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Abstract

In order to simulate the pulsation convection coupling in a Cepheid the ANTARES-

code was equipped with a polar and moving grid. The numerical cost of a fully

parallelized, su�ciently large, and fully resolved section would be immense. Thus it

was not only necessary to �nd a suitable model, but also save to costs for parallelisation

and grid re�nement.

The equations governing the hydrodynamics were derived for this particular grid and

implemented in the code. The grey short characteristics method for the radiative

transfer equation was also adjusted. Di�erent methods of parallelisation for the radi-

ative transfer were tested.

Within ANTARES shocks are treated with an essentially non oscillatory (ENO) scheme

with Marquina �ux splitting. As this method is only valid for grids that are equidistant

or uniformly stretched in all directions two di�ernt sets of ENO-coe�cients were im-

plemented and tested. It was found that the traditional approach is indeed no longer

valid and the system is not conservative when the original set of coe�cients is used.

In the upper or hydrogen ionisation zone the gradient of density, temperature etc.

is very steep, therefore a �ner resolution with a minimum of additional time steps is

needed. In order to resolve these few points a co-moving grid re�nement was developed.

Simulations in one and two dimensions were performed, a comparison between them

helps to better understand the e�ects of convection on the e.c. light curve. Analysis of

the �uxes and the work integral was done for the helium ionisation zone. The e�ects

of subgrid modelling were tested on the hydrogen convection zone and compared with

a resolved simulation of this zone.





5

Zusammenfassung

Um mit Hilfe des ANTARES-Codes eine Simulation von Pulsation und Konvektion

in einem Cepheiden durchführen zu können wurde dieser mit einem polaren, beweg-

lichen Gitter ausgestattet. Der numerische Aufwand für einen voll parallelisierten,

ausreichend groÿen und ausreichend aufgelösten Ausschnitt des Sterns ist enorm. Da-

her war es nicht nur notwendig ein geeignetes Model zu �nden, es musste auch bei

der Parallelisierung und bei der Gitterverfeinerung der Aufwand im Vergleich zum

bisherigen Programm reduziert werden.

Die hydrodynamischen Gleichungen wurden für dieses spezielle Gitter hergeleitet und

in den Code implementiert. Die Methode der kurzen Charakteristiken für den Strahlung-

stransport wurde an dieses Gitter angepasst. Verschiedene Parallelisierungsvarianten

wurden dafür untersucht.

Innerhalb von ANTARES werden Schocks mit Hilfe von ENO mit �Marquina �ux

splitting� behandelt. Diese Methode ist aber nur für equidistante oder gleichförmig

gestreckte Gitter zulässig. Es wurden zwei verschiedene Familien von Koe�zienten

getestet. Es hat sich gezeigt, dass der herkömmliche Zugang tatsächlich ungeeignet

ist und zu einer Änderung der Erhaltungsgröÿen führt.

In der oberen Konvektionszone, in der die Ionisation von Wassersto� statt �ndet,

sind die Gradienten von Dichte, Temperatur usw. sehr steil, hier wurde eine bessere

Au�ösung mit möglichst wenigen zusätzlichen Zeitschritten benötigt. Um diese sehr

dünne Schicht aufzulösen wurde eine sich mitbewegende Gitterverfeinerung entwickelt.

Es wurden Simulationen in ein und zwei Dimensionen durchgeführt. In zwei Di-

mensionen wurden die Flüsse und das Arbeitsintegral in der Helium-Ionisationszone

analysiert. Die Auswirkngen von �subgrid modelling� wurden an der Wassersto�-

Ionisationszone getestet und mit einer besser aufgelösten Simulation verglichen.
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Chapter 1

Cepheid Modelling

1.1 Why we care

For the set of partial di�erential equations that govern the hydrodynamics inside a star

(Chapter 2) no analytic solutions are possible so that one depends on numerical solutions.

Consequently the activity and the number of results in this �eld has increased with the

numerical capabilities.1 For a long time one dimensional models have been the only op-

tion available for stellar modellers, the classical example is Local Mixing Length theory

[BV 1958]. For the Sun detailed 3D-models which are in many respects superior to 1D-

models have been around for three decades [NS 1999]. When comparing these models a

number of discrepancies arise, the problems originate mainly in the surface layers where

horizontal �uctuations become particularly large. On the other hand in 3D the agreement

of synthetic and observed solar granulation is very good [Mut et al 2010a].

In order to better understand the processes in other stars, far less accessible to direct ob-

servation than the Sun, numerical models are necessary, but there arise new mathematical

and numerical problems as pointed out in 3.7.3 , 3.8.3 and Section 4.3.

1.1.1 Cepheids as Variables

Cepheids are a subset of pulsating stars, which in turn comprise only a subset of the wider

class of intrinsic variable stars. These are stars whose variability arises from causes entirely

within themselves, and not from geometric e�ects such as eclipses in binary stars; or to

some external agent such as interaction with the interstellar medium or with circumstellar

matter. Pulsating stars are stars in which large-scale dynamical motions, usually including

the entire star, and usually more or less rhythmic, are present. The simplest kind of such

motion is a purely radial pulsation, in which the star maintains a spherical shape at all

times, but changes its volume, as if it were breathing.
1Schwarzschild remarked in 1958: �A person can perform more than twenty integration steps per day�,

so that, �for a single integration consisting of, say, forty steps, less than two days are needed�

9



10 CHAPTER 1. CEPHEID MODELLING

In 1900 Karl Schwarzschild [Schw 1900] compared the optical and the photographic light-

curves of both ηAquilae and βLyrae, where the photographic plate was particularly sensit-

ive to blue light. Both lightcurves of βLyrae are identical as to phase, form and amplitude

and show the same �uctuation of ∼ 0.8 magnitudes. This star's variability is clearly caused

by obstruction, it is an eclipsing binary. But, when comparing the lightcurves of ηAquilae

Schwarzschild found a di�erence in the amplitudes: 1.29 magnitudes in the photographic

curve and 0.67 in the optical. He suggested two explanations: a variation in temperature

or the tide of an absorbing atmosphere, that absorbs twice as much blue than yellow, as

does the atmosphere of the Earth.

The idea that certain types of variable stars e.c. βLyrae owe their variability to periodic

expansions and contractions dates from the work of Shapley (1914) and was given a �rm

mathematical foundation by Eddington [Edd 1917].

In this section we present two results derived by stellar modelling: The reason why Cepheids

pulsate and the fact that the period must be linked to the mass of the star.

The kappa-mechanism.[LD 1982, BK 1962, HKT 1994]

Figure 1.1.1: the κ- mechanism

How the κ-mechanism works. Let us start the cycle in Figure 1.1.1 on page 10 at C where

the star contracts, meaning that r decreases. Along CD energy is released at a growing

rate (the absorption coe�cient κ is small since T is low). In D maximum luminosity

is attained together with maximum contraction velocity. Along the curve DA adiabatic
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compression occurs, the inward velocity decreases. In the part AB of the cycle energy is

absorbed due to larger κ which leads to increasing pressure P and accordingly the star

expands (ρ decreases). This is the driving force of the pulsation. Between A and B, as ρ

is already decreasing the pressure P still grows. This drives the layers outwards. This is

the phase retardation between P and ρ which keeps the motor going.

The pulsation is driven by the opacity, modi�ed by changing ionisation states. To start

consider a completely ionised gas

dT

T
= (Γ3 − 1)

dρ

ρ
(1.1.1)

with Γ3 the third adiabatic coe�cient, de�ned by Γ3 − 1 = ρ
T
dT
dρ . The opacity of stellar

matter can in some approximation be written as κ = CρnT−s with constant C and n, s > 0.

We now consider a region where Kramers-opacity operates with n = 1 and s = 3.5, thus

κ = CρT−3.5. There ionisation is taking place but not as vigorously as it does near the

half-ionisation points2. Thus set Γ3 = 5
3 assuming a non-ionising ideal gas. Equation

(1.1.1) now yields T ≈ ρ2/3 and therefore κ = Cρ−4/3. So with compression as ρ increases

κ decreases and with expansion as ρ decreases κ increases. This means that in a completely

ionised gas the κ-mechanism does not work.

We consider now an ionisation zone, like the H-, He- and He+ ionisation; there the situation

is completely di�erent. When in an ionisation zone the gas is compressed the mechanical

energy of the compression will be used to increase the degree of ionisation and the temper-

ature will rise only very slowly. Hence Γ3 is only slightly larger than 1. Substituting Γ3−1

by λ equation (1.1.1)gives T ≈ ρλ with λ ≈ 0. The equation form Kramers' absorption

reduces to

κ ≈ ρρ−3.5λ = ρ1−3.5λ (1.1.2)

for (1− 3.5λ) > 0, κ will increase for compression and decrease for expansion, hence in the

ionisation zones the κ-mechanism can proceed. The condition for pulsation is (1− 3.5λ) >

0 or λ < 2/7 ≈ 0.28.

This is in good agreement with Γ3 <
4
3 the condition for the limit of convective stability.

In ionisation zones of an abundant element this condition is easily satis�ed. However if the

ionisation zones are situated too far inside the star, damping by the outer layers is very

large and a starting pulsation is rapidly suppressed. Only when the H, He and He+ layers

are at an optimum depth a persistent pulsation can be started, i.e. when these layers have

a good heat capacity and do not have too much di�culty to retain the upper layers. In

the instability strip these conditions are satis�ed. A star of su�cient mass can cross the

strip three or more times during its evolution.

2there the degree of ionisation y = n+/n = ne/n = 1/2 for hydrogen. The Saha equation yields that
for hydrogen ionisation from the ground state, the transition from y = 0 to y = 1 takes place very rapidly.
[HKT 1994] p 157, p217 and p398
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The period-mean density relation.3 Pulsations (at least those of low modes) can be

regarded, approximately, as a kind of �long wave� acoustics, i.e wavelength of the �sound

wave� is of the order of or larger than the dimension of the system. The pulsation period

then ought to be of the order of the time required for a sound wave to propagate through

the mean or equilibrium diameter of the star Π ∼ R
cs
. A crude method of obtaining an

expression for the mean sound speed is the following. The equation of hydrostatic equi-

librium is used and all quantities therein are replaced by their averaged values throughout

the star, thus p̄ ∼ ρ̄2R2. Substituting the values into the expression for the sound speed

yields cs ∼
√
p̄/ρ̄ and therefore the length of a period is Π ∼ R

cs
∼ R√

ρ̄R2
= 1√

ρ̄
or

Π (ρ̄)1/2 = constant (1.1.3)

This is the famous period-mean density relation which seems to be satis�ed approximately

by most radially pulsating stars. To obtain the correct constant let's suppose that the

entire mass M of the star is concentrated in a point at the centre and that the stellar

surface lying at a mean distance R from the centre is represented by a thin spherical shell

of this radius, having a mass m small compared with M and o�ering no resistance, other

than inertia, to changing this radius. The entire volume within the shell is �lled with a

uniform, mass-less gas whose only function is to supply pressure to support the shell against

gravity, and the shell is surrounded by vacuum (pressure P = 0). If r is the instantaneous

radius of the membrane, its equation of motion is

mr̈ = 4πr2P − GMm

r2
(1.1.4)

Now assume small adiabatic oscillation about the hydrostatic equilibrium state (r̈ = 0);

that is ∂P
P = Γ1

∂ρ
P , where ∂P denotes the departure of the pressure from its equilibrium

value. Linearising equation (1.1.4) and assuming a time dependence of the form eiσt, it is

a simple matter to show that the angular pulsation frequency σ is given by the relation

σ2 = (3Γ1 − 4)
GM

R3
= (3Γ1 − 4)

4π

3
Gρ̄ (1.1.5)

which de�nes the mean density ρ̄. For the pulsation period Π = 2π
σ this yields the following

expression

Π = 2π

[
(3Γ1 − 4)

4π

3
Gρ̄

]−1/2

(1.1.6)

Interestingly enough, this is precisely the expression for the fundamental pulsation period

of purely radial pulsations of the constant density model of given Γ1 and ρ̄.

1.1.2 The Mass-Luminosity Relation

For the astronomer the importance of classical Cepheids lies in their use as distance in-

dicators. They are the most important tool for establishing the basic distance scale of
3See e.g. [Cox 1980]
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the universe. This use is based on the well known period-luminosity relation, which was

discovered by Leavitt of Harvard on the basis of Cepheids in the Small Magellanic Cloud.

She noticed a remarkable relation between the brightness of these variables and the length

of their periods [Lea 1912].

(a) (b)

Figure 1.1.2: period luminosity relation

The relation is shown graphically in Figure 1.1.2 on page 13 where in (a) the abscissas are

equal to the periods, expressed in days, and the ordinates are equal to the corresponding

absolute magnitudes at maxima and minima, in (b) the abscissas are equal to the logar-

ithms of the periods. She stated therefore that the logarithm of the period increases by

about 0.48 for each increase of one magnitude in brightness. So one may say [Cox 1980],

that she found that the mean luminosity increases monotonically with increasing period,

but she was unable to specify the zero point of the relation. The history of the determin-

ation of this zero point makes a fascinating chapter in the history of astronomy and has

been described by Baade (1956, 1963) and Fernie (1969). Su�ce it to say that the doubling

of the distance scale of the universe in the early 1950's was the result of the discovery of

an error in the earlier determinations of the zero point: this error had gone undetected for

approximately forty years till its detection by Baade who used the then newly operative

200 inch Palomar telescope.

The period luminosity relation and the period-mean density relation together yield the

mass-luminosity relation

log

(
L

L⊙
)

= 1.15logΠd + 2.47 (1.1.7)

where L⊙ denotes the solar luminosity. It is assumed that this relation holds true for all
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Cepheids4.

The cosmic distance ladder is the succession of methods by which astronomers determ-

ine the distances to celestial objects. A real direct distance measurement to an astronomical

object is only possible for those objects that are "close enough" (within about a thousand

parsecs) to Earth. For objects in the solar systems the �rst steps are radars, triangulation

and Kepler's 3rd law. For nearby stars up to by now 103pc5 trigonometric parallaxes can be

used6. The techniques for determining distances to more distant objects are all based on

various measured correlations between methods that work at close distances with methods

that work at larger distances. Several methods rely on a standard candle, which is an

astronomical object that has a known luminosity.

Figure 1.1.3: the cosmic distance ladder

The ladder analogy arises because no one technique yields distances at all ranges, it only

works within a certain range. Each rung of the ladder provides information that can be

used to determine the distances at the next higher rung. In Figure 1.1.3 on page 14 one can

4Fernie (1967), Sandage and Tammann (1968, 1969, 1974, 1976a, b) and others conclude that there
is no reason to doubt, that an �universal� period-luminosity relation exists for at least all the galaxies
included in their study. However the universality of this relation is not entirely settled.

5Hipparcos satellite (ESA) (1990�93)
6parsec is short for parallax of one arc second (symbol: pc) 1pc ≈ 31 · 10

12

km or 3.26 light-years
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see that Cepheids are useful for a wide range from 103 to 107 pc. Beyond 108 pc and up

the Tully-Fisher relationship which relates the velocity width and the luminosity of spiral

galaxies is important.

In 1915 Harlow Shapley used Cepheids to place initial constraints on the size and shape of

the Milky Way, and of the placement of our Sun within it.

In 1924 Edwin Hubble discovered Cepheid variables in the Andromeda (M31) galaxy. This

settled the Island Universe debate, concerning the question of whether the Milky Way and

the Universe were synonymous, or whether the Milky Way was merely one in a plethora

of galaxies that constitutes the Universe.7 He was able to calculate the distance of M31 to

285 Kpc, today's value being 770 Kpc.

Combining his calculations based on Cepheids of distances of galaxies with Vesto Slipher's

measurements of the speed at which the galaxies recede from us, in 1929 Hubble and Milton

L. Humason formulated what is now known as Hubble's law, concerning the expansion of

the Universe.

The Hubble Space Telescope (HST) has found dozens of Cepheids in the galaxy M100

alone, the distance to which has been estimated thereby to be about 53 million light-years.

It also made the most distant Cepheid measurement to date, of the galaxy NGC 4603 to be

about 108 million light-years. By means of HST Cepheid observations, better constraints

on Hubble's law have been calculated, and many characteristics of our galaxy and our

relationship to it have been clari�ed, for example: the Sun's height above the galactic

plane, the distance to the galactic centre, and the interpretation of the local galactic spiral

structure8.

The use of Cepheid variable stars is not without its problems however. At nearby galax-

ies they have an error of about 7% and up to a 15% error for the most distant. The

largest source of error with Cepheids as standard candles is the possibility that the period-

luminosity relation is a�ected by metallicity.

1.2 Short History of One Dimensional Simulations

The mathematical treatment of radial pulsations of stars has been developed through the

use of three distinct degrees of approximation. The simplest approach, assuming linear,

adiabatic oscillations was �rst used by Eddington (1918). When applied to models using

accurate microphysics and opacities, this type of analysis portrays the overall mechanical

aspects of the system quite well and predicts periods in good agreement with observations.

To study the growth and decay of pulsations, however, non adiabatic e�ects must be

included. The eigenvalue approach to the problem of linear, non adiabatic pulsations has

7Hubble, E. Cepheids in spiral nebulae, The Observatory, Vol. 48, p. 139�142 (1925)
8Majaess D. J., Turner D. G. and Lane D. J., Characteristics of the Galaxy according to Cepheids.

Monthly Notices of the Royal Astronomical Society (2009)



16 CHAPTER 1. CEPHEID MODELLING

produced a very good representation of small-amplitude pulsation. Several major surveys

using up-to-date physics have been completed in this approximation and have provided

valuable information regarding the physical basis of pulsation and the location of the

instability strip in the H-R-Diagram. Even so, it is the limiting-amplitude behaviour of

variable stars that is observed and this can only be studied using non-linear methods.

1.2.1 Baker and Kippenhahn

In [BK 1962] model envelopes for �ve population I stars in and near the δ Cephei region

(M = 11.5M�, L = 5000L�, Teff = 5390o) of the H-R diagram have been investigated

in order to study their stabilities against pulsation; that is to determine whether a small

radial distortion of the equilibrium models decreases or increases with time in order to

make the star pulsate like the observed pulsating variables.

A particular model is calculated for given values of M, L, Teff and the chemical composition

X = 0.6 the helium abundance Y is assumed to be Y = 1−X.

The equations for the atmosphere consist of one for the dependence of temperature on

the optical depth τ as given by [BV 1958] and one for pressure. This su�ces to �x the

values of P and T at τ = 2/3 which is used to obtain an outer boundary condition for the

equations which describe the inner structure.

The equations below the photosphere. One must integrate the following three equa-

tions for radiative energy transport and hydrostatic equilibrium under conditions of spher-

ical symmetry:
d lnT

d lnP
= ∇rad =

3

16πacG

κLP

MrT 4
(1.2.1)

d ln r

d lnP
= − rP

GρMr
(1.2.2)

d lnMr

d lnP
= −4πr4P

GρM2
r

(1.2.3)

The integrations proceed from the photosphere up to a point �quite deep in the interior�.

The luminosity is assumed constant since there is no energy production in the region of

interest. The density ρ is related to P and T through the equation of state:

ρ =
µ

Rgas

βP

T
, β =

a

3

T 4

P

The molecular weight depends on the chemical composition and on the degree of ionisation

yi of the three most important stages of ionisation (H, He, He+). Then

µ =
µ0

1 +
∑3

i=1 νiyi

where µ0 = 4
1+3X , ν1 = 4X

1+3X , ν2 = ν3 = 1−X
1+3X and the yi may be obtained from the Saha

equation.



1.2. SHORT HISTORY OF ONE DIMENSIONAL SIMULATIONS 17

The actual integration of an equilibrium model is carried out as follows: The quantities L,

Teff and M are given for a particular star. Then the radius R of the photosphere can be

obtained from L and Teff :

R =
1

T 2
eff

√
L

πac

Therefrom the structure of the atmosphere is determined and one obtains the pressure and

temperature for all points τ 5 2/3: From this point on equations (1.2.1) to (1.2.3) are

integrated inward beginning with a mesh size ∆ logP = 0.02. The mesh size is doubled

or halved automatically depending on the precision of the result as determined by the

di�erence between extrapolated and interpolated values. In the very sensitive region where

the opacity increases rapidly due to H- absorption the mesh becomes as small as one

sixteenth of the original size. The integration is carried out up to a maximum pressure

logP = 8.

The equilibrium models. Model I closely resembles δ Cephei with a period of 6 days, for

models II and III temperature was increased, the periods became shorter. For model IV

luminosity was increased and for model V mass decreased both resulting in longer periods.

Then the pulsational oscillations of these models were investigated.

The results may be summarised as follows9: �In the region of the H-R diagram near the

position of δ Cephei the He+ ionisation zones give su�cient excitation to the pulsations

to overcome the damping. The damping of a given star increases strongly with decreasing

period, so that it is plausible that a normal star pulsates only in its fundamental mode and

not simultaneously in an overtone. Assuming that the (lowest) characteristic pulsation of

a star satis�es the period-density relation during a part of the stars evolution, it is found

that stars which lie to the left of the Cepheid region in the H-R diagram no longer pulsate,

because in them the excitation is smaller than damping.�

1.2.2 Christy

In [Chr 1964] and [Chr 1966a] the author set out to demonstrate that the observed pulsa-

tion motions in Cepheids and RR Lyrae stars arise spontaneously because of the particular

physical properties of the envelopes. The relevant physical properties being the equation

of state and the opacity. The equation of state in question was obtained by assuming a

perfect gas of H, H+, He, He+, He++ and electrons. H2 was ignored. The relative numbers

of the various ions were determined by solving the Saha equation of equilibrium, ignoring

pressure ionisation, ionic interaction etc. The contribution of the various ionic species

to the pressure and internal energy including the ionisation energy was computed. The

opacities used were Rosseland mean opacities obtained from A.N. Cox and J.N. Steward,

they included the e�ects of bound-bound transitions in addition to the usual bound-free,

free-free and scattering contributions.

9from [BK 1962] p 117
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In order to integrate numerically the partial di�erential equations ∂2r
∂t2

= −GM
r2
− 4πr2 ∂P

∂M

and ∂E
∂t +P ∂V

∂t + dL
dM of motion where L = −

(
4πr2

)2 4σ
3κ

dT 4

dM they are expressed as di�erence

equations. Shock waves are treated by the von Neumann-Richtmyer method, which involves

the introduction of an arti�cial viscosity which creates a pressure on rapid compression but

none on expansion. The viscous pressure is given by

Qn−
1
2 (I − 1

2
) =

Cq
[
Un−

1
2 (I)−Un−

1
2 (I−1)

]2
V n(I− 1

2
)−V n(I− 1

2
)

U(I)− U(I − 1) < 0

0 U(I)− U(I − 1) ≥ 0

(1.2.4)

where ∆M
(
I − 1

2

)
= M (I) −M (I − 1) and the speci�c volume of the mass element at

I − 1 is V n(I − 1
2) = 4π

3

{
[Rn (I)]3 − [Rn (I − 1)]3

}
/∆M

(
I − 1

2

)
. Further equations are

for the radius

Rn+1 (I) = Rn (I) + ∆tn+ 1
2Un+ 1

2 (I)

the velocity

Un+ 1
2 (I) = Un−

1
2 (I)−∆tn

{
GM(I)

[Rn(I)]2
+

4π[Rn(I)]2[Pn(I+ 1
2)−Pn(I− 1

2)+Qn(I+ 1
2)−Qn(I− 1

2)]
∆M(I)

}
and the energy transport(

En+1
(
I + 1

2

)
− E

(
I + 1

2

)
+
{

1
2

[
Pn
(
I + 1

2

)
+ Pn+1

(
I + 1

2

)]
+Qn+ 1

2

(
I + 1

2

)}
[
V n+1(I + 1

2)− V n(I + 1
2)
])

∆M
(
I + 1

2

)
=

1
2∆tn+ 1

2

[
Ln+1 (I) + Ln (I)− Ln+1 (I + 1)− Ln (I + 1)

]
where the total luminous �ux through radius Rn (I) is given by

Ln (I) =
{

4π [Rn (I)]2
}2
[
Wn

(
I − 1

2

)
−Wn

(
I +

1

2

)]
2Fn (I)

here W = T 4 and 2Fn (I) is a suitable di�erence approximation to 4
3σ/κ∆M .

The solution of the energy transport equation for the new temperature presents an ad-

ditional problem since the equation is nonlinear, it was solved by a process of iteration.

Radiative transfer was included as di�usion approximation and convection was omitted.

The domains started at an outer border of P = 0 and the depth of the envelope was chosen

so that the estimated sound travel time through the remaining core was less then 1 percent

of the total sound travel time through the envelope. This involved an envelope mass of

about 2 percent of the stellar mass and a temperature at its base greater then 106K. The

radius of the base was never greater than 1
7 of the stellar radius. The domain was equipped

with a grid of mass points such that the ratio of successive values of ∆M is constant. It

was found that 30 to 40 points was su�cient (!). Occasionally calculations with up to 100

mass points have been used but could not be followed over many periods. In order to cover

the envelope in about 35 steps it was necessary to use ∆M (I − 1) /∆M (I) up to 1.5.
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The initial condition. Since the solution is expected to only depend on the equation of

state and the opacities, Christy states that if starting from arbitrary initial conditions

presumably in the course of time the solution would settle down to the correct �nal state,

either static or pulsating as the case might be. Since this would take a lot of time the initial

condition of the time dependent problem is based on the solution of the static envelope

problem for the same star and initiating the pulsation by superimposing some arbitrary

U (M). This procedure initiates a mixture of harmonics. Of this mixture only the few

lowest harmonics survived long.

In [Chr 1966a] non-linear calculations for one hundred RR Lyrae models have been carried

out in order to investigate stability, the dependence of the location of the instability strip

on composition, mass and luminosity. When exploring the source of the driving energy of

these models it was found that in the models of the most favoured composition, 30 percent

helium, the hydrogen ionisation region is almost as important to the driving as the He II

ionisation. Christy points out the advantages of non-linear treatment that: �When Baker

and Kippenhahn [BK 1962] attempted to include this zone they pointed out two particular

peculiarities of this region when linear calculations are used. First, the behaviour of this

region is sensitive to the outer boundary conditions employed. Second, the amplitude of,

for example, the temperature variation in the hydrogen zone is very large. Now the non-

linear theory (and observations) show that the description must be in terms of a moving

front. Thus there is a relatively thin layer of the star in which the temperature rises from

photospheric values to 20000 or 30000 K. This steep temperature front then moves up and

down through a considerable mass in the course of the cycle of pulsation. The front is also

steeper when it is moving out and less steep when it recedes. In the linear approximation,

a steep moving front appears almost as a singularity in the amplitude. The out-of-phase

terms in the amplitude show the motion of the front, but the actual amplitude of the

variations in this region can only be seen from non-linear terms. Thus the linear theory

shows an excessively large amplitude in a region of negligible thickness whereas the actual

motion involves a large (but �nite) amplitude in a region of considerable thickness. The

signi�cance of the hydrogen zone is related to how far the front actually moves and how

much phase delay it can introduce into the light-curve, and these questions seem almost

impossible to answer from the linear theory.�

1.2.3 Cox

A similar program was developed in [CBE 1966] solving the Navier-Stokes equations to-

gether with the Rosseland radiation-di�usion equation, the standard conduction equation

in a Lagrangian system. Shocks are treated with the von Neumann-Richtmyer arti�cial

viscosity method.

The main di�erence to the approach in section 1.2.2 is the inclusion of a mixing-length type

of equation for the convective energy transport thus approximating the e�ects involving two
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or more dimensions needed to describe convective energy-transport. A simpli�ed method of

calculating time-dependent convection has been developed. The convective �ux is changed

slowly so that the �ux at time n is

Fnc,i = Fn−1
c,i +

v
n− 1

2
i ∆t

L
n− 1

2
i

(
Fc,i − Fn−1

c,i

)

where L
n− 1

2
i is the average mixing length and Fc,i is calculated using

Fc,iAi =
2

giLiQi

A−Γi− 1
2

(
∂E
∂T

)
V,i− 1

2
Ti− 1

2

Vi− 1
2

+
A+Γi+ 1

2

(
∂E
∂T

)
V,i+ 1

2
Ti+ 1

2

Vi+ 1
2

 v3
i

at time n. Here Γ is the ratio of speci�c heats cp
cV
, A± = 4πr2

±, r± = 1
4 (ri±1 + 3ri) and Qi

is a dimensionless quantity de�ned by Böhm-Vitense [BV 1958].

In [CCOKE 1966] these computation techniques were used to study self-excited radial

pulsations in stellar-envelope models and the basic physics of the destabilising mechanism

arising from He+ionisation in the envelopes. The mass of the envelope is about 10−4

of the total stellar mass (= 5.395M�). The temperature at the bottom was 105K, still

high enough to include the entire He+ionisation zone. The bottom boundary was kept

�xed in time at 0.8-0.9 % of the total stellar radius and a constant luminosity was fed

into the envelope from below. The entire mass to be included was divided into up to

150 mass zones, normally 50 mass zones were used, the mass ratio between consecutive

cells being 1.3. The envelope was initially set to a good approximation of hydrostatic

equilibrium so that the velocities of all interfaces were very small at the outset. This

requirement was then removed and the subsequent time behaviour of the envelope was

calculated. Stable envelopes were distinguished from unstable ones after some ten-to-

thirty pulsation periods. Unstable envelopes developed radial pulsations whose amplitude

grew exponentially to some limiting amplitude in several hundred periods, this process

was sped up by multiplying the velocity by a factor 10. The properties of the pulsations

at limiting amplitudes were found to be independent of the method of reaching it. Most

of the unstable envelopes studied (about eleven) had δR/R0 ≈ 0.04 − 0.05, total surface

velocity amplitude ≈ 60 − 70km/sec , and total bolometric light range ≈ 0.3 − 0.4mag.

The relative smallness of the radial variations suggested to the authors that the limiting

amplitude is determined primarily by a �saturation e�ect� of the driving mechanism.

The results showed that the opacity variations and the small values of the Γ3 − 1 in the

He+ ionisation zone both produce negative dissipation in and above this region. Evidence

was also found for the existence of negative dissipation in the H ionisation region. But

to avoid having to deal with problems of radiative transfer in optically thin regions the

mass of the outermost zone was chosen su�ciently large so that the optical depth of the

zone remained large compared to unity at all times. In the case of 50-zone models the

outermost 10 zones had masses comparable to that of the �ftieth zone. Because of this
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requirement of fairly massive zones in the outermost regions the e�ects of hydrogen and

�rst helium ionisation (while included in the opacity and equation-of-state tables) were

hardly treated as these two zones together were generally con�ned to only one or two mass

zones. Consequently reliable information on phase relations between luminosity and radial

velocity was not obtained.

Two �envelope instability strips� corresponding to a pure He/H and an Aller mix (including

metals) were investigated. Some disadvantages of using only envelopes (thickness ≤ 0.15R)

instead of complete stellar models were found to be: the pulsation periods of the models

were too short, the correct details of the luminosity- and radial-velocity-curves could not

be obtained.

1.2.4 Stellingwerf

Since the usual nonlinear approach of the above sections has proved to be computationally

extremely expensive at the time, in [Ste 1974] a scheme for relaxation to a periodic solution

as well as a method of limit cycle stability analysis was developed. The developed proced-

ures were intended to be included as additions to an existing nonlinear hydrodynamic code.

This code was treated as a �black-box� in the sense that the physical and mathematical

details were not regarded.

Assume that we have a stellar model with J mass zones and I variables per zone. Let

K = IJ and list all the variables by zone in the K -dimensional vector z. zn is the set of

structure variables at step n, and N the total number of steps in one period Π. z̄ denotes

the desired periodic solution with period Π̄. That is z̄ satis�es the periodic boundary

conditions

z̄0 − z̄N = 0 (1.2.5)

and for uniqueness also satis�es the phase condition

z̄0
i − z̄0

i,0 = 0 (1.2.6)

for some particular i, this condition means that the phase of the solutions is �xed by picking

a variable and arbitrarily setting its value at time 0 to z̄0
i,0, e.c. setting the outer velocity

(at time zero) equal to zero. The overall problem is to �nd all such periodic solutions of a

given model. Note that once z̄0 and Π̄ are given the black-box code can generate the entire

solution. Each periodic mode was searched for separately. To begin the relaxation to the

solution z̄ guess the time 0 values as usual and make a guess for the actual period Π̄. Insert

z0 and Π into the black box code and obtain zN . It is assumed that the hydrodynamic code

operates smoothly and the derivatives ∂zN/∂z0 and ∂zN/∂Π are available. The desired

solution is written

z̄0 = z0 + δz0 (1.2.7)

Π̄ = Π + δΠ
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Regarding zN as a function of z0 and Π equation (1.2.5) becomes(
Id− ∂zN

∂z0

)
δz0 = zN − z0 +

∂zN

∂Π
δΠ (1.2.8)

Solving this set of equations for δz0 we obtain a relation of the form

δz0 = cδΠ + d (1.2.9)

Using equation (1.2.7), equation (1.2.6) becomes

δz0
i = z̄0

i,0 − z0
i (1.2.10)

this speci�es δz0
i and in turn �xes δΠ in the ith component of equation (1.2.9):

δΠ =
(
z̄0
i,0 − z0

i − di
)
/ci (1.2.11)

The other components of δz0 are then given by substituting this value of δΠ in equation

(1.2.9) and the new approximation to z̄0 is then given by equation (1.2.7). The process is

repeated until the corrections δz0 are su�ciently small.

To settle the question of stability consider an arbitrary perturbation δz0 of the periodic

solution z̄0, de�ne Cn = ∂zn

∂z0
. For a �xed Π this matrix has the properties of a transform-

ation in time of δz0: δzn = Cnδz0 in particular

δzN = CNδz0 (1.2.12)

Now suppose that δz0 has been picked to be an eigenvector of CN with eigenvalue k ;

equation (1.2.12) then becomes

δzN = kδz0 (1.2.13)

The eigenvectors of CN therefore form a set of perturbations, after each period the per-

turbation merely scales by the complex constant k. Regarding the components of the

perturbation as smooth functions of time δz(t) and putting η = (1/Π) / log k we �nd from

equation (1.2.13) that δz(t) = eηtφ (t) where φ (t) = e−ηtδz(t) is periodic with period Π.

So, although the perturbation may not be periodic it contains the secondary period given

by

Πpert =
2π

Im (η)
= Π

2π

arg (k)
(1.2.14)

The eigenvectors δz span the space of all possible perturbations of the motion; the star

therefore, will depart from periodic motion in the sense of linear perturbation theory if and

only if the modulus of some eigenvector is greater than unity. A �ow chart for the entire

calculation is shown in �gure 1.2.1.
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Figure 1.2.1: �ow chart for the relaxation

In [Ste 1975] the modal stability of RR Lyrae stars has been investigated with this method

and both the growth rates of the small-amplitude solutions and the mode switching rates

of the small-amplitude solutions were obtained, resulting in a complete description of the

long term modal behaviour of the model. A standard mass M = 0.578M� and compos-

ition (Y = 0.3, Z = 0.002) were adopted, thus restricting the survey to two parameters:

luminosity and e�ective temperature. Each model had 29 zones with the inner boundary

at r0 = 0.66R and T25 = 11000°K. The zone mass ratio h is 1.2 ≤ h ≤ 1.6. The nonlin-

ear stability results show a narrow (300° K wide in Teff ) region of � fundamental or �rst

harmonic� behaviour whose blue edge is nearly the same as the linear fundamental blue

edge. In a large region towards the red these models show aperiodic mixed-mode beha-

viour similar to that observed for several stars; the mass and radius for the mixed-mode

RR Lyrae star AC And were derived and found to be in good agreement with pulsational

and evolutionary results.

1.2.5 More Recent Results10

Since the early works mentioned above there has been little basic progress. The quality of

the opacities that are now used is much better (OPAL11, OP12 and Andersen-Ferguson13).

In addition some treatment of convection is necessary and is routinely included in the

calculations in the form of time-dependent mixing length. Parallel to direct numerical

simulations, however, the amplitude equation formalism has been developed in the 1980's.

The physical conditions that prevail in Cepheids and RR Lyrae stars, namely that the

growth rates of the dominant modes are small compared to their frequencies, form the basis

for the applicability of these techniques. Amplitude equations, or normal forms as they are

known in nonlinear dynamics, are very general and describe the underlying mathematical

10In this chapter I follow the overview given by Buchler [Buc 2009]
11From investigators (Rogers, F,J., & Iglesias, C.A.) at the Lawrence Livermore National Laboratory

(LLNL) in Livermore, CA. see e.g.[RSI 1996]
12Seaton, M.J. 1995, ed. The Opacity Project, Vol. 1 (Bristol: Institute of Physics Publishing)
13see [AF 1994]
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structure of the pulsations. When combined with numerical simulations, they provide not

only an excellent description of the modal selection problem, e.g. of where the region of

double mode behaviour or hysteresis occur, but they also yield a deeper understanding of

these bifurcations in the pulsational behaviour.

The ingredients of time dependent mixing length. The e�ects of turbulence and

convection in one-dimensional hydrodynamics appear via the turbulent pressure and vis-

cous stresses pt and pv, the convective �ux Fc and the energy coupling term:

du

dt
= −1

ρ

∂

∂r
(p+ pt + pv)−

GMr

r2
(1.2.15)

de

dt
+ p

dv

dt
= − 1

ρr2

∂

∂r

[
r2 (Fr + Fc)

]
+ C (1.2.16)

The turbulent and convective quantities are supposed to be functions of the �turbulent

energy� et that is assumed to satisfy

det
dt

+ (pt + pv)
dv

dt
= − 1

ρr2

∂

∂r

(
r2Ft

)
− C (1.2.17)

Expressions for pt, Ft, pv and C can be derived in analogy with gas kinetic theory, however

without the same solid physical basis. All these terms include α-parameters of O(1) and

physics provides little guidance for their values. There is also some ambiguity about the

physical acceptability of the terms for Fc and the source term St that appears in the

equation of the energy coupling term C :

Fc ∼ αce
1/2
t Y or Fc ∼ αcetY

1/2

St ∼ αSe
1/2
t Y or St ∼ αSetY

1/2

(1.2.18)

where

Y ≡
[
−Hp

cp
∂s
∂r

]
+

or Y ≡ −Hp
cp

∂s
∂r (1.2.19)

During the last decades mixing length theory has achieved many successes:14

1. One of the most striking properties of the Cepheids both for the fundamental and the

�rst overtone mode pulsations is the progression of the Fourier decomposition coe�cients

of the lights curves and the radial velocity curves. Full amplitude Cepheid model sequences

do a good job reproducing the Fourier properties of the F and the O1 Cepheids.

2. The amplitude equation formalism that was developed for explaining the e�ect of

internal resonances on the appearance of light and radial velocity curves has demonstrated

that it is the 2:1 resonance between the self-excited F mode and the vibrationally stable

but resonant second overtone that is responsible for the structure of the Fourier coe�cients

for periods around 10 days rather than a shock wave that re�ects o� the core. For the �rst

14Relevant publications are listed in [Buc 2009]
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overtone Cepheids it is the 2:1 resonance of the stable fourth overtone with the self excited

�rst overtone that causes structure at periods in the vicinity of 4 days.

3. A full amplitude model survey of F and O1 Cepheids has found that the phase lag

between light and radial velocity curves is in good agreement with observations. This

study has furthermore demonstrated that the phase lag can also be used observationally

as a discriminant between F and O1 mode pulsations.

4. The period ratio P1/P0 as a function of P0 of the beat Cepheids is a sensitive function

of the metallicity Z. This property has recently been taken advantage of to determine

the metallicities in the LMC and SMC with the help of Cepheid modelling. The same

method has been applied to the 5 known beat Cepheids in M33. Interestingly this yields

a galactic metallicity gradient for M33 that is in good agreement with results from totally

independent methods.

5. A comparison of light curves of full amplitude bump Cepheid models with observed

light curves can also be used as a metallicity tracer and distance indicator.

6. Theoretical period-colour-luminosity relations are in good agreement with observational

ones.

7. Theory has been ahead of observations by predicting the existence of strange Cepheids

and RR Lyrae that pulsate in a high (7th to 12th) overtone in which the pulsation is con-

�ned to the outer region, more speci�cally, above the hydrogen ionisation front. Typically

the predicted periods of these self exited modes are 4 to 5 times smaller than the funda-

mental period of the same object. The amplitudes are predicted to be in the millimag

range. On the observational side some evidence for the existence of strange Cepheids has

been found. However it is hard to distinguish between intrinsic pulsations and ellipsoidal

binary motion at the millimag level.

There are a number of well known problems with time dependent mixing length theory.

In the �rst place it is a phenomenological rather than consistent physical description, then

MLT is a local approximation whereas 3D simulations show that plumes are a highly

non local phenomenon. Moreover a number of (up to 8 or more) α-parameters appear in

time dependent mixing length models and physics provides no guidance for their values.

Therefore some of these parameters are calibrated with the help of a comparison of the

results with observations, but there is a wide range to choose from. The less important

parameters are �xed arbitrarily. It is somewhat disturbing that one needs a di�erent set

of α-values for RR Lyrae stars and for Cepheids and for di�erent metallicity.

On the other hand amongst the list of known problems of MLT are some serious discrep-

ancies for which stellar evolution calculations are at fault but on which Cepheid modelling

unfortunately has to rely.

First, low mass, low Z (metallicity) evolution loops do not penetrate the instability strip

where Cepheids are actually observed. It has been suggested that this could be a metal-

licity selection e�ect. There remains disagreement about the treatment of convection and
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convective overshoots which leads to uncertainties in the Cepheid Mass-Luminosity-Z rela-

tion. Unfortunately this in turn causes uncertainties in Cepheid modelling which depends

on a ML relation. Since time dependent mixing length has these problems e�orts have

been made to go beyond the simple model described above, while keeping its 1D feature.

This unfortunately leads to a proliferation of equations with a concomitant numerical cost

and perhaps little guarantee of substantial improvement.

According to Buchler there remain two great challenges for the modelling of Cepheids, and

for that matter of RR Lyrae stars which are quite similar in many ways. These are the

modelling of multidimensional convection in the highly structured envelopes of Cepheids

on the one hand15, and of non radial pulsations on the other.

15And indeed the two dimensional simulation of convection is tackled in this thesis.



Chapter 2

The Equations

2.1 The Equations of Hydrodynamics

In order to extend the ANTARES-code [Mut et al 2010a, Mut et al 2007, Mut et al 2010b]

for Cepheid modelling it is necessary to use a radially moving, spherical grid and formulate

the equations accordingly [WNM 1984]. One must restate the conservation relations for

the radiating �uid in terms of a logical1 mesh in the adaptive coordinate system. At

the beginning I will formulate all equations as integral conservations relations of �uid

contained in de�nite volumes of the adaptive coordinate system (hence �xed values of

logical mesh-indices). This approach is satisfying both physically and intuitively and is

well posed computationally for it can be employed in such a way as to guarantee global

conservation within the �ow. Three di�erent time derivatives are used in an adaptive

coordinate system: The Eulerian derivative taken with �xed coordinates in the laboratory

frame, the Lagrangean (or co-moving) derivative taken with respect to a de�nite volume

element and the moving-mesh derivative taken with respect to �xed values of the mesh-

coordinates, which are neither �xed in the laboratory frame nor in the �uid.

Thus the Eulerian �uid velocity is

−→u = D~r/Dt (2.1.1)

where −→r = ~r (~r0, t) is the position of a de�nite point (�molecule�) in the �uid, and the grid

velocity is
−→ug = d~r/dt (2.1.2)

where −→r = ~r (i, j, k, t) is the position of a de�nite set of grid coordinates (speci�ed by

(i, j, k)). The relative velocity of the �uid with respect to the adaptive grid is then ~urel =

~u−~ug. As usual the Lagrangean and the Eulerian derivatives of any quantity f are related

by

(Df/Dt) = (∂f/∂t) + (~u · ∇) f (2.1.3)

1[WNM 1984] use this expression for the mesh of indices

27
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and the moving-grid and the Eulerian derivatives are related by

(df/dt) = (∂f/∂t) + (~u · ∇) f (2.1.4)

If Jf denotes the Jacobian of the transformation between the coordinates de�ning an initial

�uid volume dV 0
fluid and the volume dVfluid = JfdV

0
fluid of the same �uid at a later time

one has the Euler expansion formula

D (lnJf ) /Dt = ∇ · ~u (2.1.5)

which in turn leads to the Reynolds transport theorem [CM 1990]

D

Dt

(ˆ
Vfluid

fdVfluid

)
=

ˆ
Vfluid

[
∂f

∂t
+∇ · (~uf)

]
dVfluid (2.1.6)

By precisely the same analysis one can expand these theorems to the adaptive coordinate

system. Now writing dV = JdV 0 to relate a moving-mesh volume dV to its original volume

dV 0 we obtain the moving-mesh expansion formula

D (lnJ) /Dt = ∇ · ~ug (2.1.7)

and the moving mesh transport theorem

d

dt

(ˆ
V
fdV

)
=

ˆ
V

[
∂f

∂t
+∇ · ( ~ugf)

]
dV

=

ˆ
V

∂f

∂t
dV +

ˆ
∂V
f ~ug ·

−→
dS

(2.1.8)

In equation (2.1.8) V denotes a de�nite volume corresponding to �xed values of the adaptive

coordinates. Note also that this equation reduces correctly to the Eulerian and Lagrangean

limits. For ~ug ≡ 0 the grid is �xed in the laboratory frame and equation (2.1.8) becomes

d

dt

(ˆ
V
fdV

)
=

∂

∂t

ˆ
V
fdV =

ˆ
V

∂f

∂t
dV (2.1.9)

whereas if we set ~ug ≡ ~u the grid is �xed in the �uid and equation (2.1.8) reduces to

equation (2.1.6).

Although equations (2.1.7) and (2.1.8) can be derived purely formally, it is satisfying to

notice that they are also intuitively obvious from equations (2.1.5) and (2.1.6). In both

cases we have chosen a set of markers moving in the laboratory frame. In equations (2.1.5)

and (2.1.6) the markers are identi�ed with bits of �uid moving according to a velocity �eld

~u, whereas in equations (2.1.7) and (2.1.8) they are identi�ed with a logical grid, moving

according to a velocity �eld ~ug. From equation (2.1.8) and the standard Lagrangean

equation of continuity

(Dρ/Dt) = −ρ (∇ · ~u) (2.1.10)
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the useful result

d

dt

(ˆ
V
fdV

)
=

ˆ
V

[
ρ
D

Dt

(
f

ρ

)
−∇ · (~urelf)

]
dV

=

ˆ
V
ρ
D

Dt

(
f

ρ

)
dV −

ˆ
∂V
~urelf · ∂S

(2.1.11)

is derived. (2.1.11) gives the moving volume integral of a Lagrangean time derivative; V

again denotes a de�nite volume in the adaptive coordinate system.

Now let f = ρ in (2.1.11) an we get the integral version of equation of continuity in moving

coordinates
d

dt

(ˆ
V
ρdV

)
=

ˆ
V

[−∇ · ( ~ρurel)] dV (2.1.12)

Since ~urel = ~u−~ug and ~I = ρ~u conservation of mass as expressed by the continuity equation

becomes:2

∂ρ

∂t
= −∇ ·

[
~I − ρ−→ug

]
(2.1.13)

Conservation of momentum and energy are derived in the same way. The results are:

Conservation of momentum

∂~I

∂t
= −∇ ·

[
~I~I

ρ
− ~I−→ug − σ

]
−∇p+ ρ~g (2.1.14)

or since polar coordinates are used

∂~I

∂t
= −∇ ·

[
~I~I

ρ
− ~I−→ug − σ + p · Id

]
+

2p

r
+ ρ~g (2.1.15)

Conservation of �total� energy

∂e

∂t
= −∇ ·

[
~I

ρ
(e+ p)− e−→ug −

~I

ρ
· σ

]
+ ~g · ~I +Qrad (2.1.16)

The viscous stress tensor for polar coordinates in two dimensions reads

σ = η

(
4
3

(
∂ur
∂r + ur

r

)
− 2

3
1
r
∂uϕ
∂ϕ

∂uϕ
∂r +

uϕ
r + 1

r
∂ur
∂ϕ

∂uϕ
∂r +

uϕ
r + 1

r
∂ur
∂ϕ −2

3

(
∂ur
∂r + ur

r

)
+ 4

3
1
r
∂uϕ
∂ϕ

)
(2.1.17)

The gravity is determined as

~g =

(
mtot ·G
r2

, 0, 0

)T
(2.1.18)

2For the meaning of ∇·and ∇ in spherical polar Coordinates see Appendix A
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G = 6.673 · 10−8cm3/g/s2 gravitational constant

c = 2.998 · 1010cm/s speed of light in vacuum

h = 6.626 · 10−27erg s Planck's constant

k = 1.381 · 10−16erg/K Boltzmann's constant

σ = 5.670 · 10−5erg/s/cm2/K4 Stefan-Boltzmann constant

Rgas = 8.314472 · 107erg/K/mol universal gas constant

π = 3.1415927

M� = 1.98892 · 1010 Mass of the Sun

Table 2.1: unities and values of used constants

the values of all the constants and quantities are in the cgs system

2.2 Radiative Transfer

To obtain a realistic simulation near the surface, nontrivial energy exchange between gas

and radiation must be included by the radiative transport equation (RTE). It can be

described by the radiative heating rate Qrad, an additive term in the energy equation. For

regions deeper down the Di�usion Approximation Qrad = −∇ · (κ∇T ) can be used. Since

we assume LTE (see section 2.2.2) the e�ects of scattering are not included.

2.2.1 Intensity and Flux

The speci�c Intensity Iυ at any speci�c position ~r travelling in direction ~n with fre-

quency ν at time t is de�ned in [Mih 1978] such that the amount of energy transported by

radiation of frequencies (ν, ν + dν) across an element of area dS into a solid angle dω in a

time interval dt is

dErad = I (r̃ , ñ, ν, t)dS cos θdωdνdt (2.2.1)

where θ is the angle between the direction of the beam and the normal to the sur-

face (i.e dS cos θ = ~n · ~dS); see Figure 2.2.1 on page 31. The dimensions of I are

ergs cm−2 sec−1 hz−1sr−1. As it has just be de�ned, the speci�c intensity provides a

complete description of the radiation �eld from a macroscopic point of view.

Along a single ray we need only consider the one-dimensional problem. In spherical geo-

metry the atmosphere will be regarded as spherical symmetric. Thus the speci�c intensity

will be independent of the coordinates Θ and Φ of the triplet (r,Θ,Φ) which speci�es the

location in the atmosphere. To specify direction of the radiation ~n it is convenient to

introduce polar and azimuthal angles (θ, φ) now measured with respect to a unit vector

r in radial direction; we then have ~n · ~k = cos θ, ~n ·~i = sin θ cosφ, ~n · ~j = sin θ sinφ.

Spherical symmetry implies azimuthal invariance, therefore the azimuthal angle φ of the

pair (θ, φ) which speci�es the direction of the beam relative to the local outward normal
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can be dropped and we can now write I = I(r, θ, ν, t). The variable θ can be replaced with

µ ≡ cos θ.

Figure 2.2.1: pencil of radiation used to de�ne speci�c intensity

The mean intensity. In both the physical and the mathematical description of a radi-

ation �eld it is useful to employ various angular averages or moments. If the intensity �eld

is known the mean intensity (zero-order moment) is determined as

J (~r, ν, t) =
1

4π

ˆ
I (~r, ~n, ν, t) dω (2.2.2)

The mean intensity has dimensions ergs cm−2 sec−1 hz−1. The element of solid angle dω

is given by dω = sin θdθdφ = −dµdφ. If we consider one-dimensional atmospheres I is

independent of φ, hence

J (r, ν, t) =
1

4π

ˆ 2π

0
dφ

ˆ 1

−1
dµI (r, µ, ν, t) =

1

2

ˆ 1

−1
dµI (r, µ, ν, t) (2.2.3)

The radiative �ux. We de�ne the �ux of radiation ~F (~r, ν, t) as a vector quantity such

that ~F ·
−→
dS gives the net rate of radiant energy �ow across an the arbitrarily oriented

surface
−→
dS per unit time and frequency interval. Noting that −→n ·

−→
dS = dS cos θ, where θ is

the angle between the direction of propagation ~n and the normal to
−→
dS, we immediately

recognise that the �ux can be derived from the speci�c intensity via equation (2.2.1) for

dErad is nothing more than the contribution of the pencil of radiation moving in direction

~n to the net energy �ux. Thus we merely sum over all solid angles and obtain

~F (~r, ν, t) =

˛
I (~r, ~n, ν, t) · ~ndω (2.2.4)
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The �ux has dimensions ergs cm−2 sec−1 hz−1sr−1. Note that is the �rst moment of the

radiation �eld with respect to angle. In a homogeneous spherical atmosphere only the

radial component of ~F can be nonzero, that component is often referred to as �the �ux�

and can be written as

F (r, ν, t) = 2π

ˆ 1

−1
I (r, µ, ν, t)µdµ (2.2.5)

2.2.2 Local Thermodynamic Equilibrium (LTE)

�Thermodynamic equilibrium prevails when a single value T of the temperature is su�cient

to describe the thermodynamic state everywhere. The particles then have Maxwellian

velocity distributions for that T , the states of ionisation and excitation of the atoms are

distributed according to the Boltzmann and Saha equation for that same T , and the

radiation �eld has the homogeneous and isotropic black-body form given by the Kirchho�-

Planck function for this T , namely

Bν (T ) =
2hν3

c2

1

exp(hν/kT )− 1
(2.2.6)

No temperature gradient exists in thermodynamic equilibrium. It is obvious that this

situation is realised virtually nowhere.� ([Sti 2002] )

�Local thermodynamic equilibrium means that at a certain place a single temperature T

does not su�ce to describe the statistical particle velocities, the population of the atomic

states, and the local ratio of emission or absorption of radiation. In LTE the most important

simpli�cation of the radiative transfer problem is Sν = Bν (T ).� ([Sti 2002]) (Scattering is

not considered here.)

�Whether or not LTE can be assumed depends on the thermalisation length. This is

the distance over which a particle or photon emitted in a certain collision or transition

has undergone su�cient further collisions or absorption/emission processes so that it can

no longer be distinguished within the respective distribution. In LTE the thermalisation

length must be shorter than the distance over which the temperature of the gas changes

markedly.� �([Sti 2002] )

�Signi�cant departures from LTE must be expected in the upper photosphere, especially

in strong lines where scattering dominates over thermal emission and disturbs the detailed

energy balance of LTE. This e�ect can be neglected as long as these lines do not contribute

signi�cantly to the total radiative heating rate Qrad.� ([Vög 2003])

As is customary and largely appropriate in our context, we assume LTE.
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2.2.3 The Radiative Transfer Equation

In order to determine Qrad we start with the time- and frequency-dependent radiative

transfer equation (
1

c

∂

∂t
+ r · ∇

)
Iν = ρχν (Sν − Iν) (2.2.7)

where Sν is the source function, an χν is the opacity of the material.

Since the time a photon needs to travel through the photosphere is much shorter than any

other relevant time scale and we consider only regions of relative high density the radiation

�eld can be assumed to adjust instantaneously to any change of the thermodynamical state

of the gas. Therefore we can neglect the time derivative in equation (2.2.7) and we obtain

the time-independent radiative transfer equation (RTE)

(r · ∇) Iν = ρχν (Sν − Iν) (2.2.8)

Instead of solving the three-dimensional RTE the one-dimensional RTE is solved along sev-

eral ray-directions. In one dimension and spherical coordinates equation (2.2.8) simpli�es

to

µ
∂Iν
∂r

+
1

r

(
1− µ2

) ∂Iν
∂µ

= ρχν (Sν − Iν) (2.2.9)

This partial di�erential equation in r and µ can be simpli�ed by using the characteristic

paths that reduce the spatial operator to a single derivative with respect to path-length

again called r

µ
∂Iν
∂r

= ρχν (Sν − Iν) (2.2.10)

Introducing the optical depth of an element at frequency ν as the independent coordinate

dτν = χνρdr (2.2.11)

the RTE can be rewritten as

µ
∂Iν
∂τν

= Sν − Iν (2.2.12)

The formal solution. For given S equation (2.2.12) is a linear �rst order di�erential equation

with constant coe�cients and must therefore have an integrating factor, namely

∂
[
Iνe
−τν/µ

]
/∂τν = − 1

µ
Sνe

−τν/µ (2.2.13)

Integration of equation (2.2.13) yields

I (τ1, µ, ν) = I (τ2, µ, ν) e(τ2−τ1)/µ +
1

µ

τ2ˆ

τ1

Sν (t) e−(t−τ1)/µdt (2.2.14)

If the value I (τ2, µ, ν) and the values of Sν (t) along the ray are known between the optical

depths τ2 and τ1 the value I (τ1, µ, ν) can be determined.
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The radiative heating rate can be computed either as

Qrad = 4π

ˆ
ν
χν (Jν − Sν) dν (2.2.15)

or from the equivalent expression

Qrad = −
ˆ
ν

(∇ · Fν) dν (2.2.16)

2.3 The Equation of State

The equation of state completes the equations for radiation hydrodynamics (2.1.13), (2.1.14),

(2.1.16) and (2.2.15) and describes the relations between thermodynamical quantities. It

depends on the physical properties of the gas under study especially on the content of

hydrogen, helium and �metals�. It also depends on the degree of ionisation; therefore in

the convection zones the simple thermodynamical relations for an ideal gas cannot be used.

For realistic microphysics the OPAL [RSI 1996] equation of state and opacities are included,

for the RTE the Alexander low-temperature Rosseland opacities for grey radiative transfer

[AF 1994] are used.



Chapter 3

Implementation in the ANTARES

Code

The ANTARES (Advanced Numerical Tool for Astrophysical RESearch) code as used for

these simulations performs various compressible simulations on di�erently structured grids.

Though not everything is possible for every case. All is comprised in one parallelized

Fortran90 program which can be broken up into separate modules to deal with speci�c

cases.

Tasks within this PhD project were

� Implementing a stretched grid. Determining and implementing of the appropriate

coe�cients for derivatives, interpolation stencils and all the weights and coe�cients

used in the ENO.

� Implementing a moving, polar grid. Adjusting the radiative transfer solver and the

update process to this grid.

� Development and discretisation of appropriate boundary conditions.

� Developing adaptive grid re�nement and testing the e�ects thereof.

The di�erential equations solved by the ANTARES code can also be written as a system

of conservation laws of the form

∂tU = −∇ · F (U) + S (3.0.1)

A discretisation of the physical domain results in a centre grid ri and a boundary grid

ri+ 1
2
, where the function Fi (U), also known as �the �uxes�, is computed at the cell centre;

F̃i+ 1
2

(U) are the �uxes interpolated to the cell boundaries. The viscosities are also included

in this function Fi (U). (Section 3.6)

35
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3.1 The Initial Condition

Figure 3.1.1: initial Conditions of density, temperature and pressure

Abscissa: Log(radius)



3.1. THE INITIAL CONDITION 37

We start with a one-dimensional model kindly provided by Günter Houdek1 of a Cepheid

of e�ective temperature 5125K, luminosity L = 912.797L⊙, mass M = 5M⊙, hydrogen
contents X = 0.7, metallicity Z = 0.01 as depicted in �gure 3.1.1.2

The computational domain reaches from 4000K to 320000K, thus the outer 42% of the star

are computed.

We start with a one-dimensional purely radiative model. In order to help the pulsations

starting the gravity is reduced by 1% for the �rst few steps. To ensure that this star

is indeed a pulsator and pulsates in the fundamental mode as indicated for example in

[FBK 2000] (Figure 3.1.3 on page 38) a Fourier analysis of the radius is done.

Figure 3.1.2: Fourier analysis of the radial pulsation

Abscissa: frequency in 1/days, ordinate: radius squared. For (a) the �rst ten sound crossing

times were taken into account, (b) used sound crossing times 50 to 60, (c) 100 to 110 and

(d) 150 to 160. The �rst hump corresponds to the fundamental mode the second to the

�rst overtone.

After pulsation becomes stable and stays so for a considerable time the one-dimensional
1Institute of Astronomy, Vienna University
2higher metallicity gives a better resolution of Qrad.
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model is converted into a two-dimensional one by setting the one-dimensional model side

by side. The new lateral momentum is slightly perturbed in a random fashion.

Figure 3.1.3: instability strip boundaries for convective models (from [FBK 2000])

in the Log L - Log Te� plane. From left to right: (�rst) overtone linear blue edge (OBE),

fundamental linear blue edge (FBE), nonlinear overtone red edge (NORE), overtone linear

red edge (ORE) and fundamental linear red edge (FRE); the labels on left refer to the

stellar masses.

3.2 The Grid Structure

The computational domain is equipped with a polar grid.

In radial direction Nx = 510 grid points plus 4 ghost cells at each boundary are used.

The r-range covers r ∈ [rtop, rbot] , where rbot is �xed and rtop varies with time. The grid is

stretched in radial direction by a factor q. The mesh sizes are ∆ri+1=q∆ri varying from

∆r0 = 0.046Mm at the top to ∆rNx−1 = 12Mm at the bottom. Thus the numerical grid

becomes

ri = rbot +
qi − 1

qNx − 1
(rtop − rbot) (3.2.1)

Cell boundary values are de�ned as ri+ 1
2

= ri− ∆ri
1+
√
q and ri− 1

2
= ri +

√
q∆ri−1

1+
√
q , cell heights

as ∆ri+ 1
2

=
√
q∆ri.

In angular direction the angle ϕ-range covers ϕ ∈
[
−ϕtot

2 ,+ϕtot
2

]
, the mesh size is

∆ϕ = ϕtot
Ny

. The numerical grid is given by

ϕj = j∆ϕ− ϕtot
2

(3.2.2)

Cell boundary values are de�ned as ϕj± 1
2

= ϕj ± ∆ϕ
2 .
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Figure 3.2.1: polar grid

The physical distance between two adjacent points in lateral direction is computed as

∆yi = ri∆ϕ.

Cell volumes or either computed as

Vi =
2

3

(
r3
i− 1

2

− r3
i+ 1

2

)
∆ϕ (3.2.3)

or approximated by3

Ṽi = 2r2
i ∆ri− 1

2
∆ϕ (3.2.4)

3In 1D: ∆ϕ = 2π
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For each cell the surface is given by Ai± 1
2

= 2r2
i± 1

2

∆ϕ at the top and at the bottom. At

the sides it is exactly

Bi =
π

2

(
r2
i− 1

2

− r2
i+ 1

2

)
(3.2.5)

or approximately

B̃i = πri∆ri− 1
2

(3.2.6)

3.3 Time Stepping and Time Step Restrictions

The largest possible time step is determined by the CFL-condition. In each time step and

in every cell the distance that the information is transported by �ow velocities must be

shorter than the mesh width. Therefore we get a time step restriction

∆tCFL = ccourantmin
i,j

(
min(∆ri,∆yi)

|~u|+ csound

)
(3.3.1)

where ccourant is the Courant number and csound is the sound velocity. The minimum

min
i,j

is taken over the whole domain. For all the simulations here a Courant number of

ccourant = 1
4 is selected.

Also the di�usion velocity and the radiative timescale have to be taken into account.

The time scale for relaxing a temperature perturbation of arbitrary optical thickness by

radiation [Spi 1957]

∆trad = ccourantmin
i,j

(
cp

16κσT 3

(
1− κρ

k
arccot

κρ

k

)−1
)

(3.3.2)

may become smaller than the hydrodynamical time scale. In (3.3.2) κ is the opacity, σ

is the Stefan-Boltzmann constant and k = 2π
min(∆ri,∆yi)

. For the optical thick case where

di�usion approximation can be used ∆trad converges to the time scale of radiative di�usion

∆tdiffusive = ccourantmin
i,j

(
cp

16κσT 3
3
(κρ
k

)2
)
∼ ccourantmin

i,j

(
min(∆ri,∆yi)

2

χ

)
(3.3.3)

If arti�cial di�usivities are used (section 3.6.3) an additional di�usive time step restriction

is applied:

∆tartdiff = ccourantmin
i,j

(
min(∆ri,∆yi)

νi

)
(3.3.4)

The denominator consists of all the arti�cial di�usivities ν = νshk + νhyp.

The time step used is either

∆t = min (∆tCFL,∆trad) (3.3.5)

or if arti�cial di�usivities are used

∆t = min (∆tCFL,∆trad,∆tartdiff ) (3.3.6)
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In practise all our simulations were limited by the radiative time step.

If grid re�nement is used ∆t is determined for each grid separately, the number of steps

during the grid re�nement process is given by int
(

∆tcoarse
∆tfine

)
. One of the advantages of

adaptive grid re�nement is a smaller number of grid re�nement steps, since it helps to stay

out of the optical thick realm, where ∆tfine = ∆t2coarse.

3.4 Boundary Conditions

Figure 3.4.1: conservation laws

2D simulation, abscissa: days

In horizontal direction all quantities are assumed to be periodic.

Boundary condition on the grid: The grid is �xed at the bottom thus the grid velocity

vanishes, at the top it is determined as the horizontal average of the �uid velocity in radial

direction.

ug|top = ur|top
ug|bot = 0



42 CHAPTER 3. IMPLEMENTATION IN THE ANTARES CODE

For closed boundary conditions the vertical �ux of mass, angular momentum and energy

(except radiative energy) are set to zero, this is achieved by:

∂ρ

∂r
|top = 0

ur|top = ug|top
∂uϕ
∂r
|top = 0

∂T

∂r
|top = 0

at the top, and

ur|bot = 0

at the bottom. Since the star is purely radiative at the bottom the incoming energy

transport is adjusted by keeping the radial component of radiative �ux density κ∇T at its

initial value.

Note that here are no boundary conditions on density and no boundary condition on

angular momentum at the bottom.

At the top the conditions for the velocities are set on 3 points and for temperature on 2

points, at the bottom one point is used for radial velocity and two for radiative �ux.

Conservation of mass, momentum and energy are not violated by this boundary conditions

over time:

3.5 Evolving in Time

The physical state ~qn+1 =
(
ρ, ~I, e

)n+1
at time step n + 1 is computed from the physical

state ~qn =
(
ρ, ~I, e

)n
at time step n by a Runge Kutta scheme [SO 1988], either of second

or third order4. By temporal discretisation the ordinary di�erential equation qt = L (q)

becomes qn+1−qn
∆t = L (q) where the vector L (q) contains the spatial derivatives and source

terms.

Using a second order Runge-Kutta scheme two time steps are necessary to calculate the

state at time :

q0 = qn

q1 = q0 + ∆tL(q0) (3.5.1)

q2 =
1

2
(q0 + q1 + ∆tL(q1))

qn+1 = q2

4In fact for all simulation second order was su�cient.
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For the third order scheme three steps are used:

q0 = qn

q1 = q0 + ∆tL(q0)

q2 =
1

4
(3q0 + q1 + ∆tL(q1)) (3.5.2)

q3 =
1

3
(q0 + 2q2 + 2∆tL(q2))

qn+1 = q3

At the beginning of each time step qn the value of ∆t is computed, and if grid re�nement

is done, the number of grid re�nement steps are computed as well.

Each of the intermediate states is calculated by the following algorithm:

� Start with a physical state given as cell averages, grid velocity and coordinates.

� Computing the inviscid central �uxes according to the di�erential equation

� Interpolate these �uxes to cell boundary �uxes in all directions using a one-dimensional

WENO-scheme (section 6.8)

� Calculate the viscous central �uxes and interpolate to cell boundary �uxes by fourth

order interpolation (section 6.6).

� The radiative heating rate is computed by solving the radiative transfer equation

(section 6.7).

� For the update process cell volumes and the sizes of the surface at time n + 1 are

computed. The new values of the conserved variables are determined (section 6.9).

� The grid is updated by moving the grid coordinates with grid velocity ~ung . Actu-

ally only the outermost point is moved with grid velocity, all the other points are

computed to satisfy equation (3.2.1).

� Call the equation of state to get the other used quantities. Compute remaining grid

variables and gravity.

� Grid velocity ~un+1
g is determined. The velocity at the top is determined as the hori-

zontal average of the �uid at the top, at the bottom ~un+1
g ≡ 0. From this a dilation

factor dfac and the grid velocity elsewhere are computed.

� Hydrodynamic boundary conditions are applied (section 6.4).

After the whole Runge-Kutta step is complete grid re�nement can be done. In order to do

this the boundary of the grid re�nement zone, the grid velocity and the radial coordinates5

5Since the patch moves with the grid indices, note that rbotis not �xed here.
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are projected from the coarse grid to the �ne one. The required number of steps is done

in precisely the same way as for the coarse grid, with the exemption that the boundary

conditions are replaced by projections from the coarse grid.

3.6 Spatial Interpolation of Viscous Fluxes

3.6.1 Interpolation and Derivatives

For an equidistant grid and a stretched grid the following interpolation methods can be

used within the ANTARES code in order to �nd the boundary values for the viscous �uxes

and their like. Here I present the formulae for the stretched grid as used in radial direction.6

1. second order

fi+ 1
2

= q0.5fi+fi+1

q0.5+1

2. 4th order

fi+ 1
2

= − q4

q3.5+2q3+2q2.5+3q2+3q1.5+2q+2q0.5+1
fi−1 +

+
q3+2q2.5+3q2+2q1.5+q

q2.5+3q2+4q1.5+4q+3q0.5+1
fi +

+
q2+2q1.5+3q+2q0.5+1

q2.5+3q2+4q1.5+4q+3q0.5+1
fi+1 −

− 1

q3.5+2q3+2q2.5+3q2+3q1.5+2q+2q0.5+1
fi+2

Spatial Derivatives within the viscous �uxes

For the viscous stress tensor as well as for the temperature gradient used for the di�usion

approximation derivatives are taken at the cell centre. The numerical approximation of

these derivatives is:

1. second order
1

ri+1−ri

(
− q2

q+1ui−1 + (q − 1)ui + 1
q+1ui+1

)
2. 4th order

1
ri+1−ri

(
q7

(q2+q+1)(q3+q2+q+1)
ui−2 − q3(q+1)

q2+q+1
ui−1 +

+2 (q − 1)ui +
q+1

q(q2+q+1)
ui+1 −

− 1

q(q2+q+1)(q3+q2+q+1)
ui+2

)
For these simulations the 4th order methods were used. At the upper and lower

physical boundary the asymmetric stencils of the same order are used.

6For the equidistant case used in lateral direction see [Obe 2007] or set q = 1.
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3.6.2 Subgrid-scale Modelling

The most widely used models are based on the work of Smagorinsky (1963) and Lilly

(1962). The subgrid-scale stress is written as7

τaij = τij −
1

3
δijτkk = −2ρKmD̃ij (3.6.1)

where D̃ij is the strain rate tensor:

D̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3
δij
∂ũk
∂xk

(3.6.2)

The eddy viscosity Km is given by

Km = C∆2
∣∣∣D̃∣∣∣ (3.6.3)

where ∆ is the �lter width, approximated here as (∆ri∆yi)
1/2, and as (∆ri∆yi∆zi)

1/3in

three dimensions, and C is a dimensionless coe�cient. This coe�cient is a constant para-

meter often written as the Smagorinsky coe�cient cs = C1/2.

3.6.3 Arti�cial Di�usivities

Arti�cial di�usivities [SN 1998] are intended to remove short-wavelength noise without

damping longer wavelengths and di�use strong discontinuities in order to stabilise the

numerical code.

The viscous stress tensor

τkl = µ

(
∂uk
∂xl

+
∂ul
∂xk
− 2

3
δkl (∇ · ~u)

)
(3.6.4)

is replaced by arti�cial equivalents of the form

τkl =
1

2
ρ

(
νk (ul)

∂uk
∂xl

+ νl (uk)
∂ul
∂xk

)
(3.6.5)

where u = (u1, u2, u3)T and k, l= 1,2,3 .

The coe�cients νk for direction k consists of two parts, a shock resolving part νshkk and a

hyper-di�usive part νhypk :

νk (ul) = νshkk + νhypk (ul) (3.6.6)

The shock resolving part in direction k is de�ned by

νshkk =

Cshk∆x2
k |∇ · ~u| ∇ · ~u < 0

0 ∇ · ~u ≥ 0
(3.6.7)

7The superscript a denotes the anisotropic part of a tensor.
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which is only applied in regions undergoing compression, i.e. where ∇ · ~u < 0. The Hyper-

di�usive part in direction k is de�ned by

νhypk (f) = Chyp∆xictot
max3

∣∣∆3
kf
∣∣

max3

∣∣∆1
kf
∣∣ (3.6.8)

where ctot = ‖~u‖+ csound and(
∆3
kf
)
i

= |3 (ui+1 − ui)− (ui+2 − ui−1)|(
∆1
kf
)
i

= |ui+1 − ui|

For each grid point the index i runs in direction k. Arti�cial di�usivities were used only

in a few tests for the simulations presented in Chapter 4.

3.7 Numerical Implementation of Radiative Transfer

Instead of solving the three dimensional RTE (2.2.8) the one-dimensional RTE (2.2.9)

with r = 1 is solved along several directions, to this end the short characteristic method

[KA 1988] is used.8

3.7.1 Boundary Conditions

In horizontal directions all quantities are assumed to be periodic.

Since radiation comes from within the star and not from the outside there is no incoming

radiation, i.e. Irad|top = 0 for all entering rays.

At the bottom of the computational domain the di�usion approximation Iν |bot = Bν is

valid. The di�usion approximation holds for optical depths greater than about ten. The

lower boundary condition can be either applied at a certain optical depth τbot or at a �xed

percentage of the domain. τbot is calculated with the Rosseland mean opacity and in the

region below that border the radiative heating rate Qrad is calculated according to the

di�usion approximation Qrad = ∇ · (κ∇T ) .

3.7.2 Numerical Scheme

Since grey radiative transfer is used the Planck function is S = B(T ) = σ
πT

4.

At grid point P the intensity along a certain ray can be determined if the intensity in the

layer where the short ray originates is known as it is at the upper and lower boundaries.

At the sides the intensity from the previous time step is used for the periodic boundary

condition.

8It is more e�cient and accurate than the long characteristic method [Obe 2007]
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Overview:

1. Nrays ray directions are speci�ed at each grid point xi,j .

2. The rays are classi�ed according to the four corners of the surrounding box.

3. For each ray the points of entrance and exit plus the corresponding distances are

determined. Since the grid moves, this has to be done every step, even point wise

prestoring is impossible.

4. The RTE is solved along each ray.

5. The mean intensity is computed by solid angle integration

6. The radiative heating rate is determined.

ad 1 - ray directions:

Two di�erent approaches are implemented in the ANTARES-code.

The simple method for Nrays rays in two dimensions is to choose evenly spaced angles and

set he components of ri to
(
− cos (2i−1)π

Nrays
, sin (2i−1)π

Nrays

)
. Thus there is no purely horizontal

or vertical ray. The number of directions along which the RTE is solved is a multiple of

four. For the one-dimensional problem the projection of these vectors yields
(
− cos (2i−1)π

Nrays

)
where Nrays has to be an even number.

For three dimensional simulations the one-dimensional RTE would be solved along 24 ray

directions which are chosen according to the angular quadrature formulae of type A4 and

A6 of Carlson [Car 1963].

i xi yi zi

1 1
3

1
3

√
7
9

2 1
3

√
7
9

1
3

3
√

7
9

1
3

1
3

(a) Carlson A4

i xi yi zi

1
√

1
15

√
1
15

√
13
15

2
√

1
15

√
7
15

√
7
15

3
√

1
15

√
13
15

√
1
15

4
√

7
15

√
1
15

√
7
15

5
√

7
15

√
7
15

√
1
15

6
√

13
15

√
1
15

√
1
15

(b) Carlson A6

Table 3.1: ray directions in the �rst octant



48 CHAPTER 3. IMPLEMENTATION IN THE ANTARES CODE

The directions in each octant are arranged in a triangular pattern. In two dimensions A4

reduces to 12 rays, 3 in each quadrant (Figure 3.7.1 on page 48) and in one dimension to

4 di�erent rays.

Figure 3.7.1: ray directions in two dimensions

Blue: equidistant angles; Red: derived from the 3D case

ad 2 - ray classi�cation:

The rays are classi�ed according to the four corners of the surrounding box as this choice

does not depend on the grid-point xi,j as would a classi�cation by the surface directions.

direction

1 Rays entering from the corner xi+1,j+1

-1 Rays entering from the corner xi−1,j−1

2 Rays entering from the corner xi+1,j−1

-2 Rays entering from the corner xi−1,j+1

Table 3.2: ray classi�cation

ad 3 - distances:

The entrance point U as well as the exit point Q can be located either on the surface of

constant radius or of constant angle. They have to be determined separately.
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ad 4 - solving the RTE:

For incoming radiation values of I (τU ) along the ray direction ri are known. The optical

depth τU there is set to zero. To determine I (τU ) along this ray direction one has to

interpolate the values of the required physical quantities to the points U and Q. In two

dimensions 4 points are used for all but the intensity, where 2 points have to su�ce. Then

one evaluates the equation

I (τp) = I (τU ) exp (τu − τp) +

ˆ τP

τU

S (t) exp (t− τp) dt (3.7.1)

numerically to get I (τP ). This procedure is repeated recursively since after the �rst step

one gets just the intensity on a single new point:

Numerical Integration. To perform the numerical integration on the right hand side of

(3.7.1) one has to determine τP and τQ, τU = 0 is already known. The optical depth at

point P is de�ned as τP =
´ P
U ρχdx and at point Q as τQ =

´ Q
U ρχdx.

By constructing a quadratic interpolation polynomial through the three points (U, ρ(U)χ (U)),

(P, ρ(P )χ (P )) and (Q, ρ(Q)χ (Q)) and performing an exact integration of this interpola-

tion polynomial one gets approximations for τP and τQ.

Figure 3.7.2: 1st and 2nd step of the computation of Irad

for a ray in direction 1

A more stable but less accurate approximation is calculated by

τP ≈ 1
2 (ρ (U)χ (U) + ρ (P )χ (P )) ·

∣∣∣ ~UP ∣∣∣
τQ ≈ τP + 1

2 (ρ (P )χ (P ) + ρ (Q)χ (Q)) ·
∣∣∣ ~PQ∣∣∣ (3.7.2)
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here an integral is evaluates twice numerically by the trapezoid rule.

Figure 3.7.3: 8th step thereof

The integration on the right hand side of equation (3.7.1) is performed by a quadrature

rule proposed by Olson and Kunasz. Let τ1 be the optical depth along the path from U to

P and let τ2 be the optical depth along the path from P to Q. A numerical approximation

to the integral
´ τP
τU

S (t) exp (t− τp) dt is given by

ˆ τP

τU

S (t) exp (t− τp) dt = αS (U) + βS (P ) + γS (Q) (3.7.3)
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where

e0 = 1− exp (τ1)

e1 = τ1 − e0

e2 = τ2
1 − 2e0

α =
e0 + (e2 − (2τ1 + τ2) e1)

τ1 (τ1 + τ2)

β =
(2τ + τ2) e1 − e2

τ1τ2

γ =
e2 − τ1e1

τ2 (τ2 + τ1)

Interpolation. The values for the physical quantities at point U are interpolated from the

neighbouring grid points. For the two-dimensional case 4 grid points AU = (xi−1, yi−1),

BU = (xi, yi), CU = (xi+1, yi+1) and DU = (xi+2, yi+2) are used for the interpolation at

U ; AQ, BQ, CQ and DQ are used for the interpolation at Q. For the interpolation of I

only the points BU and CU are used.

For one-dimensional interpolation various methods are implemented in the ANTARES

code, see [Obe 2007] for details.

ad 5 - mean intensity:

For every grid point the one-dimensional RTE is solved along ray directions. To get the

mean intensity an integration over the solid angle is performed. The ray directions are

chosen according to a Gauss-Fourier quadrature rule. Gaussian quadrature is based on

making the formula ˆ 1

−1
F (x)dx =

N∑
i=1

wiF (xi) (3.7.4)

exact for the �rst 2N − 1 powers of x. An analogous quadrature formula for sin jπx and

cos jπx (j = 0, 1, 2, . . . , n− 1) is obtained by applying the trapezoidal-type approximation

1ˆ

−1

F (x)dx ≈ 2

N

N∑
k=1

F ([2k − 1−N + α] /N) , |α| 5 1 (3.7.5)

to the function F (x) = exp (±πnxi) which leads to

1ˆ

−1

F (x) dx ≈ 2

N
exp

[
±πn
N

(1−N + α) i
]
· (3.7.6)

·
N∑
k=1

exp
[
±πn
N

(2k − 2) i
]

(3.7.7)

The error in equation (3.7.6) vanishes for all integers n 6= 0(modN) since

0 =
N∑
k=1

exp
[
±πn
N

(2k − 2) i
]

=
exp (±2πni)− 1

exp (±2πni/N)− 1
(3.7.8)
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Therefore the approximation (3.7.6) is exact for all sinnπx and cosnπx, n 6= 0(modN).

Obviously it is also exact for n = 0) since F (x) is constant.

If α = 0, the trapezoidal approximation is also exact for any odd function F (x).

Thus the rays directions are equidistant and the weights are identical,

J =

Nrays∑
i=1

1

Nrays
I
(
ri
)

(3.7.9)

as is also the case for the A4 and A6 method of Carlson.

ad 6 - radiative heating

The radiative heating rate is given by

Qrad = 4πρχ (J − S) (3.7.10)

Figure 3.7.4: parallelisation test

Parallelisation. To calculate the intensity for a speci�c ray direction in a subdomain

the corresponding processor has to wait until the intensity is calculated in the adjacent

subdomain from which the ray enters. But, for simulations with numerous processors

one has to ensure that as many processors as possible are busy. Since the grid is not

homogeneous and is moving the intersection points of the ray with the grid vary with the
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radius and shift in time, thus there is no order in which one can follow any ray of given ray

direction through the whole computational domain and an algorithm similar to the one

implemented for the equidistant grid (see [Obe 2007]) can not be used. For this reason and

because the time steps are rather small, the fully parallelized version of radiative transfer

is not used. Instead the old values are used on the boundaries of each domain just as it is

done for the boundary condition in lateral direction. Figure 3.7.4 shows a 1D simulation

with su�cient resolution (magenta line in Figure 3.7.5 on page 53), the border between

the domains is between point number 200i and 200i + 1. After 3 minutes (i.e 40000 time

steps) there is no visible di�erence.

3.7.3 The Resolution of Qrad

In order to resolve the steep gradient of density, temperature etc. in the hydrogen ionisation

zone a �ner resolution than speci�ed in Section 3.2 is needed. To get a �rst estimate of the

required spacing, we compare the pressure scale heights Hp = P/∇P in the form P/(ρg)

in the region of interest. Substituting the gas pressure Pgas =
ρRgasT

µ for the pressure P

and the e�ective temperature Teff for the temperature T yields a ratio of pressure scale

heights

Hp

Hp�
=
Teff µ� g�
Teff � µ g

(3.7.11)

Figure 3.7.5: the resolution of Qrad
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In our simulations of the Sun it was found that a spacing of 20km in radial direction

is necessary, this would translate to approximately 4.25 Mm for our particular Cepheid.

But we also must take into account the super-adiabatic gradient ∇ − ∇ad. In the Sun

(∇−∇ad)� ≈ 0.6 for the Cepheid, who was derived by MLT it depends very much on the α-

parameter. For our initial condition no turbulent pressure was included and ∇−∇ad ≈ 14,

thus the grid spacing would reduce to 0.18 Mm or a grid seven times as �ne 9. On the

other hand for the same Cepheid with turbulent pressure included ∇−∇ad ≈ 3.2 and the

grid need only be �ner by a factor two.

While the �rst scenario is the only possible solution for a one dimensional, purely radiat-

ive simulation, there is reason to assume that in more dimensions a smaller factor can be

achieved after convection has set in. The additional computation time is of course sub-

stantial, a factor 7 in grid re�nement leads to a factor ∼ 20 for the number of time steps

required when the time step is limited by ∆trad (3.3.2). That this estimations holds true

at least in 1D as has been tested and in Figure 3.7.5 on page 53 we present a comparison

after 0.25 sec.; obviously a grid re�nement of 4 is not enough while a factor 8 su�ces, the

di�erence to 16 is not worth the cost.

Here I present one dimensional simulations where the grid was re�ned over the whole

domain. In Chapter 4 a two dimensional simulation with co-moving grid re�nement can

be found.

3.7.4 Domain Decomposition for Parallelisation

Parallelisation is done with MPI. Each node processes a rectangular subdomain. The

number of required processors is speci�ed by the number of subdivisions in all spacial dir-

ections. Due to radiative transfer the nodes near the surface have more calculations to work

upon, than the ones in the interior that do only di�usion approximation. In [Obe 2007]

this problem was solved by an extra domain decomposition for radiative transport and by

redistributing all the information needed. But here radiative transport is only done on a

small fraction of the total computational domain and since there is a lower limit on the

number of points on a single processor, this approach would lead to a small number of

processors in radial direction.

This problem is solved by assigning less grid points to the processors on top, so that they

are all kept busy at the same time. This is only possible because there is no call to MPI

routines during the ENO and the radiative transport routines. With 8 processors in radial

direction the distribution was 3 processors with 52 points, one processor with 54 points

and 4 processors with 75 points each. The exact numbers depend on the number of rays

used.

9This is the value supplied by Günter Houdek. After interpolation to our grid and reevaluation of the
equation of state we arrived at a factor 17
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3.8 WENO with Marquina Flux Splitting

If you use a simple polynomial interpolation from the centre grid to the boundary grid

shocks or discontinuities either smear out or run into oscillations. In order to avoid this

various essentially non oscillatory schemes (ENO10) are implemented in the ANTARES

code, where interpolation is done by upwinding adaptive stencils. I will concentrate here

on the scheme used in my simulations namely ENO of 3rd order with Marquina �ux

splitting on a moving grid stretched in one direction11.

The WENO12 method is a weighted combination of adaptive stencils designed to give

high order polynomial approximations of the divergence term in smooth regions. Across

discontinuities the smoothest stencil is chosen in spite of its being of lower order. So for

a 5th order WENO scheme the 3rd order ENO stencils are combined to give 5th order

accuracy in smooth regions, near shocks the accuracy is at least of 3rd order.

In the ANTARES code the WENO scheme of 5th order accuracy is implemented, therefore

this and the modi�cations necessary for a stretched and moving grid will be shown in detail.

For hyperbolic systems the set of conservations laws is �rst transformed to the eigensystem,

where the equations decouple and the upwinding directions can be chosen. For the moving

grid the grid velocity only enters into the eigenvalues, the eigenvectors are unchanged.

3.8.1 The Basics of ENO

WENO schemes are based on ENO schemes, which were �rst introduced by Harten, En-

gquist and Chakravarthy in the form of cell averages. The key idea of ENO schemes is

to use the smoothest stencil among several candidates to approximate the �uxes at cell

boundaries to a high order accuracy and at the same time to avoid spurious oscillations

near shocks. This presentation follows the works of [Shu 1997, FMDO 1998].

The hyperbolic part of the system of conservation laws (2.1.13), (2.1.15) and (2.1.16) can

be written as

∂

∂t

 ρ

ρ~u

e

 = −∇ ·

 ρ~u

ρ~u~u+ pId

(e+ p) ~u

 (3.8.1)

in two dimensions let

~u = (u, v)T

~q = (ρ, ρu, ρv, e)T (3.8.2)

f (~u) =
(
ρu, ρu2 + p, ρuv, (e+ p)u

)T
g (~u) =

(
ρv, ρuv, ρv2 + p, (e+ p) v

)T
10[HEOC 1987], [SO 1988]
11The stretching is only done in radial direction, in angular direction the grid is equidistant q = 1
12[LOC 1994], [JS 1996]
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then 3.8.2 can be rewritten as

~qt = −
(

[fr (~q)]r + [fϕ (~q)]ϕ

)
= −

2∑
i=1

[fri (~q)]ri (3.8.3)

where r1 = r and r2 = ϕ.

In the ANTARES code the spatial discretisation is done for each direction separately. At

the cell boundaries numerical approximations
(
f̂r

)
i± 1

2
,j
and

(
f̂ϕ

)
i,j± 1

2

are calculated in

order to get approximations for

[fr (~q)]r ≈
1

∆ri

((
f̂r

)
i+ 1

2
,j
−
(
f̂r

)
i− 1

2
,j

)
(3.8.4)

[fϕ (~q)]ϕ ≈ 1

∆ϕ

((
f̂ϕ

)
i,j+ 1

2

−
(
f̂ϕ

)
i,j− 1

2

)
at the point ri,j . From now on we will consider only one dimension. Note however that

the radial and angular direction are di�erent. In radial direction the grid is stretched while

it is equidistant in angular direction. I will present here the stencils and coe�cients for

the stretched grid the values for the equidistant grid can be found in [Obe 2007]. For

i = 1, . . . , N the cell boundaries are ri− 1
2

= ri − 1
1+
√
qhi and ri+ 1

2
= ri − q

1+
√
qhi where

hi = ri+ 1
2
− ri− 1

2
and the cells are Ii =

[
ri− 1

2
, ri+ 1

2

]
. Since we do not use ENO near the

physical boundaries in the ANTARES code all values are available for i < 1 and i > N if

needed.

3.8.1.1 Reducing a system into Independent Scalar Equations

Consider a system of N convective conservation laws in one spatial dimension

~Ut +
[
~F
(
~U
)]

x
= 0 (3.8.5)

The basic idea of characteristic numerical schemes is to transform this nonlinear system

into a system of nearly independent scalar equations of the form

ut + vux = 0 (3.8.6)

discretise each scalar equation independently in a v -upwind biased fashion, and then trans-

form the discretised system back into the original variables. In a smooth region of the �ow,

we can get a better understanding of the structure of the system by expanding out the

derivatives as
~Ut + J ~Ux = 0 (3.8.7)

where J = ∂ ~F
∂~U

is the Jacobian matrix of the convective �ux function. If J were a diagonal

matrix with real diagonal elements this system would be decoupled into N independent

scalar equations as desired. We will transform this system into that form by multiplying

by a matrix that diagonalises J. If this is possible the system is called hyperbolic. The
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necessary matrices turn out to be the matrices of left-multiplying and right-multiplying

eigenvectors of J. Thus we require that J has N real eigenvalues λp, p = 1, . . . , N , and

that there are N eigenvectors for multiplying against J from the right. These eigenvectors

are the columns of a matrix R in the equation

JR = RDiag (λp) (3.8.8)

In the same way there are N eigenvalues for multiplying against J from the left, these are

used as the rows of a Matrix L so that

LJ = Diag (λp) L (3.8.9)

Thus the matrices L and R can be chosen to be inverses. These matrices transform to a

system of coordinates in which J is diagonalised as desired:

LJR = Diag (λp) (3.8.10)

On any particular node x0 L and R have the values L0and R0. To get a locally diagonalised

form the system equation is multiplied by the constant matrix L0 which diagonalises J at

x0 with eigenvalues λp0 and nearly diagonalises J at nearby points.[
L0
~U
]
t
+ L0JR0

[
L0
~U
]
x

= 0 (3.8.11)

Thus the equations are su�ciently decoupled for us to apply upwind biased discretisation

independently to each component, with λp0 determining the upwind biased direction for

the p-th component equation. Once this system is fully discretised, the entire system is

multiplied by R0 = L−1
0 to return to the original variables.

In terms of (3.8.2) the procedure of discretising at a point is simply to multiply the entire

system by the left eigenvector matrix L0 and discretise the p = 1, . . . , N scalar components

of this system [(
L0
~U
)
p

]
t

+

[(
L0
~F
(
~U
))

p

]
x

= 0 (3.8.12)

independently using upwind biased di�erencing with the upwind direction for the p-th

equation determined by the sign of λp. Then the resulting spatially discretised system

of equations is multiplied by R0 to recover the spatially discretised �uxes for the original

variables:
~Ut +R0∆

(
L0
~F
(
~U
))

= 0 (3.8.13)

where ∆ stands for the upwind biased discretisation operator.

λp is called the p-th characteristic velocity or speed,
(
L0
~U
)
p

= ~Lp0·~U the p-th characteristic

state or �eld and
(
L0
~F
(
~U
))

p
= ~Lp0 · ~F

(
~U
)
the p-th characteristic �ux. According to the

local linearisation it is approximately true that the p-th characteristic �eld rigidly translates

in space at the p-th characteristic velocity. Thus this decomposition corresponds to the

local physical propagation of independent �waves� or �signals�.
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3.8.1.2 Eigenvalues and Eigenvectors for a Moving Grid

If there is a grid velocity involved the matrices of right and left eigenvectors remain un-

changed, for two dimensions they are for direction x (uy is the �uid velocity in the per-

pendicular direction):

R =


1 ux − c uy −uxc+ e+p

ρ

1 ux 0 e
ρ − u

2
y − ρa2

0 0 1 uy

1 ux + c uy uxc+ e+p
ρ

 (3.8.14)

L =


−1

2ai1a1 + ux
c −1

2

(
uxai1 + 1

c

)
−1

2uyai1
1
2ai1

ai1a1 + 1 uxai1 uyai1 −ai1
ai1uya1 uxuyai1 1 + u2

yai1 −uyai1
−1

2ai1a1 + ux
c −1

2

(
uxai1 − 1

c

)
−1

2uyai1
1
2ai1


T

, (3.8.15)

where c =
(
∂p
∂T /

(
ρ ∂ε∂T ai1

))1/2
, a1 = −ρa2 − u2

x − u2
y + e

ρ , a2 = − ∂ε
∂ρ +

(
ρ∂p∂ρ

)
/ai1 and

ai1=
ρ

ρ2a2+p
.

The only di�erence is in the eigenvalues. They change from
ux − c
ux

ux

ux + c

 to


ux − ug − c
ux − ug
ux − ug

ux − ug + c

 .

Reconstruction from cell averages

Given the cell averages vi ≡ v (ri) of a function we want to �nd a numerical �ux function

v̂i+ 1
2
≡ v̂ (vi−r, . . . , vi+s) such that the �ux di�erence approximates the derivative v′ (ri)

to k -th order accuracy where v is su�ciently smooth:

1

∆ri

(
v̂i+ 1

2
− v̂i− 1

2

)
= v′ (ri) +O

(
rki

)
(i = 1, . . . N) (3.8.16)

whereO is a Landau symbol. For each i = 1, . . . N we consider a stencil S (i) = {Ii−r, . . . , Ii+s} ,
r + s = k − 1, r, s ≥ 0, then there exists a unique polynomial p (x)of degree k-1 with

1

∆ri

ˆ ri+1/2

ri−1/2

p (ξ) dξ = vi (3.8.17)

and

p (ri) = v (ri) +O
(
rki

)
(3.8.18)

inside Ii. In order to construct p (x) we de�ne the primitive function V (x) =
´ x
−∞ v (ξ) dξ

then

V
(
ri+ 1

2

)
=

i∑
j=−∞

ˆ rj+1/2

rj−1/2

v (ξ) dξ =
i∑

j=−∞
vj∆ri (3.8.19)
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P (x)is the unique polynomial of degree ≤ k that interpolates V (x) at the k + 1 points

ri−r−1/2, . . . , ri+s+1/2. Let p(x) = P ′ (x), then 3.8.17 is valid since ∀j = i− r, . . . , i+ s

1

∆rj

ˆ rj+1/2

rj−1/2

p (ξ) dξ =
1

∆rj

ˆ rj+1/2

rj−1/2

P ′ (ξ) dξ

=
1

∆rj

(
P
(
rj+ 1

2

)
− P

(
rj− 1

2

))
=

1

∆rj

(
V
(
rj+ 1

2

)
− V

(
rj− 1

2

))
=

1

∆rj

(ˆ rj+1/2

−∞
v (ξ) dξ −

ˆ rj−1/2

−∞
v (ξ) dξ

)
=

1

∆rj

ˆ rj+1/2

rj−1/2

v (ξ) dξ

= vj

Since P (ri) = V (ri) +O
(

∆rk+1
i

)
standard approximation theory yields p (ri) = v (ri) +

O
(

∆rk+1
i

)
and (3.8.18) is valid.

grid ri− 5
2

ri−2 ri− 3
2

ri−1 ri− 1
2

ri ri+ 1
2

ri+1 ri+ 3
2

ri+2 ri+ 5
2

ri+3

S−1 (i) ri−2 ri−1 ri ri+ 1
2

S0 (i) ri−1 ri ri+ 1
2

ri+1

S1 (i) ri ri+ 1
2

ri+1 ri+2

S2 (i) ri+ 1
2

ri+1 ri+2 ri+3

Table 3.3: stencil location Sr (i)for k = 3 and r = −1, 0, 1, 2

The polynomial p (ri) give s the approximations:

v̂−i+1/2 = p
(
ri+1/2

)
= v

(
ri+1/2

)
+O

(
∆rki

)
v̂+
i−1/2 = p

(
ri−1/2

)
= v

(
ri−1/2

)
+O

(
∆rki

)
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k r j=0 j=1 j=2

1 -1 1

0 1

2 -1 q+2
q+1 − 1

q+1

0 q
q+1

1
q+1

1 − q
q+1

2q+1
q+1

3 -1 q3+3q2+4q+3
q3+2q2+2q+1

− q3+2q2+3q+1
q(q3+2q2+2q+1)

0 q2

q2+q+1
q2+2q+2

q3+2q2+2q+1
− 1
q3+2q2+2q+1

1 − q3

q3+2q2+2q+1

q(2q2+2q+1)
q3+2q2+2q+1

1
q2+q+1

2 q3

q2+q+1
− q(q3+3q2+2q+1)

q3+2q2+2q+1
3q3+4q2+3q+1
q3+2q2+2q+1

Table 3.4: the constants crj for k = 1, 2, 3, j = 0, 1, 2

j r=-1 r=0 r=1

0 q5+3q4+5q3+7q2+5q+4
q5+2q4+3q3+3q2+2q+1

q3

q3+q2+q+1
− q5

q5+2q4+3q3+3q2+2q+1

1 − q6+2q5+5q4+5q3+6q2+3q+1
q2(q5+2q4+3q3+3q2+2q+1)

q4+2q3+4q2+3q+3
q5+2q4+3q3+3q2+2q+1

q2(2q3+2q2+2q+1)
q5+2q4+3q3+3q2+2q+1

2 q5+2q4+3q3+4q2+2q+1
q3(q5+2q4+3q3+3q2+2q+1)

− q3+q2+2q+1
q(q5+2q4+3q3+3q2+2q+1)

q3+2q2+2q+2
q5+2q4+3q3+3q2+2q+1

3 − 1
q3(q3+q2+q+1)

1
q(q5+2q4+3q3+3q2+2q+1)

− 1
q5+2q4+3q3+3q2+2q+1

Table 3.5: the constants crj for k = 4, r = −1, 0, 1
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j r=2 r=3

0 q6

q5+2q4+3q3+3q2+2q+1
− q6

q3+q2+q+1

1 − q3(q3+2q2+q+1)
q5+2q4+3q3+3q2+2q+1

q3(q5+2q4+4q3+3q2+2q+1)
q5+2q4+3q3+3q2+2q+1

2
q(3q4+3q3+4q2+2q+1)
q5+2q4+3q3+3q2+2q+1

− q(q6+3q5+6q4+5q3+5q2+2q+1)
q5+2q4+3q3+3q2+2q+1

3 1
q3+q2+q+1

4q5+5q4+7q3+5q2+3q+1
q5+2q4+3q3+3q2+2q+1

Table 3.6: the constants crj for k = 4, r = 2, 3

j r=-1

0 q9+4q8+9q7+16q6+22q5+26q4+24q3+19q2+11q+5
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

1 − q11+3q10+8q9+14q8+22q7+27q6+29q5+25q4+19q3+10q2+4q+1
q3(q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1)

2 q11+3q10+7q9+13q8+19q7+23q6+24q5+21q4+14q3+8q2+3q+1
q5(q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1)

3 − q7+2q6+3q5+4q4+5q3+3q2+2q+1
q6(q7+2q6+3q5+4q4+4q3+3q2+2q+1)

4 1
q6(q4+q3+q2+q+1)

j r=0

0 q4

q4+q3+q2+q+1

1 q8+3q7+7q6+11q5+15q4+15q3+13q2+8q+4
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

2 − q8+2q7+5q6+7q5+9q4+8q3+7q2+3q+1
q2(q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1)

3 q6+2q5+3q4+4q3+4q2+2q+1
q3(q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1)

4 − 1
q3(q7+2q6+3q5+4q4+4q3+3q2+2q+1)

Table 3.7: the constants crj for k = 5, r = −1, 0
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j r=1

0 − q7

q7+2q6+3q5+4q4+4q3+3q2+2q+1

1
q3(2q4+2q3+2q2+2q+1)

q7+2q6+3q5+4q4+4q3+3q2+2q+1

2 q7+3q6+6q5+9q4+10q3+9q2+6q+3
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

3 − q5+2q4+3q3+3q2+3q+1
q(q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1)

4 1
q(q8+2q7+4q6+5q5+6q4+5q3+4q2+2q+1)

j r=2

0 q9

q8+2q7+4q6+5q5+6q4+5q3+4q2+2q+1

1 − q5(q5+3q4+3q3+3q2+2q+1)
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

2
q2(3q7+6q6+9q5+10q4+9q3+6q2+3q+1)

q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

3 q4+2q3+2q2+2q+2
q7+2q6+3q5+4q4+4q3+3q2+2q+1

4 − 1
q7+2q6+3q5+4q4+4q3+3q2+2q+1

j r=3

0 − q10

q7+2q6+3q5+4q4+4q3+3q2+2q+1

1
q6(q6+2q5+4q4+4q3+3q2+2q+1)

q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

2 − q3(q8+3q7+7q6+8q5+9q4+7q3+5q2+2q+1)
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

3
q(4q8+8q7+13q6+15q5+15q4+11q3+7q2+3q+1)
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

4 1
q4+q3+q2+q+1

Table 3.8: the constants crj for k = 5, r = 1, 2, 3
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j r=4

0 q10

q4+q3+q2+q+1

1 − q6(q7+2q6+3q5+5q4+4q3+3q2+2q+1)
q7+2q6+3q5+4q4+4q3+3q2+2q+1

2
q3(q11+3q10+8q9+14q8+21q7+24q6+23q5+19q4+13q3+7q2+3q+1)

q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

3 − q(q11+4q10+10q9+19q8+25q7+29q6+27q5+22q4+14q3+8q2+3q+1)
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

4 5q9+11q8+19q7+24q6+26q5+22q4+16q3+9q2+4q+1
q9+3q8+6q7+9q6+11q5+11q4+9q3+6q2+3q+1

Table 3.9: the constants crj for k = 5, r = 4

Di�erentiating v (ri) = vi = 1
∆ri

´ ri+1/2

ri−1/2
v (ξ) dξ gives v (ri) = 1

∆ri

(
v
(
rj+ 1

2

)
− v

(
rj− 1

2

))
and

after replacing v
(
rj+ 1

2

)
and v

(
rj− 1

2

)
by the approximations v̂−i+1/2 and v̂+

i−1/2 the accur-

acy requirement (3.8.25) is met as long as the O
(
∆rki

)
terms in the approximations v̂−i+1/2

and v̂+
i−1/2are smooth - an assumption that is true in practice. Hence the di�erence in

(3.8.25) gives an extra O (∆ri) to cancel the one in the denominator.

The mapping from the given cell averages {vj} in the stencil S (i) to the values v̂−i+1/2 and

v̂+
i−1/2 is linear. Therefore there exist constants crj and c̃rj depending on the left shift r of

the stencil S (i) and the accuracy order k but not on the function v (x) itself, such that:

v̂−i+1/2 =

k−1∑
j=0

crjvi−r+j

v̂+
i−1/2 =

k−1∑
j=0

c̃rjvi−r+j

For reasons of symmetry c̃rj = cr−1,j . By manipulating the interpolation polynomial P (x)

and taking the derivative to get p (x) one gets these coe�cients crj and c̃rj which are

prestored in the code. In tables 3.1 to 3.8 the coe�cients up to order k=5 for a stretched

grid can be seen. For ANTARES the orders 3 and 5 are relevant. Coe�cients for the

equidistant grid up to order k=6 can be found in [Obe 2007, Shu 1997].

Near discontinuities in the solution of hyperbolic conservation laws oscillations can occur

because the stencil contains discontinuities. Therefore an adaptive stencil S (i) is chosen

for the interpolation of the cell boundary �uxes, the left shift r changes with the location

ri. The main idea of ENO approximation is after all to exclude discontinuous cells from

the stencil S (i).
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3.8.2 The Advantages of WENO

Instead of choosing the �smoothest� stencil for the interpolation polynomial in the ENO

reconstruction, a convex combination of all candidates is used to achieve the essentially

non-oscillatory property. [LOC 1994]

Instead of performing a 2k-1 (5 in ANTARES) order ENO scheme using stencils of that

order a combination of k stencils of order k is used to obtain the �nal accuracy 2k − 1.

For a k -th order ENO scheme there are k candidate stencils

Sr (i) = {xi−r, . . . , xi−r+k−1} , r = 1, . . . , k − 1

which produce k di�erent reconstructions of the value vi+ 1
2
:

v̂
(r)
i+1/2 =

k−1∑
j=0

crjvi−r+j , r = 1, . . . , k − 1

The convex combination of the values v̂(r)
i+1/2 for the WENO approach is

v̂i+1/2 =
k−1∑
r=0

wrv̂
(r)
i+1/2, r = 1, . . . , k − 1

and is used as a new approximation for v̄i+1/2. For the weights wr ≥ 0, ∀r and
∑k−1

r=0 wr = 1

must be true. For a smooth function v (x)there are constants dr so that
∑k−1

k=0 dr = 1 and

v̂−i+1/2 =

k−1∑
r=0

drv̂
(r)
i+1/2 = v

(
ri+1/2

)
+O

(
4r2k−1

i

)
(3.8.20)

and constants d̃r so that
∑k−1

k=0 d̃r = 1 and

v̂+
i−1/2 =

k−1∑
r=0

d̃rv̂
(r)
i+1/2 = v

(
ri−1/2

)
+O

(
4r2k−1

i

)
(3.8.21)

On the stretched grid for these constants are

k d0 d1 d2

1 1

2 q+1
q2+q+1

q2

q2+q+1

3 q2+q+1
q6+q5+2q4+2q3+2q2+q+1

q2(q3+2q2+2q+1)
q6+q5+2q4+2q3+2q2+q+1

q6

q6+q5+2q4+2q3+2q2+q+1

Table 3.10: weights for k=1,2,3 for v̂−i+1/2
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k d̃0 d̃1 d̃2

1 1

2 1
q2+q+1

q2+q
q2+q+1

3 1
q6+q5+2q4+2q3+2q2+q+1

q(q3+2q2+2q+1)
q6+q5+2q4+2q3+2q2+q+1

q4(q2+q+1)
q6+q5+2q4+2q3+2q2+q+1

Table 3.11: weights for k=1,2,3 for v̂+
i−1/2

Note that d̃r 6= dk−1−r for the stretched grid but would be the same if it where equidistant

(q = 1).

If wr = dr +O
(
4r2k−1

i

)
then v̂∓i±1/2 (2k − 1)-th order accurate since

k−1∑
r=0

wrv̂
(r)
i+1/2 −

k−1∑
r=0

drv̂
(r)
i+1/2 =

k−1∑
r=0

(wr − dr)
(
v̂

(r)
i+1/2 − v (i+ 1/2)

)
=

k−1∑
r=0

O
(
4rk−1

i

)
O
(
4rki

)
= O

(
4r2k−1

i

)
In [LOC 1994] weights of the form

wr =
αr∑k−1
s=0 αs

(3.8.22)

with αr = dr
(ε+βr)

2 are proposed. ε > 0 is the machine accuracy, which is introduced here

to ensure that the denominator does not become zero. βrare smoothness indicators of the

stencil supposed to be zero when contains a discontinuity. A robust choice of smoothness

indicators is de�ned by

βr =

k−1∑
l=1

ri+1/2ˆ

ri−1/2

∆r2l−1
i

(
∂lpr (x)

∂lx

)
dx (3.8.23)

where pr (x) is the reconstruction polynomial on the stencil Sr (i). The smoothness indic-

ators βr are a measure for the total variation in the interval Ii.

With this choice the smoothness indicators are for k = 2:

β0 =

(
2

q + 1
v̄i+1 −

2

q + 1
v̄i

)2

β1 =

(
2q

q + 1
v̄i −

2q

q + 1
v̄i−1

)2

(3.8.24)
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and for k = 3:

β0 = Y 2
0 (v̄i − (q + 1) v̄i+1 + v̄i+2)2 + (Z10v̄i + Z20v̄i+1 + Z30v̄i+2)2

β1 = Y 2
1 (v̄i − (q + 1) v̄i+1 + v̄i+2)2 + (Z11v̄i−1 + Z21v̄i + Z31v̄i+1)2 (3.8.25)

β2 = Y 2
2 (v̄i − (q + 1) v̄i+1 + v̄i+2)2 + (Z12v̄i−2 + Z22v̄i−1 + Z32v̄i)

2

where

β Y Z1 Z2 Z3

0
√

39
q(q3+2q2+2q+1)

2q2+4q+3
q3+2q2+2q+1

− 2q3+4q2+5q+1
q(q3+2q2+2q+1)

2q+1
q(q3+2q2+2q+1)

1
√

39q
q3+2q2+2q+1

2q3+q2

q3+2q2+2q+1
−2q3−q2+q+2
q3+2q2+2q+1 − q+2

q3+2q2+2q+1

2
√

39q3

q3+2q2+2q+1
q4+2q3

q3+2q2+2q+1
− q4+5q3+4q2+2q

q3+2q2+2q+1
3q3+4q2+2q
q3+2q2+2q+1

Table 3.12: smoothness indicators for k = 3

With these ingredients the WENO algorithm can be performed in the following way

� The coe�cients crj , dr, Yr and Zrj are prestored.

� Calculate the k approximations v̂(r)
i+1/2 and v̂(r)

i−1/2 of order k

� Determine the smoothness indicators βr3.8.25

� Form the weights wr 3.8.22

� Calculate the (2k − 1)-th order accurate reconstructions v̂−i+1/2 and v̂+
i−1/2.

The ENO or WENO-algorithm yields two values v̂−i+1/2 resulting from the stencil S (i) and

v̂+
i−1/2 resulting from S (i+ 1) . For stability it is important that upwinding is used in

constructing, this can be achieved by computing the Roe speed āi+1/2 ≡
f(ui+1)−f(ui)

ui+1−ui

� If āi+1/2 ≥ 0 the movement is from the left. The numerical �ux f̂i+1/2 is v̂−i+1/2 .

� Otherwise the movement is from the right. The numerical �ux f̂i+1/2 is v̂+
i−1/2.

3.8.3 A Di�erent Approach to WENO-Coe�cients

From a di�erent point of view another set of approximation coe�cients Crj , weights Dr

and smoothness indicators Bi can be derived, which are also available in the ANTARES-

code and were used for simulations presented in Chapter 4. Instead of as viewing v (ri)
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as cell averages and interpolating the primitive function, the �ux function v (ri) itself is

interpolated to the boundaries, leading to a di�erent set of coe�cients. This approach was

chosen because we use a polar grid and though the spacing is that of a stretched grid in

radial direction, the cell-volumes depend also on the radius as does the shape of the cells.

Though this error is very small it can not be neglected.

k r j=0 j=1 j=2 j=3 j=4

1 -1 1

0 1

2 -1 3/2 -1/2

0 1/2 1/2

1 -1/2 3/2

3 -1 15/8 -5/4 3/8

0 3/8 3/4 -1/8

1 −1/8 3/4 3/8

2 3/8 -5/4 15/8

4 -1 35/16 -35/16 21/16 -5/16

0 5/16 15/16 -5/16 1/16

1 −1/16 9/16 9/16 -1/16

2 1/16 -5/16 15/16 5/16

3 −5/16 21/16 -35/16 35/16

5 -1 315/128 -105/32 189/64 -45/32 35/128

0 35/128 35/32 -35/64 7/32 -5/128

1 −5/128 15/32 45/64 -5/32 3/128

2 3/128 -5/32 45/64 15/32 -5/128

3 −5/128 7/32 -35/64 35/32 35/128

4 35/128 -45/32 189/64 -105/32 315/128

Table 3.13: the constants Crj for k = 1, . . . , 5, j = 0, . . . , 4 on an equidistant grid
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k r j=0 j=1 j=2

1 -1 1

0 1

2 -1 a2+a+1
a(a+1) − 1

a(a+1)

0 a2

a2+1
1

a2+1

1 − a2

a+1
a2+a+1
a+1

3 -1 a6+2a5+3a4+3a3+3a2+2a+1
a2(a4+2a3+2a2+2a+1)

−a4+a3+a2+a+1
a4(a2+2a+1)

a2+a+1
a4(a4+2a3+2a2+2a+1)

0
a2(a2+a+1)

a4+2a3+2a2+2a+1
a2+a+1

a(a2+2a+1)
− 1
a(a4+2a3+2a2+2a+1)

1 − a5

a+2a3+2a2+2a+1
a(a2+a+1)
a+2a+1

a2+a+1
a4+2a3+2a2+2a+1

2
a6(a2+a+1)

a4+2a3+2a2+2a+1 −a2(a4+a3+a2+a+1)
a2+2a+1

a6+2a5+3a4+3a3+3a2+2a+1
a4+2a3+2a2+2a+1

Table 3.14: the constants Crj for k = 1, 2, 3, j = 0, 1, 2

On the stretched grid, for better readability a ≡ √q:

j r=-1

0 a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1
a3(a7+2a6+2a5+3a4+3a3+2a2+2a+1)

1 −a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1
a7(a5+3a4+4a3+4a2+3a+1)

2 a8+2a7+3a6+3a5+3a4+3a3+3a2+2a+1
a9(a5+3a4+4a3+4a2+3a+1)

3 − a4+a3+a2+a+1
a9(a7+2a6+2a5+3a4+3a3+2a2+2a+1)

Table 3.15: the constants crj for k = 4, r = −1
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j r=0 r=1

0 a3(a4+a3+a2+a+1)
a7+2a6+2a5+3a4+3a3+2a2+2a+1

− a8

a7+2a6+2a5+3a4+3a3+2a2+2a+1

1 a6+2a5+3a4+3a3+3a2+2a+1
a2(a5+3a4+4a3+4a2+3a+1)

a2(a4+2a3+3a2+2a+1)
a5+3a4+4a3+4a2+3a+1

2 − a4+a3+a2+a+1
a4(a5+3a4+4a3+4a2+3a+1)

a4+2a3+3a2+2a+1
a(a5+3a4+4a3+4a2+3a+1)

3 1
a4(a7+2a6+2a5+3a4+3a3+2a2+2a+1)

− 1
a(a7+2a6+2a5+3a4+3a3+2a2+2a+1)

j r=2 r=3

0 a11

a7+2a6+2a5+3a4+3a3+2a2+2a+1 − a12(a4+a3+a2+a+1)
a7+2a6+2a5+3a4+3a3+2a2+2a+1

1 − a5(a4+a3+a2+a+1)
a5+3a4+4a3+4a2+3a+1

a6(a8+2a7+3a6+3a5+3a4+3a3+3a2+2a+1)
a5+3a4+4a3+4a2+3a+1

2 a(a6+2a5+3a4+3a3+3a2+2a+1)
a5+3a4+4a3+4a2+3a+1

−a2(a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1)
a5+3a4+4a3+4a2+3a+1

3 a4+a3+a2+a+1
a7+2a6+2a5+3a4+3a3+2a2+2a+1

a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1

a7+2a6+2a5+3a4+3a3+2a2+2a+1

Table 3.16: the constants crj for k = 4, r = 0, ..., 3

j r=-1

0 a18+3a17+6a16+10a15+15a14+20a13+25a12+29a11+32a10+33a9+32a8+29a7+25a6+20a5+15a4+10a3+6a2+3a+1

a4(a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1)

1 −a16+2a15+3a14+5a13+7a12+8a11+10a10+11a9+11a8+11a7+10a6+8a5+7a4+5a3+3a2+2a+1

a10(a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1)

2 a16+3a15+6a14+9a13+12a12+15a11+18a10+20a9+21a8+20a7+18a6+15a5+12a4+9a3+6a2+3a+1

a14(a8+4a7+8a6+12a5+14a4+12a3+8a2+4a+1)

3 −a12+2a11+3a10+4a9+5a8+5a7+5a6+5a5+5a4+4a3+3a2+2a+1
a16(a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1)

4 a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1
a16(a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1)

Table 3.17: the constants Crj for k = 5, r = −1
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j r=0

0
a4(a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1)

a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

1 a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1
a3(a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1)

2 −a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1
a7(a8+4a7+8a6+12a5+14a4+12a3+8a2+4a+1)

3 a6+a5+a4+a3+a2+a+1
a9(a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1)

4 − a4+a3+a2+a+1
a9(a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1)

j r=1

0 − a11(a4+a3+a2+a+1)
a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

1
a3(a6+2a5+3a4+3a3+3a2+2a+1)

a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1

2 a8+3a7+6a6+8a5+9a4+8a3+6a2+3a+1
a2(a8+4a7+8a6+12a5+14a4+12a3+8a2+4a+1)

3 − a4+a3+a2+a+1
a4(a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1)

4 a2+a+1
a4(a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1)

j r=2

0
a16(a2+a+1)

a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

1 − a8(a4+a3+a2+a+1)
a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1

2
a2(a8+3a7+6a6+8a5+9a4+8a3+6a2+3a+1)
a8+4a7+8a6+12a5+14a4+12a3+8a2+4a+1

3 a6+2a5+3a4+3a3+3a2+2a+1
a(a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1)

4 − a4+a3+a2+a+1
a(a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1)

Table 3.18: the constants Crj for k = 5, r = 0, 1, 2



3.8. WENO WITH MARQUINA FLUX SPLITTING 71

j r=3

0 − a19(a4+a3+a2+a+1)
a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

1
a11(a6+a5+a4+a3+a2+a+1)

a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1

2 −a5(a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1)
a8+4a7+8a6+12a5+14a4+12a3+8a2+4a+1

3
a(a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1)

a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1

4 a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1
a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

j r=4

0
a20(a10+2a9+3a8+4a7+5a6+5a5+5a4+4a3+3a2+2a+1)

a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

1 −a12(a12+2a11+3a10+4a9+5a8+5a7+5a6+5a5+5a4+4a3+3a2+2a+1)
a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1

2 a6(a16+3a15+6a14+9a13+12a12+15a11+18a10+20a9+21a8+20a7+18a6+15a5+12a4+9a3+6a2+3a+1)
a8+4a7+8a6+12a5+14a4+12a3+8a2+4a+1

3 −a2(a16+2a15+3a14+5a13+7a12+8a11+10a10+11a9+11a8+11a7+10a6+8a5+7a4+5a3+3a2+2a+1)
a8+3a7+4a6+5a5+6a4+5a3+4a2+3a+1

4 a18+3a17+6a16+10a15+15a14+20a13+25a12+29a11+32a10+33a9+32a8+29a7+25a6+20a5+15a4+10a3+6a2+3a+1

a14+3a13+5a12+8a11+11a10+13a9+15a8+16a7+15a6+13a5+11a4+8a3+5a2+3a+1

Table 3.19: the constants Crj for k = 5, r = 3, 4

k 1 2 3

D0 1 a2+a+1
a3+a2+a+1

a4+a3+a2+a+1
a10+a9+a8+2a7+2a6+2a5+2a4+2a3+a2+a+1

D1
a3

a3+a2+a+1

a3(a4+a3+a2+a+1)
a8+a7+a5+2a4+a3+a+1

D2
a10

a10+a9+a8+2a7+2a6+2a5+2a4+2a3+a2+a+1

Table 3.20: weights for k=1,2,3 for v̂−i+1/2
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k 1 2 3

D̃0 1 1
a3+a2+a+1

1
a10+a9+a8+2a7+2a6+2a5+2a4+2a3+a2+a+1

D̃1
a(a2+a+1)
a3+a2+a+1

a(a4+a3+a2+a+1)
a8+a7+a5+2a4+a3+a+1

D̃2
a6(a4+a3+a2+a+1)

a10+a9+a8+2a7+2a6+2a5+2a4+2a3+a2+a+1

Table 3.21: weights for k=1,2,3 for v̂+
i−1/2

On the other hand the approach via exact cell volumes is impossible since ENO methods

exist only for equidistant or stretched grids. For consistency this point of view is also

assumed for the angular (equidistant) direction. Here I present the all coe�cients both

types of grids.

on the equidistant grid:

k 1 2 3

d0 1 3/4 5/16

d1 1/4 5/8

d2 1/16

Table 3.22: weights for k=1,2,3 for v̂−i+1/2

The smoothness measurement are now for k = 2

β0 = (av̄i+1 − av̄i)2

β1 =

(
1

a
v̄i −

1

a
v̄i−1

)2

(3.8.26)

and for k = 3:

β0 = Y 2
0 (v̄i − (q + 1) v̄i+1 + v̄i+2)2 + (Z10v̄i + Z20v̄i+1 + Z30v̄i+2)2

β1 = Y 2
1 (v̄i − (q + 1) v̄i+1 + v̄i+2)2 + (Z11v̄i−1 + Z21v̄i + Z31v̄i+1)2

β2 = Y 2
2 (v̄i − (q + 1) v̄i+1 + v̄i+2)2 + (Z12v̄i−2 + Z22v̄i−1 + Z32v̄i)

2

where now
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β Y Z1 Z2 Z3

0
√

13√
3a4(a2+1)

a2+a+1
a2(a+1)

−a4+a3+a2+a+1
a4(a+1)

1
a4(a+1)

1
√

13√
3(a2+1)

a2

a+1
−a3+1
a(a+1) − 1

a(a+1)

2
√

13a4√
3(a2+1)

a5

a+1
−a(a4+a2+a+1)

a+1
a(a2+a+1)

a+1

Table 3.23: smoothness indicators for k = 3

Note that on the equidistant grid the smoothness indicators are the same for each method,

this does not hold true on a stretched grid.

When using the original coe�cients in an one dimensional simulation energy is not pre-

served in the long run, over the �rst 100 days it increases or decreases depending on the

initial condition. With the other set of coe�cients all the conserved variables are stable.

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48

(a) interpolation of the primitive function

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48

(b) interpolation of the �ux function

Figure 3.8.1: e�ects of di�erent ENO coe�cients

Variation of radius (red) and total energy (green) during the �rst 48 days in one dimension.

3.8.4 Marquina Flux Splitting and Entropy Fix

When the states di�er greatly across the cell wall using a single intermediate state in the

transformation as presented above may add subtle spurious features to the solution. As

an alternative [DM 1996] recommended obtaining the wall �ux from a splitting procedure

based on �uxes computed separately from the left and from the right side. At so called

sonic points, i.e. a place where a characteristic velocity changes sign, it is possible to

have a stationary expansion shock with a discontinuous jump in value. If this jump where

smoothed out even slightly it would break up into an �expansion fan� which is the desired

physical solution.
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If there is a nearby sonic point add high order dissipation to the calculation of f̂i+1/2 being

extremely small if the solution is locally smooth but large enough to break up an expansion

shock. Using this �ux splitting method �xes the problematic cases cases in [FMDO 1998]

whereon the following presentation is based. Replacing the choice for the one state Ui+1/2

by two states when interpolating from the left and from the right leads to the de�nition of

JLi+1/2 and JRi+1/2. Now there are two eigensystems for each ri+1/2 the upwind direction is

chosen to be

1. only to the right if λLi+1/2 > 0 and λRi+1/2 > 0 . Fluxes are interpolated to the right

using JLi+1/2 . The �uxes in the JRi+1/2 scheme are set to zero.

2. only to the left if λLi+1/2 < 0 andλRi+1/2 < 0 . Fluxes are interpolated to the left using

JRi+1/2. The �uxes in the scheme are set to zero JLi+1/2 .

3. When the signs of the eigenvalues di�er a sonic point is nearby and an entropy

�x (see below) with a dissipation coe�cient αi+1/2 = max
(∣∣λL∣∣ , ∣∣λR∣∣) is applied.

In the computation of f̂Li+1/2 f̂
+
i+1/2 is evaluated normally and f̂−i+1/2 = 0. In the

computation of f̂Ri+1/2 f̂
−
i+1/2 is evaluated normally and f̂+

i+1/2 = 0. Thus f̂Li+1/2 =

f̂−i+1/2 and f̂Ri+1/2 = f̂+
i+1/2.

3.8.4.1 Finding Ui+1/2 with Marquina Flux Splitting

Given a cell wall located at ri+1/2 the states ULi+1/2 and URi+1/2 can be found thus:

1. Take the upwind direction

2. Choose the divided di�erences of higher order by taking the one of smaller absolute

value.

The divided di�erences are de�ned as13

D0
ju = uj

D1
j+1/2u =

uj+1 − uj
∆rj

(3.8.27)

D0
jU =

D1
j+1/2u−D

1
j−1/2u

∆rj + ∆rj−1

Looking for uLi+1/2: k = i Looking for uRi+1/2: k = i+ 1

Q0(r) = D0
ku = uk (3.8.28)

13u is a component of U



3.8. WENO WITH MARQUINA FLUX SPLITTING 75

If
(∣∣∣D1

k−1/2u
∣∣∣ < ∣∣∣D1

k+1/2u
∣∣∣) then

c = D1
k−1/2u , k∗ = k − 1

else c = D1
k+1/2u , k∗ = k endif

If
(∣∣∣D1

k−1/2u
∣∣∣ ≤ ∣∣∣D1

k+1/2u
∣∣∣) then

c = D1
k−1/2u , k∗ = k − 1

else c = D1
k+1/2u , k∗ = k endif

Q1(r) = c (r − rj) (3.8.29)

If
(∣∣D2

k∗u
∣∣ < ∣∣D2

k∗+1u
∣∣) then

c∗ = D2
k∗u

else c∗ = D2
k∗+1u endif

If
(∣∣D2

k∗u
∣∣ ≤ ∣∣D2

k∗+1u
∣∣) then

c∗ = D2
k∗u

else c∗ = D2
k∗+1u endif

Q2(r) = c∗ (r − rk∗) (r − rk∗+1) (3.8.30)

In either cases ui+1/2 is given by

ui+1/2 = Q0

(
ri+1/2

)
+Q1

(
ri+1/2

)
+Q2

(
ri+1/2

)
(3.8.31)

With that states for ULi+1/2 and URi+1/2 one can �nd the corresponding Jacobians JLi+1/2

and JRi+1/2 and their associated eigensystems.

3.8.4.2 WENO-Roe Discretisation

Interpolating the �uxes to ri+1/2 to get f̂i+1/2 is done via de�ning a primitive function H

the goal being to calculate which then gives. Again divided di�erences are used.

If
(
λi+1/2 > 0

)
then

k = i

else k = i+ 1 endif

Q1(r) =
(
D1
kH
) (
r − ri+1/2

)
(3.8.32)

If
(∣∣∣D2

k−1/2H
∣∣∣ < ∣∣∣D2

k+1/2H
∣∣∣) then

c = D2
k−1/2H, k∗ = k − 1

else c = D2
k+1/2u, k

∗ = k endif
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Q2(r) = c
(
r − ri−1/2

) (
r − ri+1/2

)
(3.8.33)

If
(∣∣D3

k∗H
∣∣ < ∣∣D3

k∗+1H
∣∣) then

c∗ = D3
k∗H

else c∗ = D3
k∗+1H endif

Q3(r) = c∗
(
r − rk∗−1/2

) (
r − rk∗+1/2

) (
r − rk∗+3/2

)
(3.8.34)

At last calculate

fi+1/2 = H
′ (
ri+1/2

)
= Q

′
1

(
ri+1/2

)
+Q

′
2

(
ri+1/2

)
+Q

′
3

(
ri+1/2

)
(3.8.35)

3.8.4.3 Entropy Fix

Now consider two primitive functions H+ and H− and compute a divided di�erence table

for each of them. The �rst divided di�erences at point ri are

D1
iH
± =

1

2
f (ri)±

1

2
αi+1/2u (ri) (3.8.36)

with αi+1/2 as de�ned above (in 3.). Normally the �rst order di�erence of the primitive is

the value of the �ux function at the cell centres, i.e. D1
iH = f (ri).

� For H+ set k = i, replace H with H+ and determine Q1,Q2,Q3 and f̂+
i+1/2using the

algorithm above.

� For H− set k = i+ 1, replace H with H− and determine Q1,Q2,Q3 and f̂−i+1/2using

the algorithm above.

� Then

f̂i+1/2 = f̂+
i+1/2 + f̂−i+1/2 (3.8.37)

is the numerical �ux function with added high order dissipation. This choice elimin-

ates entropy violating expansion shocks.

3.9 Updating

In the update process the change of the cell volumes due to the moving grid must be

taken into account. Since the main purpose is the conservation of variables the following

straightforward method is used to approximate the divergence:

Un+1
i,j · V

n+1
i = Uni,j · V n

i −∆t ·[(
Ai+ 1

2
F̃i+ 1

2
,j −Ai− 1

2
F̃i− 1

2
,j

)
+

+
(
BiF̃i,j+ 1

2
−BiF̃i,j− 1

2

)
+ S · V n

i

]
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Due to the sheer size of the star the numbers involved are also large, the computation is

more stable if the approximated values (equations (3.2.4) and (3.2.6)) are used for the cell

volume and the lateral surface instead of the exact results ((3.2.3) and (3.2.5)). Thereby

this equation can be written as

Un+1
i,j = Uni,j

Ṽ n
i

Ṽ n+1
i

−∆t · Ãi+ 1
2

Ṽ n+1
i

F̃i+ 1
2
,j −

Ãi− 1
2

Ṽ n+1
i

F̃i− 1
2
,j

 +

+
Bi

Ṽ n+1
i

(
F̃i,j+ 1

2
− F̃i,j− 1

2

)
+ S

Ṽ n
i

Ṽ n+1
i

]

which reduces nicely to

Un+1
i,j = Uni,j

(
rni

rn+1
i

)2 ∆rn
i− 1

2

∆rn+1
i− 1

2

−∆t ·

 1

∆rn+1
i− 1

2

( rni+ 1
2

rn+1
i

)2

F̃i+ 1
2
,j −

(
rn
i− 1

2

rn+1
i

)2

F̃i− 1
2
,j

 +

+ dfac
πrni

2∆ϕ
(
rn+1
i

)2 (F̃i,j+ 1
2
− F̃i,j− 1

2

)
+ S

(
rni

rn+1
i

)2 ∆rn
i− 1

2

∆rn+1
i− 1

2


For the momentum equation the di�erence between ∇ · (p · Id) and ∇p is included in the

source term. dfac is the dilation factor of the grid.





Chapter 4

Simulations

4.1 One Dimensional Simulations

One dimensional simulations were not only necessary to obtain a start model for two dimen-

sional simulations (see 3.1), they were also used for comparison of 1D and 2D simulations

and for testing the grid re�nement.

(a) 2D (b) 1D

Figure 4.1.1: pulsation in two and one dimensions

In �gure 4.1.1 are plotted the lightcurve (blue line) and the variation of the radius (red line)

during the 9-th period after the preliminary 1D simulation. Whereas in 2D both curves

are smooth, this is not the case in 1D, there the pulsation velocity varies, so that there are

arti�cial humps even in the radius. Since there is no angular direction, convection cannot

set in and perturbations that may occur in the unresolved H-ionisation zone cannot escape

in that direction. Some perturbations are even visible at the bottom of the computational

domain, where they are re�ected on the closed boundary (�gure 4.1.3). Note that the

variation of the radius is less in 2D than in 1D (11% instead of 12%) as the pulsation

is damped by convection, this e�ect sets in as soon as convection starts after one to two

periods and is then stable.
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As is to be expected there is also more radiation emitted in the purely radiative 1D-model

(Figure 4.1.2).

Figure 4.1.2: lightcurve in two and one dimensions

Figure 4.1.3: convective �ux Ir
ρ (ρh) in one and two dimensions

That these structures in the light curve are arti�cial can also be seen by grid re�nement.

When the H-ionisation zone is su�ciently resolved, the curves are smooth (�gure 4.1.4).

This simulation used a grid re�nement factor of 7.1 Note that both simulations are only

∼ 100 days old and the fundamental mode and the overtone are still visible in the curves.

The age of these simulations is just between the �rst and the second Fourier-analysis in

�gure 3.1.2 in section 3.1.

1 for the grid re�nement procedure see section 4.4
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Figure 4.1.4: lightcurves obtained with and without grid re�nement

Since the opacity tables are not su�ciently exact for lower temperatures we tried arti�cial

di�usivities in order to compute still larger regions up to 3700K. With arti�cial di�usivities

the fundamental mode was reached in only 60 to 80 sound crossing times instead of 140 to

160, but still both curves where rather jagged for these low temperatures.

4.2 Long Time Study of the He-Ionisation Zone in 2D

A simulation on the coarse grid was carried out for about 12 periods. Convection set in

after the �rst period. For data analysis the simulation was broken up into single periods,

from one radial maximum to the next. In order not to loose context a part of the previous

and the following period was added to each, leading to 10 extended periods to analyse. In

each period one can observe the same pattern in various output parameters.

Figure 4.2.1 shows stream lines coloured by momentum plotted over the convective �ux

(equation 4.2.6) during the 8-th period and depicts the upper part of the computational

domain. In the �rst frame the star is fully expanded and you can see the remnants of an

old plume that moves downwards and will eventually almost disappear in the last frame.

From the third picture onwards the formation of another plume is clearly visible, it also

starts to travel towards the centre of the star. In the last frame the streamlines already

indicate the formation of the next plume that will appear during the next period.
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Figure 4.2.1: convective �ux
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Figure 4.2.2: convective �ux

Horizontal averages and horizontal sums. For better comparison of the di�erent periods

horizontal averages of various parameters were considered. These were also interpolated to

mass coordinates, and then a time-average over each period was computed. The �average

period� in �gure 4.2.3 is simply the average o� all periods and is plotted against an averaged

radius.

(a) period 8 (b) average period

Figure 4.2.3: horizontal sum of the convective �ux F ′c

abscissa: time; ordinate: radius

For the polar grid it is important to distinguish between horizontal sums and averages,

since the latter depend on the radius. In the following . . . denotes die horizontal sum of

any given quantity, i.e.
´ −ϕtot/2
−ϕtot/2 . . . dϕ , and . . . 0 the horizontal average thereof. Omitting

the viscous �uxes the horizontal sum of the total energy equation (2.1.16) on page 29 can

be expressed as
∂

∂t
(e) = − ∂

∂r

(
Fc + Fk + Fr

)
+ EB + ED (4.2.1)

where

Fk = −Ir
ρ

|I|2

2ρ
(4.2.2)
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is the kinetic �ux,

Fc = −Ir
ρ

(ρh− (ρh)0) (4.2.3)

is the convective �ux and Fr is the radiative �ux as de�ned in (2.2); the total �ux is

FT = Fc + Fk + Fr (4.2.4)

EB = −g (ρ− ρ0) Irρ represents work done by buoyancy and ED = − Ir
ρ ρ0g+

∂(r2Ir/ρ(ρh)0)
r2∂r

.

The relative role of buoyancy and pressure in the dynamics of convection can be clari�ed by

a conservative equation of the mechanical energy in addition to (4.2.1) for the total energy.

Such an equation is obtained by forming a scalar product of the momentum equation

(2.1.14) on page 29 with the velocity vector. The horizontal sum of that mechanical

energy equation is then

∂

∂t

(
I2

2ρ

)
= − ∂

∂r

(
Fk + Fp

)
+ EB + EP +HD (4.2.5)

where Fp = − Ir
ρr

(p− p0) is the acoustic or �pressure� �ux, Ep = − (p− p0)∇· I represents

work done by pressure and HD =− Ir
ρ

(
∂p0
∂r + ρ0g

)
. Each term here is an energy per unit

time and volume, on the left hand is the time derivative of the kinetic energy. A similar

analysis was done in [HTM 1984]. Here some extra terms e.c. HD and ED appear since

because of the pulsation it can never be assumed that (Ir)0 = 0.

Since we want to separate the e�ects of convection and pulsation we now substitute Ir
ρr
− Īr
ρ̄r

for Ir
ρr

and look at

F ′c = u1
conv ·

(
h− h̄

)
(4.2.6)

F ′k = u1
conv ·

(
|uconv|2

2
ρ

)
(4.2.7)

instead of Fc and Fk where uconv =
(
u1
conv/u

2
conv

)
=
(
Ir
ρ -

(Ir)0
ρ0

,
Iϕ
ρϕ

)
.

(a) period 6 (b) period 8

Figure 4.2.4: �ux averaged over one period

red line: convective �ux; blue line: kinetic �ux; both as fractions of the total �ux.
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When observing the convective �ux in �gure 4.2.1 over time one realises that it is at a

maximum during full contraction, while during expansion one sees the new convection

cells forming at the top and the remnants of the �old� ones, when the star contracts these

almost merge into one. In �gure 4.2.3 the horizontal sums over one period and over an

average period, are depicted. This pattern is repeated in each period, though the extent

may vary. There are always two centres of convection (yellow line) visible, sometimes three.

The average �ux over one period in the He-ionisation zone is depicted in �gure 4.2.4.

Work and work-integrals. At each moment we compute

PdV u1
0 =

∂
(Ir)0
ρ0

∂r

p

ρ
(4.2.8)

PdV u1
conv =

∂u1
conv

∂r

p

ρ
(4.2.9)

and

PdV u2
conv =

∂u2
conv

∂r

p

ρ
(4.2.10)

where the horizontal averages ()0 are computed as above.

Figure 4.2.5: work at one moment

The horizontal sums PdV u1
0, PdV u

1
conv and PdV u2

conv over the computational domain are

the so called work-integrals. When comparing the values of PdV u1
conv and PdV u2

conv at

any given moment to the horizontal averages and to PdV u1
0 ∼ PdV u1

0 at the same time

one realises a striking di�erence in the magnitudes:



86 CHAPTER 4. SIMULATIONS

� At any moment the local perturbational parts PdV u1
conv and PdV u

2
conv (�gure 4.2.5)

are larger than the radial part PdV u1
0 (�rst frame in �gure 4.2.6).

� For the work integrals it is just the other way round: PdV u1
0 is larger by a factor

∼ 10. (�gure 4.2.6), in the horizontal averages the perturbational parts cancel each

other out.

� the averages over one period are dominated by the convective part PdV u1
conv, while

the values of PdV u2
conv are smaller. (�gure 4.2.7)

� PdV u2
0 is around zero, this it not exactly the case in each period but at least in an

average period. (�gure 4.2.8)

Figure 4.2.6: work integral
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(a) period 2 (b) period 6

Figure 4.2.7: average work integrals over one period

in the He-ionisation zone. Red line: PdV u1
conv, blue

line: PdV u2
conv

(a) period 8 (b) average period

Figure 4.2.8: average work integrals over one period

in the He-ionisation zone. Red line: PdV u1
conv, blue line: PdV u2

conv,

green line: PdV u1
0

4.2.1 Convectional Stability

The superadiabatic gradient is de�ned as

∇sa := ∇−∇ad (4.2.11)

where

∇ :=
∂ lnT

∂ lnP
=
P∂T

T∂P
=
P

T

∂T/∂r

∂P/∂r
(4.2.12)

is the actual temperature gradient and

∇ad =

(
d lnT

d lnP

)
ad

:=
Γ2 − 1

Γ2
=

Γ3 − 1

Γ1
(4.2.13)
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is the adiabatic gradient. The Schwarzschild criterion predicts convectional stability for

∇sa < 0 and instability for ∇sa > 0. ∇sa is depicted at the top of �gures 4.2.9 and 4.2.10,

the black lines indicates ∇ = ∇ad.

Figure 4.2.9: He-convection in period 2

Figure 4.2.10: He-convection in period 8

Convectional instability is strongest when the star is contracted. New plumes form at the

top of the unstable realm, gain force during maximum contraction when 1 < ∇sa < 2 and

then move further down where the superadiabatic gradient always stays < 0.

4.3 The H-ionisation Zone without Grid Re�nement

If only the coarse grid is used convection starts but becomes soon too large on single points

as to be properly resolved at original resolution. Therefore grid re�nement, subgrid scale

modelling and arti�cial di�usivities were applied.
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4.3.1 Arti�cial Di�usivities

Though they helped to stabilise the code they produced some unphysical e�ects, e.c. the

H-ionisation zone started to drift towards the top when shock treatment νshkk of (3.6.7) is

used.

4.3.2 Subgrid Modelling

When using only subgrid modelling but no grid re�nement the H-ionisation zone cannot be

resolved. Compared to section 4.4 the convections starts only slowly and does not stably

develop.

Figure 4.3.1: subgrid modelling

4.4 High Resolution Simulation of the H-Ionisation Zone

For any study of the upper convection zone grid re�nement is essential, as already pointed

out in section 3.7.3. To ease the computation time requirements the grid re�nement has

been modi�ed and been made partly adaptive.
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Figure 4.4.1: opacity in the H ionisation zone

white line: 1; grey line: 10; black line: 100; plotted over the convective �ux

The region of interest is at the maximum of the temperature gradient. Since it is possible

that a local maximum can be found elsewhere, we also make sure that the local temperature

is at least Teff and the optical depth at least 100 at the lower border (black line in

�gure 4.4.1). First the �maximum region�, that is the region where we expect to �nd the

H-ionisation zone, and the grid re�nement factors gf (r) and gf (ϕ) for both directions

must be speci�ed. In our case this region is always across the total angular direction.

If the maximum temperature gradient is outside this region, the region has to be reset.

This maximum region is surrounded by ghost cells to allow interpolation and symmetric

di�erentiation near the boundaries. For MPI-purposes the distribution of processors on the

coarse grid and the �ne grid must be chosen in a di�erent way, since the grid re�nement

zone is rather slim, there are more processors in angular direction there.

Starting grid re�nement. The values of the physical quantities at the coarse grid are

interpolated to the �ne grid, including the ghost cells. This yields the starting state for

the simulation. For the �rst step the maximum region is used. For MPI-purposes it is

determined which coarse grid data are already on the correct node and which have to be

sent. This information is prestored in an array. The same is done for sending the results

from the �ne grid back to the coarse grid.

Structure of one grid re�nement step.

� The time step for the time evolution at both grids is calculated, thus we get the

number N of steps on the �ne grid during one step on the coarse grid, since the

calculations are limited by ∆trad we get gf(r) ≤ N ≤ gf(r)2. Since the domains are

not identical, it is possible that N < gf(r). In this case we still use N = gf(r).

� The inner region is determined. It reaches from the top of the maximum region to

nbot points below ∇Tmax, where nbot is set on the coarse grid. At no time arti�cial

structures along this bottom line could be observed, but to be on the save side it is

smoothed out. To choose a top line in a similar manner leads to artifacts, in Figure

4.4.2 on page 91 such a top boundary was still used, and no longer in Figure 4.4.3 on
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page 91. Note that in all �gures all values outside the inner zone are only interpolated

from the coarse grid.

Figure 4.4.2: grid re�nement with upper limit

Figure 4.4.3: grid re�nement without upper limit

� The data on the coarse grid from time step n and n+ 1 are both sent to the proper

nodes.

� Now the Runge-Kutta steps on the �ne grid can be performed in exactly the same

way as on the coarse grid. At the beginning of each step time interpolation yields the

values in the ghost cells at the top and bottom (blue region in Figure 4.4.2 on page

91 and Figure 4.4.3 on page 91) of the grid re�nement zone. In angular direction

they are supplied by periodic continuation.
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� After the last grid re�nement step the data are projected back to the coarse grid in

a conservative way.

Figure 4.4.4: convective �ux in the H-ionisation zone

Figure 4.4.5: Mach numbers in the upper convection zone

Resetting the maximum grid re�nement zone. If it becomes necessary or convenient to move
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the grid re�nement zone, this can be done without dismissing the previous calculations.

The old values are then copied and new values are interpolated where needed.

For this two dimensional simulation 3x4 additional grid points on each cell were used in

addition to subgrid modelling. The resulting resolution is from 0.32Mm to 0.80Mm in

radial direction, in the critical region it is 0.66Mm and 1.16Mm in angular direction,

leading to an aspect ratio of 1 : 1.8. But when comparing to �gure 3.7.5 one has to admit

that there are only 2 to 3 points to resolve the temperature gradient.

Figure 4.4.4 is taken from to coarse grid and depicts the same area as in �gure 4.3.1, the

simulation is as old as in the �rst frame �gure 4.3.1. In both �gures we see the same

maximum (marked by a circle), but not only is the convective �ux already greater by a

factor 5, there are also more convection cells.

In �gure 4.4.5 the development of the Mach numbers is depicted. In �gure 4.4.6 we see the

change in velocity for incoming material. In the frames (b) and (d) the radius is plotted

from left to right. Coming from the outside of the star (right) the �uid velocity �rst drops

and then the material is reaccelerated where the H-ionisation takes place. When comparing

it to the sound velocity behind the H-ionisation front (d) one realises that di�erence in

�uid velocities is ∼ 1 Mach.

(a) (b)

(c) (d)

Figure 4.4.6: acceleration in H-ionisation zone





Chapter 5

Future Work

5.1 Interpolation and Derivatives of Viscous Fluxes

Derivatives are used within ANTARES for the computation of the viscous matrix and

the di�usion approximation. Instead of taking the derivatives at the cell centre as in

Section 3.6, compute the viscous matrix there and interpolate then to the boundary grid,

derivatives can now also be taken at the cell boundary via the function ∂bound(u)
∂x at least

for the equidistant grid. This is done in a way that makes the various derivatives within

the code consistent. The coe�cients of this function are determined by the relation

∆centreu =
∂update
∂x

(
∂bound (u)

∂x

)
where ∆centre is the 2nd derivative taken at the cell centre, ∂bound(u)

∂x gives the derivative

on the boundary grid for values u located at the cell centre and
∂update(v)

∂x the derivative on

the centre grid for values v located at the cell boundary.

Thus the 4th order symmetric stencils for an equidistant grid are

1

ri+1 − ri

[
1

12
ui−2 −

15

12
ui−1 +

15

12
ui −

1

12
ui+1

]
and for a stretched grid:

1
ri+1−ri

[
2q5.5

(
−q2 + 2

)
ui−2 −2q2.5

(
−q5 + 4q3 + 5q2 + 5q + 2

)
ui−1

2q0.5
(
2q5 + 5q4 + 5q3 + 4q2 − 1

)
ui −2q0.5

(
2q2 − 1

)
ui+1

]
/[

(1 + q)2 (1 + q + 2q2 + q3 + q4
)]

At the upper and lower physical boundary the asymmetric stencils are used.

For the polar and moving grid the problem is by far more complicated, for in this deriv-

ation the primitive function has been used just as in the derivation of the original ENO

coe�cients (see section 3.8.1). Without using the primitive function we arrive at the stencil

1
ri+1−ri

[
q3.5(−q1.5+2)

(1+q0.5)2(1+2q+2q2+q3)
ui−2 − q0.5(−q0.5+2)(1+q0.5+q)

2

(1+q0.5)2(1+q)
ui−1

(−1+2q0.5)(1+q0.5+q)
2

(1+q0.5)2q(1+q)
ui

1−2q1.5

(1+q0.5)2q(1+2q+2q2+q3)
ui+1

]
95
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for the stretched grid. This reduces to

1

ri+1 − ri

[
1

24
ui−2 −

23

24
ui−1 +

23

24
ui −

1

24
ui+1

]
on an equidistant grid.

However this stencil leads to a loss of order during the update at least for the equidistant,

not moving grid. Should then accuracy be insu�cient we have to consider a stencil of

higher order or using the actual cell volumina.

5.2 Time Integration

To save computation time, we consider implicit time integration methods applicable to an

entire coupled set of partial di�erential equations. Optimal methods have been found for

this class of problems.

Very successful Runge-Kutta methods, which are cheap to implement, are singly diagonally

implicit Runge-Kutta methods (SDIRK) (see [KKLMZ 2010]1). It can be shown that for

SDIRK methods R = c holds, where R is the radius of contractivity and c is the CFL-

number. For order p = 2 the method with s = 1, 2, 3 steps has been proven to be optimal.

For s > 3 the methods are conjectured to be optimal in the class of SDIRK methods based

on numerical optimisation.

Practical aspects of TVD integrators are discussed by L. Ferracina and M. Spijker 2.

The computational advantages of using TVD methods are demonstrated by means of an

example, the e�ciency of the numerical methods is assessed, where the ratio of step-

size coe�cient and number of stages per interval of the corresponding length serves as the

indicator. It is found that SDIRK with p = 2 is optimal in that respect, while this quantity

decreases with the order of the method. However a larger number of stages generally leads

to more e�cient methods. The values are considerably higher than for explicit methods,

but of course this will be compensated for to some extent by the cost of the solution of the

non-linear algebraic equations.

For the equidistant grid and the initial value problem y′ (t) = F (y (t)) a general implicit

s-stage Runge-Kutta method

yi = yold + ∆t
s∑
j=1

ai,jF (yj) i = 1, . . . , s

ynew = yold + ∆t

s∑
j=1

b,jF (yj)

1in addition to more detailed information about the implementation in the ANTARES Code extensive
references can also be found in this report

2An extension and analysis of the Shu-Osher representation of Runge-Kutta methods. Math. Comp.,
74, pp. 201-219, 2004
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with for p = 2:

aij =


1
2s , i = j, 1 ≤ i ≤ s
1
s , 1 ≤ j < i ≤ s

0, otherwise

bj =
1

s
, j = 1, . . . , s

has already been implemented in ANTARES for p = 2 and p = 3. Up to now they

can only achieve better accuracy, but not higher e�ciency regarding computing time.

The computation of radiative transfer and di�usion approximation requires an additional

Poisson equation. The adjustments for the moving, polar grid must also still be done. It

remains to be seen if the stability increases and if at the same time the cost for additional

stages and iterations is compensated for by larger time steps.

5.3 Grid Re�nement and Three Dimensional Simulations

As demonstrated in 3.7.3 the resolution used in Section 4.4 is still not su�cient. A better

resolved model with an aperture angle of only 1o, 800 points in radial direction and 300

grid points in angular direction on the coarse grid and a grid re�nement factor of 5 in both

directions has been started. The resulting resolution on the �ne grid is from 0.16Mm to

0.20Mm in radial direction. In the critical region it is 0.18Mm in radial direction and

0.32Mm in angular direction, leading to an aspect ratio of 1 : 1.78. When comparing this

to �gure 3.7.5 on page 53 we get approximately 1.5
0.18 ≈ 8 grid points to resolve the peak in

qrad.

Figure 5.3.1: temperature and Γ3 in the grid re�nement zone
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When convection is fairly established in the hydrogen ionisation zone, it can be enlarged

by setting copies side by side. For a proper representation of the He II-ionisation zone the

aperture angle needs to be fairly large, in the simulation presented in section 4.2 we used

10°. In order to break up the highly periodic pattern an additional slight perturbation will

then be added.

This model will also be used as a starting point for a three dimensional simulation. The

conversion from 2D to 3D is similar to the conversion from one to two dimensions (see

section 3.1).



Chapter 6

Appendices

6.1 Appendix A

Derivatives and the Navier-Stokes Equations in Spherical Polar Coordinates

The spherical polar coordinates are (r, θ, ϕ), where ϕ is the azimuthal angle.1 A vector

can be written as

~u = ur~er + uθ~eθ + uϕ~eϕ

where the unit vector is related to the Cartesian Coordinates by the matrix sin θ cosϕ sin θ sinϕ cos θ

cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0


Derivatives

Gradient of a scalar a

∇a =
∂a

∂r
~er +

1

r

∂a

∂ϕ
~eϕ + +

1

r

∂a

∂ϕ
~eϕ

Divergence of a vector ~u

∇ · ~u =
1

r2

∂
(
r2ur

)
∂r

+
1

r sin θ

∂ (sin θuθ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

Laplacian of a scalar

∇2a =
1

r2

∂
(
r2 ∂a

∂r

)
∂r

+
1

r2 sin θ

∂
(
sin θ ∂a∂θ

)
∂θ

+
1

r2 sin2 θ

∂2a

∂ϕ2

Advective derivative of a scalar a

(~u · ∇) a = ur
∂a

∂r
+
uθ
r

∂a

∂θ
+

uϕ
r sin θ

∂a

∂ϕ
1To obtain the 2D formulae set θ = π/2
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Curl of a vector

∇×~u =
1

r sin θ

(
∂ (sin θuϕ)

∂θ
− uθ
∂ϕ

)
~er+

1

r

(
1

sin θ

∂ur
∂ϕ
− ∂ (ruϕ)

∂r

)
~eθ+

1

r

(
∂ (ruθ)

∂r
− ∂ur

∂θ

)
~eϕ

Compressible Navier Stokes Equations without body force

∂tur = −
[
∂r

(
u2
r +

p

ρ

)
+

1

r
∂θ (uruθ) +

1

r sin θ
∂ϕ (uruϕ) (6.1.1)

+
1

r

(
2u2

r − u2
θ − u2

ϕ + uruθ cot θ
)]

∂tuθ = −
[
∂r (uruθ) +

1

r
∂θ

(
u2
θ +

p

ρ

)
+

1

r sin θ
∂ϕ (uθuϕ) (6.1.2)

+
1

r

(
3uruθ + u2

θ cot θ − u2
ϕ cot θ

)]

∂tuϕ = −
[
∂r (uruθ) +

1

r
∂θ (uθuϕ) +

1

r sin θ
∂ϕ

(
u2
ϕ +

p

ρ

)
(6.1.3)

+
1

r
(3uruθ + 2uθuϕ cot θ)

]

∂te = −
[
∂r (ur (e+ p)) +

1

r
∂θ (uθ (e+ p)) +

1

r sin θ
∂ϕ (uϕ (e+ p)) (6.1.4)

+
1

r
(2ur (e+ p) + uθ (e+ p) cot θ)

]

Incompressible Navier Stokes Equations with grid velocity but without body force

and viscosities

∂tρ = −
[
∂r (Ir − ρug) +

1

r
∂θ (Iθ) +

1

r sin θ
∂ϕ (Iϕ) (6.1.5)

+
1

r
(2 (Ir − ρug) + Iθ cot θ)

]

∂tIr = −
[
∂r

(
I2
r

ρ
− Irug + p

)
+

1

r
∂θ

(
IrIθ
ρ

)
+

1

r sin θ
∂ϕ

(
IrIϕ
ρ

)
(6.1.6)

+
1

r

(
2
I2
r

ρ
− 2Irug −

I2
θ

ρ
−
I2
ϕ

ρ
+
IrIθ
ρ

cot θ

)]

∂tIθ = −
[
∂r

(
IrIθ
ρ
− Iθug

)
+

1

r
∂θ

(
I2
θ

ρ
+ p

)
+

1

r sin θ
∂ϕ

(
IθIϕ
ρ

)
(6.1.7)

+
1

r

(
3
IrIθ
ρ
− 2Iθug +

I2
θ

ρ
cot θ −

I2
ϕ

ρ
cot θ

)]
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∂tIϕ = −

[
∂r

(
IrIϕ
ρ
Iϕug

)
+

1

r
∂θ

(
IθIϕ
ρ

)
+

1

r sin θ
∂ϕ

(
I2
ϕ

ρ
+ p

)
(6.1.8)

+
1

r

(
3
IrIϕ
ρ
− 2Iϕug + 2

IθIϕ
ρ

cot θ

)]

∂te = −
[
∂r

(
Ir
ρ

(e+ p)− eug
)

+
1

r
∂θ

(
Iθ
ρ

(e+ p)

)
+

1

r sin θ
∂ϕ

(
Iϕ
ρ

(e+ p)

)
(6.1.9)

+
1

r

(
2
Ir
ρ

(e+ p)− 2eug +
Iθ
ρ

(e+ p) cot θ

)]
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Nomenclature

L luminosity

ε internal energy

κ termal conductivity

Πd period length in days⊙
of the sun

~r = (r, ϕ)T position of a de�nite point

e total energy density, the sum of internal and kinetic energy (without potential

energy)

~g gravity

~I momentum density

p pressure

Qrad radiative heating term

ρ density

σ viscous stress tensor

t time

−→u = (ur, uϕ)T �uid velocity

−→ug grid velocity

cp speci�c heat at constant pressure

dfac dilation factor of the grid from time n to n+1

ρε speci�c internal energy

Γi adiabatic exponents
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Iν Intensity at frequency ν

Iν (r) speci�c intensity in direction r at frequency ν

Jν mean Intensity at frequency ν

T Temperature
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