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1. Introduction

Optical technologies play a key role in telecommunication since the 1980s, where the first long

distance fiber networks have been installed. Over the last decades the importance of optical systems

evolved constantly and besides the telecommunication, the computer industry became an important

driving force in optics R & D. As the last years revealed, photonic systems meet the demands of

industry and customer for high data rates at a sufficient amount of robustness not only for long,

but also for mid- and short distance communication. Optical LAN and TOSLINK became common

abbreviations in our everyday lives.

In future, the distances where photonic systems are beneficial could become even shorter. Optical

interconnects showed high potential to mitigate the communication bottleneck of today’s computer

technology. Data rates which are hardly possible with electronic devices [1] or elements with

’Welcome everyone to this historic transatlantic
crossing – this maiden voyage across the sea on
a beam of light...’

First call via the TAT-8, the first transatlantic fiber-optic cable placed by Isaac Asimov in 1988.

low dissipated power compared to state-of-technology components are possible with the use of SOI

(silicon on insulator) substrates [2]. The ultra high refractive index contrast of this material system

(3.48 of silicon to 1.46 of the insulator silica at a light wavelength of 1.55 µm) allows for a very

high level of device integration. With standard semiconductor fabrication processes used in the

electronic industry very small structures are possible, e.g. ring resonators which are typically used

for frequency selective filtering with a radius of only 1.5 µm have been demonstrated recently [3].

An even more important consequence of the compatibility with electronic production techniques is

the feasibility of photonic and electronic elements on one single silicon chip. The ultra high refrac-

tive index contrast of the SOI material cannot be seen just as a scaling factor for the device size.

Approximations and numerical methods developed for low refractive index difference waveguides

loose their validity. This is a potential pitfall in the design, but on the other hand enables unique

effects and devices. In particular, photonic crystals have to be mentioned in this context [4]. Their

unique characteristics such as negative refractive index or slow light would not be possible in a low

refractive index contrast material system.
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Another effect that exploits the high index contrast in SOI is the so-called photonic slot effect. First

demonstrated in 2004 [5] it attracted much attention during recent years. In a slot waveguide a high

fraction of the light power is confined between two silicon cores in a material with lower refractive

index. This effect has the potential to enable a completely new generation of laser, modulator or

sensing devices.

However, typical slot waveguide structures put high demands on the fabrication process. A feature

size of tens of nanometers is still only available for an exclusive group of semiconductor fabs in

practice. But the possibilities of semiconductor technology are evolving rapidly and it is foresee-

able that this obstacle will be overcome within the next years. Hence, design rules will be needed to

enable an efficient layout of a specific slot waveguide structure optimized for a certain application

while avoiding afore mentioned pitfalls.

This thesis provides a multiplicity of such design rules for different slot waveguide configurations.

In this work the most fundamental and at the same time most important characteristics of slot

waveguides are traced back to their origin in Maxwells equations. Crucial aspects such as modal

behavior or the influence of particular geometry parameters and configurations are addressed which

have not been considered until now. One groundbreaking result arises from the in-depth studies of

the horizontal slot waveguide structure. The complex and time-consuming analysis with different

numerical methods allows optimization of the structure leading to a slot waveguide with a perfor-

mance increased by one order of magnitude compared to conventional waveguides with respect to

nonlinear applications.

Moreover, for the first time the lateral leakage mechanism is investigated in the context of rib-type

slot waveguides. From these studies essential design rules for rib-type slot structures are derived,

which are prerequisites in order to realize horizontal rib-type slot waveguides with low losses.

With these results, this work contributes to future developments, where the slot waveguide might

become as common and important in integrated optics as rib and wire waveguides in these days.
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2. Fundamentals

2.1. Introduction

At first the most fundamental characteristics of the photonic slot waveguide structure are
studied using the infinite five layer slab system as simplified model. The goal is to find an-
swers to questions like: ’What is the photonic slot effect?’ ’Which parameters have impact
on the slot effect?’ ’How can I maximize the slot effect in principle?’ and last but not
least: ’What do Maxwell’s equations say to the slot effect?’. For this purpose, an analyt-
ic/numeric framework is developed combining rarely used and well known approximation
methods allowing qualitative statements about the effective index of the confined mode, the
electric and magnetic field distribution and the distribution of the confined optical power.

In the year 2005 the photonic slot effect has been demonstrated for the first time. Xu et.al. [5]

showed, that by placing two silicon wires close together, for the polarization where the electric

field is perpendicular to the slot interfaces, a high percentage of the light power (≈ 30%) can be

strongly confined in the slot between the two cores (Fig. 2.1) [7]. This enables a very high light

concentration in a very small low refractive index volume, which can not be achieved in conven-

tional waveguiding structures such as wires, channel- and rib waveguides. Analytic calculations and

simulations revealed that this effect can be attributed to a true eigenmode of the system, in principle.

Figure 2.1.: First realized slot structure of [6] using a ring resonator (see inset) to determine the effective
index.
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2.1. INTRODUCTION

In the first experiments a vertical approach was used, where the slot orientation is perpendicular to

the substrate surface. Ring resonator- and coupling measurements showed a high difference in the

propagation of the TM- (transfers magnetic) to the TE (transfers electric) polarized light propagat-

ing within the slotted structure. After comparing these results with simulations it was concluded,

that this difference is a clear evidence for the existence of the so called ’slot mode’ which corre-

sponds to the mode where the electric field is even with respect to direction perpendicular to the

slot interfaces. In the waveguide structure with a vertical orientated slot, the slot mode corresponds

to the mode excited by TE polarized light. These first measurements were followed by more de-

tailed investigations of the properties of slot waveguides by several groups [6, 8–85], where their

suitability for many different device concepts such as modulators [8–10], emitters [11–14], applica-

tions exploiting nonlinear effects [15–27] and sensors [28–35, 86] was studied. In particular, for the

exploitation of nonlinear optical effects in low index materials such as polymers, the slot waveg-

uide showed its high potential. But the analysis of the fundamental properties has still not been

finished yet. The high refractive index, the three dimensionality and the high degree of freedom of

the slot structure degrade - and often lift - the validity of analytical approaches. And even numerical

methods commonly used for the analysis of waveguides such as the 3D beampropagation method as

well as 2D numerical stringent solutions of Maxwell’s equations, namely the finite element (FEM)

or the finite difference time domain (FDTD) method reach their limits in terms of applicability or

computational effort. The adaptation of existing - as well as the development of new methods for

the characterization and the efficient design of slot waveguides for specific applications are still

demanded.
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2.2. THE INFINITE 2D SLAB SYSTEM

2.2. The infinite 2D slab system

Based on the fact, that the slot effect is attributed to a true eigenmode of the waveguide, the investi-

gation of the corresponding infinite slab system is appropriate to study the most fundamental, and at

the same time most important characteristics of this structure. Moreover, using approximations for

3D waveguides such as the effective index method [87] rules can be derived allowing a fast waveg-

uide design without the need of time consuming simulations. The theoretical basics of dielectric

waveguides have been explained in e.g. [87–92] in all details and are only repeated here as far as

it is necessary for comprehension and in particular for the definition of all important parameters.

It must be pointed out, that some of the following results are very similar to the work of [7] but

in order to enable a continuative analysis and approximations a complete derivation is given here.

For a lossless, charge and current free (ρ = ~j = 0) isotropic dielectric medium by neglecting the

Magnetization M Maxwell’s equations reduce to:

~∇×~E = −µ0
∂ ~H
∂ t

~∇× ~H = ε0n2 ∂~E
∂ t

(2.1)

where ε0 is the dielectric permittivity, µ0 the magnetic permeability of free space and n the refractive

index of the medium. The assumption that no charge and current are present, are implicitly included

in equation (2.1) (see [88]). Supposing plane wave propagation in z-direction with the propagation

constant β , the wave equations can be separated in two mutually orthogonal states/modes of polar-

ization:

0 =
∂ 2Ex

∂y2 +(ω2
µ0ε0n2−β

2)Ex

Hy =
β

ωµ0
Ex

Hz =
1

iωµ0

∂Ex

∂y
(2.2)

Hx = 0

Ey = Ez = 0

0 =
∂ 2Hx

∂y2 +(ω2
µ0ε0n2−β

2)Hx

Ey = − β

ωε0n2 Hx

Ez = − 1
iωε0n2

∂Hx

∂y
(2.3)

Ex = 0

Hy = Hz = 0

The left one (2.2) is the so-called transversal electric (TE) mode with the field components Ex, Hy

and Hz whereas the set of equation on the right (2.3) describes the transversal magnetic (TM) mode

with the field components Hx, Ey and Ez where ω = 2πc/λ with c the speed of light in vacuum.

The field equations (2.2) and (2.3), respectively, can be solved by using the ansatz:

Ex,Hx = asin(γy)+bcos(γy). (2.4)
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2.2. THE INFINITE 2D SLAB SYSTEM

Figure 2.2.: Geometry- and refractive index parameters of a infinite 2D slot waveguide. The propagation
direction is in z.

The constants a,b have to be determined from the boundary conditions. By introducing (2.4) to the

differential equations in (2.2) and (2.3) one immediately sees that the ansatz (2.4) holds only true if

γ = k0

√
n2−n2

eff, (2.5)

is demanded, where neff is the so-called effective index which is defined as neff ≡ β/k0. It has to be

noted, that the argument of the square root is not necessarily a positive value, because the refractive

index of the involved materials can be larger or smaller than the effective index. The equations

(2.2)-(2.5) can now be used to solve a waveguide slab system as sketched in Fig. 2.2. In order to

study the fundamental characteristics, it is sufficient to assume a mirror symmetric geometry with

the symmetry plane lying in the x-y plane. The symmetry plane is emphasized in Fig. 2.2 as a

dash-dotted line. To ensure total internal reflection, ng > nc is required. Next, assuming that we are

at this point only interested in the TM polarized mode the fields of the three layers can be expressed

with equation (2.3), resulting in:

Hx(y) =


a1 sin(iγsy)+b1 cos(iγsy) with γs =

√
n2

eff−n2
s for y≤ s/2

a2 sin(κy)+b2 cos(κy) with κ =
√

n2
g−n2

eff for s/2 < y≤ s/2+h

a3 sin(iγcy)+b3 cos(iγcy) with γc =
√

n2
eff−n2

c for y > s/2+h

(2.6)

where ai and bi with i = 1,2,3 are constants which have to be determined and y≥ 0. By assuming

that ng > ns as well, all square roots are positively defined. Due to the symmetry of the geometry

the field is either even (Ey(−y) = Ey(y)) or odd (Ey(−y) = −Ey(y)). By restricting the analysis to

the even mode this leads to a1 = 0. In addition, total internal reflection has to be ensured, which is

only in consistency with euqation (2.4) for an exponentially decaying field in the surrounding third
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2.2. THE INFINITE 2D SLAB SYSTEM

layer with b3 = a3i. These assumptions simplify equations (2.6) to:

Hx(y) =


b1 cosh(γsy) for |y| ≤ s/2

a2 sin(κy)+b2 cos(κy) for s/2 < |y| ≤ s/2+h

a3e−γcy for |y|> s/2+h

(2.7)

By exploiting the fact, that the fields Hx and Ez are continuous at the interface y = s/2 and y =

(s/2+h), this yields the linear equation system:

b1 cosh
(

γss
2

)
= a2 sin

(
κs
2

)
+b2 cos

(
κs
2

)
b1γs

n2
s

sinh
(

γss
2

)
=

κ

n2
g

(
a2

(
cos

κs
2

)
−b2 sin

(
κs
2

))
a2 sin

(
κ

( s
2
+h
))

+b2 cos
(

κ

( s
2
+h
))

= b3e−γc(s/2+h)

a2κ

n2
g

(
cos
((

κ
s
2
+h
))
−b2 sin

(
κ

( s
2
+h
)))

= −b3γc

n2
c

e−γc(s/2+h) (2.8)

2.2.1. The effective index of the two dimensional slot waveguide

By eliminating the constants in (2.8), the equation:

tanh
(sγs

2

)
=

κn2
s
(
κ sin(hκ)n2

c + cos(hκ)n2
gγc
)

n2
g
(
sin(hκ)n2

gγc−κ cos(hκ)n2
c
)

γs
, (2.9)

is obtained. This is a typical transcendent eigenmode equation for layered waveguide systems,

allowing the numerical calculation of the effective index. As a first analysis, by setting s = 0

one immediately obtains the effective index equation of a symmetric three layer system [87] for a

waveguide thickness of 2h/λ due to the assumption of symmetry in the x-y plane: Figure 2.3 a)

shows the effective index according to equation (2.9) compared to the solution of a three layer

waveguide system for different relative slot thicknesses s/λ in dependence of the relative waveguide

height h/λ . To be consistent with later studies, the eigenmode equation of the asymmetric three

layer system was used (see Appendix A). Relative geometry parameters are defined as ratio g/λ

with g being an arbitrary length of a waveguide geometry such as height or slot thickness and

λ denoting the wavelength. To allow a valid comparison, for the relative thickness of the three

layer waveguide h3 = 2h/λ was set, implying at this point that the region of interest is s� λ

and the slot can be seen as perturbation of a standard wire waveguide. Moreover, ngc =
√

n2
g−n2

c

and accordingly ngs =
√

n2
g−n2

s where ng is the refractive index of the waveguide, ns the index

of the slot region and nc the index of the surrounding medium are defined to obtain a normalized

expression for the refractive index difference. For all following calculations the refractive index of

the waveguide was set to 3.5 and the maximum ultra high effective index difference to ngc,gs = 3.16

which corresponds to the index difference between silicon and silicon dioxide. The maximum

refractive index difference in practice is given by the difference between silicon and air with ngc,gs =
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2.2. THE INFINITE 2D SLAB SYSTEM

3.35. The calculation of both effective indices was performed using [93]. As Fig. 2.3 a) shows,

the presence of the slot has a major impact on the effective index of the structure. Even for very

small slot thicknesses such as s/λ = 0.005 the slot lowers the effective index compared to the three

layer system. This difference increases considerably with increasing slot thickness, but converges

for large slot thicknesses as the comparison with a three layer system with thickness of h3 = h/λ

shows. This can be attributed to the fact, that the coupling between the two waveguiding cores is

decreased and for s� λ no coupling remains. The structure exhibits the same effective index as two

independent waveguides. In addition, a strong dependence of the effective index on the waveguide

height for h≈ λ is apparent.

In Fig. 2.3 b) the impact of the slot refractive index (solid) and the index of the surrounding

medium (dashed) on the effective index of the structure is plotted for a fixed slot thickness of 0.03.

The influence of the refractive indices is of the same order. For small waveguide heights and lower

index difference between the waveguide and the surrounding medium compared to the waveguide

and the slot material, the gradient for the surrounding medium is even smaller with respect to the

height. Again, this indicates the strong impact of the slot region.

In order to compare the slot waveguide directly with a three layer model, in Fig. 2.4 a) the

difference between the effective index of the slot waveguide and the three layer model ∆n = nslot−
nh,2h

3 with a thickness of h3 = h/λ and h3 = 2h/λ is plotted corresponding to the dashed and the

full lines, respectively. The effective index is always between the effective indices of the three layer

model with the two different thicknesses. An even more important characteristic of slot waveguides

is the occurrence of extrema at a certain waveguide height, where the impact of the slot is at a

maximum. It has to be pointed out, that the extrema are reached for waveguide heights well below

h/λ = 0.2.

In addition, this property shows only a very weak dependence on the slot thickness. For a slot

Figure 2.3.: Comparison of the 2D slot waveguide slab effective index (solid lines) with the effective index
of a three layer system with thickness h/λ (pointed line) and thickness 2h/λ (dashed lines) for
a) different slot thicknesses and b) different refractive index differences ngs,gc in dependence of
the waveguide height h.
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2.2. THE INFINITE 2D SLAB SYSTEM

thickness change of more than one order of magnitude, the waveguide heights where this extrema

are reached only shift by 4%. To analyze the impact of the refractive index of the slot medium, the

same procedure as in Fig. 2.4 a) was used, but for Fig. 2.4 b) the relative slot thickness was set to a

constant small value of s/λ = 0.005. Instead, the refractive index difference of the slot was varied

between ngs = 3.35 and ngs = 1.8. The refractive index ratio of the surrounding medium was kept

at ngc = 3.16. As depicted in Fig. 2.4 b), the dependence of the effective index on the refractive

index of the slot is inverted compared to the dependence on the slot thickness. The maximum im-

pact of the slot is reached for the smallest slot refractive index and decreases with higher values of

ns. Again, the dependence of the effective index difference on the waveguide height undergoes an

extremum. Here, the shift of the waveguide height where this minimum is reached is significantly

more pronounced. However, the transcendent characteristic of the equation (2.9) inhibits a general,

qualitative statement. The numerical evaluation of the effective index provides results for certain

structures, but like a black box it gives no information about how the slot influences the effective

index of the slot waveguide structure. Thus, is it possible to find an approximation where the slot

effect directly can be ’seen’? In fact, this is possible with the use of the analytic approximation for

the effective index of [94] as described detailed in Appendix A. This approximation can be applied

to the symmetric slot waveguide structure and an asymmetric three layer waveguide system with

the waveguide thickness h3 = h where the waveguiding layer was terminated at one side by the slot

material with the refractive index ns and at the others side by the surrounding material of the slot

waveguide with the index nc (see Appendix A). To enable a qualitative analysis only the first term

involving s and/or h can be kept, which leads to an approximate solution for the effective indices of

the form:

Figure 2.4.: Effective index difference between a slot waveguide and a wire with a) the heights h/λ and 2h/λ

for different slot thicknesses and b) for a wire height of 2h for various refractive index differences
ngs. Both plots are in dependence on the waveguide height h.
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2.2. THE INFINITE 2D SLAB SYSTEM

Figure 2.5.: Comparison of the effective index calculated using the numerical correct equation of (2.9) (solid
lines) with the approximation of (2.10) (dashed lines) for different slot thicknesses in depen-
dence on the waveguide height h.

slot: neff =

√√√√√√n2
g−

 π

hk0 +
n2

c
n2

gngc
+

n2
s coth(k0ngss/2)

n2
gngs


2

(2.10)

three layer: neff =

√√√√√n2
g−

 π

hk0 +
n2

c
n2

gngc
+ n2

s
n2

gngs

2

(2.11)

In (2.11) ns denotes the refractive index of an infinite second layer on the opposite side of the

waveguide with respect to the layer with the refractive index nc (see Fig. A.1 in Appendix A). From

the first order approximation in fact only qualitative statements can be deduced, as Fig. 2.5 shows.

Here, as comparison the numerical solution of the effective index for the slot waveguide according

to equation (2.9) is plotted (full lines) with the approximation given in equation (2.10) (dashed lines)

for different relative slot thicknesses. The refractive index difference between silicon and silicon

dioxide of ngs,gc = 3.16 was used.

The numerical solution the approximation match fairly well only for a relative slot thickness of

s/λ = 0.01 and relative heights h/λ > 0.13. Nevertheless, the approximation is similar enough

to the numeric solution allowing qualitative statements. From Fig. 2.4 a) and b) it now can be

concluded, that the interesting regime of the slot waveguide is around h/λ ≈ 0.16 for small slot

thicknesses below the waveguide thickness s < h where the impact of the slot on the effective index

is maximum. In order to take the properties of the coth function into account it must be demanded

that the slot thickness is sufficiently large s > 0. Restricting the analysis to this region and assuming

an ultra high refractive index material, all three terms in the denominator are of the same order.

16



2.2. THE INFINITE 2D SLAB SYSTEM

By comparing the equations (2.10) and (2.11) one immediately finds that the first two terms in the

denominator are identical and only the third term differs. Therefore, the influence on the effective

index of the three terms can be identified as follows: In the first term k0h the waveguide thickness h

appears, which results in an increase of the effective index for increasing waveguide thickness. The

second term solely depends on the indices ng and nc, where a increase of the difference between

the refractive index of the waveguide and the surrounding medium results in a significant decrease

of the effective index. This is consistent with standard waveguides such as wires and ribs operated

with TM polarized light as the comparison with equation (2.11) shows.

The third term determines the slot effect involving the slot thickness s and the refractive indices

ng and ns. From the strictly monotonical decrease of the coth function for increasing slot thick-

nesses follows a decrease of the effective index. Moreover, for values of s� λ the coth function

converges to 1 and equation (2.10) becomes identical to equation (2.11). This reflects the transition

of the strongly coupled waveguiding system to the case of two completely separate waveguides. For

a high refractive index material and a slot waveguide thickness of around s ≈ 0.01 the coth func-

tion value can exceed 1 and the third term dominates over the second term involving the indices of

the waveguide and the surrounding medium. In this case, the index difference between the refrac-

tive index of the waveguide and the refractive index of the slot becomes crucial. With increased

index difference, for a fixed small slot thickness the effective index strongly decreases due to the

cumulative effect of the refractive index difference ngc in- and outside of the coth function.
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2.2.2. Fields and Poynting vector of the two dimensional slot waveguide

From the equations (2.8) three of the four constants a1, a2, a3 and b2 can be obtained. One constant

remains undetermined allowing normalization. The solution of the equations (2.8) for the transverse

magnetic field component Hx of the even slot mode denotes as:

Hx(y)= a1


cosh(γsy) y≤ s/2(

cosh(γsa)cos(κ (|y|− s/2))+ n2
gγs

n2
s κ

sin(κ (|y|− s/2))sinh(γsa)
)

s/2 < y≤ s/2+h(
cosh(γsa)cos(κh)+

n2
gγs

n2
s κ

sinh(γsa)sin(κh)e(−γc(|y|−h−s/2))
)

y > s/2+h
(2.12)

For the following studies relative results are sufficient. Therefore, a1 contains various parameters,

which are constant over all layers (slot-, waveguide- and surrounding cladding layer) such as ω ,

β or ε0. From (2.12) the relative electric fields can be calculated using Ey ∝ Hx/n2
l where l is the

according layer l = s,g,c. Furthermore, the Poynting vector for this pure TM mode with real-valued

fields can be calculated by:

S = EyHx. (2.13)

With this relation, the relative Poynting vector for the even slot mode reads as:

Sz(y)= a1


1
n2

s
(cosh(γsy))

2 y≤ s/2

1
n2

g

(
cosh(γsa)cos(κ (|y|− s/2))+ n2

gγs

n2
s κ

sin(κ (|y|− s/2))sinh(γsa)
)2

s/2 < y≤ s/2+h

1
n2

c

(
cosh(γsa)cos(κh)+

n2
gγs

n2
s κ

sinh(γsa)sin(κh)e(−γc(|y|−h−s/2))
)2

y > s/2+h
(2.14)

Apart from the effective index equation (2.9), equations (2.12)-(2.14) are the fundamental relations

for the characterization of the symmetric two dimensional slot waveguide. In the following only

relative results are necessary and the remaining constant a1 can be set to 1. On the basis of the results

of the preceding section, the slot thickness s and the waveguide height h are chosen around the

region, where the effective index showed maximum impact on the effective index compared to a two

dimensional three layer waveguide. In Fig. 2.6 a), Ey is plotted for a symmetric slot waveguide with

a fixed slot thickness of s/λ = 0.05 and a refractive index contrast of ngs,gc = 3.16 for three different

relative waveguide heights of h/λ = 0.05, h/λ = 0.15 and h/λ = 0.25. All plotted fields are

normalized to Ey at y = 0. In Fig. 2.6 a) at first the strong discontinuity of the field at the interfaces

is remarkable. This arises from the fact that D ∝ n2E component perpendicular to the interfaces

must be continuous. This results in a strong discontinuity of the electric field component Ey for an

ultra high refractive index contrast waveguide . For waveguides with a very small waveguide height

h/λ = 0.05 (red line) the discontinuity at the interface between the waveguide and the surrounding

material is high and Ey decays very slowly in the surrounding medium with respect to y. This

behavior is identical to standard waveguides such as wires ribs, etc. operated close to the cutoff

where the light is hardly confined in the waveguide structure.
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2.2. THE INFINITE 2D SLAB SYSTEM

Figure 2.6.: In a) the electric field component Ey in b) the magnetic field component Hx and c) the Poynting
vector in the propagation direction z of a slot waveguide for three different heights for a fixed slot
thickness and refractive index differences in dependence on the y-coordinate (normalized to λ )
perpendicular to the slot interfaces are plotted.
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Figure 2.7.: Poynting vector component Sz for a slot thickness of three orders of magnitude in dependence
on the y-coordinate (normalized to λ ) perpendicular to the slot interfaces.

On the other hand, for waveguides with h/λ � 0.05 as represented by the blue line for h/λ = 0.3

the discontinuity of the Ey at the outward interface is small. Instead, the field shows a more distinct

local maximum in the waveguide indicating that the light is better confined for this set of parameters.

Finally, for the green line the height h/λ = 0.15 is in the region, where the influence of the slot

region on the effective index is maximum as the comparison with the three layer system revealed

(see Fig. 2.4). Here, the maximum in the waveguide is still small compared to the field of h/λ = 0.3

and the field in the surrounding material decays much faster than for h/λ = 0.05.

In contrast to the electric field component Ey the magnetic field Hx must be continuous at the

interfaces, as shown in Fig. 2.6 b) plotting again the profile for three heights h/λ = 0.05, h/λ =

0.15 and 0.3. Only for very small slot thicknesses of h/λ = 0.05, the magnetic field shows a

maximum in the slot region. Similar to the electric field, the magnetic field decays very slow in the

surrounding material. For higher waveguide heights h/λ = 0.15 and h/λ = 0.3 the maxima in the

waveguide material are much more pronounced compared to the electric field. Recalling that in this

two dimensional case the Poynting vector is proportional to the multiplication of the two transverse

fields, (2.13) the enhanced maxima of the magnetic field in the waveguide lead to an increase of this

characteristic in the Poynting vector profile as well. Figure 2.6 c) shows that the maximum of the

Poynting vector in the waveguide significantly exceeds the local maximum in the slot region for a

waveguide height of h/λ = 0.3.

Nevertheless, for a waveguide height of h/λ = 0.15 still the absolute maximum is located in the

slot region with the low index material. This distribution stays constant over a wide range of slot

thicknesses. In Fig. 2.7, the z-component of the Poynting vector for three different slot thicknesses
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2.2. THE INFINITE 2D SLAB SYSTEM

Figure 2.8.: a) Optical power in the different layers of the slot waveguide structure with s/λ = 0.05 (solid
lines) in dependence on the height h. For comparison, the optical power of a slab waveguide
corresponding to a slot thickness of s = 0 is plotted (dashed lines). The refractive index differ-
ences ngs,gc = 3.16 is constant. b) Optical power in dependence of the height h for different slot
thicknesses s and refractive index differences ngs,gc.

over two orders of magnitude s/λ = 0.005, s/λ = 0.05 and s/λ = 0.5 is depicted. Only for the

slot thickness s� h a noticeable change of the Poynting vector in- and outside of the slot region

can be observed. It has to be noted, that the waveguide height was fixed at h/λ = 0.015 and

no interdependence between the slot thickness and the height has been considered. In fact, such

interdependences cannot be neglected in the analysis of the slot waveguide structure, increasing

the necessary effort as will be pointed out later in this work. In order to overcome this problem

the optical power distribution between the different regions is studied by integrating the Poynting

vector over the corresponding layers:

Pl =
∫ y2

y1

Sz(y)dy (2.15)

where the integration must be restricted to the layer l, where the according equation of 2.14 is valid.

The integration can be carried out analytically resulting in:

Ps =
sγs + sinh(sγs)

4γsn2
s

Pg =
1

4κ3n2
gn4

s
(−κ

2n4
s cosh(aγs)

2(−2hκ− sin(2hκ))+

+ γsn2
g(γsn2

g(2hκ− sin(2hκ))sinh((s/2)γs)
2−2κn2

s sin(hκ)2 sinh(sγs)))

Pc =
1

2γcn2
c
(cos(hκ)cosh((s/2)γs)+(γsn2

h sin(hκ)sinh((s/2)γs))/(κn2
s ))

2

The relative power in any layer can now be written as:

Pnorm
s,g,c = Ps,g,c/Psum, (2.16)
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2.2. THE INFINITE 2D SLAB SYSTEM

Figure 2.9.: a) Fraction of the optical power Popt
s confined in the slot region for an optimized slot waveguide

structure for maximum confinement with respect to the waveguide height h. b) corresponding
optimized height hopt . Both plots are in dependence of the slot thickness s.

with Ps,g,c being the optical power of the according layer normalized to Psum the sum of all optical

powers Psum = Ps +Pg +Pc. Figure 2.8 a) shows the normalized power distribution of the different

layers evaluated using (2.16) with (2.16) for a slot thickness of s/λ = 0.05 (full lines). In addition,

the power distribution of a three layer waveguide model corresponding to a slot thickness of s = 0

(dashed lines) is shown. For both calculations a constant index ratio of ngs,gc = 3.16 was assumed.

From this direct comparison one sees, that for small waveguide heights, the light power in the

slot mainly arises from a shift of the light power from the surrounding material to the slot region,

whereas for increased waveguide heights compared to the three layer waveguide, the power becomes

more diverted from the waveguide cores.

The most important characteristic in Fig. 2.8 a) is the occurrence of a distinct maximum optical

power in the slot for a certain waveguide height. This is a typical characteristic of slot waveguides

and holds true over a wide range of parameters as Fig. 2.8 b) shows. Here, the optical power in

dependence of the relative height is shown for different slot thicknesses s/λ and index differences

ngs,gc. Only for structures, with a low refractive index difference and a high slot thickness corre-

sponding to an only weakly coupled system, no distinct maximum is observed (see red dashed line

in Fig. 2.8 b) with a refractive index difference of ngs,gc = 1.32 and a slot thickness of s/λ = 0.1).

For strongly coupled slot waveguides, which are typically the waveguides of interest, this enables

an optimization with respect to the height, in order to find an optimized structure, where maximum

optical power is confined in the slot region. Figure 2.9 a) depicts the optimized light power Popt
s of

such an optimized structure for four different refractive index differences of ngs,gc = 1.33, ngs,gc = 2,

ngs,gc = 2.6 and ngs,gc = 3.16 in dependence of the slot thickness s. With increasing slot thickness,

the confined light power increases in the slot region. In contrast, with increasing refractive index in

the slot region the light power decreases. The difference of the confined slot light power between a

waveguide filled with a low refractive index material and a high refractive index material in the slot

region can exceed a factor of 5. The optimized height hopt , where the maximum of the light power

is reached, is shown in Fig. 2.9 b). The dependence on the slot thickness is relatively weak. A
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change of approximately one order of magnitude results only in a change of 0.05 in the optimized

thickness. Contrary, with increasing refractive index, the optimized height decreases, whereas the

optimized height for a refractive index difference of 3.16 is almost one halve of hopt compared to a

refractive index difference of 1.33.

Apart from the refractive index of the slot, the refractive index of the surrounding medium has

a significant impact on the confined light power in the slot region. In Fig. 2.10 a) the refractive

index between waveguide and slot was fixed to 3.16. For a high refractive index contrast to the

surrounding medium of 3.35 more than 70% of the optical power can be confined in the slot region.

Furthermore, a strong dependence on the slot thickness for small s is prominent. With increasing

slot thickness the power in the slot converges. This is in accordance with the fact that for increasing

slot thickness the two waveguiding cores are increasingly decoupled. For a refractive index of the

surrounding medium which is lower than the refractive index of the slot region, the light power

undergoes a distinct maximum and converges to a lower value.

The Fig. 2.10 b) depicts the corresponding optimized heights. An almost linear dependence of

the optimized height on the slot thickness becomes apparent. Remarkable is, that the influence on

the slot thickness depends on the refractive index difference between the waveguide and the sur-

rounding medium ngc. For higher index differences, the optimized height hopt decreases, whereas

for a relatively low index difference of 2.87 hopt increases with the slot thickness s. For refractive

index differences between these two values, an ngc can be found, for which hopt is almost indepen-

dent of the slot thickness (e.g. for ngc = 3.16). The high optical power in the slot region is one of

the most important characteristics of slot waveguides, which can be maximized by increasing the

slot thickness. In fact forcing light into a low refractive index medium is also possible for standard

waveguides such as wires and ribs by operating them close to the cutoff. The disadvantage is that

the light is distributed over a large cross-sectional area with a low light density in the low refractive

index medium.

However, for many applications such as amplifiers or for the efficient exploitation of nonlinear

Figure 2.10.: Optimized slot waveguide structure for different values of ngc: a) optimized power Popt
s and b)

corresponding optimized height hopt at which the power maximum is reached.
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Figure 2.11.: a) light intensity in the slot region Is for different refractive index differences ngs and ngc in de-
pendence on the slot thickness s. The height of the slot waveguide structure corresponds to
the optimized height hopt , where the maximum of the intensity is reached as well. b) compar-
ison of the numerical correct solution of the power in the slot according to (2.16) (solid lines)
with the approximation of equation (2.18) (dashed lines).

effects a high power density is crucial, and here the slot waveguide structure shows its high potential.

By defining the light intensity in the slot region as:

Is = Pnorm
s /s. (2.17)

The light density can easily be calculated from equation (2.16). Evaluation of this relation shows,

that the intensity is strongly dependent on the refractive index difference (see Fig. 2.11 a)). A slot

waveguide with a waveguide refractive index difference of ngs,gc = 3.16 to the slot- and the sur-

rounding medium, shows an approximately one order of magnitude higher light intensity compared

to a waveguide with a refractive index difference of 1. For a fixed index difference between the

waveguide and the surrounding medium of ngc = 3.16 with decreased slot refractive index differ-

ence, of ngs = 2.87 and ngs = 2.45 (dashed lines in Fig. 2.11 a)), the intensity is considerably lower,

but still a slot effect is present for small slot thicknesses. For large s, the higher refractive index

results in an increased confinement of the light, which explains the higher intensity compared to a

slot waveguide with lower slot refractive index. The light intensity in the high refractive index dif-

ference case is much higher than in conventional waveguides as ribs and wires, and even higher than

in so-called ARROW waveguides (as described in [7]). Finally, to allow for qualitative statements,

where the slot effect has its origin, a first order Taylor series expansion around s = 0 is performed

for the first equation of (2.16). This results in:

Prel
s,Taylor =

2γcκn2
cn2

gs
n2

s (2κn2
g cos((s/2+h)κ)2 + γcn2

c(2(s/2+h)κ + sin(2(s/2+h)κ)))
. (2.18)

Figure 2.11 b) shows a comparison of the analytically correct formulation of the light power in

the slot Prel
s according to equation (2.16) and its approximation (2.18) for a relative slot thickness
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of s = 0.001. A very high accordance is achieved for low refractive index differences between the

waveguide and the surrounding/slot medium. With increase of the refractive index difference, the

deviations increase, but still a similar qualitative behavior can be observed. The two trigonometric

functions involving the waveguide height in their argument result in the observed maximum at a

certain value of h. Moreover, the refractive index in the slot region appears in the denominator as

well, leading to an increase of the power in the slot with decreasing its refractive index.
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2.3. Types of slot waveguides

From the preceding sections it can be concluded, that in the 2D case, in order to obtain a high slot

effect, materials allowing for an high index contrast along with optimized waveguide height has

to be ensured. In addition, in order to obtain a maximized intensity, a small slot thickness s� λ

is important. This limits the choice of a high refractive index material in practice because a high

refractive index and good process ability to enable a feature size much smaller than the wavelength

at a low degree of absorption is demanded.

SOI (silicon on insulator) fulfills these demands to a high degree. The refractive index of nSi = 3.48

in the near infrared wavelength region is exceptional and in fact, almost any other material com-

pared to silicon has a low refractive index allowing for an ultra high refractive index difference.

In particular polymeric materials with refractive indices between 1.45− 1.6 have to be mentioned

in this context. Moreover, silicon is the foundation of electronics. This means that all technology

processes developed for the micro- and nanometer range of electronic devices can be used directly

for the realization of silicon photonic components. This advantage is striking because, for the real-

ization of devices based on this ultra high index contrast material technologies such as e-beam or

deep UV lithography are a prerequisite.

Therefore, almost all further studies in this work will assume SOI as material system. This en-

tails firstly, that the waveguiding material is silicon, which is in consistence with an overwhelming

majority of studies up to now. Secondly, the substrate material is silica SiO2 with nSiO2 = 1.46

typically used as insulator layer below the silicon waveguide layer for all available SOI substrates.

Thirdly, due to the material characteristic of monocrystalline silicon, the interesting wavelength

region is located in the near infrared where the refractive index of silicon is nSi = 3.48. Below

λ = 1100 nm silicon is strongly absorbing. Moreover, for the standard telecommunication wave-

length of λ = 1550 nm high quality laser diodes are readily available. Thus, a wavelength around

λ = 1550 nm was assumed for the following in-depth studies.

However, the step from the two dimensional to the three dimensional slot waveguide necessitates a

limitation of the waveguide structure (as e.g. for a wire) or at least a modulation of the waveguide

height (leading to a rib waveguide) in the third dimension x.

From this, slot waveguide structures as summarized in Fig. 2.12 are possible, in principle. All

these structures are studied with respect to several important characteristics within this thesis, and

as will be pointed out, some of them are subject to restrictions in terms of practical use.

I. Vertical slot waveguides

The first practical implemented slot waveguide [5] slot waveguide is referred to as vertical

slot waveguide with a slot perpendicular to the substrate interface. The major advantage of

this type is that only one monocrystalline silicon layer is necessary for the fabrication. In

addition, for the slot material a depositable material is not demanded. Any material that

ensures an entire filling of the slot region can be used to fill the gap between the two high

index cores. On the other hand, in practice it is not possible to incorporate a different material

for the upper surrounding area of the slot waveguide. The material of the slot always will
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surround the waveguide. Moreover, for the fabrication of a vertical slot waveguide, typically

e-beam, or at least with significant effort deep-UV lithography has to be used [17].

a) Wire based

For the wire based slot waveguide (see Fig. 2.12 I. a)) the restriction to e-beam lithog-

raphy leads to an increase of fabrication cost and to a limitation of the slot thickness

to approx. 50 nm due to the necessary lithography process. In addition, the etch step

leaves rough side walls at the slot interfaces. Since the light intensity is at maximum

at the slot interfaces. Therefore, vertical slot waveguides are prone to high scattering

losses.

b) The V-groove waveguide

Another kind of vertical slot waveguide is the so called V-groove waveguide proposed

in [85] shown in Fig. 2.12 I. b). The acute angle in the center of the structure leads to a

strong confinement at the bottom of the waveguide. An additional advantage arises from

increased width on top of the slot compared to a vertical slot structure of Fig. 2.12 I. a).

This could ease the problems of filling a narrow slot of the order of tens of nanometer.

The realization of such a structure is a challenging task, but V-grooves of similar size

have been realized successfully in the past in the context of electronics [95–97]. The

other advantages and disadvantages are the same as for 2.12 I. a).

II. Horizontal slot waveguides

In contrast to the vertical slot waveguide for the horizontal slot waveguide a second high

index layer is indispensable. This makes bonding techniques [42, 98] or the deposition of a

second high refractive index layer e.g. amorphous silicon [41, 99] necessary. This holds true

for the slot material. Here, only a depositable material where the thickness can be sufficiently

controlled can be used. On the other hand, from this disadvantage follows one important

advantage of the horizontal slot waveguide, studied in-depth for the first time in [57]: All

slot interfaces border to deposited layers, which typically have smooth surfaces. In addition,

the thickness of the slot is only limited by the controllability of its deposition. Even layer

thicknesses in the nanometer range are conceivable.

Due to the layered configuration it is possible to cover the slot waveguide with a different

material with respect to the slot. By using air as cladding, one can achieve an ultimately

high index contrast. Furthermore, the requirements in terms of realization are significantly

relaxed, because the smallest feature size for the lithography is given by the width of the slot

waveguide and not by the one order of magnitude smaller slot. This enables the use of faster

and cheaper fabrication methods than e-beam such as deep-UV lithography. Finally, the high

achievable width-to-height ratio has to be mentioned which can be seen as unlimited from the

practical point of view.
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a) Wire based

The simplest possible horizontal slot waveguide is a type consisting of two wires as

shown in Fig. 2.12 II. a). For a high width of the waveguide, modal behavior becomes

an issue for this type of slot waveguide. For most applications single mode waveguides

are demanded, but for large width of the slot waveguide this can not be ensured.

b) Symmetric horizontal slot waveguide based on ribs

For the rib type slot waveguides, the advantages and disadvantages of the horizontal

approach depicted above are still valid. Furthermore, the two slab waveguides out-

side of the rib region enable firstly a good electrical wiring of the structure, which is

advantageous for application such as amplifiers, modulators or laser and secondly the

realization of a suspended slot waveguides. This could also enable the realization of new

types of sensors. However, a structure as shown in Fig. 2.12 II. b) is a very challenging

task in realization. Nevertheless, due to the high degree of symmetry this structure is

considered in this work for the sake of comparison with other slot structures, and to

demonstrate the origin of some important characteristics of slot waveguides.

c) Asymmetric horizontal slot waveguide based on rib/slab

Much more appealing from the practical point of view compared to Fig. 2.12 II. b) is a

structure consisting of a slab and a rib waveguide on top (see Fig. 2.12 II. c)) studied

for the first time intensively in [36]. This would combine all advantages of the horizon-

tal rib- and wire type structures at a minimum of effort in terms of realization. From

the practical point of view, this structure is very interesting, because it enables electric

wiring. Besides this structure only the slot waveguide type of Fig. 2.12 II. c) can offer

this feature, but with the handicap of an increased fabricational effort. Furthermore,

with the very shallow etch depth typically used for rib waveguides this type has the

lowest etched surface resulting in a minimum of scattering losses.

d) Asymmetric horizontal slot waveguide based on wire/slab.

A special case of Fig. 2.12 II. c) is illustrated in Fig. 2.12 II. d), where the rib on top

gives way to a wire. This structure has an increased lateral confinement compared to

Fig. 2.12 II. c) This would combine all advantages of the horizontal rib- and wire type

structures at a minimum of effort in terms of realization. Beyond that, due to the slab

waveguide as basis, this configuration would be interesting for active devices based on

Fig. 2.12 II. c) in sections where no electric wiring is necessary due to the higher lateral

confinement.
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Figure 2.12.: Types of slot waveguides investigated in context of this thesis. The illustrations schematically
show the cross section of the waveguides with z being the propagation direction of the light.
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2.4. Conclusion

From equation 2.9 and its approximation 2.10 all major characteristics of the slot waveguide ef-

fective index were deduced in the two dimensional case. It was shown that the slot has a major

impact on the effective index and that this influence is at maximum for a certain waveguide height

compared to a three layer waveguide of the same overall thickness. In the vicinity of this maximum

the confined optical power in the slot is at maximum as well. According equations for the fields

and power distribution were derived and the dependence on the relevant waveguide parameters e.g.

refractive indices, waveguide height and slot thickness were studied. Optimized structures with re-

spect to the height were analyzed and it was illustrated, that the light intensity for a high refractive

index difference slot waveguide outbalances all other waveguiding structures used so far. Next, by

approximating the light power in the slot region with a Taylor series, it was possible to fathom the

origins of this so-called ’slot effect’. Finally, the different types of slot waveguides which will be

discussed in this thesis were introduced. Their advantages and disadvantages in terms of practical

realization were addressed.
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3. Simulation methods

Throughout the entire work for this thesis, two simulation methods have been used. Both methods

solve the time independent Eigenmode equation resulting from assuming a plane wave propagation

where homogeneous materials in z-direction have to be assumed.

3.1. The Finite Element Method

For the calculation with the Finite Element Method (FEM) [100] the commercially available Mul-

tiphysics package from Comsol was used [101] with the electromagnetic module. The latter is ca-

pable to calculate hybrid mode waves, e.g. modes which feature all six field components for the E-

and H-field. Therefore, three dimensional waveguiding structures with sizes below the wavelength

and ultra high index contrast are treated correctly. This makes the calculation of the so-called minor

field besides the strong major field components of the orthogonal polarization necessary. Those

minor fields must not be neglected in order to observe physical effects originating from the minor

field such as lateral leakage (see chapter 6).

This results in a change of the nomenclature compared to the 2D case discussed in the previous

sections. In dependence on the dominant field components we denote the modes accordingly as

quasi-TE modes with a major field containing the transversal field components (Ex and Hy), the

quasi-TM modes consist of the transversal field components (Ey and Hx). Comsol’s FEM solver

allows anisotropic materials of the form:

εrc =

 εxx εxy 0

εyx εyy 0

0 0 εzz

 (3.1) µr =

 µxx µxy 0

µyx µyy 0

0 0 µzz

 , (3.2)

enabling the implementation of perfectly matched layers as boundary condition. In order to obtain

a more compact formulation, the zz-element can be separated from 3.1 and 3.2. The transverse part

reduces then to:

εt =

[
εxx εxy

εyx εyy

]
(3.3) µt =

[
µxx µxy

µyx µyy

]
. (3.4)
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3.1. THE FINITE ELEMENT METHOD

With the equation:

~∇×
(

ε
−1
rc × ~H

)
− k2

0µr~H =~0, (3.5)

by assuming a plane wave propagation in z-direction with ~H(x,y,z) = ~H(x,y)e−iβ z and ~∇ ·~B = 0,

an eigenmode equation is obtained:

~∇t ×
(

ε
−1
zz

~∇t × ~Ht

)
− ε̃t ~∇t

(
µ
−1
zz

~∇t ·µt ~Ht

)
−
(
k2

0µt −β
2
ε̃t
)
~Ht =~0, (3.6)

where the subscript t denotes the x and y component of ~∇t = ~ex
∂

∂x +~ey
∂

∂y of the field. Moreover,

ε̃t =
εT

t

det(εt)
(3.7)

has to be defined. The equation for the electric field can be obtained by simple replacement of ~H

by ~E an interchanging ε with µ . If not mentioned otherwise, the equation for the electric field has

been solved. For the generation of the mesh linear vectorial Nedelec elements are provided by the

software [102]. the field is defined on the three edges of triangular elements. The vectorial elements

fulfill the divergence condition~∇ ·~H = 0 and~∇ ·~E = 0 avoiding both - spurious modes and problems

with dielectric corners [100].

Apart from perfectly matched layers, conductive boundary conditions~n×~E = 0 (perfect electric

conductor - PEC) or ~n× ~H = 0 (perfect magnetic conductor - PEM) were used for simulations

where no radiation was expected. Here, ~n is a normalized vector perpendicular to the boundary.

These boundary conditions ensure that the tangential field components vanish at the boundary of

the simulation domain. The used boundary condition was chosen in dependence on the polarization

of the desired eigenmode. By setting the minor components of the field to zero on the simulation

domain edges, the influence of the boundary condition on the simulation results is minimized.

In addition, these boundary conditions are used to save computational time. All simulated waveg-

uide geometries of this thesis feature a symmetry plane parallel to the x− z or y− z direction. By

applying the boundary condition, where the minor components have to vanish at the symmetry-

plane, of a mirror symmetric waveguiding structure (with respect to the symmetry plane) the slot

mode can be calculated correctly.

The accuracy of the simulation results is controlled by the amount of elements in the simulation

domain. The size of the elements is adjusted to the size of the geometry and to the intensity of the

field for a specific waveguiding structure. For the simulation of the slot waveguide this results in

a very fine mesh in the slot region with element sizes of a few nanometers, whereas the element

size outside of the waveguide increases with the decreasing evanescent field to about 10−100 nm.

Moreover, adaptive mesh refinement was used to further increase the accuracy for some purposes, in

particular for the V-groove waveguide, where the region of interest is bordered by an acute-angled

corner [100]. This, and other application specific details of the simulations are described in the

particular chapter.
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3.2. THE VARIATIONAL MODE MATCHING METHOD OF MAXWAVE

In order to perform parameter scans the Matlab [103] interface of Comsol’s Multiphysics was

used. The implemented programming language enabled to start and stop simulations with different

geometry parameters and to read out the results. In addition, at a later stage programs were written

allowing for automatic structural optimization of waveguide geometries with respect to a specific

physical effect. Therefore, based on the results of a simulation the parameters for the next simulation

were determined. This procedure allowed for an automatic iterative optimization at a minimum of

computational effort.

As an example, Fig 3.1 shows a typical simulation of a horizontal slot waveguide. The left side

shows the adaptively refined, superfine mesh, whereas the right part depicts the calculated optical

power profile. The waveguide domain is entirely surrounded by a PML layer (see section 3.5).

3.2. The Variational Mode Matching method of MaxWave

The Variational Mode-Matching (VMM) method used in the computation of the optical modes in

the waveguide cross-section belongs to the family of full-vectorial film mode-matching methods

[104–108] where the optical field is expanded in terms of local TE- and TM-polarized film modes.

One of the most critical steps in mode-matching techniques is the determination of a proper set of

Figure 3.1.: Left: The adaptively refined mesh of a typical FEM simulation. Right: Light power as a result of
the calculation. The entire waveguide domain is surrounded by an PML.
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3.3. COMPARISON OF THE TWO METHODS

local eigenmodes since an improper truncation of the spectrum of local waveguide modes causes nu-

merical instabilities. In the VMM method, these difficulties are overcome by employing a Galerkin

scheme to the local 1D waveguide problem which reduces the computation of the relevant local

waveguide modes to the solution of a well-understood linear eigenvalue problem [100]. As the

FE method, the VMM method solves for quasi-TE/TM eigenmodes with all six field components.

Perfectly matched layers act in the direction where no leakage was expected — see section 3.5. Fig-

ure 3.2 depicts the result of a simulation with MaxWave for a horizontal slot waveguide, consisting

of a silicon slab and a silicon wire on top. Details about the method have been provided by the

developers [108] and are supplemented in Appendix B.

3.3. Comparison of the two methods

The use of two different methods for the same purpose can be mainly justified by the different

boundary conditions which are available. In general, the finite element method (FEM) was used,

because of the higher flexibility and the possibility of adaptive mesh refinement, which enables a

higher accuracy at the dielectric corners and edges. Moreover there are two advantages, which are

less based on the underlying method, then on its realization in the available software. Namely this

are the possibility to solve for more than one mode per simulation run - and in addition - without

the need of a certain starting value of the effective index near to the value of the desired mode. This

is not possible for the Variational Mode-Matching (VMM) tool MaxWave. Here only one mode at a

time can be calculated and a starting value for the effective index close to the final result is needed.

On the other hand, compared to finite elements, the advantage provided by the VMM method arises

Figure 3.2.: Light power of a horizontal slot waveguide consisting of a silicon slab below and a silicon wire
on top as a result of a simulation using MaxWave.
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3.4. GENERAL NOTES ON THE PERFORMED SIMULATIONS

from the fact that the simulation of lateral radiating modes can be performed without PML layers

acting in the lateral direction. Due to the nature of the modal expansion, the physically correct

radiation boundary conditions are inherent to the VMM model. Thus, no effect of an artificial

boundary condition has to be considered. This results in a significant reduction of the necessary

simulation size.

3.4. General notes on the performed simulations

Simulations carry always the potential risk to deliver unphysical results. Main causes are typically

insufficient domain resolution or domain size. In the present work, for all performed simulations

convergence studies where carried out. The domain size and the resolution were increased until

no significant change of the investigated physical effect was observed. Moreover, to reveal wrong

results all simulation procedures were verified with similar work of other groups e.g. with [7, 20,

109]. The comparison of the two different methods delivers an additional validation.

3.5. Perfectly matched layers (PML’s)

However, for most simulation methods such as FEM it is necessary to find a possibility to deal with

radiation arising from leaky waveguides for two reasons: Firstly, at least to identify leaky modes,

at the best to quantify the losses which occur. Secondly, to avoid back reflections from boundaries

that can harm the simulation results due to the discretization of the simulation domain. Perfectly

matched layers [110] can meet all these requirements to a high degree. In principle, the idea behind

perfectly matched layers (PML’s) is to transform the boundary condition into a one degree higher

problem by introducing layers between the region of interest and the simulation exteriors. This

leads to a higher degree of freedom in which the domain closure can act. Nevertheless, to construct

a reflection less layer in order to emulate an infinite expanded waveguiding system in a desired

direction needs some exploitation of Maxwell’s equations. By presuming, that the additional layer

match the permittivity and the permeability in such a way that there are no reflections, this leads to

an anisotropic material with:

µ = µ0µrL

ε = ε0εrL,

where εr and µr are the values of the adjacent physical domain. In Cartesian coordinates L is:

L =

 Lxx 0 0

0 Lyy 0

0 0 Lzz

 (3.8)
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3.5. PERFECTLY MATCHED LAYERS (PML’S)

The matrix elements are connected by:

Lxx =
sysz

sx
, Lyy =

szsx
sy
, Lzz =

sxsy

sz
, (3.9)

For an PML acting in x-direction, sx,y,z are:

sx = a− ib

sy = 1 (3.10)

sz = 1.

Here, a and b are arbitrary real constants determining the attenuation of the fields in the PML [111].

Obviously, if an PML layer should act in any other direction or in corners even in two directions,

the according scoordinate has to be replaced by the first equation of (3.10). The imaginary part in

(3.10) changes every oscillating solution in the PML region into an exponentially decaying one.

Therefore, the attenuation of a propagating wave over a distance ∆x is given by the x component of

the wave vector kx, and the imaginary part of sx:∣∣∣~E∣∣∣= ∣∣∣~E0

∣∣∣e−bkx∆x (3.11)

Hence, a PML can be simply seen as an artificial absorbing material layer which is optimized for

high absorption with no reflections regardless of the incident angle or wavelength. It should be

noted, that this is only true for the solution of the exact wave equation. Any discretization lifts the

analytically perfect PML characteristics and some minor reflections occur. However, by approxi-

mating the wave equation closely with a very fine resolution, the reflections are still negligible for

incident angles close to 90° between PML surface and the incident k vector. Acute, or in the worst

case, glancing angles have to be avoided, which is no problem for the discussed waveguiding sys-

tems. For the implementation of the PML’s the above formulation can be directly used, due to the

fact, that Comsols Multiphysics supports anisotropic media as described in 3.1. To ensure sufficient

accuracy, a thickness of approximately λ was implemented and at least 10 ·λ resolve the PML.
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4. Modal behavior

In this chapter, the modal characteristic of the photonic slot waveguide will be discussed
and differences to standard waveguide structures such as ribs and wires will be pointed
out. At first, the slab waveguide system will again be used. Later, for the investigation of
the full modal spectrum of the three dimensional slot waveguide structure FEM simulations
will be carried out. A single mode criterion for a typical slot waveguide structure will be
one major result.

Modal behavior is a crucial characteristic of any dielectric waveguiding structure. Assuming

standard methods for the coupling of the light into the integrated waveguide such as endface cou-

pling with the use of fibers all supported modes of the slot waveguide are typically excited. For

most applications this is undesirable because each mode has a different field profile and therefore

different propagation constant. There is only one possibility to avoid this problem — by simply

use only single mode structures, thus waveguides supporting only one first order mode for each

polarization. All other modes are below the cutoff and experience high radiation losses.

For standard waveguiding structures such as wires, ribs and channels the restriction to one first

order mode is not necessary because these structures are designed in order to support only one so-

called fundamental mode per polarization. But because of the specific structure of slot waveguide

the mode classification of conventional waveguides cannot be directly applied.

In chapter 2.2.1 the studies were restricted to the even mode, which was identified as the so-called

slot mode. The slot waveguide structure represents a highly coupled system where coupling theory

demands the existence of an odd mode in principle [88]. Nevertheless, the slot waveguide structure

differs to standard coupling problems. The even and odd modes become time independent true

eigenmodes of the system.

4.1. Effective index of the first order odd mode in the 2D case

For the calculation of the effective index of the odd mode it is sufficient to change the symmetry

condition. By assuming that the field is now odd (Ey(−y) = −Ey(y)), in 2.6 this leads to b1 = 0

instead of a1 = 0. By repeating the procedure described in 2.2.1 the effective index equation of the

odd mode is obtained:

−coth
(sγs

2

)
=

κn2
s
(
κ sin(hκ)n2

c + cos(hκ)n2
gγc
)

n2
g
(
sin(hκ)n2

gγc−κ cos(hκ)n2
c
)

γs
, (4.1)
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.1.: a) Effective index comparison of the even mode (dashed lines) and the odd mode (solid lines) in
a 2D slot waveguide with height h = 150 nm for a) indices ng = 3.48, ns,c = 1.46 and b) ns = 1.46
and nc = 1.4 in dependence on the wavelength.

Figure 4.1 a) shows a comparison between the even and odd slot waveguide mode for a fixed waveg-

uide height of h = 150 nm in the vicinity of the optimized waveguide geometry found in 2.2.2. In

addition constant refractive indices of ns,c = 1.46, and ng = 3.48 were assumed according to stan-

dard SOI parameters for silicon and silica [112] at a wavelength in the near infrared of λ = 1550 nm.

The plot shows the effective indices of the even and odd mode using the equations (2.9) (dashed

lines) and (4.1) (solid lines) respectively, in dependence on the wavelength λ for different slot thick-

nesses s.

This dispersion characteristic reveals that the effective index of the odd mode is always below the

effective index of the even one. Interestingly, the dependence on the slot thickness is inverted for the

odd mode compared to the even mode. With decreasing slot thickness, the effective index decreases

as well. An explanation of this behavior is given in the next section, where the field and the Poynt-

ing vector are discussed in more detail. Moreover, the odd mode converges to the effective index of

the surrounding medium which is equal to the effective index of the slot. This is a typical behavior

of symmetric systems. As Fig. 4.1 b) shows a cutoff exist for a refractive index ns > nc. Therefore,

in this region the lossless waveguiding condition is not fulfilled anymore for the odd mode, and the

field radiates away from the two cores. This means, it is possible to operate the slot waveguide in

the desired single mode regime, where no additional mode propagates over a noteworthy waveguide

length.

4.2. Mode characteristic of 3D slot waveguides

4.2.1. Fundamental characteristics

The mode spectrum of the slot waveguide structures becomes even more complicated due to the fact

that the symmetry condition must hold true for higher modes as well. At this point it is important
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

to note that all further studies are restricted to modes where the electric field shows more than one

maximum in the waveguide with respect to the coordinate parallel to the slot. For the horizontal

slot waveguide this is the x-direction. Higher order modes perpendicular to this direction are left

unconsidered. This can be justified by again assuming that the region of interest with respect to the

waveguide height h is in the vicinity of the optimized geometry found in section 2.2.2. Then, in the

two dimensional case the height is much too small to support more than the first order mode. This

also holds true for the three dimensional case.

In order to study the higher order modes with respect to the coordinate parallel to the slot i.e.

in lateral direction (assuming the horizontal slot waveguide concept), three dimensionality of the

structure has to be assumed. This problem cannot be solved analytically and requires a numerical

method. In this case, Comsol’s FEM based 2D eigenmode solver was employed.

As published in [52] Fig. 4.2 shows the transverse electric field of all first and one order higher

modes for both polarizations. To obtain well confined modes, waveguide parameters of h= 165 nm,

w = 1400 nm and s = 200 nm were assumed. Moreover, refractive indices of ng = 3.48 for the

waveguide and ns,c = 1.46 for the slot- and surrounding region of were chosen. The electric field of

the fundamental even quasi-TM mode, which is the mode of interest, is strongly confined in the slot

region. Strong confinement of the electric field in the slot also occurs for all higher even quasi-TM

modes, while the electric field of the odd quasi-TM modes has to be zero in the center of the slot

due to symmetry purposes. Even and odd modes occur as well for quasi-TE polarization. For these

modes the electric field remains concentrated in the two silicon wires which is in consistency with

standard waveguiding structures.

The difference between the even and odd mode for the polarization corresponding to the slot

mode is more emphasized in Fig. 4.3. In contrast to the even slot mode, where the light power is

concentrated in the slot region, for the odd mode the light power of the odd quasi-TM modes is

pushed into the outer low index regions.
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.2.: Transverse electric field of all first and second order modes for both polarizations for a wave-
length of λ = 1550 nm calculated by FEM simulations; waveguide parameters h = 165 nm,
w = 1400 nm, s = 200 nm indices of ng = 3.48, ns,c = 1.46.
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.3.: Poynting vector component Sz in propagation direction for the same structure as in Fig. 4.2.
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.4.: Dispersion characteristic of first and second order quasi-TM even (solid) and odd (dashed)
modes for a three dimensional slot waveguide with h= 150 nm, w= 800 nm, ng = 3.48, ns,c = 1.46.
The slot thickness was fixed to a) s = 75 nm and b) 175 nm. The red lines correspond to first or-
der, blue lines to second order modes.)

In order to discuss the modal characteristics in more detail for the three dimensional case, FEM

simulations were carried out for different wavelengths in the interesting range. Figure 4.4 shows the

resulting dispersion characteristics for two different slot thicknesses of s = 75 nm and s = 175 nm

at a fixed waveguide height of h = 150 nm and a width of w = 800 nm. Although silicon is highly

absorptive below a wavelength of about 1 µm this wavelength region was included to demonstrate

the principle modal behavior. The dispersion characteristics are directly related to the electric field

distributions. The effective index of the odd modes is always lower than that of the even modes

of the same order because the electric field of the odd modes is strongly pushed into the outer

low index region. In contrast, the electric field of the even modes is pushed into the low index

slot region, which covers only a limited area. The larger the slot width the faster the even and

odd modes approach each other (and gradually merge) at short wavelengths due to the decreasing

coupling strength between the two wires. It is also possible that an even higher order mode has

a larger effective index than the odd fundamental mode (see Fig. 4 for s = 75 nm). For modes

with effective indices close to the refractive index of ns,c = 1.46 no confined mode was found. This

indicates, that in the three dimensional case an even slot waveguide with ns = nc has a cutoff, where

this particular mode radiates.

With increasing s the cut-off wavelength of the fundamental odd quasi-TM mode shifts to larger

values as already observed in the two dimensional case, whereas the cut-off wavelength of the first

higher even quasi-TM mode shifts to lower values. Within a certain interval of the slot thickness

s only the fundamental even quasi-TM mode exists at the wavelength of 1550 nm and thus single-

mode behavior is obtained.
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.5.: Horizontal slot structure used as model for the calculation of the second order odd modes.

4.2.2. Second order mode characteristic

With respect to single mode operation, the odd mode represents no problem in the vicinity of

1550 nm wavelength (emphasized by a black line in Fig. 4.4) for the interesting slot thickness

s < h.

Nevertheless, there is a mode which restricts geometry parameters of slot waveguides that can

be used - the second order even mode. The star in Fig. 4.4 indicates that for a slot thickness of

s = 75 nm the second order even mode is still guided and the slot waveguide structure is multimode

for the wavelength of interest.

In the first studies on the slot waveguide structure [5, 7, 12, 57], the modal behavior in particular the

issue of higher order modes, had not been addressed because in the vertical concept the waveguide

width to height ratio is restricted to low values of the order of 400 nm due to the processability. The

width w and height h of the slot waveguide structure are defined as depicted in the inset of Fig. 4.4.

But for the horizontal concept (see Fig. 4.5), the restriction to low width-to-height ratios is

alleviated and the second order even mode becomes an issue as described in [50, 113]. In order to

study the characteristic of the second order mode, we employed FEMLAB (see section 3.1) for the

2D eigenmode analysis at a wavelength of 1550 nm. Triangular vector-elements were used. In order

to determine the adequate mesh density required to achieve a sufficient precision, we first compared

the calculated effective index of a one dimensional slot waveguide with the analytic solution given in

[7]. The mesh density was chosen such that the deviation between FEM results and analytic results

was on the order of 10−4. Next, the mesh was refined for the two dimensional slot waveguide

structure as depicted in the inset of Fig. 4.4 such that a comparable accuracy for the effective index

was obtained. The simulation domain was set to 4 µm x 4 µm. Changing the boundary condition

from a perfect electric conductor to a perfect magnetic conductor had negligible influence on the

simulation results, thus indicating that the evanescent field has sufficiently decayed at the border of
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4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.6.: Single mode criteria for a slot waveguide structure as sketched in Fig. 4.5 for different waveg-
uide width w in dependence on the slot thickness s (λ=1550 nm). The lines are based on the
analytic approximation of equation (4.2) with the intercept according to equation (4.3).

the simulation domain. For all simulations no adaptive mesh refinement was used.

With the use of this simulation model as shown in Fig. 4.5, the modal behavior of the quasi-TM

mode was investigated. An algorithm was developed that identifies slot waveguide geometries with

single-mode behavior for the quasi-TM mode. All supported modes solved by the FEM software

were automatically investigated with respect to the amount of field maxima in one single silicon

core of the slot waveguide structure. If a mode was found with two maxima and an effective index

above the cutoff, the structure was identified as multimode. The geometry parameters are restricted

to the range where only fundamental- and the even second order modes are supported.

Figure 4.6 shows the results of the simulations for different width w in dependence on the slot

thicknesses s at a constant wavelength of λ = 1550 nm. The points indicate waveguide heights

above which the slot waveguide becomes multimode for a given slot thickness. The simulation

points therefore can be seen as a single mode criterion. In the area below the simulation points only

the fundamental quasi-TM mode exists. Overall a fairly linear dependence of the single mode crite-

rion on the slot thickness s becomes apparent. With decreasing slot thickness, the waveguide height

where the slot structure becomes single mode decreases. This is consistent with the fundamental

characteristic of the effective index for even slot waveguide modes, which increases with decreasing

slot thickness (see Fig. 4.1 for the two dimensional and Fig. 4.4 for the three dimensional case).

The dependence of the single mode criterion on the waveguide width w on the other hand is

definitely not linear. For large width w, the single-mode condition of the quasi-TM mode in general

44



4.2. MODE CHARACTERISTIC OF 3D SLOT WAVEGUIDES

Figure 4.7.: Intercept of the single mode criteria based on the simulation results shown in Fig. 4.6 approxi-
mated by the linear equation (4.3).

shifts to smaller values of waveguide heights h. Again, this behavior can be explained by the

increased effective index with increasing waveguide width. The shift to smaller waveguide heights

is strong for waveguide widths of w = 400−600 nm but converges for waveguide heights around

the wavelength w = 1400 nm. This is due to the fast convergence of the effective index to the two

dimensional slab system with infinite width. The slope of the nearly linear relationship between

slot thickness s and waveguide height h is independent of the waveguide width w. This enables an

simple approximate expression of the single-mode conditions for several values of w assuming an

linear fit of the form

h = 0.23s+ c(w), (4.2)

where h, s, c and w are given in nanometers. The axis intercept c(w) depends on the width of the

of slot waveguide w corresponding to the shift of the single mode criteria in (4.6). The intercept

exhibits an exponential decay (see Fig. 4.7). Therefore the width dependent intercept was then fitted

by the equation

c(w) = 694e(−0.003w)+60, (4.3)

with c and w given in nanometers. The approximation according to the equation (4.2) with the

width dependent intercept derived in equation (4.3) is plotted in Fig. 4.6. The lines depict this linear

fit of the single-mode condition for the quasi-TM mode. From the practical point of view this fit

is absolutely sufficient. The discrepancy between the numerical results and the fit for 600 nm and

1400 nm can be explained by the limit of the simulation accuracy.
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5. Power optimization

5.1. Structural optimization

Here, for the slot waveguide structure of the preceding section the geometry parameters
are optimized in order to maximize the optical power in the slot region. The results will
be discussed with respect to the already obtained single mode criterion and the most im-
portant statement of this chapter will be: ’It is possible to increase the power which is
confined in the slot region by increasing the width of the waveguide while at the same time
maintaining single mode behaviour.’

In the first publications on the slot waveguide structure [5, 7] the high power confinement of

the slot waveguide structure was pointed out as one of the major advantages of the slotted struc-

ture. However, detailed results were presented only for the two dimensional slot waveguide and

the finally fabricated vertical structure. In-depth studies with respect to interdependencies between

all geometry parameters including the width w of the waveguide structure, which significantly in-

creases the necessary computational effort had not been performed. Restricting the slot waveguide

to the vertical concept this can easily be reasoned.

A high width-to-height ratio cannot be obtained using standard SOI substrates due to the practical

limitations in the fabrication. For the horizontal slot waveguide concept (as demonstrated e.g. in

[41]), there is no limitation with respect to the width-to-height ratios. The influence of the waveg-

uide width w on the performance of the slot waveguide becomes relevant and has to be studied,

which was done for the first time in [50]. From the practical point of view, as already pointed out in

section 2.4 it would be advantageous to increase the width to w > 600 nm because this would sig-

nificantly relax the requirements to the necessary lithography process. Structures with such feature

size could be realized with deep UV instead of the time consuming and therefore expensive e-beam

lithography.

The investigated slot geometry is identical to the structure depicted in Fig. 4.5. In order to

investigate the dependence on the relative power in the slot region, FEM simulations for different

slot waveguide geometries were performed according to the previous chapter. The power in the slot

region is defined as integral of the Poynting vector component Sz in propagation direction divided

by the overall power as described for the two dimensional case (see equation (2.16)). The results

of the performed simulations for a two dimensional parameter sweep of different heights h and slot

thicknesses s for three different widths 400, 600 and 800 nm are shown in Fig. (5.1) a) - c) where

the relative power is specified in percent.

In accordance to the two dimensional case, a distinct optimum of the power can be observed with
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5.1. STRUCTURAL OPTIMIZATION

Figure 5.1.: Relative optical power in the slot region for a two dimensional parameter scan of different
heights h and different slot thicknesses s. The refractive indices can be extracted from Fig. 4.5.
a) shows the light power for a waveguide width of 400 nm b) for 600 nm and c) for 800 nm. In
d) the optimized height for six different width (black square) is plotted with an exponential fit (red
line) according to the eqaution (5.1). For all plots the wavelength was fixed to λ = 1550 nm.

respect to the waveguide height. As the white horizontal dashed lines make apparent, this optimum

thickness decreases with increasing waveguide width w. The dependence of the relative slot power

on the slot thickness is less pronounced than the dependence on the height. For a waveguide width

of 400 nm a power maximum with respect to the slot thickness can be found. Nevertheless, the plot

of Fig. (5.1) a) - c) demonstrate, that the dependence on the slot thickness s is weak compared to

the dependence on the height h.

The change of the optimum height with respect to the waveguide width w is displayed detailed

in Fig. (5.1) d). For each point, a two dimensional parameter sweep as for Fig. (5.1) a)- c) was

performed. The optimum height decreases from 185 nm for a waveguide width of 300 nm to

about 150 nm for w = 800 nm. The optimum height h = 185 nm obtained for a width of 300 nm

goes conform with the value published in [7]. On the other hand, for the comparably large width

of w = 800 nm the optimized height of h = 150 nm is already very close to the value found in

section 2.2.2 for slot waveguide with infinite width w. This further increases the reliability of the

simulation results.

By omitting the influence of the slot thickness s the waveguide height h at which the maximum
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5.1. STRUCTURAL OPTIMIZATION

Figure 5.2.: Maximum confined relative optical power in the slot region for a slot waveguide structure with
optimized height and optimized slot thickness.

optical power confinement in the slot is achieved for a given width w at a wavelength of 1550 nm

can be expressed by the following equation:

h = 125e(−0.0039w)+144, (5.1)

where h and w are given in nanometers. The result of equation 5.1 is shown as red line in Fig. 5.1.

Finally, by comparing the maxima between all three plots of Fig. (5.1) a)- c) and pointing out

that the power scale was fixed for all width, it turns out, that the confined relative light power in

the slot region increases with increasing width w. This increase is significant, as shown in Fig. 5.2.

For typical vertical slot waveguides with width of w = 300 nm such as realized in [5] the relative

optical power in the slot is 30%. Again, these findings are in accordance with [7]. For wider slot

waveguides the relative optical power increases to more than 50%. At each point in Fig. 5.2 the slot

waveguide structure was optimized with respect to the waveguide height h and its slot thickness s.

As mentioned before, the influence of the slot thickness on the optical power confined in the slot

is much less than the influence of the width. Therefore, almost no change of the light power is

observed for slot thicknesses in the range of 100−200 nm.
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5.2. Optimization with respect to single mode behavior

As the results of the previous section showed, the relative optical power confinement can be en-

hanced by increasing the width of the waveguide. On the other hand, the geometry parameters for

which the slot waveguide structure shows single mode behavior is decreased for increasing width.

Therefore, it is essential to study the power optimized slot waveguide structure with respect to the

single mode conditions found in section 4.2.

As an example, Figure 5.3 shows the geometry region comprising the power optimized structure

together with the single mode criterion for two different waveguide widths of w = 600 nm and

w = 800 nm. In Fig. 5.3 a) the single mode condition is well above the power optimized slot

waveguide structure indicated by the white dashed line. Thus, for the power optimized structure

with an optimized height h, the slot waveguide exhibits single mode behavior for all slot thicknesses

within the calculation region.

However, for increased width such as w = 800 nm this does not hold true any more as Fig. 5.3 b)

reveals. The single mode criterion is shifted to much lower values of the height h in comparison to

the optimized height for maximized power confinement which is only decreased by about 10 nm.

This results in a region of slot thicknesses, where the power optimized slot waveguide is in the

multimode regime. In the example of Fig. 5.3 b) this can be observed for slot thicknesses below

approximately s = 120 nm.

In order to enable a more general analysis of this characteristic, the equations defining single

mode behavior of slot waveguide structure (4.2) and the equation allowing the identification of

power optimized slot waveguides (5.1) can be used. Figure 5.4 plots the results of the two equations

for four different slot waveguide width of w = 600 700 800 and 900 nm. Here, it can be seen in

further detail that in contrast to the optical power confinement in the slot region, the single-mode

condition shows a high interdependence between the slot thickness s and the waveguide height h

Figure 5.3.: Relative optical power in the slot region as a function of h and s for a waveguide widths of
a) 600 nm and b) 800 nm. The refractive indices can be extracted from Fig. 4.5. The yellow and
green points are the single mode criteria calculated with FEM. The green and yellow lines are
least square fits to the simulation results. The white dashed line indicates the power optimized
slot waveguide structure neglecting the influence of the slot thickness s.
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Figure 5.4.: Single mode criterion calculated with equation (4.2) and power optimized slot waveguide
structure as a result of (5.1) for four different slot waveguide widths of w = 600, 700, 800 and
w = 900 nm.

compared to the power optimized structure, for which it was even possible to neglect the influence of

the slot thickness s. This makes the slot thickness a suitable parameter for design of power optimized

slot waveguides. Thus equation (5.1) and (4.2) provide a design rule for SOI slot waveguides

with optimized geometries. Let us consider for example a waveguide with a width w of 800 nm.

According to Fig. 5.2 this structure confines about 52% optical power in the slot at the optimized

waveguide thickness of h = 150 nm as can be extracted from Fig. 5.4. Moreover, the slot thickness

s is determined with the help of Fig. 5.4 to ensure both maximum optical power confinement in the

slot region and single-mode behavior. For the given width of 800 nm, the slot thickness therefore

must be larger than approximately 160 nm. It must be noted that the linear fit of Fig. 5.3 b) gives a

slightely different result due to the fact that the fit function differs from the numerical results.
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6. Leakage behavior of slot waveguides

This chapter is dedicated to two important types of leakage losses. The substrate leakage
loss and the lateral leakage loss. While the first mentioned leakage mechanism is widely
known, the second type of leakage can hardly be found in any textbook dealing with in-
tegrated optics. Therefore, the mechanism is described here in all details and it will be
shown, that the modal characteristic of the rib-type slot waveguide causes again a signifi-
cant difference to conventional rib waveguide structures. The quintessence of the chapter
will be: ’Rib-type slot waveguides would be nice because they are easy to fabricate, but
care must be taken in designing them — otherwise they might not work!’

Losses are a major issue in silicon photonics. Compared to silica optical fibers where the losses

are measured in decibel per kilometer propagation length, the losses of silicon based waveguides

are of the range of dB per centimeter, which is five orders of magnitude higher. Typical propaga-

tion loss mechanisms are absorption in the waveguide material itself, scattering at the waveguide

sidewalls due to surface roughness from etching and other processing steps [92] and bending losses

which arise from an to abrupt change of the waveguide direction. Summed up, this leads to typical

values for the propagation loss of 3 dB/cm [114].

Moreover, the insertion losses for such waveguides are massive compared to other types of waveg-

uides due to the small cross section of the waveguide. One must reckon with approximately 20 dB

for coupling light in-, and out of a silicon waveguide structure due to the massive size mismatch

Figure 6.1.: Poynting vector as a result of a FEM simulation for an a) single mode fiber (to the left) and b) a
typical silicon waveguide.
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between the waveguides and fibers used in the setup environment in order to embed e.g. laser

sources and detectors. For example, very often fibers are used for this purpose. Figure 6.1 shows

as a comparison the mode profile of a single mode fiber at a wavelength of λ = 1.55 µm with the

mode profile of a typical silicon waveguide. This comparison illustrates the origin of the high cou-

pling losses. In order to reduce these losses, taper for vertical slot structures and grating structures

for horizontal slot waveguides can be used. Nevertheless, the coupling losses remain considerably

high. In the following, two loss mechanisms namely the substrate leakage and the lateral leakage

are studied for different slot waveguide concepts and strategies will be proposed how these two

sources of losses can be avoided.

6.1. Substrate leakage

The substrate of SOI wafers used for silicon waveguides is silicon. The next layer consists of

silica, the insulating low refractive index material which is referred as the so-called BOX — burried

oxide. The top layer is again silicon, in which the waveguides are realized. However, surrounded

by low refractive index materials, the substrate can be seen as waveguiding system itself. Now, if

the waveguide is to close to this substrate, coupling can occur resulting in a decrease of the light

power in the actual waveguide. This leakage is a critical issue.

In order to suppress this coupling, and to avoid substrate leakage, a sufficiently high isolation of

the waveguiding structures from the substrate has to be ensured. Since the optical field distribution

Figure 6.2.: Relative optical power of the vertical and horizontal slot waveguide configuration in decibel for
two different waveguide widths of w = 300 nm and w = 600 nm. A BOX thickness of 1 µm were
assumed and refractive indices of nSiO2 = 1.46 and nSi = 3.48 at a wavelngth of λ = 1550 nm.
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of slot waveguides deviates from that of conventional SOI waveguides such as wires and ribs a

different leakage behavior can be expected [37].

Moreover, the influence of the configuration, i.e., horizontal versus vertical, is a major question.

In the following the study is restricted to the wire-type slot waveguides to enable a direct comparison

between the configurations. Figure 6.2 provides a qualitative comparison of the two configurations

and illustrates the interaction of the waveguide and substrate. It is important to note, that the scale of

the relative optical power profile is logarithmic. As a first qualitative result, by comparing the two

configurations one finds that for the horizontal slot waveguide the discontinuity of the electric field

is apparent at the BOX-substrate interface as well indicating a difference of the two types of slot

waveguides. In addition, for the vertical type on the right the field more concentrated in the upper

cladding compared to the horizontal concept. The waveguide width has a noticeable influence on

the substrate as the relative optical power profiles for the two different widths of w = 300 nm and

w = 600 nm demonstrate. The impact on the substrate leakage is similar for both configurations as

Fig. 6.3 shows.

In order to obtain quantitative results, a full-vectorial FEM analysis employing perfectly matched

Figure 6.3.: a) Geometry and material parameters for the FEM simulations carried out for b)-c). Sub-
strate leakage in dependence on the BOX thickness for three slot thicknesses b) s = 0 nm, c)
s = 50 nm, and c) s = 100 nm, for the three widths w = 300 nm, w = 600 nm, and w� λ with the
corresponding waveguide thicknesses h = 180 nm, h = 157 nm and h = 137 nm, where the optical
power confinement in the slot is at maximum.
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layers was carried out. The influence of the parameters w and s on the substrate leakage behavior is

studied. The waveguide thicknesses were set to the optimum value for given w at which maximum

optical power confinement in the slot is achieved. Both configurations show a strong dependence

on the slot thickness. By increasing s from 50 nm to 200 nm the leakage loss shifts by about two

orders of magnitude to higher values. An interesting feature is the negligible dependence of this

shift on the configuration, as well as on the width w. Comparing the vertical with the horizontal

configuration for small widths w no significant difference can be observed. With increasing w

the difference between the two configurations becomes increasingly pronounced. For the width

w� λ the leakage loss of the vertical configuration is more than one order of magnitude below

the equivalent horizontal structure, but in practice, the realization of vertical slot waveguides is

limited to low height-to-width ratios of 2− 3. Taken together, these results show that a buried

oxide thickness of BOX> 2 µm is necessary to ensure substrate leakage losses < 0.1 dB/cm for the

horizontal as well as for the vertical configuration.

6.2. Lateral Leakage

6.2.1. Fundamentals

As explained in section 3.1 in contrast to the two dimensional slab waveguides the modes of the

three dimensional waveguide structures are not purely TM- or TE- polarized. The boundary con-

ditions can only be fulfilled if minor field components exist in addition to the so-called major field

Figure 6.4.: Effective index of the TE- and TM-mode for an SOI slab waveguide in dependence on the
waveguide thickness. The insets show the Poynting vector component Sz as a result of FEM
simulations for the two polarizations at a fixed waveguide thickness of 200 nm.
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components. Moreover, the high discontinuity of the electric field at the waveguide interfaces can

lead to a noticeable difference of the effective index between the TE- and TM mode as shown in

Fig. 6.4. The insets show the Poynting vector component in propagation direction Sz as a results

of FEM simulations for the two polarizations at a fixed waveguide thickness of 200 nm. For this

waveguide thickness, the effective index of the TE mode is approximately 0.8 higher than the ef-

fective index of the TM mode.

Furthermore, the TE mode of a waveguide with a thickness down to 80 nm is still higher com-

pared to the TM mode of the waveguide with a fixed thickness of 200 nm. Thus, for a rib waveguide

structure it is possible, that the effective index of a TM polarized rib mode is below the effective

index of a TE polarized slab mode outside of the rib structure. This enables coupling between these

two modes via the minor field components of the quasi-TM polarized rib mode, which are identical

to the major components of the TE polarized slab mode. These slab modes are not confined in

lateral direction and propagate away from the rib waveguide - and leakage occurs. In contrast to the

substrate leakage this lateral leakage effect caused by TM-TE coupling is not commonly known. It

was demonstrated experimentally for SOI rib-waveguides in [41] for the first time, which based on

the numerical work of [115, 116].

For rib-type slot waveguides the coupling mechanism is more complicated, because coupling to

two different first order modes — as introduced in chapter 4 can occur: the even mode with the

major electric field components in the upper and lower waveguide layer being parallel, and the odd

mode with the major electric field components in the upper and lower waveguide layer being anti-

parallel. Depending on the geometry parameters and the wavelength only the even mode exists.

For the TM polarization the even mode corresponds to the highly confined slot mode. Figure 6.5 a)

shows exemplarily the major electric field components and the anti-parallel minor electric field

components of the TM-like slot mode (Fig. 6.5 b)). Here depicted for a typical fully symmetric rib-

Figure 6.5.: a) Overall optical power (contour) and major electric field (arrows) distribution of the TM-like slot
mode of a typical fully symmetric rib-type slot waveguide structure; b) the minor (TE) compo-
nents are shown with arrows for the electric field and a contour plot for the optical power.
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type slot waveguide structure. The role of the two TE-slab modes in the TM-TE leakage mechanism

has to be studied against this background [36, 37, 39, 40].

In principle, by comparing the effective indices of the three involved modes, the effective index

of the TM polarized slot mode Neff,TM, the effective index of the even TE slab mode n(slab)
eff,TE,even and

of the odd TE slab mode n(slab)
eff,TE,odd three different regions must be distinguished:

I. n(slab)
eff,TE,even > n(slab)

eff,TE,odd > Neff,TM

II. n(slab)
eff,TE,even > Neff,TM > n(slab)

eff,TE,odd

III. Neff,TM > n(slab)
eff,TE,even > n(slab)

eff,TE,odd

Figure 6.6 and 6.7 illustrate the physical behavior of waveguides with effective indices in these three

regions. For 6.6 and 6.7 the rib height H was fixed to H = 185 nm and the slab height h outside

of the rib was changed from 0.7H to 0.28h. The effective indices of the quasi-TM polarized slot

mode in dependence on the ratio h/H were calculated using FEM whereas the effective indices of

the even and odd TE slab modes were determined semi-analytically by solving the transcendent

eigenmode equation of a five layer slab system.

As Fig. 6.6 a) shows, for a symmetric slot waveguide with effective indices corresponding to

region I, where the effective index of the quasi-TM polarized slot mode is below both TE polarized

slab modes outside of the rib, leakage occurs. Light radiates away from the waveguiding core as

emphasized with the dotted boxes.

With decreasing h the waveguide system enters the region where the effective index of the quasi-

TM polarized slot mode is between the to TE slab modes. Due to the perfect symmetry of the

waveguide structure no even minor field exists which could couple the even TE slab mode which

has higher effective index than the quasi-TM polarized slot mode. As a consequence, no coupling

and therefore no leakage can occur (see Fig. 6.6 b)).

By breaking the symmetry of the slot structure as demonstrated in Fig. 6.7 a) where the upper

slab is only 5 nm thicker than the lower slab outside of the rib, the minor field of the quasi-TM

polarized slot mode gets even components. Now, coupling can occur and the structure is leaky as

shown in Fig. 6.7 a).

By further reducing the slab thickness the system enters region III, where the effective index of

the quasi-TM polarized slot mode is higher than both TE slab modes and no coupling can occur.

Such a leak proof structure can only be obtained by drastically reducing the outer slab height (see

Fig. 6.7 b)).
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Figure 6.6.: Rib type slot waveguide with a fixed H = 185 nm and s = 50 nm. a) Electric field of the symmetric
rib-type slot waveguide in the region where the effective index of the TM polarized slot mode
is below both TE polarized slab modes (even and odd), b) electric field of a symmetric rib-type
slot waveguide where the effective index of the TM polarized slot mode is higher than the odd
but lower than the even TE slab mode. The effective index of the TM slot mode was calculated
using FEM. The index of the two slab modes was calculated from the 2D infinite slab system.
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Figure 6.7.: Rib type slot waveguide with a fixed H = 185 nm and s = 50 nm. a) Electric field of a symmet-
ric rib-type slot waveguide with imperfections where the effective index of the TM polarized slot
mode is higher than the odd- but lower than the even TE slab mode, b) electric field of a sym-
metric rib-type slot waveguide with imperfections for a structure, where the effective index of
the TM polarized slot mode is higher compared to both TE polarized slab modes. The indices
where calculated with the same methods as described for 6.6. h/H is defined as the ratio of the
slab height h to the rib height H.

61



6.2. LATERAL LEAKAGE

6.2.2. Fully symmetric slot waveguide structure

In order to study the principle behavior of this effect and to quantify the losses which can arise,

a fully symmetric slot waveguide structure such as used for Fig. 6.6 was studied in-depth. Fig-

ure 6.8 a) and b) again show the effective indices of the TM-like slot mode and the even TE-

slab mode as a function of h/H for structures with H=137 nm, w=400 nm, and slot thicknesses

s = 150 nm and s = 50 nm, respectively. The thickness H corresponds to the value at which the

fraction of optical power confined in the slot of a slot waveguide slab system is maximum. The

effective index Neff,TM of the TM-like slot mode was calculated numerically using the variational

mode-matching (VMM) method (see section 3.2 and appendix B), the effective indices n(slab)
eff,TE,even,

n(slab)
eff,TE,odd of the even and odd TE slab modes were determined again semi-analytically by solv-

ing the transcendent eigenmode equation of a five layer slab system. Figure 6.8 c) and d) plot the

leakage values derived from the imaginary part of the effective index of the TM-like slot mode

calculated by the VMM simulations. The vertical dashed lines indicate the thickness used for the

Figure 6.8.: Effective indices of the TM-like slot mode and the even and odd TE slab modes as a func-
tion of the relative slab thickness h/H for H=137 nm, w=400 nm and for two slot thicknesses,
(a) s=150 nm and (b) s=50 nm at λ=1.55 µm; (c) and (d) show the lateral leakage losses of ge-
ometries with corresponding w and s, and the leakage criteria obtained numerically from the
real part of the effective indices of the VMM simulation (upward-pointing triangles) and using
the effective index method (downward-pointing triangles). The vertical dashed lines indicate the
thickness used for the computation of the effective indices in (a) and (b).
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computation of the effective indices in Fig. 6.8 a) and b). A comparison of the leakage values along

the line in Fig. 6.8 c) with the refractive index values shown in Fig. 6.8 a) reveals that the abrupt

change of the leakage loss matches with the boundary between region I and II at h/H = 0.42, where

Neff,TM = n(slab)
eff,TE,odd. (6.1)

For structures with smaller values of h/H the lateral leakage loss becomes zero, although the ef-

fective index of the even TE slab mode still exceeds that of the TM-like slot mode. The boundary

between region II and III is defined by

Neff,TM = n(slab)
eff,TE,even. (6.2)

Due to the perfect symmetry of the slot waveguide structure in vertical direction, the minor field

of the even fundamental TM mode has no even components which could couple to the even TE-

slab mode. As shown in Fig. 6.8 b), for a slot thickness of s = 50 nm the effective index of the

odd TE-slab mode lies below the effective index of the TM-like slot mode over the whole range

of h/H and consequently no leakage occurs (see Fig. 6.8 d) region II). Calculating the relative

thickness h/H where the relationship (6.1) is fulfilled at other waveguide thicknesses H provides

a leakage criterion for perfectly symmetric rib-type slot waveguides, which agrees well with the

abrupt changes of the leakage losses in Fig. 6.8 c) and d).

6.2.3. Semi-analytic leakage criterion

Lateral leakage in a perfect symmetric rib-type slot waveguide only occurs above a critical relative

slab thickness h/H for which equation (6.1) is fulfilled. Latter can be calculated semi-analytically

by solving the transcendent eigenmode equation of a five layer slot waveguide slab, whereas the

effective index of the TM-like slot mode has to be determined by fully vectorial 2D mode solvers.

In order to avoid a time-consuming analysis we approximate the effective index of the TM-like

slot mode by solving the transcendent eigenmode equation of a slot waveguide slab system for

the inner and outer region of the rib-type slot waveguide structure and applying the well-known

effective index method [117]. In Fig. 6.8 c) and d) the leakage criterion using the real part of the

effective index of the VMM simulation (upward-pointing triangles) is compared with the leakage

loss values obtained from the same simulations. This numerical criterion agrees well with the

abrupt change in leakage loss values, demonstrating the validity of the stated criterion. Moreover,

the semi-analytic criterion (downward-pointing triangles) is almost identical with the numerical

findings obtained by the VMM method even for the rather small waveguide width of w=400 nm.

Therefore, a computationally inexpensive and, nevertheless, sufficiently accurate elaboration of

design rules for leak-proof rib-type slot waveguides is facilitated by semi-analytical methods.
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Figure 6.9.: Leakage loss of rib-type slot waveguides with thickness variations of ±5 nm in the upper rib
structure for a) S=150 nm and b) S=50 nm at λ=1.55 µm. The semi-analytical leakage criteria
for odd (upward-pointing triangles) and even (downward-pointing triangles) TE slab modes are
calculated for the most critical structure H ′ = H−5 nm and h′ = h+5 nm. The crosses represent
the leakage criteria of a perfectly symmetric system.

6.2.4. Influence of asymmetries

In practice, perfectly symmetric structures are not achievable and variations of the geometry pa-

rameters caused by fabrication processes have to be taken into account. These variations lead to

an even contribution in the minor field of the TM-like slot mode, thus enabling the coupling of the

TM-like slot mode with the even TE slab mode. In order to study the influence of the deviations

on the leakage loss the thicknesses h′ and H ′ of the upper rib waveguide are varied by ±5 nm (see

inset of Fig. 6.9 a)) resulting in four different geometries. For each geometry the leakage loss is

calculated with the VMM solver and the maximum value is plotted for each point of H and h/H

in Fig. 6.9. Due to the asymmetry induced by the deviations, waveguide geometries in region II

become lossy. Although much lower than in region I these leakage losses can limit the practical

usability of waveguides in region II. Taking into account the slight asymmetry of the structure, the

semi-analytic solutions of the leakage criteria (6.1) for the odd (upward-pointing triangles) and (6.2)

for the even (downward-pointing triangles) TE modes agree well with the abrupt change of the leak-

age values calculated by VMM. Both criteria are calculated for the most critical geometry, which is

H ′ = H−5 nm and h′ = h+5 nm. With respect to the leakage criteria of the perfectly symmetric

system (crosses) only the leakage criterion for the even TE slab mode shows a significant shift to

lower values of h/H.

6.2.5. Influence of geometry

The leakage criteria for coupling to the even and odd TE slab modes depend strongly on the geom-

etry parameters, as shown in Fig. 6.10. With decreasing slot thickness s the criteria shift to higher

values of h/H (see Fig. 6.10 a)). Moreover, region II expands and region I vanishes over an increas-

ingly large range of H, thus enabling leak-proof perfectly symmetric geometries for arbitrary h/H.
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Figure 6.10.: a) Influence of the slot thickness s at w = 700 nm, and b) of the rib width w at s = 50 nm on
the the leakage criteria for coupling to the even (dashed lines) and odd (solid lines) TE slab
modes.

The dependence on the waveguide width w is less pronounced because the width has only a minor

impact on the effective index of the slot mode. The influence of w on the leakage criteria is inverse

to that of the slot thickness. For wider waveguides the leakage criteria shift to higher values of h/H.

6.2.6. Resonance effects for slot waveguides with asymmetries

It has been demonstrated that resonance effects can reduce the horizontal leakage losses due to TM-

TE coupling for certain waveguide widths in otherwise leaky rib waveguide geometries [116, 118].

These resonance effects originate from a destructive interference of TE waves generated by TM-TE

mode conversion at the rib walls. While one part of these TE waves propagates into the slab region

the other part is reflected at the side wall and traverses inside the rib to the other side wall, where it

interferes with newly generated TE waves. For certain rib widths this results in a cancellation of TE

waves leaking into the slab region thus suppressing the leakage loss. The resonant widths can be

calculated using the effective indices Neff,TM of the TM-like rib mode and n(Core)
eff,TE of the TE slab mode

of the layer system in the core region. In the case of rib-type slot waveguides these resonance effects

can also be exploited to suppress lateral leakage due to TM-TE coupling. However, resonances

related to the even and odd slab modes occur at different widths:

weven =
m ·λ

[(n(Core)
eff,TE,even)

2− (Neff,TM)2]1/2
(6.3)

wodd =
m ·λ

[(n(Core)
eff,TE,odd)

2− (Neff,TM)2]1/2
, (6.4)

where m is an integer with m > 0.

For a perfectly symmetric waveguide geometry in region I the cancellation of the coupling to

the odd TE slab mode at widths given by (6.4) results in an efficient suppression of lateral leak-

age. Slight variations of the waveguide geometry give rise to even TE field components and, thus,
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coupling to the outer slab occurs again, which prevents a complete leakage cancellation. The ex-

ploitation of the resonance effect is of particular interest for waveguide geometries with large slot

widths having a large region I. As an example, Fig. 6.11 a) shows the leakage loss of a waveguide

geometry with s=100 nm, H=140 nm, and h=105 nm, i.e., h/H=0.75, as a function of the waveguide

width. Structural deviations of±5 nm lead to small shifts of the resonance widths, which are caused

by a change of the effective indices. Due to the narrow shaped resonances these shifts translate into

a sharp increase of leakage losses.

From a practical point of view, resonance effects are more interesting for waveguide geometries

in region II, where leakage losses occur only in the presence of slight asymmetries via coupling to

the even TE slab mode. Since these leakage losses are much smaller than in region I (see Fig. 6.9)

shifts of the resonances caused by deviations of the geometry have less impact on the propagation

performance. Therefore, waveguide designs with widths fulfilling the resonance condition offer an

improved fabrication tolerance because waveguides with deviations from the perfectly symmetric

design operate in the vicinity of the resonant minimum, where losses are still small. Figure 6.11 b)

plots the leakage loss of a waveguide geometry with s=50 nm, H=140 nm, and h=84 nm, i.e.,

h/H=0.6 (indicated by a star in Fig. 6.10 b)). The period of the widths at which cancellation occurs

according to (6.3) is reduced because of the higher index difference between the even TE slab mode

of the core region and the TM-like slot mode compared to the structure in Fig. 6.11 a).

66



6.2. LATERAL LEAKAGE

Figure 6.11.: Resonant cancellation of the leakage to a) the odd TE slab mode in region I and b) the
even TE mode in region II. The dashed lines indicate the waveguide widths calculated semi-
analytically for the perfectly symmetric structures, i.e., H ′ = H and h′ = h, at which resonances
occur for odd and even TE modes, respectively.
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6.2.7. Asymmetric slot waveguide structures

From the practical point of view, an asymmetric structure such as depicted in 6.12 a) would be of

interest because it offers the advantage of electric wiring, which is a prerequisite for many active

photonic components. Compared to a fully symmetric slot waveguide as studied in the preceding

sections and as proposed for active photonic devices in [38], the structure consisting of one slab and

a rib structure on top has the advantage of significantly eased fabrication because only one etch step

is necessary. This avoids the necessity of exact alignment to micrometer sized structures.

The wire/slab-type slot waveguide shown in Fig. 6.12 b) is another interesting slot waveguide. It

could offer better lateral confinement compared to the rib type and therefore would be particularly

attractive for waveguide sections in active photonic devices where no direct electrical wiring is nec-

essary. Moreover, for both structures the amount of etched interfaces are significantly reduced. This

would minimize scattering losses at these comparably rough surfaces. One result of the preceding

section was, that for the symmetric structures an optimum of symmetry is advantageous. Contrary

for the asymmetric system it is not necessary to restrict the thickness of the upper and lower sili-

con layer to the same value to ensure symmetry, due to the intrinsic asymmetry of the structures

Fig. 6.12 a) and b. Therefore, an additional parameter HSlab is introduced, defining the thickness

of the lower waveguiding layer. In addition it is important to note, that the etch depth e is defined

relative to the overall thickness of the structure HStr. This approach was chosen to be consistent

with definitions typically used for standard rib waveguides.

For both structures lateral leakage occurs because their intrinsic asymmetry allows coupling to

both TE slab modes outside of the waveguide core. The leakage losses are of the order of 102 dB/cm

over a wide range as Fig. 6.12 c) exemplarily shows. A possibility to overcome this disadvantage

would be to reduce the thickness of the slab HSlab or to reduce the thickness h of the upper slab

outside of the core while both layers remain thick enough to allow electrical wiring for the rib type

structure as shown in Fig. 6.12 a).

However, as Fig. 6.13 demonstrates, both strategies are not effective for structures which should

operate in the vicinity of the power optimized slot waveguides found in chapter 5. In Fig. 6.13 a) the

Figure 6.12.: Cross sections of a) rib-type and b) wire/slab-type slot waveguide structures. c) Typical width
dependent resonance behavior of a rib-type slot waveguide; ∆w defines the range of width
within which lateral leakage losses are below 1 dB/cm. The calculations are based on a rib
type slot waveguide with the parameters H = HSlab = 150 nm h = 130 nm s =50 nm.
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Figure 6.13.: a) Leakage criterion given by equation (6.2) for five different thicknesses of the lower slab HSlab
in dependence on the thickness of the upper layer H. Th parameter region below the corre-
sponding line is leakproof. b) Light power percentage in the slot in dependence on the thick-
nesses of the lower slab HSlab for a constant layer thickness of H = 155 nm. The other waveg-
uide geometry parameters are identical to a). The refractive indices of the layers, slot- and
surrounding region can be seen in 6.12 a).

transition from region II to region III, where the effective index of the quasi-TM polarized slot mode

becomes higher than the effective index of both TE slab modes (defined by equation (6.2)) is plotted

for different thicknesses of the lower slab HSlab in dependence on the upper layer thickness H. The

plot reveals that a leakproof structure (the area below the corresponding line) can only be achieved

either by increasing the thickness of the upper waveguide H to well above 250 nm or by reducing

the slab thickness HSlab to only a couple of nanometers. The lines are the results of calculations

using the effective index approximation. For a structure with a large upper slab thickness H it is

obvious that the optical power is confined in the upper slab and almost no slot effect is apparent.

On the other hand, for a structure with a fixed H = 155 nm and a reduced slab thickness HSlab

Fig. 6.13 b) shows the influence of the increased asymmetry of the structure on the light power

confinement (calculated in the same manner as describe in chapter 5). With increased asymmetry,

the light power confined in the slot region is decreased. For a slab thickness of HSlab = 15 nm

the power fraction is reduced to 14%. It is important to point out, that the optimized structure is

slightely off the completely symmetric system with respect to the layer thicknesses. This can be

explained by the introduced asymmetry between the two layers. The upper layer has an etch step,

whereas the lower layer has not.

In summary, it can be stated that a strong thickness asymmetry between the two layers H and

HSlab, which would be necessary to obtain a leak proof slot waveguide structure leads to a sacrifice of

the slot effect. Nevertheless, also this completely asymmetric structure features resonances, where

the leakage loss drops below 10−3 dB/cm as Fig. 6.12 c) illustrates. By exploiting these resonance

effects for otherwise leaky geometries, low loss operation becomes possible without sacrificing

optical power confinement in the slot. Major issues that have to be taken into account in this context

are variations of the realized waveguide structure from the design values. An exploitation of the
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Figure 6.14.: Dependence of ∆w on a) the slot thickness s and on (b) the waveguide thicknesses H = HSlab
for different etch depths e. The star indicates the slot thickness where coupling to the odd TE
slab mode occurs, and no width range ∆w for low loss operation can be obtained any more.

resonance effect is only possible, if the losses in the vicinity of the resonant minimum are still

sufficiently low.

6.2.8. Influence of imperfections

With respect to deviations of the geometry caused by fabrication processes the rib width, which

is influenced by the lithography and the etching process is the most critical parameter. Thus, the

width range for which leakage losses are small has to be maximized to ensure low loss operation for

waveguides with slightly fluctuating width. For this purpose, we define ∆w as the width range for

which losses are below 1 dB/cm (see Fig. 6.12 (c)) and study this parameter in dependence of the

geometry parameters. For the in-depth study, the full vectorial VMM eigenmode solver was used

to treat the lateral infinite large waveguide physically as correct as possible.

The etch depth e has a major impact on ∆w as Fig. 6.14 a) reveals. It turns out, that for shallow

etch depth e a sufficient large ∆w can be found. The influence of the slot thickness is comparatively

small. However, for rib-type slot waveguides the applicable range of s is limited by the effective

index of the odd TE slab mode outside of the rib [36]. If the effective index of the odd TE slab mode

becomes higher than that of the TM-like slot mode leakage occurs again because the resonance

condition can only be fulfilled for one of the two TE slab modes at the same time. In the example

shown in Fig. 6.14 a) this situation occurs for e = 0.07HStr at s≈ 70 nm. With increasing etch depth

this effect diminishes and for the slab/wire-type, i.e., for e = H the effective index of the even and

odd TE slab mode outside the rib become identical.

The dependence of ∆w on the thicknesses H and HSlab is almost negligible (see Fig. 6.14 b))

while the etch depth has a strong influence. Asymmetries in the amount of HSlab = H± 15 nm do

not affect the ∆w as well. As a consequence of Fig. 6.14, the etch depth e is a suitable parameter to

increase the resonance width ∆w, where losses are low. Apart from the width range ∆w also the shift

of the rib width wRes at which the resonance occurs under variation of certain geometry parameters

is of high importance. It would be advantageous to find waveguide geometries, where the shift of
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Figure 6.15.: Width wRes for which the resonance occurs as a function of a) the slot thickness s and b) the
waveguide thickness H = HSlab for different etch depths e. In b) a fixed slot thickness of s =
30 nm was assumed.

the resonance width is at minimum under their variation.

Figure 6.15 a) reveals that the slot thickness has a major impact on wRes for s > 70 nm, whereas

the slope of wRes for small slot thicknesses of the range s = 30 nm is at minimum in dependence

on the slot thickness. From the same plot one can learn that the impact of the etch depth e on the

shift of the resonance width is small compared to that of the slot thickness. Again, the coupling to

the odd mode occurs for very shallow etch depth in combination with a slot thickness of s≥ 60 nm.

The influence of the waveguide thickness H = HSlab on the shift of the resonant width wRes is small

as shown in Fig. 6.15 b). Here, intentionally a fixed slot thickness of 30 nm was assumed, due to the

fact that there the shift of the resonance width under variation of the slot thickness was at minimum.

Moreover, in Fig. 6.15 b) the weak dependence of the resonance width on the etch depth becomes

evident.

From the plots Fig. 6.14 and Fig. 6.15 it can be summarized that the etch depth can be used to

maximize the width range where the losses are low in order to minimize the impact of the waveguide

width variation on the leakage, while a small slot thickness of s< 60 nm ensures a minimized shift of

the resonance under variation of the slot thickness. Not only the deviating width also the variations

of the other geometry parameters and in particular their interdependence due to deviations caused

by fabrication processes have to be taken into account. In order to study this influence we varied all

geometry parameters, i.e., H, HSlab, e and s by±5 nm resulting in sixteen different geometries. The

variation of ±5 nm is a realistic value considering todays possibilities of thinfilm technology. The

leakage losses of all geometries in dependence on the width w where calculated, again using the

VMM mode solver. As an example, Fig. 6.16 a) shows the leakage losses of all these geometries

for a structure centered at H = HSlab = 135 nm, e = 0.081HStr and s = 50 nm. The envelope of

these curves (solid red line) represents the maximum losses that can occur considering all possible

variations. This envelope is a result of the shift of the resonant minimum wRes for each geometry

which leads to a reduction of the width range ∆w compared to 50 nm for a perfect system.

Next, we studied the envelope characteristic for rib-type slot waveguides with different H =
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Figure 6.16.: a) Lateral leakage losses of a typical rib-type slot waveguide structure taking into account the
variations of all geometry parameters by ±5 nm. The envelope of these loss curves (solid red
line) indicates the maximum losses that can occur; b) dependence of the maximum losses on
the etch depth, waveguide thicknesses and slot thickness in order to find an optimized geome-
try which shows minimum losses under variation of all geometry parameters.

HSlab, e and s (Fig. 6.16 b). As for the perfect system, also for the rib-type slot waveguides with

variations the etch depth e and the slot thickness s have a major impact on the lateral leakage losses.

Interestingly, smaller waveguide thicknesses H and HSlab result in lower losses. This does not entail

a sacrifice of the power confinement. The layer thicknesses are still close enough to the approximate

optimum of 155 nm ensuring a very high power confinment in the slot region. For a rib-type slot

waveguide with H = HSlab = 135 nm, e = 0.081HStr and s = 30 nm the width range of operation is

larger than 20 nm.

Taken together, the results of this section show that small slot thicknesses of s< 50 nm, shallow etch

depths and thin waveguides are beneficial for maximizing ∆w. A slot waveguide structure fulfilling

these demands allows a variation of the width of ±10 nm while the lateral leakage losses are still

below 1 dB/cm assuming that the other geometry parameters — the layer thicknesses HSlab and H

the slot thickness s and the etch depth e — do not vary more than ±5 nm. From the practical point

of view, these demands can be fulfilled and therefore, such a structure operating in the vicinity of

a resonance is realistic. In fact, in [41, 42] this was demonstrated experimentally with a similar rib

kind slot waveguide structure. As illustrated in Fig. 6.12 for a wire/slab system these optimizations

are not sufficient because from the preceding discussion it can be concluded that a shallow etch

depth is crucial to ensure a fabrication tolerant structure, and accordingly no low loss width range

for geometries with variations of ±5 nm can be obtained.

6.3. Conclusion

At the beginning of this chapter the substrate leakage of the wire type vertical and horizontal slot

waveguide structure was investigated. It turned out, that there is no significant difference between

the two concepts with respect to the necessary BOX thickness. A BOX layer larger than 2 µm is

sufficient to ensure a leakproof structure. The main part of this chapter was dedicated to the lateral
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leakage mechanism in symmetric SOI rib-type slot waveguides. It was demonstrated that by solving

the transcendent eigenmode equation of the slot waveguide slab system and using the effective

index method a leakage criterion for symmetric rib-type slot waveguides can be defined. We proved

the validity of this approach by comparing with rigorous numerical simulations employing VMM.

Taking structural deviations into account a stricter criterion for laterally leak-proof rib-type slot

waveguide was obtained. Furthermore, a parameter region of leaky geometries was found, which

can be of interest by exploiting resonance effects at certain widths, which reduce losses by orders

of magnitude.

Moreover, as the studies revealed, even for asymmetric rib-type slot waveguides geometry pa-

rameters can be found which ensure both low loss operation and high optical power confinement

in the slot. The results show that they can be designed to be sufficiently tolerant against variations

of all geometry parameters. Therefore, rib-type slot waveguides have the potential to be utilized

for applications were electric wiring or self-suspension are required without foregoing the inherent

advantages of the horizontal configuration. It has to be mentioned in this context, that all presented

studies assumed silica as slot material and similar calculation with air between the two waveguiding

layers would reveal slightly other optimized geometry parameters.

For example, such self-suspended configurations could be advantageous, e.g. for sensing or

for mechanically tunable devices. In addition, the requirements towards lithography are relaxed

because single mode operation of these shallow structures is guaranteed also for wider waveguides.
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7. Nonlinearities of slot waveguides

In all numerical studies of the preceding chapters linear behaviour was assumed, i.e., the amplitude

of the electric field has no impact on the optical properties of the material in which the light prop-

agates. In practice, this holds only true for low electric field amplitudes. For high amplitudes the

response of any dielectric material to light becomes nonlinear. The arising optical nonlinear effects

are a very important part of photonics, because they allow to manipulate light in an all-optical way,

e.g., it is possible to change the frequency of light. Second harmonic generation or the frequency

shift - typically from the infrared in the visible range - have to be mentioned in this context. Another

important nonlinear optical effect is four wave mixing, where in presence of two input wavelengths

two additional wavelengths are generated.

However, these effects can only be efficiently exploited if a sufficiently high electric field amplitude

is obtained in the nonlinear material. Following an estimation in [88] the power of 10mW must be

concentrated within an area of about 1µm2 in order to allow exploitation of nonlinear optical effects.

Apart from increasing the optical power, concentrating the light in a smaller region increases the

nonlinear optical interaction between light and matter. Here the slot waveguide comes into play. As

pointed out already fundamentally in section 2.2.2, the concentration of light inside a small cross

sectional area filled with a low index material is a unique feature of the slot waveguide structure. In

order to take full advantage of this light concentration for nonlinear optical effects it is necessary to

perform an optimization of the slot waveguide geometry.

7.1. Fundamentals

The response of any dielectric to light becomes nonlinear for intense electric fields ~E. The electric

polarization field ~P can be written as [88, 119]:

~P = ε0~χ
(1)~E + ε0~χ

(2)~E~E + ε0~χ
(3)~E~E~E + . . . (7.1)

The linear susceptibility χ(1) contributes mainly to the polarization ~P. The second order suscepti-

bility χ(2) is nonzero only for media made of molecules without inversion symmetry but even for

these materials, χ(2) is much lower than the linear susceptibility. Therefore, second order nonlinear

effects such as second-harmonic generation and sum-frequency generation [120] occur only at high

electric field amplitudes. In media with inversion symmetry the third-order susceptibility χ(3) is

responsible for phenomena such as third-harmonic generation, four-wave mixing, and in particular

nonlinear refraction. In order to illustrate the origin of nonlinear refraction, let us evaluate eqn. (7.1)

75



7.1. FUNDAMENTALS

for third order nonlinearity assuming linear polarized, monochromatic light :

P(ω) = ε0[χ
(1)+

3χ(3)Z0

2n
I(ω)]Ẽ(ω), (7.2)

with Ẽ beeing the frequency dependent electric field amplitude and I the intensity, which follows

from I = nẼẼ∗/2Z0. Z0 =
√

µ0/ε0 is the so-called free space wave impedance. In contrast to

the linear case, an intensity dependent term contributes to the polarization. The term in the square

brackets can be seen as ’effective’ susceptibility

χ = χ0 +∆χ(I), (7.3)

or in a more convenient form as intensity dependent refractive index

n = n0 +n2I. (7.4)

The parameter n2 is the so-called nonlinear refractive index defined as

n2 ≡
3Z0

4n2
0

χ
(3). (7.5)

In other words, for a material with a sufficient high χ(3), the refractive index depends on the optical

intensity. This is the so-called ’Kerr-effect’ [88, 119] which can be exploited in order to modulate

the phase of the light by changing its intensity. Moreover, this modulation is not restricted to a

single wavelength. It is possible to use light with one wavelength to change the propagation in the

nonlinear material for another wavelength. Such a cross phase modulation (XPM) enables impor-

tant devices for telecom applications such as e.g. optical switches [119].

For all applications a maximized nonlinear effect is advantageous. As immediately can be deduced

from eqn. (7.4), this can be done firstly by chosing a material with a high nonlinear refractive index

n2. Typically, polymers feature a high nonlinear refractive index. The second possibility to maxi-

mize the nonlinear effect is to increase the light intensity I. This necessitates a waveguide structure

allowing for strong optical confinement. In the case of polymers, conventional waveguides cannot

achieved a strong confinement due to the low refractive index n0 of polymers.

However, employing the slot waveguide structure it is possible to strongly confine light in a poly-

mer embedded between two silicon wires and thus efficiently exploit the nonlinear behaviour of the

polymer. The amount of third order nonlinear interaction in a waveguide is expressed by the non-

linearity coefficient γ = k0n2/Aeff, where k0 is the angular wave number and Aeff the effective area.

The effective area can be seen as a figure of merit of how well the waveguide geometry supports

the nonlinear interaction. The smaller the effective area provided by the waveguide structure the

higher the nonlinear interaction. Therefore, the effective area is the relevant parameter to evaluate

the suitability of a certain waveguide structure for third order nonlinear optical applications.

Much effort has been spent already in the study and experimental demonstration of slot waveg-

uide structures exploiting third order optical nonlinearity [15–27]. In particular the work of Koos
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Figure 7.1.: Demultiplexing concept based on four wave mixing as described in [27]. The slot waveguide
structure (see bottom) was filled with the highly nonlinear polymer DDMEBT. With this waveg-
uide structure a demultiplexing speed of 42.7 Gb/s was achieved .

et al. has attracted much attention. There the authors showed that silicon-organic hybrid integra-

tion overcomes intrinsic limitations due to the slow dynamics of two-photon generated free carriers

by combining the best of two worlds. Mature CMOS processing is used for the fabrication of

a slot waveguide structure and molecular beam deposition is employed to cover it with organic

molecules that efficiently mediate all-optical interaction without introducing significant absorption.

A 4 mm long silicon-organic hybrid waveguide was fabricated with a record nonlinearity coefficient

of γ = 0.1 W−1mm−1 to perform all-optical demultiplexing of 170.8 Gb s−1 to 42.7 Gb s−1 using a

four wave mixing concept (see Fig. 7.1). A demultiplexer separates a signal consisting of multiple

data streams transmitted via a shared medium back into single channels.

The potential of the vertical slot waveguide structure with respect to nonlinear effects has also

been theoretically investigated by Koos et al. [20]. The dependence of the effective area of slot

waveguides on the geometry was presented and it was predicted that the vertical slot waveguide can

enable nonlinearity coefficients of up to 7 W−1mm−1.

Their analysis focused on the vertical slot waveguide which can be fabricated from a single

monocrystalline silicon layer but puts high demands on the fabrication process due to the small fea-
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Figure 7.2.: Cross sections of the three investigated implementations of slot waveguides filled and/or cov-
ered with a low index optically nonlinear material: a) vertical slot waveguide, b) and c) horizontal
slot waveguides.

ture sizes. The minimum achievable slot thickness is practically limited to >50 nm. This explains

why the authors of [20] restricted their studies to slot thicknesses s > 50 nm. As described in detail

in section 2.4 for the horizontal type such a restriction is not given. It is possible to realize hori-

zontal slot waveguides with ultra thin slot layers by taking advantage of the possibilities of thinfilm

technology as demonstrated in [41, 42].

Another report [18] theoretically evaluated both vertical and horizontal silicon-based slot waveg-

uide structures with respect to their nonlinear behavior. However, no multi parameter optimization

with respect to all geometry parameters was performed in order to find the waveguide geometry

that provides maximum nonlinear interaction. Moreover, the low index contrast approximation was

used for calculating the effective area of nonlinear interaction instead of the precise equation [20],

which can give quantitatively misleading results as will be discussed later on.

The first thorough theoretical study taking the advantage of horizontal slot waveguides fully into

account has been reported in [24]. There, for the first time it was pointed out, that the slot waveguide

structure has an absolute optimum with respect to nonlinear interaction which can be achieved in

the horizontal concept only. The results were compared with the optimized values of the vertical

slot structure and, in addition, a possibility was pointed out how the nonlinear interaction can be

further increased.

7.2. Simulation model and technique

Figure 7.2 illustrates the cross section of the investigated vertical and horizontal slot waveguide

structures. In the case of the vertical slot waveguide for practical reasons it was assumed that the

whole structure is covered with the nonlinear material. Horizontal slot waveguides, on the other

hand, can be implemented either with a thin low index layer with the thickness s and a linear re-

fractive index of nslot embedded between two silicon wires. The lower cladding is a silicon dioxide

layer, the upper cladding is either air (nc1=1) or the same nonlinear material as in the slot region

(nc1=nslot). In this model, it was assumed that the nonlinear interaction only occurs in the low in-

dex material in the slot region. The amount of third order nonlinear interaction in a waveguide is

expressed by the nonlinearity coefficient γ = k0n2/Aeff, where k0 is the angular wavenumber, n2 the

nonlinear refractive index of the nonlinear material, and Aeff the effective area. The effective area
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can be seen as a figure of merit of how well the waveguide geometry supports the nonlinear inter-

action. The smaller the effective area provided by the waveguide structure the higher the nonlinear

interaction. In high index contrast waveguide structures the effective area is defined by [20]:

Aeff =
Z2

0

n2
NL

|
∫ ∫

Dtotal
Re[~E (x,y)× ~H ∗(x,y)] ·~ezdxdy |2∫ ∫

DNL
| ~E (x,y) |4 dxdy

, (7.6)

where Z0 =
√

µ0/ε0 is the free space wave impedance, nNL the refractive index of the nonlin-

ear material, ~E (x,y) the vectorial electric, and ~H (x,y) the vectorial magnetic field profiles of the

waveguide mode of interest. In the context of nonlinear interaction the modes of interest are the

TE-like mode for the vertical slot waveguide and the TM-like mode for the horizontal slot waveg-

uide as explained before. The upper integral extends over the whole cross section Dtotal, whereas

the lower integral is limited to the area covered by the nonlinear material DNL.

We employed the finite element method (FEM) based mode solver (see section 3.1) for the cal-

culation of the waveguide eigenmodes. The 4×4 µm simulation domain was surrounded by 0.4 µm

thick perfectly matched layers. An adaptive mesh refinement was used to ensure sufficient accuracy.

For that purpose, the mesh was refined as long as the calculated effective area of two consecutive

simulations showed a difference larger than 10−5 µm2. This ensures that the simulation domain was

meshed sufficiently to obtain convergence of the desired value of the effective area.

In order to find the waveguide cross section that provides a minimum effective area, i.e., maxi-

mum nonlinear interaction, for a given slot thickness we implemented an iterative search. In a first

step, a course grid of width and height values was defined comprising the structure featuring maxi-

mum nonlinear interaction. Then, the corresponding effective areas were calculated using the FEM

tool. Next, a two dimensional fit was performed followed by a search for the minimum effective

area within this two dimensional fit. Around this minimum, the grid of width and height values was

refined and the effective areas were calculated again. This procedure was repeated until the differ-

ence of the obtained minimum effective areas between two iterations was smaller than 10−4 µm2

and until the resolution of the grid was better than 1 nm. In order to obtain the effective area,

the upper integral of equation (7.6) was carried out numerically over the entire simulation domain

excluding the perfectly matched layers. For the denominator of equation (7.6) the area where the

nonlinear material is present was used for the integration.

7.3. Results

First, we studied a horizontal slot waveguide slab system as depicted in Fig. 7.3 a), where the slot

is filled with an optically nonlinear material. The refractive index of the nonlinear material is set to

1.46. By solving the analytic eigenmode equation of this five layer system as described in 2.2.2 the

electric and magnetic mode field profiles of the TM mode in y−direction can be calculated. The

integration was numerically carried out using an Mathematica routine [93] and finally the effective

area was calculated using equation (7.6). Figure 7.3 a) plots the optical power confined in the

slot region and the effective area per unit length in x−direction as a function of the silicon layer
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Figure 7.3.: a) Cross section of a horizontal slot waveguide slab system and intensity profile of the TM slot
mode; b) optical power in the optically nonlinear slot region (solid lines) and effective area (dot-
ted lines) as a function of the silicon layer thickness for different slot thicknesses, and c) as a
function of the slot thickness at a constant silicon layer thickness close to the found optimum of
h = 160 nm. The dashed lines in b) and c) represent the low index approximation as used in [18].

thickness h for different slot thicknesses s ranging from 10 to 80 nm. A silicon layer thickness

of 160 nm provides maximum confinement and, thus, maximum nonlinear interaction irrespective

of the slot thickness. It has to be pointed out that the optimum layer thickness h for maximum

nonlinear interaction is almost identical to the layer thickness where maximum power confinement

in the slot region is achieved. As a consequence, all results of the preceding chapters about modal

behavior and lateral leakage, where the studies were restricted to waveguide thicknesses around this

found optimum, still apply.

Figure 7.3 b) shows the power confinement in the slot region and the effective area as a function of

the slot thickness at a constant silicon layer thickness of 160 nm. The plot reveals, that an absolute

optimum for the nonlinear interaction can be achieved at small slot thicknesses. The maximum is

obtained for slot thickness of s = 15 nm. The dashed lines in Fig. 7.3 b) and c) show the low index

approximation used in [18] demonstrating the significant deviation of the absolute value of Aeff and

the location of the minimum with respect to the height h and the slot thickness s.

Interestingly, the curvature in the vicinity of the optimized nonlinear interaction calculated with

the low index approximation is noticeable higher compared to the exact formulation of (7.6).

Next, we studied the nonlinear behavior of vertical slot waveguide structures (see Fig. 7.2 a)) with

respect to the strongly confined TE-like mode for different refractive indices of the nonlinear cover

medium ranging from 1.5 to 1.8. Using the optimization procedure described above, we determined

the minimum achievable effective area as a function of the slot thickness s (see Fig. 7.4 a)). Figure
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7.4 d) plots the corresponding values of the optimized geometry parameters h and w.

The results for s >50 nm match well with those reported by Koos et al. [20], who restricted their

simulations to this practically relevant area. For the sake of comparison with the horizontal slot

waveguide structure, we considered also smaller slot widths with s <50 nm. The smallest effective

areas are achieved at slot thicknesses around 20 nm, which is in good agreement with the result

obtained for the slab system. The corresponding optimum geometry parameters are around 270 nm

in vertical and 190 nm in lateral direction, where the height shows less dependence on the slot

thickness compared to the width w. The width increases from 260 nm for a slot thickness of 10 nm

to approximately 330 nm for a slot thickness of 100 nm.

Moreover, the refractive index in the slot region influences the effective area to a large amount.

With increasing refractive index, the effective area is increased as well but shows almost no impact

on the optimized geometry parameters. The optimized height differs by only ∼ 10 nm over a slot

range of 10−100 nm.

Figures 7.4 b) and e) show the minimum achievable effective areas and the corresponding opti-

mum geometry parameters for the strongly confined TM-like modes in horizontal waveguide struc-

tures filled and covered with the nonlinear material (see Fig. 7.2 b)). The results are almost identical

to that of vertical slot waveguides both in terms of minimum achievable effective areas and in terms

of optimum geometry parameters. This is due to the fact that the refractive index profiles of the

cladding surrounding the two silicon wires are very similar for these two configurations. For a non-

linear material with a refractive index of 1.46 the results would be identical. The only difference

arises from the fact, that in the vertical configuration the nonlinear material covers both interfaces

with the length w, whereas for the horizontal type one length with w boarders the lower silica buffer

layer, but on the other hand both length with the length h are exposed to the nonlinear material.

If we do not cover the horizontal slot waveguide structure with the nonlinear material and use

air as cladding instead, the confinement of the light in the slot is improved due to the increased

refractive index contrast between silicon and air. As the results on the minimum achievable effective

area as a function of the slot thickness s plotted in Fig. 7.4 c) reveal, the additional nonlinear

interaction due to the stronger confinement in the slot region outbalances the nonlinear interaction

in the cladding region in the case of a structure covered with the nonlinear material. The higher

the refractive index of the nonlinear material, the stronger this effect becomes in comparison to the

slot waveguide structure covered with the nonlinear material. But still the smallest effective area

is reached for the lowest refractive index in the slot region. The values of the optimized geometry

parameters are plotted in Fig. 7.4 f). The optimum of the width w is decreased in contrast to the

optimum height h which can be found at higher values compared to the slot waveguide structure

with nonlinear material acting as slot and cover material. The optimum width can be found at

230 nm and the optimum height at 210 nm. The smallest effective areas range from 0.027 µm2 to

0.05 µm2 depending on the slot index and are obtained for slot thicknesses of around 15 to 25 nm

with silicon wires of ∼210 nm height and ∼220 nm width.
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Figure 7.4.: Dependence of the minimum achievable effective area on the slot thickness s for different re-
fractive indices of the nonlinear material in a) a vertical slot waveguide completely covered with
the nonlinear material, b) a horizontal slot waveguide filled and covered with the nonlinear ma-
terial, and c) a horizontal slot waveguide filled with the nonlinear material and covered with air.
At each point, the geometry is optimized with respect to the parameters h and w such that a
minimum effective area is obtained. The corresponding values of the optimized geometry pa-
rameters are plotted in d)-f). The results in a) and d) for slot thicknesses s > 50 nm match with
those published in [20].
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Figure 7.5.: a) Dependence of the minimum achievable effective area in a horizontal slot waveguide on the
width w for different refractive indices of the nonlinear material filled in the slot region. The upper
cladding is air. At each point, the geometry is optimized with respect to the waveguide height
h and slot thickness s. The corresponding values of the optimized geometry parameters are
plotted in b).

Finally, it was clarified how the width of an air-covered horizontal slot waveguide influences

the nonlinear interaction. In order to answer this question, we used our optimization procedure

with respect to the waveguide height h and slot thickness s to determine the minimum achievable

effective area as a function of w.

The results plotted in Fig. 7.5 a) indicate that the waveguide width can be considerably increased

to values of 400 to 500 nm without significantly sacrificing nonlinearity. This can help reducing

scattering losses induced by rough waveguide side walls. The optimum slot thickness remains

almost constant over the plotted range of w, while the optimum height decreases rapidly to a value

of 160 nm (see Fig. 7.5(b)).

7.4. Conclusion

The eigenmode analysis of vertical and horizontal slot waveguide structures in this chapter provides

the optimized set of geometry parameters for which a minimum effective area and, thus, maximum

nonlinear interaction is achieved. The results indicate that air-covered horizontal slot waveguides

facilitate the exploitation of nonlinear effects in nonlinear materials with a comparatively low re-

fractive index because they allow for much thinner slot layers and thus smaller effective areas than

vertical slot waveguides. Ultra-thin vertical slots not only represent a challenge in fabrication but

would also be difficult to fill with nonlinear materials. In addition, air-covered vertical slot waveg-

uides appear difficult to realize from a technological point of view, thus prohibiting higher light

confinement and smaller effective areas. Horizontally sandwiched structures with very thin slot

layers, on the other hand, can be fabricated by CVD methods [13, 17, 41, 74, 121, 122], which are

also applicable to organic nonlinear materials [21]. Incorporating for example the highly nonlinear

organic material PTS, which has a linear refractive index of nslot=1.7 and a nonlinear refractive in-

dex of n2=2.2×10−16 m2W−1 [20], in an optimized horizontal slot waveguide structure will give

a nonlinearity coefficient γ=n2k0/Aeff of >20 W−1mm−1, where we assumed an Aeff = 0.04 µm2

based on the results in Fig. 7.4 c).

83





8. The V-groove structure

Finally, a novel photonic waveguide structure is intruduced: The V-groove waveguide. As
presented for the first time in [85] the V-shaped groove features a significant slot effect,
while at the same time the accessibility of the slot region is improved compared to the ver-
tical slot waveguide. The structure is numerically studied with respect to three interresting
applications: Evanescent wave sensing, support of nonlinear interaction and lasing.

8.1. Introduction

Irrespective whether the horizontal or vertical slot waveguide concept is considered, both approaches

have some intrinsic drawbacks with regard to the accessibility of the narrow slot region. One major

result of chapter 7 is that for the effective exploitation of nonlinear effects a narrow slot thickness

of the order of 30 nm is advantageous. Filling such a narrow slot with a nonlinear material or a

gain medium is a challenging task. The same holds true when using the slot region as sensitive

interaction region into which a sensitive medium and an analyte have to be introduced. Also for

such linear applications a narrow slot thickness is beneficial as the results in [34] show.

In order to overcome this limitation, in this thesis the so-called V-groove waveguide (see Fig 8.1)

Figure 8.1.: Cross section of a V-groove waveguide. In a waveguide consisting of two wires with isosceles-
trapezoidal cross section, quasi-TE polarized light is strongly concentrated near the bottom as
indicated by the contour plot representing the electric field profile.
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will be discussed in detail, as proposed in [85]. First studies taking angled side walls of the slot

into account have been presented in [83, 84]. However, in a waveguide consisting of two silicon

wires with isosceles-tapezoidal cross section which are placed close together, the light is strongly

concentrated near the bottom of the structure. This effect is caused by the combination of increased

waveguide at decreased slot thickness with towards the bottom of the structure. Figure 8.1 shows

the electric field profil of the quasi-TE polarized eigenmode as contour plot for a typical structure

consisting of two wires with a height w of 150 nm, a width h of 100 nm and a separation s of 10 nm.

The parameters w and h are defined accordingly in order to stay consistent with the preceding

chapters. It has to be noted that the separation is defined as distance in the flat region of the groove.

The two radii are not included.

The underlying effect is comparable to the slot effect, though it offers the advantage of eased ac-

cessibility of the slot region compared to other slot based concepts. Such structures can be obtained

by anisotropic etching of a silicon wire with KOH oriented in the 〈110〉 direction, which results in

a side wall angle of α = 56◦.

The technological feasibility of such silicon nanostructures has already been demonstrated in the

context of nanoelectronic devices [95–97] (see section 8.5 for details). In the following, simulations

are carried out on V-groove waveguide geometries shown in Fig. 8.1 in order to investigate the

suitability of the structure for three major applications: Surface sensitive sensing, exploitation of

nonlinear effects in low index materials and to lasing introducing quantum dots as gain material.

These three applications cover the major characteristics of the structure. As depicted in Fig 8.1 the

simulation model includes a radius of 5 nm at the bottom of the groove which takes into account

technological imperfections and ensures that the slot like effect is comparable to a realized structure.

At the outside of the two isosceles-trapezoidal shaped cores no radius was assumed due to the low

field concentration observed at these interfaces.

8.2. Optimization for surface sensing

8.2.1. Fundamentals

Realtime label-free detection of biomolecules is a promising field of application for optical waveg-

uide devices. For a waveguide thickness below the wavelength, the propagation constant is notice-

ably influenced by the surrounding media due to the evanescent field [123]. This fact can be ex-

ploited for biochemical sensing by functionalizing the waveguide surface with a biosensitive layer

that specifically captures one particular molecule species. When the solution containing the analyte

is introduced to the sensor surface only complementary molecules are bound. These binding events

change the effective index of the structure, which can be detected in a highly sensitive way by

employing interferometric configurations such as planar integrated Mach-Zehnder interferometers

(MZI) [124–128]. So far, rib- and wire-type waveguides have been used for the realization of such

surface sensitive devices.

Due to its unique feature of concentrating light in low index material vertical slot waveguides

have also been considered as promising sensitive waveguide structure. A theoretical study [28] de-
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termined the sensitivity under the assumption that the surface functionalization is applied selectively

to the top and the bottom horizontal interfaces of a vertical slot waveguide but not to the vertical

side walls. The results indicated that in this case the surface sensitivity is comparable to SOI wires.

However, the assumption that the side walls are not functionalized does not take into account the

advantage of the unique features of the slot effect. In [34] it was assumed, that the inside surfaces of

a vertical slot waveguide is functionalized with a biosensitive layers resulting in much higher values

of sensitivity compared to [28]. On the other hand as mentioned before, the high concentration of

the light inside the slot only becomes effective for narrow slots of <100 nm thickness. This makes

the access of the biosensitive material difficult, which is usually deposited in a liquid phase, as well

as for the biomolecules in the analyte which must be able to enter the slot region. Recently, less

sensitive silicon nitride slot waveguides with w = 300 nm and a slot thickenss of s = 200 nm were

used for homogeneous measurements with liquids of different refractive indices and surface sensi-

tive experiments [29, 30, 32–34, 54]. The results of this experimental study suggested that the slot

region can be filled only partially due to the poor accessibility of the slot region. For an extremely

high sensitive SOI slot waveguide this problem intensifies due to the significantly narrower slot

width. Therefore, with respect to the ease of surface coverage with the biofunctionalization layer

and of the penetration of the analyte into the region where the light interaction becomes effective,

the V-groove structure with its strongly angled side walls provides a much better environment than

the vertical slot waveguide. In the following it was assumed that the V-groove structure is covered

with a thin sensitive layer of the thickness t0=10 nm and the typical refractive index n f 0=1.5 of an

organic materials (as shown in Fig. 8.2).

In order to quantify the sensitivity, we employ the sensitivity parameter [129]

S =
∂neff

∂η
, (8.1)

Figure 8.2.: Simulation model for the optimization of the surface sensitivity. Two wires with the height h and
the top width w and α = 56◦ angled side walls are separated by s. The entire waveguide is
coated with a sensitive film of the thickness t0=10 nm and the refractive index n f 0=1.5. At the
bottom the inner side walls have a radius of 5 nm.
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8.2. OPTIMIZATION FOR SURFACE SENSING

Figure 8.3.: Simulation procedure in order to determine the optimized structure with ensuring maximum
surface sensitivity. At first, a course grid of w- and h-values was generated and simulations with
these parameters were performed. The parameter set that provided maximum sensitivity was
then used as starting point for a further optimization with a refined grid in a narrower parameter
range.

where η = k0t(n2
f − n2

c) the so-called dielectric load term. The refractive index nc of the aqueous

solution acting as upper cladding is set 1.33. The sensitivity S is normalized to the wavelength, the

film thickness, and the difference of the squared refractive indices n2
f −n2

c . This general definition

of the sensitivity can be rewritten in two ways depending whether the effective index change is

induced by a refractive index change

Sn = (2k0t0n f )
−1 ∂neff

∂n f

∣∣∣∣∣
n f 0

≈ (2k0t0n f )
−1 ∆neff

∆n f

∣∣∣∣∣
n f 0

, (8.2)

or by a thickness change of the sensitive layer

St = [k0(n2
f 0−n2

c)]
−1 ∂neff

∂ t

∣∣∣∣∣
t0

≈ [k0(n2
f 0−n2

c)]
−1 ∆neff

∆t

∣∣∣∣∣
t0

. (8.3)

8.2.2. Simulation technique

The goal of these investigations was to find the geometry providing maximum surface sensitivity

as defined in the preceeding section. For this purpose, the dependence of the sensitivity on the
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Figure 8.4.: a) Maximum sensitivities Sn and St as a function of the separation s for geometries optimized
with respect to w and h; b) corresponding values of w and h.

separation s for optimized width and height was studied. In order to determine the optimized height

and width for a given separation, at first, a course grid of w- and h-values comprising the optimized

geometry was generated and simulations with these parameters were performed. The parameter set

that provided maximum sensitivity was then used as starting point for a further optimization with

a refined grid in a narrower parameter range (see Fig 8.3). This process was repeated iteratively

until the step size of both width and height was less than 1 nm and the difference in the calculated

sensitivity of two consecutive iterations was smaller than 10−3. In addition, an adaptive mesh

refinement was employed to ensure sufficient accuracy at the sensitive maximum. The optimized

mesh typically consisted of 300.000 elements. This ensures, that all dielectric corners and radii are

resolved sufficiently.

8.2.3. Results of optimization

Figure 8.4 a) shows the surface sensitivity of the structure as a function of the separation. The

sensitivity has its maximum at a separation of ∼ 10 nm. For higher separations, the sensitivity

approaches the value of independent wires. The difference between the sensitivity Sn and St indi-

cates that the change of the refractive index of the sensitive layer is not completely equivalent to

the change of its thickness. The values of the optimized geometry parameters w and h are shown

in Fig. 8.4 b). The optimized w increases slightly from w=272 nm for s=0 nm to w=297 nm for

s=90 nm. This is consistent with the behavior of standard slot waveguide structures. A comparison

with Fig. 5.1 a) reveals that a standard slot waveguide with a width of 400 nm shows an increased

optimized height with increased slot thickness s which is of the same order as observed for the V-

groove waveguide. The difference between the optimum heights calculated with respect to Sn and

St are negligible. The higher variation of wSt can be explained by the varying finite element mesh

for two thicknesses t of the film compared to the calculations of wSn , which can be performed with

the same mesh. This indicates the limit of accuracy of these simulations. The optimum width h, on

the other hand, approaches zero for all values of s, which results in an optimized structure with two
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8.2. OPTIMIZATION FOR SURFACE SENSING

Figure 8.5.: Dependence of the sensitivities Sn and St on a) h and b) w. The remaining geometry parameters
are kept constant at the optimized values given in Fig. 8.4.

triangular shaped cores.

In practice, the geometry will vary from the design values due to deviations in the fabrication

process in particular for this thoroughly challenging structure in terms of realization. Therefore,

the dependence of the sensitivity under variation of the width or height is of particular interest. In

Fig. 8.5 a) the sensitivity is plotted for the optimized w in dependence of the h, whereas Fig. 8.5 b)

shows the characteristic of the sensitivity under variation of w. Compared to the impact of the sep-

aration, the influence of h and w is small near the optimum. The sensitivity is approximately halved

by increasing h from zero to h = 150 nm. The height of the waveguide can vary from w = 200 nm

to more than w = 350 nm without reducing the sensitivity to less than 50%. This demonstrates

the quite fabrication tolerant characteristic of the structure. Certainly the most interesting issue is

a comparison of the sensitivity values with other highly sensitive waveguides. Table 8.1 summa-

rizes typical surface sensitivities of different silicon photonic structures. The sensitivity of the rib

was approximated analytically using a four layer slab waveguide for an optimized geometry with a

height of h=55 nm. The sensitivity of the wire was calculated for the geometry parameters of [126].

The value in the brackets is the theoretical limit for a TE-operated wire with infinite height corre-

sponding to the most sensitive wire based structure. The sensitivity of the vertical slot waveguide

was calculated for a typical geometry with a slot width of 70 nm, a height of 300 nm, and optimized

wire width with a biosensitive layer of 10 nm thickness applied to all interfaces of the two wires.

Although the optimized sensitivity of the vertical slot waveguide is twice as large as that of the

Table 8.1.: Comparison of the surface sensitivity of different silicon photonic structures.

SOI rib (TE) SOI wire (TM) [126] vertical SOI slot (TE) SOI V-groove (TE)

St 0.22 0.41 (0.67 TE) 1.6 TE 0.78
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V-groove structure it is more of theoretical relevance because of the afore mentioned problems re-

garding the filling of the narrow slot region. But compared to standard waveguides such as ribs and

wires, the V-groove shows its potential. The sensitivity is more than three times higher compared to

an optimized rib waveguide, and still exceeds the value of the most sensitive wire based structure.

Moreover, the latter is only a theoretical value which hardly can be approached in practice. Thus,

the V-groove waveguide represents a highly attractive structure for surface sensing.

8.3. Optimization for nonlinear effects

8.3.1. Fundamentals

Due to their unique light confining characteristics slot waveguides are of particular interest for the

efficient exploitation of third order nonlinear optical effects in low index materials as explained in

chapter 7. But as shown in chapter 7, the full potential of the slot waveguide structure can only

be exploited for geometries with very low slot thicknesses regardless whether the configuration is

vertical or horizontal.

While the horizontal slot waveguide [24, 25] provides a better confinement in the nonlinear ma-

terial than the vertical type, it requires a nonlinear material that can be deposited with thicknesses

of ∼10 nm to ∼50 nm and that is compatible with the deposition process of a second silicon layer.

The vertical slot waveguide structure, on the other hand, suffers from the difficulty of filling a nar-

row slot of ∼50 nm width and ∼400 nm height with a nonlinear material. Therefore, the V-groove

waveguide could offer a good compromise between these two options. In order to study the V-

groove structure in this context, the model shown in Fig. 8.6 was used, where the nonlinear material

with the typical refractive index of nc=1.7 for practical reasons covers the entire waveguiding struc-

ture. Again, for determining how well the waveguide structure supports the nonlinear interaction in

the nonlinear material the effective area Aeff was calculated using (7.6).

Figure 8.6.: Simulation model for the optimization of the effective area Aeff in a V-groove waveguide structure
covered with a nonlinear medium of the refractive index nc=1.7.
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Figure 8.7.: a) Minimum effective area Aeff for optimized geometry parameters w and h in dependence on
the separation s, and b) the corresponding values of w and h.

8.3.2. Simulation results

In order to determine the V-groove geometry that provides maximum nonlinear interaction in a

nonlinear material with a refractive index of nc = 1.7, we used the same optimization procedure as

described in section 8.2.2. This time the algorithm was adapted in order to find the minimum of

the effective area with respect to the geometry parameters h and w for different values of separation

s. Similar to the surface sensitivity, the separation s has a strong influence on the effective area.

In fact, the impact of the separation is noticeably stronger compared to the surface sensitivity. An

increase of the separation from 0 nm to 100 nm more than doubles the effective area. Again,

the optimum is at s = 0 as Fig. 8.7 a) reveals. The corresponding optimized height h shown in

Fig. 8.7 b) is about 20 nm lower than hSn and hSt found in the previous section for the surface

sensitivity. The width w for minimum Aeff is close to zero. In practice, the optimum geometry again

consists of two triangularly shaped wires. Compared to the structure optimized with respect to the

Figure 8.8.: Dependence of the effective area Aeff on a) the h and b) the w. The remaining geometry param-
eters are kept constant at the optimized values given from Fig. 8.7.
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Table 8.2.: Comparison of the effective area of different silicon photonic nanostructures. The shaded areas
indicate the optically nonlinear medium.

wire (TM) [20] vert. slot (TE) [20] horiz. slot (TM) [24] V-groove (TE)

Aeff (µm2) 0.33 0.1 0.045 0.19

sensitivity, the dependence of the effective area on the height and width (see Fig. 8.8) is stronger.

In particular, this holds true for the dependence of the effective area on w corresponding to the

thickness of the monocrystalline silicon layer as plotted in Fig. 8.8 b). For w significantly below

200 nm the effective area increases by orders of magnitudes. On the other hand, an increase of h

from the optimum of h = 0 nm to h = 100 nm approximately only doubles the effective area. Higher

deviations should be avoided due to the increased gradient for h� 100 nm. Bearing the possibilities

of thin film technologies in mind, where the realization of layers within an accuracy of a view tens

of nanometers over a whole wafer is standard, from the practical point of view the crucial geometry

parameter is still the separation.

Table 8.2 provides a comparison between minimum achievable effective areas of different SOI

structures employing a nonlinear medium with a refractive index of nc = 1.7. Except for the hori-

zontal slot waveguide the nonlinear medium covers the whole structure. In the case of the horizontal

slot waveguide structure the nonlinear material is limited to the slot region and the upper cladding

is assumed to be air [24, 25], which provides the minimum Aeff for this structure in general. The

effective area of the V-groove waveguide versus the effective area of a standard wire waveguide

is only 57% which is a significant increase. In comparison to the slot waveguide structures, the

V-groove waveguide provides a two to four times larger effective area. Nevertheless, considering

the advantages offered by the V-groove shape this structure can be an attractive alternative to slot

waveguides.

8.4. Application to lasing

8.4.1. Fundamentals

Monolithically integrated silicon based lasers and amplifiers are highly desired photonic compo-

nents. Much research effort is dedicated to this topic in order to overcome inherent problems of

silicon such as the high two photon absorption. The V-groove waveguide structure represents an

attractive platform for the realization of such devices. It facilitates the self-assembly of gain media

such as nanocrystals or quantum wires, which cannot act as waveguides on their own, at the bottom

of the V-groove, i.e., at the location where the light of the guided mode is strongly concentrated.

Here, the characteristic of the V-groove waveguide — the very low mode volume in two directions,

not only in one as supported by standard slot waveguides — is fully exploited. As an example, we
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Figure 8.9.: Simulation model of a V-groove waveguide structure for optimization of the gain parameter
where between the two cores an gain medium such as a germanium wire (ng=4.28) is placed.
We assume a homogeneous filled V-groove of 5 nm height q.

chose a model as sketched in Fig. 8.9, where a germanium quantum wire is located at the bottom of

the groove. In a first approximation we assumed a homogeneous filling area of q=5 nm height with

a refractive index for germanium of ng=4.28 at a wavelength of λ=1550 nm. In this particular con-

figuration the silicon V-groove with its lower refractive index of nSi=3.48 can be seen as supporting

structure to ensure guidance of the light in the area of the quantum wire.

As the gain related figure of merit we choose the parameter γA which was derived for ultra high

index waveguides recently for the first time in [130]

γA =
εg
∫ ∫

Dg
| ~E |2 dxdy∫ ∫

DTot
ε(x,y) | ~E |2 dxdy

, (8.4)

where ε(x,y) is the permittivity distribution of the waveguide structure, εg the permittivity of the

optical gain medium, Dg the area with the optical gain medium, DTot the entire simulation domain,

and ~E the electric field of the quasi-TE polarized eigenmode. The gain parameter γA allows the

optimization of structures with respect to a low lasing threshold.

8.4.2. Simulation results

In analogy to the previous sections, we used the same procedure to obtain the V-groove geometry

for the maximum gain γA (evaluating the simulation results with equation (8.4)), which corresponds

to the minimum possible lasing threshold. In contrast to the optimization with respect to surface

sensitivity and nonlinearity, the separation s is set to zero due to the limited cross section of the

assumed germanium wire. From the optimization with respect to the other applications examples,

where the optimum structure was always close to a separation of s = 0 nm, it can be assumed, that

this is not a disadvantage.

The dependence of the gain on h as shown is Figure 8.10 a) for this figure of merrit is not

monotonically. Contrary to the other studied applications, the optimized height deviates from w =
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Figure 8.10.: a) Dependence of the gain parameter γA on h. In b) the influence of w is shown. The corre-
sponding simulation were carried out for a constant separation s = 0 nm and an optimized
parameter a) h = 10 nm and b) w = 255 nm..

0 nm. This can be attributed to the higher index contrast between silicon and the surrounding air,

which shifts the optimized value to h = 10 nm. The decrease of the gain for a w larger than the

optimized value is comparable to the behavior as observed for the surface sensing. The dependence

of γA on the height h and width w was calculated. It turns out, that the optimized parameters are

w=10 nm and h=250 nm. Figure 8.10 b) plots the dependence on w. The gain decreases rapidly for

w below the maximum value and approaches zero for w = 150 nm. For values of w exceeding the

maximum, the decrease is weaker and for a layer thickness of w = 350 nm the gain γA is about 30%

of the maximum value. Overall, the behavior of the gain is very similar to the inverse characteristic

of the V-groove waveguide optimized with respect to nonlinear applications. Taking into accout the

similarity of equation (7.6) and (8.4) this comes not unexpected.

8.5. Feasibility

All these characteristics are certainly only of interest if such a V-groove waveguide with optimized

parameters is technologically feasible. As mentioned at the beginning of this chapter, ensuring an

orientation of the wires in the 〈110〉 direction, KOH etching automatically results in a side wall

angle of 56 degrees. This is a well established process for structures in the micrometer range but

it can also be applied to structures in the nanometer range as Fig. 8.11 shows. In Fig. 8.11 a) a

trapezoidal shaped wire is shown where the bottom width of the wire is only about 200 nm [96, 97].

Even V-grooves of desired shape have been demonstrated in the context of electronic devices [95] as

Fig. 8.11 b illustrates. However, wires with lengths of several millimeters up to centimeters are still

a challenging task. Furthermore, it has to be pointed out that the orientation in the 〈110〉 direction

has to be ensured. This restricts the waveguide design at first to - more or less - straight wires.

Nevertheless, by employing etch simulation software [131] also more complicated structures can

be imagined once the etch process of simple structures is established.
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Figure 8.11.: a) Experimental realized trapezoidal shaped wire with a bottom width of 200 nm [96, 97]. b) V-
groove realized in the context of an nanoelectronic device with a bottom width of the groove of
25 nm [95].

8.6. Conclusion

The suitability of the V-groove waveguide structure for surface sensing and for the exploitation of

nonlinear optical effects in low index materials was studied. With respect to surface sensing, the

highly angled side walls of the two wires facilitate the coating of the waveguide interfaces with a thin

sensitive layer and offer a better access of the analyte to the sensitive region. This makes V-groove

waveguides a promising candidate for exploiting the slot effect for surface sensing applications. The

results of our numerical in-depth studies indicate, that a corresponding device offers a significant

higher sensitivity compared to rib and wire type waveguides used so far.

With respect to the exploitation of nonlinear optical effects in low index materials, the V-groove

waveguide structure could also allow overcoming practical limitations related to the filling of narrow

slots of slot waveguides with a nonlinear medium, while providing a smaller effective area than

optimized wire waveguides.

One major advantage of the V-groove waveguide is the confinment of the light in two directions

resulting in a very small mode volume. Nanodots or nanowires could exploit this property in a very

efficient way. A new approach for the realization of a silicon based laser could be the consequence.

The realization of V-groove structures with optimized geometry parameters appears feasible. Sim-

ilar silicon nanostructures have already been fabricated in the field of electronics by anisotropic

etching with KOH. In terms of fabrication, the crucial parameter is the separation, which should be

ensured within 20 nm. For the layer thickness w a deviation of about ±20 nm is acceptable with

respect to the optimized values, which is possible assuming the accuracy of typical SOI wafers.

The upper width of the cores h is with ±30 nm less critical in principle. Bearing in mind that this

geometry parameter is a result of an etch step, achieving this accuracy could be a challenging task

as well.
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9. Summary

The first chapter of this work was dedicated to the origins of the slot effect. With the use of common

methods such as Taylor series expansion and rarely used procedures like the Lagrange series it

was possible to develop approximations where the most fundamental but at the same time most

important characteristics of slot waveguides could be derived directly from Maxwell’s equations.

The Lagrange series enabled a transformation of the transcendent effective index equation into an

approximation allowing for qualitative statements just by investigation of its analytic properties.

By comparing the solution of the numerical correct formulation of the effective index equation

with the results of standard wire waveguides it was found that an optimized value with respect

to the waveguide thickness h exists where the slot effect shows maximum impact on the effective

index. Later, equations for the confined light power were developed and, as the studies revealed,

again an optimized waveguide thickness exists where the slot waveguide provides maximum light

intensity in the slot region. Moreover, by taking the optical power distribution of a wire waveguide

with comparable geometry into account the unique power distribution of the slot waveguide was

reasoned.

Next, an analytic approximation enabling the qualitative analysis of the characteristic of the con-

fined power in the slot region was derived. Furthermore, the investigation of the slab slot waveg-

uide was completed by the study of the modal behavior. The complex eigenmode spectrum was

explained and in order to analyze higher order lateral modes as well as radiating modes, two differ-

ent simulation methods were introduced. Fundamental characteristics of the modes were described

resulting in a single mode criterion for a typically used slot waveguide structure.

The main part of this thesis was dedicated to the in-depth study on important aspects of different

types of slot waveguides. Six different types were analyzed. The major aspect of all studies was

the investigation of the characteristics of these slot waveguide types with regard to the realization of

these structures in practice. Therefore, much computational effort was spend in order to take devia-

tions in the fabricational processes into account in order to indentify which types of slot waveguides

(intoduced in section 2.4) can be used in practice.

For the sake of simplicity, the picture of the different types Fig. 2.12 is repeated here (see Fig. 9.1

on next page):
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Figure 9.1.: Types of slot waveguides investigated and evaluated in context of this thesis.
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I. Vertical slot waveguides

The vertical slot waveguide is the standard within the slot waveguide configurations. It was

the first practical implemented slot structure [5] with the major advantage that it can be real-

ized only by means of a single monocrystalline silicon layer as a prerequisite. Moreover, any

material which ensures an entire filling of the slot region can be used as low index material.

a) Wire based

However, the results of two chapters of this thesis showed, that in the vertical approach

(see Fig. 9.1 I. a)) it is not possible to exploit the full potential of the slot effect in

practice. As pointed out in chapter 5 in order to obtain maximum power in the slot

region of < 50% a w/h ratio of more than 4:1 is needed. The realization of such a heigh

ratio would be a very challanging task.

For the exploitation of nonlinear optical effects in addition two restrictions of the ver-

tical approach must be taken into account as the results of chapter 7 demonstrate. An

optimized slot waveguide structure for the efficient exploitation of nonlinear optical ef-

fects in low index media has a slot thickness of tens of nanometers. Such a small slot

thickness can hardly be realized with e-beam lithography which is necessary in order to

fabricate a vertical slot waveguide. In addition, the ultimate low effective area ensuring

maximum nonlinear interaction can only be achieved for a structure where the confine-

ment is increased by air which surrounds the slot waveguide. But this necessitates a

slot material which can be deposited in the slot region only and this is not possible in

the vertical concept where the slot waveguide is filled and entirely covered by the slot

material.

b) The V-groove waveguide

A new kind of slot waveguide is the so called V-groove waveguide proposed in [85] (see

9.1 I. b)). The acute angle in the center of the structure leads to a strong confinement at

the bottom of the waveguide. An additional advantage arises from increased width on

top of the slot compared to a vertical slot structure of Fig. 9.1 I. a). This could ease the

problems of filling a narrow slot of the order of tens of nanometers.

As the studies exposed in chapter 8 demonstrated, the structure has a good applicability

for surface sensitive sensors and nonlinear devices. Although the discussed figure of

merits are lower compared to the optimized horizontal slot waveguide type they still

exceed significantly the values of standard SOI waveguide types as wires and ribs. Fur-

thermore, the good accessibility of the slot region makes the V-groove to an interesting

alternative to slot waveguides as well.

High potential can be attributed to applications where an ultra small mode volume in

two directions is necessary such as for quantum wires and dots. For these types of

slot material, the V-groove waveguide could be a very effective host structure enabling

ultra strong confinement at — maybe — moderate fabrication effort compared to e.g.

photonic crystal waveguides.
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The realization of such a structure would be a challenging task. However, V-grooves of

similar size have been realized successfully in the past in context of electronic micro-

and nanodevices [95–97]. Therefore, the realization seems to be feasible.

II. Horizontal slot waveguides

In contrast to the vertical slot waveguide for the horizontal slot waveguide a second high

index layer is indispensable. This makes bonding techniques [42, 98] or the deposition of a

second high refractive index layer e.g. amorphous silicon [41, 99] necessary. This holds true

for the slot material. Here, only a depositable material where the thickness can be sufficiently

controlled can be used. On the other hand, from this disadvantage follows one important

advantage of the horizontal slot waveguide, studied in-depth for the first time in [57]: All

slot interfaces border to deposited layers, which typically have smooth surfaces. In addition,

the thickness of the slot is only limited by the controllability of its deposition. Even layer

thicknesses in the nanometer range are conceivable.

Due to the layered configuration it is possible to cover the slot waveguide with a different

material with respect to the slot. By using air as cladding, one can achieve an ultimately

high index contrast. Furthermore, the requirements in terms of realization are significantly

relaxed, because the smallest feature size for the lithography is given by the width of the slot

waveguide and not by the one order of magnitude smaller slot. This enables the use of faster

and cheaper fabrication methods than e-beam such as deep-UV lithography. Finally, the high

achievable width-to-height ratio has to be mentioned which is unlimited from the practical

point of view.

a) Wire based

The simplest possible horizontal slot waveguide is a type consisting of two wires as

shown in Fig. 2.12 II. a). As shown in chapter 5 for such wide structures, the lateral

second order mode becomes an issue, but as a result of this chapter a power optimized

structure still ensuring single mode behavior can be obtained for a well designed hori-

zontal slot waveguide.

b) Symmetric horizontal slot waveguide based on ribs

The possibility of electric wiring is one main advantage of all rib-type slot waveguides

enabling the realization of important active devices such as amplifiers, modulators or

lasers. Obviously the advantages and disadvantages of the layered composition as de-

picted above for the horizontal wire type are still valid. Furthermore, the continuous

waveguide layer makes the realization of a suspended waveguides possible. This could

enable the realization of new types of sensors. Nevertheless, a structure as shown in

Fig. 9.1 II. b) is a very challenging task in realization. But as shown in chapter 6 the

high symmetry of this type elevates this structure to a role model for the investigation of

the important effect of lateral leakage. For a fully symmetric structure without imper-

fections coupling to the odd TE slab mode can occur. If the symmetry of the waveguide
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is broken by assuming deviations of the waveguide thickness between the upper and the

lower layer for instance, also coupling to the even TE slab mode arises. The results

of this effect are leakage losses, which easily can exceed 102 dB/cm. But as described

in chapter 6 for certain waveguide width these losses are avoided due to a destructive

interference effect. Again, it is important to which TE slab mode — even or odd — the

rib waveguide mode can couple.

c) Asymmetric horizontal slot waveguide based on rib/slab

Much more appealing from the practical point of view compared to Fig. 9.1 II. b) is a

structure consisting of a slab and a rib waveguide on top (see Fig. 9.1 II.c)). This would

combine all advantages of the horizontal rib- and wire type structures at a minimum of

effort in terms of realization. From the practical point of view, this structure is very

interesting, because it enables electric wiring as well. Nevertheless, as the in-depth

study in chapter 6 revealed, due to the asymmetry of the structure high leakage losses are

observed in particular for structures with geometry parameters in the range of optimized

slot waveguide structures.

However, by exploiting the resonance characteristic, low loss operation is possible for

waveguides with shallow etched ribs and low slot thicknesses where typical deviations

due to fabrication processes were taken into account. Moreover, such small slots are

no disadvantages as the optimization to linear (see chapter 5) and nonlinear application

(see chapter 7) demonstrated.

d) Asymmetric horizontal slot waveguide based on wire/slab.

An special case of Fig. 9.1 II. c) is illustrated in Fig. 9.1 II. d), where the rib on top

gives way to a wire. This structure has an increased lateral confinement compared to

Fig. 9.1 II. c). Beyond that, due to the slab waveguide as basis, this configuration would

be interesting for active devices based on Fig. 9.1 II. c) in sections where no electric

wiring is necessary due to the higher lateral confinement.

But as the in-depth studies of the lateral leakage of this structure show, no sufficient

parameter region for low loss operation can be found — again, considering deviations

due to fabrication tolerances. This can be explained by the fact that the etched wire on

top stays in contrast to the above statement for the asymmetric horizontal slot waveguide

based on rib/slab where low loss operation only could be ensured for shallow etch depth

on top. In other words, the lateral leakage completely renders this configuration useless

in practice.
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Abstract

English

Silicon photonics has attracted much attention in the last decade. Apart from the advantage stem-

ming from the CMOS compatibility, the high refractive index of silicon enables the realization of

extremely small waveguide structures, e.g. microring resonators with diameters of only a few mi-

crons. However, silicon photonics is more than about shrinking component sizes and also allows

for the utilization of unique effects such as ’slow light’ in photonic crystal defect waveguides.

In 2005 another novel effect entered the stage of silicon photonics: The so-called photonic slot ef-

fect, which confines a significant amount of the guided optical power in a narrow low index region

between two silicon waveguide cores. This unique feature is highly beneficial for various applica-

tions such as sensors, modulators or for nonlinear optical devices.

In this thesis some fundamental aspects of slot waveguides are studied with analytical and numeri-

cal methods. All investigations focus on the possible realization of the slot waveguide in practice.

At first, an analytical framework is developed in order to qualitatively show the origin of the slot

effect using a 2D model. Then, a structural optimization of the 3D structure is performed employ-

ing numerical methods. The results show, that it is possible to further increase the confined power

significantly in the slot region while maintaining single mode operation - a crucial prerequisite for

most applications. Next, two leakage loss mechanisms are studied. One is the rarely known lateral

leakage, which is studied for the horizontal slot waveguide concept for the first time in context of

this work. One main result is that the lateral leakage renders some - from the practical point of view

- very interesting slot waveguide concepts useless due to the high amount of leakage which occurs.

A main area of application for the slot waveguide structure is the efficient exploitation of nonlin-

ear effects. As exposed in this thesis, the horizontal concept reveals some noticeable advantages

compared to other concepts with respect to such applications. Finally, the last chapter is dedicated

to a novel type of slot waveguide - the so-called V-groove waveguide which was a result of the

preceding work. There, the slot is replaced by a V-shaped groove.
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Deutsch

Der Bereich der Silizium-Photonik ist ein noch junger und sehr viel versprechender Zweig der Pho-

tonik. Neben der CMOS Kompatibilität ermöglicht der hohe Brechungsindexunterschied zwischen

dem Wellenleitermaterial Silizium und dem umgebenden Material extrem kompakte Strukturen,

wie zum Beispiel Microring-Resonatoren mit Durchmesser im Bereich von wenigen Mikrometern.

Doch Silizium-Photonik ist mehr als nur ein ”Skalierungsfaktor“ um hochkompakte Wellenleiter-

strukturen zu erzielen. Der hohe Brechungsindexunterschied ermöglicht so einzigartige Effekte wie

die extreme Verlangsamung des Lichts in ”Photonic Crystal defect Waveguides“ die wegen den

hohen Ansprüchen an die Herstellungstechnologie erst jetzt realisiert werden können.

2005 betrat ein neuer Effekt die Bühne der Silizium-Photonik: Der photonische ”Slot Effekt“. Ein

Slotwellenleiter besteht aus zwei durch einen Spalt (den sog. Slot) getrennte Wellenleitererkerne

aus Silizium. Bei optimierter Auslegung im Bezug auf die Geometrie ist ein großer Teil des Lichts

nicht im Wellenleiter selbst sondern im Slot dazwischen konzentriert.

In der vorliegenden Arbeit werden einige sehr grundlegende Aspekte von Slot Wellenleitern nu-

merisch und analytisch untersucht, wobei stark auf die tatsächlichen Möglichkeiten der Herstellung

Rücksicht genommen wird. Zu Beginn werden die analytischen Grundlagen anhand des 2D Mod-

ells erarbeitet um den physikalischen Ursprung des Effekts zu ergründen. Dem folgt die numerische

Optimierung der 3D Struktur in Hinblick auf maximale Leistung. Wie gezeigt wird, ist es möglich

die Lichtleistung im Spalt durch Erhöhung der Wellenleiterbreite deutlich zu erhöhen, ohne das für

die meisten Anwendungen entscheidende Singlemode-Verhalten zu gefährden.

Weiters werden zwei Ursachen für Wellenleiter Verluste untersucht. Unter anderem ist dies die

eher unbekannte ”Lateral Leakage“. Diese wurde im Rahmen dieser Arbeit erstmals für horizontale

Slot Wellenleiter studiert. Ein wichtiges Resultat dieser Studien ist, dass einige - vom praktischen

Standpunkt aus - sehr interessante Slot Wellenleiterformen nur eingeschränkt oder wegen den hohen

Verlusten gar nicht in der Praxis eingesetzt werden können. Ein wichtiges Anwendungsgebiet ist

die Ausnutzung nichtlinearer Effekte. Ein Kapitel dieser Arbeit optimiert die horizontale Struktur

numerisch in Hinblick auf diese Anwendung und zeigt, daß hier durch das horizontale Konzept fest-

stellbare Vorteile in der Praxis entstehen. Der letzte Abschnitt der Dissertation widmet sich einer

im Rahmen dieser Arbeit entdeckten neuartigen Struktur dem sog. V-Groove Wellenleiter bei dem

der Spalt durch eine V-förmigen Bereich ersetzt wird.
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A. Effective index approximation

As shown in [94], a transcendent equation of the form

x′y(x′) = f [y], (A.1)

can be expanded in the series:

y(x′) =
f [0]
x′

+
f [0] f (1)[0]

x′2
+

f [0][ f (1)[0]]2 + f 2[0] f (2)[0]/2
x′3

+ (A.2)

+
f [0][ f (1)[0]]3 +3 f 2[0] f (1)[0] f (2)[0]/2

x′4
+

+
120 f [0] f ′[0]4 +360 f [0]2 f ′[0]2 f ′′[0]+60 f [0]3 f ′′[0]2 +80 f [0]3 f ′[0] f (3)[0]+5 f [0]4 f (4)[0]

120x′5
+ · · ·,

where the notation

[ f n(0)](n−1) =

[
dn−1[ f n[y]]

dyn−1

]
y=0

, (A.3)

is used. After collecting all terms which are of same order in f [0] one obtains:

y(x′) = f [0]
( 1

x′
+

f (1)[0]
x′2

+
[ f (1)[0]]2

x′3
+ · · ·

)
+ (A.4)

+
f 2[0] f (2)[0]

2

( 1
x′3

+3
f (1)[0]

x′4
+6

[ f (1)[0]]2

x′5
+ · · ·

)
+ · · ·

The series’ in the parenthesis are convergent for | f (1)/x′ |< 1 and can be replaced by:

1[
x′− f (1)[0]

]n =
1

x′n
+

n f (1)[0]
x′n+1 + · · · (A.5)

+
n(n+1) · · · (n+ j−1)

j!
[ f (1)[0]] j

x′n+ j + · · ·

Introduced to (A.4) this finally leads to:

y(x′) =
f [0]

x′− f (1)[0]
+

f 2[0] f (2)[0]
2[x′− f (1)[0]]3

+
f 3[0] f (3)[0]

6[x′− f (1)[0]]4
+

f 3[0][ f (2)[0]]2

2[x′− f (1)[0]]5
+ · · · (A.6)

With this expansion transcendent eigenmode equations can approximately be solved by keeping

only terms of low order in 1[
x′− f (1)[0]

]n . For the sake of comparison, two eigenmode equations are

solved using (A.6). The first describes an asymmetric three layer system as sketched in A.1 a) where
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Figure A.1.: Geometry- and refractive index parameters of a) an asymetric three layer waveguide and b) a
symmetric slot waveguide. The propagation direction is in z.

nc is the refractive index of the upper buffer and ns of the lower buffer layer. ng is the refractive

index of the waveguiding layer and h its height:

k0hnge = π− tan−1
(

kc
nge

nec

)
− tan−1

(
ks

nge

nes

)
, (A.7)

for the fundamental mode, respectively [87]. For the TM mode kc = n2
c/n2

g und ks = n2
s/n2

g holds

true. In addition, recalling that the nge,ec,es are the index differences defined as:

nge =
√

n2
g−n2

eff (A.8)

nes =
√

n2
eff−n2

s

nec =
√

n2
eff−n2

c

The second transcendent equation specifies the symmetric slot waveguide as depicted in A.1 b).

According to [7] the eigenmode equation can be rewritten resulting in:

k0hnge = π− tan−1
(

kc
nge

nec

)
− tan−1

(
ks

nge

nes
cotanh(k0ness/2)

)
, (A.9)

where in extension to the three layer system nes =
√

n2
eff−n2

s must be added. It has to be noted

that (A.9) gives the same results as (2.9). Equations (A.7) and (A.9) only differ in the second term

on the right side, involving the slot index ns and the slot thickness s. The refractive index of the

slot and of the lower buffer layer of the three layer system are intentionally equal. In this case for

s� λ in the second term of equation (A.9) cotanh
(
k0ngss/2

)
→ 1 and (A.9) becomes identical to

(A.7). To obtain equations depending on only one variable, the denominators of equation (A.7) are
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expanded with +n2
g−n2

g resulting in:

k0h
√

n2
g−n2

eff = π − tan−1

(
kc

√
n2

g−n2
eff

n2
eff−n2

c +n2
g−n2

g

)
(A.10)

− tan−1

(
ks

√
n2

g−n2
eff

n2
eff−n2

s +n2
g−n2

g

)
.

After rearranging and combining the refractive index differences obeying the rule nxy =
√

n2
x−n2

y

where the subscript e is an abbreviation for the effective index subscript ’eff’ one obtains:

k0hnge = π− tan−1
(

kc
nge√

n2
gc−n2

ge

)
− tan−1

(
ks

nge√
n2

gs−n2
ge

)
. (A.11)

Now, nge is left as only variable. Of course, other possibilities can be found to obtain similar results.

In the same manner equation (A.9) can be altered resulting in:

k0hnge = π− tan−1
(

kc
nge√

n2
gc−n2

ge

)
− tan−1

(
ks

nge√
n2

gs−n2
ge

cotanh
(

k0

√
n2

gs−n2
ge(s/2)

))
,

(A.12)

By identifying

x′ = k0h

y(h) = nge

f (y) = right side of (A.11) or (A.12),

(A.13)

equations (A.11) or (A.12) are of the form (A.1) and can be approximated by using (A.6). By

restricting the studies to the first term in (A.6) only f [0] and the first derivative with respect to nge

f [0](1) is needed. This results in:

for (A.11) for (A.12)

f [0] = π f [0] = π

f [0](1) =− kc
ngc
− ks

ngs
f [0](1) =− kc

ngc
− ks

ngs
cotanh

(
k0ngss/2

) (A.14)
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Inserting this in (A.6) leads to:

for (A.11) for (A.12)

nge =
π

hk0+
kc

ngc
+ ks

ngs

nge =
π

hk0+
kc

ngc
+ ks

ngs
cotanh(k0ngss/2)

(A.15)

By using that nge =
√

n2
g−n2

eff the approximation of the two effective indices can be finalized:

three layer: neff =

√√√√√n2
g−

 π

hk0 +
n2

c
n2

gngc
+ n2

s
n2

gngs

2

(A.16)

slot: neff =

√√√√√√n2
g−

 π

hk0 +
n2

c
n2

gngc
+

n2
s coth(k0ngss/2)

n2
gngs


2

(A.17)

Here, to enable an eased interpretation in chapter 2 ks,c = n2
s,c/n2

g was inserted.
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B. The variational mode matching (VMM)
method Of MaxWave

B.1. Introduction

MaxWave [104] is a collection of electromagnetic mode solvers for the computation of the op-

tical field in guided-wave optoelectronic/photonic devices. The underlying field equations (time-

harmonic Maxwell’s equations) are solved rigorously by employing an advanced mode-matching

technique — the so-called variational mode matching [104–108] technique — which combines nu-

merical efficiency with a very high degree of numerical stability. Currently, MaxWave comprises

powerful 2D simulation tools for the analysis of (a)periodic waveguide grating structures, tapers and

waveguide junctions as well as mode solvers for 2D waveguide cross sections. The devices may in-

corporate lossy (and gainy) materials with potentially high refractive index differences which makes

MaxWave suitable for the simulation of ultra-high-index-contrast materials or waveguide structures

incorporating metals. In addition, anisotropic materials can be handled having a dielectric ten-

sor of the form ε = diag(εrr,εrr,εzz) where the (vertical) z-direction is the growth direction of the

slab waveguides. This feature makes MaxWave attractive for the simulation of optoelectronic de-

vices employing intersubband absorption/emission and birefringent waveguide structures. Though

MaxWave primarily targets at guided-wave devices, unbounded radiating fields can be handled effi-

ciently through the incorporation of perfectly-matched layers (PMLs) acting as artificial absorbers.

Thus, leaky waveguide structures as well as grating coupled radiation fields and/or scattered fields

at waveguide junctions can be analyzed accurately. Special effort has been put on a stable imple-

mentation of the variational mode-matching technique. Only a minimum a-priori knowledge on the

modal structure of the simulated devices is required by the user.

B.2. General Information

The devices are modeled as a juxtaposition of different local slab waveguides (growth direction z)

with piecewise constant dielectric permittivities. In all models wave propagation is along the sx-

direction. In analogy to most other mode-matching (and partly also FDTD) approaches the range

of possible geometries is subject to mild restrictions. However, in a large variety of practical de-

vices this restriction is of minor severity. Compared to “brute-force” methods from the viewpoint

of device physics (such as FEM and FDTD), however, the solutions of the MaxWave-solvers reveal

much more insight into device physics and the structure of the optical field. For example, transmis-

sion, reflection, (and losses) from and into individual modes can be directly obtained. Moreover,
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B.3. DETAILED DESCRIPTION

there is no need for concern on phase errors in long resonating devices. The MaxWave-solvers

are optimally efficient if following prerequisites are satisfied: (i) The z-dimension does not exceed

Lz ∼ 10 wavelengths. Larger z-dimensions (up to ∼ 50 wavelengths) can be dealt with. However,

one should be aware that the computational effort depends on Lz in a cubic fashion. (ii) In gen-

eral, the aspect ratio of the device should be kept rather low, since the computation time depends

only linearly on the number of horizontal device sections. (iii) The addition of (also very long)

homogeneous waveguide sections has no significant impact on the computational cost.

B.3. Detailed Description

MaxWave includes two different sets of simulation tools: a 2D simulator VMMXd and a solver

suite CrossSecWG for waveguide cross-sections. In both cases the time harmonic Maxwell’s equa-

tions

rot~E = ık0~H (B.1)

rot~H = −ık0ε ~E (B.2)

where k0 =
ω

c0
= 2π

λ0
are solved (time dependence exp(−ıωt)). Notice that the magnetic field has

been rescaled: ~H = Z0~H(phys) where Z0 =
√

µ0
ε0

is the vacuum impedance.

B.3.1. Perfectly Matched Layers (PMLs)

PMLs are introduced via the complex variable stretching technique: z 7→ ℜ(z) + ı
∫ℜ(z)

0 dτ σz(τ)

with piecewise constant σz. Thus, PML layers are characterized by a complex layer thickness.

B.3.2. CrossSecWG

Purpose of the CrossSecWG-solvers is the computation of the optical modes in waveguide cross-

sections. The horizontal direction is the y-direction. The left and the right boundary may have either

PEC, PMC, or radiation boundary conditions. PML layers acting in the y-direction can be used. The

modal fields to be computed have the general form

~Φ(x,y,z;λ ) = ~Φ(y,z)eık0λx (B.3)

where ~Φ denotes the electric or the magnetic field and λ is the effective refractive index of the

mode.

Scalar approximation

The wave equation to be solved is

∂yĉ∂yΦ+∂zâ∂zΦ+ k2
0b̂Φ = k2

0λ
2ĉΦ (B.4)
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where Φ = Ey in TE- and Φ = Hy in TM-polarization. The other non-zero field components are

Hz,Ez = ∓ ı
k0

ĉ∂xΦ = Hz [TE/TM], and Hx,Ex = ± ı
k0

â∂zΦ = Hx [TE/TM]. It is important to note

that in MaxWave the propagation is assumed in x-direction. A necessary condition for the validity

of the scalar approximation is that the guiding in the y-direction is rather weak. In a layer l, yl−1 ≤
y ≤ yl = yl−1 + dl , with y-independent optical constants the optical field is expanded in terms of

local waveguide modes:

Φ(x,y,z;λ ) =
N

∑
ρ=1

φ
(l)
ρ (z)

[
A(l)

ρ eık0θ
(l)
ρ (y−yl−1)+B(l)

ρ e−ık0θ
(l)
ρ (y−yl)

]
eık0λx (B.5)

where θ
(l)
ρ =+

√
(ν

(l)
ρ )2−λ 2. The local waveguide modes are thus defined to be {ν(l)

ρ =

√
λ 2 +(θ

(l)
ρ )2,φ

(l)
ρ (z)}.

They are computed as explained in Appendix B.4.Across the interfaces y = yl the field components

Φ and − ı
k0

ĉ∂yΦ must be continuous. These continuity conditions are enforced in a weak sense

using the shape functions ϕ j(z) as weights. The inverse scattering matrix is given by[
tl~Al

tl+1~Bl+1

]
=

[
Cl −Cl+1

Dl Dl+1

]−1

·

[
−Cl Cl+1

Dl Dl+1

]
︸ ︷︷ ︸R̂l,l+1 T̂l,l+1

T̂l+1,l R̂l+1,l



·

[
~Bl

~Al+1

]
(B.6)

with t(l) = diag(eık0θ
(l)
ρ dl ), (C(l))mρ = 〈ϕm|φ (l)

ρ 〉, and (D(l))mρ = 〈ϕm|θ (l)
ρ ĉ(l)φ (l)

ρ 〉. Upon swapping

the materials in the l and l +1 the inverse scattering matrix transforms as follows:[
R̂l,l+1 T̂l,l+1

T̂l+1,l R̂l+1,l

]
−→

[
R̂l+1,l T̂l+1,l

T̂l,l+1 R̂l,l+1

]
(B.7)

The outer boundary conditions at y = y0 and y = yn are either PEC, PMC, or open boundary

conditions. These are formulated as ~A1 +σ1t1~B1 = 0 and ~Bn +σntn~An = 0. For the combinations

TE+PEC and TM+PMC σ = −1, for TM+PEC and TE+PMC σ = 1; σ = 0 for open boundary

conditions. With these ingredients the continuity/boundary conditions are assembled in a banded
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matrix scheme:

I σ1t1

−t1 R̂1,2 T̂1,2

T̂2,1 R̂2,1 −t2

−t2 R̂2,3 T̂2,3

T̂3,2 R̂3,2 −t3

−t3
. . . . . .
. . . . . . −tn−1

−tn−1 R̂n−1,n T̂n−1,n

T̂n,n−1 R̂n,n−1 −tn

σntn I



·



~A1

~B1

~A2

~B2

~A3
...

~An−1

~Bn−1

~An

~Bn



= 0 (B.8)

To solve this nonlinear eigenproblem for the eigenvalue λ and the eigenvector the matrix secant

method described in Appendix B.5 is applied.

With the defintion

ψ
(l)
ρ (y) = A(l)

ρ eık0θ
(l)
ρ (y−yl−1)+B(l)

ρ e−ık0θ
(l)
ρ (y−yl) (B.9)

the resulting electromagnetic field components in TE-polarization are given as follows:

E(l)
x (y,z;λ ) = 0 (B.10)

E(l)
y (y,z;λ ) = Φ(y,z) = ∑

ρ

φ
(l)
yρ (z)ψ

(l)
ρ (y) (B.11)

E(l)
z (y,z;λ ) = 0 (B.12)

H(l)
x (y,z;λ ) = ∑

ρ

φ
(l)
xρ (z)ψ

(l)
ρ (y) (B.13)

H(l)
y (y,z;λ ) = 0 (B.14)

H(l)
z (y,z;λ ) = ∑

ρ

φ
(l)
zρ (z)

λ

ν
(l)
ρ

ψ
(l)
ρ (y) (B.15)

In TM-polarization one obtains

E(l)
x (y,z;λ ) = −∑

ρ

φ
(l)
xρ (z)ψ

(l)
ρ (y) (B.16)

E(l)
y (y,z;λ ) = 0 (B.17)

E(l)
z (y,z;λ ) = −∑

ρ

φ
(l)
zρ (z)

λ

ν
(l)
ρ

ψ
(l)
ρ (y) (B.18)

H(l)
x (y,z;λ ) = 0 (B.19)

H(l)
y (y,z;λ ) = Φ(y,z) = ∑

ρ

φ
(l)
yρ (z)ψ

(l)
ρ (y) (B.20)

H(l)
z (y,z;λ ) = 0 (B.21)
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B.4. 1D WAVEGUIDE MODES

The fields φ
(l)
iρ , i = y,z,x, are defined in (B.34).

Fully vectorial solver

The full set of Maxwell’s equations for the optical fields with an x-propagation factor eık0λx is

solved employing an expansion in terms of rotated local eigenmodes of both TE(e)- and TM(h)-

polarization. The scattering matrix has following substructure:

[
R̂l,l+1 T̂l,l+1

T̂l+1,l R̂l+1,l

]
=


R̂ee

l,l+1 R̂eh
l,l+1 T̂ee

l,l+1 T̂eh
l,l+1

R̂he
l,l+1 R̂hh

l,l+1 T̂he
l,l+1 T̂hh

l,l+1

T̂ee
l+1,l T̂eh

l+1,l R̂ee
l+1,l R̂eh

l+1,l

T̂he
l+1,l T̂hh

l+1,l R̂he
l+1,l R̂hh

l+1,l

 (B.22)

Swapping the materials in layers l and l +1 results in the scattering matrix
R̂ee

l+1,l −R̂eh
l+1,l T̂ee

l+1,l −T̂eh
l+1,l

−R̂he
l+1,l R̂hh

l+1,l −T̂he
l+1,l T̂hh

l+1,l

T̂ee
l,l+1 −T̂eh

l,l+1 R̂ee
l,l+1 −R̂eh

l,l+1

−T̂he
l,l+1 T̂hh

l,l+1 −R̂he
l,l+1 R̂hh

l,l+1

 (B.23)

Putting together all continuity and boundary conditions and introducing abbreviations results in a

linear system of the same form as given in Equation (B.8). In case of PEC boundary conditions

σ e = −1 and σh = 1; in case of PMC boundary conditions σ e = 1 and σh = −1; σ e = σh = 0

for open boundary conditions. To solve the nonlinear eigenproblem for the eigenvalue λ and the

eigenvector the matrix secant method described in Appendix B.5 is applied.

B.4. 1D Waveguide Modes

The wave equation to be solved in the computation of 1D slab waveguide modes with a propagation

factor eık0νx is1

∂zâ∂zφ + k2
0b̂φ = k2

0ν
2ĉφ (B.24)

The waveguide field is expanded in terms of shape functions: φ(z) = ∑
N
j=1C jϕ j(z). The waveguide

domain [0,Lz] is subdivided into elements that are compatible with the material boundaries with

a a maximum size hmax. The mathematical boundary conditions at z = 0 and z = Lz are either

Dirichlet (TE+PEC or TM+PMC) or Neumann (TE+PMC or TM+PEC). As shape functions ϕ j

local polynomials with a maximum degree pmax which are compatible with the boundary conditions

are employed. More specifically, linear hat functions and bubble functions with degree≥ 2 are used.

1 TE: φ = Ey, â = ĉ = 1, b̂ = εrr; TM: φ = Hy, â = 1/εrr, b̂ = 1, ĉ = 1/εzz.
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Within an element z1 ≤ z≤ z2 of the mesh the following polynomials are chosen

f0(ξ ) =
1−ξ

2
, f ′0(ξ ) =−

1
2

(B.25)

f1(ξ ) =
1+ξ

2
, f ′1(ξ ) =

1
2

(B.26)

fk(ξ ) =
Pk(ξ )−Pk−2(ξ )

2
, f ′k(ξ ) = (k− 1

2
)Pk−1(ξ ) for k ≥ 2 (B.27)

where Pk(ξ ) are the Legendre polynomials and ξ = 2z−z1−z2
z2−z1

.

By applying a Galerkin scheme (i.e., using the ϕm’s as weight functions) one obtains the N×N

generalized EVP

∑
j

Em jC jρ = ν
2
ρ ∑

j
Vm jC jρ (B.28)

with the banded (bandwidth 2pmax +1), complex symmetric matrices

Vm j =
∫

dzϕmĉϕ j (B.29)

Em j =
∫

dzϕmb̂ϕ j−
1
k2

0

∫
dz(∂zϕm)â∂zϕ j (B.30)

The number of DoFs N is determined by the domain size, hmax, and pmax. Since V is invertible the

EVP

V−1E~C = ν
2~C =⇒ νρ , ~Cρ , ρ = 1,2, . . . ,N (B.31)

is solved rather than (B.28). To ensure that νρ describes a mode either propagating or decaying in the

+x-direction the branch of
√

ν2
ρ is chosen such that ℜ(νρ)+ℑ(νρ)> 0. The orthogonality relation∫

dzφρ ĉφτ ∝ δρτ holds for the waveguide modes. The discretized version reads ∑ j,k C jρVjkCkτ ∝

δρτ . The electromagnetic field components of the waveguide modes propagating (or decaying) in

the +x-direction are as follows:

TE: ~Eρ(x,z) =

 0

φyρ(z)

0

eık0νρ x , ~Hρ(x,z) =

φxρ(z)

0

φzρ(z)

eık0νρ x (B.32)

TM: ~Eρ(x,z) =

−φxρ(z)

0

−φzρ(z)

eık0νρ x , ~Hρ(x,z) =

 0

φyρ(z)

0

eık0νρ x (B.33)

where the definitions

φyρ := φρ , φzρ := νρ ĉφρ , φxρ :=
ı

k0
â∂zφρ (B.34)
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B.5. MATRIX SECANT METHOD

have been applied. The Poynting vector ~Sρ = 1
Z0
~Eρ × ~H∗ρ + c.c takes the explicit form

~Sρ(x,z) =
1
Z0

φ ∗yρ(z)φzρ(z)

0

φ ∗yρ(z)φxρ(z)

+ c.c. (B.35)

The optical power in mode ρ is

Pρ =
νρ

Z0
∑
j,k

C∗jρ

∫
dzϕ

∗
j ĉϕk︸ ︷︷ ︸

=V pow
jk

Ckρ + c.c. (B.36)

Since the slab waveguide structure has rotational symmetry around the z-axis (i.e., εxx = εyy =: εrr

the waveguide modes can be rotated by an — in general complex valued — rotation angle ϑ :

TE : ~Eρ =

−sinϑ

cosϑ

0

φyρeık0νρ (xcosϑ+ysinϑ) , ~Hρ =

φxρ cosϑ

φxρ sinϑ

φzρ

eık0νρ (xcosϑ+ysinϑ)

TM : ~Eρ =

−φxρ cosϑ

−φxρ sinϑ

−φzρ

eık0νρ (xcosϑ+ysinϑ) , ~Hρ =

−sinϑ

cosϑ

0

φyρeık0νρ (xcosϑ+ysinϑ)

B.5. Matrix Secant Method

The nonlinear eigenvalue problem solver is based on the matrix secant method [132]. The equation

to be solved is

M(λ )~x = 0 (B.37)

Linearization around λi where M(λi) =: Mi is non-singular gives

M(λi +δ )~x≈
(
Mi +δṀi

)
~x = δMi

(
1
δ

I+M−1
i Ṁi

)
~x = 0 (B.38)

We obtain the eigenvalue problem

M−1
i Ṁi~x =−

1
δ
~x (B.39)

Replacing Ṁi by 1
λi−λi−1

(Mi−Mi−1) results in the eigenvalue problem

(
I−M−1

i Mi−1
)
~x =−λi−λi−1

δ
~x = θ~x (B.40)

which is solved for the largest eigenvalue in magnitude θmax. Thus, λi+1 = λi+δ = λi− λi−λi−1
θmax

. To

find the eigenpair corresponding to θmax the power method [133] is used.
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B.6. Numerical Quadrature

For the numerical integration the highly efficient Gaussian quadrature was implemented [134]:

∫ z2

z1

dzF(z)≈ z2− z1

2

N

∑
i=1

WiF
( z1+z2

2 + z2−z1
2 ξi

)
(B.41)

where ξi are the roots of the Legendre polynomial PN(ξ ) and Wi =
2(1−ξ 2

i )

[(N+1)PN+1(ξi)]
2 = 2

(1−ξ 2
i )[P′N(ξi)]

2 .

Polynomials up to degree 2N−1 are integrated exactly.
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