ }^{16}$

[^7]1.2.45 Remark: Let (M, g) be an n-dimensional oriented Riemannian manifold, (ϕ, U) a chart and $f \in C^{\infty}(M)$ with $\operatorname{supp}(f) \subseteq U$. Then ${ }^{17}$
$$
\int_{U} f d V_{g}=\int_{\phi(U)} \phi_{*} f \cdot \sqrt{\left|\operatorname{det}\left(g\left(X_{i}, X_{j}\right)\right)\right|} \circ \phi^{-1} d x
$$
where $X_{i}:=\left(T_{p} \phi\right)^{-1}\left(e_{i}\right)\left(\left\{e_{i} \mid 1 \leq i \leq n\right.\right.$ is the standard basis of $\left.\mathbb{R}^{n}\right)$.
1.2.46 Definition: Let (M, g) be an n-dimensional Semi-Riemannian manifold and U an open subset of M. A selection of vectorfields $v_{1}, \ldots, v_{n} \in \mathfrak{X}(U)$ is called frame on U, if $\left\{v_{1}(p), \ldots, v_{n}(p)\right\}$ is an orthonormal basis of $T_{p} M$ for every point $p \in U .{ }^{18}$
1.2.47 Remark: Let (M, g) be an oriented Riemannian manifold, $\left\{v_{1}, \ldots, v_{n}\right\}$ a local frame, $v_{i}^{*}:=g\left(v_{i},.\right)$ the dual 1-form to $v_{i}(1 \leq i \leq n)$ and $\sigma \in \Sigma_{n}$ a permutation. Then ${ }^{19}$:
\[

$$
\begin{equation*}
\left(v_{\sigma(1)}^{} \wedge \cdots \wedge v_{\sigma(k)}^{*}\right)=\operatorname{sgn}(\sigma) \cdot v_{\sigma(k+1)}^{*} \wedge \cdots \wedge v_{\sigma(n)}^{*} \tag{1.10}
\end{equation*}
$$

\]

1.2.48 Corollary: The inverse of $*: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$ is given by

$$
\begin{equation*}
*^{-1}=(-1)^{k(n-k)} * \tag{1.11}
\end{equation*}
$$

Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a local frame. $*$ is linear, so it suffices to prove the assumption for the basis vectors $v_{\sigma(1)}^{*} \wedge \cdots \wedge v_{\sigma(k)}^{*}$ of $\Omega^{k}(M)$.

$$
\begin{align*}
* *\left(v_{\sigma(1)}^{*} \wedge \cdots \wedge v_{\sigma(k)}^{*}\right) & =*\left(\operatorname{sgn}(\sigma) \cdot v_{\sigma(k+1)}^{*} \wedge \cdots \wedge v_{\sigma(n)}^{*}\right)= \\
& =\operatorname{sgn}(\sigma) \operatorname{sgn}(\mu) \cdot v_{\sigma(1)}^{*} \wedge \cdots \wedge v_{\sigma(k)}^{*} \tag{1.12}
\end{align*}
$$

where

$$
\mu=\left(\begin{array}{cccccc}
1 & \ldots & n-k & n-k+1 & \ldots & n \\
\sigma(k+1) & \ldots & \sigma(n) & \sigma(1) & \ldots & \sigma(k)
\end{array}\right) \in \Sigma_{n} .
$$

If we take the last k entries of μ and put them in the front, thereby pushing the first $n-k$ entries to the back we get σ. This can be realized by $n-k$ transpositions of the form $\left(\begin{array}{l}i \\ i-1)\end{array}\right.$ for each of the k entries $\sigma(1)$ to $\sigma(k)$. Thus we have

$$
\operatorname{sgn}(\mu)=(-1)^{k(n-k)} \operatorname{sgn}(\sigma)
$$

We use this in equation (1.12) and conclude

$$
* *=(-1)^{k(n-k)} .
$$

[^8]
1.3 Distribution Theory

We will define the notions of test function, distribution, the support of a distribution and see that distributions with support in one single point are given by an easy formula. We define Sobolev spaces and state the Sobolev embedding theorem. Then we consider distributional Fourier transform.
1.3.1 Definition: Let Ω be an open subset of $\mathbb{R}^{n} . \mathcal{D}(\Omega):=\left\{f \in C^{\infty}(\Omega) \mid\right.$ $\operatorname{supp}(f)$ is compact $\}$ is called the space of test functions on Ω. Let K be a compact subset of $\Omega(K \subset \subset \Omega), \mathcal{D}(K):=\{f \in \mathcal{D}(\Omega) \mid \operatorname{supp}(f) \subseteq K\}$
1.3.2 Definition: A linear map $u: \mathcal{D}(\Omega) \rightarrow \mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$ is called a distribution if

$$
\forall K \subset \subset \Omega \quad \exists C>0 \quad \exists m \in \mathbb{N}_{0}:|u(\phi)| \leq C \cdot \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} \phi\right\|_{L^{\infty}(K)} \quad \forall \phi \in \mathcal{D}(K)
$$

The space of distributions on Ω is called $\mathcal{D}^{\prime}(\Omega)$.
1.3.3 Remark: The map $f \mapsto u_{f}$, where $u_{f}(\phi):=\int_{\Omega} f(x) \phi(x) d x$ for $\phi \in$ $\mathcal{D}(\Omega)$, is a linear embedding from $L_{l o c}^{1}(\Omega)$ to $\mathcal{D}^{\prime}(\Omega) .{ }^{20}$
1.3.4 Definition: Let $u, u_{k} \in \mathcal{D}^{\prime}(\Omega)$. We say that u_{k} converges to u in $\mathcal{D}^{\prime}(\Omega)$, if $u_{k}(\phi)$ converges to $u(\phi)$ in \mathbb{C} for every $\phi \in \mathcal{D}(\Omega)$.
1.3.5 Definition: Let $u \in \mathcal{D}^{\prime}(\Omega), X:=\{x \in \Omega \mid \exists U$ open neighborhood of x, such that $\left.\left.u\right|_{\mathcal{D}(U)}=0\right\} . \operatorname{supp}(u):=\Omega \backslash X$ is called the support of the distribution u.
1.3.6 Remark: Let $x_{0} \in \Omega, u \in \mathcal{D}^{\prime}(\Omega)$ with $\operatorname{supp}(u)=\left\{x_{0}\right\}$. Then ${ }^{21}$:

$$
\exists m \in \mathbb{N}_{0} \quad \exists a_{\alpha} \in \mathbb{K} \quad \forall \phi \in \mathcal{D}(\Omega): \quad u(\phi)=\sum_{|\alpha| \leq m} a_{\alpha} \cdot \partial^{\alpha} \phi\left(x_{0}\right)
$$

1.3.7 Definition (Differentiation of distributions): Let $u \in \mathcal{D}^{\prime}(\Omega)$. We define the distribution ${ }^{22} \partial_{i} u$ for $1 \leq i \leq n$ by

$$
\left(\partial_{i} u\right)(\phi):=-u\left(\partial_{i} \phi\right) \quad \forall \phi \in \mathcal{D}(\Omega)
$$

1.3.8 Remark: Let $u, u_{k} \in \mathcal{D}^{\prime}(\Omega)$. From $u=\sum_{k=0}^{\infty} u_{k}$ in $\mathcal{D}^{\prime}(\Omega)$ it follows that $\partial^{\alpha} u=\sum_{k=0}^{\infty} \partial^{\alpha} u_{k} \quad \forall \alpha \in \mathbb{N}_{0}^{n}$ in $\mathcal{D}^{\prime}(\Omega) .{ }^{23}$

[^9]1.3.9 Definition (Multiplication by smooth functions): Let $u \in \mathcal{D}^{\prime}(\Omega)$ and $f \in C^{\infty}(\Omega)$. The product ${ }^{24} f \cdot u$ is defined by
$$
(f \cdot u)(\phi):=u(f \cdot \phi) \quad \forall \phi \in \mathcal{D}(\Omega)
$$
1.3.10 Definition: Let $s \in \mathbb{N}_{0}$. We define the Sobolev space $H^{s}(\Omega)$ by
$$
H^{s}(\Omega):=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)\left|\partial^{\alpha} u \in L^{2}(\Omega) \quad \forall\right| \alpha \mid \leq s\right\}
$$
1.3.11 Remark (Sobolev embedding): For $s>k+\frac{n}{2}$ it follows that $H^{s}(\Omega)$ is a subset of $C^{k}(\Omega)$.
1.3.12 Definition: The Fourier transform $\mathcal{F}: L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)$ is defined by
$$
\mathcal{F}(f)(\xi):=\widehat{f}(\xi):=\int_{\mathbb{R}^{n}} \mathrm{e}^{-i\langle x, \xi\rangle} \cdot f(x) d x \quad\left(\xi \in \mathbb{R}^{n}\right)
$$
1.3.13 Definition: The space of Schwartz functions is defined as
\[

$$
\begin{aligned}
\mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{\phi \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid \forall \alpha \in \mathbb{N}_{0}^{n} \forall l\right. & \in \mathbb{N}_{0} \exists C>0 \\
\forall x & \left.\in \mathbb{R}^{n}:\left|\partial^{\alpha} \phi(x)\right| \leq \frac{C}{(1+|x|)^{l}}\right\}
\end{aligned}
$$
\]

1.3.14 Remark: Since $\mathcal{S}\left(\mathbb{R}^{n}\right) \subset L^{1}\left(\mathbb{R}^{n}\right)$ we can Fourier transform elements of $\mathcal{S}\left(\mathbb{R}^{n}\right)$. If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ it follows that $\widehat{f} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
1.3.15 Definition: A linear map $u: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$ is called a tempered distribution if

$$
\exists C>0 \quad \exists m \in \mathbb{N}_{0}:|u(\phi)| \leq C \cdot \sum_{|\alpha|,|\beta| \leq m}\left\|x^{\beta} \partial^{\alpha} \phi\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \quad \forall \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

The space of tempered distributions on \mathbb{R}^{n} is called $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
1.3.16 Remark: $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \subseteq \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
1.3.17 Definition: Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ We define the Fourier transform of tempered distributions $\mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ by

$$
\widehat{u}(\phi):=u(\widehat{\phi}) \quad \forall \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

1.3.18 Remark (Exchange formulae): For $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\alpha \in \mathbb{N}_{0}^{n}$ the following equations hold ${ }^{25}$:

$$
\begin{equation*}
\mathcal{F}\left(\partial^{\alpha} u\right)=i^{|\alpha|} \xi^{\alpha} \cdot \mathcal{F}(u) \tag{1.13}
\end{equation*}
$$

[^10]and
\[

$$
\begin{equation*}
\mathcal{F}\left(i^{|\alpha|} x^{\alpha} \cdot u\right)=\partial^{\alpha} \mathcal{F}(u) \tag{1.14}
\end{equation*}
$$

\]

1.3.19 Remark (Plancherel Theorem ${ }^{26}$): For $f \in L^{2}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ it follows that $\widehat{f} \in L^{2}\left(\mathbb{R}^{n}\right)$ and the following equations hold:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) \cdot \widehat{g}(x) d x=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \cdot g(\xi) d \xi \quad \forall f, g \in L^{2}\left(\mathbb{R}^{n}\right) \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\widehat{f}\|_{L^{2}}=(2 \pi)^{\frac{n}{2}}\|f\|_{L^{2}} \tag{1.16}
\end{equation*}
$$

1.3.20 Remark: Let $u \in H^{s}\left(\mathbb{R}^{n}\right)$. The norms

$$
\|u\|_{s}:=\sum_{|\alpha| \leq s}\left\|\partial^{\alpha} u\right\|_{L^{2}}
$$

and

$$
\|u\|_{H^{s}}:=(2 \pi)^{-\frac{n}{2}}\left\|\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u}\right\|_{L^{2}}
$$

are equivalent. ${ }^{27}$
1.3.21 Remark: Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Then

$$
\mathcal{F}^{2}(u)=(2 \pi)^{n} u^{-}
$$

where $u^{-}(\phi()):.=u(\phi(-)$.$) .$
1.3.22 Definition: Let $u, v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, at least one of them with compact support. The convolution of u and v is defined by

$$
u * v(\phi):=u_{(x)}\left(v_{(y)}(\phi(x+y))\right)
$$

1.3.23 Remark: Let u, v as above and $\alpha \in \mathbb{N}_{0}^{n}$. Then ${ }^{28}$:

$$
\begin{equation*}
\partial^{\alpha}(u * v)=\left(\partial^{\alpha} u\right) * v=u * \partial^{\alpha} v \tag{1.17}
\end{equation*}
$$

1.3.24 Remark: Let $\rho \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, one of them with compact support. Then $\rho * u$ is smooth.
1.3.25 Proposition: We can also define the convolution on $\mathcal{S}^{\prime} \times \mathcal{S}$ (see [HS09], 4.17). Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{equation*}
\widehat{\phi \cdot u}=(2 \pi)^{-n}(\widehat{\phi} * \widehat{u}) \tag{1.18}
\end{equation*}
$$

[^11]Proof. We have the convolution theorem ${ }^{29}$

$$
\widehat{v * \psi}=\widehat{v} \cdot \widehat{\psi}
$$

Set $v:=\widehat{u}$ and $\psi:=\widehat{\phi}$. Since $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right), v$ and ψ are also in \mathcal{S}^{\prime} and \mathcal{S}, respectively. So we get

$$
\widehat{\widehat{u} * \widehat{\phi}}=\widehat{\widehat{u}} \cdot \widehat{\hat{\phi}}
$$

We Fourier transform this equation and use 1.3.21 to conclude

$$
(2 \pi)^{n}(\widehat{u} * \widehat{\phi})^{-}=\mathcal{F}\left((2 \pi)^{n} u^{-} \cdot(2 \pi)^{n} \phi^{-}\right)=(2 \pi)^{2 n} \widehat{u \cdot \phi}{ }^{-}
$$

and consequently

$$
(2 \pi)^{-n}(\widehat{u} * \widehat{\phi})=\widehat{u \cdot \phi}
$$

1.4 Functional Analysis

We will define the notions normed space, scalar product space, Banach and Hilbert space and state that every normed/scalar product space can be densely embedded into an almost unique Banach/Hilbert space. Thereafter we consider densely defined operators. We state the Spectral Theorem for selfadjoint, compact operators and the Arzelà-Ascoli theorem.
1.4.1 Definition: Let V be a vector space. If V is equipped with a norm $\|$.$\| ,$ we call $(V,\|\cdot\|)$ a normed space. . If a scalar product ${ }^{30}\langle\cdot, \cdot\rangle$ on V is given we call $(V,\langle\cdot, \cdot\rangle)$ a scalar product space or Pre-Hilbert space .
1.4.2 Remark: Every scalar product space $(V,\langle\cdot, \cdot\rangle)$ is a normed space, where the norm is given by $\|\cdot\|:=\sqrt{\langle\cdot, \cdot\rangle}$.
1.4.3 Definition: A normed space $(V,\|\|$.$) is called Banach space if it is com-$ plete, i.e. if every Cauchy sequence in V with respect to $\|$.$\| has a limit in V$. A complete Pre-Hilbert space is called Hilbert space.
1.4.4 Remark: Every normed space $(V,\|\|$.$) can be densely embedded into$ a Banach space $\left(V^{\prime},\|\cdot\|^{\prime}\right)$, such that $\left.\|\cdot\|^{\prime}\right|_{V}=\|\cdot\|$. Every Pre-Hilbert space $(V,\langle\cdot, \cdot\rangle)$ can be densely embedded into a Hilbert space $\left(V^{\prime},\langle\cdot, \cdot\rangle^{\prime}\right)$, such that $\left.\langle\cdot, \cdot\rangle^{\prime}\right|_{V}=\langle\cdot, \cdot\rangle$. In both cases V^{\prime} is called completion of V. Two completions of the same space are isometric. ${ }^{31}$

[^12]1.4.5 Remark: Let C be a closed linear subspace of a Hilbert space $(V,\langle\cdot, \cdot\rangle)$ and $x_{0} \in V \backslash C$. Then there exists a $y \in V$, such that $\langle y, x\rangle=0$ for all $x \in C$ and $\left\langle y, x_{0}\right\rangle>0 .{ }^{32}$
1.4.6 Definition: A semi-normed space is a vector space V together with a system of semi-norms ${ }^{33} \mathcal{P}$. A subset B of a seminormed space is bounded if every $p \in \mathcal{P}$ is bounded on B.
1.4.7 Remark: Let Ω be an open subset of \mathbb{R}^{n}. $C^{k}(\Omega)\left(k \in \mathbb{N}_{0} \cup\{\infty\}\right)$ together with the semi-norms $p_{\alpha, K}(f):=\left\|\partial^{\alpha} f\right\|_{L^{\infty}(K)}\left(\alpha \in \mathbb{N}_{0}^{n}, K \subset \Omega\right.$ compact $)$ is a semi-normed space.
1.4.8 Definition: Let V and W be normed spaces and $T: V \rightarrow W$ a linear map. We call T bounded if the image of all bounded sets in V under T is bounded in W. Otherwise we call it unbounded.
1.4.9 Definition: Let V and W be Hilbert spaces over $\mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$. An operator $T: \operatorname{Dom}(T) \subseteq V \rightarrow W$ is called densely defined if $\operatorname{Dom}(T)$, the domain of T, is a dense linear subspace of $V . T$ is called closed if its graph,
$$
\operatorname{graph}(T):=\{(x, T x) \in \operatorname{Dom}(T) \times W\}
$$
is a closed subspace of $V \times W$.
1.4.10 Remark (Closed Graph Theorem ${ }^{34}$): Let V, W be Banach spaces and $T: V \rightarrow W$ linear $(\operatorname{Dom}(T)=V!)$. Then T is bounded if and only if T is closed.
1.4.11 Definition: Let $T: \operatorname{Dom}(T) \rightarrow W$ be a closed, densely defined linear operator. The adjoint operator of T is the operator $T^{*}: \operatorname{Dom}\left(T^{*}\right) \rightarrow V$ defined by the graph ${ }^{35}$
$$
\operatorname{graph}\left(T^{*}\right):=\left\{(w, v) \in W \times V \mid\langle v, x\rangle_{V}=\langle w, T x\rangle_{W} \quad \forall x \in \operatorname{Dom}(T)\right\}
$$
1.4.12 Remark: T^{*} is a closed operator. Since T is closed we get that the domain of T^{*} is dense, so we can define $T^{* *}$. Moreover $T^{* *}=T .{ }^{36}$
1.4.13 Remark: $i d^{*}=i d$ and if T is invertible $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1} .{ }^{37}$

[^13]1.4.14 Definition: A closed, densely defined operator $T: \operatorname{Dom}(T) \subseteq X \rightarrow X$ is called selfadjoint if $T=T^{*}$, more precisely:

1. $\langle T x, y\rangle=\langle x, T y\rangle \quad \forall x, y \in \operatorname{Dom}(T)$ and
2. $\operatorname{Dom}(T)=\operatorname{Dom}\left(T^{*}\right)$
if only the first condition holds we call T symmetric.
1.4.15 Definition: Let $T: V \supseteq \operatorname{Dom}(T) \rightarrow V$ be a densely defined linear operator. The spectrum of T is defined as
```
\(\operatorname{spec}(T):=\)
    \(=\left\{\lambda \in \mathbb{K} \mid \lambda \cdot i d_{\operatorname{Dom}(T)}-T\right.\) has no bounded inverse from V to \(\left.\operatorname{Dom}(T)\right\}\)
```

1.4.16 Proposition: Let T be as above and closed, then if an inverse to λ. $i d_{\operatorname{Dom}(T)}-T(\lambda \in \mathbb{K})$ exists, it is bounded. Thus

$$
\operatorname{spec}(T)=\left\{\lambda \in \mathbb{K} \mid \lambda \cdot i d_{\operatorname{Dom}(T)}-T \text { has no inverse from } V \text { to } \operatorname{Dom}(T)\right\}
$$

Proof. T closed means that $\{(x, T x) \mid x \in \operatorname{Dom}(T)\}$ is closed in $\operatorname{Dom}(T) \times V$. Thus

$$
\{(x, \lambda \cdot x-T x) \mid x \in \operatorname{Dom}(T)\}
$$

is also closed in $\operatorname{Dom}(T) \times V$ for some fixed $\lambda \in \mathbb{K}$. We assume that $\lambda \cdot i d_{\operatorname{Dom}(T)}-$ T has an inverse $Q: V \rightarrow \operatorname{Dom}(T)$. Then

$$
\operatorname{graph}(Q)=\{(y, Q y) \mid y \in V\}=\{(\lambda \cdot x-T x, x) \mid x \in \operatorname{Dom}(T)\}
$$

is closed in $V \times \operatorname{Dom}(T)$ by the above. Thus Q is a linear closed operator from the Banach space V to $\operatorname{Dom}(T) \subseteq V$ and we use the closed graph theorem, 1.4.10 to conclude that Q is bounded.
1.4.17 Definition: Let V and W be Banach spaces. An operator $T: V \rightarrow W$ is called compact if it maps bounded subsets of V to relatively compact subsets of W.
1.4.18 Remark (Spectral Theorem for compact operators ${ }^{38}$): Let V be an infinite-dimensional Hilbert space and $T: V \rightarrow V$ a compact and selfadjoint operator. The spectrum of T consists of 0 and countably many eigenvalues which accumulate only at 0 . In addition

$$
V=\bigoplus_{\lambda \in \operatorname{spec}(T) \backslash\{0\}} \operatorname{ker}(\lambda \cdot i d-T)
$$

[^14]1.4.19 Definition: Let (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be two metric spaces. A family of functions A, where $f:(X, d) \rightarrow\left(X^{\prime}, d^{\prime}\right)$ for all $f \in A$, is called equicontinuous if
\[

$$
\begin{aligned}
& \forall \epsilon>0 \quad \forall x \in X \quad \exists \delta>0 \quad \forall f \in A \quad \forall y \in X: \\
& d(x, y)<\delta \Rightarrow d^{\prime}(f(x), f(y))<\epsilon
\end{aligned}
$$
\]

1.4.20 Remark (Arzelà-Ascoli ${ }^{39}$): Let (X, d) be a compact metric space and $A \subseteq C(X) . A$ is relatively compact in $\left(C(X),\|\cdot\|_{\infty}\right)$ if and only if A is pointwise bounded and equicontinuous.

[^15]
Chapter 2

PDOs on Manifolds

We introduce a definiton of differential operators on manifolds which is chartindependent and show some basic properties, including local representation, the principal symbol and formal adjoint operators. In particular we will show that differential operators are exactly the local operators from $\Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(F)$.

This chapter will roughly follow the approach of [Nic07], section 10.1.

2.1 Differential/Local Operators

To get an idea how differential operators could be defined we investigate two examples of PDOs on \mathbb{R}^{n} :

- The Laplacian ${ }^{1}: \Delta: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right), \quad \Delta u=-\sum_{i=1}^{n} \partial_{i}^{2} u$
- The exterior derivative: $d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right)$

Remember that $\Omega^{k}\left(\mathbb{R}^{n}\right)$ is defined as the space of smooth sections of the vector bundle $\Lambda^{k}\left(T \mathbb{R}^{n}\right)$ over the manifold $\mathbb{R}^{n} . C^{\infty}\left(\mathbb{R}^{n}\right)$ can be interpreted as the space of smooth sections of the trivial vector bundle $\mathbb{R}^{n} \times \mathbb{R}$ over the manifold \mathbb{R}^{n}. We see that the above operators are both \mathbb{R}-linear and link smooth sections of some vector bundle to smooth sections of another vector bundle. So we concentrate on operators with these properties:
2.1.1 Definition: Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. For \mathbb{K}-vector bundles E and F over the smooth manifold M we define

$$
\mathbf{O p}(E, F):=\left\{P: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(F) \mid P \quad \mathbb{K} \text { - linear }\right\}
$$

2.1.2 Remark: $\mathbf{O p}(E, E)$ is an associative \mathbb{K}-Algebra. $\Gamma^{\infty}(E)$ and $\Gamma^{\infty}(F)$ are modules over the ring $C^{\infty}(M)$.

[^16]On $\mathbb{R}^{n}, 0^{t h}$-order PDOs with smooth coefficients are just multiplication by some smooth function f, which are the $C^{\infty}\left(\mathbb{R}^{n}\right)$-linear maps. So, on an arbitrary $C^{\infty}-\mathrm{mf} M$, this should generalize to $C^{\infty}(M)$-linear maps $P: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(F)$. We can characterize the linearity by

$$
[P, f] u:=P(f \cdot u)-f \cdot P(u)=0 \quad \forall f \in C^{\infty}(M) \quad \forall u \in \Gamma^{\infty}(E)
$$

We see that each $f \in C^{\infty}(M)$ defines a map $a d(f): \mathbf{O p}(E, F) \rightarrow \mathbf{O p}(E, F)$ by

$$
P \mapsto a d(f) P:=[P, f]
$$

Thus we may define:

$$
\mathbf{P D O}^{0}(E, F):=\left\{P \in \mathbf{O p}(E, F) \mid P \in \operatorname{ker}(\operatorname{ad}(f)) \quad \forall f \in C^{\infty}(M)\right\}
$$

and for higher orders:

$$
\begin{aligned}
& \mathbf{P D O}^{(m)}(E, F):= \\
& \quad=\left\{P \in \mathbf{O p}(E, F) \mid P \in \operatorname{ker}\left(\operatorname{ad}\left(f_{0}\right) \cdots a d\left(f_{m}\right)\right) \quad \forall f_{i} \in C^{\infty}(M)\right\}
\end{aligned}
$$

The elements of $\mathbf{P D O}{ }^{(m)}$ are called partial differential operators (PDOs) of order $\leq m$.

$$
\mathbf{P D O}(E, F):=\bigcup_{m \geq 0} \mathbf{P D O}^{(m)}(E, F)
$$

is the set of all PDOs from E to F.
Note that we have a recursive formula for $\mathbf{P D O}{ }^{(m)}$:

$$
\mathbf{P D O}^{(m)}=\left\{P \in \mathbf{O p} \mid[P, f] \in \mathbf{P D O}^{(m-1)} \quad \forall f \in C^{\infty}(M)\right\}
$$

2.1.3 Remark:

$$
\mathbf{P D O}^{0}(E, F) \underset{(1)}{=} \operatorname{Hom}_{C^{\infty}(M)}\left(\Gamma^{\infty}(E), \Gamma^{\infty}(F)\right) \underset{(2)}{\cong} \operatorname{Hom}(E, F)
$$

where
$\operatorname{Hom}(E, F):=$
$=\left\{\phi: E \rightarrow F \mid \phi C^{\infty}, \pi_{F} \circ \phi=\pi_{E}\right.$ and $\left.\phi\right|_{E_{p}}: E_{p} \rightarrow F_{p}$ is linear $\left.\forall p \in M\right\}$
(1) The property $[P, f]=0$ means that P is a $C^{\infty}(M)$-linear map between the $C^{\infty}(M)$-modules $\Gamma^{\infty}(E)$ and $\Gamma^{\infty}(F)$, i.e. a $C^{\infty}(M)$-module homomorphism.
(2) See [GHV72], chapter II, §5, proposition XIII.

Now we will show that some known operators are PDOs in our sense, by using that each of these operators satisfies some kind of product rule:
2.1.4 Example: 1. The partial derivative $\partial_{i}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is a PDO of order ≤ 1 :

Let $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad u \in C^{\infty}\left(\mathbb{R}^{n}\right)=\Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}\right)$

$$
\begin{aligned}
{\left[\partial_{i}, f\right](u) } & =\partial_{i}(f \cdot u)-f \cdot \partial_{i}(u)= \\
& =\partial_{i}(f) \cdot u+f \cdot \partial_{i}(u)-f \cdot \partial_{i}(u)= \\
& =\partial_{i}(f) \cdot u \\
{\left[\left[\partial_{i}, f\right], g\right](u) } & =\partial_{i}(f) \cdot(g \cdot u)-g \cdot \partial_{i}(f) \cdot u=0
\end{aligned}
$$

2. The Euclidean Laplacian $\Delta: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right), \quad \Delta:=-\sum_{i=1}^{n} \partial_{i}^{2}$ is a PDO of order ≤ 2 :

We will just use the product rule for ∂_{i}. Let $f, g, h \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad u \in$ $C^{\infty}\left(\mathbb{R}^{n}\right)=\Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}\right)$

$$
\begin{aligned}
{[\Delta, f](u) } & =\Delta(f \cdot u)-f \cdot \Delta(u)= \\
& =-\sum_{i=1}^{n} \partial_{i}^{2}(f \cdot u)-f \cdot \Delta(u)= \\
& =-\sum_{i=1}^{n} \partial_{i}\left(\partial_{i}(f) \cdot u+f \cdot \partial_{i}(u)\right)-f \cdot \Delta(u)= \\
& =-\sum_{i=1}^{n}\left(\partial_{i}^{2}(f) \cdot u+2 \cdot \partial_{i}(f) \cdot \partial_{i}(u)+f \cdot \partial_{i}^{2}(u)\right)-f \cdot \Delta(u)= \\
& =\Delta(f) \cdot u-2 \cdot \sum_{i=1}^{n}\left(\partial_{i}(f) \cdot \partial_{i}(u)\right)
\end{aligned}
$$

$$
\begin{aligned}
& {[[\Delta, f], g](u)=} {[\Delta, f](g \cdot u)-g \cdot[\Delta, f](u)=} \\
&= \Delta(f) \cdot(g \cdot u)-2 \cdot \sum_{i=1}^{n}\left(\partial_{i}(f) \cdot \partial_{i}(g \cdot u)\right)- \\
& \quad-g \cdot\left(\Delta(f) \cdot u-2 \cdot \sum_{i=1}^{n}\left(\partial_{i}(f) \cdot \partial_{i}(u)\right)\right)= \\
&= 2 \cdot \sum_{i=1}^{n}\left(-\partial_{i}(f) \cdot \partial_{i}(g) \cdot u-\partial_{i}(f) \cdot g \cdot \partial_{i}(u)+\right. \\
&\left.\quad+g \cdot \partial_{i}(f) \cdot \partial_{i}(u)\right)= \\
&=-2 \cdot u \cdot \sum_{i=1}^{n}\left(\partial_{i}(f) \cdot \partial_{i}(g)\right)
\end{aligned}
$$

$$
\begin{aligned}
{[[[\Delta, f], g], h](u)=} & {[[\Delta, f], g](h \cdot u)-h \cdot[[\Delta, f], g](u)=} \\
= & -2 \cdot(h \cdot u) \cdot \sum_{i=1}^{n}\left(\partial_{i}(f) \cdot \partial_{i}(g)\right)- \\
& \quad-h \cdot\left(-2 \cdot u \cdot \sum_{i=1}^{n}\left(\partial_{i}(f) \cdot \partial_{i}(g)\right)\right)= \\
= & 0
\end{aligned}
$$

3. The exterior derivative $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is a PDO of order ≤ 1 :

Let $f, g \in C^{\infty}(M), \quad \omega \in \Omega^{k}(M)=\Gamma^{\infty}\left(\Lambda^{k}(T M)\right)$.
By (1.5) we get

$$
[d, f](\omega)=d(f \cdot \omega)-f \cdot d(\omega)=d f \wedge \omega+(-1)^{0} f \wedge d \omega-f \cdot d \omega=d f \wedge \omega
$$

and by $C^{\infty}(M)$-linearity of the wedge-product (see (1.3))

$$
[[d, f], g](\omega)=[d, f](g \cdot \omega)-g \cdot[d, f](\omega)=d f \wedge(g \cdot \omega)-g \cdot d f \wedge \omega=0
$$

4. Let M be a smooth manifold, (E, M, π) a vector bundle and ∇ a connection on E. ∇ is an operator from $\Gamma^{\infty}(E)$ to $\Gamma^{\infty}\left(T M^{*} \otimes E\right)$ (see 1.2.35). ∇ is a PDO of order ≤ 1 :
Let $f, g \in C^{\infty}(M), \quad t \in \Gamma^{\infty}(E)$. By (1.6) we get

$$
[\nabla, f](t)=\nabla(f \cdot t)-f \cdot \nabla(t)=d f \otimes t+f \cdot \nabla(t)-f \cdot \nabla(t)=d f \otimes t
$$

and by $C^{\infty}(M)$-linearity of the tensor-product (see 1.2.23)

$$
[[\nabla, f], g](t)=[\nabla, f](g \cdot t)-g \cdot[\nabla, f](t)=d f \otimes(g \cdot t)-g \cdot d f \otimes t=0
$$

5. Let $X \in \mathfrak{X}(M)$. From the above and the definition of the covariant derivative in 1.2 .35 we also get that ∇_{X} is a PDO of order ≤ 1 from $\Gamma^{\infty}(E)$ to $\Gamma^{\infty}(E)$. The first commutator (which will be of importance in the next section) is

$$
\left[\nabla_{X}, f\right](t)=d f(X) \cdot t
$$

2.1.5 Lemma: Let $P \in \mathbf{P D O}(E, F), u \in \Gamma^{\infty}(E), f, g \in C^{\infty}(M)$. Then:

$$
\begin{equation*}
[P, f \cdot g](u)=[P, f](g \cdot u)+f \cdot[P, g](u) \tag{2.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
{[P, f \cdot g](u) } & =P(f \cdot g \cdot u)-f \cdot g \cdot P(u)= \\
& =P(f \cdot g \cdot u)-f \cdot P(g \cdot u)+f \cdot P(g \cdot u)-f \cdot g \cdot P(u)= \\
& =[P, f](g \cdot u)+f \cdot[P, g](u)
\end{aligned}
$$

The following example will reveal what elements of $\mathbf{P D O}^{(1)}(M \times \mathbb{R}, M \times \mathbb{R})$ essentially are.
2.1.6 Example: Let M be a smooth manifold and $P \in \mathbf{P D O}^{(1)}(M \times \mathbb{R}, M \times$ $\mathbb{R}), \quad f, g \in C^{\infty}(M)$. Then we have that

$$
[P, f] \in \mathbf{P D O}^{(0)}(M \times \mathbb{R}, M \times \mathbb{R}) \underset{2.1 .3}{\cong} \operatorname{Hom}(M \times \mathbb{R}, M \times \mathbb{R})
$$

from which we conclude $\exists \sigma(f) \in C^{\infty}(M)$, such that

$$
[P, f] u=\sigma(f) \cdot u \quad \forall u \in C^{\infty}(M)
$$

By choosing $u=1 \in C^{\infty}(M)$ in (2.1), we get

$$
\underline{\underline{\sigma(f \cdot g)}}=[P, f \cdot g](1)=[P, f](g \cdot 1)+f \cdot[P, g](1)=\underline{\underline{\sigma(f) \cdot g+f \cdot \sigma(g)}}
$$

which means that $f \mapsto \sigma(f)$ is a derivation of $C^{\infty}(M)$. So by 1.2 .22 we conclude that $\exists X \in \mathfrak{X}(M)$, such that

$$
\sigma(f)=X(f) \quad \forall f \in C^{\infty}(M)
$$

Let $\mu:=P(1) \in C^{\infty}(M)$. For all $u \in C^{\infty}(M)$, we have:
$P(u)=P(u \cdot 1)=P(u \cdot 1)-u \cdot P(1)+u \cdot P(1)=[P, u](1)+u \cdot P(1)=X(u)+\mu \cdot u$
Thus every $P \in \mathbf{P D O}^{(1)}(M \times \mathbb{R}, M \times \mathbb{R})$ can be written as a linear combination of a vector field and a homomorphism.

We even have $\mathbf{P D O}^{(1)}(M \times \mathbb{R}, M \times \mathbb{R})=\mathfrak{X}(M) \oplus \mathbf{H o m}\left(C^{\infty}(M), C^{\infty}(M)\right)$:
Let $P \in \operatorname{Der}\left(C^{\infty}(M)\right) \cap \operatorname{Hom}\left(C^{\infty}(M), C^{\infty}(M)\right)$. Then

$$
f \cdot g \cdot P(1)=P(f \cdot g)=P(f) \cdot g+f \cdot P(g)=2 \cdot f \cdot g \cdot P(1) \quad \forall f, g \in C^{\infty}(M)
$$

Thus $P(1)=0$ and since P is $C^{\infty}(M)$-linear $P=0$.
2.1.7 Proposition: Let E, F, G be \mathbb{K}-vector bundles over the smooth manifold M. From $P \in \mathbf{P D O}^{(m)}(F, G)$ and $Q \in \mathbf{P D O}^{(n)}(E, F)$ it follows that $P \circ Q \in$ $\mathbf{P D O}^{(m+n)}(E, G)$

Proof. Let $f \in C^{\infty}(M)$ be arbitrary. In the following calculations f will denote the operator f, multiplication by f.

$$
\begin{align*}
{[P \circ Q, f] } & =(P \circ Q) \circ f-f \circ(P \circ Q)= \\
& =P \circ(Q \circ f)-P \circ(f \circ Q)+(P \circ f) \circ Q-(f \circ P) \circ Q= \\
& =P \circ[Q, f]+[P, f] \circ Q \tag{2.2}
\end{align*}
$$

We argue by induction over $m+n$:

- $m+n=0$:

$$
[P \circ Q, f]=P \circ \underbrace{[Q, f]}_{=0}+\underbrace{[P, f]}_{=0} \circ Q=0 \quad \Rightarrow P \circ Q \in \mathbf{P D O}^{0}
$$

- $m+n-1 \mapsto m+n$:

$$
\begin{aligned}
& {[P \circ Q, f]=}\underbrace{P}_{\in \mathbf{P D O}^{(m)}} \circ \underbrace{[Q, f]}_{\in \mathbf{P D O}^{(n-1)} \text { or }=0} \text { (if } n=0) \\
&+\underbrace{[P, f]}_{\in \mathbf{P D O}^{(m-1)} \text { or }=0} \text { (if } m=0) \\
& \circ \underbrace{Q}_{\in \mathbf{P D O}^{(n)}} \underbrace{\in}_{\text {induc. }} \mathbf{P D O}^{(m+n-1)} \\
& \Rightarrow P \circ Q \in \mathbf{P D O}^{(m+n)}
\end{aligned}
$$

2.1.8 Corollary: Let $a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ for all $|\alpha| \leq m$. Then $P=\sum_{|\alpha| \leq m} a_{\alpha}$. $\partial^{\alpha}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is a PDO of order $\leq m$.

Proof. In 2.1.4, 1 we saw that ∂_{i} is a PDO of order ≤ 1. Multiplication with a smooth function is $C^{\infty}\left(\mathbb{R}^{n}\right)$-linear, hence a PDO of order 0 . By 2.1.7 we obtain that P is a PDO of order $\leq m$.
2.1.9 Corollary: Let $A_{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right) \quad \forall|\alpha| \leq m$. Then $P=$ $\sum_{\tilde{\partial}|\alpha| \leq m} A_{\alpha} \cdot \tilde{\partial}^{\alpha}: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)$ is a PDO of order $\leq m$, where $\tilde{\partial}^{\alpha}\left(v_{1}, \ldots, v_{p}\right):=\left(\partial^{\alpha} v_{1}, \ldots, \partial^{\alpha} v_{p}\right)^{2} \quad \forall\left(v_{1}, \ldots, v_{p}\right) \in \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}\right)$.

Proof.
$\partial_{i} \in \mathbf{P D O}^{(1)}\left(\mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \times \mathbb{R}\right) \quad \Rightarrow \quad \tilde{\partial}_{i} \in \mathbf{P D O}^{(1)}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{p}\right)$
$A_{\alpha} \in \mathbf{P D O}^{0}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right)$ because of 2.1.3. Again by 2.1.7 we get that $P \in \mathbf{P D O}^{(m)}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right)$.

Now we are going to prove the main result of this section, that locally PDOs and local operators are the same.
2.1.10 Definition: An operator $P \in \mathbf{O p}(E, F)$ is called local operator if

$$
\forall u \in \Gamma^{\infty}(E): \quad \operatorname{supp}(P u) \subseteq \operatorname{supp}(u)
$$

2.1.11 Proposition: Let E and F be vector bundles over the manifold M, $P \in \mathbf{O p}(E, F)$ a local operator, U an open subset of M and $u, v \in \Gamma^{\infty}(E)$.

$$
\left.u\right|_{U}=\left.\left.v\right|_{U} \quad \Rightarrow \quad(P u)\right|_{U}=\left.(P v)\right|_{U}
$$

[^17]Proof.

$$
\operatorname{supp}(u-v) \subseteq M \backslash U \quad \Rightarrow \quad \operatorname{supp}(P u-P v)=\operatorname{supp}(P(u-v)) \subseteq M \backslash U
$$

2.1.12 Theorem: Let E and F be vector bundles over the smooth manifold M. Every $P \in \mathbf{P D O}^{(m)}(E, F)$ is a local operator.

Proof. We argue by induction over m:

- $m=0$:

$$
\begin{aligned}
P \in \operatorname{Hom}(E, F) & \Rightarrow(u(x)=0 \Rightarrow P u(x)=0 \quad \forall x \in M) \\
& \Rightarrow \operatorname{supp}(P u) \subseteq \operatorname{supp}(u)
\end{aligned}
$$

- $m \mapsto m+1$:

Let $P \in \mathbf{P D O}^{(m+1)} \Rightarrow[P, f] \in \mathbf{P D O}{ }^{(m)} \quad \forall f \in C^{\infty}(M)$
$P(f \cdot u)=P(f \cdot u)-f \cdot P(u)+f \cdot P(u)=[P, f](u)+f \cdot P(u) \quad \forall f \in C^{\infty}(M)$

$$
\begin{array}{ll}
{[\text { we remember: }} & (i) \operatorname{supp}(f \cdot g) \subseteq \operatorname{supp}(f) \cap \operatorname{supp}(g) \\
& (i i) \operatorname{supp}(f+g) \subseteq \operatorname{supp}(f) \cup \operatorname{supp}(g)]
\end{array}
$$

So we get

$$
\operatorname{supp}(P(f \cdot u)) \underset{(\overline{i i})}{\subseteq} \underbrace{\operatorname{supp}([P, f](u))}_{\substack{\subseteq \text { supp }(u) \\ \text { by induction }}} \cup \underbrace{\operatorname{supp}(f \cdot P(u))}_{\substack{\subseteq \operatorname{supp}(f) \cap \operatorname{supp}(P(u)) \\(i)}} \forall f \in C^{\infty}(M)
$$

For $g \in G:=\left\{f \in C^{\infty}(M)|f|_{\operatorname{supp}(u)} \equiv 1\right\} \subseteq C^{\infty}(M)$ follows $g \cdot u \equiv u$ and we get

$$
\begin{equation*}
\operatorname{supp}(P(u)) \subseteq \operatorname{supp}(u) \cup \operatorname{supp}(g) \quad \forall g \in G \tag{*}
\end{equation*}
$$

Let $p \in \operatorname{supp}(u)^{c} . \operatorname{supp}(u)^{c}$ is open, so it is a neighborhood of $p . M$ is locally compact (see 1.2.9) so we find a compact neighborhood $K \subseteq \operatorname{supp}(u)^{c}$ of p. Because of 1.2 .9 we get a partition of unity $\{\phi, \chi\}$ subordinate to $\left\{\operatorname{supp}(u)^{c}, K^{c}\right\}$.

$$
\begin{aligned}
&\left.\chi\right|_{\operatorname{supp}(u)} \equiv 1 \Rightarrow \chi \in G \\
& \operatorname{supp}(\chi) \subseteq K^{c} \Rightarrow p \in K \subseteq \operatorname{supp}(\chi)^{c} \\
& \Rightarrow p \in \operatorname{supp}(u)^{c} \cap \operatorname{supp}(\chi)^{c}=(\operatorname{supp}(u) \cup \operatorname{supp}(\chi))^{c} \underset{(*)}{\subseteq} \operatorname{supp}(P(u))^{c} \\
& \Rightarrow \operatorname{supp}(P(u)) \subseteq \operatorname{supp}(u)
\end{aligned}
$$

Note that the above theorem tells us that we can work in local coordinates. Now we will see that every local operator locally has the form of P in 2.1.9 and therefore is a PDO. First we need to prove the following preparatory statement:
2.1.13 Lemma: Let $P \in \mathbf{O p}\left(\mathbb{R}^{n} \times \mathbb{K}, \mathbb{R}^{n} \times \mathbb{K}\right)$ be a local operator, $x_{0} \in \mathbb{R}^{n}$. There exist an open neighborhood Y of $x_{0}, m \in \mathbb{N}_{0}$ and $C>0$, such that

$$
\begin{equation*}
\|P \phi\|_{L^{\infty}} \leq C \cdot \underbrace{\max _{|\alpha| \leq m}\left\|\partial^{\alpha} \phi\right\|_{L^{\infty}}}_{=:\|\phi\|_{(m)}} \quad \forall \phi \in \mathcal{D}\left(Y \backslash\left\{x_{0}\right\}\right) \tag{2.3}
\end{equation*}
$$

Proof. We prove the lemma by contradiction. Let Y_{0} be an open neighborhood of x, such that $\overline{Y_{0}}$ is compact. We assume that (2.3) is false, that means

$$
\begin{equation*}
\forall Y \quad \forall m \in \mathbb{N}_{0} \quad \forall C>0 \quad \exists \phi \in \mathcal{D}\left(Y \backslash\left\{x_{0}\right\}\right): \quad\|P \phi\|_{L^{\infty}}>C \cdot\|\phi\|_{(m)} \tag{2.4}
\end{equation*}
$$

So by choosing $Y=Y_{0}, m=1$ and $C=2^{2}$ there must exist a $\phi_{1} \in \mathcal{D}\left(Y_{0} \backslash\left\{x_{0}\right\}\right)$, such that

$$
\left\|P \phi_{1}\right\|_{L^{\infty}}>2^{2} \cdot\left\|\phi_{1}\right\|_{(1)}
$$

Let Y_{1} be open, such that $\operatorname{supp}\left(\phi_{1}\right) \subset Y_{1} \subset \overline{Y_{1}} \subset Y_{0}$. We see that $Y_{0} \backslash \overline{Y_{1}}$ is also an open neighborhood of x_{0}. So we can choose $Y=Y_{0} \backslash \overline{Y_{1}}, m=2$ and $C=2^{2 \cdot 2}$ in (2.4) and get a $\phi_{2} \in \mathcal{D}\left(Y_{0} \backslash\left(Y_{1} \cup\left\{x_{0}\right\}\right)\right)$, such that

$$
\left\|P \phi_{2}\right\|_{L^{\infty}}>2^{2 \cdot 2} \cdot\left\|\phi_{2}\right\|_{(2)}
$$

Inductively we get a $\phi_{k} \in \mathcal{D}\left(Y_{0} \backslash\left(\bigcup_{i=1}^{k-1} \overline{Y_{1}} \cup\left\{x_{0}\right\}\right)\right)$ and an open set Y_{k}, such that $\operatorname{supp}\left(\phi_{k}\right) \subset Y_{k} \subset \overline{Y_{k}} \subset Y_{0}$ and

$$
\begin{equation*}
\left\|P \phi_{k}\right\|_{L^{\infty}}>2^{2 k} \cdot\left\|\phi_{k}\right\|_{(k)} \tag{2.5}
\end{equation*}
$$

Now we define

$$
\phi:=\sum_{k=1}^{\infty} \frac{1}{2^{k} \cdot\left\|\phi_{k}\right\|_{(k)}} \cdot \phi_{k}
$$

The supports of the ϕ_{k} are disjoint, so at every point there is at most one $\phi_{k} \neq 0$ and therefore the sum is convergent. Obviously, the series defininig ϕ converges uniformly in all derivatives. Thus ϕ is smooth. By definition we have

$$
\left.\phi\right|_{Y_{k}}=\frac{1}{2^{k} \cdot\left\|\phi_{k}\right\|_{(k)}} \cdot \phi_{k}
$$

P is local, so by 2.1 .11 we get

$$
\left.P \phi\right|_{Y_{k}}=\frac{1}{2^{k} \cdot\left\|\phi_{k}\right\|_{(k)}} \cdot P \phi_{k}
$$

Now we choose a $y_{k} \in Y_{k} \subset Y_{0}$ for every $k=1,2,3, \ldots$, such that $\left|P \phi_{k}\left(y_{k}\right)\right|>$ $2^{2 k} \cdot\left\|\phi_{k}\right\|_{(k)}$ (which is possible because of (2.5)) and obtain

$$
\left|P \phi\left(y_{k}\right)\right|=\left|\frac{1}{2^{k} \cdot\left\|\phi_{k}\right\|_{(k)}} \cdot P \phi_{k}\left(y_{k}\right)\right|>\frac{1}{2^{k} \cdot\left\|\phi_{k}\right\|_{(k)}} \cdot 2^{2 k} \cdot\left\|\phi_{k}\right\|_{(k)}=2^{k}
$$

But Y_{0} is relatively compact and so the continuous (actually smooth) function $P \phi$ has to be bounded on Y_{0}, a contradiction.
2.1.14 Theorem: Let E, F be \mathbb{K}-vector bundles over the smooth manifold M. Every local operator $P \in \mathbf{O p}(E, F)$ is locally given by

$$
P=\sum_{|\alpha| \leq m} A_{\alpha} \cdot \partial^{\alpha}: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)
$$

For some $p, q, m \in \mathbb{N}_{0}, A_{\alpha} \in \operatorname{Hom}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right)$.

Proof. Let $x \in M$ and $U:=U^{(x)}$ be a relatively compact trivializing neighborhood of x, like in 1.2.17, w.l.o.g. for both vector bundles E and F (if U_{1} is such a neighborhood for E and U_{2} for F, then the intersection $U_{1} \cap U_{2}$ meets the requirements for both). So we have $\left.E\right|_{U} \cong U \times \mathbb{K}^{p}$ and $\left.F\right|_{U} \cong U \times \mathbb{K}^{q}$. Because of $\Gamma^{\infty}\left(U \times \mathbb{K}^{t}\right) \cong \Gamma^{\infty}(U \times \mathbb{K})^{t}$ and the \mathbb{K}-linearity of P it suffices to prove the theorem for $\mathrm{p}=\mathrm{q}=1$.

For $y \in U$ we define $P_{y}:=\phi \mapsto P \phi(y)$ and prove that it is a distribution: P_{y} is a linear map from $\mathcal{D}(U)$ to \mathbb{K} by definition. Since U is relatively compact we can choose a finite cover $\left\{U_{x_{i}} \mid i=1, \ldots, k\right\}$ of U such that each $U_{x_{i}} \subseteq U$ satisfies the assumptions of 2.1.13. Let $\left\{\chi_{i} \mid i=1, \ldots, k\right\}$ be a partition of unity subordinate to $\left\{U_{x_{i}}\right\}$ and $\phi \in \mathcal{D}\left(\bigcup_{i=1}^{k} U_{x_{i}} \backslash\left\{x_{i}\right\}\right)$ arbitrary. Then

$$
\begin{aligned}
\left|P_{y}(\phi)\right| & =|P \phi(y)| \leq\|P \phi\|_{L^{\infty}}= \\
& =\left\|P\left(\sum_{i=1}^{k} \chi_{i} \cdot \phi\right)\right\|_{L^{\infty}} \leq \\
& \leq \sum_{i=1}^{k}\left\|P\left(\chi_{i} \cdot \phi\right)\right\|_{L^{\infty}} \leq \\
& \leq \sum_{2.13}^{k} \sum_{i=1}^{k} C_{i} \cdot \max _{|\alpha| \leq m_{i}}\left\|\partial^{\alpha}\left(\chi_{i} \cdot \phi\right)\right\|_{L^{\infty}}= \\
& =\sum_{i=1}^{k} C_{i} \cdot \max _{|\alpha| \leq m_{i}} \| \sum_{|\beta| \leq|\alpha|}\binom{\alpha}{\beta} \partial^{\alpha-\beta} \chi_{i} \cdot \partial^{\beta} \phi| |_{L^{\infty}} \leq \\
& \leq \sum_{i=1}^{k} C_{i} \cdot \max _{|\alpha| \leq m_{i}}\left(\sum_{|\beta| \leq|\alpha|}\binom{\alpha}{\beta}\left\|\partial^{\alpha-\beta} \chi_{i}\right\|_{L^{\infty}} \cdot\left\|\partial^{\beta} \phi\right\|_{L^{\infty}}\right) \leq \\
& \leq \sum_{i=1}^{k} C_{i} \cdot \max _{|\alpha| \leq m_{i}}\left(\max _{|\beta| \leq|\alpha|}\left(\left\|\partial^{\beta} \phi\right\|_{L^{\infty}}\right) \cdot \sum_{|\beta| \leq|\alpha|}\binom{\alpha}{\beta}\left\|\partial^{\alpha-\beta} \chi_{i}\right\|_{L^{\infty}}\right) \leq \\
& \leq \sum_{i=1}^{k} C_{i} \cdot \max _{|\beta| \leq m_{i}}\left(\left\|\partial^{\beta} \phi\right\|_{L^{\infty}}\right) \cdot \max _{|\alpha| \leq m_{i}}\left(\sum_{|\beta| \leq|\alpha|}\binom{\alpha}{\beta}\left\|\partial^{\alpha-\beta} \chi_{i}\right\|_{L^{\infty}}\right) \leq
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max _{|\beta| \leq m:=\max \left(m_{i}\right)}\left(\left\|\partial^{\beta} \phi\right\|_{L^{\infty}}\right) \cdot \underbrace{\sum_{i=1}^{k} C_{i} \cdot \max _{|\alpha| \leq m_{i}}\left(\sum_{|\beta| \leq|\alpha|}\binom{\alpha}{\beta}\left\|\partial^{\alpha-\beta} \chi_{i}\right\|_{L^{\infty}}\right)}_{=: C} \leq \\
& \leq C \cdot \sum_{|\beta| \leq m}\left\|\partial^{\beta} \phi\right\|_{L^{\infty}}
\end{aligned}
$$

This means that P_{y} is a distribution on $\bigcup_{i=1}^{k} U_{x_{i}} \backslash\left\{x_{i}\right\}$. The support of P_{y} is just the point y :

$$
\begin{aligned}
\phi \in \mathcal{D}(U \backslash\{y\}) & \Rightarrow \operatorname{supp}(\phi) \subseteq U \backslash\{y\} \\
& \Rightarrow \operatorname{supp}(P \phi) \subseteq U \backslash\{y\} \\
& \Rightarrow P_{y}(\phi)=P \phi(y)=0
\end{aligned}
$$

By 1.3.6 we now can conclude that

$$
\begin{equation*}
P \phi(y)=P_{y}(\phi)=\sum_{|\alpha| \leq m} a_{\alpha}(y) \cdot \partial^{\alpha} \phi(y) \quad \forall \phi \in \mathcal{D}\left(\bigcup_{i=1}^{k} U_{x_{i}} \backslash\left\{x_{i}\right\}\right) \tag{2.6}
\end{equation*}
$$

where $a_{\alpha}(y) \in \mathbb{K}, m \in \mathbb{N}_{0}$. We check that $y \mapsto a_{\alpha}(y)$ is smooth: Let $\phi=y^{\mu}$ locally.

$$
P\left(y^{\mu}\right)(y)=\sum_{|\alpha| \leq m} a_{\alpha}(y) \cdot \partial^{\alpha}\left(y^{\mu}\right)(y)=\sum_{\alpha \leq \mu,|\alpha| \leq m} a_{\alpha}(y) \cdot \frac{\mu!}{(\mu-\alpha)!} \cdot y^{\mu-\alpha}
$$

For $\mu=0$ we get $a_{0}=P(1) \in C^{\infty}(U)\left(P: C^{\infty}(U) \rightarrow C^{\infty}(U)\right.$!). By induction over $|\mu|$ we get $a_{\alpha} \in C^{\infty}(U) \quad \forall|\alpha| \leq m$. Thereby we also see that both sides in (2.6) are smooth, from which we conclude that the formula has to hold for $\phi \in \mathcal{D}\left(\bigcup_{i=1}^{k} U_{x_{i}}\right)=\mathcal{D}(U)$ as well. Because of 2.1.11 and the fact that every smooth function is locally given by a smooth function with compact support we get

$$
P \phi(y)=\sum_{|\alpha| \leq m} a_{\alpha}(y) \cdot \partial^{\alpha} \phi(y) \quad \forall \phi \in C^{\infty}(U)
$$

Let us summarize what we have obtained:
2.1.15 Theorem: Let E, F be \mathbb{K}-vector bundles over the smooth manifold M and $P \in \mathbf{O p}(E, F)$. TFAE:
(i) P is a local operator
(ii) For every point $x \in M$ there exists a neighborhood U of x and a number $m \in \mathbb{N}_{0}$ such that $\left.P\right|_{U}$ is given by

$$
\sum_{|\alpha| \leq m} A_{\alpha} \cdot \partial^{\alpha}: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)
$$

(iii) For every point $x \in M$ there exists a neighborhood U of x and a number $m \in \mathbb{N}_{0}$ such that $\left.P\right|_{U} \in \mathbf{P D O}^{(m)}\left(\left.E\right|_{U},\left.F\right|_{U}\right)$

Proof. $(i) \Rightarrow(i i): 2.1 .14$
(ii) \Rightarrow (iii): 2.1.9
(iii) $\Rightarrow(i)$: We cover M by neighborhoods as in (iii) and choose a partition of unity $\left\{\chi_{\alpha} \mid \alpha \in A\right\}$ subordinate to this cover. By 2.1.12 $\left.P\right|_{U_{\alpha}}$ is a local operator for every $\alpha \in A$. Since $P \in \mathbf{O p}(E, F)$ we get

$$
\begin{aligned}
\operatorname{supp}(P u) & =\operatorname{supp}\left(P\left(\sum_{\alpha \in A} \chi_{\alpha} \cdot u\right)\right)= \\
& =\operatorname{supp}\left(\sum_{\alpha \in A} P\left(\chi_{\alpha} \cdot u\right)\right) \subseteq \\
& \subseteq \bigcup_{\alpha \in A} \underbrace{\operatorname{supp}\left(P\left(\chi_{\alpha} \cdot u\right)\right)}_{\subseteq \operatorname{supp}\left(\chi_{\alpha} \cdot u\right) \subseteq \operatorname{supp}(u)} \subseteq \\
& \subseteq \operatorname{supp}(u)
\end{aligned}
$$

2.2 The Principal Symbol

In this section we will give a definition for the principal symbol of a PDO, consider some examples and define ellipticity. For the main definition we need some preparatory statements:
2.2.1 Lemma: Let E and F be vector bundles over the smooth manifold M.

$$
\forall P \in \mathbf{P D O}^{(m)}(E, F) \quad \forall f, g \in C^{\infty}(M): \quad a d(f)(a d(g) P)=a d(g)(a d(f) P)
$$

Proof.

$$
\begin{aligned}
\operatorname{ad}(f)(a d(g) P) & =[[P, g], f]= \\
& =[P(g \cdot)-g \cdot P, f]= \\
& =(P(g \cdot f \cdot)-g \cdot P(f \cdot))-(f \cdot P(g \cdot)-f \cdot g \cdot P)= \\
& =(P(f \cdot g \cdot)-f \cdot P(g \cdot))-(g \cdot P(f \cdot)-g \cdot f \cdot P)= \\
& =[P(f \cdot)-f \cdot P, g]= \\
& =[[P, f], g]= \\
& =a d(g)(a d(f) P)
\end{aligned}
$$

2.2.2 Lemma: Let M be a smooth manifold of dimension n. For $p \in M, U$ an open neighborhood of p, we define $\mathcal{I}_{p}:=\left\{f \in C^{\infty}(U) \mid f(p)=0\right\}$ and $\mathcal{J}_{p}:=\left\{f \in C^{\infty}(U) \mid f(p)=0\right.$ and $\left.d f(p)=0\right\}$.
$\forall p \in M \quad \exists U \subseteq M$ open neighborhood of p, such that:

$$
\forall f \in \mathcal{J}_{p} \quad \exists g_{i}, h_{i} \in \mathcal{I}_{p}: \quad f=\sum_{i=1}^{n} g_{i} \cdot h_{i}
$$

Proof. Let (ψ, U) be a chart around p, with $\psi(p)=0 . \psi(U)$ is open in \mathbb{R}^{n} and without loss of generality convex (choose an open and convex subset V of $\psi(U)$, such that $p \in \psi^{-1}(V)$, then $\left(\psi, \psi^{-1}(V)\right)$ is again a chart around p, see 1.2.4), so we can use Taylor's Theorem on $\tilde{f}:=f \circ \psi^{-1}: \mathbb{R}^{n} \supseteq \psi(U) \rightarrow \mathbb{R}$:

$$
\begin{aligned}
\tilde{f}(x) & =\underbrace{\tilde{f}(0)}_{=f(p)=0}+\int_{0}^{1}\langle\operatorname{grad} \tilde{f}(t \cdot x), x\rangle d t= \\
& =\int_{0}^{1} \sum_{i=1}^{n}\left(\partial_{i} \tilde{f}\right)(t \cdot x) \cdot x_{i} d t= \\
& =\sum_{i=1}^{n} \underbrace{x_{i}}_{=: \tilde{g}_{i}(x)} \cdot \underbrace{\int_{0}^{1}\left(\partial_{i} \tilde{f}\right)(t \cdot x) d t}_{=: \tilde{h}_{i}(x)}=\sum_{i=1}^{n} \tilde{g}_{i}(x) \cdot \tilde{h}_{i}(x)
\end{aligned}
$$

So by composition with ψ we get:

$$
f=\tilde{f} \circ \psi=\sum_{i=1}^{n} \underbrace{\tilde{g}_{i} \circ \psi}_{=: g_{i}} \cdot \underbrace{\tilde{h}_{i} \circ \psi}_{=: h_{i}}=\sum_{i=1}^{n} g_{i} \cdot h_{i}
$$

Finally we prove that $g_{i}, h_{i} \in \mathcal{I}_{p}$:

$$
\begin{aligned}
& g_{i}(p)=\tilde{g}_{i}(0)=0 \\
& h_{i}(p)=\tilde{h}_{i}(0)=\int_{0}^{1} \underbrace{\left(\partial_{i} \tilde{f}\right)(0)}_{(=0} d t=0
\end{aligned}
$$

$(*) \quad\left(\partial_{i} \tilde{f}\right)(0)=T_{0} \tilde{f}\left(e_{i}\right)=T_{0}\left(f \circ \psi^{-1}\right)\left(e_{i}\right)=$

$$
\underset{(1.1)}{=} T_{\underbrace{\psi^{-1}(0)}_{=p}} f \circ T_{0} \psi^{-1}\left(e_{i}\right)=\underbrace{d f(p)}_{=0}\left(T_{0} \psi^{-1}\left(e_{i}\right)\right)=0
$$

\tilde{g} and \tilde{f} are smooth from $\psi(U)$ to \mathbb{R}, therefore f and g are smooth from U to \mathbb{R}.
2.2.3 Proposition: Let E, F be vector bundles over the manifold $M . P \in$ $\mathbf{P D O}^{(m)}(E, F), \quad p \in M, f_{i}, g_{i} \in C^{\infty}(M)(i=1, \ldots, m)$, such that $d f_{i}(p)=$ $d g_{i}(p) \quad \forall i$. Then:

$$
\left.\left\{a d\left(f_{1}\right) a d\left(f_{2}\right) \ldots a d\left(f_{m}\right) P\right\}\right|_{p}=\left.\left\{a d\left(g_{1}\right) a d\left(g_{2}\right) \ldots a d\left(g_{m}\right) P\right\}\right|_{p}
$$

Proof. Without loss of generality we can assume that $f_{i}(p)=g_{i}(p)$, because $a d(f)=a d(f)+\underbrace{a d(\text { const })}=a d(f+$ const $) .2 .2 .1$ tells us that it suffices to prove:

$$
\left.\left\{a d\left(f_{1}\right) a d\left(f_{2}\right) \ldots a d\left(f_{m}\right) P\right\}\right|_{p}=\left.\left\{a d\left(g_{1}\right) a d\left(f_{2}\right) \ldots a d\left(f_{m}\right) P\right\}\right|_{p}
$$

Let $Q:=\underbrace{a d\left(f_{2}\right) \ldots a d\left(f_{m}\right)}_{m-1} \underbrace{P}_{\in \mathbf{P D O}^{(m)}} \in \mathbf{P D O}^{(1)}$ and $\Phi:=f_{1}-g_{1}$. We see that $\Phi \in \mathcal{J}_{p}$, so by 2.2 .2 there exist $\alpha_{i}, \beta_{i} \in \mathcal{I}_{p}$, such that $\Phi=\sum_{i=1}^{n} \alpha_{i} \cdot \beta_{i}$ in a neighborhood of p.

$$
\begin{aligned}
\left.\{a d(\Phi) Q\}\right|_{p} & =\left.\sum_{i=1}^{n}\left\{a d\left(\alpha_{i} \cdot \beta_{i}\right) Q\right\}\right|_{p}= \\
& =\sum_{(2.1)}^{=}(\left.\left\{a d\left(\alpha_{i}\right) Q\right\}\right|_{p} \circ \underbrace{\beta_{i}(p)}_{=0} \cdot+\left.\underbrace{\alpha_{i}(p)}_{=0} \cdot\left\{a d\left(\beta_{i}\right) Q\right\}\right|_{p})=0
\end{aligned}
$$

So we conclude $\left.\left\{a d\left(f_{1}\right) Q\right\}\right|_{p}=\left.\left\{a d\left(g_{1}\right) Q\right\}\right|_{p}$.

This proposition shows that the linear map $\left.\left\{\frac{1}{m!} a d\left(f_{1}\right) \ldots a d\left(f_{m}\right) P\right\}\right|_{p}: E_{p} \rightarrow$ F_{p} only depends on the $\xi_{i}:=d f_{i}(p) \in T_{p} M^{*}$, so we can factorize by \sim, where $f \sim$ $g: \Leftrightarrow d f(p)=d g(p)$ and get the map $\sigma(P)\left(\xi_{1}, \ldots, \xi_{m}\right): E_{p} \rightarrow F_{p}$, which is linear and symmetric in all slots (see 2.2.1). σ is uniquely defined by $\sigma_{m}(P)(\xi):=$ $\sigma(P)(\xi, \ldots, \xi)$ via polarization:

$$
\begin{aligned}
\frac{1}{m!} \frac{\partial^{m}}{\partial t_{1} \ldots \partial t_{m}} & \sigma_{m}(P)\left(t_{1} \xi_{1}+\cdots+t_{m} \xi_{m}\right)= \\
& =\frac{1}{m!} \frac{\partial^{m}}{\partial t_{1} \ldots \partial t_{m}} \sigma(P)\left(t_{1} \xi_{1}+\cdots+t_{m} \xi_{m}, \ldots, t_{1} \xi_{1}+\cdots+t_{m} \xi_{m}\right)= \\
& =\frac{1}{m!} \frac{\partial^{m}}{\partial t_{1} \ldots \partial t_{m}} \sum_{i_{1}, \ldots, i_{m}=1}^{m} t_{i_{1}} \cdots t_{i_{m}} \cdot \sigma(P)\left(\xi_{i_{1}}, \ldots, \xi_{i_{m}}\right)= \\
& =\frac{1}{m!} \cdot m!\cdot \sigma(P)\left(\xi_{1}, \ldots, \xi_{m}\right)= \\
& =\sigma(P)\left(\xi_{1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

Now we can define the order and symbol of a PDO, notions which are very important for our further study of PDOs. In particular we can define ellipticity of operators via the symbol.
2.2.4 Definition: Let $P \in \mathbf{P D O}^{(m)}$. If $\sigma_{m}(P) \neq 0$ we say P has order m and write $P \in \mathbf{P D O}^{m}$. In this case $\sigma_{m}(P)$ is called the (principal) symbol of P.
2.2.5 Definition: Let E, F be vector bundles over M. A partial differential operator $P \in \mathbf{P D O}^{m}(E, F)$ is called elliptic if for every point $p \in M$ and every $\xi \in T_{p} M^{*}, \xi \neq 0$ the principal symbol is an isomorphism from E_{p} to F_{p}.
2.2.6 Example: In 2.1 .4 we showed for some operators that they are PDOs, by calculating multiple commutators. The principal symbol is per definition the highest nonvanishing multiple commutator, so we already calculated the principal symbols of the above operators and know which order they have:

1. The partial derivative $\partial_{i}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is a PDO of order 1 with principal symbol $\sigma_{1}\left(\partial_{i}\right)(\xi)=\xi_{i} \cdot: \mathbb{R} \rightarrow \mathbb{R}$.
2. The Euclidean Laplacian $\Delta: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is a PDO of order 2 with principal symbol $\sigma_{2}(\Delta)(\xi)=-|\xi|^{2} \cdot: \mathbb{R} \rightarrow \mathbb{R}$. We see that $\sigma_{2}(\Delta)(\xi) \neq$ $0 \forall \xi \neq 0$. Multiplication by a constant $\neq 0$ is an automorphism on \mathbb{R}, so Δ is elliptic.
3. The exterior derivative $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is a PDO of order 1 with principal symbol $\sigma_{1}(d)(\xi)=\xi \wedge: \Lambda^{k} T_{p} M \rightarrow \Lambda^{k+1} T_{p} M$.
4. $\nabla: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}\left(T M^{*} \otimes E\right)$ is a PDO of order 1 with principal symbol $\sigma_{1}(\nabla)(\xi)=\xi \otimes: E_{p} \rightarrow T_{p} M^{*} \otimes E_{p}$.
5. Let $X \in \mathfrak{X}(M) . \nabla_{X}: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(E)$ is a PDO of order 1 with principal symbol $\sigma_{1}\left(\nabla_{X}\right)(\xi)=\xi(X) \cdot: E_{p} \rightarrow E_{p}$.

For later purposes we want to prove the following proposition:
2.2.7 Proposition: Let E, F, G be vector bundles over the smooth manifold M. $P \in \mathbf{P D O}^{(m)}(E, F)$ and $Q \in \mathbf{P D O}^{(n)}(F, G)$. Then:

$$
\sigma_{m+n}(Q \circ P)=\sigma_{n}(Q) \circ \sigma_{m}(P)
$$

Proof. Let $f \in C^{\infty}(M)$, such that $d f(p)=\xi$. Then

$$
\begin{aligned}
& \sigma_{m+n}(Q \circ P)(\xi)=\left.\left\{\frac{1}{(m+n)!}(\operatorname{ad}(f))^{m+n}(Q \circ P)\right\}\right|_{p}= \\
& \quad=\left.\{\frac{1}{(m+n)!} \sum_{k=0}^{m+n}\binom{m+n}{k} \underbrace{\left((\operatorname{ad}(f))^{k} Q\right)}_{=0 \text { for } k>n} \circ \underbrace{\left((\operatorname{ad}(f))^{m+n-k} P\right)}_{=0 \text { for } k<n}\}\right|_{p}= \\
& \quad=\left.\left\{\frac{1}{(m+n)!} \cdot \frac{(m+n)!}{m!\cdot n!}\left((\operatorname{ad}(f))^{n} Q\right) \circ\left((a d(f))^{m} P\right)\right\}\right|_{p}= \\
& \quad=\left.\left.\left\{\frac{1}{n!}\left((a d(f))^{n} Q\right)\right\}\right|_{p} \circ\left\{\frac{1}{m!}\left((a d(f))^{m} P\right)\right\}\right|_{p}= \\
& \quad=\sigma_{n}(Q)(\xi) \circ \sigma_{m}(P)(\xi)
\end{aligned}
$$

2.2.8 Example: Let $P=\sum_{|\alpha| \leq m} A_{\alpha} \cdot \partial^{\alpha}: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)$. We calculate the principal symbol of P :
$A_{\alpha} \in \mathbf{P D O}^{0}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right)$ and $\partial_{i} \in \mathbf{P D O}^{1}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{p}\right)$ with principal symbol $\xi_{i} \cdot($ see 2.2 .6$)$, so by 2.2 .7 we get:

$$
\sigma_{m}(P)(\xi)=\sum_{|\alpha| \leq m} A_{\alpha} \cdot \sigma_{m}\left(\partial^{\alpha}\right)(\xi)=\sum_{|\alpha|=m} A_{\alpha} \cdot \xi^{\alpha}
$$

In 2.1.9 we saw that $P \in \mathbf{P D O}^{(m)}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right)$. Together with the above we have $P \in \mathbf{P D O}^{m}\left(\mathbb{R}^{n} \times \mathbb{K}^{p}, \mathbb{R}^{n} \times \mathbb{K}^{q}\right)$ and σ_{m} is the principal symbol of P.
2.2.9 Example: Let (M, g) be an oriented n-dimensional Riemannian manifold. We calculate the principal symbol for $\delta:=* d *: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$:

Let $f \in C^{\infty}(M)$, such that $d f(p)=\xi . *$ is $C^{\infty}(M)$-linear (see (1.8)) so we have
$\sigma_{1}(\delta)(\xi)=\sigma_{1}(* d *)(\xi)=\left.\{[* d *, f]\}\right|_{p}=\left.*\{[d, f]\}\right|_{p} *=* \sigma_{1}(d)(\xi) *{ }_{2 . \overline{2.6}} * \xi \wedge *$
and analogously $\sigma_{k}=0 \quad \forall k>1$ (see 2.2.6). So δ is a $1^{s t}$-order PDO. In what follows we will obtain an explicit formula for the principal symbol:
For notational simplicity we assume without loss of generality that $|\xi|=1$ and include it in a positively oriented (that means $\xi_{1} \wedge \cdots \wedge \xi_{n}=+d V_{g}(p)$) orthonormal basis $\left\{\xi=\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ of $T_{p} M^{*}$. First we calculate the symbol for basis vectors $\omega=\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}} \quad\left(i_{1}<i_{2}<\cdots<i_{k}\right)$ of $\Lambda^{k} T_{p} M^{*}$. The formula for arbitrary elements of $\Lambda^{k} T_{p} M^{*}$ is determined by this special case because of the linearity of σ_{1}. By (1.10) we get

$$
\begin{equation*}
*\left(\xi_{i_{1}} \wedge \cdots \wedge \xi_{i_{k}}\right)=\operatorname{sgn}(\sigma) \cdot \xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{n-k}} \tag{2.7}
\end{equation*}
$$

where $\left\{i_{1}, \ldots, i_{k}\right\} \cup\left\{j_{1}, \ldots, j_{n-k}\right\}=\{1, \ldots, n\}$ and

$$
\sigma=\left(\begin{array}{cccccc}
1 & \ldots & k & k+1 & \ldots & n \\
i_{1} & \ldots & i_{k} & j_{1} & \ldots & j_{n-k}
\end{array}\right) \in \Sigma_{n} .
$$

If $i_{1} \neq 1$ we have:

$$
\begin{aligned}
\sigma_{1}(\delta)(\xi) \omega & =* \underbrace{\xi}_{=\xi_{1}} \wedge * \omega= \\
& =*(\pm \underbrace{\xi_{1} \wedge \xi_{1}}_{=0} \wedge \cdots \wedge \widehat{\xi_{i_{1}}} \wedge \cdots \wedge \widehat{\xi_{i_{k}}} \wedge \cdots \wedge \xi_{n})= \\
& =0=(-1)^{(n-k)(k-1)} \underbrace{i_{\xi_{1}^{*}} \omega}_{\substack{=0 \\
(1.4)}}
\end{aligned}
$$

And if $i_{1}=1$ we get

$$
\begin{aligned}
\sigma_{1}(\delta)(\xi) \omega & =* \underbrace{\xi}_{=\xi_{1}} \wedge * \omega= \\
= & *\left(\xi_{1} \wedge\left(\operatorname{sgn}(\sigma) \cdot \xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{n-k}}\right)\right)= \\
& =\begin{array}{c}
(2.7) \\
= \\
(1.10) \\
= \\
\operatorname{li.4)} \\
\operatorname{sgn}(\mu) \cdot \operatorname{sgn}(\sigma) \cdot \xi_{i_{2}} \wedge \cdots \wedge \xi_{i_{k}} \\
\operatorname{sgn}(\mu) \cdot \operatorname{sgn}(\sigma) \cdot i_{\xi_{1}^{*}} \omega
\end{array}
\end{aligned}
$$

where

$$
\mu=\left(\begin{array}{ccccccc}
1 & 2 & \ldots & n-k+1 & n-k+2 & \ldots & n \\
\underbrace{1}_{=i_{1}} & j_{1} & \ldots & j_{n-k} & i_{2} & \ldots & i_{k}
\end{array}\right) \in \Sigma_{n} .
$$

We compare the two permutations σ and μ : In μ the $k-1$ indices i_{2}, \ldots, i_{k} are in the back, we can put them to the front if we make $n-k$ transpositions
of the form $(\mu(l) \mu(l-1))$, thereby constructing σ out of μ and $(n-k)(k-1)$ transpositions. For the signum we get

$$
\operatorname{sgn}(\mu)=(-1)^{(n-k)(k-1)} \cdot \operatorname{sgn}(\sigma)
$$

Altogether (by using the linearity of σ_{1} as mentioned above) we now conclude that

$$
\sigma_{1}(\delta)(\xi)=(-1)^{(n-k)(k-1)} i_{\xi^{*}}
$$

2.2.10 Example (Hodge-deRham operator and Hodge Laplacian): Let M be as above. We calculate the symbol of the Hodge-deRham operator $d+d^{*}$, where $d^{*}:=(-1)^{(n-k)(k-1)+1} \delta: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)(k \geq 1)$. d and δ are of order 1 (see 2.2.6 \& 2.2.9), therefore $d+d^{*}$ is of order ≤ 1.

$$
\sigma_{1}\left(d+d^{*}\right)(\xi)=\sigma_{1}(d)(\xi)+\sigma_{1}\left(d^{*}\right)(\xi) \underset{2.2 .6}{\overline{\&} 2.2 .9} \underbrace{\xi \wedge}_{=: e_{\xi}}-i_{\xi^{*}}
$$

Hence $d+d^{*}$ is of order 1. By 2.1.7 the Hodge Laplacian $\left(d+d^{*}\right)^{2}$ is a PDO of order ≤ 2. We calculate σ_{2} :

$$
\begin{aligned}
\sigma_{2}\left(\left(d+d^{*}\right)^{2}\right)(\xi) & = \\
& =\left(\sigma\left(d+d^{*}\right)(\xi)\right)^{2}= \\
& =\left(e_{\xi}-i_{\xi^{*}}\right)^{2}= \\
& =\underbrace{e_{\xi} \circ e_{\xi}}_{=0}-e_{\xi} \circ i_{\xi^{*}}-i_{\xi^{*}} \circ e_{\xi}+\underbrace{i_{\xi^{*}} \circ i_{\xi^{*}}}_{=0}= \\
& =-|\xi|_{g}^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (*) } \quad\left(e_{\xi} \circ i_{\xi^{*}}+i_{\xi^{*}} \circ e_{\xi}\right)\left(\omega_{1} \wedge \cdots \wedge \omega_{t}\right)= \\
& \begin{aligned}
&= e_{\xi}\left(\sum_{i=1}^{k}(-1)^{i+1} \omega_{i}\left(\xi^{*}\right) \cdot \omega_{1} \wedge \cdots \wedge \widehat{\omega}_{i} \wedge \cdots \wedge \omega_{t}\right)+i_{\xi^{*}}(\underbrace{\xi}_{=: \omega_{0}} \wedge \omega_{1} \wedge \cdots \wedge \omega_{t})= \\
&= \sum_{i=1}^{k}(-1)^{i+1} \omega_{i}\left(\xi^{*}\right) \cdot \underbrace{\xi}_{=: \omega_{0}} \wedge \omega_{1} \wedge \cdots \wedge \widehat{\omega}_{i} \wedge \cdots \wedge \omega_{t}+ \\
& \quad+\sum_{i=0}^{k}(-1)^{i} \omega_{i}\left(\xi^{*}\right) \cdot \omega_{0} \wedge \cdots \wedge \widehat{\omega}_{i} \wedge \cdots \wedge \omega_{t}= \\
&=g\left(\xi^{*}, \xi^{*}\right) \cdot \omega_{1} \wedge \cdots \wedge \omega_{t}+ \\
& \quad+\sum_{i=1}^{k}(\underbrace{(-1)^{i+1}+(-1)^{i}}_{=0}) \omega_{i}\left(\xi^{*}\right) \cdot \omega_{0} \wedge \cdots \wedge \widehat{\omega}_{i} \wedge \cdots \wedge \omega_{t}=
\end{aligned} \\
& =|\xi|_{g}^{2} \cdot \omega_{1} \wedge \cdots \wedge \omega_{t}
\end{aligned}
$$

We conclude that $\left(d+d^{*}\right)^{2}$ is a PDO of order 2 . Since $|\xi| \neq 0$ for all $\xi \neq 0$, $-|\xi|_{g}^{2}$. is an isomorphism, i.e. $\left(d+d^{*}\right)^{2}$ is elliptic.

If we compare the symbol of the euclidean Laplacian (2.2.6) with the symbol of the Hodge Laplacian from the last example, we see that the first is a special
case of the second, $-|\xi|^{2}$. is $-|\xi|_{g}^{2}$., where g is the standard metric on \mathbb{R}^{n}. Thus we define:
2.2.11 Definition: Let E be a smooth vector bundle over the Riemannian manifold (M, g). A second order PDO $P: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(E)$ is called generalized Laplacian if $\sigma_{2}(P)(\xi)=-|\xi|_{g}^{2}$.

We observe that generalized Laplacians are elliptic operators.
2.2.12 Example: Let (M, g) be an oriented Riemannian manifold. Every $X \in$ $\mathfrak{X}(M)=\Gamma^{\infty}(T M)$ defines an $\omega_{X} \in \Omega^{1}(M)=\Gamma^{\infty}\left(T M^{*}\right)$ by

$$
\omega_{X}(Y):=g(X, Y) \quad \forall Y \in \mathfrak{X}(M)
$$

The $\operatorname{map} \phi:=X \mapsto \omega_{X}: \Gamma^{\infty}(T M) \rightarrow \Gamma^{\infty}\left(T M^{*}\right)$ is $C^{\infty}(M)$-linear and therefore a PDO of order 0 . By 2.1.7 and 2.2 .10 we see that the divergence with respect to g, defined by

$$
\operatorname{div}_{g}(X):=-d^{*}\left(\omega_{X}\right)
$$

is a PDO from $\mathfrak{X}(M)$ to $C^{\infty}(M)$. The map ϕ is bijective ${ }^{3}$, so we may also assign a vector field $X_{\omega} \in \mathfrak{X}(M)$ to every $\omega \in \Omega^{1}(M)$ by

$$
X_{\omega}:=\phi^{-1}(\omega)
$$

ϕ^{-1} is also $C^{\infty}(M)$-linear:

$$
f \cdot \phi^{-1} \circ \phi(X)=f \cdot X=\phi^{-1} \circ \phi(f \cdot X)=\phi^{-1}(f \cdot \phi(X)) \quad \forall X \in \mathfrak{X}(M)
$$

ϕ is bijective, so we get $f \cdot \phi^{-1}(\omega)=\phi^{-1}(f \cdot \omega)$ for all $\omega \in \Omega^{1}(M)$. As above we conclude that the gradient with respect to g, defined by

$$
\operatorname{grad}_{g}(f):=X_{d f}
$$

is a PDO from $C^{\infty}(M)$ to $\mathfrak{X}(M)$. The Laplace-Beltrami operator is defined by

$$
\Delta_{g}:=-\operatorname{div}_{g} \circ \operatorname{grad}_{g}=\left(\left.d^{*}\right|_{\Omega^{1}(M)} \circ \phi\right) \circ\left(\left.\phi^{-1} \circ d\right|_{\Omega^{0}(M)}\right)=\left.d^{*} d\right|_{\Omega^{0}(M)}
$$

Δ_{g} is a generalized Laplacian:

$$
\begin{aligned}
\sigma_{2}\left(\Delta_{g}\right)(\xi) & =\sigma_{1}\left(\left.d^{*}\right|_{\Omega^{1}(M)}\right)(\xi) \circ \sigma_{1}\left(\left.d\right|_{\Omega^{1}(M)}\right)(\xi)= \\
& =-\left.\left.i_{\xi^{*}}\right|_{\Lambda^{1}\left(T_{p} M\right)} \circ e_{\xi}\right|_{\Lambda^{0}\left(T_{p} M\right)}= \\
& =-|\xi|_{g}^{2}
\end{aligned}
$$

2.3 Formal Adjoints

We will define formal adjoints, see that every PDO has a unique formal adjoint, define the notion of formally selfadjoint operators and look at some examples. In this section (M, g) is a smooth oriented Riemannian manifold and $d V_{g}$

[^18]denotes the corresponding metric volume as introduced in 1.2.44. (E_{i}, M, π_{i}) $(i=0,1,2, \ldots)$ are real or complex vector bundles and $\langle\cdot, \cdot\rangle_{i}$ are symmetric or Hermitian metrics ${ }^{4}$ on them. Such vector bundles are called Riemannian or Hermitian vector bundles. We deal with both cases simultaneously and write complex conjugates whenever they are needed for the complex case, which is no problem for the real valued case since $\bar{a}=a$ for $a \in \mathbb{R}$.
2.3.1 Definition: Let $P \in \mathbf{P D O}\left(E_{1}, E_{2}\right)$. The operator $Q \in \mathbf{P D O}\left(E_{2}, E_{1}\right)$ is called a formal adjoint of P if
$$
\int_{M}\langle P u, v\rangle_{2} d V_{g}=\int_{M}\langle u, Q v\rangle_{1} d V_{g} \quad \forall u \in \Gamma_{c}^{\infty}\left(E_{1}\right), v \in \Gamma_{c}^{\infty}\left(E_{2}\right)
$$
where Γ_{c}^{∞} are the smooth sections with compact support.
2.3.2 Lemma: Any $P \in \mathbf{P D O}\left(E_{1}, E_{2}\right)$ has at most one formal adjoint, which we will denote by P^{*} hereafter (if it exists).

Proof. Let $Q_{1}, Q_{2} \in \mathbf{P D O}\left(E_{2}, E_{1}\right)$ be two formal adjoints of $\mathrm{P}, Q:=Q_{1}-Q_{2} \in$ $\mathbf{P D O}\left(E_{2}, E_{1}\right)$. By definition and (sesqui-)linearity of metric and integral we get

$$
\begin{gathered}
\int_{M}\langle u, Q v\rangle_{1} d V_{g}=\int_{M}\left\langle u, Q_{1} v\right\rangle_{1} d V_{g}-\int_{M}\left\langle u, Q_{2} v\right\rangle_{1} d V_{g}= \\
=\int_{M}\langle P u, v\rangle_{2} d V_{g}-\int_{M}\langle P u, v\rangle_{2} d V_{g}=0 \\
\forall u \in \Gamma_{c}^{\infty}\left(E_{1}\right), v \in \Gamma_{c}^{\infty}\left(E_{2}\right)
\end{gathered}
$$

$\langle\cdot, \cdot\rangle_{1}$ is positive definite, which implies $Q v=0 \quad \forall v \in \Gamma_{c}^{\infty}\left(E_{2}\right)$. If $v \in \Gamma^{\infty}\left(E_{2}\right)$ does not necessarily have a compact support we can choose a partition of unity $\left(\chi_{\alpha}\right)_{\alpha \in A}$, such that every χ_{α} has compact support. Let U be an arbitrary relatively compact subset of $M .\left\{\chi_{\alpha}\right\}$ is locally finite, so we get

$$
\left.v\right|_{U}=\left.\sum_{\alpha \in B}\left(\chi_{\alpha} \cdot v\right)\right|_{U}
$$

where B is a finite subset of A. We use the locality of Q to conclude

$$
\left.(Q v)\right|_{U}=Q\left(\left.v\right|_{U}\right)=\sum_{\alpha \in B} Q\left(\left.\left(\chi_{\alpha} \cdot v\right)\right|_{U}\right)=\left.\sum_{\alpha \in B} \underbrace{Q\left(\chi_{\alpha} \cdot v\right)}_{=0}\right|_{U}=0
$$

U was arbitrary, so we get

$$
Q v=0 \quad \forall v \in \Gamma^{\infty}\left(E_{2}\right)
$$

Which means that $Q=0$, i.e. $Q_{1}=Q_{2}$.

[^19]2.3.3 Proposition: Let $P \in \mathbf{P D O}\left(E_{0}, E_{1}\right), Q \in \mathbf{P D O}\left(E_{1}, E_{2}\right)$ with formal adjoints P^{*} and Q^{*}, respectively. Then $Q \circ P$ has a formal adjoint given by
$$
(Q \circ P)^{*}=P^{*} \circ Q^{*}
$$

Proof. Let $u \in \Gamma_{c}^{\infty}\left(E_{0}\right)$ and $v \in \Gamma_{c}^{\infty}\left(E_{2}\right)$ be arbitrary. Then

$$
\int_{M}\langle Q P u, v\rangle d V_{g}=\int_{M}\left\langle P u, Q^{*} v\right\rangle d V_{g}=\int_{M}\left\langle u, P^{*} Q^{*} v\right\rangle d V_{g}
$$

Now we are going to prove the existence of formal adjoints. First we want to look into the following special case:
2.3.4 Lemma: Let $X=X^{i} \partial_{i} \in \mathfrak{X}\left(\mathbb{R}^{n}\right),\langle\cdot, \cdot\rangle$ the standard symmetric resp. Hermitian metric on \mathbb{K}^{s} defined by $\left.\langle u(p), v(p)\rangle\right|_{p}=\sum_{1 \leq i \leq s} u_{i}(p) \cdot \overline{v_{i}(p)}(u, v \in$ $\Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}_{\tilde{s}}^{s}\right)$). The PDO $\nabla_{X}: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{s}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \overline{\mathbb{K}}^{s}\right)$ given by $\nabla_{X}(u)=$ $X^{i} \tilde{\partial}_{i}(u)$ ($\tilde{\partial}_{i}$ as in 2.1.9) has the formal adjoint

$$
\nabla_{X}^{*}=-\nabla_{X}-\operatorname{div}_{g}(X)
$$

where divg (X) is the divergence of X with respect to the Riemannian metric g on \mathbb{R}^{n} (see 2.2.12).

Proof. ∇_{X} is a PDO by 2.1.9. Let $u, v \in \Gamma_{c}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{s}\right)$.

$$
\langle u, v\rangle(p)=\sum_{1 \leq i, j \leq s} u_{i}(p) \cdot \overline{v_{j}(p)} .
$$

By the product rule for ∂_{i} we get

$$
X(\langle u, v\rangle)=\left\langle\nabla_{X} u, v\right\rangle+\left\langle u, \nabla_{X} v\right\rangle
$$

u and v have compact support, so there exists a constant $R \in \mathbb{R}^{n}$ such that $\operatorname{supp}(u), \operatorname{supp}(v) \in B_{R}:=\left\{x \in \mathbb{R}^{n}:|x|<R\right\}$. We deduce

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\left\langle\nabla_{X} u, v\right\rangle d V_{g} & =\int_{\bar{B}_{R}}\left\langle\nabla_{X} u, v\right\rangle d V_{g}= \\
& =\int_{\bar{B}_{R}} X(\langle u, v\rangle) d V_{g}-\int_{\bar{B}_{R}}\left\langle u, \nabla_{X} v\right\rangle d V_{g} \tag{2.8}
\end{align*}
$$

The second term on the right hand side is already in the form $\int\langle u, P v\rangle d V_{g}$, as we would like it. We try to recast the first term into such a form as well $\left(f:=\langle u, v\rangle, \omega_{X}\right.$ as in 2.2.12):

$$
\begin{aligned}
\int_{\bar{B}_{R}} X(f) d V_{g} & \stackrel{=}{=} \int_{\bar{B}_{R}} d f(X) d V_{g}= \\
& =\int_{(1.2)} g_{1}\left(d f, \omega_{X}\right) d V_{g}= \\
& =\int_{\bar{B}_{R}} d f \wedge * \omega_{X}=
\end{aligned}
$$

$$
\begin{align*}
& \left(\underset{(1.5)}{=} \int_{\bar{B}_{R}} d\left(f \wedge * \omega_{X}\right)-(-1)^{0} \int_{\bar{B}_{R}} f \wedge d\left(* \omega_{X}\right)=\right. \\
& (1.7) \&(1.8) \underbrace{\int_{\partial B_{R}} \iota^{*}\left(f \wedge * \omega_{X}\right)-\int_{\bar{B}_{R}} g_{0}(f, \underbrace{\underbrace{(-1)^{n(n-n)}}_{(1=11)}}_{=\delta=(-1)^{(n-1)(1-1)+1} d^{*}} *^{-1}}_{=0, \text { since }\left.f\right|_{\partial B_{R}=0}} d *\left(\omega_{X}\right)) d V_{g}= \\
& =-\int_{\bar{B}_{R}} f \cdot\left(-d^{*} \omega_{X}\right) d V_{g}= \\
& 2.2 .12 \int_{\bar{B}_{R}}\langle u, v\rangle\left(-d i v_{g}(X)\right) d V_{g}= \\
& \operatorname{div}_{g}(X) \in C^{\infty}(\mathbb{R}) \int_{\bar{B}_{R}}\left\langle u,-\operatorname{div}_{g}(X) \cdot v\right\rangle d V_{g} \tag{2.9}
\end{align*}
$$

We insert (2.9) into (2.8) and get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left\langle\nabla_{X} u, v\right\rangle d V_{g} & =\int_{\bar{B}_{R}}\left\langle u,\left(-\nabla_{X}-d i v_{g}(X) \cdot\right) v\right\rangle d V_{g}= \\
& =\int_{\mathbb{R}^{n}}\left\langle u,\left(-\nabla_{X}-\operatorname{div}_{g}(X) \cdot\right) v\right\rangle d V_{g}
\end{aligned}
$$

Where we used that $\operatorname{supp}(u)$ and $\operatorname{supp}(v) \subset \bar{B}_{R}$ and ∇_{X} and $\operatorname{div}_{g}(X)$. are local operators, to substitute \bar{B}_{R} by \mathbb{R}^{n}. So by uniqueness of the formal adjoint (see 2.3.2) we have proved that $-\nabla_{X}-d i v_{g}(X)$. is the formal adjoint of ∇_{X}.

For the general case we need the following Definition and Lemma:
2.3.5 Definition: Let $(E,\langle\cdot, \cdot\rangle)$ be a Riemannian or Hermitian vector bundle over the manifold M and U an open subset of M. A selection of smooth sections $\left\{e_{1}, \ldots, e_{t}\right\}, e_{i} \in \Gamma^{\infty}\left(\left.E\right|_{U}\right)$ is called E-frame ${ }^{5}$, on U if $\left\{e_{1}(p), \ldots, e_{t}(p)\right\}$ is an orthonormal basis of E_{p} with respect to the scalar product $\left.\langle\cdot, \cdot\rangle\right|_{p}$ on E_{p} for every $p \in U$.
2.3.6 Lemma: Let $(E,\langle\cdot, \cdot\rangle)$ be a Riemannian or Hermitian vector bundle over the manifold M. For every point $p \in M$ there exists a neighborhood U which admits an E-frame.

Proof. Let p be an arbitrary point in M. By definition of a \mathbb{K}-vector bundle there exist an open neighborhood $U^{(p)}$ of p and a diffeomorphism $\Phi: \pi^{-1}\left(U^{(p)}\right) \rightarrow$ $U^{(p)} \times \mathbb{K}^{t}$, such that $\pi=p r_{1} \circ \Phi$. The plan is to pick an orthonormal basis in p, push it to the trivialization, copy the vectors from $\{p\} \times \mathbb{K}^{t}$ to $\{q\} \times \mathbb{K}^{t}\left(q \in U^{(p)}\right)$ and pull them back to the vector bundle $\left.E\right|_{U^{(p)}}$. After a little manipulation using the Gram-Schmidt process we will create an E-frame on $U^{(p)}$ out of them:
We choose an orthonormal basis $\left\{e_{1, p}, \ldots, e_{t, p}\right\}$ of E_{p} and define the sections $\tilde{e}_{1}, \ldots, \tilde{e}_{t}$ by

$$
\tilde{e}_{i}(q):=\Phi^{-1}\left(q, p r_{2} \circ \Phi\left(e_{i, p}\right)\right) \quad \forall 1 \leq i \leq t
$$

[^20]The map $q \mapsto \tilde{e}_{i}(q)$ is a composition of smooth functions and thereby smooth. Thus $\tilde{e}_{1}, \ldots, \tilde{e}_{t} \in \Gamma^{\infty}\left(\left.E\right|_{U(p)}\right)$. Moreover

$$
\tilde{e}_{i}(p)=\Phi^{-1}(\underbrace{p}_{=\pi\left(e_{i, p}\right)=p r_{1} \circ \Phi\left(e_{i, p}\right)}, p r_{2} \circ \Phi\left(e_{i, p}\right))=\Phi^{-1} \circ \Phi\left(e_{i, p}\right)=e_{i, p}
$$

This implies the linear independence of $\tilde{e}_{1}(p), \ldots, \tilde{e}_{t}(p)$ and by continuity of $q \mapsto \tilde{e}_{i}(q)$ we get that $\tilde{e}_{1}(q), \ldots, \tilde{e}_{t}(q)$ are linearly independent for $q \in U$, where U is a sufficiently small open subset of $U^{(p)}$ containing p. We restrict the \tilde{e}_{i} 's to U, use the Gram-Schmidt process for $\tilde{e}_{i}(q)$ (separately in each q) to get orthonormal vectors $e_{i}(q)$ and observe that the Gram-Schmidt process maps $\tilde{e}_{i}(q)$ smoothly to $e_{i}(q)$, so the composition $q \mapsto \tilde{e}_{i}(q) \mapsto e_{i}(q)$ is smooth as well. Thus $\left\{e_{1}, \ldots, e_{t}\right\}$ is an E-frame on U.

By now we have everything prepared to prove the existence of a formal adjoint in the general case:
2.3.7 Theorem: Let $\left(E_{i},\langle\cdot, \cdot\rangle_{i}\right)(i=1,2)$ be two arbitrary Riemannian or Hermitian vector bundles over the n-dimensional oriented Riemannian manifold (M, g). For Every $P \in \mathbf{P D O}\left(E_{1}, E_{2}\right)$ exists a unique formal adjoint $P^{*} \in \mathbf{P D O}\left(E_{2}, E_{1}\right)$.

Proof. Uniqueness holds by 2.3.2. We choose an open covering $\mathcal{U}:=\left\{U_{\alpha} \mid \alpha \in\right.$ $A\}$ of M such that every U_{α} is trivializing (cf. the proof of 2.1.14) and admits an E-Frame. Thereby $\left.E_{i}\right|_{U_{\alpha}}(i=1,2)$ are trivial vector bundles and P is given by a local formula as in 2.1.14 inside of every U_{α}. Now we use a partition of unity $\left\{\chi_{\alpha} \mid \alpha \in A\right\}$, subordinate to \mathcal{U} to localize P :

$$
P_{\alpha}:=\chi_{\alpha} \cdot P
$$

If we find formal adjoints to all P_{α}, we get a formal adjoint of P by

$$
\begin{equation*}
P^{*}:=\sum_{\alpha \in A} P_{\alpha}^{*} \tag{2.10}
\end{equation*}
$$

We choose an E-frame $\left\{e_{1}, \ldots, e_{s}\right\}$ on U_{α} and get

$$
\left.\langle u(p), v(p)\rangle\right|_{p}=\sum_{1 \leq i, j \leq s} u_{i}(p) \cdot \overline{v_{j}(p)} \underbrace{\left.\left\langle e_{i}(p), e_{j}(p)\right\rangle\right|_{p}}_{=\delta_{i j}}=\sum_{1 \leq i \leq s} u_{i}(p) \cdot \overline{v_{i}(p)}
$$

for all $p \in U_{\alpha}$. By 2.3.3 we now have

$$
\begin{equation*}
P_{\alpha}^{*}=\sum_{\beta}\left(\partial^{\beta}\right)^{*} \circ A_{\beta}^{*} \cdot: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{r}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{K}^{s}\right) \tag{2.11}
\end{equation*}
$$

where $A_{\beta} \in C^{\infty}\left(\mathbb{R}^{n}, M_{r, s}(\mathbb{K})\right)$. The formal adjoint of A_{β} is clearly \bar{A}_{β}^{t}, the pointwise conjugate transpose. Lemma 2.3.4 shows that ∂^{β} has a formal adjoint. Thus by using (2.10) and (2.11) the theorem is proved.
2.3.8 Proposition: Let E, F be two Riemannian or Hermitian vector bundles over the oriented Riemannian manifold $M, P \in \mathbf{P D O}^{m}(E, F)$. Then:
(i) $P^{*} \in \mathbf{P D O}^{m}(F, E)$
(ii) $\sigma_{m}\left(P^{*}\right)=(-1)^{m} \sigma_{m}(P)^{*}$, where $\sigma_{m}(P)^{*}$ denotes the conjugate transpose of the linear map $\sigma_{m}(P): E_{p} \rightarrow F_{p}$

Proof. Let $f_{i} \in C^{\infty}(M)(i=0, \ldots, m)$. Then

$$
\left(a d\left(f_{0}\right) P\right)^{*}=\left(P \circ f_{0}-f_{0} \circ P\right)_{2.3 .3}^{*} f_{0} \circ P^{*}-P^{*} \circ f_{0}=-a d\left(f_{0}\right) P^{*}
$$

Recursively we get

$$
\begin{equation*}
a d\left(f_{0}\right) \cdots a d\left(f_{m-1}\right) P^{*}=(-1)^{m}\left(a d\left(f_{0}\right) \cdots a d\left(f_{m-1}\right) P\right)^{*} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ad}\left(f_{0}\right) \cdots a d\left(f_{m}\right) P^{*}=(-1)^{m+1}\left(a d\left(f_{0}\right) \cdots a d\left(f_{m}\right) P\right)^{*} \tag{2.13}
\end{equation*}
$$

If the right hand side of (2.12) or (2.13) is zero, so is the left hand side. From this, (i) follows. (2.12) at a point $p \in M$ multiplied by $\frac{1}{m!}$ is exactly (ii). P is of order m, so $\left(a d\left(f_{0}\right) \cdots a d\left(f_{m-1}\right) P\right): \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(F)$ is a $C^{\infty}(M)$-linear map. In the proof of 2.3.4 we saw that the formal adjoint of such a map is the pointwise conjugate transpose. We restrict this map to p and multiply it by $\frac{1}{m!}$ to get the symbol, which proves the last claim.
2.3.9 Definition: Let E be a Riemannian or Hermitian vector bundle over the oriented Riemannian manifold M. An operator $P \in \mathbf{P D O}(E, E)$ is called formally selfadjoint if $P=P^{*}$.

We will see that formally selfadjoint operators have many nice properties, but first we want to give a few examples of formally selfadjoint operators.
2.3.10 Example: Let (M, g) be an oriented Riemannian manifold. Similar to the calculations in the proof of 2.3 .4 we show that the formal adjoint of d (with respect to the metric g_{k} induced on $\Lambda^{k}\left(T M^{*}\right)$ by g, see 1.2 .44$)$ is d^{*} from 2.2.10 (hence the notation):
Let $\alpha \in \Omega_{c}^{k}(M)$ and $\beta \in \Omega_{c}^{k+1}(M)$.

$$
\begin{aligned}
& \int_{M} g_{k+1}(d \alpha, \beta) d V_{g}= \\
& \quad=\int_{(1.8)} d \alpha \wedge * \beta= \\
& \quad \underset{(1.5)}{=} \int_{M} d(\alpha \wedge * \beta)-(-1)^{k} \int_{M} \alpha \wedge d(* \beta)=
\end{aligned}
$$

$$
\begin{aligned}
& (1.7) \stackrel{\overline{\bar{*}}(1.8)}{ } \underbrace{\int_{M} \iota^{*}(\alpha \wedge * \beta)}_{=0, \operatorname{since} \operatorname{supp}(\alpha) \text { and } \operatorname{supp}(\beta))}+ \\
& +(-1)^{k-1} \int_{M} g_{k}(\alpha, \underbrace{=_{(-1)^{(n-k)(n-(n-k))} *}^{*^{-1}}}_{(1.11)} d * \beta) d V_{g}= \\
& =(-1)^{k-1+(n-k) k} \int_{M} g_{k}(\alpha, \underbrace{* d *}_{=\delta=(-1)^{(n-(k+1))((k+1)-1)+1} d^{*}} \beta) d V_{g}= \\
& =(-1)^{k-1+(n-k) k+(n-k-1) k+1} \int_{M} g_{k}\left(\alpha, d^{*} \beta\right) d V_{g}
\end{aligned}
$$

Because of

$$
\begin{aligned}
k-1+(n-k) k+(n-k-1) k+1 & =k(1+n-k+n-k-1)= \\
& =2 k(n-k) \equiv 0(\bmod 2)
\end{aligned}
$$

we may conclude

$$
\int_{M} g_{k+1}(d \alpha, \beta) d V_{g}=\int_{M} g_{k}\left(\alpha, d^{*} \beta\right) d V_{g}
$$

Therefore the Hodge-deRham operator $d+d^{*}$ and the Laplace-Beltrami operator $\Delta_{g}=\left.d^{*} d\right|_{\Omega^{0}(M)}$ are formally selfadjoint:

$$
\left(d+d^{*}\right)^{*}=d^{*}+d=d+d^{*} \quad \text { and } \quad\left(d^{*} d\right)^{*}=d^{*} d^{* *}=d^{*} d
$$

and so is the Hodge Laplacian $\left(d+d^{*}\right)^{2}$ by 2.3.3.
2.3.11 Example: Let E be a Riemannian or Hermitian vector bundle over the oriented Riemannian manifold M. For an arbitrary connection ∇ we define the Bochner Laplacian by

$$
\Delta_{\nabla}:=\nabla^{*} \nabla
$$

Δ_{∇} is a generalized Laplacian (and therefore elliptic):
∇ is an order 1 PDO (see 2.1.4) and by 2.3 .8 so is ∇^{*}, therefore Δ_{∇} is of order ≤ 2 (see 2.1.7). The symbol of ∇ is $\xi \otimes$ (see 2.2.6). By 2.3 .8 we have

$$
\begin{equation*}
\sigma_{1}\left(\nabla^{*}\right)=-\sigma_{1}(\nabla)^{*} \tag{2.14}
\end{equation*}
$$

where $\sigma_{1}(\nabla)^{*}$ is the usual (not formally!) adjoint operator of $\sigma_{1}(\nabla)$ with respect to the metrics on E_{p} and $T_{p} M^{*} \otimes E_{p}$. We calculate $\sigma_{1}(\nabla)^{*}$:
Let $\omega \in T_{p} M^{*}, s, t \in E_{p}$ be arbitrary.

$$
\begin{aligned}
\left\langle\left(\sigma_{1}(\nabla)(\xi)\right)^{*}(\omega \otimes s), t\right\rangle_{E_{p}} & =\left\langle\omega \otimes s, \sigma_{1}(\nabla)(\xi) t\right\rangle_{T_{p} M^{*} \otimes E_{p}}= \\
& =\langle\omega \otimes s, \xi \otimes t\rangle_{T_{p} M^{*} \otimes E_{p}}= \\
& =g_{1}(\omega, \xi) \cdot\langle s, t\rangle_{E_{p}}= \\
& =\omega\left(\xi^{*}\right) \cdot\langle s, t\rangle_{E_{p}}
\end{aligned}
$$

We use (2.14) and get

$$
\sigma_{1}\left(\nabla^{*}\right)(\xi)(\omega \otimes s)=-\omega\left(\xi^{*}\right) \cdot s
$$

By 2.2.7 we conclude

$$
\begin{aligned}
\sigma_{2}\left(\Delta_{\nabla}\right)(\xi)(s) & =\sigma_{1}\left(\nabla^{*}\right)(\xi) \circ \sigma_{1}(\nabla)(\xi)(s) \\
& =\sigma_{1}\left(\nabla^{*}\right)(\xi)(\xi \otimes s) \\
& =-\xi\left(\xi^{*}\right) \cdot s \\
& =-|\xi|_{g}^{2} \cdot s \quad \forall s \in E_{p}
\end{aligned}
$$

Δ_{∇} is formally selfadjoint:

$$
\Delta_{\nabla}^{*}=\left(\nabla^{*} \nabla\right)_{2.3 .3}^{\overline{=}} \nabla^{*} \underbrace{\nabla^{* *}}_{=\nabla}=\Delta_{\nabla}
$$

In chapter 3 we will see that formally selfadjoint, elliptic operators (like the Hodge Laplacian or the Bochner Laplacian) have very nice spectral properties.

Chapter 3

Spectral Theory for elliptic Operators

This chapter is dedicated to the proof of the spectral theorem for formally selfadjoint elliptic operators. Along the way we define many important notions, like L^{2} and the Sobolev spaces on manifolds and analytical realizations of PDOs. In addition we prove the essentiell tools of elliptic regularity, in particular Weyl's Lemma and the Poincaré inequality. Applications of the Spectral Theory can be found in chapter 4.
Throughout the whole chapter (M, g) is an oriented, Riemannian manifold, $d V_{g}$ will denote the metric volume defined by g and E and F are complex vector bundles over M with Hermitian metrics $\langle\cdot, \cdot\rangle_{E}$ and $\langle\cdot, \cdot\rangle_{F}$, respectively on them (the real-valued case is analogous with symmetric metrics instead of Hermitian).

Many concepts in this chapter are from [Nic07], section 10.2-10.4. For the proofs we use ideas from [AF03], [BC09], [Fol76] and [GT83] as well.

3.1 Analytical Realizations

The PDOs from chapter 2 are defined only on smooth sections. In this section we extend them to L^{2}-sections (which form a Hilbert space) by their analytical realizations. First we have to define what L^{2}-sections are, for which we need the following proposition:
3.1.1 Proposition: $\left(\Gamma_{c}^{\infty}(E),\langle\cdot, \cdot\rangle\right)$ where $\langle\psi, \phi\rangle:=\int_{M}\langle\psi, \phi\rangle_{E} d V_{g}$ is a PreHilbert space.

Proof. $\Gamma_{c}^{\infty}(E)$ is a \mathbb{C}-vector space with respect to the pointwise addition of sections $(\phi+\psi:=x \mapsto(x, \phi(x)+\psi(x)))$. We have to prove that $\langle\cdot, \cdot\rangle$ is a scalar product:
Sesquilinearity and hermiticity of $\langle\cdot, \cdot\rangle$ follow immediatly from the respective
properties of $\langle\cdot, \cdot\rangle_{E} \cdot\langle\cdot, \cdot\rangle$ is also positive definite:

$$
\langle\psi, \psi\rangle=\int_{M} \underbrace{\langle\psi, \psi\rangle_{E}}_{\geq 0} d V_{g} \geq 0
$$

and from

$$
0=\langle\psi, \psi\rangle=\int_{M} \underbrace{\langle\psi, \psi\rangle_{E}}_{\geq 0} d V_{g}
$$

it follows that $\langle\psi, \psi\rangle_{E}=0$ almost everywhere. The positive definitness of $\langle\cdot, \cdot\rangle_{E}$ gives $\psi=0$ almost everywhere, thus everywhere by smoothness of ψ.
3.1.2 Definition: $L^{2}(E)$ is defined as the Hilbert space which is the completion of $\Gamma_{c}^{\infty}(E)$ with respect to $\langle\cdot, \cdot\rangle .{ }^{1}$

In the next example we see that in general it is not possible to find an extension of a PDO $P: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(F)$ that maps the whole of $L^{2}(E)$ to $L^{2}(F)$:
3.1.3 Example: Let $M=] 0,1\left[\right.$ with the Riemannian metric $g:\left(v_{1}, v_{2}\right) \mapsto v_{1} \cdot v_{2}$ $\left(v_{1}, v_{2} \in \mathfrak{X}(M)=C^{\infty}(] 0,1[)\right.$; thereby we get $\left.\left.d V_{g}=d x\right), E=\right] 0,1[\times \mathbb{R}$ a vector bundle with the same metric $\langle\cdot, \cdot\rangle=g$ and $P=\frac{d}{d x} \in \mathbf{P D O}(E, E)$. Let $u=$ $\left(x, x^{-\frac{1}{3}}\right) \in \Gamma^{\infty}(E) . u$ is in $L^{2}(E):$

$$
\int_{] 0,1[}\langle u, u\rangle d x=\int_{] 0,1[}\left(x^{-\frac{1}{3}}\right)^{2} d x=\int_{] 0,1[} x^{-\frac{2}{3}} d x=\left.3 x^{\frac{1}{3}}\right|_{0} ^{1}=3
$$

But $u^{\prime}=\frac{d}{d x} u=\left(x,-\frac{1}{3} x^{-\frac{4}{3}}\right)$ is not in $L^{2}(E)$:

$$
\begin{aligned}
\int_{] 0,1[}\left\langle u^{\prime}, u^{\prime}\right\rangle d x & =\int_{] 0,1[}\left(-\frac{1}{3} x^{-\frac{4}{3}}\right)^{2} d x=\int_{] 0,1[} \frac{1}{9} x^{-\frac{8}{3}} d x= \\
& =-\left.\frac{1}{15} x^{-\frac{5}{3}}\right|_{0} ^{1}=\infty
\end{aligned}
$$

Thus we are led to define the Sobolev spaces. We will see that these spaces are exactly the right domain to define the extensions of PDOs on. First we observe:

1. A connection ∇^{E} on the vector bundle E is a PDO of order 1 from $\Gamma^{\infty}(E)$ to $\Gamma^{\infty}\left(T M^{*} \otimes E\right)$ (see 2.2.6). $\quad \nabla^{E}$ induces a connection $\nabla^{T M^{*} \otimes E}$ from $\Gamma^{\infty}\left(T M^{*} \otimes E\right)$ to $\Gamma^{\infty}\left(T M^{*} \otimes T M^{*} \otimes E\right)$ by definition on splitting tensors:

$$
\nabla^{T M^{*} \otimes E}(\omega \otimes s):=\left(\nabla^{T M^{*}} \omega\right) \otimes s+\omega \otimes\left(\nabla^{E} s\right)
$$

for all $\omega \in \Omega^{1}(M)$ and $s \in \Gamma^{\infty}(E)$, where $\nabla^{T M^{*}}$ is the dual connection of the Levi-Civita connection on M, i.e.

$$
\left(\nabla_{X}^{T M^{*}} \omega\right)(Y):=X(\omega(Y))-\omega\left(\nabla_{X}^{T M} Y\right) \quad \forall Y \in \mathfrak{X}(M)
$$

[^21]where $X \in \mathfrak{X}(M), \omega \in \Omega^{1}(M)$ and $\nabla^{T M}$ is the Levi-Civita connection on M. $\nabla^{T M^{*}} \otimes E$ also induces a connection $\nabla^{T M^{*} \otimes T M^{*} \otimes E}$ from $\Gamma^{\infty}\left(T M^{*} \otimes\right.$ $\left.T M^{*} \otimes E\right)$ to $\Gamma^{\infty}\left(T M^{*} \otimes T M^{*} \otimes T M^{*} \otimes E\right)$ by an analogous formula. If we continue recursively we obtain connections $\nabla^{T M^{* \otimes k} \otimes E}$ from $\Gamma^{\infty}\left(T M^{* \otimes k} \otimes\right.$ $E)$ to $\Gamma^{\infty}\left(T M^{* \otimes k+1} \otimes E\right)(k=0,1,2, \ldots)$. We denote all these connections by ∇. By 2.1 .7 the composition
$$
\nabla^{m}:=\nabla^{T M^{* \otimes m-1} \otimes E} \circ \cdots \circ \nabla^{E}
$$
is a PDO of order $\leq m$ from $\Gamma^{\infty}(E)$ to $\Gamma^{\infty}\left(T M^{* \otimes m} \otimes E\right)$.
2. A metric $\langle\cdot, \cdot\rangle_{E}$ on E induces a metric on $T M^{* \otimes k} \otimes E$ by defining on splitting tensors:
\[

$$
\begin{aligned}
\left\langle\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes u, \mu_{1} \otimes \cdots \otimes\right. & \left.\mu_{k} \otimes v\right\rangle_{T M^{* \otimes k} \otimes E}:= \\
& =g_{1}\left(\omega_{1}, \mu_{1}\right) \cdots g_{1}\left(\omega_{k}, \mu_{k}\right) \cdot\langle w, v\rangle_{E}
\end{aligned}
$$
\]

where g_{1} is the metric dual to g as introduced in (1.9).
3.1.4 Definition: Let $u \in L^{2}(E), v \in L^{2}(F)$ and $P \in \mathbf{P D O}(E, F)$. We say that $P u=v$ weakly (v is called the weak derivative of u with respect to P) if

$$
\int_{M}\langle v, \phi\rangle_{F} d V_{g}=\int_{M}\left\langle u, P^{*} \phi\right\rangle_{E} d V_{g} \quad \forall \phi \in \Gamma_{c}^{\infty}(F)
$$

Let ∇ be an arbitrary connection on E. We define the Sobolev space of order $m \in \mathbb{N}_{0}$ as

$$
\begin{aligned}
& H^{m}(E):= \\
& \quad=\left\{u \in L^{2}(E) \mid \forall j=1, \ldots, m \exists v_{j} \in L^{2}\left(T M^{* \otimes j} \otimes E\right): \nabla^{j} u=v_{j} \text { weakly }\right\}
\end{aligned}
$$

and set

$$
\langle u, v\rangle_{m}:=\langle u, v\rangle_{m}^{\nabla}:=\sum_{j=0}^{m}\left\langle\nabla^{j} u, \nabla^{j} v\right\rangle_{L^{2}} .
$$

and

$$
\|u\|_{m}:=\|u\|_{m}^{\nabla}:=\sqrt{\langle u, u\rangle_{m}}
$$

In addition we define the local Sobolev space of order m as

$$
H_{\mathrm{loc}}^{m}(E):=\left\{u \in L^{2}(E) \mid \forall \phi \in C_{c}^{\infty}(M): \phi \cdot u \in H^{m}(E)\right\}
$$

3.1.5 Remark: 1. $H^{m}(E)$ depends on the choice of the metrics on M and E and the connection ∇. If M is non-compact this dependence actually matters.
2. For $t \leq s$ it follows that $H^{t}(E)$ embeds into $H^{s}(E)$.
3. $H^{m}(E) \subseteq H_{\mathrm{loc}}^{m}(E)$.
3.1.6 Proposition: There exists at most one weak derivative with respect to a given $P D O P$.

Proof. Let $v, w \in L^{2}(F)$ such that $P u=v$ weakly and $P u=w$ weakly. Then

$$
\begin{aligned}
\langle v-w, \phi\rangle & =\int_{M}\langle v-w, \phi\rangle_{F} d V_{g}= \\
& =\int_{M}\langle v, \phi\rangle_{F} d V_{g}-\int_{M}\langle w, \phi\rangle_{F} d V_{g}= \\
& =\int_{M}\left\langle u, P^{*} \phi\right\rangle_{E} d V_{g}-\int_{M}\left\langle u, P^{*} \phi\right\rangle_{E} d V_{g}=0 \quad \forall \phi \in \Gamma_{c}^{\infty}(F)
\end{aligned}
$$

$\langle\cdot, \cdot\rangle$ is continuous and $\Gamma_{c}^{\infty}(F)$ is dense in $L^{2}(F)$, so $\langle v-w, \phi\rangle=0$ for all $\phi \in L^{2}(F) .\langle\cdot, \cdot\rangle$ is positive definite, from which we conclude that $v=w$ in $L^{2}(F)$ 。
3.1.7 Remark: For $u \in \Gamma^{\infty}(E)$ there exists the usual derivative, which is a weak derivative by definition of the formal adjoint. By 3.1 .6 we have $P u=v$ weakly if and only if $P u=v$ in the usual sense.

For later purposes we need:
3.1.8 Proposition: $\left(H^{m}(E),\langle\cdot, \cdot\rangle_{m}\right)$ are Hilbert spaces for all $m \in \mathbb{N}_{0}$.

Proof. Sesquilinearity, hermiticity and positive semidefiniteness of $\langle\cdot, \cdot\rangle_{m}$ follow easily from the corresponding properties of $\langle\cdot, \cdot\rangle_{L^{2}}$. Moreover, we have

$$
\langle u, u\rangle_{m}=\sum_{j=0}^{m}\left\langle\nabla^{j} u, \nabla^{j} u\right\rangle_{L^{2}}=\langle u, u\rangle_{L^{2}}+\underbrace{\sum_{j=1}^{m}\left\langle\nabla^{j} u, \nabla^{j} u\right\rangle_{L^{2}}}_{\geq 0} \geq\langle u, u\rangle_{L^{2}}
$$

from which positive definiteness of $\langle\cdot, \cdot\rangle_{m}$ follows by positive definiteness of $\langle\cdot, \cdot\rangle_{L^{2}}$. Hence $\langle\cdot, \cdot\rangle_{m}$ is a scalar product. $\left(H^{m}(E),\langle\cdot, \cdot\rangle\right)$ is complete:
Let $\left(u_{n}\right)$ be a Cauchy sequence in $H^{m}(E)$. Thus $\left(\nabla^{j} u_{n}\right)$ is a Cauchy sequence in $L^{2}\left(T M^{* \otimes j} \otimes E\right)$ for all $j=0, \ldots, m . L^{2}\left(T M^{* \otimes j} \otimes E\right)$ is complete, so there exist $u^{(j)} \in L^{2}\left(T M^{* \otimes j} \otimes E\right)$, such that $\nabla^{j} u_{n}$ converges to $u^{(j)}$ in $L^{2}\left(T M^{* \otimes j} \otimes E\right)$. $u^{(j)}=\nabla^{j} u^{(0)}$ weakly:
Let $\phi \in \Gamma_{c}^{\infty}\left(T M^{\otimes j} \otimes E\right)$. Then

$$
\begin{aligned}
\int_{M}\left\langle u^{(j)}, \phi\right\rangle_{T M^{* \otimes j} \otimes E} d V_{g} & =\int_{M}\left\langle\lim _{n \rightarrow \infty} \nabla^{j} u_{n}, \phi\right\rangle_{T M^{* * j} \otimes E} d V_{g}= \\
& =\lim _{n \rightarrow \infty} \int_{M}\left\langle\nabla^{j} u_{n}, \phi\right\rangle_{T M^{* \otimes j} \otimes E} d V_{g}= \\
& =\lim _{n \rightarrow \infty} \int_{M}\left\langle u_{n},\left(\nabla^{j}\right)^{*} \phi\right\rangle_{E} d V_{g}= \\
& =\int_{M}\left\langle\lim _{n \rightarrow \infty} u_{n},\left(\nabla^{j}\right)^{*} \phi\right\rangle_{E} d V_{g}= \\
& =\int_{M}\left\langle u^{(0)},\left(\nabla^{j}\right)^{*} \phi\right\rangle_{E} d V_{g}
\end{aligned}
$$

Hence $\left(u_{n}\right)$ converges to $u:=u^{(0)}$ in $H^{m}(E)$.

So far we have seen that the Sobolev spaces, which depend on the chosen connection are suitable spaces for PDOs which are multiple compositions of that connection. The next Lemmata and Proposition demonstrate that Sobolev spaces in fact are the right spaces for arbitrary PDOs on compact manifolds.
3.1.9 Lemma: Let M be compact and ∇ an arbitrary connection on (E, M, π). The Space $\mathbf{P D O}(E, F)$ is generated by successive covariant derivatives and $\operatorname{Hom}(E, F)$.

Proof. Let $P \in \mathbf{P D O}^{m}(E, F)$. Claim: P is a combination of covariant derivatives and elements of $\operatorname{Hom}(E, F)$. We prove this by induction over m.

- $m=0: \mathbf{P D O}^{0}(E, F)=\boldsymbol{H o m}(E, F)$ by 2.1.3.
- $m-1 \mapsto m$:

The symbol of P is given by $\sigma_{m}(P)(\xi)=\sigma(P)(\xi, \ldots, \xi)$, where

$$
\left.\sigma(P)\right|_{p}\left(\xi_{1}, \ldots, \xi_{m}\right): T_{p} M^{*} \times \cdots \times T_{p} M^{*} \rightarrow \mathbf{H o m}\left(E_{p}, F_{p}\right)
$$

is a multilinear map (see section 2.2). Thus

$$
\left.\sigma(P)\right|_{p} \in T_{p} M \otimes \cdots \otimes T_{p} M \otimes \operatorname{Hom}\left(E_{p}, F_{p}\right)
$$

Since $\left.\sigma(P)\right|_{p}$ depends smoothly on p we can write

$$
\left.\sigma(P)\right|_{U}=\sum_{i_{1}, \ldots, i_{m}} A_{i_{1}, \ldots, i_{m}} \otimes X_{i_{1}} \otimes \cdots \otimes X_{i_{m}}
$$

where U is a sufficiently small neighborhood of $p, X_{i_{j}} \in \mathfrak{X}(U)(j=$ $1, \ldots, m)$ and $A_{i_{1}, \ldots, i_{m}} \in \operatorname{Hom}\left(\left.E\right|_{U},\left.F\right|_{U}\right)$. We define

$$
Q_{U}:=\sum_{i_{1}, \ldots, i_{m}} A_{i_{1}, \ldots, i_{m}} \cdot \nabla_{X_{i_{1}}} \circ \cdots \circ \nabla_{X_{i_{m}}}
$$

By 2.1.4 and 2.1.7 we get $Q_{U} \in \mathbf{P D O}^{(m)}\left(\left.E\right|_{U},\left.F\right|_{U}\right)$. Hence $\left.P\right|_{U}-Q_{U} \in$ $\mathbf{P D O}^{(m)}\left(\left.E\right|_{U},\left.F\right|_{U}\right)$. By 2.2.7 and 2.2.6 we get

$$
\begin{aligned}
& \sigma_{m}\left(\left.P\right|_{U}-Q_{U}\right)(\xi)= \\
& \quad=\sigma_{m}\left(\left.P\right|_{U}\right)(\xi)-\sigma_{m}\left(Q_{U}\right)(\xi)= \\
& \quad=\sigma\left(\left.P\right|_{U}\right)(\xi, \ldots, \xi)- \\
& \quad-\sum_{i_{1}, \ldots, i_{m}} A_{i_{1}, \ldots, i_{m}} \cdot \sigma_{1}\left(\nabla_{X_{i_{1}}}\right)(\xi) \circ \cdots \circ \sigma_{1}\left(\nabla_{X_{i_{m}}}\right)(\xi)= \\
&=\sum_{i_{1}, \ldots, i_{m}} A_{i_{1}, \ldots, i_{m}} \cdot \xi\left(X_{i_{1}}\right) \cdots \xi\left(X_{i_{m}}\right) \cdot- \\
& \quad-\sum_{i_{1}, \ldots, i_{m}} A_{i_{1}, \ldots, i_{m}} \cdot \xi\left(X_{i_{1}}\right) \cdots \xi\left(X_{i_{m}}\right) \cdot= \\
&=0
\end{aligned}
$$

Thus $\left.P\right|_{U}-Q_{U} \in \mathbf{P D O}^{(m-1)}\left(\left.E\right|_{U},\left.F\right|_{U}\right)$. Since M is compact there exists a finite cover $\left\{U_{k} \mid 1 \leq k \leq N\right\}$ of such neighborhoods. We choose a
partition of unity $\left\{\chi_{k} \mid 1 \leq k \leq N\right\}$ subordinate to $\left\{U_{k} \mid 1 \leq k \leq N\right\}$ and define

$$
Q:=\sum_{k=1}^{N} \chi_{k} \cdot Q_{U_{k}}
$$

We conclude

$$
\begin{aligned}
P-Q & =\left.\sum_{k=1}^{N} \chi_{k} \cdot P\right|_{U_{k}}-\sum_{k=1}^{N} \chi_{k} \cdot Q_{U_{k}}= \\
& =\sum_{k=1}^{N} \chi_{k} \cdot(\underbrace{\left.P\right|_{U_{k}}-Q_{U_{k}}}_{\in \mathbf{P D O}^{(m-1)}\left(\left.E\right|_{U},\left.F\right|_{U}\right)}) \in \mathbf{P D O}^{(m-1)}(E, F)
\end{aligned}
$$

By induction $P-Q$ is a combination of covariant derivatives and elements of $\operatorname{Hom}(E, F) . Q$ is a combination of the $Q_{U_{k}}$'s, which are combinations of covariant derivatives $\nabla_{X_{i_{j}}}$ and the maps $A_{i_{1}, \ldots, i_{m}} \in \operatorname{Hom}(E, F)$. Thus $P=P-Q+Q$ is also such a combination.
We conclude that $\mathbf{P D O}(E, F)$ is generated by multiple covariant derivatives and $\operatorname{Hom}(E, F)$.
3.1.10 Lemma: Let E be a Hermitian vector bundle over the manifold M, $u \in T_{p} M^{* \otimes k} \otimes E_{p}=L^{k}(\underbrace{T_{p} M \times \cdots \times T_{p} M}_{k \text { times }} ; E)$ and $v \in E_{p}$. Then: $\left\langle u, X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes v\right\rangle_{T_{p} M^{* \otimes k} \otimes E_{p}}=\left\langle u\left(X_{1}, \ldots, X_{k}\right), v\right\rangle_{E_{p}} \quad \forall X_{1}, \ldots, X_{k} \in T_{p} M$ where $X_{i}^{*} \in T_{p} M^{*}$ is the metrically equivalent co-vector to X_{i} for $i=1, \ldots, k$.

Proof. u is a finite linear combination of elements of the form $\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w$, where $\omega_{i} \in T_{p} M^{*}, w \in E_{p}$. It suffices to prove the formula for $u=\omega_{1} \otimes \cdots \otimes$ $\omega_{k} \otimes w$ because of the sesqui-linearity of the metrics involved.

$$
\begin{aligned}
&\left\langle u, X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes v\right\rangle_{T_{p} M^{*} \otimes k} \otimes E_{p} \\
&=\left\langle\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w, X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes v\right\rangle_{T_{p} M^{*} \otimes k} \otimes E_{p} \\
&=\left\langle\omega_{1}, X_{1}^{*}\right\rangle_{T_{p} M^{*}} \cdots\left\langle\omega_{k}, X_{k}^{*}\right\rangle_{T_{p} M^{*}} \cdot\langle w, v\rangle_{E_{p}}= \\
&=\omega_{1}\left(X_{1}\right) \cdots \omega_{k}\left(X_{k}\right) \cdot\langle w, v\rangle_{E_{p}}= \\
&=\left\langle\omega_{1}\left(X_{1}\right) \cdots \omega_{k}\left(X_{k}\right) \cdot w, v\right\rangle_{E_{p}}= \\
&=\left\langle\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w\left(X_{1}, \cdots, X_{k}\right), v\right\rangle_{E_{p}}= \\
&=\left\langle u\left(X_{1}, \ldots, X_{k}\right), v\right\rangle_{E_{p}}
\end{aligned}
$$

3.1.11 Lemma: Let ∇ be a connection on the Hermitian vector bundle E. Then:

$$
\left(\nabla^{k}\right)^{*}\left(X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes v\right)=\nabla_{X_{k}}^{*} \circ \cdots \circ \nabla_{X_{1}}^{*} v
$$

for all $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M), v \in \Gamma^{\infty}(E)$.

Proof. Let $w \in \Gamma^{\infty}(E)$ arbitrary. Then

$$
\begin{aligned}
& \left\langle w,\left(\nabla^{k}\right)^{*}\left(X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes v\right)\right\rangle_{E}=\left\langle\nabla^{k} w, X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes v\right\rangle_{T M^{*} \otimes k} \otimes E= \\
& \underset{\text { 3.1.10 }}{=}\left\langle\nabla^{k} w\left(X_{1}, \ldots, X_{k}\right), v\right\rangle_{E}= \\
& =\left\langle\nabla_{X_{1}} \circ \cdots \circ \nabla_{X_{k}} w, v\right\rangle_{E}= \\
& =\left\langle w, \nabla_{X_{k}}^{*} \circ \cdots \circ \nabla_{X_{1}}^{*} v\right\rangle_{E}
\end{aligned}
$$

3.1.12 Lemma: Let $u \in L^{2}(E)$. Then $\nabla^{k} u=v$ weakly in $L^{2}\left(T M^{* \otimes k} \otimes E\right)$ if and only if for any $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M), \nabla_{X_{1}} \circ \cdots \circ \nabla_{X_{k}} u=v\left(X_{1}, \ldots, X_{k}\right)$ weakly in $L^{2}(E)$.

Proof. $\nabla^{k} u=v$ weakly means that

$$
\begin{equation*}
\int\langle v, \phi\rangle d V_{g}=\int\left\langle u,\left(\nabla^{k}\right)^{*} \phi\right\rangle d V_{g} \quad \forall \phi \in \Gamma_{c}^{\infty}\left(T M^{* \otimes k} \otimes E\right) \tag{3.1}
\end{equation*}
$$

Since ϕ has compact support, it is a finite $C^{\infty}(M)$-linear combination of sections of the form $\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w$ with $\omega_{i} \in \Omega^{1}(M), w \in \Gamma^{\infty}(E)$. Because of the sesqui-linearity of the metrics on $L^{2}\left(T M^{* \otimes k} \otimes E\right)$ and $L^{2}(E)$ it suffices to consider the case $\phi=\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w$. Without loss of generality we may assume that w has compact support.
$\nabla_{X_{1}} \circ \cdots \circ \nabla_{X_{k}} u=v\left(X_{1}, \ldots, X_{k}\right)$ weakly means that

$$
\begin{equation*}
\int\left\langle v\left(X_{1}, \ldots, X_{k}\right), w\right\rangle d V_{g}=\int\left\langle u, \nabla_{X_{k}}^{*} \circ \cdots \circ \nabla_{X_{1}}^{*} w\right\rangle d V_{g} \quad \forall w \in \Gamma_{c}^{\infty}(E) \tag{3.2}
\end{equation*}
$$

- Let $\nabla^{k} u=v$ weakly and $w \in \Gamma_{c}^{\infty}(E)$ be arbitrary. We use 3.1.10 and 3.1.11 to conclude

$$
\begin{aligned}
\int\left\langle v\left(X_{1}, \ldots, X_{k}\right), w\right\rangle d V_{g} & \stackrel{=}{3.1 .10} \int\left\langle v, X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes w\right\rangle d V_{g}= \\
& =\left(\overline{3.1)} \int\left\langle u,\left(\nabla^{k}\right)^{*}\left(X_{1}^{*} \otimes \cdots \otimes X_{k}^{*} \otimes w\right)\right\rangle d V_{g}=\right. \\
& =\underset{3.1 .11}{=} \int\left\langle u, \nabla_{X_{k}}^{*} \circ \cdots \circ \nabla_{X_{1}}^{*} w\right\rangle d V_{g}
\end{aligned}
$$

for all $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$. This means that

$$
\nabla_{X_{1}} \circ \cdots \circ \nabla_{X_{k}} u=v\left(X_{1}, \ldots, X_{k}\right)
$$

weakly for all $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$.

- Conversely, let $\nabla_{X_{1}} \circ \cdots \circ \nabla_{X_{k}} u=v\left(X_{1}, \ldots, X_{k}\right)$ weakly for all vector fields $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$. By the above it suffices to prove that (3.1)
holds for $\phi=\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w$. Let X_{i} such that $X_{i}^{*}=\omega_{i}$. Then

$$
\begin{aligned}
& \int\left\langle u,\left(\nabla^{k}\right)^{*} \phi\right\rangle d V_{g}=\int\left\langle u,\left(\nabla^{k}\right)^{*}\left(\omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w\right)\right\rangle d V_{g}= \\
& \stackrel{\underset{\text { 3.1.11 }}{=}}{=} \int\left\langle u, \nabla_{X_{k}}^{*} \circ \cdots \circ \nabla_{X_{1}}^{*} w\right\rangle d V_{g}= \\
& \underset{(3.2)}{=} \int\left\langle v\left(X_{1}, \ldots, X_{k}\right), w\right\rangle d V_{g}= \\
& { }_{3.1 .10}^{=} \int\left\langle v, \omega_{1} \otimes \cdots \otimes \omega_{k} \otimes w\right\rangle d V_{g}= \\
& =\int\langle v, \phi\rangle d V_{g}
\end{aligned}
$$

3.1.13 Proposition: Let M be a compact manifold. If $u \in H^{m}(E)$ and $P \in$ $\mathbf{P D O}^{(m)}(E, F)$ then there exists a (unique by 3.1.6) weak derivative $P u \in$ $L^{2}(E)$.

Proof. If $u \in H^{m}(E)$, there exist $v_{j} \in L^{2}\left(T M^{* \otimes j} \otimes E\right)(j=1, \ldots, m)$ such that $\nabla^{j} u=v_{j}$ weakly. Let $X_{i} \in \mathfrak{X}(M)(i=1, \ldots, j)$ be arbitrary. By 3.1.12 $\nabla_{X_{1}} \circ \cdots \circ \nabla_{X_{j}} u=v_{j}\left(X_{1}, \ldots, X_{j}\right)$ weakly. Since M is compact we have $v_{j}\left(X_{1}, \ldots, X_{j}\right) \in L^{2}(E)$. By 3.1.9 every PDO of order m is a combination of covariant derivatives (up to m compositions) and vector bundle homomorphisms. By the above all multiple covariant derivatives exist in L^{2}. Hence the weak derivative $P u$, which is the sum over the above derivatives multiplied with the bundle homomorphisms $A_{i_{1}, \ldots, i_{j}}$, is in $L^{2}(E)$, since M is compact.

Now we can define:
3.1.14 Definition: Let M be compact and $P \in \mathbf{P D O}^{(m)}(E, F)$. The operator

$$
\tilde{P}:=u \mapsto P u \text { (in the weak sense) }: H^{m}(E) \rightarrow L^{2}(E)
$$

is called analytical realization of P.

We often use the same symbol for a PDO and its analytical realization if there is no risk of confusion. Now we prove a few technical properties of Sobolev spaces, which will be very important to us in the next section.
3.1.15 Lemma: Let $v \in H^{l}(E)$ and χ be a smooth function with compact support. Then there exists a constant $C>0$ such that

$$
\|\chi \cdot v\|_{l} \leq C\|v\|_{l}
$$

Proof. If $v \in \Gamma^{\infty}(E)$, then

$$
\begin{aligned}
\|\chi \cdot v\|_{l} & =\sum_{j=0}^{l}\left\|\nabla^{j}(\chi \cdot v)\right\|_{L^{2}}= \\
& =\sum_{j=0}^{l}\left\|\sum_{h=0}^{j} \frac{j!}{h!(j-h)!} \nabla^{j-h}(\chi) \otimes \nabla^{h}(v)\right\|_{L^{2}} \leq \\
& \leq \sum_{j=0}^{l} \sum_{h=0}^{j}\left\|\frac{j!}{h!(j-h)!} \nabla^{j-h}(\chi) \otimes \nabla^{h}(v)\right\|_{L^{2}} \leq \\
& \leq \sum_{j=0}^{l} \sum_{h=0}^{j} \underbrace{\sup _{x \in \operatorname{supp}(\chi)}\left(\left\|\frac{j!}{h!(j-h)!} \nabla^{j-h} \chi(x)\right\|_{T M^{* * \otimes j-h}}\right)}_{=: C_{h j}}\left\|\nabla^{h} v\right\|_{L^{2}} \leq \\
& \leq \underbrace{\max _{1 \leq h, j \leq l}\left(C_{h j}\right) \sum_{j=0}^{l}\|v\|_{j} \leq}_{=: C} \\
& \leq \underbrace{\max ^{l}\left(C_{h j}\right) \cdot l}_{1 \leq h, j \leq l}\|v\|_{l}
\end{aligned}
$$

By density the claim follows for arbitrary $v \in H^{l}(E)$.
3.1.16 Definition: Let (E, M, π) be a vector bundle, $m=\operatorname{dim}(M)$ and $\phi: E \supseteq$ $U \rightarrow W \times \mathbb{K}^{n}$ a vector bundle chart. We define a norm on $H^{s}\left(\left.E\right|_{\pi(U)}\right)$ by

$$
\|u\|_{s}^{\phi}:=\left(\sum_{i=1}^{n} \sum_{|\alpha| \leq s} \int_{W}\left|\partial^{\alpha}\left(\phi_{*} u\right)_{i}\right|^{2} d x\right)^{\frac{1}{2}}
$$

3.1.17 Lemma: Let (E, M, π) a Hermitian vector bundle over the manifold $M,(\phi, U)$ a vector bundle chart for E, where U is sufficiently small (specified in the proof) and ∇ a connection on E. Then $\|\cdot\|_{m}$ (which depends on ∇) and $\|\cdot\|_{m}^{\phi}$ (which depends on ϕ) are equivalent on $H^{s}\left(\left.E\right|_{V}\right)(V:=\pi(U))$, i.e. there exist $C_{1}, C_{2}>0$, such that

$$
\begin{equation*}
C_{1}\|u\|_{s}^{\phi} \leq\|u\|_{s} \leq C_{2}\|u\|_{s}^{\phi} \quad \forall u \in H^{s}\left(\left.E\right|_{V}\right) \tag{3.3}
\end{equation*}
$$

Proof. We prove the statement for $s=1$, the general case is completely analogous. In addition it suffices to prove the claim for $u \in \Gamma_{c}^{\infty}(E)$, because $\Gamma_{c}^{\infty}(E)$ is dense in $H^{s}(E)$ and the norms involved are continuous on $H^{s}(E)$. By definition of a vector bundle chart $\psi:=\left.\mathrm{pr}_{1} \circ \phi\right|_{M}$ is a chart map for M. Let $m:=\operatorname{dim}(M)$ and $\left\{e_{1}, \ldots, e_{m}\right\}$ be the standard basis of \mathbb{R}^{m}. We define $\widetilde{X}_{j}:=p \mapsto\left(T_{p} \psi\right)^{-1}\left(e_{j}\right) \in \mathfrak{X}(M)$ for $1 \leq j \leq m$. Thus $\left\{\widetilde{X}_{j}(p) \mid j=1, \ldots, m\right\}$ is a basis of $T_{p} M$ for all $p \in V$ and we may choose a frame $\left\{X_{j}(p) \mid j=1, \ldots, m\right\}$ on V such that $X_{i}=A \cdot \widetilde{X}_{i}$ for all $1 \leq i \leq m$ where A is invertible and bounded on V.

Let $n:=\operatorname{dim}\left(E_{p}\right)$ and $\left\{f_{1}, \ldots, f_{n}\right\}$ be the standard basis of \mathbb{R}^{n}. We define $\widetilde{E}_{i}:=$ $p \mapsto\left(\phi^{-1}\left(\psi(p), f_{i}\right)\right) \in \Gamma_{c}^{\infty}(E)$ for $1 \leq i \leq n$. Thus $\left\{\widetilde{E}_{i}(p) \mid i=1, \ldots, n\right\}$ is a basis of E_{p} for all $p \in V$ and we may choose an E-frame $\left\{E_{j}(p) \mid j=1, \ldots, n\right\}$ on V such that $\left\|E_{i}\right\|$ and $\left\|\nabla_{X_{j}} E_{i}\right\|$ are bounded on V for all $1 \leq i \leq n$ and $E_{i}=B \cdot \widetilde{E}_{i}$ for all $1 \leq i \leq n$ where B is invertible and bounded on V.
Therefore we may write every $u \in \Gamma_{c}^{\infty}\left(\left.E\right|_{V}\right)$ as $u=\sum_{i=1}^{n} u_{i} E_{i}=\sum_{l=1}^{n} \widetilde{u}_{l} \widetilde{E}_{l}$, where $u_{i}, \widetilde{u}_{l} \in C^{\infty}(V)$. We have

$$
\begin{equation*}
\nabla_{X_{j}} u=\nabla_{X_{j}}\left(\sum_{i=1}^{n} u_{i} E_{i}\right)=\sum_{i=1}^{n}\left(X_{j}\left(u_{i}\right) E_{i}+u_{i} \nabla_{X_{j}} E_{i}\right) \tag{3.4}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \left\langle\nabla_{X_{j}} u, \nabla_{X_{l}} u\right\rangle_{L^{2}}= \\
& = \\
& =\int_{V}\left\langle\nabla_{X_{j}} u, \nabla_{X_{l}} u\right\rangle d V_{g}= \\
& = \\
& \quad \int_{V} \sum_{i, k=1}^{n}\left\langle X_{j}\left(u_{i}\right) E_{i}+u_{i} \nabla_{X_{j}} E_{i}, X_{l}\left(u_{k}\right) E_{k}+u_{k} \nabla_{X_{l}} E_{k}\right\rangle d V_{g}= \\
& = \\
& \quad \int_{V}\left(\sum_{i, k=1}^{n}\left\langle X_{j}\left(u_{i}\right) E_{i}, X_{l}\left(u_{k}\right) E_{k}\right\rangle+\sum_{i, k=1}^{n}\left\langle X_{j}\left(u_{i}\right) E_{i}, u_{k} \nabla_{X_{l}} E_{k}\right\rangle+\right. \\
& \left.\quad \quad+\sum_{i, k=1}^{n}\left\langle u_{i} \nabla_{X_{j}} E_{i}, X_{l}\left(u_{k}\right) E_{k}\right\rangle+\sum_{i, k=1}^{n}\left\langle u_{i} \nabla_{X_{j}} E_{i}, u_{k} \nabla_{X_{l}} E_{k}\right\rangle\right) d V_{g}
\end{aligned}
$$

For each term we use the following implication of the Cauchy Schwarz inequality: Let $a_{i}, b_{k} \in \mathbb{K}$ and $v_{i}, w_{k} \in E_{p}(1 \leq i, k \leq n)$, then

$$
\begin{aligned}
\sum_{i, k=1}^{n}\left\langle a_{i} \cdot v_{i}, b_{k} \cdot w_{k}\right\rangle & \underset{C S I}{ } \sum_{i, k=1}^{n}\left\|a_{i} \cdot v_{i}\right\| \cdot\left\|b_{k} \cdot w_{k}\right\|= \\
& =\sum_{i, k=1}^{\sum_{i, k}^{n}\left|a_{i}\right| \cdot\left|b_{k}\right| \cdot\left\|v_{i}\right\| \cdot\left\|w_{k}\right\| \leq} \\
& \leq \underbrace{\max _{i, k}\left(\left\|v_{i}\right\| \cdot\left\|w_{k}\right\|\right) \sum_{i, k=1}^{n}\left|a_{i}\right|^{2}+\left|b_{k}\right|^{2}=}_{=: C} \\
& =\underbrace{n \cdot \max _{i, k}\left(\left\|v_{i}\right\| \cdot\left\|w_{k}\right\|\right)}_{i=1} \sum_{i=1}^{n}\left|a_{i}\right|^{2}+\left|b_{i}\right|^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\langle\nabla_{X_{j}} u, \nabla_{X_{l}} u\right\rangle_{L^{2}} \leq \\
& \leq \int_{V}\left(C_{a} \sum_{i=1}^{n}\left(\left|X_{j}\left(u_{i}\right)\right|^{2}+\left|X_{l}\left(u_{i}\right)\right|^{2}\right)+C_{b} \sum_{i=1}^{n}\left(\left|X_{j}\left(u_{i}\right)\right|^{2}+\left|u_{i}\right|^{2}\right)+\right. \\
& \left.\quad+C_{c} \sum_{i=1}^{n}\left(\left|u_{i}\right|^{2}+\left|X_{l}\left(u_{i}\right)\right|^{2}\right)+C_{d} \sum_{i=1}^{n}\left(\left|u_{i}\right|^{2}+\left|u_{i}\right|^{2}\right)\right) d V_{g} \leq
\end{aligned}
$$

$$
\begin{aligned}
& \leq \underbrace{\sup _{p \in V}\left(C_{a}(p)+C_{b}(p)+C_{c}(p)+2 C_{d}(p)\right)}_{=: C^{\prime}} \\
& \cdot \sum_{i=1}^{n} \int_{V}\left|X_{j}\left(u_{i}\right)\right|^{2}+\left|X_{l}\left(u_{i}\right)\right|^{2}+\left|u_{i}\right|^{2} d V_{g}
\end{aligned}
$$

$C^{\prime}<\infty$ since C_{a}, C_{b}, C_{c} and C_{d} are bounded in V, because $\left\|E_{i}(p)\right\|$ and $\left\|\nabla_{X_{j}} E_{i}(p)\right\|$ are bounded for all $1 \leq i \leq n$ by definition. We use [Kun08a], (2.4.3) and 2.4.14 and the definitions of \widetilde{X}_{j} and \widetilde{E}_{i} to conclude

$$
\begin{align*}
\widetilde{X}_{j}\left(\widetilde{u}_{i}\right) & =\partial_{j}\left(\mathrm{id}_{\mathbb{R}} \circ \widetilde{u}_{i} \circ \psi^{-1}\right) \circ \psi= \\
& =\partial_{j}\left(\operatorname{pr}_{i} \circ \phi \circ u \circ \psi^{-1}\right) \circ \psi= \\
& =\partial_{j}(\underbrace{\phi \circ u \circ \psi^{-1}}_{=\phi_{*} u})_{i}) \circ \psi \tag{3.5}
\end{align*}
$$

Thus by 1.2 .45

$$
\begin{aligned}
& \left\langle\nabla_{X_{j}} u, \nabla_{X_{l}} u\right\rangle_{L^{2}} \leq \\
& \quad \leq C^{\prime} \sum_{i=1}^{n} \int_{V}\left|X_{j}\left(u_{i}\right)\right|^{2}+\left|X_{l}\left(u_{i}\right)\right|^{2}+\left|u_{i}\right|^{2} d V_{g} \leq \\
& \quad \leq \underbrace{C^{\prime} \sup \left(\left(\|A\|_{o p}^{2}+1\right) \cdot\|B\|_{o p}\right)}_{=: C^{\prime \prime}} \sum_{i=1}^{n} \int_{V}\left|\widetilde{X}_{j}\left(\widetilde{u}_{i}\right)\right|^{2}+\left|\widetilde{X}_{l}\left(\widetilde{u}_{i}\right)\right|^{2}+\left|\widetilde{u}_{i}\right|^{2} d V_{g}= \\
& \quad=C^{\prime \prime} \sum_{i=1}^{n} \int_{V}\left|\partial_{j}\left(\phi_{*} u\right)_{i}(\psi(p))\right|^{2}+\left|\partial_{l}\left(\phi_{*} u\right)_{i}(\psi(p))\right|^{2}+\left|\left(\phi_{*} u\right)_{i}(\psi(p))\right|^{2} d V_{g}= \\
& \quad=C^{\prime \prime} \sum_{i=1}^{n} \int_{W}\left(\left|\partial_{j}\left(\phi_{*} u\right)_{i}(x)\right|^{2}+\left|\partial_{l}\left(\phi_{*} u\right)_{i}(x)\right|^{2}+\right. \\
& \quad \leq \underbrace{\left.\left.2 C^{\prime \prime} \cdot \sup _{x \in W}(x)\right|^{2}\right) \sqrt{|\alpha| \leq 1} \mid \operatorname{det}^{\operatorname{det}\left(g_{a b}(x)\right)} d x \leq}_{i=1} \sum_{=: C^{\prime \prime \prime}}^{n} \sum_{W}\left|\partial^{\alpha}\left(\phi_{*} u\right)_{i}(x)\right|^{2} d x= \\
& \quad=C^{\prime \prime \prime \prime}\left(\|u\|_{1}^{\phi}\right)^{2}
\end{aligned}
$$

$C^{\prime \prime \prime}<\infty$ since $\left|\operatorname{det}\left(g_{a b}\right)\right|$ is bounded on $\psi(V)$. Finally

$$
\begin{aligned}
\|u\|_{1}^{2} & =\langle\nabla u, \nabla u\rangle_{L^{2}}+\langle u, u\rangle_{L^{2}}= \\
& =\left\langle\sum_{j=1}^{m} X_{j}^{*} \otimes \nabla_{X_{j}} u, \sum_{l=1}^{m} X_{l}^{*} \otimes \nabla_{X_{l}} u\right\rangle_{L^{2}}+\int_{V}\|u\|_{E}^{2} d V_{g}= \\
& =\sum_{j=1}^{m} \sum_{l=1}^{m} \delta_{j l} \cdot\left\langle\nabla_{X_{j}} u, \nabla_{X_{l}} u\right\rangle+\int_{\psi(V)} \sum_{i=1}^{n}\left|\partial^{\alpha}\left(\phi_{*} u\right)_{i}\right|^{2} \sqrt{\left|\operatorname{det}\left(g_{a b}\right)\right|} d x \leq
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j=1}^{m}\left\langle\nabla_{X_{j}} u, \nabla_{X_{j}} u\right\rangle+\underbrace{\sup \left(\sqrt{\left|\operatorname{det}\left(g_{a b}\right)\right|}\right)}_{=: C_{g}}(\underbrace{\|u\|_{0}^{\phi}}_{\leq\|u\|_{1}^{\phi}})^{2} \leq \\
& \leq \sum_{j=1}^{m} C^{\prime \prime \prime}\left(\|u\|_{1}^{\phi}\right)^{2}+C_{g}\left(\|u\|_{1}^{\phi}\right)^{2}= \\
& =\underbrace{\left(\max \left(C^{\prime \prime \prime}\right) \cdot m+C_{g}\right)}_{=: C_{2}^{2}}\left(\|u\|_{1}^{\phi}\right)^{2}
\end{aligned}
$$

which proves the second inequality in (3.3) for $s=1$. For the first inequality we use (3.5) and 3.4 to conclude

$$
\left\langle\nabla_{X_{j}} u, E_{k}\right\rangle=\sum_{i=1}^{n}\left(\partial_{j}\left(\left(\phi_{*} u\right)_{i}\right) \circ \psi\left\langle E_{i}, E_{k}\right\rangle+u_{i}\left\langle\nabla_{X_{j}} E_{i}, E_{k}\right\rangle\right)
$$

Since $\left\langle E_{i}, E_{k}\right\rangle=\delta_{i k}$ we may write

$$
\partial_{j}\left(\left(\phi_{*} u\right)_{i}\right)=\left(\left\langle\nabla_{X_{j}} u, E_{i}\right\rangle-\sum_{l=1}^{n} u_{l}\left\langle\nabla_{X_{j}} E_{l}, E_{i}\right\rangle\right) \circ \psi^{-1}
$$

Through calculation as above we get

$$
\begin{aligned}
\|u\|_{1}^{\phi} & =\sqrt{\sum_{i=1}^{n} \sum_{|\alpha| \leq 1} \int_{W}\left|\partial^{\alpha}\left(\phi_{*} u\right)_{i}\right|^{2} d x} \leq \\
& \leq C_{1} \sqrt{\sum_{j=0}^{1} \int_{V}\left\langle\nabla^{j} u, \nabla^{j} u\right\rangle d V_{g}}=C_{1}\|u\|_{1}
\end{aligned}
$$

where C_{1} depends on $\left\|X_{j}\right\|_{g}(j=1, \ldots, m)$ and n, which are positive finite numbers on V.
3.1.18 Corollary: All norms $\|\cdot\|_{m}^{\nabla},\|\cdot\|_{m}^{\nabla^{\prime}}, \ldots$ on a vector bundle E over a compact manifold M are equivalent.

Proof.

$$
\|\cdot\|_{m}^{\nabla} \sim\|\cdot\|_{m}^{\phi} \text { on } W \quad \wedge\|\cdot\|_{m}^{\phi} \sim\|\cdot\|_{m}^{\nabla^{\prime}} \text { on } W^{\prime} \Rightarrow\|\cdot\|\left\|_{m}^{\nabla} \sim\right\| \cdot \|_{m}^{\nabla^{\prime}} \text { on } W \cap W^{\prime}
$$

Since M is compact we may cover the manifold by finitely many open sets of the form $W \cap W^{\prime}$, choose a partition of unity $\left\{\chi_{j} \mid j=1, \ldots, N\right\}$ subordinate to this cover and conclude

$$
\|u\|_{m}^{\nabla}=\left\|\sum_{j=1}^{N} \chi_{j} \cdot u\right\|_{m}^{\nabla} \leq \sum_{j=1}^{N} \underbrace{\left\|\chi_{j} \cdot u\right\|_{m}^{\nabla}}_{\leq C_{2, j}\left\|\chi_{j} \cdot u\right\|_{m}^{\nabla^{\prime}}} \underset{=: C_{2}}{\leq} \underbrace{\sum_{j=1}^{N} C_{2, j} \cdot C}\|u\|_{m}^{\nabla^{\prime}}=C_{2}\|u\|_{m}^{\nabla^{\prime}}
$$

for all $u \in H^{m}(E)$. The formula $C_{1}\|u\|_{m}^{\nabla^{\prime}} \leq\|u\|_{m}^{\nabla}$ follows by symmetry.

To conclude this chapter, we consider the Sobolev embedding theorem, which describes the regularity of Sobolev spaces.
3.1.19 Theorem (Sobolev embedding): Let E be a Hermitian vector bundle over the n-dimensional manifold M. If $s>k+\frac{n}{2}$ it follows that $H_{\mathrm{loc}}^{s}(E)$ embeds into $\Gamma^{k}(E)$ (the k-times differentiable sections of E).

Proof. Let $u \in H_{\text {loc }}^{s}(E)$. Now choose a partition of unity $\left\{\chi_{\alpha} \mid \alpha \in A\right\}$ subordinate to a covering by relatively compact, trivializing chart neighborhoods. Then $\chi_{\alpha} \cdot u \in H^{s}\left(\left.E\right|_{V_{\alpha}}\right)$. We choose an E-frame on V_{α} and may write $\chi_{\alpha} \cdot u=\left(u_{1}^{\alpha}, \ldots, u_{p}^{\alpha}\right) \circ \phi$, where $u_{i}^{\alpha} \in H_{c}^{s}\left(V_{\alpha}\right) \subset H^{s}\left(\mathbb{R}^{n}\right)$ for all $1 \leq i \leq p(p$ is the dimension of the fibres of E) by 3.1.17. We use 1.3.11 to conclude that $u_{i}^{\alpha} \in C^{k}\left(\mathbb{R}^{n}\right)$. Thus $\chi_{\alpha} \cdot u \in \Gamma^{k}(E)$. A partition of unity is locally finite, thus u locally is a sum over finitely many Γ^{k}-sections and therefore $u \in \Gamma^{k}(E)$.

3.2 Elliptic Operators

In what follows we concentrate on elliptic operators. Ellipticity guarantees a kind of invertibility, which will be a key ingredient for our further study of (elliptic) PDOs. In particular the proof of the spectral theorem (see section 3.3) relies heavily on the following implications of ellipticity.
3.2.1 Lemma (Young inequality): Let $a, b \in \mathbb{K}(\mathbb{K}=\mathbb{R}$ or \mathbb{C}) be arbitrary. For every $\epsilon>0$ we have

$$
-\frac{1}{2}(a \bar{b}+\bar{a} b) \leq \epsilon|a|^{2}+\frac{1}{4 \epsilon}|b|^{2}
$$

Proof. Let $\epsilon>0$ be arbitrary. Then

$$
\begin{aligned}
0 \leq\left|\sqrt{\epsilon} a+\frac{b}{2 \sqrt{\epsilon}}\right|^{2} & =\left(\sqrt{\epsilon} a+\frac{b}{2 \sqrt{\epsilon}}\right) \overline{\left(\sqrt{\epsilon} a+\frac{b}{2 \sqrt{\epsilon}}\right)}= \\
& =\epsilon|a|^{2}+\frac{a \bar{b}}{2}+\frac{\bar{a} b}{2}+\frac{1}{4 \epsilon}|b|^{2}
\end{aligned}
$$

Hence

$$
-\frac{1}{2}(a \bar{b}+\bar{a} b) \leq \epsilon|a|^{2}+\frac{1}{4 \epsilon}|b|^{2}
$$

3.2.2 Lemma (Interpolation inequalities ${ }^{2}$): Let M be a manifold of dimension $n, U \subseteq M$ be open and relatively compact. Then:

$$
\forall k \in \mathbb{N} \backslash\{0\} \quad \forall \epsilon>0 \quad \exists C_{\epsilon} \quad \forall u \in H^{k}\left(\left.E\right|_{U}\right): \quad\|u\|_{k-1} \leq \epsilon\|u\|_{k}+C_{\epsilon}\|u\|_{L^{2}}
$$

[^22]Proof. For $k=1$ this is clear (choose $C_{\epsilon}=1$). We prove the case $k \geq 2$ in three steps.

1. We prove that for all $\epsilon>0$ there exists a C_{ϵ} such that

$$
\begin{equation*}
\|u\|_{k-1} \leq \epsilon\|u\|_{k}+C_{\epsilon}\|u\|_{k-2} \tag{3.6}
\end{equation*}
$$

for u compactly supported in a chart neighborhood V with the properties of 3.1.17. Since $\|\cdot\|_{k}$ and $\|\cdot\|_{k}^{\phi}$ are equivalent on V by 3.1 .17 ist suffices to prove (3.6) for the chart norm $\|\cdot\|_{k}^{\phi}$. Let $\epsilon>0$ be arbitrary and set $\epsilon^{\prime}:=\frac{\epsilon^{2}}{\binom{n+k-2}{k-1}}$. Clearly (set $\left.\widetilde{u}:=\phi_{*} u\right)$

$$
\left(\|u\|_{k-1}^{\phi}\right)^{2}=\sum_{|\alpha|=k-1} \sum_{i=1}^{p} \int_{W} \underbrace{\left|\partial^{\alpha} \widetilde{u}_{i}\right|^{2}}_{=\left(\partial^{\alpha} \widetilde{u}_{i}\right)\left(\partial^{\alpha} \overline{\bar{u}_{i}}\right)} d x+\left(\|u\|_{k-2}^{\phi}\right)^{2}
$$

Let α be an arbitrary multiindex of order $k-1$. There exists at least one index (which belongs to some coordinate direction j), which is not zero. Hence we may write

$$
\partial^{\alpha}=\partial_{j} \partial^{\alpha-e_{j}}
$$

We use integration by parts to get

$$
\begin{aligned}
& \sum_{i=1}^{p} \int_{W}\left(\partial^{\alpha} \widetilde{u}_{i}\right)\left(\partial^{\alpha} \overline{\widetilde{u}_{i}}\right) d x= \\
& \quad=\sum_{i=1}^{p}\left(\frac{1}{2} \int_{W}\left(\partial^{\alpha} \widetilde{u}_{i}\right)\left(\partial^{\alpha} \overline{\widetilde{u}_{i}}\right) d x+\frac{1}{2} \int_{W}\left(\partial^{\alpha} \widetilde{u}_{i}\right)\left(\partial^{\alpha} \overline{\widetilde{u}_{i}}\right) d x\right)= \\
& \quad=\sum_{i=1}^{p} \frac{1}{2}(\underbrace{\left.\left(\partial^{\alpha-e_{j}} \widetilde{u}_{i}\right)\left(\partial^{\alpha} \overline{\widetilde{u}_{i}}\right)\right|_{\partial W}}_{=0}-\int_{W}\left(\partial^{\alpha-e_{j}} \widetilde{u}_{i}\right)\left(\partial^{\alpha+e_{j}} \overline{\widetilde{u}_{i}}\right) d x+ \\
& \quad+\underbrace{\left.\left.\left(\partial^{\alpha} \widetilde{u}_{i}\right)\left(\partial^{\alpha-e_{j}} \overline{\widetilde{u}_{i}}\right)\right|_{\partial W}-\int_{W}\left(\partial^{\alpha+e_{j}} \widetilde{u}_{i}\right)\left(\partial^{\alpha-e_{j}} \overline{\widetilde{u}_{i}}\right) d x\right)=}_{=0} \\
& \quad=\sum_{i=1}^{p} \int_{W} \underbrace{-\frac{1}{2}\left((\partial ^ { \alpha - e _ { j } } \widetilde { u } _ { i }) \left(\left.\partial^{\alpha+e_{j}} \widetilde{u}_{i}\right|^{2}+\frac{1}{4 \epsilon_{j}}\left|\partial^{\alpha-e_{j}} \widetilde{u}_{i}\right|^{2}\right.\right.})+\left(\partial^{\alpha+e_{j}} \widetilde{u}_{i}\right)\left(\partial^{\alpha-e_{j}} \overline{\widetilde{u}_{i}}\right)) d x \leq \\
& \quad \leq \epsilon^{\prime} \sum_{i=1}^{p} \int_{W}^{\left|\partial^{\alpha+j} \widetilde{u}_{i}\right|^{2} d x+\frac{1}{4 \epsilon^{\prime}} \sum_{i=1}^{p} \int_{W}\left|\partial^{\alpha-j} \widetilde{u}_{i}\right|^{2} d x \leq} \\
& \quad \leq \epsilon^{\prime} \sum_{|\beta|=k} \sum_{i=1}^{p} \int_{W}\left|\partial^{\beta} \widetilde{u}_{i}\right|^{2} d x+\frac{1}{4 \epsilon^{\prime}} \sum_{|\beta|=k-2} \sum_{i=1}^{p} \int_{W}\left|\partial^{\beta} \widetilde{u}_{i}\right|^{2} d x \leq \\
& \quad \leq \epsilon^{\prime}\left(\|u\|_{k}^{\phi}\right)^{2}+\frac{1}{4 \epsilon^{\prime}}\left(\|u\|_{k-2}^{\phi}\right)^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\|u\|_{k-1}^{\phi}\right)^{2} & =\sum_{|\alpha|=k-1} \sum_{i=1}^{p} \int_{W}\left|\partial^{\alpha} \widetilde{u}_{i}\right|^{2} d x+\left(\|u\|_{k-2}^{\phi}\right)^{2} \leq \\
& \leq \sum_{|\alpha|=k-1}\left(\epsilon^{\prime}\left(\|u\|_{k}^{\phi}\right)^{2}+\frac{1}{4 \epsilon^{\prime}}\left(\|u\|_{k-2}^{\phi}\right)^{2}\right)+\left(\|u\|_{k-2}^{\phi}\right)^{2}= \\
& =\underbrace{\binom{n+k-2}{k-1} \epsilon^{\prime}}_{=\epsilon^{2}}\left(\|u\|_{k}^{\phi}\right)^{2}+\underbrace{\left.\binom{n+k-2}{k-1} \frac{1}{4 \epsilon^{\prime}}+1\right)}_{=:\left(C_{\epsilon}^{\phi}\right)^{2}}\left(\|u\|_{k-2}^{\phi}\right)^{2}
\end{aligned}
$$

And therefore

$$
\|u\|_{k-1}^{\phi} \leq \epsilon\|u\|_{k}^{\phi}+C_{\epsilon}\|u\|_{k-2}^{\phi}
$$

2. We prove that (3.6) holds on $U . U$ is relatively compact, so there exists a finite cover $\left\{V_{i} \mid 1 \leq i \leq a\right\}$ of \bar{U} (and hence of U itself), where the V_{i} are chart neighborhoods as in step 1. Let $\left\{\chi_{i} \mid 1 \leq i \leq a\right\}$ be a partition of unity subordinate to $\left\{V_{i} \mid 1 \leq i \leq a\right\}$. Let $\epsilon>0$ be arbitrary. 3.1.15 tells us that $\left\|\chi_{i} \cdot u\right\|_{t} \leq C_{i, t}\|u\|_{t}$. We define $\epsilon^{\prime}:=\frac{\epsilon}{\sum_{i=1}^{a} C_{i, k}}$ and use step 1 for ϵ^{\prime} to get

$$
\begin{aligned}
\|u\|_{k-1} & =\left\|\sum_{i=1}^{a} \chi_{i} \cdot u\right\|_{k-1} \leq \\
& \leq \sum_{i=1}^{a}\left\|\chi_{i} \cdot u\right\|_{k-1} \leq \\
& \leq \sum_{i=1}^{a}\left(\epsilon^{\prime}\left\|\chi_{i} \cdot u\right\|_{k}+C_{\epsilon^{\prime}}\left\|\chi_{i} \cdot u\right\|_{k-2}\right) \leq \\
& \leq \sum_{i=1}^{a}\left(\epsilon^{\prime} C_{i, k}\|u\|_{k}+C_{\epsilon^{\prime}} C_{i, k-2}\|u\|_{k-2}\right) \leq \\
& \leq \epsilon\|u\|_{k}+\underbrace{\sum_{i=1}^{a} C_{\epsilon^{\prime}} C_{i, k-2}}_{=: C}\|u\|_{k-2}
\end{aligned}
$$

3. Let $\epsilon>0$ be arbitrary. Define $\delta_{1}:=\frac{\epsilon}{2}$. Using step 2 for the $k-1$-norm and δ_{1} we get

$$
\|u\|_{k-1} \leq \delta_{1}\|u\|_{k}+C_{\delta_{1}}\|u\|_{k-2}
$$

We set $\delta_{2}:=\frac{1}{2(k-2) \cdot C_{\delta_{1}}}$ and use step 2 for the $k-2$-norm and δ_{2} to get

$$
\|u\|_{k-1} \leq \delta_{1}\|u\|_{k}+\frac{1}{2(k-2)}\|u\|_{k-1}+C_{\delta_{1}} \cdot C_{\delta_{2}}\|u\|_{k-3}
$$

Now setting $\delta_{3}:=\frac{1}{2(k-2) \cdot C_{\delta_{1}} \cdot C_{\delta_{2}}}$ and using step 3 again, we obtain

$$
\begin{aligned}
\|u\|_{k-1} \leq \delta_{1}\|u\|_{k} & +\frac{1}{2(k-2)}\|u\|_{k-1}+\frac{1}{2(k-2)}\|u\|_{k-2}+ \\
& +C_{\delta_{1}} \cdot C_{\delta_{2}} \cdot C_{\delta_{3}}\|u\|_{k-4} \leq \\
\leq \delta_{1}\|u\|_{k} & +\frac{1}{2(k-2)}\|u\|_{k-1}+\frac{1}{2(k-2)}\|u\|_{k-1}+ \\
& +C_{\delta_{1}} \cdot C_{\delta_{2}} \cdot C_{\delta_{3}}\|u\|_{k-4}
\end{aligned}
$$

Iterating this procedure we conclude

$$
\|u\|_{k-1} \leq \delta_{1}\|u\|_{k}+(k-2) \frac{1}{2(k-2)}\|u\|_{k-1}+C_{\delta_{1}} \cdots C_{\delta_{k-1}}\|u\|_{L^{2}}
$$

and therefore

$$
\|u\|_{k-1} \leq \underbrace{2 \delta_{1}}_{=\epsilon}\|u\|_{k}+\underbrace{2 C_{\delta_{1}} \cdots C_{\delta_{k-1}}}_{=: C_{\epsilon}}\|u\|_{L^{2}}
$$

3.2.3 Theorem (Elliptic estimates ${ }^{3}$): Let $P \in \mathbf{P D O}^{m}(E, F)$ be elliptic and $k \in \mathbb{N}_{0}$ arbitrary. For every open, relatively compact set $U \subseteq M$ there exists a constant C such that

$$
\begin{equation*}
\|u\|_{k+m} \leq C\left(\|P u\|_{k}+\|u\|_{L^{2}}\right) \quad \forall u \in H^{k+m}\left(\left.E\right|_{U}\right) \tag{3.7}
\end{equation*}
$$

Proof. We prove the theorem in six steps. First we prove the weaker inequality

$$
\begin{equation*}
\|u\|_{m} \leq C\left(\|P u\|_{L^{2}}+\|u\|_{m-1}\right) \tag{3.8}
\end{equation*}
$$

for PDOs (and sections) of a very special form. Then in every step we get rid of some assumption or improve (3.8) towards (3.7).

1. Let $u \in H^{m}(E)$ be compactly supported in a trivializing chart neighborhood V with corresponding vector bundle map ϕ as in 3.1.17. There the local representation P_{r} of P is given by

$$
P_{r}=\sum_{|\alpha| \leq m} A_{\alpha} \partial^{\alpha}: \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{C}^{p}\right) \rightarrow \Gamma^{\infty}\left(\mathbb{R}^{n} \times \mathbb{C}^{q}\right)
$$

(see 2.1.15) and $\widetilde{u}:=\phi_{*} u$ where $\widetilde{u}_{j} \in H_{c}^{m}\left(\mathbb{R}^{n} \times \mathbb{C}\right)$ for $1 \leq j \leq p$. In addition we will assume that $A_{\alpha}=0$ if $|\alpha|<m$ and that A_{α} is constant on V. Let $\beta \in \mathbb{N}_{0}^{n}$ such that $|\beta|=m$. P has constant coefficients, so we get

$$
\partial^{\beta}\left(P_{r} \widetilde{u}\right)=P_{r}\left(\partial^{\beta} \widetilde{u}\right)=\sum_{|\alpha|=m} A_{\alpha} \partial^{\alpha} \partial^{\beta} \widetilde{u}
$$

[^23]We Fourier transform this equation componentwise $\left(\widehat{\widetilde{u}}:=\left(\widehat{\widetilde{u}}_{1}, \ldots, \widehat{\widetilde{u}}_{p}\right)\right)$ and use the exchange formula (1.13) to get

$$
i^{m} \xi^{\beta} \widehat{P_{r} \widetilde{u}}=i^{m} \sum_{|\alpha|=m} A_{\alpha} \xi^{\alpha} \widehat{\partial^{\beta} \widetilde{u}}
$$

P is elliptic, so the principal symbol $\sigma_{m}(P)(\xi)=\sum_{|\alpha|=m} A_{\alpha} \xi^{\alpha}$ is invertible for all $\xi \neq 0$. Thus we may write

$$
\widehat{\partial^{\beta} \widetilde{u}}=\underbrace{\left(\sigma_{m}(P)(\xi)\right)^{-1} \xi^{\beta}}_{=: B(P, \xi, \beta)} \widehat{P_{r} \widetilde{u}} \quad \forall \xi \neq 0
$$

Since σ_{m} is homogeneous of degree m, σ_{m}^{-1} is homogeneous of degree $-m$ and B is homogeneous of degree 0 . Hence for

$$
C_{\beta}:=\max _{|\xi|=1}(1, B(P, \xi, \beta))<\infty
$$

we get

$$
\left\|\widehat{\partial^{\beta} \widetilde{u}}\right\|_{L^{2}} \leq C_{\beta}\left\|\widehat{P_{r} \widetilde{u}}\right\|_{L^{2}}
$$

Using (1.16) in Plancherel's theorem we have

$$
\begin{equation*}
\left\|\partial^{\beta} \widetilde{u}\right\|_{L^{2}} \leq C_{\beta}\left\|P_{r} \widetilde{u}\right\|_{L^{2}} \tag{3.9}
\end{equation*}
$$

Thus we conclude

$$
\begin{aligned}
\left(\|u\|_{m}^{\phi}\right)^{2} & =\sum_{|\beta|=m}\left\|\partial^{\beta} \widetilde{u}\right\|_{L^{2}(E)}^{2}+\left(\|u\|_{m-1}^{\phi}\right)^{2} \leq \\
& \leq \underbrace{\binom{n+m-1}{m} \cdot \max _{|\beta|=m}\left(C_{\beta}^{2}\right)}_{=: C^{2}>1} \cdot\left\|P_{r} \widetilde{u}\right\|_{L^{2}}^{2}+\left(\|u\|_{m-1}^{\phi}\right)^{2}
\end{aligned}
$$

and therefore

$$
\|u\|_{m}^{\phi} \leq C\left(\|P u\|_{L^{2}}^{\phi}+\|u\|_{m-1}^{\phi}\right)
$$

This shows (3.8) for $u \in H^{m}(E)$ compactly supported in a chart neighborhood V and P "homogeneous" and with constant coefficients.
2. Let $u \in H^{m+k}(E)$ and P as above. We generalize (3.8):

$$
\begin{aligned}
\left(\|u\|_{m+k}^{\phi}\right)^{2} & =\sum_{|\alpha| \leq m+k}\left\|\partial^{\alpha} \widetilde{u}\right\|_{L^{2}}^{2}= \\
& =\sum_{k \leq|\alpha| \leq m+k}\left\|\partial^{\alpha} \widetilde{u}\right\|_{L^{2}}^{2}+\sum_{|\alpha| \leq k-1}\left\|\partial^{\alpha} \widetilde{u}\right\|_{L^{2}}^{2}= \\
& =\sum_{k \leq|\alpha| \leq m+k}\left\|\partial^{\alpha} \widetilde{u}\right\|_{L^{2}}^{2}+\left(\|u\|_{k-1}^{\phi}\right)^{2}= \\
& =\sum_{j=0}^{m} \sum_{|\gamma|=k|\beta|=j} \sum_{\mid \gamma \partial^{\beta} \partial^{\gamma} \widetilde{u} \|_{L^{2}}^{2}+\left(\|u\|_{k-1}^{\phi}\right)^{2}=} \\
& =\sum_{|\gamma|=k}\left(\left\|\phi^{*}\left(\partial^{\gamma} \widetilde{u}\right)\right\|_{m}^{\phi}\right)^{2}+\left(\|u\|_{k-1}^{\phi}\right)^{2}
\end{aligned}
$$

we use the statement of step 1 and get

$$
\begin{align*}
& \|u\|_{m+k}^{\phi} \leq \\
& \leq \sum_{|\gamma|=k}\left\|\phi^{*}\left(\partial^{\gamma} \widetilde{u}\right)\right\|_{m}^{\phi}+\|u\|_{k-1}^{\phi} \leq \\
& \leq \sum_{|\gamma|=k} C^{\prime}\left(\left\|P_{r}\left(\partial^{\gamma} \widetilde{u}\right)\right\|_{L^{2}}+\left\|\phi^{*}\left(\partial^{\gamma} \widetilde{u}\right)\right\|_{m-1}^{\phi}\right)+\|u\|_{k-1}^{\phi} \leq \\
& \leq C^{\prime}\left(\sum_{|\gamma|=k}\left\|\partial^{\gamma}\left(P_{r} \widetilde{u}\right)\right\|_{L^{2}}+\sum_{|\gamma|=k}\left\|\phi^{*}\left(\partial^{\gamma} \widetilde{u}\right)\right\|_{m-1}^{\phi}\right)+\|u\|_{k-1}^{\phi} \leq \\
& \leq C^{\prime}\left(\|P u\|_{k}^{\phi}+\|u\|_{m-1+k}^{\phi}\right)+\|u\|_{k-1}^{\phi} \leq \\
& \leq \underbrace{\max \left(1, C^{\prime}\right)}_{=: C}\left(\|P u\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \tag{3.10}
\end{align*}
$$

3. Let u be as in step 2 and P represented by $\sum_{|\alpha|=m} A_{\alpha} \partial^{\alpha}$ where A_{α} is smooth, but not necessary constant. For every $x_{i} \in V$ we may define $P_{x_{i}}$ such that its local representation is

$$
\sum_{|\alpha|=m} A_{\alpha}\left(x_{i}\right) \partial^{\alpha}
$$

From step 2 we know that there exists a $C_{i}>0$ such that

$$
\|u\|_{m+k}^{\phi} \leq C_{i}\left(\left\|P_{x_{i}} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)
$$

We estimate the difference of $P u$ and $P_{x_{i}} u$:

$$
\begin{aligned}
\left\|P u-P_{x_{i}} u\right\|_{k}^{\phi} & =\left\|\sum_{|\alpha|=m} \phi^{*}\left(\left(A_{\alpha}(.)-A_{\alpha}\left(x_{i}\right)\right) \partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi} \leq \\
& \leq \sum_{|\alpha|=m} \sup _{x \in \operatorname{supp}(\widetilde{u})}\left(\left\|A_{\alpha}(x)-A_{\alpha}\left(x_{i}\right)\right\|_{o p}\right) \cdot\left\|\phi^{*}\left(\partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi}
\end{aligned}
$$

where $\|\cdot\|_{o p}$ is the operator norm of operators from E_{x} to F_{x}. Since A_{α} is smooth we have that for every $\epsilon_{i}>0$ there exists a $\delta_{x_{i}}>0$, such that

$$
\left\|A_{\alpha}(x)-A_{\alpha}\left(x_{i}\right)\right\|_{o p}<\epsilon_{i} \quad \forall x \in B_{\delta_{x_{i}}}\left(x_{i}\right)
$$

Letting $\epsilon_{i}=\frac{1}{2 C_{i}}$, we choose for every x_{i} an appropriate $\delta_{x_{i}}$ and get for every compactly supported $u \in H^{m+k}\left(\left.E\right|_{B_{\delta_{x_{i}}}\left(x_{i}\right)}\right)$:

$$
\begin{aligned}
\|u\|_{m+k}^{\phi} & \leq C_{i}\left(\left\|P_{x_{i}} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)= \\
& =C_{i}\left(\left\|P u-P u+P_{x_{i}} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \leq \\
& \leq C_{i}\left(\|P u\|_{k}^{\phi}+\left\|P u-P_{x_{i}} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \leq
\end{aligned}
$$

$$
\begin{aligned}
\leq & C_{i}\left(\|P u\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)+ \\
& +C_{i} \cdot \sum_{|\alpha|=m} \sup _{x \in \operatorname{supp}(\widetilde{u})}\left(\left\|A_{\alpha}(x)-A_{\alpha}\left(x_{i}\right)\right\|_{o p}\right) \cdot\left\|\phi^{*}\left(\partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi} \leq \\
\leq & C_{i}\left(\|P u\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)+ \\
& +C_{i} \cdot \sum_{|\alpha|=m} \frac{1}{2 C_{i}}\left\|\phi^{*}\left(\partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi} \leq \\
\leq & C_{i}\left(\|P u\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)+\frac{1}{2}\|u\|_{m+k}^{\phi}
\end{aligned}
$$

We conclude

$$
\begin{equation*}
\|u\|_{m+k}^{\phi} \leq \underbrace{2 C_{i}}_{=: C_{i}^{\prime}}\left(\|P u\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \tag{3.11}
\end{equation*}
$$

for $u \in H^{m+k}\left(\left.E\right|_{B_{\delta_{x_{i}}}\left(x_{i}\right)}\right)$ compactly supported.
4. Let $u \in H^{m+k}\left(\left.E\right|_{B_{\delta_{x_{i}}}\left(x_{i}\right)}\right)$ be compactly supported $\left(B_{\delta_{x_{i}}}\left(x_{i}\right)\right.$ such that (3.11) holds) and $P \in P D O^{m}(E, F)$ an arbitrary elliptic operator. Since we are working on a trivializing chart V, P is represented by

$$
\sum_{|\alpha| \leq m} A_{\alpha} \partial^{\alpha}=\underbrace{\sum_{|\alpha|=m} A_{\alpha} \partial^{\alpha}}_{=: P_{0}}+\underbrace{\sum_{|\alpha| \leq m-1} A_{\alpha} \partial^{\alpha}}_{=: P_{1}}
$$

For P_{0} we have the estimate

$$
\|u\|_{m+k}^{\phi} \leq C^{\prime}\left(\left\|P_{0} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)
$$

by step 3 . We calculate the norm of $P_{1} u$:

$$
\begin{aligned}
\left\|P_{1} u\right\|_{k}^{\phi} & =\left\|\sum_{|\alpha| \leq m-1} \phi^{*}\left(A_{\alpha} \partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi} \leq \\
& \leq \sum_{|\alpha| \leq m-1} \sup _{x \in \operatorname{supp}(\widetilde{u})}\left(\left\|A_{\alpha}\right\|_{o p}\right) \cdot\left\|\phi^{*}\left(\partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi} \leq \\
& \leq \underbrace{\sup _{|\alpha| \leq m-1}\left(\sup _{x \in \operatorname{supp}(\widetilde{u})}\left(\left\|A_{\alpha}\right\|_{o p}\right)\right)}_{=: C^{\prime \prime}} \cdot \sum_{|\alpha| \leq m-1}\left\|\phi^{*}\left(\partial^{\alpha} \widetilde{u}\right)\right\|_{k}^{\phi} \leq \\
& \leq C^{\prime \prime} \cdot\|u\|_{m+k-1}^{\phi}
\end{aligned}
$$

Together we conclude

$$
\begin{aligned}
\|u\|_{m+k}^{\phi} & \leq C^{\prime}\left(\left\|P_{0} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right)= \\
& =C^{\prime}\left(\left\|P_{0} u+P_{1} u-P_{1} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \leq \\
& \leq C^{\prime}\left(\|P u\|_{k}^{\phi}+\left\|P_{1} u\right\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \leq \\
& \leq C^{\prime}\left(\|P u\|_{k}^{\phi}+C^{\prime \prime} \cdot\|u\|_{m+k-1}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \leq \\
& \leq \underbrace{\max \left(C^{\prime}, 1\right) \cdot\left(C^{\prime \prime}+1\right)}_{=: C}\left(\|P u\|_{k}^{\phi}+\|u\|_{m+k-1}^{\phi}\right) \\
&
\end{aligned}
$$

By 3.1.17 there exists a $C>0$, such that

$$
\begin{equation*}
\|u\|_{m+k} \leq C\left(\|P u\|_{k}+\|u\|_{m+k-1}\right) \tag{3.12}
\end{equation*}
$$

for $u \in H^{m+k}\left(\left.E\right|_{B_{\delta_{x_{i}}}\left(x_{i}\right)}\right)$.
5. For every chart $\left(\psi_{V}, V\right)$,

$$
\left\{B_{\delta_{x_{i}}}\left(x_{i}\right) \mid x_{i} \in V,(3.12) \text { holds on } B_{\delta_{x_{i}}}\left(x_{i}\right)\right\}
$$

is an open covering of V. So we can cover the whole manifold M by

$$
\left\{\psi_{V}^{-1}\left(B_{\delta_{x_{i}}}\left(x_{i}\right)\right) \mid(\psi, V) \text { chart around } x_{i},(3.12) \text { holds on } B_{\delta_{x_{i}}}\left(x_{i}\right)\right\}
$$

For a relatively compact $U \subseteq M$ there exists a finite subcover

$$
\mathcal{V}:=\left\{\psi_{V}^{-1}\left(B_{\delta_{x_{i}}}\left(x_{i}\right)\right) \mid 1 \leq i \leq N\right\}
$$

We choose a partition of unity $\left\{\chi_{i} \mid 1 \leq i \leq N\right\}$ subordinate to \mathcal{V}. Let $u \in$ $H^{k+m}\left(\left.E\right|_{U}\right)$ be arbitrary. It follows that $\chi_{i} \cdot u \in H_{c}^{k+m}\left(\left.E\right|_{\psi_{V}^{-1}\left(B_{\delta_{x_{i}}}\left(x_{i}\right)\right)}\right)$ for $1 \leq i \leq N$. By (3.12) and 3.1.15 we get

$$
\begin{aligned}
& \|u\|_{m+k}= \\
& \quad=\left\|\sum_{i=1}^{N} \chi_{i} \cdot u\right\|_{m+k} \leq \\
& \leq \sum_{i=1}^{N}\left\|\chi_{i} \cdot u\right\|_{m+k} \leq \\
& \leq \sum_{i=1}^{N} C_{i}\left(\left\|P\left(\chi_{i} \cdot u\right)\right\|_{k}+\left\|\chi_{i} \cdot u\right\|_{m+k-1}\right) \leq \\
& \leq \underbrace{\max _{i=1, \ldots, N}\left(C_{i}\right)}_{=: C^{(1)}} \sum_{i=1}^{N}\left(\left\|P\left(\chi_{i} \cdot u\right)\right\|_{k}+\left\|\chi_{i} \cdot u\right\|_{m+k-1}\right) \leq \\
& \leq C^{C^{(1)}} \sum_{i=1}^{N}(\underbrace{\left\|\chi_{i} \cdot P u\right\|_{k}}_{\leq C^{(2)}\|P u\|_{k}}+\|\underbrace{\left[P, \chi_{i}\right]}_{\in \mathbf{P D O} \mathbf{m}^{m-1}} u\|_{k}+\underbrace{\left\|\chi_{i} \cdot u\right\|_{m+k-1}}_{\leq C^{(3)}\|u\|_{m+k-1}})
\end{aligned}
$$

In addition for every compactly supported $Q \in \mathbf{P D O}^{r}$ there exists a $C^{(4)}$ such that

$$
\|Q u\|_{L^{2}} \leq C^{(4)}\|u\|_{r}
$$

because of 3.1.9. Altogether we conclude

$$
\begin{aligned}
& \|u\|_{m+k} \leq \\
& \leq C^{C^{(1)}} \sum_{i=1}^{N}\left(C^{(2)}\|P u\|_{k}+C^{(4)}\|u\|_{m+k-1}+C^{(3)}\|u\|_{m+k-1}\right) \leq \\
& \leq \underbrace{C^{(1)} \max \left(C^{(2)}, 1\right) \max \left(C^{(3)}+C^{(4)}, 1\right)}_{=: C^{\prime}} \cdot \sum_{i=1}^{N}\left(\|P u\|_{k}+\|u\|_{m+k-1}\right)= \\
& =\underbrace{C^{\prime} N}_{=: C}\left(\|P u\|_{k}+\|u\|_{m+k-1}\right)
\end{aligned}
$$

6. In step 5 we proved

$$
\|u\|_{m+k} \leq C^{\prime}\left(\|P u\|_{k}+\|u\|_{m+k-1}\right)
$$

for an arbitrary elliptic operator $P \in \mathbf{P D O}^{m}(E, F)$ and $u \in H^{k+m}\left(\left.E\right|_{U}\right)$, where $U \subseteq M$ is relatively compact. The last step is to exchange the $m+k-1$-norm by the L^{2}-norm of u, therefore we need the interpolation inequalities from 3.2.2. We set $\epsilon:=\frac{1}{2 C^{\prime}}$ and get

$$
\begin{aligned}
& \|u\|_{m+k} \leq \\
& \quad \leq C^{\prime}\left(\|P u\|_{k}+\|u\|_{m+k-1}\right) \leq \\
& \leq C^{\prime}\left(\|P u\|_{k}+\frac{1}{2 C^{\prime}}\|u\|_{m+k}+C_{\epsilon}\|u\|_{L^{2}}\right)= \\
& =C^{\prime}\|P u\|_{k}+\frac{1}{2}\|u\|_{m+k}+C^{\prime} C_{\epsilon}\|u\|_{L^{2}}
\end{aligned}
$$

So we conclude

$$
\|u\|_{m+k} \leq \underbrace{2 C^{\prime} \max \left(1, C_{\epsilon}\right)}_{=: C}\left(\|P u\|_{k}+\|u\|_{L^{2}}\right)
$$

3.2.4 Remark: The requirement in 3.2 .2 and 3.2 .3 that the sections on $\left.E\right|_{U}$, where U is already relatively compact, must have compact support is absolutely necessary, since the chart image $\psi(U)$ of U is not necessarily relatively compact (Take for example $U=] 0,1[$ and $\psi=\ln$). Thereby the coordinate functions of the chart representation $\left(u_{1}, \ldots, u_{l}\right)$ of $u \in H^{k}\left(\left.E\right|_{U}\right)$ are not necesarily in $H^{k}\left(\mathbb{R}^{n}\right)$. This feature can only be guaranteed if we require $u \in H_{c}^{k}\left(\left.E\right|_{U}\right)$.

The above estimates imply the following Lemma, which provides an easy proof of the elliptic regularity theorem.
3.2.5 Theorem (Elliptic Regularity ${ }^{4}$): Let $P \in \mathbf{P D O}^{m}(E, F)$ be elliptic, $u \in H_{\mathrm{loc}}^{m}(E)$ and $s \in \mathbb{N}_{0}$ arbitrary. From $P u \in H_{\mathrm{loc}}^{s}(F)$ it follows that $u \in H_{\mathrm{loc}}^{m+s}(E)$.

Proof. Let $u \in H_{\mathrm{loc}}^{m}(E)$ and $P u \in H_{\mathrm{loc}}^{s}(F)$. We have to show that $\chi \cdot u \in$ $H^{m+s}(E)$ for every $\chi \in C_{c}^{\infty}(M)$. We cover $\operatorname{supp}(\chi)$ by coordinate charts (finitely many suffice) and consider the problem locally. Since

$$
v \in H_{l o c}^{k}\left(\left.E\right|_{U}\right) \Leftrightarrow \psi(v)_{i} \in H_{l o c}^{k}(\psi(U)) \quad \forall 1 \leq i \leq p
$$

where (ψ, U) is a chart and p is the dimension of the fibres of E (see 3.1.17) it suffices to prove the theorem on \mathbb{R}^{n}. This requires some analytical work with difference quotients which will not be included in this book. We refer to [Fol76], (6.21)-(6.30) for a very intelligible proof.

[^24]3.2.6 Corollary (Weyl's Lemma): Let $P \in \mathbf{P D O}^{m}(E, F)$ be elliptic and $u \in H_{\mathrm{loc}}^{m}(E)$. From $P u \in \Gamma^{\infty}(F)$ it follows that $u \in \Gamma^{\infty}(E)$.

Proof.

$$
\begin{aligned}
P u \in \Gamma^{\infty}(F) & \Rightarrow \quad P u \in H_{\mathrm{loc}}^{s}(F) \quad \forall s \in \mathbb{N}_{0} \\
& \underset{3.2 .5}{\Rightarrow} \quad u \in H_{\mathrm{loc}}^{m+s}(E) \quad \forall s \in \mathbb{N}_{0} \\
& \underset{\text { 3.1.19 }}{\Rightarrow} \quad u \in \Gamma^{m+s-\left\lfloor\frac{n}{2}\right\rfloor-1} \quad \forall s \in \mathbb{N}_{0} \\
& \Rightarrow \quad u \in \Gamma^{\infty}(E)
\end{aligned}
$$

We use these results about elliptic operators to prove some properties of their analytical realizations:
3.2.7 Proposition: Let M be a compact manifold. The analytical realization \widetilde{P} of an elliptic $P D O P \in \mathbf{P D O}^{m}(E, F)$ is a closed, densely defined linear operator.

Proof. \widetilde{P} is linear by definition. We have $\Gamma_{c}^{\infty}(E) \subseteq H^{m}(E) \subseteq L^{2}(E)$ and $\Gamma_{c}^{\infty}(E)$ is dense in $L^{2}(E)$. Thus $H^{m}(E)$ is dense in $L^{2}(E)$. We have to prove that $\operatorname{graph}(P)=\left\{(u, P u) \mid u \in H^{m}(E)\right\}$ is closed in $L^{2}(E) \times L^{2}(F)$.
Let $u_{n} \in H^{m}(E)$ for all $n \in \mathbb{N}$ and $\left(u_{n}, P u_{n}\right)$ converge to (u, v) in $L^{2}(E) \times L^{2}(F)$. Hence $\left(u_{n}\right)$ is a Cauchy sequence in $L^{2}(E)$ and $\left(P u_{n}\right)$ is a Cauchy sequence in $L^{2}(F)$. We use 3.2.3 (M is compact!) and get

$$
\left\|u_{n}-u_{l}\right\|_{m} \leq C(\underbrace{\left\|P\left(u_{n}-u_{k}\right)\right\|_{L^{2}}}_{\rightarrow 0 \text { for } n, k \rightarrow \infty}+\underbrace{\left\|u_{k}-u_{l}\right\|_{L^{2}}}_{\rightarrow 0 \text { for } k, l \rightarrow \infty}) \rightarrow 0 \text { for } n, l \rightarrow \infty
$$

Thus $\left(u_{n}\right)$ is a Cauchy sequence in $H^{m}(E)$. In 3.1 .8 we saw that $H^{m}(E)$ is complete, so $\left(u_{n}\right)$ converges to some w in $H^{m}(E) \subset L^{2}(E)$. But $\left(u_{n}\right)$ converges to u in $L^{2}(E)$, so $w=u$. Thus $\left(P u_{n}\right)$ converges to $P u$ in $L^{2}(F)$, which implies $v=P u$. Hence $\operatorname{graph}(P)$ is closed in $L^{2}(E) \times L^{2}(F)$.

Thus we can define the adjoint operator of \tilde{P} (see 1.4.11). This is not the same as the formal adjoint of P from section 2.3 (since it is not defined on the same spaces), but:
3.2.8 Proposition: Let M be compact and $P \in \mathbf{P D O}^{m}(E, F)$ an elliptic operator. The adjoint of the analytical realization is the analytical realization of the formal adjoint:

$$
(\widetilde{P})^{*}=\widetilde{P^{*}}
$$

Proof. 3.2.7 shows that \widetilde{P} is closed, densely defined and linear, so we can define the adjoint operator $(\widetilde{P})^{*}$. By definition of the adjoint operator, 1.4.11, we have

$$
\langle\widetilde{P} u, v\rangle=\left\langle u,(\widetilde{P})^{*} v\right\rangle \quad \forall u \in H^{m}(E), v \in H^{m}(F)
$$

Thus $\operatorname{Dom}\left((\widetilde{P})^{*}\right) \supseteq H^{m}(F)=\operatorname{Dom}\left(\widetilde{P^{*}}\right)$ and

$$
(\widetilde{P})^{*}=\widetilde{P^{*}} \quad \text { on } \operatorname{Dom}\left(\widetilde{P^{*}}\right)
$$

$\operatorname{Dom}\left((\widetilde{P})^{*}\right) \subseteq \operatorname{Dom}\left(\widetilde{P^{*}}\right):$ Let $u \in \operatorname{Dom}\left((\widetilde{P})^{*}\right)$. Then there exists a $v \in L^{2}(E)$ such that

$$
\langle v, \phi\rangle=\langle u, \widetilde{P} \phi\rangle=\langle u, P \phi\rangle \quad \forall \phi \in \Gamma_{c}^{\infty}(E)
$$

This means that $v=P^{*} u$ weakly. We use the elliptic regularity theorem 3.2.5 to conclude $u \in H^{m}(F)$. So $\left.\operatorname{Dom}\left((\widetilde{P})^{*}\right)\right) \subseteq H^{m}(F)=\operatorname{Dom}\left(\widetilde{P^{*}}\right)$.
3.2.9 Corollary: The analytical realization of a formally selfadjoint elliptic operator on a compact manifold is selfadjoint.

Proof. $(\widetilde{P})^{*}=\widetilde{P^{*}}=\widetilde{P}$

The last aim of this section is to prove the Poincaré inequality. On the way we need to prove the Theorem of Rellich. For $M=\mathbb{R}^{n}$ proofs can be found in [AF03], 6.3, [BC09], section 4.5, [Fol76], 6.19 and [Nic07], Theorem 10.2.24. We use the approach of [BC09] and generalize it to arbitrary manifolds.
3.2.10 Lemma: Let $B \subseteq C^{1}\left(\mathbb{R}^{n}\right)$ be bounded. Then B is relatively compact in $C\left(\mathbb{R}^{n}\right)$.

Proof. B bounded means that for all $K \in \mathbb{R}^{n}$ compact there exist C_{K} and C_{K}^{\prime}, such that $\|f\|_{L^{\infty}(K)} \leq C_{K}$ and $\|d f\|_{L^{\infty}(K)} \leq C_{K}^{\prime}$ for all $f \in B$. The first part implies that B is bounded in $C\left(\mathbb{R}^{n}\right)$. Now let K be some compact ball. Since

$$
f(x)-f(y)=\int_{0}^{1} d f(y+t(x-y))(x-y) d t
$$

we get

$$
|f(x)-f(y)| \leq C_{K}^{\prime}|x-y| \quad \forall f \in B \quad \forall x, y \in K
$$

which means that B is equicontinuous. Using the theorem of Arzelà and Ascoli, 1.4.20, we deduce that B is relatively compact in $C\left(\mathbb{R}^{n}\right)$.
3.2.11 Theorem (Rellich): Let M be compact, $s, t \in \mathbb{N}_{0}$ and $t>s$. The embedding $\iota: H^{t}(E) \hookrightarrow H^{s}(E)$ is compact ${ }^{5}$.

Proof. We prove the theorem in three steps.

1. First we prove the theorem locally and for $t=1$ and $s=0$.

Let U be a trivializing chart neighborhood. We use the chart map to identify U with an open subset of \mathbb{R}^{n}. Let $B \subset H^{1}\left(\left.E\right|_{U}\right) \subset H^{1}\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)$ be bounded and all $u \in B$ supported in the same compact set $K \subset U$.

[^25]Let $\left(u_{n}\right)$ be a sequence in B. We show that there exists an L^{2}-convergent subsequence of u_{n}. Since $L^{2}\left(\left.E\right|_{U}\right)$ is a Hilbert space it suffices to find a Cauchy-subsequence of $\left(u_{n}\right)$.
Let $\epsilon>0$ be arbitrary. We want to use 3.2 .10 for this proof, so we first smooth out the u_{n} 's. For this purpose we use componentwise convolution: Let $\rho \in \mathcal{D}\left(B_{1}(0)\right)$, such that $\int_{B_{1}(0)} \rho=1$. We define

$$
\rho_{\delta}(x):=\frac{1}{\delta^{n}} \rho\left(\frac{x}{\delta}\right)
$$

for all $\delta>0$. Clearly $\operatorname{supp}\left(\rho_{\delta}\right) \subseteq B_{\delta}(0)$. The mollified sections

$$
u_{n}^{\delta}:=\rho_{\delta} * u_{n}
$$

(componentwise convolution with ρ) are smooth by 1.3.24 for every $\delta>0$. We prove that u_{n}^{δ} converges to u_{n} in L^{2} as $\delta \rightarrow 0$:
In what follows every integral over a section is meant componentwise.

$$
\begin{aligned}
\left\|u_{n}-u_{n}^{\delta}\right\|_{L^{2}} & =\int_{K}\left\|\left(u_{n}(x)-\rho_{\delta} * u_{n}(x)\right)\right\|^{2} d x= \\
& =\int_{K}\|u_{n}(x) \underbrace{\int_{K} \rho(y) d y}_{=1}-\int_{B_{\delta}(0)} \rho_{\delta}(z) u_{n}(x-z) d z\|^{2} d x= \\
& =\int_{K}\left\|\int_{B_{1}(0)} \rho(y) u_{n}(x)-\rho_{\delta}(\delta \cdot y) u_{n}(x-\delta \cdot y) \delta^{n} d y\right\|^{2} d x= \\
& =\int_{K}\left\|\int_{B_{1}(0)} \rho(y)\left(u_{n}(x)-u_{n}(x-\delta \cdot y)\right) d y\right\|^{2} d x \leq \\
& \leq \int_{K} \int_{B_{1}(0)}|\rho(y)|\left\|\int_{0}^{\delta} \partial_{t} u_{n}(x-t \cdot y) \cdot y d t\right\|^{2} d y d x \leq \\
& \leq \int_{K} \int_{B_{1}(0)}|\rho(y) \cdot y| \delta \cdot \operatorname{essup}_{B_{\delta}(x)}\left(\left\|\partial_{t} u_{n}\right\|^{2}\right) d y d x= \\
& =\delta \underbrace{\int_{B_{1}(0)}|\rho(y) \cdot y| \cdot \operatorname{essup}_{K_{\delta}}\left(\left\|\partial_{t} u_{n}\right\|^{2}\right) d y d x}_{K}
\end{aligned}
$$

where $K_{\delta}:=\{y \mid d(y, K) \leq \delta\}$. Since $K_{\delta} \subseteq K_{\delta_{0}}$ for $\delta<\delta_{0}$ we have $C\left(K, u_{n}, \rho, \delta\right) \leq C\left(K, u_{n}, \rho, \delta_{0}\right)$, thus u_{n}^{δ} converges to u_{n} in L^{2} as $\delta \rightarrow 0$. Hence we find a $\delta_{n}>0$ such that

$$
\left\|u_{n}-u_{n}^{\delta_{n}}\right\|_{L^{2}} \leq \frac{\epsilon}{3}
$$

The sequence $\left(u_{n}^{\delta_{n}}\right)_{n \in \mathbb{N}}$ is bounded in $\Gamma^{1}\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)$: Let α be a multiindex
of length ≤ 1

$$
\begin{aligned}
\left\|\partial^{\alpha} u_{n}^{\delta_{n}}(x)\right\| & =\left\|\partial^{\alpha} \int_{B_{\delta_{n}}(0)} \rho_{\delta_{n}}(z) u_{n}(x-z) d z\right\|= \\
& =\left\|\partial^{\alpha} \int_{B_{1}(0)} \rho(y) u_{n}\left(x-\delta_{n} y\right) d y\right\|= \\
& =\left\|\int_{B_{1}(0)} \rho(y)\left(\partial^{\alpha} u_{n}\right)\left(x-\delta_{n} y\right) d y\right\| \leq \\
& \leq \int_{B_{1}(0)}|\rho(y)| \cdot\left\|\left(\partial^{\alpha} u_{n}\right)\left(x-\delta_{n} y\right)\right\| d y \leq \\
& \leq\|\rho\|_{L^{2}} \cdot\left(\int_{B_{1}(0)}\left\|\left(\partial^{\alpha} u_{n}\right)\left(x-\delta_{n} y\right)\right\|^{2}\right)^{\frac{1}{2}} d y= \\
& =\|\rho\|_{L^{2}} \cdot\left\|\partial^{\alpha} u_{n}\right\|_{L^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|u_{n}^{\delta_{n}}\right\|_{\Gamma^{1}} & =\sum_{|\alpha| \leq 1} \sup _{x \in K}\left\|u_{n}^{\delta_{n}}(x)\right\| \leq \\
& \leq \sum_{|\alpha| \leq 1}\|\rho\|_{L^{2}} \cdot\left\|\partial^{\alpha} u_{n}\right\|_{L^{2}} \leq \\
& \leq C\|\rho\|_{L^{2}}\left\|u_{n}\right\|_{1}
\end{aligned}
$$

Since $\left\{u_{n} \mid n \in \mathbb{N}\right\}$ is bounded in $H^{1}, u_{n}^{\delta_{n}}$ is bounded in Γ^{1}. Now we choose an E-frame and take a look at the component functions, $u_{n}^{\delta_{n}}=$: $\left(f_{n}^{1}, \ldots, f_{n}^{q}\right)$. From the above we get that $\left(f_{n}^{1}\right)$ is a bounded sequence in $C^{1}\left(\mathbb{R}^{n}\right)$, so by 3.2 .10 there exists a $C\left(\mathbb{R}^{n}\right)$-convergent subsequence $\left(f_{n_{k}}^{1}\right)$. The subsequence $u_{n_{k}}^{\delta_{n_{k}}}$ of $u_{n}^{\delta_{n}}$ is again bounded and we can consider the component sequence $f_{n_{k}}^{2}$, which is bounded in $C^{1}\left(\mathbb{R}^{n}\right)$. We use 3.2.10 again and get a $C\left(\mathbb{R}^{n}\right)$-convergent subsequence $\left(f_{n_{k_{l}}}^{2}\right)$. The corresponding subsequence of $u_{n}^{\delta_{n}}$ now converges in the first two components in $C\left(\mathbb{R}^{n}\right)$. We continue with this procedure until we have constructed a subsequence for which all component sequences converge, thus the whole subsequence converges in $\Gamma\left(\mathbb{R}^{n} \times \mathbb{K}^{q}\right)$ and since $u_{n}^{\delta_{n}}$ is supported in the compact set K for all $n \in \mathbb{N}$, it converges in $L^{2}(E)$. We call this convergent subsequence $\left(v_{n}^{\delta_{n}}\right)$ and $\left(v_{n}\right)$ the corresponding subsequence of $\left(u_{n}\right)$. For $m, n \in \mathbb{N}$ big enough we have

$$
\left\|v_{n}^{\delta_{n}}-v_{m}^{\delta_{m}}\right\|_{L^{2}}<\frac{\epsilon}{3}
$$

Finally,

$$
\left\|v_{n}-v_{m}\right\|_{L^{2}} \leq \underbrace{\left\|v_{n}-v_{n}^{\delta_{n}}\right\|_{L^{2}}}_{\leq \frac{\epsilon}{3}}+\underbrace{\left\|v_{n}^{\delta_{n}}-v_{m}^{\delta_{m}}\right\|_{L^{2}}}_{<\frac{\epsilon}{3}}+\underbrace{\left\|v_{m}^{\delta_{m}}-v_{m}\right\|_{L^{2}}}_{\leq \frac{\epsilon}{3}}<\epsilon
$$

2. We show that the inclusion $H^{1}(E) \hookrightarrow L^{2}(E)$ is compact.

Let $\left(u_{n}\right)$ be a bounded sequence in $H^{1}(E)$. We cover the manifold M by trivializing chart neighborhoods (finitely many suffice, since M is compact)
and choose a partition of unity $\left\{\chi_{i} \mid 1 \leq i \leq N\right\}$ subordinate to this covering. Since $\operatorname{supp}\left(\chi_{1}\right)$ is compact we can use step 1 to construct a convergent subsequence of $\left(\chi_{1} \cdot u_{n}\right)$, which defines a subsequence of $\left(u_{n}\right)$. We take this subsequence $\left(u_{n_{k}}\right)$ and consider $\left(\chi_{2} \cdot u_{n_{k}}\right)$. Again we get a convergent subsequence and continue with χ_{3}. In finitely many steps we construct a subsequence of $\left(u_{n}\right)$, such that $\left(\chi_{i} \cdot u_{n}\right)$ converges in the L^{2} sense for every i. Therefore $u_{n}=\sum_{i=1}^{n} \chi_{i} \cdot u_{n}$ has an $L^{2}(E)$-convergent subsequence.
3. Let $s, t \in \mathbb{N}_{0}$ such that $t>s$. The inclusion $H^{t}(E) \hookrightarrow H^{s}(E)$ is compact: Let $\left(u_{n}\right)$ be a bounded sequence in $H^{t}(E)$. Because of $t \geq s+1$ and 3.1.5 the sequence $\left(u_{n}\right)$ is also bounded in $H^{s+1}(E)$. Thus $\left(\nabla^{j} u_{n}\right)(1 \leq j \leq s)$ is a bounded sequence in $H^{1}(E)$, so we can use step 2 to conclude that ($\nabla^{j} u_{n}$) has an $L^{2}(E)$-convergent subsequence for all $1 \leq j \leq s$. Hence $\left(u_{n}\right)$ has a subsequence which converges in $H^{s}(E)$.
3.2.12 Lemma: Let M be compact, $m>0, P \in \mathbf{P D O}^{m}(E, F)$ and $\left(u_{n}\right)_{n \in \mathbb{N}} a$ sequence in $H^{m}(E)$, such that $\left\{\left\|u_{n}\right\|_{L^{2}}+\left\|P u_{n}\right\|_{L^{2}} \mid n \in \mathbb{N}\right\}$ is bounded. Then there exists a subsequence of $\left(u_{n}\right)$ which converges in $L^{2}(E)$.

Proof. From the elliptic estimates in 3.2 .3 we deduce

$$
\left\|u_{n}\right\|_{m} \leq C(\underbrace{\left\|P u_{n}\right\|_{L^{2}}+\left\|u_{n}\right\|_{L^{2}}}_{\text {bounded }}) \leq \text { const. }
$$

Thus $\left(u_{n}\right)$ is bounded in $H^{m}(E)$. Since $H^{m}(E)$ embeds compactly into $L^{2}(E)$ by $3.2 .11,\left(u_{n}\right)$ contains a convergent subsequence.
3.2.13 Proposition (Poincaré inequality): Let M be a compact manifold, $m>0$ and $P \in \mathbf{P D O}^{m}(E, F)$ elliptic. There exists a constant $C>0$, such that

$$
\|u\|_{L^{2}} \leq C\|P u\|_{L^{2}}
$$

for all $u \in H^{m}(E)$ which are orthogonal to $\operatorname{ker}(P)$, i.e

$$
\int_{M}\langle u, v\rangle_{E} d V_{g}=0 \quad \forall v \in \operatorname{ker}(P)
$$

Proof. Denote by $(\operatorname{ker}(P))^{\perp}$ the subspace of sections which are orthogonal to $\operatorname{ker}(P)$.
We argue by contradiction. We assume that for all $C \in \mathbb{R}$ there exists a section $u \in(\operatorname{ker}(P))^{\perp}$, such that

$$
\|u\|_{L^{2}}>C\|P u\|_{L^{2}}
$$

In particular for every $n \in \mathbb{N}$, there exists a $u_{n}^{\prime} \in(\operatorname{ker}(P))^{\perp}$ such that

$$
\left\|u_{n}^{\prime}\right\|_{L^{2}}>n\left\|P u_{n}^{\prime}\right\|_{L^{2}}
$$

We define $u_{n}:=\frac{u_{n}^{\prime}}{\left\|u_{n}^{\prime}\right\|} \in(\operatorname{ker}(P))^{\perp} . P$ is linear, therefore we get

$$
1=\left\|u_{n}\right\|_{L^{2}}>n\left\|P u_{n}\right\|_{L^{2}}
$$

Now we have a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in $(\operatorname{ker}(P))^{\perp}$ such that

$$
\left\|u_{n}\right\|_{L^{2}}=1 \text { and }\left\|P u_{n}\right\|_{L^{2}}<\frac{1}{n}
$$

Hence $\left\{\left\|u_{n}\right\|_{L^{2}}+\left\|P u_{n}\right\|_{L^{2}}\right\}$ is bounded and we can apply 3.2.12 to get a convergent subsequence $\left(u_{n_{k}}\right)$. We denote the limit by u. Clearly $\|u\|_{L^{2}}=1$. $(\operatorname{ker}(P))^{\perp}$ is a closed ${ }^{6}$ subspace, so $u \in(\operatorname{ker}(P))^{\perp}$. Since P is a closed operator we have $u \in \operatorname{Dom}(P)$ and $P u=\lim _{k \rightarrow \infty} P u_{n_{k}}=0$. Thus $u \in \operatorname{ker}(P) \cap$ $(\operatorname{ker}(P))^{\perp}=\{0\}$, which contradicts $\|u\|_{L^{2}}=1$.

3.3 The Spectral Theorem

In this section M will always be compact. We prove the spectral theorem and give some short remarks. One very useful feature of the spectral theorem is the functional calculus, which we consider in section 3.4.
3.3.1 Lemma: Let $k>0$ and $P \in \mathbf{P D O}^{k}(E, E)$ be elliptic. Then $\operatorname{ker}(P)$ is finite dimensional.

Proof. Let $\emptyset \neq B \subseteq \operatorname{ker}(P)$ be open and bounded. Since B is open and not empty the dimension of B and the dimension of $\operatorname{ker}(P)$ are the same. We show that B is relatively compact:
Let $\left(u_{n}\right)$ be a sequence in B. Since B is bounded in $L^{2}(E)$ the set

$$
\{\left\|u_{n}\right\|_{L^{2}}+\|\underbrace{P u_{n}}_{=0}\|_{L^{2}}\}=\left\{\left\|u_{n}\right\|_{L^{2}}\right\}
$$

is bounded in \mathbb{R}. By 3.2 .12 there exists a convergent subsequence.
Thus $C:=\bar{B}$ is compact and the cover $\left\{\left.c+\frac{1}{2} C \right\rvert\, c \in B\right\}$ of C contains a finite subcover $\left\{\left.c_{i}+\frac{1}{2} C \right\rvert\, 1 \leq i \leq N\right\}$. We define $Y:=\operatorname{span}\left(\left\{c_{i} \mid 1 \leq i \leq N\right\}\right)$. Clearly

$$
C \subseteq Y+\frac{1}{2} C \subseteq \underbrace{Y+\frac{1}{2} Y}_{=Y}+\frac{1}{2^{2}} C \subseteq \cdots \subseteq Y+\frac{1}{2^{m}} C \quad \forall m \in \mathbb{N}_{0}
$$

Since C is bounded we conclude that $C \subseteq \bar{Y}=Y$. Hence

$$
\operatorname{dim}(\operatorname{ker}(P))=\operatorname{dim}(B) \leq \operatorname{dim}(C) \leq \operatorname{dim}(Y)=N<\infty
$$

[^26]3.3.2 Lemma: Let $P \in \mathbf{P D O}^{k}(E, E)$ be elliptic. Then $\operatorname{im}(P)$ is closed and
$$
L^{2}(E)=\operatorname{im}(P) \oplus \operatorname{ker}\left(P^{*}\right)
$$

Proof. - $\operatorname{im}(P) \subseteq\left(\operatorname{ker}\left(P^{*}\right)\right)^{\perp}$: Let $v \in \operatorname{im}(P)$, i.e. there exists a $u \in H^{k}(E)$ such that $v=P u$. Let $w \in \operatorname{ker}\left(P^{*}\right)$ be arbitrary. Then

$$
\langle v, w\rangle_{L^{2}}=\langle P u, w\rangle_{L^{2}}=\langle u, \underbrace{P^{*} w}_{=0}\rangle_{L^{2}}=0 .
$$

Hence $v \perp w$ for all $w \in \operatorname{ker}\left(P^{*}\right)$.

- $\operatorname{im}(P)$ is closed: Let $\left(v_{n}\right)$ be a sequence in $\operatorname{im}(P)$ which converges to a section v in $L^{2}(E)$. For each v_{n} there exists a unique ${ }^{7} u_{n} \in(\operatorname{ker}(P))^{\perp}$ such that $P u_{n}=v_{n}$. We use the Poincaré inequality, 3.2.13 and deduce

$$
\left\|u_{n}-u_{m}\right\|_{L^{2}} \leq C\left\|P\left(u_{n}-u_{m}\right)\right\|_{L^{2}}=C\left\|v_{n}-v_{m}\right\|_{L^{2}}
$$

Together with the elliptic estimates, 3.2.3 we get

$$
\left\|u_{n}-u_{m}\right\|_{k} \leq C^{\prime}\left(\left\|P\left(u_{n}-u_{m}\right)\right\|_{L^{2}}+\left\|u_{n}-u_{m}\right\|_{L^{2}}\right) \leq\left(C^{\prime}+C\right)\left\|v_{n}-v_{m}\right\|_{L^{2}}
$$

Thus $\left(u_{n}\right)$ is a Cauchy sequence in $H^{k}(E)$. By 3.1.8 there exists a $u \in$ $H^{k}(E)$ such that $\left(u_{n}\right)$ converges to u in $H^{k}(E)$. Hence $\left(v_{n}\right)=\left(P u_{n}\right)$ converges to $P u$. Thus $v=P u$, i.e. $v \in \operatorname{im}(P)$.

- $\left(\operatorname{ker}\left(P^{*}\right)\right)^{\perp} \subseteq \operatorname{im}(P)$: We argue by contradiction: Let $u \in\left(\operatorname{ker}\left(P^{*}\right)\right)^{\perp}$, but $u \notin \operatorname{im}(P)$. By 1.4.5 there exists a $v \in H^{k}(E)$ such that

$$
\langle v, P w\rangle_{L^{2}}=0 \quad \forall w \in H^{k}(E)
$$

and

$$
\langle v, u\rangle_{L^{2}}=c>0
$$

From the first equation we conclude that

$$
\left\langle P^{*} v, w\right\rangle_{L^{2}}=\langle v, P w\rangle_{L^{2}}=0 \quad \forall w \in H^{k}(E)
$$

and since $H^{k}(E)$ is dense in $L^{2}(E), P^{*} v=0$, i.e. $v \in \operatorname{ker}\left(P^{*}\right)$. Since $u \in$ $\left(\operatorname{ker}\left(P^{*}\right)\right)^{\perp}$ the second equation shows that $v \notin\left(\operatorname{ker}\left(P^{*}\right)\right)^{\perp \perp}=\overline{\operatorname{ker}\left(P^{*}\right)}=$ $\operatorname{ker}\left(P^{*}\right)$, a contradiction.
3.3.3 Theorem (Spectral Theorem for selfadjoint elliptic Operators): Let $k>0$ and $P \in \mathbf{P D O}^{k}(E, E)$ be a formally selfadjoint, elliptic PDO. Then:
(i) The spectrum of P consists only of real eigenvalues of P.
(ii) Every eigenspace is finite dimensional and consists of smooth sections.

[^27](iii) $\operatorname{spec}(P)$ is a closed, countable, discrete and unbounded (and thereby non empty) subset of \mathbb{R}.
(iv) There exists an orthogonal decomposition
$$
L^{2}(E)=\bigoplus_{\lambda \in \operatorname{spec}(P)} \operatorname{ker}(\lambda \cdot i d-P)
$$
with projections $p r_{\lambda}: L^{2}(E) \rightarrow \operatorname{ker}(\lambda \cdot i d-P)$.
(v) $H^{k}(E)=\left\{u \in L^{2}(E) \mid \sum_{\lambda} \lambda^{2}\left\|p r_{\lambda} u\right\|_{L^{2}}^{2}<\infty\right\}$

Proof. (i) All eigenvalues of P are real: Let μ be an eigenvalue with eigenvector $v,\|v\|=1$. Then by 3.2.9,

$$
\mu=\mu\langle v, v\rangle=\langle\mu v, v\rangle=\langle P v, v\rangle=\langle v, \underbrace{P^{*}}_{=P} v\rangle=\langle v, \mu v\rangle=\bar{\mu}\langle v, v\rangle=\bar{\mu}
$$

$\lambda \in \operatorname{spec}(P)$ means that $(\lambda \cdot i d-P): H^{k}(E) \rightarrow L^{2}(E)$ has no two-sided inverse map from $L^{2}(E)$ to $H^{k}(E)$ (see 1.4.16). So $\lambda \cdot i d-P$ is not injective or not surjective. If it is not injective, there exists a $0 \neq v \in H^{k}(E)$ such that $\lambda \cdot v-P v=0$, i.e. λ is an eigenvalue of P. If $\lambda \cdot i d-P$ is not surjective we have $\operatorname{im}(\lambda \cdot i d-P) \neq L^{2}(E)$. Since $k>0$ and P is elliptic, we have that $\lambda \cdot i d-P$ is elliptic. We use 3.3 .2 to conclude that $\operatorname{ker}\left(\bar{\lambda} \cdot i d-P^{*}\right)=\operatorname{ker}(\lambda \cdot i d-P)^{*} \neq\{0\}$, which means that $\bar{\lambda}$ is an eigenvalue of $P^{*}=P$. But all eigenvalues of P are real, so $\lambda=\bar{\lambda}$ is again an eigenvalue of P. Altogether $\operatorname{spec}(P)$ consists only of real eigenvalues.
(ii) Let λ be an eigenvalue of P. Let $v \in \operatorname{ker}(\lambda \cdot i d-P)$, i.e. $(\lambda \cdot i d-P) v=0$. Since $k>0$ we have

$$
\sigma_{k}(\lambda \cdot i d-P)=\sigma_{k}(P)
$$

We use Weyl's Lemma, 3.2.6 and smoothness of 0 to conclude that v is smooth. The eigenspace $\operatorname{ker}(\lambda \cdot i d-P)$ is finite dimensional because of 3.3.1 and the ellipticity of $\lambda \cdot i d-P$.
(iii) Let $t \in \mathbb{R} \backslash \operatorname{spec}(P)$. Thus $t \cdot i d-P$ has a bounded inverse, which we call T. Clearly T is invertible. T is selfadjoint:

$$
\begin{aligned}
T^{*} & =\left((t \cdot i d-P)^{-1}\right)^{*}{ }_{1.4 .13}\left((t \cdot i d-P)^{*}\right)^{-1}= \\
& =(\bar{t} \cdot \underbrace{i d^{*}}_{\substack{\overline{4} .13}}-P^{*})^{-1}=(t \cdot i d-P)^{-1}=T
\end{aligned}
$$

T is compact: Let v_{n} be a bounded sequence in $L^{2}(E)$. We have to show that $\left(u_{n}\right):=\left(T v_{n}\right)$ admits an L^{2}-convergent subsequence. Since T is bounded, $\left(u_{n}\right)$ is a bounded sequence in $L^{2}(E)$. We have

$$
v_{n}=T^{-1} u_{n}=(t \cdot i d-P) u_{n}
$$

As in part (ii) from $k>0$ it follows that $(t \cdot i d-P)$ is elliptic, so we can use the elliptic estimates, 3.2 .3 and the L^{2}-boundedness of u_{n} and v_{n} to conclude that u_{n} is bounded in $H^{k}(E)$:

$$
\left\|u_{n}\right\|_{k} \leq C\left(\left\|(t \cdot i d-P) u_{n}\right\|_{L^{2}}+\left\|u_{n}\right\|_{L^{2}}\right)=C(\underbrace{\left\|v_{n}\right\|_{L^{2}}}_{\text {bounded }}+\underbrace{\left\|u_{n}\right\|_{L^{2}}}_{\text {bounded }})
$$

Finally we use 3.2.11 to conclude that $\left(u_{n}\right)$ has an L^{2}-convergent subsequence.
The Spectral Theorem for compact selfadjoint operators, 1.4 .18 shows that $\operatorname{spec}(T)$ is bounded, countable, closed and has its only accumulation point at 0 , all $x \in \operatorname{spec}(T) \backslash\{0\}$ are eigenvalues. The eigenvalues of P and T correspond in the following way:

$$
\begin{aligned}
\lambda \text { is an eigenvalue of } P & \Leftrightarrow \operatorname{ker}(\lambda \cdot i d-P) \neq\{0\} \\
& \Leftrightarrow \operatorname{ker}\left(\lambda \cdot i d-\left(t \cdot i d-T^{-1}\right)\right) \neq\{0\} \\
& \Leftrightarrow \exists v \neq 0:(\lambda-t) v+T^{-1} v=0 \\
& \Leftrightarrow \exists v \neq 0: v=T((t-\lambda) v)=(t-\lambda) T v \\
& \Leftrightarrow \exists v \neq 0: \frac{1}{t-\lambda} v=T v \\
& \Leftrightarrow \frac{1}{t-\lambda} \text { is an eigenvalue of } T
\end{aligned}
$$

Or equivalently

$$
\operatorname{spec}(P)=\left\{\left.t-\frac{1}{\mu} \right\rvert\, \mu \in \operatorname{spec}(T) \backslash\{0\}\right\}
$$

From this we conclude that $\operatorname{spec}(P)$ is closed, countable and unbounded, since $\operatorname{spec}(T)$ is closed, countable and has accumulation point 0 . In $\operatorname{spec}(T)$ there does not exist any other accumulation point, thus $\operatorname{spec}(P)$ is discrete.
(iv) 1.4.18 also gives that

$$
L^{2}(E)=\bigoplus_{\mu \in \operatorname{spec}(T) \backslash\{0\}} \operatorname{ker}(\mu \cdot i d-T)
$$

In part (iii) we saw that the eigenvectors of T to the eigenvalue μ are precisely the eigenvectors of P to the eigenvalue $\lambda:=t-\frac{1}{\mu}$. Hence

$$
L^{2}(E)=\bigoplus_{\mu \in \operatorname{spec}(T) \backslash\{0\}} \operatorname{ker}\left(\left(t-\frac{1}{\mu}\right) \cdot i d-P\right)
$$

and further (we use the bijection between eigenvalues of T and P)

$$
L^{2}(E)=\bigoplus_{\lambda \in \operatorname{spec}(P)} \operatorname{ker}(\lambda \cdot i d-P)
$$

(v) Let $u \in H^{k}(E)$, then $P u \in L^{2}(E)$. By part (iv) we may write every L^{2} section v as sum over its projections on the eigenspaces of P. We use the
orthogonality of the different eigenspaces to conclude

$$
\begin{aligned}
\sum_{\lambda} \lambda^{2}\left\|p r_{\lambda} u\right\|_{L^{2}}^{2} & =\sum_{\lambda}\left\|\lambda \cdot p r_{\lambda} u\right\|_{L^{2}}^{2}= \\
& =\left\|\sum_{\lambda} P\left(p r_{\lambda} u\right)\right\|_{L^{2}}^{2}= \\
& =\left\|\sum_{\lambda} p r_{\lambda} P u\right\|_{L^{2}}^{2}= \\
& =\|P u\|_{L^{2}}^{2}<\infty
\end{aligned}
$$

Conversely: Let $u \in L^{2}(E)$ such that $\sum_{\lambda} \lambda^{2}\left\|p r_{\lambda} u\right\|_{L^{2}}^{2}<\infty$. This condition guarantees that $v:=\sum_{\lambda} \lambda \cdot p r_{\lambda} u$ is in $L^{2}(E)$ and $v_{n}:=\sum_{|\lambda| \leq n} \lambda \cdot p r_{\lambda} u$ converge to v in $L^{2}(E)$. We define $u_{n}:=\sum_{|\lambda| \leq n} p r_{\lambda} u$ and observe that

$$
P u_{n}=P\left(\sum_{|\lambda| \leq n} p r_{\lambda} u\right)=\sum_{|\lambda| \leq n} P\left(p r_{\lambda} u\right)=\sum_{|\lambda| \leq n} \lambda \cdot p r_{\lambda} u=v_{n}
$$

$\left(u_{n}\right)$ clearly converges to u in $L^{2}(E)$. We use the elliptic estimates, 3.2.3 to show that $\left(u_{n}\right)$ is a Cauchy sequence in $H^{k}(E)$:

$$
\begin{aligned}
\left\|u_{n}-u_{m}\right\|_{k} & \leq C\left(\left\|P\left(u_{n}-u_{m}\right)\right\|_{L^{2}}+\left\|u_{n}-u_{m}\right\|_{L^{2}}\right)= \\
& =C(\underbrace{\left\|v_{n}-v_{m}\right\|_{L^{2}}}_{\rightarrow 0}+\underbrace{\left\|u_{n}-u_{m}\right\|_{L^{2}}}_{\rightarrow 0}) \rightarrow 0
\end{aligned}
$$

By completeness of $H^{k},\left(u_{n}\right)$ converges in H^{k}. Since $\left(u_{n}\right)$ already converges to u in L^{2}, u has to be in H^{k}.
3.3.4 Remark: 3.3.3, (iv) + (v) show that we may write

$$
i d_{L^{2}(E)}=\sum_{\lambda} p r_{\lambda}
$$

on $L^{2}(E)$ and

$$
P=\sum_{\lambda} \lambda \cdot p r_{\lambda}
$$

on $\operatorname{Dom}(P)=H^{k}(E)$.

In the next example we see that the Fourier decomposition of periodic functions is just a spectral decomposition of an elementary PDO on the one dimensional sphere.
3.3.5 Example (Fourier decomposition): Let $M=S^{1}$ with the induced metric from \mathbb{R}^{2} (thus $d V_{g}=d \theta$, where θ is the angle in polar coordinates), $E=S^{1} \times \mathbb{C}$ with the (standard) hermitian metric

$$
\left\langle\left(p, z_{1}\right),\left(p, z_{2}\right)\right\rangle:=z_{1} \overline{z_{2}} \in \mathbb{C}
$$

and

$$
P:=-i \frac{\partial}{\partial \theta}: \Gamma^{\infty}\left(S^{1} \times \mathbb{C}\right) \rightarrow \Gamma^{\infty}\left(S^{1} \times \mathbb{C}\right)
$$

P is elliptic: Since P is clearly of first order we calculate $\sigma_{1}(P)$. Let $u \in$ $\Gamma^{\infty}\left(S^{1} \times \mathbb{C}\right) \cong C^{\infty}\left(S^{1}, \mathbb{C}\right), f \in C^{\infty}\left(S^{1}, \mathbb{R}\right)$ and $\xi:=d f$. Then

$$
\begin{aligned}
{[P, f] u } & =-i \frac{\partial}{\partial \theta}(f \cdot u)-f \cdot\left(-i \frac{\partial}{\partial \theta}\right)= \\
& =-i \frac{\partial f}{\partial \theta} \cdot u-f \cdot i \frac{\partial u}{\partial \theta}+f \cdot i \frac{\partial u}{\partial \theta}= \\
& =-i \frac{\partial f}{\partial \theta} \cdot u
\end{aligned}
$$

Hence

$$
\sigma_{1}(P)\left(\xi_{p}\right)=\left.[P, f]\right|_{p}=-\left.i \frac{\partial f}{\partial \theta}\right|_{p} \cdot=-\left.i \cdot d f\left(\frac{\partial}{\partial \theta}\right)\right|_{p} \cdot=-i \xi_{p}\left(\left.\frac{\partial}{\partial \theta}\right|_{p}\right)
$$

Since $\left\{\left.d \theta\right|_{p}\right\}$ is an orthonormal basis of the one dimensional vector space $\left(T_{p} S^{1}\right)^{*}$ and $\xi_{p} \in\left(T_{p} S^{1}\right)^{*}$ we may write $\xi_{p}=\left.a \cdot d \theta\right|_{p}$, where $a \in \mathbb{R} \backslash\{0\}$ if $\xi_{p} \neq 0 \in$ $\left(T_{p} S^{1}\right)^{*}$. Finally

$$
\sigma_{1}(P)\left(\xi_{p}\right)=-i \cdot a \cdot \underbrace{d \theta_{p}\left(\left.\frac{\partial}{\partial \theta}\right|_{p}\right)}_{=1} \cdot \neq 0 \quad \forall \xi_{p} \neq 0
$$

P is formally selfadjoint: Let $u, v \in \Gamma_{c}^{\infty}\left(S^{1} \times \mathbb{C}\right) \cong C^{\infty}\left(S^{1}, \mathbb{C}\right)$ be arbitrary.

$$
\begin{aligned}
\int_{S^{1}}\langle u, P v\rangle d \theta & =\int_{S^{1}} u \cdot \overline{P v} d \theta= \\
& =\int_{S^{1}} u \cdot-i \overline{\partial v} \frac{\partial \theta}{\partial \theta} d \theta= \\
& =\int_{S^{1}} u \cdot i \frac{\partial \bar{v}}{\partial \theta} d \theta= \\
& =\int_{S^{1}} i \frac{\partial}{\partial \theta}(u \cdot \bar{v}) d \theta-\int_{S^{1}} i \frac{\partial u}{\partial \theta} \cdot \bar{v} d \theta= \\
& =\underbrace{\left.i \cdot u \cdot \bar{v}\right|_{0} ^{2 \pi}}_{=0}+\int_{S^{1}} P u \cdot \bar{v} d \theta= \\
& =\int_{S^{1}}\langle P u, v\rangle d \theta
\end{aligned}
$$

Hence $P^{*}=P$.
Eigenvalues and eigenfunctions of P : From

$$
-i \frac{\partial}{\partial \theta} u_{\lambda}=\lambda \cdot u_{\lambda}
$$

it follows that

$$
u_{\lambda}(\theta)=C \cdot \exp (i \lambda \theta)
$$

The u_{λ} 's are functions on the circle, i.e. $u_{\lambda}(0)=u_{\lambda}(2 \pi)$, thus $\lambda \in \mathbb{Z}$. By the spectral theorem, 3.3.3 we get that

$$
L^{2}\left(S^{1} \times \mathbb{C}\right)=\bigoplus_{k \in \mathbb{Z}} \operatorname{ker}(k \cdot i d-P)=\bigoplus_{k \in \mathbb{Z}} \operatorname{span}_{\mathbb{C}}\{\underbrace{\exp (i k \theta)}_{=: e_{k}}\}
$$

and

$$
f=\sum_{k \in \mathbb{Z}} p r_{k} f
$$

where

$$
\left(p r_{k} f\right)(\theta)=f_{k} \cdot \exp (i k \theta) \quad \text { with } \quad f_{k}:=\left\langle f, e_{k}\right\rangle=\int_{S^{1}} f(\theta) \cdot \exp (-i k \theta) d \theta
$$

which is the usual complex Fourier decomposition for periodic functions.

3.4 The Functional Calculus

The functional calculus is a useful tool to define functions of an operator, which we will use to find solutions for initial value problems where the corresponding differential operator is elliptic in the space-directions. We use the functional calculus in chapter 4 to calculate solutions for heat and wave equations.
One may define a functional calculus in many different ways (and in a more general setting), for which we refer to [Con85], [KR83] and [RS80]. In this section M is compact and $P \in \mathbf{P D O}^{k}(E, E)$ is an elliptic PDO.
3.4.1 Definition: Let $f: \operatorname{spec}(P) \rightarrow C^{\infty}(I)$ (where $I \subseteq \mathbb{R}$ is an interval) and $\left\{\phi_{n} \mid n \in \mathbb{N}\right\}$ a basis of $L^{2}(E)$ of eigenfunctions of P (which exists because of 3.3.3). We define the linear operator $f(P): \operatorname{Dom}(P) \rightarrow L^{2}(E)$ by

$$
f(P, t) \phi_{n}:=f\left(\lambda_{n}\right)(t) \cdot \phi_{n}
$$

where λ_{n} is the eigenvalue of P for the eigenfunction ϕ_{n}. The map $f \mapsto f(P, t)$ is called functional calculus for P.
3.4.2 Remark: If the $f\left(\lambda_{n}\right)(n \in \mathbb{N})$ are uniformly bounded functions, the operators $f(P, t)$ are bounded for all $t \in I$ and thus defined on all of $L^{2}(E)$ by the formula

$$
f(P, t) u=\sum_{n \in \mathbb{N}} a_{n} \cdot f\left(\lambda_{n}\right)(t) \cdot \phi_{n}
$$

where $u=\sum_{n \in \mathbb{N}} a_{n} \cdot \phi_{n}$.

The following theorem will provide a solution $u: M \times[0, \infty[\rightarrow E$ to many initial value problems of the form

$$
\begin{align*}
D_{t} u(x, t)+P u(x, t) & =0 \tag{3.13}\\
u(x, 0) & =v(x) \in H^{k}(E)
\end{align*}
$$

where D_{t} is a linear PDO in the t-variable.
3.4.3 Theorem: Let $f\left(\lambda_{n}\right) \in C^{\infty}([0, \infty[)$ solve the equation

$$
\begin{align*}
D_{t} f\left(\lambda_{n}\right)+\lambda_{n} \cdot f\left(\lambda_{n}\right) & =0 \tag{3.14}\\
f\left(\lambda_{n}\right)(0) & =1
\end{align*}
$$

for all $n \in \mathbb{N}$ and let $f\left(\lambda_{n}\right)$ be uniformly bounded. Then $f(P, t) v \in H^{k}(E)$ is the unique solution of (3.13).

Proof. Let $\left\{\phi_{n} \mid n \in \mathbb{N}\right\}$ be an orthonormal basis of $L^{2}(E)$ of eigenfunctions of P (see 3.3.3). Thus we may write v as

$$
v=\sum_{n \in \mathbb{N}} a_{n} \cdot \phi_{n}
$$

We claim that $f(P, t) v \in H^{k}(E)$ for all $t \in\left[0, \infty\left[\right.\right.$: Indeed, since $v \in H^{k}(E)$ by 3.3 .3 , (v) we have

$$
C:=\sum_{n} \lambda_{n}^{2}\left\|a_{n} \cdot \phi_{n}\right\|_{L^{2}}^{2}=\sum_{n} \lambda_{n}^{2}\left\|p r_{\lambda_{n}} v\right\|_{L^{2}}^{2}<\infty
$$

and hence

$$
\begin{aligned}
\sum_{n} \lambda_{n}^{2}\left\|p r_{\lambda_{n}} f(P) v\right\|_{L^{2}}^{2} & =\sum_{n} \lambda_{n}^{2}\left\|a_{n} f\left(\lambda_{n}\right) \phi_{n}\right\|_{L^{2}}^{2} \leq \\
& \leq \sup _{n \in \mathbb{N}}\left(\left|f\left(\lambda_{n}\right)(t)\right|\right) \sum_{n} \lambda_{n}^{2}\left\|a_{n} \cdot \phi_{n}\right\|_{L^{2}}^{2}= \\
& =\sup _{n \in \mathbb{N}}\left(\left|f\left(\lambda_{n}\right)(t)\right|\right) \cdot C<\infty
\end{aligned}
$$

which means, again by 3.3 .3 , (v), that $f(P, t) v \in H^{k}(E)$, for all $t \in[0, \infty[$ since the $f\left(\lambda_{n}\right)$ are uniformly bounded.
$(t, x) \mapsto f(P, t) v(x)$ solves (3.13): Since $f(P, t) v \in H^{k}(E)$ for each $t \in[0, \infty[$ we may calculate

$$
\begin{aligned}
P(f(P, t) v) & =P\left(\sum_{n=0}^{\infty} a_{n} \cdot f\left(\lambda_{n}\right)(t) \cdot \phi_{n}\right)= \\
& =\sum_{n=0}^{\infty} a_{n} \cdot f\left(\lambda_{n}\right)(t) \cdot P \phi_{n}= \\
& =\sum_{n=0}^{\infty} a_{n} \cdot \underbrace{f\left(\lambda_{n}\right)(t) \cdot \lambda_{n}}_{=-D_{t} f\left(\lambda_{n}\right)(t)} \cdot \phi_{n}
\end{aligned}
$$

Since the partial sums of the right hand side converge uniformly to the infinite sum we may switch differentiation and summation and get

$$
\begin{aligned}
P(f(P, t) v) & =-D_{t}\left(\sum_{n=0}^{\infty} a_{n} \cdot f\left(\lambda_{n}\right)(t) \cdot \phi_{n}\right)= \\
& =-D_{t}(f(P, t) v)
\end{aligned}
$$

And for the initial value:

$$
f(P, 0) v(x)=\sum_{n=0}^{\infty} a_{n} \cdot \underbrace{f\left(\lambda_{n}\right)(0)}_{=1} \cdot \phi_{n}(x)=v(x)
$$

Since $f\left(\lambda_{n}\right)$ is the (unique!) solution of the linear $\operatorname{ODE}(3.14),(t, x) \mapsto f(P, t) v(x)$ is the unique solution of (3.13), since it is uniquely determined by f, v and the eigenvalues of P.

Chapter 4

Applications

We give solutions for the heat- and wave-equation for arbitrary elliptic PDOs and provide explicit examples for applications. As usual M denotes a compact oriented Riemannian manifold, E is a Hermitian vector bundle over M and $P \in \mathbf{P D O}^{k}(E, E)$ is a formally self-adjoint, elliptic operator.

4.1 The Heat Equation

From the last chapter, Theorem 3.4.3 we know that we can find a solution $u: M \times[0, \infty[\rightarrow E$ for the homogeneous heat equation

$$
\begin{align*}
\left(\partial_{t}+P\right) u(t, x) & =0 \tag{4.1}\\
u(0, x) & =v(x)
\end{align*}
$$

by spectral decomposition of $L^{2}(E)$ in eigenspaces of P and the solution of the linear ODE

$$
\begin{align*}
\left(\partial_{t}+\lambda_{n}\right) f_{n}(t) & =0 \tag{4.2}\\
f_{n}(0) & =1
\end{align*}
$$

which is $f_{n}(t):=\exp \left(-\lambda_{n} t\right)$. The f_{n} are uniformly bounded by 1 on $[0, \infty[$, if $\lambda_{n} \geq 0$ for all $n \in \mathbb{N}$. In this case $\exp (-t \cdot P) v$ is the unique solution of (4.1).
4.1.1 Example (Heating the Stanford Torus ${ }^{1}$): Let $R>r>0$ and M be a two dimensional torus ${ }^{2}$ with external diameter $2(R+r)$ and internal diameter $2(R-r)$, i.e.

$$
\left.\left.M=\left\{\left(\begin{array}{c}
(R+r \cos \alpha) \cos \beta \\
(R+r \cos \alpha) \sin \beta \\
r \sin \alpha
\end{array}\right) \in \mathbb{R}^{3}: \alpha, \beta \in\right]-\pi, \pi\right]\right\}
$$

[^28]in appropriate coordinates. We endow M with the induced metric g from \mathbb{R}^{3}. We consider the Laplace-Beltrami operator $\Delta_{g}=d^{*} d: C^{\infty}(M) \rightarrow C^{\infty}(M)$, which is elliptic (see 2.2.12) and formally selfadjoint (see 2.3.10). The temperature flow on M is given by the heat equation for Δ_{g} (see [Dem06], (10.40)):
\[

$$
\begin{equation*}
\partial_{t} T+\lambda_{T} \cdot \Delta_{g} T=0 \tag{4.3}
\end{equation*}
$$

\]

Here $T \in C^{\infty}\left(M \times\left[0, \infty[)\right.\right.$ is the temperature function and λ_{T} is a constant which describes the temperature conductivity of the material of M.
By the above it suffices to calculate a spectral decomposition of $L^{2}(M \times \mathbb{R})$ into eigenspaces of Δ_{g}. For notational simplicity we consider the even bigger section space $L^{2}(M \times \mathbb{C})$ and find a spectral decomposition of it. Since the eigenvalues of a self-adjoint operator are real, a real valued initial temperature distribution causes real valued temperature distributions for all $t \in] 0, \infty[$. The functions

$$
u_{n m}(\alpha, \beta):=e^{i(n \alpha+m \beta)}
$$

with $(n, m) \in \mathbb{Z}^{2}$ are an orthonormal basis of $L^{2}(M \times \mathbb{C})$ by Fourier series theory (see for example [Heu92], §23). Fortunately these functions are eigenfunctions of Δ_{g} (this is an extension of the above operator to complex functions by $\Delta_{g}(u+$ $i v):=\Delta_{g} u+i \Delta_{g} v$): By definition of d^{*} (see 2.2.10 and 2.2.9) and d (see 1.2.34 and 1.2 .25$)$ and the chain rule we get

$$
\begin{aligned}
\Delta_{g} u_{n m} & =d^{*} d\left(u_{n m}\right)= \\
& =(-1)^{(2-1)(1-1)+1} * d * d\left(u_{n m}\right)= \\
& =-* d * d\left(e^{i(n \alpha+m \beta)}\right)= \\
& =-* d *\left(i n \cdot e^{i(n \alpha+m \beta)} d \alpha+i m \cdot e^{i(n \alpha+m \beta)} d \beta\right)
\end{aligned}
$$

Since $\left\{\partial_{\alpha}:=(d \alpha)^{*}, \partial_{\beta}:=(d \beta)^{*}\right\}$ is a frame for M, we use (1.10) to conclude

$$
\begin{aligned}
*\left(i n \cdot e^{i(n \alpha+m \beta)} d \alpha\right. & \left.+i m \cdot e^{i(n \alpha+m \beta)} d \beta\right)= \\
& =i n \cdot e^{i(n \alpha+m \beta)} d \beta-i m \cdot e^{i(n \alpha+m \beta)} d \alpha
\end{aligned}
$$

Thus again by 1.2.34 and (1.10)

$$
\begin{aligned}
\Delta_{g} u_{n m} & =-* d\left(i n \cdot e^{i(n \alpha+m \beta)} d \beta-i m \cdot e^{i(n \alpha+m \beta)} d \alpha\right)= \\
& =-*\left(-n^{2} \cdot e^{i(n \alpha+m \beta)} d \alpha \wedge d \beta+m^{2} \cdot e^{i(n \alpha+m \beta)} d \beta \wedge d \alpha\right)= \\
& =*\left(\left(n^{2}+m^{2}\right) \cdot e^{i(n \alpha+m \beta)} d \alpha \wedge d \beta\right)= \\
& =\left(n^{2}+m^{2}\right) \cdot e^{i(n \alpha+m \beta)}= \\
& =\left(n^{2}+m^{2}\right) \cdot u_{n m}
\end{aligned}
$$

Hence $u_{n m}$ is an eigenfunction of Δ_{g} to the eigenvalue $n^{2}+m^{2}$ for all $n, m \in \mathbb{Z}$. Since $n^{2}+m^{2} \geq 0$ we get a unique solution of (4.3) for every initial temperature distribution $T_{0} \in L^{2}(M \times \mathbb{R})$ by the considerations in the beginnig of this section. Let for example $T_{0}=1_{A}$ with

$$
A=\left\{p=\left(\begin{array}{c}
(R+r \cos \alpha) \cos \beta \\
(R+r \cos \alpha) \sin \beta \\
r \sin \alpha
\end{array}\right): \alpha, \in\right]-\frac{\pi}{8 r}, \frac{\pi}{8 r}[, \beta \in]-\frac{\pi}{8 R}, \frac{\pi}{8 R}[\}
$$

where we assume that $R, r>\frac{1}{8}$ (otherwise we take a number greater than 8 in the definition of A). By this definition A is a rectangle ${ }^{3}$ in M with edgelength $\frac{\pi}{4}$ (independent of R and r, the condition $R, r>\frac{1}{8}$ guarantees that there is enough space for A on $M)$. We calculate the coefficients of 1_{A} :

$$
\left\langle 1_{A}, u_{n m}\right\rangle_{L^{2}}=\int_{M} 1_{A} \cdot \overline{u_{n m}} d V_{g}=\int_{A} e^{-i(n \alpha+m \beta)} d \alpha \wedge d \beta
$$

If $n \neq 0$ and $m \neq 0$ we have

$$
e^{-i(n \alpha+m \beta)} d \alpha \wedge d \beta=d\left(\frac{1}{-2 i n} e^{-i(n \alpha+m \beta)} d \beta-\frac{1}{-2 i m} e^{-i(n \alpha+m \beta)} d \alpha\right)
$$

We may use the Theorem of Stokes, (1.7) to conclude

$$
\begin{aligned}
\left\langle 1_{A}, u_{n m}\right\rangle_{L^{2}}= & \frac{i}{2} \int_{\partial A} \frac{1}{n} e^{-i(n \alpha+m \beta)} d \beta-\frac{1}{m} e^{-i(n \alpha+m \beta)} d \alpha= \\
= & \frac{i}{2}\left(\int_{\frac{\pi}{8 R}}^{-\frac{\pi}{8 R}} \frac{1}{n} e^{-i\left(n \frac{-\pi}{8 r}+m \beta\right)} d \beta-\int_{\frac{\pi}{8 r}}^{-\frac{\pi}{8 r}} \frac{1}{m} e^{-i\left(n \alpha+m \frac{\pi}{8 R}\right)} d \alpha+\right. \\
& \left.+\int_{-\frac{\pi}{8 R}}^{\frac{\pi}{8 R}} \frac{1}{n} e^{-i\left(n \frac{\pi}{8 r}+m \beta\right)} d \beta-\int_{-\frac{\pi}{8 r}}^{\frac{\pi}{8 r}} \frac{1}{m} e^{-i\left(n \alpha+m \frac{-\pi}{8 R}\right)} d \alpha\right)= \\
= & \frac{i}{2}\left(\left.\frac{1}{n} e^{i \frac{n \pi}{8 r}} \frac{1}{-i m} e^{-i m \beta}\right|_{\frac{\pi}{8 R}} ^{-\frac{\pi}{8 R}}-\left.\frac{1}{m} e^{-i \frac{m \pi}{8 R}} \frac{1}{-i n} e^{-i n \alpha}\right|_{\frac{\pi}{8 r}} ^{-\frac{\pi}{8 r}}+\right. \\
& \left.+\left.\frac{1}{n} e^{-i \frac{n \pi}{8 r}} \frac{1}{-i m} e^{-i m \beta}\right|_{-\frac{\pi}{8 R}} ^{+\frac{\pi}{8 R}}-\left.\frac{1}{m} e^{i \frac{m \pi}{8 R}} \frac{1}{-i n} e^{-i n \alpha}\right|_{-\frac{\pi}{8 r}} ^{+\frac{\pi}{8 r}}\right)= \\
= & \frac{1}{2 m n}\left(-e^{i \frac{n \pi}{8 r}}\left(e^{i \frac{m \pi}{8 R}}-e^{-i \frac{m \pi}{8 R}}\right)+e^{-i \frac{m \pi}{8 R}}\left(e^{i \frac{n \pi}{8 r}}-e^{-i \frac{n \pi}{8 r}}\right)-\right. \\
= & \left.-e^{-i \frac{n \pi}{8 r}}\left(e^{-i \frac{m \pi}{8 R}}-e^{i \frac{m \pi}{8 R}}\right)+e^{i \frac{m \pi}{8 R}}\left(e^{-i \frac{n \pi}{8 r}}-e^{i \frac{n \pi}{8 r}}\right)\right)= \\
= & \frac{4}{m n} \sin \left(\frac{n \pi}{8 r}\right) \sin \left(\frac{m \pi}{8 R}\right)
\end{aligned}
$$

for $m, n \neq 0$. If $n \neq 0$ and $m=0$ we have

$$
e^{-i n \alpha} d \alpha \wedge d \beta=d\left(\frac{1}{-i n} e^{-i n \alpha} d \beta\right)
$$

Again by (1.7) we have

$$
\begin{aligned}
\left\langle 1_{A}, u_{n 0}\right\rangle_{L^{2}} & =\frac{i}{n} \int_{\partial A} e^{-i n \alpha} d \beta= \\
& =\frac{i}{n}\left(\int_{\frac{\pi}{8 R}}^{-\frac{\pi}{8 R}} e^{i \frac{n \pi}{8 r}} d \beta+\int_{-\frac{\pi}{8 R}}^{\frac{\pi}{8 R}} e^{-i \frac{n \pi}{8 r}} d \beta+\right)= \\
& =\frac{-i}{n}\left(e^{i \frac{n \pi}{8 r}}-e^{-i \frac{n \pi}{8 r}}\right) \int_{-\frac{\pi}{8 R}}^{\frac{\pi}{8 R}} 1 d \beta=
\end{aligned}
$$

[^29]\[

$$
\begin{aligned}
& =\frac{2}{n} \sin \left(\frac{n \pi}{8 r}\right) \frac{\pi}{4 R}= \\
& =\frac{\pi}{2 n R} \sin \left(\frac{n \pi}{8 r}\right)
\end{aligned}
$$
\]

for $n \neq 0$. Because of the symmetry of $u_{n m}$ we directly get

$$
\left\langle 1_{A}, u_{0 m}\right\rangle_{L^{2}}=\frac{\pi}{2 m r} \sin \left(\frac{m \pi}{8 R}\right)
$$

And finally for $n=0$ and $m=0$ we have

$$
1 d \alpha \wedge d \beta=d(\alpha \cdot d \beta)
$$

and thus

$$
\begin{aligned}
\left\langle 1_{A}, u_{00}\right\rangle_{L^{2}} & =\int_{\partial A} \alpha d \beta= \\
& =\int_{\frac{\pi}{8 R}}^{-\frac{\pi}{8 R}} \frac{-\pi}{8 r} d \beta+\int_{-\frac{\pi}{8 R}}^{\frac{\pi}{8 R}} \frac{\pi}{8 r} d \beta= \\
& =\frac{\pi}{4 r} \int_{-\frac{\pi}{8 R}}^{\frac{\pi}{8 R}} 1 d \beta= \\
& =\frac{\pi^{2}}{16 r R}
\end{aligned}
$$

We may use the function

$$
\operatorname{si}\left(x_{0}\right):=\lim _{x \rightarrow x_{0}} \frac{\sin x}{x}
$$

to get a simple formula for the coefficients in the series expansion:

$$
\left\langle 1_{A}, u_{n m}\right\rangle_{L^{2}}=\frac{\pi^{2}}{16 r R} \operatorname{si}\left(\frac{n \pi}{8 r}\right) \operatorname{si}\left(\frac{m \pi}{8 R}\right)
$$

Thus

$$
1_{A}(\alpha, \beta)=\frac{\pi^{2}}{16 r R} \sum_{n, m \in \mathbb{Z}} \operatorname{si}\left(\frac{n \pi}{8 r}\right) \operatorname{si}\left(\frac{m \pi}{8 R}\right) \cdot e^{i(n \alpha+m \beta)}
$$

and

$$
\begin{aligned}
T(\alpha, \beta, t) & =e^{-\Delta_{g}} 1_{A}(\alpha, \beta, t)= \\
& =\frac{\pi^{2}}{16 r R} \sum_{n, m \in \mathbb{Z}} \operatorname{si}\left(\frac{n \pi}{8 r}\right) \operatorname{si}\left(\frac{m \pi}{8 R}\right) \cdot e^{-\lambda_{T}\left(n^{2}+m^{2}\right) t} e^{i(n \alpha+m \beta)}
\end{aligned}
$$

is the unique L^{2}-solution of the heat equation. One can see that the mean temperature on M (which is given by $\langle T, 1\rangle_{L^{2}}=\frac{\pi^{2}}{16 r R}$) is constant, hence the thermal energy of the system is conserved.

4.2 The Wave Equation

Similarly as in section 4.1 we get a solution $u: M \times[0, \infty[\rightarrow E$ for the homogeneous wave equation

$$
\begin{align*}
\left(\partial_{t}^{2}+P\right) u(t, x) & =0 \tag{4.4}\\
u(0, x) & =v(x)
\end{align*}
$$

by spectral decomposition of $L^{2}(E)$ in eigenspaces of P and the solution of the linear ODE

$$
\begin{align*}
\left(\partial_{t}^{2}+\lambda_{n}\right) f_{n}(t) & =0 \tag{4.5}\\
f_{n}(0) & =1
\end{align*}
$$

which is $f_{n}(t):=\cos \left(\sqrt{\lambda_{n}} t\right)$. The f_{n} are uniformly bounded by 1 on $[0, \infty[$ and real if $\lambda_{n} \geq 0$ for all $n \in \mathbb{N}$. In this case $\cos (t \sqrt{P}) v$ is the unique solution of (4.4).
4.2.1 Example: Let M be a two dimensional sphere with radius $r>0$. In appropriate coordinates M is the following subset of \mathbb{R}^{3} :

$$
\left.\left.M=\left\{\left(\begin{array}{c}
r \cos \phi \sin \psi \\
r \sin \phi \sin \psi \\
r \cos \psi
\end{array}\right) \in \mathbb{R}^{3}: \phi \in\right]-\pi, \pi\right], \psi \in[0, \pi]\right\}
$$

We consider the Euclidean Laplacian on $\mathbb{R}^{3}, \Delta=-\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}$, which is elliptic (see 2.2.6) and formally selfadjoint (use integration by parts). Its restriction to M in the above coordinates is given by ${ }^{4}$

$$
\Delta_{M}=-\frac{1}{r^{2} \sin \psi} \frac{\partial}{\partial \psi}\left(\sin \psi \frac{\partial}{\partial \psi}\right)-\frac{1}{r^{2} \sin ^{2} \psi} \frac{\partial^{2}}{\partial \phi^{2}}
$$

Thus Δ_{M} is elliptic and formally selfadjoint on M with the induced metric ${ }^{5}$ from \mathbb{R}^{3}. The spherical harmonics

$$
Y_{l m}(\psi, \phi):=\sqrt{\frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} \cdot P_{l}^{m}(\cos \psi) \exp (i m \phi) \quad(l \in \mathbb{N},-l \leq m \leq l)
$$

where P_{l}^{m} are the associated Legendre polynomials defined by

$$
P_{l}^{m}(x):=\frac{(-1)^{m}}{2^{l} l!}\left(1-x^{2}\right)^{\frac{m}{2}} \frac{d^{l+m}}{d x^{l+m}}\left(x^{2}+1\right)^{l}
$$

are an orthonormal basis of $L^{2}(M \times \mathbb{R})$ (see [Fli05], p.101-103). In addition the spherical harmonics are eigenfunctions of Δ_{M} with eigenvalues $\frac{l(l+1)}{r^{2}}$ (see [Fli05], (11.8) where we use that we have a minus in the definition of the Laplacian), i.e.

$$
\Delta_{M} Y_{l m}=\frac{l(l+1)}{r^{2}} Y_{l m}
$$

Thus the unique solution of

$$
\begin{aligned}
\left(\partial_{t}^{2}+\Delta_{M}\right) u(t, \psi, \phi) & =0 \\
u(0, \psi, \phi) & =v(\phi, \psi)
\end{aligned}
$$

with

$$
v=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l m} Y_{l m}
$$

[^30]is given by
$$
\left(\cos \left(\sqrt{\Delta_{M}}\right) v\right)(t, \psi, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l m} Y_{l m}(\psi, \phi) \cos \left(\frac{\sqrt{l(l+1)}}{r} t\right)
$$

Bibliography

[AF03] Robert A. Adams, John J.F. Fournier, Sobolev spaces, $2^{\text {nd }}$ edition. Elsevier Science 2003
[BC09] Erik van den Ban, Marius Crainic, Analysis on manifolds, lecture notes, winter term 2009, University Utrecht, available at
http://www.staff.science.uu.nl/~ban00101/anman2009/anman2009.html
[Caj07] Florian Cajori, A History of Mathematical Notations: Vol. II. Cosimo, Inc. 2007
[Con85] John B. Conway, A course in functional analysis. Springer Verlag 1985
[Dem06] Wolfgang Demtröder, Experimentalphysik I: Mechanik und Wärme, $4^{t h}$ edition. Springer Verlag 2006
[Fli05] Torsten Fließbach, Elektrodynamik, $4^{\text {th }}$ edition. Elsevier 2005
[Fol76] Gerald B. Folland, Introduction to partial differential equations. Princeton University Press 1976
[GHV72] Werner Greub, Stephen Halperin, Ray Vanstone, Connections, Curvature, and Cohomology, volume I: De Rham Cohomology of Manifolds and Vector Bundles. Academic Press New York and London 1972
[GT83] David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, $2^{\text {nd }}$ edition. Springer Verlag 1983
[Gro08] Michael Grosser, Funktionalanalysis 1, lecture notes, winter term 2008, University Vienna
[Heu92] Harro Heuser, Funktionalanalysis, $3^{\text {rd }}$ edition. B.G. Teubner, Stuttgart 1992
[HJ77] Charles Holbrow, Richard D. Johnson, Space Settlements: A Design Study. National Aeronautics and Space Administration 1977
[HS09] Guenther Hörmann, Roland Steinbauer, Theory of Distributions, lecture notes, summer term 2009, University Vienna, available at
http://www.mat.univie.ac.at/~stein/teaching/SoSem09/distrvo.pdf
[KR83] Richard V. Kadison, John R. Ringrose, Fundamentals of the theory of operator algebras, I:Elementary Theory. Academic Press 1983
[Kun07] Michael Kunzinger, Global Analysis, lecture notes, summer term 2007, University Vienna
[Kun08a] Michael Kunzinger, Differential Geometry 1, lecture notes, summer term 2008, University Vienna, available at http://www.mat.univie.ac.at/~mike/teaching/ss08/dg.pdf
[Kun08b] Michael Kunzinger, Differential Geometry 2, lecture notes, winter term 2008, University Vienna
[Nic07] Liviu I. Nicolaescu, Lectures on the Geometry of Manifolds, $2^{\text {nd }}$ edition. World Scientific Publishing 2007
[RS80] Michael Reed, Barry Simon, Methods of modern mathematical physics, I: Functional Analysis, revised and enlarged edition. Academic Press, Inc. 1980
[Yos80] Kôsaku Yosida, Functional Analysis, $6^{\text {th }}$ edition. Springer Verlag 1980
[Zwe09] Roland Zweimüller, Maß- und Integrationstheorie, lecture notes, winter term 2009, University Vienna

Notation

This list includes short descriptions for commonly used symbols in the text. The page number refers to the definition of the symbol, if it is defined in the text.

$*$	Hodge-*-operator, p. 18
$[.,]$.	Lie bracket, p. 17
\cong	isomorph
Δ	Laplace operator
Δ_{∇}	Bochner Laplace operator, p. 49
Δ_{g}	Laplace-Beltrami operator, p. 43
$\Gamma^{\infty}(E)$	space of smooth sections over the vector bundle E, p. 15
$\Gamma_{c}^{\infty}(E)$	space of smoth sections over E with compact support
$\Gamma^{k}(E)$	space of k-times differentiable sections over the vector bundle E
ι	inclusion map
$\Lambda^{k} V^{*}$	space of alternating multilinear maps from V^{k} to \mathbb{K}, p. 16
$\langle\cdot, \cdot\rangle_{s}$	Sobolev metric of order s, p. 53
\mathbb{K}	a field, usually \mathbb{R} or \mathbb{C}
$\mathbb{N}=\mathbb{N}_{0}$	natural numbers including zero
\mathbb{N}^{*}	natural numbers without zero
\mathbb{N}_{0}^{n}	multi-index

$\boldsymbol{\operatorname { H o m }}(E, F)$ space of vector bundle homomorphism from E to F, p. 28
$\mathbf{O p}(E, F) \quad$ space of \mathbb{K}-linear operators from $\Gamma^{\infty}(E)$ to $\Gamma^{\infty}(F)$, p. 27
$\mathbf{P D O}{ }^{(m)} \quad$ space of partial differential operators of order $\leq m$, p. 28
$\mathbf{P D O}^{m} \quad$ space of partial differential operators of order m, p. 39
$\mathcal{B}_{X} \quad$ Borel σ-Algebra on the set X, p. 11
$\mathcal{D}^{\prime}(\Omega) \quad$ space of distributions on $\Omega \subseteq \mathbb{R}^{n}$, p. 20
$\mathcal{D}(\Omega) \quad$ space of test functions on $\Omega \subseteq \mathbb{R}^{n}$, p. 20
\mathcal{F} or ${ }^{\wedge} \quad$ Fourier transform, p. 21
$\mathcal{P}(X) \quad$ power set of the set X
$\mathcal{S}^{\prime}(\Omega) \quad$ space of tempered distributions on $\Omega \subseteq \mathbb{R}^{n}$, p. 21
$\mathcal{S}(\Omega) \quad$ space of Schwartz functions on $\Omega \subseteq \mathbb{R}^{n}$, p. 21
$\mathcal{T}_{s}^{r} M \quad$ space of (r, s)-tensor fields over the manifold M, p. 16
$\mathfrak{X}(M) \quad$ space of vector fields over the manifold M, p. 15
$\operatorname{Der}(R) \quad$ space of derivations of the ring R, p. 15
$\operatorname{dim}(M) \quad$ dimension of the smooth manifold M, p. 14
$\operatorname{dom}(T) \quad$ domain of the operator T
$\operatorname{essup}(f) \quad$ essential supremum of f
$\operatorname{graph}(T) \quad$ graph of the operator T
$\operatorname{im}(P) \quad$ image of the operator P
$\operatorname{ker}(P) \quad$ kernel of the operator P
$\operatorname{span}(C) \quad$ linear span of the set C
$\operatorname{spec}(T) \quad$ spectrum of the operator T, p. 25
$\operatorname{supp}(u) \quad$ support of the function, section or distribution u, p. 20
$\nabla \quad$ linear connection, p. 17
$\nabla_{X} \quad$ covariant derivative by X, p. 17
$\Omega^{k}(M) \quad$ space of k-forms on the manifold M, p. 17
$\otimes \quad$ tensor product, p. 15
$\|\cdot\|_{s} \quad$ Sobolev norm of order s, p. 53
$\|\cdot\|_{s}^{\phi} \quad$ chart norm of order s with respect to the chart ϕ, p. 59
$\|\cdot\|_{L^{p}} \quad L^{p}$-norm, p. 12
$\|\cdot\|_{o p} \quad$ operator norm
$\sigma_{m}(P) \quad$ symbol of $P \in \mathbf{P D O}^{m}$, p. 39
$\Sigma_{n} \quad$ space of permutations of n numbers
$\widetilde{P} \quad$ analytical realization of the PDO P, p. 58
$\xi \wedge=e_{\xi} \quad$ exterior product by $\xi \in \Omega^{1}(M)$, p. 16
$A^{c} \quad$ complement of the set A
$\operatorname{ad}(f) \quad$ p. 28
Alt alternator, p. 16
$B_{r}(x) \quad$ metric ball around x with radius r
$C^{\infty}(M) \quad$ space of smooth functions from the manifold M to \mathbb{R}
$d \quad$ exterior derivative, p. 17
$\operatorname{div}_{g}(X) \quad$ divergence of $X \in \mathfrak{X}(M)$, p. 43
$d V_{g} \quad$ metric volume for the metric $g, \mathrm{p} .18$
$E_{b} \quad$ fibre of the vector bundle (E, B, π) over $b \in B$, p. 15
$F^{*} \omega \quad$ pullback of the differential form ω under the function F, p. 16
$F_{*} \omega \quad$ push-forward of the differential form ω under the function F, p. 16
$g_{k} \quad$ metric for k-forms, induced by the Riemannian metric g , p. 18
$\operatorname{grad}_{g}(f) \quad$ gradient of $f \in C^{\infty}(M)$, p. 43
$H^{s}(\Omega) \quad$ Sobolev space of order s on $\Omega \subseteq \mathbb{R}^{n}$, p. 21
$H^{s}(E) \quad$ Sobolev (section) space of order s on the vector bundle E, p. 53
$H_{c}^{s}(E) \quad$ space of Sobolev sections of order s on E with compact support
$H_{\text {loc }}^{s}(E) \quad$ local Sobolev space of order s on the vector bundle $E, \mathrm{p} .53$
$i_{v} \quad$ interior product by a vector $v, \mathrm{p} .16$
$i d_{X} \quad$ identity map on the set X
$K \subset \subset U \quad K$ is a compact subset of U
$L^{2}(E) \quad$ square-integrable sections on the manifold E, p. 52
$L^{\infty}(X) \quad$ bounded measureable functions from the set X to $\mathbb{R}, \mathrm{p} .12$
$L^{p}(X) \quad p$-integrable functions from the set X to \mathbb{R}, p. 12
$L_{\text {loc }}^{p}(X) \quad$ locally p-integrable functions from the topological space X to \mathbb{R}
$p r_{i} \quad$ projection on the i-th factor of a Cartesian product
$T^{*} \quad$ (formal) adjoint operator of T, p. 44 and 24 , respectively
$T_{s}^{r} E \quad(r, s)$-tensor bundle over the vector bundle E, p. 16
$T_{s}^{r} M \quad(r, s)$-tensor bundle over the vector bundle $T M$, p. 16
$T_{s}^{r} V \quad$ space of (r, s)-tensors over the vector space V, p. 15
$T_{p} f \quad$ tangent map of the function f at the point $p, \mathrm{p} .14$
$T_{p} M \quad$ tangent space of the manifold M at the point p, p. 14
$T f \quad$ tangent map of the function f, p. 14
$T M \quad$ tangent space of the manifold M, p. 14
$V^{*} \quad$ algebraic dual space of the vector space V
$V^{\perp} \quad$ orthogonal complement of V

Index

σ-Algebra, 11
adjoint operator, 24
almost everywhere, 12
alternator, 16
analytical realization, 58
Arzelà-Ascoli, 26
associated Legendre polynomials, 91
atlas, 13
Banach space, 23
Bochner Laplacian, 49
Borel-
σ-Algebra, 11
measurable, 12
bounded operator, 24
chain rule, 14
chart, 13
Closed Graph Theorem, 24
closed operator, 24
compact operator, 25
complete vectorspace, 23
completion, 23
connection, 17
convergence of distributions, 20
covariant derivative, 17
densely defined, 24
derivation, 15
dimension of a manifold, 14
at a point $\mathrm{p}, 14$
distribution, 20
divergence, 43
E-frame, 46
elliptic, 39
estimates, 66
regularity, 71
equicontinuous, 26
exchange formulae, 21
exterior
derivative, $16,17,30,40$
product, 16
fibre, 15
formal adjoint, 44
formally selfadjoint, 48
Fourier
decomposition, 81
transform, 21
of tempered distributions, 21
Fourier, Joseph, 9
frame, 19
generalized Laplacian, 43
gradient, 43
Hölder inequality, 12
Heat equation, 87
Hermitian
metric, 44
vector bundle, 44
Hilbert space, 23
Hodge
*-Operator, 18
-deRham operator, 42, 48
Laplacian, 42, 48
integral
of measureable functions, 12
on manifolds, 18
interior product, 16
Interpolation inequalities, 63
k-form, 17
L^{p}-function, 12
Laplace-Beltrami operator, 43, 48
Laplacian, 29, 40
Leibniz, Gottfried Wilhelm, 9
Levi-Civita connection, 17
Lie bracket, 17
local operator, 32
local Sobolev space, 53
locally finite, 13
manifold, 13
with boundary, 18
measure, 11
space, 11
measureable, 12
metric, see metric tensor
tensor, 17
volume, 18
Newton, Isaac, 9
order of a PDO, 39
oriented
atlas, 18
manifold, 18
p-norm, 12
partial
derivative, 29, 39
differential operator, 28
partition of unity, 13
Plancherel Theorem, 22
Poincaré inequality, 76
Pre-Hilbert space, 23
principal symbol, see symbol
pullback, 16
push-forward, 16
Rellich Theorem, 73
Riemannian
manifold, 17
metric, 17
vector bundle, 44
scalar product, 23
space, 23
Schwartz function, 21
selfadjoint, 25
semi-norm, 24
semi-normed space, 24
Semi-Riemannian manifold, 17 smooth
manifold, see manifold
map, 13
section, 15
structure, 13
Sobolev
embedding, 21, 63
space, 21
on manifolds, 53
Spectral Theorem
for selfadjoint compact Operators, 25
for selfadjoint elliptic Operators, 78
spectrum, 25
spherical harmonics, 91
Stanford Torus, 87
Stokes' theorem, 18
support of a distribution, 20
symbol, 39
symmetric
metric, 44
operator, 25
tangent map, 14
at a point $\mathrm{p}, 14$
tangent space, 14
at a point $\mathrm{p}, 14$
tempered distribution, 21
tensor, 15
bundle, 16
field, 16
product, 15
test function, 20
unbounded operator, 24
vector bundle, 15
chart, 15
volume form, 18
Wave equation, 90
weak derivative, 53
wedge product, see exterior product
Weyl's Lemma, 72
Young inequality, 63

Curriculum Vitae

Personal Data

Name	Simon Ernst Rößler
Date of Birth	December $30^{t h}, 1985$
Place of Birth	Braunau am Inn, Austria

Education

since 10/2005	Diploma studies in Mathematics and Physics at the University of Vienna
$06 / 2005$	Matura (school leaving examination) passed with honors $2000-2005$
HTL Ottakring, secondary technical college with focus on Electronics/Computer Engineering	
$1996-2000$	Bundesrealgymnasium Rahlgasse, grammar school
$1992-1996$	Oskar-Spiel-Schule, primary school

Employment

since $10 / 2010 \quad$ employed on the AutRES100 project at the Energy Economics Group, Vienna University of Technology
since $02 / 2010 \quad$ Freelance Webprogrammer at Kohl \& Partner
10/2009-02/2010 Tutor at the Faculty of Mathematics, University of Vienna
10/2008-02/2009 Tutor at the Faculty of Mathematics, University of Vienna
09/2008-09/2009 organizational tasks for the Austrian Academy of Sciences
since $08 / 2008 \quad$ Freelance Webprogrammer at wegro GmbH
07/2008-08/2008 Freelance Reader at Facultas Universitätsverlag
06/2007 $\quad 2^{\text {nd }}$ Vienna Seminar of Nobel Laureats (organizational tasks)
07/2003-08/2003 Programmer at Siemens Austria AG, PRO CES department

Voluntary work

10/2008-06/2009 Member of the appointments committee for Gravitational Physics, University of Vienna

06/2008-09/2010 Member of the consulting panel for the study programm manager in Physics, University of Vienna

[^0]: ${ }^{1}$ see [Caj07], Differential and Integral Calculus

[^1]: ${ }^{1}$ this is well-defined, see [Zwe09], section 4.2
 ${ }^{2} \mathcal{N}$ is a linear subspace, so the quotient is a vector space; see [Zwe09], text between Theorem 4.10 and Theorem 4.11
 ${ }^{3}$ see [Zwe09], Proposition 4.9

[^2]: ${ }^{4}$ for a proof see [Kun08a], 2.2.4
 ${ }^{5}$ see [Kun08a], 2.2.5

[^3]: ${ }^{6}$ see [Kun08a], 2.3.10, 2.3.14 \& 2.3.6
 ${ }^{7}$ this definition is chart independent, see [Kun08a], 2.4.5
 ${ }^{8}$ for a proof see [Kun08a], 2.4.9

[^4]: ${ }^{9}$ see [Kun08a], 2.5.13

[^5]: ${ }_{11}^{10}$ see [Kun08a], (2.4.3)
 ${ }^{11}$ see [Kun08a], 2.7.4

[^6]: ${ }^{12}$ for a proof see [Kun08a], 2.7.22
 ${ }^{13}$ see [Kun08b], 2.2.4

[^7]: ${ }^{14}$ Note that the right hand side is an integral in \mathbb{R}^{n}; This definition is independent of the chosen oriented atlas in the smooth structure of M, see [Kun08a], 2.8.6
 ${ }^{15}$ see [Kun08a], 2.8.12
 ${ }^{16}$ see [Nic07], page 149

[^8]: ${ }^{17}$ see [Nic07], page 149
 ${ }^{18}$ For every $p \in M$ and every orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ there exist an open neighborhood U of p and a frame $\left\{v_{1}, \ldots, v_{n}\right\}$ on U, such that $v_{i}(p)=e_{i} \quad \forall 1 \leq i \leq n$. A proof can be found in [Kun08b], 2.9.3
 ${ }^{19}$ see [Kun07], 3.3.7(i)

[^9]: ${ }^{20}$ see [HS09], 1.27; Therefore we can consider $L_{l o c}^{1}(\Omega)$ as a subspace of $\mathcal{D}^{\prime}(\Omega)$ and often write the same symbol for f and u_{f}.
 ${ }^{21}$ for a proof see [HS09], 1.70
 ${ }^{22}$ see [HS09], 2.4; For (piecewise) differentiable functions this is the usual partial derivative
 ${ }^{23}$ see [HS09], 2.7

[^10]: ${ }^{24}$ this is again a distribution, see [HS09], 2.15
 ${ }^{25}$ see [HS09], 5.26

[^11]: ${ }^{26}$ see [HS09], 5.36
 ${ }^{27}$ see [HS09], 6.17
 ${ }^{28}$ see [HS09], 4.5 (ii)

[^12]: ${ }^{29}$ see [HS09], 5.34
 ${ }^{30}$ a positive definite, symmetric (or Hermitian) (sesqui-)linear form
 ${ }^{31}$ see [Heu92], $41.3 \& 41.5$

[^13]: ${ }^{32}$ see [Gro08], $12.5+6.3$
 ${ }^{33}$ maps $p: V \rightarrow \mathbb{R}$, which satisfy all norm axioms, except $p(v)=0 \Rightarrow v=0$
 ${ }^{34}$ see [RS80], III. 12
 ${ }^{35}$ this is well defined since the scalar products are non-degenerated and $\operatorname{Dom}(T)$ is dense in V
 ${ }^{36}$ see [RS80], Theorem VIII. 1
 ${ }^{37}$ see [Gro08], 6.5

[^14]: ${ }^{38}$ see [Gro08], 9.7

[^15]: ${ }^{39}$ see [Gro08], 10.3.

[^16]: ${ }^{1}$ Please note the sign convention; The Laplacian with this sign is also often called geometer's Laplacian.

[^17]: ${ }^{2}$ in the future we will also write ∂ instead of $\tilde{\partial}$ most of the time, the meaning of ∂ will be clear from the context

[^18]: ${ }^{3}$ see [Kun08b], 2.2.3

[^19]: ${ }^{4}\langle\cdot, \cdot\rangle$ is called symmetric resp. Hermitian metric on the vector bundle (E, B, π) if $\left.\langle\cdot, \cdot\rangle\right|_{p}: E_{p} \times E_{p} \rightarrow \mathbb{K}\left(\mathbb{K}=\mathbb{R}\right.$ resp. $\mathbb{C} ; E_{p}:=\pi^{-1}(p)$ is the fibre over $\left.p\right)$ is a positive definite symmetric bilinear- resp. Hermitian sesquilinear form and $\left.p \mapsto\langle\cdot, \cdot\rangle\right|_{p}$ is smooth.

[^20]: ${ }^{5}$ this definition is a generalization of the usual frame in 1.2.46

[^21]: ${ }^{1}$ By 1.4.4 this completion exists and is unique (if we identify isometric spaces)

[^22]: ${ }^{2}$ The idea for part 1 of the proof is from [GT83], Problem 2.15, which is a prototype of the general Interpolation inequalities: the L^{2}-norm of the gradient of a C^{2}-function u on \mathbb{R}^{n} is interpolated by the L^{2}-norm of u and the L^{2}-norm of Δu.

[^23]: ${ }^{3} \mathrm{~A}$ proof for $M=\mathbb{R}^{n}$ is given in [Nic07], section 10.3 .1 and [Fol76], 6.25. We use ideas from both of these books and give a proof for arbitrary M.

[^24]: ${ }^{4} \mathrm{~A}$ proof for two special cases can be found in [Nic07], Theorem 10.3.6. An explicit proof for $M=\mathbb{R}^{n}$ is given in [Fol76], (6.21)-(6.30)

[^25]: ${ }^{5}$ bounded sets are mapped to relatively compact sets

[^26]: ${ }^{6}$ the orthogonal space S^{\perp} of any set S is closed: Let $u_{n} \in S^{\perp}$ converge to u and $v \in S$ be arbitrary.

 $$
 \langle u, v\rangle=\left\langle\lim _{n \rightarrow \infty} u_{n}, v\right\rangle=\lim _{n \rightarrow \infty} \underbrace{\left\langle u_{n}, v\right\rangle}_{0}=0
 $$

[^27]: ${ }^{7}$ this follows from 3.2.13

[^28]: ${ }^{1}$ The Stanford Torus is a suggested design for a space habitat, proposed during the 1975 NASA Summer Study. It has the shape of a torus and artificial gravity of about $1 g$ is created through rotation. For the purpose of heating the space habitat it would be interesting to know how thermal energy flows from one point to another. For simplicity we will assume that it flows only along the hull of the torus and no energy is radiated into the universe. For more information on the Stanford Torus see [HJ77].
 ${ }^{2}$ For the Stanford Torus: $R=830 m, r=65 m$

[^29]: ${ }^{3}$ This could be the shape of a heating installation inside the Stanford Torus.

[^30]: ${ }^{4}$ see [Fli05], (9.11) where we used our sign convention for the Laplacian
 ${ }^{5}$ note that Δ_{M} is indeed the Laplace-Beltrami operator for this induced metric

