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Abstract

This work aims at a better understanding of processes, which form the basis of cell movement.
This movement plays an important role in a variety of very different situations; without them
most forms of live would be unthinkable.

The basis for cellular movement is in many cases the filament-forming protein actin, which can
be found in all eukaryotic cells. The focus lies on the interaction between actin and the motor
protein myosin. Myosin can also form filaments, but in contrast to actin, they are symmetric and
have many small "heads". These have the ability to move under consumption of energy along
actin, or drag actin into a direction. This is for example the case in our skeletal muscles and no
matter if we move our fingers to turn a page or take part in a marathon, actin-myosin interactions
are responsible.

After an introduction to the biological basics in Chapter 1, a detailed mathematical model for
the interactions is derived in Chapter 2. The modeling tries to take into account all essential
forces which act on attached myosin heads. It leads to a non-linear kinetic transport equation
for a distribution function Ψ, which describes the number of bound myosin heads in dependence
of their position and velocity. Two things are unusual about this equation: First the usage of
Delta distributions which only put heads on very specific positions with very specific speed. And
secondly, it is possible to derive a system of closed ordinary differential equations for the moments
of Ψ, i.e. the total number of attached heads, the average myosin bundle speed and the total
stress. It can be shown that their (unique) steady states are globally stable.

After solving the moment system, the transport equation can be solved by the methods of char-
acteristics. It turns out that the influence of a given initial distribution decays with time and
that the remaining part is concentrated on a single curve in phase space. Responsible for this
effect are the deltas in the equation. For t→∞ the solution converges to a stationary solution.

Finally in Chapter 3 the considerations about actin-myosin interactions are applied to the con-
crete situation of keratocytes (motile fish cells). These cells have a thin, sheet-like protrusion,
called lamellipodium, in which many actin filaments can be found. They are used for the move-
ment of the cells and form a network, in which the filaments are connected to each other and
the substrate. Keratocytes are either stationary and circular shaped or half-moon shaped and
moving. The consequences of actin-myosin interactions are added to an existing model about the
movement of keratocytes. The model starts with a discrete description, then lets the number of
filaments tend to infinity and derives for each effect an energy functional, which the filament po-
sitions seek to minimize. The idea is that myosin can help destabilizing the stationary state and
lead to a transition to the moving state. For myosin we assume the ability to walk towards one
end of actin and to move the angle between two actin filaments towards 180 degrees. Myosin fila-
ments can grow and the created forces are assumed to be dependent on this size. Looking at the
variational problem leads to an Euler-Lagrange equation. The next step to be done would be an
implementation of the myosin terms into an existing Matlab code to check that the keratocyte’s
stationary state can be destabilized and transformed to a moving state.
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German Summary - Deutsche
Zusammenfassung
Zielsetzung dieser Diplomarbeit ist das bessere Verständnis von Prozessen, die der eigenständigen
Bewegung von Zellen zugrunde liegen. Zellbewegungen spielen in einer großen Anzahl sehr un-
terschiedlicher Situationen eine wesentliche Rolle; ohne sie wären die meisten Formen von Leben
nicht denkbar.

Basis für Zellbewegung ist in vielen Fällen das filament-bildende Protein Aktin, welches in allen
eukaryoten Zellen zu finden ist. Der Fokus dieser Arbeit liegt auf dem Zusammenspiel zwischen
Aktin und dem Motorprotein Myosin. Auch Myosin kann Filamente bilden, welche, im Unter-
schied zu Aktin, symmetrisch sind und viele kleine "Köpfe" besitzen. Diese haben die Fähigkeit
unter Energieverbrauch auf Aktin entlang zu wandern, beziehungsweise Aktin in eine Richtung
zu ziehen. Das ist etwa in allen unseren Skelettmuskeln in einer sehr organisierten Form der
Fall und egal ob wir die Finger bewegen, um eine Seite umzublättern oder an einem Hürdenlauf
teilnehmen, Aktin-Myosin Wechselwirkung sind dafür verantwortlich.

Nach einer Einführung in die molekularbiologischen Grundlagen in Kapitel 1 wird in Kapitel
2 ein detailliertes mathematisches Model für die Wechselwirkungen zwischen Aktin und Myosin
hergeleitet. Die Modellierung versucht die wesentlichen physikalischen Kräfte zu beschreiben,
die auf einen Myosinkopf wirken und führt auf eine nicht-lineare kinetische Transportgleichung
für eine Verteilungsfunktion Ψ, welche die Anzahl der gebundenen Köpfe in Abhängigkeit ihrer
Position und Geschwindigkeit beschreibt. Ungewöhnlich an dieser Gleichung ist einerseits die
Verwendung von Delta-Distributionen, die neu gebundene Köpfe nur an ganz bestimmte Positio-
nen mit ganz bestimmten Geschwindigkeiten setzten. Die zweite Besonderheit ist die Tatsache,
dass sich für die Momente der Verteilungsfunktion, d.h. für die Anzahl der gebundenen Köpfe,
die Geschwindigkeit des Myosinbündels und die Gesamtbelastung ein geschlossenes, autonomes
System nicht-linearer, gewöhnlicher Differenzialgleichungen ergibt. Eine Stabilitätsanalyse des
Ode-Systems zeigt, dass die (eindeutigen) Gleichgewichtspunkte global stabil sind.

Nachdem das Moment-System gelöst ist, kann die Transportgleichung durch die Charakteristiken-
Methode gelöst werden. Es zeigt sich, dass der Einfluss einer vorgegebenen Anfangsverteilung
mit der Zeit abnimmt und der restliche Anteil zu jedem Zeitpunkt auf einer einzelnen Kurve
konzentriert ist; dafür verantwortlich sind die Deltas in der Gleichung. Im Limes konvergiert die
Lösung gegen eine stationäre Lösung.

In Kapitel 3 schließlich wird versucht die Überlegungen der Aktin-Myosin Interaktionen auf
die konkrete Situation von Keratozyten (bewegliche Fischzellen) anzuwenden. Diese Zellen be-
sitzen einen dünnen, blattartigen Fortsatz, welcher Lamellipodium genannt wird und zahlreiche
Aktinfilamente enthält, welche zur Fortbewegung verwendet werden. Diese Filamente bilden
ein Netzwerk, in welchem die Filamente untereinander und mit der Oberfläche verbunden sind.
Keratozyten befinden sich entweder in einem runden, stationären Zustand oder in einem halb-
mondförmigen, beweglichen Zustand. Einem bestehenden Modell zur Bewegung von Keratozyten
(Oelz and Schmeiser [2010c]) werden die Auswirkungen von Aktin-Myosin Interaktionen hinzuge-
fügt. Das Modell beginnt mit einer diskreten Beschreibung, lässt anschließend die Anzahl der
Filamente gegen Unendlich gehen und leitet unter Verwendung asymptotischer Methoden für
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German Summary - Deutsche Zusammenfassung

jeden Effekt Energiefunktionale her, welche die Filamentpositionen versuchen zu minimieren.
Die Idee ist nun, mit Hilfe von Myosin den stationären Zustand zu destabilisieren und in einen
beweglichen umzuwandeln. Für Myosin wird angenommen, dass es einerseits aufgrund seiner
Steifheit die Filamente in Richtung eines Winkels von 180 Grad drängt und diese andererseits
gegeneinander verschiebt. Gleichzeitig kann das Myosinfilament selbst wachsen. Die Kräfte, die
es ausübt, wurden daher größenabhängig modelliert. Ein Variationsansatz führt schließlich zu
einer Euler-Lagrange Gleichung. Der nächste Schritt wäre, die Myosinterme in einem bestehen-
den Matlab Code zu implementieren, um zu überprüfen, ob sie zur gewünschten Destabilisierung
des stationären Zustandes führen und einen beweglichen Zustand einleiten können.
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1 Introduction and Biological Background

1.1 Laboratory Work
Parallel to this diploma thesis I worked on my bachelor’s thesis for "Molecular Biology", my sec-
ond degree which I also study at the University of Vienna. The topics of the two go hand in hand:
For the bachelor’s thesis I worked with keratocyte cells (see Section 1.6 for more information) in
the laboratory of Prof. John Victor Small at the IMBA, Vienna 1. These cells cannot be kept
alive for more than a few days and therefore need to be picked from fresh fish regularly. My work
included

• collecting the fish scales and harvesting the keratocytes which live on them

• finding the best method to produce cytoplasts (fragments)

• staining for actin, myosin and the nucleus using fluorescent labeling methods

• producing and examining 2D and 3D electron microscopy pictures to reveal the actin struc-
ture

Part of the produced results I used to justify mathematical modeling assumptions (see Chapter
3). My work is part of a bigger project on understanding cellular movement for which there
exists a close cooperation between the group of Prof. Christian Schmeiser from the Faculty of
Mathematics 2 of the University of Vienna and the group of Prof. Victor Small at the IMBA.

In this chapter as well as in Chapter 3 I present some pictures produced mainly during my work
at the IMBA. Details about the experiments and their results can be found in my bachelor’s thesis.

The rest of this chapter is based on Alberts et al. [2002] with small additions from Berg et al.
[2003].

1.2 Mobility and the Cytoskeleton
Many cells, whether unicellular or part of a large ensemble (such as the human) have the ability to
actively move from one place to another. A unicellular organism might be able to move towards
a source of food or away from danger. During the development of each organism all cells have
to be able to move to the right place. Pathogens move from one target cell to the next, immune
cells have to be able to crawl to the place of an infection to fight it. Furthermore some cells have
to be able to change their shape, for example to divide into two or contract a muscle.

The structural basis of these functions are bundles, networks, etc. formed by long rod-like
structures called filaments of various length and diameter which together form the cytoskeleton.
Some of its functions partly resemble the functions of our own (bony) skeleton: It gives the cell
shape and internal structure, makes them physically robust to outer mechanical stress and is the
basis of all movement. However, one big principal difference is that the cytoskeleton is a highly

1http://www.imba.oeaw.ac.at
2http://plone.mat.univie.ac.at/

1
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1 Introduction and Biological Background

Figure 1.1: The picture shows two stages of mitosis (=cell division) in fibroblasts. DNA is labeled
with a red fluorescence marker, microtubuli with a green one. Left picture: the cell
in the middle is just at the onset of mitosis (prophase, early metaphase). The two
spindle poles form at opposite ends of the nucleus. Right picture: The chromosomes
are already lined up between the poles and are about to be separated. Source: self-
made, 2010

Figure 1.2: The migration of fibroblasts over a gap of 325µm. Source: Self-made, 2010
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1.3 Actin

Figure 1.3: An actin filament and its globular subunit. The arrows and helices in the subunit
represent amino acid substructures. Source: [Alberts et al. 2002, p. 916]

dynamic structure which can adapt to a large variety of situations. This passage from [Alberts
et al. 2002, p. 907] nicely outlines its significance :

The cytoskeleton pulls the chromosomes apart at mitosis (see 1.7) and then splits the divid-
ing cell in two. It drives and guides the intracellular traffic of organelles, plasma membrane and
provides the mechanical linkage that let the cell bear stresses and strain without being ripped apart
as the environment shifts and changes. It enables some cells, such as sperm to swim, and others,
such as fibroblasts and white blood cells, to crawl across surfaces. It provides the machinery in
the muscle cells for contraction and in the neuron to extend an axon and dendrites. It guides the
growth of the plant cell wall and controls the amazing diversity of eucaryotic shapes.

Here the three types of filaments are mentioned, but we’ll be mainly concerned with the first:

a) Actin Filaments

b) Intermediate Filaments

c) Microtubuli

Figure 1.1 and Figure 1.2 show two examples: In the first, one can observe two stages of cell
division (mitosis - see 1.7) in fibroblasts (cells of the connective tissue). Here microtubuli play
an essential role by forming a so-called spindle that pulls the chromosomes on opposing sides in
the cell. The second figure shows how fibroblasts can crawl over a gap. This movement is actin
dependent.

3



1 Introduction and Biological Background

1.3 Actin
Actin filaments (F-actin) are protein (see 1.7 for more explanations) homo-polymers consisting
of globular actin subunits, which will be referred to as G-actin (see Figure 1.3). The protein
G-actin is found in all eukaryotic cells (see 1.7) and is remarkably well preserved across different
species. Between two species the amino acid sequences that the protein is made up of are usually
about 90% identical. The likely reason for this similarity also reveals part of the importance of
actin: Actin has usually many interaction partners ranging from myosins over regulatory proteins
to other cytoskeletal proteins. Whenever in the course of evolution the DNA encoding the actin
genes were altered (by mutation) in a way that effected the amino acid sequence, this was likely
to lead to functional problems with some binding partners. Therefore the likelihood of having
damaged a process crucial for the cell’s survival was very high. So changing binding partners
instead of actin just seems to have been the "safer" way for evolution.

Actin filaments are formed by polymerization which results in two-stranded helical polymers
which have a diameter of about 5-9nm. Two main aspects of F-actin are that it is:

a) polarized

b) dynamic

The polarization stems from the fact that G-actin is not symmetric, a property which is inherited
by F-actin. As a result F-actin has two ends, here referred to as barbed and pointed end. The
barbed end grows faster than the pointed end.
As addition is always dependent on the concentration of free monomers, polymerization and de-
polymerization can happen at both ends. The concentration at which the rate of subunit addition
equals the rate of subunit loss is called "Critical Concentration", Cc. A lower concentration would
result in a net loss of subunits, a higher one in a net gain. So far, the two ends, despite their
different polymerization rates, would still have to have the same Cc, but there is an additional
effect involved:
Actin monomers that are added carry a bound ATP (see 1.7 for more explanations). This ATP
gets hydrolyzed to ADP shortly after the subunit is incorporated into the filament. Monomers
carrying ATP are more difficult to remove from the filament. Therefore, if polymerization is
faster than hydrolysis, this results in a protective ATP-cap.
This, together with the differences in rates described above, leads to different critical concentra-
tions at the barbed and pointed end: Cc(barbed) < Cc(pointed). Therefore if the concentration
is between these two, there is a net assembly at the plus end and a net disassembly at the minus
end, resulting in so called "treadmilling": The length of the filament stays the same, while each
new monomer added at the barbed end gradually moves through the filament to finally detach
at the pointed end (see Figure 1.4).

F-actin plays an important role in many cellular processes. In can be arranged in bundles,
planar networks and 3-dimensional gels. Here some examples:

• The network gives stability to the cell and helps in signal transduction.

• When a cell divides, a contractile actin-ring forms, which helps splitting the cytoplasm
during cytokinesis.

• Spike-like structures on the cell surface like filopodia consist of actin and are used to explore
a cell’s surrounding.

• By lamellipodia, which are sheetlike structures, a cell can drag itself forward. Inside, the
lamellipodium consists of a network of F-actin.

4



1.4 Myosin

Figure 1.4: A treadmilling actin filament. The sequence shows the path of some monomers
through the filament. Source: [Alberts et al. 2002, p. 913]

Figure 1.5: The structure of a Myosin II dimer. Source: [Alberts et al. 2002, p. 950]

• Actin bundles of stereocilia can be found on hair in our inner ear and are necessary for
hearing.

• Muscular contraction is enabled by an interaction of actin, myosin and other proteins.

• Actin is also involved in the cell movement which allows macrophages to engulf bacterial
pathogens.

1.4 Myosin
Of course the cytoskeleton cannot perform its functions without a range of accessory proteins,
which can modify and use it.

Myosin is part of a group of proteins associated with the cytoskeleton called "motor proteins".
This group has in common that they bind to cytoskeletal fibres such as actin and microtubuli
and move along them. The movement results from conformation changes (see 1.7) triggered by
ATP hydrolysis and is therefore an energy consuming process. Myosin binds to actin.

There exist several types of myosin, but we will primarily be concerned with myosin II. All the
following refers to myosin II, but we will write only myosin for simplicity. Structurally myosin
consists of three amino acid chains, one heavy chain and two different light chains. The long
helical part of the heavy chain forms the "tail", followed by a "neck" or "hinge" region providing
flexibility. On its other end a globular "head" is formed by part of the heavy chain and the
two light chains, an essential light chain and a regulatory one. This head serves as the "motor

5



1 Introduction and Biological Background

Figure 1.6: The different domains of the head region of myosin. Source: Adapted from [Alberts
et al. 2002, p. 953]

domain" which drives the movement. Two such units can form a dimer by wrapping their tails
around each other in a structure called "coiled-coil" (see Figures 1.5 and 1.6).

How can myosin move along an actin filament? The movement is made possible by cycling
through different states defined by whether ATP or ADP or none of them is bound (see Figure
1.7) :

a) Attached: The head is bound to actin in a rigor conformation (the name stems from
"rigor mortis", the stiffness of muscles observed in dead people, which comes precisely from
attached myosin heads not letting go)

b) Released: ATP binds to the head, which reduces its affinity for actin

c) Cocked: Without attachment the head moves about 5nm towards the barbed end of actin,
then ATP is hydrolyzed, but the products, ADP and Pi remain bound

d) Force generating: Myosin binds weakly to actin, the Pi is released which results in a
tight binding. Next ADP is released and while staying bound the head moves back to its
original conformation and drags actin along (if possible)

e) Attached again . . .

1.5 Interaction in Muscles
In this section the skeletal muscle is used as an (impressive) example of how this interaction
between myosin and actin can be used.

The structural unit of a skeletal muscle is a sarcomere (see Figures 1.8 and 1.9). It is highly
organized and consists, apart from actin and myosin, of many additional proteins, which allow
to tightly regulate and control, when and if a muscle is contracted or relaxed. The sarcomere’s
two ends are formed by flat structures called Z-discs. On each Z-disc several actin filaments of
equal length are attached with their barbed end. Their (free) pointed ends point towards each
other and are stabilized by additional proteins in order to avoid (de)polymerization. Between
them are thick, symmetric myosin bundles, consisting of many myosins. Some point towards the
one Z-disc, some to the other, but all are attached with each other via their tails, such that only
the many heads stick out of the bundle on each side.

6



1.5 Interaction in Muscles

Figure 1.7: Myosin cycles through different conformations while consuming energy. Source:
Adapted from [Alberts et al. 2002, p. 955]

Figure 1.8: The upper left picture shows the electron micrograph of a small part of a skeletal
muscle. It contains one whole sarcomere and partly the two bordering sarcomeres.
Below a schematic version of the above. On the right the principle of sarcomere
contraction is illustrated. Source: Adapted from [Alberts et al. 2002, p. 962-963]
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1 Introduction and Biological Background

Figure 1.9: A detailed schematic drawing of one sarcomere with (thin) actin filaments and (thick)
myosin bundles. Source: Adapted from [Alberts et al. 2002, p. 963]

If the sarcomere receives a signal to contract, each myosin head can start moving along the actin
filament by the process described above and tries to move towards the corresponding barbed end.
A singular head usually falls off after one step. However, because there are many heads, there
are always some that are attached. In effect, because of the heads on the left, the myosin bundle
wants to move to the left, but at the same time the heads on the right pull to the right. Because
the bundle itself cannot be stretched, this causes the actin filaments together with the attached
Z-discs to move towards each other, resulting in a contraction of the sarcomere.

A long chain of these contractile units forms one myofibril, many of which make up a mus-
cle. A myofibril can be as long as the muscle itself and even though the length difference caused
by contraction in one sarcomere is small, together they can enable the myofibril and therefore
the muscle to change size on a much larger length scale.

1.6 Lamellipodium
In this Chapter 3 we want to model the effect of actin-myosin interaction on the lamellipodial
network in keratocyte cytoplasts. Keratocytes are cells that live on the scales of fish, e.g. the
samlet. From there they can be collected and cultured for a few days. Keratocytes are very
useful model cells for studying cell mobility, because they move fast, without stimulus and in a
very characteristic manner. To move they use thin (0.2 − 0.3µm) sheet-like protrusions called
lamellipodia. These contain a dense actin network and several accessory proteins that control and
facilitate the movement. The cell body itself is dragged behind. Keratocytes that do not move
are usually round with a lamellipodium that is stretched around the whole cell. If pushed or also
because of stochastic fluctuations keratocytes can change to a half-moon shape and start moving.
In this state the lamellipodium can only be observed at the front edge. At the back thicker actin
bundles can be seen. Figure 1.10 shows several moving keratocytes and one stationary cell. The
nucleus is colored blue, the actin network green.

There are several proteins and protein complexes associated with the actin network which are
involved in the cell’s movement. Different actin filaments can be connected by linker proteins
such as filamin. Additionally does the network form adhesions with the substrate in which the
transmembrane protein integrin plays an important role.
Interaction of myosin and actin in the lamellipodium is not as organized and structured as in
skeletal muscle cells. The actin filaments can generally have many directions.

8



1.7 Basic Vocabulary

Figure 1.10: Four moving and one stationary keratocyte. Actin is labeled green, the nucleus blue.
The red arrow shows the direction of movement, the white arrow points at the round
stationary keratocyte. Source: self-made

1.7 Basic Vocabulary
ATP/ADP/Hydrolysis - Adenosine triphosphate (ATP) is a universal biochemical "cur-
rency". It is a nucleotide and consists of the base adenine attached to the sugar ribose and,
most importantly, three phosphate groups. The chemical bonds between the phosphates (phos-
phoanhydride bonds) are quite stable under various conditions but contain a lot of energy. When
a phosphate is removed in a reaction called hydrolysis (breakage with involvement of H2O), this
energy is released and can be used to drive other (energy dependent) reactions. The correspond-
ing reaction equation reads: ATP + H2O 
 ADP + Pi. Pi stands for a free phosphate group.
The resulting ADP (Adenosine diphosphate) contains less energy.

Eukaryotes/Prokaryotes - The coarsest way to classify cells is in prokaryotic and eukary-
otic. Prokaryotic cells, such as bacteria are very simple in organization and lack specialized
structures, such as a nucleus and most cell organelles. A eukaryote on the other hand is any
other organism (unicellular or multicellular) ranging from yeast to humans.

Protein/Domain/Conformation - A protein is a molecule consisting of one or more lin-
ear chains of amino acids, that folds into a 3D-shape by several types of forces. The sequence
of amino acids that define the protein is encoded in the DNA. The 3D-shape is not rigid, but
can be changed when interacting with other substances. Compact globular structural parts of a
protein are called domain and are defined by their 3D shape. This means that also amino acids
that are far apart in the linear chain can become close by protein folding and might therefore be
part of the same domain. The different shapes of a protein or a domain are called conformations.

Mitosis/Nucleus/Chromosomes - The process of a cell splitting into two is called mito-
sis. It starts after the genetic material organized in chromosomes has been duplicated. Then
the nucleus, which in eukaryotes contains the DNA, dissolves, and a mitotic spindle made from
microtubuli forms. The chromosomes align in the middle of the spindle poles and are then pulled
apart to be distributed equally to the new daughter cells. The different stages of mitosis are

9



1 Introduction and Biological Background

called Prophase, Metaphase, Anaphase, and Telophase respectively.

10



2 Modeling of Actin-Myosin Interaction

2.1 Derivation of the Model
In this section we will derive an equation describing the interaction between one end of a myosin
bundle with an actin filament (or several aligned actin filaments, which do not move relative to
each other). This system is the basis of many mechanisms involving movement, such as muscular
action or also the cell movement. All figures in this chapter are self-made.
As described in Chapter 1, myosin bundles move actin via attachment of their heads, followed
by a change of conformation, presenting the ATP dependent power stroke.

We consider the actin bundle to be fixed. The position of one attached myosin head on the
actin is described by ξ, where ξ = 0 represents the point of attachment and ξ = ξ0 > 0 the
equilibrium position after the power stroke. v denotes the velocity of the individual myosin head,
u the velocity of the whole myosin bundle. As soon as the head attaches, it experiences a number
of forces resulting in the following acceleration terms:

a) a linear spring acceleration κ (ξ0 − ξ), proportional to the head’s distance from equilibrium

b) a friction acceleration −ηv, caused by the environment, e.g. by cytoplasmic drag

c) a friction acceleration (u− v) /T , caused by the fact that one myosin has a resistance to
having a different speed than the bundle it is embedded into

d) an acceleration −F/m, caused by an external force holding the bundle back, where the
acceleration F > 0 is shared by the total number of attached heads.

We call the sum of the above Ftotal(ξ, v). So the movement of one head is determined by ξ̇ = v,
v̇ = Ftotal.
We look at the distribution function of attached heads Ψ (ξ, v, t) and compute the position de-
pendent number density and flux:

ρ(ξ, t) =

∫ ∞
∞

Ψ(ξ, v, t) dv, j(ξ, t) =

∫ ∞
∞

vΨ(ξ, v, t) dv,

and furthermore the total number of attached heads m(t), the total stress σ(t), and the velocity
of the myosin bundle u(t), defined as an average velocity:

m(t) =

∫ ∞
−∞

∫ ∞
−∞

Ψ (ξ, v, t) dv dξ =

∫ ∞
∞

ρ(ξ, t) dξ (2.1)

σ(t) = κ

∫ ∞
−∞

∫ ∞
−∞

(ξ0 − ξ) Ψ (ξ, v, t) dv dξ = κ

∫ ∞
∞

(ξ0 − ξ) ρ(ξ, t) dξ

u(t) =
1

m(t)

∫ ∞
−∞

∫ ∞
−∞

vΨ (ξ, v, t) dv dξ =
1

m(t)

∫ ∞
∞

j(ξ, t) dξ

We want to derive an equation for the distribution function Ψ (ξ, v, t), where∫
B

Ψ (ξ, v, t) dξ dv

11



2 Modeling of Actin-Myosin Interaction

describes the number of attached heads in B at time t, B being a set in the phase space (ξ, v).
Calculating the change of this quantity and taking into account that only the normal component
of the trajectories adds mass, we get:

d

dt

∫
B

Ψ (ξ, v, t) dξ dv = −
∫
∂B

Ψ

(
v

Ftotal

)
· ndσ +

∫
B

H dξ dv

= −
∫
B

∂ξ (Ψv) + ∂v (ΨFtotal) dξ dv +

∫
B

H dξ dv (2.2)

where H is the difference between the attachment and detachment densities, i.e. describes source
and sink terms. For the second equality the divergence theorem has been used. As this remains
true for arbitrary sets B, we conclude equality of the integrands.

Concerning the dynamics of detached heads, we make the simplifying assumption that they
immediately after detachment assume the cocked state and move with the bundle velocity u.
This implies that attachment always happens at ξ = 0, v = u, and that the equilibrium position
ξ0 is constant (and equal to the equilibrium length of the power stroke).

The attachment and detachment rate are assumed to have the form f(u) and, respectively, g(u).
Using this and (2.2) we finally get the following non-linear transport equation:

∂tΨ + v ∂ξΨ + ∂v

[(
κ (ξ0 − ξ)− ηv +

u(t)− v
T

− F

m(t)

)
Ψ

]
(2.3)

= δ(ξ)δ(v − u(t))f(u(t)) (N −m(t))− g(u(t))Ψ

where N is the total number of (attached and detached) myosin heads.
It is remarkable that from this equation a closed system for the moments m(t), u(t) and σ(t) can
be derived. To see that, we first integrate (2.3) with respect to v. Using integration by parts
together with the (natural) assumption that Ψ and all its moments vanish far out we get:

∂tρ+ ∂ξj = δ(ξ)f(u) (N −m)− g(u)ρ (2.4)

A further integration of (2.4) with respect to ξ gives:

ṁ = f(u) (N −m)− g(u)m (2.5)

Now we multiply (2.3) by v and integrate with respect to v and ξ. We use the fact that
−
∫∫

u−v
T Ψdv dξ = − u

Tm+ 1
T um = 0 and find:

˙(mu)− σ + ηmu+ F = uf(u) (N −m)− g(u)mu

Combining this with (2.5) we get:

u̇ =
σ

m
− ηu− F

m
(2.6)

Finally we multiply (2.4) by κ (ξ0 − ξ) and integrate with respect to ξ:

σ̇ = −κmu+ κξ0f(u) (N −m)− g(u)σ (2.7)

12



2.2 Analysis of ODE Moment System

2.2 Analysis of ODE Moment System
From now on we will assume constant attachment and detachment rates. The system (2.5), (2.6),
(2.7) has the following form:

ṁ = f (N −m)− gm, (2.8)

u̇ =
σ

m
− ηu− F

m
,

σ̇ = −κmu+ κξ0f (N −m)− gσ.

Now we are in a special situation, because we can work with the moment system without any
knowledge about the distribution function Ψ. From (2.8) we get the following steady states:

m =
N f

g + f
(2.9)

u =
g

κ+ gη

(
κξ0 −

F (f + g)

N f

)
σ = ηmu+ F

Linearizing the system at these steady states gives:ṁu̇
σ̇

 =

 −f − g 0 0
− σ
m2 + F

m2 −η 1
m

−κu− κξ0f −κm −g

m−mu− u
σ − σ


We get as eigenvalues for the matrix:

µ1 = − (f + g)

µ2 = −1

2
(g + η) +

√
1

4
(g + η)

2 − (κ+ ηg)

µ3 = −1

2
(g + η)−

√
1

4
(g + η)

2 − (κ+ ηg)

The real parts of all three eigenvalues are negative, therefore the steady states are locally stable.
This means that the moments m(t), u(t) and σ(t) will converge to m, u and σ, if their initial
conditions lie in a neighborhood of (m,u, σ).

However, we can do better than that and aim for global stability: First of all we note that
the equation for m(t) in (2.8) is not coupled with the rest and can be solved explicitly to give
m(t) = m+ e−(f+g)t (m0 −m). Convergence to m for all initial conditions m0 is clear, however
one should choose 0 < m0 ≤ N . m = 0 is excluded because it causes problems in the equa-
tion for u(t). For u(t) and σ(t) some more work is required. An important observation is, that
the nonlinearity in (2.8) stems from m(t). Therefore we can rewrite the ODEs for u and σ as
a linear, but no longer autonomous system. For the following we introduce the abbreviations
x(t) := (u(t), σ(t)) and x := (u, σ):

ẋ(t) = B(t)x(t) + b(t) (2.10)

B(t) :=

(
−η 1

m(t)

−κm(t) −g

)
b(t) :=

(
− F
m(t)

κξ0f (N −m(t))

)

13



2 Modeling of Actin-Myosin Interaction

We know that for large times the dependence of B and b on t will decrease. The key idea now
is to interpret (2.10) as a perturbed system, with an autonomous unperturbed part and a time
dependent perturbation. This idea results in a splitting of B(t) and b(t) in their limits B and b
and remainders R(t) and r(t) which tend to zero as t→∞. In formulas this looks as follows:

B(t) = B +R(t) =

(
−η 1

m
−κm −g

)
+

(
0 m−m(t)

mm(t)

κ (m−m(t)) 0

)

b(t) = b+ r(t) =

(
− F
m

κξ0f (N −m)

)
+

(
− F
m(t)m (m−m(t))

κξ0f (m−m(t))

)
Defining h := f + g > 0 it is easy to check that:

‖R(t)‖ ≤ R0e
−h t (2.11)

|r(t)| ≤ r0e
−h t

with positive constants R0 and r0. ‖ · ‖ defines the operator norm induced by the Euclidean
vector norm | · |.
The eigenvalues of B are µ2 and µ3 from above, which have negative real parts. Therefore we
can estimate:

‖eBt‖ ≤ Ce−ρt (2.12)

with positive constants C and ρ.
In a first step we show that |x(t)| is bounded. To this end we need the following version of the
Gronwall’s inequality (see Teschl), which states that for a real valued function y(t) satisfying

y(t) ≤ α(t) +

∫ t

0

β(s)y(s)ds (2.13)

s ≤ t =⇒ α(s) ≤ α(t)

with real valued functions α(s) and β(s) we can conclude that

y(t) ≤ α(t)exp

(∫ t

0

β(s)ds

)
. (2.14)

Writing ẋ(t) = Bx(t) + b+R(t)x(t) + r(t) and interpreting b+R(t)x(t) + r(t) as inhomogeneity
the variation of constants approach gives

x(t) = eBtx0 +

∫ t

0

eB(t−s) b ds+

∫ t

0

eB(t−s)R(s)x(s)ds+

∫ t

0

eB(t−s)r(s)ds. (2.15)

Next we use the estimates (2.11) and (2.12) and define y(t) := |x(t)|eρt.

|x(t)| ≤ Ce−ρt|x0|+ C|b|
∫ t

0

e−ρ(t−s)ds+ C R0

∫ t

0

e−ρ(t−s)|x(s)|e−h sds+ C r0

∫ t

0

e−ρ(t−s)e−h sds

y(t) ≤ C|x0|+ C|b|
∫ t

0

eρsds+ C R0

∫ t

0

e−h sy(s)ds+ C r0

∫ t

0

e(ρ−h)sds

To apply Gronwall’s inequality we define:

α(t) : = C|x0|+ C|b|
∫ t

0

eρsds+ C r0

∫ t

0

e(ρ−h)sds
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2.3 Stationary Equation

= C|x0|+
C|b|
ρ

(
eρt − 1

)
+

C r0

ρ− h

(
e(ρ−h)t − 1

)
= C1 + C2e

ρt + C3e
(ρ−h)t

β(s) : = C R0e
−h s∫ t

0

β(s)ds =
C R0

h

(
1− e−h t

)
= C4

(
1− e−h t

)
We see that y(t) fullfills the two conditions in (2.13). α(t) grows in t because it is defined as
integrals of non-negative functions from 0 to t. Note that having ρ − h in the denominator
doesn’t cause problems, because ρ in (2.12) can be chosen differently as long as it is smaller that
min{−Re(µ2),−Re(µ3)}. C would then change too.
Now we apply (2.14) and find that:

y(t) ≤
(
C1 + C2e

ρt + C3e
(ρ−h)t

)
exp

(
C4

(
1− e−h t

))
|x(t)| ≤

(
C1e

−ρt + C2 + C3e
−h t) exp

(
C4

(
1− e−h t

))
≤M

for some M > 0. This shows that |x(t)| is bounded. To show limt→∞x(t) = x we notice that the
unperturbed system converges to x, that is:

ż(t) = Bz(t) + b

z(t) = eBtx0 +

∫ t

0

eB(t−s) bds

|z(t)− x| → 0 for t→∞

Now we use this information in (2.15) and together with |x(t)| ≤M we find that:

|x(t)− x| ≤ |z(t)− x|+ (C R0M + C r0) e−ρt
∫ t

0

e(ρ−h)sds

≤ |z(t)− x|+ C5

(
e−h t − e−ρt

)
→ 0 for t→∞

This finishes the proof of the global stability of the steady states u and σ. In the following all
we need to assume about the initial head distribution Ψ0(ξ, v) is that its moments m0, u0 and
σ0 exist with 0 < m0 ≤ N .

Figure 2.1 shows the graphs of m(t), u(t) and σ(t) for certain parameters with small initial
conditions for all three.

2.3 Stationary Equation
Again we will assume the attachment and detachment rates f and g to be independent of u. The
stationary equation now takes the form:

v∂ξΨ +

[
−κξ −

(
η +

1

T

)
v + Inh

]
∂vΨ = rΨ + δ(ξ)δ(v − u)f̂ (2.16)

with

r := −g + η +
1

T
(2.17)
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2 Modeling of Actin-Myosin Interaction

Figure 2.1: The moments m(t), u(t) and σ(t) for certain parameters

Inh := κξ0 +
u

T
− F

m

f̂ := f (N −m)

The variables u and m are now known, independent of t and take their values from the stationary
solutions in (2.9).
What kind of solutions will we get? As there are Delta distributions in the equation we cannot
hope for strong, smooth solutions, but will generally work with weak formulations. To show
existence and uniqueness we will approximate δ by a bounded approximation δε.
We will solve for each ε and then take the limit ε → 0. For easier calculations we will use the
following regularization:

δε(z) =

{
1
2ε |z| ≤ ε
0 else

(2.18)

This poses the questions whether the corresponding uε and mε (and their corresponding station-
ary solutions) look differently. When ones looks at the derivation of the ODE system for u, σ and
m one sees that the only properties of δ that enter the calculations are the facts that its integral is
1 and that its first moment is 0. Both characteristics are fulfilled by the approximation, therefore
u and m do not change their values in the regularized equation.

We solve by using the method of characteristics. Changing from (ξ, v) to (s, w) where s is
the parameter along the characteristics and w describes, where the characteristics start, we get:(
ξ̇
v̇

)
= A

(
ξ
v

)
+

(
0

Inh

)
With A :=

(
0 1
−κ −η − 1

T

)
. The dot describes derivation with respect to s. The eigenvalues of

A are λ1,2 = − 1
2

(
η + 1

T

)
±
√

1
4

(
η + 1

T

)2 − κ.
2.3.1 The Characteristics
The characteristics take the form:(

ξ(w, s)
v(w, s)

)
= eAs

(
ξ0(w)
v0(w)

)
+ eAsC(s) (2.19)
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2.3 Stationary Equation

Figure 2.2: The characteristics in the (ξ, v)-plane for real and complex eigenvalues

C(s) :=

∫ s

0

e−Ar
(

0

Inh

)
dr

The real parts of the eigenvalues of A, λ1 and λ2, are always negative. Therefore taking s→∞
we get convergence of all characteristics to:(

ξ
v

)
= −A−1

(
0

Inh

)
=

(
Inh
κ
0

)
Figure 2.2 shows the characteristics in the (ξ, v)-plane for real and complex eigenvalues. The
importance of red characteristic will be explained below. The ellipse in the picture shows where
the characteristics start. If the solution is prescribed there, one has to make sure that the sub-
manifold w 7→ ξ0(w), v0(w) is never tangential to the characteristics. One way to ensure that
and at the same time simplify the characteristics’ equations, is to take into account the ge-
ometry of the system. The idea is to transform the system into its canonical shape using the
change of basis matrix the brings A in Jordan normal form. In the new system initial conditions
are defined on a circle, which corresponds to an ellipse in the original system. For details see 2.6.1

With this idea a suitable sub-manifold for the initial conditions can be found and defined in
a way such that:

(ξ(0, 0), v(0, 0)) = (0, u) (2.20)

The Jacobian
(
∂wξ ∂sξ
∂wv ∂sv

)
has a determinant, which we call J(w, s), with the following shape:

J (w, s) = R(w)es(λ1+λ2) 6= 0 (2.21)

for some function R(w) depending on the type of eigenvalues (real, complex, two-fold).
Note that because the map (w, s) 7→ (ξ, v) is bijective, also the inverse statement to (2.20) is true,
i.e. (w(0, u), s(0, u)) = (0, 0). We define J0 := J(w = 0, s = 0)
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2 Modeling of Actin-Myosin Interaction

2.3.2 Calculating the Stationary Solution
We return to the equation for Ψ, written in terms of characteristic coordinates:

Ψ̇ε = rΨε + f̂ δε (ξ) δε (v − u)

To obtain the particular solution using the variation of constants approach(
Ψ
part

ε (w, s) = cε (w, s) er s
)
, one needs to calculate

cε (w, s) = f̂

∫ s

−∞
e−rtδε (ξ (w, t)) δε (v (w, t)− u) dt.

As we expect a weak solution we write a weak formulation of the integral with φ (w, s) a suitable
test function (what suitable means here will be specified at the end of the chapter):

〈cε (w, s) ,φ (w, s)〉 = f̂

∫ 2π

0

∫ ∞
−∞

∫ s

−∞
e−rtδε (ξ (w, t)) δε (v (w, t)− u) dt φ (w, s) ds dw

= f̂

∫ 2π

0

∫ ∞
−∞

e−rtδε (ξ (w, t)) δε (v (w, t)− u)

∫ ∞
t

φ (w, s) ds dt dw

= f̂

∫ ∞
−∞

∫ ∞
−∞

1

J (ξ, v)
e−rt(ξ,v)δε (ξ) δε (v − u)

∫ ∞
t(ξ,v)

φ (w (ξ, v) , s) ds dξ dv

=
f̂

4ε2

∫ u+ε

u−ε

∫ ε

−ε

1

J (ξ, v)
e−rt(ξ,v)

∫ ∞
t(ξ,v)

φ (w (ξ, v) , s) ds dξ dv

=
f̂

4

∫ 1

−1

∫ 1

−1

1

J (εy, εx+ u)
e−rt(εy,εx+u)

∫ ∞
t(εy,εx+u)

φ (w (εy, εx+ u) , s) ds dy dx

The second equality is obtained by exchanging the t and the s integrals while still integrating
over the same area. The third via a change of variables: ξ = ξ (w, t), v = v (w, t) (as defined
in (2.19)), the fourth uses the regularization of the δs given in (2.18) and finally the fifth via a
second change of variables: x = v−u

ε , y = ξ
ε .

Now letting ε→ 0, we use (2.20) and obtain:

〈c (w, s) , φ (w, s)〉 =
f̂

J0

∫ ∞
0

φ (0, s) ds

=
f̂

J0
〈H(s)δ (w) , φ (w, s)〉

Putting things together we get:

Ψ (w, s) =
f (N −m)

J0
δ (w)H(s)er s +K(w)er s (2.22)

We see that the solution is concentrated on one part of the characteristic starting in w = 0, to
be precise, the part that is described by s ≥ 0. In Figure 2.2 this corresponds to the red line.
The bijective map (w, s)→ (ξ (w, s) , v (w, s)) cannot be inverted explicitly.

We expect K(w) ≡ 0. To show that we can recalculate the moments of the stationary solu-
tion expecting to get back the equilibria in (2.9).
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2.3 Stationary Equation

All moments are calculated using the change of variables w = w (ξ, v) s = s (ξ, v). Here just
the calculations for total number of attached heads and the average velocity will be carried out.
Calculating the total stress is done similarly. We will only use the first part of (2.22), as this al-
ready gives the correct moments. From that we can conclude that all moment integrals involving
K(w) have to be zero and thereby K(w) ≡ 0.∫ ∞

−∞

∫ ∞
−∞

Ψ (w (ξ, v) , s (ξ, v)) dξ dv

=

∫ 2π

0

∫ ∞
−∞

J (w, s)
f (N −m)

J0
δ (w)H(s)ers ds dw

=
f (N −m) J0

J0

∫ ∞
0

e−gs ds

=
Nf

f + g
= m

We use λ1 + λ2 + r = −g, (2.9) and (2.21).
Next we calculate the average velocity in a similar way:∫ ∞

−∞

∫ ∞
−∞

vΨ (w (ξ, v) , s (ξ, v)) dξ dv

=
f (N −m)

J0

∫ 2π

0

∫ ∞
−∞
v (w, s) δ(w)H(s) J(w, s)ers ds

= f (N −m)

∫ ∞
0

v(0, s)e−gsds

At this point we need the equations of the characteristics given in (2.19). For easier calculations
we include ξ(0, s) and write a vector equation:

f (N −m)

∫ ∞
0

(
ξ(0, s)
v(0, s)

)
e−gsds = f (N −m)


∫ ∞

0

eAs
(

0
u

)
e−gsds︸ ︷︷ ︸

K1

+

∫ ∞
0

eAsC(s)e−gsds︸ ︷︷ ︸
K2


=
f (N −m)

g

(
Id− 1

g
A

)−1
(

0

u+ Inh
g

)

= m

(
u
g

u

)
Now we see that the second entry in the last line gives back mu as claimed. The second equality
can be shown by integration by parts of K1 and K2 which gives:

K1 =
1

g

(
Id− 1

g
A

)−1(
0
u

)
K2 =

1

g2

(
Id− 1

g
A

)−1(
0

Inh

)
Id is the matrix identity.
The calculations for the total stress are not shown here but also give back σ.
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2 Modeling of Actin-Myosin Interaction

2.4 Full Equation
Next we will look at the full equation where u(t) and m(t) are now functions defined as in (2.1)
and described by the ODE system (2.8). Using the same abbreviations as for the stationary case
(2.17), we get:

∂tΨ + v∂ξΨ +

[
−κξ −

(
η +

1

T

)
v + Inh(t)

]
∂vΨ = rΨ + δ(ξ)δ(v− u(t))f (N −m(t)) (2.23)

With Ψ0 (ξ, v) := Ψ (ξ, v, 0).

2.4.1 Calculating the Full Solution
To find the solution we again use the methods of characteristics and get

(
ξ (x, y, t)
v (x, y, t)

)
= eAt

(
x
y

)
+ eAt C(t), (2.24)

C(t) =

∫ t

0

(
e−Ar

(
0

Inh(r)

))
d r.

t is now the time variable. The second part takes the form:

ξpart(t) :=
1

λ1 − λ2

(
eλ1t

∫ t

0

Inh(t̃)e−λ1 t̃d t̃− eλ2t

∫ t

0

Inh(t̃)e−λ2 t̃d t̃

)
vpart(t) :=

1

λ1 − λ2

(
λ1e

λ1t

∫ t

0

Inh(t̃)e−λ1 t̃d t̃− λ2e
λ2t

∫ t

0

Inh(t̃)e−λ2 t̃d t̃

)
For t → ∞ the characteristics again converge to

(
Inh
κ , 0

)
, just as the characteristics in the

stationary case.
Unlike the stationary case we can invert the map (ξ, v, t)→ (ξ(x, y, t), v(x, y, t)) explicitly via:(

x (ξ, v, t)
y (ξ, v, t)

)
= e−At

(
ξ
v

)
− C(t) (2.25)

The determinant of the Jacobian becomes:∣∣∣∣∣∣
∂tt ∂xt ∂yt
∂tξ ∂xξ ∂yξ
∂tv ∂xv ∂yv

∣∣∣∣∣∣ =
∣∣eAt∣∣ = et(λ1+λ2)

To calculate the varied constant (see above) we again use a weak formulation:∫ ∞
−∞

∫ ∞
−∞

cε (x, y, t)φ (x, y) d xd y

=f

∫ ∞
−∞

∫ ∞
−∞

∫ t

0

(N −m(s)) e−rsδε (ξ (x, y, s)) δε (v (x, y, s)− u(s)) d s φ (x, y) d xd y

=f

∫ t

0

∫∫
(N −m(s)) e−(λ1+λ2+r)sδε(ξ)δε (v − u(s))φ (x (ξ, v, s) , y (ξ, v, s)) dξ dv ds
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2.4 Full Equation

For the last equality we used a change of coordinates and the functional determinant of above.
By similar techniques as above and using λ1 + λ2 + r = −g we get

c (x, y, t) = f

∫ t

0

egsδ (x− x(s)) δ (y − y(s)) (N −m(s)) d s, (2.26)

x(s) := x (0, u(s), s) ,

y(s) := y (0, u(s), s) ,

and finally

Ψ (x, y, t) = c (x, y, t) ert + Ψ0 (x, y) ert. (2.27)

We recalculate the total number of attached heads to be:

m(t) =

∫∫
Ψ (ξ, v, t) d ξd v

=

∫∫
et(λ1+λ2)

(
c (x, y, t) ert + Ψ0 (x, y) ert

)
d xd y

= m(t)−m0e
−gt +m0e

−gt = m(t)

The calculations were done analogously to the stationary case.
In its weak formulation the solution takes the form:

〈Ψ (ξ, v, t) ,φ (ξ, v)〉

=

∫∫
Ψ0 (x (ξ, v, t) , y (ξ, v, t)) er tφ (ξ, v) dξ dv

+

∫∫
c (x (ξ, v, t) , y (ξ, v, t) , t) er tφ (ξ, v) dξ dv

= e−g t
∫∫

Ψ0 (x, y)φ (ξ (x, y, t) , v (x, y, t)) dx dy (2.28)

+ e−g t
∫∫

c (x, y, t)φ (ξ (x, y, t) , v (x, y, t)) dx dy

We will take a closer look at the second integral:

〈c (ξ, v, t) er t, φ (ξ, v)〉 (2.29)

= f e−gt
∫ t

0

(N −m(s)) eg sφ (ξ (x(s), y(s), t) , v (x(s), y(s), t)) ds

= f

∫ t

0

(N −m(t− h)) e−g hφ (ξ (x(t− h), y(t− h), t) , v (x(t− h), y(t− h), t)) dh

= f

∫ t

0

(N −m(t− h)) e−g hφ (γt(h)) dh

with

γt(h) : [0, t]→ R2 (2.30)
h 7→ (ξ (x(t− h), y(t− h), t) , v (x(t− h), y(t− h), t))

We see that this part of the solution is concentrated on the curve γt. For better understanding, we
follow the path of a myosin head and pick a time 0 < k < t. The deltas in the source term guaran-
tee that at that time this head became attached at (0, u(k)). The expressions x(k) = x (0, u(k), k)
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2 Modeling of Actin-Myosin Interaction

Figure 2.3: γt(h) and its defining curves

and y(k) = y (0, u(k), k) describe where the corresponding characteristic must have been at time
0. Using this starting point and waiting until time t brings us to where that particular head was
transported to in the (ξ, v) plane, i.e. to: (ξ (x(k), y(k), t) , v (x(k), y(k), t)) To finally get γt we
simply set h = t − k. We see now that γt(h) is a curve that starts at h = 0 in (0, u(t)) and
stretches until γt(t) = (ξ (0, u0, t) , v (0, u0, t)).

Figure 2.3 shows how γt is defined. In this graph parameters were used that resulted in u > 0.
We see that the curve γt(h) forms the support of the solution at time t.

2.4.2 Longtime Behavior
We want to take t→∞ in (2.28).
Before looking at the integrals themselves we first need to determine the (pointwise) limit
limt→∞ γt(h).
Using (2.24) and (2.25) we can write:

γt(h) = eAt
[
e−A(t−h)

(
0

u(t− h)

)
− C(t− h)

]
+ eAtC(t) (2.31)

= eAh
(

0
u(t− h)

)
+ eAt (C(t)− C(t− h))

We claim that its limit is precisely the stationary characteristic on which the stationary solution
is concentrated on. Using (2.19) and (2.20) we can write it as:

γ∞(h) := eAh
(

0
u

)
+ eAhC(h) (2.32)
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2.4 Full Equation

Convergence in the first part follows from limt→∞u(t) = u.
For the second part we use two results which stem from the fact that the matrix exponential
inherits many properties from its 1D version. Let the matrix E be invertible. Further let B(s)
be any vector which converges component wise to B for s→∞ . We claim that:

lim
t→∞

eEt
∫ t−h

0

e−EsB(s)ds = −E−1eEhB (2.33a)∫ b

a

eEsds = E−1
(
eEb − eEa

)
(2.33b)

The proofs can be found in section 2.6.2.

With these two facts, the pointwise convergence of γt, (2.31), is straightforward: We set B(s) :=
(0, Inh(s)) and E := A and using (2.33a) and B =

(
0, Inh

)
we get:

eAt (C(t)− C(t− h)) = eAt
∫ t

0

e−As
(

0
Inh(s)

)
ds− eAt

∫ t−h

0

e−As
(

0
Inh(s)

)
ds

→ −A−1

(
0

Inh

)
+A−1eAh

(
0

Inh

)
To check that this corresponds to the second part in (2.32) we use the claim in (2.33b) by setting
E := −A and noting that A−1 and eAh commute.

Together we have shown that lim
t→∞

γt(h) = γ∞(h) for each fixed h. Fig. 2.4 shows how γt(h) gets
closer to the stationary characteristic for increasing t. The γt(h) shown in Fig. 2.3 corresponds
to γt5(h) in this figure.

Now we are ready to take t to infinity in the full solution. Let ε > 0.
First we need specify what kind of test functions we want to work with. Let φ (ξ, v) ∈ CB

(
R2
)

:=

C
(
R2
)
∩ L∞

(
R2
)
. Further we define M := supR2 |φ|.

We call the two integrals in (2.28) I1 and I2 (with I2 already rewritten as explained in (2.29)):

I1 : = e−g t
∫∫

Ψ0 (x, y)φ (ξ (x, y, t) , v (x, y, t)) dx dy

I2 : = f

∫ t

0

(N −m(t− h)) e−g hφ (γt(h)) dh

We start with the first integral and find that due to φ being bounded:

|I1| ≤ e−g tM
∫∫

Ψ0 (x, y) dx dy ≤ e−g tMm0

This converges to 0 for t→∞. We can therefore find a T1 > 0 such that

|I1| ≤
ε

3
(2.34)

for t > T1.
We see that the initial distribution Ψ0 doesn’t contribute to the long term behavior. This is due to
the fact that we assume a positive detachment rate g of the heads. After the eventual detachment
the myosin heads can only attach again at the point (0, u(t)) and therefore the influence of the
initial head distribution decreases with time.
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2 Modeling of Actin-Myosin Interaction

We now claim that the rest converges to the stationary solution defined in (2.22) which takes the
following weak form:

I∞ := 〈Ψ, φ〉 = f (N −m)

∫ 2Π

0

∫ ∞
−∞

δ(w)H(h)e−g hφ (ξ(w, h), v(w, h)) dh dw (2.35)

= f (N −m)

∫ ∞
0

e−g hφ (ξ(0, h), v(0, h)) dh

= f (N −m)

∫ ∞
0

e−g hφ (γ∞(h)) dh

To estimate the difference between I2 and I∞ we split both integrals at a point τ ∈ (0, t) and get:

|I2 − I∞| =
∣∣∣∣f ∫ τ

0

(N −m(t− h)) e−g hφ (γt(h)) dh− f (N −m)

∫ τ

0

e−g hφ (γ∞(h))

+ f

∫ t

τ

(N −m(t− h)) e−g hφ (γt(h)) dh− f (N −m)

∫ ∞
τ

e−g hφ (γ∞(h))

∣∣∣∣
We call the first difference A1 and second one A2 and estimate them separately.

|A2| ≤
∣∣∣∣f ∫ t

τ

(N −m(t− h)) e−g hφ (γt(h)) dh

∣∣∣∣+ (N −m)

∣∣∣∣f ∫ ∞
τ

e−g hφ (γ∞(h)) dh

∣∣∣∣
≤M max {N −m0, N −m} f

∫ t

τ

e−g hdh+M (N −m) f

∫ ∞
τ

e−g hdh

≤M max {N −m0, N −m}
f

g

(
e−gτ − e−g t

)
+M (N −m)

f

g
e−gτ

≤ 2M max {N −m0, N −m}
f

g
e−gτ

≤ ε

3
(2.36)

The first line uses the triangle inequality, the second that φ is bounded and the fact that m(t)
takes its minimum either at m0 or at m, both smaller than N . In the fourth inequality we simply
drop the negative term. We can make the last inequality true by choosing τ large enough.

For A1 we use the fact that limt→∞m(t) = m and the pointwise convergence of γt(h) shown
above. Together with the continuity of φ that tells us that for the τ chosen above we can find a
T2 < 0 such that ∀t > T2 :

|A1| ≤ f
∫ τ

0

e−g h |((N −m(t− h))φ (γt(h)))− ((N −m)φ (γ∞(h)))| dh ≤ ε

3
(2.37)

Finally we put (2.34), (2.36) and (2.37) together. Let T := max {T1, T2}. Then we have for all
t > T :

|I1 + I2 − I∞| ≤ |I1|+ |I2 − I∞|
≤ |I1|+ |A1|+ |A2|

≤ ε

3
+
ε

3
+
ε

3
= ε

This makes the convergence of the full solution exact. We summarize this result in the following
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2.5 Interpretation

Figure 2.4: Some γti(h) and its limiting curve for t→∞

Theorem: Let γt(h) and γ∞(h) be defined as in (2.30) and (2.32) respectively . Let Ψ0 (ξ, v) be
defined such that its moments m0, u0 and σ0 (calculated as in (2.1)) exist with 0 < m0 ≤ N . Let
further m, u and σ be defined as in (2.9).
Then we have tight convergence on the set of non-negative, bounded Radon measures M+

1 of Ψ,
the solution of equation (2.23) (as defined in (2.28)) to Ψ, the solution of the stationary equation
(2.16) (as defined in (2.35)) i.e. for all φ ∈ CB

(
R2
)
we have:

〈Ψ, φ〉 =

e−g t
∫∫

Ψ0 (x, y)φ (ξ (x, y, t) , v (x, y, t)) dx dy + f

∫ t

0

(N −m(t− h)) e−g hφ (γt(h)) dh

t→∞−−−→ f (N −m)

∫ ∞
0

e−g hφ (γ∞(h)) dh = 〈Ψ, φ〉

2.5 Interpretation
The characteristics describe the path of individual myosin heads in the phase space (ξ, v) under
the influence of the forces described. They all tend to the position

(ξ, v) =

(
Inh

κ
, 0

)
=

(
u

(
1

g
+

1

κ

(
η +

1

T

))
, 0

)
If the external force equals the stall force (i.e. the force such that u = 0), Fstall = κξ0m we get
Inh
κ = 0, so the heads just stay at their attachment position and there is no movement.

If on the other hand F = 0, only the friction forces u−v
T and −ηv and the spring force κ (ξ0 − ξ)
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2 Modeling of Actin-Myosin Interaction

Figure 2.5: The support of the solution for two different parameter sets. The right picture uses
the same parameters as figure 2.3.

are active, resulting in an equilibrium position ξ of ξ0
(

1 + g
T (κ+gη)

)
> ξ0, which means that the

heads are dragged past their equilibrium position by the bundle movement.

In the full equation we have an initial distribution Ψ0 which puts heads at any point in the phase
space. However, because we assume a positive detachment rate g > 0 the heads move along their
characteristics, but will eventually detach and only enter again at (0, u(t)). As limt→∞ u(t) = u
it seems reasonable that for large times we observe a concentration of mass on the (stationary)
characteristic going through (0, u), but only on the part leading from (0, u) to

(
Inh
κ , 0

)
. The

exact amount of heads decreased exponentially along the characteristic (because of the factor
e−g t), which is precisely the situation described by the stationary solution. Figure 2.5 shows a
3D Plot of the support of the full solution. The z-direction represents the time. The resulting
surface can have very different shapes, depending on the chosen parameters. The right picture
corresponds to the parameters which were also used for 2.3.

2.6 Appendix

2.6.1 Where to define Initial Conditions
The Case λ1 6= λ2

The system can be diagonalized. To transform the system into its canonical shape, we will
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2.6 Appendix

use the matrix Q, which is the change of basis matrix for diagonalizing A (QJ Q−1 = A). In case
of real eigenvalues, also Q will have real entries. In the case of complex eigenvalues λ1,2 = a± i b
we use the real Jordan canonical form and the corresponding real change of basis matrix for J
and Q respectively:

(
ξ̂
v̂

)
:= Q−1

(
ξ
v

)
+ S (2.38)

with S := −Q−1

(
Inh
κ
0

)
and Q−1 :=

(
1 − 1

λ2

1 − 1
λ1

)
or Q−1 :=

(
0 1
−κa

a
b

)
for the real and complex

case respectively.
The translation S just maps the limit point

(
Inh
κ , 0

)
to the origin. The new canonical system

now corresponds to the ODE:(
˙̂
ξ
˙̂v

)
= J

(
ξ̂
v̂

)
Now we define initial conditions for the new system on a circle:(

ξ̂0(w), v̂0(w)
)

:= (Rcos(wu − w), R sin(wu − w))

R and wu are constants that can still be chosen. Next we transform them back into the old
system using (2.38). We get:(

ξ0(w)
v0(w)

)
= Q

[(
ξ̂0(w)
v̂0(w)

)
− S

]
which equals(

1
λ1−λ2

(λ1Rsin(wu − w)− λ2Rcos(wu − w)) + Inh
κ

κR
λ1−λ2

(sin(wu − w)− cos(wu − w))

)
and(

1
κ (aR cos(wu − w)− bR sin(wu − w) + Inh)

Rcos(wu − w)

)
for the real and complex case respectively.
As this is a linear transformation, the circle is transformed into an ellipse, which is also depicted
in Figure 2.2. These initial conditions we put into the system (2.19). We will later see that the
δs in the equation have the effect that the characteristic starting at (0, u) plays a special role.
To account for that and make future calculations easier, we choose R and wu is such a way and
(ξ0(0), v0(0)) = (0, u). Therefore we see that:

(ξ(0, 0), v(0, 0)) = (0, u)

which will be practical later on.
Now we need to check that with this choice of initial conditions the parameter change (w, s) →
(ξ, v) is bijective we calculate the determinant of the Jacobian(
∂wξ ∂sξ
∂wv ∂sv

)
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2 Modeling of Actin-Myosin Interaction

Figure 2.6: The characteristics of the transformed system for the case λ1 = λ2.

to be:

J (w, s) :=
R2κes(λ1+λ2)

λ1 − λ2

(
λ1cos

2(wu − w) + λ2sin
2(wu − w)

)
> 0

for the real case and

J (w, s) := −R
2a b e2 a s

κ
> 0

in the complex case. Both are always positive. Finally we define J0 := J (0, 0).

The Case λ1 = λ2

If κ = 1
4

(
η + 1

T

)2 the Matrix A has a twofold eigenvalue λ0 := −
√
κ and cannot be diagonalized.

Instead we look at the system described by its Jordanform by setting Q−1 and S from above to be(
0 − 1

λ2
0

1 − 1
λ0

)
and

(
0

− Inhκ

)
respectively:

The solutions of the transformed system take the following shape:(
ξ̂ (w, s)
v̂ (w, s)

)
=

(
ξ̂0 (w) eλ0s + tv̂ (w) eλ0s

v̂0 (w) eλ0s

)

Figure 2.6 shows the characteristics of the transformed system. From the figure is becomes quite
clear why it cannot work to define the starting points to be on a circle. Instead we chose an
ellipse with its center at the origin, parallel to the a axes and with axes lengths L and R. As a
condition that characteristics at their starting points cannot be tangential to the ellipse one gets:
L ≥ − R

2λ0
and therefore we choose to define L : − R

λ0

Again we define R and wu is such a way that
(
− R
λ0
cos(wu), R sin(wu)

)
mapped back to the

original system equals (0, u) (see above).
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2.6 Appendix

We then get:

ξ(w, s) := eλ0s (Rsin(wu − w) +Rcos(wu − w)− sλ0R sin(wu − w)) +
Inh

κ
(2.39)

v(w, s) := eλ0sλ0R (cos(wu − w)− s λ0 sin(wu − w))

And

J (w, s) := R2κe2 sλ0 (1− cos(w)sin(w)) > 0

2.6.2 Properties of the Matrix Exponential
Is is sufficient to show the two results claimed in 2.33a and 2.33b for a Jordan-block. W.l.o.g. we
set h = 0 in 2.33a. Therefore we want to show:

lim
t→∞

eJt
∫ t

0

e−JsB(s)ds = −J−1B (2.40a)∫ b

a

eJsds = J−1
(
eJb − eJa

)
(2.40b)

with

J =



α 1 0 · · · 0
0 α 1 · · · 0
...

. . . . . . . . .
...

...
. . . α 1

0 · · · · · · 0 α


For the first part we note that:

(exp Jt)ij =

{
0 j < i

eαt tj−i

(j−i)! else

Di :=

n∑
k=1

(exp(−Js))ik B(s)k =

n∑
k=i

(exp(−Js))ik B(s)k

Ci :=

∫ t

a

Di

Ei := (exp JtC)i =

n∑
l=1

(exp(Jt)il)Cl =

n∑
l=i

(exp(Jt)il)Cl

=

n∑
l=i

n∑
k=l

(−1)k−l

(k − l)!(l − i)!
eαttl−i

∫ t

a

e−αssk−lB(s)kds

We define the argument of the double sum as A (i, k, l) and using the rule of de’Hospital, we see
that is has the same limit as − 1

α

[
A (i+ 1, k, l) + (−1)k−l

(k−l)!(l−i)! t
k−iBk

]
. Next we apply J from the

right to the limit to find:

(J E)i =

n∑
m=1

JimEm = αEi + Ei+1
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2 Modeling of Actin-Myosin Interaction

=α

n∑
l=i

n∑
k=l

A (i, k, l) +

n∑
l=i+1

n∑
k=l

A (i+ 1, k, l)

=αA (i, k, i)−

[
n∑

l=i+1

n∑
k=l

A (i+ 1, k, l) +
(−1)k−l

(k − l)!(l − i)!
tk−iBk

]

+

n∑
l=i+1

n∑
k=l

A (i+ 1, k, l)

=−
n∑
l=i

n∑
k=l

(−1)k−l

(k − l)!(l − i)!
tk−iBk = −

n∑
k=i

tk−iBk

k∑
l=i

(−1)k−l

(k − l)!(l − i)!

=−
n∑
k=i

tk−iBk
1

(k − i)!

k−i∑
0

(
k − i
l

)
(−1)k−i−l = −

n∑
k=i

tk−iBk
1

(k − i)!
(1− 1)

k−i

=−Bi

This finishes the proof of the first part of 2.40a.

In a similar way we proof the second part.
We need to show that:∫ b

a

eJsds = J−1
(
eJb − eJa

)
⇐⇒

J

∫ b

a

eJsds = eJb − eJa ⇐⇒ J I = K

with I and K defined as the integral and the right hand side of the equation respectively.

(K)ij =

{
0 j < i

eαb bj−i

(j−i)! − e
αa aj−i

(j−i)! else

To find an expression for I we need to integrate

(
eJs
)
ij

=

{
0 j < i

eαs sj−i

(j−i)! else

Using integration by parts we find that:

Bk :=
1

k!

∫ b

a

eαsskds =
1

α

[
1

k!

(
eαb bk − eαa ak

)
−Bk−1

]
We see that (Iij) = Bj−i for j ≥ i and finish by calculating:

(J I)ij =

n∑
k=1

JikIkj = JiiIij + Ji i+1Ii+1 j = αBj−i +Bj−i−1

=
1

(j − i)!
(
eαb bj−i − eαa aj−i

)
−Bj−i−1 +Bj−i−1

= (K)ij
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3 Application to Keratocyte Movement

3.1 Introduction
As discussed in Chapter 1, Section 1.6 fish keratocytes are useful model cells for studying cell
movement. In this chapter we want to model the effect of actin-myosin interactions on the move-
ment of these cells. To do that we will also include some of the results of Chapter 2.

A very useful property of keratocytes is that, if treated with certain drugs (e.g. staurosporine)
and\or temperature shifts, they start loosing parts of their lamellipodium. These parts are called
cytoplasts (because they contain mainly cytoplasm) and surprisingly exhibit the same moving
behavior as the original cells: They can also be stationary and circular or half-moon shaped
and moving. This fact indicates that the fragments contain all that is necessary for movement.
Additionally they do not have any nucleus and other cell organelles which makes them easier to
examine, e.g. under the electron microscope, where a cell body can be interfering. Figure 3.1
shows still attached cytoplasm and also a free moving cytoplast.

This simplified system was modeled in Oelz and Schmeiser [2010c]. There the following effects
were included:

• bending of actin filaments

• twisting and stretching of cross-linking proteins between actin filaments

• stretching of the plasma membrane

• formation and breakage of adhesions, with which the cell attaches to the substrate

Here we additionally want to introduce myosin filaments that act on actin (see Chapter 1 for
background information on actin and myosin). The modeling assumptions, model description,
non-dimensionalization and derivation of the Euler-Lagrange equation of the original model are

Figure 3.1: The left picture shows two keratocytes with one loosing cytoplasm. The right picture
shows a full keratocyte and one freely moving cytoplast. Actin is labeled green, the
nucleus blue. Source: self made
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3 Application to Keratocyte Movement

described in the following part. How the new myosin terms are incorporated will be described in
the second part.

3.2 Lamellipodium Modeling
This part closely follows Oelz and Schmeiser [2010c].
The original model has as a central feature an age-structured production and decay of cross-links
and adhesions. It starts with a discrete description of the actin filaments to then perform a
homogenization limit, letting the number of filaments tend to infinity based on the assumption
that their density within the lamellipodium is high. We will use the homogenized model as a
starting point.

3.2.1 Assumptions and General Modeling
The following seven assumptions are made:

A1: The lamellipodium is two dimensional and has the topology of a ring, i.e. it lies between two
closed curves.
A2: All actin filaments belong to two families, called clockwise and anti-clockwise. Filaments of
the same family do not cross each other. Crossing of clockwise and anti-clockwise filaments are
transversal. All barbed ends touch the leading edge of the lamellipodium, i.e. the outer curve of
the previous assumption. Filaments are inextensible.
A3: Filaments polymerize at the barbed ends with given polymerization speed. Depolymerization
at the pointed ends is a stochastic process with prescribed distribution.
A4: A cross-link is a connection between a material point on a clockwise and a material point on
an anti-clockwise filament. Cross-links can be created spontaneously at the crossing between two
filaments and they can also break. Creation and breaking are stochastic processes. There exists
at most one cross-link for any pair of filaments at any time.
A5: An adhesion is a connection between a material point on a filament and a point on the
substrate via a transmembrane linkage. Adhesions can be created spontaneously and they can also
break. Creation and breaking are stochastic processes. The number of adhesions per filament
length in restricted.
A6: The position of the filaments is determined by a quasi-stationary balance of elastic forces
resulting from bending the filaments, stretching and twisting the cross-links, stretching the adhe-
sions, and stretching the cell membrane around the leading edge.
A7: The cell membrane simulates a rubber band stretched around the barbed ends of the filaments.

The Filaments
Figure 3.2 shows the orientation and position of the both filament groups within the lamel-
lipodium.

The clockwise filaments are labeled with +, the anti-clockwise with − and their positions at
time t are described by F+ (t, α+, s) and F− (t, α−, s). Here α± ∈ [−π, π) labels the different
filaments and s ∈ [−L, 0] represents the arc length, i.e. the position on one filament. L describes
the maximum length of a filament and the positions s = 0 and s = −L refer to the barbed and
pointed end respectively. Together we get continuous functions F± with:

F± : [0,∞)×B → R2 with B := [−π, π]× [−L, 0]
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3.2 Lamellipodium Modeling

Figure 3.2: The arrangement and labeling of filaments in the lamelipodium. Source: Oelz and
Schmeiser [2010c]

The fact that two filaments of the same family do not cross (A2) implies that F± is one-to-one.
The lengths of the filaments are random variables with given distributions (A3):

η± : [0,∞)×B → [0, 1]

with the deterministic interpretation as the expected fraction of filaments in each index element
dα, whose length at time t is bigger that −s.
Next we need to specify where filaments cross, because here cross-links and myosin filaments can
form. We construct a set of index pairs:

C(t) =
{(
α+, α−

)
∈ [0, 2π)2 : ∃s±

(
t, α+, α−

)
such that

F+
(
t, α+, s+

(
t, α+, α−

))
= F−

(
t, α−, s−

(
t, α+, α−

))}
We assumed that two given filaments can cross at most at one point (A4), therefore for each
(α+, α−) ∈ C(t) there is only one s± (t, α+, α−). If we define

B±(t) :=
{(
α±, s±

(
t, α+, α−

))
:
(
α+, α−

)
∈ C(t)

}
⊂ B

the maps (α+, α−) 7→ (α±, s± (t, α+, α−)) from C(t) to B±(t) are invertible.
We define the angle between crossing filaments by:

φ
(
t, α+, α−

)
= arccos

[
∂sF

+
(
t, α+, s+

(
t, α+, α−

))
· ∂sF−

(
t, α−, s−

(
t, α+, α−

))]
Cross-links
Cross-links form between two actin monomers and stay attached to them (A4). If the monomers
move away from each other, the cross-link is stretched, against which it shows resistance. Ad-
ditionally it is assumed that the cross-link prefers a certain angle φ0 between the two filaments
which leads to twisting forces, if that angle is changed.
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3 Application to Keratocyte Movement

Figure 3.3: Cross-links and associated forces. Source: Oelz and Schmeiser [2010c]

Because of the addition of new actin monomers at the barbed end, material points on the fila-
ments (i.e. actin monomers) move from the barbed to the pointed end with polymerization speed
v± (t, α) (A3).
Therefore the material point of a cross-link of age a has the following s-label:

s+
a

(
t, α+, α−

)
:= s+

(
t− a, α+, α−

)
−
∫ t

t−a
v+
(
t̃, α+

)
dt̃ (3.1)

s−a
(
t, α+, α−

)
:= s−

(
t− a, α+, α−

)
−
∫ t

t−a
v−
(
t̃, α−

)
dt̃

Figure 3.3 shows a detailed view of the forces caused by cross-links which can be described by a
stretching force S and a twisting force T calculated as follows:

S
(
t, a, α+, α−

)
= F+

(
t, α+, s+

a

(
t, α+, α−

))
− F−

(
t, α+, s−a

(
t, α+, α−

))
(3.2)

T
(
t, a, α+, α−

)
= φa

(
t, α+, α−

)
− φ0

with

φa
(
t, α+, α−

)
= arccos

[
∂sF

+
(
t, α+, s+

a

(
t, α+, α−

))
· ∂sF−

(
t, α−, s−a

(
t, α+, α−

))]
We define

T0

(
t, α+, α−

)
= T

(
t, 0, α+, α−

)
. (3.3)

For the expected cross-link density ρ(t, a, α+, α−) with (α+, α−) ∈ C(t − a) we can derive a
transport equation with a breaking rate ζ that depends on how stretched and twisted the cross-
link is. Further we need a creation rate β(T0) dependent on the angle at the time of formation
and boundary conditions.

∂tρ+ ∂aρ = −ζ (S, T ) ρ (3.4)
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3.2 Lamellipodium Modeling

ρ(a = 0) = β(T0)

(
1−

∫ ∞
0

ρ da

)
ρ
(
t, a, α+, α−

)
= 0 for (α+, α−) ∈ ∂C(t− a)+

ρ (t = 0) = ρI

with ∂C(t − a)+ denoting the part of the boundary of C(t − a) where the filaments with labels
α+ and α− start having a crossing.
If the length distributions of the filaments η+ and η− are taken into account, one can define an
effective cross-link density and an associated transport equation:

ρeff
(
t, a, α+, α−

)
= ρ

(
t, a, α+, α−

)
η+
(
t, α+, s+

a

(
t, α+α−

))
η−
(
t, α−, s−a

(
t, α+α−

))
∂tρ

eff + ∂aρ
eff = −ρeff

(
ζ(S, T )− ∂tη

+ − v+∂sη
+

η+
− ∂tη

− − v−∂sη−

η−

)
Now we look at the dynamics of

Adhesions
The densities ρ±adh (t, a, α, s) satisfy the following differential equations and boundary conditions
(A5):

∂tρ
±
adh + ∂aρ

±
adh − v

±∂sρ
±
adh = −ζadh(S±adh)ρ±adh

ρ±adh(a = 0) = βadh

(
ρadh −

∫ ∞
0

ρ±adhda

)
ρ±adh(s = 0) = 0

ρ±adh(t = 0) = ρI±adh

where ρadh describes the maximal density of adhesions along the filament and

S±adh(t, a, α, s) := F±(t, α, a)− F±
(
t− a, α, s+

∫ t

t−a
v±(t̃, α) dt̃

)

The Energy Functional
Assumption A6 tells us that elastic oscillations are neglected because they are assumed to be
damped by the cytosol. Further it says the filament positions minimize a potential energy func-
tional consisting of contributions from the described effects:

U(t)
[
G+, G−

]
:=U+

bend(t)
[
G+
]

+ U−bend(t)
[
G−
]

+ Uscl+tcl(t)
[
G+, G−

]
(3.5)

+ Umemb
[
G±
]

+ U+
adh(t)

[
G+
]

+ U−adh(t)
[
G−
]

with

U±bend(t)
[
G±
]

:=
κB

2

∫
B

∣∣∂2
sG
±∣∣2 η±d(α, s) (3.6)

Uscl+tcl(t)
[
G+, G−

]
:=

∫ ∞
0

∫
C(t−a)

(
κS

2
|S|2 +

κT

2
T 2

)
ρeffd(α+, α−) da

U±adh(t)
[
G±
]

:=
κF

2

∫
B

∫ ∞
0

∣∣∣∣G± − F±(t− a, α±, s+

∫ t

t−a
v±(t̃, a) dt̃

)∣∣∣∣2 ρ±adhη±da d(α, s)

Umemb
[
G±
]

:= κM
(
C+[G+] + C−[G−]

2
− C0

)2

+
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with

C±
[
G±
]

:=

∫ π

−π

∣∣∂αG± (t, α, 0)
∣∣ dα

The last contribution Umemb takes the resistance of the membrane against stretching into account;
C0 is the equilibrium circumference. Ubend describes the effect of bending the actin filaments,
Uscl+tcl the stretching and twisting forces caused by the cross-links and Uadh refers to the adhe-
sions.
Now the positions of the filaments F± at time t are determined by

U(t)
[
F+(t, ·, ·), F−(t, ·, ·)

]
= minU(t)

[
G+, G−

]
and under the constraints of inextensibility and that all barbed ends touch the leading edge:∣∣∂sG+

∣∣ =
∣∣∂sG−∣∣ = 1 (3.7){

G+(t, α, 0) : −π ≤ α < π
}

=
{
G−(t, α, 0) : −π ≤ α < π

}
3.2.2 The Limit of instantaneous Cross Link and Adhesion Turnover
To reduce computational costs and because so far macroscopic and microscopic length scales are
still mixed, an asymptotic limit will be performed based on the assumption that the average life-
time of an adhesion and cross-link is small. This will also remove the delay problem, that at this
point is part of the energy contributions of the adhesions and cross-links (until now the history
of the dynamics would have to be kept until the maximum age of cross-links and adhesions).

Non-dimensionalization
To be able to compare smallness of quantities, the equations first need to be non-dimensionalized.
We choose the following reference values:

• the typical filament length L for s, F±, S, S±adh and C0

• v0 as reference speed for v±

• the typical time an actin monomer spends in a filament L\v0 for scaling t

• we interpret a as typical lifetime of cross links and adhesion and use 1\a as a reference
value for β, ζ, βadh and ζadh

• 1\(aL) is used for the cross-link density ρ and ρadh\a for the adhesion density ρadh

• κB is used for the energy U and all its contributions

• finally the reference values κB\(εL), κBL, κB\(ερadhL) and κB\L for scaling κS , κT , κF
and κM respectively

The main scaling assumption is that the dimensionless parameter

ε :=
av0

L

is small, i.e. that the typical lifetime of cross-links and adhesions is small compared to the typical
time an actin molecule spends in a filament. However this is at least not always reasonable for
adhesions. These can occasionally form large, long-living complexes, which would definitely not
satisfy this assumption. We therefore exclude such complexes in our description. Physically our
assumption means that cross-links and adhesions cause forces that are felt as friction by the
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3.2 Lamellipodium Modeling

filaments.
Using the same symbols as for the unscaled quantities we get:

U±bend(t)
[
G±
]

:=
1

2

∫
B

∣∣∂2
sG
±∣∣2 η±d(α, s) (3.8)

Uscl(t)
[
G+, G−

]
:=

κS

2ε

∫ ∞
0

∫
C(t−εa)

|Sε|2ρeffd(α+, α−) da

Utcl(t)
[
G+, G−

]
:=

κT

2

∫ ∞
0

∫
C(t−εa)

(T ε)2ρeffd(α+, α−) da

U±adh(t)
[
G±
]

:=
κF

2ε

∫
B

∫ ∞
0

∣∣G± − F±∗∣∣2 ρ±adhη±d(α, s) da (3.9)

Umemb
[
G±
]

:= κM
(
C+[G+] + C−[G−]

2
− C0

)2

+

with

Sε = G+
(
t, α+, s+

εa

(
t, α+, α−

))
−G−

(
t, α−, s−εa

(
t, α+, α−

))
T ε = φεa

(
t, α+, α−

)
− φ0 (3.10)

and

F±∗ := F±
(
t− εa, α±, s+

∫ t

t−εa
v±(t̃, α), dt̃

)
The PDEs for the cross-link and adhesion density become:

ε∂tρ+ ∂aρ = −ζ(S, T )ρ

ρ(a = 0) = β(T0)

(
1−

∫ ∞
0

ρ da

)
ρ
(
t, a, α+, α−

)
= 0 for

(
α+, α−

)
∈ C(t− ε)+

ρ(t = 0) = ρI

with T0 defined as in (3.3).

εD±t ρ
±
adh + ∂aρ

±
adh = −ζadh

(
S±adh

)
ρ±adh

ρ±adh(a = 0) = βadh

(
1−

∫ ∞
0

ρ±adhda

)
ρ±adh(s = 0) = 0

ρ±adh(t = 0) = ρI±adh

with

S±adh
(
t, a, α±, s

)
= F±

(
t, α±, s

)
− F±

(
t− εa, α±, s+ ε

∫ t

t−a
v±
(
t̃
)
dt̃

)
D±t := ∂t − v±∂s the material derivative
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The solution of their corresponding limiting equations for ε→ 0 reads:

ρ =
β(T0)ζ(0, T0)

β(T0) + ζ(0, T0)
e−ζ(0,T0)a

ρ±adh =
βadhζadh(0)

βadh + ζadh(0)
e−ζadh(0)a

Note that these are singular limits and that eventual boundary and initial layers were ignored. ρ
depends on T0(t, α+, α−); this dependence is local in time.
To take ε → 0 in the energy contributions one needs to look at the corresponding variational
problem. We define

I (τ) := U
[
F+ + τδF+, F− + τδF−

]
Because U , the sum of all energy contributions, has a minimum at (F+, F−), it has to be true
that I ′ (τ)

∣∣
τ=0

= 0 for all admissible variations (δF+, δF−), i.e.

δU
[
F+, F−

] (
δF+, δF−

)
= 0

To account for the constraints in (3.7) Lagrange multipliers are introduced which give the addi-
tional contributions:

U±ext
[
G±
]

=
1

2

∫
B

λ±(α, s)
(∣∣∂sG±(α, s)

∣∣2 − a) η±d(α, s)

Uedge
[
G+, G−

]
=

∫ π

−π
λedge(α

+)
(
G+

(
t, α+, 0

)
−G−

(
t, α̂

(
t, α+

)
, 0
))
· ν(t, α+) dα+

The first expression describes the inextensibility of filaments and the second the deviation be-
tween the outer edges of the two filament families. α̂(t, α+) is chosen such that G+ (t, α+, 0) −
G− (t, α̂ (t, α+) , 0) is parallel to ν(t, α+), which is the outward unit normal vector along the
barbed ends of the clockwise filaments.

In a next step the variations of the contributions are calculated and finally ε is taken to zero.
Without going into further detail one gets:

δU±ext
[
F±
]
δF± =

∫
B

λ±∂sF
± · ∂sδF±η±d(α, s) (3.11)

δUedge
[
F+, F−

]
δF± = ±

∫ π

−π
λ±edgeν · δF

±(s = 0) dα

δUmemb
[
F±
]
δF± = κM

(
C± − C0

)
+

∫ π

−π

∂αF
±(s = 0)

|∂αF±(s = 0)|
· ∂αδF±(s = 0) dα

δU±bend
[
F±
]
δF± =

∫
B

∂2
sF
± · ∂2

sδF
±η±d(α, s)

δU±adh
[
F±
]
δF± = µA

∫
B

D±t F
± · δF±η±d(α, s)

δUscl(t)
[
F+, F−

]
δF± = ±

∫
C(t)

µS(T0)
(
DtF

+ −DtF
−) δF±η+η−d(α+, α−)

δUtcl(t)
[
F+, F−

]
δF± = ∓

∫
C(t)

µT (T0)T0

(
∂sF

±⊥ · ∂sδF±
)
η+η−d(α+, α−)
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In δUtcl(t) ∂sF± and ∂sδF± are evaluated at (t, α±, s± (t, α+, α−)). The following abbreviations
were used:

µS(T0) =
κSβ(T0)

ζ(0, T0) (β(T0) + ζ(0, T0))

µT (T0) =
κTβ(T0)

β(T0) + ζ(0, T0)

µA =
κAβadh

ζadh(0) (βadh + ζadh(0))

λ+
edge = λedge(α)

λ−edge = λedge
(
α+(t, α, 0)

)
If the seven terms in (3.11) are collected one gets the following variational equation where there
is no restriction on the variations δF+ and δF−.∫ π

−π

[
κM

(
C± − C0

)
+

∂αF
±(s = 0)

|∂αF±(s = 0)|
· ∂αδF± ± λ±edgeν · δF

±
]
s=0

dα

±
∫
C(t)

(
µS(T0)

(
DtF

+ −DtF
−) δF± − µT (T0)T0

(
∂sF

±⊥ · ∂sδF±
))
η+η−d(α+, α−)

+

∫
B

(
∂2
sF
± · ∂2

sδF
± + µAD±t F

± · ∂F± + λ±∂sF
± · ∂sδF±

)
η±d(α, s) = 0

To derive an Euler-Lagrange equation the integration domains of the second and the third integral
have to be mapped to each other via the transformation (α+, α−) 7→ (α, s) = (α±, s±(t, α+, α−)).
We incorporate the corresponding Jacobians and the fact that these terms only contribute in
B±(t) into µS and µT via:

µS± :=

{
µS
∣∣∣∂∓
α

∂±
s

∣∣∣ in B±(t)

0 in B\B±(t)
µT± :=

{
µT
∣∣∣∂∓
α

∂±
s

∣∣∣ in B±(t)

0 in B\B±(t)

Finally we get the Euler-Lagrange equation:

bending︷ ︸︸ ︷
∂2
s

(
η±∂2

sF
±)− inextensibility︷ ︸︸ ︷

∂s
(
η±λ±∂sF

±)+

adhesions︷ ︸︸ ︷
η±µAD±t F

± (3.12)

±
(
η+η−T0µ

T
±(T0)∂sF

±⊥)︸ ︷︷ ︸
twisting cross-links

± η+η−µS±(T0)
(
D+
t F

+ −D−t F−
)︸ ︷︷ ︸

stretching cross-links

= 0

Together with the boundary conditions:

for s = −L :

− ∂s
(
η±∂2

sF
±)+ η±λ±∂sF

± ∓ η+η−µT±(T0)∂sF
±⊥ = 0 (3.13)

for s = 0 :

∂s
(
η±∂2

sF
±)− λ±∂sF± ± µT±(T0)∂sF

±⊥ (3.14)

= ±λ±edgeν − κ
M
(
C± − C0

)
+
∂α

(
∂αF

±

|∂αF±|

)
for s = −L, 0 :

η±∂2
sF
± = 0
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Figure 3.4: The left two pictures were taken by Verkhovsky et al. [1999], the right by myself.
Both show the actin (cyan and red) and myosin (red and green) distribution in a
moving and stationary cytoplast.

The Lagrange multipliers have to be determined such that the constraints (3.7) are fulfilled.

3.3 Introducing Myosin to the Model

3.3.1 Observations and Modeling
The basis of the modeling are observations taken from Verkhovsky et al. [1999] and my own
experiments in the laboratory of Prof. Victor Small at the IMBA, Vienna (details in Chapter
1, Section 1.1 and in my bachelor’s thesis). Figure 3.4 shows a moving and stationary cytoplast
and the actin and myosin distributions. The two sets of pictures were produced by Verkhovsky
et al. [1999] and myself and even though they do not show exactly the same distributions, they
contain qualitatively the same information. Observations about the dynamics of myosin were all
taken from Verkhovsky et al. [1999] and not reproduced.

For stationary cytoplasts

• Myosin spots start forming throughout most of the cytoplast but slightly away from the
boundary.

• The spots move slowly towards the center and disappear.

For moving cytoplasts

• Myosin spots start forming near the front.

• They move inwards while growing bigger.

• They begin to form arc shaped bundles at the rear where they finally disassemble

Using the cross-link (CL) modeling as a starting point we now make the following assumptions
about the myosin filaments (MF):

a) General remarks

• MF sit on two actin filaments, grow and exert a twisting and stretching force on the
actin

• the twisting force is assumed to come from the stiffness of the (long) MF

b) The myosin filaments (MF) are modeled similar to cross-links, in particular:

40



3.3 Introducing Myosin to the Model

• they connect actin filaments of the + and - family by attaching to actin monomers in
the filaments

• they can be created spontaneously at filament crossings

• they can break

• there cannot be more than one MF per crossing

• their distribution is described by a density ρmyo

c) Additional assumptions

• CL and MF formation and breakage is independent from each other

• the MF move towards the barbed ends of their actin filaments with speed vmyo
• the preferred angle of a MF is π

• MF grow with increasing age a and if the angles formed by the actin filaments is close
to π

d) There are several consequences of a large size N of the MF:

• the MF walk faster towards the barbed end, vmyo(N)

• the twisting and stretching forces created by the MF grow, κSM (N) and κTM (N)

• the MF are less likely to break, ζmyo(N)

In summary we add the following assumption to A1-A7:

A8: A myosin filament is a connection between material points on a clockwise and an anti-
clockwise filament. Myosin filaments walk towards the barbed ends of both filaments with a certain
velocity. Myosin filaments can be created spontaneously at the crossing between two filaments and
they can also break. Creation and breaking are stochastic processes. There exists at most one
myosin filament for any pair of filaments at any time. The formation of cross-links and myosin
filaments is independent.

3.3.2 Deriving Energy Contributions
Myosin filaments move along the actin monomers towards the barbed end of the actin filament,
therefore the s-labels change in a way that depends on their velocity vmyo(N(t, a, α+, α−)), where
the size of the MF,N(t, a, α+, α−), is still to be specified (in the following we often omit arguments
of N for simplicity).

s±myo,a(t, α+, α−) := s±(t− a, α+, α−)

−
∫ t

t−a
v±(t̃, α±)− vmyo(N(t̃, t̃− (t− a), α+, α−))dt̃

Note: The speed vmyo opposes the polymerization speed v±, compare to (3.1).

Similar to (3.2) the stretching term Smyo stems from the distance between the actin monomers
that the MF ends are attached to; the twisting term Tmyo describes the deviation of the angle
between the actin filaments from π:

Smyo(t, a, α
+, α−) := F+(t, α+, s+

myo,a(t, α+, α−))− F−(t, α+, s−myo,a(t, α+, α−))

Tmyo(t, a, α
+, α−) := φmyo,a(t, α+, α−)− π

φmyo,a(t, α+, α−) := arccos[∂sF
+(t, α+, s+

myo,a(t, α+, α−)) · ∂sF−(t, α−, s−myo,a(t, α+, α−))]
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We see that Tmyo (t, 0, α+, α−) = T0 (t, α+, α−) (compare to (3.3)).

Remark: At this stage we have created a delay problem, because we would have to store
information about the filament from time t−a to time t. However, the problem will become local
in time by scaling (see Section 3.3.4).

Analogously to the cross-link density (compare to (3.4)), we can write a transport equation
for the MF density ρmyo(t, a, α+, α−):

∂tρmyo + ∂aρmyo = −ζmyo(Smyo, Tmyo, N) ρmyo

ρmyo(a = 0) = βmyo(T0)(1−
∫ ∞

0

ρmyo dã)

To get an effective MF density, ρeffmyo we need to take into account the length distributions of the
actin filaments η+ and η−. By setting ρeffmyo := ρmyo η

+ η−, we again get a transport equation
with adjusted breaking rate ζeffmyo:

ζeffmyo := ζmyo(Smyo, Tmyo, N)− ∂tη
+−(v+−vmyo(N))∂sη

+

η+
− ∂tη

−−(v−−vmyo(N))∂sη
−

η−

∂tρ
eff
myo + ∂aρ

eff
myo = −ρeffmyo ζ

eff
myo

Now the forces stemming from stretching and twisting the myosin filaments are added to the
other forces acting on the actin filaments described in (3.6).

Usmyo[G
+, G−](t) :=

∫ ∞
0

∫
C(t−a)

(
κSM

2
|Smyo|2

)
ρeffmyo d(α+, α−)da

Utmyo[G
+, G−](t) :=

∫ ∞
0

∫
C(t−a)

(
κTM

2
Tmyo

2

)
ρeffmyo d(α+, α−)da

Where C(t−a) describes the set of index pairs (α+, α−) which had a crossing point at time t−a.

Remark: Even though they look similar to the corresponding cross-link terms, note that κSM
and κTM depend on the size N and also Smyo and Tmyo via s±myo,a as well as ρeffmyo.

3.3.3 Non-dimensionalization and Scaling the Energy Contributions
Discussion: One important assumption on the myosin filaments, is that their lifetime in the
moving cytoplasts is much longer than in the stationary ones. We assume that in the stationary
ones the forming and breaking happens much more often, consequently the lifetime of a MF is
shorter than in the moving cytoplasts.
This brings up the question of the right choice of reference lifetime arefmyo. Two possible choices
would be:

a) arefmyo = ā = ε L
v0

: This models an average MF lifetime which is short and similar to the
lifetime of a cross-link and might be appropriate for stationary cytoplasts.

b) arefmyo = L
v0
: This assumes an average lifetime similar to the time a monomer spends inside

a filaments and seems reasonable for moving cytoplasts.

As our simulation goal at this point is destabilizing the stationary cytoplast to become a mov-
ing one, we will take the stationary one as a starting point and choose option a). However one has
to keep on mind that on the long run, a change in scaling or other approach might be necessary.
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3.3 Introducing Myosin to the Model

All other variables are scaled analogously to before with choosing the reference values for κSM
and κTM to be κB/ (εL) and κBL respectively.

Myosin-Filament Density

The equations for ρmyo now take the following form:

ε ∂tρmyo + ∂aρmyo = −ζmyo(Sεmyo, T εmyo, N)ρmyo (3.15)

ρmyo(a = 0) = βmyo(T0)(1−
∫ ∞

0

ρmyo da)

ρmyo(t, a, α
+, α−) = 0 for

(
α+, α−

)
∈ ∂C (t− εa)+

ρmyo (t = 0) = ρImyo

with

Sεmyo = G+
(
t, α+, sε+myo,a)

)
−G−

(
t, α−, sε−myo,a)

)
(3.16)

T εmyo = φεa
(
t, α+, α−

)
− π

φεa = arccos[∂sG
+(t, α+, sε+myo,a(t, α+, α−)) · ∂sG−(t, α−, sε−myo,a(t, α+, α−))]

sε±myo,a (t) := s±(t− εa, α+, α−)−
∫ t

t−εa
v±(t̃, α±)− vmyo(N(t̃,

t̃− t
ε

+ a, α+, α−))dt̃

It is easy to see that sε±myo,a → s±(t, α+, α−) and therefore Sεmyo → 0 and T εmyo → T0 as ε→ 0.

We need to specify the dependence of ρmyo on the size of a myosin filament, N . A myosin
filament grows if more myosin monomers attach to it (for more details see Chapter 1). Therefore
more heads can act on actin leading to an increase in forces and moving speed. We expect the
myosin’s growth to depend on how favorable the angle between its actin filaments is:

∂aN(t, a, α+, α−) = R
(
φ(t+ a, α+, α−)

)
, N(t, 0, α+, α−) = 0

Where a is the age of the MF and R is an increasing function of φ which takes its minimum at
φ = 0 (parallel actin filaments) and its maximum at φ = π (anti-parallel filaments). Using the
same scaling as before and choosing as a reference value for R, Rref = L

ā , we get:

∂aN(t, a, α+, α−) = R
(
φ(t+ εa, α+, α−)

)
, N(t, 0, α+, α−) = 0

So with ε→ 0

N(t, a, α+, α−) = aR
(
φ(t, α+, α−)

)
With this we can calculate the myosin filament density ρmyo. We setN(t, a, α+, α−) = aR (φ(t, α+, α−))
in (3.15) and thereby change from ρmyo(t, a, α

+, α−) to ρmyo(t,N, α+, α−). The new equations
(after taking ε→ 0) read:

R (φ) ∂Nρmyo = −ζmyo (0, T0, N) ρmyo

ρmyo (N = 0) = βmyo (T0)

(
1− 1

R (φ)

∫ ∞
0

ρmyo dÑ

)
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The solution of the PDE takes the following form :

ρmyo (t,N) = ρmyo (t, 0) exp

(
− 1

R (φ(t))

∫ N

0

ζmyo

(
0, T0(t), Ñ

)
dÑ

)
(3.17)

ρmyo (t, 0) =
β (T0)

1 + β(T0(t))
R(φ(t))

∫∞
0

(
exp

(
− 1
R(φ(t))

∫ N
0
ζmyo

(
0, T0 (t) , Ñ

)
dÑ
))

dN

For better readability we omitted the arguments α+ and α−, but note that we have: φ(t, α+, α−)
and T0 (t, α+, α−) and therefore ρmyo (t,N, α+, α−).

Energy Contributions

The energy contributions that are to be added to the list in (3.8) become:

Usmyo[G
+, G−](t) :=

1

ε

∫ ∞
0

∫
C(t−εa)

(
κSM

2
|Sεmyo|2

)
ρeffmyo d(α+, α−) da

Utmyo[G
+, G−](t) :=

∫ ∞
0

∫
C(t−εa)

(
κTM

2

(
T εmyo

)2)
ρeffmyo d(α+, α−) da

with the abbreviations as defined in (3.16).
The understand what happens with the energy contributions for ε→ 0 we again need to look at
the variational problem.
We start with the stretching term and calculate its variation to be:

δUsmyo (t)
[
F+, F−

]
δF± = ±1

ε

∫ ∞
0

∫
C(t−εa)

κSM Sεmyo δF
± (t, α±, sε,±myo,a) ρeffmyo d

(
α+, α−

)
da

To be able to take the limit we need to examine Sεmyo further (for simplicity we will omit all α+

and α−):

Sεmyo =
(
F+ (t, s(t−εa))−F+ (t− εa, s(t−εa))

)︸ ︷︷ ︸
A

(3.18)

−
(
F+ (t, s(t−εa))−F+

(
t, s(t−εa)−

∫ t

t−εa
v+
(
t̃
)
−vmyo

(
N

(
t̃,

1

ε
(t̃−t) + a

))
dt̃

))
︸ ︷︷ ︸

B

−
[ (
F− (t, s(t−εa))−F− (t−εa, s(t−εa))

)
−
(
F− (t, s(t−εa))−F−

(
t, s(t−εa)−

∫ t

t−εa
v−
(
t̃
)
−vmyo

(
N

(
t̃,

1

ε
(t̃−t) + a

))
dt̃

))]

Now we will look only at the F+ case in (3.18). The two brackets appearing we call A and
B. Using a first order Taylor expansion in the first variable, i.e. F+(t − εa, s) = F+(t, s) −
∂tF

+(t, s)εa+O
(
ε2
)
, we see that:

A = εa ∂tF
+ (t, s(t− εa)) +O

(
ε2
)

Part B requires some more work. First we take care of the integrals: The first one we Taylor
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expand:∫ t

t−εa
v+
(
t̃
)
dt̃ = εa v+(t) +O

(
ε2
)

(3.19)

In the second integral we perform a change of variables ã = t̃−t
ε +a and then do a Taylor expansion

of the integrand, receiving:∫ t

t−εa
vmyo

(
N

(
t̃,

1

ε
(t̃− t) + a

))
dt̃ (3.20)

= ε

∫ a

0

vmyo (N ((ã− a)ε+ t, ã)) dã

= ε

∫ a

0

vmyo (N(t, ã)) dã+ ε

∫ a

0

∂tvmyo (N(t, ã)) ε(ã− a) dã+O
(
ε2
)

= ε

∫ a

0

vmyo (N(t, ã)) dã+O
(
ε2
)

Now we Taylor expand B in the second variable and using the integrals in (3.19) and (3.20) we
get:

B = εa

(
v+(t)− 1

a

∫ a

0

vmyo (N(t, ã)) dã

)
∂sF (t, s(t− εa)) +O

(
ε2
)

(3.21)

Now we do the same for the −family and, putting everything together and letting ε→ 0, we get:

δUsmyo (t)
[
F+, F−

]
δF± =±

∫ ∞
0

∫
C(t)
κSMa

(
D+
t,aF

+ −D−t,aF−
)
δF±ρmyoη

+η− d
(
α+, α−

)
da

(3.22)

D±t,aF
± :=∂tF

± −
(
v±(t)− 1

a

∫ a

0

vmyo (N(t, ã)) dã

)
∂sF

±

D±t,a looks similar to a material derivative, but accounts for the (forward) movement of MFs
which opposes the backwards movement of actin monomers caused by polymerisation. This also
explains the minus between the two velocity terms. Furthermore does the expression 1

a

∫ a
0
vmyo dã

represent an average of vmyo over different ages, which seems reasonable.
For the twisting term we proceed analogously to the twisting of the cross-links and get:

δUtmyo (t)
[
F+, F−

]
δF± = ∓

∫ ∞
0

∫
C(t)

κTMT0

(
∂sF

±⊥ · ∂sδF±
)
ρmyoη

+η− d
(
α+, α−

)
da

(3.23)

Please note that κSM , κTM , vmyo and ρmyo all depend on the size of the MF N . In order to
proceed we need to specify those dependencies.

3.3.4 Modeling the Dependencies on the Size of a Myosin Filament
From (3.22) and (3.23) we see that to find the corresponding Euler-Lagrange terms we need to
calculate the following integrals:

I1 :=

∫ ∞
0

κSM (a) a ρmyo(a) da =
1

R2

∫ ∞
0

κSM (N)Nρmyo(N) dN (3.24)
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I2 :=

∫ ∞
0

κSM (a) a ρmyo(a)
1

a

∫ a

0

vmyo(ã) dã da =
1

R2

∫ ∞
0

κSM (N)ρmyo(N)

∫ N

0

vmyo(Ñ) dÑ

I3 :=

∫ ∞
0

κTM (a)ρmyo(a) da =
1

R

∫ ∞
0

κTM (N)ρmyo(N) dN

The question is which dependencies are necessary to produce a destabilizing effect in the sta-
tionary cytoplast. What we want to create is a positive feedback loop that, if a large enough
asymmetry in the circular cytoplast occurs, can reinforce it and produce a polarized fragment.
In a first attempt we try varying only one of the parameters, that is either

a) the velocity of the myosin filament bundle vmyo or

b) the Hook constants κSM and κTM or

c) the breaking rate ζmyo of myosin filaments

For simplicity we omit all arguments except N in the following.

We start with option a
In Chapter 2 we saw in (2.9) a dependence of the bundle speed (there called u) on the size N
of the form vmyo = C1

(
1− C2

N

)
for some constants C1 and C2. For the lamellipodium we want

0 speed for 0 size and otherwise positive speed and write vmyo(N) := v
(

1− b
N+b

)
for some

constant b > 0 and maximum speed v.

Remark: To be precise the dependence in Chapter 2 had the form vmyo = C1

(
1− F C2

N

)
for an

external force F . In our case this would be the stretching force S described above. This would
result in a much more complicated dependence, but should be analyzed separately. Here we will
work with the simplified version.

For the myosin filament density ρmyo we assume ζmyo(N) ≡ ζ and get

ρmyo(N) = ρmyo(0)e−
ζ
RN

ρmyo(0) =
β(T0)ζ

ζ + β(T0)

Further we assume κSM (N) ≡ κS and likewise κTM (N) ≡ κT . With these assumptions we get
for the integrals in (3.24):

I1 =
κSρmyo(0)

ζ
2 =: µSM (T0)

I2 = µSMvf(R)

I3 =
κT ρmyo(0)

ζ
=: µTM (T0)

Where f(R) =
(

1− bζ
R exp

(
bζ
R

)
Ei
(

1, bζR

))
. Here Ei (1, γ) with γ > 0 calls the "Exponential

Integral" defined by
∫∞

1
e−γss−1ds. f(R) ∼ 1 for large R.

In the variational equation we therefore get the following contributions:

±
∫
C(t)

µSM (T0)
(
D̃+
t,RF

+ − D̃−t,RF
−
)
δF±η+η−d

(
α+, α−

)
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∓
∫
C(t)

µTM (T0)T0∂sF
±⊥ · ∂sδF±η+η−d

(
α+, α−

)
D̃±t,RF

± := ∂tF
± −

(
v± − ṽf(R)

)
∂sF

±

and finally by defining

µSM± =

{
µSM

∣∣∣∂α∓

∂±
s

∣∣∣ in B±(t)

0 in B\B±(t)

µTM± =

{
µTM

∣∣∣∂α∓

∂±
s

∣∣∣ in B±(t)

0 in B\B±(t)

we get in the Euler-Lagrange equation in (3.12) the additional terms:

± η+η−µSM± (T0)
(
D̃+
t,RF

+ − D̃−t,RF
−
)

± ∂s
(
η+η− T0 µ

TM
± (T0)∂sF

±⊥)
The main difference to the cross-links is the stretching term which has a modified material
derivative. Lastly we also get additional terms in the boundary conditions, i.e. the term
±η+η−µTM± (T0)∂sF

±⊥ in (3.13) and on the left side of (3.14).

Next we look at option b
Here we define vmyo(N) ≡ v and again ζmyo(N) ≡ ζ resulting in the same ρmyo as above. The
Hook constants we model as follows:

κSM (N) := κS
(
1− e−hsN

)
κTM (N) := κT

(
1− e−htN

)
We then get for the integrals in (3.24)

I1 = κSρmyo(0)

(
1

ζ
2 −

1(
ζ +Rhs

)2
)

=: µSM (T0)

I2 = vµSM (T0)

I3 =
ρmyo(0)κT

ζ

Rht

Rht + ζ
=: µTM (T0)

then we proceed as in case a.

Finally we examine option c
We expect the breaking rate ζmyo(N) to decrease with increasing size. In order to ensure integra-
bility of the terms in (3.17) and (3.24) we have to make sure the breaking rate doesn’t decrease
too fast. To that end we assume that the angle dependent growth rate R(φ) in N = aR(φ) is
bounded and model ζmyo(N) = a

N+aζ with a large enough such that ζaR > 2 for all possible values
of the (bounded) R.
If we now calculate ρmyo(N) according to (3.17) we get:

ρmyo(N) = ρmyo(0)a
ζa
R (N + a)

ζa
R

47



3 Application to Keratocyte Movement

ρmyo(0) =
β(T0)

1 + β(T0)a

aζ−R

We set κSM (N) ≡ κS , κTM (N) ≡ κT and vmyo(N) ≡ v and calculate the integrals:

I1 = κSρmyo(0)
a2(

aζ −R
) (
aζ − 2R

) =: µSM (T0)

I2 = vµSM (T0)

I3 = κT ρmyo(0)
a

aζ −R
=: µTM (T0)

Now we can proceed as in case a.

3.4 Outlook
The next task is to implement these terms into an already existing Matlab code. It will be
necessary to estimate parameters and if suitable to simplify the above expressions. The hoped
for effect would be that

a) if the program starts with a stationary cytoplast, the myosin term should not disturb the
state.

b) if the stationary state is asymmetrically disturbed, the myosin terms should further reinforce
the asymmetry, start making one side thinner with more anti-parallel actin filaments and
therefore indicate a transition to the moving state.

If the cytoplast simulation behaves in this way, it could be concluded that myosin has the power
to cause the transition and further experimental proof and examination should be sought.

This work, however, is still in progress and not yet finished. Additionally different modeling
in the cases a, b and c above could be done and\or a combination of the cases attempted.
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