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Foreword

Semileptonic processes have played a crucial role in our understanding of flavour physics.

In this thesis we consider the K`3 decays (` = e, µ)

K+(pK) → π0(pπ)`+(p`)ν`(pν),

K0(pK) → π−(pπ)`+(p`)ν`(pν)

(and their charge conjugate modes). These decays provide the theoretically cleanest and

most precise measurement of the Cabbibo-Kobayashi-Maskawa matrix element |Vus| [1],

which is one of the main input parameters in the standard model of particle physics,

formed by the Glashow-Weinberg-Salam theory of electroweak interactions [2] and Quan-

tum Chromodynamics (QCD) [3], the quantum field theory of strong interactions. There-

fore it is important to have a deep theoretical understanding of these processes.

The (fully inclusive) K`3 decay rate is given by [1]

Γ(K`3(γ)) =
G2
FM

5
KC

2
K

192π3
SEW|Vus|2

∣∣∣fK0π−

+ (0)
∣∣∣2 I`K(1 + δ`K + δSU(2)),

where GF is the Fermi constant as determined from muon decays, SEW = 1.0232(3) [4]

is the short-distance electroweak correction, CK is a Clebsch-Gordan coefficient (1 for

K0 and 1/
√

2 for K± decays), δ`K represents the channel-dependent long-distance EM

corrections, δSU(2) the correction for isospin breaking, fK0π−

+ (0) is the K0
`3 vector form

factor at zero momentum transfer, and I`K is a phase-space integral that is sensitive to

the momentum dependence of the form factors. The latter describe the hadronic matrix

elements

〈π(pπ)| ūγµs |K(pK)〉 = (pπ + pK)µf
Kπ
+ (t) + (pπ − pK)µf

Kπ
− (t),

where t = (pK − pπ)2 = (p` + pν)
2. In the experiment, the values of the vector form factor

fKπ+ (t) and the scalar form factor

fKπ0 (t) = fKπ+ (t) +
t

M2
K −M2

π

fKπ− (t)

are measured. These form factors are (usually) parameterized by the vector slope (λ′+)

and curvature (λ′′+) parameters and the scalar slope parameter λ0, respectively [1]:

fKπ+ (t) = fKπ+ (0)

[
1 + λ′+

t

M2
π+

+
1

2
λ′′+

(
t

M2
π+

)2
]
, fKπ0 (t) = fKπ+ (0)

(
1 + λ0

t

M2
π+

)
.

On the other hand, this form factors can be calculated in theory to provide a comparison

with the experimental outcomes.
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Although recent high statistics data from ISTRA+ [5], KTeV [6], NA48 [7] and KLOE

[8] are available now, our picture of the scalar form factor has not become much clearer.

While the values of λ′+ and λ′′+ of the different experiments are consistent with each other,

the actual value of λ0 remains unclear. Especially if both of the values of λ0 from ISTRA+

and NA48 were true, this would signalize an enormous isospin violation in the K`3 decays.

Therefore it is important to know if such a huge isospin violation can be understood within

the standard model.

For a comparison with the experimental outcomes, we need to know the theoretical

prediction for the behaviour of the scalar form factors of K0
`3 and K+

`3 as precisely as

possible. In this thesis we wish to address the following questions:

• Which of the values of the slope parameter λ0 found by the different experimental

groups are compatible with the standard model of particle physics?

• Which magnitude of isospin violation can be expected for the scalar form factors?

The natural tool of this analysis is Chiral Perturbation Theory (χPT) [9, 10], the ef-

fective theory of the standard model at low energies. The Lagrangian of this theory

contains all operators invariant under transformations of the chiral symmetry group

G = SU(3)L × SU(3)R, which is an infinite number of terms, but makes sense as an

expansion in powers of the momentum. QCD becomes non-perturbative in the low-

energy regime (due to confinement). In χPT, on the other hand, the relevant degrees of

freedom are no longer quarks and gluons, but the pseudoscalar mesons. The octet of the

lightest pseudoscalar mesons plays a special role as the pseudo-Goldstone bosons (GBs)

of spontaneously broken (approximate) chiral symmetry. χPT exploits this feature and

describes the strong interaction by an exchange of these pseudo-GBs. Due to Goldstone’s

theorem [11], the interaction among them vanishes at zero momentum – one can apply

perturbation theory at low energies (p� 1 GeV).

The drawback of such an effective theory is that one gets an increasing number of

new low-energy constants (LECs) with each order in the momentum expansion [9, 10].

These free parameters must be fixed with experimental input, additional model-dependent

assumptions or lattice calculations.

The outline of this thesis is as follows. In Part I we give a short introduction to χPT.

Part II is dedicated to the K`3 decays and especially the slope parameters of the scalar
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form factors. This part follows our work [12]. In section 2 we summarize the basic facts

about and present the kinematics of K`3 decays and take a closer look on the current

experimental situation. We describe the determination of

FK
FπfK

0π−
+ (0)

,

which is one of our main input parameters. FK and Fπ denote the kaon and the pion decay

constant, respectively. In section 3 we review the next-to-leading order (NLO) results for

the vector and the scalar form factors, including pure QCD isospin violation (md 6= mu) as

well as isospin violation due to electromagnetic effects. After updating the parameter ε(2),

which determines the size of isospin breaking, we turn to the numerical determination of

the size of isospin violation in order to obtain numerical results for the slope parameter of

the scalar form factor with a separate determination of the contributions of both sources

of isospin violation. Finally, we analyze the Callan-Treiman relations [13] at NLO, again

including isospin violating effects.

In section 4 we consider effects arising at next-to-next-to-leading order (NNLO). We

estimate the order p6 low-energy couplings Cr
12 and Cr

34 using 1/Nc expansion and trun-

cating the hadronic spectrum to the lowest lying resonances [14]. With these results and

the two-loop calculations of Bijnens and Talavera [15] we calculate the scalar slope and

curvature parameters in the isospin limit. We give an update of the vector form fac-

tor at zero momentum transfer, fKπ+ (0). We compare our results for the scalar slope λ0

and curvature c0 with the values recently obtained by dispersive methods [16–21]. We

continue with extending the results obtained at the order (md − mu)p
4 [22] on the K`3

scalar form factors by an estimate of the associated local contributions relevant for the

splitting λK
0π+

0 − λK
+π0

0 . Finally, we analyze the size of the scalar form factor in the

isospin limit at the Callan-Treiman point and discuss the possible size of corrections to

the Callan-Treiman relation induced by isospin violation at this chiral order.

7



8



Contents

I Introduction 11

1 Chiral Perturbation Theory 11

1.1 QCD in the chiral limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 External fields and explicit symmetry breaking . . . . . . . . . . . . . . . . 14

1.3 The Chiral Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Masses of the light mesons I . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 The effective Lagrangian of order p4 and loops . . . . . . . . . . . . . . . . 19

1.6 The electroweak interaction in χPT . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Masses of the light mesons II . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II The K`3 scalar form factors in the standard model 27

2 Basics 27

2.1 Structure of the invariant amplitude . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Experimental situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The determination of FK/Fπf
K0π−
+ (0) . . . . . . . . . . . . . . . . . . . . . 31

3 Analysis at NLO 34

3.1 Mass and wave function renormalization . . . . . . . . . . . . . . . . . . . 34

9



3.2 The loop function J̄(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 The K`3 form factors at NLO in the isospin limit . . . . . . . . . . . . . . 36

3.4 The f+ form factors at order p4, (md −mu)p
2, e2p2 . . . . . . . . . . . . . . 38

3.5 The fKπ− form factors at order p4, (md −mu)p
2, e2p2 . . . . . . . . . . . . . 40

3.6 Scalar form factors at order p4, (md −mu)p
2, e2p2 . . . . . . . . . . . . . . 42

3.7 Slope parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Size of isospin breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Numerics at order p4, (md −mu)p
2, e2p2 . . . . . . . . . . . . . . . . . . . . 46

3.10 Callan-Treiman relations at the NLO . . . . . . . . . . . . . . . . . . . . . 47

4 Analysis at NNLO 49

4.1 The scalar form factor in the isospin limit . . . . . . . . . . . . . . . . . . 49

4.2 Renormalization group equations . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Slope parameter at order p6 . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Dispersive analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Contributions of order (md −mu)p
4 . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Callan-Treiman relations at NNLO . . . . . . . . . . . . . . . . . . . . . . 58

5 Summary and conclusions 60

A Coefficients 63

B The order p6 LECs dependent part 64

10



Part I

Introduction

1 Chiral Perturbation Theory

1.1 QCD in the chiral limit

In the last decades, the standard model of particle physics had amazing success in de-

scribing almost all observed phenomena in high-energy pyhsics. QCD, the quantum field

theory of strong interactions, has two fundamental properties: Asymptotic freedom [23]

and confinement. Due to the latter, QCD becomes non-perturbative at low energies - the

usual perturbative techniques of calculating decay widths and cross sections are no longer

applicable.

Fortunately, in the late seventies, Steven Weinberg came up with the concept of effec-

tive field theories. He formulated his idea as a conjecture [24]:

“. . . if one writes down the most general possible Lagrangian, including all

terms consistent with assumed symmetry principles, and then calculates ma-

trix elements with this Lagrangian to any given order of perturbation theory,

the result will simply be the most general possible S-matrix consistent with

analycity, perturbative unitarity, cluster decomposition and the assumed sym-

metry principles.”

The basic idea of an effective theory is not to attempt to construct a so called “Theory

of Everything”, but rather to look for specific classes of phenomena where only a certain

subset of degrees of freedom is relevant. Based on Weinberg’s idea, Gasser and Leutwyler

worked out the effective field theory for the standard model at low energies, chiral per-

turbation theory (χPT) [9,10]. While Weinberg’s statement was just a conjecture, it has

been shown [26] that with an appropriately chosen Lagrangian, χPT is mathematically

equivalent to the low-energy limit of the standard model of particle physics. This effective

Lagrangian must contain all terms allowed by the symmetry of the fundamental theory
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for the given set of fields [24], in χPT these are the light mesons (ie. π0,π±,K0/K̄0,K±

and η). Although the number of these operators is infinite, they can be ordered in powers

of momenta and one can isolate the more relevant terms from the less important ones.

The drawback of an effective theory is that one gets more and more low-energy constants

(LECs) at each order in this expansion.

In the following, we describe the construction of χPT from the QCD Lagrangian in

the chiral limit1. The hierarchy of the quark masses suggests to separate them in a group

of light quarks (u, d, s) and a group of heavy quarks (c, b, t). The hierarchy of the quark

masses is shown in Figure 1. The masses of the heavy quarks and the light quarks are

separated by more than an order of magnitude, therefore the mass terms of the light

quarks in the QCD Lagrangian LQCD [3] can be seen as a small perturbation,

LQCD = L0
QCD − q̄Mqq, (1.1)

where L0
QCD is the QCD Lagrangian in the chiral limit (mu = md = ms = 0),

L0
QCD = q̄

(
∂µ + igs

λa
2
Ga
µ

)
q + Lheavy quarks + Lgluons

= q̄Li /DqL + q̄Ri /DqR + Lheavy quarks + Lgluons, (1.2)

with the light quark fields

q = (u, d, s)T , (1.3)

their left- and right-handed projections

qL,R =
1

2
(1± γ5)q, (1.4)

the quark mass matrix

Mq = diag(mu,md,ms) (1.5)

and the covariant derivative acting in colour space

Dµ = ∂µ + igs
λa
2
Ga
µ, (1.6)

with the Gell-Mann matrices λa (a = 1, . . . , 8). The QCD Lagrangian in the chiral limit

(1.2) is invariant under transformations of the chiral group

G = SU(3)L × SU(3)R. (1.7)

1The discussion in sections 1.1, 1.2, 1.3 and 1.5 follows the lines of the introductory paper [25].
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Figure 1: Hierarchy of the quark masses. The numerical values entering the diagram were

taken from Amsler et al. [1]. For the light quarks (u, d, s) the values of the quark masses

correspond to the scale µ = 2 GeV.

The Noether currents associated with the chiral group G are

Ja,µR,L = q̄R,Lγ
µλa

2
qR,L (a = 1, . . . , 8), (1.8)

where γµ denote the Dirac matrices, the corresponding Noether charges are

Qa
R,L =

∫
d3x Ja,0R,L. (1.9)

It is a well known fact that chiral symmetry is spontaneously broken down to H = SU(3)V

through the non-vanishing vacuum expectation value

〈0 |q̄q| 0〉 6= 0, (1.10)

the quark condensate. A few arguments for this can be found in [27].

According to Goldstone’s theorem [11], as a consequence of a spontaneously broken

(continuous) symmetry a set of massless particles enters a theory. Denoting the number

of generators of the groups G and H by nG and nH , respectively, in the case of χPT this

mechanism gives rise to n = nG − nH = 8 Goldstone bosons which transform as an octet

under the subgroup H and can be identified with the lowest-lying pseudoscalar mesons

π,K, η.

The Goldstone fields φa (a = 1, . . . , 8) parameterize the chiral coset space SU(3)L ×
SU(3)R/SU(3)V . G acts non-linearly on the φa, but in the case of chiral symmetry, the
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Goldstone fields can be collected in a unitary matrix field U(φ) transforming as

U(φ)
G→ gRU(φ)g−1

L , gR,L ∈ SU(3)R,L, (1.11)

under chiral rotations. The group-theoretical foundations for a nonlinear realization of

chiral symmetry were developed in [28–30]. There are different possible representations

of U(φ) corresponding to different coordinates of the chiral coset space. In the original

work Gasser and Leutwyler used the exponential parametrization [10]

U(φ) = exp

(
iφ

F0

)
, φ =

∑
a

λaφ
a. (1.12)

At this stage, F0 is just an arbitrary constant (with dimension of energy), its physical

meaning will become clear later. In this work we use a more general representation with

the coset variables uL,R(φ) transforming as [29,30]

uL(φ)
G→ gLuL(φ)h(g, φ)−1,

uR(φ)
G→ h(g, φ)uR(φ)g−1

R , (1.13)

where h(g, φ) is the nonlinear realization of G, and the parametrization

uR(φ) = uL(φ)† = u(φ) = exp

(
iΦ√
2F0

)
, (1.14)

where

Φ =
8∑

a=1

λaφ
a

√
2
. (1.15)

The most general Lagrangian density one can construct containing all possible terms

compatible with assumed symmetry principles will then describe the dynamics of these

eight degrees of freedom resulting from the spontaneous symmetry breaking of the QCD

Lagrangian density.

Of course, in reality there is no chiral symmetry in nature: Due to the non-vanishing

quark masses mu,md,ms 6= 0, the chiral limit is only an approximate symmetry. As a

consequence, the octet of Goldstone particles acquires mass [9, 10] (see section 1.4). The

chiral expansion is not only an expansion in the momenta, but a simultaneous expansion

in the momenta and the masses of the light quarks.

1.2 External fields and explicit symmetry breaking

To include terms that break the chiral symmetry explicitly, we follow Gasser and Leutwyler

[9, 10] in extending the chiral invariant QCD Lagrangian (1.2) by coupling the quarks to
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external hermitian matrix fields – vectors vµ, axial-vectors aµ, scalars s and pseudoscalars

p:

L = L0
QCD + q̄γµ(vµ + aµγ5)q − q̄(s− ipγ5)q, (1.16)

rµ = vµ + aµ, lµ = vµ − aµ. (1.17)

The Lagrangian (1.16) exhibits a local SU(3)R×SU(3)L symmetry with the transforma-

tion properties [10]

q
G→ gR

1

2
(1 + γ5)q + gL

1

2
(1− γ5)q,

rµ
G→ gRrµg

†
R + igR∂µg

−1
R ,

lµ
G→ gLlµg

†
L + igL∂µg

−1
L ,

s+ ip
G→ gR(s+ ip)g−1

L ,

gL,R ∈ SU(3)L,R. (1.18)

The effective Lagrangian of QCD including external fields must of course contain all terms

with external fields allowed by the chiral symmetry, especially the lowest order term

Lm =
1

2
F 2

0B0

〈
u†R(s+ ip)uL + u†L(s+ ip)†uR

〉
, (1.19)

which provides a very convenient way of including explicit chiral symmetry breaking

through the quark masses and therefore non-vanishing meson masses by setting

vµ = aµ = p = 0 (1.20)

and

s =Mq = diag(mu,md,ms) (1.21)

after constructing the most general Lagrangian invariant under chiral transformations

including external fields.

1.3 The Chiral Lagrangian

The effective chiral lagrangian

Leff = L2 + L4 + L6 + . . . (1.22)

contains all terms allowed by the gauge group of the underlying theory, organized in powers

of momenta and the masses of the light quarks. In the chiral limit, this Lagrangian is
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invariant under SU(3)L × SU(3)R. It contains eight pseudoscalar degrees of freedom

transforming as an octet under the subgroup H = SU(3)V . The explicit form of L2 and

L4 is given below. The Lagrangian L6 already has 94 independent terms, each coming

with its own low-energy constant. A full listing can be found in [31].

In the chiral power counting scheme of χPT, the building blocks are counted as [25]:

uL,R : O(p0),

∂µ, vµ, aµ : O(p),

s, p : O(p2). (1.23)

To lowest order in the chiral expansion, the effective Lagrangian in the chiral limit is given

by [9, 10]

L(0)
2 =

F 2
0

4
〈uµuµ〉 , (1.24)

where 〈. . .〉 denotes the trace in three-dimensional flavour space and

U(φ) := uR(φ)uL(φ)† = u(φ)2. (1.25)

The vielbein field uµ is the covariant derivative of the scalar field,

uµ = i
[
u†R(∂µ − irµ)uR − u†L(∂µ − ilµ)uL

]
(1.26)

and therefore also of O(p) in the chiral power counting scheme (1.23).

This Lagrangian exhibits an important feature of the Goldstone theorem: The Gold-

stone bosons (contained in the matrix field uµ) have derivative couplings only – the in-

teraction among them vanishes at zero momentum. Expanding the exponentials uL, uR

in the first term of (1.24) and switching off the external sources results in

L(0)
2 =

1

2
∂µφa∂

µφa + Lint. (1.27)

Since there are no other terms containing only two fields (Lint starts with interaction

terms containing at least four Goldstone bosons) the eight fields φa describe eight massless

particles2.

The pseudoscalar masses are introduced through explicit chiral symmetry breaking in

χ+ by substituting the external fields by the quark mass matrix,

χ = 2B0(s+ ip)→ 2B0Mq. (1.28)

2At this stage, this is only a tree-level argument. We will see in section 3.1 that the Goldstone bosons
remain massless in the chiral limit even when loop corrections have been included.
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To lowest order in the chiral expansion, the effective Lagrangian is then given by [9, 10]

L2 =
F 2

0

4
〈uµuµ + χ+〉 , (1.29)

where

χ+ = u†RχuL + u†Lχ
†uR, χ = 2B0(s+ ip). (1.30)

The pseudoscalar decay constants Fa are defined by

〈0|Aaµ(0) |φa(p)〉 = i
√

2pµFa, (1.31)

where Aaµ is the axial-current

Aaµ = q̄γ5γµ
λa
2
q. (1.32)

The effective Lagrangian of order p2 contains two low-energy constants (LECs): F0 is the

pion decay constant in the chiral limit and in absence of electroweak interactions,

Fπ = F0 (1 +O(mq)) = 92.2± 0.2 MeV, (1.33)

where the numerical value was taken from [32], and B0 is related to the quark condensate

in the chiral limit [10],

〈0| q̄iqj |0〉 = −F 2
0B0δ

ij (1 +O(Mq)) . (1.34)

For example, the ūu component of the scalar quark condensate in the chiral limit, 〈0| ūu |0〉0,

is given by

〈0| ūu |0〉0 =

i

2

√2

3

δ

δs0(x)
+

δ

δs3(x)
+

1√
3

δ

δs8(x)

 exp(iZ[v, a, s, p])

∣∣∣∣∣∣
v=a=s=p=0

, (1.35)

where Z[v, a, s, p] is the generating functional [10].

1.4 Masses of the light mesons I

The mass terms of the pseudoscalars are contained in

Lm =
1

2
F 2

0B0

〈
u†RMquL + u†LM†

quR
〉

=
1

2
F 2

0B0

〈
MqU

† +M†
qU
〉
, (1.36)
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with

Mq = diag(mu,md,ms). (1.37)

Since M†
q = Mq, Lm contains only terms even in φ. The expansion in powers of the

pseudoscalar fields φ yields the following expression for the quadratic terms:

Lm = −1

2
B0 · 〈λaλbMq〉φaφb + . . . (1.38)

We get the result

1

4

〈
φ2χ

〉
= −B0(mu +md)π

+π− −B0(mu +ms)K
+K−

−B0(md +ms)K
0K̄0 − 1√

3
B0(mu −md)π

0η

−B0
mu +md

2
π0π0 −B0

mu +md + 4ms

6
η2. (1.39)

From this expression we see that we have mixing in the neutral π0/η-sector. However,

in the isospin limit (md = mu) the mixing vanishes and the mass eigenvalues are given

by [10]

M2
π± = M2

π0 = B0 (mu +md) ,

M2
K± = B0 (mu +ms) ,

M2
(−)

K 0
= B0 (md +ms) ,

M2
η =

B0

3
(mu +md + 4ms) . (1.40)

Up to terms of O(M2
q) the pseudoscalar octet obeys the Gell-Mann-Okubo formula [33],

4M2
K = 3M2

η +M2
π +O

(
M2

q

)
. (1.41)

The explicit expression of the meson field matrix in terms of the real fields φi and of the

mass eigenstates in the isospin limit reads

φ =


φ3 + 1√

3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8



=
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 (1.42)
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Until now we neglected isospin breaking effects. For mu 6= md the states π0 and η

undergo mixing. The eigenstates described by the fields π0(x) and η(x) – the diagonal

elements of the φ matrix – are given by

λ3φ3(x) + λ8φ8(x) (1.43)

=
[
λ3 cos ε(2) + λ8 sin ε(2)

]
π0(x) +

[
−λ3 sin ε(2) + λ8 cos ε(2)

]
η(x).

The π0/η-mixing angle at O(p2), ε(2), is determined by

tan 2ε(2) =

√
3

2

md −mu

ms − m̂
, (1.44)

the symbol m̂ stands for the mean value of the light quark masses,

m̂ =
1

2
(mu +md) . (1.45)

Expanded in powers of md −mu this reads

ε(2) =

√
3

4

md −mu

ms − m̂
+O

(
[md −mu]

2
)
. (1.46)

Due to the π0/η-mixing the mass of the neutral pion is pushed down slightly by

M2
π0 = M2

π+ −
1

4

(
md −mu

ms − m̂

)2 (
M2

K −M2
π

)
. (1.47)

While the pion mass difference is of order (md − mu)
2, the kaon mass difference is not

protected from isospin breaking, but is proportional to the first power of md −mu.

1.5 The effective Lagrangian of order p4 and loops

At order p4, the most general Lagrangian is given by [10]

L4 = L1 〈uµuµ〉2 + L2 〈uµuν〉 〈uµuν〉+ L3 〈uµuµuνuν〉
+L4 〈uµuµ〉 〈χ+〉+ L5 〈uµuµχ+〉+ L6 〈χ+〉2 + L7 〈χ−〉2

+
1

4
(2L8 + L12)

〈
χ2

+

〉
+

1

4
(2L8 − L12)

〈
χ2
−

〉
− iL9 〈f νµ+ uµuν〉

+
1

4
(L10 + 2L11) 〈f+µνf

µν
+ 〉 −

1

4
(L10 − 2L11) 〈f−µνfµν− 〉 , (1.48)

where

χ− = u†RχuL − u
†
Lχ
†uR,

fµν± = uF µν
L u† ± u†F µν

R u,

F µν
L = ∂µlν − ∂νlµ − i [lµ, lν ] ,

F µν
R = ∂µrν − ∂νrµ − i [rµ, rν ] . (1.49)
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While the terms with L11 and L12 in (1.48) are contact terms, i.e. they contain only

external fields and are therefore of no physical relevance, the LECs L1, . . . , L10 are not

restricted by chiral symmetry. They are parameters containing information on the dy-

namics of the underlying fundamental theory, QCD. Although the number of arbitrary

constants in L4 seems quite big, only a few of them contribute to a given observable.

Their numerical values are extracted from experimental input, estimated with additional

model dependent assumptions or obtained from lattice calculations. Numerical values of

the LECs can be found in Table 1.

When calculating one-loop diagrams arising from vertices of L2, one encounters diver-

gences which cannot be absorbed by a renormalization of the O(p2) LECs F0 and B0 (as it

would be the case in a renormalizable theory)3. According to Weinberg’s power counting

rules [24], the counterterms that cancel these infinities are of order p4. Since dimensional

regularization preserves the symmetries and the Lagrangian L4 already contains all al-

lowed operators of this order, these divergences can be absorbed in a renormalization of

the coupling constants Li.

The twelve low-energy coupling constants L1, ..., L12 arising in (1.48) are divergent

(except L3 and L7). They absorb the divergences of the one-loop graphs via the renor-

malization [10]

Li = Lri (µ) + ΓiΛ(µ), (1.50)

Λ(µ) =
µD−4

(4π)2

(
1

D − 4
− 1

2
[ln(4π) + Γ′(1) + 1]

)
, (1.51)

where D = 4−2ε is the dimension of space-time, in the dimensional regularization scheme.

The coefficients Γi are shown in Table 1. This is the crucial point about χPT (and effective

field theories in general): The low-energy behavior of the observables is governed by the

tree-contributions, the loop diagrams represent contributions of higher order in the chiral

power counting scheme, i.e. in the momenta [9].

The scale dependence of the (measurable) renormalized LECs Lri (µ) follows directly

from (1.50):

Lri (µ2) = Lri (µ1) + lim
D→4

Γi
(4π)2

µD−4
1 − µD−4

2

D − 4

= Lri (µ1) +
Γi

(4π)2
ln
µ1

µ2

. (1.52)

3In this thesis, we use dimensional regularization, since it preserves the symmetries of the Lagrangian.
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i O(p4) O(p6) Γi

1 0.7± 0.3 0.43± 0.12 3/32

2 1.3± 0.7 0.73± 0.12 3/16

3 −4.4± 2.5 −2.35± 0.37 0

4 −0.3± 0.5 ≡ 0 1/8

5 1.4± 0.5 0.97± 0.11 3/8

6 −0.2± 0.3 ≡ 0 11/144

7 −0.4± 0.2 −0.31± 0.14 0

8 0.9± 0.3 0.60± 0.18 5/48

9 6.9± 0.7 1/4

10 −5.5± 0.7 − 1/4

11 −1/8

12 5/24

Table 1: Phenomenological values for the LECs Lri (Mρ) in units of 10−3. The first column

shows the original values of [10], the second column displays the values taken from fit 10

of [34], which we use for our calculations. The coefficients Γi in the third column are

taken from [10].

This scale dependence is of course canceled by that of the loop amplitude in any measur-

able quantity. A short remark on higher orders: In the same sense as the counterterms

that cancel the divergences of the one-loop diagrams arising from L2 are of order p4 and

have the structure of L4 [9, 10], the two-loop diagrams are of order p6 and so on. The

loop diagrams therefore do not modify the leading low energy behavior, but contribute

to higher orders in the chiral expansion scheme.

1.6 The electroweak interaction in χPT

Apart from introducing mass terms for the pseudoscalars, the external field technology

provides another important feature: It allows the systematic inclusion of the electroweak

interaction in the framework of χPT.

Electroweak processes where photons Aµ and leptons `, ν` (` = e, µ) are present only

as external legs can be treated within the framework of χPT by simply adding appropriate
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terms to the usual external vector and axial-vector sources vµ, aµ [35],

lµ = vµ − aµ − eQem
L Aµ +

∑
`

(
¯̀γµν`LQ

W
L + ν̄`Lγµ`Q

W †
L

)
,

rµ = vµ + aµ − eQem
L aµ, (1.53)

with the electromagnetic coupling e =
√

4πα, the quark charge matrix

Qem
L = Qem

R = Qem =


2/3 0 0

0 −1/3 0

0 0 −1/3

 (1.54)

and

QW
L = −2

√
2GF


0 Vud Vus

0 0 0

0 0 0

 , (1.55)

where GF is the Fermi coupling constant and Vud, Vus are Cabbibo-Kobayashi-Maskawa

matrix elements.

If we want to calculate diagrams with virtual photons, we have to include the photon

field as an additional dynamical degree of freedom by adding a kinetic term for the photon,

Lγ = −1

4
FµνF

µν , (1.56)

where Fµν = ∂µAν−∂νAµ is the usual field strength tensor, to the Lagrangian of the theory.

With the substitution vµ → vµ − eQAµ, χPT automatically generates all diagrams with

virtual (and real) photons. However, loop diagrams with virtual photons will in general

be divergent and therefore require appropriate counterterms.

The relevant chiral Lagrangian for virtual photons is, in addition to the replacements

(1.53), given by the most general chiral invariant Lagrangian that is bilinear in the spurion

fields QL(x),QR(x) with the transformation properties [36]

QL,R
G→ h(φ)QL,Rh(φ)†. (1.57)

At leading order e2p0, the electromagnetic effective Lagrangian contains a single term

[37],

Le2p0 = F 4
0 e

2Z 〈QLQR〉 , (1.58)

with a real and dimensionless coupling constant Z. After constructing the chiral invariant

Lagrangian at order e2p0 one can express QL and QL through the new spurion fields QL
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and QR transforming as [37]

QL,R(x)
G→ gL,RQL,R(x)g−1

L,R, (1.59)

Qem
L = uQem

L u†, Qem
R = u†Qem

R u, (1.60)

which can be identified with the quark charge matrix

Qem
L = Qem

R = Qem. (1.61)

At next-to-leading order e2p2, one finds the following list of local counterterms [38]:

Le2p2 = F 2
0 e

2
(

1

2
K1

〈
Q2
L +Q2

R

〉
〈uµuµ〉+K2 〈QLQR〉 〈uµuµ〉

−K3 [〈QLuµ〉 〈QLuµ〉+ 〈QRuµ〉 〈QRuµ〉]
+K4 〈QLuµ〉 〈QRuµ〉+K5

〈(
Q2
L +Q2

R

)
uµu

µ
〉

+K6 〈(QLQR +QRQL)uµu
µ〉+

1

2
K7

〈
Q2
L +Q2

R

〉
〈χ+〉

+K8 〈QLQR〉 〈χ+〉+K9

〈(
Q2
L +Q2

R

)
χ+

〉
+K10 〈(QLQR +QRQL)χ+〉 −K11 〈(QLQR −QRQL)χ−〉
−iK12

〈(
∇̂µQLQL −QL∇̂µQL − ∇̂µQRQR +QR∇̂µQR

)
uµ
〉

+K13

〈
∇̂µQL∇̂µQR

〉
+K14

〈
∇̂µQL∇̂µQL + ∇̂µQR∇̂µQR

〉)
, (1.62)

where

∇̂µQL = ∇µQL +
i

2
[uµ,QL] = uDµQLu

†,

∇̂µQR = ∇µQR −
i

2
[uµ,QR] = u†DµQRu. (1.63)

The low-energy couplings K1, ..., K14 arising here are divergent (except K7, K13 and K14).

The divergences of the one-loop graphs with a virtual photon or one vertex from Le2p0
are absorbed by an appropriate renormalization of the coupling constants in (1.62), in the

dimensional regularization scheme this reads [38]:

Ki = Kr
i (µ) + ΣiΛ(µ), (1.64)

with Λ(µ) defined in (1.51). The coefficients Σi can be found in [38].

The renormalized electromagnetic low-energy constants Kr
i (µ) are measurable quan-

tities, numerical results [39] are given in Table 2. The constants Σi govern the scale

dependence of the Kr
i (µ),

Kr
i (µ2) = Kr

i (µ1) +
Σi

(4π)2
ln

(
µ1

µ2

)
. (1.65)
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103Kr
1 103Kr

2 103Kr
3 103Kr

4 103Kr
5 103Kr

6

-2.71 0.69 2.71 1.38 11.59 2.77

Table 2: Numerical results obtained for Kr
i (µ) with µ = 0.77 GeV taken from [39].

In any physical amplitude, the scale dependence always cancels between the loop and

the counterterm contributions containing the renormalized coupling constants.

Finally, for the correct treatment of semileptonic processes, also virtual leptons and

appropriate counterterms have to be taken into account. This framework was worked out

in [35].

1.7 Masses of the light mesons II

With the framework described in section 1.6 we are in a position to calculate the contri-

bution of the electromagnetic interaction to the meson masses. The masses of the charged

mesons receive corrections from the effective Lagrangian Le2p0 (1.58) [37],

M2
π± = B (mu +md) + 2e2ZF 2

0 ,

M2
K± = B (mu +ms) + 2e2ZF 2

0 , (1.66)

while the (squared) masses of the neutral mesons M2
π0

, M2
K0

and M2
η stay unchanged.

For later convenience we give the (lowest-order) expressions of the pseudoscalar masses

in dependence of the isospin violating parameters ε(2) and e,

M2
π± = 2B0m̂+ 2e2ZF0

2,

M2
π0 = 2B0m̂,

M2
K± = B0

[
(ms + m̂)− 2ε(2)

√
3

(ms − m̂)

]
+ 2e2ZF0

2,

M2
(−)

K 0
= B0

[
(ms + m̂) +

2ε(2)

√
3

(ms − m̂)

]
,

M2
η =

4

3
B0

(
ms +

m̂

2

)
. (1.67)

The effective Lagrangian (1.58) does not contribute to the π0/η-mixing angle. At leading

order, the masses of the charged mesons receive the same contribution from the electro-

magnetic interaction (1.66). This is Dashen’s theorem [40],

(∆K0K+ −∆π+π0)EM = O(e2p2). (1.68)

24



The mass difference of the pions is dominated by (1.58) because the contributions of π0/η-

mixing are of order (mu−md)
2. Neglecting this tiny quantity (M2

π+−M2
π0)QCD, the mass

difference of the pions implies Z ∼= 0.8.

For later convenience we note that with (1.67) one can easily express the pseudoscalar

masses in the isospin limit through the physical ones,

M2
π = M2

π0 = 2B0m̂,

M2
K =

1

2

(
M2

K+ +M2
K0 −M2

π+ +M2
π0

)
= B0 (ms + m̂) . (1.69)

Within χPT, one cannot calculate the quark masses:

“The quark masses depend on the QCD renormalization scale. Since the

effective Lagrangians cannot depend on this scale, the quark masses always

appear multiplied by quantities that transform contragrediently under changes

of the renormalization scale. The chiral Lagrangian (1.22) contains the quark

masses via the scalar field χ defined in (1.28). As long as one does not use

direct or indirect information on B0, one can only extract ratios of quark

masses.” [25]

The lowest-order mass formulas (1.69) together with Dashen’s theorem (1.68) lead to the

Weinberg rations [41]

mu

md

=
−M2

K0 +M2
K+ −M2

π+ + 2M2
π0

M2
K0 −M2

K+ +M2
π+

,

ms

md

=
M2

K0 +M2
K+ −M2

π+

M2
K0 −M2

K+ +M2
π+

. (1.70)

With the numerical values for the meson masses given in [1], these formulas yield the

quark-mass ratios
mu

md

= 0.56,
ms

md

= 20.2. (1.71)
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Part II

The K`3 scalar form factors in the

standard model

2 Basics

Before we turn to the analysis of the K`3 form factors, we will briefly review the main

features of K`3 decays, including the kinematics of the process and the experimental

situation, which we will both need for the determination of the quantity FK/Fπf
K0π−
+ (0),

which is one of the basic input parameters in the subsequent analysis.

2.1 Structure of the invariant amplitude

The coupling of the W+ vector boson to the fermions is the standard model coupling, the

coupling of the pseudoscalar mesons to the W+ is effectively taken into account (1.53).

The invariant amplitude of the K`3 decays (` = e, µ)

K+(pK) → π0(pπ)`+(p`)ν`(pν), (2.1)

K0(pK) → π−(pπ)`+(p`)ν`(pν) (2.2)

(and their charge conjugate modes) reads

M =
GF√

2
V ∗us`

µCK
[
fKπ+ (t)(pK + pπ)µ + fKπ− (t)(pK − pπ)µ

]
, (2.3)

where

`µ = ū(pν)γ
µ(1− γ5)v(p`) (2.4)

denotes the weak leptonic current,

t = (pK − pπ)2 = (p` + pν)
2 (2.5)

is the squared momentum transfer to the leptons and CK is a Clebsch-Gordan coefficient,

CK =

 1 for K0
e3

1/
√

2 for K+
e3

. (2.6)
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The hadronic matrix element of the K`3 decays has the general form

〈
π−(pπ)

∣∣∣ ūγµs ∣∣∣K0(pK)
〉

= (pπ + pK)µf+(t) + (pπ − pK)µf−(t). (2.7)

The currents entering in this formula are defined on the quark level. The connection to

the effective theory is established by identifying these currents with the Noether currents

of the chiral symmetry,

ūγµs = Vµ,4 − iVµ,5, (2.8)

where V µ
a = Jµ,aL + Jµ,aR (a = 1, . . . , 8) denotes the vector current in the effective theory.

Every diagram contributing to K`3 decay contains one vertex where the external W -

boson couples to the mesons. The Feynman rules of the corresponding vertices result

from the terms in L that are linear in the gauge fields. Thus, the left- and right-handed

mesonic currents that couple to the external pseudo-scalar mesons are given by [42]

JLµ,a =
δL
δlµ,a

∣∣∣∣∣
rµ=lµ=0

, JRµ,a =
δL
δrµ,a

∣∣∣∣∣
rµ=lµ=0

. (2.9)

The K`3 decay rate is given by the frequently used formula [1]

Γ(K`3(γ)) =
G2
FM

5
KC

2
K

192π3
SEW|Vus|2

∣∣∣fK0π−

+ (0)
∣∣∣2 I`K(1 + δ`K + δSU(2)). (2.10)

This formula contains both short-distance (SEW) and long-distance (δ`K) radiative correc-

tions. The phase space integral I`K is given by

I`K =
∫
D3

dydzρ(y, z), (2.11)

where the integral extends on the physical domain D3 defining the three-body Dalitz plot

(see [43] for the explicit definition). The spin-averaged decay distribution ρ(y, z) depends

on two (independent) kinematical variables. We follow the choice in [43],

y =
2pπ · pK
M2

K

=
2Eπ
MK

, z =
2pK · p`
M2

K

=
2E`
MK

, (2.12)

where Eπ (E`) is the pion (charged lepton) energy in the kaon rest frame. With this set

of variables the distribution ρ(y, z) reads [43]

ρ(y, z) = A1(y, z)
∣∣∣fKπ+ (t)

∣∣∣2 + A2(y, z)fKπ+ (t)fKπ− (t) + A3(y, z)
∣∣∣fKπ− (t)

∣∣∣2 , (2.13)
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where the kinematical densities are given by [44]

A1(y, z) = 4(z + y − 1)(1− y) + r`(4y + 3z − 3)− 4rπ + r`(rπ − r`),
A2(y, z) = 2r`(3− 2y − z + r` − rπ),

A3(y, z) = r`(1 + rπ − z − r`), (2.14)

with the squared ratios r` = (m`/MK)2 and rπ = (Mπ/MK)2. The form factor f+(t) is

accessible in Ke3 and Kµ3 decays, while the form factor f−(t) is only accessible in Kµ3

decays, because it is suppressed by the quantity m2
`/M

2
K , see (2.14).

The physical domain D is defined by [44]

2
√
r` ≤ y ≤ 1 + r` − rπ,

a(y)− b(y) ≤ z ≤ a(y) + b(y), (2.15)

where

a(y) =
(2− y) (1 + r` + rπ − y)

2(1 + r` − y)
,

b(y) =

√
y2 − 4r` (1 + r` − rπ − y)

2(1 + r` − y)
, (2.16)

or, equivalently, [44]

2
√
rπ ≤ z ≤ 1 + rπ − r`,

c(z)− d(z) ≤ y ≤ c(z) + d(z), (2.17)

where

c(z) =
(2− z) (1 + rπ + r` − z)

2(1 + rπ − z)
,

d(z) =

√
z2 − 4rπ (1 + rπ − r` − z)

2(1 + rπ − z)
. (2.18)

The vector form factor fKπ+ describes the P-wave projection of the crossed channel

matrix element 〈0|V 4−i5
µ (0) |Kπ〉, while the scalar form factor

fKπ0 (t) = fKπ+ (t) +
t

∆Kπ

fKπ− (t) (2.19)

describes the S-wave projection. It directly follows that

fKπ0 (0) = fKπ+ (0). (2.20)
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2.2 Experimental situation

One possibility for the parametrization of the form factors for the fit of the measured

distribution of the K`3 decays is a Taylor expansion. Older measurments usually used the

linear parametrization of the form factors [1]

fKπ+,0 (t) = fKπ+ (0)

(
1 + λ+,0

t

M2
π+

)
(2.21)

for the fit. With the newer high-statistics measurements also the quadratic term in the

expansion of the vector form factor [1]

fKπ+ (t) = fKπ+ (0)

[
1 + λ′+

t

M2
π+

+
1

2
λ′′+

(
t

M2
π+

)2
]

(2.22)

became accessible. The parameters describing higher order terms of the form factor expan-

sion are in principle free to be determined from data. In practice, this additional freedom

greatly complicates the use of such parameterizations. As noted in [45], if a quadratic

parametrization is used for both the vector and scalar terms, fits to experimental data

will provide no sensitivity to λ′′0 because of the strong parameter correlations, especially

between λ′0 and λ′′0 . For this reason, existing power-series fits use a parametrization in

λ′+, λ′′+ and λ0.

Alternatively, also a pole fit,

fKπ+ (t) = fKπ+ (0)
M2

V

M2
V − t

, (2.23)

fKπ0 (t) = fKπ+ (0)
M2

S

M2
S − t

, (2.24)

has been employed. We will see that this parametrization assume additional physical

constraints – to reduce the number of independent parameters – which are not fulfilled in

the standard model.

Recently, a dispersive representation of the scalar form factor based on a twice sub-

tracted dispersion relation was proposed [19–21]. We will return to this topic in section

4.4.

Recent high-statistics measurements of the K`3 form factor parameters λ′+, λ′′+, λ0 are

available from ISTRA+ [5], KTeV [6], NA48 [7] and KLOE [8]. In particular for the scalar

slope, the NA48 results are difficult to accommodate with these of the other experiments
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ISTRA+ (K+
µ3) KTeV (KLµ3) KTeV (KLµ3 +KLe3)

17.1± 2.2 12.8± 1.8 13.7± 1.3

NA48 (KLµ3) KLOE (KLµ3) KLOE (KLµ3 +KLe3)

9.5± 1.4 9.1± 6.5 15.4± 2.2

Table 3: Experimental results for λKπ0 × 103

(The results are displayed in Table 3, where the ISTRA+ result has been rescaled by

M2
π+/M2

π0). The actual value of that slope parameter is still unclear. We want to analyze

the current situation from a phenomenological point of view - the two main questions we

want to concentrate on in the following are

• which of the measured values of λ0 are compatible with the standard model of

particle physics, and

• which size of isospin violation is predicted by theory?

The natural framework of such analysis is χPT [Part 1], the low-energy effective theory

of the standard model.

2.3 The determination of FK/Fπf
K0π−
+ (0)

From the theoretical point of view, the scalar K`3 form factor has a remarkable property:

the low-energy theorem of Callan and Treiman [13] predicts the size of fKπ0 (t) at the

(unphysical) momentum transfer t = ∆Kπ to be

fKπ0 (∆Kπ) =
FK
Fπ

+ ∆CT , ∆CT = O(mu,md). (2.25)

In the isospin limit (mu = md, e = 0) and at first non-leading order, ∆CT was calculated

already some time ago [46]:

∆CT = −3.5× 10−3. (2.26)

Assuming for a moment a strict linear behavior of the scalar form factor in the range

between t = 0 and the Callan-Treiman point t = ∆Kπ, the slope parameter would be
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given by [12]

λ0 '
M2

π+

∆Kπ

(
FK

FπfKπ+ (0)
− 1

)
(2.27)

as a consequence of (2.25). The ratio FK/Fπf
Kπ
+ (0) appearing in (2.27) can be determined

with remarkable precision from the experimental input, independent of Kµ3 data.

Before we turn to the results for the vector and the scalar form factors, we demonstrate

the determination of the quantity
FK

FπfK
0π−

+ (0)
, (2.28)

which will be one of our main input parameters in our subsequent analysis. We want

to point out that the decay constants used here always refer to the respective charged

pseudoscalars (Fπ ≡ Fπ+ , FK ≡ FK+). In the case of the pion, the distiction between

charged and neutral decay constant amounts to a tiny effect of order (md−mu)
2, whereas

FK+ differs from FK0 by terms of order md −mu [10].

Including electromagnetic corrections [4, 35], the ratio of the (fully inclusive) K`2(γ)

and π`2(γ) widths can be written as

Γ(K`2(γ))

Γ(π`2(γ))
=
|Vus|2F 2

KMK±(1− zK`)2

|Vud|2F 2
πMπ±(1− zπ`)2

×
{

1 +
α

4π

[
H(zK`)−H(zπ`) + (3− Z) ln

M2
K

M2
π

+ . . .
]}
, (2.29)

where zP` = m2
`/M

2
P . The kinematical function

H(z) =
23

2
− 3

1− z
+ 11 ln z − 2 ln z

1− z
− 3 ln z

(1− z)2
− 8 ln(1− z)

− 4(1 + z)

1− z
ln z ln(1− z) +

8(1 + z)

1− z

∫ 1−z

0
dt

ln(1− t)
t

(2.30)

ist taken from [35]. The chiral coupling [35] Z ' 0.8 arises from the electromagnetic mass

difference of the pion,

M2
π± −M2

π0 = 2e2ZF 2
0 , (2.31)

where F0 denotes the pion decay constant in the chiral limit. The dots in (2.29) refer to

contributions arising at O(e2p4). Inserting the measured widths [1]

Γ(Kµ2(γ)) = 0.5122(15)× 108 s−1, (2.32)

Γ(πµ2(γ)) = 0.38408(7)× 108 s−1, (2.33)
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we find4 [12]
|Vus|FK
|Vud|Fπ

= 0.27567(40)(2)(29) = 0.27567(50). (2.34)

The first two separated errors correspond to the experimental uncertainties of the Kµ2(γ)

and πµ2(γ) width, respectively. The third one is an estimate5 of the unknown electromag-

netic contributions of O(e2p4). Using (2.34), the quantity (2.28) we are interested in, can

be written as
FK

FπfK
0π−

+ (0)
= 0.27567(50)× |Vud|

|Vus|fK
0π−

+ (0)
. (2.35)

For the determination of the product |Vus|fK
0π−

+ (0), we employ the master formula (2.10).

For the short-distance enhancement factor SEW we use the value SEW (Mρ,MZ) = 1.0232

given in [4] including leading logarithmic and QCD corrections.

In order to avoid any bias from K+
e3 (which would require additional theoretical input

for the determination of δSU(2)) or Kµ3 data (involving also information about λ0, the

quantity we actually want to determine), we are exclusively using input from K0
Le3 decays

[6, 47] as given in [1]:

Γ(K0
Le3(γ)) = 0.0792(4)× 108 s−1, (2.36)

λ′+ = 0.0249(13), λ′′+ = 0.0016(5), ρλ′,λ′′ ' −0.95. (2.37)

Taking into account the recently determined values [32] of the electromagnetic low energy

couplings Xi [35], we obtain [12]

δeK0 = 0.0114(30) (2.38)

as an update of the electromagnetic corrections presented in [48]. Putting everything

together, we find [12]

|Vus|fK
0π−

+ (0) = 0.21616(68). (2.39)

With [49]

|Vud| = 0.97418(26), (2.40)

extracted from superallowed nuclear Fermi transitions, we finally obtain [12]

FK
FπfK

0π−
+ (0)

= 1.2424(23)(39)(3) = 1.2424(45), (2.41)

where the first error comes from (2.34), the second one from (2.39) and the third one from

(2.40)6. Note that the small difference between our number and the one obtained in [18]

within a similar approach is due to the slightly different input parameters.

4With the new value [50] Γ(Kµ2(γ)) = 0.5133(13)× 108 s−1 we find |Vus|FK/|Vud|Fπ = 0.27597(45).
5See also [51] for a recent calculation of O(e2p4) contributions to the ratio Rπ,Ke/µ .
6Our update of (2.34) together with the recent value |Vud| = 0.97425(22) [52] yields the slightly

different result FK/FπfKπ+ (0) = 1.2438(20)(39)(3) = 1.2438(44).
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Figure 2: Tree diagrams with vertices of O(p2) and O(p4).

Figure 3: One-loop diagrams with vertices of O(p2).

3 Analysis at NLO

The NLO amplitude of the K`3 decays consists of four types of Feynman diagrams:

(a) the tree diagram with wave function renormalization,

(b) the loop graph with a weak current and a purely mesonic vertex,

(c) the loop graph with a W+φ4 vertex and

(d) a counterterm diagram from L4.

3.1 Mass and wave function renormalization

To do loop calculations, one has to renormalize the two-point function first. The order p4

results for the wave function and the mass renormalization are well known [10]:

δZπ = − 1

3F 2
0

[
A0(M2

K) + A0(M2
π)

+24L4(2M2
K +M2

π) + 24L5M
2
π

]
,

δZK = − 1

4F 2
0

[
A0(M2

η ) + 2A0(M2
K) + A0(M2

π)
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+32L4(2M2
K +M2

π) + 32L5M
2
K

]
,

δM2
π =

1

6F 2

[
M2

πA0(M2
η )− 3M2

πA0(M2
π)− 48L4M

2
π(2M2

K +M2
π)

−48L5M
4
π + 96L6M

2
π(2M2

K +M2
π) + 96L8M

4
π

]
,

δM2
K =

1

12F 2

[
−4M2

KA0(M2
η )− 96L4M

2
K(2M2

K +M2
π)

−96L5M
4
K + 192L6M

2
K(2M2

K +M2
π) + 192L8M

4
K

]
. (3.1)

The function A0(m2) is the standard tadpole integral

A0(m2) = µ4−D
∫ dDk

i(2π)D
1

k2 −m2
, (3.2)

where D = 4− 2ε is the dimension of space-time.

One easily checks that the expressions of the masses are finite. The bare (infinite)

coefficients Li cancel the infinities resulting from the divergent loop integrals. As we had

expected from QCD in the chiral limit, the masses of the Goldstone bosons vanish at

O(p4), if the quark masses are sent to zero.

Each external meson propagator in the tree diagram must be multiplied with a factor

√
Z = 1 +

δZ

2
. (3.3)

3.2 The loop function J̄(t)

In this section we define the function appearing in the loop integrals used in the text.

We consider a loop with two propagators with different masses, MP and MQ. In the

calculation of the K`3 form factors to order p4, (md−mu)p
2, e2p2 all needed functions can

be given in terms of the subtracted scalar integral J̄(t) = J(t)− J(0). We define the loop

function J(t) by [10]

J(t) := −i
∫
dDz eipz∆P (z)∆Q(z), (3.4)

where ∆P (z) is the Feynman propagator for a scalar field of mass MP in D dimensions.

In dimensional regularization (D = 4− 2ε), the loop function J(t) reads

J(t) = πD/2(2π)−DΓ(2−D/2)

1∫
0

dx g(x; t)(D−4)/2, (3.5)
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with

g(x, t) = M2
P (1− x) +M2

Qx− tx(1− x). (3.6)

The quantity J̄(t) defined by

J̄(t) := J(t)− J(0) (3.7)

remains finite as D → 4. Explicitly, the loop functions J̄PQ(t) is given by [10]

J̄PQ(t) = − 1

16π2

1∫
0

ln
g(x, t)

g(x, 0)
dx

=
1

32π2

[
2 +

∆PQ

t
ln
M2

Q

M2
P

− ΣPQ

∆PQ

ln
M2

Q

M2
P

−
λ1/2(t,M2

P ,M
2
Q)

t
ln

(
[t+ λ1/2(t,M2

P ,M
2
Q)]2 −∆2

PQ

[t− λ1/2(t,M2
P ,M

2
Q)]2 −∆2

PQ

)]
, (3.8)

with

∆PQ = M2
P −M2

Q, ΣPQ = M2
P +M2

Q (3.9)

and λ being the Källén-function

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (3.10)

3.3 The K`3 form factors at NLO in the isospin limit

The f+ form factor in the isospin limit was already calculated more than twenty years

ago [10,46]. The expressions for the individual diagrams are given by [42]

∆(0)f+ = 1− 2

F 2
0

{
4L4(M2

π + 2M2
K) + 2L5(M2

π +M2
K)
}

− 1

24F 2
0

{
3A0(M2

η ) + 10A0(M2
K) + 11A0(M2

π)
}
,

∆(1a)f+ = − 3

2F 2
0

{
B21(q2,M2

η ,M
2
K) +B21(q2,M2

K ,M
2
π)
}
,

∆(1b)f+ =
1

6F 2
0

{
3A0(M2

η ) + 7A0(M2
K) + 5A0(M2

π)
}
,

∆(1c)f+ =
2

F 2
0

{
4L4(M2

π + 2M2
K) + 2L5(M2

π +M2
K) + q2L9

}
, (3.11)

where

B21(q2,m2
1,m

2
2) =

1

4q2(1−D)

{
(m2

2 −m2
1 − q2)A0(m2

1) + (m2
1 −m2

2 − q2)A0(m2
2)

+λ(q2,m2
1,m

2
2)B0(q2,m2

1,m
2
2)
}

(3.12)
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and

B0(q2,m2
1,m

2
2) = µ4−D

∫ dDk

i(2π)D
1

[(k + q)2 −m2
1][k2 −m2

2]
. (3.13)

In the final result the scale dependence of the low energy constant Lr9(µ) is canceled by

the chiral logs AP (µ) and one gets [46]

fKπ+ (t) = 1 +
3

2F 2
π

[hKπ(t, µ) + hKη(t, µ)] +
2

F 2
π

tLr9(µ)

= 1 +
3

2
[HKπ(t) +HKη(t)] , (3.14)

with

hPQ(t, µ) =
1

12t
λ(t,M2

P ,M
2
Q) J̄PQ(t) +

1

18(4π)2
(t− 3ΣPQ)

− 1

12

{
2ΣPQ − t

∆PQ

[AP (µ)− AQ(µ)]− 2[AP (µ) + AQ(µ)]
}
, (3.15)

where

AP (µ) = − M2
P

(4π)2
ln
M2

P

µ2
(3.16)

and

HPQ(t) =
1

F 2
0

[
hrPQ(t, µ) +

2

3
tLr9(µ)

]
. (3.17)

The analogous expression for the f− form factor is given by

fKπ− =
4∆KP

F 2
0

[
Lr5(µ)− 3

256π2
ln
M2

π

µ2

]

− 1

128π2F 2
0

[
2M2

K ln
M2

K

M2
π

+ 3M2
η ln

M2
η

M2
π

− 3M2
π ln

M2
η

M2
π

]

+
(5t2 − 2tΣKπ − 3∆2

Kπ)KKπ(t)

4F 2
0 t

+
(−3t2 + 2tΣKπ −∆2

Kπ)KKη(t)

4F 2
0 t

− 3∆Kπ

2t
[HKπ(t) +HKη(t)] . (3.18)

In the isospin conserving case the low-energy representation of the scalar form factor,

fKπ0 (t) := fKπ+ (t) +
t

∆Kπ

fKπ− (t), (3.19)

is given by [46]

f0(t) = 1 +
1

8F 2
0

(
5t− 2ΣKπ − 3

∆2
Kπ

t

)
J̄Kπ(t)
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+
1

24F 2
0

(
3t− 2ΣKπ −

∆2
Kπ

t

)
J̄Kη(t)

+
t

∆Kπ

(
FK
Fπ
− 1

)
, (3.20)

where the dependence of the low energy constant Lr5 was expressed through the ratio [10]

FK
Fπ

= 1 +
1

4
(5µπ − 2µK − 3µη) +

4

F 2
0

(M2
K −M2

π)Lr5(µ). (3.21)

3.4 The f+ form factors at order p4, (md −mu)p
2, e2p2

Now we include isospin breaking effects arising from strong and electromagnetic interac-

tion. It is convenient to use the notation introduced in [43],

fK
+π0

± = f̃K
+π0

± + f̂K
+π0

± ,

FK0π−

± = f̃K
0π−

± + f̂K
0π−

± , (3.22)

where the first one represents the pure QCD contributions (in principle at any order in

the chiral expansion) plus the electromagnetic contributions up to order e2p2 generated

by the non-derivative Lagrangian

Le2p0 = e2F 4
0Z〈QEM

L QEM
R 〉. (3.23)

Diagrammatically, they arise form purely mesonic graphs. In the definition of f̃K
+π0

± we

have included also the electromagnetic counterterms relevant to π0/η-mixing. The second

term in (3.22) represents the local effects of virtual photon exchange of order e2p2. Using

this convention, we have to perform the replacement

fKπ± → f̃Kπ± (3.24)

in the master formula (2.10).

The contributions of order (md − mu)p
2 were already calculated in the Eighties by

Gasser and Leutwyler [46], while these arising from the Lagrangian Le2p2 were calculated

for the first time in [43]. The results are

f̃K
+π0

+ (t) = 1 +
√

3
(
ε(2) + ε

(4)
S + ε

(4)
EM

)
+

1

2
HK+π0(t) +

3

2
HK+η(t) +HK0π−(t)

+
√

3ε(2)
[
5

2
HKπ(t) +

1

2
HKη(t)

]
(3.25)
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for the K+ decays and

f̃K
0π−

+ (t) = 1 +
1

2
HK+π0(t) +

3

2
HK+η(t) +HK0π−(t)

+
√

3ε(2)[HKπ(t)−HKη(t)] (3.26)

for the K0 decays.

The expression for f̃K
+π0

+ (t) is more complicated because of π0/η-mixing: The quantity

ε
(4)
S is the strong contribution to the π0/η-mixing angle arising at first nonleading order [46]

and ε
(4)
EM is the corresponding term generated at O(e2p2) [36]. They are given by [43]

ε
(4)
S = − 2 ε(2)

3(4πF0)2(M2
η −M2

π)

×
{

(4π)2 64 [3L7 + Lr8(µ)] (M2
K −M2

π)2

−M2
η (M2

K −M2
π) log

M2
η

µ2
+M2

π(M2
K − 3M2

π) log
M2

π

µ2

−2M2
K(M2

K − 2M2
π) log

M2
K

µ2
− 2M2

K(M2
K −M2

π)
}

(3.27)

and [43]

ε
(4)
EM =

2
√

3αM2
K

108π (M2
η −M2

π)

×
{

2(4π)2
[
− 6Kr

3(µ) + 3Kr
4(µ) + 2Kr

5(µ) + 2Kr
6(µ)

]
− 9Z

(
log

M2
K

µ2
+ 1

)}
. (3.28)

For completeness we note that (3.25) and (3.26) imply the relation

f̃K
+π0

+ (0) = f̃K
0π−

+ (0)
[
1 +
√

3
(
ε(2) + ε

(4)
S + ε

(4)
EM

)]
, (3.29)

which defines

δSU(2) =

 0 for K0
`3

2
√

3
(
ε(2) + ε

(4)
S + ε

(4)
EM

)
for K+

`3

(3.30)

to the order (md −mu)p
2, e2p2.
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3.5 The fKπ− form factors at order p4, (md −mu)p
2, e2p2

The analogous expressions for the f− form factors are given by [43]

f̃K
+π0

− (t) =
4∆Kπ

F 2
0

(
1 +

ε(2)

√
3

)[
Lr5(µ)− 3

256π2
ln
M2

K±

µ2

]

− 1

128π2F 2
0

[
(3 +

√
3ε(2))M2

η ln
M2

η

M2
K±

+ 2(3−
√

3ε(2))M2
K0 ln

M2
K0

M2
K±

− 2(3−
√

3ε(2))M2
π± ln

M2
π±

M2
K±

+ (1 + 3
√

3ε(2))M2
π0 ln

M2
π0

M2
K±

]

+
∑
PQ

{[
aPQ(t) +

∆PQ

2t
bPQ

]
KPQ(t) + bPQ

F 2
0

t
HPQ(t)

}
(3.31)

and [43]

f̃K
0π−

− (t) =
4∆Kπ

F 2
0

(
1 +

2ε(2)

√
3

)[
Lr5(µ)− 3

256π2
ln
M2

π±

µ2

]

− 1

128π2F 2
0

[
2M2

K0 ln
M2

K0

M2
π±

+ (3 + 2
√

3ε(2))M2
η ln

M2
η

M2
π±

− (3 + 2
√

3ε(2))M2
π0 ln

M2
π0

M2
π±

]

+
∑
PQ

{[
cPQ(t) +

∆PQ

2t
dPQ

]
KPQ(t) + dPQ

F 2
0

t
HPQ(t)

}
, (3.32)

where the sum runs over all meson pairs in the loop diagrams (K+π0, K0π+, K+η). The

loop function KPQ(t) is defined by [10]

Kµ(p2) :=
i

2

∫
dDz e−ipz (∂µ∆P∆Q −∆P∂µ∆Q) , (3.33)

Kµ(p2) = pµK(p2), it remains finite as D → 4 and reads

KPQ(t) =
∆PQ

2t
J̄PQ(t). (3.34)

The coefficients aPQ(t), bPQ, cPQ(t) and dPQ are given in [43] and are displayed in Ap-

pendix A.

Analogously to the isospin conserving case, we can trade in the the low-energy constant

Lr5(µ) for the ratio FK/Fπ. At one loop, the pion decay constant Fπ, defined by

〈
0|A3

µ|π0(p)
〉

= ipµFπ, Aaµ = q̄γµγ5
1

2
λaq, (3.35)
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is given by the following (scale invariant) expression [10]

Fπ = F0

{
1 +

4

F0
2

[
Lr4(µ)(M2

π + 2M2
K) + Lr5(µ)M2

π

]
− 1

2(4π)2F0
2

[
2M2

π ln
M2

π

µ2
+M2

K ln
M2

K

µ2

]}
. (3.36)

Together with the decay constant of the charged kaons [35],

FK± = F0

{
1 +

4

F0
2

[
Lr4(µ)(M2

π + 2M2
K) + Lr5(µ)M2

K

]
− 1

8(4π)2F0
2

[
3M2

π ln
M2

π

µ2
+ 6M2

K ln
M2

K

µ2
+ 3M2

η ln
M2

η

µ2

]

− 8
√

3 ε(2)

3F 2
0

Lr5(µ)(M2
K −M2

π) (3.37)

−
√

3 ε(2)

4(4π)2F 2
0

[
M2

π ln
M2

π

µ2
−M2

η ln
M2

η

µ2
− 2

3
(M2

K −M2
π)

(
ln
M2

K

µ2
+ 1

)]}
,

we can express the low-energy constant Lr5(µ) in terms of the ratio FK/Fπ [35],

FK
Fπ

= 1 +
4∆Kπ

F 2
0

Lr5(µ)

(
1− 2ε(2)

√
3

)

− 1

8(4π)2F0
2

[
3M2

η ln
M2

η

µ2
+ 2M2

K ln
M2

K

µ2
− 5M2

π ln
M2

π

µ2

]

+

√
3ε(2)

4(4π)2F 2
0

[
M2

η ln
M2

η

µ2
−M2

π ln
M2

π

µ2
+

2

3
∆Kπ

(
ln
M2

K

µ2
+ 1

)]
. (3.38)

Performing this replacement in our form factors we arrive at [12]

f̃K
+π0

− (t) =
(
FK
Fπ
− 1

)
(1 +

√
3ε(2))

−
√

3ε(2)

(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
+

∆π±π0

4(4πF0)2

(
5− 3 ln

M2
K

M2
π

)

+
∑
PQ

{[
aPQ(t) +

∆PQ

2t
bPQ

]
KPQ(t) + bPQ

F 2
0

t
HPQ(t)

}
(3.39)

and [12]

f̃K
0π−

− (t) =
(
FK
Fπ
− 1

)(
1 +

4ε(2)

√
3

)

− ε(2)

√
3(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
+

∆π±π0

4(4πF0)2

+
∑
PQ

{[
cPQ(t) +

∆PQ

2t
dPQ

]
KPQ(t) + dPQ

F 2
0

t
HPQ(t)

}
. (3.40)
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3.6 Scalar form factors at order p4, (md −mu)p
2, e2p2

In the scalar form factor

f̃K
+π0

0 (t) = f̃K
+π0

+ (t) +
t

∆K+π0

f̃K
+π0

− (t). (3.41)

the loop functions HPQ(t) cancel because of the relation

1

2
HK+π0(t) +

3

2
HK+η(t) +HK0π−(t)

+
√

3 ε(2)
[
5

2
HKπ(t) +

1

2
HKη(t)

]
+
∑
PQ

bPQF
2
0HPQ(t)/∆K+π0 = 0. (3.42)

Using (3.25) and (3.39) one obtains [12]

f̃K
+π0

0 (t) = f̃K
+π0

0 (0) +
t

∆K+π0

{(
FK
Fπ
− 1

)
(1 +

√
3ε(2))

−
√

3ε(2)

(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
+

∆π±π0

4(4πF0)2

(
5− 3 ln

M2
K

M2
π

)

+
∑
PQ

[
1

2
aPQ(0)∆PQJ̄

′
PQ(0) +

1

8
bPQ∆2

PQJ̄
′′
PQ(0)

]}

+
1

∆K+π0

∑
PQ

{
1

2
a′PQ(0)∆PQtJ̄PQ(t)

+
1

2
aPQ(0)∆PQ[J̄PQ(t)− tJ̄ ′PQ(0)]

+
1

4
bPQ∆2

PQ

J̄PQ(t)− tJ̄ ′PQ(0)− t2J̄ ′′PQ(0)/2

t

}
. (3.43)

From the terms linear in t one can directly read off the expression for the slope parameter.

Analogously the scalar form factor of the K0
`3 decay is given by

f̃K
0π−

0 (t) = f̃K
0π−

+ (t) +
t

∆K0π−
f̃K

0π−

− (t). (3.44)

Again the loop functions HPQ(t) cancel because of the relation

1

2
HK+π0(t) +

3

2
HK+η(t) +HK0π−(t)

+
√

3 ε(2)[HKπ(t)−HKη(t)]

+
∑
PQ

dPQF
2
0HPQ(t)/∆K0π− = 0. (3.45)
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Inserting (3.26) and (3.40) one obtains [12]

f̃K
0π−

0 (t) = f̃K
0π−

0 (0)

+
t

∆K0π−

{(
FK
Fπ
− 1

)(
1 +

4ε(2)

√
3

)

− ε(2)

√
3(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
+

∆π±π0

4(4πF0)2

+
∑
PQ

[
1

2
cPQ(0)∆PQJ̄

′
PQ(0) +

1

8
dPQ∆2

PQJ̄
′′
PQ(0)

]}

+
1

∆K0π−

∑
PQ

{
1

2
c′PQ(0)∆PQtJ̄PQ(t)

+
1

2
cPQ(0)∆PQ[J̄PQ(t)− tJ̄ ′PQ(0)]

+
1

4
dPQ∆2

PQ

J̄PQ(t)− tJ̄ ′PQ(0)− t2J̄ ′′PQ(0)/2

t

}
. (3.46)

The values of the derivatives of the loop function J̄(0) at s = 0 are easily obtained from

the integral representation (3.5) [10],

J̄ ′PQ(0) =
1

32π2

(
Σ

∆2
+ 2

M2
PM

2
Q

∆3
ln
M2

Q

M2
P

)
,

J̄ ′′PQ(0) =
1

32π2

(
2

3∆4
(3Σ2 − 2∆2) + 4

M2
PM

2
Q

∆5
Σ ln

M2
Q

M2
P

)
. (3.47)

3.7 Slope parameters

In the following section we turn to the slope parameters of the scalar form factors, the

quantities we are actually interested in. For the slope parameter of the K+
`3 decays,

λK
+π0

0 :=
M2

π+

f̃K
+π0

+ (0)

df̃K
+π0

0 (t)

dt

∣∣∣∣
t=0
, (3.48)

we use (3.29) and obtain the result [12]

λK
+π0

0 =
M2

π+

∆K+π0

{
FK

Fπf̃K
0π−

+ (0)
− 1

f̃K
0π−

+ (0)

−
√

3ε(2)

(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
(3.49)

+
∆π±π0

4(4πF0)2

(
5− 3 ln

M2
K

M2
π

)
+ (1−

√
3ε(2))
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×
∑
PQ

[
1

2
aPQ(0)∆PQJ̄

′
PQ(0) +

1

8
bPQ∆2

PQJ̄
′′
PQ(0)

]}

and for the slope parameter of the K0
`3 decays,

λK
0π−

0 :=
M2

π+

f̃K
0π−

+ (0)

df̃K
0π−

0 (t)

dt

∣∣∣∣
t=0
, (3.50)

we obtain the result [12]

λK
0π−

0 =
M2

π+

∆K0π−

{(
FK

Fπf̃K
0π−

+ (0)
− 1

f̃K
0π−

+ (0)

)(
1 +

4ε(2)

√
3

)
(3.51)

− ε(2)/
√

3

(4πF0)2

[
∆Kπ −M2

π ln
M2

K

M2
π

]
+

∆π±π0

4(4πF0)2

+
∑
PQ

[
1

2
cPQ(0)∆PQJ̄

′
PQ(0) +

1

8
dPQ∆2

PQJ̄
′′
PQ(0)

]}
.

3.8 Size of isospin breaking

The size of strong isospin violation is determined by the π0/η-mixing angle ε(2) defined in

(1.46) or, equivalently, by the ratio of quark mass differences

R :=
ms − m̂
md −mu

. (3.52)

Up to corrections of order m2
q, the double ratio

Q2 :=
m2
s − m̂2

m2
d −m2

u

= R
ms/m̂+ 1

2
(3.53)

is given by meson masses and a purely electromagnetic contribution [10]:

Q2 =
∆KπM

2
K [1 +O(m2

q)]

M2
π [∆K0K+ + ∆π+π0 − (∆K0K+ + ∆π+π0)EM]

. (3.54)

As a consequence of Dashen’s theorem [40], the electromagnetic term vanishes at lowest

order e2p0. It can be expressed through chiral logarithms and a certain combination of

electromagnetic couplings of Le2p0 and Le2p2 [36, 38]:

(∆K0K+ + ∆π+π0)EM = e2M2
K

[
1

4π2

(
3 ln

M2
K

µ2
− 4 + 2 ln

M2
K

µ2

)
+

4

3
(K5 +K6)r(µ)− 8(K10 +K11)r(µ)

+ 16ZLr5(µ)

]
+O(e2M2

π). (3.55)
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The numerical values of the electromagnetic coupling constants appearing in this expres-

sion have been determined by several authors [39, 53, 54]. Here we are using the most

recent result by Ananthanarayan and Moussallam [39]. They obtain a rather large devi-

ation from Dashen’s limit,

(∆K0K+ + ∆π+π0)EM = −1.5 ∆π+π0 , (3.56)

which corresponds to [12]

Q = 20.7± 1.2, (3.57)

where we have added a rather generous error to account for higher order corrections.

For the determination of

R =
2Q2

ms/m̂+ 1
(3.58)

we also need information about the quark mass ratio ms/m̂ as our second input parameter.

Employing different methods [55], typical values around ms/m̂ ∼ 24 have been obtained

in the literature. We want to corroborate this size of the quark mass ratio by a numerical

update of the determination of ms/m̂ with a method proposed by Leutwyler [56] using

the decay widths of η → γγ and η′ → γγ. Defining the parameters cη and cη′ by [56]

Γ(P → γγ) =
α2M3

P

64π3F 2
π

c2
P , (3.59)

the experimental values for the decay widths given in [1] correspond to cη = 0.991±0.025

and cη′ = 1.245 ± 0.022. The quark mass ratio can be obtained from the system of

equations [56] (see also [57,58])

F 8
η cη + F 8

η′cη′ =
Fπ√

3
, (3.60)

(F 8
η )2 + (F 8

η′)
2 =

4F 2
K − F 2

π

3
, (3.61)

(F 8
η )2M2

η + (F 8
η′)

2M2
η′ =

8F 2
KM

2
Kms/m̂

3(ms/m̂+ 1)
− F 2

πM
2
π(2ms/m̂− 1)

3
. (3.62)

Eq.(3.61) can be written in the form [56]

F 8
η = F8 cosϑ8, F 8

η′ = F8 sinϑ8 (3.63)

with

(F8)2 =
4F 2

K − F 2
π

3
. (3.64)
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Using (3.60), the observed values of cη and cη′ require ϑ8 = −22.0◦. Inserting this in

(3.62) yields the quark mass ratio [12]

ms

m̂
= 24.7± 1.0± 0.3± 0.1 = 24.7± 1.1, (3.65)

where the errors refer to the uncertainties of Γ(η → γγ), Γ(η′ → γγ) and FK/Fπ. This

value is perfectly consistent with ms/m̂ = 24.4 ± 1.5 obtained in [55] based on different

arguments.

Combining (3.57) and (3.65), the relation (3.58) finally gives [12]

R = 33.5± 4.0± 1.5 = 33.5± 4.3. (3.66)

A value for R of this size has been suggested in [34]. Note however that a recent analysis

of η → 3π at the two-loop level [59] favours the values R = 42.2 and Q = 23.2. A review

of recent lattice results gives the values R = 37.2 ± 4.1 and Q = 23.1 ± 1.5. The result

(3.66) corresponds to [12]

ε(2) = (1.29± 0.17)× 10−2 (3.67)

and will be used in our subsequent numerical analysis. We also note that (3.67) leads to

the numerical value [12]

δSU(2) = 0.058(8) (3.68)

for the parameter (3.30) in K`3 decays.

3.9 Numerics at order p4, (md −mu)p
2, e2p2

For our subsequent numerical evaluations we use the PDG08 values [1] forMπ± , Mπ0 , MK±

and MK0 . Since we have used the Gell-Mann-Okubo formula [33]

3∆ηK = ∆Kπ (3.69)

in our previous calculations of the form factors and slope parameters, it is the only

unambiguous choice at the considered chiral order to use it also to obtain a numerical

value of Mη.

Plugging all our numerical input parameters in (3.49) and (3.51), we arrive at the

following results [12]

λK
0π−

0 = (16.64︸ ︷︷ ︸
mu=md

+ 0.17︸ ︷︷ ︸
mu 6=md

+ 0.14︸ ︷︷ ︸
EM

)× 10−3
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= 16.95(40)(5)× 10−3, (3.70)

λK
+π0

0 = (16.64︸ ︷︷ ︸
mu=md

− 0.12︸ ︷︷ ︸
mu 6=md

− 0.08︸ ︷︷ ︸
EM

)× 10−3

= 16.44(39)(4)× 10−3, (3.71)

where the contributions of strong isospin violation and of the electromagnetic interaction

are given separately. The latter two pieces turn out to be of the same size. In the total

results, the first error refers to (2.41) and the second one to (3.67). Both sources of isospin

violation generate only tiny shifts with respect to the result in the isospin limit, with a

splitting of the two slope parameters given by [12]

∆λ0 := λK
0π−

0 − λK+π0

0 = (5.1± 0.9)× 10−4. (3.72)

3.10 Callan-Treiman relations at the NLO

For the investigation of the Callan-Treiman relations in the presence of isospin breaking

effects, it is convenient to consider the ratios

f̃K
+π0

0 (∆K+π0)

f̃K
+π0

0 (0)
,

f̃K
0π−

0 (∆K0π−)

f̃K
0π−

0 (0)
. (3.73)

In the case of K+
`3 decays, we find [12]

f̃K
+π0

0 (∆K+π0)

f̃K
+π0

0 (0)
=

FK

Fπf̃K
0π−

+ (0)
−
√

3ε(2)

(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)

+
∆π±π0

4(4πF0)2

(
5− 3 ln

M2
K

M2
π

)

+ (1 +
√

3ε(2))
∑
PQ

[
aPQ(∆K+π0) +

∆PQbPQ
2∆K+π0

]
KPQ(∆K+π0).(3.74)

A further evaluation of the coefficients aPQ(∆K+π0), bPQ and of KPQ(∆K+π0) leads to the

alternative form [12]

f̃K
+π0

0 (∆K+π0)

f̃K
+π0

0 (0)
=

FK

Fπf̃K
0π−

+ (0)
−
√

3ε(2)

(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)

+
∆π±π0

4(4πF0)2

(
5− 3 ln

M2
K

M2
π

)

+
M2

π

2F 2
0

(
1 +

12ε(2)

√
3
− 4ε(2)M2

K√
3M2

π

)
J̄K+π0(∆K+π0)
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− M2
π

F 2
0

(
1+

2ε(2)

√
3

+
4ε(2)M2

K√
3M2

π

− 2∆π±π0

∆Kπ

)
J̄K0π−(∆K+π0)

− M2
π

6F 2
0

(
1+

8ε(2)

√
3

+
4ε(2)M2

K√
3M2

π

− 4∆π±π0

∆Kπ

)
J̄K+η(∆K+π0). (3.75)

The analogous formula in the case of K0
`3 decays is given by [12]

f̃K
0π−

0 (∆K0π−)

f̃K
0π−

0 (0)
=

FK

Fπf̃K
0π−

+ (0)
+

4ε(2)

√
3

(
FK

Fπf̃K
0π−

+ (0)
− 1

f̃K
0π−

+ (0)

)

− ε(2)

√
3(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
+

∆π±π0

4(4πF0)2

+
∑
PQ

[
cPQ(∆K0π−) +

∆PQdPQ
2∆K0π−

]
KPQ(∆K0π−), (3.76)

after inserting cPQ(∆K0π−), bPQ and KPQ(∆K0π−) we arrive at [12]

f̃K
0π−

0 (∆K0π−)

f̃K
0π−

0 (0)
=

FK

Fπf̃K
0π−

+ (0)
+

4ε(2)

√
3

(
FK

Fπf̃K
0π−

+ (0)
− 1

f̃K
0π−

+ (0)

)

− ε(2)

√
3(4πF0)2

(
∆Kπ −M2

π ln
M2

K

M2
π

)
+

∆π±π0

4(4πF0)2

− M2
π

2F 2
0

(
1− 2ε(2)

√
3

+
2∆π±π0M2

K

∆KπM2
π

)
J̄K+π0(∆K0π−)

− M2
π

6F 2
0

(
1 +

6ε(2)

√
3
− 2∆π±π0

∆Kπ

)
J̄K+η(∆K0π−). (3.77)

We note that in the isospin limit (ε(2) = ∆π+π0 = 0), (3.75) as well as (3.77) reduce to

the well known result [46]

fKπ0 (∆Kπ) =
FK
Fπ
− M2

π

6F 2
0

[
3J̄Kπ(∆Kπ) + J̄Kη(∆Kπ)

]
. (3.78)

The quantity

∆K+π0

CT = f̃K
+π0

0 (∆K+π0)− FK
Fπ

=
√

3 ε(2) + . . . (3.79)

receives a large (but trivial) contribution already at the tree level, making it less convenient

for the discussion of deviations from the Callan-Treiman limit in the presence of isospin

violation. In contrast, the quantities

δK
+π0

CT :=
f̃K

+π0

0 (∆K+π0)

f̃K
+π0

0 (0)
− FK

Fπf̃K
0π−

+ (0)
(3.80)

and

δK
0π−

CT :=
f̃K

0π−
0 (∆K0π−)

f̃K
0π−

0 (0)
− FK

Fπf̃K
0π−

+ (0)
(3.81)
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vanish at lowest order and will be used in the following to measure the size of corrections

to the Callan-Treiman relation in the cases of the charged kaon decays and the neutral

kaon decays, respectively.

Finally, after inserting (2.41), at order p4, (mu − md)p
2, e2p2 we find the numerical

results [12]

δK
0π−

CT =
f̃K

0π−
0 (∆K0π−)

f̃K
0π−

0 (0)
− FK

Fπf̃K
0π−

+ (0)
= 1.7(1)(7)× 10−3, (3.82)

δK
+π0

CT =
f̃K

+π0

0 (∆K+π0)

f̃K
0π−

0 (0)
− FK

Fπf̃K
0π−

+ (0)
= −10.4(0)(7)× 10−3, (3.83)

where in both cases the first error originates from (2.41) and the second one from (3.67).

Switching off the electromagnetic contributions in (3.82) and (3.83), we obtain [12]

δK
0π−

CT

∣∣∣
e=0

= 1.9× 10−3, δK
+π0

CT

∣∣∣
e=0

= −9.9× 10−3, (3.84)

the result in the isospin limit is given by [12]

fKπ0 (∆Kπ)

fKπ0 (0)
− FK
FπfKπ+ (0)

= −3.6× 10−3. (3.85)

One learns from this results that at NLO the Callan-Treiman theorem holds with excellent

precision even if isospin breaking contributions are taken into account.

4 Analysis at NNLO

4.1 The scalar form factor in the isospin limit

At NNLO, the result for the slope parameter in the isospin limit is given by [15]

fKπ0 (t) +
t

∆Kπ

(
1− FK

Fπ

)
= 1 + ∆̄(t) + ∆(0)

− 8∆2
Kπ

F 4
π

[Cr
12(Mρ) + Cr

34(Mρ)]

+
8t∆Kπ

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)]

+
16tM2

π

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)]

− 8t2

F 4
π

Cr
12(Mρ). (4.1)
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The loop functions ∆̄(t) and ∆(0) were calculated numerically in [15]:

∆̄(t) = −0.25763t/GeV2 + 0.833045(t/GeV2)2 + 1.25252(t/GeV2)3[K0
e3],

∆(0) = −0.0080± 0.0057[loops]± 0.0028[Lri ]. (4.2)

Following the strategy proposed in [14], we pull out the tree-level pieces ∼ Lri × Lrj from

∆̄(t) and ∆(0) by defining7

D(0) = ∆(0)− 8∆2
Kπ

F 4
π

Lr5(Mρ)
2, (4.3)

D̄(t) = ∆̄(t) +
8t∆Kπ

F 4
π

Lr5(Mρ)
2. (4.4)

Expressing (4.1) through the functions D̄(t) and D(0), we obtain [12]

fKπ0 (t) = fKπ+ (0) +
t

∆Kπ

(
FK
Fπ
− 1

)
+

8t∆Kπ

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)− Lr5(Mρ)
2]

+
16tM2

π

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)]

− 8t2

F 4
π

Cr
12(Mρ) + D̄(t), (4.5)

where

fKπ+ (0) = 1 +D(0)− 8∆2
Kπ

F 4
π

[
Cr

12(Mρ) + Cr
34(Mρ)− Lr5(Mρ)

2
]
. (4.6)

The expression for the normalized scalar form factor takes the form [12]

fKπ0 (t)

fKπ+ (0)
= 1 +

t

∆Kπ

(
FK

FπfKπ+ (0)
− 1

1 +D(0)

)

+
8t(∆Kπ − t)

F 4
π

Cr
12(Mρ)

+
16tM2

π

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)]

+
D̄(t)

1 +D(0)
, (4.7)

allowing the following conclusion: Apart from the very small contribution

16tM2
π

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)] = ∆tree, p6

CT

t

∆Kπ

, (4.8)

7Note that terms ∼ Lr4 × Lr5, Lr5 × Lr6, Lr5 × Lr8, etc. cancel in the combination of terms entering in
(4.1).
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which is suppressed by a factor M2
π/M

2
K , the slope as well as the curvature of (4.7)

depend only on the counterterm Cr
12(Mρ) if the loop functions D̄(t), D(0) are known and

the quantity FK/Fπf
Kπ
+ (0) is used as input parameter.

Taking ∆(0) and ∆̄(t)(K0
`3) from [15] and Lr5(Mρ) (fit 10) from [34], (4.3) and (4.4)

assume the numerical values

D(0) = −0.0134± 0.0005,

D̄(t) = −0.23407t/GeV2 + 0.833045(t/GeV2)2 + 1.25252(t/GeV2)3. (4.9)

4.2 Renormalization group equations

The relevant p6 counterterms have been determined by using the 1/NC expansion and

truncating the hadronic spectrum to the lowest lying resonances [14]. In this framework,

the leading term in the large-NC expansion of the relevant couplings can be expressed

in terms of the scalar and pseudoscalar octet masses (MS and MP ) and the pion decay

constant [14]:

LSP5 =
F 2
π

4M2
S

, CSP12 = − F 4
π

8M4
S

,

CSP34 =
3F 4

π

16M4
S

+
F 4
π

16M4
S

(
1− M2

S

M2
P

)2

. (4.10)

One assumes that the expressions given above determine the corresponding renormalized

coupling constants at some typical hadronic matching scale µ:

Cr
i (µ) = CSPi . (4.11)

The renormalization of the order p6 LECs gives [60]

Cr
i (Mρ) = Cr

i (µ) + δCi(µ,Mρ), (4.12)

where

δCi(µ,Mρ) =
1

(4π)2

 Γ
(2)
i

(4π)2

(
ln

µ

Mρ

)2

− [2Γ
(1)
i + Γ

(L)
i (Mρ)] ln

µ

Mρ

 (4.13)

is determined by the renormalization group equations

µ
∂Cr

i (µ)

∂µ
=

1

(4π)2
[2Γ

(1)
i + Γ

(L)
i (µ)],

µ
∂Γ

(L)
i (µ)

∂µ
= −Γ

(2)
i

8π2
. (4.14)
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With this formula we can obtain the value of the coupling constant at our standard

reference scale Mρ. For our analysis we need coefficients [60]

Γ
(2)
12 =

19

64
, Γ

(1)
12 = − 13

768(4π)2
,

Γ
(L)
12 =

2

3
Lr1 +

4

3
Lr2 +

8

9
Lr3 +

3

4
Lr5 (4.15)

and

Γ
(2)
34 = −13

32
, Γ

(1)
34 = − 31

2304(4π)2
,

Γ
(L)
34 = −Lr1 −

3

2
Lr2 −

11

12
Lr3 + Lr4 −

3

2
Lr5. (4.16)

The analysis of [61] (scenario A) suggests the value MS = 1.48 GeV for the lightest

scalar nonet that survives the large-Nc limit. With this choice of the mass parameter one

gets [12]

LSP5 = 0.97× 10−3, (4.17)

which agrees exactly with the mean value of Lr5(Mρ) obtained in fit 10 of [34]. For the

pseudoscalar mass parameter, spectroscopy and chiral symmetry [1,61] suggest the value

MP = 1.3 GeV. With this input we obtain the results [12]

Cr
12(Mρ) = (−1.9+2.0

−0.4)× 10−6 (4.18)

and

Cr
34(Mρ) = (2.9+1.3

−5.0)× 10−6. (4.19)

The errors were estimated by evaluating (4.13) using (4.15) and (4.16), respectively. The

numerical values of the couplings Lri (Mρ) (together with their errors) were taken from fit

10 of [34] and are shown in Table 4. Varying the matching scale µ between Mη and 1 GeV

provides us with an estimate of the intrinsic uncertainty due to subleading contributions

in 1/Nc. Note that the asymmetric errors in (4.18) and (4.19) originate from the quadratic

term in (4.13) as a consequence of the two-loop renormalization group equation. This is

shown in Figure 4.

4.3 Slope parameter at order p6

Expanding the scalar form factor as

fKπ0 (t)

fKπ+ (0)
= 1 + λKπ0

t

M2
π+

+
1

2
cKπ0

(
t

M2
π+

)2

+ . . . , (4.20)
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103Lr1 103Lr2 103Lr3 103Lr4
0.43± 0.12 0.73± 0.12 −2.35± 0.37 ≡ 0

103Lr5 103Lr6 103Lr7 103Lr8
0.97± 0.11 ≡ 0 −0.31± 0.14 0.60± 0.18

Table 4: Results for Lri (µ) at the scale µ = 0.77 GeV taken from fit 10 of [34].

Figure 4: The uncertainties of the order O(p6) LECs Cr
12(Mρ) and Cr

34(Mρ) in dependence

of the matching scale µ.

Figure 5: The uncertainty of the combination (2C12 + C34)r(Mρ) entering in ∆tree, p6

CT in

dependence of the matching scale µ.
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(4.7) implies [12]

λKπ0 = M2
π+

{
1

∆Kπ

(
FK

FπfKπ+ (0)
− 1

1 +D(0)

)
+

8∆Kπ

F 4
π

Cr
12(Mρ)

+
16M2

π

F 4
π

[2Cr
12(Mρ) + Cr

34(Mρ)]

+
D̄′(0)

1 +D(0)

}
(4.21)

for the slope parameter.

Using the two-loop results D(0) (4.3) and D̄(t) (4.4) and estimating the relevant

combination of low-energy couplings using the renormalization group equations in the

way described above, we find [12]

λKπ0 = (13.9+1.3
−0.4 ± 0.4)× 10−3. (4.22)

The first error is related to the uncertainties in the determination of the Ci and the second

one to those in FK/Fπf+(0) and D(0).

The expression for the curvature reads [12]

cKπ0 = M4
π+

{
− 16

F 4
π

Cr
12(Mρ) +

D̄′′(0)

1 +D(0)

}
, (4.23)

which leads to the numerical result [12]

cKπ0 = (8.0+0.3
−1.7)× 10−4, (4.24)

once D̄(t) together with Cr
12(Mρ) have been inserted. Note that the naive pole parametriza-

tion (2.24) would predict

cKπ0 |pole fit = 2(λKπ0 )2 ' 4× 10−4, (4.25)

where the numerical value was obtained by inserting λKπ0 . This discrepancy is due to the

fact, that the pole parametrization assumes a relation between the slope and the curvature

parameters which is not fulfilled in the standard model. Therefore the pole fit should be

avoided when analyzing the experimental data.

Using our estimates for the order p6 coupling constants we are also able to calculate

fKπ+ (0). The relevant combination [12]

Cr
12(Mρ) + Cr

34(Mρ)− Lr5(Mρ)
2 = (0.1+1.1

−1.2)× 10−6 (4.26)
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corresponds to the result [12]

fKπ+ (0) = 0.986± 0.0071/Nc ± 0.002MS ,MP
. (4.27)

Apart from varying the matching scale, we have also added a second error to account for

the uncertainty in the choice of the resonance masses, as our central value for f tree
p6 given

by

f tree
p6 = −∆2

Kπ

2M4
S

(
1− M2

S

M2
P

)2

(4.28)

depends strongly on the (relative) size of the mass parameters. The number given in (4.27)

is to be compared with the still currently used Leutwyler-Roos value fKπ+ (0) = 0.961(8)

[62]. An average of various lattice calculations is given by fKπ+ (0) = 0.956(8) [63].

4.4 Dispersive analysis

In the following section we want to check our numerical two-loop χPT results for the

slope parameter (4.22) and the curvature (4.24) by comparing them with independent

approaches using a dispersive representation of the scalar form factor [16–21].

These parameterizations are based on the observation that the vector and scalar form

factors are analytic functions in the complex t-plane, except for a cut along the positive

real axis for t > tlim = (MK+Mπ)2, where they develop discontinuities. One can therefore

write [16]

f+,0(t) =
1

π

∞∫
tlim

ds′
Imf+,0(s)

(s− t− iε)
+ subtractions, (4.29)

where the imaginary part, Imf+,0(s′), can be determined from data on Kπ scattering, and

the ultraviolet component of the integral is absorbed into the (polynomial) subtraction

terms.

In addition to the analyticity constraints, the scalar form factor must satisfy an ad-

ditional theoretical constraint dictated by chiral symmetry. The Callan-Treiman (CT)

theorem [13] implies that the scalar form factor at t = ∆Kπ ≡ M2
K −M2

π is determined

in terms of fK/fπ and f+(0) up to O(mu,md) corrections. The quantity ∆CT can be

evaluated in χPT, see (2.26), (3.82) and (3.83).

Motivated by the existence of the CT theorem, a particularly appealing dispersive

parametrization for the scalar form factor has been proposed [19]. Two subtractions are
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performed, one at t = 0, where by definition f̄0(0) = 1, and the other at the CT point,

t = ∆Kπ. With this parametrization, only on free parameter, C, has to be determined

from data.

The analysis of Bernard et al. [19–21] based on a twice subtracted dispersion relation

gives the expression

f(t) :=
fKπ0 (t)

fKπ+ (0)
= exp

[
t

∆Kπ

( lnC −G(t))
]
, (4.30)

G(t) =
∆Kπ(∆Kπ − t)

π

∞∫
tKπ

ds

s

φ(s)

(s−∆Kπ)(s− t− iε)
,

for the normalized form factor. The quantity tKπ denotes the threshold of Kπ scattering

and φ(t) is the phase of f(t),

f(t) = |f(t)| exp(iφ(t)). (4.31)

The main advantage of the dispersive relation is that it introduces the value of the form

factor at the Callan-Treiman point ∆Kπ = M2
K −M2

π , a quantity C = f(∆Kπ) which is

not affected by chiral corrections beyond SU(2) × SU(2). Thus these are of O(mu,md)

while the slopes get larger corrections of O(ms). Expanding (4.30) in the momentum

transfer t leads to the expression

λKπ0 =
M2

π+

∆Kπ

( lnC −G(0)). (4.32)

for the slope parameter. Evaluating (4.30) at the Callan-Treiman point t = ∆Kπ, one

finds the relation

C =
FK

FπfKπ+ (0)
+

∆CT

fKπ+ (0)
. (4.33)

Using (2.41) and the estimate±0.01 for the uncertainty due to ∆CT/f
Kπ
+ (0), the parameter

C assumes the value [12]

C = 1.2424± 0.0045± 0.01, (4.34)

or, equivalently,

lnC = 0.2170± 0.0036± 0.0080. (4.35)

Together with [19]

G(0) = 0.0398± 0.0036± 0.002, (4.36)

the dispersive analysis gives the numerical value [12]

λKπ0 = (15.1± 0.8)× 10−3 (4.37)
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for the slope parameter, which is consistent with our result based on resonance saturation.

The expression for the curvature reads [19]

cKπ0 = (λKπ0 )2 − 2M4
π+G′(0)

∆Kπ

= (λKπ0 )2 + (4.16± 0.50)× 10−4. (4.38)

Inserting their value of λKπ0 , the curvature is given by

cKπ0 = (6.4± 0.6)× 10−4, (4.39)

which is again consistent with the result of our analysis.

The dispersive approach of Jamin, Oller and Pich [16–18] using a method based on a

coupled-channel solution of the dispersive relation for the form factor which includes also

the Kη′ channel gives the result [18]

d

dt

fKπ0 (t)

fKπ0 (0)

∣∣∣∣
t=0

= 0.773(21) GeV−2, (4.40)

d2

dt2
fKπ0 (t)

fKπ0 (0)

∣∣∣∣
t=0

= 1.599(52) GeV−4, (4.41)

which corresponds to the values

λKπ0 = (14.7± 0.4)× 10−3, (4.42)

and

cKπ0 = (6.07± 0.20)× 10−4. (4.43)

This results are in good agreement with those obtained by Bernard et al. and also with

our results (4.22) and (4.24) obtained in χPT.

4.5 Contributions of order (md −mu)p
4

Recently, isospin breaking in the K`3 form factors has also been studied at the two-loop

level [22]. The results for the scalar form factor of K0 → π−`+ν` with Cr
i = 0 turn out to

be essentially the same as those in the isospin limit. From Fig. 13 of [22] one extracts [12]

∆λ0|Cri =e=0 ' 5× 10−4. (4.44)
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The remaining contributions to the form factors containing the order p6 LECs Cr
i were

given in [22] and are shown in Appendix B. In the splitting of the two slope parameters

this results simplify to [12]

∆λ0|Cri =
32ε(2)∆KπM

2
π+√

3F 4
π

× (2C12 + 6C17 + 6C18 + 3C34 + 3C35)r(Mρ). (4.45)

Using the resonance estimates of the LECs appearing in (4.45) given in [64], we find [12]

(2C12 + 6C17 + 6C18 + 3C34 + 3C35)SP =
F 4
π

4M4
S

(
1− 3M2

S

2M2
P

− M2
S

M2
η′

+ 6λSS2

)
. (4.46)

With our standard values for the resonance masses MS, MP and our usual determination

of the uncertainty of the large NC estimate, we find [12]

(2C12 + 6C17 + 6C18 + 3C34 + 3C35)r(Mρ) = (− 1.25 + 2.26λSS2 ± 0.71/NC )× 10−5. (4.47)

Varying the unknown λSS2 in the interval

−1 <∼ λ
SS
2

<∼ 1 (4.48)

and combining the two-loop results given in [22] with an estimate of a further combination

of low-energy couplings, we expect the total value for the difference of the two slope

parameters to lie within the rather small range [12]

0 <∼ ∆λ0
<∼ 10−3. (4.49)

4.6 Callan-Treiman relations at NNLO

The combination of counterterms entering in (4.8) is given by [12]

2Cr
12(Mρ) + Cr

34(Mρ) = (− 0.9+3.8
−3.4)× 10−6 (4.50)

which translates into [12]

∆tree, p6

CT = (− 0.8+3.5
−3.1)× 10−3. (4.51)

Combined with the two-loop result given in [22], the total p6 result (in the isospin-limit)

reads [12]

∆CT = (− 7.0+3.5
−3.1)× 10−3. (4.52)
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The two-loop contributions to the correction terms of the Callan-Treiman relation in the

presence of isospin violation were also given in [22]. Translated in terms of the quantities

defined in (3.81) and (3.80), they find

δK
0π−

CT

∣∣∣
Cri =e=0

= −5.6× 10−3 (4.53)

and

δK
+π0

CT

∣∣∣
Cri =e=0

= −13.3× 10−3, (4.54)

respectively. These results should be supplemented by the associated local contributions

arising at this order [22], which are, however, also plagued by partly undetermined low-

energy couplings. We demonstrate this only for the purely isospin violating combination

[12]

(
δK

0π−

CT − δK+π0

CT

)∣∣∣
Cri

=
32ε(2)M4

K√
3F 4

π

(2C12 + 2C14

+ 2C15 + 6C17 + 6C18 + 4C34 + 3C35)r(Mρ), (4.55)

where terms ∼ ε(2)M2
π have been discarded. In addition to the undetermined parameter

λSS2 already encountered in (4.46), the resonance estimate for the p6 low-energy coupling

C14 is still incomplete [64], preventing a reliable numerical determination of (4.55) (and

even more for the individual terms) for the time being.

Nevertheless, based on the numbers (3.82) and (3.83) found at NLO, the partial NNLO

results shown in (4.53) and (4.54), our estimate of the isospin symmetric local p6 con-

tribution (4.51) and a rough order-of-magnitude estimate of not yet determined local

terms of the order (md−mu)p
4 (a typical term is shown in (4.55)), we expect numerically

small corrections to the Callan-Treiman relation also in the presence of isospin violation

with [12]

|δK0π−

CT |, |δK+π0

CT | <∼ 10−2. (4.56)
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5 Summary and conclusions

In this thesis we have discussed the theoretical predictions for the scalar form factors of

K`3 decays within the standard model. The principal theoretical tool for this analysis is

chiral perturbation theory (χPT), the effective field theory of the standard model at low

energies. We have given a short introduction to χPT.

We have given an introduction to K`3 decays, including a description of the kinematics

and a summary of the experimental situation. The leading non-vanishing contribution

to the scalar slope arises at order p4 in the chiral expansion. The theoretical expression

for the scalar form factor was worked out already more than twenty years ago [46] in the

limit of isospin conservation. In this case, the slope parameter is uniquely determined by

the pseudoscalar masses, the pion decay constant and the ratio [12]

FK

Fπf̃K
0π−

+ (0)
= 1.2424(45). (5.1)

The remarkably precise numerical value given here can be obtained by combining the

latest experimental data on Kµ2(γ), πµ2(γ), K
0
Le3 and Vud with the corresponding theoretical

expressions. Using this input, one finds [12]

λKπ0 |p4 = (16.64± 0.39)× 10−3. (5.2)

The isospin violating contributions of order (md − mu)p
2 and e2p2 to the K`3 form

factors were considered for the first time in [43]. The effects of strong isospin breaking

are proportional to the mixing angle [12]

ε(2) =

√
3

4

md −mu

ms − m̂
= (1.29± 0.17)× 10−2. (5.3)

The numerical value shown here was obtained by using the corrections to Dashen’s limit

given in [39]. The electromagnetic contributions of order e2p2 entering in the slope pa-

rameters λK
0π−

0 and λK
+π0

0 can be expressed through the electromagnetic pieces of the

pseudoscalar masses as well as the coupling Z associated to the chiral Lagrangian of or-

der e2p0, which can also be related to the pion mass difference (to the considered order).

Both sources of isospin violation generate only a tiny shift of the two slope parameters

(compared to the isospin symmetric limit) with a splitting ∆λ0 = λK
0π−

0 − λK+π0

0 given

by [12]

∆λ0|(md−mu)p2,e2p2 = (5.1± 0.9)× 10−4 (5.4)
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at this chiral order.

The corrections arising at order p6 (in the isospin limit) turn out to be quite sizeable.

Combining the two-loop results of χPT [15] with an updated estimate of the necessary p6

low-energy couplings, the numerical value of the slope parameter in the isospin symmetric

limit is given by [12]

λKπ0 = (13.9+1.3
−0.4 ± 0.4)× 10−3. (5.5)

The main uncertainty in this result comes from a certain combination of p6 low energy

couplings which has been determined by an updated analysis based on [14,61].

Using the dispersive representation proposed in [19] with (2.41), we find [12]

λKπ0 = (15.1± 0.8)× 10−3, (5.6)

being in good agreement with the value (5.5) obtained in χPT and also with other results

[17,18] using dispersion techniques.

The inclusion of isospin violating contributions of order (md−mu)p
4 does not change

this picture substantially. We expect an additional uncertainty for the values of the slope

parameters of at most±10−3, mainly due to not yet fully determined low-energy couplings.

Combining the two-loop results given in [22] with an estimate of a further combination

of low-energy couplings, the difference of the two slope parameters should be confined to

the rather small range [12]

0 <∼ ∆λ0
<∼ 10−3. (5.7)

In other words, if a difference of the size of the two slope parameters is detected at all,

λK
0π−

0 should be slightly larger than λK
+π0

0 .

At the Callan-Treiman point t = ∆Kπ, the size of the scalar form factor is predicted

as [13]

fKπ0 (∆Kπ) =
FK
Fπ

+ ∆CT, (5.8)

where ∆CT is of the order mu,md, e. At order p4 (in the isospin limit) the correction

term ∆CT = −3.5 × 10−3 was calculated in [46]. If isospin violation is included, it

is advantageous to consider the quantities defined in (3.81) and (3.80). At the order

p4, (md −mu)p
2, e2p2, we find [12]

δK
0π−

CT |p4,(md−mu)p2,e2p2 = (1.7± 0.7)× 10−3 (5.9)

and

δK
+π0

CT |p4,(md−mu)p2,e2p2 = (−10.4± 0.7)× 10−3. (5.10)
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In spite of the large corrections to the correction term itself, the Callan-Treiman relation

still holds with excellent precision also if isospin violating contributions are taken into

account.

Corrections to ∆CT arising at NNLO are also (potentially) large. At the same time,

the uncertainty of the theoretical result is increased by the presence of p6 low-energy

couplings. Combining the two-loop result given in [22] with our estimate for 2Cr
12 + Cr

34,

we find (in the isospin limit) [12]

∆CT = (− 7.0+3.5
−3.1)× 10−3. (5.11)

The loop contributions of order (md − mu)p
4 were considered in [22]. The associated

counterterm contributions depend on partly undetermined low-energy couplings. In spite

of these theoretical uncertainties, we expect only small corrections to the Callan-Treiman

relation with [12]

|δK0π−

CT |, |δK+π0

CT | <∼ 10−2. (5.12)

The experimental results for the scalar slope parameter found by ISTRA+, KTeV

and KLOE are in agreement with the predictions of the standard model. On the other

hand, the value found by NA48 can hardly be reconciled with our theoretical results.

Furthermore, an isospin violation in ∆λ0 as it would be suggested by the simultaneous

validity of the results of ISTRA+ and NA48 is definitely ruled out within the standard

model.

The naive pole parametrization of the scalar form factor should be avoided. It contains

an implicit assumption of a relation between slope and curvature which is not fulfilled in

the standard model.

At the present theoretical and experimental level of precision, the correct treatment of

electromagnetic corrections in Kµ3 decays is mandatory for the extraction of form factor

parameters from experimental data. The appropriate procedure was described in [43], a

more detailed presentation of the numerics is given in [65].
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A Coefficients

In this section we list the coefficients aPQ(t), bPQ, cPQ(t), and dPQ given in [43].

aK+π0(t) =
2M2

K + 2M2
π − t

4F 2
0

+
(
ε(2)

√
3

)−2M2
K + 22M2

π − 9t

4F 2
0

+ 4παZ,

aK0π−(t) =
−2M2

K − 2M2
π + 3t

2F 2
0

+
(
ε(2)

√
3

)−2M2
K + 6M2

π − 3t

2F 2
0

− 16παZ,

aK+η(t) =
2M2

K + 2M2
π − 3t

4F 2
0

+
(
ε(2)

√
3

)
6M2

K − 2M2
π − 3t

4F 2
0

+ 12παZ. (A.1)

bK+π0 = −∆Kπ

2F 2
0

−
(

7ε(2)

2
√

3

)
∆Kπ

F 2
0

− 4παZ,

bK0π− = −∆Kπ

F 2
0

−
(
ε(2)

√
3

)
∆Kπ

F 2
0

− 8παZ,

bK+η = −3∆Kπ

2F 2
0

+
(√

3ε(2)

2

)
∆Kπ

F 2
0

− 12παZ. (A.2)

cK+π0(t) = −2M2
K + 2M2

π − 3t

4F 2
0

+
(
ε(2)

√
3

)−4M2
K + 3t

2F 2
0

− 8παZ,

cK0π−(t) =
t

2F 2
0

,

cK+η(t) =
2M2

K + 2M2
π − 3t

4F 2
0

+
(
ε(2)

√
3

)
4M2

K − 3t

2F 2
0

. (A.3)

dK+π0 = −∆Kπ

2F 2
0

−
(

4ε(2)

√
3

)
∆Kπ

F 2
0

+ 4παZ,

dK0π− = −∆Kπ

F 2
0

−
(

2ε(2)

√
3

)
∆Kπ

F 2
0

+ 8παZ,

dK+η = −3∆Kπ

2F 2
0

+ 12παZ. (A.4)
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B The order p6 LECs dependent part

In this appendix we give the part of the K`3 form factors dependent on the order p6 LECs

Cr
i entering in (4.45) taken from [22].

fK
+π0

± (t)
∣∣∣
Cri

=
1

F 4
π

fA± (t) +
sin ε(2)

√
3

fB± (t) +
sin ε(2)

√
3
(
m2
π0 −m2

η

)fE± (t)

 ,
fK

0π−

± (t)
∣∣∣
Cri

=
1

F 4
π

(
fA± (t)− sin ε(2)

√
3

fD± (t)

)
. (B.1)

The Cr
i dependence is now given by

fA+ (t) = +t2 (−4Cr
88 + 4Cr

90) +M2
σ t (−4Cr

12 − 16Cr
13 − 4Cr

63 − 4Cr
64 − 2Cr

90)

+M2
π t (−12Cr

12 − 32Cr
13 − 4Cr

63 − 8Cr
64 − 4Cr

65 − 6Cr
90) +M4

σ (−2Cr
12 − 2Cr

34)

+M2
πM

2
σ (4Cr

12 + 4Cr
34) +M4

π (−2Cr
12 − 2Cr

34),

fB+ (t) = +t2 (−12Cr
88 + 12Cr

90) +M2
σ t (−4Cr

12 − 48Cr
13 − 4Cr

63 − 12Cr
64 − 2Cr

90)

+M2
π t (−44Cr

12 − 96Cr
13 − 20Cr

63 − 24Cr
64 − 12Cr

65 − 22Cr
90)

+M4
σ (2Cr

12 + 16Cr
14 + 16Cr

17 + 48Cr
18 − 14Cr

34 − 24Cr
35)

+M2
πM

2
σ (−4Cr

12 − 32Cr
14 − 32Cr

17 − 96Cr
18 + 28Cr

34 + 48Cr
35)

+M4
π (2Cr

12 + 16Cr
14 + 16Cr

17 + 48Cr
18 − 14Cr

34 − 24Cr
35),

fE+ (t) = +M6
σ (96Cr

19 + 64Cr
20 + 64Cr

31 + 64Cr
32 + 128Cr

33)

+M2
πM

4
σ (−32Cr

14 − 32Cr
17 − 96Cr

18) +M4
πM

2
σ (64Cr

14 + 64Cr
17 + 192Cr

18

−288Cr
19 − 192Cr

20 − 192Cr
31 − 192Cr

32 − 384Cr
33)

+M6
π (−32Cr

14 − 32Cr
17 − 96Cr

18 + 192Cr
19 + 128Cr

20 + 128Cr
31 + 128Cr

32

+256Cr
33),

fD+ (t) = +M2
σ t (8Cr

12 − 8Cr
63 + 8Cr

65 + 4Cr
90) +M2

π t (−8Cr
12 + 8Cr

63 − 8Cr
65 − 4Cr

90)

+M4
σ (8Cr

12 + 8Cr
34) +M2

πM
2
σ (−16Cr

12 − 16Cr
34) +M4

π (8Cr
12 + 8Cr

34),

fA− (t) = +M2
σ t (−4Cr

12 + 2Cr
88 − 2Cr

90) +M2
π t (4Cr

12 − 2Cr
88 + 2Cr

90)

+M4
σ (6Cr

12 + 8Cr
13 + 4Cr

14 + 4Cr
15 + 2Cr

34 + 2Cr
63 + 2Cr

64 + Cr
90)

+M2
πM

2
σ (12Cr

12 + 8Cr
13 + 4Cr

15 + 8Cr
17 + 4Cr

34 + 2Cr
64 + 2Cr

65 + 2Cr
90)

+M4
π (−18Cr

12 − 16Cr
13 − 4Cr

14 − 8Cr
15 − 8Cr

17 − 6Cr
34 − 2Cr

63 − 4Cr
64

−2Cr
65 − 3Cr

90),

fB− (t) = +M2
σ t (−4Cr

12 + 2Cr
88 − 2Cr

90) +M2
π t (4Cr

12 − 2Cr
88 + 2Cr

90)

+M4
σ (−6Cr

12 + 8Cr
13 − 4Cr

14 + 4Cr
15 − 32Cr

17 − 48Cr
18 − 18Cr

34 − 24Cr
35 − 2Cr

63

64



+2Cr
64 − Cr

90)

+M2
πM

2
σ (36Cr

12 + 8Cr
13 + 16Cr

14 + 4Cr
15 + 72Cr

17 + 96Cr
18 + 44Cr

34 + 48Cr
35

+8Cr
63 + 2Cr

64 + 2Cr
65 + 6Cr

90)

+M4
π (−30Cr

12 − 16Cr
13 − 12Cr

14 − 8Cr
15 − 40Cr

17 − 48Cr
18 − 26Cr

34 − 24Cr
35

−6Cr
63 − 4Cr

64 − 2Cr
65 − 5Cr

90) ,

fE− (t) = 0,

fD− (t) = +M2
σ t (8Cr

12 − 4Cr
88 + 4Cr

90) +M2
π t (−8Cr

12 + 4Cr
88 − 4Cr

90)

+M4
σ (−24Cr

12 − 16Cr
13 − 8Cr

15 − 16Cr
17 − 8Cr

34 − 4Cr
64 − 4Cr

65 − 4Cr
90)

+M2
πM

2
σ (−16Cr

13 − 16Cr
14 − 8Cr

15 + 16Cr
17 − 8Cr

63 − 4Cr
64 + 4Cr

65)

+M4
π (24Cr

12 + 32Cr
13 + 16Cr

14 + 16Cr
15 + 8Cr

34 + 8Cr
63 + 8Cr

64 + 4Cr
90), (B.2)

where

M2
σ = M2

K+ +M2
K0 −M2

π . (B.3)

The pion mass is used generically since Mπ+ and Mπ0 are the same to the considered

order.
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Zusammenfassung

In dieser Diplomarbeit werden die semileptonischen Kaon-Zerfälle (` = e, µ)

K+(pK) → π0(pπ)`+(p`)ν`(pν),

K0(pK) → π−(pπ)`+(p`)ν`(pν)

(und ihre ladungskonjugierten Moden) und insbesondere isospinverletzende Effekte durch

die starke und die elektromagnetische Wechselwirkung untersucht. Die Untersuchung

dieser Prozesse erfolgt mit Hilfe der Chiralen Störungstheorie (χPT), einer effektiven

Feldtheorie des Standardmodells der Teilchenphysik bei niedrigen Energien (E � 1GeV).

Diese Zerfälle, insbesondere die Ke3-Mode, sind die wichtigste Quelle zur Bestimmung des

Kobayashi-Maskawa-Matrixelements |Vus| im Standardmodell. Daher ist es von großer

Bedeutung, diese Prozesse so gut wie möglich zu verstehen.

Die Zerfallsbreite dieser Prozesse wird durch die vektoriellen und skalaren Formfak-

toren fK
+π0

+ (t) und fK
+π0

0 (t) bzw. fK
0π−

+ (t) und fK
0π−

0 (t) bestimmt. Im Experiment wird

der sklalare Formfaktor üblicherweise durch die Steigung λKπ0 parametrisiert,

fKπ0 (t) = fKπ+ (0)

(
1 + λKπ0

t

M2
π+

)
.

Die aktuellen Experimente ISTRA+, KTeV, KLOE und NA48 liefern allerdings Werte

für λKπ0 , die nur schwer miteinander vereinbar sind. Das Ziel dieser Arbeit ist es, die

Ergebnisse dieser Experimente mit den Vorhersagen des Standardmodells zu vergleichen.

Der Aufbau der Diplomarbeit ist folgender: In Abschnitt 1 wird eine kurze Einführung

in die χPT gegeben. In Abschnitt 2 werden die experimentelle Situation der K`3-Zerfälle

geschildert und ihre Kinematik beschrieben. In Abschnitt 3 werden zunächst die Ergeb-

nisse für die vektoriellen und skalaren Formfaktoren und deren Steigungen in Einschleifen-

näherung wiedergegeben. Die Steigung des skalaren Formfaktors wird insbesondere durch

die Größe FK/Fπf
K0π−
+ (0) und den isospinverletzenden Parameter ε(2) bestimmt, die Be-

stimmung dieser Größen wird ausführlich beschrieben. Mit diesen Ergebnissen werden

λK
+π0

0 und λK
0π−

0 numerisch ausgewertet. Am Ende dieses Abschnitts werden die Callan-

Treiman-Relationen in Einschleifennäherung (inklusive Isospinverletzung) ausgearbeitet.

Die Ergebnisse in Zweischleifennäherung werden in Abschnitt 4 präsentiert und mit

einem unabhängigen Ansatz, der auf Dispersionsrelationen basiert, verglichen. Weiters

werden die isospinverletzenden Beiträge der Ordnung (md − mu)p
4 in λKπ0 und in den

Callan-Treiman-Relationen studiert.
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Zusammenfassend kann gesagt werden, dass die Ergebnisse von ISTRA+, KTeV und

KLOE in Übereinstimmung mit den Vorhersagen des Standardmodells sind. Die Resultate

von NA48 sind hingegen nur schwer mit den Ergebnissen dieser Diplomarbeit vereinbar.

Insbesondere kann eine Isospinverletzung, wie sie der Fall wäre, wenn man die Ergebnisse

von ISTRA+ und NA48 als richtig annimmt, im Standardmodell ausgeschlossen werden.
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