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Summary 
In almost every aspect of microbiology, e.g. clinical studies, epidemiological 

investigations and taxonomy, the identification of a strain to species, and sometimes 

subspecies, or even variant level is required. Without accurate identification methods, 

the estimation of the prevalence and significance of different species in a given 

environment is not possible. Clinical management is often facilitated if the identity of a 

strain is known. Within the scope of this PhD thesis members of the following four 

genera were analysed by means of matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry (MALDI-TOF MS): the closely related genera Campylobacter, 

Arcobacter and Helicobacter and furthermore the genus Gallibacterium. The main 

focus of the present study was the rapid and accurate identification and differentiation 

of species recognized as human and/or animal pathogens, with applications in clinical 

diagnostics.  

 In general, all species used in this study provided unique and reproducible 

whole-cell spectra (fingerprints), contributing to identification and differentiation of the 

strains. Well-characterized reference bacteria were used to generate reference databases 

in the MALDI/Biotyper software, to be used for correct identification of clinical strains. 

These results were compared to the results obtained by molecular methods. In addition, 

for reproducibility of results different growth as well as storage conditions were tested 

which are relevant in a diagnostic laboratory.  

 Besides the most important thermophilic species of Campylobacter genus, 

Campylobacter jejuni and Campylobacter coli which have important significance as 

food-borne pathogens, as well as Arcobacter butzleri and Helicobacter pullorum, 

several other members of these genera were investigated. In addition, 144 clinical 

isolates were identified correctly within a short period of time.  

 The recently established genus Gallibacterium represents a phenotypically 

heterogeneous group, where identification of species belonging to this genus is difficult. 

Therefore, 66 reference species of Gallibacterium were analysed by MALDI-TOF MS 

and by sequencing 16S rRNA, rpoB, recN and infB genes of some strains. Moreover, 

MALDI-TOF MS/Biotyper correctly identified 184 Gallibacterium anatis isolated from 

different organs from layers. Remarkably, MALDI-TOF MS revealed different clonal 

lineages of G. anatis between different flocks. Altogether, the ability of MALDI-TOF 

MS to be used in diagnostic laboratories is discussed. 





 

Zusammenfassung 

In nahezu allen Bereichen der Mikrobiologie, insbesondere im Rahmen von klinischen 

Studien, epidemiologischen Untersuchungen, und Taxonomie, ist die Identifizierung 

eines Bakterienstammes bis hin zu Spezies, Subspezies oder manchmal sogar Variante 

erforderlich. Ohne genaue Identifizierungsmethoden können in vielen Fällen Prävalenz 

und Bedeutung verschiedener Bakterienarten nicht bestimmt bzw. abgeschätzt werden. 

Im Rahmen der vorliegenden Dissertation wurden Isolate folgender vier Genera mittels 

Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight Massenspektrometrie 

(MALDI-TOF-MS) analysiert: die eng miteinander verwandten Gattungen 

Campylobacter, Arcobacter, Helicobacter sowie die Gattung Gallibacterium. Der 

Schwerpunkt der Arbeit lag auf der schnellen und genauen Identifizierung und 

Differenzierung von Spezies dieser Gattungen, die als Krankheitserreger bei Mensch 

und/oder Tier von Bedeutung sind.  

 Alle in dieser Studie verwendeten Bakterienarten generierten jeweils 

einzigartige und reproduzierbare Spektren, die zu einer eindeutigen Identifizierung und 

Differenzierung der Bakterienstämme führten. Eine Referenzdatenbank in der 

MALDI/Biotyper Software wurde mit Hilfe von Referenzstämmen erstellt, welche dann 

für die Identifizierung von Feldisolaten verwendet wurde. Die so gewonnenen 

Ergebnisse wurden mit den Ergebnissen molekulargenetischer Methoden verglichen. 

Um die Reproduzierbarkeit der Ergebnisse für den Einsatz im diagnostischen Labor zu 

untersuchen, wurden darüber hinaus Bakterienstämme, die unter verschiedenen 

Wachstums- und Lagerbedingungen gehalten wurden, getestet. 

Neben den beiden wichtigsten thermophilen Campylobacter Arten, 

Campylobacter jejuni und Campylobacter coli, welche, zusammen mit Arcobacter 

butzleri und Helicobacter pullorum, als weltweit führende Erreger humaner 

gastrointestinaler Erkrankungen angesehen werden, wurden auch andere Arten dieser 

Gattungen mittels MALDI-TOF MS untersucht. Darüber hinaus wurden 144 klinische 

Isolate schnell und korrekt identifiziert.  

 Die relativ junge Gattung Gallibacterium stellt eine phänotypisch sehr 

heterogene Gruppe der, wodurch sich die Identifizierung und Differenzierung einzelner 

Spezies oft als sehr problematisch erweist. Daher wurden 66 Referenzstämme mittels 

MALDI-TOF MS analysiert. Von einigen dieser stämme wurden 16S rRNA, rpoB, 

recN und infB sequenziert. Außerdem war mit der MALDI-TOF Methode die korrekte 
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Identifizierung und Zuordnung von klonalen Stämmen zu den jeweiligen 

Legehennenherden von 184 G. anatis möglich. Dabei konnten klonale Verbindungen 

von Isolaten innerhalb und zwischen Beständen identifiziert werden. Zusammenfassend 

wird der Einsatz von MALDI-TOF MS im diagnostischen Labor diskutiert. 
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Introduction 

1. Introduction 

 
1.1. Introduction to the genera Campylobacter, Arcobacter, Helicobacter 

and Gallibacterium 
 

1.1.1. Taxonomy and characteristics  
Genus Campylobacter  

The genus Campylobacter (meaning ‘twisted bacteria’) belongs to the epsilon class of 

Proteobacteria, in the order Campylobacteriales. This genus was first proposed in 1963 

by Sebald and Veron, and contained at that time just two species: Campylobacter fetus 

and Campylobacter bubulus, which is now known as C. sputorum biovar sputorum. 

Originally, campylobacters were described as members of the genus Vibrio (Sebald & 

Veron, 1963). Currently, the genus Campylobacter comprises of 24 species and 11 

subspecies (Euzeby, 1997). 

 

 
Figure 1. Scanning electron microscope image of Campylobacter jejuni, 

illustrating its corkscrew appearance and bipolar flagella. Source: Clinic for 

Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, 

Austria. 

 

All members of the genus Campylobacter are oxidase and catalase positive, curved, 

spiral or S-shaped Gram-negative bacteria, with tampered ends. The cells measure 0.2 

to 0.5 µm wide and 0.5 to 8 µm long. The cells are actively motile by an unsheathed 
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Introduction 

polar flagellum located at one or both ends of the cell, which gives them a very 

characteristic “cork-screw” motility (Sebald & Veron, 1963) (Figure 1). 

 

The bacteria are relatively fragile, and sensitive to environmental stress (e.g., 21% 

oxygen, drying, heating, disinfectants, and acidic conditions). The optimum growth 

temperature for thermophilic Campylobacter is 42°C, and for non-thermophilic 

Campylobacter 25°C-37°C in microaerophilic conditions. The organism does not grow 

at refrigeration conditions. This organism is comparatively slow growing even under 

optimum conditions. There is relatively little phenotypic information that can be used 

for classifying these bacteria. However, cell morphology and low guanine-plus-cytosine 

(G + C) content (28 to 38 mol %) of the deoxyribonucleic acid (DNA) are important 

criteria of this genus (Veron & Chatelai, 1973). 

 

The type species of the Campylobacter genus is C. fetus subsp. fetus. However, the 

most important species of the genus is C. jejuni susp. jejuni often simply referred to as 

C. jejuni and represents the taxon first described by Jones et al. (1931) as ‘Vibro jejuni’ 

from bovine intestinal contents. C. jejuni susp. jejuni usually occurs as commensal in a 

wide range of animals hosts, including chickens, cattle, pigs, sheep, dogs and ostriches 

(Skirrow, 1994c). Campylobacter lari was first isolated from gulls and distinguished 

from the morphologically similar species C. coli and C. jejuni by virtue of its resistance 

to nalidixic acid (Skirrow & Benjamin, 1980). The species are ecologically, 

phenotypically and genetically diverse. Strains have been isolated from the intestinal 

tract of wild birds, poultry, cattle, shellfish and untreated water (Skirrow, 1994b; 

Aarestrup et al., 1997). 

 

Genus Arcobacter  

In the late 1970s, Ellis and co-workers described spiral shaped bacteria which were 

isolated from aborted bovine and porcine foetuses (Ellis et al., 1977; Ellis et al., 1978). 

Their Campylobacter-like morphology, lack of fermentation activies, and rapid darting 

movement justified placement in the family Campylobacteraceae (Vandamme & Deley, 

1991; Euzeby, 1992; Vandamme et al., 1992a). In addition, the G + C content (29-34 

mol%) initially calculated was within the range of the genus Campylobacter (Neill et 

al., 1985). The genus name Arcobacter 'bow-shaped rod' was proposed, with A. 
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nitrofigilis as the type species and A. cryaerophilus and A. butzleri as additional species 

(Vandamme et al., 1991c). 

 

Members of the genus Arcobacter are described as aerotolerant Gram-negative curved 

rods, which are actively motile by means of a single unsheathed flagellum and grow 

under microaerophilic conditions (Neill et al., 1985). Arcobacter are able to grow in 

atmospheric oxygen at 15°C, which clearly differentiates them from Campylobacter 

(Boudreau et al., 1991). Similar to Campylobacter, Arcobacter species are 

metabolically inert, so few biochemical tests are available for differentiation. 

Phenotypic traits to differentiate species of Arcobacter (temperature dependent 

microaerophilic growth, catalase activity, nitrogen reduction, susceptibility to cadmium 

chloride, growth in the presence of 3.5% of NaCl and glycine, and growth on 

MacConkey agar) are limited (Neill et al., 1978; Kiehlbauch et al., 1991a; Vandamme 

et al., 1992d). A. cryaerophilus, the most heterogeneous of the recognized species of 

Arcobacter is generally described as catalase positive, variable in nitrate reduction, and 

unable to grow in 1.5% NaCl (Vandamme et al., 1992f). Currently, the genus 

Arcobacter consist of 9 species (Euzeby, 1997).  

 

Genus Helicobacter  

Marshall and Warren described spiral or curved bacilli isolated from human gastric 

mucosa (Marshall & Warren, 1984). The organism resembled Campylobacter in several 

respects, including curved morphology. Growth on rich media under micoaerophilic 

conditions, failure to ferment glucose, sensitivity to metronidazole and a G + C content 

of 34%. It was therefore first referred to as “pyloric Campylobacter” and later as 

Campylobacter pylori. After extensive analysis of the organism, major protein bands 

and fatty acids were different from those of Campylobacter species (Pearson et al., 

1984; Goodwin et al., 1989), subsequent 16S rRNA sequence analysis confirmed that 

C. pylori should be excluded from the genus Campylobacter (Romaniuk et al., 1987a). 

Thus, it was renamed Helicobacter pylori, the first member of the new genus 

Helicobacter (meaning ‘a spiral rod’) (Romaniuk et al., 1987b).  

 

Helicobacter are non-spore forming Gram-negative bacteria. The cellular morphology 

may be curved, spiral or fusiform, typically 0.2 to1.2 µm in diameter and 1.5 to 10.0 µm 

long. The spiral wavelength may vary with the age, the growth conditions, and the 
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species identity of the cells. In older cultures or those exposed to air, cells may become 

coccoid, the same is observed for Campylobacter and Arcobacter species. Helicobacter 

cells are motile, with a rapid cork screw like or slower wave like motion due to flagella 

activity. Strains of most species have bundles of multiple sheathed flagella with a polar 

or biopolar distribution. Other species have only a single polar or bipolar flagellum e.g. 

H. pullorum has nonsheathed flagella. The DNA G + C ratio of Helicobacter species 

generally ranges from 30 to 48 mol%. 

 

Genus Gallibacterium  

The family Pasteurellaceae Pohl 1981 was conceived to accommodate a large group of 

Gram-negative chemoorganotrophic, facultative anaerobic and fermentative bacteria 

including the genus Gallibacterium (meaning ‘bacterium of chicken’). The genus 

Gallibacterium was established in 2003 (Christensen et al., 2003e). Strains included in 

this genus were formerly classified as ‘Actinobacillus salpingitidis’, avian [Pasteurella] 

haemolytica-like organisms and [Pasteurella] anatis. After extensive analysis of these 

strains by DNA-DNA hybridization (Piechulla et al., 1985), rRNA-DNA hybridization 

(Deley et al., 1990) and 16S rRNA sequencing comparison (Dewhirst et al., 1993), a 

closer relationship was observed between ‘A. salpingitidis’, [Past.] haemolytica-like 

and [Past.] anatis. To date genus Gallibacterium consist of four recognised species 

Gallibacterium anatis, Gallibacterium melopsittaci, Gallibacterium salpingitidis, and 

Gallibacterium trehalosifermentans.  

 

All Gallibacterium species are Gram-negative, non-motile, rod-shaped or pleomorphic 

with cells occurring singly and in pairs. Colonies on bovine blood agar are mostly 

strong haemolytic, greyish, non-transparent, but eventually translucent at the periphery, 

with a butyrous consistency, smooth and shiny, circular, raised with an entire margin 

and 1-2 mm in diameter after 24-48 hrs. at 37 °C. Endospores are not formed. Growth is 

mesophilic and facultatively anaerobic or microaerophilic. Catalase, oxidase, and 

phosphatase positive, and nitrate is reduced (Christensen et al., 2003d). The type strain 

F149T (=ATCC 43329T =NCTC 11413T) of the type species is G. anatis, isolated from 

the intestinal tract of a duck. The G + C content range from 39.9 to 42.6 mol% and the 

genome size range from 1.6 to 2.1 GDa (Mutters et al., 1985; Piechulla et al., 1985). 

16S rRNA gene sequence similarities of 93.2-94.8% between G. anatis type strain and 

the other species within Gallibacterium genus were reported (Bisgaard et al., 2009)  
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However, 16S rRNA data indicated the existence of new Gallibacterium genomospecies 

1 and 2 within the Gallibacterium genus (Christensen et al., 2003f). In addition, 

Bisgaard et al. (2009) showed that 16S rRNA groups III (Gallibacterium 

genomospecies 3) and V (unnamed taxon group V) showed a maximum of 96.6% 

similarity with related taxa. Nonetheless, G. genomospecies 1 and 3 cannot be separated 

clearly from the other taxa by biochemical tests (Bisgaard et al., 2009).  

 

1.1.2. Human infections 
The thermophilic Campylobacter species, particularly C. jejuni, C. coli and C. lari, 

cause campylobacteriosis, the most common human bacterial diarrhoea worldwide. In 

2007, Campylobacter infections were the most frequently reported zoonotic disease in 

humans across the European Union with 200,507 cases (Figure 2). Epidemiological data 

suggest that contaminated products of animal origin, especially poultry, contribute 

significantly to campylobacteriosis (EFSA, 2009).  

 

 
Figure 2. The reported notification zoonoses rates in confirmed human cases in 

the EU, 2007. Source: European Food Safety Authority (EFSA); Trends and 

sources of zoonoses and zoonotic agents in the European Union in 2007.  
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In industrialised countries, infection by enteric Campylobacter usually manifests itself 

as inflammatory diarrhoea with severe cramping. The highest rate of infection is in 

young adults, and asymptomatic carriage is infrequent.  

 

In contrast, in less-well-developed countries there is a high rate of asymptomatic 

carriage, clinical symptoms are usually seen in children and non-inflammatory, watery 

diarrhoea is commonly observed (Wooldridge & Ketley, 1997).  

 

Some people may develop autoimmune diseases such as, Reactive Arthritis (Pope et al., 

2007), or Miller Fisher syndrome (Salloway et al., 1996) following campylobacteriosis. 

Whereas others may develop a rare disease called the Guillain-Barré syndrome (GBS), 

an acute inflammatory polyneuropathy, most frequently documented in association with 

Campylobacter jejuni (Nielsen et al., 2000) seen as complication in 1 of 1000 cases of 

campylobacteriosis. GBS affects the nerves of the body, beginning several weeks after 

the diarrhoeal illness, and that can lead to paralysis lasting for up to several weeks. 

Approximately 0.1% of campylobacteriosis cases develop into GBS after two to three 

weeks of infection (Rhodes & Tattersfield, 1982; Yuki, 1997; Spiller et al., 2000). C. 

fetus susp. fetus may cause diarrhoea, abortion, bacteraemia, endocarditis, and 

meningitis in humans (Farrugia et al., 1994; On et al., 1996). C. hyointestinalis subsp. 

hyointestinalis has been associated with sporadic (Edmonds et al., 1987) and outbreak 

(Salama et al., 1992) cases of diarrhoea in humans. 

 

Two Arcobacter species are frequently isolated in human clinical samples: A. butzleri 

and A. cryaerophilus, and are regarded as emerging food-borne pathogens (Vandamme 

et al., 1992b; On et al., 1995; Vandenberg et al., 2004; Prouzet-Mauleon et al., 2006). 

 

A zoonotic potential of Helicobacter pullorum is confirmed due to isolation of the 

organism from patients with enteritis and diarrhea (Stanley et al., 1994; Steinbrueckner 

et al., 1997; Casswall et al., 2010). The frequent finding of this microorganism on raw 

poultry suggests that it may be food-borne. H. pullorum may also be involved in 

pathogenesis of chronic liver and gallbladder disease in humans (Ananieva et al., 2002; 

Pellicano et al., 2004; Laharie et al., 2009; Casswall et al., 2010). 

 

The Gallibacterium species have no public health significance.
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1.1.3. Animal infections 

C. jejuni is mainly isolated from poultry and poultry products. The infection of poultry 

with C. jejuni is not associated with any obvious clinical signs (Zhang, 2008). However, 

C. jejuni has been occasionally associated with abortion in cattle and sheep (Anderson 

et al., 1983; Welsh, 1984; Varga et al., 1990; Campero et al., 2005; Sahin et al., 2007). 

Campylobacter coli were first isolated from pigs affected with infectious dysentery 

(Doyle & Hutchings, 1946; Doyle, 1948). It remains a frequently encountered species in 

pigs, although it is generally not thought to be a cause of disease in these animals. C. 

coli may also be found in cattle, poultry, ostriches and dogs. It is occasionally 

associated with hepatitis in birds (Stephens et al., 1998). C. fetus subsp. fetus may be 

found in the intestine of cattle and sheep. It is a recognized cause of sporadic abortion in 

these animals (Skirrow, 1994a). C. hyointestinalis subsp. hyointestinalis are 

predominantly of enteric origin, typified by strains originally isolated from the pig 

intestine (Gebhart et al., 1983). C. hyointestinalis subsp. hyointestinalis has since been 

found in healthy (Atabay & Corry, 1998) and diarrhoetic (Diker et al., 1990) cattle.  

 

Arcobacter spp. have been frequently isolated from foods of animal origin, in particular 

A. butzleri, are more frequently isolated from poultry (Rinsoz et al., 2009; Collado & 

Figueras, 2011). Arcobacter are recovered from abortions and enteritis in livestock 

(Vandamme et al., 1992c; On et al., 2002). A. cryaerophilus are recovered from aborted 

litters, the genital tract of sows, the prepuce of boars, and more often from infertile sows 

with vaginal discharge than from normal animals (Wesley, 1997; deOliveira et al., 

1997).  

 

Enterohepatic H. pullorum has been isolated from the ceca and feces of subclinically 

infected chickens, as well as from the livers and intestinal contents of laying hens with 

vibrionic hepatitis (Stanley et al., 1994; Zanoni et al., 2007). High prevalence of H. 

pullorum has been reported in conventional and organic broiler farms but significantly 

less in free-range broiler farms (Manfreda et al., 2011). Recently, H. pullorum has been 

reported to colonize intestines in turkeys (Zanoni et al., 2010). H. pamatensis has been 

isolated from bird feces, but it is of unknown pathogenicity (Dewhirst et al., 1994). 
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Gallibacterium anatis is a common organism of the upper respiratory and lower genital 

tract of poultry (Bisgaard, 1977; Mushin et al., 1980). The bacterium has been reported 

worldwide from a broad host range among farmed and wild birds. It is potentially 

pathogenic for poultry and is mainly associated with lesions in the reproductive tract, 

including the ovary (Gerlach, 1977; Bisgaard & Dam, 1981; Neubauer et al., 2009). 

Gallibacterium spp. were reported to be prevalent in the Danish chicken production 

systems that were characterized as having low to moderate biosecurity levels (Bojesen 

et al., 2003b). Disease associated with this microorganism is related to decreased egg 

production and occasionally an increase in mortality. The pathogenic G. anatis isolates 

have the ability to lyse red blood cells (Christensen et al., 2003c) and produce 

haemolysin, which is a type of RTX-toxin called GtxA (Kristensen et al., 2010). 

 

1.1.4. Review of selected identification methods  
Bacterial classifications prior to 1960’s were predominantly based on cell morphology, 

growth requirements, biochemical and immunological tests. Phenotypic tests remain a 

commonly used approach to identify bacteria, however inconsistency of phenotypic 

profiles and similar phenotypic characters, prevent accurate identification. Accurate 

identification of a strain is essential to facilitate effective clinical management, estimate 

the prevalence of a given species, or as a precursor to the effective performance and 

evaluation of various analyses. Identification involves the comparison of data obtained 

for an unknown strain with those of known taxa. An isolate is identified when 

phenotypic (e.g. biochemical tests, fatty acid or protein profiles) or genotypic (e.g. DNA 

fingerprinting, sequencing, PCR primers) data matches that determined for a defined 

taxon to an acceptable level. The efficacy of a given method depends on fundamental 

knowledge of the level of diversity that may be encountered for a particular analyte in a 

given taxon. Inadequate consideration of species diversity can result in strain 

misidentification and, if such misidentified strains are subsequently presented as novel 

taxa, the potential for error in future studies increases. 

 

Campylobacter, Arcobacter and Helicobacter species 

The clinical and economic importance of Campylobacter, Arcobacter, and Helicobacter 

species coupled to their taxonomic complexity has led to a wide range of phenotypic 

and genetic methods being developed to identify them. Most routine laboratories use 
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biochemical tests for identifying and differentiating members of Campylobacter, 

Arcobacter and Helicobacter genera, based on various schema (On, 1996c; On, 2001). 

Identification of all members by traditional means is hampered by difficulties in 

isolation, culture and weak reactions toward some of the phenotypic tests used for 

identification. 

 

Whereas Arcobacter strains can be differentiated from thermophilic Campylobacter and 

Helicobacter strains by their ability to grow in air and at low temperature, there are no 

clear biochemical characteristics to separate most members of the genus Helicobacter 

from the genus Campylobacter. Helicobacter pullorum bears a closer resemblance to 

certain Campylobacter species notably Campylobacter lari and Campylobacter coli 

(Steinbrueckner et al., 1997). A commercial Campylobacter identification kit (API 

Campy; API Biomérieux Ltd., France), compromises 21 tests and 18 taxa, has been 

reported to misidentify Arcobacter butzleri as Arcobacter cryaerophilus or Helicobacter 

cinaedi (Jacob et al., 1993), and problems in identifying certain C. coli and C. lari 

strains (Huysmans et al., 1995; Reina et al., 1995). In addition, not all species are 

included in this system e.g. H. pullorum. 

 

Other phenotypically based methods, such as cellular fatty acid profiling and 

immunodiffusion, show similar problems in distinguishing certain groups (On, 1996b). 

Although DNA-DNA hybridization is generally considered the reference method, it is 

not practical to implement this technique in a routine laboratory or to examine large 

numbers of strains in a reference laboratory. The fastidious growth characteristics of 

many Helicobacter species hamper the isolation of sufficient quantities of highly 

purified high molecular weight DNA required for DNA-DNA hybridization. The 

present definition of a bacterial species is empirically based, ‘The phylogenetic 

definition of a species generally would include strains with approximately 70% or 

greater DNA-DNA relatedness and with 5°C or less ΔTm’ (Wayne et al., 1987), and 

genus ‘those species which are linked by DNA homology above 55% represent a genus’ 

(Mutters et al., 1985). 

 

The closest genetic relative to C. jejuni is C. coli, with which DNA-DNA hybridization 

values of 21-63% have been described (Harvey & Greenwood, 1983; Vandamme et al., 

1997b). These two species have a similar host range, are phenotypically homogeneous 
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and differentiation between the two is problematic. The most common test from this 

purpose is hippurate hydrolysis, in which C. coli gives a negative result. However, with 

atypical hippurate-negative strains of C. jejuni essentially indistinguishable from those 

of C. coli in routine laboratories (Morris et al., 1985). Additional tests such as growth 

on a minimal medium and alpha-haemolytic activity may be of some use but require 

stringent standardization and, like hippurate hydrolysis, do not provide unequivocal 

discrimination (On, 1996a). The 16S rRNA gene sequences of these taxa are highly 

similar (Alderton et al., 1995; Vandamme et al., 1997a). 

 

The biochemical and physiological properties of 90 aerotolerant Campylobacter strains 

were examined by Neill and co-workers (Neill et al., 1978). They proposed a single 

name, Campylobacter cryaerophila, for the organisms which were isolated from 

reproductive tracts and aborted foetuses of several species of farm animals, from animal 

faeces, and from the milk of cows with mastitis (Neill et al., 1978). After an extensive 

DNA-DNA hybridization study and phenotypic analysis of atypical C. cryaerophila 

strains, a separate species “Campylobacter butzleri” that exhibited a level of DNA 

homology with C. cryaerophila of approximately 40% was proposed (Vandamme et al., 

1991b; Kiehlbauch et al., 1991b). Partial 16S rRNA sequence analysis showed that C. 

cryaerophila and C. nitrofigilis exhibited a 68% homology with other Campylobacter 

and 87% homology with each other (Thompson et al., 1988). Therefore, Arcobacter as 

new genus was proposed. Arcobacter nitrofigilis the nitrogen-fixing commensal of 

plants is the type species and exhibits an 86.9% 16S rRNA sequence homology with 

other species of Arcobacter (Mcclung et al., 1983; Vandamme et al., 1991a; Vandamme 

et al., 1992e). 

 

PCR-based assays involve the amplification of specific DNA segments by annealing 

complementary primer sequences in either side of the target DNA region and 

subsequently synthesizing the DNA sequence in between by use of a DNA polymerase. 

In principle, the amplification process allows for a high level of sensitivity since very 

low levels of target DNA can be replicated at an exponential rate, and the PCR assay 

can be designed with almost any level of specificity in mind. Sequence specific to 

genera, species, subspecies or even strain level can be targeted and amplified by PCR. 

However, in order to design a PCR assay sequence data must be available and the most 

 10



Introduction 

frequently used target for the design of species-specific test is the 16S rRNA gene and 

also widely used 23S rRNA gene.  

 

Variation in the rRNA gene can be unpredictable and may affect the security of any 

identification on which it is based. Intervening sequences (IVSs) have been detected in 

16S and 23S rRNA of some Campylobacter, Arcobacter and Helicobacter species 

(Linton et al., 1994b; Dewhirst et al., 2005; Tazumi et al., 2009; Douidah et al., 2010). 

Intervening sequences may vary considerably in size (range presently 37-377 bp) and 

base composition, and are not always found in every copy of the rRNA operon (Linton 

et al., 1994a; Harrington & On, 1999c).  

 

Intervening sequences pose problems for conventional PCR and PCR-RFLP assays. 

Their insertion into a primer annealing site will result in a false-negative result; 

insertion between the primer binding sites may alter the size of the detected product. 

Where molecular size is a key or characteristic feature, this can prove confusing or 

misleading. Since existing PCR-RFLP identification assays are designed only from 16S 

or 23S rRNA sequence data, and require the amplification of a much larger part of these 

genes, they tend to be more susceptible to IVS phenomena. If the IVS itself contains a 

site recognized by one of the restriction enzymes in the scheme, then the problem 

becomes even more complex.  

 

Intervening sequence elements do not represent the only means by which rRNA genes 

may exhibit diversity. In some species, the level of sequence variation between strains 

can be extensive and not restricted to a specific region of the gene. At present, C. 

hyointestinalis (Harrington & On, 1999d) are known to exhibit such extensive variation 

in their 16S rRNA genes that similarities as low as 95.7% have been described between 

strains of the same species (Harrington & On, 1999b). Divergence in a primer annealing 

site has the potential to cause a false-negative result. Harrington and On (1999a) noted 

that variance in the 16S rRNA gene of C. hyointestinalis had the potential to affect 

binding of the forward primer of a PCR identification assay for this species (Linton et 

al., 1996). Ribosomal RNA gene sequence conservation between closely related species 

also presents a problem. It is well established that the taxonomic resolution of the 16S 

rRNA gene can be inadequate for delineating closely related species (Stackebrandt & 

Goebel, 1994).  
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Multilocus sequence typing (MLST), in principle, is a technique for typing of multiple 

loci, using the DNA sequences (450-500 bp) of usually seven conserved housekeeping 

genes, which encode essential proteins (Maiden et al., 1998). MLST is used to 

investigate the intraspecies population structure, and such investigations have been 

performed with few Campylobacter, Arcobacter and Helicobacter species (Dingle et 

al., 2001; Raymond et al., 2004; Miller et al., 2009). A major strength of MLST is that 

unambiguous, portable data are generated that can easily be compared among 

laboratories (Aanensen & Spratt, 2005). However, to choose the right primers for 

MLST analysis, some knowledge of the bacterial genetic background is required. MLST 

appears best in population genetic study but it is expensive. Due to the sequence 

conservation in housekeeping genes, MLST sometimes lacks the discriminatory power 

to differentiate bacterial strains, which limits its use in epidemiological investigation 

(Cai et al., 2002).  

 

Genus Gallibacterium  

Identification of Gallibacterium is at present best performed through phenotypic 

characterisation outlined by Christensen et al. (2003b). However, identification of all 

members is hampered by difficulties in isolation, culture and weak reactions toward 

some of the phenotypic tests used for identification. In addition, it is difficult to separate 

the non-haemolytic isolates from Avibacterium gallinarum, whereas separation of 

haemolytic isolates from other taxa (e.g. haemolytic Actinobacillus sp.) is less 

problematic. The genus Gallibacterium can be separated from other genera of 

Pasteurellaceae by differences in 14 parameters, however, separation from avian 

members of Pasteurella sensu stricto is only possible at the species level by at least two 

characters (Christensen et al., 2003a). Gallibacterium anatis have been misclassified as 

Pasteurella multocida since ornithine decarboxylase and indole negative isolates of P. 

multocida subsp. septic have the same phenotype (Bojesen et al., 2007).  

 

The fluorescent in situ hybridization technique (FISH) based on fluorescent material-

labelled oligonucleotides complementary to bacteria 16S rRNA was shown to identify 

the genus Gallibacterium in both culture and tissue samples by the use of the 

Gallibacterium genus specific probe, GAN850 (Bojesen et al., 2003a). This means that 

this method can only differentiate Gallibacterium from non-Gallibacterium species. 
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Gallibacterium has a relatively short internal transcribed 16S to 23S rRNA gene 

sequence compared to other members of Pasteurellaceae, this principle was used in the 

Gallibacterium PCR (Bojesen et al., 2007). At the time of PCR development, only one 

recognised species (G. anatis) and one suggested species G. genomospecies 1 was 

included in the Gallibacterium genus. The PCR identifies Gallibacterium strains and 

differentiates them from other genera within Pasteurellaceae. 

 

Amplified fragment length polymorphism (AFLP) was first described in 1995 as a 

powerful DNA fingerprinting technique that incorporates aspects of PCR and RFLP 

(Vos et al., 1995). AFLP is advantageous because it can be used to type organisms for 

which very little or no sequence data are available. Bojesen et al. (Bojesen et al., 2003c) 

showed that the AFLP typing method is useful for distinguishing individual but closely 

related Gallibacterium anatis clones, thus enabling recognition of specific pathogenic 

clonal lineages.  

 

1.2. Microorganism identification by MALDI-TOF MS 

The idea of rapid microorganism identification using matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI MS) dates back to the mid 1990s. 

However, since the 1970s laser irradiation is used to generate ions for mass 

spectrometric analysis (Vastola et al., 1970; Hillenkamp et al., 1975; Posthumus et al., 

1978). Laser desorption ionisation (LDI) is based on the direct energy transfer to the 

sample by absorption of the analyte molecule. Due to the different spectral absorptions 

at the applied laser wavelength, only highly absorbing molecules could be detected, 

whereas ionization of none or less absorbing molecules was accompanied by extensive 

fragmentation. Moreover, the thermal degradation did not allow desorption and 

ionization of larger molecules as intact entities, therefore the accessible molecular mass 

range of LDI was below 2 kDa.  

 

In the 1980s, Karas and Hillenkamp (1988) as well as Tanaka (1988) were able to 

overcome these limiting factors by embedding the analyte molecules into a highly UV 

absorbing matrix. Using the matrix as energy mediator controllable and efficient energy 

transfer was obtained and thermal degradation of the analyte molecules caused by 
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excessive energy could be avoided, mainly due the short time frame (low picoseconds 

range) of the laser pulse.  

 

 
Figure 3. MALDI-TOF MS sample ionization 

 

Since the introduction of MALDI-MS, numerous matrix compounds were investigated. 

Beside universal characteristics, low molecular weight, lack of chemical reactivity, 

solubility in analyte compatible solvents and vacuum stability, MALDI matrices 

provide several essential functions (Dreisewerd, 2003). The most important one is the 

high spectral absorption of the existing laser wavelength, allowing controllable and 

efficient energy transfer to the analyte and thus optimizing desorption/ionization 

process. Furthermore, the matrix separates the analyte molecules preventing analyte 

aggregation and clustering (Figure 3). The analyte as well as the matrix substance are 

dissolved in identical or at least compatible solvents and in proportion, so that, 

homogeneous distributed matrix/analyte crystal layers are formed, hence, reproducible 

mass spectra. After successful desorption and ionization of the analyte, the ions have to 

be accelerated and separated by a mass analyzer. Mass analysis by TOF analyzer is 

based on the fact that the time the ions need to pas the drift tube and reach the detector 

is directly correlated with their mass to charge (m/z) ratio.  

 

A TOF spectrum is obtained by recording the signal intensity as a function of time. 

MALDI MS mostly provides singly charged ions facilitating data interpretation over 

wide mass range, thus m/z information can be obtained relative easily. Furthermore, it 
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offers a high tolerance against salts and detergents as well as speed, accuracy and the 

possibility of automation. 

 

 
Figure 4. Bruker Ultraflex TOF/TOF II  

 

Nowadays this technique, called vacuum matrix-assisted laser desorption/ionization 

mass spectrometry (MALDI MS), is widely used for the characterization of 

biopolymers, proteins and peptides (Hillenkamp et al., 1991; Chaurand et al., 1999). As 

well as oligosaccharides (Dell & Morris, 2001; Harvey, 2008), synthetic polymers 

(Bahr et al., 1992; Nielen, 1999; Montaudo et al., 2006), nucleic acids (Kirpekar et al., 

1995), and, profiling and imaging mass spectrometry of tissue sections (Chaurand et al., 

2006; Reyzer & Caprioli, 2007; Cornett et al., 2007).  

 

For fast microorganism identification using MALDI MS numerical methods are 

developed, these methods rely on some sort of database to which an unknown sample 

can be compared e.g. (1) a library of MALDI MS signatures constructed from spectra of 

known sample, (2) a library of proteins generated from one of the publicly available 

genomic and/or proteomic databases. An unknown sample spectrum is compared to 

signatures in the reference library, and a score for each comparison is generated. The 

sample contents are identified based on the score.  

 

Recently, MALDI-TOF MS was reported as emerging technology for identification of 

bacteria (Claydon et al., 1996; Grosse-Herrenthey et al., 2008), fungi (Marklein et al., 
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2009; De Respinis et al., 2010), viruses (Luan et al., 2009; La Scola et al., 2010), 

insects (Perera et al., 2005b), and nematodes (Perera et al., 2005a).  

 

The application of MALDI-TOF MS for bacteria identification has led to numerous 

encouraging results. Different species of bacteria yield mass spectra that display 

considerable variations (Holland et al., 1996; Arnold & Reilly, 1998; van Baar, 2000). 

Bacteria of the same genus but different species exhibit mass spectra having both 

similarities and differences, just as one might anticipate in a fingerprinting method.  

 

The drawback of MALDI-TOF MS is the requirement of pure bacterial cultures before 

any steps are taken for identification. Individual bacteria must generally be isolated 

from other cells and grown for one to five days to obtain pure cultures before 

identification, usually performed on selective media (e.g. modified charcoal 

cefoperazone deoxycholate agar (mCCDA) is used to isolate Campylobacter species). 

The traditional bacteriological techniques of streaking agar plates and serial dilution of 

liquids are still extremely useful for obtaining pure cultures. Because the time required 

for growth of pure cultures delays identification, serological and molecular techniques 

that bypass this step are often employed. 
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Aim of this thesis 

2. Aim of this thesis 
The aim of this PhD thesis was to apply matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS) to certain bacteria recognized as 

human and/or animal pathogens. That is to establish a reference database enabling the 

correct identification and characterization of clinical samples. 

 

Members of the following four genera: the closely related genera Campylobacter, 

Arcobacter and Helicobacter and furthermore the recently established genus 

Gallibacterium were characterized by MALDI-TOF MS. The main focus of the present 

study was the rapid and accurate identification and differentiation of species belonging 

to the four genera mentioned above, with applications in clinical diagnostics. Moreover, 

the ability of MALDI-TOF MS to be used in typing of defined bacterial population in 

comparison to genotypic methods, for enabling strain-specific identification. The 

overall efficacy of whole-cell MALDI-TOF MS methods for taxonomic classification 

can be judged based on comparison with accepted methods, thus, in each case the 

results of MALDI-TOF MS were compared to results obtained by additional molecular 

methods. 

 

Bacteria respond rapidly to environmental changes. Changes in cellular processes occur 

very soon after changes when cells are stored, handled or cultured over different time 

periods prior to analysis. These changes result in rapid change in the protein profile. 

Thus, reproducibility of MALDI-TOF MS results were evaluated in response to 

different growth as well as storage conditions of bacteria, which are relevant in a 

diagnostic laboratory. Furthermore, because much smaller differences are anticipated at 

the strain level, strain level differences and spectral reproducibility have received much 

attention in order to generate reliable results. 
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Publications 

3. Publications 
The results and discussion of this thesis consists of three manuscripts focusing on the 

application of MALDI-TOF MS to certain bacteria recognized as human and/or animal 

pathogens. A number of important issues relevant in clinical diagnostics were 

addressed.  

 

3.1. Species-specific identification and differentiation of Arcobacter, Helicobacter 

and Campylobacter by full-spectral matrix-associated laser 

desorption/ionization time of flight mass spectrometry analysis 

 

Manuscript published in Journal of Medical Microbiology, 2010, (IF 2.272) 

 

 

3.2. Identification of Gallibacterium species using matrix-assisted laser 

desorption ionization-time-of-flight mass spectrometry analysed by 

multilocus sequence analysis  

 

Manuscript submitted  

 

3.3. MALDI-TOF MS reveals different clonal lineages of Gallibacterium anatis 

within a defined population 

 

Manuscript in preparation 

 

33 
 



 

 



Publication 3.1 

3.1. Species-specific identification and differentiation of Arcobacter, 
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Publication 3.1 
 

Summary 
Rapid and reliable identification of Arcobacter and Helicobacter species and their 

distinction from phenotypically similar Campylobacter species has become increasingly 

important, since many of them are now recognised as human and/or animal pathogens. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) has been shown to be a rapid and sensitive method for characterisation of 

microorganisms. In this study, we therefore established a reference database of selected 

Arcobacter, Helicobacter and Campylobacter species for MALDI-TOF MS 

identification. Besides the species with significance as food-borne pathogens - 

Arcobacter butzleri, Helicobacter pullorum, Campylobacter jejuni and Campylobacter 

coli- several other members of these genera were included in the reference library to 

determine the species specificity of the designed MALDI Biotyper reference database 

library. Strains that made up the reference database library were grown on Columbia 

agar and yielded reproducible and unique mass spectra profiles, which were compared 

with the Bruker Biotyper database, version 2. The database was used to identify 144 

clinical isolates using whole spectral profiles. Furthermore, reproducibility of MALDI-

TOF MS results was evaluated in respect to age and/or storage of bacteria and different 

growth media. It was found that correct identification could be obtained even if the 

bacteria are stored at room temperature or at + 4°C up to 9 days until being tested. In 

addition, bacteria were correctly identified when grown on Campylosel-agar, however 

not when grown on modified charcoal cefoperazone deoxycholate agar. These results 

indicate that MALDI-TOF MS fingerprinting is a fast and reliable method for the 

identification of Arcobacter and Helicobacter species and their distinction from 

phenotypically similar Campylobacter species, with applications in clinical diagnostics.  
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Introduction 
Identification of species belonging to the Arcobacter, Helicobacter and Campylobacter 

genera has become increasingly important, since many of them are recognised as human 

and/or animal pathogens. Arcobacter butzleri was found to be the fourth most 

frequently isolated Campylobacter-like organism in human clinical samples, before C. 

lari but after C. jejuni, C. coli, and C. fetus in Belgium and in France (Vandenberg et 

al., 2004; Prouzet-Mauleon et al., 2006). On several occasions, Helicobacter pullorum 

has been isolated from poultry (Atabay et al., 1998; Neubauer & Hess, 2006b; Zanoni et 

al., 2007; Ceelen et al., 2007). A number of research groups have associated H. 

pullorum with gastroenteritis, diarrhoea, and liver and gall bladder disease in human 

patients (Stanley et al., 1994; Young et al., 2000; Rocha et al., 2005; Castera et al., 

2006). For H. pullorum there is a lack of phenotypic identification methods and as a 

result, this bacterium is commonly misidentified as thermophilic Campylobacter 

(Atabay et al., 1998; Kuijper et al., 2003). C. jejuni is the leading cause of bacterial 

gastroenteritis in developed countries (EFSA, 2005). In humans the majority (97%) of 

food-borne diseases can be attributed to animals farmed for meat, especially poultry 

(Wilson et al., 2008).  

 

Various molecular DNA-based methods for the identification of Arcobacter, 

Helicobacter and Campylobacter species have been developed. These methods typically 

require the use of several species-specific PCR primers, hybridisation probes, or 

multiple restriction enzymes and are usually not designed to differentiate all known 

species simultaneously (Bohr et al., 2002; Jauk et al., 2003; Neubauer & Hess, 2006a; 

Wilson et al., 2008). Bacterial identification by MALDI-TOF MS is based on 

generating complex fingerprints of biomarker molecules by measuring the exact ratio 

mass/charge of peptides and proteins (Claydon et al., 1996; Suh & Limbach, 2004b). A 

number of species from the Campylobacter genus (Mandrell et al., 2005; Kolinska et 

al., 2008) have been characterised by MALDI-TOF MS. In addition, Helicobacter 

pylori and Helicobacter mustelae were analysed by MALDI-TOF MS (Winkler et al., 

1999), but not Helicobacter pullorum and Helicobacter pamentensis. So far, no study 

applying MALDI-TOF MS based on the same sample preparation, technology and 

using whole spectral profile to differentiate potentially confounding Arcobacter and 
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Helicobacter species together with phenotypically similar Campylobacter species is 

reported.  

 

In this study, we established a reference database of selected Arcobacter, Helicobacter 

and Campylobacter. The second objective was to use the reference database to identify 

144 clinical isolates and compare the results to molecular method. The third objective 

was to evaluate the reproducibility using different growth media and age of bacteria that 

are relevant in a diagnostic lab.  

 

Methods 

Bacterial strains 

For establishing the database library, reference strains were obtained from the National 

Collection of Type Culture (NCTC), and from the American Typing Culture Collection 

(ATCC). Preliminary work was done first on Campylobacter jejuni NCTC 12744, 

Arcobacter butzleri NCTC 12481 and Helicobacter pullorum ATCC 51801 to optimise 

the method. For standardising the culture method all bacteria were grown on Columbia 

agar (COS) containing 5 % sheep blood (BioMerieux, Vienna, Austria), at 42°C for 48 

hours under microaerobic conditions (GENbox microaer, BioMerieux, Vienna, Austria). 

In addition, bacteria were grown on Campylosel-Agar (CAM, BioMerieux, Vienna, 

Austria) and on modified CCD agar (mCCDA, blood-free agar base with cefoperazone 

32 mg/l and amphotericin at 10 mg/ml, Oxoid, Cambridge, UK) for reproducibility 

testing. Escherichia coli strain DH5 alpha (Invitrogen) was grown on COS agar at 37 °C 

for 24 hours.  

 

Reference strains used in this study to generate the database library are listed in Table 1 

including their origin, species and other information, used in this study to generate the 

database library. The reference library was then used to identify 144 clinical isolates 

that were obtained from humans, environment and from different farm animals but 

mostly poultry (Table 2).  

 

PCR-RFLP analyses  

To identify the clinical isolates by molecular methods, the protocol of Jauk et al. (2003) 

was followed. Briefly, the isolates were examined by polymerase chain reaction-
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restriction fragment-length polymorphism (PCR-RFLP). PCR based on the 16S rRNA 

gene of the genera Arcobacter, Helicobacter and Campylobacter amplified a 1216-bp 

fragment. The amplicons were digested with the restriction enzymes RsaI and EcoRV. 

Additional differentiation was obtained using PCR assay based on the hippuricase gene 

(Marshall et al., 1999). 

 

Table 1. Reference strains used to establish the referenced database for MALDI-TOF 

MS based species identification. 

Designation Genus Species Subspecies Origin 

NCTC 12145 Campylobacter jejuni jejuni human 

NCTC 12744 Campylobacter jejuni jejuni contaminated milk 

ATCC 700819 Campylobacter jejuni jejuni human faeces 

NCTC 12143 Campylobacter coli  no information given 

NCTC 12144 Campylobacter lari  child with mild diarrhoea 

NCTC 11458 Campylobacter lari  child with mild diarrhoea 

ATCC 35217 Campylobacter hyointestinalis  
swine with proliferative 
enteritis 

NCTC 10842 Campylobacter fetus fetus brain of sheep fetus 

NCTC 12481 Arcobacter butzleri  human faeces 

ATCC 49616 Arcobacter butzleri  human faeces 

ATCC 49942 Arcobacter butzleri  no information given 

ATCC 49615 Arcobacter cryaerophilus  human blood 

ATCC 51400 Arcobacter skirrowii  cow (abomasitis) 

ATCC 51801 Helicobacter pullorum  asymptomatic broiler chicken

ATCC 51802 Helicobacter pullorum  human faeces 

ATCC 51478 Helicobacter pamentensis  tern 

DH5 alpha Escherichia coli   
 

Sample preparation for MALDI-TOF MS analysis 

A single colony-forming unit was removed from the agar plates using an inoculating 

loop and the material was placed in a vial containing 300 μl MilliQ purified water to 

suspend the bacteria. To inactivate the bacteria, 900 μl of absolute ethanol was added to 

the vial. After centrifugation for 2 min at 20,000×g the supernatant was removed. 

Afterwards, a second centrifugation step was done to remove EtOH completely. For cell 

wall disruption, 50 μl of formic acid (70 %) was added to the pellet and thoroughly 

mixed. Subsequently, 50 μl acetonitrile were added for protein extraction. After a 

centrifugation for 3 minutes at 20,000×g, 1 μl of the supernatant containing the bacterial 
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extract was transferred to a sample position of a ground/polished steel MALDI target 

plate and allowed to dry at room temperature. Each sample was spotted six times onto 

the MALDI target plate to test technical replication. Then, the sample was overlaid with 

2 μl of matrix (alpha-cyano-4-hydroxycinnamic acid in 50 % acetonitrile/2.5 % trifluor 

acetic acid) and dried again. All steps were performed at room temperature. 

 

MALDI-TOF MS parameters 

Mass-spectra were collected using Ultraflex II MALDI-TOF/TOF mass spectrometer 

(Bruker Daltonik GmbH, Leipzig, Germany) in linear mode i.e. using a mass range of 

2,000 to 20,000 Dalton (parameter setting: IS1 20.0 kV, IS2 18.7 kV, lens 6.25 kV, 

detector gain 1634 V). Five hundred single spectra (10 × 50 laser shots) were 

summarised with a 50 Hz nitrogen laser for each sample. The instrument was externally 

calibrated with the Escherichia coli strain DH5 alpha ribosomal proteins e.g. RL36 

4364.3 m/z, RS32 5095.8 m/z, RS34 5380.4 m/z, RS33meth. 6254.4 m/z, RL29 7273.5 

m/z, and RS19 10299.1 m/z. 

 

Data visualization and analysis 

Each individual spectrum was scrutinised by eye in the flexAnalysis software 3.0 

(Bruker Daltonik) and atypical spectra were excluded from further analysis (e.g. flat line 

spectrum, spectrum containing high matrix background signal). A reference database 

library was established for MALDI-TOF MS-based species identification following the 

manufacturer’s recommendations for Ultraflex measurement and MALDI Biotyper 1.1 

software package (Bruker Daltonik). In brief, for each database entry, at least 30 

individually measured mass spectra fingerprints were imported into the MALDI 

Biotyper 1.1 software. Eight independent measurements (i.e. bacteria were grown at 

eight different times over the course of three months and subsequently measured) were 

obtained at six different spots, each. After smoothing, baseline correction, and peak-

picking, the resulting peak lists (up to 70 peak masses) were used by the program to 

calculate and to store a main spectrum containing the information about average peak 

masses, average peak intensities and peak frequency.  

 

Species identification of clinical isolates by MALDI-TOF MS 

The MALDI-TOF MS reference database was used to identify and differentiate 144 

clinical isolates. For correct identification of species, a generated peak list was matched 
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against the established reference library using the integrated pattern-matching algorithm 

of MALDI Biotyper 1.1 software. Briefly, the software calculates log(score) values, that 

is, a log(score) between 1.7 and 2.0 represents genus identification. Log(score) value of 

≥ 2.0 represents an identification at species level. Anything less then 1.7 log(score) was 

rated as not identifiable by the software. 

 

MALDI-TOF MS reproducibility test 

To test reproducibility of MALDI-TOF MS-based species identification, 15 field strains 

were selected randomly and their reproducibility of spectra under different conditions 

were tested. At first, bacteria were grown on COS agar for 48 hours at 42°C. 

Subsequently they were stored for 2, 4, 6 and 9 days at room temperature (20°C) and at 

4°C to see if age and/or storage conditions of bacteria have an influence on the results. 

Secondly, these selected strains were grown for 48 hours at 42°C on CAM and mCCD 

agars that are regularly used to isolate such bacteria. 

 

Results and Discussion 
Detection and characterisation of infectious microorganisms in a reasonably fast and 

reliable manner from biological and environmental samples has a high priority. The 

genera Arcobacter, Helicobacter and Campylobacter belong to the rRNA superfamily 

VI. The differentiation between members of these three genera is challenging, 

particularly when employing biochemical tests as the sole criterion due to the 

inconsistency of the phenotypic profiles observed among strains (On, 1996). To 

overcome the problems related to classical phenotypic species identification methods, 

this study evaluated the capability of MALDI-TOF MS to differentiate and identify 

these species. For comparison, PCR-RFLP a classical genotypic method was chosen to 

characterise clinical strains.  

 

MALDI-TOF MS reference database was established with 16 well-characterised culture 

collection strains from different sources representing 10 different species of Arcobacter, 

Helicobacter and Campylobacter. These species yielded reproducible and unique mass 

spectral profiles, which were compared with Bruker Biotyper database, version 2. 

However, Bruker Biotyper database version 2, did not contain spectra from 

Helicobacter pamentensis, as a results this bacteria did not match with any other spectra 
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in the database. Therefore, H. pamentensis mass spectral profile is unique. All reference 

strains used represented the majority of clinical relevant species from the three genera. 

In addition, Escherichia coli DH5 alpha spectra were included in the reference database 

library.  

 

The most common Arcobacter species were analyzed, namely A. butzleri, Arcobacter 

skirrowii and Arcobacter cryaerophilus (Figure 1). Interestingly, mass signal patterns of 

A. cryaerophilus and A. skirrowii as well as A. butzleri and A. skirrowii shared a number 

of common mass peaks that were 100 % frequent (in 135 spectra). Mass signal patterns 

of A. cryaerophilus were completely different to A. butzleri. However, the spectra of 

this A. cryaerophilus were found to have a number of small peak-shifts compared to the 

A. cryaerophilus type-strain in Bruker Biotyper database, version 2. As a result, our 

reference A. cryaerophilus strain mass spectra profile did not reliably match the Bruker 

A. cryaerophilus type-strain. This confirms the need to have a number of different 

strains of the same species coming from different sources in the reference databank for 

correct identification. 

 

 

Figure 1. MALDI-TOF mass spectrometric profiles obtained from the analysis 

of A. butzleri (A), A. skirrowii (B) and A. cryaerophilus (C). The relative 

intensities of the ions are shown on the y axis, and the masses (in Da) of the ions 

are shown on the x axis. The m/z value stands for mass to charge ratio. For a 
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single positive charge, this value corresponds to the molecular weight of the 

protein.  

 

Similarly, the two Helicobacter species, Helicobacter pullorum and Helicobacter 

pamentensis (Figure 2), had very different mass signal patterns and thus can easily be 

discriminated. Finally, five species from the genus Campylobacter widely found as 

human and/or animal pathogens were analysed, C. jejuni, C. coli, C. lari, 

Campylobacter hyointestinalis and C. fetus. Representative fingerprint mass spectra 

clearly demonstrate that all five species produced unique molecular profiles and can be 

easily differentiated (Figure 3). Within the species fingerprints, it was observed that for 

thermophilic Campylobacter (i.e. C. jejuni, C. coli and C. lari) the mass signal patterns 

were very different to the non-thermophilic Campylobacter (i.e. C. fetus and C. 

hyointestinalis). Therefore, the 10 species can be easily discriminated by means of a 

direct comparison of the whole mass spectra fingerprints. 

 

 

Figure 2. MALDI-TOF mass spectrometric profiles obtained from the analysis 

of H. pullorum (A) and H. pamentensis (B). The relative intensities of the ions 

are shown on the y axis, and the masses (in Da) of the ions are shown on the x 

axis. The m/z value stands for mass to charge ratio. For a single positive charge, 

this value corresponds to the molecular weight of the protein.  
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Figure 2. MALDI-TOF mass spectrometric profiles obtained from the analysis 

of C. jejuni (A), C. coli (B), C. lari (C), C. fetus (D) and C. hyointestinalis (E). 

50S ribosomal L29 protein “biomarker” (*). The relative intensities of the ions 

are shown on the y axis, and the masses (in Da) of the ions are shown on the x 

axis. The m/z value stands for mass to charge ratio. For a single positive charge, 

this value corresponds to the molecular weight of the protein.  

 

Different mass spectrometric methods for analysing whole bacteria cells for intact 

proteins including the identification of one or few specific protein biomarker ions, have 

been reported. Mandrell et al. (2005) focused on Campylobacter “species-identifying” 

biomarker ions (SIBS) using MALDI-TOF MS and reported that there were SIBS types 

associated with source. In addition, biomarker ions in the 9 to 14 kDa range were 

reported to be diagnostic of Campylobacter species. However, one of the biomarkers 

(7,035 Da see Figure 3 (*)) published by Mandrell et al. (2005), was found to be 100 % 

frequent (in 211 spectra) for thermophilic Campylobacter but not observed in non-

thermopilic Campylobacter, in this study. This biomarker was extracted and identified 

to be a 50S ribosomal L29 protein by Fagerquist et al. (2006). In addition, specific C. 
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jejuni biomarker 10,276 Da and specific C. coli biomarkers 10,032 and 12,855 Da 

proposed by Mandrell et al. (2005) were not frequently detected in this study. Hence, 

species identification using one or few biomarker ions characteristic for a given species 

may lead to incorrect results (Kolinska et al., 2008).  In another study, C. jejuni, C. coli 

and C. fetus were compared with H. pylori and H. mustelae by direct analysis of 

individual culture colonies in 50 % methanol using MALDI-TOF MS. A few specific 

biomarkers ions in the 10 to 20 kDa range were reported to be the most discriminative 

of those observed (Winkler et al., 1999). However, in this study mass signal patterns 

were only observed in the 2 to 11 kDa range for Arcobacter, Helicobacter and for 

Campylobacter.   

 

Table 2. Species identification results of the clinical isolates using MALDI-TOF MS in 

comparison to PCR-RFLP. 

Isolation and 
Identification 

Number of Isolates 
A. 

butzleri H. pullorum C. coli C. jejuni C. 
hyointestinalis C. fetus 

Origin  
Human 3 8 - - - - 

Broiler - 1 19 62 - - 

Swine - - 34 1 - - 

Layer - - 3 3 - - 

Bovine - - 1 2 2 - 

Cat - - - - - 1 

Duck - - - 1 - - 

Environment - - - 3 - - 
Methods  
MALDI-TOF MS a 3/3 9/9 57/57 72/72 2/2 1/1 

PCR-RFLP b 3/3 9/9 57/57 72/72 0/2 0/1 

Abbreviations: A., Arcobacter; C., Campylobacter; H., Helicobacter 
a Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry represents 

an identification at species level log(score) value of ≥ 2.0. 

b Polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) 

analyses according to the protocol of Jauk et al. (2003). 

 

For evaluation of the method, 144 clinical isolates were used in this study. In parallel to 

MALDI-TOF MS identification, all strains were analysed by PCR-RFLP. Identification 

results of the clinical isolates obtained by MALDI-TOF MS and PCR-RFLP are shown 

in Table 2. List of log(score) is available as supplementary data in JMM Online. All 
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clinical isolates obtained from humans, environment and from different farm animals, 

though mostly poultry, gave sufficient spectra for species identification by MALDI-

TOF MS. In total, MALDI-TOF MS identified all 144 clinical isolates at species level 

i.e. log(score) ≥ 2.0 and no differences in results were found associated with the source 

of the isolate. PCR-RFLP could not differentiate between Campylobacter fetus and 

Campylobacter hyointestinalis in three clinical isolates (898, 1147 and 1307). In all 

these cases, a differentiation at species level with MALDI-TOF MS was possible. 

 

To investigate the stability of clinical isolates identification, 15 different strains were 

grown according to the standard procedure and subsequently stored at room temperature 

(20 °C) and at +4 °C and tested after 2, 4, 6 and 9 days. In all cases, mass spectrometry 

resulted in identical, correct identification results related to the reference database (data 

not shown). This finding supports the results of a former investigation (Mellmann et al., 

2008), where non-fermenting bacteria were stored at room temperature up to 7 days. 

This can be a great advantage if samples are conducted for a single run or where 

samples need to be reinvestigated. It is noteworthy, that bacteria grown for 48 hours on 

COS or CAM agar gave the best results, e.g. good quality spectra, reliable log(score). 

However, bacteria grown longer than 72 hours gave poor spectra profiles, lower 

intensity and unspecific peaks. Nevertheless, in most cases correct identification of 

bacteria could be obtained. In another study MALDI-TOF MS was used for 

identification of Listeria, it was reported that extended periods of growth (4 days tested) 

did not affect spectra quality and results (Barbuddhe et al., 2008). Obviously, this is 

species dependent. However, in a separate study Escherichia coli was analysed using 

MALDI-TOF MS, where growth time did not affect the bacterial molecular profile 

significantly, hence, the incubation time span was up to 48 hours (Mazzeo et al., 2006). 

 

To determine the influence of cultivation media on the quality of spectra, the 15 clinical 

strains were grown on different types of solid media used to isolate such bacteria. 

Species identification was possible at the species level if bacteria were grown on CAM 

agar, which was not used to create the reference database. Interestingly Arcobacter, 

Helicobacter and Campylobacter grown on mCCD agar could not be used for MALDI-

TOF MS species identification as very poor spectra pattern were obtained if any, 

consequently, no identification was possible (data not shown). Apparently, mCCD agar 

contaminants interfere with ionisation of biomolecules of the bacteria. In fact, in some 
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cases it was not possible to pick up bacteria biomass from mCCD agar because the 

bacteria were strongly attached on this agars surface. The importance of mCCD agar 

could not be overlooked as a drawback of MALDI-TOF MS as this agar is commonly 

used to isolate strains of Campylobacteraceae. This means that additional sub-culturing 

is necessary if the bacteria are going to be used for MALDI-TOF MS identification. To 

our knowledge, no study published results on using mCCD agar for microorganism 

identification by MALDI-TOF MS. 

 

Altogether, these data show that MALDI-TOF MS fingerprinting is a fast and reliable 

method for the identification of Arcobacter and Helicobacter species and their 

distinction from phenotypically similar Campylobacter species with applications in 

clinical diagnostics. As a result, considering the speed with which reliable identification 

can be obtained, this technique is well suited for large-scale research and diagnostic 

analyses. 
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Supplementary Table S1. Identification results of the 144 clinical isolates using 

MALDI-TOF MS in comparison to PCR-RFLP. 

Isolate No. Origin 
PCR-RFLP a MALDI-TOF MS 

Species ID Level of ID Species ID 
Log(score)

b 

B01-33 Human faecal sample A. butzleri Species A. butzleri 2.440 
 B01-404 Human faecal sample A. butzleri Species A. butzleri 2.548 

B01-66 Human faecal sample A. butzleri Species A. butzleri 2.538 

CS03-13 Human faecal sample H. pullorum Species H. pullorum 2.658 

CS03-14 Human faecal sample H. pullorum Species H. pullorum 2.580 

CS03-15 Human faecal sample H. pullorum Species H. pullorum 2.566 

CS03-3 Human faecal sample H. pullorum Species H. pullorum 2.549 

CS03-7 Human faecal sample H. pullorum Species H. pullorum 2.650 

CS03-8 Human faecal sample H. pullorum Species H. pullorum 2.567 

H01-605 Human faecal sample H. pullorum Species H. pullorum 2.622 

08-89916-2 Human faecal sample H. pullorum Species H. pullorum 2.622 
 08-212 Broiler faecal sample H. pullorum Species H. pullorum 2.657 

37 Broiler faecal sample C. coli Species C. coli 2.582 

273 Broiler faecal sample C. coli Species C. coli 2.579 

274 Broiler faecal sample C. coli Species C. coli 2.613 

299 Broiler faecal sample C. coli Species C. coli 2.466 

324 Broiler faecal sample C. coli Species C. coli 2.376 

325 Broiler faecal sample C. coli Species C. coli 2.600 

413 Broiler faecal sample C. coli Species C. coli 2.308 

542 Broiler faecal sample C. coli Species C. coli 2.197 

775 Broiler faecal sample C. coli Species C. coli 2.593 

858 Broiler faecal sample C. coli Species C. coli 2.629 

904 Broiler faecal sample C. coli Species C. coli 2.558 

969 Broiler faecal sample C. coli Species C. coli 2.445 

970 Broiler faecal sample C. coli Species C. coli 2.515 

1031 Broiler faecal sample C. coli Species C. coli 2.589 

1040 Broiler faecal sample C. coli Species C. coli 2.533 

04-2965 Broiler faecal sample C. coli Species C. coli 2.615 

04-1007 Broiler faecal sample C. coli Species C. coli 2.486 

04-1198 Broiler faecal sample C. coli Species C. coli 2.629 

04-1009 Broiler faecal sample C. coli Species C. coli 2.649 

1 Broiler faecal sample C. jejuni Species C. jejuni 2.152 

2 Broiler faecal sample C. jejuni Species C. jejuni 2.386 

4 Broiler faecal sample C. jejuni Species C. jejuni 2.425 

95 Broiler faecal sample C. jejuni Species C. jejuni 2.436 

98-100 Broiler faecal sample C. jejuni Species C. jejuni 2.402 

98-101 Broiler faecal sample C. jejuni Species C. jejuni 2.443 

181 Broiler faecal sample C. jejuni Species C. jejuni 2.592 

239 Broiler faecal sample C. jejuni Species C. jejuni 2.629 
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281 Broiler faecal sample C. jejuni Species C. jejuni 2.503 

283 Broiler faecal sample C. jejuni Species C. jejuni 2.529 

295 Broiler faecal sample C. jejuni Species C. jejuni 2.603 

296 Broiler faecal sample C. jejuni Species C. jejuni 2.487 

309 Broiler faecal sample C. jejuni Species C. jejuni 2.479 

312 Broiler faecal sample C. jejuni Species C. jejuni 2.518 

315 Broiler faecal sample C. jejuni Species C. jejuni 2.403 

320 Broiler faecal sample C. jejuni Species C. jejuni 2.377 

322 Broiler faecal sample C. jejuni Species C. jejuni 2.361 

323 Broiler faecal sample C. jejuni Species C. jejuni 2.287 

326 Broiler faecal sample C. jejuni Species C. jejuni 2.581 

336 Broiler faecal sample C. jejuni Species C. jejuni 2.554 

409 Broiler faecal sample C. jejuni Species C. jejuni 2.564 

415 Broiler faecal sample C. jejuni Species C. jejuni 2.565 

433 Broiler faecal sample C. jejuni Species C. jejuni 2.566 

479 Broiler faecal sample C. jejuni Species C. jejuni 2.364 

572 Broiler faecal sample C. jejuni Species C. jejuni 2.464 

590 Broiler faecal sample C. jejuni Species C. jejuni 2.503 

598 Broiler faecal sample C. jejuni Species C. jejuni 2.525 

606 Broiler faecal sample C. jejuni Species C. jejuni 2.527 

698 Broiler faecal sample C. jejuni Species C. jejuni 2.473 

700 Broiler faecal sample C. jejuni Species C. jejuni 2.432 

834 Broiler faecal sample C. jejuni Species C. jejuni 2.552 

835 Broiler faecal sample C. jejuni Species C. jejuni 2.567 

878 Broiler faecal sample C. jejuni Species C. jejuni 2.602 

887 Broiler faecal sample C. jejuni Species C. jejuni 2.618 

935 Broiler faecal sample C. jejuni Species C. jejuni 2.525 

936 Broiler faecal sample C. jejuni Species C. jejuni 2.499 

958 Broiler faecal sample C. jejuni Species C. jejuni 2.546 

1007 Broiler faecal sample C. jejuni Species C. jejuni 2.516 

1050 Broiler faecal sample C. jejuni Species C. jejuni 2.360 

1293 Broiler faecal sample C. jejuni Species C. jejuni 2.407 

1294 Broiler faecal sample C. jejuni Species C. jejuni 2.425 

1298 Broiler faecal sample C. jejuni Species C. jejuni 2.526 

1084 Broiler faecal sample C. jejuni Species C. jejuni 2.459 

1240 Broiler faecal sample C. jejuni Species C. jejuni 2.516 

1306 Broiler faecal sample C. jejuni Species C. jejuni 2.517 

04-1195 Broiler faecal sample C. jejuni Species C. jejuni 2.478 

04-1562 Broiler faecal sample C. jejuni Species C. jejuni 2.618 

04-1768 Broiler faecal sample C. jejuni Species C. jejuni 2.504 

04-1773 Broiler faecal sample C. jejuni Species C. jejuni 2.651 

04-1876 Broiler faecal sample C. jejuni Species C. jejuni 2.508 

04-1945 Broiler faecal sample C. jejuni Species C. jejuni 2.582 

04-2004 Broiler faecal sample C. jejuni Species C. jejuni 2.648 
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04-2321 Broiler faecal sample C. jejuni Species C. jejuni 2.566 

04-2322 Broiler faecal sample C. jejuni Species C. jejuni 2.549 

04-2333 Broiler faecal sample C. jejuni Species C. jejuni 2.603 

04-2339 Broiler faecal sample C. jejuni Species C. jejuni 2.623 

04-2529 Broiler faecal sample C. jejuni Species C. jejuni 2.511 

04-2532 Broiler faecal sample C. jejuni Species C. jejuni 2.626 

04-2833 Broiler faecal sample C. jejuni Species C. jejuni 2.522 

04-2963 Broiler faecal sample C. jejuni Species C. jejuni 2.638 

04-2966 Broiler faecal sample C. jejuni Species C. jejuni 2.659 

04-2970 Broiler faecal sample C. jejuni Species C. jejuni 2.512 

346 Swine faecal sample C. coli Species C. coli 2.550 

405 Swine faecal sample C. coli Species C. coli 2.418 

422 Swine faecal sample C. coli Species C. coli 2.647 

492 Swine faecal sample C. coli Species C. coli 2.427 

531 Swine faecal sample C. coli Species C. coli 2.479 

561 Swine faecal sample C. coli Species C. coli 2.429 

614 Swine faecal sample C. coli Species C. coli 2.595 

723 Swine faecal sample C. coli Species C. coli 2.588 

737 Swine faecal sample C. coli Species C. coli 2.608 

774 Swine faecal sample C. coli Species C. coli 2.580 

804 Swine faecal sample C. coli Species C. coli 2.593 

817 Swine faecal sample C. coli Species C. coli 2.615 

877 Swine faecal sample C. coli Species C. coli 2.628 

914 Swine faecal sample C. coli Species C. coli 2.598 

963 Swine faecal sample C. coli Species C. coli 2.463 

975 Swine faecal sample C. coli Species C. coli 2.542 

993 Swine faecal sample C. coli Species C. coli 2.490 

1009 Swine faecal sample C. coli Species C. coli 2.559 

924 Swine faecal sample C. coli Species C. coli 2.525 

1047 Swine faecal sample C. coli Species C. coli 2.484 

1071 Swine faecal sample C. coli Species C. coli 2.410 

1078 Swine faecal sample C. coli Species C. coli 2.388 

1104 Swine faecal sample C. coli Species C. coli 2.489 

1121 Swine faecal sample C. coli Species C. coli 2.536 

1140 Swine faecal sample C. coli Species C. coli 2.620 

1148 Swine faecal sample C. coli Species C. coli 2.597 

1169 Swine faecal sample C. coli Species C. coli 2.489 

1189 Swine faecal sample C. coli Species C. coli 2.499 

1197 Swine faecal sample C. coli Species C. coli 2.508 

1230 Swine faecal sample C. coli Species C. coli 2.430 

1243 Swine faecal sample C. coli Species C. coli 2.510 

1256 Swine faecal sample C. coli Species C. coli 2.508 

1299 Swine faecal sample C. coli Species C. coli 2.520 

1318 Swine faecal sample C. coli Species C. coli 2.520 
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836 Swine faecal sample C. jejuni Species C. jejuni 2.518 

829 Layer faecal sample C. coli Species C. coli 2.633 

876 Layer faecal sample C. coli Species C. coli 2.541 

1242 Layer faecal sample C. coli Species C. coli 2.486 

438 Layer faecal sample C. jejuni Species C. jejuni 2.617 

560 Layer faecal sample C. jejuni Species C. jejuni 2.357 

576 Layer faecal sample C. jejuni Species C. jejuni 2.474 

512 Bovine faecal sample C. coli Species C. coli 2.302 

1147 Bovine faecal sample 
C. fetus or 

hyointestinalis 

2 different 
species 
possible 

C. 
hyointestinalis 2.446 

1307 Bovine faecal sample 
C. fetus or 

hyointestinalis 

2 different 
species 
possible 

C. 
hyointestinalis 2.307 

1077 Bovine faecal sample C. jejuni Species C. jejuni 2.393 

1207 Bovine faecal sample C. jejuni Species C. jejuni 2.281 

898 Cat faecal sample 
C. fetus or 

hyointestinalis 

2 different 
species 
possible C. fetus 2.497 

1244 Duck faecal sample C. jejuni Species C. jejuni 2.678 

1303 Environmental swab C. jejuni Species C. jejuni 2.417 

1304 Environmental swab C. jejuni Species C. jejuni 2.523 

485 Environmental swab C. jejuni Species C. jejuni 2.361 
Abbreviations: A., Arcobacter; C., Campylobacter; H., Helicobacter; ID, identification 

a Polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) 

analyses according to the protocol of Jauk et al. (2003) . 

b MALDI Biotyper 1.1 results stand for: species level identification with log(score) 

values ≥ 2.0 and genus identification with log(score) values between 1.7 and 2.0.
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Abstract 
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) whole cell fingerprinting was used for characterization of 66 reference strains 

of Gallibacterium. The four recognised Gallibacterium species and Gallibacterium 

genomospecies 1 yielded reproducible and unique mass spectrum profiles, which were 

confirmed with Bruker Biotyper reference database version 3. The reproducibility of 

MALDI-TOF MS results were evaluated varying the age and storage of the cultures 

investigated. Reliable species identification was possible for up to 8 days of storage at 

4°C and less reliable if the bacteria were stored at room temperature (20°C). However, 

if the strains were grown longer than 48 hrs at 37 °C under microaerobic atmosphere, 

poor identification results were obtained, due to changes in protein profile. The 

MALDI-TOF MS results of all 66 strains demonstrated 87.9 % concordance with results 

based upon biochemical/physiological characterization. In addition, diversities outlined 

by MALDI-TOF MS were verified by sequencing the rpoB (n = 43), 16S rRNA (n = 

28), infB (n = 14) and recN (n = 14) genes (multilocus sequence analysis, MLSA). 

Furthermore, discrepancies were observed between some of the genes sequenced. 

Results obtained demonstrated that MALDI-TOF MS fingerprinting represents a fast 

and reliable method for identification and differentiation of the four recognised 

Gallibacterium species and possible fifth species Gallibacterium genomospecies 1, with 

applications in clinical diagnostics.  

 

Introduction 
Four species of Gallibacterium, G. anatis, G. melopsittaci, G. salpingitidis, and G. 

trehalosifermentans have been recognized so far (Euzeby, 1997; Christensen et al., 

2003; Bisgaard et al., 2009). However, 16S rRNA gene sequence data clearly indicated 

the existence of a probable new species G. genomospecies 1 and G. genomospecies 2 

(Christensen et al., 2003). In addition, Bisgaard et al. (2009) showed that 16S rRNA 

groups III (G. genomospecies 3) and V (G. group V) should be classified as novel 

species of Gallibacterium. All taxa of Gallibacterium reported so far seem to be 

associated with birds, although isolates have been reported from cattle and pigs too 

(Gerlach, 1977; Mushin et al., 1980; Bisgaard & Dam, 1981; Christensen et al., 2003; 

Jordan et al., 2005; Bisgaard et al., 2009). G. anatis is a common organism of the upper 

respiratory and lower genital tract of poultry. Disease associated with this 
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microorganism is related to egg peritonitis, decrease in egg production and occasionally 

an increase in mortality (Gerlach, 1977; Mushin et al., 1980; Bisgaard & Dam, 1981; 

Jordan et al., 2005; Neubauer et al., 2009). A novel RTX-toxin, GtxA, in G. anatis was 

recently demonstrated as an important virulence factor for haemolytic and leukotoxic 

activity (Kristensen et al., 2010). 

 

Like, most other genera of the family Pasteurellaceae Pohl 1981, the genus 

Gallibacterium represents a phenotypically heterogeneous group (Christensen et al., 

2003). Phenotypic characterization therefore constitutes a laborious and time-

consuming diagnostic method, which may also give ambiguous results due to variable 

outcome of tests included. For the same reason interpretation of earlier studies, in which 

only relatively few phenotypic characters have been investigated might be difficult 

(Bisgaard, 1993).  

 

Various genotypic methods have been developed for identification of Gallibacterium, 

(Bojesen et al., 2003b; Christensen et al., 2004; Bojesen et al., 2007). The specificity of 

these methods, however, remains to be investigated including the recently published 

taxa of Gallibacterium (Bisgaard et al., 2009). 

 

Bacterial identification by matrix-assisted laser desorption/ionization time-of-flight 

mass spectrometry (MALDI-TOF MS) is based on generating complex fingerprint 

spectra of biomarker molecules by measuring the exact size of peptides and proteins, 

which are assumed to represent high-abundant proteins with house-keeping functions, 

such as ribosomal or nucleic-acid binding proteins (Claydon et al., 1996; Suh & 

Limbach, 2004). The procedure is fast, requires minimal amounts of colony material, is 

suitable for high-throughput routine analysis, and therefore has a great potential for 

application in routine clinical microbiology laboratories as reviewed by Carbonnelle et 

al. (Carbonnelle et al., 2010). 

 

In this study, the MALDI Biotyper system was assessed for the first time for 

identification of taxa of Gallibacterium, resulting in a reference database. To achieve 

this task a well defined population of Gallibacterium species was needed. Therefore, 

from all strains investigated biochemical/physiological characters were obtained. Also, 

the few already known reference/type strains from different Gallibacterium species 
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were tested. Moreover, the reproducibility of MALDI results obtained was evaluated 

varying the age and storage conditions of the cultures investigated, which is relevant in 

a diagnostic laboratory. Since taxonomic investigations have demonstrated difficulties 

as to obtain correct identification within this area diversities outlined by MALDI-TOF 

MS were verified by sequencing the rpoB, 16S rRNA, infB, recN genes (multilocus 

sequence analysis, MLSA).  

 

Materials and Methods 

Bacterial strains and phenotypic characterization 

Sixty-six Gallibacterium reference strains were included in this study (Table 1). These 

strains have previously been characterized in detail by phenotypic methods and a 

number of these strains have also been characterized by genotypic methods as shown in 

Table 1 (Christensen et al., 2003; Bojesen et al., 2003a; Bojesen et al., 2003b; Bojesen 

et al., 2007; Bisgaard et al., 2009). Pasteurella multocida 08/14290 field strain was 

identified by phenotypic methods and Biotyper reference database library version 3. All 

bacteria were grown on Columbia agar (COS) containing 5 % sheep blood 

(BioMerieux, Vienna, Austria) and inoculated at 37°C for 24 hours under 

microaerophilic conditions.  

 

Sample preparation 

Sample preparation for MALDI-TOF MS was performed as previously described in 

detail (Alispahic et al., 2010). Each sample was spotted eight times onto the MALDI 

target plate to test technical replication. Then, the sample was overlaid with 2 μl of 

matrix (alpha-cyano-4-hydroxycinnamic acid in 50 % acetonitrile/2.5 % trifluor acetic 

acid, according to the protocol of Bruker) and dried again. All steps were performed at 

room temperature. 

 

MALDI-TOF MS parameters 

Mass-spectra were collected using Ultraflex II MALDI-TOF/TOF mass spectrometer 

(Bruker Daltonik GmbH, Leipzig, Germany) in linear mode i.e. using a mass range of 

2,000 to 20,000 Dalton (parameter setting: IS1 20.0 kV, IS2 18.7 kV, lens 6.25 kV, 

detector gain 1634 V). Five hundred single spectra (10 times 50 shots with a 50 Hz 

nitrogen laser from different positions of the target spot) were summarised and each 
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spot was measured 3 times automatically. The instrument was externally calibrated with 

Bruker bacterial test standard (BTS, Bruker), proteins used for calibration are as 

follows: ribosomal proteins RL36, 4364.3 m/z; RS32, 5095.8 m/z; RS34, 5380.4 m/z; 

RS33meth, 6254.4 m/z; RL29, 7273.5 m/z; RS19, 10299.1 m/z; RNase A, 13683.2 m/z 

and myoglobin, 16952.3 m/z. 

 

Creation of reference database library  

Each individual spectrum was scrutinised by eye in the flexAnalysis software 3.0 

(Bruker Daltonik GmbH, Leipzig, Germany) and atypical spectra were excluded from 

further analysis (e.g. flat line spectrum, spectrum containing high matrix background 

signal). A reference database library was established for MALDI-TOF MS-based 

species identification following the manufacturer’s recommendations for Ultraflex 

measurement and MALDI Biotyper 2 software package (Bruker Daltonik GmbH, 

Leipzig, Germany). In brief, for each database entry, at least 20 individually measured 

mass spectra fingerprints were imported into the MALDI Biotyper 2 software. After 

smoothing, baseline correction, and peak-picking, the resulting peak lists (up to 70 peak 

masses) were used by the program to calculate and to store a main spectrum containing 

the information about average peak masses, average peak intensities and peak 

frequency.  

 

Dendrogram construction  

For strain identification, the formation of the dendrogram is based on cross-wise 

minimum spanning tree (MSP) matching. Similar MSPs result in a high matching score 

value. Each MSP is compared with all MSPs of the analysed set. The list of score values 

is used to calculate normalised distance values between the analysed species, resulting 

in a matrix of matching scores. The visualization of the respective relationship between 

the MSPs is displayed in a dendrogram using the standard settings of the MALDI 

Biotyper 2.0 software. Species with distance levels less than 500 have been described as 

reliably classified (Sauer et al., 2008). Pasteurella multocida strain 08/14290 was used 

as an out-group in the dendrogram.  

 

MALDI-TOF MS reproducibility test 

To test the reproducibility of MALDI-TOF MS-based species identification, eight 

reference strains were selected randomly and their reproducibility of spectra under five 
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different conditions were tested. Condition number 1: bacteria were grown on COS agar 

and incubated for 3 and 8 days at 37 °C under microaerobic conditions. Condition 

number 2: bacteria were grown on COS agar at 37°C for 24 hours under microaerobic 

conditions and then left at room temperature (~20°C) under a microaerobic atmosphere. 

Condition number 3: the same as condition number 2, but incubated and stored in an 

aerobic atmosphere. Condition number 4: the same as condition number 2 but stored at 

4°C. Condition number 5: the same as condition number 3 but with storage at 4°C. For 

all conditions, a small amount of biomass was used to measure 5 spots (resulting in 5 

spectra for each sample) with MALDI-TOF MS after 3 and 8 days, respectively. 

Resulting spectra were imported into Biotyper software for identification using the 

already made MSP library used for dendrogram creation. 

 

Sequencing of rpoB, recN, infB and 16S rRNA genes 

The partial rpoB sequence (Table 1) was determined according to Mollet et al. (1997) 

covering the region 509-680 (Escherichia coli pos.) of the deduced protein sequence as 

reported previously (Angen et al., 2003; Korczak et al., 2004). Partial recN gene 

sequences (Table 1) were determined as described by Kuhnert & Korczak (2006), with 

1340 bp of the gene being sequenced. Sequencing of infB gene (Table 1) was performed 

according to previously described protocols (Korczak et al., 2004; Kuhnert et al., 2004). 

Sequencing of the 16S rRNA gene (Table 1) was also performed according to previous 

reports (Christensen et al., 2002; Kuhnert et al., 2002; Angen et al., 2003). 16S rRNA, 

rpoB, recN and infB gene sequences determined in the present investigation have been 

deposited with GenBank/EMBL/DDBJ under the accession numbers listed in Table 1. 

Pairwise comparisons for similarity were performed by the program WATER included 

in EMBOSS (Rice et al., 2000). Multiple alignment and phylogenetic trees were 

constructed by the neighbour joining method based on Jukes and Cantor corrected 

similarity matrices by ClustalX (Thompson et al., 1997) and drawn by MEGA4 

(Tamura et al., 2007).  
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Results 
A reproducible signal pattern was obtained from all 66 reference Gallibacterium strains 

used for MALDI/Biotyper reference database development (Table 1). Signal patterns 

obtained were compared with data in the Bruker Biotyper reference database version 3 

(contained 3,024 bacterial strains). The Bruker database only contained the type strain 

of Gallibacterium anatis (DSM 16844T) which matched to the G. anatis type strain 

included in the present study with a 2.703 log(score) value. The four recognised 

Gallibacterium species all yielded unique mass spectral profiles (Figure 1), therefore 

could be easily differentiated by score values and dendrogram analysis that showed 

separate clades/clusters for each species in the Biotyper software. 

 

 
Figure 1. 

MALDI-TOF mass spectrometric profiles obtained from the analysis of 

Gallibacterium type strains of species: (A) G. anatis, (B) G. melopsittaci, (C) G. 

salpingitidis and (D) G. trehalosifermentans. The relative intensities of the ions 

are shown on the y axis, and the masses (in Da) of the ions are shown on the x 
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axis. The m/z value stands for mass to charge ratio. For a single positive charge, 

this value corresponds to the molecular weight of the protein.  

 

According to the dendrogram generated by the MALDI Biotyper software based upon 

mass signals and intensities (Figure 2), the type species of the genus Gallibacterium, G. 

anatis (F149T), clustered with 55 other isolates (cluster 1). This cluster, however, splits 

into two groups at a distance level between 200 and 300, the majority of isolates 

including the type strain of the type species clustering below a 200-distance level 

indicating a high similarity between the isolates. Gallibacterium group V (39199/1L) 

and strain CCM5976 (Gallibacterium genomospecies 2) formed a separate cluster with 

strain P. sp. 38 which branched deeply with the type species of the genus 

Gallibacterium but below the 200 distance-level. Strains 29934liver, CCM5974 

(Gallibacterium genomospecies 1), 2737/89, CCM5975, 10816/12 and 139/89 formed 

cluster 2 demonstrating a distance level closer to G. anatis (600-500). Moreover, the 

type strain of G. salpingitidis (F150T) clustered with G. genomospecies 3 strain (F151) 

(cluster 3) at a distance between 200 and 300. Both isolates, however, clustered with the 

type strain of the type species, G. anatis, at a distance above 600. The mass signal 

pattern of G. trehalosifermentans (52/33/90T) (cluster 4) and of G. melopsittaci (F450T) 

(cluster 5) differed significantly from G. anatis demonstrating a distance level above 

800 and differed to each other at a distance level between 800 and 700. The strain 

relatedness documented in the dendrogram complements identification by score values 

(data not shown).  

 

Reproducibility was carried out to investigate if identification of eight randomly chosen 

strains was possible under different growth and storage conditions relevant in a clinical 

laboratory. Reliable species identification (log(score) above 2.3) was possible after 3 

and 8 days of storage at 4°C. Less reliable species identification (6/8 strains correctly 

identified but with a lower log(score)) was seen if the bacteria were stored at room 

temperature (~20°C) for 3 days. The reliability declined further after 8 days of storage 

(3/8 strains correctly identified to species level with log(score) just above 2.0) (data not 

shown). However, if the strains were grown for 3 or 8 days at 37 °C under microaerobic 

atmosphere poor identification results were obtained (2/8 strains with log(score) just 

above 2.0). No distinction was seen if the strains were stored at different atmospheres 

(data not shown). 
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Figure 2. 

Classification of Gallibacterium reference strains investigated. Score–oriented 

(MSP) dendrogram of MALDI-TOF mass spectral profiles generated by the 

MALDI Biotyper 2. The dendrogram was generated with following settings: 

distance measure was set at correlation, linkage at average and score threshold 

value for a single organism at 600. Strains clustering with distance levels lower 

than 500 could be classified up to species level. 

 

 

The strain relatedness documented in the MALDI dendrogram classified 58 strains out 

of 66 investigated (87.9%) concordant to results based upon biochemical/physiological 

characterization. Discrepancies were seen with strains 2737/89, 10816/12, CCM5974, 

CCM5975, 29934 Liver, 139/89, F151 and 39199/1L.  

 

To investigate if clusters outlined by MALDI-TOF MS (Figure 2) also reflect genotypic 

relationship, the partial rpoB sequences of 36 strains were generated and compared with 

seven strains from GenBank covering the diversity outlined in Figure 2. In general, 30 

strains out of 43 were assigned to G. anatis with rpoB sequence which was concordant 

to MALDI-TOF MS results, except for strains 10816/12 and 2737/89. Hence, clustering 

of genomospecies 2 with G. anatis was supported by rpoB (Figure 3 a). Sequencing of 

rpoB also classified strains CCM5975, 29934 Liver, 139/89 and CCM5974 with 

Gallibacterium genomospecies 1 (Figure 3 a) concordant to MALDI-TOF MS (cluster 2 

in Figure 2). Moreover, the clustering of G. salpingitidis with genomospecies 3 (cluster 

3) was confirmed by rpoB. Interestingly, G. melopsittaci and G. trehalosifermentans 

clustered together in rpoB analysis, while major differences were observed as to 

Gallibacterium group V. However, MALDI-TOF MS clearly identified G. melopsittaci 

and G. trehalosifermentans as two different species, though Gallibacterium group V 

was identified as G. anatis.  

 

In addition, to verify the diversities in Figure 2 and Figure 3 a, the partial 16S rRNA 

sequence of 6 strains were generated and compared with 22 strains from GenBank. The 

recN and infB sequence of 8 strains were generated and compared with 6 strains (for 

both genes) from GenBank. Two bovine isolates (B96/20 and B96/27) were classified 

with G. salpingitidis, while a third isolate, B96/41, clustered with Gallibacterium 
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genomospecies 3 with rpoB analysis.  However, all three isolates identified as G. anatis 

by MALDI-TOF MS, biochemical/physiological characterization, and sequencing of 

16S rRNA, recN and infB genes. Moreover, sequencing of recN and infB did not allow 

separation of genomospecies 1 (CCM5974) from G. anatis (Figure 3 c-d). Contrary to 

MALDI-TOF MS, strains 10816/12 and 2737/89 (cluster 2), clustered with G. anatis 

type strain in all genes sequenced (Figure 3 a-d). A concatenated analysis of 16S rRNA, 

rpoB, recN and infB gene sequences confirmed the existence of the taxa previously 

outlined by Bisgaard et al. (2009) (data not shown). 
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Figure 3.  

Phylogenetic relationships between members of Gallibacterium as investigated 

based on neighbor joining analysis of partial rpoB gene sequences (a), nearly full 

length 16S rRNA gene sequences (b), partial recN gene sequences (c) and partial 

infB gene sequences (d). Supports for monophyletic groups by bootstrap-

analysis are indicated as numbers out of 100. The strain numbers with 

DBJ/EMBL/GenBank accession numbers marked in bold have been sequenced 

in the present investigation. The scale bar represents sequence variation 

considering the model for nucleotide substitution (Jukes & Cantor) and 

algorithm (Neighbor Joining) used in the analysis. 
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Discussion 
The genus Gallibacterium includes a very diverse group of bacteria that vary in pheno- 

and genotypic characteristics, independent of hosts range, geographical location and 

time of isolation explaining the difficulties in classification and identification of taxa 

making up the genus Gallibacterium. So far, classification and identification of 

Gallibacterium species have been based upon phenotypic and genotypic methods, 

including DNA-DNA hybridisation, PFGE, AFLP and 16S rRNA sequencing 

(Bisgaard, 1977; Bisgaard, 1993; Christensen et al., 2003).  

 

More recently, a number of strains were characterized by infB, recN and rpoB gene 

sequencing (Bisgaard et al., 2009). However, many of these methods are complex, 

costly and often require days to complete. In addition, inconsistent results may be 

obtained with different genes as demonstrated in the present paper. The rpoB gene 

sequence is strongly conserved within the various species of the family of 

Pasteurellaceae and the resolution is generally greater than that of the 16S rRNA 

sequence, but still does not allow the separation of very closely related species (Korczak 

et al., 2004). This study investigated if MALDI-TOF MS allows unambiguous 

separation and identification of Gallibacterium species recognised as mainly avian 

pathogens. With the exception of the strain named 39199/1L (group V), the overall 

congruency between MALDI-TOF MS and MLSA was good. This observation is in 

agreement with results reported by Tanigawa et al, (2010) who stated that the MALDI-

TOF MS results was nearly identical to genotypic identification (16S rRNA and recA 

gene sequence and AFLP) for discriminating species and subspecies in the genus 

Lactococcus. According to Christensen et al. (2003), AFLP and DNA reassociation data 

seem to indicate the existence of only one additional genomospecies of Gallibacterium 

(strain CCM5976). MALDI-TOF MS results did not support that CCM5976 belong to 

an independent species (Figure 2). Neither did sequencing of rpoB (Figure 3 a), while 

16S rRNA data classified CCM5976 with genomospecies 2. Korczak et al. (2004) noted 

that within the family Pasteurellaceae, discrepancies were observed for some species 

between 16S rRNA and rpoB gene-based phylogenies. The discrepancy that was 

observed between MLSA and MALDI-TOF MS of Gallibacterium group V remains 

unexplained. However, comparison of whole cell protein profiling and DNA 

reassociation of strains classified as taxon 2 or 3 also demonstrated deviations 
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(Bisgaard, 1993). Apart from strains 2737/89 and 10816/12, the other strains of cluster 

2 (Figure 2) seem to represent a new species of Gallibacterium previously outlined as 

genomospecies 1 by genetic methods (Christensen et al., 2003). Clustering of G. 

salpingitidis with Gallibacterium genomospecies 3 (F151) (cluster 3) was also 

confirmed by 16S rRNA and rpoB sequencing results. However, whole-genome 

similarity between these taxa calculated from recN sequences showed that these taxa 

represent different species (Bisgaard et al., 2009). Finally, three strains isolated from 

bovine lungs (B96/41, B96/20 and B96/27) exhibited extensive variation between their 

rpoB and their infB, 16S rRNA and recN gene sequence. The reason behind this 

observation remains to be investigated.  

 

An increased number of papers comparing the use of MALDI/Biotyper with the 

standard methods for identification in clinical diagnostic laboratories have been 

published recently (Carbonnelle et al., 2010; Giebel et al., 2010). Bizzini et al. (2010) 

compared MALDI/Biotyper to the conventional phenotypic methods for identification 

of 1,371 routine isolates, in which 93.2% were identified to species level with both 

methods. Poor 16S rRNA sequence similarity between the species Nocardia 

paucivorans and N. transvalensis was noted even though MALDI-TOF MS dendrogram 

showed that their mass signal patterns are closely related (Verroken et al., 2010). On the 

other hand, MALDI-TOF MS was used to support the data from 16S rRNA and rpoB 

gene sequence data to indicate that Acinetobacter bereziniae and A. guillouiae represent 

distinct groups within the genus Acinetobacter (Nemec et al., 2010).  
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Bacteria rapidly respond to environmental changes that might induce changes in the 

protein profile. Thus, the reproducibility of MALDI-TOF MS results was investigated 

under different growth and storage conditions of bacteria, relevant in a clinical 

laboratory. Reliable identification was possible when bacteria were stored at 4°C degree 

for up to 8 days. However, if bacteria were grown longer then 72hrs, unreliable 

identification was seen. This might be explained as a result of depletion of nutrients 

imposing changes in the protein profile (Valentine et al., 2005). Arnold et al. (1999) 

also stated that the time of incubation should be carefully controlled if MALDI-TOF 

MS is used for bacterial identification. 

 

In conclusion, this is the first study employing the MALDI-TOF MS fingerprinting 

technique for the in-depth analysis of Gallibacterium species. MALDI-TOF MS clearly 

discriminated between the four recognised Gallibacterium type strains and a possible 

fifth species Gallibacterium genomospecies 1, in agreement with previous findings. 

However, several minor discrepancies were observed between MALDI-TOF MS and 

MLSA, the causes of which remains to be investigated. MALDI-TOF MS 

fingerprinting, however, represents a fast and reliable method for the identification and 

differentiation of four recognised Gallibacterium species and possible fifth species 

Gallibacterium genomospecies 1, with applications in clinical diagnostics.  
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Abstract 
Gallibacterium anatis has been suggested to have a causal role in the 

salpingitis/peritonitis complex in chickens, beside its isolation from the respiratory tract. 

MALDI-TOF MS correctly identified 184 G. anatis isolates from different organs of 

layers kept in alternative husbandry systems and showing reproductive disorders. In 

addition, MALDI/Biotyper based clustering revealed that G. anatis isolates obtained 

from upper respiratory tract, reproductive tract, heart, liver and spleen of the same bird 

belong to the same clonal complex. However, different clonal lineages of G. anatis were 

observed between flocks, indicating each flock was infected with a single clone, 

supporting previous findings by genotypic methods. 

 

 

Introduction 
The genus Gallibacterium belongs to the family Pasteurellaceae Pohl 1981 and consists 

of four recognized species, Gallibacterium anatis the type species of the genus 

Gallibacterium, Gallibacterium salpingitis, Gallibacterium melopsittaci, and 

Gallibacterium trehalosifermentans [1,2]. Depending on the level of biosecurity, G. 

anatis might constitute part of the normal upper respiratory - and the lower genital tract 

microflora of chickens [3,4]. In addition, these organisms have been isolated from a 

range of pathological lesions in poultry, including septicaemia, oophoritis, salpingitis, 

peritonitis and respiratory tract lesions [5-9]. 

 

Whole-cell matrix assisted laser desorption ionization-time of flight mass spectrometry 

(MALDI-TOF MS) represents an emerging technology for identification and typing of 

bacteria [10-13]. The present study uses MALDI-TOF MS to identify 184 clinical 

strains of G. anatis that were isolated from respiratory tract, heart, liver, spleen, 

intestine and reproductive tract from laying birds with reproductive disorders (three to 

eight birds per flock), kept in alternative husbandry systems. Furthermore, the ability of 

MALDI/Biotyper software to recognize clonally related G. anatis strains (i.e. sub-

typing) isolated from different organs as well as from different flocks was investigated. 

Thus, to enable identification of possible specific G. anatis clones.  
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Materials and Methods 

All clinical isolates of G. anatis were grown on Columbia agar (COS) containing 5% 

sheep blood (BioMerieux, Vienna, Austria), at 37°C for 24 hours under microaerobic 

conditions. All isolates demonstrated a wide β–haemolytic zone (1 to 2 mm). A field 

isolate of Pasteurella multocida (08/14290) was identified by phenotypic methods and 

confirmed by MALDI/Biotyper reference database version 3, and used as an out-group 

in the dendrogram. Sample preparation for MALDI-TOF MS, as well as, parameters 

and data visualization and analysis were performed as previously described in detail 

[14]. Bacterial acid soluble proteins were extracted using formic acid (70%) and 

acetonitrile according to the standard protocol from Bruker. One μl of each bacterial 

extract was spotted five times onto the MALDI target plate and air dried. Afterwards, 2 

μl of matrix solution (alpha-cyano-4-hydroxycinnamic acid in 50 % acetonitrile/2.5 % 

trifluor acetic acid) were overlaid on each sample and dried again. All steps were 

performed at room temperature.  

 

 

Results and Discussion 
The Bruker reference database version 3 consists of microorganisms usually relevant in 

human clinical microbiology laboratories, though only one Gallibacterium species (G. 

anatis DSM 16844/DSM) was present. Hence, veterinary important bacteria such as 

Gallibacterium have not been generally evaluated using MALDI-TOF MS, therefore, 

restricting the practical reach of this new technology. For this reason, firstly the 

construction of a database in the MALDI/Biotyper with the four Gallibacterium type 

strains (G. anatis (F149T), G. melopsittaci (F450T), G. trehalosifermentans (52/33/90T) 

and G. salpingitidis (F150T)) and Gallibacterium genomospecies 1 (CCM5974). These 

strains were in-depth characterised by biochemical/physiological properties, genotypic 

methods and MALDI-TOF MS [15].  

 

For identification of clinical isolates by MALDI-TOF MS, a generated peak list was 

matched against the established reference library using the integrated pattern-matching 

algorithm of MALDI/Biotyper software version 2.0. Briefly, the software calculates 

log(score) values, that is, a log(score) between 1.7 and 2.0 represents genus 
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identification. Log(score) value of ≥ 2.0 represents an identification at species level. 

Anything less then 1.7 log(score) was rated as not identifiable by the software.  

 

Table 1. Identification results for the 184 clinical isolates using MALDI-TOF 

MS/Biotyper and Gallibacterium specific PCR 

No. Designation* Organ 

PCR a MALDI-TOF MS/Biotyper 

Species ID 
Detected 
Species log(Score)b 

1 06/0956-1 Lung c Gallibacterium anatis G. anatis 2.315 

2 06/0956-2 Trachea Gallibacterium anatis G. anatis 2.312 

3 06/0956-2 Cloaca Gallibacterium anatis G. anatis 2.418 

4 06/0956-4 Duodenum Gallibacterium anatis G. anatis 2.463 

5 06/0956-4 Trachea Gallibacterium anatis G. anatis 2.283 

6 06/0956-5 Duodenum Gallibacterium anatis G. anatis 2.421 

7 06/0956-5 Trachea Gallibacterium anatis G. anatis 2.517 

8 06/0956-6 Trachea Gallibacterium anatis G. anatis 2.302 

9 06/0956-6 Lung Gallibacterium anatis G. anatis 2.411 

10 06/0956-7 Trachea Gallibacterium anatis G. anatis 2.537 

11 06/0956-8 Trachea Gallibacterium anatis G. anatis 2.455 

12 06/0956-8 Liver k. Gallibacterium anatis G. anatis 2.565 

13 06/0956-8 Liver g Gallibacterium anatis G. anatis 2.496 

14 06/0957-1 Trachea c Gallibacterium anatis G. anatis 2.503 

15 06/0957-3 Trachea Gallibacterium anatis G. anatis 2.121 

16 06/0958-1 Ovary k. Gallibacterium anatis G. anatis 2.542 

17 06/0958-1 Ovary g. Gallibacterium anatis G. anatis 2.555 

18 06/0958-1 Trachea k. Gallibacterium anatis G. anatis 2.517 

19 06/0958-1 Trachea g. Gallibacterium anatis G. anatis 2.479 

20 06/0958-1 Oviduct k. Gallibacterium anatis G. anatis 2.564 

21 06/0958-1 Oviduct g. Gallibacterium anatis G. anatis 2.441 

22 06/0958-1 Duodenum c Gallibacterium anatis G. anatis 2.494 

23 06/0958-2 Trachea Gallibacterium anatis G. anatis 2.524 

24 06/0958-2 Lung Gallibacterium anatis G. anatis 2.597 

25 06/0958-2 Oviduct Gallibacterium anatis G. anatis 2.295 

26 06/0958-2 Ovary Gallibacterium anatis G. anatis 2.455 

27 06/0958-3 Ovary Gallibacterium anatis G. anatis 2.308 

28 06/0958-4 Ovary c Gallibacterium anatis G. anatis 2.390 

29 06/0958-4 Lung Gallibacterium anatis G. anatis 2.527 

30 06/0958-4 Oviduct Gallibacterium anatis G. anatis 2.330 
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31 06/0958-4 Choana c Gallibacterium anatis G. anatis 2.538

32 06/1321-1 Choana c Gallibacterium anatis G. anatis 2.327

33 06/1321-1 Trachea c Gallibacterium anatis G. anatis 2.273

34 06/1321-2 Spleen c Gallibacterium anatis G. anatis 2.376

35 06/1321-2 Heart c Gallibacterium anatis G. anatis 2.411

36 06/1321-2 Liver c Gallibacterium anatis G. anatis 2.444

37 06/1321-2 Duodenum c Gallibacterium anatis G. anatis 2.410

38 06/1321-2 Trachea Gallibacterium anatis G. anatis 2.583

39 06/1321-2 Cloaca Gallibacterium anatis G. anatis 2.390

40 06/1321-3 Choana Gallibacterium anatis G. anatis 2.410

41 06/1321-3 Cloaca Gallibacterium anatis G. anatis 2.448

42 06/1321-3 Trachea Gallibacterium anatis G. anatis 2.633

43 06/1321-3 Ovary c Gallibacterium anatis G. anatis 2.459

44 06/1321-3 Spleen Gallibacterium anatis G. anatis 2.570

45 06/1322-1 Oviduct Gallibacterium anatis G. anatis 2.225

46 06/1322-2 Cloaca Gallibacterium anatis G. anatis 2.439

47 06/1322-3 Ovary c Gallibacterium anatis G. anatis 2.292

48 06/1322-3 Trachea Gallibacterium anatis G. anatis 2.412

49 06/1322-3 Oviduct c Gallibacterium anatis G. anatis 2.397

50 06/2159-1 Lung Gallibacterium anatis G. anatis 2.272

51 06/2159-1 Lung c Gallibacterium anatis G. anatis 2.337

52 06/2160-3 Choana c Gallibacterium anatis G. anatis 2.414

53 06/2161-1 Choana c Gallibacterium anatis G. anatis 2.364

54 06/2162-1 Choana Gallibacterium anatis G. anatis 2.364

55 06/2162-1 Cloaca c Gallibacterium anatis G. anatis 2.341

56 06/2162-1 Spleen c Gallibacterium anatis G. anatis 2.630

57 06/2162-1 Trachea c Gallibacterium anatis G. anatis 2.320

58 06/2162-3 Choana c Gallibacterium anatis G. anatis 2.397

59 06/2162-3 Spleen c Gallibacterium anatis G. anatis 2.557

60 06/2163-1 Choana c Gallibacterium anatis G. anatis 2.564

61 06/2163-1 Oviduct c Gallibacterium anatis G. anatis 2.524

62 06/2163-2 Choana Gallibacterium anatis G. anatis 2.113

63 06/2163-3 Trachea Gallibacterium anatis G. anatis 2.488

64 06/2600-1 Choana Gallibacterium anatis G. anatis 2.531

65 06/2600-1 Ovary Gallibacterium anatis G. anatis 2.487

66 06/2600-2 Cloaca Gallibacterium anatis G. anatis 2.419

67 06/2600-2 Duodenum Gallibacterium anatis G. anatis 2.315

68 06/2600-3 Trachea Gallibacterium anatis G. anatis 2.314

69 06/2600-5 Choana Gallibacterium anatis G. anatis 2.259

70 06/2600-5 Trachea Gallibacterium anatis G. anatis 2.221
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71 06/2601-4 Choana Gallibacterium anatis G. anatis 2.614 

72 06/2601-4 Trachea Gallibacterium anatis G. anatis 2.370 

73 06/2601-5 Choana c Gallibacterium anatis G. anatis 2.247 

74 06/2601-5 Trachea c Gallibacterium anatis G. anatis 2.325 

75 06/3358-1 Cloaca c Gallibacterium anatis G. anatis 2.455 

76 06/3358-1 Choana Gallibacterium anatis G. anatis 2.452 

77 06/3358-4 Trachea c Gallibacterium anatis G. anatis 2.239 

78 06/3358-4 Duodenum c Gallibacterium anatis G. anatis 2.280 

79 06/3358-5 Choana c Gallibacterium anatis G. anatis 2.539 

80 06/3358-5 Duodenum c Gallibacterium anatis G. anatis 2.379 

81 06/3358-5 Lung c Gallibacterium anatis G. anatis 2.388 

82 06/3358-5 Trachea c Gallibacterium anatis G. anatis 2.540 

83 06/3358-5 Ovary c Gallibacterium anatis G. anatis 2.360 

84 06/3359-1 Choana Gallibacterium anatis G. anatis 2.546 

85 06/3359-2 Choana Gallibacterium anatis G. anatis 2.463 

86 06/3359-2 Cloaca Gallibacterium anatis G. anatis 2.431 

87 06/3359-3 Ovary c Gallibacterium anatis G. anatis 2.200 

88 06/3359-3 Choana c Gallibacterium anatis G. anatis 2.524 

89 06/3359-3 Oviduct c Gallibacterium anatis G. anatis 2.397 

90 06/3359-3 Trachea c Gallibacterium anatis G. anatis 2.378 

91 06/3359-4 Trachea c Gallibacterium anatis G. anatis 2.304 

92 06/3359-4 Choana c Gallibacterium anatis G. anatis 2.570 

93 06/3360-1 Choana Gallibacterium anatis G. anatis 2.426 

94 06/3360-1 Trachea Gallibacterium anatis G. anatis 2.429 

95 06/4296-2 Choana c Gallibacterium anatis G. anatis 2.388 

96 06/4296-2 Duodenum c Gallibacterium anatis G. anatis 2.323 

97 06/4296-2 Cloaca c Gallibacterium anatis G. anatis 2.596 

98 06/4296-2 Trachea c Gallibacterium anatis G. anatis 2.467 

99 06/4296-4 Cloaca Gallibacterium anatis G. anatis 2.270 

100 06/4296-4 Choana c Gallibacterium anatis G. anatis 2.385 

101 06/4296-4 Lung c Gallibacterium anatis G. anatis 2.397 

102 06/4296-4 Ovary c Gallibacterium anatis G. anatis 2.481 

103 06/4567-3 Lung Gallibacterium anatis G. anatis 2.287 

104 06/4567-3 Choana Gallibacterium anatis G. anatis 2.300 

105 06/4567-4 Oviduct Gallibacterium anatis G. anatis 2.324 

106 06/4567-5 Choana Gallibacterium anatis G. anatis 2.495 

107 06/7415-1 Cloaca c Gallibacterium anatis G. anatis 2.587 

108 06/7415-3 Cloaca c Gallibacterium anatis G. anatis 2.373 

109 06/7415-3 Duodenum c Gallibacterium anatis G. anatis 2.355 

110 06/7415-3 Oviduct c Gallibacterium anatis G. anatis 2.438 
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111 06/7415-4 Heart c Gallibacterium anatis G. anatis 2.409

112 06/7415-5 Trachea Gallibacterium anatis G. anatis 2.511

113 06/7415-5 Liver c Gallibacterium anatis G. anatis 2.321

114 06/7415-5 Spleen c Gallibacterium anatis G. anatis 2.310

115 06/7416-1 Spleen c Gallibacterium anatis G. anatis 2.385

116 06/7416-1 Trachea c Gallibacterium anatis G. anatis 2.313

117 06/7416-4 Lung g. Gallibacterium anatis G. anatis 2.602

118 06/7416-4 Lung k. Gallibacterium anatis G. anatis 2.413

119 06/7416-4 Spleen g. c Gallibacterium anatis G. anatis 2.187

120 06/7416-4 Spleen k. Gallibacterium anatis G. anatis 2.438

121 06/7416-5 Lung c Gallibacterium anatis G. anatis 2.324

122 06/7416-5 Liver c Gallibacterium anatis G. anatis 2.489

123 06/7417-2 Duodenum c Gallibacterium anatis G. anatis 2.423

124 06/7417-2 Oviduct c Gallibacterium anatis G. anatis 2.475

125 06/7417-4 Heart c Gallibacterium anatis G. anatis 2.444

126 06/7417-4 Liver c Gallibacterium anatis G. anatis 2.512

127 06/7417-4 Spleen c Gallibacterium anatis G. anatis 2.444

128 06/7417-4 Trachea c Gallibacterium anatis G. anatis 2.496

129 06/7484-1 Choana c Gallibacterium anatis G. anatis 2.474

130 06/7484-1 Cloaca c Gallibacterium anatis G. anatis 2.519

131 06/7484-1 Trachea c Gallibacterium anatis G. anatis 2.578

132 06/7484-2 Trachea Gallibacterium anatis G. anatis 2.583

133 06/7484-4 Choana c Gallibacterium anatis G. anatis 2.428

134 06/7484-4 Duodenum c Gallibacterium anatis G. anatis 2.471

135 06/7484-4 Lung c Gallibacterium anatis G. anatis 2.384

136 06/7484-4 Spleen c Gallibacterium anatis G. anatis 2.369

137 06/7484-4 Ovary c Gallibacterium anatis G. anatis 2.382

138 06/9163-5 Trachea Gallibacterium anatis G. anatis 2.561

139 06/9163-5 Choana Gallibacterium anatis G. anatis 2.550

140 06/9163-5 Cloaca Gallibacterium anatis G. anatis 2.425

141 06/9610-1 Trachea Gallibacterium anatis G. anatis 2.571

142 06/9610-2 Choana Gallibacterium anatis G. anatis 2.593

143 06/9610-3 Duodenum Gallibacterium anatis G. anatis 2.559

144 06/9610-4 Cloaca Gallibacterium anatis G. anatis 2.563

145 07/0052-1 Choana Gallibacterium anatis G. anatis 2.556

146 07/0052-1 Cloaca Gallibacterium anatis G. anatis 2.522

147 07/0052-2 Heart Gallibacterium anatis G. anatis 2.174

148 07/0052-2 Ovary Gallibacterium anatis G. anatis 2.247

149 07/0052-2 Trachea Gallibacterium anatis G. anatis 2.498

150 07/0052-3 Choana Gallibacterium anatis G. anatis 2.317

89 
 



Publication 3.3 

151 07/0052-4 Choana Gallibacterium anatis G. anatis 2.478 

152 07/0052-5 Spleen Gallibacterium anatis G. anatis 2.526 

153 07/0053-1 Choana Gallibacterium anatis G. anatis 2.352 

154 07/0053-2 Lung Gallibacterium anatis G. anatis 2.356 

155 07/0053-2 Trachea Gallibacterium anatis G. anatis 2.291 

156 07/0053-3 Heart Gallibacterium anatis G. anatis 2.320 

157 07/0053-3 Ovary Gallibacterium anatis G. anatis 2.294 

158 07/0053-3 Trachea Gallibacterium anatis G. anatis 2.416 

159 07/0053-3 Lung Gallibacterium anatis G. anatis 2.327 

160 07/0053-4 Choana Gallibacterium anatis G. anatis 2.301 

161 07/0053-5 Choana Gallibacterium anatis G. anatis 2.538 

162 07/0053-5 Heart Gallibacterium anatis G. anatis 2.455 

163 07/0053-5 Liver Gallibacterium anatis G. anatis 2.423 

164 07/0702-1 Choana Gallibacterium anatis G. anatis 2.320 

165 07/0702-1 Cloaca Gallibacterium anatis G. anatis 2.433 

166 07/0702-1 Heart Gallibacterium anatis G. anatis 2.415 

167 07/0702-1 Liver Gallibacterium anatis G. anatis 2.363 

168 07/0702-1 Spleen Gallibacterium anatis G. anatis 2.483 

169 07/0702-2 Cloaca Gallibacterium anatis G. anatis 2.389 

170 07/0702-2 Liver Gallibacterium anatis G. anatis 2.537 

171 07/0702-2 Spleen Gallibacterium anatis G. anatis 2.533 

172 07/0702-3 Choana Gallibacterium anatis G. anatis 2.436 

173 07/0702-3 Cloaca Gallibacterium anatis G. anatis 2.500 

174 07/0702-3 Duodenum Gallibacterium anatis G. anatis 2.457 

175 07/0702-3 Heart Gallibacterium anatis G. anatis 2.422 

176 07/0702-3 Ovary Gallibacterium anatis G. anatis 2.366 

177 07/0702-3 Spleen Gallibacterium anatis G. anatis 2.473 

178 07/0702-3 Trachea Gallibacterium anatis G. anatis 2.101 

179 07/0702-4 Choana Gallibacterium anatis G. anatis 2.438 

180 07/0702-4 Liver Gallibacterium anatis G. anatis 2.326 

181 07/0702-4 Trachea Gallibacterium anatis G. anatis 2.390 

182 07/0702-4 Heart Gallibacterium anatis G. anatis 2.212 

183 07/0702-5 Choana Gallibacterium anatis G. anatis 2.531 

184 07/0702-5 Duodenum Gallibacterium anatis G. anatis 2.385 

Abbreviations: G: Gallibacterium, g: big colonies, k: small colonies.  
a Polymerase chain reaction (PCR) analyses according to the protocol of Bojesen 

et al. [16].  
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b MALDI Biotyper 2 results stand for: species level identification with 

log(score) values ≥ 2.0 and genus identification with log(score) values between 

1.7 and 2.0.  
c Strains analysed by AFLP [6]. 

 *Designation = year/flock number-bird number (e.g.06/1321-2) 

 

 

Based on cross-wise minimum spanning tree (MSP) matching, a dendrogram was 

created with similar MSPs, resulting in a high matching score value. Each MSP is 

matched against all MSPs of the analysed set. The list of score values is used to 

calculate normalised distance values between the analysed species, resulting in a matrix 

of matching scores. The visualization of the respective relationship between the MSPs is 

displayed in a dendrogram using the MALDI Biotyper 2.0 software. Species with 

distance levels under 500 have been described as reliably classified to species level [17].  

 

A defined population of G. anatis field isolates were obtained from a two-year study 

based on strict selection of layer flocks, a standardised protocol for necropsy and for 

bacteriological investigation from 10 organs of each bird [6]. The present study uses 

MALDI Biotyper software for identification of the G. anatis field isolates and for 

investigation of their clonal relationships. Ten isolates representing the diversity 

outlined by MALDI-TOF MS were subjected to sequencing of rpoB gene as described 

recently [15] to verify that all isolates represented G. anatis.  

 

Confirmed to previous results from Gallibacterium-specific PCR and AFLP [6] 

MALDI-TOF MS identified all 184 strains correctly (Table 1). DNA sequence 

comparison of the partial rpoB gene sequence of ten strains (06/7417-4 Trachea, 

06/1321-2 Liver, 06/0958-2 Oviduct, 06/2162-1 Trachea, 06/3358-5 Choana, 06/7417-4 

Liver, 06/0956-4 Duodenum, 06/7484-4 Duodenum, 06/7484-4 Spleen, 07/0053-3 

Heart) showed from 0.4 to 1.3 % variation with 0.4 to 1.8 % variation to the type strain 

of G. anatis.  

 

Isolates from some organs, e.g. 06/0956-8 Liver, 06/0956-8 Trachea, 06/0956-8 

Oviduct, 06/7416-4 Spleen, demonstrated differences in colony size i.e. some colonies 

were 1-2 mm while others colonies were only 0.5 mm in diameter. Differences were not 
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observed in spectra obtained with small and large colonies on MALDI-TOF MS, and 

both colony sizes were identified as G. anatis, even though the small colony size is not 

typical for Gallibacterium [2].  

 

A score oriented MSP dendrogram was generated with 50 Gallibacterium isolates 

originating from 10 flocks and different organs from 14 different birds. In addition, the 

type strain of G. anatis type strain (F149T) and Pasteurella multocida 08/14290 were 

also included in the dendrogram (Fig. 1). The maximum distance between strains of G. 

anatis included in the dendrogram was 300 well below the cut-off value of 500 usually 

used for species separation. We propose a cut-off value of 100-distance level in the 

MALDI/Biotyper dendrogram for clone definition. The isolates that group together 

below 100-distance level are generally isolated from the same flock. In principle, the 

MALDI-TOF MS method revealed no different clonal lineages of G. anatis strains 

within the same bird, comparing isolates from upper respiratory tract and lesions in 

reproductive tract, heart, liver and spleen. Thus, supporting earlier data that these 

Gallibacterium isolates are more likely part of the normal flora and potential 

opportunist pathogen of chickens [18].  
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Figure 1. 

Classification of Gallibacterium clinical strains investigated. Score–oriented 

(MSP) dendrogram of MALDI-TOF mass spectral profiles generated by the 

MALDI Biotyper 2. The dendrogram was generated with following settings: 
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distance measure was set at correlation, linkage at average and score threshold 

value for a single organism at 600. Pasteurella multocida 08/14290 strain was 

used as an out-group. Strains clustering with distance levels lower than 500 

could be classified up to species level [17]. The vertical broken line at 100-

distance level indicates the cut-off value for MALDI/Biotyper clone definition.  

ferent 

olates from the same individual or populations of animals kept in close contact.  

f 

allibacterium at the flock level and specific clonal lineages within the same animal.  

onstrated different clonal 

lineages of G. anatis that were isolated from different flocks. 

 

So far only a few publications have investigated if MALDI-TOF MS and the Biotyper 

software are capable of revealing different clonal lineages. Dubois et al. [19] showed 

that Staphylococcus epidermidis of human or environmental origin clustered separately 

in the MALDI-TOF MS dendrogram, revealing different clonal lineages according to 

the origin of the isolates. In addition, Wang et al. [20] showed that the MALDI-TOF 

MS method was capable of determining the geographical origin of commercial honey. 

The five major hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) 

clonal complexes have also been analysed by MALDI-TOF MS, and it was shown that 

MALDI-TOF MS based typing allows accurate and reproducible discrimination of 

major MRSA clonal complexes [13]. However, none of these studies included dif

is

 

In this study, MALDI/Biotyper based clustering revealed different clonal lineages of G. 

anatis that were isolated from different flocks. This finding confirms previously 

published genotypic data stating that a single clone might infect a flock and can be 

isolated from various sites in a bird [6]. Furthermore, AFLP showed that the same clone 

could be isolated from the mucosal lining of upper respiratory tract and from lesions in 

the reproductive tract, heart, liver and, spleen, reflecting a continues cascade of the 

infection [6]. Bojesen et al. [18] demonstrate the  existence of clonal populations o

G

 

In conclusion, MALDI-TOF MS and the Biotyper software allowed correct 

identification of G. anatis isolates from birds with reproductive disorders kept in 

alternative husbandry systems. MALDI/Biotyper also dem
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Conclusions 

4. Conclusions 
A vast number of methods have been developed for the identification of genera, species, 

and strains of bacteria. These consist of culture methods (biochemical tests and 

chemical analysis of pure cultures), serological methods (ELISA and 

immunofluorescence assays) and genetic methods (nucleic acid hybridization and PCR 

techniques). The common methods for identifying bacteria in contaminated samples 

involve obtaining pure cultures first by streaking or sequential dilution. Microscopic 

observation and biochemical tests are followed by verification of the suspected identity 

with specific antibodies or molecular probes. PCR and commercial kits containing the 

antibodies or probes are sometimes used with mixed cultures to resolve quickly whether 

the DNA and proteins of a specific bacterium are present, and DNA microarrays can be 

used to test for numerous species of bacteria at one time. Nevertheless, if none of the 

probes or antibodies on hand correspond to any of the bacteria in the sample, then other 

tests with pure cultures will be necessary. Each of the methods has advantages for 

identification of certain species; however, none has yet accomplished all of the 

advantages of speed and accuracy with any serious weaknesses. 

 

MALDI-TOF MS is a very rapid method for analyzing the proteins desorbed directly 

from whole cells. The whole-cell spectra produced by MALDI-TOF MS have 

taxonomically characteristic features that can be used to differentiate bacteria at the 

genus, species, and strain level, even though only a small number of proteins can be 

detected directly from whole cells. MALDI-TOF MS profile analysis results in similar 

family trees compared to classical methods like morphological and biochemical 

comparison or 16S ribosomal RNA sequencing. Because ribosomal proteins are highly 

abundant and appear very stable the observed protein pattern enables a direct view to 

the translated DNA sequence (Claydon et al., 1996; Suh & Limbach, 2004).  

 

Here a detailed study was performed using MALDI-TOF MS to analyse taxonomic 

relationships of human and veterinary important bacteria. For identification of clinical 

strains, a precondition was the establishment of high quality spectra libraries for the 

particular bacteria. The reference bacteria used for ‘in house’ database development 

were obtained from ATCC and NCTC (for Campylobacter, Arcobacter and 

Helicobacter species) these strains either were type strains of the species or matched to 

97 
 



Conclusions 
 

a type strain in the Bruker reference database library. However, the Gallibacterium 

reference stains were obtained from Prof. Magne Bisgaard in Denmark.  

 

The clinical and economic importance of Campylobacter, Arcobacter, and Helicobacter 

coupled to their taxonomic complexity has led to a wide range of phenotypic and 

genetic methods being developed to identify and differentiate them. Nevertheless, no 

method has yet accomplished to identify and differentiate all the relevant species in 

reasonable time frame and accuracy. However, by MALDI-TOF MS C. jejuni, C. coli, 

C. lari, C. hyointestinalis and C. fetus had unique and reproducible mass spectra and 

therefore the five species were easily differentiated. Furthermore, the closely related 

Arcobacter species A. butzleri, A. skirrowii and A. cryaerophilus, and Helicobacter 

species, H. pullorum and H. pamentensis had unique and reproducible mass spectra. 

Thus, within minutes, the species from the three phenotypically similar genera were 

easily differentiated according to their mass signal patterns and therefore these signal 

patterns were used to build an ‘in house’ reference database.  

 

A total of 144 clinical isolates (obtained from humans, environment and from different 

farm animals, mostly poultry) were correctly identified using the ‘in house’ 

MALDI/Biotyper reference database at species level and no differences in results were 

found associated with the source of the isolate. All strains were identified 

phenotypically and with PCR-RFLP. PCR-RFLP species identity results were 97.9 % 

concordant to MALDI-TOF MS results, because PCR-RFLP could not differentiate 

between C. fetus and C. hyointestinalis in three clinical isolates. In all these cases, a 

differentiation at species level with MALDI-TOF MS was possible. Correct 

identification can be obtained with MALDI/Biotyper even if the bacteria are stored at 

room temperature or at +4°C up to 9 days until being tested. However, the identification 

was affected when bacteria were grown on mCCD agar i.e. flatline spectra, hence, no 

identification possible with MALDI-TOF MS. Nevertheless, correct identification is 

possible when bacteria are grown on COS or CAM agar plates. Thus, MALDI-TOF MS 

fingerprinting is a fast and reliable method for the identification and differentiation of 

Campylobacter, Arcobacter and Helicobacter spp., with applications in clinical 

diagnostics. 
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MALDI-TOF MS revealed to be a rapid and reliable method even with the recently 

established genus Gallibacterium. This genus represents a phenotypically 

heterogeneous group, where identification and differentiation of species belonging to 

this genus is difficult with other means. Gallibacterium anatis is potentially pathogenic 

for poultry and is mainly associated with lesions in the reproductive tract, including the 

ovary (Gerlach, 1977; Bisgaard & Dam, 1981; Neubauer et al., 2009). Disease 

associated with this microorganism is related to decreased egg production and 

occasionally an increase in mortality of birds. Therefore, 66 reference Gallibacterium 

strains were in-depth characterised by biochemical/physiological properties, genotypic 

methods and MALDI-TOF MS, and the results compared. According to the cluster 

analysis generated by the MALDI/Biotyper software, five different species were 

revealed which are the four type strains and an additional probable species. The 

MALDI-TOF MS results of all 66 strains demonstrated 87.9 % concordance with results 

based upon biochemical/physiological characterization. In addition, diversities outlined 

by MALDI-TOF MS were verified by sequencing the rpoB (n = 43), 16S rRNA (n = 

28), infB (n = 14) and recN (n = 14) genes (multilocus sequence analysis, MLSA). 

However, discrepancies were observed between some of the genes sequenced. Reliable 

identification was possible when bacteria were stored at 4°C degree, even up to 8 days, 

this demonstrate that the MALDI/Biotyper species identification is reproducible even 

under different conditions. Nevertheless, if the strains were grown longer than 48 hrs at 

37 °C under microaerobic atmosphere, poor identification results were obtained, due to 

changes in protein profile.  

 

The Gallibacterium reference stains mass spectra were implemented into the Biotyper 

database for identification of clinical strains. MALDI-TOF MS identified 184 strains 

correctly in comparison to the results from Gallibacterium-specific PCR and AFLP.  

Different strains of Gallibacterium have highly different levels of virulence (Bisgaard, 

1977; Gerlach, 1977; Mushin et al., 1980). Therefore, MALDI/Biotyper based 

clustering was used to enable identification of possible specific clones of G. anatis. 

However, no different clonal lineages of G. anatis strains isolated from upper 

respiratory tract, reproductive tract, heart, liver and spleen within a bird was revealed. 

Hence, indicating that these Gallibacterium isolates are part of the normal flora of 

chickens and are an opportunist pathogen. Yet, different clonal lineages of G. anatis 

were observed between flocks, indicating each flock was infected with a single clone, 
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supporting the findings of genotypic methods. Therefore, we propose that the isolates 

that group together below 100-distance level in MALDI/Biotyper dendrogram are 

MALDI defined clones.  

 

This thesis is a strong conformation of the ability of MALDI-TOF MS whole cell 

fingerprinting to be the next-generation of rapid molecular microbial identification 

system. The speed and minimal costs of sample preparation and measurement for this 

method makes it exceptionally well suited for routine and high-throughput use. This is 

extremely important in human and veterinary medicine where patients’ fast recovery is 

in question. MALDI/Biotyper based clustering could be used as epidemiological 

method for evaluating bacterial disease in order to monitor the spread of an outbreak 

and to resolve where the infection started.  
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