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0 Introduction

In algebraic number theory one studies the structure of the integral closure of Z in an algebraic

number �eld k. The integral closure of Z in k is a ring denoted by ok. It consists of all

elements x ∈ k satisfying an equation of the form xn + an−1x
n−1 + · · · + a0 = 0 with

coe�cients a0, . . . , an−1 ∈ Z. We know from basic number theory that every integer can be

written uniquely, up to ordering and sign, as a product of prime numbers. One can prove

something similar for the ideals of ok.

First one generalizes the notion of an ideal to de�ne fractional ideals of k. A fractional

ideal is an ok-submodule M of k such that there exists an element x ∈ ok, x 6= 0 with

xM ⊆ ok. Of course any ideal of ok de�ned as usual is fractional. One can show that every

fractional ideal M can be written uniquely (up to units and ordering) as a product of the

form M =
∏
p

pmp . The product is taken over all prime ideals p 6= 0 of ok. Furthermore it

satis�es mp ∈ Z for all p and mp = 0 for all but a �nite number of prime ideals p of ok.

Now one can easily see that every nonzero fractional ideal is invertible, which means that for

every fractional ideal M there exists a fractional ideal N such that MN = ok.

Hence there exists a group structure on the set of nonzero fractional ideals where the group

operation is de�ned via multiplication. We denote this group by Jok . The discussion above

shows that Jok is the free abelian group generated by the set of nonzero prime ideals p of ok.

Now for every element a ∈ k∗ we can de�ne the fractional ideal (a) in Jok , hence we get a

homomorphism of k∗ into Jok . The image of this homomorphism is denoted by Pok . So one

can de�ne the factor group Jok/Pok , which is called the ideal class group of ok. The following

result is fundamental.

Theorem The ideal class group of ok is �nite.

The number of elements of this group, denoted by h(k), is an important invariant of the

algebraic number �eld k.

A second basic result is Dirichlets Unit Theorem. This theorem deals with the structure

of the unit group o∗k of ok. Let µk be the set of all roots of unity contained in k. Then µk is

contained in o∗k. Let n be the degree of k over Q. Then one has n embeddings of k into C. Let
r1 be the number of real embeddings and 2r2 the number of strictly complex embeddings of k.

The number of strictly complex embeddings has to be even, as for every complex embedding

σ, its conjugate σ is another di�erent embedding. Dirichlets Unit Theorem states:

1



0 Introduction

Theorem The group o∗k is a �nitely generated Z-module. Furthermore o∗k
∼= µk×Zr1+r2−1.

This is usually proved by using Minkovskis theorem on convex bodies. However one can

use a di�erent approach, which is what I do in the �rst part of my thesis. To begin with

I introduce completions and valuations, which are essential tools for dealing with algebraic

number �elds. The aim is to �nd out more about the algebraic number �eld k by studying its

completions kν with respect to its inequivalent valuations ν. Now the natural language to deal

with the completions of algebraic number �elds simultaneously, without loosing important

properties like the existence of a unique Haar measure, is that of adeles and ideles. The

ring of adeles Ak is de�ned to be the restricted direct product of the set of �elds {kν}ν with
respect to the set {oν}ν , where oν denotes the closure of ok in kν for all �nite places ν. There

is a natural embedding of k into Ak, so one may view k as a discrete subring of Ak. Doing
that one gets quite naturally that Ak/k, both viewed as additive groups, is compact in the

quotient topology.

Now we de�ne the group of idele Ik as Ik = A∗k. However Ik is not necessarily a topological
group under multiplication as inversion may not be continuous. Therefore one has to re�ne

the topology of Ik such that it becomes a locally compact topological group under multiplica-

tion. Again one may embed k∗ into Ik as a discrete subgroup. However one has to be careful
as the analogue of the compactness assertion for adeles is not valid. One has to restrict to

the group of ideles of norm one, denoted by I1k. When de�ning that norm one uses the Haar

measure of Ik.

Theorem The group I1k/k
∗ is compact.

Using this result one can easily deduce the �niteness of the class number of k as well as

Dirichlets Unit Theorem.

The second part of my thesis generalizes the methodological approach introduced in the

�rst part. I start with the de�nition of adeles and ideles of �nite dimensional central algebras

A over algebraic number �elds k. The ring of adeles AA of an algebra is the restricted direct

product of the family of rings {A⊗k kν}ν with respect to the family of oν-modules generated

by a basis of A over k in A⊗k kν for all �nite places ν of k. This construction is independent

of the choice of basis. Again, as in the case when A is a �eld, there is a natural embedding

of A into AA, hence one can identify A with its image in the adeles over A. So A may be

viewed as a discrete subring of AA. Furthermore one has that the adele ring and idele group

are locally compact. The results concerning the compactness of the additive group remain

valid.

Given a central division algebra D over k, the notion of a maximal order in D naturally

generalizes the notion of the ring ok of algebraic integers in k. One can use maximal orders

in the de�nition of the ring of adeles and the group of ideles. Using that the group of ideles

2



D∗A of a division algebra D remains locally compact one can de�ne a Haar measure on D∗A.
Doing so one can specify the norm one ideles to be the set of ideles such that the (left)

multiplication with this element has modulus one. Denoting this group with D1, one has

Theorem Given a �nite dimensional division algebra D over an algebraic number �eld and

let D1 = SL1(D)A be the group of norm one elements of D over the adeles. Then D1 contains

D∗ as a discrete subgroup and the quotient D1/D
∗ is compact.

This theorem is an adelic formulation of a result given by Käte HEY in her doctoral thesis

�Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen�. 1 In her thesis Hey ex-

tended the known functional equation of zeta-functions of algebraic number �elds to division

algebras of �nite dimension over algebraic number �elds. Even more generally G. FUJISAKI

extends in [2] the functional equation constructed by her for �nite dimensional central simple

algebras over algebraic number �elds.

Using the theorem stated above one can de�ne a Haar measure on the ideles over D via

the canonical multiplicative measure. This measure is de�ned as a product of the measure

of DA/D1, which is isomorphic to R+ with its natural measure, the measure µ on D1/D
∗

satisfying µ(D1/D
∗) = 1 and the measure on D∗ with measure 1 at each point. This leads

to a functional equation of the zeta function ζD(s) over a division algebra. This is done

for instance in [2] and [13]. Using this functional equation one can show that ζD is regular,

except for the values s = 0 and s = 1 where ζD(s) has poles of �rst order. Knowing this one
can prove

Theorem Let D be a �nite dimensional division algebra over an algebraic number �eld k

such that D 6= k. Then there exists a prime ideal p of k, that is rami�ed in D.

However this (respectively an even stronger result) was proven in a famous paper written by

BRAUER-HASSE-NOETHER in 1932 and became known as theMain Theorem on Algebras.

Thus if any of these mathematicians had known about Heys thesis, the proof of the Main

Theorem could have been completed earlier. As the second Ph.D. student of Artin, Max

ZORN pointed out:

The theory of the ζ-function of a skew �eld has been developed in detail by Miss

K. Hey in her dissertation (Hamburg 1929). In the present note I would like to

draw attention to the arithmetic consequences which are derived there, so that

1Hey was the �rst Ph.D. student of the mathematician Emil ARTIN. She �nished her thesis 1927 and it was
printed 1929. Afterwards she became a school teacher for Mathematics and Physics. This was very likely
due to �nancial reasons. Her two sisters should study at university as well. On the other hand, it was
generally very common among female scientists to start teaching at school after �nishing their studies at
university. Hey had four children and died 1990. More details concerning Heys life and her thesis can be
found in [9]. Kleinert has published a proof of Heys result in [6].
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0 Introduction

after some correction and streamlining they are recognized as a new proof of a

main theorem on algebras and of the general quadratic reciprocity law. 2

In the case where D is an algebraic number �eld, one can deduce Dirichlets Unit Theorem

from the compactness of Ik/k∗. So one might expect something similar for division algebras.

The natural generalization of the ring of integers ok in a �nite dimensional division algebras

D is an order in D. One can prove that every order is contained in a ring consisting of

all elements of D that are integral over k. Now the compactness of D1/D
∗ leads to the

proof, that the unit group of this ring is �nitely generated. Hence the compactness of D1/D
∗

leads to a generalization of Dirichlets Unit Theorem concerning the units of orders of �nite

dimensional division algebras over algebraic number �elds. This generalization states that

the unit group of an order of a division algebra over an algebraic number �eld is �nitely

generated.

2Zorn wrote this at the beginning of a manuscript of a paper, which he sent to the editor of the Hamburger

Abhandlungen one year after the Brauer-Hasse-Noether Paper was published. More details about the
Brauer-Hasse-Noether Theorem can be found in [12].
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1 Algebraic Number Fields

In this chapter we are going to introduce the basic concepts that are required to study

algebraic number �elds. We are closely following [1], [7] and [13].

1.1 Valuations

De�nition 1.1. An absolute value or valuation | | on a �eld k is a function de�ned on k

with values in the non-negative real numbers having the following properties:

1. |0| = 0 and |x| = 0 if and only if x = 0

2. |xy| = |x| · |y|

3. There exists a constant C > 0 such that |x+ y| ≤ C max{|x|, |y|} for all x, y ∈ k.

If (3) holds for C = 1, then | | is said to be non-archimedean or �nite. Otherwise | | is
said to be archimedean or in�nite. The trivial valuation of k is that for which |x| = 1 for all

x 6= 0. We will exclude it from our discussion.

De�nition 1.2. Two valuations | |1, | |2 on the same �eld k are called equivalent, if there

exists a constant s > 0 such that |x|1 = |x|s2. A place is an equivalence class of valuations.

Note that if we replace the valuation | | satisfying (3) for some constant C by | |s for some

s > 0, then C is replaced by Cs. So every valuation is equivalent to one with C = 2. For

such a valuation it can be shown, that |x+ y| ≤ |x|+ |y| (the triangle-inequality) holds.

Example If k is a number �eld and p a prime ideal, then we associate to p an absolute

value | |p as follows: For x ∈ k we have (x) = pordpa where a is a fractional ideal satisfying

(a, p) = 1. Then we de�ne |x|p = c−ordp for some constant c > 0. This is a non-archimedean
valuation.

Example In case k = Q there is one non-archimedean place for every prime p, the p-adic

valuation | |p de�ned by |pa uv |p = p−a, where u and v are not divisible by p.

Theorem 1.1. (Ostrowski) The only non-trivial places on Q are those equivalent to the | |p
or the ordinary absolute value | |∞.

A proof of this theorem can be found in [1] on the pages 45 and 46.
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1 Algebraic Number Fields

Example Archimedian absolute values on arbitrary algebraic number �elds k can be con-

structed as follows: Let x→ x(i) (1 ≤ i ≤ n) be an embedding of k into C. De�ne for x ∈ k
an in�nite place by |x|∞,i = |x(i)|, where | | denotes the ordinary absolute value on C. In

this way we obtain n archimedean valuations on k. But not all of them are distinct, since

complex conjugate embeddings give rise to identical places. We arrange the embeddings in

a way such that the �rst r1 map k into R. The remaining 2r2 map k strictly into C and we

enumerate them so that the jth and the r2 + jth component form a conjugate pair. Then

n = r1 + 2r2 by construction and we have formed r1 + r2 inequivalent valuations.

1.2 Completions

Any valuation | | on a �eld k de�nes a nonnegative function d on k × k by d(x, y) = |x− y|.
This function can be taken as a metric on k and therefore induces a topology in which a basis

for the neighborhoods of x are the sets { y ∈ k | |y−x| < δ} for δ > 0. Equivalent valuations
induce the same topology. It is clear from the de�nition of a valuation:

Lemma 1.1. A �eld with the topology induced by a valuation is a topological �eld, i.e. the

operations sum, product, reciprocal are continuous.

De�nition 1.3. A �eld k is complete with respect to a valuation | |, if it is complete as a

metric space with respect to the metric induced by d. More speci�cally if given any sequence

(xn) with
|xn − xm| → 0 (m,n→∞,∞)

there is an x ∈ k such that |xn − x| → 0.

Remark Let k be an algebraic number �eld. Then the completion of k with respect to a

valuation | | is called a local �eld.

Every �eld k with valuation | | can be embedded in a complete �eld K with a valuation

| | extending the original one in such a way, that K is the closure of k with respect to | |.
Further K is unique up to isomorphism, see, for example [1], page 47.

Example Let | | be an archimedean valuation on an algebraic number �eld k, corresponding

to the embedding x 7→ x(i) (1 ≤ i ≤ r1 +r2) of k in C. Then the completion of k with respect

to | | ist just the closure of k(i) in C. Either k(i) ⊆ R, then the completion of k equals R (for it

contains the closure of Q in R, which is just R). In case (r1 +1 ≤ i ≤ r1 +r2), the completion

of k is C. In the �rst case we call the valuation real and in the second case complex.

Notation: We will usually denote a valuation (�nite or in�nite) by ν. If we apply ν to an

element x of k we will write |x|ν . In the case of a �nite valuation, ν corresponds to a prime

ideal p of k. If we want to emphasize the prime ideal p, which induces a certain valuation ν,

we will also write | |p.

8



1.3 Normalizations of Valuations

The completion of k with respect to a valuation ν will be denoted by kν . Furthermore

we shall denote the extension of the valuation | |ν to kν also by | |ν . A valuation ν is non-

archimedean on k if and only if it is non-archimedean on its completion of k.

1.3 Normalizations of Valuations

Let k be an algebraic number �eld, let p be any integral k-ideal. Let ok be the integral

closure of Z in k. Then ok/p is �nite. We de�ne the Norm N of a prime ideal p in ok as the

number of elements of the ring ok/p and denote it by Np. The norm is multiplicative, so if

p1, p2 are integral k-ideals, N(p1p2) = N(p1)N(p2).

We introduce normalized valuations as follows: If ν is a valuation induced by the prime

ideal p, set

|a|ν = (Np)−ordp(a)

If ν is a (in�nite) real valuation, set

|a|ν = |a(i)|

If ν is a (in�nite) complex valuation, set

|a|ν = |a(i)|2

for a in k. For a 6= 0 consider the map x 7→ ax from k+
ν to k+

ν , where k
+
ν denotes the additive

group of kν , which is obtained by forgetting about the multiplication. The group k+
ν is locally

compact, therefore it admits a unique (up to a scalar multiple) Haar measure µ. Let X be

a measurable subset of k+
ν and let α be an automorphism. Then α(X) remains measurable,

so one can de�ne another Haar measure on k+
ν by setting µ∗(X) := µ(α(X)). As µ is unique

up to a scalar multiple, there exists a constant modkν (α) such that µ∗(X) = modkν (α)µ(X).
This constant is called the modulus of the automorphism α. This is explained in more detail

in the Appendix, chapter B.

Let modkν (a) be the modulus of the automorphism x 7→ ax and let ν be a normalized

valuation. Then we have that

modkν (a) = |a|ν

This characterizes the normalized valuation among equivalent ones. If not stated otherwise,

a valuation will always be considered as being normalized. When a statement involves a

place ν of k we will always consider the normalized valuation in this place.

Let k be a number �eld with non-archimedean valuation | |ν induced by a prime ideal p.

De�ne

oν = {x ∈ kν : |x|p ≤ 1 }

9



1 Algebraic Number Fields

p̃ = {x ∈ kν : |x|p < 1 }

uν = {x ∈ kν : |x|p = 1 }

We see that oν is a closed subring of kν , using the fact that | |ν is non-archimedean. It is

called the ring of p-adic integers. The set p̃ is a maximal ideal of oν , in fact, the unique

maximal ideal. Indeed let q be any maximal ideal of oν , and a ∈ q. If |a|p < 1, then a ∈ p̃.

If |a| = 1, then |a−1| = 1 and so a is a unit in oν . Hence q = p̃. The same argument shows

that uν is the group of units in oν .

Choose π ∈ oν such that |π|p = (Np)−1. Then π is called a local uniformizing parameter

at p. Any two local uniformizing parameters at p di�er from one another by multiplication

of an element of uν .

Theorem 1.2. Every ideal of oν is of the form p̃r (r > 0). Moreover p̃r = (πr), so that

oν is a principal ideal domain. The ring oν (respectively the ideal p̃) is the closure of ok

(respectively p) in kν .

A proof of this is found in [3] on page 26.

1.4 Extensions of Valuations

De�nition 1.4. Let k be a �eld with valuation ν and let E be a vector space of �nite

dimension over k. A real valued function ‖ ‖ on E is called a norm, if

1. ‖v‖ > 0 for v ∈ E, v 6= 0

2. ‖v + w‖ ≤ ‖v‖+ ‖w‖

3. ‖av‖ = |a|ν‖v‖ for v ∈ E and a ∈ k

Two norms ‖ ‖1, ‖ ‖2 on E are called equivalent if there exist constants c1, c2 such that

‖v‖1 ≤ c1‖v‖2 ‖v‖2 ≤ c2‖v‖1

Lemma 1.2. Let K be a complete �eld with respect to a valuation | | and E be a �nite

dimensional vector space over K. Then any two norms on E are equivalent.

Proof. Let v1, . . . vn be a basis of E over K. We de�ne a norm ‖ ‖0 on E by

‖
∑
i

ξivi‖0 = max
i
|ξi|

10



1.4 Extensions of Valuations

Clearly the statement is proved, if we show, that any norm ‖ ‖ is equivalent to ‖ ‖0. Let

v =
∑
i
ξivi. Then we have

‖v‖ = ‖
∑
i

ξivi‖ ≤
∑
i

‖ξivi‖ =
∑
i

|ξi|‖vi‖ ≤ max
i
|ξi|
∑
i

‖vi‖ = c1‖v‖0

for c1 =
∑
i
‖vi‖. Suppose there is no constant c2 such that ‖v‖0 ≤ c2‖v‖. Then for any ε > 0

there exist ξ1, . . . , ξn in K such that

0 < ‖
∑
i

ξivi‖ < εmax
i
|ξi|

Otherwise there would be an ε such that for all ξ1, . . . , ξn we have ‖
∑
i
ξivi‖ ≥ εmax

i
|ξi|,

which contradicts our assumption.

Without loss of generality we may assume, that max
i
|ξi| = |ξn| and then by homogeneity

that ξn = 1. For m = 1, 2 . . . we can therefore �nd ξm,i (1 ≤ i ≤ n) such that

‖
n−1∑
i=1

ξm,ivi + vn‖ → 0 for m→∞

so

‖
n−1∑
i=1

(ξm,i − ξl,i)vi‖ → 0 for m, l→∞,∞

The lemma is trivial for n = 1, so we use induction and suppose, that it is true for the

n− 1-dimensional space spanned by v1, . . . vn−1.

In that space we have |ξm,i − ξl,i| → 0 for m, l →∞,∞ for 1 ≤ i ≤ n− 1. The �eld K is

complete, so there exists an element ξ∗i in K sucht that

|ξm,i − ξ∗i | → 0 for m→ 0

Then

‖
n−1∑
i=1

ξ∗i vi + vn‖ ≤ ‖
n−1∑
i=1

ξm,ivi + vn‖+
n−1∑
i=1

|ξ∗i − ξm,i| ‖vi‖ → 0

which contradicts the de�nition of a norm.

De�nition 1.5. Let k be an algebraic number �eld and L a �nite algebraic extension of k.

Let ν, ω be valuations of k, L respectively. We say that ω lies above ν if |x|ν = |x|ω for all

x ∈ k. This will be denoted by ω|ν.

Theorem 1.3. Let k be complete with respect to a (not necessarily normalized) valuation ν

and let L be a �nite algebraic extension of k with [L : k] = n < ∞. Then there is precisely

11



1 Algebraic Number Fields

one extension of ν to L namely

|x|ω = |NL/kx|1/nν

If ν is a normalized valuation of k the normalized valuation ω′ of L, which is equivalent to

the unique extension of ν to L is given by

|x|ω′ = |NL/kx|ν

These statements are proved in [1], page 56 and 59.

12



2 The Adele Ring of an Algebraic Number

Field

Our aim is to �nd out more about an algebraic number �eld k by studying all its local �elds

(i.e. its completions with respect to its places) simultaneously. In particular we will see, how

we can collect all the local �elds in one object, such that we retain the arithmetic information

possessed by these �elds, but still have a locally compact set, on which we can use the tools

introduced in the �rst chapter. The statements and proofs can be found in [1] and [10].

2.1 Restricted Direct Product

Let {ν} be a possibly in�nite set of indices. For each ν let Gν be a locally compact topological

group. For all but �nitely many ν, let Hν be a compact open subgroup of Gν . We de�ne the

restricted direct product, denoted G =
∏
ν

(Gν : Hν), of the family {Gν} with respect to {Hν}

as follows: It is the group of all (αν) ∈
∏
ν
Gν such that αν ∈ Hν for almost all ν. We want

to topologize the restricted direct product as a subspace of the direct product, such that it

remains locally compact. As this is not the case in general, if we take the subspace topology,

we must proceed with some care. Let S be any �nite subset of {ν}, containing all ν, such

that Hν is not de�ned. We give the restricted direct product a topology so that

G(S) =
∏
ν∈S

Gν ×
∏
ν /∈S

Hν

is an open subgroup for all S considered. We de�ne such a topology on G by specifying

a neighborhood base of the identity consisting of sets of the form
∏
ν
Nν , where Nν is a

neighborhood of the identity in Gν and Nν = Hν for almost all ν. This topology is not the

product topology, though, as we shall see later, it induces the product topology on G(S).
The discussion above shows:

Theorem 2.1. The restricted direct product G of a family {Gν} with respect to the family

of open compact subgroups {Hν} with Hν ⊂ Gν for almost all ν is locally compact.

13



2 The Adele Ring of an Algebraic Number Field

2.2 Topology of the Adele Ring

Let k be a �nite extension of Q and | |ν a normalized valuation of k. We denote the completion

of k with respect to | |ν by kν . If | |ν is non-archimedean, denote by oν the ring of integers of

kν , i.e. oν = {x ∈ kν | |x|ν ≤ 1}. Then oν is an open, compact subring of kν . The adele ring

Ak of k is the restricted direct product of the additive groups kν with respect to oν . De�ne

S∞ to be the set of all in�nite valuations. Let S ⊃ S∞ be a �nite set of valuations, we call

Ak(S) =
∏
ν∈S

kν ×
∏
ν /∈S

oν

the S-adeles. By de�nition of the topology as above, for every set S (de�ned as above) the S-

adeles form an open subgroup of Ak. Addition and multiplication are de�ned componentwise,

so (xy)ν = xνyν and (x + y)ν = xν + yν for all x, y ∈ Ak. As it can easily be veri�ed, this

de�nition makes sense, so if x, y ∈ Ak then xy, x + y ∈ Ak. The adele ring Ak is locally

compact, since kν is locally compact for all ν and the oν are compact. In particular

Theorem 2.2. Let ν run through the set of all places of k, including all in�nite ones. Then

the restricted direct product of kν with respect to oν is locally compact, and hence it admits a

unique (up to scalar multiple) Haar measure.

We can make a di�erent approach when de�ning the adeles. Let S be again a �nite set

containing S∞ and Ak(S) =
∏
ν∈S

kν ×
∏
ν /∈S

oν . Then the set Ak(S) with the product topology

is locally compact since the kν are locally compact and for all �nite ν the ring oν is compact.

We can put a ring structure on Ak(S) by de�ning addition and multiplication componentwise.

With this topology Ak(S) becomes a topological ring. If S′ is another �nite set containing S

then we have

Ak(S) =
∏
ν∈S

kν ×
∏
ν /∈S

oν ⊂
∏
ν∈S′

kν ×
∏
ν /∈S′

oν = Ak(S′)

Since oν is open in kν for all �nite places ν we can conclude that Ak(S) is an open subring

of Ak(S′). Moreover the topology of Ak(S) is that induced by Ak(S′).

The ring of adeles Ak of k can de�ned to be the union of the sets Ak(S). This construction
coincides with the direct limit of the sets Ak(S). In other words, the set Ak consists of the

elements (xν) in
∏
ν
kν such that |xν |ν ≤ 1 for almost all ν. We de�ne the topology on Ak

by prescribing, that each set Ak(S) is an open subring of Ak. We get a fundamental system

of neighborhoods of 0 by taking a system of neighborhoods in any of the sets Ak(S). This

de�nition induces the same topology as the restricted direct product.

Remark One can generalize this de�nition by setting S∞ to be the set of all ν such that

Hν does not exist. Then the restricted direct product of the set {Gν} with respect to the set
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2.3 Properties of the Adele Ring

{Hν} is the direct limit of the sets G(S) =
∏
ν∈S

Gν×
∏
ν /∈S

Hν , where S is a �nite set containing

S∞. Once again, the topologies coincide.

2.3 Properties of the Adele Ring

To proceed further we need the following:

Theorem 2.3. Let k be an algebraic number �eld and x any element of k. Then |x|ν ≤ 1
for almost all places ν of k.

Proof. First we consider the case k = Q. Here x = a/b for some integers a, b ∈ Z and b 6= 0.
Then |x|ν ≤ 1 for all primes, which do not divide b. Now we consider a �nite extension k of

Q. Then x satis�es the equation

xn + an−1x
n−1 + . . . a0 = 0

with coe�cients ai ∈ Q for 0 ≤ i ≤ n−1. Let S be a �nite set of places of Q, consisting of the
in�nite place and all the places induced by the primes, which occur in the denominators of

the ai. By Theorem 1.3 the set S′ of the places of k which lie above the places of Q belonging

to S is �nite. For any place ν of k with ν /∈ S′ the place p of Q, which lies below ν is not in

S. Hence |ai|ν ≤ 1 for 1 ≤ i ≤ n− 1. Therefore x is integral over Zp for almost all p which

is equivalent to |x|ν ≤ 1 for almost all places ν.

This theorem shows, that we can naturally embed k into Ak. For an arbitrary element

x ∈ k we have x ∈ kν for all ν and x ∈ oν for almost all ν. Thus we can embed k in Ak via
the diagonal map

x 7→ (x, x, x, . . .) ∈ Ak

The map is an injection, because the map of k into kν is an injection for all ν. We will

identify k with its image in Ak, so we may speak of k as a subring of Ak.

Theorem 2.4. Let L be an algebraic extension of the algebraic number �eld k of degree

[L : k] = N < ∞. Then there are at most N extensions of a valuation ν of k to L, say ωi

(1 ≤ i ≤ J) for J ≤ N . Let kν be the completion of k with respect to ν and Li the completion

of L with respect to ωi. Then

kν ⊗k L =
⊕

1≤i≤J
Li

algebraically and topologically, where the right hand side is given the product topology.

Lemma 2.1. Let k be a algebraic number �eld with valuation ν and L a �nite extension of

k. Then we know that kν ⊗k L =
J⊕
i=1

Li. Let a1, . . . , an be a basis of K/k. Then

a1o⊕ . . .⊕ ano = O1 ⊕ . . .⊕OJ

15



2 The Adele Ring of an Algebraic Number Field

where o = oν is the ring of integers of k with respect to ν and Oi ⊂ Li is the ring of integers
in Li with respect to ωi (1 ≤ i ≤ J).

The proofs of the two statements above can be found in [1] on the pages 57 and 61.

Theorem 2.5. Let L be a �nite extension of the algebraic number �eld k. Then there is a

unique isomorphism

Ak ⊗k L ∼= AL

algebraically and topologically. In this correspondence k ⊗k L = L ⊂ Ak ⊗k L where k ⊂ Ak
is mapped on L ⊂ AL.

Proof. We start with establishing an isomorphism of the two sides, where we see Ak⊗kL and

AL as topological spaces. So let a1, . . . an (where [L : k] = n) be a basis of L/k and let ν run

through the set of normalized valuations of k. The left hand side is given the tensor product

topology. But this is just the restricted direct product of kν ⊗k L = kνa1 ⊕ . . .⊕ kνan with

respect to oνa1 ⊕ . . . ⊕ oνan. On the other hand we know from Theorem 2.4 that kν ⊗k L
is isomorphic to the direct product of the form

⊕
1≤i≤J

Li where Li is the completion of L

with respect to ωi, and the ωi (1 ≤ i ≤ J) are the normalized extensions of ν from k to L.

Let Oi be the ring of integers in Li with respect to ωi (1 ≤ i ≤ J). Then we know from

Lemma 2.1 that oνa1⊕ . . .⊕oνan = O1⊕ . . .⊕OJ for almost all ν. Hence the restricted direct

product of kν ⊗k L with respect to oνa1 ⊕ . . .⊕ oνan equals the restricted direct product of

L1 ⊕ . . .⊕LJ with respect to O1 ⊕ . . .⊕OJ . This is clearly the same thing as the restricted

direct product of Lω with respect to Oω where ω runs through all normalized valuations

of L. This establishes the isomorphism of the two sides as topological spaces. As all the

isomorphisms used to establish that topological isomorphism are algebraic, it is easy to see,

that it is also an algebraic isomorphism.

Corollary 2.1. Let A+
k denote the topological group obtained from Ak by forgetting about

multiplication, L an algebraic extension of the algebraic number �eld k such that [L : k] = n.

Then

A+
L = A+

k ⊕ . . .⊕ A+
k︸ ︷︷ ︸

n summands

This is an isomophism of (additive) topological groups.

Proof. Let a ∈ L be any nonzero element. Then clearly aA+
k ⊂ A+

L is isomorphic to A+
k as a

topological group. So we have the isomorphism

A+
L = A+

k ⊗k L = a1A+
k ⊕ . . .⊕ anA+

k = A+
k ⊕ . . .⊕ A+

k

which proves our claim.
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2.3 Properties of the Adele Ring

Theorem 2.6. The �eld k (considered as a subspace of Ak via the diagonal map) is a discrete
subring of Ak.

Proof. Take Q instead of k and k instead of L in the preceding corollary. This shows, that it

is enough to verify the statement for Q. Because of the group structure of Q, we only need

to show, that there exists a neighborhood U of 0 in A+
Q, which contains no other elements of

Q. This proves that Q+ is discrete in A+
Q. We take for U the set of x ∈ A+

Q with

|x∞|∞ < 1
|xp|p ≤ 1

where | |∞ denotes the absolute value, and | |p the p-adic valuations on Q. For x ∈ Q∩U , we
have |x|p ≤ 1 for all prime numbers p in Z and hence, x must be an integer. But |x|∞ < 1,
and so x = 0 and Q is a discrete subgroup of AQ.

Theorem 2.7. The factor group A+
k /k

+ is compact in the quotient topology.

Proof. The �eld k is a �nite extension of Q of degree N . Using Corollary 2.1 we see that

A+
k /k

+ ∼= (A+
Q/Q

+)N . Hence it is compact if and only if A+
Q/Q

+ is compact. Let ∞,

respectively | |∞, denote the ordinary absolute value of Q, which is the only in�nite place.

De�ne the subset W ⊂ A+
k by

W = {α ∈ Ak | |α∞|∞ ≤ 1/2 and |αp|p ≤ 1∀ p ∈ P}

where P denotes the set of prime numbers. Then W is compact. We have already shown

that W ∩ Q = {0} to prove Theorem 2.6. Now what remains is to prove that AQ = W + Q.

Let α be any adele. We claim that we may choose x ∈ Q such that |αp − x|p ≤ 1 for all

prime numbers p ∈ Z where | |p is the p-adic valuation. Since α is an adele, we only need

to worry about a �nite set S of places. For each p ∈ S we can �nd an element µ(p) ∈ Q
such that |αp − µ(p)|p ≤ 1 and µ(p) is integral at all �nite places di�erent from p. To see

this note that for any prime number p ∈ Z, n ∈ N and a, b ∈ Zp relatively prime to p we

can always �nd a third element c ∈ Zp such that a
bpn −

c
pn ∈ Zp, because the congruence

a ≡ bc( mod pn) is clearly solvable for c. The element µ =
∑
p∈S

µ(p) ∈ Q is well de�nied and

|αp−µ|p ≤ 1 for all p. Now we choose s ∈ Z such that |α∞−µ−s|∞ ≤ 1/2. By construction
α− µ and s are elements of Zp for all �nite p. Thus

|αp − µ− s|p ≤ 1 and |α∞ − µ− s|∞|∞ ≤ 1/2

Hence β := α− µ− s ∈W and α = β + µ+ s ∈W + Q.

Therefore the continuous map W → A+
Q/Q

+ induced by the quotient map AQ → A+
Q/Q

+

is surjective. But W is compact which completes the proof.
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3 The Idele Group of an Algebraic

Number Field

In the previous chapter we studied the additive structure of local �elds. One might also be

interested in the multiplicative structure. This chapter is mainly following [1], [3] and [10].

The proofs from this chapter can be found there.

3.1 Topology of the Idele Group

Consider the set R∗ of invertible elements of a topological ring R. It forms a group under

multiplication. In general R∗ is not a topological group, since inversion need not be con-

tinuous in the subspace topology. So we give R∗ the following topology: First we embed

R∗ ↪→ R×R via the map x 7→ (x, x−1). Then we give R∗ the corresponding subset topology.

With this topology, R∗ is a topological group and the embedding R∗ → R is continuous.

De�nition 3.1. The idele group Ik of k is the group A∗k of invertible elements of the adele

ring Ak with the topology de�ned above.

Lemma 3.1. Let k be an algebraic number �eld, | |ν a normalized valuation of k. Then o∗ν is

a compact subgroup of k∗ν . The restricted direct product of k
∗
ν with respect to o∗ν is algebraically

and topologically isomorphic to Ik.

We are going to prove this more generally in chapter 6, Theorem 5.1.

Example Let k = Q and S be any �nite set of places (denoted by p) induced by primes

including the in�nite place ν =∞. Let Np be any neighborhood of 1 in Qp for p ∈ S. Then

(
∏
p∈S

Np ×
∏
p/∈S

Zp) ∩ Ik * R∗ ×
∏
p 6=∞

Z∗p

as we can construct an idele x = (xν)ν ∈ Ik such that for some p ∈ S we have that xp ∈ Zp
but x /∈ Z∗p. Then x is still an element of Ik but it is not contained in the set R∗ ×

∏
p 6=∞

Z∗p.

Hence the neighborhood base of the relative topology of Ik induced by Ak cannot in general

contain the open sets in the idele topology.
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3 The Idele Group of an Algebraic Number Field

3.2 Properties of the Idele Group

We have a natural embedding of k∗ into Ik given by x 7→ (x, x, x, . . .) ∈ Ik, which is clearly

well de�ned.

Lemma 3.2. The group k∗ of invertible elements of k is a discrete subgroup of Ik.

Proof. The group k∗ is canonically embedded in Ik via the diagonal map. De�ne f : Ak×Ak →
Ak by f(α, β) = αβ. Then k∗ is homeomorphic to f−1({1}). Therefore an element x ∈ k∗ is
mapped via x 7→ (x, x−1) onto the intersection of f−1({1}) and the discrete subset k × k of

Ak × Ak. Hence it is a discrete subgroup of Ik.

Since Ak/k (as an additive group) is compact, one could expect something similar for

Ik/k∗. However this turns out not to be true.

De�nition 3.2. For α = (αν) in Ik de�ne ‖α‖ =
∏
ν
|αν |ν to be the content (sometimes also

called volume) of α.

Theorem 3.1. (Product Formula) Let x ∈ k∗. Then

‖x‖ =
∏
ν

|x|ν = 1

Proof. Let x ∈ k∗. De�ne x̃ : Ak → Ak to be the automorphism of the additive group of Ak,
that maps α ∈ Ak to xα. By abuse of notation we will write x for that automorphism. Then

clearly x(k) = k and k is a closed normal subgroup of Ak. The additive group Ak is locally

compact, hence it admits a unique (up to a scalar multiple) Haar measure. Let modAk
(x)

be the modulus of the automorphism α 7→ xα. Let µ be a Haar measure on Ak. Then one

can uniquely de�ne a Haar measure µ′ on Ak/k, so that the following equality holds

modAk
(x) = modk(x) ·modAk/k

(x)

This is done in some more detail in the Appendix. Since k is discrete and Ak/k is compact,

the two factors on the right hand side must equal 1. Therefore it remains to show, that

modAk
(x) =

∏
ν

|x|ν

We already showed that modkν (x) = |x|ν , as ν is normalized. Furthermore we obviously

have modAk
(x) =

∏
ν
modkν (x), which completes the proof.

Lemma 3.3. The map ‖ ‖ : Ik → R+ is a continuous homomorphism of the topological group

Ik into the multiplicative group of the (strictly) positive real numbers.
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3.2 Properties of the Idele Group

Proof. The map modkν from k∗ν to R+ is continuous for all places ν. Therefore ‖ ‖ is contin-
uous. Further it is obviously a homomorphism.

For α in Ik the map α̃ de�nes an automorphism of Ak via α̃(β) = αβ. Now by the

constructions used in the proof above it is clear that:

Lemma 3.4. One has that mod Ak
(α) = ‖α‖ for all α = (αν) ∈ Ik.

We can map R+ into Ik by the mapping j : t 7→ (t1/n, . . . , t1/n︸ ︷︷ ︸
in�nite places

, 1, 1, . . .). Then ‖j(t)‖ =

|tr1/n+2r2/n| = t since all the valuations are normalized. Hence ‖ ‖ is surjective. Let I1k be

the kernel of ‖ ‖, so I1k = {α ∈ Ik | ‖α‖ = 1}. Then we have the exact sequence

(1) −→ I1k −→ Ik −→ R+ −→ (1)

where all maps are continuous group homomorphisms.

Theorem 3.2. (Minkowski-Chevalley-Weil) There exists a constant δ > 0, depending only

on the algebraic number �eld k with the following property: Let α = (αν) ∈ Ik be such that

‖α‖ > δ. Then there exists β ∈ k∗ ⊂ Ik such that |β|ν ≤ |αν |ν for all places ν.

Proof. Let µ be the Haar-measure of Ak. Let µ′ be the quotient measure (de�ned as in the

Appendix) induced by µ on A+
k /k

+. If there is no risk of confusion we will write µ instead

of µ′. Let c0 = µ(A+
k /k

+), which is �nite as A+
k /k

+ is compact. Let c1 be the Haar-measure

of the set de�ned by

C =
∏
ν∈S∞

Nν ×
∏
ν /∈S∞

oν

where Nν = {x ∈ kν | |x| ≤ 1
10}. Similarly since C is compact, c1 is �nite.

We want to show that the constant δ = c0/c1 has the required properties.

De�ne the set T of τ ∈ Ak with |τν |ν ≤ 1
10 |αν |ν if ν is archimedean, and |τν |ν ≤ |αν |ν if

ν is non-archimedean. Then T has measure µ(T ) = µ(C) · ‖α‖ = c1
∏
ν
|αν |ν > c1δ = c0.

Hence in the natural quotient map A+
k → A+

k /k
+ there must be a pair of distinct points of

T , which have the same image in A+
k /k

+. Lets say these elements are τ ′ and τ ′′ in T . Then

τ ′ − τ ′′ = β for some element β ∈ k+ since they have the same image in A+
k /k

+. Then

|β|ν = |τ ′ν − τ ′′ν | ≤ |αν |ν

for all ν, which completes the proof.

Remark This theorem can be reformulated as follows: Let Π1 = {ξ ∈ Ik| |ξν |ν ≤ 1∀ν}.
There exists a positive constant δ such that if ‖α‖ > δ then αΠ1 ∩ k 6= {0}.

Theorem 3.3. The group I1k is closed both as a subset of Ak and as a subset of Ik. The two
induced topologies on it coincide.
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3 The Idele Group of an Algebraic Number Field

Proof. The set I1k is clearly closed in Ik, since it is the preimage of the closed subset (1) of
R+ under the continuous map ‖ ‖. Let α ∈ Ak, α /∈ I1k. We want to show that for every such

α there exists an Ak-neighborhood W , sucht that W ∩ I1k = ∅. This would prove, that Ak \ I1k
is open an hence I1k is a closed subset of Ak.
1st Case:

∏
ν
|αν |ν < 1. Then there is a �nite set S of places ν such that

1. S contains all ν such that |αν |ν > 1

2.
∏
ν∈S
|αν |ν < 1

Then we de�ne the neighborhood W to be the set of all ξ = (ξν) ∈ Ak such that

|ξν − αν |ν < ε ν ∈ S
|ξν |ν ≤ 1 ν /∈ S

Then by de�nition of S we have α ∈W . For ξ ∈W we have∏
ν

|ξν |ν ≤
∏
ν∈S
|ξν |ν ≤

∏
ν∈S

(|ξν − αν |ν + |αν |ν)

the �rst inequality holds since |ξν |ν ≤ 1 for ν /∈ S and the second uses the triangle inequality,

which holds for every normalized (archimedean and nonarchimedean) valuation. The set S

is �nite, therefore ∏
ν∈S

(|ξν − αν |ν + |αν |ν) =
∏
ν∈S
|αν |ν +O(ε)

Since
∏
ν∈S
|αν |ν < 1 by de�nition of S, we have that

∏
ν
|ξν |ν < 1 for su�ciently small ε.

2nd Case:
∏
ν
|αν |ν > 1, say

∏
ν
|αν |ν = C. Then there is a set S of places ν de�ned by

1. S contains all in�nite places ν

2. if ν /∈ S then |ξν |ν < 1 implies that |ξν |ν < 1
2C

3. 1 <
∏
ν∈S
|αν |ν < 2C

The fact that
∏
ν
|αν |ν converges implies that |αν |ν = 1 for almost all ν. Hence the set S is

�nite. Let |ξν − αν | < ε. We have

1 <
∏
ν

|αν |ν ≤
∏
ν∈S
|αν |ν ≤

∏
ν∈S

(|αν − ξν |ν + |ξν |ν) ≤
∏
ν∈S
|ξν |ν +O(ε)

and ∏
ν∈S
|ξν |ν ≤

∏
ν∈S

(|ξν − αν |ν + |αν |ν) ≤
∏
ν∈S
|αν |ν +O(ε) < 2C +O(ε)

Then one can choose ε su�ciently small such that |ξν−αν | < ε implies 1 <
∏
ν∈S
|ξν |ν < 2C.

We may de�ne the neighborhood W to be the set of all ξ = (ξν) ∈ Ak, such that
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3.2 Properties of the Idele Group

|ξν − αν |ν < ε ν ∈ S
|ξν |ν ≤ 1 ν /∈ S

Then of course α ∈ W . Let ξ ∈ W . If there exists a place ν /∈ S such that |ξν |ν < 1 then

we have ∏
ν

|ξν |ν =
∏
ν∈S
|ξν |ν

∏
ν /∈S

|ξν |ν < 2C
∏
ν /∈S

|ξν |ν < 2C
∏
ν /∈S
|ξν |ν<1

|ξν |ν ≤
2C
2C

= 1

If for all ν /∈ S we have |ξν |ν ≥ 1 then∏
ν

|ξν |ν =
∏
ν∈S
|ξν |ν

∏
ν /∈S

|ξν |ν >
∏
ν∈S
|ξν |ν > 1

holds. In particular, every idele in W has content not equal to 1 and hence W ∩ I1k = ∅.
This completes the proof that I1k is a closed subset of Ak.

Now we turn to the proof, that the Ik- and Ak-topologies on I1k are the same. For every

α ∈ I1k we must show that every Ik-neighborhood of α contains an Ak-neighborhood and vice

versa.

So let W ⊂ I1k be an Ak-neighborhood of α. Then there exists a �nite set S, containing at

least all archimedean places, such that W contains a neighborhood of the form

N =
∏
ν∈S

Nν ×
∏
ν /∈S

oν

where Nν is a neighborhood of αν in kν . We may de�ne Nν to be { ξν ∈ kν | |ξν−αν |ν < ε} for
some given ε > 0. Then the neighborhood N contains the Ik-neighborhood

∏
ν∈S

Nν ×
∏
ν /∈S

o∗ν .

This part of the proof is merely saying that the embedding of Ik into Ak is continuous.

Now let H ⊂ I1k be a Ik-neighborhood. Then H contains an Ik-neighborhood of the type

M =
∏
ν∈S

Nν ×
∏
ν /∈S

o∗ν , where S is a �nite set of places which contains all archimedean places

and Nν = { ξν ∈ kν | |ξν − αν |ν < ε}. Since
∏
ν |αν |ν = 1 we may choose ε su�ciently small

such that for all ξ ∈ H∏
ν

|ξν |ν =
∏
ν∈S
|ξν |ν ≤

∏
ν∈S

(|ξν − αν |ν + |αν |ν) ≤ 1 +O(ε) ≤ 2

holds. Then the intersection of the (previously de�ned) neighborhood N with I1k is the same

as that of M with I1k. Hence M de�nes an Ak-neighborhood, which completes the proof.

Theorem 3.4. The factor group I1k/k
∗ with the quotient topology is compact.
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3 The Idele Group of an Algebraic Number Field

Proof. Using the Theorem 3.3, it is enough, to �nd a setW , which is compact in Ak, such that
the map W ∩ I1k → I1k/k

∗ is surjective. Let δ be a constant, which ful�lls the requirements

of Theorem 3.2. Let α be any idele with ‖α‖ > δ. We take for W the set of all ξ with

|ξν |ν ≤ |αν |ν for all places ν. Let η ∈ I1k. Since ‖η‖ = 1 and ‖α‖ > δ also ‖η−1α‖ > δ. Then

by Theorem 3.2 there is an element β ∈ k∗ such that

|β|ν ≤ |η−1
ν αν |ν

holds. Hence βη ∈W and the mapping above is surjective.

3.3 Consequences

From the last theorem we can easily deduce the �niteness of the class number and Dirichlets

Unit Theorem. We start with proving the �niteness of the class number.

3.3.1 The Finiteness of the Class Number

First we need the following theorem

Theorem 3.5. Let ν be a non-archimedean valuation. The set of values assumed by | |ν on

kν coincides with the set of values taken by | |ν on k.

This statement is proved in [3], page 25.

Now let Ik denote the group of all k-ideals. Let Pk denote the group of all principal k-ideals.

Let ν be a �nite place of k. Then ν is induced by some prime ideal p of ok. For the rest

of this section we will write νp respectively | |p to emphasize the corresponding prime ideal

p. Let xνp ∈ kνp , then |xνp |p = |y|p for some element y ∈ k by the theorem above. Hence

|xνp |p = (Np)ordp(y). Set ordp(xνp) := ordp(y) for some suitably chosen element y ∈ k. Hence
one can map xνp onto the fractional ideal pordp(xνp ).

We de�ne φ : Ik → Ik by

(xνp) 7→
∏

νpfinite

pordp(xνp )

Then φ is well de�ned, as |xνp |p = 1 for almost all places of k, hence ordp(xνp) = 0 for almost

all prime ideals p of ok. Furthermore this map is continuous if Ik is endowed with the discrete

topology. The image of k∗ under this map is the group of principal ideals Pk.

Theorem 3.6. The group of ideal classes, i.e. Ik modulo Pk, is �nite.

Proof. The map φ restricted to I1k is clearly surjective. Furthermore Ik is discrete. So Ik/Pk
is the image of the compact set I1k/k

∗ under the continuous map φ. Hence it is both discrete

and compact and therefore Ik/Pk is �nite.
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3.3 Consequences

3.3.2 Dirichlets Unit Theorem

Now we are going to prove Dirichlets Unit Theorem by using the compactness of I1k/k
∗. We

start with some de�nitions. Throughout the rest of this chapter let S be a �nite set of places

containing all in�nite places.

De�nition 3.3. Let kS be the group of all x ∈ k such that |x|ν = 1 for all ν /∈ S. We call

kS the group of S-units.

Remark For S = S∞ we obviously have kS = o∗k, the group of units of ok.

We need the following two easy lemmas:

Lemma 3.5. Fix c, C in R such that 0 < c < C < ∞. Then the set of S-units x satisfying

c ≤ |xν |ν ≤ C for all ν ∈ S is �nite.

Proof. De�neW to be the set of ideles (xν) satisfying c ≤ |xν |ν ≤ C for ν ∈ S and xν ∈ oν for

ν /∈ S. Then W is compact, as it is the product of compact sets with the product topology.

Then set of S-units x satisfying c ≤ |xν |ν ≤ C for all ν ∈ S is just the intersection of the

discrete subset k with the compact set W . Hence it is �nite.

Lemma 3.6. There are only �nitely many ξ in k such that |ξ|ν = 1 for all (�nite and in�nite)

places ν of k. They are precisely the roots of unity in k.

Proof. Let ξ be a root of unity in k. Then clearly |ξ|ν = 1 for all places ν of k. By the

lemma above the set W of elements of k satisfying |ξ|ν = 1 for all places ν is �nite. It forms

a group under multiplication. Suppose there is an element x ∈ k with |x|ν = 1 for all places

ν. Then xi is contained in W for all i ≥ 1. But W is �nite, hence there exists a positive

integer m ≥ 1 with xm = 1. So x is a root of unity.

Now we are ready to prove

Theorem 3.7. The group kS is the direct sum of a �nite cyclic group and a free abelian

group of rank s− 1, where s = |S|.

Proof. We de�ne I1k(S) = Ik(S) ∩ I1k, where Ik(S) =
∏
ν∈S

k∗ν ×
∏
ν /∈S

o∗ν . Then I1k(S) is an open

subgroup of I1k, as Ik(S) is an open subgroup of Ik by de�nition and the topology on I1k is

induced by the topology on Ik. Clearly we have that kS = k∗ ∩ Ik(S) ∩ I1k = k∗ ∩ Ik(S).
Therefore

I1k(S)/kS = I1k(S)/(k∗ ∩ Ik(S))

is an open subgroup of I1k/k
∗. As I1k(S)/kS is a subgroup of I1k/k

∗, it is also closed in I1k/k
∗,

and hence it is compact.
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3 The Idele Group of an Algebraic Number Field

Now we consider the mapping

γ : Ik(S)→
s⊕
i=1

R+

where γ is de�ned by

ζν1 × . . .× ζνs ×
∏
ν /∈S

ζν 7→ (log(|ζν1 |ν1), . . . , log(|ζνs |νs))

for an element (ζν)ν ∈ Ik(S). The set S consists of the valuations ν1, . . . , νs. Then γ is

continuous, as log(| |νi) is continuous on each kνi , and surjective for the same reason. Let

γkS denote the restriction of γ to kS . Then the kernel of γkS consists of the elements x in k,

such that |x|ν = 1 for all places ν of k, and therefore by the lemma above, it is a �nite cyclic

group.

Let Γ = γ(kS). By the �rst lemma above, there are only �nitely many x ∈ k such that
1
2 ≤ |x|νi ≤ 2 for 1 ≤ i ≤ s. Therefore Γ is discrete in

s⊕
i=1

R+.

Let ∆ = γ(I1k(S)). Then ∆ generates the hyperplane Hs−1 determined by the equation
s∑
i=1

xi = 0. Indeed we can choose s− 1 coordinates arbitrary and adjust the last, as S∞ ⊂ S.

Let W be the subspace generated by Γ in Rs. Then we have a homomorphism

I1k/kS → Hs−1/W.

We know that I1k(S)/kS is compact and hence ∆/Γ is compact, as it is the image of a compact

set under a continuous map. Therefore Γ generates Hs−1 and has rank s−1. Hence Γ is free

of s− 1 generators as asserted.

In particular

Theorem 3.8. The group o∗k is a �nitely generated Z-module. Let [k : Q] = n = r1 + 2r2,
where r1 is the number of real places and r2 the number of complex places. Let µk denote the

set of roots of unity in k. Then ok ∼= µk × Zr1+r2−1.
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4 The Adele Ring of an Algebra

Now we turn our attention to the construction of adeles of algebras. The �rst two sections

and the proofs can be found in [13]. The last section of this chapter brings together the

de�nition for adele of division algebras used by [13] and [2], which will be needed in the next

chapter.

Throughout this chapter let k be an algebraic number �eld, ν an archimedean or non-

archimedean normalized valuation of k and let kν be the completion of k with respect to ν.

For ν non-archimedean let oν = {x ∈ kν | |x|ν ≤ 1} denote the closure of ok in kν . An algebra

A over k is always understood to be central, that means, that the center of A coincides with

k.

4.1 Construction of the Adele Ring of an Algebra

Now we will de�ne adeles for �nite dimensional algebras (especially division algebras) over

k. As we are mostly concerned with the additive structure of adeles, we need not restrict

ourselves to algebras, but may start with vector spaces. So let E be a vector space of

�nite dimension n over k. We de�ne for each place ν an analogue for the completion of

k with respect to ν by Eν := E ⊗k kν . We can naturally embed E into Eν via the map

e 7→ e ⊗ 1kν . As we can embed kν into Ak, we see that there is a canonical injection of

Eν = E ⊗k kν ↪→ E ⊗k Ak. So we de�ne EA := E ⊗k Ak and get the natural embedding of

E into EA via e 7→ e⊗ 1Ak
, where 1Ak

= (1, 1, 1, . . .).

Let ε be a basis of E over k. With this basis we can �nd an isomorphism of E ∼= kn. This

induces an isomorphism of Ank onto EA, since

EA = E ⊗k Ak ∼= kn ⊗k Ak = Ank

So we de�ne the topology on EA to be the topology which is obtained by transferring the

product topology of Ank to EA. This topology does not depend on the choice of a basis ε.

There is also an alternative probably more natural approach. In the de�nition of adeles of

number �elds k, we noticed that Ak is the union of all sets Ak(S), where S is a �nite set of

places containing the in�nite places. We can do something similar for vector spaces. Let ε

be a basis of E over k and for all �nite places ν call εν the oν-module generated by ε in Eν .
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4 The Adele Ring of an Algebra

Again let S be a �nite set of places containing all in�nite places and de�ne

EA(S, ε) :=
∏
ν∈S

Eν ×
∏
ν /∈S

εν

Then this set is endowed with the product topology and we can prove, that EA is the union

of these sets and that the two topologies coincide. We start with the following lemma, in

order to prove an even stronger result of what we just claimed.

Lemma 4.1. Let E and Eν be as above. Let ε, ε′ be two �nite subsets of E, both containing

a basis of E over k. Let εν , ε
′
ν denote the oν-modules generated by ε, ε′ in Eν . Then for

almost all ν we have εν = ε′ν .

Proof. Set ε = {e1, . . . , er} and ε′ = {e′1, . . . , e′s}. As ε contains a basis of E over k we can

express (perhaps not uniquely) each e′j (for 1 ≤ j ≤ s) in terms of the ei, (1 ≤ i ≤ r), i.e.

e′j =
s∑
i=1

cjiei with coe�cients cji in k. In case |cji|ν ≤ 1 for all 1 ≤ j ≤ s, 1 ≤ i ≤ r we have

ε′ν ⊂ εν . Therefore ε′ν ⊂ εν for almost all ν, since there are only �nitely many coe�cients

and for all x ∈ k we have proved, that |x|ν ≤ 1 for almost all ν. Interchanging ε and ε′

completes the proof.

Now we can show:

Theorem 4.1. Let E be a vector space of �nite dimension n over k. Let ε be a �nite subset

of E containing a basis of E over k. For each �nite place ν of k call εν the oν-module

generated by ε in Eν . For each �nite set S of places of k containing all in�nite places write

EA(S, ε) =
∏
ν∈S

Eν ×
∏
ν /∈S

εν

Then each EA(S, ε) is an open subgroup of EA, and EA is the union of these subgroups.

Remark When we choose a basis ε′ of E over k we see that ε′ν ∼= onν and hence it is compact

and open in Eν .

Proof. Let S′ be a �nite set containing S. Since εν is open in Eν , it follows that EA(S, ε) is
an open subgroup of EA(S′, ε) as both sets are endowed with the product topology. Let n be

the dimension of E over k and let γ be a basis. The choice of basis induces an isomorphism

of E onto kn and therefore we get the isomorphism EA onto (Ak)n. The adele group Ak is

the union of all sets Ak(S) =
∏
ν∈S

kν ×
∏
ν /∈S

oν , where S is a �nite set of places containing S∞.

We also have

E ⊗k Ak(S) = E ⊗k (
∏
ν∈S

kν ×
∏
ν /∈S

oν) =
∏
ν∈S

E ⊗k kν ×
∏
ν /∈S

γν =
∏
ν∈S

Eν ×
∏
ν /∈S

γν
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4.1 Construction of the Adele Ring of an Algebra

where γν is the oν-module generated by γ in Eν . This shows that EA is the union of all sets

EA(S, γ)

The lemma above shows, that there is a �nite set of places S0 containing S∞ such that

γν = εν for all ν /∈ S0. Hence EA is the union of the sets EA(S, ε). For each �nite set

S′ ⊃ S0 ∪ S we have that EA(S, ε) is an open subring of EA(S′, γ), and hence an open

subring of EA. This �nishes our proof.

Remark The construction above, including its topology, coincides with the restricted di-

rect product of Eν with respect to ε′ν as additive groups.

One can prove:

Theorem 4.2. Let E be a �nite dimensional vector space over a locally compact �eld k.

Then E is locally compact.

This is proved in [13], page 5.

Therefore EA is locally compact, as it is the restricted direct product of the family {Eν}
with respect to the family {εν}.

Now let A be a �nite dimensional algebra over k. We can extend the multiplication law of

A to AA = A⊗k Ak by de�ning the multiplication componentwise.

Lemma 4.2. Let A be a �nite dimensional algebra over the �eld k. Let α be a �nite subset of

A containing a basis of A over k. For each �nite place ν of k call αν the oν-module generated

by α in Aν = A⊗k kν . Then for almost all ν, αν is a compact subring of Aν .

Proof. Set α = {a1, . . . , ar} and α′ = {1, a1, . . . , ar}. As α contains a basis of A over k we

can write aiaj =
r∑

h=1

cijhah (1 ≤ i, j ≤ r) for some cijh in k. If for some �nite ν we have

|cijh|ν ≤ 1 for 1 ≤ i, j, h ≤ r then α′ν is a subring of Aν , which is compact. Furthermore

Lemma 4.1 shows that αν = α′ν for almost all ν which completes the proof.

Now we obviously have

Corollary 4.1. Let A, k, α and αν be as above. Let S be a �nite set of places containing

S∞, the set of in�nite places. De�ne

AA(S, α) =
∏
ν∈S

Aν ×
∏
ν /∈S

αν

There is a set S0 with the property, that AA(S, α) is an open subring of AA whenever S ⊃ S0.

Furthermore AA is the union of these subrings.
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4 The Adele Ring of an Algebra

4.2 Properties of the Adele Ring of an Algebra

We are going to adopt some of the properties of adeles of number �elds k. The aim of this

section is to show, that E is a discrete subgroup of EA and that EA/E is compact. Due

to Theorem 2.5, which stated that for a �nite dimensional �eld extension L of k, the rings

Ak ⊗ L and AL are isomorphic. We get the following result:

Theorem 4.3. Let k be an algebraic number �eld and E a vector space of �nite dimension

over k. Then E is discrete in EA and EA/E is compact in the quotient topology.

Proof. If n is the dimension of E over k, then E ∼= kn and EA ∼= Ank . The assertion is already
proved for the case E = k, so it must be true in general.

4.3 Alternative Approach

In the construction of the ring of adeles of �nite dimensional algebras A over k we tried to

generalize the de�nition of oν . Let us consider the case where A is a �eld K (so K is a �nite

algebraic extension of k). Theorem 2.5 states, that if we view K as an algebra over k, then

the construction of the adeles (as an algebra) conincides with the usual adeles when K is

seen as an algebraic number �eld. So in our notation

AK = KA

We used di�erent methods when de�ning these rings. On the left hand side we de�ned

the adele ring as the restricted direct product of the family {Kω} with respect to the family

{Oω} where {ω}ω is the set of places of K and Oω = {x ∈ Kω| |x|ω ≤ 1}. On the right hand

side we have to choose a basis α = {a1, . . . , an} of K over k and set αν = a1oν ⊕ . . .⊕ anoν ,
where ν is a place of k. In fact one can take an arbitrary �nite set β containing a basis, as

we have proved that αν = βν for almost all ν. By choosing α ⊂ OK , where OK is the ring

of integers in K, one immediately has

αν = a1oν ⊕ . . .⊕ anoν = OK ⊗ok oν

We would like to generalize this concept.

Now let us turn to the case of a division algebra D of �nite dimension over k. We are

going to need the following de�nitions for algebraic number �elds only:

De�nition 4.1. Let V be a �nite dimensional vector space over kν and let oν be de�ned as

usual. A full oν-lattice in V is a �nitely generated oν-submoduleM in V such that kν ·M = V .

An oν-order in the algebra Aν is a subring ∆ν of Aν having the same unity element as Aν ,

and such that ∆ν is a full oν-lattice in Aν . A maximal oν-order in Aν is an oν-order which

is not properly contained in any other oν-order in Aν . An ok-order in A is de�ned similarly.
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4.3 Alternative Approach

Remark If there is no risk of confusion we will write order instead of oν-order respectively

ok-order.

Let D be a �nite dimensional division algebra over k. Let Dν = D ⊗k kν for a (�nite or

in�nite) place ν of k. Let NDν/kν denote the norm of the regular representation of Dν , i.e.

NDν/kν (d) is the determinant of the map a 7→ da for a, d ∈ Dν where Dν is viewed as a

vectorspace over kν . De�ne for all �nite places ν the set

∆ν = {d ∈ Dν | |NDν/kν (d)|ν ≤ 1}

Then we have the following theorem

Theorem 4.4. Notation as above. Then ∆ν is the unique maximal order in Dν . Furthermore

it is the integral closure of oν in D.

A proof of this theorem can be found in [11] on page 137.

Now let us turn to the construction of adeles of a division algebra D. We can choose a

maximal order in D, say ∆. Let α = {a1, . . . , an} be a basis of D over k such that ai ∈ ∆
for 1 ≤ i ≤ n. Then we have that

Dν = D ⊗k kν = kνa1 ⊕ . . .⊕ kνan

for all �nite places ν of k.

Now we need the following theorem:

Theorem 4.5. Let ok, oν , D and ∆ be de�ned as above and set ∆′ν = oν ⊗ok ∆. Then ∆′ν
is a maximal oν-order in Dν .

This is proved more generally in [11], page 133.

As ∆ν is the unique maximal order of D ⊗k kν we have that ∆′ν = ∆ν for all �nite places

ν. On the other hand we have that

oν ⊗ok ∆ = oνa1 ⊕ . . .⊕ oνan

as α ⊂ ∆. The right hand side equals αν , as it is usually de�ned. For an arbitrary �nite set

α′ containing a basis of D over k, we know that αν = α′ν for almost all ν.

This shows that there are two (algebraically and topologically) equivalent constructions of

the adeles of division algebras, both generalizing the construction for number �elds, namely

• Let α be a �nite subset of D containing a basis of D over k. De�ne αν as usual. Then

(xν)ν ∈ DA if and only if xν ∈ αν for almost all places ν.
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4 The Adele Ring of an Algebra

• De�ne ∆ν = {a ∈ Dν | |NDν/kν (a)|ν ≤ 1}, for all �nite places ν. Then (xν)ν ∈ DA if

and only if xν ∈ ∆ν for almost all places ν.

Using this we get the following theorem:

Theorem 4.6. Let D be a �nite dimensional division algebra over k. For each �nite place

ν of k let ∆ν = {a ∈ Dν | |NDν/kν (a)|ν ≤ 1}. Let S be a �nite set of places of k containing

S∞ and de�ne

DA(S) =
∏
ν∈S

Dν ×
∏
ν /∈S

∆ν

Then DA(S) is an open subgroup of DA. The topology induced on it by DA is the same as

the product topology for the right-hand side. Furthermore DA is the union of these sets.
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5 The Idele Group of an Algebra

In this chapter we are interested in the multiplicative structure of the adele introduced in the

previous section. We can develop similar ideas as we have done for ideles of algebraic number

�elds. In this chapter we are mainly following [2] and [13]. Most results are generalizations

of statements proved in [1] and [4].

5.1 Topology of the Idele Group of an Algebra

Let A be a �nite dimensional algebra over k and let k be an algebraic number �eld. Let ρ

be the regular representation of A, i.e. ρ : A→ End(A) where ρ(a) maps an element x ∈ A
onto ax. Then we have the following lemma

Lemma 5.1. An element a ∈ A is invertible if and only if ρ(a) is in Aut(A).

Proof. Let a be in A∗, where A∗ is the group of invertible elements of A. Then ρ(a) has

the inverse ρ(a−1). Now if ρ(a) ∈ Aut(A) for some a ∈ A, then ρ(a) is per de�nition an

endomorphism of A, viewed as a vectorspace. As it is an automorphism, it is surjective, so

there exists b ∈ A such that ρ(a)(b) = ab = 1, hence a is invertible.

This lemma shows, that the group A∗ is determined by NA/k(a) := det(ρ(a)) 6= 0. So in

the case that k is a topological �eld, A∗ is an open subgroup of A. Moreover ρ is a topological

isomorphism of A into a subalgebra of End(A). The group A∗ is then a topological group

for the topology induced on it by that of A.

Now let A∗A be the group of invertible elements of the ring AA. As we have already seen

in case A = k, the map x 7→ x−1 need not be continuous on that group for the topology

induced on it by AA. We need the topology to satisfy the following properties:

1. The injection A∗A into AA is continuous (this immediately implies that the addition

and multiplication are continuous)

2. The map x 7→ x−1 is continuous

We can reformulate these conditions:

De�nition 5.1. Let A be an algebra of �nite dimension over the algebraic number �eld k.

Then we denote by A∗A the group of invertible elements of AA with the topology for which

x 7→ (x, x−1) is a homeomorphism of A∗A onto its image in AA ×AA.
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5 The Idele Group of an Algebra

The group A∗A with this topology is called the idele group of A and its elements are called

the ideles of A. Let φ be the homeomorphism A∗A onto AA ×AA as in the de�nition above.

Then we can rewrite the map x 7→ x−1 as

x
φ−→ (x, x−1)

proj.2−−−→ x−1

where proj.2 denotes the projection of AA × AA onto the second factor, which is trivially

continuous. Obviously the mapping (x, y) 7→ xy is continuous on A∗A.

Let f be the map A× A→ A de�ned by (x, y) 7→ xy and denote its natural extension to

AA ×AA with f as well. Then the composition

A∗A
φ−→ AA ×AA

f−→ AA

shows, that A∗A is homeomorphic to f−1({1}). As φ and f are continuous, A∗A is closed as a

subset of AA. As AA is locally compact, A∗A is locally compact.

Lemma 5.2. The set A∗ of invertible elements of A is a discrete subgroup of A∗A.

Proof. The algebra A∗ is canonically embedded in A∗A via the diagonal map. Therefore

x 7→ (x, x−1) is mapped onto the intersection of f−1({1}) and the discrete subset A × A of

AA ×AA. Hence it is a discrete subgroup of A∗A.

In the case when A is a �eld we have seen, that we can also de�ne the topology on A∗A
using the restricted direct product, respectively de�ning A∗A as an in�nite union of certain

sets.

Let α be a �nite subset of A containing a basis of A over k and call αν the oν-module

generated by α in Aν = A⊗k Ak. Using Lemma 4.2 there exists a �nite set S0 of places of

k such that αν is a compact subring of Aν for all ν not in S0.

It is clear that for all ν the set k∗ν is open in kν and from above that A∗ is open in A.

Hence A∗ν is open in Aν . Furthermore x 7→ x−1 is continuous on A∗ν . Indeed x 7→ x−1 is

continuous on kν as kν is a topological �eld and the map x 7→ x−1 is continuous on A∗ with

the topology de�ned as above. Therefore the map x 7→ (x, x−1) is a homeomorphism from

A∗ν onto its image in Aν ×Aν . For ν not in S0 the set α∗ν is by de�nition the set of elements

of A∗ν , which is mapped into αν × αν by x 7→ (x, x−1). Therefore α∗ν is an open compact

subgroup of A∗ν .

Theorem 5.1. Let A, α, αν and S0 be as explained above. Let S be any �nite set of places

containing S0. Then the group

A∗A(S, α) =
∏
ν∈S

A∗ν ×
∏
ν /∈S

α∗ν
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is an open subgroup of A∗A. The topologies induced on it by those of A∗A and of AA are both

the same as the product topology for the right-hand side. Furthermore A∗A is the union of

these groups.

Proof. Let AA(S, α) =
∏
ν∈S

Aν ×
∏
ν /∈S

αν . The topology, that AA induces on A∗A(S, α) is the

same, as the topology that AA(S, α) induces on A∗A(S, α). But the topology of AA(S, α) is
the product topology of

∏
ν∈S

Aν×
∏
ν /∈S

αν so this clearly induces
∏
ν∈S

A∗ν×
∏
ν /∈S

α∗ν on AA(P, α)∗.

For each ν, as we have seen above, A∗ν is open in Aν and the map x 7→ x−1 is continuous

on A∗ν . Therefore x 7→ x−1 is continuous on A∗A(S, α), endowed with the product topology.

This implies, that x 7→ x−1 is a homeomorphism of A∗A(S, α) onto AA × AA. Therefore the
product topology on A∗A(S, α) coincides with the topology induced by A∗A.

The set A∗A(S, α) is mapped onto AA(S, α)×AA(S, α) via x 7→ (x, x−1). But AA(S, α) is
an open subgroup of AA, therefore A

∗
A(S, α) is open in A∗A. We also know that AA is the

union of the sets AA(S, α), and so is A∗A. This completes the proof.

5.2 Properties of the Idele Group of an Algebra

We are going to investigate, whether the idele group of A modulo the algebra (as an em-

bedding into the idele group) is compact. However, as the case A = k showed, we need to

restrict ourselves to a closed subgroup. So we start with the following:

Lemma 5.3. Let E be a vectorspace of �nite dimension n over k. Put A = End(E), let α
be a �nite subset of A containing a basis of A over k and set αν the oν-module generated by

α in Aν . Then there exists a �nite set of places S0 such that for any �nite place ν of k with

ν /∈ S0 we have:

aν ∈ αν is in α∗ν if and only if |det(aν)|ν = 1

Proof. Let ε be a basis of E over k. Then we can identify E with kn and A with Mn(k).
De�ne the matrices aij for (1 ≤ i, j ≤ n), where aij is the matrix (xλµ) with xλµ = 1 for

(λ, µ) = (i, j) and xλµ = 0 for (λ, µ) 6= (i, j). Then the set α′ = {aij | 1 ≤ i, j ≤ n} forms a

basis of A over k. Now we have

Aν = A⊗k kν = Mn(k)⊗k kν ∼= Mn(kν)

The fact thatMn(k)⊗kkν ∼= Mn(kν) holds is proved in [5], page 308. An element aν ∈Mn(kν)

is invertible if and only if det(aν) 6= 0. An element aν ∈ α′ν = Mn(oν) invertible in Mn(oν)
if and only if det(aν) is invertible in oν . Indeed if det(aν) ∈ o∗ν one can compute a−1

ν using

the adjoint matrix, which shows that a−1
ν ∈ Mn(oν). The other direction is obvious. We

have that x ∈ o∗ν if and only if |x|ν = 1, hence aν ∈ Mn(oν) is invertible if and only if

|det(aν)|ν = 1. Then Corollary 4.2 shows, that there is a �nite set of places S0 such that

αν = α′ν for all ν not in S0.
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Remark We can apply this lemma to the underlying vectorspace E of A and get the result

that for almost all ν we have aν ∈ α∗ν if and only if |NAν/kν (aν)|ν = 1, where NA/k denotes

the norm of the regular representation of A and α is some �nite subset of A containing a

basis of A over k.

De�nition 5.2. For every element a = (aν) in A∗A we de�ne

‖a‖ =
∏
ν

|NAν/kν (aν)|ν

Then ‖a‖ is called the volume or content of a.

Theorem 5.2. (Product formula) For all a ∈ A∗ we have

‖a‖ =
∏
ν

|NAν/kν (a)|ν = 1

Proof. Let α be a basis of A over k. Then α remains a basis of Aν = A ⊗k kν over kν .

Therefore we can identify for an element a ∈ A the map NA/k with NAν/kν , as when using

the same basis, the map x 7→ ax has the same determinant in A and in Aν . For any ξ ∈ A∗A
we have that (NAν/kν (ξν))ν is an element of A∗k, which is clear from the remark above. Then

from the Product Formula (Theorem 3.1) for k we obtain

‖a‖ =
∏
ν

|NAν/kν (a)|ν =
∏
ν

|NA/k(a)|ν = 1

which completes the proof.

Theorem 5.3. Let E be a vectorspace of �nite dimension n over k. Put A = End(E) and

let a = (aν) be an element of AA. Then the following assertions are equivalent:

1. a is in A∗A

2. det(a) = (det(aν)) is in A∗k

3. the map e 7→ ae for e ∈ EA is an automorphism of EA

When that is so, the module of the latter automorphism is ‖ det(a)‖. Moreover, the map-

pings a 7→ det(a) and a 7→ ‖det(a)‖ are morphisms of A∗A into A∗k and into R∗+, respectively.

Proof. Lemma 5.3 shows the equivalence of the �rst two statements. It also shows, that

the map a 7→ det(a) of A∗A into A∗k is continuous. Indeed det is continuous for every A∗ν and
hence on every A∗A(S, α) with the product topology (for a �nite set S of places containing

S∞), where α is �nite set in A containing a basis of A over k. As A∗A is the union of the

A∗A(S, α) we have that det is continuous on A∗A. The same argument shows that for all ξ ∈ Ik
the map ξ 7→ ‖ξ‖ is continuous.
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5.2 Properties of the Idele Group of an Algebra

Let a = (aν) be an element of A∗A. Then there exists a−1 ∈ A∗A such that the map e 7→ ae

has inverse e 7→ a−1e, hence it is an automorphism. We also have (using Corollary 4.1 ) that

aν is an element ofMn(kν) for all ν and that aν ∈Mn(oν) for almost all ν. On the other hand

Theorem 4.1 applied to E with basis ε shows that a fundamental system of neighborhoods

of 0 is given by the sets

U(S) =
∏
ν∈S

Uν ×
∏
ν /∈S

(oν)n

where S is a �nite set of places containing S∞ and Uν is a neighborhood of 0 in Eν = (kν)n.
If a ∈ A∗A, the map e 7→ ae is an automorphism of EA and therefore it must map any

neighborhood of 0 onto a neighborhood of 0. This shows, that aν is an invertible element of

Mn(kν) for all ν, as aν must have full rank.
For almost all ν the image of (oν)n under aν contains (oν)n. The map a−1

ν exists as

aν ∈ Mn(kν)∗ and hence a−1
ν (onν ) ⊂ onν . This shows that a−1

ν is an element of Mn(oν)
for almost all ν. The same computations for the automorphism e 7→ a−1e shows, that

aν ∈Mn(oν) for almost all ν. Hence a ∈Mn(kν)∗ for all ν and a ∈Mn(oν)∗ for almost all ν.

Using Theorem 5.1 shows, that a ∈ A∗A. This shows that the �rst and the third assertions

are equivalent.

De�ne S to be the set of all places ν of k sucht that aν ∈ α∗ν for all ν /∈ S. The set

EA(S, ε) is open in EA by de�nition of the topology of EA. Furthermore it is invariant

under the automorphism e 7→ ae by construction. We have that modEA = modEA(S,ε), as

the set EA/EA(S, ε) is discrete. By de�nition EA(S, ε) =
∏
ν∈S

Eν ×
∏
ν /∈S

εν , so the module of

the automorphism e 7→ ae is the product of the modules eν 7→ aνeν . It is well known that if

V is a �nite dimensional vector space over a �eld K and M is an endomorphism of V then

modV (M) = modK(det(M)). Applying this to Eν and the automorphism eν 7→ aνeν one

has

modEA(e 7→ ae) =
∏
ν

modkν (det(aν))

We know that det(aν) ∈ kν for all ν so using Lemma 3.4, we get∏
ν

modkν (det(aν)) =
∏
ν

| det(aν)|ν = ‖ det(aν)‖

as required.

Corollary 5.1. Let A be an algebra of �nite dimension over k, and let a = (aν) be an

element of AA. Then the following assertions are equivalent

1. a is in A∗A

2. NA/k(a) := (NAν/kν (aν)) is in A∗k

3. the map x 7→ ax is an automorphism of the additive group of AA

39



5 The Idele Group of an Algebra

When that is so, the module of that automorphism is ‖NA/k(a)‖. Moreover, a 7→ NA/k(a)
and a 7→ ‖NA/k(a)‖ are morphisms of A∗A into A∗k and into R∗+, respectively.

Remark This corollary is obvious in the case where A is a division algebra. Using this

and the approach used in the previous chapter, one gets the following:

Corollary 5.2. Let D be a division algebra of �nite dimension over k. For each �nite place

ν let ∆∗ν = {a ∈ Dν | |NDν/kν (a)|ν = 1}. Let S be a �nite set of places of k and de�ne

DA(S)∗ =
∏
ν∈S

D∗ν ×
∏
ν /∈S

∆∗ν

Then DA(S)∗ is an open subgroup of DA. The topology induced on it by D∗A is the same as

the product topology for the right-hand side. Furthermore D∗A is the union of these groups.

5.3 The Idele Group of a Division Algebra

All that can be said about the endomorphism x 7→ ax of an algebra A holds for x 7→ xa as

well. The determinant of the latter endomorphism will be called the coregular norm, denoted

by N ′A/k(a). We will write N ′(a) instead of N ′A/k if the reference to A and k is clear. This is

again a polynomial function of degree equal to the dimension of A over k. As in Corollary 5.1

one can prove that the module of the automorphism x 7→ xa of AA, for a ∈ A∗A is equal to

‖N ′(a)‖.

De�nition 5.3. For every real number λ ≥ 1, call Dλ the set of the elements d of D∗A such

that the modules of the automorphisms x 7→ dx and x 7→ xd of DA are respectively ≤ λ and

≥ λ−1.

Using Theorem 5.3 we have

Dλ = {d ∈ D∗A |N(d) ≤ λ and N ′(d) ≥ λ−1}

where N(d) = ND/k(d) = (NDν/kν (dν)) in Ak denotes the regular norm, and N ′(d) =
(N ′Dν/kν (dν)) denotes the coregular norm of an element d in D∗A. One can show that for a

�nite dimensional central simple algebra the norm of the regular and the coregular represen-

tation coincide. This will be done in the Appendix, chapter A. Therefore, in particular for

division algebras, one gets

Dλ = {d ∈ D∗A |λ
−1 ≤ N(d) ≤ λ}

In particular taking λ = 1 we can write

D1 = {d ∈ D∗A |N(d) = 1}
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5.3 The Idele Group of a Division Algebra

Now we prove:

Theorem 5.4. Let D be a division algebra of �nite dimension over k. Then Dλ is a closed

subset of D∗A whose image in D∗A/D
∗ is compact.

Proof. Theorem 5.3 shows, that the map d 7→ ‖N(d)‖ is continuous. One can prove the

same for d 7→ ‖N ′(d)‖. Therefore Dλ, which is the intersection of the closed sets {d ∈
D∗A | ‖N(d)‖ ≤ λ} and {d ∈ D∗A | ‖N

′(d)‖ ≥ λ−1} is closed in D∗A.

Theorem 4.3 implies, that D is discrete in DA and that DA/D is compact. So there is a

Haar measure µ on DA such that µ(DA/D) = 1.
As DA is not compact and so unbounded, it is possible to choose a compact subset C of

DA such that µ(C) > λ. Now we de�ne two subsets of DA. Let C− be the image of C × C
under the map (x, y) 7→ x− y. So C− = {x− y ∈ DA |x, y ∈ C}. As the map (x, y) 7→ x− y
is continuous on DA ×DA → DA, the set C− is compact.

Let C×− be the image of C− × C− under the map (x, y) 7→ xy. For equal reasons as above

C×− is compact.

Let d be an arbitrary element of Dλ. Then modDA(x 7→ xd) = N ′(d) ≥ λ−1. The

automorphism x 7→ xd maps C onto Cd. The measure of Cd is given by

µ(Cd) = µ(C)modDA(x 7→ xd) = µ(C)N ′(d) > λN ′(d) ≥ λλ−1 = 1

Now let G be an arbitrary locally compact group with Haar measure µ and discrete sub-

group Γ such that G/Γ is compact. Then we can prove that for a measureable subset X of G

with µ(X) > µ(G/Γ) there exist two distinct elements x, x′ ∈ X such that x−1x′ ∈ Γ. This
is proved in the Appendix, Lemma B.1. Now D is a discrete subgroup of the locally compact

group (written additively) DA, DA/D is compact and Cd is a compact (hence measurable)

subset of DA with measure µ(Cd) > µ(DA/D) = 1. Then Lemma B.1 states, that there

are two elements x, y in C such that xd − yd is in D with xd − yd 6= 0. Hence xd − yd is

invertible. Write c1 = x− y and δ1 = c1d. Then c1 ∈ C− and δ1 = c1d = xd− yd is in D∗.

Similarly

µ(d−1C) = modDA(x 7→ d−1x)µ(C) > N(d−1)µ(C) > N(d−1)λ ≥ 1

as N(d) ≤ λ. Hence we can �nd elements x′, y′ in C such that d−1x′ − d−1y′ ∈ D∗. Again
set c2 = x′ − y′ and δ2 = d−1c2. Then c2 ∈ C− and δ2 ∈ D∗.

Then δ1δ2 = c1dd
−1c2 = c1c2. But δ1, δ2 ∈ D∗ and c1, c2 ∈ C− so c1c2 ∈ C×− . Therefore

δ1δ2 ∈ C×− ∩ D∗. We know that D is a discrete subgroup and C×− is a compact subset of

DA. Hence D∗ ∩ C×− is �nite. Call {γ1, . . . , γs} the distinct elements of D∗ ∩ C×− . Then

c1c2 = δ1δ2 is equal to one of them, say c1c2 = γi. Then γ
−1
i c1c2 = 1, which shows, that c2

is invertible in DA and has the inverse c−1
2 = γ−1

i c1.
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5 The Idele Group of an Algebra

Call X the subset of D∗A, that is de�ned by

X = {x ∈ D∗A | (x, x
−1) ∈

s⋃
i=1

(C− × γ−1
i C−)} = {x ∈ D∗A |x ∈ C− and x−1 ∈

s⋃
i=1

γ−1
i C−}

But we know that c2 = dδ2 ∈ C− and c−1
2 = γ−1

i c1, where c1 ∈ C−, hence c2 ∈ X. By the

de�nition of the topology on D∗A, the set X is compact in D∗A.

So for any d ∈ Dλ, we have found elements c2 ∈ X and δ2 in D∗ such that dδ2 = c2. It

follows at once that Dλ ⊂ X ·D∗. So the image of Dλ in D∗A/D
∗ is contained in the image

of X in D∗A/D
∗. As X is compact and Dλ is closed, it follows, that Dλ/D

∗ is compact.

Obviously in the case that A is commutative, one has that N = N ′. However this turns

out to be true for central simple algebras. This is proved in Corollary A.1. So in particular

for division algebras one can reformulate Theorem 5.4 as follows

Theorem 5.5. Let D be a division algebra of �nite dimension over k. Let D1 be the set of

all d in D∗A such that ‖d‖ =
∏
ν
|NDν/kν (dν)|ν = 1. Then D1 is a closed subset of D∗A and

D1/D
∗ is compact in the quotient topology.

5.4 Units of Orders of Division Algebras

Let D be a �nite dimensional division algebra over an algebraic number �eld k and let ok

denote the ring of integers in k. Furthermore for all �nite places ν let ∆ν be the unique

maximal order in Dν de�ned by ∆ν = {d ∈ Dν | |NDν/kν (d)|ν ≤ 1}. We de�ne the set

IC =
⋂

ν �nite

∆ν . Then IC is the integral closure of ok in D and IC is clearly a subring of D,

as it is the intersection of rings.

De�nition 5.4. Let S be a �nite set of valuations containing S∞. Then we de�ne

D(S) = {d ∈ D| d ∈ ∆∗ν ∀ν /∈ S} = D ∩D∗A(S)

where D(S) is called the group of S-units of D. For S = S∞ one has that D(S) is the group
of units in the ring IC .

Then one can prove

Theorem 5.6. The group D(S) is �nitely generated.

Proof. We de�ne D1(S) = D1 ∩ D∗A(S). Then one has, as the same argument as in

the case D = k shows, that D1(S)/D(S) is compact. De�ne γ : D∗A(S) →
|S|⊕
i=1

R+ via

(ξν)ν 7→ (log |NDν/kν (ξν)|ν)ν∈S . Then γ is continuous and surjective. Furthermore γ(D(S))
is discrete. Indeed for arbitrary positive numbers c, C one has that the set of d ∈ D(S)
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5.4 Units of Orders of Division Algebras

satisfying c ≤ |NDν/kν (d)|ν ≤ C is �nite, as it it the intersection of the compact set∏
ν∈S
{x ∈ Dν |c ≤ |NDν/kν (d)|ν ≤ C} ×

∏
ν /∈s

∆∗ν with the discrete set D∗.

Furthermore the kernel of γ restricted to D(S) is �nite (take c = C = 1). One has that

γ(D1(S)) is a |S|−1 dimensional hyperplane and γ(D1(S)/D(S)) is compact. Hence γ(D(S))
is a free abelian subgroup of rank |S| − 1. Therefore D(S) is �nitely generated.

One can show:

Theorem 5.7. Every element of an ok-order ∆ in D is integral over ok. Furthermore for

d ∈ ∆ the minimal polynomial and the characteristic polynomial of d are in ok[X].

This is proved in [11], page 110.

This theorem shows, that every order of D is contained in IC . In particular if IC is an

order, it is the unique maximal order of D. Furthermore the unit group of an order ∆ of D

is contained in the unit group of IC . This proves:

Theorem 5.8. The unit group of an order of a division algebra D is �nitely generated.
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A Central Simple Algebras

The proofs and de�nitions of this paragraphs are in [13] and [11].

Let k be a �eld and A a �nite dimensional algebra over k. Let a be an element of A and

consider the endomorphism ρ(a) which is de�ned by x 7→ ax when A is viewed as a vector

space over A. Call End(A) the k-algebra of all endomorphisms of A as a vectorspace. Then

the map ρ : A → End(A) de�ned by a 7→ ρ(a) is a representation of A. It is called the

regular representation. The trace and the determinant of ρ are known as the regular trace

and the regular norm taken in A over k. They will be denoted by TA/k and NA/k

Throughout the rest of this chapter let A be a central simple algebra of �nite dimension

n0 over a �eld k. Then n0 = n2 for an element n ∈ N. This is proved in [11], page 92 and

97. Let a ∈ A be an arbitrary element, then the characteristic polynomial of a is de�ned as

the characteristic polynomial of the regular representation of a. Note that

pA/k(a) = Xm − TA/k(a)Xm−1 + . . . (−1)mNA/k(a)

If there is no danger of confusion, we will write p(a), N(a) and T (a) instead of pA/k(a),
NA/k(a) and TA/k(a). We are trying to generalize the de�nition of the regular representation,

namely by introducing the regular norm and regular trace. The algebra A is central and

simple, hence there exists an extension �eld E of k which splits A. So there is an isomorphism

E ⊗k A ∼= Mn(E).

The characteristic polynomial of an element of E⊗k A does not depend on the choice of this

isomorphism, as all automorphisms ofMn(E) are inner. Indeed if we have two isomorphisms

h, g from E ⊗k A to Mn(E), then h · g−1 is an automorphism of Mn(E), and therefore there

exists an invertible element t ∈ Mn(E), such that h(u) = tg(u)t−1 for all u ∈ E ⊗k A.
Therefore we can de�ne the reduced characteristic polynomial as

red p(a) := p(h(1⊗ a)).

Theorem A.1. For each a ∈ A, red p(a) is an element of k[X]. It is independent of the

choice of the splitting �eld E of A used to de�ne red p.

A proof of this statement can be found in [11], page 113
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A Central Simple Algebras

Theorem A.2. Let A be a central simple algebra of dimension n2 over a �eld k. Then

p(a) = (red p(a))n

for all a ∈ A.

This is proved in [11], page 115.

We de�ne Nred(a) and Tred(a) in the obvious way. Then we get:

Corollary A.1. Let A be a central simple algebra of dimension n2 over a �eld k. Then for

every a ∈ A the endomorphisms x 7→ ax and x 7→ xa of the underlying vectorspace of A over

k have both the determinant NA/k(a) = Nred(a)n.

Proof. By the above theorem it is clearly enough to verify this for E ⊗k A, for an suitable

splitting �eld E of A. But then E ⊗k A is isomorphic to Mn(E). In the case that x 7→ ax

(respectively x 7→ xa) is an automorphism, one gets from the Skolem-Noether Theorem

that these are both inner automorphisms, and so they are conjugate and have the same

characteristic polynomial. If x 7→ ax (respectively x 7→ xa) is not an automorphism, then

both have norm 0, which proves the statement.
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B Haar measure

The �rst two parts of this section are due to [10] and [8]. The last part can be found in [13],

page 35 and 36.

De�nition

De�nition B.1. A topological group G is called locally compact, if it is Hausdor� and every

point admits a compact neighborhood.

A family A of subsets of G is called a σ-algebra, if it satis�es the following conditions

1. G ∈ A

2. If A ∈ A then G \A ∈ A

3. If (An)n ∈ A then
∞⋃
n=1

An ∈ A

A set G together with such a family A is called a measurable set. Suppose that G is a

topological space and B is the smallest σ-algebra containing all open sets of G. Then the

elements of B are called Borel subsets of G. A positive measure µ on a measurable space G

with σ-algebra A is a function µ : A → R+ ∪ {∞} such that µ

(
n⋃
i=0

An

)
=

n∑
i=0

µ(An) for any

family of disjoint sets with Ai ∈ A for 1 ≤ i ≤ n. A positive measure de�ned on a Borel set

is called a Borel measure.

Let µ be a Borel measure on a locally compact Hausdor� space G, let B be any Borel

subset and let C be any open subset of G. If

µ(B) = inf{µ(U) |U ⊇ B,U open }

and

µ(C) = sup{µ(K) |K ⊆ C, K compact }

and furthermore µ(D) is �nite for any compact subset D of G, then µ is called a Radon

measure.

Let G be a locally compact topological group and let µ be a Borel measure. We say that

µ is left translation invariant if for all Borel subsets B of G

µ(gB) = µ(B)
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B Haar measure

for all g ∈ G. We can de�ne right translation invariance similarly.

A left (respectively right) Haar measure on G is a nonzero Radon measure µ on G that is

left (respectively, right) translation invariant.

Theorem B.1. Let G be a locally compact group. Then G admits a left (hence right) Haar

measure. Moreover this measure is unique up to a scalar multiple.

A detailed proof of this statement can be found in [8], page 115 and 116.

Example For G = R the Haar measure µ is the usual Lebesgue measure restricted to the

Borel subsets of R. In particular for any interval [a, b] with −∞ < a < b < ∞ one has

µ([a, b]) = b− a.
Example For G = Qp one has that Zp is compact. Hence one can normalize the Haar

measure µ such that µ(Zp) = 1. It is also clear that for arbitrary n ≥ 0 one has that Zp/pnZp
is �nite, as it is isomorphic to Z/pnZ. Hence Zp is the disjoint union of the cosets of pnZp
and therefore µ(pnZp) = p−n. Furthermore pnZp · p−nZp = Zp and so µ(p−nZp) = pn. So one

has for arbitrary m ∈ Z that

µ(pmZp) = p−m.

The Module of an Automorphism

Let G be a locally compact group with Haar-measure µ and consider an algebraic and topo-

logical isomorphism α of G. If A ⊆ G is µ-measurable, then αA is also. So we may de�ne a

new measure µ′ on G by

µ′(A) = µ(αA)

Then µ′ is again a left-Haar-measure on G which must di�er from µ by a positive factor. We

will call this positive factor the modulus of the automorphism α and denote it by modG(α)
(respectively mod(α) if the reference to G is clear). So by de�nition we have

µ(αA) = mod(α)µ(A)

for all µ-measurable sets A of G. The modulus is independent of the original choice of µ and

it is multiplicative, in the sense that modG(αβ) = modG(α)modG(β) for all automorphisms

α and β. Suppose that H ⊆ G is a normal, closed subgroup and α an automorphism such

that α(H) = H. Then α1 = α|H is an automorphism of H. Also the map induced by α on

G/H, we shall call it α2, is an automorphism of G/H.

Theorem B.2. Notation as above. Then mod G(α) = mod H(α1) mod G/H(α2).

If G is compact, then G is µ-measurable by de�nition of the Haar-measure. On the other

hand, α(G) = G for every automorphism α. Thus, if G is compact, modG(α) = 1 for all
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automorphisms α. If G is discrete, then {e} (the identity in G ) is measurable and similarly

α(e) = e for all automorphisms, so modG(α) = 1.
For the rest of this chapter assume that k is a locally compact �eld with Haar measure µ.

Then one has

Theorem B.3. The function mod k : k → R+ is continuous.

This is proved in [8], page 117.

Assume that for all x, y ∈ k the inequality

modk(x+ y) ≤ max{modk(x),modk(y)}

holds. Then we can de�ne the following subsets of k

A = {x ∈ k |modk(x) ≤ 1}

A∗ = {x ∈ k |modk(x) = 1}

P = {x ∈ k |modk(x) < 1}

Theorem B.4. The set A is the unique maximal compact subring of k. The subset A∗ of

A is the group of invertible elements of A. Then P is the unique two sided ideal of A. The

residual �eld A/P is �nite. The uniformizing parameter π is given as any element in k∗ such

that γ = mod k(π) is the maximal element of mod k(k) less than 1.

A proof of this can be found in [13], page 13.

Let ν be a normalized (archimedean or non-archimedean) valuation of k and let kν be the

completion of k with respect to ν. For x 6= 0 in kν consider the map x̃(a) = xa. By abuse of

notation we will write modkν (x) for modkν (x̃). Then we have by de�nition of a normalized

valuation

modkν (x) = |x|ν

In fact this characterizes the normalized valuation among equivalent ones. It also shows,

that for all �nite places ν the set oν is a maximal compact subring with unique two-sided

ideal p.

Discrete Subgroups

Let G be a locally compact topological group with Haar measure µ and let Γ be a discrete

subgroup of G. Let φ be the canonical map from G to G/Γ. Let X ⊂ G be a measurable

subset of G. De�ne

X−1 ·X = {x−1y|x, y ∈ X}
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B Haar measure

If a subset X satis�es (X−1 ·X) ∩ Γ = {e}, where e denotes the neutral element of G, then

φ maps X homeomorphic onto its image in G. Furthermore gX is homeomorphic to φ(gX)
for every g ∈ G. Indeed �x g in G and take elements x, y ∈ X, such that φ(gx) = φ(gy).
This is equivalent to saying that there is an element γ in Γ such that gxγ = gy. But that is

the same as (gx)−1(gy) = γ, hence x−1y ∈ Γ, and of course by de�nition x−1y ∈ X−1 ·X,

so x−1y ∈ (X−1 · X) ∩ Γ = {e} and therefore x = y and φ is injective. The fact that φ is

surjective, continuous and that φ−1 is continuous follows directly from the de�ntion of φ.

There exists a unique Haar measure µ′ on G/Γ such that whenever X ⊂ G is mapped

homeomorphic to φ(X), then µ(X) is equal to µ′(φ(X)). If there is no risk of confusion we

will write µ instead of µ′.

Lemma B.1. Let G be a locally compact group with Haar measure µ. Let Γ be a discrete

subgroup of G such that G/Γ is compact. Let X be a measurable subset of G such that

µ(X) > µ(G/Γ). Then there are two distinct elements x, x′ of X such that x−1x′ ∈ Γ.

Proof. Let X be a measurable subset of G satisfying (X−1 · X) ∩ Γ = {e}. Then by the

explanations above, X is homeomorphic to φ(X). But then we have

µ(X) = µ(φ(X)) = µ(X/Γ) ≤ µ(G/Γ)

as X/Γ ⊂ G/Γ. But this contradicts the assumption that µ(X) > µ(G/Γ).

Note that this is a generalization of Lemma 3.2.
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Abstract

In algebraic number theory one studies the structure of the ring of algebraic integers ok of

an algebraic number �eld k. That ring is de�ned to be the set of elements satisfying an

equation of the form xn + an−1x
n−1 + · · · + a0 = 0 with coe�cients a0, . . . an−1 ∈ Z. Some

properties of Z can be formulated in terms of ideals of ok. First one generalizes the de�nition

of ideals to get fractional ideals. Then one can show that the nonzero fractional ideals form

a group Jok under multiplication. Further this group is generated by the prime ideals. One

can embed k∗ into the group via the map a 7→ (a). So one can form the factor group Ck
of Jok modulo the image of k∗ under this mapping, which is called the ideal class group of

ok. One important result in algebraic number theory states that Ck is �nite, the number of

elements in Ck is an important invariant of the algebraic number �eld k and is denoted by

h(k), the class number of k. Another important result is Dirichlets Unit Theorem. Let µk
be the set of roots of unity in k. Let r1 be the number of real, 2r2 the number of complex

embeddings of k into C. Then Dirichlet Unit Theorem states that the unit group o∗k of ok is

a �nitely generated Z module. Furthemore o∗k
∼= µk × Zr1+r2−1.

The �rst part of my thesis is dedicated to the study of algebraic number �elds. In doing

that one uses the local-global principle, i.e. one wants to �nd out more about the global �eld

k by studying its local �elds, where the local �elds are the completions of k with respect to

a valuation. The natural language to do that are adeles Ak and ideles Ik. There is a natural
embedding of k into Ak, so one may view k as a discrete subring of Ak. When dealing with

the ring of adles one can show that Ak/k is compact. One might expect a similar result for

the group of ideles. However this turns out to be wrong. One has to restrict to the norm

one ideles I1k to get I1k/k
∗ is compact. The compactness of I1k/k

∗ leads to a proof of Dirichlets

Unit Theorem and one can also easily prove the �niteness of the class number of k.

In the second part I generalize the ideas developed in the �rst part to study adeles and

ideles over central algebras of �nite dimension over an algebraic number �eld. As in the

case of a �eld, one has that the adele ring of an algebra A modulo the algebra itself, viewed

as a discrete subring of the adele ring, is compact. This assertion holds for arbitrary �nite

dimensional algebras over algebraic number �elds. However when turning our attention to

the group of ideles, one has to restrict to the case where A is a division algebra. In doing

so one can de�ne the norm one idele D1 of a division algebra D and show that D1/D
∗ is

compact. Using this result one can generalize Dirichlets Unit Theorem given and show that

the unit group of an order ∆ of D is �nitely generated.
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Zusammenfassung

Die algebraische Zahlentheorie beschäftigt sich mit der Struktur des Ringes der ganzen Zahlen

ok in einem algebraischen Zahlkörper k. Dieser Ring ist dadurch de�niert, dass er alle Zahlen

x aus k enthält, die Nullstellen eines normierten Polynomes in Z[X] sind. Des weiteren

verallgemeinert man die De�nition von Idealen und erhält die gebrochenen Ideale. Die Menge

der gebrochenen Ideale ungleich 0 bildet eine Gruppe Jok bezügliche Multiplikation. Diese

Gruppe ist erzeugt von den Primidealen von ok, da jedes (gebrochene) Ideal eindeutig als

Produkt von endlich vielen Primidealen darstellbar ist. Auÿerdem kann man den Zahlkörper

k in diese Gruppe einbetten, und zwar mithilfe der Abbildung a 7→ (a). Damit lässt sich

die Faktorgruppe Ck von Jok modulo dem Bild von k∗ unter dieser Abbildung bilden. Ein

wichtiges Resultat der algebraischen Zahlentheorie besagt, dass die Gruppe Ck endlich ist.

Die Anzahl der Elemente Ck nennt man die Klassenzahl von k. Ein weiteres Resultat ist

der Dirichletsche Einheitensatz. Es sei r1 die Anzahl der reellen und 2r2 die Anzahl der

komplexen Einbettungen von k nach C. Des weiteren bezeichnet man mit µk die Menge

der Einheitswurzeln, die in k enthalten sind. Dann besagt der Dirichletsche Einheitensatz,

dass die Einheitengruppe von ok ein endlich erzeugtes Z-Modul ist und weiteres, dass o∗k
∼=

µk × Zr1+r2−1 gilt.

Der erste Teil meiner Diplomarbeit beschäftigt sich mit algebraischen Zahlkörpern. Um

diese zu behandeln nutzt man das sogenannte Lokal-Global-Prinzip. Das heiÿt, man be-

trachtet alle Vervollständigungen eines algebraischen Zahlkörpers gleichzeitig um dabei mehr

über den zugrundeliegenden Körper herauszu�nden. Eine geeignete Methode hierfür sind

Adele Ak und deren Einheitengruppe die Idele Ik. Man kann den Körper k kanonisch als

diskreten Unterring der Adele über k au�assen und erhält des weiteren dass Ak/k kompakt

ist. Ebenso kann man k∗ als diskreten Unterring von Ik au�assen. Daher würden man

vielleicht auch erwarten, dass Ik/k∗ kompakt ist. Dies ist aber nicht der Fall. Um ein

Kompaktheitsresultat zu erhalten, muss man sich auf die Idele mit Norm eins I1k beschränken.
Dann gilt I1k/k

∗ ist kompakt. Aus diesem Satz lassen sich auch der Dirichletsche Einheitensatz

und die Endlichkeit der Klassenzahl beweisen.

Im zweiten Teil werden die Ideen des ersten Teiles auf den Fall von endlich dimensionalen

zentralen Algebren über algebraischen Zahlkörpern übertragen. Wie im Fall des Zahlkörpers

erhält man, dass die Algebra A ein diskreter Unterring der Adele über A ist und auÿerdem,

dass die Adele modulo der Algebra kompakt ist. Im Fall der Gruppe der Idele muss man sich,

um ein analoges Kompaktheitsresultat zu erhalten, auf Divisionsalgebren D beschränken.
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Zusammenfassung

Wiederum muss man sich auf die Idele mit Norm eins D1 beschränken und erhält so dass

D1/D
∗ kompakt ist. Damit lässt sich eine Verallgemeinerung des Dirichletschen Einheiten-

satzes beweisen, nämlich dass die Einheitengruppe einer Ordnung ∆ einer Divisionsalgebra

D endlich erzeugt ist.
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