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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Untersuchung von quantenmechanischen und klas-

sischen Markov-Prozessen und deren Anwendung im Bereich der stark korrelierten Vielteil-

chensysteme. Unter einem Markov-Prozess versteht man eine spezielle Art eines stochasti-

schen Prozesses, dessen weitere dynamische Entwicklung unabhängig ist von der Vorgeschich-

te seiner Entwicklung und nur von der derzeitigen Konfiguration abhängt. Die Anwendung

von Markov-Prozessen im Bereich der statistischen Mechanik von klassischen Vielteilchen-

systemen hat eine lange Geschichte. Markov-Prozesse dienen nicht nur der Beschreibung der

Dynamik von stochastischen Systemen, sondern liefern vielmehr auch eine sehr praktische

Methode, mit dereren Hilfe grundlegende Eigenschaften komplexer Vielteilchenprobleme in

Form eines probabilistischen Algorithmus berechnet werden können. Ziel dieser Arbeit ist es

das Verhalten von quantenmechanischen Markov Prozessen, dies sind Markov-Prozesse, wel-

chen ein quantenmechanischer Konfigurationsraum zu Grunde liegt, zu untersuchen und mit

deren Hilfe komplexe Vielteilchensysteme besser zu verstehen. Darüber hinaus formulieren

wir einen Quantenalgorithmus, mit dessen Hilfe es möglich ist, die thermischen- und Grundzu-

standseigenschaften von quantenmechanischen Vielteilchensystemen zu berechnen. Nachdem

wir eine kurze Einführung in das Feld der quantenmechanischen Markov-Prozesse gegeben

haben, untersuchen wir deren Konvergenzeigenschaften. Wir finden Schranken für die Konver-

genzraten der quantenmechanischen Prozesse, basierend auf einer Verallgemeinerung von geo-

metrischen Schranken, welche für klassische Prozesse gefunden wurden. Wir verallgemeinern

ein Abstandsmaß, die χ2-Divergenz für nicht kommutative Wahrscheinlichkeitsräume, welches

unseren Untersuchungen zu Grunde liegt. Diese Divergenz ermöglicht auch eine Verallgemei-

nerung der detaillierten Balance für quantenmechanische Prozesse. Danach konstruieren wir

den Quantenalgorithmus, der als natürliche Verallgemeinerung des Metropolisalgorithmus für

quantenmechanische Hamiltonoperatoren verstanden werden kann. Wir beabsichtigen damit

zu zeigen, dass ein Quantencomputer in der Lage ist, als universeller Quantensimulator zu fun-

gieren, welcher nicht nur die Dynamik eines Quantensystems beschreiben kann, sondern auch

den Zugang zu statischen Berechnungen ermöglicht. Danach untersuchen wir die Korrelati-

onseigenschaften von klassischen Nichtgleichgewichtszuständen mit Methoden der Quanten-

informationstheorie. Wir konstruieren eine Klasse von Matrix-Produkt-Zuständen, deren Kor-

relationen anhand von klassischen Markov-Prozessen verstanden werden können. Schließlich

untersuchen wir die Transporteigenschaften eines stationären Nichtgleichgewichtszustandes.

Die dynamische Gleichung ist so konstruiert, dass der Transport je nach Parameterwahl entwe-

der hauptsächlich stochastisch oder hauptsächlich kohärent stattfindet. Wir können somit die

unterschiedlichen Formen des Transports innerhalb eines Modells miteinander vergleichen.
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Abstract

This thesis is concerned with the investigation of quantum as well as classical Markov pro-

cesses and their application in the field of strongly correlated many-body systems. A Markov

process is a special kind of stochastic process, which is determined by an evolution that is

independent of its history and only depends on the current state of the system. The applica-

tion of Markov processes has a long history in the field of statistical mechanics and classical

many-body theory. Not only are Markov processes used to describe the dynamics of stochastic

systems, but they predominantly also serve as a practical method that allows for the compu-

tation of fundamental properties of complex many-body systems by means of probabilistic

algorithms. The aim of this thesis is to investigate the properties of quantum Markov proces-

ses, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a

better insight into complex many-body systems by means thereof. Moreover, we formulate a

novel quantum algorithm which allows for the computation of the thermal and ground states of

quantum many-body systems. After a brief introduction to quantum Markov processes we turn

to an investigation of their convergence properties. We find bounds on the convergence rate

of the quantum process by generalizing geometric bounds found for classical processes. We

generalize a distance measure that serves as the basis for our investigations, the χ2-divergence,

to non-commuting probability spaces. This divergence allows for a convenient generalization

of the detailed balance condition to quantum processes. We then devise the quantum algorithm

that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simu-

late quantum many-body Hamiltonians. By this we intend to provide further evidence, that a

quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of

describing the dynamical evolution of quantum systems, but also gives access to the computati-

on of their static properties. After this, we turn to an investigation of classical non-equilibrium

steady states with methods derived from quantum information theory. We construct a special

class of matrix product states that exhibit correlations which can best be understood in terms of

classical Markov processes. Finally, we investigate the transport properties of non-equilibrium

steady states. The dynamical equations are constructed in such a manner that they allow for

both stochastic as well as coherent transport in the same formal framework. It is therefore

possible to compare different forms of transport within the same model.
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Introduction

The success story of the exact sciences is based to a large extent on the fact that its method-

ology allows us to break down many complex mechanisms to a set of simple rules, which are

more accessible to us. The question that arises, however, is whether boundaries are set to this

endeavor or whether it will always be possible to express an innately complex issue in a more

simple manner. This undertaking appears to be quite paradox to some extent. On one hand,

we seek a description as simple as possible, on another, we want a solution which is capable

of reproducing the richness nature provides. Thus if we do not look for a solution that restricts

itself to explaining only individual aspects of the problem, we have to find a description that

on its own is complex enough to encompass the richness, which naturally occurs in the system.

It seems that the complexity is somehow conserved and at a certain point we will have to pay

the price for the large amount of descriptive power. Let us try to be more concrete. Since the

early days of quantum mechanics, it has been clear that there is a fundamental difficulty in

studying quantum many-body systems. The size of the configuration space. i.e. Hilbert space,

of a collection of particles grows exponentially with the number of particles. Even though we

might know the equations which govern the evolution of a particular many-body system, the

sheer size of the configuration space renders an attempt of exactly solving these equations in

all generality futile. This observation is best expressed in a quote by Dirac [1]:

“The underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are thus completely known, and the difficulty is only that

the exact application of these laws leads to equations much too complicated to be soluble. It

therefore becomes desirable that approximate practical methods of applying quantum mechan-

ics should be developed, which can lead to an explanation of the main features of complex

atomic systems without too much computation.”

Many of the important breakthroughs in quantum physics during the 20th century have re-

sulted from efforts to address this problem, leading to fundamental theoretical and numerical

methods to approximate solutions of the many-body Schrödinger equation. One of the most

prominent approaches to finding approximate solutions is perturbation theory [2]. The assump-

tion that enters into this approximation is that the system does not deviate too strongly from a

solution which is already known. Even though this approach has given incredibly remarkable

results, it is nevertheless limited to providing solutions which are similar in their features to
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those of the known system. Another example where this becomes evident is the application

of variational states [2]. Here, one constructs a family of states and one seeks to find the best

approximation within this family. Hence, one already made an assumption about the form of

the solution one seeks to find. A significant amount of the research effort has been devoted to

constructing ample families of variational states as universal as possible and capable of captur-

ing the most significant aspects of the solution. The field of quantum information theory has

made fecund contributions to this enterprise by studying the correlation properties of quantum

states as such [3, 4, 5, 6].

However, exceedingly complex quantum many-body systems exist, for which thus far no

definite solutions have been found by means of classical approaches. Notable examples include

high-Tc superconductors, electronic structure in large molecules, and quark confinement in

quantum chromodynamics. We are thus confronted with constructing increasingly complex

simulation methods for the increasingly complex physical systems we seek to understand.

Does this problem only pertain to complex quantum systems, or does it also occur in clas-

sical systems? The problem of the configuration-space explosion is not unique to quantum

mechanics. The task of simulating interacting classical particles is challenging for the same

reason. It was only with the advent of computers in the 1950’s, that a systematic approach

of simulating classical many-body systems was made possible. In their seminal paper [7]

Metropolis et al. devised a general method to calculate the properties of any substance com-

prising individual molecules with classical statistics. This landmark paper is a cornerstone in

the simulation of interacting systems and has had a huge influence on a wide variety of fields

(see e.g. [8, 9, 10]). The Metropolis method can also be used to simulate certain quantum sys-

tems by a “quantum-to-classical map” [11]. Unfortunately, this quantum Monte Carlo method

is only scalable when the mapping conserves the positivity of the statistical weights, and fails

in the case of fermionic systems due to the infamous sign-problem.

The Metropolis algorithm is a prime example of a probabilistic algorithm based on the

concept of Markov chains. This concept was introduced in 1906 by the Russian mathematician

Alexey Markov, when he was investigating a special class of stochastic processes that have the

defining property of being memoryless. A Markov process is a stochastic process which is

independent of the history of the stochastic evolution and only depends on the current configu-

ration. Such processes find a large variety of applications throughout different disciplines such

as computer science, statistics, engineering and in particular physics. In fact, Markov processes

are not only a useful tool to simulate physical systems, as is the case for the Metropolis algo-

rithm, but also serve as a tool for describing the dynamics of stochastic processes that occur in

nature. It is their striking simplicity which makes them so ubiquitous.

We are convinced that the construction of a quantum computer is indeed a viable option

to tackle the problems that pertain to the simulation of complex quantum many-body systems,

much in the same fashion as the advent of classical computers has lead to a systematic approach
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for simulating complex classical systems. If we look back, we see that the original motivation

for building a quantum computer came from Feynman to achieve this very task [12]. The sem-

inal work of Lloyd [13] demonstrated that a quantum computer can reproduce the dynamical

evolution of any quantum many-body system. With this work, we hope to contribute to the es-

tablishment of the idea of the quantum computer as a universal quantum simulator, by showing

that a quantum computer can also give access to the computation of thermal and ground state

properties of quantum many-body systems.

The central topic of this thesis is the investigation of quantum Markov processes and the

application thereof to many-body systems. A quantum Markov process can be seen as the nat-

ural generalization of a memoryless stochastic process to non-commuting probability spaces,

i.e. quantum state spaces, and is described by either a continuous-time Lindblad equation or

by the subsequent application of completely positive trace preserving maps. These processes

are often used to model open quantum systems or driven non-equilibrium systems. Recently,

work was put forward that showed that the concept of quantum Markov processes is as pow-

erful as universal quantum computation itself [14]. The objective of this thesis is twofold. On

one hand we use Markov processes to better understand the correlations present in strongly

correlated one-dimensional systems and we want to use them as a tool to investigate driven

non-equilibrium systems. On the other hand we use them to propose a quantum algorithm to

simulate the static properties of quantum many-body systems. A large part of our investiga-

tion of quantum Markov processes relates to their convergence properties. We assume, that the

reader is familiar with the basic concepts of quantum information theory and in particular with

the circuit formulation of quantum computation [15]. We do not assume a prior knowledge of

quantum Markov processes, as they will be introduced in the following. The thesis is organized

as follows:

Outline and Summary of the results

Chapter 1: This chapter is devoted to an introduction to classical as well as quantum Markov

processes. Several important facts about Markov processes are reviewed and we provide some

of the fundamental theorems we will frequently be making use of. We start by introducing

the reader to the formal setting of this thesis. We then proceed to introduce classical time-

discrete Markov processes, which are also known as Markov chains. We only consider time-

homogenous processes throughout this thesis. Several fundamental theorems that pertain to

classical chains, such as the Perron-Frobenius theorem, are given. Then the Metropolis algo-

rithm, which we seek to quantize later, is introduced and we discuss the form of the stochastic

transition matrix of the algorithm. We then proceed to discuss time-continuous Markov pro-

cesses and show that the Markov property immediately gives rise to a semi-group structure.

From this we derive the classical master equation for probability distributions. We then turn
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to quantum Markov processes. The elementary building block of quantum Markov chains, the

trace-preserving completely positive map, is introduced and several lemmata that provide rep-

resentations of such maps are given. We provide generalizations of Perron-Frobenius results

in the quantum setting. We then turn to time continuous quantum master equations and prove

the most general form of the generator, i.e. the Lindblad map, for such processes. The starting

point of the derivation will be that we assume that the corresponding trace preserving com-

pletely positive map has a continuous semi-group structure. This chapter is concluded with

an introduction to matrix product states. These are states that support a limited amount of en-

tanglement and approximate states of one-dimensional systems very well. We highlight their

connection to quantum Markov chains and emphasize how the correlations these states exhibit

can be understood in terms of the Markov chain framework.

Chapter 2: We give mixing time bounds for quantum Markov processes. The mixing time is

the number of times a stochastic map has to be applied to an arbitrary initial state to be close to

the fixed point distribution of the Markov chain. The “closeness” is determined here in terms

of the trace-distance between the fixed point and the current state of the chain. We generalize

results that pertain to classical Markov chains to the quantum setting. The derivation of the

classical results relies on a distance measure called the χ2-divergence, which serves as an up-

per bound to the total variational distance. We start our analysis by defining a non-commuting

generalization of the χ2-divergence on quantum state spaces. This quantum divergence is in-

timately related to so-called monotone Riemannian metrics. We show, that the quantum χ2-

divergence also gives an upper bound to the trace-distance and derive a mixing time bound for

the application of any primitive quantum stochastic map. This upper bound is determined by

the singular values of a map that is similar to the actual trace preserving completely positive

map. We then investigate the contractive behavior of this divergence under the application of

quantum stochastic maps. Moreover, the χ2-divergence gives rise to a convenient way of defin-

ing a generalization of the classical detailed balance condition for completely positive maps.

This condition will prove very useful in the analysis of the fixed point structure of our quantum

Markov chain based algorithm. We conclude this section by deriving a quantum generalization

of the classical conductance bound for unital maps. The conductance bound yields a way of

bounding the singular values of any unital map by a geometric constant, which can be seen as

a generalization of the well known Cheeger’s constant.

Chapter 3: In this chapter we construct a quantum algorithm, which allows one to prepare

the Gibbs state of a quantum many-body Hamiltonian. The algorithm can be seen as a quan-

tization of the classical Metropolis algorithm. The fixed point of the corresponding quantum

Markov chain is ensured to be the Gibbs state of the Hamiltonian. We begin this chapter with a

brief summary of the algorithm by making some simplifying assumptions to facilitate the pre-

sentation. Then we turn to a presentation of the basic building block of the quantum algorithm,



Introduction 17

the quantum phase estimation procedure for the many-body Hamiltonian we want to simulate.

We assume that the reader is familiar with the formalism of circuit-based quantum computation

[15]. Thereafter, we proceed to a more elaborate description of the algorithm that explains the

individual steps in greater detail. In the following section we turn to a discussion on the gen-

eral runtime of the algorithm. We discuss the runtime of the algorithm based on mixing time

arguments derived in the previous chapter. The mixing time of the algorithm crucially depends

on the problem Hamiltonian. It is impossible to prove a polynomial runtime of the algorithm

for an arbitrary Hamiltonian in all generality. In fact, it is even expected that some classes of

Hamiltonians, which have been proven to be QMA-complete, will give rise to a mixing time

that is exponential in the system size. However, we provide a simple spin Hamiltonian for

which the mixing time is estimated to scale linearly in the number of spins. We then proceed

by explicitly constructing the completely positive map of the chain and show that for a specific

set of Metropolis updates the unique fixed point of the map is the Gibbs state of the many-body

Hamiltonian. To show this, we will make use of the quantum detailed balance condition and

the chain’s ergodicity properties. We then give an error bound on the deviation from the ide-

alized fixed point of the quantum Markov chain, which is due to the fact that we discuss the

implementation of the algorithm on a quantum computer with finite resources. We conclude

the chapter with presenting an experimental implementation of this algorithm for a two qubit

example system that is accessible with today’s technology.

Chapter 4: There are striking similarities between classical non-equilibrium steady states,

i.e. fixed points of a classical multi-particle master equation, and the ground states of quan-

tum many-body Hamiltonians. It turns out that matrix product states play an important role

in both fields. We devise a program to characterize the classical correlations present in non-

equilibrium steady states and introduce a special class of matrix product states, which we call

stochastic matrix product states. These are geared towards approximating multi-partite classi-

cal probability distributions that support only a limited amount of correlations. We introduce a

new correlation measure we call the entropy cost and show that it is an upper bound to the mu-

tual information. Furthermore, we show that a multi-partite probability distribution can be well

approximated by a stochastic matrix product state, if the entropy cost is low. A normal form of

these states is derived that establishes a connection to classical Markov chains, which can be

seen as the classical analog of the connection quantum matrix product states have to quantum

Markov chains. This decomposition also gives rise to a set of so-called source probabilities,

which can be seen as the stochastic analog of Schmidt coefficients. We apply these concepts

to a driven stochastic system called the asymmetric exclusion process. We estimate the mutual

information of the non-equilibrium steady state numerically for large chain sizes and show that

the steady state obeys an area law, which is only corrected by logarithmic contributions when

the system is critical.
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Chapter 5: We formulate a quantum master equation that can be seen to generate the classi-

cal non-equilibrium dynamics of one-dimensional exclusion processes, when no Hamiltonian

evolution is present. The classical dynamics of the stochastic exclusion processes is mediated

by the Lindblad operators in the quantum master equation, which usually account for dissipa-

tion in quantum systems. Since we incorporated the classical dynamics in this more general

framework, we can contrast its behavior to that of the quantum transport mediated by a sim-

ple Hamiltonian. We investigate two types of exclusion process known as the fully symmetric

exclusion process and the totally asymmetric exclusion process. We can compute the particle

density and the current density in the steady state for the symmetric exclusion process with co-

herent evolution exactly. We observe, that the stochastic transport properties are not modified

significantly in the presence of coherent transport and the transport remains diffusive. Only

when the stochastic contribution to the transport vanishes the transport properties change and

we have ballistic transport. We then turn to the totally asymmetric exclusion process. The

steady state of this process cannot be computed exactly in the presence of coherent evolution.

We therefore turn to a numerical simulation of the steady state properties. For the asymmetric

exclusion process we find evidence for the change in transport behavior only when the state

is already correlated classically. Otherwise the steady state solution remains unchanged in the

presence of coherent evolution.



Chapter 1

Preliminaries for classical and
quantum Markov processes

Synopsis:

We will use this chapter to introduce the reader to the basic concepts in classical and quan-

tum Markov chains. These concepts will repeatedly be made use of during the course of this

thesis. The chapter is kept rather formal because it states some of the central definitions and

theorems for Markov chains we will make use of throughout this thesis. First we will fix the

formal framework of this thesis and then turn to the discussion of classical Markov chains

and their transition matrices. We will discuss their spectral and convergence properties and

introduce the ubiquitous Metropolis algorithm. We then turn to the discussion of time - contin-

uous Markov processes that can be described by a classical rate equation which is commonly

known as the master equation. The reason for introducing classical processes is twofold. We

will be making use of classical processes a number of times in this thesis, for instance when

we introduce the concept of stochastic matrix product states, but it is also useful to introduce

the concept of Markov processes for probability spaces before we turn to generalizing them to

non-commuting, i.e. quantum, probability spaces. We then discuss the concepts of completely

positive maps on non-commuting probability spaces and their spectral properties. These com-

pletely positive maps can be seen as the natural generalization of Markov processes to quantum

state spaces. It is their spectral and structural similarity to the classical transition matrices that

allows for this connection. With the general framework of quantum stochastic maps at hand we

will discuss the structure of the dynamical semi group that models continuous time quantum

Markov processes and derive the Lindblad master equation for quantum states. Finally, we will

close this chapter with a discussion on matrix product states and highlight their connection to

completely positive maps.
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1.1 Formal setting and notation 21

1.1 Formal setting and notation

In this section we briefly introduce the notation and some elementary facts we will frequently

be making use of in the course of this thesis. A good general introduction to the field of

quantum information theory can be found for instance in [15]. Throughout this thesis we will

only consider finite dimensional classical stochastic or quantum stochastic systems. A good

reference for the formal preliminaries and the Matrix analysis tools we need can be found in

[16, 17].

The classical stochastic systems will be described by a finite state space Ω that contains the

elementary events, which we use to define a probability space. We denote random variables

that take values in Ω by capital letters such as X,Y, . . .. The probability of an event H is

denoted by P(H). The probability space will be taken to be L1(Ω), i.e all states which are

normalized with respect to the one - norm. We will describe the probability distributions either

by p ∈ L1(Ω) or by vectors | p〉 ∈ L1(Ω), with | p〉 =
∑

i∈Ω pi | i〉 in the standard Dirac

notation, where the pi ≥ 0 are required to be non-negative, and
∑

i pi = 1. The space L1 is

normed with respect to the one-norm that can be expressed for an arbitrary finite dimensional

vector | a〉 as ‖ | a〉 ‖1 =
∑

i |ai|.

The quantum mechanical systems will be described by a finite dimensional Hilbert space

H over the complex numbers. Hence, the Hilbert spaces we will be dealing with are typically

just H = Cd. As is common in the literature we will work in units where ~ = 1. The

algebra of the observables are all bounded operators on this Hilbert space and are commonly

denoted by B(H) in the literature. Since the Hilbert space we consider is typically just Cd our

observables are described by the matrix algebraMd of d× d - dimensional complex matrices

over the Hilbert space H, for which we also often writeM(H). This space is equipped with a

norm that can be seen as the nature quantum generalization of the one-norm, the so called trace

- norm ‖A‖tr = tr
[√

A†A
]

=
∑

i σi(A), where the σi(A) denote the singular values of the

matrixA ∈Md. Note, thatMd itself turns into a Hilbert space when equipped with the Hilbert

- Schmidt scalar product 〈A|B〉HS = tr
[
A†B

]
, for A,B ∈ Md. It is therefore possible to

choose a complete orthonormal Basis of Md, which we will denote by {Fi}i=1...d2 , such as

for instance the canonical product basis {| i〉 〈j |}i,j=1,...,d. Choosing a fixed basis immediately

gives rise to an isomorphism Md ' Cd
2
. The states are density matrices ρ ∈ Sd, where

Sd =
{
ρ ∈Md|ρ = ρ†, ρ ≥ 0, tr[ρ] = 1

}
, acting on H = Cd. The set of pure states given by

projectors |ψ〉 〈ψ | on Cd is denoted by S1
d , while the set of positive definite states, i.e. states

ρ ∈ Sd of full rank, is denoted by S+
d

Since we are dealing with many - body systems, we will need to consider state spaces of

composite systems. The composition of two quantum systems is described by the tensor prod-

uct of the individual spaces H = H1 ⊗ H2. Multipartite or many-body systems are therefore

described by spaces that are of the form H = H1 ⊗ . . .HN , i.e. have an endowed tensor

product structure. It is this tensor product structure, which gives rise to a particularly striking
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phenomenon of quantum mechanics called entanglement. At this point, we would like to intro-

duce a set of formal properties of entangled states, which will be very useful throughout this

thesis.

Formal tricks with entanglement If a bipartite state |ψ〉 ∈ H1 ⊗ H2 cannot be written as

a product state |ψ〉 6= | v〉 ⊗ |w〉, it is defined as being entangled. Any bipartite state that is

written with respect to some arbitrary local bases of H1 and H2 as |ψ〉 =
∑

abMab | a〉 ⊗ | b〉
can be brought into the so called Schmidt form

|ψ〉 =
d∑
i=1

σi | i1〉 ⊗ | i2〉 , (1.1)

for some orthogonal bases {| i1〉} and {| i2〉}, known as Schmidt basis, with coefficients σi > 0

for which
∑d

i=1 σ
2
i = 1. These coefficients are known as Schmidt coefficients. Here, the sum

is taken up to d = min(dim(H1),dim(H2), the minimal dimension of either of the two Hilbert

spaces. This decomposition can be constructed by making use of the ubiquitous singular value

decomposition [16, 17], which states that any matrix M can be decomposed as M = UΣV †,

where Σ > 0 is diagonal and U ,V are isometries. A state |Ω〉 is called maximally entangled,

if all its Schmidt coefficients are equal σi = 1/
√
d. We write in the Schmidt basis

|Ω〉 =
1√
d

d∑
k=1

| kk〉 . (1.2)

This definition of a maximally entangled state is robust with respect to transformations of the

form |ψ〉 = (U1 ⊗ U2) |Ω〉, since local unitaries only change the local basis in each Hilbert

space, but leave the Schmidt coefficients σi = 1/
√
d invariant. We therefore refer to (1.2) as

the maximally entangled state, from which any other state that is also maximally entangled

can be obtained by a local unitary transformation. In fact, it is possible to construct an entire

basis of maximally entangled states by choosing an orthogonal unitary basis {Ui}i=1...d2 of

Md and by writing |ψi〉 = (1⊗ Ui) |Ω〉. This basis is orthogonal, because we have for any

two matrices A,B ∈Md the general correspondence

〈Ω | (A⊗B) |Ω〉 =
1
d

tr
[
ABT

]
and

(
1⊗AT

)
|Ω〉 = (A⊗ 1) |Ω〉 , (1.3)

where the transpose is to be taken with respect to the Schmidt basis of |Ω〉. Furthermore, we

observe that any state |Ψ〉 ∈ H1 ⊗H2 can be written as

|Ψ〉 = (1⊗R) |Ω〉 , (1.4)

for some general matrix R ∈ Md. This matrix can be related to |ψ〉 =
∑

ij cij | i〉 ⊗ | j〉 via

R =
∑

ij

√
d cij | j〉 〈i | when |ψ〉 is expressed in terms of the cij with respect to the Schmidt

basis of |Ω〉.
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1.2 Classical Markov chains

Before we turn to the discussion of quantum Markov chains, let us first revise classical Markov

chains and their transition matrices. A more exhaustive and excellent discussion of Markov

chains and non-negative matrices can be found in [18, 19, 17]. In this section we will only

present the basics of Markov chains, so we can better understand the generalization to non-

commuting probability spaces, i.e. quantum Markov chains. We will furthermore need to make

use of classical transition matrices in chapter 4, where we discuss a certain class of multipartite

probability distributions that can best be understood in terms of stochastic transition matrices.

We only consider finite Markov chains. A finite Markov chain can be seen as stochastic process

that traverses the elements of a finite set Ω, known as the state space, in the following manner:

When we are at some point i ∈ Ω, the next position j ∈ Ω is chosen at random with respect to

a fixed transition probability Pji. To be more precise:

Definition 1. A sequence of random variable (X0, X1, . . .) is called a Markov chain with

finite state space Ω and transition matrix P , if for all i, j ∈ Ω and all n ≥ 1, and all events

Hn−1 = ∩n−1
k=0{Xk = ik} (sequence of random variables) with non-vanishing

P (Hn−1 ∩ {Xn = j}) > 0, we have that the conditional probability is given by

P (Xn+1 = j|Hn−1 ∩ {Xn = i}) = P (Xn+1 = j|Xn = i) = Pji. (1.5)

Furthermore, the matrix P is called the stochastic matrix, or transition matrix of the Markov

chain. All elements of [Pji]j,i=1...|Ω| are real and non-negative. Furthermore, the matrix obeys∑
j∈Ω

Pji = 1 for all i ∈ Ω. (1.6)

The condition 1.5 is often called Markov property, which essentially means, that the next

state along the chain of random variables is independent of the history of the chain and only

depends on the current position in the state space Ω. This is the central property of all Marko-

vian evolutions and the reason why it suffices to describe every transition on the state space by

the stochastic matrix P . Note, that we are considering only time homogeneous Markov chains

here, i.e. we assume that at each step the same transition rule applies. In principle one could

consider an alternative scenario, where the transition matrix P changes for each step, so P

itself depends on n, but we will not consider this case here.

We can view the stochastic matrix P as a dynamical evolution law for the probability

distribution

µi(n) = P (Xn = i) ≥ 0 with
∑
i∈Ω

µi(n) = 1. (1.7)

We will often write the probability µi as a vector in Dirac notation as |µ〉 =
∑

i∈Ω µi | i〉,
where we use for {| i〉} the canonical basis indexed by Ω. The new probability |µ(n)〉 is
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obtained from |µ(n− 1)〉 by application of the stochastic matrix P via

|µ(n)〉 = P |µ(n− 1)〉 . (1.8)

Note, that we use a slightly different notation here than is commonly used in the mathematical

literature. We use the notation common in the physics literature, where the stochastic matrix

acts from the left on the probability distribution, that is µj(n) =
∑

i Pjiµi(n−1) as opposed to

µi(n) =
∑

j µj(n−1)Pji. We can now see that the condition (1.6) amounts to the conservation

of probability, so that
∑

i µi(n) = 1 if |µ(n− 1)〉 was normalized. Suppose we start in some

initial configuration |µ(0)〉, then all other probabilities along the Markov chain are determined

only by the transition Matrix P so that

|µ(n)〉 = Pn |µ(0)〉 . (1.9)

We can now ask what happens as n→∞. Does the state converge somehow? If so, what does

the limiting distribution, mostly called fixed point distribution

|σ〉 = lim
n→∞

Pn |µ(0)〉 , (1.10)

look like? The traditional theory of Markov chains is precisely concerned with convergence

statements of this type. The general questions are, for instance, whether or not such a fixed

point exists and whether this fixed point is unique. How long does it take the Markov chain

to reach such a fixed point? These questions are of importance in several fields, not only in

physics, but also in other areas ranging from computer science to finance, from communication

science to biology. The physical motivation for investigating the convergence of such Markov

chains often stems from questions concerning the equilibration of statistical mechanical sys-

tems. Here one is not only interested in the equilibration to a thermal equilibrium, which is

described for instance in the canonical ensemble by the Gibbs-distribution, but also to what

is often referred to as non-equilibrium steady states [20, 21]. Such processes, if they describe

the physical process of equilibration, are usually continuous in time and we will discuss the

corresponding formal framework in the next section. Here, we will focus on some of the char-

acteristic properties of stochastic transition matrices.

1.2.1 Spectral properties and ergodicity

Stochastic matrices are matrices that have only positive elements and whose columns sum to

one. This information alone already ensures several nice spectral properties [17, 18]. Note,

that the eigenvalues of a stochastic matrix P will usually be complex, since P is generally not

self-adjoined. But we will see, that all the eigenvalues λ of P are confined to lie in the unit

disk |λ| ≤ 1 of the complex plain.

Lemma 2. Let P be a stochastic matrix, as defined in (1) and λi(P ) ∈ C the eigenvalues of

P , then we have

|λi(P )| ≤ 1. (1.11)
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Furthermore, there exists at least one λi(P ) = 1.

PROOF: Assume, that
∣∣ vi〉 is an eigenvector of P that belongs to the eigenvalue λi. We see

that ‖P
∣∣ vi〉 ‖1 = |λi|‖

∣∣ vi〉 ‖1 in the one norm. On the other hand, we have that ‖P
∣∣ vi〉 ‖1 ≤

‖P‖1‖
∣∣ vi〉 ‖1, i.e. the matrix norm ‖P‖1 = maxj

∑
i |Pij | is natural with respect to the one-

norm. Thus it holds that |λi| ≤ ‖P‖1. Since ‖P‖1 = maxj(
∑

i Pij) = 1 due to (1.6) we are

ensured that |λi| ≤ 1 for all i. We furthermore know that there is an eigenvalue λ = 1, since

there exists the left eigenvector 〈I | =
∑

i 〈i | for which due to (1.6) 〈I |P = 〈I |.

This lemma ensures that there exists at least one stationary eigenvector of the stochastic

matrix, namely the right eigenvector to the eigenvalue λ(P ) = 1. We already know the left

eigenvector corresponding to this eigenvalue. It is simply given by 〈I | =
∑

i 〈i |, i.e. the

vector that has unity in each entry. Furthermore, the lemma ensures that in the limit of n →
∞ applications Pn

∣∣µ0
〉

only the eigenvectors that have eigenvalues of unit magnitude are

relevant. However, it neither ensures that there is a unique fixed point independent of the

starting configuration
∣∣µ0
〉
, nor does it ensure that the Markov chain converges at all. Consider

for example the stochastic matrix

P =

(
0 1

1 0

)
. (1.12)

This matrix clearly has the two eigenvalues λ0 = 1 and λ1 = −1. This Markov chain, however,

never converges to a fixed point distribution, as it just swaps the probabilities µ0 | 0〉+µ1 | 1〉 →
µ1 | 0〉 + µ0 | 1〉. To ensure convergence and the uniqueness of the fixed point we have to

revoke an additional constraint the stochastic matrices have to satisfy. There is a whole field in

stochastic mathematics that deals with the classification of Markov chains and their ergodicity

properties [18, 19, 22]. The central Theorem is the Perron-Frobenius Theorem that ensures

the convergence properties for element-wise strictly positive matrices. The Perron-Frobenius

Theorem pertains to a set of matrices which are called strictly positive matrices, i.e. matrices

that have only non-vanishing positive entries. For this Theorem it is not required that the

probability preservation condition (1.6) holds and the considered matrices are therefore slightly

more general. Since the proof is rather lengthy and is not immediately relevant to this thesis,

we will skip it here and just state the theorem. The proof can be found in [17].

Theorem 3 (Perron - Frobenius). Let A denote a matrix that is element-wise strictly positive,

i.e. Aij > 0 for all i, j ∈ Ω and let ρ(A) = sup {|λ| |λ ∈ C, A |x〉 = λ |x〉} denote the

spectral radius of A, then the following holds:

1. The spectral radius is strictly positive ρ(A) > 0.

2. Furthermore ρ(A) is an eigenvalue of A.

3. There is a |x〉 ∈ Rd with xi > 0 and A |x〉 = ρ(A) |x〉.
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4. ρ(A) is an algebraically (and therefore also geometrically) simple eigenvalue of A

5. Every eigenvalue λ 6= ρ(A) of A is strictly smaller than the spectral radius, i.e. |λ| <
ρ(A). Hence, ρ(A) is the unique eigenvalue of this modulus

6. We have the unique convergence limn→∞[ 1
ρ(A)A]n = |x〉 〈y |, where |x〉 and 〈y | are the

right and left eigenvector corresponding to ρ(A).

The requirement that P has to be element-wise strictly positive is rather strong and will

not be met in general. To the contrary, most physically motivated Markov chains will have a

large number of vanishing transition elements. So for all practical purposes one needs to have

a simpler criterion that ensures the desired convergence properties. To this end, one considers

a type of stochastic matrix, that is referred to as being primitive. These matrices are defined so

they have the desired properties.

Definition 4 (Primitive maps). We say that a stochastic matrix P is called primitive, if it has

only one eigenvalue λ(P ) of magnitude |λ(P )| = 1 and a fixed point |σ〉 that is strictly positive

on the total state space Ω.

In practice one always faces the problem of testing a given stochastic matrix for primitivity.

One ideally would hope to be able to do so without an explicit diagonalization of the matrix.

The following criterion of primitivity gives rise to useful criteria for verification.

Lemma 5 (Condition for primitive maps). The stochastic matrix P , with Pij ≥ 0 is primitive

if and only if there exists some natural number m ≥ 1 so that

[Pm]ij > 0 (1.13)

for all pairs i, j ∈ Ω.

PROOF: Given the Perron - Frobenius Theorem 3 the proof is straight forward. Since P is

element-wise positive and we have that [Pm]i,j > 0, we can apply the points 4 and 5 of

Theorem 3 directly to Pm. Conversely, if P is taken to be primitive by Definition (4), then

limm→∞ P
m = |σ〉 〈I | ≡ L. Since P is stochastic, it has the left eigenvector 〈I |. Primitivity

furthermore requires σi > 0 for all i and hence Lij > 0. Hence, there must exist an m ≥ 1 so

that (1.13) holds.

It is relatively easy to convince yourself, that the stochastic matrix in the above example

(1.12) does not satisfy this condition.

1.2.2 Example: The Metropolis algorithm

Let us consider an example of a classical Markov chain that will be made use of extensively

throughout this thesis. The prime example for a classical Markov chain is the Metropolis
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algorithm introduced by Metropolis, the Rosenbluth’s and the Teller’s in [7]. The algorithm

was first proposed to compute averages with respect to the thermal Gibbs distribution of the

form

〈x〉 =
∑

i xie
−βEi∑

i e
−βEi

. (1.14)

It is evident that the explicit calculation of this sum will become intractable for a classical com-

puter if the state space is too large. Consider for example the simple case of a one-dimensional

spin chain of N spins that can assume the values si ∈ {+1,−1}. Counting the number of dif-

ferent spin configurations we realize that the total state space has |Ω| = 2N . So the number of

summands in (1.14), and by that the complexity, increases exponentially in the number of spins.

A direct computation of the average therefore becomes intractable for larger system sizes. This

problem is tackled by turning the computation of (1.14) into a sampling problem. Rather than

computing the full average, one just draws random configurations from the probability distri-

bution σi = 1/Ze−βEi and computes the empirical average. Due to the law of large numbers,

we are assured that after taking M samples the the statistical error scales as O(1/
√
M), cf.

[23]. The challenge is therefore to find a method that allows one to sample directly from the

probability distribution σi. This is precisely what the Metropolis algorithm accomplishes. The

Metropolis algorithm simulates, so to speak, the random walk that underlies a stochastic map

which has the distribution σi as its unique fixed point. That is, the Metropolis algorithm can be

seen as a set of rules a random walker which traverses the different configurations i ∈ Ω (e.g

in our example different spin states ↑↑↓ . . . ↓↓) has to obey as to generate an evolution that

corresponds to the desired stochastic map. These rules can be cast into following randomized

algorithm:

0 Initialization: We randomly pick a single configuration i ∈ Ω and assign it to the

starting position of the random walker X0 = i.

1 Update: The random walker is in the position Xn = j. From this position we propose a

new configuration according to some stochastic transition matrix c which we require to

be symmetric cT = c. Hence, with probability cij we propose a new configuration i.

2 Accept/reject: We have to decide, whether we accept the proposed update or keep the

old state. We accept the new configuration with the probability

a = min
(

1,
σi
σj

)
.

That is, with probability a we have Xn+1 = i and with probability 1 − a we keep

Xn+1 = j. We return to 1.

The number of steps the fictive random walker has to take, i.e. the number of times the

Metropolis rule has to be applied, depends on the convergence time, also called mixing time,
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of the underlying stochastic map P . The stochastic map P that is generated by this algorithm

is of the form

Pij =


if i 6= j : min

(
1, σiσj

)
cij

else i = j : cij +
∑

k cik

(
1−min

(
1, σiσk

)) . (1.15)

We know that |σ〉 is a fixed point distribution of this P , because the stochastic map, together

with the probabilities σi, obeys the so called detailed balance condition, i.e. Pijσj = Pjiσi,

as can be checked easily. This condition ensures that
∑

j Pijσj = (
∑

j Pji)σi = σi. In fact,

the entire random walk was set up as to ensure the detailed balance condition. This condition,

however, does not ensure that the σi constitute the only fixed point of the Markov chain. As

we have seen in the previous discussion, pathological degeneracies can actually occur. One

has to verify whether the generated map Pij is primitive, c.f. Definition 4 to ensure uniqueness

of the fixed point. This of course strongly depends on the updates cij . One is in general

at liberty to choose the update rules in a Metropolis simulation. Note , however, that the

convergence rate of the algorithm as well as the primitivity resp. ergodicity strongly depends

on the choice of updates. It is therefore quite a refined art to choose good updates that meet

the requirements. The overall runtime of the algorithm, i.e. the number of Metropolis steps, is

known as the mixing time. This ‘time’ n characterizes the error we make when sampling from

the distribution after n applications in the one norm, i.e. ‖Pn |µ0〉− |σ〉 ‖1 ≤ εmix. The entire

complexity and runtime of the algorithm is measured in terms of the mixing time, see chapter 2

for a more in-depth discussion. There certainly are Hamiltonians for which the runtime of the

algorithm scales exponential in the system size nmix ∼ 2N , because we can encode problem

instances in these Hamiltonians that correspond to NP-complete problems [24], such as for

example spin glasses.

1.3 The master equation

Thus far we have only considered Markov processes that are time discreet. The physically

more realistic scenario, however, is when the evolution is continuous in time. In this chapter

we will introduce Markov processes for which time is a continuous parameter t ∈ [0,∞), even

though our processes will continue to take their values in some finite state space Ω. A good

introduction can be found in [25, 26]. In complete analogy to (1), we define a continuous time

Markov process as:

Definition 6 (Continous time). A stochastic process {X(t)|t ≥ 0} is called a continuous time
Markov process if the conditional probability obeys

P(X(t) = i|X(s) = j,X(tn−1) = in−1, . . . , X(tn−1) = in−1) = P(X(t) = i|X(s) = j),

(1.16)
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for all non - decreasing sequences 0 ≤ t1 . . . ≤ tn−1 ≤ s ≤ t of times and all i1, . . . , i ∈ Ω.

Moreover, we will call the process time homogeneous, if

P(X(t) = i|X(s) = j) = P(X(t− s) = i|X(0) = j). (1.17)

For such a process we define the transition matrix

Pij(t) = P(X(t) = i|X(0) = j), (1.18)

which is by construction a stochastic matrix P (t) for all times t.

A homogeneous time continuous Markov process is completely described by the transition

functions Pij(t). The transition functions can be understood as the probability to jump from

state j to state i at some given time t. We will always require that P (t) is continuous as a

function of t and that the derivatives of the transition functions exist. In fact, it can be shown

that all continuous Markov processes [25] are differentiable and we actually don’t need to

require this explicitly. However, since the proof is rather lengthy, we will not present it here.

Furthermore it is easy to see that at t = 0 we have that P (0) = 1, since Pii(0) = P(X(0) =

i|X(0) = i) = 1 and Pij(0) = P(X(0) = i|X(0) = j) = 0 for i 6= j. Note, that P (t)

can be seen as the probabilistic analogue of the quantum mechanical Feynman propagator. It is

important to point out, that the Markov condition (1.16) immediately gives rise to a semi-group

structure for the transition matrix P (t). We will later on, when we consider quantum stochastic

processes, make this the defining criterion for a continuous time quantum stochastic Markov

process.

Lemma 7 (Chapman-Kolmogorov). If {X(t)|t ≥ 0} is a homogeneous time continuous Markov

process on a state space Ω with transition function Pij(t), then for any t, s ≥ 0, we have that

Pij(t+ s) =
∑
k∈Ω

Pik(t)Pkj(s). (1.19)

This can alternatively be written as

P (t+ s) = P (t)P (s). (1.20)

PROOF: The proof is straight forward; by making use of the Markov property (1.16), and since

we are dealing with time-homogeneous processes, we have that

Pij(t+ s) = P(X(t+ s) = i|X(0) = j) =∑
k

P(X(t+ s) = i|X(s) = k,X(0) = j)P(X(s) = k|X(0) = j) =∑
k

P(X(t+ s) = i|X(s) = k)P(X(s) = k|X(0) = j) =
∑
k

Pik(t)Pkj(s)

(1.21)
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This multiplication rule only gives rise to a semi-group, because P (t) does in general not

posses an inverse that is also a stochastic map. The only case for which the inverse of P is also

stochastic, is when P is a permutation matrix [17]. The semi-group structure for the transition

functions immediately gives rise to a differential equation for the evolution of P (t).

Lemma 8 (Kolmogorov equation). The transition functions Pij(t) of a finite, homogeneous

time continuous Markov process satisfy the following set of differential equations. These equa-

tions are called backward (BW) and forward (FW) Kolmogorov equation respectively.

∂tPij(t) =
∑
k 6=i

Pik(t)qkj − Pij(t)
∑
k 6=i

qkj (BW)

∂tPij(t) =
∑
k 6=i

qikPkj(t)−
∑
k 6=i

qikPij(t) (FW), (1.22)

where the different qik denote transition rates to go from state i to j in a time unit. Hence, the

qij are not probabilities any longer. If we define the map

L =
∑
ij;i 6=j

qij | i〉 〈j | −
∑
ij;i 6=j

qij | i〉 〈i | , (1.23)

we can write the backward as well as the forward equation as

∂tP (t) = P (t)L (BW)

∂tP (t) = LP (t) (FW). (1.24)

PROOF: The lemma rests on the existence of the following limits.

lim
h→0

1− Pii(h)
h

= vi and lim
h→0

Pij(h)
h

= qij (1.25)

We have argued earlier that we will assume that these limits exist and are moreover finite for

a finite state space Ω. It is in general not necessary to assume that this is true, since it can be

proved based on the continuity and the Markov property of the process, cf. [25]. However,

since the proof is rather lengthy, we will omit it here. Furthermore, note that we have that∑
i Pij(t) = 1 for all j. Hence, we can easily see that since

∑
i 6=j Pij(t) = 1−Pjj(t) we have

that due to the above limits the v’s and q’s are related via,
∑

k 6=i qki = vi. It is now very easy

to derive the form of the Kolmogorov equations. Let us consider

1
h

(Pij(t+ h)− Pij(t)) =
1
h

∑
k

Pik(t)Pkj(h)− Pij(t) =
∑
k

Pik(t)
1
h

(Pkj(h)− δik) .

If we now take the limit h→ 0, and make use of the limits in (1.25), we obtain the Kolmogorov

backward equation. The forward equation can be derived similarly by taking the right differ-

ential quotient.
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Let us now take a closer look at the Kolmogorov equations. We know from our previous

discussion that the differential equation has to satisfy the initial condition P (0) = 1. With this

at hand it is straight forward to find the formal solution, which is a solution for both the forward

as well as the backward equation. The solution is simply given by the exponential

P (t) = exp (Lt) . (1.26)

Let us now consider the time evolution of an arbitrary initial probability distribution |µ(0)〉.
Given the time-dependent transition function P (t), we know that the time evolution is

|µ(t)〉 = P (t) |µ(0)〉 . (1.27)

It is possible to rewrite the Kolmogorov equation as a dynamical equation, known as the master

equation for the probability distribution directly by multiplying (1.24) from the right with the

initial probability distribution |µ(0)〉. The master equation then is,

∂t |µ(t)〉 = L |µ(t)〉 . (1.28)

The evolution of a continuous time Markov process is completely determined by the generator

of the semi group L. To describe the dynamical evolution of a physical system it suffices to

provide the generator. In chapter 4 we will encounter a stochastic non-equilibrium process

known as the asymmetric exclusion process which is described by such a master equation.

Let us pause and investigate the generator more closely. Given the Definition of L in (1.23),

we immediately see that the generator has the left eigenvector 〈I |L = 0. Furthermore, a

steady state of exp(Lt) has to obey that |σ〉 = P (t) |σ〉, which translates to the condition

that the steady state has to be the right eigenvector of L corresponding to the eigenvalue 0, i.e

L |σ〉 = 0. It is possible to apply the results of the spectral behavior, discussed in the previous

section 1.2.1, directly to the matrix P (t). Note, that we already know, that we have at least

one eigenvalue λ = 0. Furthermore, since the rates qij are real, we know that the eigenvalues

of L have to come in complex conjugate pairs. Moreover, we can immediately infer from the

formal solution (1.26) a bound on the spectrum of L. Since P (t) is a stochastic matrix, its

spectrum has to be contained in the unit disc of the complex plane. Therefore the real part of

the spectrum of L has to be negative or zero.

1.4 Quantum Markov chains

So far we have only been talking about classical stochastic systems. The central topic of this

thesis is, however, the investigation of quantum mechanical Markov processes. We therefore

need a natural extension of such processes to the quantum domain. We have to find some

form of a stochastic transition matrix for non-commuting probability spaces. For quantum

mechanical systems so-called trace-preserving completely-positive maps, in short tcp-maps or
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just quantum channels, will take the role of the previously discussed stochastic maps [27, 28].

As will be discussed in the following, the justification of the analogy stems from the fact,

that the trace-preserving completely-positive maps exhibit the same spectral characteristics

as stochastic matrices. The concept of completely-positive maps is actually more general.

In fact, any permissible operation on a quantum mechanical system can be represented by a

completely-positive map. Let us discuss these maps in more detail.

1.4.1 Completely positive maps

For these maps to be physically meaningful [15], we shall require the following points:

Definition 9 (Quantum channels). Let A,B ∈Md and λ ∈ C and furthermore let idn denote

the identity map on the spaceM(Hn). Here Hn denotes an arbitrary Hilbert space of dimen-

sion n < ∞. Then, a map T :Md →Md is called trace preserving and completely-positive

if it obeys the following conditions:

1. Linearity:

T (A+ λB) = T (A) + λT (B) (1.29)

2. Preservation of trace and Hermiticity:

tr [T (A)] = tr [A] and T (A)† = T (A†). (1.30)

3. Complete positivity:

T ⊗ idn(A†A) ≥ 0 ∀A ∈M(H⊗Hn) and n ∈ N (1.31)

The requirement of linearity is inherent to quantum mechanics. It can be shown [15, 28],

that non-linear transformations would allow to transmit signals instantaneously. The second

and third requirement ensure that states ,i.e. ρ ∈ S+(H) are again mapped to states. The

requirement of positivity of the map T alone does not guarantee this. Consider for instance a

state ρ ∈ S+(H1) that is part of a larger bipartite state φ ∈ S(H1⊗H2). If we only apply T on

the subsystem described by ρ and act trivially, i.e. with the identity id on the complementary

subsystem, then positivity of T alone does not ensure that the total map T ⊗ id is positive.

An example of such a map is easily constructed by fixing a basis in H1 and defining T as

the transpose on this Hilbertspace. Even though T is then a positive map, T ⊗ id will be no

longer. If one drops the requirement that the map has to be trace preserving, one refers to the

maps, which still obey the last condition, only as completely-positive maps. Such maps can be

implemented on the system in the context of so-called instruments [28] and can for instance be

used to model the post selection of some measurement.
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We stated earlier, that Md together with tr[A†B] = 〈A|B〉HS is a Hilbert space. It is

possible to define the dual of T , that is T ∗ : Md → Md as the conjugate map of T with

respect to the Hilbert-Schmidt scalar product, i.e. tr[T (ρ)A] = tr[ρT ∗(A)]. Therefore T ∗

acts on the observables, rather then on the states and can be seen to implement a quantum

evolution in the Heisenberg picture. The requirement that T is trace preserving now simply

reads T ∗(1) = 1, i.e. the identity is the fixed point of the dual channel. We call a map T that

has the identity as a fixed point unital.

Let us now find a way to characterize such completely-positive maps on a finite dimensional

state space. We need a simple criterion to verify whether a linear map T is indeed a tcp-map.

Consider therefore the following state that is obtained by applying T only to one subsystem of

a maximally entangled state.

Definition 10 (Choi - Jamiolkowski). Let |Ω〉 = 1√
d

∑d
i | ii〉 denote the maximally entangled

state on Cd ⊗ Cd, we define a state τ ∈ S+(Cd ⊗ Cd) as the Choi - Jamiolkowski state

associated with T as

τ = (T ⊗ idd) (|Ω〉 〈Ω |). (1.32)

Between the map T and the state τ exists a simple one - to - one correspondence. This

correspondence and its consequences are expressed in the following lemma.

Lemma 11 (Jamiolkowski isomorphism). A linear map T : M(Cd) →M(Cd) is related to

an operator τ ∈M(Cd ⊗Cd) via the identity

tr[AT (B)] = dtr[τA⊗BT ] where τ = (T ⊗ idd) (|Ω〉 〈Ω |) (1.33)

where A,B ∈M(Cd) and |Ω〉 again the maximally entangled state. The above relations lead

to the following correspondence between τ and T .

1. Complete positivity: T is completely positive if and only if τ ≥ 0.

2. Preservation of Hermiticity: τ = τ † if and only if T (A)† = T (A†).

3. Preservation of trace: T ∗(1) = 1 if and only if trH1 [τ ] = 1
d1.

4. Unitality: T (1) = 1 if and only if trH2 [τ ] = 1
d1.

PROOF: The first thing we need to show is the correspondence given in (1.33). Note that

d tr[τA⊗BT ] = d 〈Ω | T ∗(A)⊗BT |Ω〉 = tr [AT (B)] . (1.34)

Furthermore, we know that τ has to be positive by definition, since T is completely positive.

So we only need to show the converse, namely that for τ ≥ 0 the map T is completely positive.

To proof this let us consider an arbitrary density matrix ρ ∈ M(Cd ⊗ Cn) for some n ∈ N.

We know that (T ⊗ idn)(ρ) ≥ 0 if this statement holds for all pure states in the decomposition
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of ρ =
∑

i pi |ψi〉 〈ψi |, that is if (T ⊗ idn)(|ψi〉 〈ψi |) ≥ 0 for all i. However, we have

already seen that every pure state |ψ〉 ∈ Cd ⊗ Cn can be written as |ψ〉 = 1 ⊗ R |Ω〉 for

some R ∈ M(Cd,Cn). Thus we can rewrite (T ⊗ idn)(|ψi〉 〈ψi |) = (1 ⊗ R)τ(1 ⊗ R†).

Since τ ≥ 0, we see directly that some matrix of the form AτA† is also positive and by

that the positivity of (T ⊗ idn) for all n. The remaining relations are easily proved by direct

observation.

The Choi-Jamiolkowski correspondence allows one to translate between the properties of

states on a bipartite Hilbert space and completely-positive maps. It is also straight forward to

recover the action of the map T on some A ∈ Md. By working in a suitable basis of Md,

choose for instance the product basis {| i〉 〈j |}i,j=1...d, we can write

T (A) = d
∑
i,j,k,l

〈ij | τ | kl〉 | i〉 〈j |A | k〉 〈l | . (1.35)

It is also possible to derive a generic form for completely positive maps based on the discussed

correspondence. We will shortly see, that every completely-positive map can be written in the

so called Kraus representation.

Theorem 12 (Kraus representation). A linear map T : Md → Md is completely positive, if

and only if it can be written in the Kraus form

T (ρ) =
r∑
j=1

AjρA
†
j , (1.36)

where the operators Aj are the so-called Kraus operators and satisfy:

1. Normalization:

T is trace preserving if and only if
∑

j A
†
jAj = 1 and unital if and only if

∑
j AjA

†
j = 1.

2. Kraus rank:

The minimal number of Kraus operators is r = rank(τ) ≤ dim(H)2.

3. Orthogonality:

Furthermore, there always exists a decomposition with r = rank(τ) Kraus operators that

are orthogonal with respect to the Hilbert - Schmidt scalar product, i.e. tr[A†jAi] ∝ δji.

4. Freedom of the representation:

The Kraus decomposition is not unique. However, it is possible to always find a unitary

relationship between different sets of Kraus operators for the same map T . We can al-

ways relate the two sets {Ai} and {Ãj} by a unitary with entriesUij viaAi =
∑

j UijÃj .
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PROOF: We start by assuming that T is completely positive and show that the Kraus represen-

tation follows from τ ≥ 0. Since τ is positive it always permits a spectral decomposition into

r unnormalized rank 1 projectors

τ =
r∑
i=1

|ψi〉 〈ψi | =
r∑
i=1

(Ai ⊗ 1) |Ω〉 〈Ω |
(
A†i ⊗ 1

)
. (1.37)

Recall that τ was defined as (T ⊗ id)(|Ω〉 〈Ω |). From this we read off, that T acts as (1.36) on

one half of the maximally entangled state. Furthermore, the Kraus rank r and the orthogonality

of the Ai immediately follow from the spectral decomposition of the state τ . Conversely, if

the map T is chosen as in (1.36), positivity of τ follows directly. The normalization of the

partial traces of trA/B[τ ] translate to the constraints
∑

iA
†
iAi = 1 and

∑
iAiA

†
i = 1 for the

Kraus operators. Recall that the decomposition of τ into rank-1 projectors is not unique. Other

decomposition with k > r projectors are also possible,

τ =
r∑
i=1

|ψi〉 〈ψi | =
k∑
j=1

˜|ψj〉 ˜〈ψj |. (1.38)

if the set of vectors {|ψi〉}i and { ˜|ψ〉j}j are related by a unitaryU , so that |ψi〉 =
∑

j Uij
˜|ψj〉.

This follows directly from considering all possible purifications |Ψ〉AB of τ = trB[|Ψ〉 〈Ψ |],
because two different purifications |Ψ〉AB =

∑r
i=1 |ψi〉 | i〉 and ˜|Ψ〉AB =

∑k
i=1

˜|ψ〉j | j〉 only

differ by a unitary of the form (1A ⊗ UB). We can therefore conclude, that also all possible

Kraus operators are related by a unitary transformation.

The general perception is that completely-positive maps arise due to open system dynamics.

The dynamics of an open system is modeled by only considering the dynamics of a chosen

subsystem of a larger system that evolves unitarily. With the Kraus representation at hand it is

indeed possible to see, that every tcp-map can be understood in this sense.

Theorem 13 (Open-system representation). Let T : Md → Md be a completely-positive

trace-preserving map, then there exists a unitary U acting onH⊗HE and a normalized vector

|φ〉 ∈ HE , so that we can write

T (ρ) = tr
[
U(ρ⊗ |φ〉 〈φ |)U †

]
, (1.39)

where trE is taken as the partial trace over the ancilla spaceHE .

PROOF: Let us first prove that the application of a unitary followed by a partial trace gives rise

to a tcp-map. We choose a basis {| i〉}i of the ancilla spaceHE and write

trE
[
U(ρ⊗ |φ〉 〈φ |)U †

]
=
∑
i

〈i |U |φ〉 ρ 〈φ |U † | i〉 ≡
∑
i

AiρA
†
i , (1.40)

where we defined the operators Ai ≡ 〈i |U |φ〉, which act only the spaceMd and satisfy the

normalization
∑

iA
†
iAi = 〈φ |U †U |φ〉 = 〈φ |1⊗ 1E |φ〉 = 1. Thus, these operators are the



36 1 Preliminaries for classical and quantum Markov processes

Kraus operators of a tcp-map. Conversely, consider the Kraus decomposition of the tcp-map

T (ρ) =
∑

iAiρA
†
i . From this we construct the isometry V =

∑
iAi ⊗ | i〉 on H ⊗HE . We

have that T (ρ) = trE [V ρV †]. It is possible to find a unitary U that acts with respect to a

reference state |φ〉 like the isometry V = U(1⊗ |φ〉).

Matrix representation A convenient way of expressing the action of a linear map on the

space Md is via its matrix representation. Recall that Md itself is a linear space with an

endowed natural scalar product, the Hilbert-Schmidt scalar product as discussed earlier. Fur-

thermore, recall that by thisMd is naturally isomorphic toMd ' Hd ⊗ Hd. The action of a

linear map on this space can be represented by a matrix, if a suitable basis is chosen. We will

denote the matrix representation of T on Hd ⊗Hd, which we will call the transfer matrix, by

a hat, i.e. T̂ . A concrete matrix representation of T is obtained by choosing an orthonormal

operator basis {Fα ∈Md}α=1...d2 ofMd. The matrix elements can then be computed as

T̂α,β = 〈Fα | T |Fβ〉HS = tr
[
F †αT (Fβ)

]
. (1.41)

Therefore, we have by construction that the composition of two channels T 3 = T 2 ◦ T 1

corresponds to the common matrix product of T̂ 3 = T̂ 2T̂ 1. Furthermore, the matrix repre-

sentation of the conjugate channel T ∗ is given by the adjoint matrix T̂ †. The simplest or-

thonormal operator basis ofMd is given by the standard product basis {| i〉 〈j |}i,j=1...d2 . With

respect to this basis, a tcp-map with Kraus representation T (ρ) =
∑

iAiρA
†
i is simply given

by T̂ =
∑

iAi ⊗ Ai. In this basis, it is straight forward to relate the Choi-Jamiolkowski

operator τ to the matrix representation by writing

T̂ = d τTB , (1.42)

where TB denotes the partial transposition with respect to the second Hilbert space, i.e

〈m n | τTB | i j〉 ≡ 〈m i | τ |n j〉. It, however, may turn out that some other matrix basis can

be more useful, such as choosing the Fα hermitian or unitary.This generally depends on the

problem. A more exhaustive list of operator Bases can be found in [29, 28].

1.4.2 Perron Frobenius and irreducibility

The fact that the trace-preserving completely-positive maps can be seen as the natural quantum

generalization of classical stochastic matrices is due to their spectral properties. A quantum

channel does indeed exhibit features very similar to those of a classical transition matrix. Apart

from the obvious fact, that both maps are linear and map probability distributions to probabil-

ity distribution, that is, states to states in the quantum setting, we will see that the quantum

channels posses the same spectral behavior as their classical counterparts. Furthermore, the

concept of irreducibility and ergodicity can also be defined in an analogous fashion. In chapter

2 we carry this analogy further. Let us first investigate the spectral and fixed point properties
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of tcp-maps. We can define the spectrum spec(T ) of some tcp-map T :Md →Md by the set

of {λ ∈ C} so that for each of the λ’s there is a X ∈Md for which

T (X) = λX. (1.43)

The operator X is often referred to as the eigenvector of T . When we consider Md as a d2

- dimensional vector space, the eigenvalues of T can be seen as just the eigenvalues of the

d2×d2-matrix representation T̂ . Note, that since we are considering maps that are Hermiticity

preserving, i.e. T (A)† = T (A†), we are ensured that the eigenvalues are real or come in

complex pairs. It is easy to see, that the spectrum of a completely-positive map is similarly

confined as that of stochastic matrices.

Lemma 14 (Spectral radius). If T is a positive map onMd, then its spectral radius ρ(T ) =

sup {|λ| |λ ∈ spec(T )} satisfies

ρ(T ) ≤ ‖T (1)‖∞, (1.44)

where ‖ · ‖∞ denotes the infinity norm on the matrix spaceMd, cf. [17]. If in addition T is

either unital or trace preserving, there exists an eigenvalue λ0 = 1 and we have that ρ(T ) = 1.

So all eigenvalues lie in the unit disc of the complex plain.

PROOF: The proof is almost identical to that of stochastic matrices. We only need to make use

of the Russo - Dye Theorem [17] ‖T (X)‖∞ ≤ ‖T (1)‖∞‖X‖∞ so we can write |λ|‖X‖∞ =

‖T (X)‖∞ ≤ ‖T (1)‖∞‖X‖∞, which implies (1.44). Furthermore we have that if T is unital,

then ‖T (1)‖∞ = 1. Since if T is trace preserving, we have that T ∗ is unital and the spectra of

both maps coincide.

We have seen that the spectral properties of stochastic maps can be understood on the

account of the Perron-Frobenius theorem. In order to derive a statement for completely-

positive maps we first have to think about a suitable classification scheme of what irreducibil-

ity and primitivity means for completely-positive maps. Such results were first proved in [30]

for completely-positive maps. The following Theorem defines irreducible positive maps and

shows that this can be done in various different ways which turn out to be equivalent.

Theorem 15 (Irreducibility of positive maps). Let T : Md → Md be a positive linear map.

The following properties are equivalent:

1. If P ∈Md is a Hermitian projector such that T (P Md P ) ⊆ P Md P ,

then P ∈ {0,1}.

2. For every non-zero A ≥ 0 we have (id+ T )d−1(A) > 0.

3. For every non-zero A ≥ 0 and every t ∈ (0,∞) we have exp(tT (A)) > 0.

4. For every orthogonal pair of non-zero, positive semi-definite matricesA,B ∈Md, there

is an integer n ∈ {1, . . . , d− 1} such that tr[BT n(A)] > 0.
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PROOF: 1. → 2.: From T (A) ≥ 0 we get an inclusion for the kernels ker(id + T )(A) ⊆
ker(A). Suppose equality holds in this inclusion, then supp(T (A)) ⊆ supp(A). Therefore

T (P Md P ) ⊆ P Md P , if we take P as the hermitian operator that projects on the support

space of A. Since T is irreducible this can only be if we have that A > 0. The application

of (id + T ) to A thus has to increase the rank until there is no kernel left, which happens at

least after d − 1 steps. 2. → 3.: Comparing the Taylor expansion of exp(tT (A)) > 0 with

that of (id + T )d−1(A) > 0, we see that the expansion of (id + T )d−1(A) > 0 is part of the

expansion of the exponential. Moreover, all terms in the expansion are positive, thus we have

exp(tT (A)) ≥ (id + T )d−1(A). 3. → 1.: Suppose T is irreducible, then there is some P 6∈
{0,1} so that T (P ) ≤ cP for some constant c. Then, however, exp(tT )(P ) ≤ exp(ct)(P )

in contradiction with 3. 4. → 1.: If T is reducible we have a projection operator P so that

tr[(1 − P )T n(P )] for all n. 2. → 4.: Choose B,A with tr[BA] = 0 and expand tr[B(id +

T )d−1(A)] > 0. Since all terms are positive, at least one term has to be tr[BT n(A)] > 0 for n

in the specified subset.

In order to relate irreducibility to the spectral properties of a positive map T it is useful to

consider the following functionals defined on the cone of positive semi-definite operators:

r(X) ≡ sup{λ ∈ R | (T − λid)(X) ≥ 0}, (1.45)

r̃(X) ≡ inf{λ ∈ R | (T − λid)(X) ≤ 0}. (1.46)

We are especially interested in the maxima r ≡ supX≥0 r(X) and r̃ ≡ supX≥0 r̃(X) which

obviously satisfy r ≥ r̃ and have to coincide for irreducible maps.

Theorem 16 (Perron-Frobenius for positive maps). Let T : Md → Md be an irreducible

positive map. Then:

1. We have that r = r̃ for the quantities defined in (1.45) and (1.46).

2. r is a non-degenerate eigenvalue of T and the corresponding eigenvector is strictly pos-

itive, i.e. T (X) = rX > 0.

3. If there is any λ > 0 which is an eigenvalue of T with positive eigenvector, i.e. T (Y ) =

λY ≥ 0, then λ = r.

4. r is the spectral radius of T .

PROOF: We observe that we can be assured that the inf and sup in the equations (1.45) and

(1.46) will be obtained, since we can work on a compact set by requiring that tr[X] = 1. We

begin by showing that r is attained for a X > 0 so that T (X) = rX . Consider any non-zero

X ≥ 0 for which λ = r(X) > 0. Since

(T + id)d−1(T − λid)(X) = (T − λid)(T + id)d−1(X) (1.47)



1.4 Quantum Markov chains 39

we can infer two things. First, the supremum of (1.45) is attained for a strictly positive X > 0

since we have that irreducibility is equivalent to (T + id)d−1(X) > 0. Second, the X achiev-

ing the supremum must satisfy (T − rid)(X) = 0. Otherwise the expression in (1.47) would

be positive definite and a large multiple of the identity could be subtracted, which is in con-

tradiction to the supposed maximality. Also, we have that r(X) = r̃(X) for any eigenvec-

tor X ≥ 0, the mentioned observation together with r ≥ r̃(X) proves statement 1 of the

theorem. We need to show non-degeneracy to prove the second point of the theorem. To

this end, assume there is an X ′ which is linearly independent from X and also an eigenvec-

tor to the eigenvalue r. We can always choose X ′† = X ′. It is always possible to choose

a c ∈ R so that X + cX ′ ≥ 0 has a non-vanishing kernel. This is, however, in contra-

diction to 0 < (T + id)d−1(X + cX ′) = (r + 1)d−1(X + cX ′). Thus r has to be non-

degenerate. Let us proof 3: Assume Y ≥ 0 is an eigenvector of T with eigenvalue λ > 0.

Since r is also the eigenvalue of the dual T ∗ for some eigenvector X ′ > 0, we have that

rtr[X ′Y ] = tr[T ∗(X ′)Y ] = tr[X ′T (Y )] = λtr[X ′Y ]. Since tr[X ′Y ] > 0 we have that

r = λ. Furthermore, since X > 0 as the eigenvector corresponding to r, we can always define

a unital map T ′(·) ≡ 1/rX−1/2T (X1/2 ·X1/2)X−1/2 which is similar to T . We have that the

spectral radius ρ(T ′) = 1 and thus ρ(T ) = r.

This non-commutative version of the Perron-Frobenius Theorem immediately gives rise

to some statements about the fixed point structure of positive maps. This is expressed in the

following proposition.

Proposition 17 (Irreducibility from spectral properties). Let T : Md → Md be a positive

map with spectral radius ρ(T ). Then the following statements are equivalent:

1. T is irreducible

2. The spectral radius ρ(T ) is a non-degenerate eigenvalue and the corresponding left and

right eigenvectors are positive definite. That is T ∗(Y ) = ρ(T )Y and T (X) = ρ(T )X .

PROOF: The direction 1→ 2 is a direct consequence of the previous Theorem 16 when applied

to T and T ∗ respectively. For the converse, observe that if Q ∈ Md is some invertible matrix

we have that for an irreducible T the map T ′(·) = cQ−1T (Q · Q†)[Q†]−1 is also irreducible.

This is true, since if T ′ were reducible, with some projection P ′, some P acting as a projection

on the support of QP ′Q† would also reduce T . If we now choose c = 1/ρ(T ) and Q =

Y −1/2 the map T ′ becomes trace preserving and we have that T (X ′) = X ′ > 0 where X ′ =

Y 1/2XY 1/2. Moreover, we have now that the eigenvalue 1 of T ′ is non-degenerate. Now

assume that T ′ and thus T would be reducible, then there is some hermitian projection P 6∈
{0,1} so that T ′(PMdP ) = PMdP and there has to be a right eigenvector σ ≥ 0 that does

not have full rank. Hence, σ and X > 0 would be linear independent and the eigenvalue would

be degenerate, which leads to a contradiction
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We now focus on a special class of trace-preserving completely-positive maps that are

called primitive. A primitive map is an irreducible tcp-map that has only one eigenvalue of

magnitude 1. The Perron-Frobenius Theorem for tcp - maps only ensures that the eigenvalue

λ0 = 1 is non-degenerate. It, however, does not exclude some form of ‘oscillatory’ behavior

with respect to some other eigenvalue, e.g. λ− = −1 or some other phase factor. The presence

of other eigenvalues of magnitude |λ| = 1 hinder the convergence to a unique fixed point.

We will see that primitive maps are not plagued by this oscillatory behavior. The following

Theorem was first proved in [31].

Theorem 18 (Primitive maps). Let T : Md → Md denote a tcp-map. Then the following

statements are equivalent:

1. There exists an n ∈ N so that for any state ρ ∈ S+
d we have that T n(ρ) > 0, i.e. after n

applications the resulting state has full rank.

2. The composed channel T k is irreducible for any k ∈ N.

3. There exists a σ ∈ S+
d with σ > 0 so that for all ρ ∈ S+

d we have that

limn→∞ T n(ρ) = σ.

PROOF: We prove 2. → 3. Since T is irreducible there is a unique fixed point T (σ) = σ > 0

and due to the trace preservation the spectral radius of T is one.Yet, since T k is irreducible

for any k we have that all other eigenvalues have to be strictly smaller than one. Therefore

the limit in 3 exists. Now 3. → 2.: Suppose that T k is reducible for some k, then there is

some projection P 6∈ {0,1} for which T kl(P ) 6≥ 0 for all l which is in contradiction to 3.

1.→ 2. follows by the same argument. Finally 3.→ 1.: Assume that T n(ρ) has a kernel with

eigenvector |ψ〉. Then λmin(σ) ≤ | 〈ψ | T n(ρ) − σ |ψ〉 |‖T n(ρ) − σ‖ = ‖(T n − T∞)(ρ −
σ)‖ ≤ |λ1|nc‖ρ− σ‖, where λmin denotes the smallest eigenvalue and λ2 is the second largest

eigenvalue in magnitude of T . Here ‖ ·‖ denotes the operator norm. The constant c depends on

T , but is independent on n and T∞(·) = σtr[·]. Taking n→∞ leads to a contradiction.

1.5 The Lindblad equation

In section 1.3 we have been discussing the description of classical continuous-time Markov

processes. It is of course desirable to have a similar description for continuous time quantum

Markov processes. Indeed, such a formalism has been derived in [32, 33]. The formalism

gives the correct description of the irreversible evolution of an open quantum system that is in

contact with a heat bath provided that the relaxation time of the correlations with the bath, is

typically much shorter than the decay times of the system. The formalism is encountered in a

variety of of physical problem such as in quantum optics [34] and in terms of the description of

decoherence in open quantum systems [35]. We will be making use of the Lindblad equation in
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chapter 5 to investigate transport properties of driven quantum systems. The starting point for

the formal derivation is the dynamical semi-group of completely-positive maps. This follows

the reasoning we have already encountered in the derivation of the classical master equation,

cf. Lemma 8. We have seen that the Markov property is essentially equivalent to the structure

of a semi-group as as can be seen in the Chapman - Kolmogorov Lemma 7.

Definition 19 (Dynamical semi-group). For a set of states S+(H) a family of maps Tt :

S+(H) → S+(H), parametrized by t ∈ [0,∞) is called a dynamical semi-group, if for

all t, s ∈ [0,∞) we have that

Tt+s = Tt ◦ Ts and T0 = id. (1.48)

Note, that this semi-group property implies that the underlying process is both Markovian

and time homogeneous, so the evolution depends neither on the history nor on the current point

in time. Furthermore, we have not yet required that the family of maps Tt has to be completely

positive! In this section we are concerned with deriving the necessary and sufficient condition

for a dynamical law known as the quantum master equation that generates the evolution so that

the corresponding semi-group is indeed completely positive. We will show that the semi-group

can always be written as Tt = exp(Lt), if the semi-group is continuous in t. Here, continuity

is typically assumed with respect to the trace distance ‖ · ‖tr. The complete positivity follows

from the special form of the generator.

Proposition 20 (Form of the semi-group). Let Tt be a dynamical semi-group, which is contin-

uous in t ∈ [0,∞), then Tt is differentiable and has to be of the form Tt = exp(Lt) for some

generator LMd →Md. Thus, Tt satisfies the differential equation ∂t Tt = L Tt.

PROOF: Since Tt is by assumption continuous t and furthermore T0 = id,

Mε =
∫ ε

0
Tsds (1.49)

is also invertible for sufficiently small ε > 0. We now express Tt as an integral, which shows

that it is differentiable. To this end, note that

Tt = M−1
ε MεTt = M−1

ε

∫ ε

0
Ts+tds

= M−1
ε

∫ ε+1

t
Tsds = M−1

ε (Mt+ε −Mt) . (1.50)

Hence Tt is differential and we define the generator as limε→0 ‖L(ρ) − ε−1 (Tε(ρ)− ρ) ‖tr
for all ρ ∈ S+(C). We therefore have, that Tt is of the desired from and hence satisfies the

differential equation ∂tTt = LTt.

Let us now consider the requirements the generator L needs to satisfy to ensure that the

generated semi-group is actually completely positive. We need to make use of the two follow-

ing propositions which give one general criteria to check for complete positivity.
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Proposition 21 (Conditional positivity). Let L : Md → Md denote a linear map. Then the

following two statements are equivalent:

1. There is a completely-positive map φ :Md →Md and some matrix κ ∈Md, so that

L(ρ) = φ(ρ)− κρ− ρκ†. (1.51)

2. We denote by |Ω〉 a maximally entangled state in Cd ⊗ Cd. Then L is Hermiticity

preserving and we have

P (L ⊗ id)(|Ω〉 〈Ω |)P ≥ 0, (1.52)

where P = 1−|Ω〉 〈Ω | is the projection on the orthogonal complement of the maximally

entangled state.

PROOF: We prove that 1. → 2. Upon inserting (1.51) into (1.52) we get that the condition

reduces to P (L⊗ id)(|Ω〉 〈Ω |)P = P (φ⊗ id)(|Ω〉 〈Ω |)P , since P |Ω〉 = 0. This is of course

positive since φ is completely positive. Moreover, L is Hermiticity preserving. Conversely

2 follows from 1; since L is Hermitcity preserving, we have that ω ≡ (L ⊗ id)(|Ω〉 〈Ω |) is

Hermitian. But since PτP ≥ 0 we can write ω = Q − |ψ〉 〈Ω | − |Ω〉 〈ψ | where Q ≥ 0 has,

when written in a basis containing |Ω〉, non-zero entries only in columns and rows orthogonal

to |Ω〉. |ψ〉 then contains all elements of ω in the column and row corresponding to |Ω〉. By

Lemma 11, we can now identify Q = (φ⊗ id)(|Ω〉 〈Ω |) and (1⊗ κ)(|Ω〉 = |ψ〉.

The second preposition links the conditional positivity of the generator L to the complete

positivity of Tt.

Proposition 22 (Completely positive dynamical semi-groups). Consider a family of linear

maps Tt :Md →Md for t ∈ [0,∞), then the following two statements are equivalent:

1. Tt is a dynamical semi-group of completely-positive maps which is continuous in t.

2. We can write Tt = exp(Lt) for some conditionally completely-positive map (cf. prop.

21) L :Md →Md.

PROOF: The first statement implies the second statement: By Proposition 20 we know that

the semi-group can be written as exp(Lt). Tt is by assumption completely positive and we

consider the expansion

0 ≤ (exp(Lt))(|Ω〉 〈Ω |) = |Ω〉 〈Ω |+ t(L ⊗ id)(|Ω〉 〈Ω |) +O(t2) (1.53)

Applying on both sides the projector P = 1 − |Ω〉 〈Ω |, dividing by t and taking the limit

t → 0, we see that P (L ⊗ id)(|Ω〉 〈Ω |)P is Hermiticity preserving and positive. Conversely

we can see that the second statement implies the first by observing that exp(Lt) is a dynamical
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semi-group. The complete positivity can be seen when we decompose the generator into to

parts L = φ+ φκ, where φκ(ρ) = −κρ− ρκ. From the Lie-Trotter formula we get that

exp(Lt) = lim
n→∞

(exp(t/nφ) exp(t/nφκ))n . (1.54)

Since concatenations of completely-positive maps are again completely positive, it is sufficient

to show that both exp(t/nφ) and exp(t/nφκ) are completely positive The complete positivity

of exp(t/nφ) follows from that of φ by Taylor expansion. For exp(t/nφκ) we invoke the

matrix representation of φκ in the natural basis | i〉 | j〉. This yields φ̂κ = −κ⊗ 1− 1⊗ κ and

thus we get exp(t/nφ̂κ) = A ⊗ A where A = exp(−t/nκ). Hence exp(t/nφκ) has a Kraus

representation with the Kraus operator K and is thereby completely positive.

As we already noted, L is the generator of the semi-group. Therefore, if we consider a

time dependent density matrix ρ(t) = Ttρ(0), we can interpret Tt as the integrated form of a

Markovian quantum master equation, which is referred to as the Lindblad equation

∂tρ = L(ρ). (1.55)

We now proceed to determine the structure of the generator of a completely-positive dynamical

semi-group. This Theorem was proved by Lindblad in [32] for infinite dimensional Hilbert

spaces. However, we will only proof the form of the generator for finite dimensional spaces

[33].

Theorem 23 (Lindblad generator). A linear operator L : Md → Md is the generator of a

completely-positive dynamical semi-group onMd, if and only if it can be expressed as

L(ρ) = −i [H, ρ] +
∑
k

γk

(
LkρL

†
k −

1
2

{
L†kLk, ρ

}
+

)
(1.56)

where H = H† is a Hermitian operator (the Hamiltonian) and Lk ∈ M(C) are arbitrary

matrices called Lindblad operators. Moreover, the rates γk have to be positive γk ≥ 0.

PROOF: We start by first proving the ”if” part. Given a completely-positive semi-group, we

can write in Kraus representation Tt(ρ) =
∑

αAα(t)ρA†α(t). We denote by {Fα}α=0...d2−1 an

orthonormal operator basis ofMd that contains F0 =
√

1/N1. Expanding the Kraus - opera-

tors Kα =
∑

i〈Fi|Kα〉HSFi in this basis we obtain Tt(ρ) =
∑

ij cij(t)FiρF
†
j . Note, that the

cij(t) =
∑

α〈Fi|Aα〉HS〈Fj |Aα〉HS are the entries of a positive matrix c, since for all vectors

| v〉 =
∑

i vi | i〉 in Cd
2

we have that 〈v | c | v〉 =
∑

ij

∑
α vivj

∑
α〈Fi|Aα〉HS〈Fj |Aα〉HS =∑

α ‖
∑

i viFiAα‖22 ≥ 0. Now, since we have a continuous semi-group we know it is differen-

tiable due to Proposition 20. So we obtain

L(ρ) = lim
ε→0

1
ε

(Tε(ρ)− ρ) =
1
N
a00ρ+

1√
N

d2−1∑
i=1

ai0Fiρ+ a0iρF
†
i +

d2−1∑
i,j=1

aijFiρF
†
j , (1.57)



44 1 Preliminaries for classical and quantum Markov processes

where we have defined the following limits

a00 = lim
ε→0

c00(ε)−N
ε

and aij = lim
ε→0

cij(ε)
ε

= aji for (i, j) 6= (0, 0). (1.58)

If we now define the operators

F =
1√
N

d2−1∑
i=1

ai0Fi , G =
1

1N
a001+

1
2

(F + F †) and H =
1
2i

(F − F †), (1.59)

we obtain

L(ρ) = −i[H, ρ] + {G, ρ}+ +
d2−1∑
i,j=1

aijFiρF
†
j , (1.60)

for which by trace preservation tr [L(ρ)] = 0 we have that G = −1/2
∑d2−1

i,j=1 aijF
†
i Fj . Now,

since the aij were derived from the cij they too comprise the entries of a positive matrix a

which can be diagonalized with some unitary UaU † = diag(γ1, . . . , γd2) ≥ 0. If we denote by

uij the entries of the unitary matrix and define the Lindblad operators via Fi =
∑

k uikLk, we

obtain (1.56).

Conversely we show the ”only if” part of the Theorem by observing that we only need to

show conditional complete positivity (cf. Proposition 22) of the generator (1.56). We have that

〈ψ |P (L ⊗ 1) (|Ω〉 〈Ω |)P |ψ〉 ≥ =
∑
k

γk 〈ψ |P (Lk ⊗ 1) |Ω〉 〈Ω | (L†k ⊗ 1)P |ψ〉

=
∑
k

γk| 〈ψ |P (Lk ⊗ 1) |Ω〉 |2 ≥ 0, (1.61)

where we made use of the fact that P |Ω〉 = 0 and all γk ≥ 0.

One may call −i[H, ·] the ”Hamiltontian” part of the generator, which generates the co-

herent evolution of the state, and the remaining summands γk(Lk · Lk − 1/2{L†kLk, ·}) its

”dissipative parts”. That can, depending on the model, describe the dissipation or the damp-

ing of the dynamics. We have chosen a rather formal introduction of the generator in this

section. The generator can, however, be derived from a physical picture in terms of pertur-

bation theory as well. The general starting point is the open-system description , cf. Lemma

13, of the dynamics [36, 34]. One can always obtain the dynamics of an open system by

considering the closed dynamics of a larger system described by some Hamiltonian Htot =

Hsys⊗1+1⊗Hbath+Hint. This Hamiltonian has the system evolution Hsys separated from

the bath dynamics Hbath and the interaction between both parties is only via the Hamiltonian

Hint. The system dynamics of the system state ρsys can under very restrictive circumstances

be derived by taking the partial trace over the bath degrees of freedom of the von Neuman

equation ∂tρsys = trbath [[Htot, ρsys ⊗ ρbath]]. One obtains a closed equation for the system

evolution by the Nakajima Zwanzig [37, 38] projection operator technique. However, in gen-

eral this approach will not give rise to a Lindblad type master equation, since for many realistic

physical systems the dynamics of the physical subsystem are non-Markovian. Nevertheless, a
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Markovian approximation to the dynamics can often be made for certain systems. For these

systems, a quantum master equation can be obtained perturbatively [36, 34].

Recall, that the fact that we are dealing with a family of trace-preserving completely-

positive maps Tt = exp(Lt) leads to several properties of the generator. Since the map Tt
is trace preserving we have that the trace of tr[L(ρ)] = 0 for all ρ. We can write alternatively

that the dual has 1 as a fixed point L∗(1) = 0. This can be checked directly when consid-

ering the form (23). Furthermore, since Tt is a tcp - map, we know that the the real part of

the spectrum of L cannot be positive Re(λi(L)) ≤ 0 and that at least one eigenvalues λ0 = 0

exists.

1.6 Matrix product states

In this section we will briefly introduce the matrix product state representation (MPS) for pure

multipartite states [5, 6]. We will consider a representation of states on some Hilbertspace

H = Cd⊗. . .⊗Cd that have a bounded amount of entanglement. We will see in chapter 5, how

these states can be generalized to so-called matrix product operators and by that to mixed states.

Matrix product states prove utterly useful in the simulation of quantum many-body systems and

are intimately connected to the density matrix renormalization group (DMRG) algorithm [39,

40]. The notorious complexity of quantum many-body systems stems to a great extend from

the exponential growth of the underlying Hilbert space. If we consider a system comprised of

N systems of dimension dwe have dim(H) = dN and we need exponentially many parameters

just to write down the state. Matrix product states, however, have only a polynomial number of

parameters and explore only a small subset of the larger Hilbertspace. Expectation values with

respect to these states can be computed efficiently. Furthermore, MPS also give great insight

to the general entanglement structure present in strongly correlated quantum system and are in

this regard interesting in their own right. It can be argued that for several physical systems MPS

approximate the ground states of the Hamiltonian faithfully [41], namely those with only local

interactions. In this section we will only focus on a brief introduction, as a faithful account

of the work done in this field would go beyond the scope of this chapter. A good introduction

to these states and their higher dimensional generalizations can be found in [3, 4]. We will

consider pure states |ψN 〉 ∈ Cd
N

characterizing a ‘one-dimensional’ chain ofN local d - level

systems. The most general construction can be given in the valence bond picture. Consider

a ring of N sites labeled by s and assign two virtual spins of dimension Ds to each of them.

Assume that every pair of neighboring Ds-level systems share an (unnormalized) maximally

entangled state ˜|Ω〉 =
∑Ds

k=1 | kk〉. The last site N and the first site 1 are also connected by a

maximally entangled state. Then apply the projection

A[s] =
d∑
i=1

Ds∑
α,β=1

[
A

[s]
is

]
αβ
| i〉 〈αβ | . (1.62)
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to each of the N -sites. This operation projects the ‘virtual’ spins at each side on a single

physical spin. Here, the Greek indices refer to the virtual Ds-level system and the d matrices

A
[s]
is

are Ds ×Ds+1 dimensional. This construction is depicted in Fig. 1.1.

Figure 1.1: Construction of a matrix product states. The virtual spins at each site are depicted by the
two larger dots and a maximally entangled state is represented by a line between different sites.

The resulting multipartite state will then have the form

|ψN 〉 =
d∑

i1,...,iN=1

tr
[
A

[1]
i1
. . . A

[N ]
iN

]
| i1, . . . , iN 〉 . (1.63)

and are called matrix product states. In fact, it is shown in [42] that every state in the space

Cd
N

can be cast into this form by making use of subsequent singular value decomposition

between all bi-partitions along the chain. Albeit with matrices A[s]
is

with a dimension D =

maxsDs exponential in the system size. It is immediately clear from the above valence bond

construction, in which one interprets the bond-state |Ω〉 as a resource state that mediates the

quantum correlations between the sites, that the amount of entanglement these states carry is

determined by the bond - dimension D. Hence, the advantage of the form of these states is that

the entanglement can be bounded by choosing a lower bond-dimension D which makes the

states become tractable for a classical computer. It is easy to see that all expectation values of

product operators can be computed by multiplying N matrices of dimension at most D, since

〈ψN |
N⊗
s=1

Os |ψN 〉 = tr
[
E

[1]
O1
E

[2]
O2
, . . . , E

[N ]
ON

]
, with

E
[s]
Os

=
d∑

i,j=1

〈i |Os | j〉A
s
i ⊗Asj , (1.64)

where the Os are local operators acting only on a space Cd at a single site s. It is because the

expectation values of simple operators can be computed efficiently that one can use MPS as

a variational ansatz for ground states of local Hamiltonians H =
∑

k hk. The ground state is

approximated by the minimum of the Rayleigh - Ritz coefficient

E . min
{A}

〈ψN |H |ψN 〉
〈ψN |ψN 〉

, (1.65)

which can be found by sweeping through all sites and optimizing the matricesAkik locally. This

algorithm is known as the variational formulation of DMRG, i.e. density matrix renormaliza-

tion algorithm [39, 40].
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In the construction (1.63) of the MPS we have placed an entangled bond between the first

and the last site, so this state can be seen as a state with periodic boundary conditions. It is,

however, also possible to leave this bond open, which corresponds to choosing bond - dimen-

sionsD1 = DN = 1 in the equation (1.63). In this case we speak of a MPS with open boundary

conditions.

Gauge transformations We note, that there is no unique correspondence between the matri-

cesA[s]
is

and the state |ψN 〉 they comprise. This can be seen easily by considering the following

transformation. Consider two adjacent sites with the corresponding sets of matrices A[s]
is

and

A
[s+1]
is+1

. We call a transformation of the As on the virtual level, between sites s and s + 1, that

leaves the overall state invariant, a gauge transformation. We can insert a partition of unity

1 = X−1
s Xs so that

A
[s]
is
A

[s+1]
is+1

= A
[s]
is
X−1
s XsA

[s+1]
is+1

≡ Ã[s]
is
Ã

[s+1]
is+1

. (1.66)

So in general we can see that the transformation

Ã
[s]
is

= Xs−1A
[s]
is
X−1
s (1.67)

leaves the overall state |ψN 〉 invariant and the state is described now by the matrices Ã[s]
is

.

This property is of great use when considering MPS with open boundary conditions. For open

boundary conditions the state can be cast into its canonical form [42, 3, 4]. To see this, let us

write an arbitrary MPS that is comprised of some matrices B with open boundary conditions

as,

|ψN 〉 =
d∑

i1,...,iN=1

B
[1]
i1
. . . B

[N ]
iN
| i1, . . . , iN 〉 , (1.68)

where now B
[1]
i1

and B[N ]
iN

are 1 ×D2 and DN × 1 dimensional respectively. To construct the

normal form consider the following procedure. We start, for instance, at site N and proceed to

the left of the chain. For each set of matrices B[s]
is

we group the indices β and is together so

that we now write [Bs]α,(isβ) ≡ [B[s]
is

]α,β and perform a singular value decomposition [17] on

the larger matrix Bs so that

[Bs]α,(isβ) =
∑
α′,α′′

Uα,α′Σs
α′,α′′V α′′,(is,β). (1.69)

Here Σ denotes a diagonal matrix of the singular values and U and V are isometries that arise

from the standard singular value decomposition. This decomposition is depicted in Fig . 1.2(a).

We proceed now be defining the set of matrices [A[s]
is

]α,β = V α′′,(is,β) and absorb the isometry

U acting only on the virtual indices into the new B̃
[s−1]
is−1

= B
[s−1]
is−1

U . We now repeat this

procedure for the site s− 1 until we reach the end of the chain.

This leads to a decomposition of the state that is of the form

|ψN 〉 =
d∑

i1,...,iN=1

A
[1]
i1

Σ1 . . .ΣNA
[N ]
iN
| i1, . . . , iN 〉 (1.70)



48 1 Preliminaries for classical and quantum Markov processes

Figure 1.2: Fig (a): Depiction of the grouping of indices in the tensor [Bi]αβ to which the singular
value decomposition is applied. Fig (b): Graphical representation of the normal form.

This form can be conveniently depicted as in Fig . 1.2(b). Note that since V is an isometry, the

matrices Ai satisfy the constraint

∑
is

A
[s]
is
A

[s]
is

†
= 1Ds . (1.71)

This is the normal form of the MPS as it was given in [42]. As already mentioned, it is possible

to arrive at the same expression by starting with a general multi-partite quantum states and

performing singular value decompositions along every bi-partition. We see that the Σα,β =

σαδαβ - matrices correspond to the Schmidt coefficients along each bi-partition.

Matrix product states and completely positive maps We would like to point out a close and

interesting relationship between translationally invariant matrix product states and completely

positive maps. A MPS is said to be translationally invariant when all matrices A[1]
i1

= . . . =

A
[N ]
iN

= Ai coincide. When we take a closer look at Eq. (1.64) and make the choice O = 1, we

see that the matrix E1 reduces to E1 =
∑
Ai ⊗ Ai. We note, that due this structure, E1 can

be seen as the matrix representation of a completely positive map (1.36) with Kraus operators

Ai. We therefore associate a cp-map E to any translationally invariant MPS so that

E∗(X) =
∑
i

A†iXAi (1.72)

is acting as the dual cp-map on some operator X , that has support on the virtual system CD.

We can understand the action of E on the virtual level by the mapping 〈Ω̃|E∗(X) = 〈X |E1,

where 〈X | = 〈Ω̃|1 ⊗ X . We have already discussed that such maps, if they are irreducible,

always have an eigenvalue λ0 > 0 and a positive fixed point σ > 0 that is associated with

this eigenvalue. Note, that it is always possible to rescale the matrices Ai so that the largest

eigenvalue can be taken as λ0 = 1. One can show [6, 3] that the correlation length ξ of the MPS

is related to the second largest eigenvalue λ1 of the map E . Here, for the sake of argument we

make some simplifying assumptions. We assume that the eigenvalues 1 > λ1 > λ2 . . . are all
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real and positive. Let us compute the correlation function in the thermodynamic limitN →∞:

lim
N→∞

〈ψN |O1On |ψN 〉 − 〈ψN |O1 |ψN 〉 〈ψN |On |ψN 〉

=
〈
φ0
L

∣∣EO1 En1 EOn
∣∣φ0

R

〉
−
〈
φ0
L

∣∣EO1

∣∣φ0
R

〉 〈
φ0
L

∣∣EOn ∣∣φ0
R

〉
, (1.73)

where
〈
φkL
∣∣ and

∣∣φkR〉 denote the left and right eigenvectors corresponding to λk of E1 respec-

tively. Now, when we consider the correlation function for n� 1 we can write

lim
N→∞

〈ψN |O1On |ψN 〉 − 〈ψN |O1 |ψN 〉 〈ψN |On |ψN 〉

=
〈
φ0
L

∣∣EO1

[
D−1∑
k=0

λnk

∣∣∣φkR〉〈φkL ∣∣∣− ∣∣φ0
R

〉 〈
φ0
L

∣∣]nEOn ∣∣φ0
R

〉
≈n�1 λ

n
1

〈
φ0
L

∣∣EO1

∣∣φ1
R

〉 〈
φ1
L

∣∣EOn ∣∣φ0
R

〉
= c e

−n
ξ . (1.74)

If we now define c =
〈
φ0
L

∣∣EO1

∣∣φ1
R

〉 〈
φ1
L

∣∣EOn ∣∣φ0
R

〉
, we see that the correlation length is

related to the second largest eigenvalue via ξ = −1/ ln(λ1). The only purpose of this exercise

was to point out that there exists an interesting relationship between the correlations of one

dimensional multi-partite state, with a bounded amount of correlations, and the convergence

properties of quantum Markov chains. There also exists a formulation of a Kadanoff blocking-

type renormalization group [43] on the MPS, which can be understood as a quantum Markov

chain on this level, as is shown in [44]. The fixed point MPS of the renormalization group is

determined completely by the fixed point of the cp - map E .

This formal relationship is no accident. In fact, an alternative construction of MPS, that

was first proposed in [6], is based on this connection. Let us therefore discuss a different ap-

proach to the construction of MPS that is along the lines of [6] and actually leads to a way of

generating multi-partite entangled states in an experiment [45].

Consider therefore the following scenario: We denote by HA = CD a D-dimensional

Hilbert space of some ancilla system, one could think for instance of an atom in a cavity, and

another system with a d-dimensional Hilbert space HB = Cd. For d = 2 we could think of

a photon. Now imagine that we have a set of N “photons” that each pass through the cavity

one by one and interact with the atom in the cavity one at a time, cf Fig. 1.3. This interaction

generates a unitary evolution for each U : HA ⊗ HB 7→ HA ⊗ HB . We assume that all the

“photons”, i.e. in general the d - level systems, are initially prepared in the same state | 0〉,
before they enter the cavity and that the cavity is initially in the state |ϕI〉. Since all d - level

systems are initially in the same state we disregard them at the input and only consider the

isometry V = U(1⊗ | 0〉). We now write for the isometry

V =
d−1∑
i=0

D∑
α,β=1

[Vi]α,β |α, i〉 〈β | , (1.75)

where the Greek indices label a basis in HA and the Latin indices label one in HB . The fact

that we require V to be an isometry translates to the fact that
∑d−1

i=0 V
†
i Vi = 1D, where we
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treat each of the Vi as a D×D matrix with entries [Vi]α,β . After the N “photons” have passed

through the system we observe that the total system on the Hilbert space HA ⊗ Cd
N

is in

the state |Ψ〉 = V N . . . V 1 |ϕI〉, where we labeled each of the different isometries by V k.

Suppose, we could tune the last interaction V N in such a way that the complete state between

the cavity, i.e. HA, and the N particle state factorizes as |Ψ〉 = |ϕF 〉 ⊗ |ψN 〉. Then we find

the remaining N - particle system in the state

|ψ〉 =
∑
iN ,...i1

〈ϕF |V N
iN
. . . V 1

i1 |ϕI〉 | iN . . . i1〉 . (1.76)

We observe, that the state generated this way is nothing but a standard matrix product state as

introduced previously.

Figure 1.3: A larger quantum system with Hilbert space HA = CD interacts with a sequence of N
particles, each with state space HB = Cd, one at a time via some unitary U . All the particles are
initially in state | 0〉.

We see that at each step we effectively implement a transformationon on HA, which is of

the form E(ρk+1
A ) = tr

[
UρkA ⊗ | 0〉 〈0 |U †

]
. Due to Theorem 13 it is clear, that we implement

a tcp - map on the ancilla system each time a single particle passes through the system. The

correlations between the individual particles can therefore be understood by the internal dy-

namics of the ancilla system. In chapter 4, we will introduce a class of classical multi-partite

probability distributions that can be constructed in a similar fashion. Here, however, a classical

stochastic Markov process will take the place of the quantum processes.
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Mixing time analysis of quantum
Markov chains

Synopsis:

In this chapter, we introduce quantum versions of the χ2-divergence, provide a detailed

analysis of their properties, and apply them to the investigation of mixing times of quantum

Markov processes. An approach similar to the one presented in [46, 47, 48] for classical

Markov chains is taken to bound the trace-distance from the steady state of a quantum pro-

cesses. A strict spectral bound to the convergence rate can be given for time-discrete as well

as for time-continuous quantum Markov processes. Furthermore, the contractive behavior of

the χ2-divergence under the action of a completely positive map is investigated and contrasted

to the contraction of the trace norm. In this context we analyze different versions of quantum

detailed balance and, finally, give a geometric conductance bound to the convergence rate for

unital quantum Markov processes.
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2.1 Mixing time in Markov chains

The mixing time of a classical Markov chain is the time it takes for the chain to be close to its

steady state distribution, starting from an arbitrary initial state. The ability to bound the mixing

time is important, for example in the field of computer science, where the bound can be used to

give an estimate for the running time of some probabilistic algorithm such as the Monte Carlo

algorithm. The mixing time for a classical Markov process Pij , with
∑

i Pij = 1 on the space

of probability measures L1(Ω) is commonly defined in terms of the one norm, ‖p‖1 =
∑

i |pi|.
Let π denote the fixed point of the classical Markov process, i.e. Pπ = π, then the mixing time

is defined as:

tmix(ε) = min {n | ∀q ∈ S , ‖Pn q − π‖1 < ε} . (2.1)

A large set of tools has emerged over the years that allows to investigate the convergence rate of

classical Markov chains [22]. One of the most prominent approaches [46, 47, 48] to bounding

the mixing time of a Markov chain is based on the χ2-divergence [49]. This divergence is

defined for two probability distributions p, q ∈ L1(Ω) as:

χ2(p, q) =
∑
i

(pi − qi)2

qi
. (2.2)

The usefulness of the χ2-divergence for finding bounds to the mixing time of classical Markov

chains arises from the fact that it serves as an upper bound to the one norm difference between

two probability distributions

‖p− q‖21 ≤ χ2(p, q) (2.3)

and allows for an easier access to the spectral properties of the Markov chain. The χ2-

divergence is intimately related to the Kullback-Leibler divergence, or relative entropy,H(p, q) =∑
i pi(log pi − log qi). In fact, it can be obtained directly from the relative entropy as the ap-

proximating quadratic form, i.e. as the Hessian, of the latter:

χ2(p, q) = − ∂2

∂α∂β
H(q + α(p− q), q + β(p− q)) |α=β=0. (2.4)

The χ2 divergence was first introduced by Karl Pearson in the context of statistical inference

tests, the most widely used of which is the ”Pearson’s χ2 test”. Its computational simplicity and

its clear relation to other distance measures have made it one of the most studied divergence

measures in the literature.

In this chapter, we find convergence bounds for arbitrary quantum Markov chains, also

called quantum channels, with a technique that can be seen as a generalization of the work of

[46, 47, 48] to non-commutative probability spaces. A prototypical example of mixing time

in physics is the decoherence time of the underlying quantum process, i.e. the time in which

quantum states decohere to an (often classical) mixture given a specific underlying noise model.

The ability to bound the mixing time for quantum processes also turns out to be relevant when
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one seeks to give bounds on the runtime of quantum algorithms that are based on quantum

Markov chains [14, 50]. Other applications of such bounds can be found in the framework of

matrix product states [6, 5], where the correlation length of the quantum state is connected to

the convergence of the corresponding transfer operator that can be interpreted as a quantum

channel. In this chapter, we introduce the mathematical framework necessary to extend the

classical mixing time results to the quantum setting. In particular, we introduce a new diver-

gence measure - the quantum χ2-divergence - for quantum states and use it to obtain some basic

convergence bounds that mirror existing classical ones. Furthermore, we extend the classical

concept of detailed balance to the quantum setting and discuss its relevance in general terms.

2.2 The quantum χ2-divergence

We want to define a generalization of the classical χ2-divergence to the case when we are work-

ing on spaces with non-commuting density matrices. We shall require that any generalization

to the setting of density matrices satisfies the condition that when the inputs are diagonal, the

classical χ2-divergence is recovered. The first observation we make, reading straight off from

(2.2), is that the classical χ2-divergence can be seen as an inner product on the probability

space weighted with the inversion of the distribution qi. Due to the non-commutative nature

of density matrices there is no unique generalization of this inversion. Consider for instance a

generalization for two density matrices ρ, σ ∈ Sd, where for now we assume σ to be full rank,

that is given by

χ2
α(ρ, σ) = tr

[
(ρ− σ)σ−α(ρ− σ)σα−1

]
= tr

[
ρσ−αρσα−1

]
− 1. (2.5)

This gives rise to an entire family of χ2-divergences with (as we see below) special properties,

for every α ∈ [0, 1]. The natural question of whether there exists a classification of all possible

inversions of σ, was investigated in a series of papers by Morozova and Chentsov [51] Petz

[52, 53, 54], in the context of information geometry. They considered the characterization

of monotone Riemannian metrics on matrix spaces. Their general definition is based on the

modular operator formalism of Araki [55, 56], which we will also consider here. In order to

classify the valid inversions, we first need to define the following set of functions, each of

which gives rise to a possible inversion:

K = {k| − k is operator monotone, k(w−1) = wk(w), and k(1) = 1}. (2.6)

Now, we define left and right multiplication operators as LY (X) = Y X and RY (X) = XY

respectively. The modular operator is defined as

∆ρ,σ = LρR−1
σ , (2.7)
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for all ρ, σ ∈ Sd, σ > 0. Note, that Rσ and Lρ commute and inherit hermicity and positivity

from ρ, σ. The above should be read as follows: acting on some A ∈Md, ∆ρ,σ(A) = ρAσ−1.

When manipulating the modular operators it is often convenient to write them in matrix form, in

wich case, they read: ∆̂ρ,σ |A〉 = ρ⊗σ−1 |A〉, where |A〉 = A⊗1 ˜|Ω〉, and ˜|Ω〉 =
∑d

i=1 | ii〉
corresponds to

√
d times the maximally mixed state. This formalism gives rise to a more

general quantum χ2-divergence.

Definition 24. For ρ, σ ∈ Sd, and k ∈ K we define the the quantum χ2-divergence

χ2
k(ρ, σ) =

〈
ρ− σ,Ωk

σ(ρ− σ)
〉
, (2.8)

when supp(ρ) ⊆ supp(σ), and infinity otherwise. Here, 〈, 〉 denotes the standard Hilbert-

Schmidt scalar product. The inversion inversion of σ is defined only when supp(ρ) ⊆ supp(σ),

and given by

Ωk
σ = R−1

σ k(∆σ,σ). (2.9)

Families of divergences The functions kα(w) = 1
2

(
w−α + wα−1

)
yield the family of χ2

α-

divergences given in (2.5) which we call the mean α-divergences to distinguish them from the

well-known family of Wigner-Yanase-Dyson (WYD) α-divergences, which we will discuss

shortly along with several other families. Although we focus on the family (2.5), most of our

results hold for any divergence given by (2.8) with k ∈ K with the exceptions of Theorem 37.

The most widely used family of divergences, often called α-divergence [57, Chapter 7], is

associated with the functions

kWYD
α (w) =

(1− wα)(1− w1−α)
α(1− α) (1− w)2

for α ∈ [−1, 2] (2.10)

This family is sometimes called the WYD divergences, because it arises from an extension

of the Wigner-Yanase-Dyson entropy [58, 59] associated with the (unsymmetrized) function

g(w) = 1
α(1−α)(w − wα). In the limit α → 1 this yields [60] the familiar (asymmetric)

relative entropy H(ρ, σ) = trρ(log ρ − log σ) and Ωlog
P given by (2.56). Like the family of

divergences introduced here, the minimal WYD divergence occurs for α = 1/2, it is convex

in α, symmetric around α = 1/2 and yields the maximal 1+w
2w when α = −1 or 2. However,

α = 1/2 gives kWYD
1/2 (w) = 4(1 +

√
w)−2 which is quite different from kmean

1/2 (w) = w−1/2.

The WYD family is often studied only for α ∈ (0, 1); it was first observed by Hasegawa in

[61] that it yields a monotone metric if and only if α ∈ [−1, 2].

The metrics associated with kmean
α (w) and kWYD

α (w) both give increasing families for

α ≥ 1
2 and both yield the maximal metric k(w) = (1 + w)(2w) for α the maximal values

of 1 and 2 respectively. However, neither reduces to the minimal metric k(w) = 2/(1 + w).

The measure δ(s − a) in (2.16) leads to the family ka(w) = (1+a)2

2
(1+w)

(1+wa)(w+a) for a ∈ [0, 1]

which reduces to the the maximal and minimal functions for a = 0, 1. However, this family is
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neither increasing nor decreasing. Hansen [62] has found families of functions which increase

monotonically from the smallest to the largest of which we mention only

ka(w) = w−a
(1 + w

2

)2a−1
for a ∈ [0, 1] . (2.11)

2.2.1 Monotone Riemannian metrics and generalized relative entropies.

This definition of the χ2-divergence stems from the analysis of monotone Riemannian met-

rics. By Riemannian metric, we mean a positive definite bilinear form Mσ(A,B) on the

hermitian tangent hyperplane T P = {A ∈ Md : A = A†, tr[A] = 0}. The metric is

monotone if for all quantum channels T : Md 7→ Md, states σ ∈ S+
d and A ∈ T P ,

MT (σ)(T (A), T (A)) ≤Mσ(A,A). Petz showed showed that there is a one-to-one correspon-

dence between the above metrics and a special class of convex operator functions, which cor-

respond to 1/k in our notation. He furthermore was able to relate several generalized relative

entropies (which he defined much earlier [63] and referred to as quasi-entropies) to monotone

Riemannian metrics [53, 54, 64]. The reverse implication, that every monotone Riemannian

metric stems from a generalized relative entropy was first proved by Lesniewski and Ruskai

[59]. Taking advantage of the well-known integral representations of operator monotone and

convex functions [16] one can express the χ2-divergences as well as the relative entropies

explicitly. We shall briefly repeat the key points of the analysis that are necessary for our un-

derstanding of the mixing-time and contraction analysis for tcp-maps.

We need to consider the class of functions G by which we denote the set of continuous

operator convex functions from R+ to R that satisfy g(1) = 0. Note that these functions can

all be classified in terms of the integral representation:

g(w) = a(w − 1) + b(w − 1)2 + c
(w − 1)2

w
+
∫ ∞

0

(w − 1)2

w + s
dν(s), (2.12)

where a, b, c > 0 and the integral of the positive measure dν(s) on (0,∞) is bounded. The

generalized relative entropy for states ρ, σ ∈ S+
d was first defined in [65, 66].

Definition 25. Let g ∈ G. The generalized quantum relative entropy is given by

Hg(ρ, σ) = tr[ρ1/2g(∆σ,ρ)(ρ1/2)] (2.13)

when supp(ρ) ⊆ supp(σ), and infinity otherwise, and where ∆ρ,σ is again the modular oper-

ator.

We now recall without proof a Theorem [53, 54, 59] relating the relative entropy and the

monotone Riemannian metric, mirroring the classical result (2.4):
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Theorem 26. For every k ∈ K, there is a g ∈ G such that for a given σ ∈ Sd, and A,B

hermitian traceless, we get:

Mk
σ (A,B) = − ∂2

∂α∂β
Hg(σ + αA, σ + βB)

∣∣∣∣
α=β=0

(2.14)

=
〈
A ,Ωk

σ(B)
〉
.

and, k is related to g by

k(w) =
g(w) + wg(w−1)

(w − 1)2
(2.15)

From this Theorem follows a convenient integral representation of the inversion Ωk
σ, which

is equivalent to (2.9) [59].

Ωk
σ =

∫ ∞
0

(
1

sRσ + Lσ
+

1
Rσ + sLσ

)
Ng(s)ds, (2.16)

where Ng denotes the singular measure Ng(s)ds = (bg + cg)δ(s)ds + dνg(s). Note, that the

relationship between k and g is not one-to-one. Indeed, by setting ĝ(w) = wg(w−1), we get

back the above relation. However, there is a one-to-one correspondence between each k and a

symmetric gs(w) = g(w)+wg(w−1), and hence between each metric and a symmetric relative

entropy.

Note that the α-subfamily of (2.5) has the associated symmetric relative entropy: gsym(x) =
(1−w)2

2

(
wα−1 + w−α

)
, so that

Hsym
α (ρ, σ) =

1
2

(Hα(ρ, σ) +Hα(σ, ρ)) (2.17)

where,

Hα(ρ, σ) = tr[ρ2−ασα−1 + ρ1+ασ−α − 2ρασ1−α].

The integral representation (2.16) of the inversion Ωk
σ allows for a partial ordering of different

monotone Riemannian metrics that follows from the set of inequalities:

2
x+ 1

≤ 1 + s

2
(

1
s+ x

+
1

sx+ 1
) ≤ x+ 1

2x
. (2.18)

for s ∈ [0, 1], and x ∈ R+. We therefore see that there exists a partial ordering for the

inversions, with a lowest and highest element in the hierarchy. The lowest element gives rise

to the so called Bures metric. Thus,

ΩBures
σ = 2(Rσ + Lσ)−1 ≤ Ωk

σ ≤ (L−1
σ +R−1

σ )/2 = Ωα=0
σ (2.19)

The χ2-divergence is recovered from the metric upon setting χ2
k(ρ, σ) ≡ Mk

σ (ρ − σ, ρ − σ).

We are therefore left with a partial order for all possible χ2-divergences with a smallest and

largest element according to,

χ2
Bures(ρ, σ) ≤ χ2

k(ρ, σ) ≤ χ2
α=0(ρ, σ). (2.20)
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The defining attribute of the above set of metrics is their monotonicity under the action of

quantum channels. This was first shown by Petz [54], and later a proof based on the integral

representation of Ωk
σ (2.16), and on Schwarz-type inequalities, was provided by Ruskai and

Lesniewski in [59]. Due to its importance for the mixing time analysis we shall repeat it here.

Theorem 27. For all σ ∈ Sd, Mk
σ is monotone under the action of a quantum channel T :

Md →Md for all k ∈ K and A ∈Md, i.e.

Mk
σ (A,A) ≥Mk

T (σ) (T (A), T (A)) (2.21)

PROOF: The monotonicity follows immediately from the integral representation of the inver-

sion Ωk
σ in (2.16), and an argument proved in the following Theorem 28.

The proof of the contractivity of a general Riemannian metric is based on the following

Theorem first proved in [59].

Theorem 28. For a channel T :Md →Md, we have that,

tr
[
A†

1
Rσ + sLρ

A

]
= tr

[
T
(
A†

1
Rσ + sLρ

A

)]
≥ tr

[
T (A)†

1
RT (σ) + sLT (ρ)

T (A)
]
. (2.22)

PROOF: Let σ > 0, then tr[A†σA] ≥ 0, and tr[A†Aσ] ≥ 0 so that Lσ as well as Rσ are

both positive semi definite super operators on the matrix space. Therefore we infer, that for

a positive ρ > 0 the operator Rσ + sLρ is also positive. We define a matrix X = [Rσ +

sLρ]−1/2(A) + [Rσ + sLρ]1/2T ∗(A) and furthermore B = [RT (σ) + sLT (ρ)]−1T (A). Since

tr[X†X] ≥ 0, we have that

tr
[
A†

1
Rσ + sLρ

A

]
−tr

[
T ∗(B†)A

]
−tr

[
A†T ∗(B)

]
+tr

[
T ∗(B†)[Rσ + sLρ]T ∗(B)

]
≥ 0.

(2.23)

Furthermore note, that

−tr
[
A†T ∗(B)

]
− tr

[
T ∗(B†)A

]
= −2tr

[
T (A†)

1
RT (σ) + sLT (ρ)

T (A)
]
. (2.24)

It therefore suffices to show that we are able to bound the last term in (2.23) by the right side

of the inequality (2.22). Note, that

tr
[
T ∗(B†)[Rσ + sLρ]T ∗(B)

]
= tr

[
T ∗(B†)T ∗(B)σ + sT ∗(B†)ρT ∗(B)

]
(2.25)

≤ tr
[
T ∗(B†B)σ + sT ∗(BB†)ρ

]
,

since ρ, σ > 0 and due to the operator inequality T ∗(B†)T ∗(B) ≤ T ∗(B†B). This inequality

holds for any B since T is a channel and by that trace preserving, hence T ∗(1) = 1. With
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tr
[
T ∗(B†B)σ

]
= tr

[
B†BT (σ)

]
we can write

tr
[
T ∗(B†)[Rσ + sLρ]T ∗(B)

]
≤ tr

[
B†BT (σ) + sB†BT (ρ)

]
(2.26)

= tr
[
B†[RT (σ) + sLT (ρ)]B

]
= tr

[
B†T (A)

]
= tr

[
T (A†)

1
RT (σ) + sLT (ρ)

T (A)
]
.

2.2.2 Properties of the quantum χ2-divergence

The fact that the quantum χ2
k-divergence can be used to bound the mixing time lies in the

following Lemma, that upper bounds the trace distance which is the relevant distance measure

in the mixing time definition.

Lemma 29. For every pair of density operators ρ, σ ∈ Sd, we have that

‖ρ− σ‖2tr ≤ χ2
k(ρ, σ) (2.27)

PROOF: If the support of ρ is not contained in the support of σ, then the right hand side

is ∞. We can therefore assume w.l.o.g. that σ > 0 by restricting the analysis to the sup-

port space of σ. The trace norm ‖A‖tr of some matrix A ∈ Md can be expressed as [17]

‖A‖tr = maxU∈U(d) |tr[UA]|, where the maximum is taken over all unitaries acting on the

d-dimensional Hilbert space. Thus, for any inversion Ωk
σ:

‖A‖2tr = max
U∈U(d)

|tr[UA]|2 = max
U∈U(d)

∣∣∣tr [U [Ωk
σ]−1/2 ◦ [Ωk

σ]1/2(A)
]∣∣∣2

= max
U∈U(d)

∣∣∣tr [[Ωk
σ]−1/2(U)[Ωk

σ]1/2(A)
]∣∣∣2 (2.28)

≤ tr
[
A†Ωk

σ(A)
]

max
U∈U(d)

tr
[
U †[Ωk

σ]−1(U)
]

Let us consider the Bures inversion given by ΩBures
σ = 2 [Lσ +Rσ]−1. Clearly, its inverse is[

ΩBures
σ

]−1 = 1
2 [Lσ +Rσ]. Therefore, for any unitary U,

tr
[
U †[ΩBures

σ ]−1(U)
]

=
1
2

(
tr[U †σU ] + tr[U †Uσ]

)
= 1. (2.29)

Setting A = ρ− σ and observing that χ2
Bures ≤ χ2

k for all k ∈ K completes the proof.

We are also able to bound the relative entropy in terms of theα-subfamily of χ2-divergences.

Lemma 30. For every pair of density operators ρ and σ and every α ∈ (0, 1] we have that

χ2
α(ρ, σ) ≥ S(ρ, σ), (2.30)

where S(ρ, σ) = trρ(log ρ− log σ) is the usual relative entropy.
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PROOF: It was shown in [67] that for γ ∈ (0, 1], the following holds:

S(ρ, σ) ≤ 1
γ

(trρ1+γσ−γ − 1) (2.31)

Then consider,

χ2
α(ρ, σ)− S(ρ, σ) ≥ trρσ−1/2ρσ−1/2 − 2trρ3/2σ−1/2 + 1

= tr(ρ1/2σ−1/2ρ1/2 − ρ1/2)2 ≥ 0 (2.32)

where the first inequality comes from taking γ = 1/2 in (2.2.2), and α = 1/2 for χ2
α, and the

last line is obtained from rearranging terms.

Furthermore, we note that this subfamily also has a natural ordering.

Proposition 31. For every ρ, σ ∈ Sd, χ2
α is convex in α, and reaches a minimum for α = 1/2.

PROOF: First note that χ2
α=0(ρ, σ) = χ2

α=1(ρ, σ). That the minimum is reached for α = 1/2

follows directly from the Cauchy-Schwarz inequality. Applied to our problem we get

tr
[
ρσ−1/2ρσ−1/2

]2
= tr

[
ρσ(α−1)/2σ−α/2ρσ(α−1)/2σ−α/2

]2
(2.33)

≤ tr
[
ρσ−αρσα−1

]2
To see convexity, consider the second partial derivative of χ2

α with respect to α:

∂2

∂α2
χ2
α(ρ, σ) = trσα−1ρσ−α(ρ log2 σ + log2 σρ− 2 log σρ log σ)

=
∑
kl

µα−1
k µ−αl (logµk − logµl)2|〈k|ρ|l〉|2 ≥ 0 (2.34)

where we used σ =
∑

k µk | k〉 〈k |.

2.3 Mixing time bounds and contraction of the χ2-divergence un-
der tcp-maps

2.3.1 Mixing time bounds

The χ2-divergence is an essential tool in the study of Markov chain mixing times, because on

the one hand it bounds the trace distance, and on the other it allows easy access to the spectral

properties of the map. The subsequent analysis can be seen as a generalization of the work

presented in [46, 47] to the non-commutative setting.

Theorem 32 (Mixing time bound). Let T :Md 7→ Md be an ergodic quantum channel with

fixed point σ ∈ Sd, for any ρ ∈ Sd and any k ∈ K, we can bound

‖Tn(ρ)− σ‖tr ≤ (sk1)n
√
χ2
k(ρ, σ). (2.35)

Here sk1 denotes the second largest singular value (the largest being 1) of the map

Qk = [Ωk
σ]1/2 ◦ T ◦ [Ωk

σ]−1/2 (2.36)
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Before we prove Theorem (32), we would like to point out an important fact that regards

the singular values of Qk. The monotonicity of the χ2-divergence ensures, that the singular

values ski of Qk are always contained in [0, 1] irrespectively of the choice of k ∈ K. Let us

therefore prove the following:

Lemma 33 (spectral interval). The spectrum of the map Sk ≡ Q∗k ◦Qk = [Ωk
σ]−1/2 ◦T ∗ ◦Ωk

σ ◦
T ◦ [Ωk

σ]−1/2 is contained in [0, 1].

PROOF: Let us first note, that the map Sk is Hermitian and positive by construction. Fur-

thermore, the monotonicity of the χ2-divergence, as stated in Theorem (27) ensures that the

Rayleigh-Ritz quotient is bounded by 1. This holds, since ∀B

〈B,Sk(B)〉 =
〈
A, T ∗ ◦ Ωk

σ ◦ T (A)
〉

= Mk
T (σ)(T (A), T (A))

≤Mk
σ (A,A) =

〈
A,Ωk

σ(A)
〉

= 〈B,B〉 , (2.37)

where we defined the intermediate state A = [Ωk
σ]−1/2(B). Note that we made use of the fact

that σ = T (σ) is the fixed point of the map. Therefore

λmax = max
B∈Md

〈B,Sk(B)〉
〈B,B〉

≤ 1 (2.38)

and the maximum is attained for λmax = 1 and Bmax = [Ωk
σ]1/2(σ).

With the bound on the spectrum at hand, it is now straight forward to prove Theorem (32)

PROOF: Define e(n) ∈ Md, as e(n) = T n(ρ − σ). By Lemma 29, we get ‖e(n)‖2tr ≤
χ2
k(T

n(ρ), T n(σ)) ≡ χ2
k(n). In the matrix representation, | e(n)〉 = e(n) ⊗ 1 ˜|Ω〉, we can

rewrite χ2
k(n) = 〈e(n) | Ω̂k

σ | e(n)〉. Note that also, | e(n+ 1)〉 = T̂ | e(n)〉 and so,

χ2
k(n)− χ2

k(n+ 1) = 〈e(n) | Ω̂k
σ | e(n)〉 − 〈e(n) | T̂ † Ω̂k

σ T̂ | e(n)〉 (2.39)

= 〈e(n) | [Ω̂k
σ]1/2

(
1− Q̂k

†Q̂k
)

[Ω̂k
σ]1/2 | e(n)〉 . (2.40)

Due to Lemma (33) we know that the spectrum of Ŝk = Q̂k
†Q̂k, which is equal to the square

of the singular values of Q̂k, is contained in the interval [0, 1]. Hence,

〈e(n) | [Ω̂k
σ]1/2

(
1− Ŝk

)
[Ω̂k
σ]1/2 | e(n)〉 (2.41)

≥ (1− s2
1) 〈e(n) | [Ω̂k

σ]1/2
∑
α6=0

Pα [Ω̂k
σ]1/2 | e(n)〉 . (2.42)

The sum is taken over spectral projectors P kα of Ŝk =
∑

α(skα)2Pα, apart from P k0 which

projects onto [Ω̂k
σ]−1/2 |σ〉. In particular, P k0 = [Ω̂k

σ]−1/2 |σ〉 〈1 | [Ω̂k
σ]−1/2, so that

〈e(n) | [Ω̂k
σ]1/2P k0 [Ω̂k

σ]1/2 | e(n)〉 = 〈e(n) |σ〉tr[T n(ρ− σ)] = 0, by trace preservation of T .

We can write,

χ2
k(n)− χ2

k(n+ 1) ≥ (1− (sk1)2)χ2
k(n). (2.43)
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Rearranging terms completes the theorem.

Remark: The fact, that the singular values of Qk are always smaller or equal to one justi-

fies the use of the generalized χ2-divergence as the appropriate distance measure to bound the

convergence of an arbitrary channel. It is tempting to use the Hilbert-Schmidt inner product

to give an upper bound to the trace norm. This can always be done at the cost of a dimension

dependent prefactor, since on finite dimensional spaces all norms are equivalent. However,

when doing so a problem arises if one tries to bound the convergence in terms of the spectral

properties of the map SHS = T ∗ ◦ T . It is in general not ensured that the spectrum will be

bounded by one. In fact, for every non-unital channel T , SHS will have an eigenvalue larger

than one [68]. The similarity transformation of the channel T with [Ωk
σ]1/2 alters the singular

values, but of course leaves the spectrum invariant. Furthermore, it is a well known fact [17]

that the singular values of a square matrix log-majorize the absolute value of the eigenvalues.

As the spectrum ofQk is bounded by one (and equal that of T̂ by similarity), we conclude that

its second largest eigenvalue is always smaller or equal to its second largest singular value.

For some instances of the inversion Ωk
σ it becomes immediately evident that the symmetriza-

tion Sk has the desired spectral properties without making use of the monotonicity of the χ2
k-

divergence. It can occur, that Sk is again similar to a quantum channel that is of the form T ks =

[Ωk
σ]−1/2 ◦ Sk ◦ [Ωk

σ]1/2. A possible example of such an inversions is Ωα=1/2
σ = L−1/2

σ R−1/2
σ .

This is however not the generic case, most inversions will lead to maps that are not completely

positive any longer. It would be very desirable to find other such examples, as they mirror the

classical situation where the symmetrized maps are always probability transition matrices, and

because these specific inversions allow for clean contraction bounds as seen in section III.B.

It is clear from the discussion above that the singular values ofQk play a crucial role in the

mixing time analysis presented here. This seems to contradict the general understanding that

the convergence is determined by the spectral properties of the channel T in the asymptotic

limit. This can however be understood as follows: the matrix Q̂k is similar to T̂ , i.e. Q̂k =

[Ω̂k
σ]1/2 · T̂ · [Ω̂k

σ]−1/2, so the spectra of Qk and T coincide. The following lemma establishes

a relation between the singular values and the eigenvalues in the asymptotic limit. For a proof,

see e.g. [69] pg.180.

Lemma 34 (Singular values). Let Q̂k ∈ Md2 be given, and let s0(Q̂k) ≥ . . . ≥ sd2−1(Q̂k)
and {λi(Q̂k)}i=0...d2−1 denote its singular values and eigenvalues, respectively with |λ0(Q̂k)| ≥
. . . ≥ |λd2−1(Q̂k)|. Then

lim
n→∞

[si(Q̂nk)]1/n = |λi(Q̂k)| ∀ i = 0 . . . d2 − 1 (2.44)
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In the limit of n→∞ applications of the quantum channel, we can start blocking the chan-

nel in m subsequent applications T (m) ≡ T m and bound the convergence rate as a function

of the singular values of the corresponding Q̂(m)
k , which indeed converge to the eigenvalues of

the original cp-map . Convergence following the eigenvalue is therefore only guaranteed in the

limit of n → ∞, and this would indeed be the case, when e.g. the eigenstructure of the orig-

inal cp-maps contains a Jordan block associated to the second largest eigenvalue. Note, that

convergence in the above lemma goes typically as 1/n, which is very slow. Hence for finite

n, convergence is governed by the singular values of Q̂k as opposed to the eigenvalues. The

bound derived in (32) is an absolute bound for finite n and clearly leads to a strictly monotonic

decay. Note that in the case that the second largest singular value is also equal to 1, this can

then always be cured by blocking the cp-maps together. Finally, it is worth mentioning that the

convergence can in fact be much more rapid if one starts in a state ”closer” to the fixed point.

In particular, if the initial state is such that ρ−σ ∝ Yk, k ≥ 2, where Yk is the eigenvector cor-

responding to λk, then the convergence will be governed by the magnitude of λk. Furthermore,

if instead of a single fixed point, we have a fixed subspace, or a collection of fixed subspaces

(with or without rotating points), then the convergence to this fixed subspace will be governed

by the largest eigenvalue whose magnitude is strictly smaller than one.

Thus far we have only considered the time-discrete case, it is however straightforward

to give a similar bound for time-continuous Markov processes, that are described by a one

parameter semi-group. The following lemma bounds the trace-distance as a function of t ∈
R

+
0 : The proof of the following lemma is very similar to the proof of the time discrete case,

we will therefore omit it here.

Lemma 35 (Time-continuous bound). Let L denote the generator of a time continuous Markov

process, described by the master equation ∂tρ = L(ρ), with solution ρ(t) ∈ Sd ∀ t ∈ [0,+∞)

. Furthermore let σ ∈ S+
d denote the fixed-point L(σ) = 0, then

‖ρ(t)− σ‖2tr ≤ e
lk1 tχ2

k(ρ(0), σ). (2.45)

Here, lk1 ≤ 0 refers to the second largest eigenvalue of

Λk = [Ωk
σ]1/2 ◦ L∗ ◦ [Ωk

σ]−1/2 + [Ωk
σ]−1/2 ◦ L ◦ [Ωk

σ]1/2. (2.46)

The symmetrization for the generator of the time continuous Markov process is additive as

would be expected. Furthermore, we note that the monotonicity of the χ2-divergence ensures

that the spectrum of Λk is never positive, based on a similar reasoning as given in Lemma (33).

2.3.2 Contraction coefficients

In the following we study the contraction of the χ2-divergences under quantum channels, and

its relation to the trace norm contraction. We consider general contraction rather than contrac-

tion to the fixed point because analytic results are more readily available, and because these
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bounds are in a sense the most stringent one can require. We focus primarily on the mean

α-subfamily of χ2-divergences.

Let us define the following contraction coefficients which we call the χ2- and trace norm-

contraction respectively:

ηαχ(T ) = sup
ρ,σ∈Sd

χ2
α(T (ρ), T (σ))
χ2
α(ρ, σ)

(2.47)

and

ηtr(T ) = sup
ρ,σ∈Sd

‖T (ρ− σ)‖tr
‖ρ− σ‖tr

= sup
φ,ψ∈S1

d ,〈φ|ψ〉=0

1
2
‖T (ψ)− T (φ)‖tr, (2.48)

where T : Md →Md is a quantum channel, and the last equality is seen simply by con-

vexity of the trace norm.

We first upper bound the trace-norm contraction in terms of the χ2 contraction, which is a

generalization of a result in [70]:

Lemma 36. For all α ∈ (0, 1], and a quantum channel T :Md →Md,

ηtr(T ) ≤
√
ηαχ(T ). (2.49)

PROOF: From Lemma 29, we have that ‖T (ρ − σ)‖2tr ≤ χ2
α(T (ρ), T (σ)), for all ρ, σ ∈ Sd.

Let N be traceless and hermitian, and note that it can be written as N = N+ − N−, where

N+, N− are positive definite and orthogonal in their support. Now let P = |N |/‖N‖tr and

recall that |N | = N+ + N−, then we get tr[NP−αNPα−1] = ‖N‖2tr, for every α ∈ (0, 1].

Also,
‖T (N)‖2tr
‖N‖2tr

≤ tr[T (N)T (P )−αT (N)T (P )α−1]
tr[NP−αNPα−1]

(2.50)

where the inequality is in the numerator, and the denominators are equal, by the previous

observation. Taking the supremum over all traceless hermitian N on the left hand side and

identifying ρ− σ = N/‖N‖tr, P = σ then gives desired result.

We now provide a lower bound to the trace norm contraction for primitive channels:

Lemma 37. Given a quantum channel T :Md →Md,

ηα=1/2
χ (T ) ≤ ηtr(T ) (2.51)

First we introduce an eigenvalue type min-max characterization of the χ2-contraction, and

then show that this eigenvalue must be smaller than the trace norm-contraction.

Let P > 0, and consider the following eigenvalue equation:

Γ̂ |A〉 ≡ Ω̂−1
P T̂

†Ω̂T (P )T̂ |A〉 = λ |A〉 , (2.52)

where ΩX ≡ Ωα=1/2
X . It T has a non-trivial kernel, then ΩT (P ) should be understood in

terms of the pseudo-inverse. First note that Γ is a quantum channel, so its spectrum is bounded
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by one, and that it reaches one for A = P . Also note that Γ is similar to a hermitian operator,

so it has all real eigenvalues, so we can take the eigenvectors to be hermitian. Then rewriting

(2.52) as T̂ †Ω̂T (P )T̂ |A〉 = λΩ̂P |A〉, we can express the second largest eigenvalue as:

λ1(T , P ) = sup
〈N |ΩP (P )〉=0,N=N†

〈N | T̂ †Ω̂T (P )T̂ |N〉
〈N | Ω̂P |N〉

= sup
trN=0,N=N†

tr[T (N)T (P )−1/2T (N)T (P )−1/2]
tr[NP−1/2NP−1/2]

. (2.53)

Clearly, by maximizing over all P , one recovers η1/2
χ (T ). We now prove the above theo-

rem:

PROOF: Let N1 be the eigenvector for which λ1 satisfies the eigenvalue equation (2.52), and

recall that N1 is Hermitian and traceless. Then,

λ1‖N1‖tr = ‖Γ(T (N1))‖tr ≤ ‖T (N1)‖tr (2.54)

because Γ is a channel, and

λ1 ≤
‖T (N1)‖tr
‖N1‖tr

≤ sup
trN=0,N†=N

‖T (N)‖tr
‖N‖tr

= ηtr, (2.55)

taking the supremum over positive P completes the proof.

Remark: Theorem 37 gives a computable lower bound to the trace norm contraction. A

key subtlety in the argument is that [ΩP (A)]−1 =
√
PA
√
P is a completely positive, but

not trace preserving, (CP) map (with a single Kraus operator
√
P ) which implies that Γ is a

quantum channel. In general, ΩP is not even positivity preserving. Another exception is the

monotone metric associated with the usual logarithmic relative entropy for which k(w) = logw
w−1 .

It is well-known [57, 63, 59] that Ωlog
P (A) can be written as

Ωlog
P (A) =

∫ ∞
0

1
P + xI

A
1

P + xI
dx (2.56)

which is clearly CP. An analogous lower bound was shown in [59] for this map using a similar

argument. Clearly, this can be extended to any monotone metric for which ΩP is CP; however,

we do not know of any other examples.

Very little is known about the ordering of the general ηk contraction coefficients. In par-

ticular, We do not know whether whether ηlog
χ is smaller or larger than ηα=1/2

χ . However, it is

known [59] that ηk are not all identical for different k ∈ K.; because examples can be con-

structed using non-unital qubit channels. Theorem 36 can readily be extended to any metric

associated with k ∈ K. However, it seems unlikely that Theorem 37 holds in general,. Thus,

we can conclude

max{ηα=1/2
χ (T ), ηlog

χ (T )} ≤ ηtr(T ) ≤ inf
k∈K

√
ηkχ(T ) . (2.57)
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Note that if instead of maximizing over all P we only consider contraction of the map to the

steady state, and denote it η̄(T ) = η(T )P=σ, then from the above arguments one immediately

gets:

η̄αχ(T ) ≤ η̄tr(T ) ≤ ηtr(T ) ≤ 1 (2.58)

Combing this with the previous bounds above, we have

λ1 ≤ sα=1/2
1 = η̄α=1/2

χ ≤ ηα=1/2
χ ≤ ηtr ≤

√
η
α=1/2
χ . (2.59)

Moreover, k(w) = w−1/2 on the right can be replaced by any k ∈ K, and that on the left

by k(w) = (w − 1)−1 logw. It is very tempting to conjecture that η̄2
tr ≤ η̄αχ , and/or that

ηtr ≤
√
η̄
α=1/2
χ , but simple numerical counterexamples show these to be false.

2.4 Quantum detailed balance

The detailed balance condition is often crutial in the analysis of classical Markov chain mixing

times, as it ensures several convenient properties of the Markov chain. In particular, it implies

that the classical probability distribution with respect to which the stochastic map is detailed

balanced is a fixed point of the chain. Furthermore, detailed balanced stochastic maps have a

real spectrum. In this section we generalize the notion of classical detailed balance to quantum

Markov chains. Alternative definitions of quantum detailed balance have been given in the

literature: [71, 72, 73, 74] and references therein. Central to our approach is the operatorQk as

previously introduced in Lemma 32. In the literature for classical Markov chains an analogous

matrix exists and is often referred to as the discriminant.

Definition 38. For a channel T : Md → Md and a state σ ∈ S+
d with corresponding

inversion Ωk
σ as defined in (2.9), we define the quantum discriminant of T as,

Qk = [Ωk
σ]1/2 ◦ T ◦ [Ωk

σ]−1/2. (2.60)

We recall that the convergence of an arbitrary quantum Markov process can be bounded by

the singular values of Q̂k. Classical detailed balanced Markov chains have the property that

the corresponding discriminant becomes symmetric. We shall therefore define the quantum

generalization by requiring that for a quantum detailed balanced process

Q∗k = Qk. (2.61)

This immediately allows to make a statement about the spectrum of quantum detailed balanced

maps. Due to the hermicity of the matrix representation of the map (2.60) we can immediately

deduce, just as for classically case, that the quantum channel T has a real spectrum. For
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detailed balanced maps, the second largest eigenvalue in magnitude coincides with the second

largest singular value. Furthermore, we would like to point out that this is actually not just

a single condition for quantum detailed balance but a whole family. Hence every different

inversion Ωk
σ gives rise to a different condition for detailed balance. We therefore define as the

quantum generalization of detailed balance:

Definition 39. For a channel T : Md → Md and a state σ ∈ S+
d , we say that T obeys k-

detailed balance with respect to σ with k ∈ K , when

[Ωk
σ]−1 ◦ T ∗ = T ◦ [Ωk

σ]−1. (2.62)

A consequence of this definition is that σ is a fixed point of T .

Lemma 40. Let σ ∈ Sd be a state and T a channel that satisfies the detailed balance Definition

39 with respect to Ωk
σ, then σ is a steady state of T .

PROOF: Recall that the inverse is given by [Ωk
σ]−1 = Rσf(∆σ,σ), where f(w) = 1/k(w).

Hence, since k(1) = f(1) = 1, we have

[Ωk
σ]−1(1) = Rσf(∆σ,σ)1 = Rσ1 = σ. (2.63)

Now, since furthermore T ∗(1) = 1, we have that

T (σ) = T ◦
[
Ωk
σ

]−1
(1) =

[
Ωk
σ

]−1
◦ T ∗(1) = [Ωk

σ]−1(1) = σ. (2.64)

Given a probability distribution on some set of states, it is desirable to have a simple cri-

terium to check whether a completely positive map obeys detailed balance with respect to the

state generated from the distribution. This criterium may then serve to set up a Markov chain

that actually converges to the desired steady state.

Proposition 41. Let {| i〉}i be a complete orthonormal basis ofH and let {µi}i be a probability

distribution on this basis. Furthermore, assume that a quantum channel T obeys

µn
k (µm/µn)

〈i | T ( |n〉 〈m | ) | j〉 =
µi

k (µj/µi)
〈m | T ( | j〉 〈i | ) |n〉 , (2.65)

then σ =
∑

i µi | i〉 〈i | and T obey the detailed balance condition with respect to Ωk
σ.

PROOF: Note that {| i〉 〈j |}ij forms a complete and orthonormal basis in the spaceMd with

respect to the Hilbert-Schmidt scalar product. We can therefore express equation (2.62) in this

basis. The individual entries are equal due to

tr
[
(|m〉 〈n |)† [Ωk

σ]−1 ◦ T ∗(| j〉 〈i |)
]

= µn k
−1 (µm/µn) tr

[
T ( |m〉 〈n | )† (| j〉 〈i |)

]
=(2.66)

µn k
−1 (µm/µn) 〈i | T ( |n〉 〈m | ) | j〉 = µi k

−1 (µj/µi) 〈m | T ( | j〉 〈i | ) |n〉 =

µi k
−1 (µj/µi) tr

[
(|m〉 〈n |)† T (| j〉 〈i |)

]
= tr

[
(|m〉 〈n |)† T ◦ [Ωk

σ]−1(| j〉 〈i |)
]
.
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Remark: We note that the different quantum detailed balance conditions coincide for clas-

sical channels, i.e. for stochastic processes that are included in the framework of quantum

channels. Define the following ”classical” Kraus operators:

Aclij =
√
Pij | i〉 〈j | and a state, σ =

∑
i

µi | i〉 〈i | . (2.67)

In this case, the condition of Proposition 41 reduces to the classical condition. This can be seen

when considering the channel T cl(ρ) =
∑

ij A
cl
ijρA

cl†
ij and checking for detailed balance with

respect to sigma, since

µm
k (µn/µm)

〈i | T cl( |n〉 〈m | ) | j〉 =
µm

k (µn/µm)
δnmδijPin

and
µi

k (µj/µi)
〈i | T cl( |n〉 〈m | ) | j〉 =

µi
k (µj/µi)

δnmδijPni. (2.68)

However since k(1) = 1 we are just left with the classical detailed balance condition µiPni =

µnPin for all pairs i, n.

A natural question to ask is therefore, whether the different detailed balance condition are

all identical. To see that this is not the case, consider the example given by the Kraus operators

of a single qubit, i.e. H = C2,

A1 =
1√
2

(
1 1

0 0

)
and A2 =

1
2

(
1 −1

1 −1

)
. (2.69)

This channel has the unique fixed point

σ =
1
6

(
5 1

1 1

)
. (2.70)

From this channel it is now possible to construct a channel that obeys detailed balance with

respect to the inversion given by choosing k(w) = w−1/2, that is the inversion reads Ωα=1/2
σ =

L−1/2
σ R−1/2

σ . We consider therefore the symmetrized map,

Ts =
[
Ωα=1/2
σ

]−1
◦ T ∗ ◦ Ωα=1/2

σ ◦ T. (2.71)

For the specific instance where Ωα=1/2
σ is given as above, we are assured that the map Ts is

again a quantum channel, because one immediately finds the Kraus representation for Ts(ρ) =∑
ij BijρB

†
ij as Bij =

√
σA†i [

√
σ]−1Aj . The individual Kraus operators read,

B11 = 3
5

(
1 1

1/2 1/2

)
and B12 =

√
2

5

(
1 −1

1/2 −1/2

)
, (2.72)

B21 =
√

2
20

(
3 3

−1 −1

)
and B22 =

1
5

(
3 −3

−1 1

)
.
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The channel Ts satisfies detailed balance with respect to Ωα=1/2
σ by construction. This channel

however does not satisfy detailed balance with respect to the inversion ΩBures
σ = 2 [Lσ +Rσ]−1

as can be seen directly by evaluating the detailed balance condition in terms of the matrix rep-

resentations, [
Ω̂Bures
σ

]−1
· T̂ †s − T̂s ·

[
Ω̂Bures
σ

]−1
=

7
600

[1⊗ Y + Y ⊗ 1] , (2.73)

where

Y =

(
0 −1

1 0

)
. (2.74)

The family of quantum detailed balance conditions is therefore much richer than the classical

counterpart.

2.5 Quantum Cheeger’s inequality

In the context of classical stochastic processes a very powerful formalism has been developed,

often referred to as the conductance bound or Cheeger’s inequality, to bound convergence rates

of stochastic processes. We will generalize this to the quantum setting in this section. Similar

results have appeared in [75]. The gap of the map Sk is defined as the difference between

the largest and second largest eigenvalue, ∆ = 1 − λ1. The gap can be characterized in a

variational fashion [17].

Proposition 42. The gap of the map Sk = [Ωk
σ]−1/2 ◦ T ∗ ◦ Ωk

σ ◦ T ◦ [Ωk
σ]−1/2 is given by

∆ = min
X∈Md

〈X, (id− Sk)X〉
1
2 ‖(X ⊗

√
σ −
√
σ ⊗X)‖2HS

, (2.75)

where ‖A‖2HS = tr[A†A] denotes the standard Hilbert-Schmidt norm and 〈 , 〉 the correspond-

ing Hilbert-Schmidt scalar product.

PROOF: The eigenvector that corresponds to the eigenvalue λ0 = 1 of Sk is given by
√
σ. The

gap can therefore be written as[17]:

∆ = min
X∈Md;tr[X

√
σ]=0

1− tr[X†Sk(X)]
tr[X†X]

= min
X∈Md;tr[X

√
σ]=0

tr[X†(X − Sk(X))]
tr[X†X]− tr[X

√
σ]2

(2.76)

= min
X∈Md

tr[X†(X − Sk(X))]
1
2 ‖(X ⊗

√
σ −
√
σ ⊗X)‖2HS

,

Note that the constrained tr[X
√
σ] = 0 can be dropped in the last line. Suppose that tr[X

√
σ] =

c, we can then define X ′ = X − c
√
σ and vary X ′ since the equation is invariant under such

shifts.
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Throughout the remainder of this section we consider unital quantum channels, i.e. maps

which obey T (1) = 1. For this case it is ensured that already the simple map S = T ∗ ◦ T has

a spectrum that is contained in [0, 1], since all Ωk
σ coincide and correspond to the identity map.

The χ2-divergence just reduces to the standard Hilbert-Schmidt inner product times a prefactor

given by d = dim(H). In the case of a detailed balanced stochastic map it even suffices to just

consider the map itself. In either case we will denote the corresponding map as S from now

on. The variational characterization of the gap ∆ now allows us to give an upper as well as a

lower bound to the second largest eigenvalue of S.

Lemma 43. Let T : Md → Md be a unital quantum channel. Then the second largest

eigenvalue λ1 of its symmetrization S = T ∗ ◦ T , is bounded by,

1− 2h ≤ λ1 ≤ 1− 1
2
h2, (2.77)

where h is Cheeger’s constant defined as,

h = min
ΠA,tr[ΠA]≤d/2

tr [(1−ΠA)S(ΠA)]
tr [ΠA]

. (2.78)

The minimum is to be taken over all projectors ΠA on the space A ⊂ H, so that tr[ΠA] ≤ d/2.

PROOF: An upper bound to the gap is immediately found by choosing X = ΠA. Due Propo-

sition (42) we can write:

∆ ≤ tr[ΠA(id− S)(ΠA)]
tr[Π2

A]− 1
dtr[ΠA]2

=
tr[(1−ΠA)S(ΠA)]
1
dtr[(1−ΠA)]tr[ΠA]

≤ 2h, (2.79)

where in the last line we have used that tr[1−ΠA] ≥ d/2.

For the lower bound, we can restrict the minimization in (2.78) to diagonal projections. Fur-

thermore, when considering only unital quantum channels, it is possible to reduce the problem

of bounding the gap ∆ to that of bounding the gap of a classical stochastic process. To see this,

let us work in the basis where the eigenvector X1 ∈ Md corresponding to λ1 is diagonal. We

shall assume wlog that X†1 = X1. In this basis, we can write X =
∑
xi | i〉 〈i |. The numerator

then becomes

tr
[
X†(X − S(X))

]
=
∑
ij

xixj(tr[| i〉 〈i | | j〉 〈j |]− tr [| i〉 〈i | S(| j〉 〈j |)]

=
∑
i

x2
i −

∑
ij

xixjPij =
1
2

∑
ij

Pij(xi − xj)2. (2.80)

We introduced the matrix Pij = 〈i |S(| j〉 〈j |) | i〉, which is a symmetric non-negative matrix

which obeys Pij ≥ 0 ,
∑

i Pij = 1 and P T = P . Hence P is doubly stochastic. Performing

the same reduction in the denominator we obtain

1
2d
‖(X ⊗ 1− 1⊗X)‖2HS =

1
2d

∑
ij

(xi − xj)2 (2.81)
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Hence, we arrive at the classical version of Mihail’s Identity [48],

∆ = min
{xi}

∑
ij Pij(xi − xj)2

1/d
∑

ij(xi − xj)2
. (2.82)

Given the classical version of Mihail’s identity, the proof of the lower bound is the same as in

the classical case. For completeness we repeat it here. First, we define, zi ≡ |xi|xi and write,∑
ij

Pij |zi − zj | =
∑
ij

Pij ||xi|xi − |xj |xj | ≤
∑
ij

√
Pij
√
Pij(|xi|+ |xj |)(xi − xj)

≤
√∑

ij

Pij(xi − xj)2

√∑
ij

Pij(|xi|+ |xj |)2, (2.83)

where we used Cauchy-Schwartz in the last step. Consider now,∑
ij

Pij(|xi|+ |xj |)2 = 2(
∑
i

x2
i +

∑
ij

|xi|Pij |xj |) ≤ 4
∑
i

|xi|2. (2.84)

Furthermore, note that we can bound,

1/d
∑
ij

(xi − xj)2 ≤ 2/d
∑
ij

x2
i = 2

∑
i

|zi|. (2.85)

We are therefore left with a lower bound to Mihail’s identity, which holds for all choices of

{xi}
1
2

(∑
ij Pij |zi − zj |
2
∑

i |zi|

)2

≤
∑

ij Pij(xi − xj)2

1/d
∑

ij(xi − xj)2
. (2.86)

We shall now assume, that xi ≥ 0 everywhere and we can hence drop the absolute values in

the definition for the zi. This is assumption is valid since we are free in adding an arbitrary

constant xi → xi+c to make all xi positive. Note that we therefore are left with a lower bound

to the gap of the form,

∆ ≥ 1
2

(∑
ij Pij |x2

i − x2
j |

2
∑

i x
2
i

)2

(2.87)

Let’s focus on the right side of the inequality. Since,

2
∑

i,j : xi≥xj

Pij(x2
i − x2

j ) = 4
∑

i,j : xi≥xj

Pij

∫ xi

xj

t dt = 4
∫ ∞

0
t

∑
ij : xi>t≥xj

Pij dt, (2.88)

and furthermore, ∑
ij : xi>t≥xj

Pij =
∑
i∈A(t)

∑
j∈Ac(t)

Pij where, A(t) ≡ {i|xi ≥ t} , (2.89)

we can bound,

4
∫ ∞

0
t

∑
ij : xi>t≥xj

Pij dt ≥ h 4
∫ ∞

0
t
∑
i∈A(t)

Θ(t− xi) dt = 2 h

(∑
i

x2
i

)
, (2.90)

where we defined h as in the same fashion as above. We have therefore found the desired lower

bound for the spectral gap of the map S.
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2.5.1 Example: Conductance bound for unital qubit channels

A convenient basis for the matrix space M2 associated with the Hilbert space H = C2 is

given in terms of the Pauli basis {1, σx, σy, σz}. In this basis a density matrix ρ ∈ S2 can be

parametrized in terms of its Bloch vector r ∈ R3. In the Bloch representation the density ma-

trix reads ρ = 1
2 (1+ r ·Σ), where Σ = (σx, σy, σz). It is also straight forward to determine

the matrix representation of a quantum channel T :M2 →M2 with respect to the Pauli basis.

A general channel can be written as a matrix T̂ ∈ M4.

T̂ =

(
1 0

t L

)
. (2.91)

The channel acts on a density matrix via T (ρ) = T (1
2 (1+ r ·Σ)) = 1

2 (1+ (t + Lr) ·Σ).

It can be shown, that the map T is unital if and only if t = 0. Let us now consider the

optimization for Cheeger’s constant h as given in Lemma (43). Given the constraint, we have

to vary all one dimensional projectors ΠA = |ψ〉 〈ψ | with ‖ |ψ〉 ‖2 = 1, so that

h = min
|ψ〉∈C2

tr [(1− |ψ〉 〈ψ |)S (|ψ〉 〈ψ |)] . (2.92)

The symmetrized map S of the unital channel T , with t = 0, now assumes the matrix repre-

sentation,

Ŝ =

(
1 0

0 L†L

)
. (2.93)

Furthermore note, that any projector |ψ〉 〈ψ | ∈ S2 can be parametrized via a Bloch vector

a ∈ R3 that obeys ‖a‖2 = 1. The minimization for Cheeger’s constant reduces therefore to

h = min
‖a‖2=1

1− 〈a | L†L |a〉 , (2.94)

where 〈a |b〉 denotes the canonical scalar product in R3. The minimum is attained when a

is the eigenvector associated with the largest eigenvalue s2
1 of the matrix L†L. Hence for an

arbitrary single qubit unital channel, Cheeger’s constant is given by h = 1 − s2
1, where s1 is

the largest singular value of the matrix L and hence the second largest singular value of the

channel T . We see that the conductance bound as stated in Lemma 43 is indeed satisfied, since

2s2
1 − 1 ≤ s2

1 ≤
1
2

(1 + s2
1). (2.95)



Chapter 3

Quantum Metropolis sampling

Synopsis:

In this chapter we propose a direct quantum generalization of the classical Metropolis al-

gorithm and show how a single iteration of the algorithm can be implemented in polynomial

time on a quantum computer. The original motivation to build a quantum computer came from

Feynman [12], who envisaged a machine capable of simulating generic quantum mechanical

systems, a task that is believed to be intractable for classical computers. Such a machine would

have a wide range of applications in the simulation of many-body quantum physics, including

condensed matter physics, chemistry, and high energy physics. Part of Feynman’s challenge

was met by Lloyd [13], who showed how to approximately decompose the time-evolution op-

erator of interacting quantum particles into a short sequence of elementary gates, suitable for

operation on a quantum computer. However, this left open the problem of how to simulate the

equilibrium and static properties of quantum systems. This requires the preparation of ground

and Gibbs states on a quantum computer. For classical systems, this problem is solved by the

ubiquitous Metropolis algorithm [7], a method that basically acquired a monopoly for the sim-

ulation of interacting particles. Here, we demonstrate how to implement a quantum version of

the Metropolis algorithm on a quantum computer. This algorithm permits to sample directly

from the eigenstates of the Hamiltonian and thus evades the sign problem present in classical

simulations and can be used to prepare ground and thermal states of generic quantum many-

body systems, both bosonic and fermionic. A small scale implementation of this algorithm can

already be achieved with today’s technology.

Based on:

K. Temme, T.J. Osborne, K.G. Vollbrecht, D. Poulin and F. Verstraete,

Nature (accepted), e-print arXiv: 0911.3635, (2009)
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3.1 Summary of the algorithm

In this section, we present a sketch of how the quantum Metropolis algorithm works. Details

and generalizations will be worked out in the following sections.

Ground states could in principle be prepared using the quantum phase estimation algorithm

[76, 77], but this method is in general not scalable, because it requires a variational state with

a large overlap with the ground state. Methods are known for systems with frustration-free

interactions [78] or systems that are adiabatically connected to trivial Hamiltonians [79], but

such conditions are not generically satisfied. Terhal and DiVincenzo [80] suggested two ap-

proaches of how a quantum computer could sample from the thermal state of a system. The

first suggestion is also related to the Metropolis rule, yet left open the problem of how one

could get around the no-cloning result and could construct local updates, which can be re-

jected. This shortcoming immediately leads to an exponential running time of the algorithm,

as already discussed in the said paper. The second approach shows, how thermal states can

be prepared by simulating the system’s interaction with a heat bath. However, this procedure

seems to produce rather large errors when run on a quantum computer with finite resources,

and a precise framework to describe these errors seems to be out of reach. Moreover, certain

systems like polymers [81], binary mixtures [82] and critical spin chains [83, 84] experience

extremely slow relaxation, when put into interaction with a heat bath. The Metropolis dynam-

ics solve this problem by allowing transformations that are not physically achievable, speeding

up relaxation by many orders of magnitude and bridging the microscopic and relaxation time

scales; this freedom is to a large extent responsible for the tremendous empirical success of the

Metropolis method. It is therefore desireable to have generalization of the Metropolis algorithm

for quantum Hamiltonians.

To set the stage for the quantum Metropolis algorithm, let us briefly recall the classical

Metropolis algorithm we introduced in chapter 1. We can assume for definiteness that the

system is composed of n two-level particles, i.e., Ising spins. A lattice of 100 spins has 2100

different configurations, so it is inconceivable to average them all. The key insight of Metropo-

lis et. al. was to set up a rapidly mixing Markov chain obeying detailed balance that samples

from the configurations with the most significant probabilities. This can be achieved by ran-

domly transforming an initial configuration to a new one (e.g. by flipping a randomly selected

spin): if the energy of the new configuration is lower than the original, we retain the move, but

if the energy is larger, we only retain the move with probability exp (β(Eold − Enew)), where

E is the energy of the configurations and β the inverse temperature.

The challenge we address is to set up a similar process in the quantum case, i.e., to initiate

an ergodic random walk on the eigenstates of a given quantum Hamiltonian with the appropri-

ate Boltzmann weights. In analogy to a spin flip, the random walk can be realized by a random

local unitary, and the move should be accepted or rejected following the Metropolis rule. There

are, however, three obvious complications:
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1. We do not know what the eigenvectors of the Hamiltonian are (this is precisely one of

the problems we want to solve).

2. Certain operations, such as energy measurements, are fundamentally irreversible in quan-

tum mechanics, but the Metropolis method requires rejecting, hence undoing,certain

transformations.

3. One has to devise a criterion that proves that the fixed point of the quantum random walk

is the Gibbs state.

To address the first obstacle, we assume for simplicity that the Hamiltonian has non-degenerate

eigenvalues Ei, and denote the corresponding eigenvectors |ψi〉. In the following sections, it is

shown that those conditions are unnecessary. We can make use of the phase estimation algo-

rithm [85, 86, 76, 87] to prepare a random energy eigenstate and measure the energy of a given

eigenstate. Then, each quantum Metropolis step (depicted in Fig. 3.1) takes as input an energy

eigenstate |ψi〉 with known energy Ei, and applies a random local unitary transformation C,

creating the superposition C|ψi〉 =
∑

k x
i
k|ψk〉. C could be a bit-flip at a random location like

in the classical setting, or some other simple transformation. The phase estimation algorithm is

now used in a coherent way, producing
∑

k x
i
k|ψk〉 |Ek〉. At this point, we could measure the

second register to read out the energy Ek and accept or reject the move following the Metropo-

lis prescription. However, such an energy measurement would involve an irreversible collapse

of the wave function, which will make it impossible to return to the original configuration in

the case of a reject step.

Classically, we get around this second obstacle by keeping a copy of the original config-

uration in the computer’s memory, so a rejected move can be easily undone. Unfortunately,

this solution is ruled out in the quantum setting by the no-cloning Theorem [88]. The key to

the solution is to engineer a measurement that reveals as little information as possible about

the new state, and therefore only slightly disturbs it. This can be achieved by a measurement

that only reveals one bit of information—accept or reject the move—rather than a full energy

measurement. The circuit that generates this binary measurement is shown at Fig. 3.1. It

transforms the initial state |ψi〉 into∑
k

xik

√
f ik|ψk〉 |Ei〉 |Ek〉︸ ︷︷ ︸
|ψ+
i 〉

|1〉+
∑
k

xik

√
1− f ik|ψk〉 |Ei〉 |Ek〉︸ ︷︷ ︸

|ψ−i 〉

|0〉 (3.1)

where f ik = min (1, exp (−β(Ek − Ei))). The state can be seen as a coherent superposition

of accepting the update or rejecting it. The amplitudes xik
√
f ik correspond exactly to the tran-

sition probabilities |xik|2f ik of the classical Metropolis rule. The measurement is completed by

measuring the last qubit in the computational basis. The outcome | 1〉 will project the other

registers in the state |ψ+
i 〉. Upon obtaining this outcome, we can measure the second register to
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learn the new energy Ek and use the resulting energy eigenstate as input to the next Metropolis

step.

A measurement outcome | 0〉 signals that the move must be rejected, so we must return

to the input state |ψi〉. As |ψ+
i 〉 is orthogonal to to |ψ−i 〉 we actually work in a simple 2-

dimensional subspace, i.e. a qubit. In such a case, it is possible to go back to the initial state

by an iterative scheme similar to the one employed by Marriott and Watrous in the context

of quantum Merlin Arthur amplification [89]. The circuit implementing this process is shown

in Fig. 3.2. In essence, it repeatedly implements two binary measurements. The first is the

one described in the previous paragraph. The second one, after a basis change, determines if

the computer is in the eigenstate |ψi〉 or not. A positive outcome to the latter measurement

implies that we have returned to the input state, completing the rejection; in the case of a

negative outcome, we repeat both measurements. Every sequence of these two measurements

has a constant probability of achieving the rejection, so repeating recursively yields a success

probability exponentially close to 1.

The quantum Metropolis algorithm can be used to generate a sequence of m states |φj〉,
j = 1, . . . ,m that reproduce the statistical averages of the thermal state ρG = e−βH/Z for any

observable X:
1
m

m∑
j=1

〈φj |X|φj〉 = TrXρ+O
(
1/
√
m
)
. (3.2)

To show that the fixed point of the quantum random walk is the Gibbs state, we developed the

theory of quantum detailed balance in section 2.4. We choose a specific inversion, with k(w) =

1/
√
w , cf. (2.9), that, according to Proposition 41, gives rise to the following condition.

Let {|ψi〉} be a complete basis of the physical Hilbert space and let {pi} be a probability

distribution on this basis. Assume that a completely positive map E obeys the condition

√
pnpm〈ψi|E(|ψn〉〈ψm|)|ψj〉 =

√
pipj〈ψm|E(|ψj〉〈ψi|)|ψn〉. (3.3)

Then σ =
∑

i pi|ψi〉〈ψi| is a fixed point of E .

The quantum detailed balance condition only ensures that the thermal state ρG is a pos-

sible fixed point of the quantum Metropolis algorithm. The uniqueness of this fixed point as

well as the convergence rate to it depend on the choice of the set of random unitaries {C}. If

the set of moves are chosen such that the map E is primitive, cf. Theorem 18 and [31], the

uniqueness of the fixed point is ensured. This condition can be satisfied by choosing {C} to be

a universal gate set [15]. The Metropolis step obeys the quantum detailed balance condition, if

the probability of applying a specific C is equal to the probability of applying its conjugate C†.

This can be seen as the quantum analogue of the classical symmetry condition for the update

probability. In some cases it even suffices to just apply the same local unitary C at every step

of the algorithm (see Fig. 3.4). In this case, the single unitary C has to be Hermitian and has to

ensure ergodicity. The local unitary can be seen to induce ‘non-local’ transitions between the
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eigenstates because it is followed by a phase estimation procedure. Like the classical Metropo-

lis algorithm, the quantum Metropolis algorithm is not expected to reach the ground state of an

arbitrary Hamiltonian in polynomial time. The ability to prepare the ground state of a general

Hamiltonian in polynomial time would allow to solve QMA-complete problems. However, as

a rule of thumb it always seems possible to define an update strategy for which the Metropolis

algorithm thermalizes efficiently if the physical system thermalizes in polynomial time. There

are no obvious reasons why the same should not be true for the quantum Metropolis algorithm.

It also inherits all the flexibility and versatility of the classical method, leading, for instance, to

a quantum generalization of simulated annealing [10].
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Figure 3.1: Fig. (a) The first step of the quantum circuit: the input is an arbitrary state |ψ〉 and two
r-qubit registers initialized to |0〉r. Quantum phase estimation Φ is applied to the state and the sec-
ond register. The energy value in this register is then copied to the first register by a sequence of cnot
gates. An inverse quantum phase estimation is applied to the state and the second register .Fig. (b) The
elementary step in the quantum circuit: the input is the eigenstate |ψi〉 with energy register |Ei〉 and
two registers initialized to |0〉r and |0〉. The unitary C is then applied, followed by a quantum phase
estimation step and the coherent Metropolis gate W . The state evolves as follows: |ψi〉|Ei〉|0〉|0〉 →
C|ψi〉|Ei〉|0〉|0〉 =

∑
k x

i
k|ψk〉|Ei〉|0〉|0〉 →

∑
k x

i
k|ψk〉|Ei〉|Ek〉|0〉 →

∑
k x

i
k

√
f ik|ψk〉|Ei〉|Ek〉|1〉+∑

k x
i
k

√
1− f ik|ψk〉|Ei〉|Ek〉|0〉with f ik = min (1, exp (−β(Ei − Ek))). Fig. (c) The binary measure-

ment checks whether the energy of the state |ψ〉 is the same as the energy of the original one |ψi〉. This
is done by using an extra register containing phase estimation ancillas, a step that checks whether the
energy is equal toEi or not, and finally an undoing of the phase estimation step that preserves coherence.

Figure 3.2: The circuit corresponds to the single application of the map E . The first step E prepares
an eigenstate of the Hamiltonian, The second step Qi , measures whether we want to accept or reject
the proposed update. In the “reject” case, the complete quantum circuit comprises a sequence of mea-
surements of the Hermitian projectors Qi and Pi. The recursion is aborted whenever the outcome P1 is
obtained, which indicates that we have returned to a state with the same energy as the input. Because
each iteration has a constant success probability, the overall probability of obtaining the outcome P1

approaches 1 exponentially with the number of iterations.
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3.2 Implementation

In this section we describe how to efficiently implement the quantum gates required by our

algorithm on a quantum computer. As is now standard in the literature, we assume that we

can implement single-qubit operations, measurements of the observables σα, and elementary

two-qubit gates, such as the CNOT gate with unit cost. The core element of the algorithm is

the quantum phase estimation procedure [85, 86, 76, 87]. This procedure requires a means to

simulate the unitary dynamics e−itH generated by a k-particle HamiltonianH . We assume that

H =
∑m

j=1Hj can be written as the sum of m terms, each of which is easy to simulate on a

quantum computer. The best way to do this follows the method described by Berry et. al. [87]

and by Childs [90]: This procedure provides a simulation of the dynamics e−itH for 0 ≤ t ≤ t0
using a quantum circuit of length TH , where

TH ≤ 2c m2 τ e2
√

ln(5) ln(mτ/εH), (3.4)

and c is a constant, m denotes the number of summands in H , τ = ‖H‖t0 , and εH is

the desired error. Now, for a typical Hamiltonian encountered in condensed matter physics

or quantum chemistry, the number of terms m scales as a polynomial with N , the number of

particles. Thus the length TH of the circuit scales better than any power of 1/εH and is almost

linear with t0 and scales slightly worse than a polynomial inN . Thus we can simulate e−itH for

a length of time t ∼ p(N) and to precision εH ∼ 1/q(N) with an effort scaling polynomially

with N , where p and q are polynomials.

Our algorithm requires a method to measure the observableH . This can be done by making

use of the quantum phase estimation, which is a discretization of von Neumann’s prescription

to measure a Hermitian observable.

First adjoin an ancilla – the pointer – which is a continuous quantum variable initialized in

the state |0〉, so that the system+pointer is initialized in the state |ψ〉|0〉, where |ψ〉 is the initial

state of the system. Then evolve according to the new Hamiltonian K = H ⊗ p̂ for a time t, so

the evolution is given by

e−itH⊗p̂ =
2N∑
j=1

|ψj〉〈ψj | ⊗ e−itEj p̂. (3.5)

Supposing that |ψ〉 is an eigenstate |ψj〉 of H we find that the system evolves to

e−itH⊗p̂|ψj〉|0〉 = |ψj〉|x = tEj〉. (3.6)

A measurement of the position of the pointer with sufficiently high accuracy will provide an

approximation to Ej .

To carry out the above operation efficiently on a quantum computer we discretize the

pointer using r qubits, replacing the continuous quantum variable with a 2r-dimensional space,
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where the computational basis states |z〉 of the pointer represent the basis of momentum eigen-

states of the original continuous quantum variable. The label z is the binary representation

of the integers 0 through 2r − 1. In this representation the discretization of the momentum

operator becomes

p̂ =
r∑
j=1

2−j
1− σzj

2
. (3.7)

With this normalization p̂|z〉 = z
2r |z〉. Now the discretized Hamiltonian K = H ⊗ p̂ is a sum

of terms involving at most k + 1 particles, if H is a k-particle system. Thus we can simulate

the dynamics of K using the method described above.

In terms of the momentum eigenbasis the initial (discretized) state of the pointer is written

|x = 0〉 =
1

2r/2

2r−1∑
z=0

|z〉. (3.8)

This state can be prepared efficiently on quantum computer by first initializing the qubits of

the pointer in the state |0〉 · · · |0〉 and applying an (inverse) quantum Fourier transform. The

discretized evolution of the system+pointer now can be written

e−itH⊗p̂|ψj〉|x = 0〉 =
1

2r/2

2r−1∑
z=0

e−iEjzt/2
r |ψj〉|z〉. (3.9)

Performing an inverse quantum Fourier transform on the pointer leaves the system in the state

|ψj〉 ⊗ |φ〉, where

|φ〉 =
2r−1∑
x=0

(
1
2r

2r−1∑
z=0

e
2πi
2r

“
x−

Ejt

2π

”
z

)
|x〉. (3.10)

Thus we find that

|φ〉 =
2r−1∑
x=0

f(Ej , x)|x〉, (3.11)

where

|f(Ej , x)|2 =
1
4r

sin2
(
π
(
x− Ejt

2π

))
sin2

(
π
2r

(
x− Ejt

2π

)) , (3.12)

which is strongly peaked near x = bEjt2π c. To ensure that there are no overflow errors we need

to choose t < 2π
‖H‖ . (We assume here, for simplicity, that H ≥ 0.)

It is easy to see that actually performing the simulation of K for t = 1 using the method

of [87] requires a product of r simulations of the evolution according to 1
2rH ⊗

1−σzk
2 for

1, 2, 22, . . . , 2r−1 units of time, respectively.

Thus far we have only discussed the action of the quantum phase estimation procedure on a

predetermined input state of the form |ψi〉 | 0〉. For the algorithm, however, it is important that

we apply the quantum phase estimation procedure subsequently on the same register. Since the
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phase estimation algorithm does not act deterministically, we find that the pointer register can

return to a different value | y 6= 0〉 after the procedure. It is therefore important to understand

how the full unitary Φ of the complete phase estimation procedure acts on the system. The full

unitary consists of three individual steps: First we perform a quantum Fourier transform on the

pointer register. This is followed by the simulation of the Hamiltonian K = H ⊗ p̂. In the

last step we then apply an inverse quantum Fourier transform. The unitary acts on the N -qubit

register that stores the state of the simulated system and a single r-qubit ancilla register that is

used to read out the phase information. We write

Φ =
2r−1∑
y=0

2r−1∑
x=0

My
x ⊗ |x〉〈y|, where My

x =
2N∑
j=1

f(Ej , x− y)|ψj〉〈ψj |. (3.13)

Note that the function

f(Ej , x− y) =
1
2r

eiπ(x−
Ejt

2π
−y)

ei
π
2r

(x−
Ejt

2π
−y)

 sin
(
π(x− Ejt

2π − y)
)

sin
(
π
2r (x− Ejt

2π − y)
)
 (3.14)

is complex valued. The operators My=0
x constitute the measurement generated on the sys-

tem state by the phase estimation procedure. The label x denotes the r-bit approximation to

the energy generated by the phase estimation procedure, whereas y corresponds to the initial

value of the ancilla register. Note, that since we only resolve the energy to r bits of precision,

it is not correct to suppose, that quantum phase estimation always outputs the closest r-bit

approximation to the energy of the eigenstate. Rather, it outputs a random energy distributed

according to Eq. (3.12), sharply peaked around the exact energy. Thus, what we described

earlier as projectors onto energy bins are not truly von Neumann projective measurements, but

rather correspond to generalized (positive operator valued measure, POVM) measurements on

the system. It can easily be verified, that the operators My
x constitute a general POVM and are

only projectors, when either the pointer register size is infinite r → ∞, or the energies of the

Hamiltonian are spaced at integer levels. For the construction of the measurement we assumed

earlier, that the pointer register is always initialized into the state | 0〉 = | 0, . . . , 0〉. However,

in our algorithm it can happen that the pointer register will differ from that state prior to the ap-

plication of a quantum phase estimation procedure due to imperfections. Nevertheless, due to

(3.14) it becomes clear that the estimate x of the eigenvalue Ei only gets shifted by an amount

of y, if the ancilla register is initially in the state | y〉.

The median method The distribution |f(Ej , x)|2 can be sharpened by employing a method

developed in [91]: the idea is to adjoin η + 1 separate pointers, each comprising r qubits, and

to perform quantum phase estimation η times on the system using each of the first η pointer

systems in turn for the readout. Then the median of the results in the η pointers is computed
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in a coherent way and written into the (η + 1)th pointer. The probability that the median value

deviates from the true energy by more than 2−r is less than 2−η [91]. Given an eigenstate ofH ,

this leaves two possible phase estimation outcomes, corresponding to the r-bit energy values

directly below and directly above the true energy. Hence, the high confidence phase estimation

algorithm acts as

|ψi〉|0〉 → |ψi〉 ( αEi(bEic) |bEic〉+ αEi(dEie) |dEie〉 ) +O(2−η), (3.15)

where |αEi(bEic)|2 + |αEi(dEie)|2 ≈ 1 and bEic and dEie are the two closest r-bit ap-

proximations to Ei. Despite this improvement, it is not possible to make the outcome of the

quantum phase estimation procedure deterministic. In the worst case, where the exact energy

for a given eigenstate falls exactly between two r-bit values, the two measurement outcomes

will be equally likely. So the enhanced quantum phase estimation algorithm still implements

a non-projective measurement on the system just like the standard procedure. In either case,

we will denote the unitary corresponding to the quantum phase estimation algorithm by Φ and

writeMy
x =

∑2N

j=1 αEj (x−y)|ψj〉〈ψj |, when we refer to the high confidence phase estimation

procedure.

3.3 Description of the quantum Metropolis algorithm

In this section, we provide a more elaborate description of the quantum Metropolis algorithm.

The fundamental building block is the quantum phase estimation algorithm (see section 3.2);

throughout this section we assume that the phase estimation algorithm works perfectly, i.e.

given an eigenstate |ψi〉 of the Hamiltonian H with energy Ei, we assume that the quantum

phase estimation circuit Φ implements the transformation

|ψi〉|0〉 → |ψi〉|Ei〉,

where Ei is encoded with r bits of precision. The fact that errors inevitably occur during

quantum phase estimation will be dealt with in section 3.7. The algorithm runs through a

number of steps 0..4 and, just as in the classical case, the total number of iterations of this

procedure is related to the autocorrelation times of the underlying stochastic map. As analyzed

in the section 3.6, this procedure obeys the quantum detailed balance condition and hence

allows to sample from the Gibbs state. The different steps are also depicted in Fig. 3.3.

0 Initialization

Initialize the quantum computer in a convenient state, e.g. |00 . . . 0〉. We need 4 quan-

tum registers in total. The first one will encode the quantum states of the simulated

system, while the other 3 registers are ancillas that will be traced out after every individ-

ual Metropolis step. The second register consists of r qubits and encodes the energy of
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the incoming quantum state with r bits of precision (bottom register in Fig. 3.1a). The

third register is the one used to implement the quantum phase estimation algorithm, also

with r qubits (top register 3.1a). The fourth register is a single qubit that will provide the

randomness for accepting or rejecting the Metropolis step.

1 State preparation:

Re-initialize the three ancilla registers and implement the quantum phase estimation

based circuit depicted in Fig. 3.1a followed by a measurement of the second register.

This prepares an eigenstate |ψi〉 with energy Ei and associated energy register |Ei〉. The

upper ancillas are left in the state |0〉r as we assumed perfect phase estimation. The

global state is now

|ψi〉|Ei〉|0〉|0〉

2 Propose update:

The next step is depicted in Fig. 3.1b. Assume that we have defined a set of unitaries

C = {C} that can be implemented efficiently; those will correspond to the proposed

moves or updates of the algorithm, just like one does for instance spin flips in the case of

classical Monte Carlo. Just as in the classical case, the exact choice of this set of unitaries

does not really matter as long as it is rich enough to generate all possible transitions; the

convergence time will, however, depend on the particular choice of moves. The unitary

C is drawn randomly from the set C according to some probability measure dµ(C). It is

only necessary that the probability of choosing aC is equal to the probability of choosing

C†, i.e. dµ(C) = dµ(C†), as this is dictated by the requirement that the process obeys

detailed balance, cf. section 3.6.

The new state can be written as a superposition of the eigenstates:

C|ψi〉 =
∑
k

xik|ψk〉

Implement the coherent quantum phase estimation step specified in Fig. 3.1b, which

results in the state

∑
k

xik|ψk〉 →
∑
k

xik|ψk〉|Ei〉|Ek〉|0〉.

Note that Ek is only encoded with a precision of r bits, so that in practice there will be a

lot of degeneracies.

Finally, implement the unitaryW (Ek, Ei) (Fig. Fig. 3.1b) which is a one-qubit operation

conditioned on the value of the 2 energy registers:
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W (Ek, Ei) =

( √
1− fik

√
fik√

fik −
√

1− fik

)
(3.16)

fik = min (1, exp (−β (Ek − Ei))) . (3.17)

The system is now in the state

∑
k

xik

√
f ik|ψk〉|Ei〉|Ek〉|1〉+

∑
k

xik

√
1− f ik|ψk〉|Ei〉|Ek〉|0〉.

For later reference, the product of the three unitaries C, the phase estimation step, and

W is called U (see Fig. 3.1b).

3 Accept instance:

Measure the single ancilla qubit in the computational basis. A measurement outcome 1

corresponds to an acceptance of the move and collapses the state into

∑
k

xik

√
f ik|ψk〉|Ei〉|Ek〉|1〉.

In the case of this accept move, we can next measure the third register which prepares a

new eigenstate |ψk〉, and follow that by an inverse quantum phase estimation step. This

leads to the state

|ψk〉|Ei〉|0〉|1〉

with probability proportional to
∣∣∣xik√f ik∣∣∣2. This state will be the input for the next step

in the iteration of the Metropolis algorithm: go back to step 1 for this next iteration.

Note that the sequence E → Q1 → L depicted in Fig. 3.3 exactly corresponds to this

sequence of gates.

A measurement |0〉 in the single ancilla qubit signals a reject of the update. In this case,

first apply the gate U †, and then go to step 4.

4 Reject instance:

Let us first define the Hermitian projectors Q0 and Q1, made up of the gates defined in

step 2− 3 including the measurement on the ancilla:

Q0 = U † (1⊗ 1⊗ 1⊗ |0〉〈0|)U

Q1 = U † (1⊗ 1⊗ 1⊗ |1〉〈1|)U
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Let us also define the Hermitian projectors P0 and P1 as

P0 =
∑
i

∑
Eα 6=Ei

|ψα〉〈ψα| ⊗ |Ei〉〈Ei| ⊗ 1⊗ 1

P1 =
∑
i

∑
Eα=Ei

|ψα〉〈ψα| ⊗ |Ei〉〈Ei| ⊗ 1⊗ 1

Here equality (or inequality) means that the first r bits of the energies do (not) coincide.

This measurement Pα can easily be implemented by a phase estimation step depicted in

Fig. 3.1c.

The fourth step of the algorithm now consists of a sequence of measurements (see Fig.

3.2). First we implement the von Neumann measurement defined by Pα. If the outcome

is P1, then we managed to prepare a new eigenstate |ψα〉 with the same energy as the ini-

tial one |ψi〉, and therefore succeeded in undoing the measurement. Go to step 1. If the

outcome is P0, we do the von Neumann measurement Qα. Independent of the outcome,

we again measure Pα, and if the outcome is P1, we achieved our goal, otherwise we

continue the recursion (see Fig. 3.3). It happens that the probability of failure decreases

exponentially with the number of iterations (see section 3.4.1) , and therefore we have a

very good probability of achieving our goal. In the rare occasion when we do not con-

verge after a pre-specified number of steps, we abort the whole Monte Carlo simulation

and start all over.

Figure 3.3: Given an input state |ψ〉, we first perform a quantum phase estimation to collapse to an
eigenstate with known energy E. This graph represents the plan of action conditioned on the different
measurement outcomes of the binary P and Q measurements. Each node in the graph corresponds to
an intermediate state in the algorithm. One iteration of the map is completed when we reach one of the
final leafs labelled by either accept or reject. The sequence E → Q1 → L corresponds to accepting the
update, all other leafs to a rejection. The individual operations are defined in section 3.5

This finishes the description of the steps in the algorithm. A single iteration of the quantum

Metropolis algorithm corresponds to a single application of the Metropolis tcp-map E . This
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map will be defined in section 3.5. Finally, let us briefly discuss how to implement the unitary

gate W (Ek, Ei). This is a single qubit unitary conditioned on two energy registers. That this

conditional unitary can be performed efficiently follows by observing that one can efficiently

compute the angle θ = arcsin(e
β
2

( 2πx
t
−Ei)) into a scratchpad register, conditionally rotate the

answer qubit by this angle, and uncompute θ.

3.4 Running time of the quantum Metropolis algorithm

Let us discuss the runtime scaling of the full Metropolis algorithm. In general, there are three

types of error one has to deal with when we consider the the runtime scaling of the algorithm.

First, we are dealing with a Markov chain and hence there is an associated mixing error

εmix. We have introduced the mixing error and the associated mixing time in chapter 2. The

mixing error of the Markov chain is defined with respect to trace norm distance, as ‖Emmix(ρ)−
σ∗‖tr ≤ εmix. Where mmix denotes the mixing time, i.e. the number of times the completely

positive map has to be applied starting from an initial state ρ to be εmix close to the steady state

σ∗ of the Markov chain. The mixing time is determined by the the gap ∆ = 1 − λ1 between

the two largest eigenvalues in magnitude of the corresponding completely positive map, if the

map obeys quantum detailed balance. We have shown in section 2.3 and in [92] that the trace

norm is bounded by

‖Em(ρ)− σ∗‖tr ≤ Cexp (1−∆)m , (3.18)

For some constant Cexp = maxρ χ2
k(ρ, σ

∗), which is typically in the order of the total

Hilbert space dimensions, i.e. in our case Cexp = O(2N ). The runtime, or the mixing time,

scales therefore as

mmix ≥ O
(

ln(1/εmix) +N)
∆

)
. (3.19)

Just as for classical stochastic maps one needs to prove that the gap is bounded by a poly-

nomial in the system size for each problem instance individually to ensure that the chain is

rapidly mixing. It is generally believed, that to prove rapid mixing for a realistic Hamiltonian

is hard. However, the convergence rate of the classical Metropolis algorithm is often good for

many realistic physical systems and it is conceivable that the same will be true for the quantum

Metropolis algorithm as well. In the following, cf. section 3.4.2, we will provide a simple

example system for which the scaling of the gap can be estimated numerically.

The second type of imperfection relates to the fact, that the reject part of a local move

cannot be implemented deterministically. However, we will show, cf. section 3.4.1, that this

probability can be made arbitrary small by increasing the number of iterations in the reject

move. For all realistic applications one would choose a fixed n∗ so that one only attempts to

perform n ≤ n∗ reject moves before discarding the sample. We want to achieve an overall



88 3 Quantum Metropolis sampling

success probability of preparing a valid sample that is bounded by some constant c. What do

we mean by that? As already stated the Metropolis algorithm allows one to sample from the

eigenstates |ψi〉 with a given probability pi ∝ exp (−βEi). Since our reject procedure can

only be implemented probabilistically we have to choose a fixed number of times n∗ we try

to reject a proposed update. The probability of failure pfail(n) of rejecting a proposed update

after n steps is bounded by pfail(n) ≤ 1
2e(n+1) , see (3.30). For the algorithm to work, we want

the algorithm to produce a sample after mmix applications of the map E with a probability

that is larger than a constant c. Hence the probability of failure after mmix steps should obey

(1− pfail(n∗))mmix ≥ c. This condition is met if we choose

n∗ >
mmix

2e(1− c)
(3.20)

This means, that we have to implement for each Metropolis step at most n∗ measurements

Pi and Qi, before we discard the sample and start over again. Note, that this is a very loose

upper bound for the actual number of reject attempts, since the probability of failure actually

decays exponentially in n, with some unknown constant ensured to be smaller than unity.

The third error relates to the fact that we are implementing the algorithm on a quantum

computer with finite resources, e.g. a finite register to store the energy eigenvalues in the phase

estimation procedure. This leads to a modification of the completely positive map E , whose

fixed point σ∗ now deviates from the Gibbs state ρG by ‖σ∗ − ρG‖tr ≤ ε∗. This error will be

discussed in section 3.7.

3.4.1 The rejection procedure

Let us discuss the convergence of the reject step more closely. As already explained, the

algorithm should prepare a new state with the same energy as the original one Ei in the case of

a reject move. As shown in Fig. 3.3, we will do this by repeating a sequence of two different

binary measurements Pi and Qi. The recursion stops, whenever the measurement outcome P1

is obtained, where P1 is the projector on the subspace of energy Ei. Note that it is crucial for

the algorithm that the initially prepared state E|ψi〉|02r+1〉 is an eigenstate of the projection

P1. This is indeed the case, even if we take into account the fluctuations in the quantum phase

estimation step discussed in the section 3.7: the error that is generated by the fluctuations of

the pointer variable can be accounted for if we verify the equality of the energy in P only up

to r̃ < r bits of precision. This allows to enlarge the eigenspace of P with approximate energy

Ei, encompassing the fluctuations of the pointer variable.

Here we will calculate the expected running time. The probability of failure to reject the

move, given that we start in some state |ψi〉 in the energy Ei subspace, after n ≥ 2 steps, is

given by the probability of measuring P0 after n subsequent binary measurements , see Fig. 3.3.

Note, that the commutator [P0QsP0, P0Qs′P0] = 0 for all s, s′, therefore the probability of
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failure can be cast into the form

pfaili (n) =
n∑

m=0

(
n

m

)
tr
[
(P0Q0P0)n−m (P0Q1P0)m P0Q0E (3.21)(

|ψi〉〈ψi| ⊗ |02r+1〉〈02r+1|
)
EQ0P0 (P0Q1P0)m (P0Q0P0)n−m

]
.

The full expression can conveniently be summed to a single term:

pfaili (n) = 〈ψi|〈02r+1|EQ0P0

[
P0(

1∑
s=0

QsP0Qs) P0

]n
P0Q0E|ψi〉|02r+1〉. (3.22)

We now make use of the following Lemma 44. The key technical reason why it is possible

to implement the reject move in the quantum Metropolis algorithm is related to a very special

normal form in which two (non-commuting) Hermitian projectors can be brought. The Lemma

states, that there is a basis in which both projectors Pi and Qi are block diagonal.

Lemma 44 (Jordan 1875). Let P1 andQ1 be two projectors of rank(Q1) = q and rank(P1) = p

on a Hilbert space H = Ck with p + q ≤ k. We assume w.l.o.g, that q ≥ p. Then there exists

a basis ofH in which P1 and Q1 can be written in the form

P1 =

(
1p 0k−p,p

0p,k−p 0k−p,k−p

)
(3.23)

Q1 =


Dp

√
Dp(1p −Dp) 0 0√

Dp(1p −Dp) 1p −Dp 0 0

0 0 1q−p 0

0 0 0 0k−(q+p),k−(q+p)

 .

Here, D is a p× p diagonal matrix with real entries 0 ≤ d1 ≤ . . . ≤ dp ≤ 1.

PROOF: We can always choose a basis ofH in which the projector P1 can be written as

P1 =

(
1p 0k−p,p

0p,k−p 0k−p,k−p

)
. (3.24)

In any basis, a general rank q projector Q1 can be written in the form

Q1 =

(
Apq

Bk−p,q

)(
A†pq B†k−p,q

)
(3.25)

Here Apq and Bn−p,q are rectangular matrices over C. We require that Q1 is a projector:

Q2
1 = Q1 leads to the constraint

A†pqApq +B†k−p,qBk−p,q = 1q. (3.26)
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We can now choose to perform a singular value decomposition of Apq = UAΣAV
†
A and

Bn−p,q = UBΣBV
†
B . The projector can thus be written as

Q1 =

(
UA 0

0 UB

)(
ΣAΣ†A ΣAV

†
AVBΣB

ΣBV
†
BVAΣA ΣBΣ†B

)(
U †A 0

0 U †B

)
(3.27)

Note, that UA and UB are p- and (k − p)-dimensional unitary matrices respectively. Therefore

the total block diagonal Unitary UA ⊕ UB leaves the projector P1 invariant. If we turn to

equation (3.26), we see that upon inserting the singular value decomposition, the matrix V =

V †AVB must satisfy

Σ†AΣA = V (1q − Σ†BΣB)V † (3.28)

Note, that both Σ†AΣA and 1q − Σ†BΣB are diagonal matrices, which are according to (3.28)

similar. If we assume w.l.o.g, that the singular values are non-degenerate, we conclude that

V can only be a permutation matrix. The degenerate case can be covered by a continuity

argument. If we define D = ΣAΣ†A and apply the appropriate permutations to the remaining

sub matrices, we are left with the desired expression for Q1.

Note, that we reuse the same two pointer registers at each phase estimation step in the

algorithm. This means that even though a realistic phase estimation procedure does not nec-

essarily act as a projective measurement on the physical subsystem, the binary measurements

Pi and Qi are still projectors on the full circuit. Therefore, Lemma (44) can still be employed,

even for a realistic phase estimation procedure. Without loss of generality, we assume that the

rank of rank(P1) = p is smaller than the rank of Q1, which is equal to half the dimension

of the complete Hilbert space (note that P1 projects on a single energy subspace). Assume

that the unitary UJ brings P and Q to this desired form. This allows us to rewrite (3.22) as

pfaili (n) = 〈ψi|〈02r+1|EU †JDfail(n)UJE|ψi〉|02r+1〉 with

Dfail(n) =


D(1−D)(D2 + (1−D)2)n −

√
D(1−D)(D2 + (1−D)2)n 0 0

−
√
D(1−D)(D2 + (1−D)2)n D2(D2 + (1−D)2)n 0 0

0 0 1 0

0 0 0 1

 .

Here, D denotes a p-dimensional diagonal matrix with only positive entries. Note that the

state UJE|ψi〉|02r+1〉 has complete support on the projection operator P1. That is, as we stated

earlier, the state is an eigenstate of P1. this means that it only acts on the first upper left block.

If we denote by 0 ≤ d∗ ≤ 1 the diagonal entry of D that gives rise to the largest entry in the

upper left block of the matrix Dfail(n), we can bound

pfail(n) ≤ d∗(1− d∗)(d∗2 + (1− d∗)2)n. (3.29)
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We observe, that the probability of failure decays exponentially in n, for a n-independent d∗.

Let us maximize this expression over all possible values of d∗, in order to obtain an absolute

upper bound to the failure probability. Defining x = d∗2 + (1 − d∗)2 = 1 − 2d∗(1 − d∗), we

see that this probability may be bounded by 1−x
2 xn. This expression is maximized by choosing

x = n
n+1 , for which we have

pfail(n) ≤ 1
2(n+ 1)

(
1

1 + 1
n

)n
≈ 1

2e(n+ 1)
. (3.30)

Hence, choosing n = O(1/ε) recursion steps is sufficient to reduce the probability of failure

to below ε. We have to choose this ε in such a mannar, that the probability of failure during a

complete cycle of the Metropolis algorithm is bounded by a small constant number.

3.4.2 Mixing time scaling for an example system

We are not able to make a general statement about the mixing times of the algorithm for ar-

bitrary Hamiltonians. In fact, as we argued earlier it is expected that the gap and by that the

runtime will scale exponentially in the system size for Hamiltonians that can encode QMA -

hard instances. But such a runtime scaling is present also in the classical Metropolis algorithm

if one investigates NP - hard problems, such as classical spin glasses. However, the classical

Metropolis algorithm is a powerful tool for simulating physical problems, because one ob-

serves that the algorithm does indeed converge very fast for most of the physical Hamiltonians.

In this section we investigate the scaling of the gap ∆ of the quantum Markov chain for a sim-

ple example system numerically. Of course, we need to investigate a model that is fit for the

simulation on a classical computer, that is we need to be able to compute the eigenbasis of the

system analytically in order to describe the transitions between the states by classical means.

To this end we investigate the XX-Hamiltonian with an external magnetic field of strength g.

The spin Hamiltonian of the one-dimensional chain is given by

H =
N−1∑
n=1

σxn ⊗ σxn+1 + σyn ⊗ σ
y
n+1 + g

N∑
n=1

σzn. (3.31)

This Hamiltonian can conveniently be diagonalized by making use of the Jordan-Wigner trans-

formation a†n = −(⊗n−1
r=1σ

z
r )σ

+
n , which transforms the Hamiltonian to a free fermionic Hamil-

tonian. If we furthermore apply a transformation on the single mode level transforming the

fermionic creation and annihilation operators as a†n =
∑N

k=1 v
k
nc
†(k), we can diagonalize the

full Hamiltonian so that

H = −2
N−1∑
n=1

(
a†n+1an + a†nan+1

)
+ 2g

N∑
n=1

a†nan −Ng

=
N∑
k=1

2
(
g − 2 cos

(
kπ

N + 1

))
c†(k)c(k) −Ng, (3.32)
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where we have defined vkn =
√

2
N+1 sin

(
π

N+1k n
)

as the single particle modes. Since we

are dealing with a free fermion system, the eigenstates of the Hamiltonian can be generated

form the Fock vacuum | 0〉 as | k1, . . . , kn〉 = c†(k1) . . . c†(kn) | 0〉 and are nothing but Slater

determinants. Here, each of the individual momenta assumes the values ki = 1 . . . N .

We investigate the runtime scaling of the Metropolis for T = 0, i.e. preparing the ground

state of the above Hamiltonian. To this end, we need to choose an update that can be simulated

classically. We choose C = σx1 that is acting as a single bit flip on the first qubit. The update

acts on the eigenbasis via

C = σx1 =
(
a†1 + a1

)
=

N∑
k=1

√
2

N + 1
sin
(

π

N + 1
k

)(
c†(k) + c(k)

)
. (3.33)

We observe, that a single eigenstate | k1, . . . , kn〉 gets mapped to at most 2N other eigenstates.

Hence, the unitary C is very sparse in the eigenbasis of the Hamiltonian. We can therefore

set up a classical Markov process that only keeps track of the 2N possible transitions between

the eigenstates which we identify by their momentum labels. We have plotted the energy as a

function of the number n of applications of the tcp-map in Fig. 3.4(a). From the plots and an

exponential fit to the plot we can infer the gap, which scales as ∆ ∝ 1/N Fig. 3.4(b). The

runtime of the Metropolis algorithm therefore scales linear in the system size for this particular

system. The observed linear scaling indicates that, at least in the case of 1D spin chains with

nearest - neighbor Hamiltonians, the quantum Metropolis algorithm appears to converge in

polynomial time. Proving this remains an interesting open problem.
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Figure 3.4: Plot (a): This plot depicts the average energy of the state as a function of the number of
applications of the Metropolis map at T = 0 for spins in a chain with XX-Hamiltonian and g = 1 for
different system sizes N = 100 . . . 1000. The update rule is a single-spin flip σx1 . Plot (b): The inverse
gap of the quantum Metropolis map as a function of the number of sites N for different values of the
magnetic filed strength g. The plot clearly indicates a linear scaling of the inverse of the gap.
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3.5 The completely positive map

We now investigate the actual completely positive map E generated by all unitaries and mea-

surements in more detail. The full map can be understood as an initialization step denoted by

E followed by successive P and Q measurements, as discussed in section 3.3 and illustrated

in Fig. 3.3. Note, that the projectors Qi depend on the random unitary C. For each application

of the map we draw a random unitary C from the set C = {C} according to the probability

measure dµ(C). We therefore have to average over the set C. The tcp-map on the system is

obtained by tracing out all ancilla registers. This construction corresponds to the open system

representation as introduced in Theorem 13, and we therefore are ensured that the map we are

considering is indeed trace preserving and completely positive. As shown in the previous sec-

tion 3.4.1, the error obtained by cutting the number of iterations in the reject case to n∗ can be

made arbitrarily small; we can therefore approximate the full map as an infinite sum

E(ρ) =
∫
C

trA
[
LQ1E

(
ρ⊗ |02r+1〉〈02r+1|

)
EQ1L

†
]

(3.34)

+ trA
[
P1Q0E

(
ρ⊗ |02r+1〉〈02r+1|

)
EQ0P1

]
+

∞∑
n=1

1∑
s1...sn=0

trA [P1QsnP0 . . . P0Qs1P0Q0E(
ρ⊗ |02r+1〉〈02r+1|

)
EQ0P0Qs1P0 . . . P0QsnP1

]
dµ(C).

The projective measurements Ps and Qs are comprised of several individual operations.

We adopt a new notation: an unmarked sum over the indices written as small Latin letters, e.g.

k1, p1, . . . is taken to run over all 2r integer values of the phase estimation ancilla register. The

projectors can be written as

Qs =
∑
k1,k2

∑
p1,p2

C†Mp1
k2

†
Mp2
k2
C ⊗ |k1〉〈k1| ⊗ |p1〉〈p2| ⊗Rs(k1, k2), (3.35)

P0 =
∑
k1 6=k2

∑
p1,p2

Mp1
k2

†
Mp2
k2
⊗ |k1〉〈k1| ⊗ |p1〉〈p2| ⊗ 1,

P1 =
∑
k1=k2

∑
p1,p2

Mp1
k2

†
Mp2
k2
⊗ |k1〉〈k1| ⊗ |p1〉〈p2| ⊗ 1.

As before, we used the convention that the first register contains the physical state of the

system. The second register of r-qubits corresponds to the register that stores the eigenvalue

estimates of the first phase estimation, the third register is again used for phase estimation and

the last register sets the single condition bit. The last matrix is defined as

Rs(k1, k2) = W (k1, k2)†|s〉〈s|W (k1, k2), (3.36)

with W defined in (3.17). Furthermore, the first operation in the circuit, that prepares an

eigenstate and copies its energy eigenvalue to the lowest register, is denoted by
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E =
∑
k1,k2

∑
p1,p2

Mp1
k2

†
Mp2
k2
⊗ |k1 ⊕r k2〉〈k1| ⊗ |p1〉〈p2| ⊗ 1, (3.37)

where ⊕r denotes an addition modulo 2r. For notational purposes we introduced another

operation

L =
∑
k1,k2

∑
p1,p2

Mp1
k2

†
Mp2
k2
C ⊗ |k1〉〈k1| ⊗ |p1〉〈p2| ⊗W (k1, k2). (3.38)

A successful measurement of Q1 at the beginning of the circuit, Fig. 3.2, followed by

the operation L corresponds to an acception of the Metropolis update and a further clean-up

operation that becomes necessary, when considering a realistic phase estimation procedure.

If we define new super-operators A(ρ) and B{sn}n (ρ), the tcp-map on the physical system

can be written as

E(ρ) = A(ρ) + B0(ρ) +
∞∑
n=1

1∑
s1...sn=0

B{sn}n (ρ). (3.39)

Here, A denotes the contribution to the tcp-map that corresponds to the instance, where

the suggested Metropolis move is accepted. Each of the Bn correspond to a rejection of the

update after n+ 1 subsequent Q and P measurements. These superoperators can be expressed

as follows:

A(ρ) =
∑
k1,k2

∑
d,p1,q1

∫
C
dµ(C) min

(
1, e−β

2π
t

(k2−k1)
)

Md
k2

†
Mp1
k2
CMp1

k1

†
M0
k1 ρ M

0
k1

†
M q1
k1
C†M q1

k2

†
Md
k2 . (3.40)

Furthermore,

B0(ρ) =
∑
k1

∑
l1,r1

∑
d;p1,p2;q1,q2

∫
C
dµ(C) 〈0|R0(k1, r1)R0(k1, l1)|0〉 (3.41)

Md
k1

†
Mp2
k1
C†Mp2

l1

†
Mp1
l1
CMp1

k1

†
M0
k1 ρ M

0
k1

†
M q1
k1
C†M q1

r1
†M q2

r1CM
q2
k1

†
Md
k1 ,

and

B{sn}n (ρ) =
∑
k1

∑
d,{ln+1};{rn+1}

∫
C
dµ(C) gk1 ({sn}, {ln+1}, {rn+1}) (3.42)

Dd
k1 ({ln+1}) ρ Dd

k1

†
({rn+1}) .

The operators D and the scalar function g in the definition of B{sn}n are given by

gk1 ({sn}, {ln+1}, {rn+1}) = 〈0|R0(k1, r1)Rs1(k1, r2) . . . Rsn(k1, rn+1) (3.43)

Rsn(k1, ln+1) . . . Rs1(k1, l2)R0(k1, l1)|0〉
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and

Dd
k1 ({ln+1}) =

∑
{an+1}6=k1

∑
{p2n}

Md
k1

†
Mp2n
k1

C†Mp2n
ln+1

†
M

p2n−1

ln+1
CMp2n−1

an+1

†Mp2n−2
an+1

C† (3.44)

. . .Mp3
a1

†Mp2
a1
C†Mp2

l1

†
Mp1
l1
CMp1

k1

†
M0
k1 .

This concludes the description of the completely positive map corresponding to one itera-

tion of the Metropolis algorithm.

3.6 Fixed point of the ideal chain

In the previous descriptions of the algorithm we only considered the idealized case when we

are able to identify each eigenstate by its energy label. When this is the case, the algorithm can

be interpreted as a classical Metropolis random walk where the configurations of the system are

replaced by the eigenstates of a quantum Hamiltonian. However, this picture falls short if we

consider the more realistic scenario of a Hamiltonian with degenerate energy subspaces. The

rejection procedure ensures in this case only that we end up in the same energy subspace we

started from. We therefore need to investigate the fixed point of the actual completely positive

map that is generated by the circuit. We will see that the quantum Metropolis algorithm yields

the exact Gibbs state as its fixed point, if the quantum phase estimation algorithm resolves the

energies of all eigenstates exactly. To be able to make statements about the fixed point of this

quantum Markov chain, we have introduced (see section 2.4) a quantum generalization of the

detailed balance concept. As for classical Markov chains, this criterion only ensures that the

state with respect to which the chain is detailed balanced is a fixed point. However, it does

not ensure that this fixed point is unique. The uniqueness follows from the ergodicity of the

Markov chain [30, 28], as discussed in the preliminaries section 1, and thus depends in our case

on the choice of updates {C}, which can be chosen depending on the problem Hamiltonian. A

sufficient (but not necessary) condition for ergodicity can easily be obtained by enforcing {C}
to form a universal gate set, as will be shown below.

In section 2.4 we show in Proposition 41, that a quantum Markov chain obeys quantum

detailed balance for a specific inversion k(w) = 1/
√
w , cf. (2.9), if there exists a probability

distribution {pi} and a complete set of orthonormal vectors {|ψi〉} such that the following

condition holds

√
pnpm〈ψi|E [|ψn〉〈ψm|)|ψj〉 =

√
pipj〈ψm|E [|ψj〉〈ψi|)|ψn〉. (3.45)

This condition together with the ergodicity of the updates {C} ensures that the unique fixed

point of the quantum Markov chain is
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σ =
2N∑
i=1

pi|ψi〉〈ψi|. (3.46)

We therefore would like to verify whether condition (3.45) is satisfied when we choose the

pi equal to the Boltzmann weights of H and the vectors equal to the eigenvectors |ψi〉.

The condition (3.45) is linear in the superoperators. We can therefore conclude that, when

each of the summands A and all the B’s in (3.39) individually satisfy this condition, the total

tcp-map E is detailed balanced.

The idealized case would be met if we could simulate a Hamiltonian H with eigenvalues

Ei that are r-bit integer multiples of 2π
t , or if we had an infinitely large ancilla register for the

phase estimation. In this case, the operators Mp
E would reduce to simple projectors ΠE+p on

the energy subspace labeled by E + p. Hence

Mp
E
†
M q
E = δp,qΠE+p.

Note that the δp,q ensures that after each P andQmeasurement the second ancilla register used

for phase estimation is again completely disentangled and returns to its original value.

Furthermore, in the special case when the eigenvalues of the Hamiltonian are non-degenerate

the projectors reduce to ΠEi = |ψi〉〈ψi|. In this case it can be seen that the dynamics of the

algorithm reduce to the standard classical Metropolis algorithm that is described by a classical

stochastic matrix that can be computed as

Sij = 〈ψj |E [|ψi〉〈ψi|] |ψj〉.

For this special case it is obvious that the detailed balance condition is met.

Let us now turn to the more generic case, when the energy eigenvalues are degenerate. We

investigate each of the contributions to the completely positive map (3.39).

The accept instance: We first investigate the accept instance described by the operatorA(ρ).

A(ρ) =
∑
E1,E2

∫
C
dµ(C) min

(
1, e−β(E2−E1)

)
ΠE2C ΠE1 ρ ΠE1C

†ΠE2 . (3.47)

The detailed balance criterion (3.45) for pi = 1
Z e
−βEi and |ψi〉 reads

1
Z
e−β(Ei+Ej)/2〈ψl|A(|ψi〉〈ψj |)|ψm〉 =

1
Z
e−β(El+Em)/2〈ψj |A(|ψm〉〈ψl|)|ψi〉. (3.48)

Note that the chain of operators begins with a projector ΠE1 and ends with a projector ΠE2 .
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The detailed balance condition reads therefore

(3.49)
1
Z
e−β(Ei+Ej)/2

∫
C
dµ(C) min

(
1, e−β(El−Ei)

)
δEl,EmδEi,Ej 〈ψl|C|ψi〉〈ψj |C

†|ψm〉

=
1
Z
e−β(El+Em)/2

∫
C
dµ(C) min

(
1, e−β(Ej−Em)

)
δEl,EmδEi,Ej 〈ψj |C|ψm〉〈ψl|C

†|ψi〉.

Due to the fact that 1
Z e
−βEl min

(
1, e−β(Ei−El)

)
= 1

Z e
−βEi min

(
1, e−β(El−Ei)

)
, this reduces

to

∫
C
dµ(C) 〈ψl|C|ψi〉〈ψj |C†|ψm〉 =

∫
C
dµ(C) 〈ψj |C|ψm〉〈ψl|C†|ψi〉, (3.50)

where the energies of the eigenstates have to satisfy El = Em and Ei = Ej .

One sees that (3.47) is satisfied when the probability measure obeys

dµ(C) = dµ(C†). (3.51)

If we consider an implementation that only makes use of a single unitary C for every update,

we have to ensure that this unitary is Hermitian, i.e. C = C†. This symmetry constraint on the

measure can be seen as the quantum analogue of the fact, that we need to choose a symmetric

update rule for the classical Metropolis scheme.

The reject instance: We now turn to the reject case described by the operatorsB{sn}n (ρ) . The

rejecting operators also simplify greatly when we consider the case of perfect phase estimation.

After each phase estimation step the second register disentangles due to the δpl,pl+1
, we get

(3.52)

B{sn}n (ρ) =
∑
E

∑
{ln+1};{rn+1}

gE ({sn}, {ln+1}, {rn+1})
∫
C
dµ(C) D0

E ({ln+1}) ρD0
E
† ({rn+1}) .

The chain of unitaries and measurement operators in the operator D (3.44) reduces to

D0
E ({ln+1}) = ΠEC

†Πln+1CΠ⊥EC
† . . .Π⊥EC

†Πl1CΠE , (3.53)

where Π⊥E is the projector on to the orthogonal complement of energy subspace E. Note that

the first and the last projector in each chain of operators is ΠE . Hence, all elements

〈ψl|B{sn}n (|ψi〉〈ψj |)|ψm〉

vanish, if all energies are not equal El = Ei = Ej = Em. We can therefore disregard the

probabilities pi on either side of the detailed balance equation (3.45). The detailed balance

condition thus reads

〈ψl|B{sn}n (|ψi〉〈ψj |)|ψm〉 = 〈ψj |B{sn}n (|ψm〉〈ψl|)|ψi〉. (3.54)
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It is important that the function gE ({sn}, {ln+1}, {rn+1}) (3.43) is real. Due to this fact and

furthermore, since all the individual operators Rs(E, k) are Hermitian, we may exchange the

ordering of the indices {ln+1}, {rn+1}. That is, we may write

gE ({sn}, {ln+1}, {rn+1}) = gE ({sn}, {ln+1}, {rn+1})∗ (3.55)

= 〈0|R0(k1, l1)†Rs1(k1, l2)† . . . Rsn(k1, ln+1)†Rsn(k1, rn+1)† . . . Rs1(k1, r2)†R0(k1, r1)†|0〉

= gE ({sn}, {rn+1}, {ln+1})

Furthermore, since the individual projectors Πli and Π⊥E are of course Hermitian, we may write

〈ψl|B{sn}n (|ψi〉〈ψj |)|ψm〉 (3.56)

=
∑

{ln+1};{rn+1}

gE ({sn}, {ln+1}, {rn+1})
∫
C
dµ(C) 〈ψl|D0

El
({ln+1}) |ψi〉〈ψj |D0

El

† ({rn+1}) |ψm〉

=
∑

{ln+1};{rn+1}

gE ({sn}, {rn+1}, {ln+1})
∫
C
dµ(C) 〈ψj |D0

El

† ({rn+1}) |ψm〉〈ψl|D0
El

({ln+1}) |ψi〉

= 〈ψj |B{sn}n (|ψm〉〈ψl|)|ψi〉.

The last equality in (3.56) is precisely due to the fact that we can reorder the indices as previ-

ously discussed and that we are dealing with projectors on the energy subspaces.

As already said, a possible set of updates that will ensure ergodicity in general is given by

choosing {C} equal to a universal gate set. So for instance the set of all possible single qubit

unitaries augmented with the CNOT gate would suffice to ensure ergodicity for an arbitrary

Hamiltonian. Recall the Theorem 18 about primitive maps in section 1.4.2. With this Lemma

at hand, it is straight forward to proof the uniqueness of the fixed point. All we need to show is

that the tcp-map E is primitive.

Lemma 45 (Uniqueness of the Fixed point). If we choose the set of all possible updates {C}
equal to a set of universal gates, then the Metropolis Markov chain has a unique full rank fixed

point for all finite β <∞.

PROOF: If E denotes the map defined in (3.39), according to Theorem 18, cf section 1.4.2, all

we need to show is that there is an m such that for every |ψ〉 and every ρ 〈ψ|Em[ρ]|ψ〉 > 0.

Since ρ can always be written as a convex combination of rank 1 projectors it suffices to choose

ρ = |ϕ〉〈ϕ|. Furthermore, we observe that all Bn defined in (3.39) are positive, i.e.

〈ψ|B{sn}n (ρ̃)|ψ〉 ≥ 0, (3.57)

since this expression can always be written as the trace over the product of positive semi-

definite operators for any ρ̃ and |ψ〉, see (3.34). We can therefore disregard the contributions

from the Bn and focus only on the accept instanceA of the map E , since by virtue of (3.57) we

have

〈ψ|Em(|ϕ〉〈ϕ|)|ψ〉 ≥ 〈ψ|Am(|ϕ〉〈ϕ|)|ψ〉. (3.58)
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We can thus write

〈ψ|Am(|ϕ〉〈ϕ|)|ψ〉 = (3.59)∫
dµ(C1) . . . dµ(Cm)

∑
E1...Em+1

m∏
i=1

min(1, e−β(Ei+1−Ei))
∣∣〈ψ|ΠEm+1Cm . . . C1ΠE1 |ϕ〉

∣∣2
≥ e−β(Emax−Emin)

∫
dµ(C1) . . . dµ(Cm)Fψ,φ(C1, . . . Cm).

Here Emax and Emin denote the largest and the smallest eigenvalues of the problem Hamilto-

nian H respectively, and we defined the integrand F as

Fψ,φ(C1, . . . Cm) =
∑

E1...Em+1

∣∣〈ψ|ΠEm+1Cm . . . C1ΠE1 |ϕ〉
∣∣2 . (3.60)

Note that the prefactor e−β(Emax−Emin) does not vanish for all finite β. Since the integrand

F is non-negative, we only need to prove that F does not vanish. Since we are drawing the

C1 . . . Cm from a set of universal gates we can always find a finite m, by virtue of the Solovay

– Kitaev Theorem [93], so that there exists a sequence of gates Ci that ensures that there is a

sufficiently large overlap between |ψ〉 and Cm . . . C1|ψ〉. That is, for a given εm, there exists a

sequence of m gates, so that

|〈ψ|Cm . . . C1|ϕ〉|2 =

∣∣∣∣∣∣
∑

E1...Em+1

〈ψ|ΠEm+1Cm . . . C1ΠE1 |ϕ〉

∣∣∣∣∣∣
2

≥ 1− εm, (3.61)

where we inserted resolutions of the identity
∑

Ei
ΠEi . Hence, at least one of summands in

(3.61) has to be non-zero and thus Fψ,ϕ is strictly positive and does not vanish. Therefore,

there exists an integer m so that the integral in the last line of (3.59) is strictly positive. Since

(3.59) acts as a lower bound to 〈ψ|Em(|ϕ〉〈ϕ|)|ψ〉 we can conclude that E is primitive.

3.7 The influence of imperfections to the fixed point

We have seen that the idealized quantum Metropolis algorithm yields the exact Gibbs state as

its fixed point, if the quantum phase estimation algorithm resolves the energies of all eigenstates

exactly. This is obviously impossible for non integer eigenvalues as one would need infinitely

many bits just to write down the energies in binary arithmetic. However, we will show that this

is not a real problem. A polynomial resolution will yield samples that approximate the Gibbs

state very well, if the Markov chain converges sufficiently fast. For the error analysis we will

assume that the ergodicity condition is met, and that the problem Hamiltonian we are trying to

simulate is such that the Markov chain is rapidly mixing. To be precise, for the error analysis

we assume that the Markov chain is trace-norm contracting, see section 3.7.1. We previously

discussed the errors that arise due to the finite runtime of the algorithm in section 3.4 and the

error due to the indeterministic rejection scheme, cf. section 3.4.1. In this section we consider
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the error that is related to the implementation of the algorithm. Due to the implementation on

a quantum computer three types of error arise.

1. Simulation errors. The quantum phase estimation algorithm requires implementing the

dynamics U = e−iHt generated by the system’s Hamiltonian for various times t. This

can only be done within a finite accuracy.

2. Round-off errors. The quantum phase estimation algorithm represents the system’s

energy in binary arithmetic with r bits. This unavoidably implies that the energy is

rounded off to r bits of accuracy.

3. Phase estimation fluctuations. As seen in Eq. (3.12), given an energy eigenstate of the

system, the quantum phase estimation procedure outputs a random r-bit estimate of the

corresponding energy. The output distribution is highly peaked around the true energy,

but fluctuations are important and cannot be ignored.

The first error is related to the fact that exp(itH) has to be approximated by a Trotter-Suzuki

unitary. This error can be ignored as long as the necessary effort in the simulation time TH to

make this small, scales better than any power of 1/εH with εH being this simulation error [87].

This first source of error can be suppressed at polynomial cost. Another way to tackle this error

is to adopt the analysis done in [94].

The second type of error is not a problem on its own. Suppose that each eigenvalue of H

is replaced by its closest r-bit approximation. The corresponding thermal state would differ

from the exact one by factors of exp(β2−r). By choosing r � log β, this error can be made

arbitrarily small. Note that the simulation cost grows exponentially with r, which implies that

our Metropolis algorithm has complexity increasing linearly with β.

The third type of error is more delicate and is intimately related to the second type. Indeed,

it is not correct to suppose, as we did in the previous paragraph, that quantum phase estimation

outputs the closest r-bit approximation to the energy of the eigenstate. Rather, it outputs a

random energy distributed according to Eq. (3.12), sharply peaked around the exact energy.

Hence, we are implementing a POVM on the system state and not a projective measurement as

we already discussed in section 3.2. We have furthermore introduced a method to sharpen the

distribution of the energy pointers by employing a method developed in [91]. In the following

we will therefore compute the error bounds of the algorithm when we employ this enhanced

quantum phase estimation procedure.

3.7.1 Error bounds and realistic phase estimation

Let us next return to a more general Hamiltonian that has a realistic spectrum. As was discussed

earlier, a realistic phase estimation procedure introduces errors not only due to the rounding of

the energy values, but more importantly due to the fluctuations of the pointer variable. For a

completely positive map with realistic phase estimation the detailed balance condition (3.45)
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will not be met exactly, but we can show that the condition is satisfied approximately. This will

be sufficient for our purposes.

In order to bound this error we adopt a standard procedure also used for classical Markov

chains [95]. Throughout this analysis we assume that the completely positive map is well be-

haved and is contracting. Whether this assumption is satisfied depends on the mixing properties

of the problem we consider and on the choice of updates. Therefore, these properties have to

be verified for every problem instance individually. A quantum Markov chain is trace - norm

contracting if it satisfies

‖E(ρ− σ)‖tr ≤ ηtr‖ρ− σ‖tr, (3.62)

where the constant ηtr < 1 is the smallest constant, so that this inequality holds [95]. We

introduced the contraction coefficient ηtr already in chapter 2 and related it to the contraction

coefficient of the χ2
k - divergence. Note, that the map is considered contracting only when the

constant is strictly smaller than unity. It can occur, for some pathologically behaved maps, that

this constant is not strictly smaller than unity even though the map is rapidly mixing. However,

this can be cured by blocking several applications of the channel together, leading to a new

constant smaller than unity [96].

Lemma 46 (Error bound). The error ε∗ between the exact fixed point σ∗ of the map E and the

Gibbs state ρG = 1
Z exp (−βH) can be bounded by

‖σ∗ − ρG‖tr ≤
εsg

1− ηtr
. (3.63)

Here ηtr < 1 is the ergodicity coefficient of E and εsg the error that arises due to a single

application of the map on ρG, i.e. ‖E(ρG)− ρG‖tr ≤ εsg .

PROOF: The error ε∗ can be written as

‖σ∗ − ρG‖tr = lim
m→∞

‖Em(ρG)− ρG‖tr ≤ lim
m→∞

m∑
k=1

‖Ek(ρG)− Ek−1(ρG)‖tr (3.64)

≤ lim
m→∞

m∑
k=1

ηk−1
tr ‖E(ρG)− ρG‖tr =

‖E(ρG)− ρG‖tr
1− ηtr

.

Thus we only need to bound the error that occurs when we apply the map E to the Gibbs

state ρG once. In order to bound this error, we will make use of the fact that the completely pos-

itive map satisfies the detailed balance condition (3.45) at least approximately. Let us discuss

what it means to satisfy detailed balance approximately.

Lemma 47 (Approximate detailed balance). Suppose we are given a completely positive map

E and an orthonormal basis {|ψi〉}. To each state we assign a Boltzmann weight of the form
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{pi = 1
Z e
−βEi}. If this cp-map does not precisely satisfy detailed balance, but only an approx-

imate form such as
√
pnpm〈ψi|E(|ψn〉〈ψm|)|ψj〉 =

√
pipj〈ψm|E(|ψj〉〈ψi|)|ψn〉 (1 +O(εsg)) , (3.65)

we can give the following bound on the error, measured in the trace - norm, that occurs upon

a single application of the completely positive map.

‖E(ρG)− ρG‖tr ≤ O(εsg) (3.66)

PROOF: Let us define ρ =
∑

i pi|ψi〉〈ψi|. Then due to (3.65) we have

〈ψl|E(ρG)|ψm〉 =
∑
i

pi〈ψl|E(|ψi〉〈ψi|)|ψm〉 = (3.67)

√
plpm (1 +O(εsg)) tr [E(|ψm〉〈ψl|)] = pm (1 +O(εsg)) δml.

So the application of E yields E(ρG) = ρ̃G. Note that the state ρ̃G is still diagonal in the

same basis as ρG and both of the probabilities p̃i of ρ̃G relate to the original probabilities via

p̃i = pi (1 +O(εsg)). Since ρG and ρ̃G are both diagonal in the same basis, it is straightforward

to compute that ‖ρ̃G − ρG‖tr ≤ O(εsg).

Let us now verify the approximate detailed balance condition (3.65) of the completely

positive map (3.39) for a realistic spectrum of the Hamiltonian H . First let us consider the

standard phase estimation procedure. Since the actual eigenvalues may have arbitrary real

values, we may not assume that the individual My
x act as projectors on the system. Note that

even the combination of Mp
k
†
M q
k is not Hermitian anymore when p 6= q. This is precisely

due to the fact that the function f(Ej , k − p) (3.14) is complex valued. An additional phase is

imprinted on the system state. At first sight this seems to hinder any form of detailed balance in

the eigenbasis of the Hamiltonian. It turns out, however, that the total expression on either side

of the detailed balance equation is still real. Note that Mp
k
†
M q
k is diagonal in the eigenbasis of

H and assumes the form

Mp
k
†
M q
k =

2N∑
j=1

f(Ej , k − p)∗f(Ej , k − q)|ψj〉〈ψj |. (3.68)

Hence, the phases in f(Ej , k − p)∗f(Ej , k − q) cancel up to a total phase factor eiπ(p−q)

e
i π
2r

(p−q) ,

which is independent of both k and Ej . This allows us to write

Mp
k
†
M q
k ≡

eiπ(p−q)

ei
π
2r

(p−q)S
pq
k , (3.69)

where now Spqk
† = Spqk . Let us have look at a segment of the chain of operators as they typically

appear in the superoperators A or B (3.39). The typical sequences look like

. . .Mp3
k2

†
Mp2
k2
C Mp2

k1

†
Mp1
k1
. . . → . . .

eiπ(p3−p1)

ei
π
2r

(p3−p1)
Sp3p2k2

C Sp2p1k1
. . . (3.70)
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This leads us to the conclusion that in each of the operator sequences the phases that arise due

do to imperfect phase procedure cancel. The first phase associated to p0 is 0 due to the ini-

tialization, whereas the last phase associated with d is canceled due to the measurement. This

gives an additional explanation of why it is necessary to reuse the same pointer register for

the phase estimation procedure each time. However, this comes at a cost as the realistic phase

estimation procedure doesn’t naturally disentangle the pointer register used for the next phase

estimation anymore. Hence, the initial state of the ancilla register for the next phase estimation

step may be altered. So after subsequent measurements using the same register the distribution

function of the pointer variable spreads.

We now consider what happens in the case where we use the high confidence phase estima-

tion based on the median - method [91]. As already stated, this method allows us to perform

phase estimation where the pointer variable fluctuates at most in the order of 2−r. All other

fluctuations are suppressed by a factor of 2−η and will therefore be neglected in the follow-

ing. According to (3.15) we can replace the function f(Ej , k − p) by its enhanced counterpart

αEj (k − p), which acts as a binary amplitude for the two closest r-bit integers to the actual

energy Ej . As discussed earlier, the phases that arise due to the imperfect phase estimation

algorithm cancel, if for each of the η phase estimations the corresponding registers are reused.

We are therefore left again with operators Spqk acting on the physical system that are diagonal

and have only real entries. We will thus regard the amplitudes αEi(k− p) as real from now on.

We will therefore write

Spqk =
2N∑
j=1

αEj (k − p)αEj (k − q)|ψj〉〈ψj |. (3.71)

Let us pause for a minute and have a closer look at the operators Spqk . As stated previously

the Spqk are diagonal in the Hamiltonians eigenbasis and have only real entries. Hence, these

operators are Hermitian. Furthermore, since α2
Ej

acts as a binary probability distribution on the

two δ = 2−r closest integers to Ejt
2π , we see that for a fixed Ej and a fixed q, the only possible

two values for k are

k↑ =
⌈
Ejt

2π

⌉
2−r

+ q and k↓ =
⌊
Ejt

2π

⌋
2−r

+ q.

Conversely, the operator Spqk has only support on the subspace spanned by the eigenvectors

|ψj〉 whose energies lie in the interval

Ej ∈
[
(k + q)− 2−r; (k + q) + 2−r

]
∩
[
(k + p)− 2−r; (k + p) + 2−r

]
.

This allows a further conclusion. For a fixed k and q the operator does not vanish only if

p ∈ [q − 2−r+1; q + 2−r+1].
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The interpretation is as follows: the operator Spqk implements the action of a phase estimation

and its conjugate on the system. If the ancilla register was initially in the state |q〉 the full phase

estimation process does not disentangle the ancilla register afterwords, if we have performed

in an intermediate operation. We have seen previously in the analysis for the idealized phase

estimation procedure, see section 3.6, that the inverse phase estimation procedure returns the

ancilla register to its original value |q〉. Since the pointer variable fluctuates now, this is not the

case anymore and the pointer register remains entangled with the simulated system. However,

since we perform an enhanced phase estimation procedure, the allowed values for the ancilla

register are bounded by p± = q ± 2−r+1. Thus even though Spqk is not a projector anymore,

the previously discussed conditions suffice to ensure approximate detailed balance.

Let us now verify the approximate detailed balance condition for each of the summands in

(3.39).

The accept instance: We analyze what happens in the accept case indicated by the operator

A(ρ). Due to the cancellation of the spurious phases (3.70) this operator has the form

A(ρ) =
∑
k1,k2

∑
d,p1,q1

∫
C
dµ(C) min

(
1, e−β

2π
t

(k2−k1)
)
Sdp1k2

C Sp10
k1

ρ S0q1
k1
C†Sq1dk2

. (3.72)

We now want to verify whether the approximate detailed balance condition is met, when we

choose again pi = 1
Z

−βEi and |ψi〉 as the eigenstate of H . We choose a symmetric measure,

i.e. dµ(C†) = dµ(C), and verify the approximate detailed balance condition (3.65). The left

side of the equation reads

1
Z
e−β(Ei+Ej)/2〈ψl|A(|ψi〉〈ψj |)|ψm〉 (3.73)

=
∑
k1,k2

∑
d,p1,q1

1
Z
e−β(Ei+Ej)/2

∫
C
dµ(C) min

(
1, e−β

2π
t

(k2−k1)
)
〈ψl|Sdp1k2

C Sp10
k1
|ψi〉

〈ψj |S0q1
k1
CSq1dk2

|ψm〉

=
∑
k1,k2

∑
d,p1,q1

1
Z
e−β(Ei+Ej)/2

∫
C
dµ(C) min

(
1, e−β

2π
t

(k2−k1)
)
〈ψl|C|ψi〉〈ψj |C|ψm〉

αEl(k2 − d)αEl(k2 − p1)αEi(k1 − p1)αEi(k1)αEm(k2 − d)αEm(k2 − q1)

αEj (k1 − q1)αEj (k1).

We are free to relabel all the summation indices k1, k2, d, . . . to match it with the other side of

the equation. The sequence

k2 = k′1 + d→

{
p1 = q′1 + d

q1 = p′1 + d

}
→ k1 = k′2 + d→ d = 2r − d′ (3.74)
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does exactly this. Note that since αEj (k + 2r) = αEj (k) the constant 2r in the last step can

be dropped. If we now consider the worst case scenario of the fluctuations of αEi(k1), we see

that k1 deviates at most as much as k1 ≈ Eit
2π ± 2−r+1. The same is also true for k2 and k′2,k′1

respectively. Hence we can conclude

1
Z
e−βEi min

(
1, e(−β 2π

t
(k2−k1))

)
=

1
Z
e−βEl min

(
1, e(−β 2π

t
(k′1−k′2))

)(
1 +O(β

4π
t

2−r)
)
.

(3.75)

We can therefore establish, that

1
Z
e−β(Ei+Ej)/2〈ψl|A(|ψi〉〈ψj |)|ψm〉 =

1
Z
e−β(El+Em)/2〈ψj |A(|ψm〉〈ψl|]|ψi〉 (1 +O(ε))

(3.76)

with ε = β 4π
t 2−r which can be fully controlled by adjusting the relevant free parameters.

The reject instance We now turn to the reject case. The operators change accordingly.

We consider the detailed balance condition for each of the full B{sn}n (ρ). Note that due to

the previously discussed phase cancellations the operators Dd
k1

({ln+1}) as defined in (3.44)

assume the form

Dd
k1 ({ln+1}) =

∑
{an+1}6=k1

∑
{p2n}

Sdp2nk1
C†S

p2np2n−1

ln+1
CSp2n−1p2n−2

an+1
C† . . . Sp3p2a1

C†Sp2p1l1
CSp10

k1
.

(3.77)

The analysis of the reject case is very similar to the exact case. We make use of the fact that all

the functions gk1 ({sn}, {ln+1}, {rn+1}) and αEi(k − p) are real, and that we can relabel the

indices like we did in the exact analysis. We have to establish that

1
Z
e−β(Ei+Ej)/2〈ψl|B{sn}n (|ψi〉〈ψj |)|ψm〉 (3.78)

=
1
Z
e−β(El+Em)/2〈ψj |B{sn}n (|ψm〉〈ψl|)|ψi〉 (1 +O(ε)) ,

up to some ε, that will turn out to be ε = n4π
t β2−r. We again start by considering the left side

of (3.78) and show that it will be equal to the right side up the specified ε.

1
Z
e−β(Ei+Ej)/2〈ψl|B{sn}n (|ψi〉〈ψj |)|ψm〉 (3.79)

=
∑
k1

∑
d;{ln+1};{rn+1}

gk1 ({sn}, {ln+1}, {rn+1})
∫
C
dµ(C)

1
Z
e−β(Ei+Ej)/2

〈ψj |Dd
k1

†
({rn+1}) |ψm〉〈ψl|Dd

k1 ({ln+1}) |ψi〉.

We will first exchange the index sets {rn+1} and {ln+1}. This is possible since the func-

tion gk1 is real and we follow the same analysis we already performed in the case of the

idealized phase estimation. Now we turn to the sequence of the relabeling of the index set

d, k1, l1, r1, a1, b1, . . .. Note that ai and bi are part of the definition of Dd
k1

({ln+1}) and



106 3 Quantum Metropolis sampling

Dd
k1

† ({rn+1}) respectively (3.77). The relabeling sequence that does what we want reads

k1 = k′1 + d→ (3.80){
p2n = q′2n + d

q2n = p′2n + d

}
→

{
ln+1 = l′n+1 + d

rn+1 = r′n+1 + d

}
→

{
p2n−1 = q′2n−1 + d

q2n−1 = p′2n−1 + d

}
→{

an+1 = b′n+1 + d

bn+1 = a′n+1 + d

}
→ . . .

{
l1 = l′1 + d

r1 = r′1 + d

}
→

{
p1 = q′1 + d

q1 = p′1 + d

}
→ d = 2r − d′.

For these replacements to work, it is important to note that the operatorsRs(k1, li) depend only

on the differences, i.e. Rs(k1− li). The sequence of replacements therefore leaves the function

gk1 ({sn}, {ln+1}, {rn+1}) unchanged. However, since we do perform 2n phase estimation

processes for each of the superoperators B{sn}n , the variable k1 in the last process may fluc-

tuate in the order of n2−r+1, as was discussed earlier, and we may no longer assume that the

statistical weights on either side of the equation are equal. Hence we know that for the worst

instance k1 is δ = ±n2−r+1 close to either energy Ei , Ej , El , Em. We can therefore see,

upon evaluating (3.78), that the detailed balance condition for each individual Bn is met up to

an ε = n4π
t β2−r.

We observe that the ε increases linearly in the number n of subsequent P and Q measure-

ments we make to reject the proposed update. For all realistic applications, as discussed in

section 3.4, one would choose a fixed n∗ so that one only would attempt to perform n ≤ n∗

reject moves before discarding the sample. Since we want to achieve an overall success prob-

ability of preparing a valid sample that is lower bounded by a constant c, we have to choose

n∗ > m
2e(1−c) . Here m denotes the number of times we have to apply the map E to be suffi-

ciently close to the desired steady-state. This is related to the gap ∆ of the map E , cf. section

3.4. Hence in the end we can give an error estimate for a single application of the map, which

is of the order

εsg = O
(

m

2e(1− c)
4π
t
β2−r

)
. (3.81)

3.8 An experimental implementation

It is possible to implement the quantum Metropolis algorithm with todays technology for a

simple 2 qubit example system. Here, we will show how the different building blocks of the

quantum Metropolis algorithm can be represented with simple quantum circuits. For this we

need to consider a quantum computer of 5 qubits. Let’s assume that we want to simulate the

Gibbs state of the Heisenberg ferromagnet on 2 spin 1/2’ s, i.e.

H2 = −1
2

(σx1 ⊗ σx2 + σy1 ⊗ σ
y
2 + σz1 ⊗ σz2) , (3.82)

which is certainly one of the most interesting Hamiltonians for 2 qubits. With the appropriate

energy offset, this Hamiltonian has the spectrum {0, 2}, where the eigenvalue 0 is threefold
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degenerate. This is very good news, as it means that an exact phase estimation algorithm can

be set up with just a single (qu)bit of accuracy. Such a phase estimation requires simulating the

Hamiltonian for a time t = π/2. One sees that this unitary corresponds exactly to the SWAP

gate, that is,

U
(π

2

)
= e−i

π
2
H2 = SWAP. (3.83)

In the quantum Metropolis algorithm, we need to implement the controlled version of this

SWAP, which is the Fredkin gate. In [97], it has been shown how this Fredkin gate can be

implemented efficiently using optics. A related gate, the so-called Toffoli gate, was recently

realized in the group of R. Blatt with an ion trap computer [98]. The second gate to be imple-

mented is the controlled Metropolis unitary W . The Metropolis unitary can be implemented

with two controlled Ry rotations:

W (θβ) = Ry(−θβ)C X Ry(θβ)C , (3.84)

where we have made use of the standard single qubit unitary,Ry(θ) = exp(−i θβ2 σ
y) and wrote

X = σx. The temperature can be controlled by the angle θβ . Comparison with the original

Metropolis unitary (3.16) shows that we have to set cos(θβ) = e−β . The full circuit is depicted

in Fig. 3.5. Note that this circuit can be simplified if we regard the lowest qubit as a classical bit,

which is determined by the first phase estimation. It is then possible to condition the remainder

of the circuit on the first phase estimation result, then the controlled Metropolis unitary W can

be implemented by a single CNOT operation.

Figure 3.5: Fig. (a) describes the first phase estimation step of the circuit. Since the phase estimation of
the two-qubit Heisenberg Hamiltonian can be implemented exactly by the Fredkin gate, a single phase
estimation operation is sufficient. In Fig . (b) the elementary unitary of the circuit is depicted. The angle
of the controlled-controlled Ry(θβ) rotation needs to be chosen such that cos(θβ) = e−β . The final
measurement P is depicted in Fig. (c). The first phase estimation has to be followed by a measurement
which verifies that the two phase estimation bits are equal.
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Chapter 4

Stochastic matrix product states

Synopsis:

This chapter explores parallels between the many-body description of non-equilibrium

steady states of classical stochastic processes and ground states of strongly correlated quan-

tum many-body systems. Classical non-equilibrium steady states are typically much richer

than their equilibrium counterparts and can exhibit interesting behavior such as the presence

of a current, non-equilibrium phase transitions and entire phases with a diverging correlation

length [99, 100], features also found in the context of ground states of quantum many-body

Hamiltonians. It has indeed long been observed that there are strong parallels between the

many-body description of non-equilibrium classical stochastic spin systems such as the asym-

metric exclusion process and the physics of equilibrium quantum Hamiltonians such as the

ferromagnetic Heisenberg spin chain [101], and it turns out that matrix product states (MPS)

play a very important role in both fields [102, 4]. We introduce the concept of stochastic matrix

product states and derive a natural form for the states. This allows us to define the analogue

of Schmidt coefficients for steady states of non-equilibrium stochastic processes. We discuss a

new measure for correlations which is analogous to the entanglement entropy, the entropy cost

SC , and show that this measure quantifies the bond dimension needed to represent a steady

state as a matrix product state. We illustrate these concepts by means of the asymmetric exclu-

sion process.

Based on:

K. Temme and F. Verstraete,

Phys. Rev. Lett. 104(21), 210502 (2010)
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4.1 Quantum states and correlation measures

Before we turn to the discussion of the correlation properties of non-equilibrium steady states,

we would briefly like to state some of the results obtained in the context of the application

of quantum information theory to strongly correlated quantum many-body systems. The the-

ory of entanglement has recently proven to yield valuable new insights into the nature of the

wavefunctions arising in such systems [103]. Quantum states are ultimately characterized by

the observable correlations they exhibit. Consider for instance the ground state of a quantum

spin Hamiltonian. An observable such as the correlation function between two spins at differ-

ent lattice sites typically decays exponentially as a function of the distance separating them.

However, when the system undergoes a phase transition, the state becomes scale invariant and

thus the correlation function decays algebraically. We note, that by investigating correlation

functions, the emphasis has shifted from the study of Hamiltonians to states. It is therefore

reasonable to investigate the entanglement properties of quantum states per se. This is indeed

a common scheme found in the context of quantum information theory. One of the contribu-

tions to the field of strongly correlated systems has been made by providing a universal figure

of merit for the quantum correlations that is model independent. The entanglement measures

provided by quantum information yield a universal currency of quantum correlation which is

independent of the model specific observables. The most prominent measure for pure quantum

states is entanglement entropy. For a pure state |ψ〉 on some bipartite Hilbert spaceHA ⊗HB
the entanglement entropy is defined by the von Neumann entropy of the reduced density matrix

ρA = trB [|ψ〉 〈ψ |], i.e.

S(A) = −tr [ρA log2(ρA)] . (4.1)

Since any bipartite quantum state can be written in the Schmidt basis as |ψ〉 =
∑

i σi |αi〉 |βi〉,
we have that S(A) = S(B) =

∑
i σ

2
i ln(σ2

i ). In the case of such pure states, this entropy has

multiple operational meanings, ranging from the amount of Bell states that can be distilled

from it using local operations to the maximum amount of secret information that can be sent

from one side to the other in a cryptographic setting [104]. The usefulness of the entangle-

ment entropy for many-body systems stems to some extend from its behavior at criticality

and provides a good characterization for the universal aspect of quantum states. It allows

for a cleaner access to fundamental properties of critical neighborhoods such as the central

charge of the corresponding conformal field theory [105]. In the previous chapter we have

introduced so-called matrix product states. A matrix product state can be cast into the nor-

mal form |ψ〉 =
∑
{i}A

1
i1

Σ1 . . .ΣN−1ANiN | {i}〉 [42], where the Σi denote diagonal matrices

of Schmidt coefficients. Upon choosing a bipartition of the chain at some site k the entan-

glement entropy SA of a MPS can easily be calculated and we immediately get the bound

Sk ≤ log2(Dk). We observe that the entanglement entropy is bounded by the logarithm of

the bond dimension. Hence, when we increase the partition A the entanglement entropy scales

at most as S(A) ∼ log2(Dmax), i.e. it is constant. This behavior is known as an area law
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[106, 107, 108]. An area law just states that the entropy scales as S(A) ∼ |∂A|, i.e. only as

the boundary of the subsystem, as opposed to, for instance, its volume. In one dimension |∂A|
is trivially just a constant. Higher dimensional generalizations of MPS exist and are known as

tensor network states or PEPS [109] and these states also obey an area law by construction.

More interesting, however, is the question of whether a MPS can be used to approximate the

ground states of local Hamiltonians. It turns out that this is indeed the case. This is a conse-

quence of the fact that, in the case of ground states of gapped local Hamiltonians, the associated

Schmidt coefficients decay very fast [75]. A MPS approximation with finite bond dimension

D can be obtained by setting the smallest Schmidt coefficients σI equal to zero, and it has been

proven that this approximation is justified whenever an area law is satisfied [41]. This is the

precisely the reason why numerical techniques such as DMRG [39, 40] have given such great

results. For critical quantum systems the entanglement entropy behaves quite differently. For

second-order phase transitions the correlation length diverges and the system becomes scale

invariant. This scaling symmetry gets enlarged to the conformal group [110] and the critical

system is described by a 1+1 dimensional conformal field theory. The development of confor-

mal field theory is a remarkable achievement that goes beyond the scope of this thesis and we

refer the reader to other sources [111]. The scaling of the entropy for a block of length A = L

in a conformal field theory of 1 + 1 dimensions was proven to diverge logarithmically [105] as

S(L) ∼ c+ c

6
log2(L), (4.2)

where c and c are the so-called central charges of the holomorphic and anti-holomorphic sectors

of the conformal field theory. These charges specify the universal description of the model

at criticality completely and are only dependent on the symmetries of the underlying model.

The scaling of the entanglement entropy can therefore be used as an order parameter for pure

quantum states that is expected to obey an area law for non-critical systems which is modified

by logarithmic corrections at criticality.

The situation is much more complicated, however, in the case of mixed quantum states or in

the presence of classical correlations, and a lot of research in quantum information theory has

concentrated on resolving the relationship between entanglement and classical correlations.

A better understanding of those measures will be necessary for describing the classical and

quantum correlations in thermal or non-equilibrium states of quantum spin systems. A measure

for mixed state correlations that is of particular importance to our approach is the entanglement

of purification [112]. This measure quantifies both quantum and classical correlations and has

a clear operational meaning in terms of the number of maximally entangled states needed to

asymptotically generate a quantum state.
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4.2 Entropy cost and stochastic matrix products states

The main topic of this chapter is to explore the classical non-equilibrium analogues of the

quantum notions of entanglement entropy, area laws and the density matrix renormalization

group, which justify the use of MPS in the quantum setting. The main technical difficulty in

achieving this is the fact that classical probability distributions are normalized in the L1 norm

(
∑

i |pi| = 1), while quantum wavefunctions are normalized in the L2 norm (
∑

i |ψi|2 = 1).

This difficulty can partly be overcome by working with a subclass of MPS where all matrices

only contain non-negative entries; we will define such MPS as stochastic matrix product states

(sMPS). The concept of mutual information, defined for classical bipartite distributions pAB ,

where A and B will represent the variables or spins on both halves of a chain, plays a role

analogous to the entanglement entropy:

I(A : B) =
∑
AB

pAB log2

(
pAB
pApB

)
. (4.3)

It immediately gives an upper bound to the error made when approximating pAB by a product

of its marginals, since ‖pAB − pApB‖21 ≤ 2 ln(2)I(A : B) [113]. Just as in the quantum

case, one would expect that the global non-equilibrium steady state probability distribution

of the stochastic process can be represented as a stochastic matrix product state (sMPS) with

small bond dimension, if this mutual information is small. However, more subtle measures are

needed in the case of stochastic processes and we will introduce the notion of entropy cost to

quantify the bond dimension needed for the corresponding sMPS.

Definition 48 (Entropy cost). The entropy cost SC for a bipartite probability distribution

P (x, y) is given by:

SC = min
pλ,PA,PB

S({pλ}) (4.4)

where S({pλ}) = −
∑

λ pλ log2 (pλ) is the Shannon information of {pλ}, and where the opti-

mization is over all probability distributions pλ and over all conditional probabilities PA and

PB for which P (x, y) =
∑

λ PA(x|λ)PB(y|λ)pλ.

The entropy cost bears a lot of resemblance to the notion of common information intro-

duced by Wyner in the context of cryptography and classical information theory [114], and

this entropy cost serves as an upper bound to the common information. The entropy cost can

be thought of as the classical analog of the entanglement of purification, and the probability

distribution pλ plays a role analogous to the Schmidt coefficients in the quantum case.

Let us next define a D-dimensional sMPS describing a classical probability distribution

of N -spins each of dimension d; obviously, those sMPS were already extensively used in the

literature, and we will just formalize the definition here.
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Definition 49 (Stochastic matrix product state). A stochastic matrix product state (sMPS) is

given by:

| pD〉 =
d∑

i1,...,iN=1

〈l |B1
i1 . . . B

N
iN
| r〉 | i1 . . . iN 〉 , (4.5)

where we only consider real matrices that are Dk × Dk+1 dimensional, with Dk ≤ D, and

additionally fulfill the requirement [Bk
ik

]γδ ≥ 0 for every element individually.

This ensures that all the weights of the distribution are positive after contraction. The left

and right vector 〈l | and | r〉 are also element wise positive and can be absorbed into the ma-

trices B1
i1

and BN
iN

, which corresponds to choosing D1 = DN = 1. Furthermore, we require

| pD〉 to be normalized in the L1 norm, ‖ | pD〉 ‖1 = 1.

Every multipartite probability distribution of a chain of discrete variables can obviously

be written in the form (4.5) if we allow for a sufficiently large matrix dimension Dmax, i.e.

exponential in the number of sites: let | r〉, a vector, correspond to the original distribution | p〉
with the set of spin indices {ik} relabeled as one index α =

∑
k ikd

k. Now all the matrices

read Bk
ik

=
(
⊗k−1
n=1

∑d−1
n=0 |n〉 〈n |

)
⊗ 〈ik |. This way the full distribution can be reconstructed

in its original form.

4.3 Normal form and bounds on the entropy cost

It would be desirable to have a way of computing the entropy cost SC for a given stochastic

matrix product state. It will turn out, however, that this is a task that seems to be very hard for

more general distributions, as the minimization (4.4) over all possible decomposition proves

very challenging. In most cases we will therefore have to work with an upper bound to the

entropy cost. Such an upper bound can be computed easily. We can write any sMPS that is of

the form (4.5) as

| p〉 =
∑
λ

∑
{in}

〈l |B1
i1 , . . . , B

k
ik
|λ〉 〈λ |Bk+1

ik+1
, . . . , BN

iN
| r〉 | {in}〉 . (4.6)

upon inserting a partition of unity 1 =
∑Dk

λ=1 |λ〉 〈λ | in (4.5). Observe that

pλ = 〈l |
k∏

n=1

C [n] |λ〉 〈λ |
N∏

n=k+1

C [n] | r〉 (4.7)

defines a new probability distribution if we define C [n] =
∑

in
B

[n]
in

(i.e. the transfer matrix).

The probability distribution {pλ} sums up to one due to the normalization we require for (4.5).

This allows us to rewrite the MPS as

| p〉 =
Dk∑
λ=1

∑
i1...iN

PA({in}n∈A|λ) pλ PB({in}n∈B|λ) | {in}n∈A〉 | {in}n∈B〉 , (4.8)
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where,

PA({in}n∈A|λ) =
〈l |B1

i1
. . . Bk

ik
|λ〉

〈l |
∏k
l=1C

[l] |λ〉
≥ 0,

PB({in}n∈B|λ) =
〈λ |Bk+1

ik+1
. . . BN

iN
| r〉

〈λ |
∏N
l=k+1C

[l] | r〉
≥ 0. (4.9)

We observe that PA({in}|λ) and PB({in}|λ) can be interpreted as information channels due

to their normalization and the positivity of the sMPS matrices. That is, both channels obtain a

symbol λ from the source described by (4.7) and transform it into a spin configuration on either

side of the bipartition. Note that there are several partitions of unity that will give rise to valid

PA,PB and pλ, since any partition of unity is allowed just as long as it preserves the positivity

of the individual elements in PA and PB . Therefore the decomposition (4.8) is not unique. It

is probably a NP-hard problem to find the optimal decomposition that minimizes the entropy

cost, and in practice we will therefore rely on the construction that was just given by choosing

a simple partition for finding upper bounds to it. An instructive pictorial representation of this

decomposition is given in Fig. 4.1(a).

Example: To give an example where the entropy cost SC can be computed exactly, consider

the classical Ising model defined by the Hamiltonian

−βH = K
N−1∑
i=1

sisi+1, (4.10)

where si = ±1. The equilibrium distribution p({si}) = 1/Z exp(−βH) can be written in

terms of a MPS with D = 2 [109]. In this model SC can be calculated for N = 2. In this case,

the distribution is written in terms of the matrices

B1
s1=−1 =

1√
2q

(
a+ a−

)
B1
s1=+1 =

1√
2q

(
a− a+

)
, (4.11)

as p(s1, s2) = B1
s1B

2
s2 . The second set of matrices is given simply by transposition, i.e.

B2
s2 = B1

s2
T . Here we have written a± = 1/

√
2
(√

cosh(K)±
√

sinh(K)
)

as well as

q = a+ + a−. The 2d resolution of the identity is chosen as 1 =
∣∣ 0̂〉 〈0̂ ∣∣ +

∣∣ 1̂〉 〈1̂ ∣∣ with∣∣ 0̂〉 = (cos(ϕ) sin(ϕ)) and
∣∣ 1̂〉 = (− sin(ϕ) cos(ϕ)). The resulting two source probabil-

ities are

p0(ϕ) =
1
2

(cosϕ+ sinϕ)2

p1(ϕ) =
1
2

(cosϕ− sinϕ)2. (4.12)
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Due to the periodicity, it suffices to consider only the interval ϕ ∈ [0; π4 ]. Since S({pλ(ϕ)})
has no local minima on this interval, the entropy assumes its extremal values at the boundary

determined by the constraints (4.9). The allowed values for ϕ are constrained by the fact that all

elements of PA/B({si}|λ) ≥ 0 have to be well defined and positive. This leads to the relevant

inequality a−

a+ ≥ tanϕ, since by fulfilling this, we automatically fulfill all other inequalities.

The minimum value for S({pλ(ϕ)}) is assumed when this inequality is saturated. The entropy

cost reads:

SC = −
(
e−K cosh(K) log2

(
e−K cosh(K)

)
+

e−K sinh(K) log2

(
e−K sinh(K)

))
(4.13)

As expected, this function monotonously increases from 0 to 1, i.e. from the paramagnetic

K � 1 without correlations to the ferromagnetic region K � 1 with strong correlations. The

entropy cost is of course bounded by log2(D = 2) = 1 for the Ising model. A different mea-

sure that was recently investigated in the context of a non-equilibrium model is the so-called

shared information [115]. It has been shown that it obeys an area law for several non-critical

stochastic models and that critical behavior can be identified by logarithmic corrections.

It is also easy to find lower bounds to the entropy cost; SC is directly related to the mutual

information due to the data processing inequality [113].

Lemma 50 (Mutual information bound). For a given distribution | p〉 the mutual information

I(A : B) is bounded by the entropy cost SC , i.e. I(A : B) ≤ SC .

PROOF: By virtue of (4.8) we can focus on calculating the mutual information I(λ : µ) of the

distribution P (λ, µ) = pλδλ,µ, since the full distribution can be read as

PAB =
∑
λ,µ

PA({iA}|λ)PB({iB}|µ)P (λ, µ). (4.14)

This corresponds to a source that generates two outputs, which are then transformed by the

channels PA and PB . The data-processing inequality [113] guarantees that the mutual infor-

mation of the processed source I(A : B) = I(pA(P ) : pB(P )) ≤ I(λ : µ) is smaller than

the mutual information of the source itself which is equal to its entropy I(λ : µ) = S({pλ}).

Since the decomposition [PA({iA}|λ), PB({iB}|λ), p(λ)] is not unique the bound is improved

by taking the minimum over all decompositions.

The decomposition of the sMPS as given in (4.8) suggests the existence of the following

(non-unique) normal form:

| p〉 =
∑
i1...iN

A
[1]
i1
P [1]A

[2]
i2
. . . P [N−1]A

[N ]
iN
| i1 . . . iN 〉 . (4.15)

Here the matrices P [k] represent diagonal matrices with probabilities {pλk} sorted in decreas-

ing order. In this form, which has a nice pictorial representation in Fig. 4.1(b) the analogy to the
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quantum matrix product states becomes evident, cf. Eq. (1.70). The matrices C [k] =
∑

ik
A[k],

where [A[k]
ik

]γδ ≥ 0, combined with the P [k]’s behave as stochastic matrices. This is due to

the fact, that along each bipartition the two channels sum up to
∑

iA/B
PA/B({iA/B}|λ) = 1.

Now, since we move from one partition to the next by applying P k−1C [k] = Sk to the left

or CkP k = STk to the right, we are ensured that the Sk and STk have the left eigenvector

〈I | =
∑

i 〈i |. Thus we can conclude that the Sk and Sk denote different stochastic matrices.

To see that every MPS distribution can be written this way, consider the following scenario:

We start by introducing the first bipartitioning between the first two sites. After the necessary

normalization we proceed to the next site and perform the same procedure renormalizing the

resulting matrices by the total contraction of the two halves of the chain. Proceeding along the

chain results in the desired form.

Figure 4.1: Pictorial representation of the natural sMPS decomposition: Image (a) can be seen as the
graphical representation of eqn. (4.8). From a given source Pλ, the correlations are distributed via the
two channels on the left and right. The normalizing factor is included in the As. In (b) the analogy to
the quantum MPS becomes evident for the decomposition as given in eqn. (4.15).The probabilities in
the matrices P [k] are the analogues of the singular values which arise upon a Schmidt decomposition of
the quantum state [42].

This representation (4.15) enables us to give a good estimate on the error measured in the

L1 norm, which is made upon truncating the dimension of the source space, i.e. neglecting

probabilities smaller than a given value along each bipartition:

Lemma 51 (Error bound). For every multipartite distribution | p〉 there exists a sMPS | pD〉 of

the form (4.15) with dimension D, such that

‖| p〉 − | pD〉‖1 ≤ 2
N−1∑
k=1

εk(D),

where εk(D) =
∑Dmax

k
λ=D+1 p

[k]
λ .

PROOF: We can always write | p〉 as a distribution of the form (4.15) with a Dmax
k = dN .

We now introduce another MPS | pD〉 in natural form with a bond dimension of D. Let

| pD〉 = | p∗D〉 /‖ | p∗D〉 ‖1, where | p∗D〉 is the pseudo, i.e. unnormalized, probability dis-

tribution which arises from neglecting along each cut all the probabilities {pλk}
Dmax
k

D+1 . We
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write | p∗D〉 =
∑
{ik}A

[1]
i1
P ∗[1] . . . A

[N ]
iN

∣∣ {ik}Nk=1

〉
. Note, that if ‖ | p〉 − | p∗D〉 ‖1 ≤ ε, then

‖ | p〉 − | pD〉 ‖1 ≤ 2ε, since

‖| p〉 − | pD〉‖1 ≤ ‖| p〉 − | p∗D〉‖1 +

∥∥∥∥∥| p∗D〉 − | p∗D〉
‖
∣∣ p∗D〉 ‖1

∥∥∥∥∥
1

≤ ε+ |‖| p∗D〉‖ − 1| ≤ 2ε (4.16)

Since | p∗D〉 arose by only neglecting positive numbers, we may write:

‖ | p〉 − | p∗D〉 ‖1
=

∑
{ik}

∣∣∣A[1]
i1
P 1 . . . A

[N ]
iN
−A[1]

i1
P ∗1 . . . A

[N ]
iN

∣∣∣
= C [1]P 1 . . . C [N ] − C [1]P ∗1 . . . C [N ]

= (
〈
lN−1

∣∣− 〈lN−1
∣∣∗)C [N ] = ‖(

〈
lN−1

∣∣− 〈lN−1
∣∣∗)‖1. (4.17)

Going from the second to the third line we have used the fact that all summands are positive.

Here we defined
〈
lk
∣∣ = C [1]P [1] . . . P [k] as well as

〈
lk
∣∣∗ = C [1]P ∗[1] . . . P ∗[k]. The difference

‖
〈
l1
∣∣ − 〈l1 ∣∣∗ ‖1 = ‖ 〈I |

(
P [1] − P ∗[1]

)
‖1 =

∑Dmax
1

α1=D+1 pλ is simply given by ε1(D). Note

that due to (4.15)
〈
lk−1

∣∣C [k] = 〈I |. Proceeding to calculate the difference for other k we find:∥∥∥〈l[k]
∣∣∣− 〈l∗[k]

∣∣∣∥∥∥
1

≤
∥∥∥(〈l[k−1]

∣∣∣− 〈l∗[k−1]
∣∣∣)C [k]P [k]

∥∥∥
1

+
∥∥∥〈l∗[k−1]

∣∣∣C [k]
(
P [k] − P ∗[k]

)∥∥∥
1

≤
k−1∑
n=1

εn(D) +
∥∥∥〈I |(P [k] − P ∗[k]

)∥∥∥
1
. (4.18)

The last summand corresponds exactly to
∑Dmax

k
αk=D+1 pαk = εk(D), which completes the proof.

We have therefore proven that an efficient parametrization of the steady state exists in

terms of a sMPS with low bond dimension, if there exists a parametrization of this steady state

for which the entropy cost with respect to all bipartite cuts is small. If this is the case, then∑N−1
k=1 εk(D) can be made small by following the arguments outlined in [41]. This is analo-

gous to the quantum case for which the existence of an area law implies the existence of an

efficient representation in terms of MPS. Note, however, that the classical statement is a bit

weaker, as the same normal form has to be used with respect to all bipartite cuts, and there is

no guarantee that the same parametrization is optimal for all of bipartitions.

4.4 Application to the asymmetric exclusion process

To make the investigations concrete, we consider the non-equilibrium steady state of the asym-

metric exclusion process (ASEP) [116]. This classical non-equilibrium process is modelled
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by a chain of sites labeled k = 1 . . . N occupiable by hardcore particles, i.e. classical spins

ik ∈ {0, 1}. The particles are only allowed to hop to the right, and this only if the next site is

empty. To drive the system, particles at the left are injected with a given rate α and removed

on the right with a rate β.

Figure 4.2: Chain of hardcore particles; each black dot can be either occupied or empty. Particles enter
on the left with rate α and hop to the right with a rate of unity, before they are extracted on the right
with rate β.

The dynamics of the ASEP are described by a classical master equation ∂t | p〉 = L | p〉,
where the Liouvillian generator is

L = L1 +
N−1∑
k=1

Lk,k+1 + LN , (4.19)

with

L1 =

(
α 0

−α 0

)
, Lk,k+1 =


0 0 0 0

0 0 −1 0

0 0 1 0

0 0 0 0

 , LN =

(
0 −β
0 β

)
. (4.20)

Here the operators L1, LN , and Lk,k+1 act on the sites 1,N and on the two sites indicated by

k, k + 1 respectively. On all other sides they act as the identity.

The ASEP is one of the most studied non-equilibrium processes in classical statistical me-

chanics and is soluble [116]. This process exhibits three phases determined by the inflow α and

outflow β as shown in Fig. 4.3. The different phases are characterized by the particle density

and the particle current as functions of the driving parameters. In the region where α+ β ≤ 1

and when α > β we find the so-called high density phase (HD). This phase is indicated by the

fact that one has a high particle density throughout the system that drops to small values only

at the right boundary of the chain. In the thermodynamic limit N → ∞ the particle current

jst is given by jst = α(1 − α). The low density phase (LD) α + β ≤ 1 and α < β is related

to the (HD) phase by a reflection of the chain and a particle hole transformation. The particle

density behaves correspondingly and the current can likewise be computed as jst = β(1− β).

The third phase α > 1/2, β > 1/2 is known as the maximum current phase (MC). The particle

density assumes its maximal value in the bulk of the chain, decaying at the edges. The current

is jst = 1/4 throughout the diagram. A peculiarity of this phase is its diverging correlation

length. The entire non-equilibrium phase exhibits correlations that decay according to a power
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Figure 4.3: phase diagram of the asymmetric exclusion process. The ASEP processes three phases, LD
(low-density), HD (high-density) and the maximum current phase MC.

law as opposed to a generally expected exponential decay [117]. This can be taken as an indi-

cation that this phase should have a steady state that is strongly correlated and we will see in

the following that this is indeed the case.

As was shown in [116] the steady state | p〉 of the corresponding master equation can be

found exactly in terms of a MPS, albeit one for which the matrices are infinite dimensional.

The steady state solution can be found by the following ansatz [116]: We assume a distribution

| p〉 that is of MPS form (4.5) with site independent matrices B1
0 = . . . = BN

0 = E and

B1
1 = . . . = BN

1 = G and boundary vectors 〈l | , | r〉. We will write for convenience

| p〉 = 〈l |

(
E

G

)⊗N
| r〉 , (4.21)

where the vectors 〈l |,| r〉 act only on the matrices E,G and leave the local basis | 0〉 , | 1〉
untouched. This state has to be normalized by the constant Z = 〈l |C⊗N | r〉 with C = E+G.

Let us see what happens when we impose the following algebraic relations on the matrices

E,G and some ancilla matrices Ê, Ĝ

〈l |L1

[(
E

G

)]
= 〈l |

(
Ê

Ĝ

)
, LN

[(
E

G

)]
| r〉 = −

(
Ê

Ĝ

)
| r〉 ,

Lk,k+1

[(
E

G

)
⊗

(
E

G

)]
=

(
E

G

)
⊗

(
Ê

Ĝ

)
−

(
Ê

Ĝ

)
⊗

(
E

G

)
. (4.22)

The Liouvillian (4.19) is given as a sum of local terms. When this Liouvillian acts on a

distribution that is of the form (4.21), where the matrices satisfy (4.22), the individual terms

telescope to zero, and hence (4.21) is a steady state of the system. Thus we find a steady state

solution of the master equation if we find a representation 〈l |,| r〉, E, and G for the algebra

(4.22). It is easy to see, that the algebraic constraints reduce to

GE = E +G, 〈l |E =
1
α
〈l | and G | r〉 =

1
β
| r〉 , (4.23)
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when we choose Ê = −Ĝ = 1.

Except for the special case when α+ β = 1, the representations obeying those constraints

are infinite dimensional [116]. If α + β = 1 the algebra can be chosen so that the matrices

commute. In this case we are left with G = 1/β and E = 1/α. The resulting state becomes

a mean - field state and all correlations vanish. We will refer to this special line as the mean

field line. For all other values of α and β the representation of the algebra is necessarily infinite

dimensional. However, as the total occupation number of particles is limited byN , it is possible

to construct truncated representations of a given dimension D = N + 1 that still reproduce the

exact solution for a chain of lengthN , even though the algebra is not satisfied exactly, since we

multiply at most N - times the same matrix E or G. Hence, the entropy cost can immediately

be upper bounded by the logarithm of the system size, just as in the case of critical quantum

spin chain, because SC ≤ ln(D) = ln(N+1). By that we see, that the mutual information can

also diverge at most logarithmically. We construct a family of truncated representations that

are of the form

E =
1∑

i,j=0

[B]i,j | i〉 〈j |+
N∑
n=2

|n〉 〈n |+ |n〉 〈n− 1 |

G =
1∑

i,j=0

[A]i,j | i〉 〈j |+
N∑
n=2

|n〉 〈n |+ |n− 1〉 〈n | . (4.24)

With the left and right vector

〈l | =
1∑

n=0

wn 〈n | | r〉 =
1∑

n=0

vn |n〉 . (4.25)

Here A and B are 2-dimensional matrices fulfilling AB + σ−σ+ = A + B (here σ+ and σ−

are the Pauli raising and lowering operators), and the 2-component vectors | v〉 and 〈w | must

be chosen to be eigenvectors: A | v〉 = 1/β | v〉, 〈w |B = 1/α 〈w |. Since this representation

of the steady state only depends on a small number of parameters, it is possible to carry out

an optimization over all states belonging to this subclass in order to find a good bound on the

actual entropy cost.

Correlations and the ASEP phase diagram We want to see whether the correlations of

the ASEP steady state give an insight to the phase diagram of the process. To this end we

want to investigate the previously introduced correlation measures in dependence of the in-

and outflow. We begin with the mutual information. The mutual information of the steady

state of a chain of length N = 20, where the bipartitioning cut is chosen in the middle, can be

calculated numerically, see Fig. 4.4(a). Even though we don’t have direct access to the entropy

cost for even small chains, reasonable upper bounds can be found by optimizing the solution

(4.24) subject to the discussed algebraic constraints. The minimum of the entropy S({pλ}),

see Fig. 4.4(b), for pλ as constructed in (4.7) is obtained for 3 different solutions depending on

the parameter range of α and β.
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Figure 4.4: (color online) Figure (a): The mutual information of a chain length N = 20 for different
inflow parameters α and β has been calculated numerically. Figure (b): entropy cost for a representation
with Dmax = 21. Note the different scales of the two plots.

• If α+ β ≤ 1 and β ≤ α, then

A =

(
1
β 0

0 1

)
, B =

(
1

1−β 0

b 1
α

)

〈w | =
(
α(1− β) b

)
and | v〉 =

(
1

0

)
(4.26)

with b =
√

1− α− β.

• However, if α+β ≤ 1 but β ≥ α, the optimal solution can be obtained from the previous

one by the replacements,

Anew = BT (α� β), Bnew = AT (α� β), and

〈w |new = 〈v | , | v〉new = |w(α� β)〉 . (4.27)

• For α+ β ≥ 1, the optimal solution is given by

A =

(
1
β a

0 1

)
, B =

(
1
α a

0 1

)
,

〈v | = 〈w | =
(

1 0
)

(4.28)

where we defined a =
√

1/α+ 1/β − 1/αβ.

The resulting plot Fig. 4.4 clearly reflects the underlying phase diagram of the ASEP, see

Fig. 4.3 for comparison. The upper bound to the entropy cost Fig. 4.4(b) as well as the actual

mutual information Fig. 4.4(a) drop to zero along the mean-field line α+β = 1, as is expected

for a mean field solution where no correlations are present. We observe, that the mutual in-

formation is considerably low throughout the diagram. This explains why the first approaches
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with mean-field theories have already given such good results [99]. As expected, the mutual

information as well as the upper bound to the entropy cost is largest at the phase transition

between the high density phase (HD) and the low density phase (LD). Furthermore, we see an

increased amount of correlations in the maximum current phase. This is in accordance with

the fact, that the correlation length diverges in the entire phase corresponding to a power law

for the correlation functions [117]. Note, that the upper bound for the entropy cost is signifi-

cantly larger than the mutual information,the qualitative behavior, however, is quite similar. To

a certain extend this is expected, since we are optimizing only over a very small subclass of all

possible steady state parametrizations.

Mutual information scaling As we discussed previously, in quantum states critical behavior

is heralded by a logarithmic correction to the area law of the entanglement entropy. We would

like to see, whether a similar behavior occurs for the mutual information in non-equilibrium

steady states. We therefore need to investigate the scaling behavior of the mutual information

for larger system sizes. To this end we made use of a simple Monte Carlo simulation to com-

pute the mutual information of the steady state. We picked three points in the phase diagram

Fig. 4.3, corresponding to the low density phase α = 1/4, β = 1/2 marked by the red line

in the plots Fig. 4.5, the maximum current phase α = β = 1/2 (blue line), and the phase

transition between the low and high density phase α = 1/4, β = 1/4 (black line). The mu-

tual information is computed by sampling the function log2(p/pApB) according to the steady

state distribution | p〉, where pA and pB are obtained by computing the marginals of subsystem

A = 1 . . . L and B = L + 1 . . . N respectively. The mutual information, Fig. 4.5(a), remains

constant in the low density phase (red line) as well as in the maximum current phase ( blue

line ). One sees that the correlations in the maximum current phase first increase and then

saturate at a finite value. The mutual information at the coexistence line, however, seems to

diverge logarithmically. Motivated by the logarithmic divergence of the entanglement entropy

in critical quantum systems, we make the following ansatz which we fit to the numerical data

I(L) = c log2

(
L

s
− t
)
. (4.29)

The numerical fit indeed suggests that this is the behavior of the function and we obtain for the

scaling coefficients

c ≈ 0.2055 , s ≈ 7.9532 and t ≈ −0.9344. (4.30)

We conclude that this non-equilibrium steady state also exhibits a logarithmic correction to the

otherwise fulfilled area law at criticality, just like the ground states of critical quantum Hamil-

tonians [106, 108]. It would be interesting to see whether this critical point is also related

to some conformal field theory, as is the case for critical quantum systems. Investigations in

this direction have indeed been undertaken for an exclusion process with periodic boundary
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Figure 4.5: (color online) Plot (a): Monte Carlo simulations of the mutual information for different α
and β values. The system size was varied from N = 2 . . . 180. The chain was cut in the middle, the
length L of the individual blocks is given by half of the total system size. The plot shows the exponential
of the mutual information exp I(A : B). The simulations suggest that the mutual information grows
only logarithmically along the coexistence line α = β, α + β ≤ 1; Plot (b): The logarithm of the
probability distribution {pλ} plotted for different values of α and β. The dimension of the matrices
E and D is Dmax = 21, corresponding to a chain of length N = 20. The distributions decay super-
exponentially. For all λ ≥ 11, pλ = 0.

conditions in [115]. The plot Fig. 4.5(b) depicts the source probabilities in each of the dif-

ferent phases for the optimal solution (4.24). The color coding is the same as in Fig. 4.5(a).

We see that all source probabilities decay super-exponentially. We therefore conclude that a

much smaller bond dimension than D = N + 1 would suffice to represent the state faithfully.

However, we would probably loose the “semi-translationally” invariant description where all

matrices are equal.

We observe that classical non-equilibrium states exhibit a quite similar behavior to that of

ground states of local spin Hamiltonians. The definition of the sMPS gives a reasonable starting

point for a construction of a DMRG like algorithm for classical non-equilibrium states. Note,

however, that since the Liouvillian is in general not a symmetric matrix, the Ritz variational

principle, that has led to such a convenient formulation of DMRG for quantum states, falls

short. In order to find a DMRG-like algorithm it is therefore advisable to look for an algorithm

that is along the lines of the original DMRG or even NRG formulation.



Chapter 5

Stochastic exclusion processes versus
coherent transport

Synopsis:

The asymmetric exclusion process we considered in the previous section is a prime exam-

ple for a stochastic exclusion process. Stochastic exclusion processes play an integral role in

the physics of non-equilibrium statistical mechanics. These models are Markovian processes,

described by a classical master equation. In this chapter a quantum mechanical version of a

stochastic hopping process in one dimension is formulated in terms of a quantum master equa-

tion. This allows the investigation of coherent and stochastic evolution in the same formal

framework. The focus lies on the non-equilibrium steady state. Two stochastic model systems

are considered, the totally asymmetric exclusion process and the fully symmetric exclusion

process. We compare the transport properties of these two classical models to the transport

properties of a system that has in addition to the classical stochastic hopping a means of co-

herent transport generated by the HXX Hamiltonian. First, we introduce the hopping model

and formulate the problem as a quantum master equation. Then, we investigate the symmetric

process. For this process the two-point correlation functions can be calculated exactly in the

steady state. The scaling of the current for larger lattice sizes is investigated. In the following,

the quantum analog of the asymmetric process is treated numerically in the framework of ma-

trix product density operators. The master equation for a chain of N = 40 sites is evolved in

time, until the steady state is reached. The current, the particle density, as well as the particle

density-density correlations are computed.

Based on:

K.Temme, M. M. Wolf and F. Verstraete,

e-print arXiv: 0912.0858, (2009)
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5.1 Exclusion processes

Stochastic exclusion processes have been studied in statistical mechanics for a long time [25,

20]. These are simplified one-dimensional hopping models, that allow the study of non-

equilibrium phenomena in many-particle systems. The steady state of the process exhibits

interesting non-equilibrium behavior, such as the presence of a current, non-equilibrium phase

transitions and entire phases with a diverging correlation length [99, 100]. The presence of

currents, such as the current of particles, energy or momentum, is a common feature of non-

equilibrium steady states and can have profound effects on the correlations present in the sys-

tem [118, 119]. Non-equilibrium systems can develop long-range correlations in the presence

of a high current. The asymmetric exclusion process (ASEP), we already introduced in the

previous section, as well as the symmetric exclusion process (SEP) are prime examples for

such model systems [99, 21]. Both processes describe the hopping of hard-core particles in a

one-dimensional chain, only driven by the inflow and the outflow of particles at the boundaries

of the chain. Here one considers open boundary conditions, where particles are injected at the

first site and are removed at the last site N of the chain. The dynamics of the particles in the

bulk are given by translationally invariant hopping rates, that either constrain the hopping of

particles to take place in only one direction (ASEP) or allow for a hopping in both directions

(SEP).

Transport properties of open quantum mechanical systems, on the other hand, are subject to

recent research activities. A general interest is placed on how external noise, generated by the

environment, affects the coherent transport in the system. It has been found, that the presence

of noise in quantum mechanical systems can actually aid the transport process of excitations

through heterogeneous environments [120, 121], such as bio-molecules. An optimal ratio be-

tween coherent transport and dephasing noise can be found. The dynamics of open quantum

systems are generally formulated in terms of a Markovian Lindblad master equation that de-

scribes the time evolution of the density matrix [34]. In this chapter we want to investigate

the interplay between stochastic transport processes and coherent transport present in the same

system. Here we consider only the steady state properties of the system. To treat both processes

on equal footing, we incorporate the classical hopping terms into the quantum master equation.

The stochastic hopping is modeled by appropriately chosen quantum jump operators. Such a

construction has also been used to find quantum master equations that describe a quantization

of kinetic Ising models [122]. These models obey detailed balance and allow for an exact so-

lution. Considering hopping models in this more general quantum framework allows now for

additional quantum transport, so to speak, on top of the classical hopping evolution. We can

choose an arbitrary particle-number conserving Hamiltonian to mediate the coherent transport

and investigate the effect this quantum perturbation has on the classical hopping process.
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Figure 5.1: Spin-1/2 chain with jump-operators and coherent evolution. The inflow is given by rate α,
the outflow by rate β, stochastic hopping to the left occurs with rate ϕL and to the right with ϕR. The
strength of the coherent evolution is given by λ.

5.2 Formulation of the quantum master equation

We study a system of hard-core particles in a one dimensional chain of length N , where each

site (1 ≤ k ≤ N) can be either occupied or empty. This can be cast into to the formulation of

a spin - 1/2 chain. In the spin chain picture this corresponds to either spin up | 1〉 (occupied)

, or spin down | 0〉 (empty). At the boundary k = 1, we allow for an inflow with a rate α and

at k = N for an outflow of particles, given by a rate β. The particles at each site are allowed

to hop stochastically to the left with a rate ϕL and to the right with a rate ϕR, see Fig. 5.1 for

comparison. In this chapter we consider only two cases: First, the fully symmetric case (SEP)

where both hopping rates are equal ϕL = ϕR = ϕ. The stochastic hopping rates in the bulk

are in this case completely symmetric. The only asymmetry that can generate driving in this

model is due to the biased in- and out flow at the boundary. In turn, the fully asymmetric case

(ASEP), that was already discussed in the previous section, is obtained by setting ϕR = ϕ and

ϕL = 0.

We seek to formulate the classical stochastic processes in terms of a quantum Lindblad

master equation of the form (23). The stochastic particle jumps that correspond to the classical

stochastic exclusion process can be formulated in terms of Lindbald operators Lµ. As already

discussed, these operators govern the incoherent evolution of the quantum master equation

and are typically responsible for the damping or decoherence of the quantum system. In our

model, however, these terms generate the classical non-equilibrium dynamics. It is possible to

formulate these jumps in terms of spin-flip operations:

L1 =
√
ασ+

1 and LRk,k+1 =
√
ϕR σ

−
k ⊗ σ

+
k+1, (5.1)

LN =
√
β σ−N and LLk−1,k =

√
ϕL σ

+
k−1 ⊗ σ

−
k .

Here, the σ± correspond to the Pauli raising and lowering operators. The master equation

written with only these operators reproduces exactly the classical stochastic behavior, when

one restricts oneself to density matrices diagonal in the computational basis.

In this generalized framework, we can now also allow for an additional coherent evolution

of the system by choosing an appropriate Hamiltonian. The XX-Hamiltonian
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HXX =
λ

2

N−1∑
k=1

σxk ⊗ σxk+1 + σyk ⊗ σ
y
k+1. (5.2)

gives rise to the free coherent evolution of the hard-core particles. Furthermore, we will see

that this coherent evolution has the property to conserve the total number of hard-core particles,

since it satisfies a continuity equation. The full quantum master equation ∂tρ = L(ρ), including

both coherent and stochastic evolution, can be written as:

∂tρ = −i [ρ,HXX ] +
∑
µ

LµρL
†
µ −

1
2

{
L†µLµ; ρ

}
+
, (5.3)

where the individual Lµ were defined in (5.1).

The central observables are the particle density nk = σ+
k σ
−
k and the current jk of particles.

To find the right expression for the particle current, we consider the continuity equation for the

density nk. The continuity equation is obtained in the Heisenberg picture, when the adjoined

of L is acting on nk

∂tnk = L∗ [nk] (5.4)

= −i [H,nk] +
∑
µ

L†µnkLµ −
1
2

{
L†µLµ;nk

}
+
.

If we compute the time evolution of the density operator nk with respect to the full master

equation (5.3) for all sites k = 2, . . . , N − 1, we can cast the equation in the following form:

∂tnk +
(
jcok−1,k + jstk−1,k

)
−
(
jcok,k+1 + jstk,k+1

)
= 0. (5.5)

This equation is the standard form of a discrete continuity equation. The additional coherent

evolution with respect to theHXX Hamiltonian can thus be seen to be particle number preserv-

ing. Furthermore, we can now interpret the sum of the terms jk,k+1 = jcok,k+1 + jstk,k+1 given

by

jcok,k+1 =
λ

i

(
σ−k σ

+
k+1 − σ

+
k σ
−
k+1

)
(5.6)

jstk,k+1 = ϕR (nk (1− nk+1))− ϕL ((1− nk)nk+1) ,

as the total current density of the system. Note, that there are two different contributions

to the current, the coherent part jco due to the dynamics generated by the Hamiltonian and the

stochastic contribution jst originating from the hopping induced by the Lindblad operators.

We observe, that the stochastic contribution to the current corresponds exactly to the current

present in the classical model [99, 116]. The continuity equation leads to a further conclusion.

Since for the steady state of the master equation we have that ∂t 〈nk〉 = 0 we can infer that the

total current-density has to be constant throughout the system. Hence, 〈jk−1,k〉 = 〈jk,k+1〉 and
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therefore no spacial variations of the current are allowed. Here, we have defined the average

with respect to the non-equilibrium steady state of the system. We will later see, however, that

the individual contributions to the total current-density themselves actually do exhibit a special

dependence in the steady state.

5.3 The symmetric exclusion process

Let us now consider a specific choice for the classical hopping rates that makes the model

soluble, better said, a choice for which we can compute the ground state density and current

exactly. If we allow for stochastic hopping in both directions with an equal rate ϕR = ϕL = ϕ

and turn off the coherent evolution, the model describes the classical symmetric exclusion

process. The symmetric exclusion process is known to possess only a single classical phase

[21] that is determined by a vanishing total current j in the thermodynamic limit N →∞. We

would like to see, whether a quantum perturbation to the system would change this behavior.

Note, that now, since the classical hopping rates are equal, the quantum-jump operators are

related via LRk,k+1 = LL
†
k,k+1 ≡ Lk,k+1. This allows us to rewrite the full master equation as,

∂tρ = −i [ρ,H] +
N−1∑
k=1

[[Lk,k+1; ρ], L†k,k+1] + [[L†k,k+1, ρ];Lk,k+1] (5.7)

+ L1ρL
†
1 −

1
2
{L†1, L1; ρ}+ + LNρL

†
N −

1
2
{L†N , LN ; ρ}+.

Note, that now the dissipative terms in the bulk are given by the sum of two double commu-

tators. It is possible to calculate the nearest neighbor two-point correlation functions exactly.

To see why this is possible, we first transform the Pauli raising and lowering operators, σ+ and

σ− to fermionic modes by means of the Jordan-Wigner transformation [123]. The fermionic

modes read then,

a†k = −

(
k−1⊗
i=1

σz

)
σ+
k and ak = −

(
k−1⊗
i=1

σz

)
σ−k . (5.8)

One can verify, that these modes now obey the fermionic anti-commutation relations, {ak, a†l }+ =

δk,l and {ak, al}+ = {a†k, a
†
l }+ = 0. It is possible to calculate the evolution of the fermionic

two-point function 〈a†kam〉 from the master equation (5.7) via, ∂t〈a†kam〉 = tr
[
L∗(a†kam)ρ

]
.

Here, the operators comprising the Lindblad operators also get transformed and now read

H = −λ
N−1∑
k=1

a†kak+1 + a†k+1ak and Lk,k+1 =
√
ϕaka

†
k+1,

L1 = −
√
α a†1 and LN = −

√
β
(

ΠN−1
k=1 (2a†kak − 1)

)
aN (5.9)

Since the commutator of two pairs of fermionic modes is again an operator made up from two

fermionic modes, we see, that the time-evolution of the fermionic two-point functions again
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only depends on two-point functions. So the two-point correlation functions of the steady state

can be computed exactly. The equations for the correlation functions read,

∂t〈a†mal〉 =
α

2
(δm,1 + δl,1)〈ala†m〉 −

β

2
(δm,N + δl,N )〈a†mal〉

−ϕ
2

(
[〈am+1a

†
m+1〉 − 〈a

†
m+1am+1〉+ 〈am−1a

†
m−1〉 − 〈a

†
m−1am−1〉]δl,m

+ 2[〈a†mal〉 − 〈ala†m〉]
)
− iλ

(
[〈a†mal+1〉+ 〈a†mal−1〉]− [〈a†m+1al〉+ 〈a†m−1al〉]

)
,

(5.10)

and similarly for the correlation function
〈
a†ma

†
l

〉
, we obtain

∂t〈a†ma
†
l 〉 = −α

2
(δ1,m + δ1,l) 〈a†ma

†
l 〉 −

β

2
(δl,N + δm,N ) 〈a†ma

†
l 〉

−ϕ
([
δl+1,m〈a†l a

†
l+1〉 − δm+1,l〈a†ma

†
m+1〉

]
+ 2〈a†ma

†
l 〉
)

+iλ
(
〈a†ma

†
l−1〉+ 〈a†ma

†
l+1〉 +〈a†m−1a

†
l 〉+ 〈a†m+1a

†
l 〉
)
. (5.11)

The other correlation functions are related to the correlation functions considered above by

the identities imposed due to the anti-commutation relations of the fermionic modes, thus

〈a†ma†l 〉 = 〈amal〉∗ and 〈a†mal〉 = δl,m − 〈ala†m〉. The steady state correlations can be com-

puted from these equations by requiring that ∂t〈a†mal〉 = ∂t〈a†ma†l 〉 = 0. This leads to a set

of difference equations. The current density as well as the particle number density can be ex-

pressed in terms of these correlators. One finds for the particle number density 〈nk〉 = 〈a†kak〉
and the two contributions to the current read,

jstk,k+1 = ϕ (〈nk〉 − 〈nk+1〉) (5.12)

jcok,k+1 =
λ

i

(
〈a†k+1ak〉 − 〈a

†
kak+1〉

)
.

Note, that the stochastic current now only depends on the difference of the densities at adjacent

sites and thus greatly simplifies with respect to (5.6). With these definitions at hand it is possible

to compute the current density as well as the particle number density explicitly. We only need

to restrict ourself to the equations (5.10) for the choices l = m = k and m = k,l = k + 1 as

well as m = k + 1,l = k and we obtain the following difference equations.

αδk,1 (1− 〈nk〉) + jstk−1,k + jcok−1,k = βδk,N 〈nk〉+ jstk,k+1 + jcok,k+1 (5.13)

αδk,1j
co
k,k+1 + 4ϕjcok,k+1 = 4

λ2

ϕ
jstk,k+1 − βδk+1,N j

co
k,k+1. (5.14)

Let is first consider the scenario, when ϕ > 0. Thus, we have to take into account the

full set of equations. One sees, that in the bulk, i.e. k ∈ {2, . . . , N − 1}, the density has to

satisfy the difference equation 〈nk+1〉 − 2 〈nk〉 + 〈nk−1〉 = 0. We see that the assignment

〈nk〉 = c1 + kc2 satisfies this equation. We need to determine the two constants based on
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the boundary conditions, i.e. k = 1, N . We obtain a linear system of equations that is easily

soluble and we obtain

c1 =
αβϕN + αϕ

(
ϕ+ 4λ2

β+4ϕ

)
αβϕ(N − 1) + αϕ

(
ϕ+ 4λ2

β+4ϕ

)
+ βϕ

(
ϕ+ 4λ2

α+4ϕ

)
c2 = − αβϕ

αβϕ(N − 1) + αϕ
(
ϕ+ 4λ2

β+4ϕ

)
+ βϕ

(
ϕ+ 4λ2

α+4ϕ

) . (5.15)

Note, that c2 < 0, so the density is a line that decreases from some fixed value c1 > 0 on the

left to c1 − N |c2| on the right. From the density, we can immediately deduce the stochastic

contribution to the current in the bulk, which reads jstk,k+1 = −ϕc2. Due to the second equation

we can also infer the coherent contribution, which is jcok,k+1 = −λ2

ϕ c2. We now consider the

thermodynamic limit N � 1. In this limit both the coherent contribution and the stochastic

contribution behave as

jst ≈ ϕ

N
and jco ≈ λ2

ϕN
. (5.16)

We recall that the SEP without any further driving, i.e. α = β = 0, obeys the detailed balance

condition and thus does not support a steady state current. When one allows for an external

driving of the particles at the boundaries, as we do in our example, a current is induced in the

SEP steady state. This current, however, vanishes as ∼ 1/N in the system size N . As we

have shown, this behavior does not change when adding the coherent evolution on top. Both

the coherent as well as the stochastic contribution to the current vanish in the same fashion.

Furthermore, neither c1 nor c2 depend strongly on λ. The coherent evolution only seems to

play a role for smaller system sizes, i.e. small N . We deduce from this, that for all finite

ϕ the quantum perturbation to the SEP is an irrelevant perturbation and does not lead to a

qualitatively different behavior of the system’s transport properties. However, whether the

quantum perturbation is completely irrelevant can not be deduced from just considering the

steady state density and the current alone. One would also need to take higher order correlations

into account, as for instance the current-current correlation function at unequal times.

The equations (5.13) do exhibit a phase transition, albeit a quite naive transition, upon

choosing ϕ = 0. It is easy to see that for this value the system behavior changes abruptly.

The model that is obtained by setting ϕ = 0 corresponds to limiting case of another model

for quantum transport that was investigated recently [124, 125]. This model only has coherent

transport in the bulk, and stochastic driving only occurs at the boundaries. The equations

immediately yield that the current- density jcok,k+1 = jB , as well as the particle density 〈nk〉 =

nB , is constant in the bulk and only deviates at the boundaries from this constant value. With

this at hand, the set of equations simplify greatly and turn into a set of algebraic equations. The

resulting particle density and current in the bulk are given by

nB =
α
(
β2 + 4λ2

)
β(α2 + 4λ2) + α(β2 + 4λ2)

, jB =
4αβλ2

β(α2 + 4λ2) + α(β2 + 4λ2)
. (5.17)
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The boundary densities n1 and nk, turn out to be different from the density in the bulk. For

these densities, we obtain

n1 =
βα2 + α(β2 + 4λ2)

β(α2 + 4λ2) + α(β2 + 4λ2)
, nN =

4αλ2

β(α2 + 4λ2) + α(β2 + 4λ2)
. (5.18)

We see that the current as well as the particle density is independent of the lattice size N . This

model with only coherent transport has a non-vanishing current in the thermodynamic limit.

5.4 The asymmetric exclusion process

Before we now turn to the asymmetric exclusion process, introduced in section 4.4 of the pre-

vious chapter, we would like to briefly review the concept of matrix product operators (MPO),

and in particular so-called matrix product density operators (MPDO) [126]. We have already

introduced MPS and sMPS in the previous chapters. One can extend this formal construction

to operators that act on a Hilbert spaceH = Cd
N

by defining an MPO as

O =
d2∑

i1,...,iN=1

tr
[
M1
i1 . . .M

N
iN

]
σ1
i1 ⊗ . . .⊗ σ

N
iN
, (5.19)

where the σkik constitute an operator basis of the local matrix spaceM(Cd). For a qubit, for

instance, they could resemble the Pauli operators augmented with the identity. Due to their

construction MPOs can be treated like standard matrix product states on an enlarged Hilbert

space, i.e. the tensor product of N local spaces which now are Cd
2
. If we now require in

addition that an MPO is a positive operator with trace of unity, we are dealing with matrix

product density operators. This way, mixed states of many-body systems can be approximated

with lesser parameters. The requirement that some MPO has to be positive can be enforced by

the following construction. Suppose we start with some arbitrary MPS on a Hilbert space that

is doubled locally, we can see this state as the purification of some density matrix.

|ψ〉 =
∑

i1,j1,...iN ,jN

tr
[
A1
i1,j1 . . . A

1
iN ,jN

]
| i1〉 | j1〉 . . . | iN 〉 | jN 〉 (5.20)

Then, if we trace out the doubled Hilbert space ρ = trj1...jN [|ψ〉 〈ψ |], we obtain a state ρ

that is of the form of the MPO in (5.19), where now the matrices Mk
ik

are given by Mk
ik,jk

=∑d
l=1A

k
ik,l
⊗ A

k
l,jk

and we have the standard product basis σkikjk = | ik〉 〈jk | as the local

operator basis. This construction ensures that the resulting state is positive definite. However,

not every matrix product density operator can be written this way.

5.4.1 The Derrida algebra

We now turn to the description of the steady state of the master equation (5.3) when we choose

the stochastic hopping parameters to resemble those of the asymmetric exclusion process, that
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is we choose ϕL = 0 and ϕR = ϕ. Recall, that we briefly discussed the Derrida algebra [116]

already in section 4.4. This concept can of course also be generalized to MPOs. We define

a translationally invariant density matrix with open boundary conditions, i.e. we choose the

matrices site independent, and write:

ρ̃ = 〈l |

(
G B

A E

)⊗N
| r〉 , (5.21)

where we have to require that A = B and G,E real due to Hermiticity. Note, that we have

adopted a change of notation with respect to the section 4.4 here, since we want the operator σ+
k

to create a particle at site k and σ−k to annihilate one. We therefore have to perform a particle

hole transformation, which leads to a left-right swap, in order to be consistent with the previous

algebra. It is now possible to impose the same algebraic constraints on the MPO that we have

imposed for the stochastic matrix product states. That is, if we split the master equation (5.3)

into individual summands that constitute only two body interactions and write

L[ρ] = L1[ρ] +
N−1∑
k=1

Lk,k+1[ρ] + LN [ρ], (5.22)

we can require that the matrices A,B,E,G together with some ancilla matrices that we mark

by Â, B̂, . . ., have to satisfy the constraints

Lk,k+1

[(
G B

A E

)
⊗

(
G B

A E

)]
=(

Ĝ B̂

Â Ê

)
⊗

(
G B

A E

)
−

(
G B

A E

)
⊗

(
Ĝ B̂

Â Ê

)
. (5.23)

Furthermore, we require that the single-site operators at the boundaries have to satisfy

〈l | L1

[(
G B

A E

)]
= −〈l |

(
Ĝ B̂

Â Ê

)

LN

[(
G B

A E

)]
| r〉 =

(
Ĝ B̂

Â Ê

)
| r〉 . (5.24)

We see that the total sum (5.22) telescopes to zero and ρ̃ is the steady state solution of the

equation. For a suitable decomposition into two body terms that correspond to Hk,k+1 =

λ(σxk ⊗ σxk+1 + σyk ⊗ σ
y
k+1) and the Lindblad operators Lk,k+1 with the two boundary terms

L1,L2 we can derive the following algebra for the steady state. The eight matrices need to

satisfy sixteen equations in the bulk (5.23). First, all matrices have to commute with their

ancilla counterpart, that is [A, Â] = [B, B̂] = [E, Ê] = [G, Ĝ] = 0. The remaining equations

are then as follows

−2λ
i
BG− ϕ

2
GB = ĜB −GB̂ and − 2λ

i
GB = B̂G−BĜ, (5.25)

−2λ
i
EA− ϕ

2
AE = ÂE −AÊ and − 2λ

i
AE = ÊA− EÂ, (5.26)
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as well as

2λ
i
AG− ϕ

2
GA = ĜA−GÂ and

2λ
i
GA = ÂG−AĜ, (5.27)

2λ
i
GE − ϕ

2
BE = B̂E −BÊ and

2λ
i
BE = ÊB − EB̂ (5.28)

and finally we have also

2λ
i

[A,G]− ϕGE = ĜE −GÊ = EĜ− ÊG, (5.29)

−2λ
i

[G,E]− ϕ

2
BA = B̂A−BÂ and

2λ
i

[G,E]− ϕ

2
AB = ÂB −AB̂. (5.30)

We furthermore need to satisfy the constraints set by the boundary terms that govern the inflow

and outflow of the particles. The edge algebra derived from (5.24) then reads

〈l |

(
E B

A E

)
= 〈l |

(
− 1
αĜ

2
αB̂

2
αÂ

1
αÊ

)
(
G B

A G

)
| r〉 =

(
− 1
β Ĝ − 2

β B̂

− 2
β Â

1
β Ê

)
| r〉 . (5.31)

As one sees, this algebra becomes significantly more complex in the quantum setting and it

appears to be intractable to find an algebraic representation for the eight matrices. However,

let us briefly consider the classical case setting λ = 0. Then the algebra simplifies greatly and

we can set A = Â = B = B̂ = 0. Choosing furthermore −Ĝ = Ê = 1, we recover the

classical algebra GE = E + G and 〈l |E = 1/α 〈l | as well as G | r〉 = 1/β | r〉. For this a

representation can be found [116], such as for example the Fock representation

〈l | =
N∑
k=0

1
αk
〈k | and | r〉 = | 0〉 (5.32)

E =
∞∑
k=0

| k〉 〈k − 1 | and G =
∞∑
n=0

1
β
| 0〉 〈n |+

∞∑
n=1

n∑
m=1

|m〉 〈n | ,

which is a representation that is infinite dimensional. In fact, one can show easily that all

representations have to be infinite dimensional unless α+β = 1. From this representation, the

normalization, or partition function, can be computed as Z = tr [ρ̃] as done in [116].

However, we want to understand the system’s response to a quantum mechanical pertur-

bation. To this end suppose that λ > 0, so the algebra does not decouple any longer and the

A and B terms mix with the matrix algebra for G and E. It is interesting to note, that for the

choice α + β = 1 the complete algebra is indeed soluble independently of the choice for λ.

This domain is depicted in the phase diagram of the ASEP as the blue dashed line, see Fig. 5.2.

The solution is then given by just the classical mean field solution. This is only possible, since

E and G commute in equation (5.30). The full state is therefore given by

ρ =
N⊗
k=1

(
α 0

0 β

)
. (5.33)
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Figure 5.2: Classical phase diagram of the asymmetric exclusion process. The simulation was per-
formed for four different points in the classical phase diagram. These points are depicted as blue dots
which correspond to different values of (α, β). For the coexistence line (CL) we have (1/4, 1/4). For
the maximum current phase (MC) we have (3/4, 3/4) and for the high density (HD) and low density
phase (LD) we have (1/2, 1/4) and (1/4, 1/2) respectively.

Note, that coherence can only build up, when the E and G do not commute any longer. Hence,

we will only be able to find that the state has some form of coherence, when the system is also

classically correlated.

5.4.2 Dynamical MPS approach to open quantum systems

In order to see that in the regime, where the stochastic steady state is correlated, the coherent

evolution alters the steady state, we need to calculate the steady state of the system numerically

by time-evolving the density matrix, until we reach the steady state. The numerical simulations

of the real time evolution is performed by making use of an algorithm for the propagation of

matrix product density operators [126, 127]. This algorithm works as follows: Starting from

the initial density-matrix ρ0 given as an MPDO, we apply the tcp-map E(L, t) = exp(tL) for

a small time step ∆t and approximate the resulting density operator, that has now an increased

bond dimension, with an MPDO that has a bond-dimension Dk corresponding to that of the

original MPDO. The approximation of the operator ρ(t + ∆t) = E(L,∆t) ρ(t) is chosen,

such that the Hilbert-Schmidt norm ‖ρ(t + ∆t) − ρnew‖2HS = tr
[
(ρ(t+ ∆t)− ρnew)2

]
is

minimized.This optimization can be performed efficiently by sweeping from left to right over

the individual sites and optimizing the matrices Mk
ik,jk

locally. For the application of the tcp-

map to be computable, we perform a second-order Trotter expansion of the tcp-map as follows:

E(L,∆t) ' E(Lo,∆t/2)E(Le,∆t)E(Lo,∆t/2), (5.34)

where L = Le + Lo corresponds to a splitting of the Liouvillian into commuting terms which

act on the sites (2k, 2k + 1) and (2k − 1, 2k), respectively. The resulting MPDO ρnew is then

chosen as initial condition for the next step and the procedure is repeated. For a more detailed

description of the algorithm, the reader is referred to [126, 127].

As initial state for the evolution we chose the classical steady state (4.24) from the pre-

vious chapter. The matrices of the steady state can thus be chosen with a bond dimension of
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D = N + 1. We then changed the value of λ = 0 to, λ = 1/2 and λ = 1, and evolved the

MPDO, until the steady state was reached, i.e. until all considered observables did not change

any more. Negative values of λ were also simulated and led to the same results. We conclude

from this, that the systems response only depends on the absolute value of λ. The simulations

were done for a lattice with N = 40 sites. The matrix bond dimension of the MPDO was

chosen as D = 60 and we chose a Trotter step ∆t = 10−4. To get a better understanding

of how the system responds to the quantum perturbation in each of the different phases, we

computed the steady state at different values of α and β, which correspond to points lying in

different phases. Four different points were selected, see Fig. 5.2. The point that corresponds

to the coexistence line (CL), where α = β and β +α ≤ 1 was chosen as α = β = 1/4. Recall

that the classical steady state is critical along the coexistence line, which separates the high

density phase from the low density phase. In the maximum current phase (MC), with α > 1/2

and β > 1/2 we chose α = β = 3/4. For the low-density (LD), with α > 1/2,β < 1/2,

and the high-density (HD) phase α < 1/2,β > 1/2, we chose α = 1/4 β = 1/2 and

α = 1/2 β = 1/4 respectively.

The observable we considered first was the density distribution 〈nk〉 = tr [nkρ] as a func-

tion of the lattice site k, Fig 5.3. Furthermore, we calculated the values of the two-point

correlation functions, of the densities nk = σ+
k σ
−
k for all pairs (i, j) of sites

〈ninj〉c = 〈ninj〉 − 〈ni〉〈nj〉. (5.35)

The expectation values are taken with respect to the system’s steady state. In the figures Fig.

5.4(a-d), the correlation functions are compared to the different contributions to the current

jtot defined in (5.6), for different values of λ = 0, 1/2, 1. The first observation to be made

is that the individual contributions to the total current are no longer constant throughout the

lattice anymore. They show a dependence on the lattice site. The total current, however, i.e.

jtot = jco + jst, is still constant at each site of the lattice, as is required since the system is in a

steady state.

The low- and high-density phases Fig. 5.4 (a),(b) : These two phases are, just as in the

classical set up, related by a particle-hole transformation by exchanging the ordering of the

lattice sites from left to right. All the plots reflect this symmetry.One observes that the correla-

tion functions in the classical regime, λ = 0, are already quite short ranged and decay rapidly.

The quantum perturbation in both cases leads to a further decay of the correlations. The total

current remains stable with respect to the quantum perturbation and does not change its value

notably. The individual constituents to the current, however, change their behavior. At the

boundaries the stochastic contributions are increased, whereas the coherent current gives rise

to a flow in the opposite direction.
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Figure 5.3: (color online) Density distribution 〈nk〉 for the different points (α, β), (a) HD (1/2, 1/4),
(b) LD (1/4, 1/2) and (c) MC (3/4, 3/4)as well as (d) CL (1/4, 1/4). The black solid line corresponds
to λ = 0, i.e. the classical solution. The red dashed line corresponds to a quantum perturbation with
λ = 1/2, and the blue dashed-dotted line to a perturbation λ = 1.

The maximum current phase and coexistence line Fig. 5.4(c),(d): In the classical process,

the MC phase corresponds to the maximum amount of current the system can carry. Allowing

for a quantum perturbation, the system makes use of the additional transport capacity and

increases its total current. For these boundary conditions the stochastic as well as the coherent

contributions flow in the same direction. The classical correlation function initially assumes

negative values close to the boundaries. The onset of the quantum perturbation also reduces

the magnitude of the correlations in this phase, even though the total amount of current is

increased. For the chosen boundary conditions that correspond to the coexistence line, the

amount of correlations initially present in the steady state are decreased, when switching on the

quantum perturbation. The final steady state, were λ = 1, however, still shows the presence

of correlations to a higher degree than in the other phases. The total amount of current carried

by the system, however, is decreased. The coherent contribution is negative throughout the

system.
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Figure 5.4: Fig (a): (LD) phase: α = 1/4 and β = 1/2 Fig (b) (HD) phase: α = 1/2 and β = 1/4
Fig(c): (CL) critical: α = 1/4 and β = 1/4. Fig (d): (MC) phase: α = 3/4 and β = 3/4. The
right column shows the density-density correlations (5.35). The left column depicts the current-density
as a function of the lattice site k. The black dash-dotted line amounts to the total current jtot. The
blue solid line corresponds to the stochastic contribution jst and the red dashed line shows the coherent
contribution jco.
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Conclusions and Outlook

Conclusions chapter 2: We have seen that by generalizing the χ2-divergence to the quan-

tum setting, many of the classical results for the convergence of Markov processes can be

recovered. The general perception, that the convergence should be governed by the spectral

properties of the quantum channel could be verified in the asymptotic limit. The fact that we

were working with non-commuting probabilities gave rise to a larger set of possibilities of

defining an inversion of the fixed point density matrix, all of which give rise to a valid up-

per bound to the trace-distance. An interesting question is how the different singular values

ski of the corresponding quantum discriminant relate to each other. The generalization of the

χ2-divergence also led to the definition of detailed balance for quantum channels. Again, not

only a single condition for quantum detailed balance exists, but an entire family of conditions

each determined by a different function k ∈ K, all of which coincide in the case when we

consider classical stochastic processes on a commuting subspace. The quantum concept of de-

tailed balance therefore appears to be richer and allows for a wider set of channels to obey this

definition. The conductance bound that was derived could only be shown for unital quantum

channels. However, we would like to point out, that it is possible to give conductance bounds

for classical maps when the Markov chain is not doubly stochastic. The fact that in general

we may not assume that the fixed point of an arbitrary channel commutes with the eigenvector

associated to the second largest eigenvalues seems to hinder a generalization for non-unital

channels. Moreover, the classical conductance bound has a nice geometrical interpretation in

terms of the cut-set analysis and the maximal flow on the graph associated to the stochastic

matrix Pij . When investigating general quantum channels such a nice geometric interpretation

seems to be lacking. For unital quantum channels Cheeger’s constant can also be viewed in

terms of the minimal probability flow of one subspace to its compliment.

Conclusions chapter 3: Even though an implementation of this algorithm for full scale quan-

tum many-body problems may be out of reach for today’s technological means, we have pre-

sented an algorithm that is indeed scalable to system sizes that are interesting for actual physical

simulations. A small scale implementation of the algorithm that can be achieved with present

day technology has been presented and we will include a discussion that sketches the basic

steps necessary for a simulation of some notoriously hard quantum many-body problems in

the following. As in the classical setting the convergence rate and hence the runtime of the

algorithm is dictated by the spectral gap of the stochastic map. The scaling of the gap depends

on the respective problem Hamiltonian and the choice of updates {C}. Just as for the clas-

sical Metropolis algorithm, efficient thermalization is of course not expected for an arbitrary

Hamiltonian. This would allow one to solve QMA-complete problems in polynomial time
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[128, 129, 78]. It is, however, expected that the algorithm will thermalize, if the physical sys-

tem of interest thermalizes. We have presented a simple physical system, i.e. the XX-chain in

a transverse magnetic field at T = 0, for which the inverse gap of the quantum Metropolis map,

with a simple single spin flip update, scales like O(1/N) with N the number of spins, even at

criticality. To prove a polynomial scaling of the gap for more complex Hamiltonians remains

a challenging open problem. Also, it is well known that the choice of updates {C} can have a

dramatic impact on the convergence rate of the Markov chain in the classical setting. Finding

good updates in the quantum setting is a very interesting open question, although the above

example suggests that the problem might be simpler in the quantum than in the classical case.

The algorithm can be seen as a classical random walk on the eigenstates of the Hamiltonian.

All samples are thus computed with respect to the actual eigenstates. This is why our method

is suitable for the simulation of fermionic systems by exploiting the Jordan - Wigner transfor-

mation [123] as discussed in [130]. The fermionic sign problem is therefore not an issue for the

quantum Metropolis algorithm. It is worth noting that an additional quadratic speedup might

be achievable using the methods of [131, 132, 94].

Simulation of quantum many-body systems: It would go far beyond the scope this the-

sis to give a faithful account on only the most eminent applications of the quantum Metropolis

algorithm to the simulation of quantum many body systems. We will therefore give only a

brief sketch on how we expect that the devised quantum algorithm will aid in the computation

of static properties of some notoriously hard problems in quantum physics, that have eluded

direct computation for large system sizes by classical means. Such problems are for instance

the determination of the phase diagram of the Hubbard model, the computation of binding en-

ergies of complex molecules in quantum chemistry and the determination of the hadron masses

in gauge theories. Common to these problems is that the particles are strongly interacting

fermions and bosons. We expect that it is this class of problems where our algorithm will be

able to give the strongest contributions.

In order to implement the quantum Metropolis algorithm for a specify many-body Hamilto-

nian H we need to be able to perform the phase estimation algorithm efficiently. The central

subroutine that needs to implemented is therefore the simulation of the time evolution for the

Hamiltonian H ⊗ p̂, as was discussed previously in section 3.2. The simulation method de-

scribed in [87] relies on the fact that we are able to decompose the Hamiltonian into a sum of

local hamiltonians hl with H =
∑

l hl that can by themselves be simulated on a quantum com-

puter efficiently. A method to rephrase fermionic or bosonic degrees of freedom in terms of

the quantum computational degrees of freedom , that is in terms of qubits, is therefore needed.

Such a program was devised in [130, 133, 134] and we merely give a brief overview here and

refer the reader to the corresponding references.



Conclusions and outlook 143

The Hubbard model: The Hubbard model [135] is based on a tight binding approximation

that describes electrons in a periodic potential confined to move only in the lowest Bloch band.

The Hubbard Hamiltonian consists of a hopping term and an interaction term written in form

of fermionic creation c†i,σ and annihilation ci,σ operators that act on a lattice site i in a regular

lattice of N sites.

H = −t
∑

<i,j>,σ

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↓ni,↑ (5.36)

This Hamiltonian has to be expressed in terms of spin degrees of freedom in order to be im-

plemented in the standard quantum circuit formulation. The interaction term can be seen to be

implementable directly since the particle density ni,σ operator acts only locally and is bosonic

in nature. The implementation of the hopping term is a bit more challenging. Consider for

simplicity the hopping term for a single electron spin only. This part can be expressed in terms

of the Jordan-Wigner transformation, cf. Fig. 5.5, as

t
∑
<i,j>

1
2

(
σxi (⊗j−1

k=i+1σ
z
k)σ

x
j + σyi (⊗j−1

k=i+1σ
z
k)σ

y
j

)
, (5.37)

once a specific order of the N lattice sites has been chosen. As is shown in Fig. 5.5 the

unitary evolution of each individual summand can be implemented with a cost that scales at

most linearly with the total system size [133, 134]. More general fermionic Hamiltonians can

be implemented in a similar fashion.

Figure 5.5: A fermionic many particle Hamiltonian can be simulated on a quantum computer by map-
ping the fermionic degrees of freedom to spin-1/2 particles [133, 134]. Such a mapping is given by
the famous Jordan-Wigner transformation. Here the fermionic algebra can be expressed in terms of
the su(2) algebra via c†k = −

(
⊗k−1
l=1 σ

z
l

)
σ+
k , where σ+

k = 1
2 (σxk + iσyk). The dynamical part of the

fermionic many-body Hamiltonian often contains terms of the form hkj = c†kcj + c†jck, which become
non-local after the transformation. Operators that are not adjacent in terms of the labeling often con-
tain a chain of Pauli σz operators in between them. A typical term of this kind that occurs after this
transformation is hXkj = σxk(⊗j−1

l=k+1σ
z
l )σxj . To simulate the time evolution of such a non local term on

a quantum computer we need to be able to decompose this unitary into two qubit gates. Given the two
unitaries Vkl = exp(iπ4σ

z
kσ

z
l ) and Ul = exp(iπ4σ

y
l ) such a decomposition is indeed possible as depicted

in the above circuit for the evolution of exp(−iεσx1σz2σx3 ).

Quantum chemistry: A central problem in Quantum chemistry is the determination of

molecule properties. The major challenge is the determination of the electron binding ener-
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gies that need to be computed in dependence of the nuclei position. The general approach to

this problem is to solve the approximate Hamiltonian of the electronic degrees of freedom that

arises due to the Born-Oppenheimer approximation. In this approximation the nuclei positions

are external parameters in the electronic Hamiltonian. The calculation of the molecule prop-

erties relies on the fact that the electronic energy can be determined efficiently in dependence

of the nuclei position. In their paper [136], Kassal and Aspuru-Guzik show how a quantum

computer could be used to determine molecule properties at a time that is a constant multiple

of the time needed to compute the molecular energy. The quantum Metropolis algorithm would

function here as a black box computing the energy. As is shown in [137], the phase estimation

procedure can be implemented efficiently for a general second quantized chemical Hamilto-

nian.

Gauge theories: The current most common non-perturbative approach to QCD is Wilson’s

lattice gauge theory [138], which maps the problem to one of statistical mechanics where the

Euclidean action now assumes the role of a classical Hamilton function. It is therefore reason-

able to assume, that lattice gauge theories would also be the method of choice for the quantum

Metropolis algorithm. However, the algorithm relies on a Hamiltonian formulation of the prob-

lem. Such a formulation is given by Kogut and Susskind’s [139] Hamiltonian formulation of

lattice gauge theories in 3 + 1 dimensions. Here the 3-dimensional space is discretized and

put on a cubic lattice, while time is left continuous. The fermions reside on the vertices of

the lattice while the gauge degrees of freedom are put on the links. The physical subspace is

required to be annihilated by the generators of the gauge transformation, i.e. all physical states

need to satisfy Gauss’s law.

It however turns out, that this approach seems to be very hard to implement on a quantum

computer. This is due to the fact that each of the links carries a Hilbert space that is infinite

dimensional, namely the space of all square integrable functions on the corresponding gauge

group SU(N). A finite approximation to this Hilbert space therefore leads immediately to a

breakdown of the underlying symmetry. A different formulation of gauge theories, that does

not suffer from this problem, is therefore needed. Such a formulation is given in terms of quan-

tum link models introduced by Horn [140]. Brower et al. showed that QCD and in general any

SU(N) gauge theory can be expressed as a quantum link model [141]. In the quantum link

formulation the classical statistical mechanics problem is replaced by a a problem formulated

in terms of quantum statistical mechanics in which the classical Euclidean action is replaced

by a quantum Hamiltonian. The central feature is that the corresponding Hilbert space of the

gauge degrees of freedom at each link is now finite. It suffices that each link of a SU(N)

link model carries a single, finite, representation of SU(2N). This is achieved by formulating

the problem in 4 + 1 dimensions, where the four physical dimensions correspond to the actual

physical Euclidean space time, while the additional dimension plays the role of an additional

unphysical dimension. The 4-dimensional Euclidean space time is discretized and lives on a
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cubic lattice. Furthermore it was shown by Brower et al. [141], that the continuum limit is

obtained by sending the fifth unphysical Euclidean dimension to infinity, which corresponds to

preparing the ground state of the lattice Hamiltonian. It can be seen, that the 4 + 1 dimensional

link models are related to standard gauge theories in 4 dimensions via dimensional reduction

[142]. The full Hilbert space of the SU(3) gauge theory can be written as the tensor product of

a 20-dimensional Hilbert space for each link of the lattice and the finite dimensional fermionic

Hilbert space that resemble the quarks. In contrast to the standard lattice gauge theories the

configuration space of the quantum link model resembles the space of quantum spin models.

The physical spectrum, and by that the Hadron masses, of the 4-dimensional theory can be ob-

tained from computing the correlation functions in the Euclidean direction on the ground state

of the 4-dimensional lattice Hamiltonian.

Conclusions chapter 4: We have revisited the notion of stochastic matrix product states,

and showed that a low bond dimension suffices to efficiently parametrize steady states of non-

equilibrium distribution, if the entropy cost in the system is low. This opens up the inter-

esting question of how to characterize the conditions under which such steady states have a

low entropy cost. It would be interesting to see to what extent this relates to the gap of the

corresponding stochastic process. This also opens up novel ways for constructing numerical

renormalization group methods for simulating non-equilibrium systems in the line of the MPS

algorithms for quantum spin chains [39, 40, 4].

Conclusions chapter 5: We have investigated a quantum perturbation to the dynamics of the

stochastic asymmetric exclusion process as well as to the symmetric exclusion process. We find

that we can rephrase the stochastic master equation as a quantum equation that fully reproduces

the classical dynamics. The quantum perturbations modify the steady state behavior and allow

for two different types of currents, which, each on their own, can vary as a function of the

site. Numerical simulations of the full master equation indicate, that the underlying classical

phase-diagram of the stochastic process is respected. The steady state responds to driving due

to the boundary terms with a different behavior in current and density. A further step would be

to investigate the current-current correlation function of the SEP, to see whether the quantum

perturbation has an effect to the current fluctuations. Furthermore,other, more complex models

with an interplay between stochastic and coherent dynamics can be investigated along these

lines.
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