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VI 

Kurzfassung 

Das Potenzial von menschlichen Außenohren für die persönliche Identifizierung wurde 

erstmals von Alphonse Bertillon im Jahre 1890 beschrieben (Bertillon 1890, zitiert durch 

Hurley et al., 2000). In den letzten 120 Jahren untersuchten mehrere Studien biometrische 

Unterschiede bei menschlichen Ohren um spezifische Identifizierungen festzustellen. Dabei 

wurden unter anderem Zeichnungen, Photographien und 3D Oberflächenscanner-Daten 

verwendet. 

Bezüglich der spezifischen Frage nach einem Geschlechtsunterschied an menschlichen Ohren, 

wurden von Sforza et al. Im Jahr 2009 vergleichbare geschlechtsspezifische Dimensionen von 

Ohren analysiert. Die vorliegende Diplomarbeit versucht zu beweisen, dass 3D 

Oberflächenscans von menschlichen Ohren eine passende Methode für die Analyse von 

Geschlechtsunterschieden darstellt.  

Die zu vergleichende Stichrobe (n=29, 14♂, 15♀; durchschnittliches Alter: 25.3 Jahre) 

besteht aus 3D Oberflächenscans (David Lasercanner 2.4.3) von Gipsmodellen.  

Nachdem 72 Landmarks inklusive  67 Semilandmarks in Amira 5.2.0 gesetzt wurden, wurden 

diese Punkte in Edgewarp 3.30 zueinander verschoben (sliding). Anschließend wurden die 

Daten in Morpheus et al. geladen, gruppiert und mit f (weiblich) und m (männlich) bezeichnet 

und superimposed (GPA) bevor ein MANOVA P-Test durchgeführt wurde. Außerdem wurde 

ein PCA in R 1.12.1 berechnet. 

Die Ergebnisse zeigten, dass es im Bezug auf Geschlechtsunterschiede keine bedeutenden 

Unterschiede gibt (Versetzungstest / randomized Beispiel 999: p=0.384). Aus den ersten 

beiden Hauptkomponenten der Analyse ergaben sich eine erklärte Varianz von 44.47% im 

s.g. shape space und 43.66% im s.g. form space. Von den 29 Proben insgesamt sechs aus der 

Studie ausgeschlossen, da diese Mängel in den Oberflächendaten aufwiesen. Aufgrund dieser 

heruntergesetzten Stichprobe ist es leider nicht eindeutig möglich einen klaren 

Geschlechtsunterschied auszumachen. Die Verwendung der Gipsabdrücke zeigte allerdings 

eine sehr hohe Genauigkeit im Bezug auf die Morphometrie des Ohres. In Bezugnahme auf 

den David Laserscanner zeigte sich, dass eine maximaler Fehler von 3mm pro Scan erwartet 

werden könnte, da dieser von vielen verschiedenen Hardware-Komponenten abhängig ist. 

Generell lässt sich sagen, dass das Potenzial des David Laserscanner 2.4.3 für die Analyse 

von komplexen Strukturen wie menschlichen Ohren begrenzt ist. 
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Abstract  

The potential of human external ears for personal identification was first recognized and 

described by Alphonse Bertillon in 1890 (Bertillon 1890, cited by Hurley et al. 2000). In the 

last 120 years several studies investigated biometric differences in human ear shape for 

specific identification using drawings, photographs and 3D surface scan data.  

Including the question of sexual dimorphism, Sforza et al. (2009) described sex-related 

dimensions of ears. This diploma thesis tried to verify that 3D surface scans of human ears are 

an appropriate method for the analysis of sexual dimorphism, which could then be used in 

biometric recognition systems, as well as in standard craniofacial development, human 

evolution or diseases. 

My comparative sample (Caucasians, n=29, 14♂, 15♀;average age: 25.3 years) consists of 3D 

surface scans of plaster mould models from living volunteers. After scanning, 72 landmarks 

including 67 semilandmarks were set with Amira 5.2.0 and were slid in Edgewarp 3.30. 

Afterwards, after loading the data in Morpheus et al. they were grouped, labeled with f 

(female) and m (male), and superimposed (GPA) before performing MANOVA. Furthermore 

a PCA in R 1.12.1 was calculated. 

For this sample there are no significant differences (permutation test/ randomized sample 999: 

p=0.384) in the determination of sex as well as in the analysis of every single curve. 

Including all digitized specimens (11♂, 12♀; Caucasian, age average: 25.4 years), six 

specimens were excluded due to missing data, 44.47% of the variance is explained by the first 

two principal components in shape space. Furthermore, 43.66% of the variance is explained in 

the first two principal components in form space. Analyzing every curve separately shows 

similar results.  

The reduced sample size of 23 specimens does not allow an accurate prediction of sexual 

dimorphism of human ears. However, the usage of the plaster mould model showed very good 

accuracy in comparison to the ears’ actual geometry. The accuracy of the David Surface 

scanner 2.4.3 (DAVID Vision Systems GmbH, Germany), depends on various hardware 

components and settings like the camera distance, the object size, the light conditions, the 

triangulation angle and the quality of the calibration target. In this study a maximum error of 

not more than 3mm per scan can be expected, due to the camera distance of 300 mm. In 

general, it could be shown that there is only a limited potential of the David Laser scanner 

2.4.3 (as an example for 3D surface scanners) for the analysis of complex structures like 

human ears. 
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I. Introduction  

1. Anatomy, physiology and embryonic developmental biology   

This section is a short theoretical background about the anatomy of the human ear, its 

embryonic development and studies dealing with the external ear structure for sexual 

dimorphic pattern. 

 

1.1      Anatomy of the human ear  

The ear itself can be differentiated into three sections: the external ear, the tympanic cavity 

and the interior ear , whereas there are two sensory parts, which have different functions, but 

form one morphological complex (the inner ear). The first part of the inner ear, the cochlea, is 

the acoustic organ. The second part includes sacculus, utriculus and the semicircular canals, 

and registers in particular the changes of position of the head as well as the rest of the human 

body. This part represents the so-called vestibular system (Kahle and Frotscher, 2005). 

The border between the external and internal ear 

structure is set at the beginning of the ear canal. 

The visible part, called pinna (see Figure 1) is an organ 

that can be subdivided into several different parts.   

The helix builds the outer edge of the ear; the antihelix 

builds a hill and forms a Y shape on the upper ear part. 

In this region the antihelix splits into superior and 

inferior cruxes which are building a depression between these Y-shaped structure, the so 

called fossa triangularis.  

Furthermore the tragus and the antitragus (see Figure 1) are visible; right above the tragus 

lays the anterior crux of the helix and the cymba conchae. The concha builds the deepest 

depression in the auricle. 

Besides the lobule, the auricular (pinna) possesses a skeleton of flexible cartilage. The form of 

the bulges and hollows differs between every human and are genetically determined. The 

form of the following anatomical structures is determined by genetics: Helix, antihelix, 

scapha, concha auriculae, tragus, antitragus and fossa triangularis (Kahle and Frotscher, 

2005). The external ear canal is stiffened primarily by flexible cartilage and further on by 

bone. The skin of the cartilage area contains sebaceous glands and ceruminous glands. These 

glands are similar to sweat glands, the so called apocrine glands (Lüllmann- Rauch, 2006). 

 

 
Figure 1: Anatomy of the external ear 
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1.2        The development of the human ear, growth and sexually dimorphic pattern 

 
In 1997 Wright described the development of 

the external ear as a complex process which 

reaches from the early embryonic stage to the 

postnatal period. Parallel to the anatomical 

changes of the pharyngeal arch during the fifth 

week of gestation, the external ear as well as the 

auditory ear canal develops. Both of these areas 

develop until the age age of nine, although the ear is already formed by birth. (Wright, 1997)  

 

Six tubercles grow from the mandibular arch as well as the hyoid arch during the sixth week. 

They are called tragus, crus of the helix, helix, lobule, antitragus and the antihelix (Sadler and 

Langman, 2003). During the second and third month of development the pinna (external ear 

structure) expresses its form (see Figure 2). 

The ear is built of one plate of fibro-cartilage which is covered by the skin and is connected 

with the circumjacent parts by extrinsic muscles and ligaments and fibrous fabrics (Foucar, 

1940). This thin plate produces the helix (the curved edge of the ear) and furthermore the 

antihelix (counterpart of the helix) (Foucar, 1940). 

 

Besides the development of the outer ear structure and the growing pattern of ears, some 

important morphometrical studies on the ear anatomy were performed to determine sexual 

dimorphic pattern, and will be explained further to give a short background about 

morphometrical studies of the external ear. 

Peeples et al. (1985) put out, that three of the vertical and the three horizontal measurements 

seem “to be under specific genetic regulation” in both sexes: “(…) width of the superior 

helix, distance from superior helix to the edge of antihelix, distance from antihelix to tip of the 

lobule, (…) width of the pinna, width of the posterior helix, and width of the notch (…)” 

(Peeples et al., 1985). 

In 2009 Sforza et al. described sex-related dimensions of ears. 497 male and 346 female 

healthy subjects aged between 4 and 73 years were digitized. Several soft-tissue landmarks 

were set on the ear and face. The authors concluded, that “All ear dimensions were larger in 

men than in women. The ear width-to-length ratio and the sagittal angle of the auricle 

decreased (…), but without sex related differences. (…) Asymmetry was found in the sagittal 

 
Figure 2: Embryonic development of the ear 
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angle of the auricle (both sexes), in the ear width-to-length ratio and ear width (men 

only).”(Sforza et al., 2009) 

Meijerman et al. (2007) described a cross-sectional anthropometric study to analyze the 

growth of the outer ear structure to provide a way of predicting which anatomical features 

appearing in ear prints may vary during lifetime. They analyzed 1353 subjects considering the 

effects of age on auricle length, earlobe length, and auricle width. However, the antihelix 

prominence and helix width seemed to be unaffected by age. 

In 2007 Niemitz et al. examined 1448 ears from newborn children up to 92 years old adults 

for growth and sexual dimorphic pattern. They found several sexual dimorphic patterns, 

whereas male ears showed more increase in growth than those of females. The greatest ear 

length in male subjects was 52 mm (SD +/- 4.1 mm) at birth, 65 mm (SD +/- 4.0 mm) at 

around 20 years and 78 mm (SD +/- 4.8 mm) at around 70. For women the results were: 52 

mm (SD +/- 4.3 mm), 61 mm (SD +/- 3.9 mm) and 72 mm (SD +/- 4.6 mm) (Niemitz, 2007).  

Moreover, Purkait and Singh (2008) described a bilateral comparison of ear patterns in the 

same individual, where no ear was found to be exactly the same in morphology to its 

counterpart (right and left ear). 
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2.          Biometric identification and geometric morphometrics 

 

This section is going to give a review of the usage of human ears for personal identification as 

well as a basic theoretical background of geometric morphometrics for better understanding 

the methods used in this study. The following section also gives a short introduction to define 

the terms of curves and outlines, landmarks and semilandmarks, as well as the procrustes 

superimposition, ridges and perpendiculars on the turning point of a cubical parabolic three 

dimensional surface, as a constructed parabolic curvature. 

 

2.1         Personal identification using biometric differences in human ear shape 

The potential of human external ears for personal identification was first recognized and 

described by Bertillon in 1890 (Bertillon 1890, cited by Hurley et al. 2000). In the last 120 

years several studies investigated biometric differences in human ear shape for specific 

identification using drawings, photographs and 3D surface scan data.  

 

The classification work of Iannarelli (1989) was a 

novel approach in the biometrics of human ears 

from photographs (see Figure 3). In total over 

10000 photographs of human ears from a random 

sample in California were compared. Burge and 

Burger (1998) concluded that, if the centre point 

was set improperly, researchers were faced with 

the problem that all measurements were incorrect. 

Additionally, localizing of the anatomical points 

was not very suitable for automated machine 

vision. (Hurley, 2007) 

 

Moreno et al. (1999) combined the results of 168 photographs using attributes of outer ear 

points, ear shape information and features extracted by compression network simulating a 

new identification method. 

Burge and Burger (1998 & 2000) used the Voronoi diagram (after Dirichlet 1850) for 

computing automated biometrics of ear curve segments. They used an algorithm, which takes 

 

Figure 3: Left: Anatomy, Right: Measurements, (a) 1 Helix 
Rim, 2 Lobule, 3 Antihelix, 4 Concha, 5 Tragus, 6 
Antitragus, 7 Cruz of Helix, 8 Triangular Fossa, 9 Incisure 
Intertragica. (b) The locations of the anthropometric 
measurements used in the “Iannarelli System”. (Burge et al., 
1998) 
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the possibility of error curves into account. These error curves can be caused by e.g. exposure, 

light arrangement, shadowing and occlusion.  

In the last decade researchers have focused on the general appearance and shape of the human 

ear, whether using PCA (Victor et al. 2002), force field (Hurley et al. 2000) or ICP (Yan und 

Bowyer 2004 & 2005).  

The so-called ‘force field transformation’(“(...)the force field can also be defined directly with 

its own set of equations (…)”(Hurley, 2005)) for ear recognition was examined by Hurley et 

al. (2000) by transforming the images as a classification of Gaussian attractors, acting as the 

sources of a force field. According to the authors this technique provided good results for 

their research questions. 

Studies by Victor et al. (2002) analyzed the comparison 

between the recognition of the ear and face, by using 

principal component analysis (PCA) (see Figure 4). 

(Hurley, 2007) 

Additionally, Hurley et al. (2000) used PCA on a subset 

of 252 ear images extracted from the XM2VTS multi 

model face profiles database (Messer et al., 1999; Jain, 

2007) to achieve a recognition rate of 98.4% in 3D 

(Hurley, 2007). 

In 2004 & 2005, Chen and Bhanu used a ‘surface shape descriptor’ to analyse a 3D ear 

recognition method. Ten Individual were digitized using two ranged images for each person. 

However, the 3D structure of the auricle is only ascertainable only with difficulty, so a 

handful of research groups have focused on the field of 3D Ear Biometrics. Yan and Bowyer 

(2004 & 2005) used a Minolta VIVID 910 range scanner to scan the ear via laser technology. 

By using triangulation algorithms the depth is calculated. (Hurley, 2007) Iterated closest point 

(ICP) based matching was applied for developing a fully automatic ear biometric system. 

Disturbing objects from 3D depth data, e.g. earrings, jewellery and hairs, can be easily 

removed automatically in the 2D model. (Hurley et al., 2007; Yan and Bowyer, 2005a/b/c; 

Yan and Bowyer, 2004 & 2005)    

So ICP can be used due to its simplicity and accuracy (Hurley et al., 2007). In 2005b, Yan et 

al. developed an efficient ICP registration method (precomputed voxel closest neighbours) 

used for biometric studies of previously processed human ears.  

In 2003 Bhanu and Chen used a two-step ICP algorithm. They examined 30 subjects with 3D 

ear images. Two of 30 individual were found wrong.  They build an ear model template from 

 
Figure 4: Theoretically methods (Victor et al. 
2002) 
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20 subjects. Besides, Hurley (2007) considered the importance of investigation of specific ear 

parts from the recognition perspective. Many steps have been taken in the potential means of 

human ears in personal identification using modern biometrics and morphometrics (Arbab-

Zavar, 2007).   

Sexual dimorphism could be used in conjunction with biometric recognition systems in 

several ways. Also Ear morphometrics could be useful for the study of craniofacial 

development, human evolution, diseases or the biometrics.  

 

2.2   Geometric morphometrics  

“Geometric morphometrics is a collection of approaches for the multivariate statistical 

analysis of Cartesian coordinate data, usually (but not always) limited to landmark point 

locations. The multivariate part of geometric morphometrics is usually carried out in a linear 

tangent space to the non-Euclidean shape space in the vicinity of the mean shape.” (Slice et 

al., 1995) 

 

Among others, Pearson (Pearson, 1895) and Fisher (1918 & 1921) developed statistics in the 

context of biologic-morphological variations, which build the foundation for actual 

morphometrics. Additionally, statistical methods like principal component analysis 

(Hotteling, 1933; Pearson, 1901) and the correlation coefficient (Pearson, 1895) were 

developed. Distances became the most familiar variables used for morphometric 

measurements methods. These early studies provided many statistical methods, which today 

allow analysis of more than one variable at the same time. 

In 1917, Thompson published constructed deformation grids to show how one part of an 

individual looks like as a distortion of the same part in another organism (Cartesian 

transformation (see Figure 5)). 

 

While Thompson had drawn this by hand, 

Bookstein (1989) introduced the thin plate 

spline interpolation. This method shows shape 

differences between two forms as 

deformations. The new form results out of 

minimized bending energy (Bookstein, 1997; 

Bookstein et al., 2002; Bookstein et al., 2003; Mitteroecker et al., 2004 and Bastir et al., 

2006). 

 

Figure 5: Cartesian transformations (Thompson 1917) 
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Geometric morphometrics has been developed to analyze form variations by using 

mathematical points (curves and landmarks) in multidimensional space.  

Landmarks were defined in three subtypes and Semilandmarks were introduced with the aim 

to use “Landmarks for description of structures that lack true landmarks” (Bookstein 1991; 

Bookstein, 1997; Bookstein et al., 1999). Recently, semilandmarks have been used in several 

morphological studies (Mitteroecker et al., 2004; Mitteroecker et al., 2005; Sheets et al., 

2004; Gunz et al., 2005).  

 

The exact knowledge of specific definitions and terminology in the analysis of morphological 

differences in biological objects is essential to understand the methods of modern geometric 

morphometrics and will be an important part during this thesis. 

 

Procrustes Superimposition 

A system of shape coordinates, consisting of the coordinates of several landmarks after the 

objects are translated, rescaled and rotated. Therefore first landmark is fixed at the origin and 

the second landmark is fixed at (1,0) in a cartesian coordinate system. This function is called 

the Two- point shape coordinate (Bookstein, 1991) (see Figure 6). 

 

Today, extract shape variables from a set of 

landmarks are called the ‘procrustes 

superimposition’. This method superimposes 

configurations without using position, 

orientation and scale of the data (Adams, 

Rohlf and Slice, 2004). 

 

Therefore, three steps are used, based on the Euclidean similarity transformation (shown in 

Figure 7) (Dryden and Mardia, 1998). 

1. Translate:   Translation of the objects. The result should share the same centroid. 

2. Scaling:      Scaling of the objects. The result should share the same centroid size. 

3. Rotation:     The object is going to be rotated (minimizing the sum of the squared Euclidian 

distances.  

 

 
Figure 6:  Shape coordinates (after Bookstein 1991)  
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The generalized procrustes analysis was 

developed if there are more than two specimens 

(Gower, 1975; Rohlf and Slice, 1990). The 

rotation step changes to a specific algorithm. 

The result of this scaled, centered and rotated 

landmarks are the procrustes shape coordinats. 

 

Landmarks 

“Landmarks are the points at which one´s explanation of biological processes are grounded” 

(Bookstein, 1991). 

Landmarks must be homologous between two different forms. Bookstein (1991) stated that 

landmarks are all defined by specific names (to insure homology) as well as coordinates. In 

this case homology has to be seen as a function, relating points rather than parts (Bookstein, 

1991). 

In general, Bookstein (1991) described three types of landmark points: 

Type I:   Mathematical point who are defined by discrete juxtaposition of tissues, like the 

correspondence to homologies anatomical structures 

Type II:   Point of a maximum curvature 

Type III: Characterize more than one region of the form, so called extreme points 

 

In 2004 Bookstein and Schaefer and in 2007 Katina et al. described a new landmark 

classification. 

Type I:    discrete juxtaposition of tissues 

Type II:   Point of a maximum curvature 

Type III:  Characterize more than one region of the form, by using the information of multiple 

curves and through symmetry.  

Type IV:  Semilandmarks on ridge Curves. The term of semilandmarks will be explained 

above (Semilandmarks: landmark-based analysis of outlines see p.9). 

Type V:   Semilandmarks on surfaces 

Type VI:  Constructed semilandmarks 

 
 
 
 
 
 

 
Figure 7: Procrustes superimposition 
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Semilandmarks: landmark-based analysis of outlines 

“Sliding landmarks make it possible to include outline information in the geometric 

morphometric analysis.” (EVAN 2010) 

Sliding of the landmarks is applied to minimize the effects of the random location of 

semilandmarks along curves (Bookstein, 1996; Bookstein, 1997; Bookstein et al., 2002; Gunz 

et al., 2005).  

The aim of this technique is to slide points along the external curve until they correspond 

optimally to their equivalents in the right configuration and consequently serve the principles 

of procrustes superimposition (Bookstein, 1997).  

To minimize the procrustes distance (Rohlf, 1998) or the bending energy (Bookstein, 1997; 

Bookstein et al., 2002; Bookstein et al., 2003; Mitteroecker et al., 2004 and Bastir et al., 2006) 

semilandmarks can be slid along tangents defined by other semilandmarks. 

 
Outlines 
The aspect of analysing an object can include outlines which are closed or open. Closed, 

means the starting and endpoint are the same – comparable to the outline of a circle; open 

means the starting and endpoint are different like a curved line. Here the starting and endpoint 

is clear. For simplification of analysis, a series of points along the outline are marked first, 

otherwise the decision of which variable on the line should be analysed is quite complex. 

Depending on the analysis method the starting point can be recorded at every specimen and is 

correspondent or not (Klingenberg, 2009). There are multiple ways of analyzing an outline. 

 

Eigenshape analysis 

 “Any region that can be defined as a closed curve can be subjected to a standard eigenshape 

analysis.”(McLeod, 1999 p.4) 

In general the digitization for the standard eigenshape analysis starts at a landmark point 

along a curve of a margin (Lohmann, 1983; Lohmann and Schweitzer 1990b). If specimens 

lack common landmarks, they can be analyzed using a so-called generalized superimposition 

method (Lohmann, 1983). When using the generalized superimposition method the 

digitization of the starting point fits to a specific location. The location is determined 

including the corresponding part of the outline or the outline within shape space (McLeod, 

1999). Using a landmark as starting point is a common procedure and has been published 

several times (Kucera and Malmgren, 1996; Lohmann and Schweitzer ,1990a and 1990b; 

MacLeod and Rose, 1993; MacLeod and Carr, 1987; Norris et al., 1996; Ray, 1990; Lohmann 

and Schweitzer, 1990; Norris et al., 1996). 
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Curves along extreme points: Ridges 

Ridges are lines which are running along extreme points (for example parabolics) (see Fig. 8 

red).  These lines or curves are building a perpendicular curvature along the maximum points 

along the perpendicular direction (Weber & Bookstein 2011). 

 

Perpendicular lines along the turning points of a cubic parabolic surface 

Cubic parabolic curvatures are polynomial equations of the 

third degree. In general, the function is defined by the 

following equation: y= f(x) = a*x3 + b*x2 + c*x + d including 

  (see Figure 8) (Lauter et al., 2000) 

 

Setting a perpendicular line as a reconstructed parabolic 

curve along the turning points of a cubic parabolic surface 

can also be demonstrated in a three-dimensional grid, shown 

in Figure 9 (green line) (Koenderink, 1990). 

   

 

 

 

 

 

 

 

 
Figure: 8: polynomial of the third degree 

 

 
Figure 9: rigdes(red); perpendicular curve alonge the turning points of cubic parabolic (green)  
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3.   Technical Background 

This section is going to give a detailed technical background of the methods used in this 

study. Special attention is drawn to the setting and calibration of the used surface scanner to 

facilitate future scientific studies performed with the David Laser scanner 2.4.3. 

3.1       Modelling with Alginat 

Alginate is normally used in dentistry for dental elastic impressions and provides results in 

good medical qualities. It is free of additives like fiberglass shavings, is dust free, has a fine 

pasty consistence and is extremely precise. The product used in this study was Kromopan 100 

idrocolloide, Lascod S.p.A- Laboratori scientific odonoiatria. The volume ratio for 

impressions like ears is one part of Alginate to 1.5 parts of water, including a processing time 

of nearly 90 seconds. 

 

3.2   Contact-free active and passive scanning 

Active scanner capture objects by detecting theirs reflection, by using radiations like laser 

light or light (Weber & Bookstein 2011). In comparison to a passive scanner, active systems 

are more sensitive to surface properties (Lanman and Taubin, 2009). 

An example for contact-free active scanner would be the David Laser scanner 2.4.3 (David 

Surface scanner 2.4.3, DAVID Vision Systems GmbH, Germany) used in this study. This 

scanner system uses a vertical laser light line to process the object. 

 

Passive scanner does not need to use radiations (specific light sources) itself, but detect 

reflected surrounding radiations to build an image (Weber and Bookstein 2011).   

 

3.3    David Laser scanner 2.4.3 (David Surface scanner 2.4.3, DAVID Vision 

Systems GmbH, Germany) 

The David Laser scanner consists of a standard consumer digital camera (webcam) and a hand 

held line-scanner (Class 1 laser). Two plain boards in the background form the calibration 

plate panel situated in an 90 degree angle to each other, a desktop PC and the DAVID-Laser 

scanner software (DAVID 3D Scanner: Jan 2011).     
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3.3.1     Camera Calibration  

Before starting scanning, the camera has to be calibrated because the system establishes the 

orientation and position of the camera in the three Dimensional space as well as its parameters 

like lens and focus length (DAVID 3D Scanner: Jan 2011). 

 

To obtain optimal scans, the scanner should be connected to the PC, before choosing the 

camera device and the image format. The camera has to be placed 

in front of the camera corner like in Figure 10, so all calibration 

plate patterns fill the camera image. To calibrate the camera right, 

a minimum number of six points at the panel have to be visible as 

well a high contrast should be appointed. Also important is to 

choose the right scale for the calibration pattern. 

After pressing the “Calibrate Camera” button there should be red 

crosses on the black pattern, than the calibration is complete. 

 

3.3.2     Scanning Process 

The object should be placed between the camera and the 

calibration corner (see Figure 11). It should be centred in the 

middle of the camera image, be in focus and the camera settings 

(exposure time, aperture) should be adjusted.   

Adjust the camera settings like exposure time and aperture. 

After switching the laser on, the light conditions in the room 

should not change anymore, the laser line should be clearly 

visible and bright while the rest of the image should be black. 

Switch off the laser and press START than switch on the laser, 

and scan the object. In the scan result image it is possible to 

control, which regions are already, scanned (see Figure 12). 

To see the object in 3D you can press “Show 3D” and a 3D-

window  appears in the software panel, for getting a better result 

it is possible to take a picture from the texture which is going to 

be overlaid with the scan (DAVID 3D Scanner: Jan 2011). 

 

 

 

Figure 10: Camera Calibration corner 
(David Laser scanner 2.6.0 

 
Figure 11: Live Camera Image 

 
Figure 12: Scan result image 
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3.3.3     Shape Fusion 

This software-function combines and aligns all scanned 3D scans. 

Following steps have to be considered: After adding the entire 

scan into the input list, the scans can be arranged and then 

aligned. Therefore, click on the first scan and afterwards on the 

second scan. After the software shows the two pop-ups “Coarse 

registration, please wait a few seconds” and “Fine registration, 

please wait a few seconds” the alignment is completed (see Figure 

13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Resulting shape fusion of 

10 single scans 
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      4.     Hypothesis 

 

The main aim of this study includes the novel aspect of sex specific differences in ear shape, 

considering morphometric and multivariate analysis methods and statistics as well as 3D 

surface scanning of outer ear structures.  

 

In contrast to previous studies by Peeples et al. (1985), Meijermann et al. (2007), Niemitz et 

al. (2007) and Sforza et al. (2009), this study uses the novel approach of 3D surface scanning 

technique combined with geometric morphometrics to analyse sex specific differences of 

human ears.   

 

Therefore, this study is concerned with the following hypothesis: 

 

 3D surface scans of human ears are an appropriate method for the analysis of sexual 

dimorphism, which can be used in biometric recognition systems, as well as craniofacial 

development, human evolution or diseases.  

 

 

The three main aims of this study can be summarized in the following questions: 

 

1. Are there any sex specific differences in the determination of sexual dimorphism of 

human ears analyzing 3D image data from the David Laser scanner 2.4.3 with geometric 

morphometrics? 

 

2. How does a 3D surface scan match the ears actual geometry? 

 

3. What is the potential of the David Laser scanner 2.4.3 (as an example for 3D surface 

scanners) for the analysis of complex structures? 
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II.  Material and methods 
 

1    Scanning process 

The comparative sample (Caucasians, n=29, 14♂, 15♀; age average: 25.3 years) consists of 

3D surface scans (David Surface scanner 2.4.3, DAVID Vision Systems GmbH, Germany) of 

plaster mould models from living volunteers.  

After the standard calibration of the David Laserscanner 2.4.3 (DAVID Vision Systems 

GmbH, Germany) at the Department of Anthropology (University of Vienna, Austria) a series 

of test scans of the models were performed to evaluate the best settings. Afterwards, all cast 

were scanned including following settings (see Table 1. p.22) using a class one 650nm Laser 

(DIN EN 60825-1:2008-5 /EN 60825-1:2007), a 2-Megapixel-Webcam (1600-1200/ 

Autofocus Logitech Quickcam 9000 Pro) with a distance of 300mm to the object and the 

Software DAVID Laserscanner Professional Edition (DAVID Vision Systems GmbH, 

Germany) as well as using a triangulation angle of approximately 35°.  

2    Moulding and cast models 

Pretests showed that taking scans of living individuals is going to cause problems during the 

data analysis. Therefore, 3D cast models were produced. The negative form was made with 

alginate (Kromopan idrocolloide 100 hour) which was afterwards filled with cast.  

Before getting started every test person had to sign an informed consent (see Appendix). 

First, the probands got an ear plug before a die was placed around the ear. Further alginate got 

stirred with the volume ratio of 1 part of Alginate to 1.5 parts of water, resulting a processing 

time of nearly 1.5 minutes. This mixture was filled in the mold so a negative cast of the ear 

was formed. After this cast was finished, within 20 minutes the negative form was filled with 

plaster.  

 

3    3D-Data acquisition and digitizing  

The resulting image data were transferred to the software package of the David Laserscanner 

2.4.3 (DAVID Vision Systems GmbH, Germany) at the Department of Anthropology, 

(University of Vienna, Austria) for shape fusion and 3D reconstruction (*.obj).  

After transferring all *.obj Files into *.stl Files with MeshLab v1.2.1 (Istituto di Scienza e 

Tecnologie dell’Informazione/ Stable Developer: Callieri, Corsini, Dellepiane, Ganovelli, 

Pietroni, Tarini, since 2007), Visage Imaging Amira 5.2.0 (Visage Imaging Inc., San Diego, 

USA) at the Department of Oral Surgery, Medical University of Vienna, Austria was used for 

digitizing 72 landmarks including 67 semilandmarks. In total, 23 specimens (11♂, 15♀; 
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Caucasian, age average: 25.4 years) were included in the study, six (3♂, 3♀) specimens were 

excluded from the study due to incomplete data in the 3D surfaces. 

All landmarks were set along specific curves of the surface structure, four of the curves were 

open and one of them closed (Figure 16-20) 

 

3.1    Digitizing fixed landmarks 

The following chapters explain where on each ear the landmarks were set. Additionally, the 

digitizing of ridges and perpendiculars on the turning point of a cubical parabolic three 

dimensional surfaces as constructed parabolic curvatures is shown. 

The Figures 14 - 20 are structured as followed: In the left part of the picture an overview of 

the digitized ear is shown, whereas in the right part two equivalent cross sections are 

visualized (upper part: orientation in the room; lower part: cross section as example of the set 

of landmarks). 

Landmark point one (ldk1) was set as an extreme point in form of the lowest part between the 

helix and end of the inferior part of the crux of the antihelix (see Figure 14). Equally to the 

first landmark, landmark point two (ldk2) was set. This point is positioned on the highest 

point of the end of the anterior crux of the helix (see Figure 15).  

Landmark point three (ldk3) and five (ldk5) were equally set to the first landmark. Landmark 

point three builds the lowest point between the second and fifth curvature (see Figure 17 and 

20), while Landmark point five (ldk5) builds an increase between the antihelix and the 

antitragus. 

Furthermore, the fourth landmark point (ldk4) builds the connection point between the head 

and the ear lobule. 

 

 

 
Figure 14: ldk1 including cross section  
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Figure 15:  ldk2 including cross section  

 

3.2   Digitizing semilandmarks along curves 

Every picture on the left side, visualizes every curve separately including the fixed landmarks 

(shown in blue), while on the right side two cross sections are shown. The upper right pictures 

show the orientation in the room. The lower right pictures show a cross section, as an example 

of the set semilandmarks on the current curve. The numbers given in brackets are the 

equivalent numbers of the semilandmarks later used in the statistical and geometric-

morphometrical analysis. The cross section should give a better understanding on which 

principles curves were found as constructed parabolic- or ridge curves.  

 

 

 
Figure 16: Curve 1 including crosssection  
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The first curve starts at ldk2 and ends as an open curve, this curve runs along the inner line of 

the helix (0-24) in form of a perpendicular on the turning point of a cubical parabolic surface 

(see Figure 16). It’s a matter of a constructed parabolic curvature. 

The second curve starts at ldk3, runs along the antitragus and ends at ldk5 (25-29). From this 

region the third curve starts open along the antihelix across the anterior crus of the antihelix 

and ends at ldk1 (30-38). Curve two and three are both characterized as ridge curves (see 

Figure 17 and 18) 

 
 Figure 17: Curve 2 including cross sections   

 

Figure 18: Curve 3 including cross sections  
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The fourth curve starts at ldk4, the connecting point between the lobule and the head and runs 

along the outer part of the helix and ends open (39-57). This curve is characterized as a 

constructed ridge curve (see Figure 19). 

 

 

 
Figure 19: Curve 4 including cross-sections  

 

The fifth curve starts open, runs along the tragus and ends at ldk3 (58-66) (see Figure 20).  

Each of these semilandmarks runs along a curve, characterized as a ridge curve. 

 

 

 

 
Figure 20: Curve 5 including cross sections  

 

All landmarks were set manually and saved in two different files (fixed LM and Snakes). 

 

 



 
  

20 

3.3    Building the Template and sliding of the semilandmarks 

The first set of landmarks was used for building a template. 

The template builds the standardized specific file type including following parts: 

 

 { 

 volume { 

 } 

 lhs {   = left-hand side, including  all landmarks including the slider 

 } 

 rhs {    = right-hand side, in the template file Homogeneous to the lhs 

 } 

 relax { = gives the exact number of LM (full, full, full) and the exact number of Sliders (none, none, 

none)    

 } 

 labels {  = gives the exact number of LM (ldk1, ldk2) and the exact number of Sliders (CLcurve1, 

CLcurve2, CLcurve3) 

} 

 reference { 

  -4.938901801006559e+00   -4.358347213228504e+00   3.970797363729849e+00 

   1.201701846531854e+02 

   1.000000000000000e+00    0.000000000000000e+00   0.000000000000000e+00 

  0.000000000000000e+00    9.999994440794628e-01   1.054438601955762e-03 

  0.000000000000000e+00   -1.054438601955762e-03   9.999994440794628e-01 

 } 

 slice { 

  -6.722274374494985e+00   2.850509156010931e+00  -8.731814909854572e+00 

   1.333973665077005e+02 

  -6.955618819295073e-02   1.374874453434360e-02  -9.974832874328234e-01 

   9.950895653789300e-01  -6.962601056071592e-02  -7.034895541065303e-02 

  -7.041799172113461e-02  -9.974784161459980e-01  -8.838312329500364e-03 

 } 

 view { 

  -5.451208051530203e-02   1.293508898336573e-01  -6.933366231769916e-02 

   1.061617219366657e-02 

  -7.449752453455576e-01   6.477135244675469e-01  -1.596216590696746e-01 

   6.581740004079645e-01   7.526591479982108e-01  -1.764063835534843e-02 

   1.087146218744420e-01  -1.182006647884720e-01  -9.870206349586924e-01   }} 
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After the landmarks were set in Amira 5.2.0 (Visage Imaging Inc., San Diego, USA) at the 

Department of Oral Surgery (Medical University of Vienna, Austria) the data of the 

landmark-File (5-LM) were exchanged with the LM-data in the rhs-part of the template-file 

and saved as new *.sav-File (specific specimen). Afterwards, the Snake-File (slider) was 

transferred into a transcur-file and the segments of the single curves denoted as well as the 

label named. This part is builds the ground structure of a curve file.  

Furthermore the *.obj surface files were converted in Linux OS with the Obj2sur file to *.sur-

file formats, so that the program Edgewarp3.30 (Bookstein and Green, 2006) can read the 

surfaces. It happend that the resulting *.obj surfaces, included degenerated triangles with a 0 

point area, which had to be removed first. The so incurred files (*.sav, *.cur and *.sur) were 

loaded into Edgewarp3.30 (Bookstein and Green, 2006).  

Later on, a curve-file was preprocessed and automatically saved as *.curp-file, where all 

semilandmarks were projected to its curves.  

 

ew>moving semi-landmarks … 67 moved, average 8.3.5, maximum 25  

 

Afterwards all semilandmarks were oriented and relaxed until the bending energy change was 

almost zero by repeating both commands.  

 

Setting semi-landmarks direction … 67 moved, energy change 3,45E
-
14, moved average 1,43, 

maximum 6.87 

 

All sliding points were moved along its tangents until the energy changes between two 

corresponding points were as small as possible. After this operation the points were projected 

from the tangent back to its curve. 

 

4    Geometric morphometric analysis including statistics 

From the resulting written records of all the *.sav files (which moved the SLM along tangents 

and projected them back on the curve), the new written rhs coordinates (moved and projected 

LM) were copied into a single *.txt file (ordered by groups).  

After loading the new data (*.txt) in Morpheus et al.(1998) the data was grouped and labeled 

in f (female) and m (male) and superimposed (GPA) before performing a p-test MANOVA 

(provides nonparametric, randomization testing for group mean differences). 
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Furthermore, a PCA in R 1.12.1 (R-Project, Institute of Mathemathics, School of Economics 

Vienna, 2010) was calculated as well as the data warped in Amira 5.2.0 (Visage Imaging Inc., 

San Diego, USA) at the Department of Oral Surgery (Medical University of Vienna, Austria). 

Every single curve was examined and the statistical analysis repeated. 

In a further step outliers where excluded and the single curve examination repeated. 
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Table 1: Test setting for each Individual  
Individuum Setting 

Sex Proband Calibration plate Image Formate Brightness Contrast white balance Expsure time Sensitivity 
F 1 

                  50.00 

640x480px 
20fps 
24bit 

 24RGB 

    7333 
F 2     7334 
F 3     7334 
F 4     7333 
F 5     7334 
F 6     7334 
F 7     7332 
F 8     7333 
F 9     7333 
F 10     7333 
F 11     7333 
F 12     7333 
F 13     7333 
F 14     7332 
F 15 2708 2157 8923 1/250 (s) 7333 
M 16     7332 
M 17     7333 
M 18     7333 
M 19     7333 
M 20     7334 
M 21     7333 
M 22     7334 
M 23     7334 
M 24     7333 
M 25     7333 
M 26     7334 
M 27     7333 
M 28     7333 
M 29     7333 

  View and save results Merge Scans/Fuse triangle mesh:     
Sex Interpolation Smooth average smooth median Resolution Smoothing Removel Methode Alignment 
F 2 3 2  2 2   

F 1 2 2  3 2   
F 2 3 2  3 4   
F 1 2 2  2 2   

F 1 2 2  2 3   
F 2 2 2  3 3   
F 1 3 2  2 3   

F 2 2 2  3 2   
F 2 3 2  2 4   
F 2 2 2  2 2   

F 2 2 3  2 4   
F 2 2 2  3 3   
F 2 3 2  3 1   
F 2 2 2  3 1   
F 2 4 2 150 2 5 simple Auto 
M 2 2 2  3 1   
M 2 2 2  4 2   
M 2 3 2  3 2   
M 2 3 2  2 2   

M 1 2 2  2 3   
M 2 1 2  3 2   
M 2 2 2  2 2   

M 2 1 2  2 3   
M 2 2 2  4 2   
M 2 2 2  3 2   

M 2 1 2  2 1   
M 1 2 1  2 2   
M 2 3 2  3 1   

M 1 2 2  1 1   
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III.    Results  

1    Separate analysis of every Curve  

Every single curve was analyzed separately. Following plots show the first against the second 

PC in shape as well as in form space separated by Curve 1-5. 

 

Curve 1 
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Plot 1: PC1 against PC2 in shape space  
(Red=f /Blue=m/ green=marked outlier) for Curve 1 

Plot 2: PC1 against PC2 in form space 
 (Red=f /Blue=m) for curve 1 

 
Curve 2 

-0.1 0.0 0.1 0.2

-0
.1

0.
0

0
.1

0.
2

PC1

P
C

2

 

-0.2 -0.1 0.0 0.1 0.2 0.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

PC1

P
C

2

 
Plot 3: PC1 against PC2 in shape space  
(Red=f /Blue=m/ green=marked outlier) for Curve 2 

Plot 4: PC1 against PC2 in form space 
 (Red=f /Blue=m/ green=marked outlier) for curve 2 

The first two plots show 33.6% and 18.7% of the variance for Curve 1 is explained by the first 

two partial components in shape space and 30.7% and 18.1% of the variance is explained in 

the first two partial components in form space. The mean differences in the parabolic curve 

one are not significant (p=0.379) 
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Including all specimens 43.5% and 19.6% of the variance for Curve 2 is explained by the first 

two partial components in shape space and 39.8% and 16.9% of the variance is explained in 

the first two partial components in form space. (Plot 3, 4) The mean differences in Curve 2 are 

not significant (p=0.612). 

 

Curve 3 
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Plot 5: PC1 against PC2 in shape space  
(Red=f /Blue=m/ green=marked outlier) for Curve 3 

Plot 6: PC1 against PC2 in form space 
 (Red=f /Blue=m/ green=marked outlier) for curve 3 

 

Curve 4 
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Plot 7:  PC1 against PC2 in shape space  
(Red=f /Blue=m/ green=marked outlier) for Curve 4 

Plot 8: PC1 against PC2 in form space 
 (Red=f /Blue=m/ green=marked outlier) for curve 4 

 

Including all specimens 45.5% and 12.2% of the variance for Curve 3 is explained by the first 

two partial components in shape space and 42.5% and 13.7% of the variance is explained in 

the first two partial components in form space. The mean differences in Curve 3 are not 

significant (p=0.608). 
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Including all specimens 27.9% und 23.3% of the variance for Curve 4 is explained by the first 

two partial components in shape space and 31.2% and 21.3% of the variance is explained in 

the first two partial components in form space. The mean differences in Curve 4 are not 

significant (p=0.482). 

 

Curve 5 
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Plot 9: PC1 against PC2 in shape space  
(Red=f /Blue=m/ green=marked outlier) for Curve 5 

Plot 10: PC1 against PC2 in form space 
 (Red=f /Blue=m/ green=marked outlier) for curve 5 

 

Including all specimens 36.9% and 18.8% of the variance for Curve 5 is explained to the first 

two partial components in shape space and 32.8% and 16.8% of the variance is explained in 

the first two partial components in form space. The mean differences in Curve 5 are not 

significant (p=0.305). 

 

Looking for significance of the variance differences in PC1 and PC2 for each single curve 

was not successful.  
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2    Including every Curve 

21 Figure shows the resulting superimposition (generalized procrustes analysis) of all used 

specimens (n=23, 11♂, 12♀; Caucasian, age average: 25.38 years) and all curves. 

 

The results showed that there are no significant 

mean differences (permutation test/ randomized 

sample 999: p=0.384) in the determination of 

sex.  

Furthermore, a principal component analysis 

(PCA) was implemented. Plot 11 and 12 show 

the first against the second principal component 

in shape as well as in form space.  Afterwards 

the significance of the variance differences in 

PC1 and PC2 was calculated (0.87 /0.98). 

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

PC1

P
C

2

 

-0.2 -0.1 0.0 0.1

-0
.1

5
-0

.1
0

-0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20

PC1

P
C

2

 

Plot 11: PC1 against PC2 in shape space  
(Red=f /Blue=m/ grenn=marked outlier) 

Plot: 12 PC1 against PC2 in form space (Red: f / Blue: m) 

 

Including all specimens 24.58% and 19.89% (total 44.47%) of the variance is explained to the 

first two partial components in shape space and 25.68% and 17.98% (total 43.66%) of the 

variance is explained in the first two partial components in form space (Plot 11, 12). 

 

 

 

 
Figure: 21. Data after the GPA including  used 
specimens (n=26, 11♂, 12♀) 
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3    Warping the array surface 

Furthermore, the array surface was warped along the first and second principal component. 

Figure 22a shows the warped images against the first principal component, the left image 

shows the mean shape including the 1st eigenvector at -0.16, the middle image the procrustes 

mean shape and the right side the mean shape including 1st eigenvector at +0.21. 

 

   
Figure 22a: warped image (1st 
eigenvector -0.16) 

warped image (proc.mean.shape) warped image (1st eigenvector 
+0.21) 

 

 

  
Figure 22b: : warped image (2nd 
eigenvector -0.16) 

warped image (proc.mean.shape) warped image (2nd eigenvector 
+0.21) 

 

 

Figure 22b shows the warped images including the 2nd eigenvector by -0.16 (left), the 

procrustes mean shape (middle) and mean shape including 2nd eigenvector +0.21 (right). 
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4    Excluding outliers 

After excluding the two outliers (specimens 15 and 21) the data was re-examined. 28.21% and 

15.69% of the variance is explained by the first two partial components (p=0.152). Looking at 

every curve separately in Curve 2 (Plot 13) 36.5% and 16.1% of the variance is explained by 

the first two partial components (p=0.518). 
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Plot 13 PC1 against PC2 in shape space (Red=f /Blue=m/ 
green=marked outlier) for Curve 2 excluding outliers 

Plot 14: PC1 against PC2 in shape space (Red=f /Blue=m/ 
green=marked outlier) for Curve 3 excluding outliers 
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Plot 15 PC1 against PC2 in shape space (Red=f /Blue=m/ 
green=marked outlier) for Curve 4 excluding outliers 

Plot 16 PC1 against PC2 in shape space (Red=f /Blue=m/ 
green=marked outlier) for Curve 5 excluding outliers 

 

In Curve 3 (Plot 14) 22.8% and 18.6% of the variance is explained by the first two partial 

components (p=0.562). Curve 4 (Plot 15) shows 32.2% and 20.2% of the variance of the first 

two PC (p=0.609). In Curve 5 (Plot 16) 33.3% and 16.0% of the variance is explained by the 

first two partial components in shape space. The test of significance shows p=0.275. After 

analyzing the curves in form space similar results were visible. Moreover, no significances in 

the variances in PC1 or PC2 could be found. 
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IV.     Discussion 

 
1   Sexual Dimorphism Result 

The null hypothesis states that 3D surface scans of human ears are not an appropriate method 

for the analysis of sexual dimorphism and therefore cannot be used in biometric recognition 

systems, as well as craniofacial development, human evolution or diseases. As shown in the 

permutation test results (p=0.384) the null hypothesis has been improved. 

The results of the principal component analysis and the warped images clearly visualize 

where in the data the most differences between the individuals are located. The first principle 

component indicates that most of the differences are between the upper part of the antitragus 

and the space between the helix and antihelix in the antitragus region. This phenomenon could 

be explained with Curve 1 (Figure 16. p.17; Plot 7 p.24) which differs extremely between the 

individuals because of the open ending in the antitragus region. Furthermore, the angle 

between the crossing point of the Helix and the head is going to be more flat in Figure 22, 

where the mean shape including the 1st eigenvector by -0.16 is shown. So the angle between 

the negative and the positive value including the 1st eigenvector is steepening (Figure 22 

p.27). The data along the second principle component visualize that a lot of the differences are 

between the upper part of the antitragus 

and the space between the helix and 

antihelix in the antitragus region too. 

Moreover, the whole ear is going to be 

more clinched along the second partial 

component 2 (-0.16 > proc. Mean shape > 

+0.21).  

Looking at the separate partial component 

analysis of the curves it is visible that most 

of the changes and differences are on the 

first curve (see Plot 1 p.23), as well as the 

fourth curve (see Plot 9 p.28). On the other 

hand Curve 2 and 3 show almost no heavy 

changes, neither in both sexes (see Plot 3, 

p.23; 5, p.24).  The plots of Curve 3, 4 and 5 show that the data has at least two outliers 

(marked on plot 13), while in Curve 1 and 4 these are only hardly recognizable (Plot 1 and 7). 
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Plot 17  PC1 against PC2 in shape space (Red=f / green=marked 
outlier) for Curve 3 as text 
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2   Plaster mould model accuracy 

The accuracy of the plaster mould model depends basically on the accuracy of the negative 

form, the cast composition and consistence. Laughton et al. (2002) described that plaster 

casting may be preferable because in general it has a low error rate.  Comparison of 3D scans 

of human faces with scans from plaster cast of human faces using alginate, led to the result of 

an average deviation between 0.95 and 3.55 mm, depending on the facial region (Holberg et 

al., 2006). This error is based on the easy deformation of the lips, the nose and the ears during 

the production time of the negative form. 

Sun et al. (2010) described the discrepancies of the plaster casts volume for alginate 

impression material as significantly (p<0.05) different in relations to the volume of the master 

models (simian dental arches), while silicone materials or impregum-penta polyether showed 

no significant differences. 

In this diploma study the combination of alginate (as a negative form) and cast proofed to be a 

very convenient and adequate method, although there are limitations in the usage of these two 

materials that should be kept in mind. By using an adequate cast composition and consistence 

during the filling of the negative form, air bubbles can be prevented and the error rate of the 

resulting cast is therefore reduced. Including the fast processing time (within 20 minutes), 

after the negative alginate form was built, the error rate is limited by the easy movement of 

the ear during the alginate filling. The movement artifact can be reduced when the mixture is 

filled in the mold while the proband lies on the side. The operator can minimize this problem 

by first filling the part between head and ear instead of unwarily filling the mixture into the 

form. 

 

3    David Laserscanner  

3.1 Accuracy      

The accuracy of the David Surface scanner 2.4.3 (DAVID Vision Systems GmbH, Germany), 

depends on various hardware components and settings, like the camera distance, the object 

size, the light conditions, the triangulation angle and the quality of the calibration target. 

Winkelbach et al. (2006) obtained an error of less than 0.4mm for the following setup: a CCD 

grayscale camera, a 5mW laser, two planar faces of 50.25 mm, a camera distance of about 

600 mm, and a triangulation angle of approximately 30°-35°. The David Surface scanner 

2.4.3 manufacturer describes a general error of not more than 1% of the camera distance 

(DAVID 3D Scanner: Jan 2011) 
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Having two images, overlapping 35% and starting to fuse them, Winkelbach et al. (2006) 

described after 0.5 seconds that 50 % already achieved a rotational accuracy of less than 2°.  

It appears that the resulting *.obj surfaces showed degenerated triangles with a zero point 

area, which had to be removed first, before further steps in the analysis could be made. 

In this diploma study a maximum error of not more than 3mm per scan can be expected, 

because of a camera distance of 300 mm. Moreover, a maximum error of 2° during the shape 

fusion for every scan can be expected. Based on this data, it is likely that the rotational error 

can be higher because every 3D image is the result of 4-6 single scans. 

 

3.2 Quality     

The scan quality can be affected by several facts, namely the camera and laser quality or the 

calibration corner. To obtain better results, the digital camera should have as little noise as 

possible, a high photosensitivity or should be a simple grayscale camera instead of a color 

camera where most color pixels are interpolated. Additionally, the laser line should be as thin 

and as bright as possible and the calibration corner must have an exact angle of 90° (DAVID 

3D Scanner: Jan 2011). 

Because the scans were made by moving the laser manually the camera settings and the image 

format had to be changed. Since the original settings for the scanner would include a 

resolution of 1600*1200 pixels and a frame rate of 12 pictures per second the scan of the ear 

would take 100 seconds (1200 frames to get all lines filled). Therefore, a resolution of 

640*480 pixels and a frame rate of 30 pictures per second had been chosen, resulting a total 

scanning time of 16 seconds per image. With these settings the movement artifacts can be 

reduced and the interpolation rate, the smooth average and the smooth median can be set 

down (DAVID 3D Scanner: Jan 2011). 

To get an accurate result regarding the accuracy or potential of the David Laserscanner for 

complex structures it would be important to get a second set of scans from a different 3D 

Laserscanner. Therefore, a fully functional 3D 

Laserscanner, with known error possibilities would 

be obligatory. 

After pretests using the Breuckmann OptoTop HE 

Laserscanner (Breuckmann GmbH, Germany) at 

the Department of Anthropology (University of 

Vienna, Austria) it has been shown that because of 

the heavy movement of the subject, a lot of scans 
Figure23a: Results of 
pretested Breuckmannscans  

Figure 23b: Resulting 
shape fusion of 10 single 
scans 
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would be necessary plus a fixation of the head has to be provided.  However, resulting from 

the longer exposure time more artifacts emerge. Chang et al. (2003) considered a potential 

measurement error depending on exposure time, light arrangements, shadowing and 

occlusion. These problems in imaging the auricle, which has a hardly ascertainable three 

dimensional structure led to disaffecting results (see Figure 23a)  and inappropriate shape 

fusion results (see Figure 23b) obtained by the Breuckmann optotop Laserscanner 

(Breuckmann GmbH, Germany) at the Department of Anthropology,  (University of Vienna, 

Austria). 

 

 

4   Digitizing of 72 landmarks including 67 semilandmarks 

In total 23 specimens (Caucasian, 11♂, 12♀; age average: 25.4)  were included in the 

statistical data analysis, six specimens were excluded from the study due to missing data in 

the 3D surfaces. 

All 72 landmarks including 67 semilandmarks were set by the same observer along specific 

visible curves (parabolic and ridge curves) of the surface structure, 4 of the curves open and 1 

of them closed (see Figure 24).  

The resolution property of the bare human eye amounts under ideal 

conditions about 0.5mm. Furthermore it can reach under good 

contrast 0.3mm (Lange and Benning, 2006). Consequently at the 

3D data digitization continues quality could not precisely be insured 

by handling the data only with Amira 5.2.0 (Visage Imaging Inc., 

San Diego, USA) at the Department of Oral Surgery (Medical 

University of Vienna, Austria). So cross sections in Edgewarp  3.30 

(Bookstein and Green, 2006) were used to ensure the accuracy of 

digitizing semilandmarks at characterized cubic-parabolic and ridge 

curves (Figure 16) and landmark on extreme point (Figure 15; p.17).  

 

 

 

 

 

 

 

 
Figure 24: digitizing of 72 
landmarks  including 67 
semilandmarks 
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V. Conclusion 

 

This diploma study tried to verify that 3D surface scans of human ears are an appropriate 

method for the analysis of sexual dimorphism, which can be used in biometric recognition 

systems, as well as craniofacial development, human evolution or diseases. 

Concerning sex specific differences in the determination of sexual dimorphism of human ears, 

analyzing 3D image data from the David Laserscanner 2.4.3 (DAVID Vision Systems GmbH, 

Germany) showed no significant differences after a p-test MANOVA. The analysis with 

geometric morphometrics although seems to be an appropriate method for analyzing three 

dimensional surface scan data obtained from the David Laser scanner 2.4.3 (DAVID Vision 

Systems GmbH, Germany). 

The reduced sample size of 23 specimens does not allow an accurate prediction of sexual 

dimorphism of human ears. The first principle component indicates that most of the individual 

differences are between the upper part of the antitragus and the space between the helix and 

antihelix in the antitragus region. This phenomenon could be explained with Curve 1 (Figure: 

16, p. 17; Plot 9 p.25) which differs between the individuals extremely, because of the open 

ending in the antitragus region. Similar results can be found in the second principle 

component. 

The usage of the plaster mould model has showed very good accuracy in comparison to the 

actual ears geometry. Therefore, adequate preparation (mixture of alginate) and trained 

handling (filling of mould) is important to get optimal results.  

The accuracy of the David Surface scanner 2.4.3 (DAVID Vision Systems GmbH, Germany), 

depends on various hardware components and settings, like the camera distance, the object 

size, the light conditions, the triangulation angle and the quality of the calibration target. In 

this study a maximum error of not more than 3mm per scan can be expected, because of a 

camera distance of 300 mm. By using a stepper motor (currently under construction by the 

author) instead of manual handling of the laser, movement artifacts could be reduced and a 

higher image resolution could definitely improve the data quality. Additionally, for complex 

structures it would be important to get a second set of scans from a different 3D Laserscanner 

with known error possibilities. 

In general, it could be shown that there is a limited potential of the David Laser scanner 2.4.3 

(as an example for 3D surface scanners) for the analysis of complex structures like human 

ears.
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VI. Appendix  

List of Abbreviations: 

GPA ................................................................................. Generalized procrustes analysis 

PCA .................................................................................... Principal Component Analysis 

ICP ..................................................................................................... Iterated closest point 

LM  ....................................................................................................................... landmark 

SLM  ............................................................................................................ semilandmarks 

SNAKES ................................................................................................ Sliding landmarks 

MANOVA  ..................................................................... Multivariate analysis of variance  

PC ....................................................................................................... principal component 

PROC. ................................................................................................................ procrustes 

 

*.obj  ........................................................................... Relocatable Object Module Format 

*.stl  ................................................................... Stereolithography CAD native file format 

*.cur  ........................................................................................ Cursor graphics file format 

*.sav .................................................................................. Executable/ Backup file format 

*.sur ...................................................................................................... Surface file format 

*.mtl  ........................................................................ Wavefront, Morphologika file format 

*.xls ............................................................................................................ Exel file format 

*.Ascii  ........................................... American Standard Code for Information Interchange
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Austria  

Figure 21:     Data after the GPA including used specimen (n=26, 11♂, 15♀; white 
Caucasian, age average: 25.38) 
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Figure 24: Digitizing 72 landmarks including 67 semilandmarks  
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Diego, USA) at the Department of Oral Surgery, Medical University of Vienna, 
Austria  

 

 

 

 

 

 



 
 

XIV 

List of Plots  

Software used: R.1.12.1: (R-Project: Institute of Mathematic, WU Vienna) 2010 

Plot 1:        PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier) for 

Curve 1 

Plot 2:         PC1 against PC2 in form space (Red=f /Blue=m/ green=marked outlier) for 

Curve 1 

Plot 3:           PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier) for 

Curve 2 

Plot 4:         PC1 against PC2 in form space (Red=f /Blue=m/ green=marked outlier) for 

Curve 2 

Plot 5:           PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier) for 

Curve 3 

Plot 6:         PC1 against PC2 in form space (Red=f /Blue=m/ green=marked outlier) for 

Curve 3 

Plot 7:           PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier) for 

Curve 4 

Plot 8:         PC1 against PC2 in form space (Red=f /Blue=m/ green=marked outlier) for 

Curve 4 

Plot 9:           PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier) for 

Curve 5 

Plot 10:         PC1 against PC2 in form space (Red=f /Blue=m/ green=marked outlier) for 

Curve 5 

Plot 11:              PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier)   

Plot 12:              PC1 against PC2 in form space (Red=f /Blue=m/ green=marked outlier) 

Plot 13:       PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked 

outlier) for Curve 2 excluding outliers 



 
 

XV 

Plot 14:       PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked 

outlier) for Curve 3 excluding outliers 

Plot 15:       PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked 

outlier) for Curve 4 excluding outliers 

Plot 16:       PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked 

outlier) for Curve 5 excluding outliers 

Plot 17:            PC1 against PC2 in shape space (Red=f /Blue=m/ green=marked outlier) for 

Curve 3 as text  

 

 

List of Tables 

Table 1:        Test settings of the David Laser Scanner for each Individual  

 

List of Equations: 

(2.1)  Lestrel (1997): Introduction and overview of Fourier descriptors, pp. 22-44 in  
P.E.Lestrell, ed. Fourier descriptors and their applications in biology. Cambridge, 
Camebridge University Press – Cited and changed by Klingenberg, 2009 

 

 

 



 
 

XVI 

Software References 
 
Licensed: 
 
(1)  David Laserscanner 2.4.3 (DAVID Vision Systems GmbH, Germany) at the 

Department of Anthropology, University of Vienna, Austria  

(2) Visage Imaging Amira 5.2.0 (Visage Imaging Inc., San Diego, USA) at the 
Department of Oral Surgery, Medical University of Vienna, Austria  

(3) Breuckmann opto Top HE (Breuckmann GmbH, Germany) at the Department of 
Anthropology, University of Vienna, Austria  

 

 

Open source: 
 

(1) Edgewarp3.30 (Bookstein, Green 2006) 

(2) Morpheus et al. Software for morphometric research. Revision 01-31-00, Department 
of ecology and evolution, State University of NY at Stony Brook, NY (Slice 2007) 

(3) MeshLab V 1.2.1 (Istituto di Scienza e Tecnologie dell’Informazione/ Stable 
Developer: Callieri, Corsini, Dellepiane, Ganovelli, Pietroni, Tarini) open sauce since 
2007 

(4)      R.1.12.1: (R-Project: Institute of Mathematic, School of Economy, Vienna) 2010 

 



 
 

XVII 

References 

(1) Adams, Rohlf, Slice (2004): Geometric morphometrics: ten years of progress following 
the'revo �lution'. Italian Journal of Zoology, 71(1):5 16, 2004. 

 
(2) Arbab-Zavar and Nixon (2007): On shape-mediated enrolment in ear biometrics. 

International Symposium on Visual Computing (ISVC), 26-28 November 2007, Nevada  

(3) Bastir, Rosas, O'Higgins (2006): Craniofacial levels and the morphological maturation 
of the human skull, J. Anat. 209 (2006), pp. 637–645 

(4) Bhanu and Chen (2003):  Human ear recognition in 3D. Workshop on Multimodal User 
Authentication, pages 91–98, 2003 

(5) Bertillon (1890): La photographie judiciaire, avec un appendice sur la classification et 
l'identification anthropometriques. Gauthier-Villars, Paris, 1890.  

(6) Bookstein (1989): Principal warps: thine-plate slines and de decomposition of 
deformation. IEEE Transaction on pattern analysis and machine intelligens 11:567-585 

(7) Bookstein (1991): Morphometrics tools for landmarks data: Geometry and Biology. 
Cambridge University Press 

(8) Bookstein (1996): F.L. Bookstein, Applying landmark methods to biological outline 
data. In: K.V. Mardia, C.A. Gill and I.L. Dryden, Editors, Image Fusion and Shape 
Variability Techniques, Leeds University Press, Leeds (1996). 

(9) Bookstein (1997):  landmark methods for form without landmarks: mophometrics of 
group differences in outline shape, Med. Image Anal. 1 (1997), pp. 225–243. 

(10) Bookstein, Schäfer, Prossinger, Seidler, Fieder, Stringer, Weber, Arsuaga, Slice, F.J. 
Rohlf, Recheis, Mariam and Marcus (1999): Comparing frontal cranial profiles in 
archaic and modern Homo by morphometric analysis, Anat. Rec. (New Anat.) 257 
(1999), pp. 217–224. 

(11) Bookstein (1999b): Linear methods for nonlinear maps: Procrustes fit, thin-plate 
splines, and the biometric analysis of shape variability. In: A Toga (ed.) Brain Warping. 
London: Academiv press, pp 157- 181 

(12) Bookstein et al. (2002): F.L. Bookstein, P.D. Sampson, P.D. Connor and A.P. 
Streissguth, Midline corpus callosum is a neuroanatomical focus of fetal alcohol 
damage, Anat. Rec. (New Anat.) 269 (2002), pp. 162–174. 

(13) Bookstein et al. (2003): F.L. Bookstein, P. Gunz, P. Mitteroecker, H. Prossinger, K. 
Schaefer and H. Seidler, Cranial integration in Homo: singular warp analysis of the 
midsagittal plane in ontogeny and evolution, J. Hum. Evol. 44 (2003), pp. 167–187. 



 
 

XVIII 

(14) Bookstein, Schaefer, Mitteroecker, Gunz, Seidler (2004): The geometry of 
anthropometrics: A new typology of landmarks. Am. J. Phys. Anthropol., Suppl. 38, 66. 

(15) Burge and Burger (1998): Ear Biometrics. In A. Jain R. Bolle and S. Pankanti, editors, 
BIOMETRICS: Personal Identification in a Networked Society, pp. 273-286. Kluwer 
Academic, 1998. 

(16) Burge and Burger (2000): Ear Biometrics in Computer Vision. In the 15th International 
Conference of Pattern Recognition, ICPR 2000, pp. 826-830.  

(17) Carlbom, Paciorek (1978): Planar Geometric Projections  and Viewing Transformations 
Computing Survery, Vol.10, No.4, Dezember 1978 pp.463-502 

(18) Chang, Bowyer, Sarkar, Victor (2003): Comparison and Combination of Ear and Face 
Images in Appearance-Based Biometrics. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 25, no. 9, September 2003, pp. 1160-1165  

(19) Chen and Bhanu (2004): Human ear detection from side face range images. 
International Conference on Pattern Recognition, pages 574–577, 2004. 

(20) Chen and Bhanu (2005): Contour matching for 3D ear recognition. Seventh IEEE 
Workshop on Application of Computer Vision, pages 123–128, 2005. 

(21) DAVID 3D Scanner: http://www.david-Laserscanner.com/wiki/user_manual (Jan.2011) 

(22) Dirichlet (1859): “Über die Reduktion der positiven quadratischen Formen mit drei 
unbestimmten ganzen Zahlen,” J. Reine Angew. Math., vol. 40, pp. 209-227, 1850  

(23) Dryden and Mardia (1998): Statistical shape analysis. NY: John Wiley and Sons 

(24) EVAN (2010): University of Vienna; Virtual anthropology http://www.virtual-
anthropology.com/virtual-anthropology/geometric-morphometrics/procrustes-
superimposition (25.June.2010) 

(25) Fisher (1918): The Correlation Between Relatives on the Supposition of Mendelian 
Inheritance, Philosophical Transactions of the Royal Society of Edinburgh in 1918, 
(volume 52, pages 399–433)  

(26) Fisher (1921): On the "Probable Error" of a Coefficient of Correlation Deduced from a 
Small Sample.Metron 1921,1,1-32 

(27) Foucar (1940): Congenital abnormalities of the external ear; Can Med Assoc J. 1940 
July; 43(1): 26–27 

(28) Gower (1975): Generalized Procrustes Analysis, Psychometrica 40: 33-51 

 



 
 

XIX 

(29) Gunz et al. (2005): Gunz, Mitteroecker and Bookstein, semilandmarks in three 
dimensions. In: D. Slice, Editor, Modern Morphometrics in Physical Anthropology, 
Kluwer Academic/Plenum Publishers, New York (2005), pp. 73–98 

(30) Holberg , Schwenzer , Mahaini , Rudzki-Janson (2006): Accuracy of facial plaster casts; 
Angle Orthodontist 2006 Jul; 76(4):605-11. Gemany, Munich 

(31) Hotelling (1933): Analysis of a complex of statistical variables into principal 
components. Journal of educational Psychology 24:417 

(32) Hurley, Nixon, Carter (2000): A NEW FORCE FIELD TRANSFORM FOR EAR AND 
FACE RECOGNITION. In: Proceedings of the IEEE 2000 International Conference on 
Image Processing ICIP2000. pp. 25-28.   

(33) Hurley, Nixon, Carter (2005): Force field feature extraction for ear biometrics, 
Computer Vision and Image Understanding, v.98 n.3, p.491-512, June 2005  

(34) Hurley, Arbab-Zavar and Nixon (2007): THE EAR AS A BIOMETRIC. In: EUSIPCO 
2007, 2007, Poznan, Poland. pp. 25-29.  

(35) Iannarelli (1989): Ear identification. Forensic identification series. Paramount 
publishing company, Fremont, California 

(36) Jain, Flynn and Ross (2007): Handbook of Biometrics, Springer, Forthcoming 2007. 
Messer, Matas, Kittler, Luettin, and Maitre.(1999) Xm2vtsdb: The extended m2vts 
database. In Proc. AVBPA, Washington D.C., 1999.  

(37) Kahle und Frotscher (2005): (eds) 9 Auflage, Taschenatlas Anatomie in 3 Bänden; 3 
Nervensystem und Sinnesorgane Georg Thieme Verlag pp.366 ff. 

(38) Katina S, Bookstein FL, Gunz P, Schaefer K, (2007): Was it worth digitizing all those 
curves? A worked examplefrom craniofacial primatology. : AJPA, AAPA Abstract, 
S44: 140 
 

(39) Kendall (1984): Shape-manifolds, Procrustean metrics and complex projective spaces, 
Bulletin of the London Mathematical Society 16:81-121 

(40) Kendall (1985): Exact distributions for shapes of random triangles in convex sets, 
Advan. Appl. Prob. 17:308-329 

(41) Kenneth (2000): Point and Vector. Computer Science Department, University of 
California http://cmp.felk.cvut.cz/cmp/courses/pvi2003/LectureNotesPVI2003/Points-
and-Vectors.pdf (1.June 2010) 

(42) Klingenberg (2004): Integration, modules and development: molecules to mophology to 
evolution. In Pigliucci, K. and Preston, K. editors. Phenotypie integration: studying the 
ecology and evolution of complex phenotypes. New York: Oxford University Press 



 
 

XX 

(43) Klingenberg (2009): 50111 Analysis of organismal form: An introduction to 
morphometrics, delivered as a Web-based course University of Manchester UK2009 

(44) Koenderink (1990): The Solid Shape; The MIT Press, Cambridge, Massachusetts, 
London, England; Chapter 6.7.5 pp.297-303 

(45) Kucera and Malmgren (1996): Latitudinal variation in the planktic foraminifera 
Contusatruncana contusa in the terminal Cretaceous ocean. Marine Micropaleontology 
28:31–52. 

(46) Lange and Benning (2006): Verfahren zur Rissanalyse bei Betonbauteilen; DGZfP-
Berichtsband 100-CD; Fachtagung Bauwerksdiagnose: Praktische Anwendungen 
Zerstörungsfreier Prüfungen, Berlin 

(47) Lanman and Taubin, (2009): Build your own 3D Scanner. 3D Photography for 
beginners; Siggraph 2009: ACM SIGGRAPH 2009 courses (eds.) 2009 ACM New 
York. 

(48) Laughton, McClay Davis, Williams (2002): A Comparison of Four Methods of 
Obtaining a Negative Impression of the Foot; Journal of the American Podiatric 
Medical Association Volume 92 Number 5 261-268 2002 

(49) Lauter et al. (2000): Mathematik Sekundarstufe II Analytische Geometrie und Liniare 
Algebra. Erweiterte Ausgabe. Cornelsen 

(50) Lohmann (1983): Eigenshape analysis of microfossils: A general morphometric method 
for describing changes in shape. Mathematical Geology 15:659-672. 

(51) Lohmann and Schweitzer (1990a): Globorotalia truncatulinoides' growth and chemistry 
as probes of the past thermocline: 1: shell size. Paleoceanography 5:55–75. 

(52) Lohmann and Schweizer (1990b): On eigenshape analysis. Pp. 145-166 in Rohlf, F. J. 
and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. The 
University of Michigan Museum of Zoology, Special Publication P. N. No. 2, Ann 
Arbor 

(53) Lüllmann-Rauch (2006): (eds.) 2.Auflage, Taschenlehrbuch: Histologie; Georg Thieme 
Verlag pp.553 ff. 

(54) MacLeod and Carr (1987): Morphometrics and the analysis of shape in conodonts. 
Pp. 168–187 in Austin, R. L., eds. Conodonts: Investigative Techniques and 
Applications. Ellis Horwood Limited, Chichester. 

(55) MacLeod and Rose (1993): Inferring locomotor behavior in Paleogene mammals 
via eigenshape analysis. American Journal of Science 293-A:300-355. 

 



 
 

XXI 

(56) MacLeod (1999): Generalizing and extending the eigenshape method of shape 
space visualization and analysis/ Paleobiology 25(1), 1999, pp. 107-138 

(57) Meijerman, van der Lugt, Maat (2007): Cross-sectional anthropometric study of the 
external ear. Barge's Anthropologica, Deptartment of Anatomy, Leiden University 
Medical Center; J Forensic Sci. 2007 Mar;52(2):286-93. 

(58) Messer, Matas, Kittler, Leuttin, Maitre (1999): XM2VTSDB: the extended M2VTS 
Database, Proc. AVBPA´99 Washington DC  

(59) Mitteroecker et al. (2004): P. Mitteroecker, P. Gunz, M. Bernhard, K. Schaefer and F.L. 
Bookstein, Comparison of cranial ontogenetic trajectories among great apes and 
humans, J. Hum. Evol. 46 (2004), pp. 679–698.  

(60) Mitteroecker et al., (2005): P. Mitteroecker, P. Gunz and F.L. Bookstein, Heterochrony 
and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus 
Pan troglodytes, Evol. Dev. 7 (2005), pp. 244–258  

(61) Mitteröcker and Gunz (2009): Advances in Geometric Morphometrics, Advanced 
Imaging in Biology and medicine- Technology, Software, Enviroments, Applications. 
Hallgrimsson, Sense (eds.) Heidelberg; Springer 2009 

(62) Moreno, Sánchez, Vélez. (1999): On the Use of Outer Ear Images for Personal 
Identification in Security Applications. IEEE 33rd Annual International Carnahan 
Conference on Security Technology, 1999, pp. 469-476.  

(63) Niemitz, Nibbrig, Zacher (2007): Human ears grow throughout the entire lifetime 
according to complicated and sexually dimorphic patterns--conclusions from a cross-
sectional analysis. Anthropol Anz. 2007 Dec;65(4):391-413.  

(64) Norris, Corfield and Cartlidge (1996): What is gradualism? Cryptic speciation in 
globorotaliid foraminifera. Paleobiology 22:386–405 

(65) Pearson (1895): Note on regression and inheritance in the case of two parents. 
Proceeding of the Royal Society of London 58:240-242 

(66) Pearson (1901): On lines and planes of closest fit to system of points in space. Phil Mag 
Ser 6:559:572 

(67) Peeples, Dixon, Buss (1985):  Genetic analysis of the pinna of the human ear: sex 
differences in college age adults; JHered (1985) 76 (5): 390-392  

(68) Purkait and Singh (2008): “A test of individuality of human external ear pattern: 
Itsapplication in the field of personal identification” Forensic Science International 178 
(2008) 112–118 

 



 
 

XXII 

(69) Ray (1990): Application of eigenshape analysis to second order leaf shape ontogeny in 
Syngonium podophyllum (Araceae). Pp. 201–213  in Rohlf, F. J. and Bookstein, F. L., 
eds. Proceedings of the Michigan Morphometrics Workshop. The University of 
Michigan Museum of Zoology, Special Publication 2, Ann Arbor, MI 

(70) Rohlf and Slice (1990): Extensions of the Procrustes method for the optimal 
superimposition of landmarks, Systematic Zoology 39: 40-59 

(71) Rohlf (1998): On Applications of Geometric Morphometrics to Studies of Ontogeny 
and Phylogeny. Systematic Biology.  

(72) Sadler and Langman (2003): Medizinische Embryologie: die normale menschliche 
Entwicklung und ihre Fehlbildungen; Thieme Verlag; Chapter 17 

(73) Sheets et al. (2004): D.H. Sheets, K. Kim and C.E. Mitchel, A combined landmark and 
outline-based approach to ontogenetic shape change in the Ordovician trilobite 
Triarthrus becki. In: A. Elewa, Editor, Morphometrics. Applications in Biology and 
Paleontology, Springer-Verlag, Berlin Heidelberg (2004), pp. 67–82. 

(74) Sforza, Grandi, Binelli, Tommasi, Rosati and Ferrario (2009): Age- and sex-related 
changes in the normal human ear; Forensic Science International 187 (2009) 110.e1–
110.e7 pp  

(75) Slice, Rohlf, Bookstein, Marcus (1995): Glossary for Geometric Morphometrics; 
http://life.bio.sunysb.edu/morph/glossary/gloss1.html (Jan.2010) 

(76) Slice (1998): Morpheus et al.: Software for morphometric research. Revision 01-31-00, 
Department of ecology and evolution, State University of NY at Stony Brook, NY 

(77) Slice (2005): Modern Morphometrics in physical anthropology: eds 2005; Kluwer 
Academic/ Plenum Publisher NY 

(78) Sun, Li, Chu (2010): Three-dimensional accuracy of plaster casts obtained using three 
impression materials; Nan Fang Yi Ke Da Xue Xue Bao. 2010 Feb; 30(2):257-9. 
Chinese 

(79) Thompson (1917):  On growth and Form; Cambridge university Press 

(80) Victor, Bowyer, Sarkar (2002): An evaluation of face and ear biometrics in Proceedings 
of International Conference on Pattern Recognition, pp. 429-432, August 2002.  

(81) Weber and Βookstein (2011): Virtual Anthropology: A Guide to a new interdisciplinary 
field, Springer Wien NewYork 1st Edition 

(82) Winkelbach, Molkenstruck, Wahl (2006): Low-Cost Laser Range Scanner and Fast 
surface Registration Approach; Institut for Robotic and process control; In Franke et al. 
(Eds.) DAGM, LNCS 2006, Volume 4174, 718-728, DOI: 10.1007/11861898_72  



 
 

XXIII 

 
(83) Wright (1997): Development of the human external ear J Am Acad Audiol. 1997 

Dec;8(6):379-82; Callier Center for Communication Disorders, University of Texas at 
Dallas, USA 1997 
 

(84) Yan and Bowyer (2004): 2D and 3D ear recognition. In Biometric Consortium 
Conference, 2004.  

(85) Yan and Bowyer (2005a): ICP-based approaches for 3d ear recognition. In Biometric 
Technology for Human Identification II, Proc. of SPIE, volume 5779, pages 282-291, 
2005.  

(86) Yan and Bowyer (2005b): A fast algorithm for ICP-based 3d shape biometrics. In 
Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID), 
pages 213-218, NY, 2005  

(87) Yan and Bowyer (2005c): Empirical evaluation of advanced ear biometrics. In IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 
- Workshops, page 41, 2005.  

(88) Yan and Bowyer (2007): Biometric recognition using three-dimensional ear shape. 
IEEE Trans. Pattern Analysis and Machine Intelligence. Volume 29 ,  Issue 8 pp:1297-
1308 

 

 

 

 

 

 

 

 

 

 

 



 
 

XXIV 

Einverständniserklärung: 

 

Hiermit erkläre ich mich einverstanden, dass meine Daten zu wissenschaftlichen Zwecken 

verwendet werden und ich zu keinem späteren Zeitpunkt dieses Einverständnis zurückziehen 

kann. 

 

Es handelt sich um die Verwendung von Ohrmodellen des linken Ohres in Form von Alginat- 

und Gipsabdrücken. 

 

Diese Modelle werden in weiter Folge unter Berücksichtigung spezifischer Fragestellungen 

untersucht. 
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