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Abstract 

This diploma thesis contributes to the retrospective analysis of tornado occurrences in the United 

States from 1950 to 2009. The spatial and temporal analysis is carried out with Geographic 

Information Systems (GIS) and spatiotemporal statistics. At the beginning an extensive overview 

about the genesis and composition of tornadoes is given, followed by a comprehensive discussion of 

previous studies about tornado occurrences in the United States. Data and the methodology that will 

be used for the analysis are the content of Chapter 2. Different mapping principles are presented and 

compared for the suitability in spatial cluster analysis. Then, the basics of spatial and temporal 

statistics are discussed. The chapter concludes with the presentation of four selected spatial and 

spatiotemporal statistics and how they can be applied for a space-time analysis of events. The focus 

of discussion in Chapter 3 is on spatial and spatiotemporal statistics that are available in open source 

software packages. For the spatial and temporal analysis of tornado touchdown points the kernel 

density estimation technique, the Nearest Neighbor Hierarchical Clustering (NNHC) routine, the Local 

Moran’s I as Local Indicators of Spatial Association (LISA) method, and the space-time permutation 

model as space-time scan statistic are applied. The entire tornado dataset, tornadoes by F-Scale, 

monthly maxima in tornado occurrences, and tornado fatalities are being analyzed by using a 

combination of these statistical techniques. Finally, the results from the different statistics are 

compared with each other and with related studies. In general, the results of the spatial analysis of 

tornado touchdown points in this thesis show similar outcomes compared to previous studies. Higher 

concentrations of tornado occurrences which have not been detected in previous studies can be 

found in the south of the United States, especially in Mississippi and Florida. Since the previous 

studies did not contain temporal variations of tornado patterns, these new results in this thesis are 

very insightful. High increases in tornado intensity between two defined time periods have been 

detected around Denver, CO, Houston, TX, and St. Petersburg, FL, whereas decreases in the intensity 

of significant tornadoes (rated F2 and higher) have been identified in the area of the Great Plains, 

especially in northern Texas and Oklahoma.  

 

Zusammenfassung 

Die vorliegende Diplomarbeit soll der retrospektiven Analyse von Tornados in den Vereinigten 

Staaten von 1950 bis 2009 beitragen. Die räumliche und zeitliche Analyse wird unter der 

Verwendung von Geographischen Informationssystemen (GIS) und raumzeitlichen Statistiken 

durchgeführt. Zu Beginn wird ein umfangreicher Überblick über der Entstehung und die Struktur von 

Tornados geboten, dem vorangegangene Studien über die Tornadoaktivität in den Vereinigten 

Staaten folgen. In Kapitel 2 werden der für die Analyse verwendete Datensatz und Methoden zur 

Analyse des Datensatzes vorgestellt. Verschiedene Kartierungstechniken werden im Sinne einer 

Einsetzbarkeit in der räumlichen Clusteranalyse diskutiert. Im Anschluss daran werden die 

Grundlagen von räumlichen und raumzeitlichen Statistiken erörtert. Das Kapitel schließt mit der 

Vorstellung von vier gewählten Statistiken und deren Anwendung in der raumzeitlichen Analyse. Der 



Fokus wurde hierbei auf Statistiken gesetzt, die in frei verfügbaren Softwarepaketen enthalten sind. 

In der räumlichen und zeitlichen Analyse von Tornados werden die Kerndichteschätzung, die Nächste 

Nachbar Hierarchische Clusterungtechnik, der Lokale Moran’s I als Local Indicator of Spatial 

Association (LISA) und das raumzeitliche Permutationsmodell als raumzeitliche Scan Statistik 

verwendet. Es werden der gesamte Datensatz, Tornados gegliedert nach der F-Skala, monatliche 

Maxima in der Tornadointensität und die Anzahl von Personen, die während eines Tornados 

verunglückt sind, analysiert, wobei eine Kombination von den statistischen Methoden herangezogen 

wird. Die erhaltenen Ergebnisse von den verschiedenen angewendeten Techniken werden folglich 

zuerst untereinander als auch zu den Ergebnissen vorangegangener Studien verglichen. Generell 

gleichen die in dieser Diplomarbeit erhaltenen Ergebnisse der räumlichen Analyse der Tornados den 

Resultaten vorangegangener Studien. Höhere Konzentrationen von Tornados, welche in 

vorangegangenen Studien unentdeckt blieben, wurden im Süden der Vereinigten Staaten, speziell in 

Mississippi und Florida, gefunden. Da frühere Studien keine zeitlichen Veränderungen in räumlichen 

Mustern behandelt haben, sind diese Ergebnisse in dieser Diplomarbeit sehr aufschlussreich. Erhöhte 

Tornadointensitäten zwischen zwei definierten Zeiträumen wurden in der Nähe von Denver, CO, 

Houston, TX, und St. Petersburg, FL, identifiziert. Verminderte Intensitäten von signifikanten 

Tornados (die als F2 oder höher klassifiziert wurden) wurden in der Region der Great Plains, 

besonders im nördlichen Texas und Oklahoma, aufgezeichnet. 
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Preface 

During the spring term 2009 Dr. Michael Leitner, Associate Professor at the Department of 

Geography and Anthropology at Louisiana State University in Baton Rouge, LA, U.S.A., taught the 

class “Advanced Methods in Spatial Statistics” at the Department of Geography and Regional 

Research at the University of Vienna. For me, it was the first time during my studies to analyze spatial 

data with spatial statistics to search for local concentrations of events or so-called hot spots. In this 

class, I chose to spatially analyze tornado touchdown points in the United States for the year 2004 for 

my term paper. During the completion of the final paper for this class I got more and more involved 

in research about tornadoes. Since I was interested in hot spot analysis, I asked Michael Leitner to 

supervise my diploma thesis, which he gladly agreed that he would do. I decided to analyze tornado 

touchdown points in the United States during the entire period from 1950 to 2009, since there has 

not been done much research on this topic. 

Spatial statistics was introduced into geography by the “quantitative revolution” in the early 1960s. 

Subsequently other paradigms became important in geography and partially replaced the 

quantitative approaches in spatial research. In the last decades – since data processing of geographic 

data developed immensely – the application and research in spatial statistics experienced a 

“renaissance”. Nowadays, spatial statistics are a very common and useful tool in, for example, crime 

analysis or epidemiology in the Anglo-American countries.  

The development of Geographic Information Systems (GIS) progressed enormously during the last 

30–40 years. However, researchers identified numerous challenges for GIS in the future. One major 

challenge that has been identified relates to the integration of time as a third dimension in addition 

to longitude and latitude. The analysis and visualization of both space and time is a rapidly growing 

research frontier in geography, GIS and GIScience. Two conferences on that topic should exemplify 

the broad interest.  

- The Association of American Geographers (AAG) identifies particularly relevant themes to 

feature during its Annual Meetings. This year, a special symposium focused on the research 

status, recent advances, and research needs of space-time integration, modeling, and 

analysis in geography and GIScience will be organized within the AAG Annual Meeting in 

Seattle, April 12–16, 2011.  

- The 1st Conference on Spatial Statistics with its subtitle Mapping Global Change will be held 

at the University of Twente in Enschede, Netherlands, March 23–25, 2011. 

In the spatial research of tornado events papers that use spatial statistics are rare. Among the few 

studies are KELLY et al. (1978), who did research on tornado occurrences in the United States for the 

period 1950 to 1976, whereas BROOKS et al. (2003) analyzed data in the United States from 1980 to 

1999. Both analyzed aggregated data for these periods, but did not include space-time interactions 

or differences in space and time. This diploma thesis will conduct both spatial and temporal analyses 

of tornado touchdown points in the United States from 1950 to 2009. “Cutting-edge” spatial and 

temporal techniques will be applied and results compared. This dataset is made available by the 
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Storm Prediction Center (SPC) of the National Oceanic and Atmospheric Administration (NOAA) free 

of charge.  

The following research questions will be addressed in this thesis: 

• Will recently developed statistical techniques result in more accurate analysis than classic 

methods? 

• Do different hot spot analysis techniques provide the same or different results? What 

techniques are most useful for the spatial and temporal analysis? 

• Did the locations of spatial concentrations of tornadoes in the United States change over 

time? Is there a general pattern in the spatial variation or is the F-Scale an influencing factor 

for spatial and temporal variability? 

• Is the pattern of BROOKS et al. (2003) who analyzed tornadoes from 1980 to 1999 (dis)similar 

to the monthly maxima pattern of the tornado occurrences from 1950 to 2009? 

• What are the relative risks of fatalities due to tornado touchdowns in the United States? 

How did these rates change over time? 

The aim of this thesis is to analyze and visualize tornado occurrences in the United States using GIS 

and state-of-the-art spatiotemporal statistics. Methods such as the kernel density estimation 

approach as an interpolating approach, the Nearest Neighbor Hierarchical Clustering routine, and the 

Space-Time Permutation Model that group events to clusters and the Local Indicators of Spatial 

Association technique to look for spatial autocorrelation in neighboring values will be introduced to 

thoroughly analyze the tornado dataset. This thesis should be of interest to researchers in various 

fields that use spatial and temporal methods to analyze point patterns. Each proposed method in this 

thesis will be explained and their strengths and drawbacks evaluated. 

In the first chapter the meteorological phenomenon called “tornado” will be explained and discussed 

briefly. The focus of this chapter will be on the spatial distribution of tornadoes in the United States. 

In addition, previous research on tornado occurrences will be shown and evaluated. 

The second chapter starts with an introduction to the tornado dataset that will be used in this study. 

In the methodological part of this chapter, the basics of point pattern analysis will be explained 

comprehensively. Then, conventional mapping techniques as well as mapping techniques based on 

spatial statistics will be presented and compared. Methods to check for space-time interaction and 

cluster persistence will be addressed afterwards. Freely available software packages that provide 

various spatial and temporal statistics will then be introduced. From these software tools four 

statistical methods are chosen to comprehensively analyze the tornado dataset. The proposed 

techniques are explained and evaluated subsequently. 

The third chapter contains the spatial and temporal analysis of tornado touchdown points in the 

United States in the period 1950 to 2009. Herein, numerous maps, charts and tables will be provided 

to visualize the resulting outputs. 

The thesis concludes with a summary and possibly future research areas on these topics. 
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1. The Phenomena of Tornadoes 

In this chapter the phenomena of tornadoes will be presented beginning with a definition and 

explanation of the meteorological basics. As already mentioned in the Preface, this diploma thesis 

will not discuss the meteorological requirements of the development of tornadoes in detail. 

Furthermore, there will be a discussion of how tornadoes are different from other whirling storms 

before the spatial component of tornado touchdown points is discussed. The distribution of 

tornadoes in the world will be presented first, followed by focusing on the distribution of tornadoes 

in the contiguous United States. Much work has been done by the Storm Prediction Center as part of 

the National Oceanic and Atmospheric Administration (NOAA) in collecting data from tornado 

touchdown points. The extensive database with several indicators related to tornadoes will be 

discussed, including the database’s benefits and limitations. In the database the F-Scale is used to 

classify tornadoes in terms of the typical damage pattern. Historical classification methods, the 

proposed F-Scale, and the recently introduced Enhanced F-Scale (EF-Scale) will be explained one by 

one.  

This chapter will also include a literature review of spatial and temporal analyses of the distribution 

of tornado touchdown points. In this context and due to the high frequency of tornadoes in the Great 

Plains an area named “Tornado Alley” has been established.  

1.1. Characteristics of Tornadoes 

A tornado (from the Latin word “tornare” – “to turn”) is the most violent storm that occurs in the 

atmosphere. It is much stronger compared to other cyclones, dust whirls, waterspouts, hurricanes, 

and typhoons. Each of these is a whirling storm, but all of them, except of waterspouts, have 

different characteristics from those of a tornado (FLORA 1953).  

The difference to cyclones is the non-existent funnel-shaped cloud. Another characteristic is the 

duration: most cyclones last for several days while tornadoes last only few hours at the most. While 

such cyclones do not have the same common characteristics of a tornado, a true waterspout is 

actually a tornado over a water surface. Hence, if a waterspout passes from water to land it becomes 

a tornado and vice versa. As mentioned in the word “true” waterspout there are some “untrue” 

waterspouts known as the “fair-weather spout”. The difference is that a fair-weather spout starts 

from a water surface and develops upward like the familiar dust whirl or “dust devil” on land. A true 

waterspout develops in the clouds and forms downward (FLORA 1953). 

People often do not know the difference between tornadoes and hurricanes. A hurricane is a violent 

tropical cyclone with approximately 100 to 500 miles in diameter. American hurricanes usually 

originate during July to October. Their familiar counterpart at the eastern coast of Asia is called 

Typhoon. The two most important characteristics of these violent storms are the area that they cover 

and their duration in comparison to tornadoes. First, a hurricane covers a large area and is the most 

destructive of all storms. The paths of tornadoes cover only a part of a hurricane’s area but the winds 

of a tornado are more violent. Second, a hurricane has an average life of nine and one-half days. In 



comparison, the duration of tornadoes 

of a hurricane (FLORA 1953). It should be noted that tornadoes occasionally accompany hurricanes, 

when they make landfall along the Gulf of Mexico or the southeastern Atlantic coast of the U.S. 

(BLUESTEIN 1999, NOAA 1995).  

Now that the difference between a hurricane and a tornado has been made it is necessary to define 

a tornado and to explain its meteorological structure. In 

tornadoes are given. The National Oceanic and Atmospheric Administration (NOAA) defines a 

tornado as “a violently rotating column of air extending from a thunderstorm to the ground” (NOAA 

1995). Howard B. BLUESTEIN (1999)

what a tornado exactly is. Not every tornado occurs within powerful thunderstorms, and not all 

tornadoes are spawned by thunderstorms. As mentioned before, hurricanes and typhoons can 

spawn tornadoes. Considering these circumstances, 

tornado: “It is a violently rotating column of air, which may not be oriented vertically, that comes 

from beneath the base of a thunderstorm or a rapidly gr

1999). 

EAGLEMAN et al. (1975) state that a typical tornado day starts with very humid and warm air at ground 

level (Figure 1). Large cumulonimbus clouds and furthermore thunderstorms develop due to the 

progressing solar heating on the ground and the eastward

et al. 1975, NOAA 1995). These thunderstorms often produce large hail, strong winds, and tornadoes.

 

Figure 1: Development of tornadoes

Source: http://teacher.scholastic.com/activities/wwatch/tornadoes/images/tornado_map.jpg
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comparison, the duration of tornadoes – as mentioned above – it is only a fractional part of duration 

1953). It should be noted that tornadoes occasionally accompany hurricanes, 

ong the Gulf of Mexico or the southeastern Atlantic coast of the U.S. 
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tornado as “a violently rotating column of air extending from a thunderstorm to the ground” (NOAA 

99) argues that meteorologists are still trying to answer the question 

what a tornado exactly is. Not every tornado occurs within powerful thunderstorms, and not all 

tornadoes are spawned by thunderstorms. As mentioned before, hurricanes and typhoons can 

pawn tornadoes. Considering these circumstances, Bluestein introduces the following definition of a 

tornado: “It is a violently rotating column of air, which may not be oriented vertically, that comes 

from beneath the base of a thunderstorm or a rapidly growing towering cumulus cloud” (

et al. (1975) state that a typical tornado day starts with very humid and warm air at ground 

). Large cumulonimbus clouds and furthermore thunderstorms develop due to the 

olar heating on the ground and the eastward-moving cold fronts in advance (

et al. 1975, NOAA 1995). These thunderstorms often produce large hail, strong winds, and tornadoes.
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Tornadoes are rotating vortices that extend from the bottom of the thunderstorm cloud to the 

earth's surface. A vortex is composed of circulating air around a central core. If the vortex does not 

reach the ground it is designated a funnel cloud. The visibility of the funnel clouds is given because of 

condensation in the lower pressure within the vortex. Due to this lower pressure within the funnel 

water vapor condenses into cloud droplets. As the funnel reaches the ground it becomes a tornado 

and its appearance is affected by dust, water, or debris that is picked up from the surface (EAGLEMAN 

et al. 1975).  

All tornadoes have in common that a loud noise is accompanying them. The noise is described as the 

roar of many trains or jets (EAGLEMAN et al. 1975). Tornadoes vary in intensity and much progress has 

been made recently to assign a scale to tornadoes on the basis of the types of damage tornadoes can 

cause (see subchapter 1.2.). Additionally, tornadoes develop into a variety of shapes as well as sizes 

(for more details and pictures see BLUESTEIN 1999, EAGLEMAN et al. 1975).  

1.2. Classification of Tornadoes 

First attempts toward a useful method to classify tornadoes by size and intensity were made in the 

19th century. HAZEN (1890) presented Hinrich’s method to classify tornadoes: 

 

Table 1: Hinrich’s method of tornado classification (HAZEN 1890) 

A.  Notable Tornadoes 

Class I:  Multiple 

(a)  Large 

(b)  Small 

Class II:  Single 

(a)  Large 

(b)  Small 

B.  Minor and Doubtful Tornadoes 

 

 

Clearly, this rudimentary method was not very satisfying. Although it was certainly known that 

tornadoes are not uniformly intense, there had been no formal attempt for some time to 

differentiate tornado occurrence by intensity (DOSWELL et al. 2009). In 1971 it was Tetsuya “Ted” 

Fujita, a meteorologist at the University of Chicago, who developed the Fujita scale to provide a 

method to rate the intensity of tornadoes (FUJITA 1971, 1981). His intention was to distinguish 

between weak tornadoes and strong tornadoes because there was a need to rate historical 

tornadoes as well as future tornadoes. The Fujita scale was immediately accepted by the 

meteorological and engineering communities (MCDONALD and MEHTA 2006). 

The scale rates tornadoes from F1 to F6. Although the scale was created as a wind speed scale, the 

tornado intensity is based only on the degree of damage caused by tornadoes. Basically the scale was 

designed to connect smoothly with the Beaufort scale, devised in 1806 by Sir Francis Beaufort, a 
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British naval officer. The Beaufort scale is a measure for describing wind speed from 0 (calm) to 12 

(hurricane-force winds). The Fujita scale picks up where the Beaufort scale ends and eventually 

reaches the speed of sound (Mach 1). As proposed by Fujita, an F6 tornado is “inconceivable” 

(BLUESTEIN 1999). Tornadoes rated as F0 are winds weaker than hurricane force. 

 

Table 2: The Fujita F Scale (BLUESTEIN 1999) 

F number F-scale damage specification 

F0 
<72 mph - Light damage: some damage to chimneys; break branches off trees; push over 

shallow-rooted trees; damage signboards 

F1 
73–112 mph - Moderate damage: peels surface off roots; mobile homes pushed off 

foundations or overturned; moving autos pushed off the road 

F2 

113–157 mph - Considerable damage: roofs turn off frame houses; mobile homes 

demolished; boxcars pushed over; large trees snapped or uprooted; light-object missiles 

generated 

F3 
158–206 mph - Severe damage: roofs and some walls torn off well-constructed houses; 

trains overturned; most trees in forest uprooted; heavy cars lifted off ground and thrown 

F4 
207–260 mph - Devastating damage: well-constructed houses leveled; structures with weak 

foundation blown off some distance; cars thrown and large missiles generated 

F5 

261–318 mph - Incredible damage: strong frame houses lifted off foundations and carried 

considerable distance to disintegrate; automobile-sized missiles fly through the air in excess 

of 100 meters; trees debarked; incredible phenomena will occur 

 

Although the Fujita scale has been in use for 33 years, its limitations are well known. In fact, damage 

and wind speed are not unrelated (SCHAEFER et al. 1986), but it is risky to estimate the tornado 

intensity on damage alone, without any actual wind measurements. The Fujita scale does not 

account for different construction qualities. Well-built structures can withstand strong winds, while a 

poorly built structure can suffer devastating damage even from less intense winds. BLUESTEIN (1999) 

argues that the most tornado damage is a result of pressure induced by the wind. Furthermore, the 

damage is related to different angles of the wind: two identical objects that feel the wind from 

different angles may suffer different amounts of damage. And of course, if tornadoes occur over 

open country no damage occurs and an adequate classification will not be possible. Currently, 

instruments to measure wind speed directly have never survived a strong tornado (BLUESTEIN 1999). 

DOSWELL and BURGESS (1988) explain another peculiarity of tornado rating: The Fujita scale rating is 

determined by the maximum observed damage at a point anywhere within the total path of the 

tornado. Hence, a single occurrence of the highest damage level determines the rating for the entire 

path. Another important aspect can be seen in the individual reasoning of human beings. Fujita scale 

ratings are dependent upon the person reviewing the damage. A person with experience and 

knowledge of building structures (e.g., a structural engineer) would probably rate the damage 

differently than a person without that knowledge (MARSHALL 2002).  
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All those mentioned limitations and drawbacks have led to inconsistent rating of tornadoes and in 

some cases to an overestimation of tornado wind speeds (MCDONALD and MEHTA 2006). Accordingly, 

there was the need to revisit the concept of the Fujita scale and to improve and eliminate some of 

the limitations and drawbacks.  

In 1970 a strong tornado passed near the campus of Texas Tech University (TTU). As a result of that 

devastating event, the TTU created a wind engineering research program with an emphasis on 

structural engineering issues. Researchers tried to further explore the relationship between wind 

speed and damage and to answer questions about how to design structures to resist tornadic winds. 

In the last decade, structural engineers led by the TTU group initiated a series of discussions based on 

their individual experience on tornado intensity ratings to enhance the Fujita scale. It is possible to 

measure wind speeds using the Doppler principle (mobile Doppler radar). However, there are some 

physical limitations that make the possibility of obtaining useful tornado wind speed measurements 

using the mobile Doppler radar quite unlikely. As a consequence, damage continues to be the most 

useful indicator of tornado intensity rating (DOSWELL et al. 2009).  

The efforts of the group of experts at TTU resulted in the adoption of the Enhanced Fujita (EF) scale 

by the National Weather Service (NWS) in 1 February 2007. The most important difference is the 

identification of damage indicators. These indicators were created additionally to the “well-

constructed” frame home as the primary indicator of the original Fujita scale. In total, the experts 

created a list of 28 damage indicators to allow the members of a local National Weather Service team 

to estimate the wind speeds associated with an observed degree of damage for each indicator. The 

TTU team of scientists and engineers assigned a wind speed estimate to each degree of damage for 

every damage indicator. They also adjusted the EF-scale ratings to be identical to the F-scale ratings 

from the past, in order to maintain historical continuity (DOSWELL et al. 2009). A correlation analysis 

of the F-scale ratings and the EF-scale ratings showed that there is a high correlation of R²=0.91 

(MCDONALD and MEHTA 2006). 

In their conclusion, DOSWELL et al. (2009) compare the early beginnings of the measurements of 

earthquake intensities to the tornado intensities. Before the adoption of the Richter scale, which 

measures the magnitude of earthquakes by the energy released, a subjective, damage-based 

intensity scale was used instead. The authors believe that ultimately some objective measure of 

tornado wind speeds will be developed in the future. 

1.3. Distribution of Tornadoes 

In this subchapter a general discussion of the spatial distribution of tornadoes in the world as well as 

in the United States will be given. Then, factors that influence the locations of tornado occurrences 

will be presented, followed by an analysis of an area named “Tornado Alley”, where the most 

tornadoes occur. In this subchapter existing research related to tornado touchdown points will be 

introduced and discussed. 
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1.3.1. Distribution in the World 

Tornadoes occur in all parts of the world except the Antarctica. Their occurrence in the world is more 

frequently than is commonly assumed. In terms of tornado frequency Australia is second to the 

United States (FUJITA 1973). While large amounts of data are available about tornadoes in the United 

States, for many other countries the information on tornado touchdown points are fragmented and 

in some cases contradictory (GOLIGER and MILFORD 1998).  

Tornadoes throughout the world are concentrated in both hemispheres between the latitude 20° 

and 60° but predominantly in the United States. These belts on both sides of the equator correspond 

to the zones of the jet streams and the presence of contrasting air masses (EAGLEMAN et al. 1975). 

Figure 2 shows a map of expected events for a 4-year period.  

1.3.2. Distribution in the United States 

Tornadoes have been recorded in every state of the United States including Alaska and Hawaii. As 

can be seen in Figure 2 tornadoes are much more frequent in the Great Plains region east of the 

Rocky Mountains. In the central United States the tornado activity is more frequent because of its 

unique geographical setting, where unstable atmospheric characteristics are present. The 

atmosphere becomes less stable and this is a requirement for large thunderstorm development. In 

the Great Plains tornado outbreaks are often associated with the southeastward flow of cool, dry air 

over the Rocky Mountains to the Gulf of Mexico. From the opposite direction warm, moist air is 

flowing northward at the same time. Atmospheric instability occurs when the cool, dry air from the 

west is overriding the warm, moist air from the south. This leads to an easier development of 

thunderstorms and therefore the central United States has the greatest tornado activity (EAGLEMAN 

et al. 1975). 

 

Figure 2: Tornado occurrence in the world expected for about a four-year period 

Source: FUJITA (1973) 
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The monthly distribution of tornadoes is known to be associated with the jet streams. The jet 

streams – a high velocity stream of air – flow from west to east at different latitudes during different 

seasons of the year. Their positions shift northward during the summer months and southward 

during the winter (Figure 3), where they separate the cold air from the north from the warm air to 

the south. If the jet streams are flowing to the southern part of the United States, tornadoes are 

more likely to occur in these regions. As the jet streams move northward during the spring months 

the tornado activity also moves northward. Generally, it has to be noted that the most tornadoes 

occur in May although tornadoes are known to happen during all months of the year (EAGLEMAN et al. 

1975). 

 

Figure 3: The general position of the polar jet streams during different seasons of the year  

 

Adapted from EAGLEMAN et al. (1975) 

 

The region in the central United States where most tornadoes occur is called “Tornado Alley” (KELLY 

et al. 1978). In their study, the authors collected tornado reports from 1950 to 1976, removed 

“doubtful” reports, and generated national annual cycles, diurnal cycles normalized by local solar 

time and maps of the annual-averaged tornado reports. The Tornado Alley they identified runs 

between 97° and 98°W, with a secondary axis curving northeastward from the Texas Panhandle 

through Missouri and eastward into north-central Indiana. BROOKS et al. (2003) criticized the concept 

of the Tornado Alley. Although it is a popular concept of a geographical demarcation, the authors see 

it as historically ill-defined. BROOKS et al. (2003) argue that the concept refers most often only to the 

frequency of events but it should additionally include the temporal autocorrelation of the seasons. 

Based on the combination of the frequency of occurrence and the reliability of the season, BROOKS et 

al. (2003) used at least 0.5 tornado touchdown days per year and a variability measure (trimmed 

standard deviation) in the timing of the peak threat of less than 20 days to define their Tornado 
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Alley. The result (Figure 4) shows similar boundaries as the one from KELLY et al. (1978). In addition, 

there is a small region near southern Lake Michigan that is separated from the main region and 

which also shows a high occurrence of tornadoes (BROOKS et al. 2003). BROOKS et al. (2003) used 

tornado days (days with tornadoes) from 1980 to 1999 to produce the following map.  

 

Figure 4: Updated Tornado Alley as defined by BROOKS et al. (2003) 

 

Source: BROOKS et al. (2003) 

 

The total amount of tornado reports varies from approximately 800 to 1,400 in any given year. The 

first map of the tornado occurrence in the United States was published by FINLEY (1887). He displayed 

the locations of approximately 1,300 tornadoes from 1760 to 1885. Due to the low population 

density in Oklahoma and western Texas, there were no reported tornadoes in Finley’s map. A more 

precise and accurate map using data from 1916 to 1955 has been presented by WOLFORD (1960), 

where a maximum of tornado occurrence has been identified in the region of the Tornado Alley.  

The first statistical attempt to estimate tornado probabilities was made by THOM (1963). He used 

data from 1953 to 1962, and smoothed the values over a grid box. KELLY et al. (1978) presented some 

statistical analyses using a dataset of tornado touchdown points from 1950 to 1976. First of all, KELLY 

et al. (1978) investigated the average annual diurnal distribution of tornadoes. The result was that 

the peak occurrence is during the late afternoon, while minimum occurrence is just prior to sunrise. 

In addition they investigated the diurnal occurrence of tornadoes by the tornado intensity (F-Scale). 

They concluded that weak tornadoes (F0 and F1) maximize at midday, while strong tornadoes (F2 

and F3) have their maximum in the late night. 
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In agreement with previous tornado studies (e.g., LOOMIS 1842), KELLY et al. (1978) report that the 

highest tornado frequency occurs during the four-month period March to June. Approximately 40 

percent of all tornadoes are found during May and June. Geographical distributions have been 

constructed by aggregating the counts of tornadoes in a grid. KELLY et al. (1978) produced smoothed 

intensity maps for weak, strong, and violent (F4 and F5) tornadoes for the period 1950 to 1976.  

 

Figure 5: Geographical distribution of the date of maximum tornado threat 

 

Source: BROOKS et al. (2003) 

 

The spatial variability in the variation of the threat during the year has been investigated by BROOKS 

et al. (2003). Figure 5 shows the location of maximum tornado threat in the United States for the 

period 1980–1999 with at least 0.25 tornado days per year. According to the explained concept of 

the jet stream, the maximum threat occurs in April over much of the southeastern United States 

(except Florida). The peak threat moves westward toward Texas, and almost all locations between 

the Rocky Mountains and the Appalachians have their peak threat till the end of May. Locations in 

the north have their peak threat in later months. States at the Atlantic coast, east of the 

Appalachians, have their peak threat in July. As can be seen, there are two regions depart from this 

general pattern: peninsular Florida, where the summer peak is associated with nonsupercellular – a 

supercell is a rotating thunderstorm with a well-defined radar circulation – convection, and the Gulf 

Coast near Tallahassee, FL, with a peak threat in late November (BROOKS et al. 2003).  

Only a small percentage of tornadoes in any given year produce casualties. Although there have been 

considerably advances in tornado detection, warning dissemination, and public awareness, tornado 
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casualties cannot be prevented entirely. The number of tornado fatalities declined in the last years 

(Figure 6) but such killer tornadoes have been reported recently (ASHLEY 2007).  

 

Figure 6: Total number of tornado fatalities (solid bar) by decade (except for 2000–05) during the period of 

record and percentage of fatalities due to weak, significant, and violent tornadoes by decade (lines)  

 

Source: ASHLEY (2007) 

 

Numerous studies have investigated tornadoes as a hazard to life and property throughout the 

United States. KELLY et al. (1978) made a statistical analysis of the percentage of tornadoes by F-Scale 

and the percentage of fatalities associated with each category. In the period 1950 to 1976 there have 

been 3,092 tornado fatalities. The majority (61.7 percent) of the tornadoes were weak (F0 and F1). 

Weak tornadoes resulted in only 2.5 percent of all tornado fatalities. Strong tornadoes (F2 and F3) 

have a proportion of 36.0 percent of all tornadoes and produce 29.6 percent of all fatalities. Only 2.3 

percent of tornadoes are violent (F4 and F5) but they cause 68.0 percent of all tornado fatalities. An 

extension of the work of KELLY et al. (1978) was made by ASHLEY (2007). He analyzed the percentages 

of weak, strong, and violent tornadoes by decade from 1880 to 2005 (Figure 6). The figure shows that 

violent tornadoes account for approximately 70 percent of all fatalities throughout this period. An 

exception can be determined in the decades 1980-1989 and 1990-1999, where the percentage of 

fatalities occurred from violent tornadoes was as high as the percentage from strong tornadoes. A 

reason of the slightly increase of fatalities occurred from weak tornadoes can be seen in the 

increased proportion of mobile homes in the United States. The percentage of mobile home fatalities 

from weak tornadoes is significantly higher compared to the percentage of permanent home 

fatalities (SUTTER and SIMMONS 2010). The authors as well as BROOKS and DOSWELL (2002) argue that 

the probability of a tornado fatality in mobile homes is estimated to be 10–15 times higher than in 

permanent homes.  
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ASHLEY (2007) investigated the spatial and temporal distribution of tornado fatalities in the 

contiguous United States from 1880 to 2005. Only four states of the conterminous 48 states – 

California, Nevada, Rhode Island, and Vermont – never experienced a killer tornado during the 

mentioned period. In terms of a standardized fatalities rate (deaths per square kilometer) the three 

southern states – Mississippi, Alabama, and Arkansas – are leading. ASHLEY (2007) listed nine possible 

climatological and nonclimatological reasons for an increased vulnerability to the greater 

concentration of tornado fatalities and killer events within this region. One possible reason is the fact 

that tornadoes within this region tend to occur during the cool and transition seasons when day 

length is at a minimum, increasing the likelihood of nighttime tornadoes. Another reason is the large 

percentage of mobile home and weak-frame housing stock in comparison to other parts of the 

United States that experience tornadoes. An important aspect is the population density which is 

much higher in the South in comparison to the Midwest and the Great Plains. In contrast, the 

tornado season in the Great Plains is much more concentrated and peaked (BROOKS et al. 2003), 

which leads to an enhanced period of awareness and preparedness of the population to reduce the 

vulnerability to a tornado hazard. In addition, the population has a “greater” experience with 

tornadoes which leads to more awareness of what to do during a tornado situation (ASHLEY 2007). 

1.4.  The History of the Storm Prediction Center 

The first attempt in tornado forecasting was made in the mid-1880s, when the meteorologist J. P. 

Finley from the U.S. Army Signal Service dared to suggest that tornadoes were predictable. In 1883, 

the U.S. Government banned the word “tornado” from forecasts to avoid panicking the masses. The 

explanation of the chief Signal Officer in his report was: “It is believed that the harm done by such a 

prediction would be greater than that which results from the tornado itself.” (U.S. ARMY 1887, 

BLUESTEIN 1999). 

The reestablishment of a centralized severe weather forecasting program in the United States 

happened due to a fortuitous occurrence of two tornadoes at the same place in less than a week. On 

March 20, 1948, a tornado struck Tinker Air Force Base, near Oklahoma City. Five days later, with 

similar atmospheric conditions, two meteorologists at Tinker, Major Ernest Fawbush and Captain 

Robert Miller, issued a tornado warning, although it was not made public. The actions by Fawbush 

and Miller led to first attempts of a civilian tornado forecasting program (CORFIDI 1999, BLUESTEIN 

1999, DOSWELL et al. 1993). 

Further efforts by Fawbush and Miller led the Weather Bureau (predecessor of the National Weather 

Service) to establish its own severe weather unit on a temporary basis in the Weather Bureau-Army-

Navy (WBAN) Analysis Center Washington, D.C., in March 1952. From now on the permanently five-

man operation group of the WBAN severe weather unit was responsible for the issuance of 

“bulletins” (watches) for tornadoes, high winds, and/or damaging hail. In June 1953 the unit was 

renamed the Severe Local Storms Warning Service (SELS) and moved from Washington, D.C. to 

Kansas City, MO in September 1954 in part to be closer to the Tornado Alley. Over the years the 

Severe Local Storms Warning Service fostered the development of a separate research and 

development unit, and continued to grow as additional forecast and staff were added. Once it also 
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resumed the responsibility of local and regional forecast duties it was renamed the National Severe 

Storms Forecast Center (NSSFC) in 1966. At this time the research group (of the former Severe Local 

Storms Warning Service) merged with the Weather Bureau’s Weather Radar Laboratory to form the 

National Severe Storms Laboratory (NSSL) in Norman, Oklahoma, in 1964. The severe weather 

function of the National Severe Storms Forecast Center was renamed the Storm Prediction Center in 

1995. In 1997 the Storm Prediction Center joined the National Severe Storms Laboratory and moved 

from Kansas City to Norman, Oklahoma (CORFIDI 1999). 
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2. Data and Methodology 

In this chapter the dataset of the tornado touchdown points from 1950 to 2009 is explained and 

discussed. Afterwards, principles of the spatial and spatiotemporal cluster analysis as well as 

mapping techniques will be thoroughly presented. The section about the mapping techniques 

includes traditional techniques, as well as statistical approaches to display and analyze spatial data. 

These statistical techniques are then the basis of space-time approaches that will be subsequently 

applied in the analysis in the next chapter. 

Then, a review of software packages that are available for spatial and spatiotemporal cluster analysis 

will be discussed. The focus will be on non-commercial, open-source software tools, which are 

available at the web free of charge. 

The last subchapter explains techniques, which are used to analyze the tornado dataset from 1950 to 

2009. These techniques will be discussed and compared with each other and the advantages as well 

as the drawbacks will be explained. 

2.1. Tornado Touchdown Points 

This thesis applies tornado touchdown points from 1950 to 2009 from the Storm Prediction Center’s 

Severe Weather Database Files (hereafter tornado database). The data are available for free and 

accessible at http://www.spc.noaa.gov/wcm/. Tornado reports in the dataset are available since 

1950, and therefore 1950 was chosen as the starting year for this study. The end of this dataset in 

2009 was determined by the last full year the tornado reports were available. There may be some 

problems during the first few years of this database due to the unorganized manner in which the 

reporting of tornadoes was conducted and documented (GRAZULIS et al. 1993). Understandably, many 

tornadoes have not been reported in these early years, but the underreporting has been reduced in 

recent decades (BROOKS and DOSWELL 2002). 

DOSWELL and BURGESS (1988) illustrated some limitations of the database. They argued that much of 

the information about tornadoes comes from untrained witnesses, and there might be ample 

reasons to question the quantitative aspects of the database. Additional limitations include basic 

errors in reporting and/or recording of time and location. Other limitations relate to the spatial and 

temporal variability in the collection efforts for warning verification, changes in damage survey 

procedures, population increase and migration, and storm spotter network creation (DOSWELL and 

BURGESS 1988, GRAZULIS 1993 and VERBOUT et al. 2006). 

Alternative data sources are listed in GRAZULIS (1993, 1997) and in the National Climatic Data Center’s 

Storm Data and “Storm Events” database (available online at http://www4.ncdc.noaa.gov/cgi-

win/wwcgi.dll?wwevent~storms). The dataset of Grazulis includes “significant” tornadoes, including 

all known tornadoes that produced fatalities, from 1680 to 1995. The Storm Data contains tornado 

events from 1950 to 1992. According to the Storm Prediction Center a tornado is “significant” if it is 

rated EF2 or greater (F2 or greater on the former Fujita scale). It should be noted, that this definition 
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is arbitrary. There is no scientific research about “significant” tornadoes, since any tornado can kill or 

cause damage. 

As mentioned before, the tornado database contains tornado touchdown points from 1950 to 2009 

from the contiguous United States. This dataset and this period was chosen because this period is the 

start of a large increase in the number of reported tornadoes. This tornado dataset contains several 

parameters like the geographic coordinates from each tornado’s starting and ending point, the exact 

date of the event, the F-Scale and the EF-Scale rating (after January 2007), respectively, the total 

number of injuries and fatalities, and estimated property loss information. There are more 

parameters available in the dataset but they are not of interest to this thesis. Further information is 

available in the description of the Severe Weather Dataset, available online at 

http://www.spc.noaa.gov/wcm/data/SPC_severe_database_description.pdf.  

 

Table 3: Basic statistics of the tornado database, 1950–2009  

F-/EF-Scale Events Fatalities 
Fatalities per 

Events 
Events (%) Fatalities (%) 

0 23,142 20 0.001 42.9 0.3 

1 17,465 208 0.012 32.4 3.6 

2 8,461 538 0.064 15.7 9.3 

3 2,365 1,261 0.533 4.4 21.8 

4 612 2,398 3.918 1.1 41.4 

5 72 1,361 18.903 0.1 23.5 

-9 1,843 6 0.003 3.4 0.1 

Total 53,960 5,792 0.107 100.0 100.0 

 

Note: -9 means the rating of the tornado was undefined. 

 

Table 3 contains general absolute and relative statistics of the tornado database used in this thesis. In 

total, 53,960 tornado events were reported in the period 1950–2009. This number resulted in 5,792 

fatalities. The average count of tornado events per year was 899. The average annual number of 

injured people was 1,607, and the average number of fatalities per year was almost 97. As can be 

seen in Table 3, the two mentioned indicators, events and fatalities, are structured by the F-/EF-Scale 

in cross tables. The ratings of some tornadoes were undefined and their ratings were set to “-9”. 

Almost every second reported tornado is rated as F0. In comparison only 0.1 percent of all recorded 

tornadoes are rated as F5 tornadoes. This means that the annual average occurrence of a F5 tornado 

was 1.2. Generally, it can be argued that the higher the rating, the lower the occurrence of 

tornadoes. Considering the absolute numbers of fatalities, one would believe that the higher the 

tornado rating, the higher the casualties. In fact this rule works well for tornadoes rated F0 to F4. 

Due to the low absolute number of F5 tornadoes, the total number of fatalities is comparably low 
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compared to lower rated tornadoes. Therefore, a relative measurement, namely the number of 

fatalities per events is calculated and added to the table. Based on relative measurements, it can 

now be stated that the higher the rating, the higher the relative number of fatalities per tornado 

event. As an example see the relative number of tornadoes rated with incredible damage (F5). A 

single F5 tornado results in an average number of approximately 19 fatalities. 

In addition, tornado events are aggregated based on classifications taken from the literature. The 

classification of significant tornadoes rated F2 or higher (GRAZULIS 1993), and the three classifications 

proposed by KELLY et al. (1978) and ASHLEY (2007) are listed in Table 4.  

Only one fifth of the reported tornadoes were rated as significant, meaning the rating was at least 

F2. But these 21.3 per cent of the total amount of tornado events resulted in 96.0 percent of the 

total amount of fatalities. Therefore it is legitimate to use the term “significant tornado” due to the 

amount of fatalities.  

Regarding the three categories – weak (F0 and F1), strong (F2 and F3), and violent (F4 and F5) – used 

in the studies of KELLY et al. (1978) and ASHLEY (2007), one can confirm the pattern described above: 

The stronger the tornadoes, the lower their numbers. The total number of weak tornadoes was 

approximately 60 times higher than the total number of violent tornadoes. In contrast, the total 

number of fatalities is 16 times higher for violent tornadoes compared to weak tornadoes.  

 

Table 4: Basic statistics of the tornado database based on classified tornadoes, 1950–2009  

F-/EF-Scale Events Fatalities 
Fatalities per 

Events 
Events (%) Fatalities (%) 

Significant  

(F2+) 
11,510 5,558 0.483 21.3 96.0 

Weak  

(F0–F1) 
40,607 228 0.006 77.9 3.9 

Strong  

(F2–F3) 
10,826 1,799 0.166 20.8 31.1 

Violent  

(F4–F5) 
684 3,759 5.496 1.3 65.0 

Total  

(F0-F5) 
52,117 5,786 0.111 100.0 100.0 

 

 

An advantage of the tornado dataset is the data format. Its CSV-File can be read easily by a 

Geographic Information System (GIS), where the dataset can be manipulated and analyzed. 

Generally, a GIS can perform four basic functions on spatial data: Input, storage, analysis, and output 

(GOODCHILD 1987). The combination of a GIS and spatial data analysis is an important aspect of a GIS 

as a research tool to explore and analyze spatial relationships. VANN and GARSON (2001) argued that 

“spatial analysis using GIS is not synonymous with statistical analysis”. WILSON (2007) differentiates 
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these various techniques: A GIS is simply a geographic data visualization and manipulation tool. It is 

used to prepare data for statistical analysis and to display the output from analysis. Spatial analysis 

represents the (spatial) analysis of geographic objects to other geographic objects across space. 

Spatial data analysis is seen as the combination of the spatial analysis techniques with associated 

attribute data of the geographic objects. 

2.2. Spatial and Spatiotemporal Cluster Analysis 

Due to the increasing use of GISs and its combination with modern data capturing methods (e.g., 

GPS, satellite imagery, etc.), the number of available spatial data has risen in recent decades. Spatial 

cluster analysis plays an increasing role in quantifying geographic variation in patterns. The 

techniques are commonly used in disease surveillance, spatial epidemiology, population genetics, 

landscape ecology, crime analysis, and many other fields, but the underlying principles are still the 

same (JACQUEZ 2008). The origins of the techniques used nowadays in the statistical analysis of spatial 

point data arose almost 80 years ago in plant ecology. In the early 1960s, geography in the United 

States experienced the “quantitative revolution” when the techniques developed by ecologists were 

introduced into geography. At first they were used to refine and substantiate previous qualitative 

descriptions, particularly of settlement patterns. In further consequence, point pattern techniques 

were extended to the analysis of various phenomena in the field of geography and subsequently to 

other sciences (BOOTS and GETIS 1988). As many academic movements, the “quantitative revolution” 

in geography experienced a slow decline after its popular peak, and died out in the late 1960s and 

early 1970s. In the last two decades the field of spatial analysis rose to a point, where the methods 

and concepts are becoming fundamental to researchers in a host of disciplines (GETIS 2008). Reasons 

for that increasing usage of statistical analysis methods of spatial data processes can be found in 

GATRELL et al. (1996) and LORUP and LEITNER (2000). Both publications mention the development of 

GISs and its capability to store and analyze a huge amount of geographic data to be the main reason. 

In addition, GISs have the capability to visualize the results of the analysis. Another reason can be 

seen in the increased availability and collection of spatial data (GATRELL et al. 1996, LORUP and LEITNER 

2000).  

Spatial data can be divided by the type of spatial data, namely point and area data. Individual events, 

such as tornado touchdown points or street addresses of patients, can be represented as points. 

Area data result from aggregating individual data points by administrative units, or areal units, and 

are expressed as a count of events, or as a rate or proportion (e.g., tornado fatalities by population, 

or cancer death rates) (ANSELIN 2004).  

In general, both point and area data would be referred to as “individual event data”, but the type of 

analysis and interpretation of the results are slightly different. The analysis of point data is based on 

its proximity to each other and to what extent points are “closer to each other” than they would be 

compared to a reference situation. A cluster of aggregated data refers to the situation where an areal 

unit is surrounded by other units that are more similar to it than it would be in the case of a random 

distribution. This concept is termed positive spatial autocorrelation (ANSELIN 2004). A spatial cluster 

might be defined as an excess of events or values in geographic space. Cluster analysis plays an 
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important role in Exploratory Spatial Data Analysis (ESDA). ESDA involves the identification and 

description of spatial patterns (such as spatial hotspots, spatial coldspots, and spatial outliers), and 

has two primary objectives (JACQUEZ 2008): 

- Objective 1: Recognize patterns using visualization, spatial statistics, and geostatistics to 

identify the locations, magnitudes, and shapes of statistically significant pattern descriptors. 

- Objective 2: Generate hypothesis to specify realistic and testable explanations for the 

geographic patterns found under Objective 1. 

 

2.2.1. Fundamental Types of Point Patterns 

A point pattern contains two major types of components: The points representing the objects being 

analyzed and the geographical area in which they are located. The main reason for the examination 

of point patterns is to learn something of the processes that generated the pattern. A basic question 

is, whether the spatial point distribution shows a systematic or a random pattern. Researchers have 

most often defined a theoretical pattern which is compared to the observed point pattern. An 

operation process called a homogeneous planar Poisson point process results in finding a theoretical 

pattern. In this process points are produced in a study area underlying two requirements (BOOTS and 

GETIS 1988): 

- Uniformity: Each location in the study area has an equal chance of receiving a point, 

- Independence: The selection of a location for a point in no way influences the selection of 

locations for any other points. 

These two conditions can be interpreted that there is no interaction between the points and the 

study area is regarded as completely homogeneous. Such a pattern is considered as one that would 

occur by chance in a completely undifferentiated environment. DIGGLE (1983) calls such a pattern 

complete spatial randomness (CSR). An example of a complete spatial random distribution is shown 

in Figure 7a. Due to the conditions of a complete spatial random pattern, it is unlikely that a true 

complete spatial random distribution occurs in any real-world situation (BOOTS and GETIS 1988). 

 

Figure 7: Fundamental Types of Patterns 

 

 (a) Complete spatial randomness (CSR), (b) clustered pattern, and (c) regular pattern 

 Adapted from BOOTS and GETIS (1988) 
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The pattern of a complete spatial randomness is considered to be an idealized standard. Such a 

pattern is used to compare it with the observed or empirically collected pattern from the real world 

and testing the hypothesis whether the observed pattern is similar or significantly different from a 

complete spatial randomness produced by a homogeneous planar Poisson point pattern. This leads 

to the exploration of a set of point data, and often to the formulation of other geographically 

relevant hypotheses. At the minimum, a description of the point pattern is conducted, whether or 

not the initial hypothesis relating to complete spatial randomness is rejected. Observed spatial point 

patterns which deviate from complete spatial randomness appear as clustered or as regular patterns. 

Clustered patterns show points that are significantly closer to each other in the study area than they 

would be in complete spatial randomness (see the example in Figure 7b). Regular patterns show 

points that are more spread out in the study area than they would be in complete spatial 

randomness (see Figure 7c). Clustered and regular patterns can result as a violation of one or both 

conditions underlying the homogeneous planar Poisson point process (BOOTS and GETIS 1988). 

Basically, the most common techniques used in spatial cluster analysis are founded on statistical 

pattern recognition. Spatial pattern recognition proceeds by calculating a statistic (e.g., spatial cluster 

statistic, autocorrelation statistic, etc.) that quantifies a relevant aspect of a spatial pattern in spatial 

data. In addition, the numerical result of this statistic is compared to the distribution of that 

statistic’s value under a null spatial model (JACQUEZ 2008). Hence, probability estimation is made of 

how unlikely an observed spatial pattern is under the null hypothesis that the observed pattern is not 

different from spatial randomness (GUSTAFSON 1998). Following WALLER and JACQUEZ (1995), a test of a 

spatial pattern consists of five components: 

- Test statistic: It quantifies a relevant aspect of spatial pattern (e.g., Moran’s I, Local Indicator 

of Spatial Association (LISA), etc.). 

- Alternative hypothesis: Describes the spatial pattern that the test is designed to detect. This 

could be a specific alternative, or just be “not the null hypothesis”. 

- Null hypothesis: Describes the expected spatial pattern when the alternative hypothesis is 

false. 

- Null spatial model: This mechanism is responsible for generating the reference distribution. It 

is either based on a distribution theory, or it may use randomization techniques (e.g., Monte 

Carlo). Many cluster tests employ heterogeneous Poisson models for specifying the null 

hypothesis. 

- Reference distribution: It is the distribution of the test statistic, when the null hypothesis is 

true. 

Statistical significance is achieved by the comparison of the test statistic to the reference distribution. 

The probability of observing the value of the test statistic under the null hypothesis of no clustering is 

calculated (JACQUEZ 2008). 

Actually, there is still some discussion of how to specify the null hypothesis and the null spatial 

model. Many spatial cluster tests use the null hypothesis of complete spatial randomness, as 

explained above. In fact, most geographic systems are highly complex and therefore a null hypothesis 
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of complete spatial randomness is rarely suitable (if ever). Complete spatial randomness does not 

describe any plausible state of the system but it can be used as a reasonable null hypothesis (JACQUEZ 

2008). 

In 1996, GATRELL et al. (1996) argued that the development of null hypotheses other than complete 

spatial randomness was one (and probably the more significant) reason why spatial analysis 

techniques have been neglected in geography in former times. This is certainly not true anymore: 

Different spatial analysis techniques are found in various application fields in the recent years. Other 

reasons for the push of spatial analysis methods in geography are the development of powerful soft- 

and hardware, especially the development of Geographic Information Systems as has already been 

mentioned above. 

2.2.2. Identification of Spatial and Spatiotemporal Clusters 

Besides the general identification of spatial point patterns, the identification of spatial and 

spatiotemporal clusters (so called hotspots) is a common and important task in point pattern 

analysis. Spatial and spatiotemporal cluster techniques are commonly used in various disciplines like 

criminology, urban planning, epidemiology, or econometrics. In the spatial and spatiotemporal 

analysis of tornadoes, statistical methods for cluster detection have rarely been used, although 

tornado touchdown points are easily accessible in the form of spatial point data. In the following 

section several possibilities of the identification and visualization of local concentrations of point 

events are discussed. Afterward, the basics of the identification of spatial and spatiotemporal 

clusters are explained in more detail.  

2.2.2.1. Mapping Techniques 

A basic task in the analysis of spatial point patterns is the identification and visualization of local 

spatial concentrations of events. It is then possible to organize the point dataset to detect possible 

structures in the spatial distribution of events. In addition, the knowledge of the location and the 

distribution of local spatial concentrations are important and necessary for further in-depth analysis 

of the point dataset (BLOCK 1994). The latter allows further analysis of the underlying processes 

which may have caused these anomalies in the first place. Therefore, the identification of areas with 

a high concentration of events leads to further, more focused analysis of spatial patterns (MEßNER 

2004). 

Several different mapping techniques have been used to identify and explore patterns of events. The 

simplest technique is to represent each single event as a point and to observe the geographic 

distribution of these points. GIS can be used to aggregate these points to administrative areas, or to 

interpolate the points to create a continuous surface that can be interpreted as the volumetric 

densities of the geographic distribution of events (CHAINEY et al. 2008). 

Most often, a first attempt to visualize geographic patterns is by common dot mapping. Mainly due 

to its simplicity it is very popular. Originally, this technique simply placed pins representing events on 

a wall map. Today, computers and GIS have replaced the familiar and traditional analogue version of 

the so-called pin map. One benefit of a GIS is the inclusion of further attribute information in 
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addition to individual events, such as time of occurrence, F-scale, or fatalities, in the case of the 

individual events being tornado touchdown points. With this additional information, touchdown 

points can be simply and quickly queried, if they meet particular conditions (e.g., select all tornadoes 

rated F4 or higher or select all tornadoes within the year 2000). As a consequence, these selected 

events can be displayed using suitable symbology. However, the interpretation of spatial patterns 

and hot spots simply from common dot maps can be difficult, particularly if the datasets are large 

(CHAINEY 2005). Common dot maps should be used if the map reader needs locational details. If the 

map reader wants information summarized by geographic areas, then the point data can be 

aggregated to the areas of interest (HARRIES 1999).  

 

Figure 8: Common dot map of tornado touchdown points, May 2005–2009 

 

 

Figure 8 shows 1,197 tornado touchdown points that occurred in May during a five-year-period from 

2005 to 2009. The large volume of points shown in the map makes it difficult to clearly identify the 

hot spots of tornado touchdown points.  

 

Figure 9: Spatial distribution of point events under varying point sizes 

 

Point size: (a) too small, (b) appropriate size, (c) too large 

Adapted from SADAHIRO (1997) 
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The influence of the size of points needs to be considered, when visually identifying local clusters 

(see Figure 9). If the size of the points is too small, then the spatial distribution of points seems to be 

nearly regularly and therefore, a visual identification of local concentrations is more difficult. 

However, if the size of the points is too large then the user may detect too many local concentrations 

due to overlapping point events (SADAHIRO 1997). 

CHAINEY (2005) analyzed the spatial distribution of vehicle crime. He asked three different crime 

analysts, who were not familiar with the study area to draw the location of the top three hot spots of 

vehicle crime in that given common dot map. Although some similarities between the hot spot 

locations among these three analysts existed, the hot spots differed in size and shape. The question, 

which analyst is correct, could not be answered, because each hot spot that was drawn seemed 

plausible to each analyst. But in fact, CHAINEY (2005) argued that neither of these hot spots was 

completely correct. This example demonstrates how difficult it is to identify hot spots from point 

data only by visual means. One reason is that points can be located exactly on top of each other and 

what appears to be a single tornado point may be actually more than one tornado point. As can be 

seen in Figure 8 more than one point at the same location is impossible to identify visually using 

common dot maps. In conclusion, common dot maps are useful for mapping of individual events 

(e.g., tornadoes), as long as the number of events is small. Events that fall on the same location can 

be better represented through the use of graduating symbol sizes, or the use of the same symbol 

sizes that are differently colored. However, the latter two visualization methods are less effective for 

identifying hot spots of point data, particularly from large datasets (CHAINEY 2005). Figure 10 

represents the distribution of tornado touchdown points in the state of Iowa from May 2005–2009. 

The point data are classified using different color hues.  

 

Figure 10: Tornado touchdown points in Iowa in May 2005–2009, classified by F-/EF-scale 

 

 

A simple method to detect spatial concentrations of events from a point dataset is the detection of 

locations with a very high amount of events. One method which does this is referred to as the spatial 

mode of events. The spatial mode is defined as location with the largest number of incidents (e.g., 

tornado touchdown points). The results from the spatial mode depend on the spatial accuracy of the 

locations of the events. For example, if events are determined very precisely it could happen that 

each event has a different location, which means that the spatial mode equals one for each event. In 
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other words, no high-order spatial modes are found, and only 1-order spatial modes are detected. 

When the goal is to identify locations with a high amount of events, 1-order spatial modes are not a 

very useful result. A spatial mode does not aggregate events within a close distance to each other to 

a single spatial mode. Therefore, this method is not very useful to detect local concentrations, but it 

is useful to identify overlapping events on identical locations, which cannot be detected purely by 

visual inspection of events in a common dot map (LEVINE 2010). Figure 11 contains the spatial mode 

for the 1,197 tornado touchdown points for May 2005–2009. As can be seen, one location with a 

frequency of three tornado touchdown points is found.  

 

Figure 11: Spatial mode of tornado touchdown points, May 2005–2009 

 

 

A popular method to represent spatial distributions of point data that have been aggregated to 

enumeration units is the choropleth map. Examples for enumeration units are administrative or 

political areas such as beats, census blocks, polling districts, wards, boroughs, counties, states, or 

country boundaries. Events mapped as points can be aggregated to any of these geographic areas 

(CHAINEY 2005). A choropleth map can be used to visualize spatial patterns of events that have been 

standardized or normalized by their geographic areas (event densities) or their underlying population 

(even rate). 

When choropleth maps are created, the cartographer is required to select an appropriate 

classification method to represent the distribution of events. Examples of classification methods are 

quantiles, equal steps, natural breaks, standard deviations, or custom classes. For more details see 

HARRIES (1999), who offers a good overview of these different classification methods. It should be 

noted that the choice of the classification method creates differently looking choropleth maps and 

often also different sets of hot spots. The question arises, which classification method is most 

appropriate for identifying existing hot spots in the study area (CHAINEY 2005). In other words: “When 

is a hot spot a hot spot?” (CHAINEY 2005). 

For the cartographer it is important to know the application and the target audience of the map that 

is being produced. If the application of the map is to detect hot spots of events, a classification 
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method should be chosen to focus on revealing the locations of high-volume event areas. The 

analysts should consider using certain class boundaries that are easy for the audience to understand. 

The map itself should be the interesting part in the foreground, and the class boundaries should 

follow in a logical sequence. Therefore, if the class boundaries require further explanation or confuse 

the audience, the analysts failed the opportunity to transfer the central message to map and to 

display hot spots of events. The first version of a map is usually not the final version, because 

mapping is considered to be an iterative process. For this reason, different class boundaries need to 

be tested to achieve the aim of transferring the central message of the map (CHAINEY 2005). 

Thematic maps which use absolute values (e.g., tornado counts) usually tend users to attract the 

largest areas shaded in the top threshold color range. This results in a problematic feature of 

geographic boundary thematic maps to identify hot spots of events in general. In fact, thematic 

shading of geographic boundaries can mislead the audience in identifying hot spots due to the 

varying size and shape of geographic boundaries (CHAINEY 2005). 

Figure 12: Density of tornado touchdown points, May 2005–2009 

 

 

IMHOF (1972) argues that it is absolutely wrong to use absolute, non-relative values in choropleth 

maps. In his publication IMHOF (1972) refers to the common use of applying this inappropriate 

technique (i.e., using absolute data values in choropleth maps) which misleads the audience. Thus, 

choropleth maps displaying relative values (e.g. densities) should be used instead of absolute values. 

If one considers using absolute values instead of (relative) densities the use of, for example, 

graduated map symbols, or the use of absolute values based on uniform grids are recommended. 

Figure 12 shows a choropleth map with the number of tornado touchdown points divided by its 

geographic area. Many small states which have not experienced as much tornadoes as Texas in this 

period have a higher density because of the comparable small area. Examples of such states are 
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Louisiana, Missouri, Mississippi, North Carolina, and especially South Carolina. In the latter state a 

number of twenty tornadoes occurred during the observation period. This count puts South Carolina 

into the second lowest class range in Figure 12. Due to the relatively small area of this state, the 

dominator of the ratio is low and therefore the density results in a relatively high value. 0.227 

tornadoes per square kilometers moves South Carolina now into the second highest class range. 

In addition, OPENSHAW (1984), and BAILEY and GATRELL (1995) identified a problem with mapping 

spatial data based on enumeration units, which is referred to as the Modifiable Area Unit Problem 

(MAUP). This problem refers to the change in the sizes and shapes of enumeration units used to 

thematically represent the distribution of events which can effect and mislead the interpretation of 

maps. Despite of this problem, the choropleth mapping technique remains important and should not 

be completely neglected. Choropleth maps are a popular map type, because the areas used are often 

based on political or administrative boundaries. For example, the knowledge of the occurrence of 

tornado touchdown points inside administrative areas is important for emergency response. 

Considering the devastation of tornadoes it is necessary to know where they occur to establish, for 

example, evacuation routes, special facilities for tornado watches, and tornado warnings1, or to build 

places of safety. Therefore, choropleth maps are important for providing summarized information 

across political and administrative areas. They may however, distort results because of failing to 

reveal patterns within individual enumeration units (CHAINEY 2005). 

 

Figure 13: Tornado touchdown points using graduated map symbols, May 2005–2009 

 

 

As mentioned before, an alternative method to represent absolute counts per geographic area is to 

                                                           
1
 Tornado watches refer to the possibility of a tornado in a specific area. In contrast, a tornado warning 

indicates that a tornado has been sighted or detected by weather radar (NOAA 1995). 
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use graduated map symbols. With this technique individual point data are aggregated to an absolute 

count. This count represents the number of events that occurred inside a geographic area or at a 

specific location. The final counts are subsequently classified and represented by graduated symbols. 

The choice of the size of each graduated symbol is crucial. If the size differences between all 

graduated symbols are too small, it is difficult for the map reader to extract the meaning of the map. 

A disadvantage of graduated map symbols is that they may overlap, which reduces the readability of 

the map (HARRIES 1999). Due to the aggregation of the results by geographic areas and the 

visualization of the results using these so-called proportional symbol maps, it is possible to offer a 

quick and fast overview of the spatial distribution of the results. One can thus easily identify areas 

with a higher concentration of events as well as areas with a lower concentration of events (LEITNER 

1998).  

Figure 13 shows a proportional symbol map of tornado touchdown points from May 2005 to 2009. In 

a proportional symbol map, two different types of map symbols can be distinguished: Pictorial and 

abstract map symbols. Pictorial map symbols look like the features they represent, and are often 

used to determine locations of events, or facilities (e.g., a symbol of an airplane is used to show the 

location of an airport). However, abstract map symbols are usually based on geometrical shapes 

(e.g., circles, squares, rectangles, triangles, etc.) and they are used to represent quantitative data. 

The benefits of abstract map symbols are their ability of grouping and combining them together. 

When abstract map symbols are grouped, then they can vary their meaning, while not changing their 

geometrical shape. Figure 14a shows an example of grouping using a point symbol, where its filling 

varies to indicate a hierarchical structure. When abstract map symbols are combined, the 

combination of two different map symbols indicates the co-occurrence of two different qualitative 

events at the same location. Figure 14b shows an example of combining a circle and a square 

(ARNBERGER 1977).  

 

Figure 14: Principles of grouping and combining abstract map symbols 

 

(a) An example for grouping abstract map symbols, and (b) for combining abstract map symbols 

Adapted from ARNBERGER (1977) 

 

Another alternative solution to avoid the varying sizes and shapes of administrative units is the 

technique called quadrate thematic mapping. Uniform grids are drawn across the study area and can 
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then be shaded, using the same concept when constructing a choropleth map. The data to be 

mapped in these grids could be either absolute or relative. On the one hand it is possible to use 

absolute values (counts of events) because the size of each cell is the same. On the other hand 

relative values, expressed as counts per area, are applicable, as well due to the same size of each grid 

cell, which makes the relative values (ratios) comparable. Crucial for the detection of hot spots is the 

size of the grid cells. It is necessary that the cells are small enough so that high event densities can 

still be properly analyzed and displayed. Figure 15 shows a thematic map of tornado touchdown 

counts with 1° grid cell sizes. In comparison to the thematic map based on enumeration units (Figure 

12) some differences can be detected. As mentioned before, events may be evenly spread across the 

whole area of large states. For example, Texas has a large number of tornado touchdown points that 

were observed from May 2005 to 2009. In comparison, Texas is not in the highest class, when 

relative counts (number of tornado touchdown points per area) were visualized in Figure 12. Finally, 

the quadrate mapping technique shows that there is just one hot spot in the Texas Panhandle, 

located close to Lubbock, TX. However, just a few tornadoes occurred in the southern part of Texas. 

The large number of tornadoes in Texas is generally spread across the northern part of the state. 

Therefore, quadrate thematic mapping appears to offer a more accurate technique for identifying 

hot spots of point events. In particular the method is useful to detect local hot spots (CHAINEY 2005).  

 

Figure 15: Quadrate thematic map of tornado touchdown points, May 2005–2009  

 

 

As discussed above, the usage of shaded grid cells (and the usage of choropleth maps, in general) 

often results in loss of spatial detail within each quadrate and across quadrate boundaries. Thus, 

inaccurate interpretation is a problem. Generally, quadrate thematic maps look blocky and do not 

entirely invoke interest. A common solution is the reduction of the cell size. Speckled maps of small, 
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shaded grid cells are produced then. For users these maps are more or less useless because the sizes, 

shapes, and locations of possible hot spots cannot be detected accurately. It should be added that 

the issues related to the chosen classification method and the Modifiable Area Unit Problem need to 

be considered, as well, when using the technique of quadrate thematic mapping (CHAINEY 2005). 

The above discussed techniques to represent spatial point data have shown that they do not really 

represent the real spatial distribution of events. For that reason certain spatial locations of hot spots 

can be hidden. This drawback makes it necessary to use statistical techniques to identify and visualize 

local concentration of events.  

Spatial ellipses can also be used to identify hot spots. Although spatial ellipses have a long tradition 

in, for example, crime mapping, the technique has not been used in the detection of, for example, 

significant tornado touchdown clusters. Different techniques to create standard deviational ellipses 

around point clusters exist. The software CrimeStat III offers the Nearest Neighbor Hierarchical 

Clustering (NNHC), K-means clustering, and the Spatial and Temporal Analysis of Crime (STAC) 

methods, which all produce spatial ellipses, identifying significant hot spots. All of these techniques 

can be applied to analyze tornado touchdown points (CHAINEY 2005). It has to be noted that none of 

these techniques can identify spatiotemporal ellipses. Nevertheless, two different approaches for the 

construction of purely spatial ellipses will be explained briefly.  

A nearest neighbor analysis technique such as the Nearest Neighbor Hierarchical Clustering (NNHC) 

technique identifies groups of clusters that contain a minimum number of user-defined points. The 

concept of spatial randomness is used to group only those points into clusters that are closer 

together than would be expected by chance alone. The first outputs of this method are the so-called 

first-order-ellipses, which cluster together the original point locations. If certain conditions apply 

first-order ellipses are grouped to second-order clusters. Higher-order clusters can be repeatedly 

created until all events fall into a single cluster or when the grouping criterion fails. A nearest 

neighbor analysis technique can be termed a hierarchical technique due to the characteristic of 

aggregating low-order clusters to high-order clusters (LEVINE 2010). Figure 16 shows an example of 

the NNHC technique applied to the example dataset of tornadoes May 2005–2009. 

The second technique to construct spatial ellipses is the K-means clustering technique. In this 

technique a user-defined number (K) of ellipses is created by partitioning the point data into 

groupings. Then the best positioning of the K centers are found and each point is assigned to the 

center that it is nearest. This method belongs to the group of partitioning techniques due to the 

feature of partitioning events to a defined number of spatial clusters (CHAINEY 2005). 

Both methods show how spatial ellipses are useful for identifying event clusters, which can 

subsequently be selected for closer inspection. A well-known weakness of these methods is the fact, 

that analysts are not possible to accurately identify the boundaries of hot spots. Usually, event hot 

spots do not naturally form spatial ellipses. Therefore, the outputs of these methods do not 

represent the actual spatial distribution of events and can often mislead analysts to focus on areas 

with low event importance within an ellipse. In addition, all of these methods require detailed 

knowledge about them in order to appropriately select a number of required parameters. Users with 
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little knowledge of these statistical methods are given few rules to enter suitable parameters, thus 

introducing ambiguity and influencing variability in the final output. For example, different analysts 

investigating tornado hot spots from the same data may produce different results because of the 

different choices of input parameters that are being used (CHAINEY 2005).  

 

Figure 16: Nearest neighbor hierarchical clusters for tornado touchdown points, May 2005–2009 

 

 

Techniques that consider concentrations of events across the entire study area are the so-called 

interpolation and continuous surface smoothing methods. Interpolation methods experience an 

increasing popularity and application for visualizing the distribution of events and identifying hot 

spots. These methods aggregate points within a specified search radius and create a smooth, 

continuous surface. This surface represents the density or volume of events across the area. 

Common interpolation techniques use an intensity, population, or “z” value taken from event 

locations to estimate values for all locations across the study area. These interpolation techniques, 

such as inverse distance weighting, kriging, triangulation with smoothing, and splining are classified 

as geostatistical techniques. An example for the usage of interpolation techniques is the creation of 

surfaces representing the distribution of rainfall. Therefore, values between and at rain gauges are 

estimated from a function considering the rainfall readings and the distribution of rain gauges. 

Within the tornado touchdown data set, collection sites do not exist. Therefore, it would not make 

sense to apply one of these techniques to estimate the number of tornado touchdowns that may 

have occurred between the locations of the existing tornado touchdown points. No tornadoes have 

been reported in the areas between actual tornado touchdown points, so the analyst should avoid 

using methods to interpolate tornadoes, where there are no tornadoes occurring. Instead, methods 

should represent a continuous surface of the relationships or densities between event point 

distributions (CHAINEY 2005).  

The most useful technique for visualizing events like tornado touchdown points as a continuous 

surface is the kernel density estimation method. This method creates a smooth surface of the 

variation in the density of points across a geographic area. The first step to construct a continuous 
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surface is to define a fine grid which is laid on top of the point distribution. Users usually define the 

size of the grid as well as the size of the grid cell. Then, a three-dimensional kernel function calculates 

weights for each grid cell inside a defined kernel’s radius (bandwidth). Points that are closer to the 

center of the kernel function receive a higher weight and higher weights result in a higher total 

density value of a cell. Finally, all circle surfaces which are calculated for each grid cell are summed to 

generate the final grid cell values (CHAINEY 2005). These different steps to calculate a kernel density 

estimate will be explained in more detail in the next subchapter.  

The output of kernel density estimations are easy to interpret and to understand by the lay person. 

This makes the method very useful to an audience which is not very familiar with statistical 

techniques. An advantage of this method is that density values are estimated at all locations within 

the study area. These continuous density surface maps allow for easier interpretation of local 

clusters which makes the method very useful in various application fields (CHAINEY 2005). For 

example, this technique reflects the locations and spatial distribution of high density values (i.e., hot 

spots) more accurately compared to other mapping techniques (e.g. quadrate thematic mapping). 

The different types of kernel density estimation techniques, as well as their advantages and 

drawbacks, will be explained in the next subchapter in more detail. As a quick example, Figure 17 

shows a kernel density estimation result for tornado touchdown points from May 2005 to 2009. The 

figure below shows kernel density estimation results of tornado touchdown points in the mid-west of 

the coterminous United States. In comparison the output of kernel density estimations are not as 

speckled as the output of the quadrate thematic mapping technique (as can be seen in Figure 15). In 

the following figure, grid cells with density values from 0 to 0.3 are filled with a white color in order 

to show a better visibility of the higher density values and clusters. 

 

Figure 17: Kernel density estimation of tornado touchdown points, May 2005–2009 
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The two latter techniques analyzed point data. In the analysis of areal data the concept of spatial 

autocorrelation is commonly used. Positive spatial autocorrelation indicates cases where a polygon 

and its spatial neighbors have similar values. This results in clusters of high values (hot spots), low 

values (cold spots), and medium values (“average” spots). Contrasting values between a polygon and 

its spatial neighbors indicate negative spatial autocorrelation (LEITNER and BRECHT 2007). These spatial 

outliers indicate areas of high tornado occurrence surrounded by low tornado occurrence and vice 

versa. Local Indicators of Spatial Association (LISA) can be used to identify significant patterns of 

spatial association around individual locations, resulting in spatial hot spots, spatial cold spots, or 

spatial outliers (ANSELIN 1995). An appropriate visualization method to measure local spatial 

autocorrelation is a LISA Local Moran map. Additionally, a Moran Significance map can be visualized 

to show the significance of the clusters (LEITNER and BRECHT 2007). The Local Moran map in Figure 18 

shows that a significant cluster of high tornado occurrences is present in the center of the United 

States. In addition, two cold spots with low tornado occurrences are also identified in the Local 

Moran map. The first cold spot cluster can be found in the western part of the United States and 

second cluster in the Northeast.  

The Local Moran’s I statistic is a useful tool for identifying areas which are dissimilar from their 

neighborhood. In comparison to the previous techniques, the Local Moran’s I statistic is the only 

statistic that demonstrates dissimilarity. The other techniques only identify areas with high 

concentrations. A peculiarity of the Local Moran’s I statistic is that the data need to be summarized 

into areas in order to produce the necessary Local Moran’s I value (LEVINE 2010). This can be seen as 

a drawback of the technique due to the loss of spatial detail. 

 

Figure 18: Local Indicators of Spatial Association (LISA) of tornado touchdown points, May 2005–2009 
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In this section different techniques to map events such as tornado touchdown points have been 

explained and discussed. The techniques range from simple and easy to understand methods such as 

the proposed point mapping technique to more complex techniques, which offer more accurate 

results of cluster detection such as spatial ellipses or the kernel density estimation. The use of the 

latter techniques requires statistical knowledge to appropriately select parameter settings. The 

choropleth mapping methods are simple to apply, but do not necessarily lead to objective 

interpretations. Therefore, the use of objective techniques to determine hot spots of events should 

be considered. The following section discusses the basics of statistical techniques to detect hot spots, 

as well as the differences of approaches to cluster point events. 

2.2.2.2. Basics of the Identification of Spatial and Spatiotemporal Clusters 

The search for higher concentrations of events within a geographical area is important in the analysis 

of spatial point data. These spatial analysis methods are used to detect anomalies and conspicuous 

structures in the spatial point dataset and they indicate the processes which might have caused these 

irregularities. The exploratory identification of areas with a high concentration of events is the basis 

of further analysis of spatial point patterns. The morphology of clusters plays an important role since 

they can take on a variety of different shapes. Usually, different cluster tests are sensitive to different 

aspects of cluster morphology: some detect boundaries, some detect outliers, some detect elliptical 

clusters, some detect circular clusters, etc. Hot spots can take many shapes, while statistical 

techniques usually use geographical templates such as a circular scanning window (e.g. the scan 

statistic as proposed by KULLDORFF and NAGARWALLA (1995)). The techniques which use specific 

geographic templates are most sensitive to cluster shapes they employ. In fact, cluster morphology in 

geographic systems is highly complex and a simple description by a single geographic template is not 

appropriate (JACQUEZ 2008). 

At first, the terms for spatial, temporal, and spatiotemporal techniques will be explained and 

defined. Traditional or non-spatial statistics analyze large datasets which do not contain any spatial 

component like geographic coordinates. Purely spatial statistics are specifically designed to analyze 

purely spatial data, whereas purely temporal statistics analyze temporal data. GRUBESIC and MACK 

(2008) argue that previous analyses for clustering and clusters treat space and time as separate 

components, and largely ignoring the interaction of events in time and space. RATCLIFFE (2010) calls it 

a “shame”, since the understanding of interactions of spatiotemporal data can offer a wealth of 

information. Spatiotemporal interaction arises when events are located relatively close in geographic 

space and when these events occur also at about the same time (JACQUEZ 1996, KULLDORFF and 

HJALMARS 1999). Recent works suggested space-time statistics as a useful tool in, for example, crime 

analysis (e.g. GRUBESIC and MACK 2008) or epidemiology (e.g. KULLDORFF and HJALMARS 1999). 

In the usage of statistical methods to identify spatial, temporal, and spatiotemporal clusters one can 

distinguish between tests for clustering and tests for clusters. The former term refers to global tests, 

whereas the latter to local and focal tests (ANSELIN 2004).  

Global tests are designed to reject the null hypothesis of complete spatial randomness for the 

dataset as a whole. The objective of a global test is to find evidence of significant patterning (ANSELIN 
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2004). Hence, global statistics have the ability to identify whether spatial structure (e.g. clustering, 

autocorrelation, uniformity) exists, but they do not identify where the locations of clusters are, nor 

do they quantify how spatial dependency varies from one place to another (JACQUEZ 2008). Examples 

of global tests for purely spatial data are the Moran’s I statistic (MORAN 1950) or the Geary’s C 

statistic (GEARY 1950), and for space-time interaction the Knox test (KNOX 1964) or the Mantel test 

(MANTEL 1967).  

Instead, focused statistics quantify clustering around a specific location called a focus. A typical 

application field is the analysis of clusters or disease sources of environmental pollutants (JACQUEZ 

2008). An example of a focused test is the Lawson-Waller local score test (LAWSON 1993, WALLER et al. 

1992).  

In contrast, local tests are designed to identify the locations of clusters (or of spatial outliers). Many 

global statistics have local counterparts. As an example, the global Moran’s I statistic is the scaled 

sum of the local indicators of spatial association (LISA) statistic (ANSELIN 1995). A recently developed 

test named spatial scan statistic is very popular and powerful and can be used in both spatial and 

spatiotemporal analysis (KULLDORFF 2010).  

With local tests it is possible to detect local spatial concentrations of events, while global tests do not 

detect any spatial interaction in the same dataset. FOTHERINGHAM et al. (2000) favor the application of 

local spatial statistics. Therefore, only tests to detect local clusters will be discussed and applied in 

this thesis. 

Local areas with an unusually high occurrence of events are called spatial clusters or hot spots. 

Unfortunately, there is no clear definition for what exactly constitutes a spatial cluster. Hot spots 

could either be based on point data, or on point data that have been aggregated to areas (LU 2000). 

Hot spot analysis techniques aim to identify locations with unusual high concentrations of event 

occurrences. Since hot spots do not have clear boundaries and they may not exist in reality the user’s 

delimitation of the hot spots is more or less subjective and therefore arbitrary (LEVINE 2010). 

Measuring a hot spot is a complicated problem. Due to the technical improvements in information 

technology dozens of different statistical techniques have been developed to identify hot spots or 

hot spot areas (EVERITT 1974). Not all of these techniques are generally known for spatial cluster 

analysis. These statistical techniques have in common that each of them aims at grouping cases 

together into relatively coherent clusters. But there are differences in the methodology as well in the 

criteria used for identification. LEVINE (2010) describes hot spots as perceptual constructs, and 

therefore the different techniques refer to their approximation how someone would perceive an 

area. Thus, the techniques use various mathematical criteria (LEVINE 2010). 

In general, tests can be distinguished by type of data. First, tests for clustering and clusters of point 

events are described, and then cluster tests based on areal units are explained. Afterwards different 

techniques of local cluster or hot spot analysis will be distinguished using typical characteristics and 

typologies (EVERITT 1974, ÇAN and MEGBOLUGBE 1996). This thesis will apply different methods to 
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detect spatiotemporal hot spots in the tornado touchdown dataset for the study area discussed 

above. Therefore, the different types of spatiotemporal hot spots will be explained briefly.  

Tests for clustering and clusters of point events which are commonly used tend to be either based on 

inter-point distances, or on the number of events within a so-called quadrate (e.g. a grid cell, a circle, 

or ellipse). The tests consist of the comparison of the distances, functions of distances, or the density 

of points in a quadrate to what they would be under a null hypothesis of spatial randomness. When 

the inter-point distances tend to be shorter, or when the number of points in the quadrate is higher 

than expected under randomness, the declaration of significant clusters is the result (ANSELIN 2004).  

Cluster tests based on areal units can be divided into two types. First, the area is simplified to a point 

(e.g. the center of gravity, or centroid of an area) and all the events of that areal unit are aggregated 

to that single point. The so-formed points can be analyzed using a quadrate method (e.g. a spatial 

scan statistic) as if it was a collection of individual points. An alternative approach to detect clusters 

from areal units (whether they are represented as points or polygons) is the use of spatial 

autocorrelation tests. These consist of a combined evaluation of locational similarity (neighbors) and 

attribute similarity (e.g. cross-product correlation). The definition of neighbors is an important aspect 

in using spatial autocorrelation statistics. Common solutions are the consideration of points to be 

neighbors when they are within a certain distance, or to take polygons as neighbors when they share 

a common boundary (ANSELIN 2004). The latter definition of contiguity is furthermore divided in two 

commonly used options: the so-called rook contiguity uses only common boundaries, while the so-

called queen contiguity uses all common points (boundaries and vertices) in the definition of 

contiguity (ANSELIN 2003). 

As proposed by EVERITT (1974), and ÇAN and MEGBOLUGBE (1996) several general categories of cluster 

routines have been established in spatial cluster analysis: 

- Point locations 

- Hierarchical techniques 

- Partitioning techniques 

- Density techniques 

- Clumping techniques 

- Risk-based techniques 

- Miscellaneous techniques 

- Hybrid techniques 

Point locations simply identify locations with a sum of the occurrences at these locations. Thus, 

locations with the most number of event occurrences are identified as hot spots. Examples are, for 

example, the spatial mode (LEVINE 2010). The spatial mode is explained in Section 2.2.2.1. (Page 38 

and Figure 11) 

Hierarchical techniques are based on the grouping of incidents to (first-order) clusters which have 

some criteria in common (e.g. nearest neighbor). Usually, first-order clusters are then grouped to 

second-order clusters, and these in turn are grouped to third-order clusters. This process is repeated 
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until either all events fall into a single cluster or the criteria for the grouping fail. The hierarchy of the 

resulting clusters can be shown in a dendrogram (for an example see Figure 19). However, many 

hierarchical techniques do not necessarily group clusters into the next highest level. In the section 

about mapping techniques (2.2.2.1., page 44) the method called nearest neighbor hierarchical 

clustering (NNHC) is an example of a hierarchical technique (LEVINE 2010). 

 

Figure 19: Hierarchical clustering technique 

 

Adapted from LEVINE (2010) 

 

Partitioning techniques partition the events into a specified number of clusters. Usually, this number 

of groupings is defined by the user. The points are then assigned to one, and only one, group (LEVINE 

2010). An example is the K-means clustering technique. 

Density techniques identify hot spots by searching for dense concentrations of events (LEVINE 2010). 

As proposed in Section 2.2.2.1., a single kernel density estimation (page 45 and Figure 17) is a 

representative of this type of cluster analysis.  

Clumping techniques partition events to clusters or groups but allow overlapping membership 

(LEVINE 2010).  

Risk-based techniques search for hot spots in relation to an underlying variable which represents, for 

example, populations or employment at risk (LEVINE 2010). Commonly used risk-based techniques, 

which will be explained in a comprehensive manner in the following subchapter, are the risk-adjusted 

nearest neighbor hierarchical clustering (Ra-NNHC) method, a dual kernel density estimation 

method, or the spatial scan statistic.  

Miscellaneous techniques are less commonly used methods, which are applied to detect areal 

clusters, not events (LEVINE 2010). An example is the local indicator of spatial association (LISA) 

technique. In this thesis a Local Moran’s I will be applied to the spatiotemporal analysis of tornado 

touchdown points.  

Some statistical techniques could not be assigned to one single type of cluster analysis methods. 

These hybrid techniques are a combination of the methods explained above. For example, the risk-

adjusted nearest neighbor clustering technique is primarily risk-based but involves elements of the 

clumping approach (LEVINE 2010). 
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As can be seen, many statistical techniques based on different criteria exist for the exploration of hot 

spots. All of these methods have their advantages as well as their limitations. It is quite impossible 

that only one technique shows the correct existence of spatial hot spots. Furthermore, there are 

different possible results in the identification of spatial clusters. Therefore, it is important that users 

take into consideration that the techniques for the detection of spatial hot spots are just explorative 

tools which support the user in the analysis of spatial point data. The interpretation of the results 

and further analysis of the hot spots rests on the user. Thus, it is necessary to know the 

characteristics of the spatial point pattern and the aim of the analysis to apply the appropriate 

statistical techniques (LU 2000, LEVINE 2010).  

Furthermore, it is important to notice that within the identification of spatial clusters most often only 

the point events are regarded without any consideration of possible underlying variables which may 

influence the formation of local concentrations. Spatial distributions of events are affected by certain 

influencing variables. Tornado fatalities are usually higher in areas where the size of the population is 

higher. Thus, it is necessary to relate the fatalities to the population size. The results are spatial hot 

spots where the influence of the population size is regarded as an equalizing factor. Statistical 

techniques which take an underlying variable into consideration have been proposed as risk-based 

methods (LEVINE 2010).  

2.2.2.3. Temporal Variation in Spatial Clusters 

The environment of our dynamic world changes constantly. It is important to examine not only 

patterns over space. Furthermore, it is necessary to analyze how those patterns change over time to 

fully understand spatial phenomena. The analysis of cluster changes over time results in finding 

temporal patterns (e.g., cycles and rhythms of occurrence). Initially, GIS were used to represent and 

analyze spatial phenomena but recently the representation of temporal dynamics within GIS evolved 

as a significant challenge (PEUQUET 2006). Two aspects of cluster change and persistence will be 

discussed and subsequently applied in the spatiotemporal analysis in this thesis. The first aspect 

discusses temporal changes in the spatial distribution of clusters, and the second aspect considers 

clustering of attributes from two different time periods (JACQUEZ 2008). Finally, a space-time scan 

statistic which automatically adjusts for both purely spatial and purely temporal clusters will be 

explained briefly. 

A first approach in the exploration of cluster change and persistence is to explore temporal changes 

in the spatial distribution of clusters. Therefore, a spatial distribution of clustered attributes at time 

t is compared to those clusters obtained for that attribute at time t+1. JACQUEZ (2008) proposes 

boundary and overlay statistics to determine the amount of association between the clusters at the 

different time periods, t and t+1. Alternatively, the intersection of first-order NNHC ellipses can be 

used to control for cluster persistence. Figure 20 shows an example where cluster existence changes 

through time and where clusters are persistent. There are several first-order NNHC ellipses for both 

periods but there is only one temporal intersection of these first-order NNHC ellipses. This area 

indicates a significantly high tornado occurrence at both time periods May 2000–2004 and May 

2005–2009 and therefore, this approach is useful to check for temporal cluster persistence. 
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Figure 20: Space-time NNH clusters of tornado touchdown points for May 2000–2004 and May 2005–2009 

 

 

A second approach considers the clustering of attributes at two different time periods. Bivariate 

LISA statistics can be used for identifying areas with high values at time t that are surrounded by 

areas with high values at time t+1 (JACQUEZ 2008). Although this space-time approach is not used very 

often in the literature, JACQUEZ (2008) quotes that this tool is useful for gaining insights into cluster 

persistence. An example of clustering attributes at two different time periods is shown in Figure 21. 

This space-time LISA identified significant states with high (respective low) tornado occurrences in 

the period May 2000–2004 that are surrounded by states with high (respective low) tornado 

occurrences in the period May 2005–2009. In the center of the United States a space-time hotspot of 

high values has been detected. Space-time cold spots with low values at both time periods are 

located in the western part and in the Northeast of the United States. Additionally, there is one 

spatiotemporal outlier (Wisconsin) with a low value in the period May 2000–2004 that is surrounded 

by states with high values in the period May 2005–2009. 
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Figure 21: Space-time LISA of tornado touchdown points between May 2000–2004 and  

May 2005–2009 

 

A third approach is to cluster temporal differences. This technique uses difference maps instead of 

working with maps showing attributes at time t and t+1 (see the second approach). These difference 

maps subtract the value at time t from the value at time t+1. The approach is useful to locate areas 

where the temporal difference of the attribute values is stable or changes dramatically (JACQUEZ 

2008).  

 

Figure 22: Differences of absolute density estimates of tornado touchdown points between May 2000–2004 

and May 2005–2009 
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As an alternative the proportion of the difference to the base time t (relative difference) can be 

calculated and visualized. Both methods belong to the dual kernel density estimations method. 

Figure 22 shows an example where temporal differences of absolute density estimations are 

clustered. The values can be interpreted as follows: A value of 1 means that the density value of 

tornado touchdown points per square mile increased by 1 from 2000–2004 to 2005–2009. In 

comparison, Figure 23 uses differences of relative kernel density estimations of tornado touchdown 

points. Here, a value of 100 means that the density value increased by 100 percent from 2000–2004 

to 2005–2009. These maps should be interpreted as follows: Red shaded areas indicate locations 

where the number of tornadoes was higher in May 2005–2009 than in May 2000–2004. In contrast, 

blue shaded areas experienced more tornadoes during the earlier period from May 2000–2004. For a 

better visualization only areas with an absolute density estimation of >= 0.01 tornado touchdown 

points per square mile at both periods are shown. 

 

Figure 23: Differences of relative density estimates of tornado touchdown points between May 2000–2004 

and May 2005–2009 

 

 

So far, each hot spot map considered in this section accounts for the combination of hot spot maps 

at two different snapshot periods in time. New areas of research have started the exploration of 

space-time interaction. Test statistics such as the Knox test (KNOX 1964) or the Mantel test (MANTEL 

1967) are appropriate tests for space-time interaction. These tests are global in nature and therefore 

useful, if the analyst wants to see if there is clustering throughout the entire study region and the 

whole time period. Hence, these tests are unable to find specific locations and sizes of clusters. 

Therefore, as a fourth set of approaches, scan statistics will be applied in this thesis. Such statistics 
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are commonly used to detect und evaluate clusters of cases in either a purely spatial, purely 

temporal or space-time setting. The space-time scan statistic gradually scans a window across space 

and time, and noting the number of observed and expected observations inside the window at each 

location. As a result, the most likely cluster is the window with the maximum likelihood. This is the 

cluster least likely to be due to chance and an appropriate p-value is assigned to this cluster 

(KULLDORFF 2010). Figure 24 shows the results of a space-time scan statistic applied to the tornado 

touchdown points in the period May 2005–2009. Four space-time clusters were identified, each with 

a p-value of 0.001. The most likely cluster contains 143 tornadoes that occurred in the period 

2008/05/19 to 2008/05/31. As can be seen in Figure 24, the different clusters differ in their 

morphology in regards to their spatial and temporal extends.  

 

Figure 24: Space-time scan statistic of tornado touchdown points, May 2005–2009 

 

 

The following subchapter discusses software for cluster analysis. Freely available software packages, 

which include these space-time approaches, will be presented.  

2.3. Cluster Analysis Software 

 

The increasing application of statistical techniques for the analysis of spatial patterns is the result of 

developments in the hard- and software industry. Although techniques of spatial pattern analysis are 

well known over decades, the development of specific software packages did not start until the early 

1990s. Most statistical tests are very processor-intensive because of large datasets. For this reason, 

the application of statistical techniques for spatial data analysis needed computers with increased 

computational power (LORUP and LEITNER 2000).  
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There are several software packages available nowadays. Besides commercial products such as 

ClusterSeer (http://www.terraseer.com), various freely available software packages are commonly 

used. These software packages (e.g., GAM, CrimeStat, GeoDA, SatScan) are based on common 

scripting languages and are mostly developed by the public sector (LORUP and LEITNER 2000). In the 

application of cluster analysis software it is necessary that some basic GIS infrastructure exists. Inside 

this GIS infrastructure, the data of interest need to be geo-coded as points on a map, or have been 

aggregated to areal units. Therefore, spatial statistics software should have an efficient interface to 

GIS to extract the relevant data and to feed back the results for map display. Although statistical 

software sometimes contains some GIS-functionalities, the functions are typically less efficient in 

comparison to purely GIS software. For this reason, ESRI’s ArcGIS 9.3 is used in this thesis to initially 

prepare the tornado data and finally to visualize the outputs of the statistical analysis (ANSELIN 2004). 

This subchapter includes a review of three selected software for the analysis of spatial clusters. The 

software should provide techniques to find potential tornado clusters in a given dataset. 

Furthermore, the software should include techniques which can be applied to the space-time 

approaches explained above.  

The software should at least meet the following requirements. First of all, the focus should be on 

non-commercial, open-source software tools, which are available at the web free of charge. The 

software needs to be up to date and has to work in a Microsoft Windows operating system.  

This selection is limited to three packages that have been established to implement techniques for 

spatial and spatiotemporal data analysis of tornado touchdown points in the United States. 

CrimeStat, GeoDa and SaTScan are freestanding tools which can be downloaded and installed 

directly in a Microsoft Windows environment.  

• CrimeStat 3.3. A Spatial Statistics Program for the Analysis of Crime Incident Locations. 

Developed by Ned Levine & Associates, with support from the National Institute of Justice, 

Washington, DC. 

o Available at http://www.icpsr.umich.edu/CrimeStat/.  

• GeoDa 0.9.5-i. Developed by Luc Anselin through the Center for Spatially Integrated Social 

Science at the University of Illinois, Urbana-Champaign. 

o Available at http://geodacenter.asu.edu/.  

• SaTScan 9.1.0. Software for the Spatial and Space-Time Scan Statistics. Developed by Martin 

Kulldorff together with Information Management Services Inc.  

o Available at http://www.satscan.org/.  

ANSELIN (2004) addresses the following essential requirements of a software tool for exploratory 

analysis of event clusters: 

• Data input: X- and y-coordinates of event locations and digital boundaries of areal units 

(polygons); 

• Spatial information: Spatial weights construction and distance computations; 

• Descriptive statistics: Identification of “extreme” values and outlier detection; 
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• Point pattern analysis: Statistics to identify locations that are more clustered than likely 

under the null hypothesis; 

• Spatial autocorrelation analysis: Measures of global and local spatial autocorrelation (LISA) to 

identify areas which are surrounded by areas with similar values, or to identify spatial 

outliers; 

• Visualization of results: Indicate outliers and significant clusters in maps and/or graphs; 

• Program output: Save and store results in a way that can be integrated within other software 

such as GIS; 

None of the three packages proposed for the statistical analysis in this thesis satisfies all these 

criteria. In the following sections the features as well as the benefits and the drawbacks of the three 

implemented software packages will be considered. 

2.3.1. CrimeStat 

CrimeStat was originally developed for the analysis of crime incident locations. However, the 

software and its statistical techniques can be used to analyze any point pattern data, such as patterns 

of locations of tornado touchdown points. An advantage of CrimeStat is the ability to read data from 

a wide range of formats, although only point data (no polygons or lines) can be read. The program is 

organized along five main sets of functions, including data setup, spatial description, spatial 

modeling, crime travel demand, and options. ANSELIN (2004) evaluates the data input as the most 

flexible of the proposed software packages. This includes the selection of a primary file, a secondary 

file (if applicable) and a reference grid for kernel density estimation.  

The statistical functions in CrimeStat are structured in “description” and “modeling”. In the 

description tab most of the functions are relevant to cluster analysis respectively the so-called “hot 

spot” analysis. It contains clustering methods such as the Nearest Neighbor Hierarchical Clustering 

(NNHC) technique, the Local Moran, as well as the STAC method of Block and Block (Space Time 

Analysis of Crime). The latter technique is similar to Kulldorff’s scan statistic, but is not based on a 

likelihood criterion. The techniques in the modeling tab include the kernel density estimation as 

“cutting edge” interpolation routine and the Knox and Mantel tests for space-time analysis. ANSELIN 

(2004) argues that both tests are essential tools in a space-time analysis of clustering of events. The 

Knox and Mantel test both refer to local tests and do not find an application in this thesis. Finally, 

CrimeStat contains the so-called Journey-to-Crime function. This function is a specialized technique 

used in crime analysis and therefore less applicable to tornado touchdown studies (ANSELIN 2004). 

The analysis in CrimeStat runs off in two stages. At the beginning, the analyst sets the dataset, 

options, and type of analysis. Then, the chosen computations are carried out and the results are 

shown on the screen. For the different statistical techniques various output options exist (e.g., 

ellipses and/or convex hulls for NNHC) to export the results in an appropriate format for GIS and 

mapping packages. CrimeStat does not include any mapping capabilities (ANSELIN 2004). 

CrimeStat includes statistical tests which are the current standard for point pattern analysis. Most of 

the methods use Monte Carlo randomization to assess significance. The software is available with an 
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extensive manual of 954 pages (Levine 2010) with several case studies and examples. Some 

understanding of the cluster statistics is required. In the manual and examples the statistical 

background of the various tests are explained comprehensively for first-time users (ANSELIN 2004).  

2.3.2. GeoDa 

The intention of the software package GeoDa is to introduce the user to spatial data analysis in 

combination with some minimal mapping functionality. GeoDa does not include wide-ranging GIS 

tools. The emphasis lies on data visualization and interactive data analysis. The latter is implemented 

by dynamically linked windows to use linking and brushing of all statistical graphs and maps. The 

primary data input type is polygon data, although points which represent areas can be used as well. 

GeoDa includes several functions to manipulate spatial data, such as the computation of centroids or 

the conversion of data from various input files to point shape files. Spatial analysis is focused on 

statistical graphs, autocorrelation statistics, and maps (ANSELIN 2004, LEITNER and BRECHT 2007). 

GeoDa is the only package of the three that includes mapping functionality and does not necessarily 

require a GIS for visualization. As the main input format ESRI’s shape files are required. Several map 

types such as choropleth maps or outlier maps (e.g., box maps as a spatial equivalent of a box plot) 

as well as cartograms can be visualized (ANSELIN 2004). The maps can be saved as bitmap files. In 

newer versions it is possible to save the results in the PostScript format. Once an analysis or a specific 

map have been completed in GeoDa, it is possible to save the results and export the updated data 

table to a shape file. 

The main analytical focus of GeoDa is on ESDA. This includes a variety of statistical graphs, such as a 

histogram, boxplot, scatterplot, and a parallel coordinate plot, as well as the investigation of spatial 

autocorrelation. For the analysis of the latter a Moran scatterplot for the global Moran’s I, and LISA 

significance and cluster maps for the Local Moran’s I are implemented. The results of the Local 

Moran’s I can be saved in the input table and exported to further analyze or visualize them in a GIS or 

in another software. As already proposed, the Local Moran’s I can be extended to a bivariate case for 

space-time analysis. For the usage of the concept of spatial autocorrelation in GeoDa it is necessary 

to construct spatial weights, which are based on either the contiguity between polygons or the 

distance between points. These weights files can be created and used in GeoDa but can also be used 

by other software (ANSELIN 2004). 

Generally, GeoDa can be used by a broad audience that needs not to be GIS experts. The user does 

not need much statistical prerequisites for the implemented descriptive statistics and basic statistical 

inferences. The software package comes with a user’s guide and the current software version release 

notes, as well as several sample data sets and tutorials (ANSELIN 2004). 

2.3.3. SaTScan 

The software SaTScan is a very specialized package. It only implements Kulldorff’s scan statistic for 

temporal, spatial, and spatiotemporal cluster detection. This technique is most often used in public 

health to detect disease clusters. So far, this technique was not applied to tornado touchdown 
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points. The basis of this statistic is a combination of a quadrat-like counting of cases in a circular area. 

A likelihood ratio test is used to identify the most likely cluster. The statistic can be applied to 

individual case locations, or to the aggregation of event counts associated with points (ANSELIN 2004). 

By 2005, all scan statistics available needed data that provide information about spatial and temporal 

distribution of the underlying population-at-risk. Census data can be an appropriate denominator for 

tornado fatalities, where the expected number of fatalities is then estimated based on the underlying 

population (KULLDORFF et al. 2005). Recently, KULLDORFF et al. (2005) proposed the so-called space-

time permutation model which uses only events with no need for population-at-risk data. 

The analysis in SaTScan is made in two steps. First, the user sets the parameters for the intended 

analysis technique, such as the input data files, the output location and output file, and various 

settings for the statistical computation. Afterwards, the analysis will be executed and the results are 

shown on the screen. Additionally, the results will be written to output files, if specified. ANSELIN 

(2004) argues that system of data input is somewhat rigid. The software requires separate files for 

cases, controls (population-at-risk), and location coordinates of the events. In addition, the usage of 

the ascii file format is peculiar (ANSELIN 2004). 

The output results consist of cluster locations for the most likely cluster and additional clusters as 

well as their likelihood and significance. SaTScan does not possess any built-in visualization options. 

This makes the software rather limited in regard to its combination with GIS and other software. The 

scan statistic is the only technique implemented in SaTScan and requires detailed statistical 

knowledge in order to appropriately set the parameters and to intelligently interpret the clusters 

(ANSELIN 2004). 

2.3.4. Software Summary Evaluation 

All of the three proposed software packages are free, so monetary constraints do not play a role in 

their assessment. The software packages differ in the range of functionality, in terms of its handling, 

and in the statistical background required from the user. None of these packages meets the software 

requirements proposed by ANSELIN (2004). It is notable, that to some extent the software packages 

are complementary to each other. Therefore, it is recommended to use a combination of several 

packages to implement an effective cluster analysis in the real world. CrimeStat and SaTScan 

additionally need separate GIS or mapping software to appropriately visualize the results (ANSELIN 

2004). 

Due to the increasing popularity of Kulldorff’s scan statistic, ANSELIN (2004) suggests that the SaTScan 

package should be part of any software collection, since this technique is not included in any other 

packages which are free of charge. The scan statistic should at the minimum be supplemented with 

the Local Moran’s I statistic as ANSELIN (2004) proposes. The Local Moran’s I statistic is available in 

both CrimeStat and GeoDa.  

CrimeStat and GeoDa overlap only to a small extent. They are mainly complementary to each other. 

CrimeStat offers extensive functionalities for point pattern analysis, whereas GeoDa focuses on 

interactive data exploration and visualization, and provides a wider variety of options for local 
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autocorrelation statistics. Both packages can be used with basic understanding in cluster analysis and 

spatial association (ANSELIN 2004).  

Annex A shows an overview of current specific cluster statistics in each of the proposed packages. As 

can be seen a huge number of different cluster analysis techniques are offered in freely available 

software. For this reason, only a few statistical tests will be selected for the spatial and 

spatiotemporal analysis of tornado touchdown points. These techniques will be explained in the next 

subchapter. 

2.4. Selected Techniques for the Identification of Spatial and 

Spatiotemporal Clusters 

Many different statistical tests for spatial data analysis have been developed recently. Due to the 

huge number of techniques researchers often deliberate which spatial cluster statistic to use. Online 

cluster analysis advisors, such as the one at 

http://www.terraseer.com/products_clusterseer_advisor.php provide help in this regard (JACQUEZ 

2008).  

It is difficult to find the “one” cluster test which is appropriate for the spatial data analysis. This 

should only be done when the analyst has prior knowledge of the cluster shape. JACQUEZ (2008) 

argues that prior knowledge of cluster shape is lacking because analysts usually do cluster analysis to 

locate and describe clusters. 

Only a few selected techniques will be applied to the tornado touchdown points in the United States. 

These methods are the NNHC technique, the kernel density estimation, the Local Moran’s I, and the 

space-time permutation model. The NNHC technique is useful for the detection of spatial ellipses or 

convex hulls at a small scale. In contrast, the kernel density estimation calculates density values for 

the whole study area. In addition to these techniques the Local Moran’s I and Kulldorff’s scan statistic 

will be applied as proposed by ANSELIN (2004). The Local Moran’s I is based on the concept of spatial 

autocorrelation which compares values at each location with values in close proximity. Various scan 

statistics (see Annex A) are provided in the SaTScan package. In line with the focus of this thesis, only 

the space-time permutation model will be applied. This state-of-the-art method searches for clusters 

in both space and time. The space-time permutation model is the only scan statistic which solely 

analyzes events and does not need a population-at-risk. These four techniques will be used for the 

spatial and spatiotemporal analysis of tornado touchdown points in the United States. As proposed 

in Section 2.2.2.3 all of these techniques include have a space-time approach. While the space-time 

permutation model is the only approach which accounts for both spatial and temporal interaction, 

the techniques selected above can be used to analyze cluster persistence or cluster changes. In the 

following sections the statistical background of these four techniques will be discussed in detail.  

2.4.1. Nearest Neighbor Hierarchical Clustering 

Generally speaking, the NNHC technique identifies groups of events that are in close spatial 

proximity. As has been said in Section 3.2.2, this routine is a hierarchical technique that clusters 
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points based on various criteria. The process of clustering is repeated until either all points fall into a 

single cluster or the clustering criteria fail. The method uses a defined threshold distance and 

compares it to the distances between all pairs of points. Points that are closer to other points than 

the threshold distance are considered for clustering. The second parameter in the NNHC method is a 

minimum number of points which are included in a cluster. If points fulfill both criteria, clusters at 

the first level – so-called first-order clusters – are calculated. First-order clusters are subsequently 

clustered into second-order clusters. Again, if the centers (seeds) of first-order clusters are spatially 

closer than a threshold value these first-order clusters are grouped together. According to this 

hierarchy of clustering, second-order clusters are grouped into third-order clusters. This re-clustering 

process is continued until either all clusters are grouped into one single cluster or the clustering 

criteria fail (LEVINE 2010). 

The first criterion in the identification of clusters is whether points are in close proximity than a 

selected threshold distance. In CrimeStat two different choices exist in selecting the threshold 

distance: first, a random nearest neighbor distance and second, a fixed distance. The random nearest 

neighbor distance is the default parameter in the software package. In CrimeStat the user needs to 

specify a one-tailed confidence interval around the random expected nearest neighbor distance. 

With the confidence interval a probability for the distance between any pairs of points is defined. For 

a specific one-tailed probability p, less than p-percent of the incidents would have nearest neighbor 

distances smaller than the specified limit if the spatial distribution was random. For example, for 

randomly distributed data, if p is set to 0.05, then only 5 percent of pairs would be closer than the 

threshold distance. If a 0.5-level (the default value) is taken for p, then 50 percent of the pairs would 

be closer than the threshold value. In conclusion, the threshold distance is a probability value for 

selecting pairs of points based on a chance distribution. CrimeStat provides a slide bar with 12 levels, 

each referring to a specific probability value. (LEVINE 2010). 

The selection of a fixed distance is the second choice in determining a threshold value. The main 

benefit of this method is the exact specification of the search radius. LEVINE (2010) argues for its 

usefulness in the comparison of the number of clusters for different distributions. However, the main 

drawback of this approach is the subjective choice of a threshold. Generally, the larger the selected 

threshold distance the greater the likelihood that clusters will be found (LEVINE 2010). 

The second criterion is the selection of a minimum number of points that are aggregated to the same 

single cluster. This criterion is usually used to reduce the possibility of finding very small clusters as 

well as to reduce the likelihood that clusters are found by chance. CrimeStat uses a default value of 

10 points. If this number is decreased, more clusters are found. By increasing the minimum number 

of points, fewer clusters are selected (LEVINE 2010). 

CrimeStat then calculates first-order ellipses using these criteria. As described above, higher-order 

clustering of the previously detected lower-order cluster centers is done if necessary. The results can 

be saved as either ellipses, convex hulls, or both. Standard deviational ellipses are calculated for the 

clusters. The user is able to choose between 1X, 1.5X, and 2X standard deviations. One standard 

deviation typically includes more than 50 percent of the cases, one and a half standard deviations 
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covers more than 90 percent of the cases, and two standard deviations contain more than 99 percent 

of the cases. After this specification the user can save the ellipses in various output formats of 

common GISs (e.g., ESRI’s *.shp). LEVINE (2010) proposes to use a 1X standard deviational ellipse. 1.5X 

and 2X standard deviations may result in an exaggerated view of the clusters. However, for a regional 

view, a 1X standard deviational ellipse may be too small and thus not recognizable. Alternatively, 

clusters can also be visualized by convex hulls. A convex hull draws a boundary around the points in 

the clusters. At a regional view, ellipses are more useful and preferable since a viewer can quickly 

capture the distributions of the hotspots. If the purpose of the application is based on detailed 

neighborhood-level work, convex hulls are recommended since the actual locations of the incidents 

are shown (LEVINE 2010). 

LEVINE (2010) provides some guidelines for selecting the parameters appropriately. The smaller the 

threshold distance, the fewer and (usually) smaller clusters are found. Therefore, the slide bar can be 

seen as a filter for generating clusters. The probability that will be used has some effect on the final 

number of clusters. Generally, the minimum number of points to be clustered has more influence on 

the result. A hot spot with a very low size of two or three incidents is typically not very useful. For 

this reason, users should consequently increase the minimum number of events to ensure that the 

clusters are represented by a meaningful number of cases. It seems understandably that users may 

have to experiment with several runs using different combinations of probability threshold distances 

and minimum numbers of points to get an appropriate and convincing result. LEVINE (2010) proposes 

to start the analysis with the default settings (threshold distance of 5 percent and a minimum 

number of 10 points). If the output shows too many clusters, one can decide to select a lower 

probability (e.g., shift the slide bar to the left) and/or to increase the minimum number of events 

required to define a cluster (e.g., from 10 to 20). Conversely, if the result appears to include too few 

clusters, try to select a higher probability (e.g., increase the threshold value by shifting the slide bar 

to the right) and/or decrease the minimum number of points to be clustered (e.g., from 10 to 5). If 

finally an adequate solution has been found, fine tuning can be done by slightly changing the 

parameters. Generally, the minimum number of points is a more influencing factor on the number of 

clusters than the threshold distance. The latter factor can also influence the results, though (LEVINE 

2010). 

Four advantages to this technique are listed by LEVINE (2010). The first advantage can be seen in the 

detection of small geographical environments where concentrated locations exist. This identification 

can be useful for specific targeting. Small clusters can be achieved by a low probability and a high 

minimum number of points. Second, the statistic can be used with any data set and need not to be 

considered only for small geographical areas. This makes the usage easier for analysts. In addition, it 

facilitates comparisons between different areas without the need of limiting or splitting the data set. 

Third, there are different geographical levels of clustering of points and/or lower-order clusters. 

Several small clusters can be aggregated to higher-order clusters. Frequently, hot spots are located 

near other hot spots. The fourth advantage considers the implication of different policing strategies 

to each of the levels. In crime analysis, first-order clusters can be used for interventions in small 

neighborhoods. Second-order clusters can be appropriate for patrol areas, and so on. For the 
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occurrences of tornado touchdown points, the different levels can be used to define different 

security strategies or to establish specific tornado awareness programs for the population (LEVINE 

2010). 

There are several limitations to this technique which need to be considered also. First, the method 

only clusters points and therefore, weighting a variable does not have any effect. Second, when the 

random nearest neighbor distance is used as the threshold distance, the size of the cluster is 

dependent on the sample size. Theoretically, a hot spot is dependent on an environment and not on 

the number of events. Therefore, the random nearest neighbor distance does not produce a 

consistent definition of a hot spot. The usage of a fixed distance for the threshold value can only 

partly overcome this. Third, the technique considers an arbitrary choice of the minimum number of 

points. The definition of patterns is, to some extent, made by human beings. In fact, this can lead to 

arbitrary results when two different users interpret the size of a hot spot differently. Additionally, the 

choice of the p-value allows some variability between users. In conclusion, the technique produces 

constant results but it involves subjectivity across users. Finally, the technique does not have any 

theory behind the creation of its clusters. Like many other clustering techniques empirical derivatives 

are produced which are not based on any explanatory theory (LEVINE 2010). 

2.4.2. Kernel Density Estimation 

The kernel density estimation technique interpolates event locations to an entire area. While the 

previously introduced NNHC routine provides statistical summaries for the incidents themselves, the 

kernel density interpolation technique generalizes those incidents to the entire region. These density 

estimates are intensity variables, a so-called Z-value, which is estimated at a certain location. Thus, 

these Z-values can be displayed by either contour maps or surface maps to show the intensity across 

the entire area (LEVINE 2010). 

Several interpolation techniques exist, such as kriging, trend surfaces, or local regression models. 

Most of these methods estimate a variable as a function of location. In contrast, kernel density 

estimation is suitable for the interpolation of individual point locations. This technique places a 

symmetrical surface over each incident point, analyzing the distance from the point to a reference 

location derived from a mathematical function. Then, the values of all surfaces for that reference 

location are summed. The technique was developed in the late 1950s as an alternative approach for 

estimating the density of a histogram. Due to some statistical problems the kernel density method 

was introduced to handle these problems (although not all of the problems have been solved). Figure 

25 shows how a symmetrical kernel function is placed over each point. Symmetrical in this context 

means that the function falls off with distance at an equal rate in both directions. The function used 

in Figure 25 is a normal distribution function, but other types of distributions have been used and will 

be proposed. The density distribution is then estimated by summing the kernel functions at all 

locations to generate a smooth cumulative density surface. Two main advantages of this technique 

are, first, the fact that each point equally contributes to the density surface and, second, that at all 

points the resulting density surface is continuous. For spatial data analysis purposes the kernel 



function is expanded to three dimensions. Thus, this approach is particularly suitable for 

geographical data (LEVINE 2010). 

 

Figure 25: Summing of normal kernel functions for 5 points

Adapted from LEVINE (2010) 

 

As mentioned above there is still one problem that exists in using a kernel function. This problem is 

related to the choice of the kernel function’s bandwidth 

user decides upon. Different choices of the bandwidth size produce different results. Thus, the 

smoothness of the resulting density estimate surface is a consequence of the bandwidth size (

2010). 

Users can decide between various kernel functions to interpolate the data to the grid cells. In 

CrimeStat five different functions are available. The normal kernel function weighs all points, 

although near points are weighted more than distant points. The normal 

other four types of distributions, can cause some edge effects, if there are many points close and on 

either side of the boundary of the study area. In contrast to the normal function, the other four 

functions use a delimitated circle around each point location. The usage of these four functions leads 

to less edge effects as the normal distribution. First, the uniform function weighs all points within the 

circle equally. Second, the quartic distribution weighs near points more t

weight falls off gradually. Third, the triangular function is equal to the quartic function but the fall off 

is more rapidly. Fourth, the negative exponential function weighs near points much higher than far 

points within the circle (LEVINE 2010).
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The usage of any of these functions depends on the weights a user wants to apply to near points in 

comparison to distant points. While functions with big differences in the weights of near and far 

points (e.g., negative exponential or the triangular) tend to produce finer variations within the 

surface, more evenly weighted functions (e.g., the normal distribution, the quartic, or the uniform) 

tend to smooth the distribution much more. There are small differences in the results when applying 

the different kernel functions. Users should start their analysis with the default normal function and 

adjust the parameters accordingly (LEVINE 2010). 

As a second criterion, users need to indicate what type of bandwidth is used for the estimation. In 

CrimeStat, the fixed and the adaptive bandwidth approaches are available. In using a fixed 

bandwidth, the bandwidth length as well as the units of measurement needs to be specified. Usually, 

a narrower bandwidth length results in a finer mesh density estimate. In contrast, a larger bandwidth 

will lead to a smoothed surface and therefore, less variability between peaks and valleys. One should 

keep in mind that the usage of a narrow bandwidth can lead to imprecision in the estimates, if the 

sample size is not very large. Then, peaks and valleys could be an effect of random variation. If the 

sample size is large, a finer density estimate can be produced (LEVINE 2010). 

The second type of bandwidth, the adaptive bandwidth, adjusts the bandwidth interval so that a 

minimum number of events are found. Therefore a constant precision of the estimate over the entire 

area is provided. In areas where the concentration of points is sparse, the bandwidth will be larger, 

and vice versa. The precision of the surface is dependent on the chosen number of points. If the user 

wants to have a finer mesh density surface, a smaller number of points should be considered. In 

general, that would translate into a shorter bandwidth length. Should the density surface be more 

smoothed, a larger number of points (results in a longer bandwidth length) should be chosen. Again, 

the user needs to experiment to see which results make the most sense (LEVINE 2010). 

Finally, the user needs to choose the type of output for the density estimates. CrimeStat offers three 

different types of how the kernel density estimate can be calculated. First, it is possible to calculate 

absolute densities. With this approach the sum of the densities over the whole grid equals to the 

total number of events. This is done by re-scaling the estimates at each reference cell. Second, the 

kernel density estimates can be represented as relative density estimates. This is done by dividing 

the absolute densities by the area of the grid cell. This could be interpreted as follows: Instead of 

calculating the number of points per grid cell, the relative densities indicate points per, for example, 

square mile. Third, the densities can be shown as probabilities by dividing the density value at each 

cell by the total number of events. Since these three calculations are directly interrelated with each 

other, it is obvious that the final density estimate does not change irrespective of which output type 

(absolute, relative densities, or probabilities) was chosen. The type of output selected depends on 

the type of research questions to be answered. For display purposes only, it does not make any 

difference as all different output types look the same (LEVINE 2010). 

LEVINE (2010) argues that the kernel density estimate is more suitable for identifying hot spots than a 

cluster analysis routine such as the NNHC method. Typically, cluster analysis routines group events 

into clusters and differentiate between events which belong to clusters and those which do not 
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belong to clusters. Generally, different mathematical clustering algorithms are used which produce 

different allocations of points to clusters. In comparison, the kernel density estimation is a 

continuous surface where densities are calculated at all locations. For this reason, the user is able to 

make a visual decision what to call a hot spot because there is no arbitrary definition where to cut off 

the hot spot zone (LEVINE 2010). 

In CrimeStat there is the possibility to choose either a single kernel density estimate or a dual kernel 

density estimation. The difference is simple. While a single kernel estimate only uses one point data 

set, the dual variant is applied to two different point distributions at the same time. For example, the 

primary file could be the location of tornado touchdown points with the number of fatalities as the 

intensity variable, and the secondary file could be the centroids of counties with the population 

being chosen as the intensity variable. Thus, both of the point distributions are interpolated onto the 

same reference grid. The two kernel density estimations can then be related through some algebraic 

operations, such as dividing, subtracting, or summing. Therefore, this dual kernel density approach is 

useful to examine the risk and not just the concentration of cases (LEVINE 2010). Additionally, the dual 

kernel density method is useful for a space-time approach as proposed in Section 2.2.2.1. This is 

accomplished by interpolating the same attribute at times t and t+1 and subsequently calculating the 

difference between the two kernel density estimates to show temporal changes t to t+1. 

2.4.3. Local Indicators of Spatial Association (LISA) 

ANSELIN (1995) developed the LISA approach, as a statistic that satisfies two requirements. First, the 

LISA for each incident returns a value of the extent of significant spatial clustering of similar values 

around that incident. Second, the sum of the LISA’s at all locations of incidents refers to a global 

indicator of spatial association (ANSELIN 1995).  

For the analysis the user needs to choose a spatial attribute and a definition of spatial contiguity. The 

input values can either be the original absolute values (e.g., number of tornado fatalities) or, more 

appropriately, a standardization of the absolute values to avoid scale dependence of the local 

indicators. The neighborhood for each observation can be formalized using a spatial weights or 

contiguity matrix (ANSELIN 1995). Spatial weights are necessary for the calculation of spatial 

autocorrelation statistics. Weights can be built based on contiguity from polygon boundary files (e.g., 

counties), or calculated from the distance between events displayed as points. To distinguish the 

output files in GeoDa, spatial weights files which use the contiguity criterion are saved in a *.gal-

extension, and those which use distance as criterion are saved in *.gwt-extension. Contiguity based 

weights offer the choice between two contiguity criteria. While rook contiguity uses only common 

boundaries of polygons to define neighbors, queen contiguity includes all common boundaries and 

all common vertices in the definition (ANSELIN 2003). 

The second requirement of a LISA statistic is that a global counterpart of the statistic exists. GeoDa 

uses the Local Moran’s I as LISA, whereas its global counterpart, the Moran’s I is also included in the 

software package. This requirement is not compulsory for the exploration of significant local spatial 

clusters. Local spatial clusters which can be referred to as spatial hot spots are defined as those 

locations where the LISA statistic is significant. The values of the Local Moran’s I are positive, if there 
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are similar values that are clustered (either high or low). Alternatively, negative values indicate 

spatial clustering of dissimilar values (e.g., a location with low values that is surrounded by neighbors 

with high values) (ANSELIN 1995). 

In GeoDa, four different output options can be generated, including the box plot, the Moran scatter 

plot, the significance map, and the cluster map. The most important outputs are the significance map 

and the cluster map. The cluster map is a special choropleth map which shows locations of significant 

Local Moran’s I statistics. These are classified by type of spatial autocorrelation. Positive spatial 

autocorrelation indicate observations where both a location and its neighbors have similar values. A 

bright red color is used if the values are similar high, whereas a bright blue is used if the values are 

similar low. A bright red cluster is also referred to as a “hot spot”, whereas a bright blue cluster is 

referred to as a “cold spot”. Spatial outliers are shown by a light red (location with a high value 

surrounded by neighbors with low values) or by a light blue (location with a low value surrounded by 

neighbors with high values). The significance map shows locations with a significant Local Moran’s I 

statistic. Based on the different significance levels the locations are shaded in different shades of 

green. The level of significance depends on the number of replications. With a low number of 

replications (e.g., 99), extreme significance levels will never appear (ANSELIN 2003). 

The LISA approach is easy to implement und its interpretation does not require much statistical 

knowledge. ANSELIN (1995) argues that it serves a useful purpose in an exploratory spatial data 

analysis, particularly in the detection of local spatial clusters. As proposed in Section 3.2.2.1, a 

bivariate LISA is suitable for the exploration of cluster persistence in both space and time. 

2.4.4. Space-Time Scan Statistic 

Nowadays, users have many statistical tests available for spatial clustering. Behind these, well-

developed mathematical theories of spatial clustering are available. Software tools for space-time 

clustering are not very common, nor are tests for space-time interaction well developed (BLOCK 

2007).  

The standard purely spatial scan statistic uses a circular window for each incident. The space-time 

scan statistic can be seen as an extension of the purely spatial approach. It is defined by a cylindrical 

window with a circular geographic base and the height corresponding to time. While the base is 

exactly defined as the spatial scan approach, the height indicates the time period. The cylindrical 

window is moved in both time and space, so that for each geographical location and size, it visits 

each possible time period. Thus, an infinite number of overlapping cylinders of different sizes is 

obtained. By doing so, the entire study region is covered where each cylinder could be a possible 

cluster. Finally, all of these clusters are compared to a Monte Carlo distribution to control for 

deviation from randomness. The resulting output then contains the identification of spatial clusters 

of high and/or low incidents at concrete time periods (KULLDORFF 2010). 

Scan statistics are commonly used for disease cluster detection and evaluation (e.g., KULLDORFF et al. 

2005) and in crime analysis (e.g., LEITNER and HELBICH 2009). In the analysis of tornado touchdown 

points, the scan techniques have not been used in the literature so far. While most of the scan 
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statistics require either a population-at-risk or control group data, the space-time permutation model 

is the only scan statistic which requires only case data. For this statistic, the spatial location and time 

of occurrence are needed to perform the test. Then, for each cylindrical window, the observed 

number of cases is compared to the expected number of cases. The expected number is based on the 

assumption that the spatial and temporal locations of all cases were independent of each other. 

Under such an assumption, space-time interaction would not exist. In general, space-time interaction 

can be defined as follows: When an existing cluster in a geographical area has a higher proportion of 

incidents during a specific time period compared to the remaining regions in that time period. If, for 

example, all of the regions have twice the number of incidents as normal, no space-time cluster will 

be detected. In contrast, if one specific area has twice the number of events during a specific week 

compared to the remaining areas, then there will be a space-time cluster in that one specific area. It 

is important to mention that space-time permutation clusters may be found due to an increased 

population-at-risk. This should be taken into consideration when the space-time test is carried out 

over a time period of several years. In the analysis of tornado touchdown points this problem does 

not play a role since tornado probability is not influenced by an underlying population (KULLDORFF 

2010).  

When using likelihood functions which are maximized over all window locations and sizes, the most 

likely cluster is found. In the space-time analysis, the software SaTScan also identifies secondary 

clusters in addition to the most likely clusters. The secondary clusters are then ordered by the 

associated likelihood ratio test statistic. Various analysis parameters can be set to run the scan 

statistics. First of all, the user can choose a maximum spatial cluster size and a maximum temporal 

cluster size. In the analysis of secondary cluster locations the analyst can decide about the criterion 

of geographical cluster overlap. The user can choose between no overlap and no restrictions in the 

cluster definition (KULLDORFF 2010). 

The scan statistics have the strength to scan a geographic area over time without any spatial and 

temporal constraints. The identification of which areas and what time periods are involved in each 

cluster is unique and not available in any other scan methods. Therefore, the scan statistics should be 

part of a spatial data analyst’s toolbox (BLOCK 2007). 
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3. Spatial and Temporal Analysis of Tornado Touchdown 

Points 

 

Numerous aspects related to tornado touchdown points have been analyzed in the literature. 

Research topics reach, for example, from spatial aspects of tornado occurrence, to principles of 

tornado safety or to climatological requirements of the development of tornadoes. In this chapter 

the proposed hot spot analysis techniques will be applied to the tornado dataset from 1950 to 2009. 

Thus, this thesis clearly contributes to the research of the spatial and temporal occurrence of 

tornadoes in the United States. There will not be any research included in this thesis about tornado 

safety or about the changes of climatological parameters.  

The following research questions will be addressed in this chapter: 

• Will recently developed statistical techniques result in more accurate analysis than classic 

methods? 

• Do different hot spot analysis techniques provide the same or different results? What 

techniques are most useful for the spatial and temporal analysis? 

• Did the locations of spatial concentrations of tornadoes in the United States change over 

time? Is there a general pattern in the spatial variation or is the F-Scale an influencing factor 

for spatial and temporal variability? 

• Is the pattern of BROOKS et al. (2003) who analyzed tornadoes from 1980 to 1999 (dis)similar 

to the monthly maxima pattern of the tornado occurrences from 1950 to 2009? Is the 

pattern of monthly maxima of tornado occurrences congruent with the locations of the jet 

streams? 

• What are the relative risks of fatalities due to tornado touchdowns in the United States? 

How did these rates change over time? 

But this thesis does not only discuss these research questions. Numerous statistical analyses, maps, 

charts, and tables will lead to a comprehensive spatial and temporal analysis of tornado touchdown 

points in the United States. This thesis should therefore contribute to a better knowledge of spatial 

and temporal occurrences of tornadoes as well as the associated risk to the underlying population. 

The extension of the spatial analysis with the temporal component should identify changes of the 

climatological requirements for tornado development. This thesis will not only focus on tornado 

touchdown points. An important aspect is the comparison of different mapping techniques 

associated with different statistical methods. More specifically, a selected group of four statistical 

tests will be applied and compared. Each of the four tests (see Subchapter 2.4. for more details) uses 

a different statistical approach and outputs the results in different ways. Thus, these techniques 

should not be seen as being contrary to each other, rather than being supplementary. 

In the following subchapters different parts of the entire dataset will be analyzed. First, all recorded 

tornadoes in the coterminous 48 states of the United States will be analyzed. Then, only “significant” 

tornadoes rated F2 and higher will be analyzed in space and time. The entire dataset will be classified 



again, but this second time using the classification of 

strong (F2–F3) and violent (F4–F5) tornadoes. Then, monthly tornado touchdown patterns over the 

entire period will be used to create a map that shows for every month the maximum tornado threat. 

This map will be compared with a similar map in 

1980 to 1999. The last part of the analysis focuses on tornado fatalities. A comprehensive spatial and 

temporal analysis will be presented. In addition, the underlying population

to calculate fatality rates for different geographical areas.

3.1. Analysis of Tornado Touchdown Points from 1950 to 2009

The first analysis considers all tornado touchdown points that occurred in the contiguous 48 states 

between 1950 and 2009. Table 3 in Subchapter 2.1 (page 

period. In total, a number of 53,960 tornadoes were reported in the United Sta

and 2009/12/31. Since the annual tornado occurrence is not the same over the entire period, Figure 

26 indicates the annual variability of tornadoes. As can be seen, the annual number of reported 

tornadoes increased over time. Possible 

growth in sparsely populated areas that results in a greater chance to register a tornado or improved 

tornado detection systems. A third reason for the increase in tornado occurrences may be due to

climate change during the observation period. The lowest number of tornado events was recorded in 

1950 due to the low number of detection systems. In recent times (since 1990) the number of 

tornadoes is somehow constant although the annual number fluctuat

maximum number of tornado occurrences (1,835) was reported in 2004, whereas the minimum 

number of tornadoes (953) was recorded only two years earlier in 2002. The relative difference in 

these numbers is almost 100 percent. T

can be observed in the last two decades. 

 

Figure 26: Annual occurrence of tornado touchdown points from 1950 to 2009

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1950 1955 1960

T
o

rn
a

d
o

 T
o

u
ch

d
o

w
n

 P
o

in
ts

- 70 - 

again, but this second time using the classification of KELLY et al. (1978) who classifies 

F5) tornadoes. Then, monthly tornado touchdown patterns over the 

entire period will be used to create a map that shows for every month the maximum tornado threat. 

This map will be compared with a similar map in BROOKS et al. (2003), who used tornado data from 

1980 to 1999. The last part of the analysis focuses on tornado fatalities. A comprehensive spatial and 

temporal analysis will be presented. In addition, the underlying population-at-risk will be introduced 

o calculate fatality rates for different geographical areas. 

Analysis of Tornado Touchdown Points from 1950 to 2009

considers all tornado touchdown points that occurred in the contiguous 48 states 

between 1950 and 2009. Table 3 in Subchapter 2.1 (page 30) listed all recorded tornadoes in this 

period. In total, a number of 53,960 tornadoes were reported in the United States between 1950/1/1 

and 2009/12/31. Since the annual tornado occurrence is not the same over the entire period, Figure 

26 indicates the annual variability of tornadoes. As can be seen, the annual number of reported 

tornadoes increased over time. Possible reasons for the observed increase could include population 

growth in sparsely populated areas that results in a greater chance to register a tornado or improved 

tornado detection systems. A third reason for the increase in tornado occurrences may be due to

climate change during the observation period. The lowest number of tornado events was recorded in 

1950 due to the low number of detection systems. In recent times (since 1990) the number of 

tornadoes is somehow constant although the annual number fluctuates. During that time

maximum number of tornado occurrences (1,835) was reported in 2004, whereas the minimum 

number of tornadoes (953) was recorded only two years earlier in 2002. The relative difference in 

these numbers is almost 100 percent. Thus, there is not a constant annual tornado occurrence that 

can be observed in the last two decades.  
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The following sections will analyze the spatial distribution of all recorded tornadoes. Furthermore, 

the tornado dataset will be divided in two different time periods to analyze temporal changes in the 

spatial locations of tornado concentrations. 

3.1.1. Analysis of all recorded Tornadoes aggregated from 1950 to 2009 

This first spatial analysis of tornado touchdown points considers all recorded tornadoes during the 

entire period from 1950 to 2009. Two different techniques of spatial clustering will be applied. The 

kernel density estimation technique will be used first, followed by the NNHC method. For both 

techniques different parameter settings will be applied and the outputs will be compared with each 

other. 

 

Figure 27: Kernel density estimation of tornado touchdown points from 1950 to 2009 (version 1) 

 

 

The first map (Figure 27) represents the absolute frequencies of tornado touchdown points for the 

entire period from 1950 to 2009. This analysis was realized using the kernel density estimation to 

interpolate the data over the entire area. Since tornadoes only occur over land, only values in the 

United States are shown in the map. In the application of the kernel density estimation only the 

quartic kernel function was used to make the results comparable with each other. The quartic 

distribution weighs near points more than distant points while the weight falls off gradually (LEVINE 

2010). 

Since the entire tornado dataset contains a lot of points (53,960 tornadoes) a simple dot map would 

not make sense in this context. The points would overlap in most areas of the United States which 

makes it impossible to detect a spatial pattern. Therefore the kernel density estimation is a useful 
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technique to interpolate the data over the entire study area. The results are easy to interpret and to 

understand. The most important and influencing parameter is the specification of the type of 

bandwidth. All kernel density maps in this analysis use an adaptive bandwidth with a minimum point 

size that differs between maps. Figure 27 uses an adaptive bandwidth with 1,000 points, whereas 

Figure 28 uses an adaptive bandwidth with 2,000 points. Generally, it can be said that the fewer the 

number of points, the more “speckled” the density estimation looks like. In Figure 27 there are more 

local concentrations of tornadoes, whereas in Figure 28 the density estimation is more generalized. It 

is important that users specify the intention of the density estimation map. If the purpose is a map 

for a quick overview of point densities, then the user should prefer a larger number of points. Is the 

purpose a map with small local concentrations of events, then the user should consider fewer 

number of points. 

After the reasoning for the parameter selection was discussed in detail, a discussion of the results of 

the two kernel density maps follows. As can be seen in Figure 27 the highest concentrations of 

tornado touchdown points can be found in the Great Plains (Annex B contains a map of the physical 

regions as well as important cities mentioned in this chapter). Nearly the entire state of Oklahoma is 

covered by the highest concentration of tornadoes. This largest hot spot is located from Oklahoma to 

Kansas in the north. A further local hot spot was detected around Hastings, NE. The far most western 

cluster was detected around Denver, CO, where the density values rapidly decline in the Rocky 

Mountains. The state of Texas contains three clusters with the highest concentrations of tornado 

touchdown points. These can be located in the Texas Panhandle from Lubbock, TX, to Amarillo, TX. 

The second hot spot is located in the area around Dallas, TX, and Fort Worth, TX. The third cluster, 

which is close to the Gulf of Mexico, is located around the area of Houston, TX. A small hot spot is 

detected around Jackson, MS. North of this cluster the density declines but further north there is a 

local concentration in the center of Illinois. Generally, the shape of these highest concentrations can 

be identified as a “C”. In addition, there is a “spatial outlier” found in Florida. This hot spot reaches 

from St. Petersburg, FL to Orlando, FL. There are not much tornadoes west of the Rocky Mountains. 

In the northeastern part of the United States the density values are very low, as well. In West Virginia 

and Virginia the density values are low, as well. Here, the presence of the Appalachians could be a 

reason for such low values. 

Figure 28 shows similar results since the same tornado touchdown dataset was used as in Figure 27. 

As has been said above, the greater the minimum point size the more generalized the density 

becomes. In comparison to Figure 27, the kernel density results in Figure 28 show fewer areas with 

the highest concentrations of tornado touchdown points. The large area in Oklahoma and Kansas, 

the small cluster in Denver, CO, the cluster around Lubbock, TX, and some small hot spots in 

Nebraska were detected as highest concentrations of tornado touchdown points in Figure 28.  
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Figure 28: Kernel density estimation of tornado touchdown points from 1950 to 2009 (version 2) 

 

 

The kernel density estimation method is a useful technique to detect hotspots. The main advantage 

is that the density surface is interpolated over the entire area. Therefore analysts can detect hot 

spots as well as cold spots (areas with a low concentration of events). The next technique that will be 

applied to the entire dataset from 1950 to 2009 is the NNHC technique. This technique was discussed 

in detail in Subchapter 2.4.1. In general, the NNHC technique clusters a minimum number of points 

which are in close proximity. This distance is expressed by a threshold value. The NNHC technique 

only clusters points to hot spots – say that starting with the second order, lower order clusters are 

clustered to higher order clusters.  

Analogous to the previous analysis using kernel density estimation, the following analysis compares 

two different versions of NNH clustering. First, Figure 29 uses ten tornado touchdown points as the 

minimum number of points to be clustered. In contrast, Figure 30 uses 20 tornado touchdown points 

as the minimum number of points to be clustered. These numbers of points were chosen since the 

analysis using more points to be clustered resulted in only one cluster. Both statistics were applied 

using a threshold distance of 5 percent and the resulting clusters are shown with two standard 

deviational ellipses. Generally, the higher the threshold value and the lower the minimum number of 

points to be clustered, the more clusters are found (and vice versa). 
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Figure 29: NNH clusters of tornado touchdown points from 1950 to 2009 (version 1) 

 

 

Such an analysis was realized in Figure 29, where a huge number of clusters was found. In total, 479 

first-order NNH clusters of tornado touchdown points from 1950 to 2009 were detected. Due to the 

hierarchical principle of the NNH technique, the first-order ellipses are clustered into second-order 

clusters and so on. These 479 first-order clusters are grouped into 53 second-order ellipses. These 

are further grouped to six third-order clusters and one fourth-order cluster. The first-order clusters 

represent local concentrations of events. In comparison to the kernel density estimates, a user 

cannot generally identify areas with a low concentration of tornadoes. Most of the second-order 

clusters are congruent with the highest concentration of the kernel density surface in Figure 27. Since 

the resulting clusters are visualized in form of ellipses the third- and fourth-order ellipses cover both 

areas of high and low concentrations of tornadoes, when compared to the kernel density results.  

In comparison to Figure 29, a second analysis using the same parameters except the number of 

minimum points to be clustered, namely 20, was applied. In Figure 30, fewer clusters are found 

because of the increased minimum number of points. 48 first-order ellipses were found, which are 

further clustered into four second-order clusters. From a visual point of view, the results of Figure 30 

are easier to comprehend, since Figure 29 includes too much information and thus, the map reader 

may not be able to correctly interpret the results shown in Figure 29. 

The first-order clusters in Figure 30 are located in Denver, CO, Nebraska, Kansas, Oklahoma, Texas, 

Louisiana, Mississippi, Florida and North Carolina. The highest number of clusters is found in Florida, 

followed by Texas. The second-order clusters are located around Denver, CO, in the South from 

Houston, TX, to Louisiana, from Louisiana to the Florida Panhandle and one big cluster covering 

almost the entire state of Florida. In comparison to the kernel density estimates, the cluster results in 

Figure 30 are very similar. Hence, the outputs in Figures 28 and 30 are both comparable and 
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supplementary, since the kernel density technique did not detect hot spots in Louisiana, Mississippi 

and North Carolina, but the cluster method did.  

 

Figure 30: NNH clusters of tornado touchdown points from 1950 to 2009 (version 2) 

 
 

3.1.2. Analysis of Tornadoes separated into Two different Time Periods 

In this section the dataset of tornado touchdown points from 1950 to 2009 will be divided into two 

time periods to compare the spatial patterns for each period and to measure possible variability in 

cluster change and cluster persistence. The entire dataset (from 1950 to 2009) contains data over a 

60 year time-period. Thus, the entire dataset was divided in two time periods with covering 30 years 

each. The first time period is from 1950 to 1979 and contains 20,460 tornado touchdown points or 

37.9 percent of the total number of tornadoes in the entire dataset. The second time period is from 

1980 to 2009 and contains 33,500 tornado touchdown points or 62.1 percent of the total number of 

tornadoes in the entire dataset. 

Two approaches to measure variability in cluster persistence and cluster change (for the theory 

behind this see Section 2.2.2.3.) will be presented and discussed in this section. Analogous to the 

previous discussion, kernel density estimates and NNH clusters are used to check for space-time 

patterns in the tornado dataset.  

The conceptual background of space-time patterns using kernel density estimates is based on two 

maps at different time periods. The difference is then calculated to check for temporal variability in 

each location. Figures 31 and 32 show kernel density estimations of tornado touchdown points for 

the two proposed time periods. Each of the maps is calculated using the same statistical parameters 

and the same mapping principles (number of classes, classification method, and color scheme) to 

make the maps comparable and easy to read. Similar to above, the quartic kernel function and an 

adaptive bandwidth is used. Since the adaptive bandwidth with 1,000 points showed the best results 
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for the entire dataset (see Figure 27), a sample size of 500 points is selected to the analysis of the 

two periods. Figure 31 contains the kernel density estimation of tornado touchdown points from 

1950 to 1979. The highest concentrations of tornadoes (i.e., more than three tornadoes per square 

mile) during this period can be detected around Oklahoma City, OK, around Lubbock, TX, and in the 

area of Dallas, TX, and Fort Worth, TX. Other higher concentrations are found at the border area of 

Kansas and Missouri. In addition, there is a hot spot in southern Nebraska and in central Florida. 

 

Figure 31: Kernel density estimation of tornado touchdown points from 1950 to 1979 

 

 

When doing a quick comparison between the kernel density results from the first time period (1950 

to 1979) with the second time period (1980 to 2009), a map reader can detect many more hot spots 

over the entire study area for the second period. Since the number of reported tornadoes from 

1950–1979 to 1980–2009 increased by 50 percent and the mapping principles (number of classes, 

classification method, and color scheme) are the same for both maps, it is clearly understandable 

that the kernel density results for 1980-2009 needs to show more areas of the highest class range. 

Areas with the highest tornado occurrences in Figure 32 are central Oklahoma, central Kansas, 

northeast Colorado, southern Nebraska, southeast of South Dakota, central Iowa, central Illinois, the 

Texas Panhandle and the Houston area, TX, central Mississippi and the St. Petersburg area, FL. In 

comparison to Figure 31 which mapped the tornado occurrences from 1950 to 1979, some 

similarities of tornado densities can be detected. The hot spots in Oklahoma, southern Nebraska, in 

the Texas Panhandle, around Dallas, TX, and in central Florida are found during both time periods. 

Since this analysis is a purely visual comparison no statement about quantitative changes in spatial 



- 77 - 

tornado occurrences can be made. In the following, an assessment about the quantitative change in 

tornado densities between 1950 to 1979 and 1980 to 2009 will be conducted.  

 

Figure 32: Kernel density estimation of tornado touchdown points from 1980 to 2009 

 

 

As already discussed in Section 2.2.2.3 about the principles of cluster change and persistence, space-

time kernel density estimation shows good results for the entire study area. Figure 33 shows the 

absolute change in density estimates of tornado touchdown points from 1950–79 to 1980–2009. In 

this figure, a value of 1.0 means that the number of tornado touchdown points per square mile 

increased by 1.0 from 1950–79 to 1980–2009. As has been said previously, the number of tornadoes 

increased significantly between these two time periods. Therefore, areas with increases are expected 

to dominate that for most of the conterminous 48 states. The highest increases in the tornado 

intensity between these two time periods can be detected in northeastern Colorado, in the Texas 

Panhandle, in the area of Houston, TX, in the area of St. Petersburg, FL, in central Illinois, and in small 

clusters in Iowa and Mississippi. Areas with a decrease in tornado occurrences are very sparse as can 

be seen in Figure 33. The most interesting areas with a decrease in tornado intensity are the areas in 

central Oklahoma and around Dallas, TX, where the highest concentrations of tornadoes have been 

measured in the time period from 1950-79. Nevertheless, there have been high intensities in the 

time period from 1980-2009, as well. Thus, single kernel density estimates (at both time periods) 

should always be considered in addition to a dual-kernel density estimate. It is also important to 

know the individual underlying kernel intensities that created the differences. For example, the 

decrease in densities in Oklahoma and in southern Texas show similar values but the underlying 

individual kernel intensities that result in those decreases are very different from each other. 
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Absolute differences in kernel density estimates are a useful technique to measure event densities 

over time. It needs to be said that both individual kernel density estimates are calculated with the 

same parameter settings. In addition, a space-time kernel density map does not reveal spatial hot 

spots occurring in the study area. Therefore, single kernel density estimations should always be 

provided together with the space-time map to show spatial hot spots as well as their temporal 

deviation.  

 

Figure 33: Absolute change in density estimates of tornado touchdown points from 1950–79 to 1980–2009 

 

 

The second approach to measure cluster change and persistence over time is the space-time NNHC 

technique. In this approach, two NNHC routines with the same parameter settings are calculated 

using related tornado data for each time period. Then, the spatial ellipses are integrated in a GIS to 

calculate the intersections. These intersections represent areas of cluster persistence with significant 

clusters being found during both time periods. In Figure 34 the final ellipses of both NNHC analyses 

as well as their intersections are displayed. As already discussed in the previous section, the first-

order NNH clusters are preferable to detect hot spots at a small scale. In the period from 1950 to 

1979 a number of 12 hot spots are found (blue ellipses), whereas 25 ellipses are identified in the 

period from 1980 to 2009. Six respectively four of the 12 ellipses at the earlier time period are 

located in Texas respectively in Florida. In the period from 1980 to 2009 a number of 14 out of 25 

clusters are located in Florida. Three clusters are found in each Colorado and Texas. Four 

intersections, indicating cluster persistence, have been found. Florida and Texas possess two 

intersections each. The intersection with the most tornado occurrences found in the two ellipses at 

both time periods is located at a peninsula near St. Petersburg, FL. The NNH cluster from 1950 to 

1979 found 32 tornadoes and the NNH cluster from 1980 to 2009 found 40 tornadoes. The second 
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intersection in Florida is found south of the first intersection. The two intersections in Texas are 

located in the area of Pasadena, TX, near Houston, TX, where two ellipses from the period 1980 to 

2009 overlap with one ellipse from the tornado data from 1950 to 1979. 

 

Figure 34: Space-time NNH clusters of tornado touchdown points for 1950–79 and 1980–2009 

 

 

3.2. Analysis of Significant Tornadoes  

The first subchapter analyzed and discussed all recorded tornadoes in the coterminous United States. 

Numerous factors played an important role in the detection of tornadoes in earlier decades. Sparse 

population is one of those factors. Small tornadoes which did not cause much damage were not 

detected or reported. Hence, significant tornadoes rated F2 or higher were more likely to be 

detected since they caused bigger and more visible damage. This subchapter analyzes significant 

tornadoes rated F2 or higher. Thus, tornadoes rated F0 or F1 as well as tornadoes which have not 

been rated are excluded from the dataset and the following analysis. Table 5 shows basic statistics of 

the dataset of significant tornadoes. Over the entire time period from 1950 to 2009, only 11,510 

reported tornadoes were rated F2 or higher. This number is about one fifth (21.3 percent) of all 

recorded tornadoes. Over time a strong decline of significant tornadoes can be observed. The 

absolute number of significant tornadoes decreased from 6,960 tornadoes in 1950–79 to 4,550 

tornado touchdown points in the period from 1980–2009. The relative proportion decreased even 

more dramatically. This is mainly due to the fact that weak tornadoes rated F0 and F1 increased by 

more than 100 percent. 
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Table 5: Basic statistics of significant tornadoes 

  Total 
Significant 

(F2–F5) 

F0–F1 and 

unrated 

Significant 

(F2–F5) (%) 

F0–F1 and 

unrated (%) 

1950–79 20,460 6,960 13,500 34.0 66.0 

1980–2009 33,500 4,550 28,950 13.6 86.4 

Total  

(1950–2009) 
53,960 11,510 42,450 21.3 78.7 

 

When comparing the proportion of significant (F2–F5) and weak (F0–F1) tornadoes with each other, 

then a constant decline of significant tornadoes over time can be observed (Figure 35). The influence 

of recent achievements, such as the introduction of the EF-Scale, has had an important impact on 

tornado rating. Since the EF-rating was only used for the last three years from 2007 to 2009, a 

temporal trend cannot be observed in such a short time period. Since the 1990s the proportion of 

significant tornadoes compared to all tornadoes can be interpreted as stable. The annual number of 

significant tornadoes does not fluctuate that strongly as compared to the numbers from earlier 

years. 

 

Figure 35: Percentage of significant tornado touchdown points from 1950 to 2009 

 

First, significant tornadoes from 1950 to 2009 will be analyzed. Then, the tornadoes during the same 

two time periods as above and their spatial and temporal differences will be analyzed. In this 

subchapter the kernel density estimates, the NNHC routine, and the space-time permutation model, 

as a both spatial and temporal statistic, will be used to analyze data of significant tornadoes. 
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3.2.1. Analysis of Significant Tornadoes from 1950 to 2009 

The analysis in this subchapter is limited to a kernel density estimate. For the purpose of space-time 

analysis it is necessary to have an overview about a general pattern of tornado occurrences. 

Therefore, a kernel density surface is appropriate. Significant tornadoes (see Figure 36) occur 

preferably in the states of Oklahoma, northern Texas, in Arkansas, and in the northern Alabama. 

Higher concentrations of significant tornado occurrences can also be detected in Indiana, Mississippi 

and in areas of northern Louisiana. In comparison to Figure 28 (page 73), which represented a 

density surface of all recorded tornadoes from 1950 to 2009, there are differences that can be 

identified. Whereas the general pattern of occurrences of significant and all tornadoes is somewhat 

similar, differences can be seen in Colorado, in the areas of Houston, TX, and Lubbock, TX, and in 

Florida. Since there are no distinctive hot spots in these areas in Figure 36, it can be concluded that 

tornado occurrences in these areas are mainly restricted to tornadoes rated F0 or F1. BROOKS et al. 

(2003) confirms this finding, when they argue that tornado occurrences in Florida are predominantly 

associated with nonsupercellular convection, which does not produce such strong tornadoes. 

 

Figure 36: Kernel density estimation of significant tornado touchdown points from 1950 to 2009 

 

 

3.2.2. Analysis of Significant Tornadoes between 1950–1979 and 1980–2009 

In the analysis of significant tornadoes during the two time periods (1950–1979 and 1980–2009) the 

kernel density estimates, the NNHC routine and, for the first time, the space-time permutation 

model will be applied.  
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The difference map of density estimates is based on kernel density estimates of significant tornadoes 

during the two time periods. These underlying maps are integrated in Annex C (Figures C-1 and C-2). 

Figure 37 shows the absolute changes in density estimates of significant tornado touchdown points 

between the two time periods, 1950–79 and 1980–2009. The largest decline can be observed in the 

area where the most significant tornadoes occur: Oklahoma, northern Texas and Indiana (for the 

comparison see Figure 36). A cluster of decrease can be detected in the area of Kansas City, MO. 

Areas of increasing intensity of significant tornadoes can be detected in the area of Nashville, TN, and 

in the states of the East Coast of the United States. Figure 37 is barely comparable to Figure 33 where 

absolute changes of all recorded tornado intensities between the two time periods are mapped. 

Generally, it can be said that areas that experienced increases within all tornado occurrences and 

decreases within significant tornadoes are a result of the increasing intensity of tornadoes rated F0 

or F1 (e.g., the state of Florida). 

 

Figure 37: Absolute change in density estimates of significant tornado touchdown points between 1950–79 

and 1980–2009 

 

 

Figure 38 represents the spatial locations of first-order NNHC ellipses of significant tornado 

touchdown points for 1950–79 and 1980–2009. The parameters of the analysis have been set to a 

threshold distance of five percent (as for the previous analyses) and to 15 points to be grouped to 

receive only a few clusters. For the earlier time period eleven ellipses are found of which five are 

located within the state of Oklahoma. The NNHC analysis of the more recent time period resulted in 

only three ellipses of which two are located in Arkansas. There are no spatial overlaps in the ellipses 

detected. When comparing the kernel density results (Figure 37) with NHHC ellipses, similar pattern 

become apparent. In areas of decline of significant tornado intensity, NNHC ellipses of the earlier 
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time period can also be found (e.g., the ellipses in central Oklahoma). In contrast, the two spatial 

ellipses in Arkansas is similar to a small area of increasing intensity of significant tornadoes during the 

two time periods, as can be seen in Figure 37.  

As an alternative and additional technique, the space-time permutation model in form of the scan 

statistic is introduced. The space-time permutation model requires only data about cases (or events) 

such as the tornado touchdown points. The model then searches for significant hot spots in both 

space and time. This search is conducted by a cylindrical window with a circular geographic base and 

the height corresponding to time. While the base is defined similar to the spatial scan approach, the 

height indicates the time period (KULLDORFF 2010). In this analysis, the spatial extent of a space-time 

hot spot is restricted to a radius of 50 miles. This radius was set 50 miles in order to avoid large 

clusters. In the analysis of significant tornadoes two different minimum temporal extents are applied, 

namely 30 and five years.  

 

Figure 38: Space-time NNH clusters of significant tornado touchdown points for 1950–79 and  

1980–2009 

 

 

First, the minimum time aggregation is set to 30 years to check for long-term space-time clusters. 

With this setting, a total number of 39 spatiotemporal clusters have been detected in the United 

States. 
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Figure 39: Space-time permutation model of significant tornado touchdown points from 1950 to 2009 

(version 1) 

 

 

In Figure 39 only space-time hot spots below a significance level of p<0.01 have been visualized. Only 

six out of 39 hot spots fulfill this criterion. The location of the most likely cluster was found in the 

area of Nashville, TN, in the time period from 1980 to 2009. In comparison to Figure 37 it can be said, 

that in this area there has been an increase in the intensity of significant tornadoes. The same is true 

for the secondary clusters #1 to #4, where increases have also been detected in Figure 37. When 

using likelihood functions which are maximized over all window locations and sizes, the most likely 

cluster is found. In the space-time analysis, the software SaTScan also identifies secondary clusters in 

addition to the most likely clusters. The secondary clusters are then ordered by the associated 

likelihood ratio test statistic (KULLDORFF 2010). The only significant cluster in the period from 1950 to 

1979 was found in the border area between Oklahoma and Texas. As a result, the significant tornado 

intensity in this area is significantly different from the significant tornado intensity in the areas from 

the period 1980 and 2009.  
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Figure 40: Space-time permutation model of significant tornado touchdown points from 1950 to 2009 

(version 2) 

 

 

The second analysis using the space-time permutation model uses the same spatial extent as in the 

first analysis (Figure 39). The difference to the first analysis is the selected minimum time 

aggregation, which was set to five years. It is expected that the reduction of the time aggregation 

results in more spatiotemporal clusters since the length of the time aggregation has been decreased. 

The shorter time aggregation results in 13 spatiotemporal clusters of significant tornado touchdown 

points, which are all significant at the p=0.001-level (Figure 40). In total, a number of 92 

spatiotemporal clusters have been found. According to Figure 40, the clusters occur at very different 

time periods and are not restricted to a temporal extent of five years (For example, see secondary 

cluster #3. Herein, the tornado occurrences both in space and time are significantly increased over 

ten years from 2000 to 2009). As can be seen in Figure 40, the spatiotemporal hot spots do not 

necessarily occur in the so-called “Tornado Alley”. For example, significant tornadoes rated F2 or 

higher occur in almost every season in the Great Plains, which is not part of the Tornado Alley. Space-

time interaction is characterized by a greater occurrence of events in both space and time. This 

means that there was a significantly higher occurrence of significant tornadoes in comparison to 

other time periods and other areas. Therefore, space-time hot spots are detected in somewhat 

“unusual” locations in addition to the areas where significant tornadoes occur. For example, the 

most likely cluster was found in the border area of Ohio and Pennsylvania and contains 28 significant 

tornadoes from 1985 to 1989. However, the value of expected cases calculated for this area and this 

time period should have only been 3.06 tornadoes. 
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3.3. Analysis of Tornado Touchdown Points by F-Scale 

The third analysis of tornado touchdown points focuses on their classification on the F-Scale. Figure 

41 shows all recorded tornado touchdown points by F-Scale from 1950 to 2009. It is worthwhile 

mentioning that the number of tornadoes increased over time. Also, the number of unrated 

tornadoes ceased to exist after 1981. The number of tornadoes rated F0 increased over time but has 

remained stable since the early 1990s. In contrast, the number of F1-tornadoes has remained stable 

since the early 1970s. The number of tornadoes rated F2 has declined considerably. In contrast, the 

absolute numbers of tornadoes rated F3, F4, and F5 declined only slightly. In 1974, 13 tornadoes 

rated F5 have been reported, which makes 1974 the year with the highest number of devastating 

tornadoes in the data series.  

 

Figure 41: Annual tornado occurrences by F-Scale from 1950 to 2009 

 

 

In addition to analyzing tornadoes by each F-Scale category, the tornadoes are also analyzed as a 

group using the classification, first used by KELLY et al. (1978). They grouped tornadoes rated F0 or F1 

to “weak” tornadoes, tornadoes rated F2 or F3 to “strong” tornadoes, and tornadoes rated F4 or F5 

to “violent” tornadoes. Table 6 contains basic statistics of tornado touchdown points by the 

classification of weak, strong, and violent tornadoes. Absolute numbers of tornadoes as well as their 

proportions are listed for the entire time period and for the two time periods, which will be 

compared in the next section. In Table 6 unrated tornadoes are not included. 

More than three out of four tornadoes are weak tornadoes. One out of five tornadoes is classified as 

a strong tornado. The proportion of violent tornadoes is only 1.3 percent and thus very low. The 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

T
o

rn
a

d
o

 T
o

u
ch

d
o

w
n

 P
o

in
ts

Year

undefined F0 F1 F2 F3 F4 F5



- 87 - 

number of weak tornadoes rated F0 and F1 increased by nearly 150 percent over the two time 

periods, whereas the numbers of strong (-34%) and violent (-43%) tornadoes declined.  

 

Table 6: Basic statistics of weak, strong, and violent tornadoes, 1950–2009 

  
weak strong violent 

weak     

(%) 

strong   

(%) 

violent  

(%) 

1950–79 11,682 6,525 435 62.7 35.0 2.3 

1980–2009 28,925 4,301 249 86.4 12.8 0.7 

Total  

(1950–2009) 
40,607 10,826 684 77.9 20.8 1.3 

 

The grouping to weak, strong, and violent tornadoes is further visualized in Figure 42. In this figure, 

the absolute numbers of tornadoes are set to 100 percent in every year to make the proportions 

comparable. It can be seen that in 1950 only 50 percent of all tornadoes are rated as weak. Since 

then however, the proportion of weak tornadoes increased constantly. In recent years the 

proportion of weak tornadoes reaches approximately 90 percent. The proportion of strong tornadoes 

declined from approximately 45 percent in 1950 to 10–15 percent in 2009. The percentage of violent 

tornadoes declined as well. The largest proportion of violent tornadoes was recorded in 1953 when 

nearly 10 percent of all tornadoes were rated as F4 or F5. 
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Figure 42: Percentage of weak, strong, and violent tornado touchdown points from 1950 to 2009 

 

 

3.3.1. Analysis of Tornadoes by F-Scale from 1950 to 2009 

In this section, kernel density estimations of weak, strong, and violent tornadoes from 1950 to 2009 

will be carried out. Figure 43 shows the result of a kernel density estimation of weak tornado 

touchdown points rated F0 or F1. There are several hot spots that can be identified. These hot spots 

are located throughout the states, especially in the Great Plains. The largest clusters can be seen in 

Oklahoma, in Kansas, in Colorado, in Nebraska, in Illinois, in the Texas Panhandle, around Dallas, TX, 

Houston, TX, and St. Petersburg, FL. Additional hot spot areas, which have not been detected in 

previous, similar analysis in this thesis are located around Sweetwater, TX, Lafayette, LA, Pensacola, 

FL, Miami, FL, and Sioux Falls, SD.  
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Figure 43: Kernel density estimation of weak tornado touchdown points from 1950 to 2009 

 

 

Figure 44 shows the spatial intensities of strong tornadoes (F2 or F3) in the contiguous 48 states of 

the United States using the kernel density estimation technique. Locations where strong tornadoes 

predominantly occur can be detected in a large area which extends from northern Texas to nearly 

the whole state of Oklahoma. Further hot spots can be detected in the southern United States in the 

states of Arkansas, Louisiana, Mississippi, Alabama, Georgia, and Tennessee. Strong tornadoes do 

also occur frequently in parts of Kansas, Nebraska, South Dakota, Iowa, Illinois, Indiana, and 

Michigan. In this analysis, the cluster in the state of Michigan has been identified for the first time 

compared to previous studies in this thesis. In comparison to Figure 43, which analyzed weak 

tornadoes, it can be seen that the clusters of weak tornadoes in Florida, in the Texas Panhandle and 

in Colorado and in central Kansas are not areas, where also strong tornadoes occur frequently. The 

spatial pattern in Figure 44 shows an interesting pattern. All states located around the state of 

Missouri experienced a high intensity of strong tornadoes whereas Missouri itself is a spatial outlier 

with comparable low intensities. 
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Figure 44: Kernel density estimation of strong tornado touchdown points from 1950 to 2009 

 

 

The third kernel density estimation was carried out for the violent tornado touchdown points rated 

F4 or F5 from 1950 to 2009. Since the number of violent tornadoes is small in comparison to weak 

and strong tornadoes, the density surface looks speckled. The pattern is characterized by small 

spatial hot spots. It is interesting that these clusters are predominantly located in border areas 

between different U.S. states. The most clusters can be detected along border areas in the Great 

Plains (e.g., along the border between Oklahoma to Kansas). A new cluster, not found in the analysis 

of weak or strong tornadoes, is found along the border area of Indiana, Ohio, and Kentucky. Other 

“new” clusters are found along the border area between Ohio and Pennsylvania, and between North 

Carolina and South Carolina.  
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Figure 45: Kernel density estimation of violent tornado touchdown points from 1950 to 2009 

 

 

3.3.2. Analysis of Tornadoes by F-Scale between 1950–1979 and 1980–2009 

In this section the absolute changes in density estimates of weak, strong, and violent tornadoes are 

discussed. The focus will be on violent tornadoes, which will be analyzed in more detail. In this 

analysis kernel density estimates will be compared with NNHC ellipses. This section concludes with a 

space-time permutation analysis of violent tornadoes. 
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Figure 46: Absolute change in density estimates of weak tornado touchdown points from 1950–79 to 1980–

2009 

 

 

The following maps of absolute changes in density estimates of weak (Figure 46) and strong (Figure 

47) tornadoes are based on kernel density estimates for two selected time periods. The kernel 

densities for each of the two individual time periods can be found in Annex D (Figures D-1 and D-2 

respectively Figures D-3 and D-4). 

Weak tornadoes increased immensely between the two time periods from 1950–79 to 1980–2009. 

Therefore it can be expected that the overall intensity also increased throughout the entire area of 

the United States. As can be seen in Figure 46 there are very few areas, where the tornado intensity 

declined between the two selected time periods. Among the regions with a declining tornado 

intensity is a small area in Oklahoma. The biggest increases can be identified around Denver, CO, and 

Houston, TX. 
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Figure 47: Absolute change in density estimates of strong tornado touchdown points from 1950–79 to 1980–

2009 

 

 

Since overall the total number of strong tornadoes declined, the blue shaded areas of decline 

outweigh the red shaded areas of increase in Figure 47. The largest area of increase of strong 

tornado intensities can be found in the western parts of Kentucky and Tennessee. Increases can also 

be identified in parts of the East Coast and in areas in Louisiana, Arkansas, and Minnesota. Large 

areas of decrease can be identified in central Oklahoma, northern Texas, eastern Kansas, and central 

Indiana. These areas are characterized by a high intensity of strong tornadoes over the entire time 

period (Figure 44). Since there is an overall decline in these areas over the entire time period, most 

of the strong tornadoes in these areas occurred in the first time period from 1950 to 1979. 

When considering absolute changes of violent tornadoes rated F4 or F5 (Figure 48), relatively small 

clusters of increase respectively of decrease can be identified. However, no general pattern can be 

observed. Generally, it can be said that there are more areas of decrease than increase in the Great 

Plains, where the most violent tornadoes occur. Areas of increases of 0.5 violent tornadoes per 

square mile can be detected in the border area of North Carolina and South Carolina. Another area of 

increase by 0.5 violent tornadoes per square mile is identified in the border area of Illinois and 

Indiana. 
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Figure 48: Absolute change in density estimates of violent tornado touchdown points from 1950–79 to 1980–

2009 

 

 

For comparison purposes, absolute changes in kernel density estimates of violent tornado 

touchdown points rated F4 and F5 are analyzed using both the NNHC technique and the space-time 

permutation model. The NNHC routine is useful to detect hot spots of a minimum number of points 

that are close to each other. Therefore, this method is suitable to analyze the small dataset of violent 

tornadoes. For the analysis of violent tornadoes for the two time periods from 1950–79 and 1980–

2009 a minimum number of five points to be clustered and a threshold distance of five percent were 

chosen. Then, the intersection of the resulting NNHC ellipses was calculated to check for cluster 

persistence. Figure 49 shows spatial cluster ellipses for the two time periods as well as their 

intersections. For the period 1950 to 1979 twenty ellipses were found. These NNH clusters are 

located in the states of Texas, Oklahoma, Kansas, Minnesota, Iowa, Missouri, Arkansas, Louisiana, 

Mississippi, Alabama, Tennessee, Kentucky, Illinois, Indiana, Ohio, and Michigan. In contrast, eight 

NNH clusters are found for violent tornadoes from 1980 to 2009. These are located in Oklahoma, 

Kansas, Iowa, Missouri, Arkansas, Tennessee, Illinois, Indiana, Ohio, Kentucky, Pennsylvania, New 

York, North Carolina, and South Carolina. In general, the hot spot ellipses for the period 1980 to 2009 

are located farther north and farther east than the hot spot clusters from the previous time period. 

There are no clusters from 1980 to 2009 located in the southern states of Texas, Louisiana, 

Mississippi, and Alabama. In total, six cluster intersections have been identified. Two of them are 

along the border area of Oklahoma and Kansas. Further cluster intersections are found in Arkansas, 

Tennessee, and Indiana, with the largest area of overlapping clusters is found along the border area 

of Indiana, Ohio, and Kentucky. Overall, the areas of intersecting clusters are congruent with hot spot 

areas from the kernel density estimation of violent tornadoes mapped in Figure 45. 
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Figure 49: Space-time NNH clusters of violent tornado touchdown points for 1950–79 and  

1980–2009 

 

 

The space-time permutation model of violent tornado touchdown points in the period from 1950 to 

2009 concludes the subchapter of tornadoes analyzed by the F-Scale. Similar to the space-time 

permutation analyses in Subchapter 3.2 the radius of the maximum spatial cluster size does not 

extent 50 miles. In addition, a minimum time aggregation unit of ten days was chosen.  

Figure 50 shows an analysis of violent tornado touchdown points using a space-time permutation 

model. The application of a minimum time aggregation of ten days allows a retrospective analysis of 

so-called tornado outbreaks of violent tornadoes. Tornado outbreaks are characterized by a large 

number of tornadoes in a relatively short time period [e.g., the tornado outbreak on May 3, 1999 in 

Oklahoma City, OK (BROOKS and DOSWELL 2002)]. This analysis excluded clusters, which do not contain 

at least five violent tornadoes and where the according significance value is greater than 0.001. 

Overall, 72 space-time hot spots have been detected by this method but only five satisfy the 

aforementioned criteria. There have not been any violent tornado outbreaks since the 1980s. The 

most likely cluster of violent tornadoes occurred from May 22, 1985 to May 31, 1985 around Erie, PA. 

This cluster contains 12 violent tornadoes that occurred during this period. This cluster has also been 

detected by the NNH routine (see Figure 49). All other space-time hot spots of the space-time 

permutation model have also been detected by the NNHC technique (see Figure 49). The space-time 

permutation model did not find any clusters from Oklahoma to Kansas or in Indiana, Ohio, and 

Kentucky. In these areas violent tornadoes occur more or less regularly distributed over the entire 

time period, but not as space-time clusters. The application of the space-time permutation model 

using a small temporal aggregation unit (such as ten days) requires a long time of data processing. 

Due to the 999 Monte Carlo simulation runs the spatiotemporal analysis of 648 violent tornadoes 

(Figure 50) lasted 17 hours 2 minutes and 31 seconds (Intel® Core™2 Duo CPU T5550 1.83 GHz; 3.00 

GB RAM). 
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Figure 50: Space-time permutation model of violent tornado touchdown points from 1950 to 2009 

 

 

3.4. Analysis of Tornado Touchdown Points by Month 

In this subchapter the analysis focuses on the monthly variations of all recorded tornado touchdown 

points and then only on the group of significant tornadoes. 

3.4.1. Analysis of all recorded Tornado Touchdown Points by Month 

The variation of tornado touchdown points in any given year follows a usual pattern. During the 

winter months January and February only a small number of tornadoes occur in the United States. 

According to LOOMIS (1842) and KELLY et al. (1978) the highest tornado frequency occurs during the 

four-month period from March to June. Then the tornado intensity declines from July to December 

and experiences the annual minima in December and January.  

Figure 51 shows all recorded tornado touchdown points from 1950 to 2009 aggregated by month. 

The bars are divided into the number of tornadoes from the two selected time periods to identify 

changes in monthly tornado occurrences. As can be identified very quickly, the most tornadoes occur 

in May and June. In agreement to KELLY et al. (1978) approximately 40 percent of all tornadoes are 

found during May and June. In this dataset from 1950 to 2009 a proportion of 41.7 percent of all 

tornadoes are found in May and June. Comparing the two selected time periods with each other, it 

can generally be said that the tornado frequency increased in each month in the more recent time 

period. The frequencies increased on average by 64 percent. The tornado occurrences during 

February, April, and March show the lowest increases with about 40 percent, whereas the 

occurrences during October and November increased by more than 100 percent (October: 125 

percent; November: 146 percent). 



Figure 51: Changes in monthly tornado occurrences between 

 

Figure 51 represented the absolute frequencies of tornado touchdown points aggregated by month. 

This was a purely temporal analysis, neglecting the spatial component. In contrast, Fi

the geographical distribution of the month with the maximum tornado threat. As has been said in 

Section 1.3.2, the monthly distribution of tornadoes is known to be associated with the jet streams. 

During the winter months the position of the 

summer months. According to the position of the jet stream, tornadoes are more likely to occur in 

these regions.  

In general, the geographical distribution of the month with the maximum tornado threat 

Figure 52) follows the position of the jet stream (Figure 3)

density estimations for each month. Then the highest value in each location was selected 

representing the month with the maximum tornado threat.

jet stream flows in the central United States. Since there are no areas with a maximum tornado 

threat in January and February in the entire United States, the green shaded areas indicate the spring 

months March, April, and May. In March and April the most tornadoes occur in the southeast of the 

United States. In the month of May a large area from Texas to Oklahoma, Kansas, Nebraska, 

Missouri, southern Iowa, Illinois, southern Virginia, and North Carolina experienc

tornado frequency throughout the year. Regions north of the area with a peak tornado frequency in 

May have their maximum tornado frequency in the summer months June and July (e.g., in the 

northeast of the United States). Florida is an except

of the highest monthly frequency of tornado occurrences follows

Almost the entire area of Florida experiences its maximum number of tornadoes in June. Areas north 

of St. Petersburg, FL, have their maximum number of tornadoes in July, whereas areas on the eastern 
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: Changes in monthly tornado occurrences between 1950–79 and 1980–2009 

Figure 51 represented the absolute frequencies of tornado touchdown points aggregated by month. 

This was a purely temporal analysis, neglecting the spatial component. In contrast, Fi

the geographical distribution of the month with the maximum tornado threat. As has been said in 

Section 1.3.2, the monthly distribution of tornadoes is known to be associated with the jet streams. 

During the winter months the position of the jet stream shifts southward and northward during the 

summer months. According to the position of the jet stream, tornadoes are more likely to occur in 

In general, the geographical distribution of the month with the maximum tornado threat 

Figure 52) follows the position of the jet stream (Figure 3). This map was created using twelve kernel 

density estimations for each month. Then the highest value in each location was selected 

representing the month with the maximum tornado threat. During spring and fall the position of the 

jet stream flows in the central United States. Since there are no areas with a maximum tornado 

threat in January and February in the entire United States, the green shaded areas indicate the spring 

April, and May. In March and April the most tornadoes occur in the southeast of the 

United States. In the month of May a large area from Texas to Oklahoma, Kansas, Nebraska, 

Missouri, southern Iowa, Illinois, southern Virginia, and North Carolina experienc

tornado frequency throughout the year. Regions north of the area with a peak tornado frequency in 

May have their maximum tornado frequency in the summer months June and July (e.g., in the 

northeast of the United States). Florida is an exception from the general pattern that the 

of the highest monthly frequency of tornado occurrences follows the position of the jet stream. 

Almost the entire area of Florida experiences its maximum number of tornadoes in June. Areas north 

ersburg, FL, have their maximum number of tornadoes in July, whereas areas on the eastern 
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Figure 51 represented the absolute frequencies of tornado touchdown points aggregated by month. 

This was a purely temporal analysis, neglecting the spatial component. In contrast, Figure 52 shows 

the geographical distribution of the month with the maximum tornado threat. As has been said in 

Section 1.3.2, the monthly distribution of tornadoes is known to be associated with the jet streams. 

jet stream shifts southward and northward during the 

summer months. According to the position of the jet stream, tornadoes are more likely to occur in 

In general, the geographical distribution of the month with the maximum tornado threat (seen in 

This map was created using twelve kernel 

density estimations for each month. Then the highest value in each location was selected 

During spring and fall the position of the 

jet stream flows in the central United States. Since there are no areas with a maximum tornado 

threat in January and February in the entire United States, the green shaded areas indicate the spring 

April, and May. In March and April the most tornadoes occur in the southeast of the 

United States. In the month of May a large area from Texas to Oklahoma, Kansas, Nebraska, 

Missouri, southern Iowa, Illinois, southern Virginia, and North Carolina experiences the maximum 

tornado frequency throughout the year. Regions north of the area with a peak tornado frequency in 

May have their maximum tornado frequency in the summer months June and July (e.g., in the 

ion from the general pattern that the distribution 

the position of the jet stream. 

Almost the entire area of Florida experiences its maximum number of tornadoes in June. Areas north 

ersburg, FL, have their maximum number of tornadoes in July, whereas areas on the eastern 
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part of Florida experience their highest number of tornadoes in August. This exception of not 

following the jet stream pattern is associated with the nonsupercellular convection (BROOKS et al. 

2003). Tornado maxima during fall months can be identified in Virginia as well as in South Carolina, 

where tornado frequencies show their maxima in September. In the Florida Panhandle around 

Panama City, FL, the annual tornado peak frequency reaches its maximum in October. Three areas 

can be further identified to have their maxima tornado frequencies in winter, when the jet stream 

moves southward. These areas include southern Alabama, the border area between Alabama and 

Mississippi, and central Louisiana, where the maximum tornado threat was found in November. 

There is no region in the entire United States which has its maximum tornado frequency in the 

month of December. 

Figure 52: Geographical distribution of the month with the maximum tornado threat 

 

 

In comparison to the map of BROOKS et al. (2003) (see Figure 5, page 25), some differences to the 

map shown in Figure 52 can be identified. BROOKS et al. (2003) used data from 1980 to 1999 to 

produce the map. In general, the contour lines in Figure 5 (page 25) representing the date of the 

maximum tornado threat is smoothed and thus neglects local variations. For example, areas of 

monthly maxima of tornado occurrences in July and August as shown in Figure 52 are not 

represented in Figure 5. A possible reason can be the smoothed analysis in the map by BROOKS et al. 

(2003), or the fact that there were no tornado peaks in Florida in July and August during the period 

from 1980 to 1999. BROOKS et al. (2003) identified a peak number of tornado occurrence in 

November in the Florida Panhandle. In the analysis from 1950 to 2009, the peak number of tornado 

occurrence in the Florida Panhandle was found in October. In comparison to Figure 5 (page 25), the 

peak number of hurricane occurrences in the months September (Virginia and South Carolina) and 

November (Alabama, Mississippi, and Louisiana) have not been identified in the map in Figure 52. 

 

 



3.4.2. Analysis of Significant Tornado Touchdown Points by Month

In this section the same analysis as in Section 

tornado touchdown points, only significant tornadoes will be analyzed to identify the month with the 

highest tornado frequency in different regions across the United States.

As has been discussed in previou

comparison to the total number of tornado touchdown points that occurred between 1950 and 

2009. Only 21.3 percent of all tornadoes were rated as F2 or higher. Figure 53 shows a chart 

representing the monthly occurrences of significant tornadoes in the contiguous 48 states. In 

general, the pattern looks pretty much the same as in Figure 51 (page 

tornadoes being included. May shows the highest number of significant tornadoes an

number of all recorded tornadoes. The second

considering all recorded tornadoes (Figure 51, page 

June, followed by April. Since the absolute num

tornado occurrences decreased in each month except for November, with an increase in the tornado 

frequency by 20 percent. On average the tornado frequency for significant tornadoes decreased by 

35 percent. The largest decreases can be identified in April and August, with a frequency decline by 

approximately 50 percent.  

 

Figure 53: Changes in monthly occurrences 
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Analysis of Significant Tornado Touchdown Points by Month 

In this section the same analysis as in Section 3.4.1 will be done. Instead of using all recorded 

tornado touchdown points, only significant tornadoes will be analyzed to identify the month with the 

highest tornado frequency in different regions across the United States. 

As has been discussed in previous sections, the number of significant tornadoes is small in 

comparison to the total number of tornado touchdown points that occurred between 1950 and 

2009. Only 21.3 percent of all tornadoes were rated as F2 or higher. Figure 53 shows a chart 

the monthly occurrences of significant tornadoes in the contiguous 48 states. In 

general, the pattern looks pretty much the same as in Figure 51 (page 97

tornadoes being included. May shows the highest number of significant tornadoes an

number of all recorded tornadoes. The second-highest number is in April, followed by June. When 

considering all recorded tornadoes (Figure 51, page 97), the second-highest frequency was found in 

June, followed by April. Since the absolute number of significant tornadoes decreased over time, the 

tornado occurrences decreased in each month except for November, with an increase in the tornado 

frequency by 20 percent. On average the tornado frequency for significant tornadoes decreased by 

nt. The largest decreases can be identified in April and August, with a frequency decline by 

: Changes in monthly occurrences of significant tornadoes between 1950–79 and 1980
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tornado touchdown points, only significant tornadoes will be analyzed to identify the month with the 
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significant tornadoes rated F2 or higher is shown. In general, there are not many differences in Figure 

54 when compared to Figure 52 (page 98). One significant difference is that in Florida the month with 

the highest tornado threat of significant tornadoes is in March. In Figure 52 (page 98) the month with 

the maximum tornado threat was in June. In conclusion, the most tornadoes rated F0 and F1 occur in 

June, whereas significant tornadoes rated F2 or higher occur in March. The local peak of significant 

tornadoes in September in South Carolina cannot be detected in Figure 54. In the same region, the 

highest number of significant tornadoes was identified in March. Both Figures 52 and 54 show the 

month with the maximum number of (significant) tornadoes in September in Virginia. This means 

that in this region not only weak, but also significant tornadoes occur. The local “annual outlier” 

detected in November in Figure 52 (page 98) in Alabama disappeared in Figure 54. In contrast, the 

area of maximum tornado threat in November increased in Louisiana. In the Florida Panhandle the 

highest monthly number of significant tornadoes can now be found in December.  

 

Figure 54: Geographical distribution of the month of maximum significant tornado threat 

 

 

3.5. Spatial and Temporal Analysis of Tornado Fatalities 

The final spatial and temporal analysis deals with tornado fatalities in the United States from 1950 to 

2009. During this sixty year period, a total number of 5,792 tornado fatalities has been recorded. As 

can be seen in Figure 55, the annual number of tornado fatalities declined over time. However, the 

number of tornado fatalities has increased slightly since 2000. Since 1950 “killer tornadoes” 

(tornadoes that kill people) have been reported in every single year. The maximum number of 

fatalities was reported in 1953 with 534. In 1986 the lowest number of 16 tornado fatalities was 

identified. During the period from 1950 to 1979 a total number of 3,943 tornado fatalities was 



recorded. In the last thirty-year-period from 1980 to 2009 the number of tornado fatalities decreased 

by more than 50 percent resulting in 1,849 casualties. 

 

Figure 55: Annual tornado fatalities

 

Possible reasons for the decline of tornado fatalities were discussed by 

BROOKS and DOSWELL (2002). These include the initial development and advancement of tornado 

forecasting, improved communication, spotte

of radar, and the establishment of the watch

that the decreasing trend of the rate of tornado fatalities per one million residents is unlikely to 

continue. Despite improved detection methods and watch

vulnerability brought about by demographic changes influences the tornado fatality rates (

and DOSWELL 2002, ASHLEY 2007).

Numerous factors impact the amount of risk 

technology (e.g., detection and warning systems), characteristics of the tornado (e.g., magnitude, 

intensity, time of day, duration, and geography), social aspects (e.g., population trends and 

urbanization), personal attributes (e.g., perception and preparedness), and location (e.g., type of 

shelter or the lack thereof) (HAMMER

During the entire time period from 1950 to 2009 a total number of 1,434 killer tornadoes were

reported. The most killer tornadoes are located in Texas (137), followed by Arkansas (99), Alabama 

(86), Tennessee (86), and Missouri (80). Figure 56 shows a kernel density estimation of killer 

tornadoes from 1950 to 2009. As can be seen, the highest dens
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period from 1980 to 2009 the number of tornado fatalities decreased 

by more than 50 percent resulting in 1,849 casualties.  

fatalities from 1950 to 2009 

Possible reasons for the decline of tornado fatalities were discussed by DOSWELL

(2002). These include the initial development and advancement of tornado 

forecasting, improved communication, spotter networks, better construction techniques, installation 

of radar, and the establishment of the watch-warning process. BROOKS and DOSWELL

that the decreasing trend of the rate of tornado fatalities per one million residents is unlikely to 

tinue. Despite improved detection methods and watch-warning operations, the growing 

vulnerability brought about by demographic changes influences the tornado fatality rates (

2007). 

Numerous factors impact the amount of risk to individuals during a tornado. These factors include 

technology (e.g., detection and warning systems), characteristics of the tornado (e.g., magnitude, 

intensity, time of day, duration, and geography), social aspects (e.g., population trends and 

tion), personal attributes (e.g., perception and preparedness), and location (e.g., type of 

AMMER and SCHMIDLIN 2001, ASHLEY 2007). 

During the entire time period from 1950 to 2009 a total number of 1,434 killer tornadoes were

reported. The most killer tornadoes are located in Texas (137), followed by Arkansas (99), Alabama 

(86), Tennessee (86), and Missouri (80). Figure 56 shows a kernel density estimation of killer 

tornadoes from 1950 to 2009. As can be seen, the highest densities can be found in Arkansas, 

Tennessee, Mississippi, Alabama, and Georgia. When comparing the results in Figure 56 with Figures 

), which analyzed all recorded tornadoes (Figure 27, page 

1965 1970 1975 1980 1985 1990 1995

Year

period from 1980 to 2009 the number of tornado fatalities decreased 

 

OSWELL et al. (1999) and 

(2002). These include the initial development and advancement of tornado 

r networks, better construction techniques, installation 

OSWELL (2002) argued 

that the decreasing trend of the rate of tornado fatalities per one million residents is unlikely to 

warning operations, the growing 

vulnerability brought about by demographic changes influences the tornado fatality rates (BROOKS 

to individuals during a tornado. These factors include 

technology (e.g., detection and warning systems), characteristics of the tornado (e.g., magnitude, 

intensity, time of day, duration, and geography), social aspects (e.g., population trends and 

tion), personal attributes (e.g., perception and preparedness), and location (e.g., type of 

During the entire time period from 1950 to 2009 a total number of 1,434 killer tornadoes were 

reported. The most killer tornadoes are located in Texas (137), followed by Arkansas (99), Alabama 

(86), Tennessee (86), and Missouri (80). Figure 56 shows a kernel density estimation of killer 

ities can be found in Arkansas, 

Tennessee, Mississippi, Alabama, and Georgia. When comparing the results in Figure 56 with Figures 

), which analyzed all recorded tornadoes (Figure 27, page 71) as well as 

2000 2005



- 102 - 

only significant tornadoes (Figure 36, page 81), a map reader can identify differences in the spatial 

locations of the hot spots. Most killer tornadoes occur in the south, whereas the most tornadoes 

overall can be detected in the Great Plains, where the so-called Tornado Alley is located. The analysis 

of killer tornadoes is thus comparable to the analysis of ASHLEY (2007), who argued that the region 

centered on the lower-Arkansas, Tennessee, and lower Mississippi River Valleys has the greatest 

concentration of killer events and tornado fatalities, as well. As has been already discussed in Section 

1.3.2, ASHLEY (2007) listed climatological and nonclimatological reasons as possibilities for an 

increased vulnerability of a greater concentration of tornado fatalities and killer events within this 

region. First, as has already been mentioned before, while the overall intensity of tornadoes in this 

region (lower-Arkansas, Tennessee, and lower Mississippi River Valleys) is not as high as in the 

Tornado Alley, a large number of significant tornadoes can be detected in this region. Second, 

tornadoes occur more likely during cool and transition seasons (BROOKS et al. 2003), when day length 

is at a minimum, which increases the likelihood of nighttime tornadoes. Third, a large percentage of 

mobile home and weak-frame housing stock is available in this particular region compared to other 

regions of the United States. Fourth, the population density of this region is much higher compared 

to the Midwest and the Great Plains. Fifth, there is a lack of a concentrated “tornado season” in the 

South, which can lead to complacency among the population (DOSWELL 2003).  

 

Figure 56: Kernel density estimation of killer tornadoes from 1950 to 2009 

 

 

In the consideration of the spatial distribution of tornado fatalities the kernel density estimate was 

used to locate areas with high tornado fatalities. The kernel density estimation is useful, because it is 

possible to use an intensity or weighting variable. Thus, the NNHC routine has not been used, since, 

with this method, it is not possible to weigh the killer events by the number of tornado fatalities. 

Figure 57 shows the kernel density estimation of killer tornadoes weighted with the number of 
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fatalities from 1950 to 2009. It can be seen that the hot spot areas are more concentrated in 

comparison to the previous analysis, where the locations of killer tornadoes were not weighted 

(Figure 56). Hot spot areas are located in Louisiana, Arkansas, Mississippi, Tennessee, Alabama, and 

in a small cluster in Oklahoma. The largest hot spot of tornado fatalities is identified in the area 

around Vicksburg, MS. In fact, this area did not show the highest rates of killer tornadoes per square 

mile in Figure 56. This means that the killer tornadoes caused a higher number of fatalities as 

compared to the three hot spots that can be identified in Arkansas, Tennessee, and Alabama (Figure 

57). In numbers, the states Texas (610), Mississippi (545), Oklahoma (406), Alabama (405), and 

Arkansas (370) are the leading states in terms of tornado fatalities over the entire time period from 

1950 to 2009. 

 

Figure 57: Kernel density estimation of killer tornadoes weighted with the number of fatalities from 1950 to 

2009 

 

 

In the following analysis, the number of tornado fatalities is standardized by the underlying 

population-at-risk. Population data needed for this analysis was collected from the Minnesota 

Population Center, National Historical Geographic Information System: Pre-release Version 0.1, 

University of Minnesota. The data are freely available on the web (http://www.nhgis.org). Similar to 

before, two time periods (1950-1979 and 1980-2009) were analyzed separately.  The number of 

fatalities for the first time period (1950-1979) was standardized with the 1965 population, whereas 

the number of fatalities for the second time period (1980-2009) was standardized with the 1995 

population data. Both the 1965 and 1995 population data were derived through interpolation. These 

interpolated population sizes for each county were then used to create a kernel density surface over 

the entire United States (refer to Annex E, pages 131 and 132, for (1) maps of the interpolated 

population densities and (2) maps of the kernel density estimates of the distribution of tornado 
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fatalities for the time periods 1950 to 1979 and 1980 to 2009). Both the tornado fatalities and the 

population surfaces are used to create dual kernel density estimates for both time periods. 

Afterwards, a difference map between the two time periods was created and visualized to check for 

temporal changes in the rates of tornado fatalities per 100,000 residents per square mile. 

The following two maps (Figures 58 and 59) show dual kernel density estimations of killer tornadoes 

weighted with the number of tornado fatalities standardized by the underlying population for the 

two time periods.  

The dual kernel density estimation was calculated by dividing the number of tornado fatalities with 

the population size per square mile. The resulting values were then divided by 30 to obtain annual 

tornado fatality rates. Subsequently, these values were multiplied by 100,000 to receive annual 

tornado fatality rates per 100,000 residents per square mile. 

 

Figure 58: Dual kernel density estimation of tornadoes weighted with the number of fatalities from 1950 to 

1979 standardized by the 1965 population  

 

 

In the analysis of the tornado fatalities from 1950 to 1979 (Annex D), the hot spots have been 

detected in the areas of Louisiana, Mississippi, Arkansas, and Alabama. Further areas of high 

densities of tornado casualties were recorded in Texas, in Oklahoma, in Kansas, around the Great 

Lakes, in Kentucky, and in Tennessee. The dual kernel density estimation of annual rates of tornado 

fatalities from 1950 to 1979 per 100,000 residents (Figure 58) shows a similar pattern as the map for 

the single kernel density estimation of tornado fatalities from 1950 to 1979 (Figure E-3 in Annex E, 

page 132). However, a comparison reveals some differences. Since the population density is 

somewhat low in Louisiana and Mississippi, the hot spot of the highest tornado fatality rates can 

again be seen in both states according to Figure 58. The cluster in Arkansas can be identified as well 
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in the dual kernel density estimation. In contrast, the cluster of highest tornado fatalities located in 

Alabama disappeared from Figure 58, due to the higher population density in Birmingham, AL. In 

addition, the large cluster around the Great Lakes disappeared as well in Figure 58, since the 

population density was very high in this region, especially in Chicago, IL and Detroit, MI. In addition, 

areas with very high tornado fatality rates can be identified in northern Texas, northern Oklahoma, 

and southern Kansas. According to Figure E-3 in Annex E, page 132, the number of tornado fatalities 

in these areas was not as high as in other areas of the United States. Instead, the population density 

(the denominator of the ratio) is very low, which results in higher tornado fatality rates. For example, 

the cluster identified in Texas (Figure 58) is only located in the third class range in the density map of 

tornado fatalities (Figure E-3, Annex E, page 132). 

 

Figure 59: Dual kernel density estimation of tornadoes weighted with the number of fatalities from 1980 to 

2009 standardized by the 1995 population 

 

 

The analysis of the tornado fatality rates for the period from 1980 to 2009 does not have such 

distinctive hot spot areas compared to the period from 1950 to 1979. The reasons are as follows: The 

parameter settings for the kernel density estimation remained the same for the killer tornadoes at 

both time periods. Since the number of tornado fatalities declined over time and the class ranges 

remained the same for both maps, no hot spots appear in the period from 1980 to 2009. However, 

the only higher concentration of tornado fatalities can be seen in Alabama (Figure E-4 in Annex D, 

page 132). In the same area there has been a cluster in the earlier time period, as well. Since the 

population density was not as low as in other areas, where killer tornadoes occur, this cluster 

disappeared in the most recent time period, as can be seen in Figure 59. Areas of increased tornado 

fatality rates can be identified in Lincoln, NE, in western Tennessee, and in western Kentucky. The 

same hot spot areas of tornado fatality rates that were found during the time period from 1950 to 



- 106 - 

1979 cannot be detected any more during the time period from 1980 to 2009. The clusters in 

Louisiana and Mississippi as well as the cluster in Texas disappeared almost completely.  

The following map (Figure 60) shows absolute changes of the tornado fatality rates from 1950–1979 

to 1980–2009. As has been said before, the number of tornado fatalities declined between the two 

time periods. The large clusters in Louisiana and Mississippi disappeared over time, resulting from a 

decrease of about more than four annual tornado fatalities per 100,000 residents per square mile. 

Additional clusters showing decreases are located in Texas and Arkansas. In the remaining areas the 

absolute changes of tornado fatality rates are somewhat constant over time. Areas of increasing 

tornado fatality rates are sparse. There are small areas, where the absolute changes in density 

estimates increased by more than one annual tornado fatality per 100,000 residents. These are 

located along the border area between southern Illinois and Kentucky, and along the border area 

between Kansas and Missouri.  

 

Figure 60: Absolute change of tornado fatality rates from 1950–79 to 1980–2009 

 

 

The last map in this chapter introduces a technique that is based on the concept of spatial 

autocorrelation. The LISA routine compares neighboring values. If they are both high, a hot spot is 

identified. If the neighboring values are both low, a cold spot is identified. If the values are different 

(one high, the other low), spatial outliers are detected. The routine then calculates the level of 

significance for this relationship between neighboring polygons (ANSELIN 2003). In the following 

analysis, 999 replications (i.e., Monte Carlo simulations) were applied to calculate the level of 

significance. 
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Figures E-5 and E-6 in Annex E, pages 133, shows the LISA results for the two time periods from 1950 

to 1979 and from 1980 to 2009. A combined approach is the space-time LISA, where a polygon with a 

tornado fatality rate from the period 1950 to 1979 is compared with polygons with tornado fatality 

rates from the period 1980 to 2009. Therefore, the spatial and temporal persistence of similar values 

(space-time hot spots or space-time cold spots) is identified. Figure 61 shows the space-time LISA of 

tornado fatality rates of tornado touchdown points for 1950 to 1979 and 1980 to 2009. There are 

some counties that are identified as space-time hot spots at a significance level of p<=0.05. These are 

located along the border area between Texas and Oklahoma, in southern Kansas, in northern 

Indiana, in southern of Missouri, in Arkansas, in the western part of Tennessee, in the northern parts 

of Mississippi and Alabama, as well as in one county in Georgia. The largest space-time hot spot areas 

of tornado fatality rates can be identified in central Arkansas, along the border between Arkansas, 

Missouri, and Tennessee and in northern Alabama. 

 

Figure 61: Space-time LISA of tornado fatality rates of tornado touchdown points for 1950–79 and 1980–2009 
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4. Conclusion 
 

In this diploma thesis an extensive analysis of the geographic patterns of tornadoes and of tornado 

fatalities has been conducted. In addition, the spatial data analysis has been extended to also 

investigate temporal patterns, such as cluster persistence or cluster change of tornadoes and their 

fatalities. The spatial data analysis has been conducted by “state-of-the-art” spatial statistics. The 

outputs of these statistical analyses have been compared to more “traditional” mapping techniques, 

such as the common dot map or the choropleth map. It has been argued that spatial statistics result 

in more accurate and statistically significant outputs. In general, the following spatial statistics have 

been applied to analyze the dataset of tornado touchdown points in the United States from 1950 to 

2009. First, an interpolating technique using a kernel function is applied to calculate a (kernel) 

density surface. Thus, locations of high as well as low tornado occurrences are shown over the entire 

study area. Second, the NNHC routine groups a certain minimum number of events to clusters, which 

are in close proximity. This routine only identifies hot spots but no cold spots. Third, the Local 

Moran’s I (LISA) approach has been introduced. This method compares values of neighboring 

polygons for similarity or dissimilarity. High neighboring values are referred to as “hot spots”, 

whereas low neighboring values are referred to as “cold spots”. JACQUEZ (2008) proposed different 

approaches to check for temporal variations in the spatial patterns of events, such as cluster change 

or cluster persistence. These attempts have been applied in the analysis and later discussed in their 

suitability for a spatiotemporal analysis. As a fourth technique, the space-time permutation model in 

the form of a spatial scan statistic is used to analyze the dataset. This technique adjusts for both 

spatial and temporal interaction, in other words, an existing cluster in a geographical area has a 

higher proportion of incidents during a specific time period compared to the other regions in that 

time period. This method only shows spatiotemporal hot spots, whereas areas of low concentrations 

or insignificant clusters are not shown. 

4.1. Research Questions 

Several research questions have been investigated in this thesis (see page 16 or 69). The first 

research question addresses the application of modern statistical techniques compared to traditional 

techniques. This comparison has been discussed in Section 2.2.2.1. Various traditional techniques, 

such as the common dot map, the choropleth map, or the quadrate thematic map result in more or 

less satisfying outcomes. Choropleth maps are inappropriate in showing hot spots, especially when 

those hot spots cover only a small portion inside a polygon. The quadrate thematic map solves this 

problem by using a grid, where values are totaled in each quadrate. This map type looks somewhat 

“speckled”, especially with larger grid cell sizes. Since the quadrate thematic map is purely a 

visualization method, it cannot account for spatial autocorrelation. The concept of spatial 

autocorrelation was introduced as the “first law of geography”, meaning that “everything is related 

to everything else, but near things are more related than distant things” (TOBLER 1970). Spatial 

statistics make use of this concept. Therefore they are more appropriate to analyze spatial data and 

their spatial interactions and thus, the results are more accurate in comparison to the proposed 

traditional, rather visual techniques. 
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As has been said previously in this chapter, the four statistical techniques result in different outputs. 

The kernel density estimation is the only technique which provides an estimated value at each 

location and therefore, areas of high, medium, as well as low occurrences of events are shown. The 

NNHC routine and the space-time permutation model are useful, when events need to be grouped to 

clusters and areas of low concentrations are not the main interest. The LISA statistic has been used 

for the analysis of tornado fatality rates, since the statistic analyzes values of neighboring polygons in 

which the population size is known. In the application of these techniques for spatial and temporal 

analysis, different results were yielded due to different underlying principles. The dual kernel density 

estimation as the space-time approach creates difference maps of density estimates of two different 

time periods. Thus, locations of cluster change and cluster persistence are visible. The space-time 

NNHC approach uses (spatial and temporal) intersections of spatial cluster ellipses from two different 

time periods. It is understandable that these spatial and temporal intersections point to cluster 

persistence. Space-time LISA statistics analyze neighboring values at two different time periods. 

Statistically significant space-time hot spots and space-time cold spots signify cluster persistence, 

whereas spatiotemporal outliers account for cluster change. The space-time permutation model is 

somewhat special, since it adjusts for both purely spatial und purely temporal interactions in the 

dataset. Thus, this statistic is hardly comparable to the other space-time approaches which do not 

account for both spatial and temporal interaction. Hence, these space-time approaches account for 

temporal variations of spatial patterns.  

The question of which technique is most useful for the spatial and temporal analysis cannot be 

answered explicitly. It depends on the purpose of the analysis. In this spatial and temporal analysis of 

tornado touchdown points the kernel density estimation is the only technique which has been 

applied to each analysis since the technique is easy to interpret and allows for an extensive 

interpretation. This technique provides a useful space-time approach and allows the application of 

weights (e.g., the number of tornado fatalities), which has been applied in the calculation of tornado 

fatality rates. The space-time permutation model is a special case, since none of the proposed space-

time approaches adjust for both spatial and temporal interaction. In the analysis of tornado 

touchdown points, the space-time permutation model can be useful for a retrospective analysis of 

tornado outbreaks in a short time period.  

The spatial and temporal analysis of tornado touchdown points resulted in outputs similar to KELLY et 

al. (1978), BROOKS et al. (2003), and ASHLEY (2007). However, the authors of these research papers 

used tornado data during a different time period. The spatial analysis of all recorded tornadoes in the 

period from 1950 to 2009 showed that a high number of tornadoes overlap with the boundaries of 

the “Tornado Alley”. Since the number of tornadoes increased immensely during the periods from 

1950–79 to 1980–2009 the temporal variation of the spatial patterns showed increasing tornado 

occurrences in almost each of the 48 contiguous states of the United States. The biggest increases 

have been detected in Denver, CO, Houston, TX, and St. Petersburg, FL. In the analysis of only 

significant tornadoes rated F2 or higher the visual interpretation was almost the opposite, since the 

number of significant tornadoes declined over the same time period. In this analysis, the border 

areas between Texas and Oklahoma, as well as between Kansas and Indiana have been identified as 
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those areas, where the occurrences of significant tornadoes declined the most. However, there are a 

few areas of increase during this time period. In the analysis of violent tornadoes rated F4 or F5 no 

general pattern was detectable. The space-time NNHC analysis resulted in spatial and temporal 

intersections indicating cluster persistence along the border areas of Indiana, Ohio, and Kentucky, in 

Tennessee and Arkansas and along border areas of Oklahoma and Kansas. In comparison to all 

recorded tornadoes it can be argued that violent tornadoes do not necessarily occur in the area of 

the Tornado Alley. 

BROOKS et al. (2003) analyzed the maximum monthly frequency of tornadoes from 1980 to 1999. The 

resulting map can be seen in Figure 5 (page 25). In the analysis of the maximum monthly frequency 

of tornadoes from 1950 to 2009, the monthly frequency shows some differences to the map of 

BROOKS et al. (2003). In general, both monthly frequencies follow the position of the jet stream. In the 

analysis of BROOKS et al. (2003) the contour lines are more smoothed and do not show local 

variations. For example, areas of monthly maxima in July and August (see Figure 52, page 98) are not 

represented in Figure 5 (page 25). A possible reason can be the rather smoothed analysis or 

visualization, or the fact that Florida did not have monthly maxima in July and August during the 

period from 1980 to 1999. BROOKS et al. (2003) identified a monthly maximum in November in the 

Florida Panhandle. In the analysis in this thesis from 1950 to 2009, the monthly maximum was found 

in October. In comparison to Figure 5 (page 25), the monthly maxima in the months September 

(Virginia and South Carolina) and November (Alabama, Mississippi and Louisiana) have not been 

identified in this thesis. 

The last analysis focused on killer tornadoes and tornado fatalities. In this analysis, the rates of 

tornado fatalities are calculated using an interpolated underlying population. The highest 

concentrations of killer tornadoes have been detected outside of the Tornado Alley, where most of 

the tornadoes occur. Killer tornadoes occur preferably in the interior southeast and in the south-

central United States. The most tornado fatalities have been detected in the states of Arkansas, 

Louisiana, Mississippi, Tennessee, Alabama, and in a small area in Oklahoma. The dual kernel density 

estimation uses a density estimate of killer tornadoes weighted with the number of tornado fatalities 

standardized by the underlying population. Since the number of tornado fatalities was higher and the 

population densities lower during the earlier time period, more distinctive hot spots with high 

tornado fatality rates were found in the period from 1950 to 1979. These hot spots can be identified 

in Louisiana and Mississippi, as well as in Arkansas, and in northern Texas. During the two time 

periods the number of tornado fatalities decreased, while the population density increased. This 

resulted in lower tornado fatality rates. Thus, the difference map of absolute changes between the 

density estimates shows decreases in almost all areas. The biggest declines were detected in 

Louisiana and Mississippi, Arkansas, and Texas. Slight increases of more than one tornado fatality per 

year per 100,000 inhabitants have been identified along the border area between southern Illinois 

and Kentucky, and along the border area between Kansas and Missouri.  
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4.2. Future Prospects 

Numerous analyses have been made using the dataset of the Storm Prediction Center (SPC). I am in 

agreement with ASHLEY (2007) who argues that the information of the data needs to be improved. 

Since the mid-1980s data descriptions of how and where tornado fatalities occur have advanced, 

however, the data still needs much improvement in the information provided for future damage and 

casualty assessments. In the verification of tornado damage and effort should be made to determine 

the location of the casualty and the type of structure in which the fatality occurred (ASHLEY 2007). 

In the application and comparison of various statistical techniques to test for space-time interaction, 

some limitations arose in the analysis of the dataset of tornado touchdown points. In the analysis the 

kernel density estimation showed the best results since density values are calculated across the 

whole country. This technique allows the detection of hot spots and a comparison with the NNHC 

routine. The NNHC technique produces spatial ellipses around events, which define hot spots. The 

space-time permutation model provides circular clusters of events, in both space and time. For this 

reason, the results of the kernel density estimate and the NNHC are not completely comparable with 

the outputs of the space-time permutation model. There might be some similarities in the locations 

of the clusters, however the kernel density estimation as well as the NNHC technique do not account 

for both spatial and temporal interaction. The Local Moran’s I as the fourth technique uses areal 

data. With this technique, neighboring tornado fatality rates based on counties have been analyzed 

for spatial as well as space-time hot spots and cold spots. The outputs of the space-time LISA showed 

cluster persistence over time and has been subsidiary to the space-time analysis using kernel density 

estimations, since the latter shows cluster changes and cluster persistence. The space-time kernel 

density estimation should always be provided together with the single kernel density estimation, 

since the dual kernel density map does not make a statement about high respectively low densities. 

It only shows differences between two time periods.  

However, numerous challenges for GIS in the future can be identified. One major challenge that has 

been identified relates to the integration of time as a third dimension in addition to longitude and 

latitude. The analysis and visualization of both space and time is a rapidly growing research frontier 

in geography, GIS, and GIScience. 

Future research should therefore focus on the development and improvement of spatial statistics 

and especially on techniques to analyze correlations in both time and space. An important first 

attempt has been made with the development of the space-time scan statistic. Future research 

about tornado occurrences in the United States should focus on the improved collection of 

information. In the future, the analysis presented in this thesis should be repeated to see whether 

further changes in the locations of tornado occurrences have happened. For a future analysis, data 

before the mid-1980s should be excluded, since the reporting systems improved significantly since 

then.  
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Annex A 

Overview of specific cluster statistics in the selected software packages used in this thesis 

CrimeStat 

• Moran’s I 

• Geary’s C 

• Getis-Ord’s G 

• Nearest neighbor index and K-th order nearest neighbor index 

• Ripley’s K 

• Spatial Mode 

• Spatial Fuzzy Mode 

• Nearest neighbor hierarchical clustering 

• Risk-adjusted nearest neighbor hierarchical clustering 

• STAC (spatial and temporal analysis of crime) 

• K-means clustering 

• Local Moran’s I 

• Getis-Ord Local G 

• Single kernel density estimation 

• Dual kernel density estimation 

• Knox Index (space-time) 

• Mantel Index (space-time) 

 

GeoDa 

• Outlier detection 

• Global Moran’s I 

• Global Moran’s I for rates with Empirical Bayes correction 

• Local Moran’s I 

• Local Moran’s I for rates with Empirical Bayes correction 

• Bivariate (space-time) Moran’s I 

• Bivariate (space-time) Local Moran’s I 

 

SaTScan 

• Retrospective purely spatial scan statistic 

o Bernoulli model 

o Poisson model 

o Multinomial model 

o Ordinal model 
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o Exponential model 

o Normal model 

• Retrospective purely temporal scan statistic 

o Bernoulli model 

o Poisson model 

o Multinomial model 

o Ordinal model 

o Exponential model 

o Normal model 

• Prospective purely temporal scan statistic 

o Bernoulli model 

o Poisson model 

o Multinomial model 

o Ordinal model 

o Exponential model 

o Normal model 

• Retrospective space-time scan statistic 

o Bernoulli model 

o Poisson model 

o Multinomial model 

o Ordinal model 

o Exponential model 

o Normal model 

o Space-time permutation model 

• Prospective space-time scan statistic 

o Bernoulli model 

o Poisson model 

o Multinomial model 

o Ordinal model 

o Exponential model 

o Normal model 
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Annex B 

Figure B-1: Topographic map of the United States 

 

Adapted from http://www.usgs.gov/  
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Annex C 

Figure C-1: Kernel density estimation of significant tornado touchdown points from 1950 to 1979 

 

 

 

 

Figure C-2: Kernel density estimation of significant tornado touchdown points from 1980 to 2009 
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Annex D 

Figure D-1: Kernel density estimation of weak tornado touchdown points from 1950 to 1979 

 

 

 

 

Figure D-2: Kernel density estimation of weak tornado touchdown points from 1980 to 2009 
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Figure D-3: Kernel density estimation of strong tornado touchdown points from 1950 to 1979 

 

 

 

 

Figure D-4: Kernel density estimation of strong tornado touchdown points from 1980 to 2009 
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Figure D-5: Kernel density estimation and NNH clusters of violent tornado touchdown points from 1950 to 

1979 

 

 

 

Figure D-6: Kernel density estimation and NNH clusters of violent tornado touchdown points from 1980 to 

2009 
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Annex E 

Figure E-1: Kernel density estimation of the estimated population in 1965 

 

 

 

Figure E-2: Kernel density estimation of the estimated population in 1995 
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Figure E-3: Kernel density estimation of tornadoes weighted with the number of fatalities from 1950 to 1979 

 

 

Figure E-4: Kernel density estimation of tornadoes weighted with the number of fatalities from 1980 to 2009 
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Figure E-5: LISA of tornado fatality rates for 1950 to 1979 

 

 

 

Figure E-6: LISA of tornado fatality rates for 1950 to 1979  
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