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Zusammenfassung 

Das Durchlaufen des Zellzyklus hängt vom Abbau bestimmter regulatorischer Proteine ab, zu 

denen Securin und mitotische Cycline zählen. Diese Abbaureaktionen werden von der E3 

Ubiquitin-Ligase Anaphase-Promoting Complex / Cyclosom (APC/C) eingeleitet, welche 

selbst zellzyklisch reguliert wird. Der APC/C ist ein 1.5 MDa großer Proteinkomplex, 

welcher bei Vertebraten aus mindestens 13 Untereinheiten aufgebaut ist, und er fügt 

Ubiquitin-Ketten an Substratproteine an. Proteine, die mehrerer solcher Ubiquitin-Moleküle 

besitzen, werden vom 26S proteasome erkannt und proteolytisch abgebaut. Dieser 

unwiederrufliche Vorgang versichert, dass der Zellzyklus unidirektional verläuft und dass 

das nächste Stadium im Zellzyklus gesichert stattfinden kann. Da dieser Prozess ein „alles-

oder-nichts“-Vorgang ist, muss diese Ubiquitylierungsreaktion sehr gut reguliert werden und 

sie muss zellzyklus-abhängig stattfinden. Das wiederrum bedeutet, dass die Aktivität des 

APC/C´s stark kontrolliert werden muss. Dies wird durch mehrere Faktoren gewährleistet. 

Dazu gehören Phosphorylierungs- und Dephosphorylierungsvorgänge, das transiente Binden 

der APC/C-spezifischen aktivatorischen Proteine Cdc20 und Cdh1, sowie die Interaktion mit 

inhibitorischen Proteinen wie etwa dem mitotic checkpoint complex (MCC). Obwohl der 

APC/C schon seit mehr als einem Jahrzehnt intensiv erforscht wird , wissen wir immer noch 

wenig über die Regulation dieses Komplexes während des Zellzyklus und für viele seiner 

Untereinheiten sind die biochemischen Funktionen und Eigenschaften weitestgehend 

unbekannt.  

Erst kürzlich wurde gezeigt, der Genabschnitt C11ORF51 (chromosome 11 open reading 

frame 51) für ein Protein kodiert, welches für den Zellzyklusprozess von Bedeutung ist. 

Zudem fand man heraus, dass es mit humanem APC/C assoziert. Dies wurde in 

Proteinaufreingungsexperimenten gezeigt, bei denen APC/C Untereinheiten als „bait“ 

benutzt wurden. Wir beschlossen, das c11orf51 Protein näher zu charakterisieren und seine 

biologische Funktion zu analysieren. Dabei haben wir eine Kombination aus biochemischen 

und (quantitativ-) massenspektrometrischer Methoden angewandt.  Das Protein c11orf51 

wurde in unseren Untersuchungen als eine neue Untereinheit des humanen APC/C´s 

identifizieren und seine biochemischen Eigenschaften wurden bestimmt.  
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In biochemischen Experimenten, teilweise in Kombination mit Massespektrometrie, konnte 

ich zeigen, dass c11orf51 während des gesamten Zellzyklus mit dem APC/C interagiert. Des 

Weiteren ist  zelluläres c11orf51 zum größten Teil an den Komplex gebunden und die mit 

c11orf51-assozierte Form des APC/C´s ist aktiv gegenüber dem Substratprotein cyclin B1, 

wie in vitro Ubiquitylierungsassays zeigen. Mit Hilfe der Antikörper-Markierungsmethode, 

bei welchem wir c11orf51-spezifische Peptidantikörper verwendeten, konnten wir in 

negative staining-elektronenmikroskopischen Studien die Bildung von APC/C-Dimeren 

beobachten. Dies weist darauf hin, dass c11orf51 ein Protein ist das fest mit dem APC/C 

assoziert.  Deletion von c11orf51 durch RNA-Interferenz ergab einen Phänotyp in sich 

teilenden humanen Zellen in Kultur. Dabei war die Zeit, welche die Zellen in der Metaphase 

verbrachten, im Vergleich zu kontroll-transfizierten Zellen signifikant verlängert. Um weiter 

zu bestätigen, dass c11orf51 eine konstitutive APC/C-Untereinheit ist, wurde  eine 

quantitative Proteomanalyse angewandt. Dabei arretierte ich humane HeLa Zellen in 

verschiedenen Zellzyklus-Stadien und reinigte den APC/C auf, welcher weiteres mit dem 

iTRAQ Reagenz chemisch markiert und anschließend mit quantitativer Massenspektrometrie 

analysiert wurde. Zusätzlich wurden noch weitere APC/C-Bindungsproteins quantifiziert, 

wie etwa die Co-Aktivatoren. Diese Methode kann zukünftig dazu dienen, eine 

zusammenfassende Studie über die Zusammensetzung des APC/C´s während des 

Zellzykluses zu erhalten. 
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 Abstract 

Cell cycle progression depends on the degradation of specific regulatory proteins, such as 

securin and mitotic cyclins. Degradation of these proteins is initiated by the cell cycle-

regulated activity of the E3 ubiquitin ligase anaphase-promoting complex / cyclosome 

(APC/C). The APC/C is a 1.5 MDa protein complex, composed of 13 individual subunits, 

which assembles ubiquitin chains on substrate proteins. Polyubiquitylation targets these 

proteins for recognition by the 26S proteasome, resulting in their subsequent degradation. 

This pathway ensures unidirectionality of the cell cycle process and forces full commitment to 

progress to the next stage. Because this process is an “all-or-nothing”-event, substrate 

ubiquitylation has to be highly regulated in a cell cycle-specific manner. Hence, APC/C 

activity has to be tightly controlled. This is ensured by different events, such as 

phosphorylation and dephosphorylation, transient binding of its co-activatory subunits Cdc20 

and Cdh1 as well as on association of inhibitory proteins, like the mitotic checkpoint complex 

(MCC).  Even though the APC/C has been subjected to intensive studies for more than a 

decade now, we still know little about APC/C regulation during the cell cycle and what the 

function of its many subunits are. Moreover, despite of APC/C´s large size it seems as if there 

are more associating proteins waiting to be discovered. 

Only recently, a protein encoded by C11ORF51 (chromosome 11 open reading frame 51) was 

shown to be required for correct cell cycle progression. Moreover, it was found to associate 

with human APC/C after tandem affinity purification using tagged APC/C subunits as bait. 

We aimed to characterize the c11orf51 protein further and to analyze its biological function. 

Therefore, we applied a combinatorial approach of biochemical and quantitative mass 

spectrometric analysis which allowed us to comprehensively look at human APC/C 

composition during the cell cycle. We could identify the c11orf51 protein as a constitutive 

APC/C subunit and characterized its biochemical properties.  

In different biochemical assays, partially combined with mass spectrometry, I could show that 

c11orf51 protein associates with the APC/C during the entire cell cycle, which identifies the 

c11orf51 protein as a novel and constitutive subunit of human APC/C. In vitro ubiquitylation 

assays revealed that the APC/C containing c11orf51 protein is active towards its mitotic 
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substrate cyclin B1. Antibody-labelling using c11orf51 peptide specific antibodies resulted in 

APC/C-Dimer formation in negative staining electronmicroscopy studies, which confirms that 

c11orf51 must tightly bind to the complex. Depletion of the c11orf51 protein by RNA 

interference (RNAi) resulted in a metaphase arrest phenotype in proliferating human cultured 

cells as analyzed by immunofluorescence microscopy on fixed cells. Furthermore, live cell 

imaging experiments indicated that the time from nuclear envelope breakdown (NEBD) to 

anaphase onset was significantly prolonged, as compared to mock-transfected cells. To further 

verify that c11orf51 protein is a constitutive APC/C subunit, we applied a quantitative 

proteomics approach. To this end, immunopurified APC/C from human cultured cells that had 

been arrested at different cell cycle stages were used for iTRAQ labeling and quantitative 

mass spectrometry. This approach allowed us to resolve the composition of human APC/C 

during the cell cycle. We could show that the protein levels of APC/C-associated c11orf51 did 

not significantly fluctuate during the cell cycle, which confirms that c11orf51p is a bona fide 

subunit of human APC/C.  
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1 Introduction 

1.1 The cell cycle 

The cell cycle is an ordered series of events, in which one cell divides into two daughter cells, 

each containing a copy of the chromosomes derived from the parental cell. The cell cycle is 

fundamental to the development and function of all life. The different stages of a eukaryotic 

cell cycle can be defined based on morphological changes of the chromosomes. Duplication 

of the parental chromosomes occurs only once per cell cycle, which is during the synthetic or 

S phase, with each of the derived daughter chromosomes then distributed to the two daughter 

cells in mitosis, or M phase.  Both phases are separated by two gap phases, G1 and G2. In 

these “interphases” the cell synthesizes proteins, membranes and other cell organelles and it 

prepares for the subsequent cell division. The mitotic cell division in most eukaryotic cells 

(except for fungi) starts with the disassembly of the nucleus and chromosome condensation in 

prophase. The bipolar mitotic spindle begins to form, which captures the chromosomes in 

prometaphase. In metaphase, all chromosomes are aligned to form the so-called metaphase 

plate. Sister chromatids that are held together by a mechanism called cohesion are now being 

captured by microtubules that come from opposite poles of the spindle.  Upon loss of 

cohesion at anaphase onset, sister chromatids are pulled towards the opposite poles of the 

spindle. Telophase marks chromosome decondensation and formation of the nucleus. After 

nuclear division, the two daughter cells are finally separated by cell membrane ingression in a 

process called cytokinesis (Morgan, 2007). Replication and segregation of chromosomes 

during the cell cycle must be precisely controlled and reliable over countless generations. 

Therefore, cell cycle events must be processed in the right order and with high fidelity. Proper 

cell cycle regulation is essential in all living organisms, and aberrant division can lead to cell 

death or hyperproliferation, as it is found in cancer. 
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1.2 Cell cycle control 

Cell cycle events are highly regulated through oscillating waves of cyclin-dependent kinase 

(Cdk) activity. As the cell progresses through the cell cycle, abrupt changes in the enzymatic 

activities of these kinases lead to changes in the phosphorylation state of their target proteins, 

which are major player for cell cycle progression. Cdk-mediated phosphorylation of target 

proteins may alter their activity or their binding properties (Morgan, 2007). Cdks can only 

fulfill their function in association with their regulatory subunit, the cyclins, leading to 

biochemical oscillation waves. While the Cdk levels stay constant and are in large excess over 

the cyclin levels throughout the cell cycle, cyclin concentrations are dramatically changing as 

the cell progresses through different cell cycle stages (Murray, 2004). Cdk activity is high 

during DNA synthesis and early mitosis and low during cytokinesis and G1. Budding and 

fission yeast only have one Cdk, which associates with nine different cyclins, whereas higher 

organisms have several Cdks, which form different cyclin-Cdk complexes that are active at 

different time points in the cell cycle. Concentrations of cyclin A and B rise during interphase 

and fall during mitosis, whereas cyclin E remains constant. The activity of Cdk1, which binds 

cyclin A and B, accumulates slowly during S and G2 and reaches maximal activation in 

mitosis, whereas Cdk2, which binds cyclin A and E, reaches its peak of activity earlier in S 

phase (Guardavaccaro and Pagano, 2006; Murray, 2004). Hence, in animal cells, Cdk4 and 

Cdk6- paired with D-type cyclins, are active in G1; Cdk2 associated with A-type and E-type 

cyclins initiates DNA replication and centrosome duplication, and Cdk1 together with B-type 

cyclins promotes mitotic entry (Murray, 2004; Pagano and Jackson, 2004).  

Furthermore, cyclin-Cdk specificity is determined by their specific localization and 

expression levels, rather than by their chemical properties. In addition, the activity of cyclin-

Cdk complexes is fine-tuned by another control mechanism, involving 

phosphorylation/dephosphorylation as well as binding of inhibitors, of which levels also 

fluctuate. Abolished Cdk activity is for example necessary to exit from mitosis and for 

loading of pre-replicative complexes (pre-RCs) at the origins of replication in G1. The origins 

of replications only start firing in S phase, when E- and A-type cyclins accumulate and 

activate Cdk again at the end of G1 (reviewed by Diffley, 2004). Oscillations of both cyclins 
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and Cdk inhibitors are partially controlled on the transcriptional level, but largely 

accomplished by the action of the ubiquitin proteasome system, leading to irreversible 

substrate degradation (Morgan, 2007). This mechanism ensures that the cell cycle processes 

in a unidirectional fashion with irreversible cell cycle transitions. 

1.3 Ubiquitin­dependent proteolysis  

Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of 

many different processes that require rapid alterations in protein levels, including cell cycle 

progression, signal transduction, transcriptional regulation, receptor down-regulation, and 

endocytosis (Amerik and Hochstrasser, 2004; Hershko and Ciechanover, 1998). Proteolysis is 

particularly critical at the metaphase-to-anaphase transition, where sister-chromatid separation 

and mitotic exit are triggered by the irreversible destruction of mitotic cyclins and proteins 

that control sister-chromatid cohesion. Protein degradation is accomplished by the attachment 

of multiple copies of the small protein ubiquitin. Ubiquitin is a highly conserved 76 amino 

acid protein found in all eukaryotes. The attachment of ubiquitin to target proteins, a process 

known as ubiquitilation, ultimately leads to their proteosomal degradation (Morgan, 2007). 

The minimal targeting signal on a protein for its proteasomal degradation is a tetraubiquitin 

chain, whereas the attachment of only one ubiquitin acts as a distinct type of signal, for 

example in endocytosis (Thrower et al., 2000). The ubiquitilation process is carried out in a 

series of reactions by the action of three enzymes: an ubiquitin activating enzyme (E1), an 

ubiquitin conjugating enzyme (E2) and an ubiquitin ligase (E3). In the first ATP hydrolysis 

dependent step, the E1 activates ubiquitin by first adenylating ubiquitin and then creating a 

thioester bond between its catalytic site cysteine and the C-terminal glycine residue of 

ubiquitin. The E1-ubiquitin conjugate is then transferred to an active site cysteine residue of 

an E2 in a transesterification reaction. The final step is most tightly regulated and is 

conducted by the E3 that contributes the substrate specificity to the reaction process. The E3 

recognizes the target protein and catalyzes the formation of an isopeptide bond between the 

C-terminus of ubiquitin and a substrate´s lysine side chain. The attachment of ubiquitin to 

lysine residues within ubiquitin itself results in formation of long polyubiquitin chains on the 
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target protein. These are recognized by receptors on the proteasome, leading to their 

proteolytic degradation (reviwed by Pickart, 2001). (Figure 1-1).  

 

Figure 1-1: The ubiquitin-proteasome pathway. Two enzymes and one ubiquitin ligase act in 
a cascade to attach ubiquitin moieties to target proteins. Other steps include ubiquitin precursor 
processing as well as the ATP-dependent processes of ubiquitin activation and translocation of 
substrates to the proteasome, which are not depicted here. Target proteins can become 
monoubiquitilated, multiubiquitilated (i.e. several distinct substrate lysines are ubiquitilated) or 
polyubiquitilated (as shown). Deubiquitilating enzymes (DUB) can additionally act at other 
steps in the pathway. See text for details. 

Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes 

directs the attachment of ubiquitin to substrates, there are also many deubiquitilating enzymes 

(DUBs) that can reverse the process. DUBs are required to maintain a sufficient pool of free 

ubiquitin within the cell and for generating conjugation-competent ubiquitin from precursors 

(Amerik and Hochstrasser, 2004). Furthermore, the disassembly of ubiquitin from the 

substrate protein might serve as a final safeguard against the proteolysis of poorly, and 
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perhaps erroneously, ubiquitinated proteins (Lam et al., 1997). It has also been shown that 

some DUBs act in a target-specific manner (Li et al., 2002). 

Importantly, substrate specificity in the ubiquitilation process is only conferred by the 

Ubiquitin ligases (E3s) (Wickliffe et al., 2009). Two groups of proteins belong to this class of 

E3s: HECT (Homologous to E6AP C-Terminus) and RING (Really Interesting New Gene). 

HECT type E3s can directly bind to ubiquitin via their active-site cysteine forming a thioester 

linkage, before the molecule is passed over to the substrate protein (Passmore and Barford, 

2004). In contrast, RING-finger E3s do not form a thioester bond with ubiquitin and therefore 

they do not directly take part in the transfer of ubiquitin from E2 to the substrate. RING-finger 

E3s directly bind E2-ubiquitin conjugates and the substrate proteins, thereby bringing them 

into close reaction proximity (reviewed by Pickart, 2001).  

1.4 The E3 ubiquitin ligases SCF and APC/C: unequal twins 

The two main ubiquitin ligases catalyzing cell cycle transitions are the SCF (Skp1-Cul1-F-

box) and the APC/C (Anaphase Promoting Complex / Cyclosome). Both are distantly related 

multi-subunit complexes which belong to the family of RING ubiquitin ligases (reviewed by 

Passmore and Barford, 2004). While various SCF complexes are active at many cell cycle 

stages as well as beyond the cell cycle, the APC/C controls mitotic progression and remains 

active until the end of G1 phase (Nakayama and Nakayama, 2006; Petroski and Deshaies, 

2005; Vodermaier, 2004). Despite the different timing of their activity during the cell cycle, 

both RING-type protein complexes share structural and biochemical similarities. In both 

cases, the catalytic subunit that recruits the E2-ubiquitin conjugate is represented by a small 

zinc-binding RING-finger subunit (Roc1/Rbx1/Hrt1 in SCF and Apc11 in APC/C). In both 

cases, the RING-finger protein is anchored to the C-termini of proteins containing cullin 

domains (Cul1 in SCF and Apc2 in APC/C). Both complexes function through their adaptor 

proteins that recruit the substrate to the catalytic core. These adaptor proteins (different F-box 

proteins for the SCF, Cdc20/Fzz and Cdh1/Fzr for the APC/C) confer the substrate specificity 

and allow those complexes to bind to their numerous substrates via recognition motifs that are 

implicated to mediate protein-protein interactions (Petroski and Deshaies, 2005; reviewed by 
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Vodermaier, 2004). The co-activator proteins of the APC/C will be described in more detail in 

chapter 1.7.3. 

Both E3 ligases share a similar structural backbone and display similarities in their core 

domains. Therefore, it has been proposed that they might also have similar modes of 

mediating substrate ubiquitilation (Ohi et al., 2007). A crucial difference, however, is how 

substrate recognition is mediated and how their activity is regulated.  The SCF is a 

constitutively active complex and phosphorylation of substrate proteins is the driving force 

for their recruitment to the SCF via the F-box adaptor proteins (Petroski and Deshaies, 2005). 

The APC/C in contrast becomes phosphorylated itself, allowing activator proteins to bind and 

activate the complex (reviewed by Vodermaier, 2004). Thus, whereas for SCF substrate 

availability is restrained, it is the complex itself which is regulated in case of the APC/C. 

Correct regulation of the APC/C is ensured on multiple levels, such as phosphorylation and 

dephosphorylation events of many proteins, including the APC/C itself, association with 

activator proteins Cdc20 or Cdh1, as well as binding of inhibitory proteins (reviewed by 

Peters, 2006) (described in more detail in chapter 1.7.3). 

1.5 Roles of the APC/C in the cell cycle 

The APC/C is the largest and most complex E3 RING-ligase known to date.  It is endowed 

with elaborate regulatory, catalytic and specificity properties. While it only takes three to five 

subunits to build a functional SCF complex, the APC/C is assembled from at least 13 

individual subunits and for many of them the exact biological role is not well understood. 

The discovery of the APC/C reaches back to the year 1995, where studies on clam oocytes, 

Xenopus egg extracts as well as budding yeast mutants identified a cell cycle-regulated E3 

ubiquitin ligase that was responsible for cyclin B degradation in mitosis (Irniger et al., 1995; 

King et al., 1995; Sudakin et al., 1995). At that time, cyclin had already been identified as the 

activating component of the maturation-promoting factor (MPF), which drives the cell into 

mitosis. It was also evident that cyclin proteolysis, which is dependent on the ubiquitin-

proteasomal pathway, is required for completion of mitosis (Glotzer et al., 1991; Murray and 
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Kirschner, 1989). Later, yeast genetic studies as well as biochemical fractionation 

experiments in cell-free systems led to the discovery of the APC/C as the ubiquitin ligase 

responsible for both anaphase onset and mitotic exit (reviewed by Hershko, 2010; Irniger et 

al., 1995). 

As mentioned earlier, the cell cycle is driven by periodic fluctuations in Cdk1 activity. While 

high Cdk activity promotes many mitotic events, Cdk1 inactivation is important for correct 

mitotic exit. This is accomplished by degradation of its activating subunits cyclin A or cyclin 

B. Both cyclins are targeted by the APC/C. Upon loss of its regulatory cyclin subunit, Cdk1 

undergoes a conformational change.  This prevents both ATP hydrolysis and access of protein 

substrates to the active site of the kinase, resulting in complete inactivation of Cdk1 (Jeffrey 

et al., 1995). This process is initiated once all sister chromatids have been attached to the 

mitotic spindle in a bipolar manner. Complete cyclin B degradation mediated by the APC/C 

establishes and maintains a period of low Cdk activity that is necessary for finishing mitosis 

(Amon et al., 1994; Morgan, 1999; Sullivan and Morgan, 2007). It allows dephosphorylation 

of Cdk substrates which is essential for disassembly of the mitotic spindle, reformation of the 

nuclear envelope, chromosome decondensation and cytokinesis. After mitotic exit, the APC/C 

remains active until the end of G1, maintaining low Cdk1 activity. This allows formation of 

pre-replicative complexes on origins of replication on the DNA strand, ensuring correct S 

phase entry. Initiation of DNA synthesis by DNA polymerases is dependent on high Cdk 

activity, thus the APC/C prevents premature S phase entry and restricts DNA replication to 

only once per cell cycle (reviewed by Diffley, 2004) 

Apart from its function to ensure correct mitotic exit, the APC/C fulfills another important 

role which led the APC/C to its name, namely to initiate anaphase onset by targeting securin 

for ubiquitylation. Securin is an inhibitor of the protease separase. Separase can cleave the 

Scc1 subunit of a protein complex named cohesin. Cohesin is a ring-shaped multisubunit 

complex which embraces sister chromatids and thereby holds them together. Proteasomal 

degradation of securin leads to activation of separase, which releases cohesin from 

chromatids, thereby initiating anaphase onset (reviewed by Nasmyth, 2001). In vertebrates, 

the role of APC/C in separase activation may not be restricted to degradation of securin. 

Moreover, it requires proteolysis of cyclin B, because Cdk1-dependent phosphorylation of 



12 

 

separase also inactivates the protease and thereby prevents sister chromatid separation. 

Therefore, low Cdk1 activity accomplished by the APC/C might fully promote sister 

chromatid separation (Gorr et al., 2005; Stemmann et al., 2001). 

In addition to the essential processes mentioned above, it has become clear that the APC/C 

fulfills additional tasks within the cell cycle by targeting other protein substrates. These 

include mitotic kinases (NIMA-related kinases, Plk1, Aurora A and B), proteins involved in 

DNA replication (geminin, Cdc6 in mammals and Dbf4 in yeast), and proteins involved in 

spindle function (Ase1, Kip1, Cin8 in yeast and Xkid in frogs) as well as the APC/C co-

activator protein Cdc20 itself. For some of the mentioned proteins additional forms of 

regulation apart from proteolysis exist. Plk1 for example can be inactivated at the end of 

mitosis by either proteolysis or dephosphorylation (Lindon and Pines, 2004). Moreover, 

studies in budding yeast have shown that the only essential APC/C targets, at least in this 

organism, are securin and mitotic cyclins (Thornton et al., 2006). Such findings and 

phylogenetic analysis of Cdk evolution (Krylov et al., 2003) support the hypothesis that the 

cyclin degradation machinery and the Cdk-based-oscillator co-evolved during evolution and 

took control over mitotic processes that had originally been regulated by other ancestral 

enzymatic activities (reviewed by Murray, 2004). 

1.6 Topology of individual APC/C subunits 

The APC/C is composed of at least thirteen individual subunits. To better understand the 

process of APC/C-mediated ubiquitilation and how the different subunits orchestrate their 

functions to build an active APC/C, it is necessary to take a closer look at what is known 

about the structure and the organization of this multi-subunit complex. 

Knowledge about the topology of individual APC/C subunits could first be gained by 

dissociating the complex into smaller subcomplexes, either biochemically (Vodermaier et al., 

2003) or after mutation or deletion of individual subunits in yeast (Schwickart et al., 2004; 

Thornton et al., 2004; Thornton et al., 2006). Thornton and Toczisky could draw a detailed 

subunit assembly map of the APC/C by creating a budding yeast strain that allowed the 
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deletion of normally essential APC/C subunits (Thornton et al., 2004) (Figure 1-2). Hereby, 

the subunit composition of the APC/C was analyzed by sequential deletion of single subunits, 

followed by purification and biochemical analysis of the remainder of the APC/C (Thornton 

et al., 2006). The molecular characterization of those subunits shed some light on the 

mechanism of APC/C catalysis. Their data suggests that the largest subunit, Apc1 together 

with Apc4 and Apc5 provides a structural scaffold that associates independently with two 

other subcomplexes. One of those subcomplexes contains the catalytic core proteins Apc2, 

Apc11 and Doc1/Apc10, and is therefore referred to as the “catalytic subcomplex”. The other 

“TPR subcomplex” comprises the TPR subunits Cdc27/Apc3, Cdc16/Apc6 and Cdc23/Apc8, 

with Cdc27/Apc3 being the most peripheral and Cdc23/Apc8 the most internal protein (Figure 

1-2). According to earlier findings, the non-essential subunits Apc9, Swm1/Apc13 and Cdc26 

most likely also belong to the TPR subcomplex (Passmore et al., 2003; Schwickart et al., 

2004; Zachariae and Nasmyth, 1996). Those three subunits are important for structural 

integrity of yeast APC/C. Mutations or loss of any of these proteins leads to dissociation of 

other APC/C subunits or the destabilization of subcomplexes (Passmore et al., 2003; 

Schwickart et al., 2004; Zachariae et al., 1998b). If Apc9 is absent, levels of Cdc27/Apc3 are 

significantly reduced (Passmore et al., 2003; Zachariae et al., 1998b). Furthermore, Swm1 is 

required for integration of the subunits Cdc16/Apc6, Cdc27/Apc3, Apc9 and Cdc26 into the 

APC/C as well as for sporulation during meiosis (Schwickart et al., 2004; Ufano et al., 1999). 

However, the function of the three subunits providing the structural scaffold is not fully 

understood.  

The catalytic subunits Apc2 and Apc11 were shown to be essential for the assembly of 

polyubiquitin chains from ubiquitin donated E2 enzyme (Vodermaier et al., 2003). High-salt 

washes not only led to dissociation of Apc2 and Apc11 from APC/C but also to a reduction of 

Doc1/Apc10 protein levels (Thornton et al., 2006). The situation appears to be different in 

human APC/C, where only partial loss of Doc1/Apc10 is observed in an APC/C complex that 

is lacking Apc2 and Apc11. This might be due to the observation that Doc1/Apc10 associates 

with human APC/C through binding to TPR subunits (Buschhorn et al., 2010; Da Fonseca, 

2011; Vodermaier et al., 2003).  
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Vertebrate APC/C contains four tetratricopeptide repeat (TPR) proteins, called Cdc27/Apc3, 

Cdc16/Apc6, Apc7, and Cdc23/Apc8, whereas yeast APC/C contains only three; Apc7 is 

exclusively found in higher eukaryotes (Pal et al., 2007a; Yu et al., 1998). The TPR domain 

containing proteins were first discovered as a macromolecular complex in yeast with essential 

mitotic function (Irniger et al., 1995; Lamb et al., 1994) and they represent the largest group 

of structurally related proteins within the APC/C. The TPR motif is a ~34-residue helix-turn-

helix structure and multiple TPRs can pack into into a superhelical domain that is believed to 

mediate protein-protein interactions (Das et al., 1998). Moreover, TPR domains can serve as 

receptors for C-terminal peptide motifs (Gatto et al., 2000). Consistent with this, it has been 

shown that TPR subunits of the APC/C can bind to peptides that correspond the C-terminal 

part of Cdh1, Cdc20 (Vodermaier et al., 2003), and Doc1/Apc10 (Wendt et al., 2001). The 

APC/C contains multiple copies of several TPR subunits per complex (Dube et al., 2005; 

Huang and Raff, 2002; Ohi et al., 2007; Passmore et al., 2005b). They might function as 

versatile acceptor sites for interactions with a variety of regulatory proteins (Vodermaier et 

al., 2003) and possibly substrates (Hayes et al., 2006) (see chapter 1.7). This could partially 

explain some of APC/C´s complexity. 

Apc1 shows sequence homologies to the Rpn1 and Rpn2 subunits of the proteasome (Lupas et 

al., 1997), suggesting that Apc1 might have a proteasome-related function such as delivery of 

polyubiquitinated substrates to the proteasome or unfolding of protein substrates prior to 

proteolysis (Kajava, 2002). To date, no experimental data could support this hypothesis. Apc4 

on the other hand is predicted to contain a WD40 domain, which can fold into a propeller-like 

structure (Herzog et al., 2009; reviewed by Peters, 2006). Apc1, Apc4, Apc5 and Cdc23/Apc8 

associate interdependently, such that loss of any of them greatly reduces binding of the 

remaining three proteins (Thornton et al., 2006).  
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Figure 1-2:  APC/C subunit interaction map and substrate ubiquitilation modified after 
(Peters, 2006; Thornton et al., 2006). The “catalytic subcomplex” contains the cullin protein 
Apc2, the RING-finger protein Apc11 and Doc1/Apc10. The ubiquitin-charged E2 is recruited 
to the RING-finger protein Apc11. In analogy to the Cul1 subunit of the SCF complex, Apc2 
serves as a scaffold to bring the E2 in close vicinity to the substrate receptor site containing the 
co-activator and Doc1/Apc10. The substrate is recruited to the APC/C through binding to an 
APC/C co-activator (in this case Cdh1) via its recognition element (here: a D-box) and with 
the help of the processivity factor subunit Doc1/Apc10. APC/C then catalyzes poly-
ubiquitilation of its substrate proteins. The “TPR-subcomplex” conists of Cdc27/Apc3, 
Cdc16/Apc6, and Cdc23. Vertical stripes indicate TPR-containing subunits. The Cdc26 
subunit is a chaperone of Cdc16/Apc6. Metazoan APC/C has the additional TPR-subunit 
Apc7, which is not depicted here and Apc9 has so far only been found in yeast. Swm1/Apc13, 
Cdc26 and Apc9 play a role in stabilizing the Cdc27/Apc3 and Cdc16/Apc6 interaction with 
the rest of the APC/C. Of the core subunits, Apc1, Apc2, Cdc27/Apc3, Apc4, Apc5, 
Cdc16/Apc6, Cdc23, and Apc11 are essential in yeast, wheras Apc9, Doc1, Cdc26 and Swm1 
are not (Table 1-1). See text for details. 

1.7 Composition of the APC/C and mechanistic implications  

The APC/C is an unusually complex multi-subunit E3 ubiquitin ligase (Table 1-1) (reviewed 

by Peters, 2006). The complexity of the APC/C is somewhat surprising, since other relative 

Cullin-RING ligases (such as the SCF, see chapter 1.4) only consist of a single or few 

subunits, indicating that the ubiquitin ligase reaction per se does not require complex multi-

subunit enzymes (Passmore and Barford, 2004). Although the APC/C has been studied in 
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great detail for more than a decade now, it is still not entirely clear why the APC/C is so 

complex and what the functions of its different subunits are. 

Recent cryo electron microscopy studies on human and yeast APC/C led to a more precise 

definition of the APC/C and provided first implications of how the ubiquitylation reaction 

might be catalyzed by this complex (Buschhorn et al., 2010; Da Fonseca, 2011). Moreover, a 

combinational approach of using electron microscopy, mass spectrometry and docking of 

crystallographic and homology-derived coordinates has very recently provided a detailed 

picture of the organization and structure of all essential APC/C subunits, and resulted in a 

pseudo-atomic model covering at least 70% of the APC/C (Schreiber et al., 2011).  

As mentioned in chapter 1.4, the APC/C is a family member of ubiquitin ligases that contain a 

Zinc-coordinated RING-finger domain and a cullin domain (reviewed by Thornton and 

Toczyski, 2006). The cullin-RING finger ubiquitin ligase Cul1-Rbx1-Skp1-F boxSkp2-SCF 

complex is structurally related to the APC/C (Zheng et al., 2002). Although it is by far not as 

complex as the APC/C, its structure might help to understand the underlying mechanism for 

APC/C-mediated ubiquitilation. The Cul1-subunit is an elongated protein that serves as a 

rigid scaffold, providing binding interfaces for the RING-finger protein Rbx1 at its C-

terminus and for the Skp1-F boxSkp2 at its N-terminus. The structure suggests that Cul1 may 

contribute to catalysis through positioning of the substrate adaptor Skp2, and the ubiquitin 

conjugation enzyme E2.  Cul1 and Apc2 are paralogs which share no detectable sequence 

homology beyond the cullin homology domain. However, the superimposed crystal structure 

of non-homologue yeast Apc2 peptide provided a first hint that despite the low sequence 

homology, Apc2 and Cul1 may adopt similar structures (Zheng et al., 2002). 

1.7.1 The catalytic core 

Both, the RING-finger protein Apc11 and the cullin containing Apc2 are required for 

ubiquitilation activity of the APC/C. However, substrate specificity is reduced if the co-

activator is absent (Gmachl et al., 2000; Leverson et al., 2000). Apc11 directly interacts with 

the E2 enzyme UbcH5 and both alone can promote association of ubiquitin chains on 



17 

 

substrates in vitro (Gmachl et al., 2000; Leverson et al., 2000; Tang et al., 2001). Apc11 can 

also interact with the cullin homology domain in Apc2, which is required when UbcH10 is 

used as the E2 instead of UbcH5 (Tang et al., 2001; Vodermaier et al., 2003). UbcH10 is an 

E2 enzyme more specific for ubiquitilation reactions catalyzed by the APC/C (Yu et al., 

1996). Another E2 enzyme, Ube2S is further required in this catalytic module to elongate the 

ubiquitin chains on the substrate (Garnett et al., 2009). It is therefore believed that Apc11 

together with Apc2 orchestrate the ubiquitin ligase reaction of the APC/C and that remaining 

subunits are necessary to regulate its activity and to confer substrate specificity to this 

complex. Some subunits have been implicated to be important for structural integrity of the 

APC/C (Hall et al., 2003) (see chapter 1.6) and it is conceivable that some of the subunits are 

necessary to spatially control the access of substrates to the catalytically important subunits 

within the APC/C (Gieffers et al., 2001). Biochemical experiments revealed that binding of 

the co-activator and substrate adaptor protein Cdh1 is reduced upon Apc2 deletion, indicating 

that the Cdh1 binding site to the APC/C is close to its catalytic core (Thornton and Toczyski, 

2006). This finding could be confirmed in recent structural studies (Da Fonseca, 2011; Herzog 

et al., 2009; Schreiber et al., 2011). 

1.7.2 The processivity factor Doc1/Apc10 

The small subunit Doc1/Apc10 is among the known APC/C subunits most likely best studied. 

Besides crystal structures of a C-terminal fragment of yeast Apc2, and parts of the 

tetratricopeptide repeat (TPR) subunits Cdc27/Apc3, Cdc16/Apc6 and Apc7 (Han et al., 2009; 

Wang et al., 2009; Zhang et al., 2010; Zheng et al., 2002), Doc1/Apc10 is the only APC/C 

subunit where a crystal structure had been solved (Au et al., 2002; Wendt et al., 2001). 

Mutation or deletion of DOC1 results in temperature sensitive budding yeast strains (Hwang 

and Murray, 1997). In fission yeast and D. melanogaster, Doc1 is essential (Kominami et al., 

1998; Pal et al., 2007b). It is a small one-domain protein and characterized by the presence of 

a conserved DOC domain, which is also found in several other putative E3 ubiquitin ligases. 

Therefore it might fulfill a function common to this type of E3 protein complexes 

(Grossberger et al., 1999; Kominami et al., 1998). In fact, many of these multidomain proteins 
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have been identified to be ubiquitin ligases or to be linked to ubiquitin-dependent processes 

(DiAntonio et al., 2001; Dias et al., 2002; Nikolaev et al., 2003). Structural studies revealed 

that the DOC domain can fold into a “jellyroll” structure which is virtually identical to 

domains found in various other prokaryotic and eukaryotic enzymes that can bind ligands 

such as sugars, nucleotides and polypetides (Au et al., 2002; Wendt et al., 2001). Hence, this 

first raised the possibility that Doc1/Apc10 might participate in APC/C catalysis by 

stabilizing the interaction with substrate proteins (Grossberger et al., 1999; Passmore et al., 

2003). Moreover, deletion of Doc1 abolishes APC/C´s ability to ubiquitylate its substrates in 

a processive manner (Carroll and Morgan, 2002). The important role of Doc1/Apc10 in 

substrate recognition and processive ubiquitylation could later be verified in structural studies 

(Buschhorn et al., 2010; Da Fonseca, 2011) (see chapter 1.8). In addition to the DOC domain, 

Doc1 contains a C-terminal IR-tail which allows association with the tetratricopeptide repeat 

(TPR) domain proteins Cdc27/Apc3 and Cdc16/Apc6 in vitro (Buschhorn et al., 2010; Wendt 

et al., 2001). Cross-linking experiments indicated that Doc1 also interacts with Apc1 and EM 

data on yeast APC/C revealed that Doc1 is located next to Apc2 and Apc11 (Buschhorn et al., 

2010). Moreover, the substrate protein was observed to be located directly in between Doc1 

and Cdh1, which strongly implies that Doc1 directly interacts with the substrate, similarly to 

the co-activator (Buschhorn et al., 2010). The TPR containing subunits as well as Apc1, Apc4 

and Apc5 are essential APC/C subunits and mutations of these proteins cause a profound 

metaphase arrest due to the inability to induce sister chromatid separation and cyclin B1 

degradation (Kramer et al., 1998; Lamb et al., 1994; Zachariae and Nasmyth, 1996; Zachariae 

et al., 1998b).  

1.7.3 The co­activators 

This already complex composition is still not sufficient to constitute an active APC/C. The 

APC/C still requires additional co-activator proteins in order to promote substrate 

ubiquitylation in a specific fashion. The two main co-activator proteins are Cdc20 and Cdh1. 

They can directly associate with the APC/C in a cell cycle-regulated and substoichiometric 

manner and are essential for cell cycle progression (Schwab et al., 1997; Visintin et al., 1997). 
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Both proteins activate the APC/C at different time points during mitosis (described in more 

detail in chapter 1.7.3). CDC20 and CDH1 are encoded in all known eukaryotic genomes. 

Both proteins contain specific sequence elements, known as C-box and IR-tail. The internal 

C-box mediates binding to the catalytic subunits of the APC/C (Schwab et al., 2001; Thornton 

et al., 2006), whereas the C-terminal IR-tail is required for binding to the TPR subunit 

Cdc27/Apc3 (Kraft et al., 2005; Passmore et al., 2003; Vodermaier et al., 2003). In addition 

they contain a WD40 domain which is predicted to fold into a seven-bladed propeller like 

structure (Orlicky et al., 2003; Wu et al., 2003), mediating binding to specific recognition 

elements in substrate proteins, known as the D-box or the KEN-box (Burton and Solomon, 

2001; Burton et al., 2005; Kraft et al., 2005). 

However, additional meiosis-specific APC/C co-activator proteins were identified in yeast 

and D. melanogaster (Cooper et al., 2000; reviewed by Peters, 2006). Ama1 in budding yeast 

(Cooper et al., 1997) and Fzr1/Mfr1 in fission yeast (Asakawa et al., 2001) are essential for 

exit from the second meiotic division and thereby required for spore formation (Penkner et al., 

2005). Ama1 (activator of meiotic APC/C) is a developmentally regulated member of the 

Cdc20 family of APC/C activators that controls the first meiotic division. AMA1 gene 

transcription only occurs in meiotic cells where APC/CAma1 function is necessary for spore 

wall assembly and expression of late meiotic genes (Cooper et al., 2000). The subunit Mnd2 

in budding yeast is a meiosis-specific inhibitor of APC/CAma1. Mnd2 is required during S- and 

prophase I to prevent premature sister chromatid separation on sequences around centromeres 

and chromosomal arms by inhibiting the APC/CAma1-dependent proteolysis of Pds1. Pds1 is 

the orthologue to securin in mammalian cells and required for cohesin cleavage. (Oelschlaegel 

et al., 2005; Penkner et al., 2005). Mnd2 mediated Pds1 stabilization therefore maintains 

cohesion established on chromosome arms after segregation of homologues in meiosis I and 

retains cohesin on centromeres until the second division in meiosis II, where sister chromatids 

are finally pulled apart (Oelschlaegel et al., 2005). Mnd2 had been shown to be essential for 

meiosis but not for normal mitotic cell division (Rabitsch et al., 2001). 
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human

Apc1

Apc2

Apc3

Apc4

Apc5

Apc6

Apc7

Apc8

‐

Apc10

Apc11

Cdc26

Apc13

 ‐

 ‐

Apc16

Cdc20

Cdh1

Ama1

WD40 repeats, C‐box, IR‐tail; substrate recruitment

WD40 repeats, C‐box, IR‐tail; substrate recruitment

WD40 repeats, C‐box, IR‐tail; substrate recruitment

Apc1 Cut4 yes Homologue to Rpn1, Rpn2 (proteosomal subunits)

S. c. S. p. essential Known motifs or functions

Core APC/C subunits

Apc2 Apc2 yes Cullin domain; catalytic activity, E2 binding

Cdc27 Nuc2 yes TPRs; co‐activator binding, APC/C function in vivo

Apc4 Lid1 yes WD40 repeats; bridges Apc1 and the TPR containing subunits

Apc5 Apc5 yes Bridges Apc1 and TPR containing subunits

Cdc16 Cut9 yes TPRs; required for association of Cdc27 to APC/C

‐ ‐ ? TPRs

Cdc23 Cut23 yes TPRs; required for Cdc16 and Cdc27 association

Apc9 ‐ no Promotes association of Cdc27

Doc1 Apc10
Deletion ts  in S.c. 

Essential in S.p. 
DOC domain; IR tail; processivity; substrate binding

Apc11 Apc11 yes RING finger, catalytic activity, E2 binding

Cdc26 Hcn1
Deletion ts in S.c. 

Essential in S.p .
Upregulated at higher temperatures; promotes association of Cdc16, Cdc27, Cdc26, Apc9

Swm1 Apc13 Deletion ts  in S.c. Required for sporulation

Cdc20 Slp1

 ‐ Apc14 no

Mnd2 Apc15 no Inhibition of APC/C
Ama1

 in meiosis

yes

‐ ‐ yes APC/C activity in mitosis

APC/C co‐activators

Hct1 Ste9

‐ ‐

no

no
 

Table 1-1: APC/C subunits and co-activators identified to date in human cells, 
Saccharomyces cerevisiae (S.c.) and Schizosaccharomyces pombe (S.p.) (reviewed by Peters, 
2006; Thornton and Toczyski, 2006). Anaphase promoting complex / cyclosome (APC/C); 
regulatory particle non-ATPase (Rpn); ubiquitin conjugating enzyme (E2); tetratrico peptide 
repeats (TPR); really interesting new gene (RING); tryptophane aspartate (WD40); 
degradation of cyclin B protein 1 (Doc1); temperature sensitive (ts); spore wall maturation 
protein-1 (Swm1); meiotic nuclear division protein-2 (Mnd2); activator of meiotic APC/C 
protein-1 (Ama1). 

Soon after the APC/C had been discovered, it became evident that its composition is much 

more complex compared to other Cullin-RING finger ubiquitin ligases. APC/C-mediated 

reactions are known to be only regulated on the level of the APC/C, whereas SCF-depenend 

reactions are controlled on the level of substrates. Hence, it seems likely that the large 

composition of the APC/C is necessary to allow regulation of ubiquitin reactions at the level 

of the ubiquitin ligase (Gieffers et al., 2001). However, still today, fifteen years after its 
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discovery, we still know very little about the biological functions of different APC/C subunits 

and we still have no satisfying explanation why this protein complex is so large in size.  

Only recently, Apc16 had been identified as a novel constitutive subunit of human APC/C 

(Hutchins et al., 2010; Kops et al., 2010), increasing the number of known subunits in 

vertebrate APC/C to thirteen. Apc16 is required for APC/C activity towards mitotic 

substrates, and is therefore important for the transition from metaphase to anaphase (Hutchins 

et al., 2010; Kops et al., 2010). However, unlike some other APC/C subunits, Apc16 is 

dispensable for structural integrity of the APC/C holocomplex and for its assembly (Kops et 

al., 2010). Antibody labeling using an Apc16-specific antibody in electron microscopic 

analysis of the APC/C revealed that the small protein is located at the top of a region called 

the “arc lamp” of the complex in close confirmation to Cdc27/Apc3 (Hutchins et al., 2010). 

The protein is conserved among higher metazoans but has no homology in fungi (Kops et al., 

2010). Apc16 is encoded by the gene region C10ORF104 (chromosome 10 open reading 

frame 104). Due to its small size of only 11.7 kDa, it might have previously escaped standard 

detection in protein gels or in mass spectrometric analysis. 

1.8 Analysis of APC/C structures by Electron microscopy  

To better understand how APC/C components organize to form a tightly regulated, multi-

protein E3 ubiquitin ligase, it is necessary to determine the structure formed when they come 

together. Recent cryo-electron microscopy studies (EM) shed light into the assembly of those 

multiple subunits, and provide a three-dimensional (3D) structure of the APC/C. Together 

with the already existing biochemical data; those structural studies are valuable for 

understanding the mechanism of APC/C activity. The first structures were obtained for 

APC/C purified from frog egg extracts and human cells (Dube et al., 2005; Gieffers et al., 

2001), as well as from budding (Passmore et al., 2005b) and fission yeast (Ohi et al., 2007) 

and have revealed that the APC/C is an asymmetric triangular complex, 180 to 200 Å in size, 

with an internal cavity enclosed by an outer wall and a “head”-like structure at one end. 

Vertebrate APC/C consists of two domains referred to as “platform” and “arc lamp” which 

exhibit a large degree of flexibility relative to each other (Dube et al., 2005). The dimensions 
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of the platform domain are similar in yeast, Xenopus and human, but the arc lamp domain of 

yeast APC/C is shorter than the corresponding domain in vertebrate APC/C (Dube et al., 

2005). The arc lamp is mainly composed of TPR subunits, raising the possibility that the 

density only found in vertebrate APC/C is due to Apc7, a TPR subunit thus far identified only 

in higher eukaryotes. Otherwise, the structures of yeast and vertebrate APC/C are similar in 

shape and size, indicating the APC/C´s structure has been largely conserved during evolution 

(Buschhorn et al., 2010).  

 

Recent higher resolution structures have led to a better understanding of APC/C organization 

and composition. Antibody-labeling and cryo-EM experiments (Herzog et al., 2009) could 

show that Apc5 is located at the bottom of the platform domain, in close vicinity to the 

interface of the platform and the arc lamp. The Apc4 subunit sits at the front and Apc1 at the 

right-hand side. Part of Apc4 has a ring-shaped structure, confiming the bioinformatic 

prediction that Apc4 contains an N-terminal propeller-shaped WD40 domain. Cdc27/Apc3 is 

located at the headlike protrusion at the top end of the arc lamp domain and Apc2 is located in 

the central cavity on the front side of APC/C, residing in close vicinity to Apc1 and 

Cdc27/Apc3. Antibody labeling of Cdc16/Apc6 and Apc7 revealed that those subunits bind to 

multiple locations on the arc lamp domain, presumably because they are present in 

substoichometric amounts. Moreover, this structure shows that the arc lamp domain is bent 

and has an unusual repetitive regularity, features that are characteristic of TPR domains that 

are present in Cdc16/Apc6 and Apc7 and also in Cdc27/Apc3 and Cdc23/Apc8, indicating 

that a major part of the arc lamp domain consists of TPR subunits (Herzog et al., 2009). With 

the exception of Apc2 and Apc4 topology, this 3D model of subunit topology is consistent 

with the 2D positions of subunits determined in fission yeast APC/C (Ohi et al., 2007).  

 

Studies on Xenopus APC/C could show a reduction in the angle between the platform and the 

arc domain upon binding of Cdh1 to the complex, indicating that co-activator binding might 

induce conformational changes within the APC/C, that are of importance for the function and 

regulation of this ligase (Dube et al., 2005). In contrast to this, studies on budding yeast 

APC/C did not reveal any significant structural difference between APC/C and APC/CCdh1, 

except for the additional density coming from the co-activator (Da Fonseca, 2011). 
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Interestingely, however, engagement of the substrate protein Hsl1 with APC/CCdh1 did result 

in a profound structural change involving Cdh1 and Doc1/Apc10, implicating that substrate 

binding might promote the formation of new connections between the co-activator and 

Doc1/Apc10 (Da Fonseca, 2011). This finding is consistent with direct co-activator-substrate 

interactions and emphasizes the function of Doc1/Apc10 in mediating substrate binding (Da 

Fonseca, 2011). Furthermore, studies on human APC/C showed that Doc1/Apc10 is binding 

in close vicinity to the cullin-RING module Apc2-Apc11 and that the substrate binding site is 

located in the inner cavity, between Doc1 and Cdh1, which again implies that Cdh1 and Doc1 

might form a bipartite substrate receptor on the APC/C, thereby contributing to processive 

substrate ubiquitylation (Buschhorn et al., 2010; Da Fonseca, 2011). However, Doc1 and 

Cdh1 are conformationally not interdependent (Da Fonseca, 2011). Binding of Doc1 to the 

APC/C is mediated through interaction with the TPR subunits Cdc27/Apc3, Cdc16/Apc6 as 

well as the scaffold protein Apc1, as shown in EM-studies on budding yeast and human 

APC/C (Buschhorn et al., 2010). Higher resolution structures of budding yeast could also 

show that the co-activator interacts with Cdc27/Apc3 through its C-terminal IR-tail, while its 

N-terminal C-box contacts Apc2 (Da Fonseca, 2011; Schreiber et al., 2011). Yeast 

Swm1/Apc13 is located in the vicinity of Cdc16/Apc6 and Cdc27/Apc3, consistent with the 

observation that Swm1/Apc13 stabilizes interactions between these two subunits (Buschhorn 

et al., 2010; Schwickart et al., 2004). Two other non-essential yeast subunits, Cdc26 and Apc9 

also seem to have a role in stabilizing the Cdc27/Apc4 and Cdc16/Apc6 association with the 

rest of the complex (Thornton and Toczyski, 2006; Wang et al., 2009; Zachariae and 

Nasmyth, 1996; Zachariae et al., 1998a). Despite some differences of yeast and vertebrate 

APC/C, all comprehensive EM data sets are largely consistent with the outlined APC/C 

subunit map (Thornton et al., 2006) (Figure 1-2) confirming biochemical mapping 

experiments. 

1.9 Substrate recognition by the APC/C and substrate ordering 

Most APC/C substrates contain at least one of specific amino acid sequence motifs, so called 

degrons that are usually located in low complexity regions of the protein and are required for 
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their ubiquitilation. The most widespread motifs are the “destruction-box” (D-box, consensus 

sequence RxxLxxxxN/D/E) (Glotzer et al., 1991; King et al., 1996) and the “KEN-box” 

(consensus sequence KENxxxN/D) (Pfleger and Kirschner, 2000). Other less well 

characterized degrons include the “A-box” in Aurora A (Littlepage and Ruderman, 2002), the 

“GxEN” motif in XKid (Castro et al., 2003) and the “O-box” (Araki et al., 2005). Mutations 

in these recognition sites abolish substrate ubiquitylation and therefore stabilize the protein, 

mostly because they serve as a binding motif for the APC/C co-activator proteins Cdc20 and 

Cdh1. Those sequences lack conserved lysine residues that are capable of accepting ubiquitin, 

therefore these degrons are not sufficient for substrate degradation (King et al., 1996). 

Moreover, it seems likely that the context in which the degron is placed is important.  It has 

also been shown that the KEN-box is more specific to be targeted by the form of APC/C 

associated with Cdh1 (Zur and Brandeis, 2002). The degrons are portable and chimeric 

proteins containing for example the N-terminal D-box of cyclin B are degraded as if they 

were cyclins (Amon et al., 1994; Glotzer et al., 1991; Yamano et al., 1996). Moreover, amino 

acid sequences that lie outside the recognition motifs seem to influence the substrate 

ubiquitylation efficiency. For example, it is sufficient to fuse a D-box-baring fragment of 

Xenopus cyclin B1 (amino acids 13-66) to protein A to render it degradable in a cell cycle-

dependent manner, whereas a fragment of 13-53 amino acids is not (Glotzer et al., 1991). 

However, there seem to be differences among the D-boxes of different cyclins. In contrast to 

the D-box-containing fragment of cyclin B1, the degron fragment of Xenopus cyclin A1 on 

protein A stabilized the fusion protein (Klotzbuecher et al., 1996). In addition, studies of 

chimeric proteins have shown that fusing the D-box-containing N-terminus of Xenopus cyclin 

A1 to the C-terminus of cyclin B1 rendered the fusion proteins stable, which was not the case 

the other way round (King et al., 1996; Klotzbuecher et al., 1996). It therefore seems likely, 

that the position of the degrons in the context of the overall protein sequence as well as 

degron-intrinsic properties partly account for differences in substrate recognition by the 

APC/C.  
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1.9.1 Substrate ordering 

Substrate ordering refers to the right order and specificity of substrate degradation by APC/C-

mediated ubiquitylation, and it is crucial for the correct sequence of events in mitosis and G1. 

The degradation of different APC/C substrates is sequential and occurs in temporally distinct 

events, which defines the different cell cycle stages (Hunt et al., 1992; Sigrist et al., 1995; 

Whitfield et al., 1990). Therefore, proteolysis of APC/C substrates cannot simply be regulated 

by activation or inactivation of the APC/C but must also include a layer of selectivity on the 

substrate level. Selective substrate degradation is mainly ensured by cell cycle-regulated 

sequential association of the APC/C co-activator proteins Cdc20 and Cdh1 to the complex, 

which both confer different substrate specificity to the ligase. Cdc20 specific substrates are 

early mitotic regulatory proteins that are targeted by the APC/C from metaphase till the end of 

anaphase, whereas Cdh1 recognizes specific substrates until the end of mitosis and throughout 

G1. Substrate ordering through sequential recruitment to the APC/C can nicely be explained 

by the budding yeast Pds1, Clb2 and Ase1 proteins (Juang et al., 1997; Schwab et al., 1997; 

Shirayama et al., 1999; Visintin et al., 1997). Cdc20 is required for degradation of Pds1 in 

early mitotic stages but not for Clb2 and Ase1. Pds1 destruction leads to sister chromatid 

separation, which promotes transition from metaphase to anaphase. In contrast, APC/CCdh1 

drives mitotic exit and events in G1, because Cdh1 is more specific towards Ase1 and Clb2 

later in mitosis but not towards Pds1. The Ase1 protein associates with the mitotic spindle and 

its destruction is required for disassembly of the spindle. Together with Clb2 destruction, its 

proteolysis is essential for exiting the mitotic stage (Visintin et al., 1997). Both co-activator 

proteins together ensure that different APC/C substrates are degraded at the right time during 

mitosis. Pds1 destruction, along with sister chromatid separation, also triggers Cdc14 

phosphatase activation, leading to a decline in Clb2-mediated phosphorylation of other 

proteins, including Cdh1 (Visintin et al., 1997). Dephosporylation of Cdh1 in turn promotes 

its association with the APC/C, and therefore changes APC/C´s substrate specificity 

(reviewed byBaker et al., 2007; Peters, 2006) . Hence, degradation of the later Cdh1-specific 

substrates Ase1 and Clb2, which ensures proper cytokinesis and correct mitotic exit, can only 

occur after the sister chromatids had been separated. Correct sister chromatid separation is a 

highly regulated process in itself and will be described in chapter 1.10.4. 
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Another mechanism regulating substrate ordering is substrate-intrinsic and depends on the 

ubiquitylation processivity of different substrates by the APC/C (Rape et al., 2006; Stegmeier 

et al., 2007). In this model, substrate ordering is based on relative differences in the 

processivity of multiubiquitilation of the various substrates. These differences can originate 

from the catalytic rate of multiubiquitilation as well as from the rate of dissociation from the 

APC/C. Thus, processive substrates obtain their multiubiquitin chain in a single binding 

event, while more distributive substrates continuously shuttle on and off the APC/C; hence it 

takes longer time until they obtain multiubiquitin chains necessary for their degradation. 

Processivity in substrate ubiquitylation strongly correlates with the relative timing of their 

degradation during the cell cycle. The more processive the multiubiquitilation of a substrate 

is, the earlier it is degraded relative to other substrates. Thus, only degradation of the more 

processive substrates will allow for efficient multiubiquitilation of the distributive ones.  

Moreover, multiubiquitilation of distributive substrates require multiple rounds of APC/C 

binding, hence it renders them sensitive to lower APC/C concentrations, competition by 

processive substrates, and deubiquitilation events. This additional layer of processivity 

differences in APC/C mediated ubiquitilation allow ordered substrate degradation without 

prior substrate modification. This in turn allows for signal amplification mechanisms and 

fine-tuning and it implies that substrate ordering by the APC/C is self-organizing. 

Biochemical and structural studies have shown that processivity of multiubiquitilation and 

thus substrate ordering is strongly influenced by the D-box within the substrate (Buschhorn et 

al., 2010; Da Fonseca, 2011; Rape et al., 2006) (see chapter 1.9.1). For example, the 

distributive nature of cyclin A as an APC/C substrate is thought to be determined by its D-box 

sequence, which differs from the D-boxes of other substrates (Rape, 2010) (see chapter 1.9.2). 

The more distributive the multiubiquitilation of a substrate is, the more it is likely that it will 

be converted into the basal state by the activity of deubiquitilating enzymes (DUBs). DUBs 

can therefore amplify small differences in ubiquitilation processivity and are likely to have 

profound effects on the timing of substrate degradation (Rape et al., 2006; Stegmeier et al., 

2007). It is therefore believed that substrates are initially recognized and delivered to the 

APC/C by Cdc20 and Cdh1. The processivity of the ubiquitilation reaction, however, will in 

part depend on the stability of this interaction, which is in turn is dependent on the D-box of 

the substrate protein (Da Fonseca, 2011; Rape et al., 2006). Substrate degradation can also be 
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influenced by their Cdk-mediated phosphorylation status. It has been shown that 

phosphorylation of residues in proximity to APC/C-recognition motifs can selectively inhibit 

the degradation of specific APC/C substrates by blocking their recognition through the co-

activators (Song and Rape, 2011). For example, the APC/C-dependent degradation of Aurora 

A was found to be inhibited by cyclin B1/Cdk1-mediated phosphorylation of a specific serine 

residue within its recognition motif, the A-box in early mitosis (Crane et al., 2004; Littlepage 

and Ruderman, 2002). In order to be efficiently degraded during mitotic exit, Aurora A needs 

to be dephosphorylated by the protein phosphatase PP2A (Horn et al., 2007). Other post-

translational modifications might serve similar roles in regulation of APC/C-dependent 

substrate proteolysis. Acetylation of BubR1 or cyclin A for example has been reported to 

modulate their stability during mitosis, potentially by interfering with APC/C-dependent 

ubiquitilation (Choi et al., 2009; Mateo et al., 2009). 

1.9.2 Co­activator independent substrate recognition by the APC/C 

The protein kinase Nek2A (NIMA-related kinase 2A) and cyclin A are substrate proteins that 

are already degraded in prometaphase, soon after the nuclear envelope breakdown (NEBD). 

This occurs before other substrates such as B-type cyclins or Pds1/securin are targeted by the 

APC/C (see chapter 1.9.2). Therefore, both proteins are believed to be recognized by the 

APC/C somewhat differently than other substrates. Nek2A recruitment to the APC/C has been 

reported to be Cdc20-independent, although its ubiquitylation requires the N-terminal C-box 

domain of the co-activator (Kimata et al., 2008). Nek2A can directly bind to the APC/C via 

its C-terminal methionine-arginine (MR) tail. This motif resembles the isoleucine-arginine 

dipeptide (IR-tail) found at the C terminus of the co-activator proteins Cdc20 and Cdh1 and in 

the small subunit Doc1, which promotes binding of these proteins to the APC/C (Hayes et al., 

2006). Cyclin A1 degradation in early mitosis is dependent on its binding to Cdk, as a 

mutation in cyclin A that abolishes Cdk binding delays its degradation until anaphase (den 

Elzen, 2001; Geley et al., 2001; Sorensen et al., 2001; Stewart et al., 1994; Wolthuis et al., 

2008). However, Cdk binding to cyclin A is not sufficient for its ubiquitylation because 

deletion of the D-box sequence of cyclin A but an intact Cdk1 binding domain stabilizes the 
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protein (Geley et al., 2001; Kobayashi et al., 1992). The difference in timing of cyclin A1 

degradation compared to cyclin B1 degradation might be explained by the D-box sequence of 

cyclin A, which is 10-20 residues longer than that of cyclin B. This feature is conserved 

among cyclin A1 and A2 molecules across species and it has been proposed that A type 

cyclins are targeted for ubiquitylation by an “extended D-box” sequence. This sequence might 

in addition contain the Cdk binding site, thereby promoting its recognition by APC/CCdc20 

(Geley et al., 2001). Alternatively, association with its Cdk might induce a structural change 

in cyclin A, which makes its N-terminal D-box motif more accessible (Wolthuis et al., 2008). 

Moreover, it has been shown that unlike cyclin B, cyclin A binds to Cdc20 in G2 phase, 

which is before APC/C becomes active in mitosis. This reasoned that the co-activator might 

be a liminting factor for cyclin A degradation, also because Cdc20-depleted cells showed high 

levels of cyclin A, but not of cyclin B (Wolthuis et al., 2008). Cyclin A forms a trimeric 

complex with Cdk and a Cks protein. Cks proteins bind to Cdks in vitro and are though to 

facilitate binding to previously phosphorylated Cdk consensus sites (Bourne et al., 1996). The 

Cks subunit of the cyclin A-Cdk-complex has been shown to strongly bind to Cdk-

phosphorylated APC/C (Fry and Yamano, 2006). Since the timely destruction of cyclin A is 

depend on its binding to Cdk and coincides with an increase in APC/C phosphorylation, it is 

possible that cyclin A gets recruited to phospho-APC/C through its Cks subunit, where it can 

then be targeted for ubiquitylation (Wolthuis et al., 2008). This would explain why cyclin A 

gets degraded before other mitotic substrates and why this can happen independently of the 

spindle assembly checkpoint (Fry and Yamano, 2006; Wolthuis et al., 2008) (see chapter 

1.10.4). Such multivalent binding might positively affect the processivity of ubiquitin chain 

formation, which is a major determinant of the timing of APC/C substrate degradation (Rape 

et al., 2006). Therefore, binding partners such as the Cks subunit of cyclin A-Cdk-complex  

might provide additional ways to APC/C recruitment and are effective of increasing the 

processivity of the reaction, thereby accelerating substrate degradation during the cell cycle 

(Song and Rape, 2011). It is also conceivable that subtle intrinsic differences in cyclins might 

contribute to the tight regulation of cell cycle transitions. However, unknown features might 

in addition determine substrate ordering events. 
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1.10 Regulation of APC/C activity 

Irreversible proteolysis of key regulatory proteins by the APC/C initiates irreversible cell 

cycle progression, thereby confering unidirectionality to this process. It ensures that the cell 

can divide the genome equally to daughter cells which must occur only once per cell cycle 

and that mitotic exit is performed in an ordered fashion. All of these important events depend 

on APC/C activity. Since this ligase is required for accurate execution of the mitotic program, 

the APC/C has to be tightly controlled. This is in part achieved by reversible phosphorylation 

events, sequential and cell cycle-regulated association of its co-activators, and association of 

inhibitory proteins, such as the mitotic checkpoint complex (MCC), the effector of the spindle 

assembly checkpoint (SAC). 

1.10.1 Regulation of APC/C activity by phosphorylation 

Protein phosphorylation is a fundamental regulatory mechanism in biology, with essential 

functions in signaling, metabolism, and cell cycle control. Clusters of multiple phosphate 

groups can significantly change the surface charge distribution of a molecule. Hence, 

phosphorylation can induce structural changes within a molecule by altering protein 

interactions or it can change the affinity for other molecules. The TPR-containing subunits 

and Apc1 are hyperphosphorylated in mitosis (King et al., 1995; Peters et al., 1996; Yamada 

et al., 1997). It has been shown that phosphorylation of APC/C is functionally important, as 

dephosphorylation of mitotic APC/C abolishes its ubiquitin-ligase activity (King et al., 1995; 

Lahav-Baratz et al., 1995; Shteinberg et al., 1999). Although Cdc20 protein levels rise during 

S and G2 phase, Cdc20 can only associate with the APC/C early in mitosis, which is 

dependent on phosphorylation of the TPR-subunits by mitotic kinases (Kraft et al., 2003; 

Kramer et al., 2000; Rudner and Murray, 2000; Shteinberg et al., 1999). Immunofluorescence 

microscopy using phospho-specific antibodies revealed that APC/C-phosphorylation is 

initiated in prophase, when cyclin B1 starts to enter the nucleus. In prometaphase phospho-

APC/C accumulates on centromeres where ubiquitylation of cyclin B is initated. Later, it 
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appears throughout the cyctosol and disappears during mitotic exit. Hence, activation of the 

APC/C is already initiated in the nuclei of late prophase cells (Kraft et al., 2003). 

Cdc20 also gets phophorylated in mitosis but this does not seem to affect its mitotic activity 

(Kramer et al., 2000). Rather it was proposed that Cdc20 phosphorylation plays a role in the 

function of the spindle assembly checkpoint (Chung and Chen, 2003; Tang et al., 2004). In 

contrast, phosphorylation of the other co-activator Cdh1 prevents its binding to the APC/C 

(Jaspersen et al., 1999; Kramer et al., 2000). In vertebrates, mitotic activity of the APC/C 

through phosphorylation is mainly stimulated by the two kinases Cdk1/cyclin B and Plk1, but 

Cdk1 seems to have a more important role than Plk1 (Descombes and Nigg, 1998; Patra and 

Dunphy, 1998). In vitro, the APC/C is directly phosporylated to the largest extent, when both 

kinases are combined (Golan et al., 2002; Kraft et al., 2003). Once Cdc20 has bound to the 

complex, it mediates cyclin B proteolysis in metaphase, which reduces Cdk1 activity. This 

allows protein phosphatases such as Cdc14 in yeast to dephosphorylate Cdh1 (Jaspersen et al., 

1999; reviewed by Stegmeier and Amon, 2004; Visintin et al., 1998) which enables Cdh1 to 

associate and activate APC/C. The human genome encodes two Cdc14 homologues. The roles 

of these two phosphatases are poorly understood, but it is plausible that they are involved in 

mitotic exit and cytokinesis (Kaiser et al., 2002). In yeast, additional dephosphoylation of the 

Cdk1 inhibitor Sic1 leads to its activation and therefore to inhibition of Cdk1 activity. This in 

turn allows dephosphorylation of Cdh1 and promotes its binding to the APC/C (Donovan et 

al., 1994; Verma et al., 1997). Cdc20 contains the D-box motif necessary for APC/C-

mediated ubiquitylation and is therefore itself a target of APC/C. Dephosphorylation of 

APC/C subunits and of Cdh1 thus leads to dissociation of Cdc20 from the complex and to 

activation of APC/C by Cdh1, which now targets Cdc20 for degradation at the end of mitosis 

(Fang et al., 1998b; Prinz et al., 1998; Shirayama et al., 1998). In contrast to Cdh1 levels, 

which are constant throughout the cell cycle, Cdc20 levels fluctuate. Cdc20 protein is absent 

during S phase, whereas its level peaks in mitosis and declines as cells enter G1 phase (Prinz 

et al., 1998). Therefore, APC/CCdc20 activity is prevented during S phase and in early mitosis. 

Unlike Cdc20 degradation in G1, Cdc20 proteolysis in S phase and early mitosis is mediated 

by a process which does not seem to depend on Cdc20´s D-box or on Cdh1; moreover it 

requires direct binding of Cdc20 to components of the mitotic checkpoint complex and 

functional APC/C (Pan and Chen, 2004; Prinz et al., 1998; Thornton and Toczyski, 2006) (see 
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chapter 1.10.5). Hence, mitotic kinases promote phosphorylation of the APC/C core complex 

and of both co-activator proteins, importantly of Cdh1, which allow for the switch from 

APC/CCdc20 to APC/CCdh1 activity, thereby keeping Cdk1 activity low until late G1 phase. 

This ensures that mitotic exit only occurs after successful anaphase and it is a prerequisite for 

initiation of DNA replication. The kinases that promote APC/C activity in mitosis are the 

cyclin-Cdk/Polo/Polo-like kinases, whereas Protein kinase A has been shown to inhibit 

APC/C activity (Descombes and Nigg, 1998; Kotani et al., 1998; Yamashita et al., 1996).  

To allow the re-accumulation of cyclins and other APC/C substrates that are needed for 

subsequent S-phase and for a new round of mitotic cell division, APC/CCdh1 has to be 

inactivated at the G1-S transition. This in part is mediated through phosphorylation of Cdh1 

by S-phase specific cyclin-Cdk complexes, which has been shown to promote dissociation 

and inactivation of APC/CCdh1 (Huang et al., 2001; Jaspersen et al., 1999; Kramer et al., 2000; 

Lukas et al., 1999; Zachariae et al., 1998a). However, the mechanism of how the cyclin-Cdk 

complex levels rise to a sufficient threshold in late G1 seems to vary in different organisms. In 

D. melanogaster, Cdh1 re-phosphorylation and thereby APC/C inactivation has been 

implicated to be due to cyclin E-Cdk1 activity (Knoblich et al., 1994). Another model 

suggests that APC/CCdh1 promotes its own inactivation by catalyzing the autoubiquitilation 

and subsequent degradation of the ubiquitin-conjugating enzyme (E2) UbcH10. This leads to 

accumulation of cyclin A and therefore to increasing cyclin A-Cdk2 activity, which in turn 

further inactivates APC/CCdh1. The other E2 UbcH5 is stable and remains associated with the 

APC/C, but it does not target cyclin A efficiently. Autoubiquitilation of UbcH10 can only be 

initiated, once other APC/C substrates have been degraded in G1 (Rape and Kirschner, 2004; 

reviewed by Thornton and Toczyski, 2006). This mechanism ensures that APC/C is active 

during mitotic progression but inactive before S-phase entry and it suggests that the metazoan 

cell cycle is built around a self-perpetuating but highly regulated oscillator (Rape and 

Kirschner, 2004). In D. melanogaster and in vertebrate cells, APC/CCdh1 activity is 

additionally repressed by an APC/C inhibitor known as Rca1 (regulator of cyclin A1) or Emi1 

(early mitotic inhibitor 1), respectively. Association of inhibitory proteins to the complex 

allows accumulation of cyclin A and of other APC/C substrates in S and G2 (Dong et al., 

1997; Grosskortenhaus and Sprenger, 2002) and will be discussed in chapter 1.10.3. 
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1.10.2 Regulation of APC/C activity by co­activator proteins 

The APC/C is only fully activated upon binding of one of its co-activatory proteins. Cdc20 

(Fizzy in D.melanogaster, Slp1 in S. pombe) transiently associates with the APC/C in mitosis 

until anaphase, whereas Cdh1 (Fizzy-related in D. melanogaster, Srw1/Ste9 in S.pombe,  

Hct1 in S.cerevisae, Fzr1 in Homo sapiens) keeps the APC/C active until the end of G1 phase 

(reviewed by Yu, 2007). Other activators include the meiosis-specific Ama1 protein in 

budding yeast (Penkner et al., 2005) (see chapter 1.10.3) and Cort in D.melanogaster (Swan 

and Schupbach, 2007). Substrate specificity of the ubiquitylation reaction is largely conferred 

by the co-activator proteins, where Cdc20 preferentially targets D-box containing substrates, 

while Cdh1 can additionally recognize the KEN-box motif (Schwab et al., 1997; Schwab et 

al., 2001; Visintin et al., 1997; Wan and Kirschner, 2001; Zur and Brandeis, 2002). Cdc20 

and Cdh1 are both highly conserved in all eukaryotes. In yeast, most genes that encode apo-

APC/C-subunits as well as Cdc20 are essential for viability (Zachariae et al., 1998a) and 

mutations of Fizzy in D.melanogaster cause a metaphase arrest phenotype (Dawson et al., 

1993). Regulation of Cdc20 protein levels have been shown to be critical for cell cycle 

progression and cell viability, since ectopic expression of CDC20 is lethal (Visintin et al., 

1997) and overexpression of Cdc20 is sufficient to cause a bypass of the DNA damage and 

mitotic spindle assembly checkpoint arrest (Hwang et al., 1998). Thus, tight regulation of 

Cdc20 protein levels is not only critical for proper cell cycle progression but also during cell 

cycle arrest induced by DNA damage or by mitotic spindle defects (Prinz et al., 1998). In 

contrast, RNA interference (RNAi) of Cdh1 in human cells does not seem to significantly 

perturb the cell cycle (Qi and Yu, 2007) and Cdh1-deficient mice are viable (Garcia-Higuera 

et al., 2008). Moreover, Cdh1 protein levels are constant throughout the cell cycle, and Cdh1 

is inhibited by cyclin/Cdk-mediated phosphorylation (Kraft et al., 2003). Cdc20 was 

originally identified as a cdc gene required for APC/C-dependent proteolysis of Pds1, whereas 

Cdh1 (Cdc20 homolog 1) was implicated to be important for degradation of Clb2 and Ase1 

(Schwab et al., 1997; Visintin et al., 1997). Later it was shown that Cdc20 and Cdh1 directly 

bind to the APC/C to activate its ligase activity towards cyclin B in vitro (Fang et al., 1998). 
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Cdc20 and Cdh1 contain a WD40 repeat domain in their C-terminal region. This motif can 

fold into a rigid propeller-like structure that has been found in a variety of proteins with 

different functions. Moreover, this motif has been proposed to mediate protein-protein 

interactions (reviewed by Smith et al., 1999; Visintin et al., 1997). The folding of the WD40 

propeller in Cdc20 and Cdh1 requires the CCT chaperonin complex that has been shown to 

associate with the activator proteins during the cell cycle (Camasses et al., 2003). The WD40 

domain of Cdc20 and Cdh1 is believed to be the adaptor sequence for binding to the 

recognition motifs in APC/C-substrates. Importantly, mutations in residues within the WD40 

domain of Cdh1 significantly abolish the substrate ubiquitylation efficiency (Kraft et al., 

2005). This is analogous to the function of WD40-domain containing F-box substrate adaptor 

proteins of the SCF, which also recruit substrates via their propeller (reviewed by Nakayama 

and Nakayama, 2005; Zheng et al., 2002). Recent electron microscopy studies confirmed 

binding of the substrate´s degron motifs to the co-activator proteins and their recruitment to 

the APC/C (Da Fonseca, 2011). In budding yeast, the binding site for the substrate´s D-box is 

shared between the WD40 domain of the co-activator and the β-sandwich of Doc1 (Da 

Fonseca, 2011). In the same study, In vitro binding experiments using D-box and KEN-box 

peptides also revealed an intrinsic difference in both motifs in that only D-box substrates 

could promote a physical interconnection between Cdh1 and Doc1 (Da Fonseca, 2011). 

 

In addition to the WD40 domain, other short sequences within the co-activator proteins were 

shown to be conserved and of particular function. The IR tail at the very C-terminus is 

required for binding to the TPR-subunit Cdc27/Apc3 of human and yeast APC/C (Matyskiela 

and Morgan, 2009; Thornton et al., 2006; Vodermaier et al., 2003), although the IR tail of 

Cdc20 does not seem to be important for viability in yeast (Thornton et al., 2006). Activity of 

the co-activatory proteins seems to depend on their C-box, a seven amino acid sequence at the 

N-terminus. This motif promotes binding of the protein to the APC/C and stimulates its ligase 

activity in ubiquitylation reactions (Kimata et al., 2008; Schwab et al., 2001; Thornton et al., 

2006; Vodermaier et al., 2003). Structural studies suggest that the C-terminal Ile-Arg (IR) tail 

of Cdh1 contacts the APC/C subunit Cdc27/Apc3, while its N-terminal C-box is positioned to 

contact Apc2 (Buschhorn et al., 2010; da Fonseca et al., 2011). Although there is clear 

evidence that Cdc20 and Cdh1 activate the APC/C in a cell cycle-regulated manner and 



34 

 

confer substrate specificity to the ligase (Burton and Solomon, 2001; Burton et al., 2005; 

Hilioti et al., 2001; Kraft et al., 2005; Pfleger et al., 2001b; Schwab et al., 2001), some degree 

of substrate-binding has also been attributed to apo-APC/C. First evidence came from a study, 

where a tandem D-box affinity matrix could isolate the APC/C from Xenopus egg extracts 

where Cdc20 was depleted and which naturally does not contain Cdh1 (Yamano et al., 2004). 

It has also been reported that substrates like Nek2A are targeted to the APC/C via a C-

terminal MR motif (Hayes et al., 2006), an interaction that is independent of Cdc20 and 

reminiscent of the IR-tail-dependent binding of co-activators and Doc1 to the APC/C core 

(Vodermaier et al., 2003; Wendt et al., 2001). Doc1/Apc10 is a good candidate for being a 

substrate-receptor at the APC/C core, since yeast Doc1 is required for D-box-dependent and 

processive substrate degradation in an in vitro ubiquitylation reaction whereas APC/C lacking 

Doc1 can no longer bind substrate but is still able to bind the co-activator proteins (Carroll et 

al., 2005; Carroll and Morgan, 2002; Passmore et al., 2003). Electron microscopy studies on 

yeast and human APC/C now confirmed that Doc1 directly binds to the TPR subunits 

Cdc27/Apc3, Cdc16/Apc6, Apc1 and the Apc2 catalytical subunit. This interaction helps to 

mediate optimal substrate binding by forming a bipartite substrate receptor with the co-

activator protein, engaging Doc1´s ligand binding region and the WD40 domain of the co-

activator proteins (Buschhorn et al., 2010; Da Fonseca, 2011). This cooperatively substrate 

binding mechanism between the co-activator proteins and the APC/C is further strengthend by 

the observation that although substrates can directly associate with the APC/C, their binding 

selectivity and affinity is reduced in absence of co-activators (Eytan et al., 2006); (Matyskiela 

and Morgan, 2009; Passmore and Barford, 2005; reviewed by Yu, 2007). 

1.10.3 Regulation of APC/C activity by inhibitory proteins 

Another principle for controlling the activity of this complex ligase is by association with 

inhibitory proteins. As described in the previous chapters, binding of Cdc20 and Cdh1 is in 

part regulated through phosphorylation events on both, the activators and the APC/C core. 

Cdc20 can only bind to the phosphorylated form of the APC/C, whereas phosphorylation of 

Cdh1 prevents its binding to the complex.  Activation of APC/CCdh1 is hence only induced 
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after APC/CCdc20-mediated degradation of mitotic cyclins which leads to reduced Cdk activity 

in early mitosis and in G1. Later in the cell cycle, APC/CCdh1 is inactivated at the G1/S 

boundary due to the increasing Cdk activity and Cdh1 phosphorylation, leading to its 

dissociation from the APC/C (Kraft et al., 2003). However, Cdk activity is also low in G2 

phase. Moreover, overexpression of the co-activators in vivo can activate the APC/C at any 

cell cycle stage, indicating that mitotic APC/C phosphorylation is not sufficient to explain the 

timing of APC/C activity (Schwab et al., 1997; Visintin et al., 1997). Several studies suggest 

that other mechanisms regulate APC/CCdh1 activity in interphase. In budding yeast, for 

example, the protein Acm1 (APC/CCdh1 modulator 1) in complex with Bmh1/Bmh2 was found 

to associate with Cdh1 from late G1 until late M phase (at cell cycle stages when APC/CCdh1 

activity is absent) inhibiting APC/CCdh1-dependent proteolysis of mitotic cyclins (Martinez et 

al., 2006). Acm1´s inhibitory activity is dependent on pseudosubstrate regions within its 

sequence, including minimal D-box and KEN-box binding sites that function by 

competitively inhibiting binding to other APC/C targets (Enquist-Newman et al., 2008). 

Acm1 is targeted for ubiquitylation by APC/CCdc20 in anaphase. Therefore, Cdc20 not only 

promotes Cdh1 activation through the destruction of mitotic cyclins and less directly through 

activation of the phosphatase Cdc14, resulting in Cdh1 dephosphorylation and activation, but 

also through destruction of the Cdh1 inhibitor Acm1, making the activation process more 

robust (Enquist-Newman et al., 2008). Moreover, Cdh1 dephosphorylation triggers APCCdh1 

activation that is sufficient for Acm1 ubiquitilation and destruction. Therefore, APC/CCdh1 can 

promote the destruction of its own inhibitor (Enquist-Newman et al., 2008). The regulatory 

mechanism of pseudosubstrate inhibiton of APC/C is reminiscent of other proteins, such as 

the fission yeast Mes1, a meiosis-specific APC/C inhibitor which itself is a substrate and 

competes for ubiquitylation with other APC/C targets (Izawa et al., 2005).  

In vertebrate cells, the E2F-dependent expression of cyclin A and its assembly with Cdk2 

prevents activation of APC/CCdh1 through inhibitory phosphorylation of Cdh1, thus allowing 

accumulation of APC/C targets such as cyclin B1, leading to S phase entry and progression 

(Lukas et al., 1999). Since cyclin A itself is a target of APC/CCdh1, the question arises how 

cyclin A can accumulate to inactivate Cdh1. This was shown to be mediated by the 

pseudosubstrate inhibitor Emi1 (early mitotic inhibitor 1) which was found to inactivate 

APC/CCdh1 at the G1-S transition in vertebrates, allowing accumulation of cyclin A (Hsu et 
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al., 2002). In Xenopus egg extracts, Emi1 has been reported to prevent substrate binding to 

both APC/CCdc20 and APC/CCdh1 by directly associating with the co-activators (reviewed by 

Baker et al., 2007; Reimann et al., 2001a; Reimann et al., 2001b). Inhibition of APC/CCdc20 by 

Emi1 happens prior to mitosis, allowing accumulation of cyclin B, driving the cell into 

mitosis (Reimann et al., 2001a). Emi1 has also been reported to inhibit APC/CCdc20 activity in 

prophase, allowing activation of Cdk1 by cyclin A leading to phosphorylation of the APC/C 

and thus to association with Cdc20, prior to cyclin A ubiquitylation in prometaphase. Thus, 

Emi1 has to be degraded in early mitosis to ensure transition from early to late prophase and 

to allow activation of APC/CCdc20 (reviewed by Baker et al., 2007; Guardavaccaro et al., 2003; 

Margottin-Goguet et al., 2003). Like cyclin A, Emi1 is transcriptionally induced by the E2F 

transcription factor at the G1-S transition (Hsu et al., 2002) and phsophorylation of Emi1 by 

Plk1 in prophase targets it for SCFβTrCP1-dependent ubiquitylation and subsequent degradation 

(Hansen et al., 2004; Moshe et al., 2004), which is required for the destruction of cyclin A and 

cyclin B (Guardavaccaro et al., 2003; Margottin-Goguet et al., 2003). The C-terminal region 

of Emi1 exhibits a D-box motif, which mediates binding to both Cdh1 and the APC/C core, 

thereby competitively preventing substrate binding to the APC/C in vitro. In addition, Emi1 

contains a conserved zinc-binding region (ZBR) which antagonizes APC/C E3 ligase activity 

independently of tight APC/C binding through sterical hindrance of substrate binding to the 

APC/C. Mutation of this ZBR renders Emi1 into a D-box-dependent APC/CCdh1 substrate 

(Miller et al., 2006). The highly conserved meiosis-specific homolog of Emi1, Erp1/Emi2, 

which also contains the D-box and the ZBR motif, has been shown to inhibit APC/C activity 

in Meiosis II to prevent activation of cyclin destruction in unfertilized eggs (Schmidt et al., 

2006; Tung et al., 2005). In D. melanogaster, the Emi1 homolog Rca1 (regulator of cyclin 

A1) specifically inhibits APC/CCdh1 activity allowing cyclin A accumulation in G2 

(Grosskortenhaus and Sprenger, 2002). Emi1 provides a good example of how E3 substrates 

evolved to become pseudosubstrate inhibitors by combining conserved degron sites with a 

catalysis-inhibitory function (Miller et al., 2006). 

In early mitosis, the messenger RNA export factor Rae1 interacts with the nucleoporin Nup98 

to form a complex that specifically binds to Cdh1 and inhibits APC/CCdh1-mediated 

ubiquitylaton of securin but not cyclin B (Jeganathan et al., 2005). Release of the Rae1/Nup98 

complex from APC/CCdh1 coincides with the release of the mitotic checkpoint complex 
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protein BubR1 from APC/CCdc20 at the metaphase to anaphase transition. APC/CCdc20 

specifically targets cyclin B for ubiquitylation and since Rae1/Nup98 specifically inhibits 

securin degradation, it is tempting to speculate that the release of this complex from 

APC/CCdh1 contributes to the right timing of anaphase initiation (reviewed by Baker et al., 

2007; Jeganathan et al., 2005). However, the mechanism of the synchronized release with the 

MCC component BubR1 is not clear.  

A further mechanism of APC/CCdh1 inhibition already briefly discussed is that of the E2 

UbcH10, which promotes its autoubiquitylation and degradation at the end of G1. This in turn 

allows cyclin A to accumulate and phosphorylate Cdh1, leading to APC/CCdh1 inhibition 

(Rape and Kirschner, 2004). Also, the Mad2-like protein Mad2B was identified as an 

APC/CCdh1 inhibitor in vitro and in vivo (Chen and Fang, 2001; Pfleger et al., 2001a). It has 

been reported that Mad2/Mad2B inhibit APC/C activation by Cdc20/Cdh1 in vitro, but 

neither can inhibit preactivated APC/C complexes, although they are capable of forming a 

ternary complex with activator and APC/C (Chen and Fang, 2001). However, Emi1 can 

inhibit APC/C that has already been activated by Cdc20 or Cdh1, and it has been suggested 

that it fulfills its inhibitory function by preventing substrate binding to the co-activator and 

not through interfering with the enzymatic core components Apc2/Apc11 (Reimann et al., 

2001b). 

As mentioned earlier, meiotic APC/C in budding yeast is not only regulated by Cdc20 and 

Cdh1 but also by the protein Ama1 (Blanco et al., 2001; Chu et al., 1998). Activity of 

APC/CAma1 is selectively inhibited in early meiosis by the constitutive APC/C subunit Mnd2 

(Oelschlaegel et al., 2005; Penkner et al., 2005). Meiosis is a specialized process, which gives 

rise to haploid cells that originate from a diploid progenitor. The two main differences in 

meiosis that differ from the mitotic cell division are the establishment of chiasmata between 

homologous chromosomes followed by two consecutive nuclear divisions,  separating first 

homologous chromosomes and then sister chromatids (Penkner, 2005). Therefore, some 

cohesin has to be protected at kinetochores from cleavage in metaphase I (MI) (reductional 

segregation) to allow another chromosome alignment in metaphase II (MII) (equational 

segregation) that separates each sister chromatid, resulting in a haploid cell (Morgan, 2007; 

Penkner et al., 2005).  Persistence of sister chromatid cohesion after MI is especially 
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important, since the first nuclear division is preceded by an extended prophase, which  can 

last for several decades in the case of human oocytes (Morgan, 2007; Oelschlaegel et al., 

2005). The protease separase (Esp1 in budding yeast) cleaves cohesin once all chromosomes 

are correctly aligned on the metaphase spindle, resulting in metaphase to anaphase transition. 

Separase activity depends on APC/C-mediated destruction of its inhibitory binding partner 

securin (Pds1) (Cohen-Fix et al., 1996; Funabiki et al., 1996; reviewed by Harper et al., 2002; 

Uhlmann et al., 1999). In meiosis, cohesion that gets established during pre-meiotic S phase, 

mediates two rounds of chromosome segregation (Oelschlaegel et al., 2005). Another protein, 

shugoshin (Sgo1) was identified to protect cohesin at kinetochores in meiosis I and disappears 

from centrosomes at the onset of anaphase II (Katis et al., 2004; Kitajima et al., 2004; 

Marston et al., 2004; Rabitsch et al., 2004). The budding yeast APC/C subunit Mnd2 has been 

shown to prevent APC/CAma1-dependent Pds1 and Sgo1 degradation in meiotic prophase 

(Penkner et al., 2005). Ama1 and Mnd2 are both upregulated in meiosis (Cooper et al., 2000; 

Rabitsch et al., 2001) and Mnd2 is stably associated with APC/C subunits in both, mitotic and 

meiotic cells (Hall et al., 2003; Penkner et al., 2005; Yoon et al., 2002). Similar to the APC/C-

subunits Cdc16, Cdc27, and Cdc23, Mnd2 becomes strongly phosphorylated in mitosis 

(Torres and Borchers, 2007). This modification does not seem to affect mitotic progression 

and it is not important for binding to the APC/C, but it has been shown to be important for the 

APC/CAma1-inhibitory function of Mnd2 in meiosis (Torres and Borchers, 2007). Mnd2-

mediated APC/CAma1 inhibtition is partly regulated by degradation of the protein that occurs 

late in meiosis after anaphase II, a process which may require Mnd2 phosphorylation 

(Oelschlaegel et al., 2005; Penkner et al., 2005). Although Mnd2 is present in equal 

abundance throughout the cell cycle, there is no evidence for an inhibitory function of Mnd2 

towards the co-activators Cdc20 and Cdh1 (Penkner et al., 2005). Budding yeast Mnd2 may 

also play a role in mitosis since anaphase entry is delayed in a Mnd2 deletion strain as shown 

by accumulation of G2 and M phase cells. However, in contrast to its function in meiosis, the 

Mnd2 protein does not seem to be essential for mitotic progression (Hall et al.).   
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1.10.4 Inhibition of APC/C activity by the spindle assembly 

checkpoint 

Checkpoint controls ensure correct cell cycle transitions dependent on the completion of 

earlier events. In early mitosis, APC/CCdc20 activity is regulated by the spindle assembly 

checkpoint (SAC), a ubiquitous surveillance mechanism that links APC/C-mediated 

degradation of mitotic regulators to the chromosome cycle.  

The SAC functions in prometaphase to ensure correct anaphase onset by inhibiting 

APC/CCdc20-mediated degradation of securin and cyclin B, until all sister chromatids are 

aligned at the metaphase plate and captured by microtubules in a bipolar manner. The SAC 

remarkably senses one single unattached kinetochore, and produces a diffusible “anaphase 

wait” signal to prevent precocious sister chromatid separation and hence aneuploidy 

(reviewed by Musacchio and Hardwick, 2002). It is believed that the SAC senses the lack of 

microtubule attachment at kinetochores and the lack of tension between sister centromeres 

caused by incorrect attachments (reviewed by Musacchio and Salmon, 2007; Pinsky and 

Biggins, 2005; Stern and Murray, 2001). The inhibitory effector of the SAC is the mitotic 

checkpoint complex (MCC), comprising the proteins Mad2, BubR1, Bub3 and Cdc20. All 

checkpoint proteins are highly conserved during evolution, which emphasizes their important 

function in the cell cycle (Musacchio and Hardwick, 2002). In addition to the MCC proteins, 

the SAC includes many other proteins, such as kinases, motor proteins or structural 

components. The MCC proteins are localized to unattached kinetochores during mitosis in all 

organisms that have been examined and are removed once faithful chromosome segregation 

can occur (reviewed by Musacchio and Salmon, 2007). Microtubules are highly dynamic 

structures and their attachment to kinetochores results in intermediate attachment states. 

Checkpoint signaling is activated by non-bipolar attachments which are sensed by lack of 

stretching within the kinetochore (Maresca and Salmon, 2009; Uchida et al., 2009). If this 

microtubule-kinetochore interface lacks tension, the attachment gets actively destabilized by 

Aurora B kinase activity, which recruits the SAC proteins (Ditchfield et al., 2003). 

Unattached kinetochores then enter a new round of microtubule capture until bipolar 

attachment is achieved (Lampson et al., 2004; Tanaka et al., 2002). Aurora B is thought to 
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exert its destabilizing function by phosphorylating Ndc80/Hec1 and Dam1 complexes, 

proteins that are located at the kinetochore to capture microtubules that emanate from the 

spindle poles. Phosphorylation of these proteins diminishes their microtubule-binding 

capacity (Cheeseman et al., 2002; Cheeseman et al., 2006; DeLuca et al., 2006). Aurora B is 

located at the inner kinetochore and phosphorylation of kinetochore proteins was shown to 

depend on their distance from this site as these proteins become separated from the kinase 

upon bipolar attachment (Liu et al., 2009). In cultured cells, the SAC can be activated by 

spindle poison drugs that effect microtubule dynamics. Agents such as nocodazole interfere 

with microtubule polymerization and can destabilize microtubules, whereas the drug taxol 

stabilizes microtubule structures. Both events result in checkpoint signaling by the SAC. 

However, the effects caused by taxol treatment can be overridden with Aurora B-inhibiting 

agents, such as hesparadin (Ditchfield et al., 2003; Hauf et al., 2003), which silences the SAC. 

It is believed that the effecter complex of the SAC, the MCC, exerts its inhibitory function 

through direct binding to the APC/C-activator Cdc20, thereby preventing Cdc20 binding to 

the APC/C (Sudakin et al., 2001). In yeast, Mad2 (mitotic arrest deficient 2) was found to 

bind to Cdc20 and Mad2-binding deficient Cdc20 mutants become insensitive to the SAC 

(Hwang et al., 1998; Kim et al., 1998). Mad2 gets recruited to unattached kinetochores by its 

binding partner Mad1, whereas kinetochores that are fully captured by microtubules do not 

contain detectable Mad2 (Chen et al., 1996; Shah et al., 2004; Sironi et al., 2001). However, 

the complete MCC is believed to form in a two-step process, where Mad2-Cdc20 complex 

formation promotes BubR1-Bub3-Cdc20 interaction (Burton and Solomon, 2007; Davenport 

et al., 2006; Fang, 2002; Fraschini et al., 2001; Kulukian et al., 2009). Thereby, Mad2 may 

serve as a template for the assembly of Mad2-Cdc20 complexes, in that Mad2 first has to 

stably bind to Mad1 at unattached kinetochores (DeAntoni et al., 2005; Luo et al., 2002). This 

“template model” provides a reasonable explanation of how the inhibitory signal emanating 

from one single unattached kinetochore can be amplified and how it diffuses to effectively 

silence the APC/C. Crystal structures of Mad2 bound to a Cdc20-mimicking peptide showed 

that Mad2 can exist in two structural conformations (Mapelli et al., 2007; Sironi et al., 2001). 

It can adopt an open form (O-Mad2) or a closed form (C-Mad2). Soluble Mad2 exist 

predominantly in its open conformational state, but Cdc20 binding is facilitated by the closed 

form (Mapelli et al., 2007). The implicated mechanism of Mad2 activation towards Cdc20 
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implies that a C-Mad2 confomer that is stably bound to Mad1 at unattached kinetochores 

binds an O-Mad2 conformer from the cytosol, which promotes conversion into C-Mad2. This 

closed conformer can then capture Cdc20 (DeAntoni et al., 2005; Luo et al., 2004; Mapelli et 

al., 2007; reviewed by Musacchio and Salmon, 2007). Fluorescence recovery after 

photobleaching (FRAP) experiments could show rapid exchange of kinetochore-bound Mad2, 

BubR1 and Cdc20 with their cytosolic pools (Howell et al., 2000; Shah et al., 2004). 

Like Mad2, the kinase protein BubR1 (budding uninhibited by benomyl related-1) has been 

shown to directly inhibit APC/C activity by blocking the formation of APC/CCdc20 (Tang et 

al., 2001a). In vitro, BubR1 has been shown to be a more potent inhibitor of APC/CCdc20 than 

Mad2 (Tang et al., 2001a), but the highest inhibitory potency is achieved through 

simultoaneous binding of both proteins (Fang, 2002; Fang et al., 1998; Li and Benezra, 1996; 

Sudakin et al., 2001; Tang et al., 2001a). In vertebrates, Mad2 and BubR1 are believed to act 

synergistically at physiological concentrations to inhibit APC/C in vivo by directly binding to 

Cdc20 (Sudakin et al., 2001). BubR1 localizes to unattached kinetochores, where it is 

sensitive for Aurora B activity, but it can also be found on microtubule-occupied kinetochores 

that lack tension (Ditchfield et al., 2003; Skoufias et al., 2001). Furthermore, the protein 

directly binds to the kinesin-like motor protein CENP-E, which is located at the kinetochore 

to promote chromosomal alignment in metaphase (Mao et al., 2003). Direct association of 

CENP-E with BubR1 activates BubR1 kinase activity, which is necessary for mitotic 

checkpoint signaling, but dispensible for Cdc20 binding (Mao et al., 2003; Sudakin et al., 

2001). Kinetochore enrichment of BubR1 in checkpoint activated cells is dependent on the 

SAC components Bub1 and Bub3 (Millband and Hardwick, 2002)  

Although it is known that the MCC inhibits APC/CCdc20 activity in early mitosis, the 

underlying mechanism is still not clear. The MCC subcomplexes Mad2-Cdc20 and BubR1-

Bub3-Cdc20 could be identified in vivo (Kulukian et al., 2009), but the presence of a ternary 

complex has also been reportet (Sudakin et al., 2001). In vitro studies have shown that 

recombinant Mad2 or BubR1 prevent association of APC/C with its co-activator by binding to 

Cdc20 (Reimann et al., 2001b; Tang et al., 2001a). However, Mad2 and BubR1 were also 

found in complex with the APC/C bound to Cdc20, and direct binding of MCC proteins to the 

APC/C has also been observed (Braunstein et al., 2007; Kallio et al., 1998; Morrow et al., 
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2005). Although both Mad2 and BubR1 can directly interact with Cdc20 to inhibit 

APC/CCdc20 activity in vitro, there is increasing evidence that the Mad2-Cdc20 interaction is 

required for activation of the SAC (Davenport et al., 2006; Hwang et al., 1998; Kulukian et 

al., 2009). However, this does not rule out the possibility that the BubR1-Bub3 complex may 

sequester different pools of Cdc20 and thereby may act in a parallel pathway to inhibit 

APC/CCdc20 (Fang, 2002; Tang et al., 2001a). Budding yeast cells lacking Mad2 or 

Mad3/BubR1 exhibit differences in their response to microtubule toxins, and their ability to 

align chromosomes, supporting the notion that Mad3/BubR1 may function differently than 

Mad2 (Ditchfield et al., 2003; Skoufias et al., 2001). There is increasing evidence that the 

rate-limiting Mad2-Cdc20 complex promotes formation of the final MCC by recruiting Cdc20 

to BubR1, where Mad2 binding is believed to induce a conformational change in Cdc20, 

thereby facilitating association of Cdc20 to BubR1 (Davenport et al., 2006; Kulukian et al., 

2009). Consistent with this, S. cerevisiae, Mad2 is required for Cdc20 binding to BubR1 

(Hardwick et al., 2000) and Mad2 depletion reduced the amount of Cdc20 bound to BubR1 in 

SAC-arrested and MG132 treated HeLa cells, but not vice versa (Nilsson et al., 2008).  

Cryo-EM studies on human APC/C revealed that the MCC binds in vicinity of the subunits 

Apc2, Apc4, and Apc5 (Herzog et al., 2009). Importantly, the MCC binding site partially 

overlaps with the Cdc20 binding site on APC/C, which raises the possibility that association 

of MCC might induce repositioning of Cdc20. Moreover, MCC binding induces structural 

changes within the APC/C and locks the otherwise flexible complex in a “closed” state, which 

prevents binding and ubiquitylation of a wide range of substrates (Herzog et al., 2009). 

1.10.5 Silencing of the spindle assembly checkpoint  

SAC silencing upon correct bipolar attachment of sister chromatids restores APC/C activity. 

This process has to be fast to ensure that chromosome segregation directly follows SAC 

inactivation. While progress has been made towards understanding the mechanism by which 

the spindle checkpoint inhibits APC/C in response to spindle defects, the mechanism 

underlying checkpoint silencing is still not fully understood. SAC inactivation requires that 

the respective proteins are removed from the kinetochore, which has been shown to depend on 
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dynein motility along microtubules (Howell et al., 2001; reviewed by Musacchio and Salmon, 

2007). Checkpoint components like Mad2 and BubR1 are localized at unattached 

kinetochores, hence it is possible that microtubule attachment and increasing kinetochore 

tension leads to dissociation of Mad2, which would also decrease the efficiency of Mad2-

Cdc20 complex formation (Howell et al., 2000). However, recent studies suggest that MCC 

dissociation and therefore SAC silencing is assisted by an active mechanism. Structural 

studies on the Mad1-Mad2 and Mad2-Cdc20 complexes have revealed that the dissociation of 

these complexes require the partial unfolding of the C-terminal region of Mad2 (referred to as 

the “safety belt” mechanism), which imposes a significant energetic barrier on these processes 

(Luo et al., 2002; Sironi et al., 2002), suggesting the existence of an active mechanism.  

Intriguingly, this implies that other factors might exist that facilitate the disassembly of Mad2-

Cdc20 containing complexes upon checkpoint silencing.  

The human Mad2-binding protein p31comet (formerly known as Cmt2; Caught by MAD Two) 

might be part of one such active mechanism for checkpoint silencing (Habu et al., 2002; Xia 

et al., 2004). P31comet selectively binds to the closed Mad2 conformer and it can effectively 

compete with O-Mad2 for binding C-Mad2, since this interaction is stronger than that of O-

Mad2. Thereby, p31comet prevents the dimerization of C-Mad2 with O-Mad2 (Mapelli et al., 

2006; Vink et al., 2006), which is the catalyzing step in MCC formation based on the 

“template model”. P31comet can also interact with C-Mad2 bound to Cdc20 and association of 

endogenous p31comet to Mad2 coincides with Mad2-Cdc20 dissociation (Habu et al., 2002). It 

has been proposed that during checkpoint inactivation in HeLa cells, p31comet, Mad2 and 

Cdc20 transiently form a ternary complex in vitro and in vivo, which is believed to stimulate 

APC/C activity and to promote mitotic exit (Xia et al., 2004). Thereby, p31comet seems to be 

required for efficient checkpoint silencing established by extensive spindle damage by 

counteracting the APC/C inhibitory activity of Mad2 (Vink et al., 2006; Xia et al., 2004). 

However, p31comet is not sufficient to break up the Mad2-Cdc20 interaction. Therefore, it is 

possible that it is not directly involved in the disassembly of the Mad2-Cdc20 inhibitory 

complex. This suggests that p31comet might collarborate with other factors to promote 

activation of APC/CCdc20 (Xia et al., 2004). It is also noteworthy that despite the high 

conservation of MCC components from yeast to humans, p31comet homologues have not yet 
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been found in S. cerevisiae (Habu et al., 2002). This indicates that checkpoint regulation 

could be rather different in different organisms (Mapelli et al., 2006). 

Another study in HeLa cells further proposed that dissociation of Mad2 and BubR1 from 

Cdc20 is dependent on APC/C-dependent multi-ubiquitilation (Reddy et al., 2007). In 

nocodazole arrested cells, Cdc20 is multi-ubiquitilated by the APC/C. This process requires 

the catalytic activity of the APC/C-specific ubiquitin-conjugating (E2) enzyme UbcH10 and is 

Cdh1-independent (Reddy et al., 2007). Cdc20 ubiquitilation is counteracted by the de-

ubiquitilating enzyme USP44 (Stegmeier et al., 2007). Moreover, UbcH10 together with 

p31comet had a synergistic effect and accelerated the rate of substrate degradation by mitotic 

APC/C (Reddy et al., 2007). The activity of these proteins may allow mitotic APC/C to 

promote dissociation of checkpoint proteins, which indcates that the APC/C itself may drive 

the process of checkpoint silencing (Reddy et al., 2007). Moreover, these observations imply 

that Cdc20 ubiquitilation by mitotic APC/C is an early mitotic event which may contribute to 

disossiation of checkpoint components from the APC/C. In particular, Cdc20 ubiquitylation 

mediated by UbcH10 and p31comet might contribute to actively disrupt the Mad2-Cdc20 

inhibitory complex, since C-Mad2 not only dissociated from ubiquitylated Cdc20, but it was 

also unable to re-bind to the modified co-activator. Dissociation of Mad2-Cdc20 may thereby 

liberate the APC/C, which can then trigger inactivation of additional Mad2-Cdc20 complexes 

by ubiquitylating Cdc20, leading to a switch-like metaphase to anaphase transition (Reddy et 

al., 2007).  

However, it is unclear if the activities of UbcH10 and p31comet as well as USP44 in 

ubiquitylating / deubiquitylating Cdc20 are directly regulated by the SAC. 

In contrast to these findigs, studies in yeast propose that Cdc20 turnover is important to 

maintain the SAC upon spindle damage (King et al., 2007; Pan and Chen, 2004). In this 

scenario, Cdc20 levels are reduced under a certain threshold to prevent premature activation 

of the APC/C by Cdc20 (Pan and Chen, 2004). Thereby, the SAC may be composed of a dual 

control mechanism. First, unattached kinetochores stimulate binding of Cdc20 to the MCC, 

which prevents premature APC/C activation. Second, the SAC mediates Cdc20 degradation to 

keep the available Cdc20 low until bipolar attachment of microtubules is achieved (Pan and 

Chen, 2004). Furthermore, these studies showed that yeast Cdc20 is mostly bound to Mad3 
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(the homologue of BubR1 in yeast) in checkpoint activated cells, with only very little Mad2 

(Kulukian et al., 2009; Pan and Chen, 2004) and most of cellular Mad2 was found as a 

monomer, which is less capable of binding to Cdc20 (Luo et al., 2004). Moreover, fission 

yeast Mad3 is essential for Mad2 to block cells in mitosis (Millbrand and Hardwick, 2002). 

This indicates that the more prominent APC/C-inhibitory complex is Mad3-Bub3-Cdc20 and 

not Mad2-Cdc20. However, binding of Cdc20 to BubR1 still requires previous binding of 

Cdc20 to Mad2 (Davenport et al., 2006).  

Given that the SAC components are highly conserved in various organisms, it is plausible that 

fundamental mechanisms underlying SAC activity may also be well conserved through 

evolution. Consistent with the observations in yeast, studies in mammalian cells suggest that 

the SAC is maintained through BubR1-Bub3 presenting Cdc20 to the APC/C as a substrate, 

which requires previous Mad2-Cdc20 complex formation. Moreover, a form of Cdc20 that 

could not be ubiquitylated was sufficient to overcome the SAC arrest (Nilsson et al., 2008), 

indicating that maintainance of the SAC might require Cdc20 ubiquitylation. Cdc20 

degradation was further shown to depend on previous binding to Mad2 and BubR1, which 

implies that the SAC causes Cdc20 to activate its own ubiquitylation by the APC/C (Nilsson 

et al., 2008). Why this mechanism is important for SAC maintainance in mammalian cells is 

not clear because overexpression of wild type Cdc20 does not override the SAC, as it is the 

case in S. cerevisae (Nilsson et al., 2008; Pan and Chen, 2004). 

Although it is not clear if Cdc20 degradation is important for SAC maintainance or for its 

inactivation, it is believed that regulation of the SAC requires Cdc20 turnover. Therefore, the 

mentioned observations raise the interesting question of how the checkpoint proteins can 

facilitate regulated Cdc20 turnover upon spindle damage. It may be possible, that this is not 

entirely mediated by the MCC proteins, but that it requires an additional protein that 

specifically targets Cdc20 in early mitosis. Alternatively, other mechanisms could exist which 

ensure that early mitotic APC/CCdc20 is exclusively responsible for Cdc20 degradation and not 

for targeting its prominent mitotic substrates. It may also be possible that Cdc20 is only 

recognized by the APC/C as a substrate when it is bound to SAC components, as it has been 

shown that degradation of Cdc20 in budding yeast is dependent on its binding to Mad2 (Pan 

and Chen, 2004). 
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1.11 Can the APC/C get any bigger? 

Despite its already large size, more components of the APC/C have recently been identified, 

such as c10orf104/Apc16 (Hutchins et al., 2010; Kops et al., 2010). Recently, the protein 

encoded by 11ORF51 (chromosome 11 open reading frame 51) has also been linked to the 

APC/C. The c11orf51 protein (from now on called c11orf51) was first found in an 

endoribonuclease-prepared siRNA (esiRNA) screen in human cells that aimed to find genes 

important for cell cycle progression (Kittler et al., 2004). Later studies then suggested that it 

associates with human APC/C (Hubner et al., 2010).  

The endoribonuclease-prepared siRNA (esiRNA) screen performed by Kittler et al. in 2004 

intented to discover and study genes involved in cell division (Kittler et al., 2004). 

Endoribonuclease-prepared short interfering RNA´s are generated from cDNA clones by in 

vitro transcription and digestion of the resulting long dsRNA, using bacterial RNase III 

enzyme or recombinant Dicer enzyme (Kittler and Buchholz, 2005). This generates a 

heterogeneous pool of siRNAs that target multiple sites on the same target mRNA, leading to 

less off-target effects and efficient gene silencing (reviewed by Buchholz et al., 2006). Kittler 

et al. generated a genome-scale library of esiRNAs from a sequence-verified complementary 

DNA collection that initially represented 15,497 genes. Out of these genes, 5,305 esiRNAs 

were used to screen for genes that are required for cell division in human HeLa cells. By 

combining a primary high-throughput cell viability screen followed by a secondary, more 

stringent high content videomicroscopy assay, they could observe severe cell division 

phenotypes for 37 genes (Kittler et al., 2004). From these 37 genes, C11ORF51 (chromosome 

11 open reading frame 51; DKFZP564M082) was one out of seven previously 

uncharacterized genes. RNAi-mediated depletion of c11orf51 resulted in aberrant spindle 

formation and cell cycle progression defects in human HeLa cells (Kittler et al., 2004). 

This study was the basis for a later clinical trial. From the 37 genes, Olson et al. selected 30 

and examined them for association between genetic variation and risk of breast cancer in a 

clinical study. C11ORF51 contained one SNP in a region that suggests a role in gene function 

and/or influence the expression levels of this gene (Olson et al., 2010). Carriers of the minor 

allele of this SNP were at 40% increased risk of breast cancer when compared with non-
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carriers. Although only one SNP could be assigned to this small gene, it was significantly 

associated with breast cancer in their population. Notably, they also found SNPs associated 

with breast cancer in the APC/C subunits-encoding genes CDC16 and CDC27 (Olson et al., 

2010).  

The first hint that the c11orf51 protein could be linked to human APC/C came one year later, 

in 2010. The protein was found by mass spectrometry to specifically bind to the APC/C 

isolated from asynchronous HeLa cells after tandem affinity purification (TAP) experiments 

using GFP-CDC23 as bait (Hubner et al., 2010).  

Independently, we could also find c11orf51 in our APC/C samples. As part of the MitoCheck 

work (www.mitocheck.org), Björn Hegemann and Jim Hutchins could detect c11orf51 in 

both, mitotically arrested and asynchronous HeLa cells after Apc3-immunoprecipitations. 

They had also analyzed APC/C from CDC16-LAP expressing cells. After in solution-digest 

using trypsin, chymotrypsin or subtilisin, the gene product of C11ORF51 was found by mass 

spectrometry (see Figure 1-3). Importantly, it was never found in purifications of non-APC/C 

subunits or interactors (Björn Hegemann and Jim Hutchins, personal communication).  

 

condition digest c11orf51 # unique c11orf51 sequence c11orf51 

peptides coverage MS/MS score

log (interphase) subtilisin 8 45% 345

Noc + BI4834 trypsin 3 37% 69

Noc (mitosis) subtilisin 7 32% 325

Noc + BI4834 subtilisin 7 32% 319

log (interphase) trypsin 2 31% 63

Noc + BI4834 chymotrypsin 4 29% 154

Noc + Hesp/MG132 subtilisin 6 28% 283

Noc + Hesp/MG132 chymotrypsin 3 28% 139

log (interphase) chymotrypsin 3 24% 113

Noc (mitosis) trypsin 1 23% 22

Noc (mitosis) chymotrypsin 2 18% 80

CDC16‐LAP trypsin 1 7% 42  

Figure 1-3: c11orf51 was found in mitotically arrested and in interphase (log) HeLa cells 
after Apc3-immunoprecipitations by mass spectrometric analysis. To obtain prometaphase 
cells with an active SAC, either nocodazole (Noc) alone was used for 18 hours or in 
combination with 250 mM BI4834 for the last two hours. Nocodazole treatment (18 hours) in 
combination with 100 nM of the Aurora B inhibitor Hesperadin and 10 µg/ml of the 
proteasome inhibitor MG132 for the last two hours arrested cells in metaphase with an inactive 
SAC. The purified proteins were enzymatically digested for mass spectrometric analysis. 
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Trypsin cleaves after arginin and lysin residues, chymotrypsin cuts after tryptophan, tyrosine, 
phenylalanine, leucine and methionine and subtilisin is an unspecific cutter 
(www.mitocheck.org; Bjoern Hegemann, Jim Hutchins and Otto Hudec). 

1.12 Aim of this study 

APC/C regulation is tightly linked to its composition; both of which are very complex. 

Biological functions to particular subunits or subunit assemblies could be assigned over the 

last decade, such as the catalytic core of the APC/C (described in chapter 1.7). However, other 

APC/C subunits are poorly characterized and we still have no satisfying explanation why this 

complex is so large in size. Despite its already large composition, improved biochemical / 

proteomics approaches and sensitive detection techniques could lately identify novel APC/C-

associated proteins. For example, the lately identified APC/C-subunit c10orf104/Apc16, has 

escaped standard detection techniques in the past, perhaps because of Apc16’s small size. The 

same might be true for the c11orf51 protein. As mentioned in the previous chapter , TAP and 

mass spectrometry studies could reproducibly find that c11orf51 associated with human 

APC/C (Hubner et al., 2010). Moreover, depletion of c11orf51 by RNAi caused cell cycle 

defects and genetic variation of C11ORF51 has been correlated with breast cancer formation 

(Kittler et al., 2004; Olson et al., 2010). However, otherwise this protein remained 

uncharacterized and the molecular basis for its function was not known. The aims of this 

study were to characterize the c11orf51 protein and to elucidate its biological function. If 

c11orf51 specifically interacts with APC/C, it could be a novel subunit, a regulator, an 

inhibitor or a substrate. It could function as a constitutive binder which is present throughout 

the entire cell cycle or its association with the APC/C might be cell cycle-regulated. 

Moreover, the cell cycle defect upon c11orf51 RNAi could be due to a direct effect on APC/C 

or because c11orf51 is linked to a mechanism that controls APC/C regulation. To characterize 

c11orf51, we applied biochemical analysis, partly combined with mass spectrometry and 

negative staining electron microscopy studies. Loss-of-function experiments in combination 

with immunfluorescence microscopy were performed for phenotypic characterization of 

c11orf51. Furthermore, iTRAQ labeling (isobaric tags for relative and absolute quantification) 

of human APC/C and quantitative mass spectrometry were established to resolve the 

composition of the APC/C during the cell cycle. Future studies can be directed towards the 
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composition of other APC/C associating proteins using this technique, which might lead to a 

better understanding of APC/C regulation.  
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2 Results 

2.1 C11ORF51 is evolutionary conserved among metazoans 

Several studies have suggested a role for C11ORF51 during the eukaryotic cell cycle. 

Interestingly, the encoded protein was found to associate with human APC/C (Hubner et al., 

2010; Kittler et al., 2004; Olson et al., 2010). We first asked if homologues of this protein 

exist in other species. C11ORF51 encodes a hypothetical protein (it will be called c11orf51 

throughout this thesis) comprising of 121 amino acids. Bioinformatic analysis revealed that 

c11orf51 is remarkably conserved among different species, ranging from fungi to humans, 

although the polypeptides show higher degree of conservation among metazoan species, such 

as frog, fish, mouse, etc. (in collaboration with Maria Novatchkova, IMP, Vienna) (see Figure 

2-1). This implies that c11orf51 might play an important role in eukaryotic cells. The 

alignment was performed by predicting compositional bias (Promponas et al., 2000). 

Interestingly, it suggests that this protein is a distant homologue of the meiosis-specific 

APC/C-inhibitor Mnd2 in S. cerevisiae. Mnd2 had previously only been identified in budding 

yeast as an inhibitor of the meiosis-specific APC/CAma1. However, a homologue of Mnd2 has 

not been identified to date. C11orf51 is only 14.3 kDa in size and it is predicted to be largely 

unstructured. Especially its C-terminal part can be considered to be a low complexity region. 

With a high degree of uniformity, several bioinformatic methods (quick2d) have predicted a 

helical structure and a small β-sheet at the N-terminus of c11orf51, which are marked in grey 

above the aligned sequences (Figure 2-1). Prediction of other structural motifs is rather 

uncertain. In addition, using the Meta protein disorder prediction-Server (metaPrDOS; 

http://prdos.hgc.jp/cgi-bin/meta/top.cgi) (Ishida and Kinoshita, 2007) confirms the 

bioinformatic analysis that this protein is largely unstructured. 

One striking feature of c11orf51 is the acidic stretch at its C-terminus containing several 

aspartic acid (D) and glutamic acid (E) residues.  However, the lengths of these acidic 

residues differ among different species. Higher metazoans contain a larger array, whereas in 

plant and fungi it is significantly shorter.  
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Figure 2-1: Sequence alignment of chromosome 11 open reading frame (C11ORF51). (A) 
C11ORF51 is evolutionary conserved among metazoans, ranging from fungi to humans. 
Bioinformatic analysis revealed that c11orf51 is largely unstructured, except for its N-terminal 
part where it contains an α-helix and a small β-sheet (marked in gray on the top of the 
alignment). The C-terminus is composed of an array containing aspartic acid and glutamic acid 
residues. For better comparison with (B), amino acid residue numbers are marked on top of the 
alignment. (B) Structural disorder prediction analysis of the c11orf51 protein using the 
metaPrDOS server. Threshold is set at a disorder tendency rate of 0.5. 

2.2 The  protein  encoded  by  C11ORF51  associates  with  human 

APC/C in vivo 

Hubner et al. could identify c11orf51 as a protein associated with human APC/C after 

immunoprecipitation experiments using CDC23 as bait (Hubner et al., 2010) (see chapter 

1.11). We also identified c11orf51 in several immunopurified APC/C samples from both 

asynchronous and mitotic population of HeLa cells by mass spectrometry (Figure 1-3 and 
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chapter 1.11). Theses experiments had been carried out independently of the Hubner et al. 

study by the MitoCheck project, but because only a single c11orf51 peptide was identified in 

these experiments, c11orf51 was initially not included in the list of APC/C associated 

polypeptides (Hutchins et al., 2010). In order to confirm our APC/C IP result, we performed 

reciprocal IP experiments, using C11ORF51 as the bait in a cell line that expresses a LAP 

tagged form of either the human or mouse c11orf51 protein.   

These constructs contain either a LAP-tag at the C-terminus or a FLAP-tag at the N-terminus 

of the protein. The LAP-tag is depicted in Figure 2-2. It is composed of a GFP-tag and S-

peptide sequences, which allows performing tandem affinity purification (TAP). To identify 

c11orf51-associating proteins, I performed tandem affinity purification combined with mass 

spectrometric analysis (in collaboration with Otto Hudecz and Karl Mechtler, IMP, Vienna). 

TAP was performed with each of the four different constructs expressing mouse or human 

c11orf51 (mouse/C-LAP; mouse/N-FLAP; human/C-LAP; human/N-FLAP) from 

asynchronous human HeLa Kyoto cells. Mass spectrometric analysis of the eluates indicated 

that the C-terminal LAP-tagged human c11orf51 (hc11orf51-LAP) could co-purify the 

majority of human APC/C subunits (Figure 2-2), whereas no APC/C was detected using the 

other three constructs. The co-activator Cdc20 was also found. C11orf51 could be found with 

one peptide hit after tryptic in-solution digestion. The captured peptide sequence is marked in 

red (Figure 2-2). However, the protein amount purified after TAP for MS/MS analysis was 

below detection limit for silver stain (data not shown). This result indicates that c11orf51 

associates with human APC/C in vivo. Figure 2-2 shows that HeLa interphase cells expressing 

hc11orf51-LAP can be stained with GFP antibodies in immunofluorescence microscopy 

experiments, whereas HeLa cells not expressing hc11orf51-LAP can not. However, GFP 

signal could be detected in both the nucleus and the cytoplasm, whereas APC/C is thought to 

be present predominantly in the nucleus. It is therefore not clear if all hc11orf51-LAP is 

associated with the APC/C.   
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Figure 2-2: c11orf51 protein associates with human APC/C in vivo, as confirmed by mass 
spectrometric (MS/MS) analysis. (A) Schematic picture of the LAP-tag (33.5 kDa) located at 
the C-terminus of a protein of interest. The FLAP-tag contains an additional TEV cleavage site 
after the S-peptide, followed by a flag-tag. The FLAP-tag is not depicted here. (B)  
Identification and peptide sequence coverage of APC/C subunits after tandem affinity 
purification followed by MS/MS analysis of LAP-tagged c11orf51. The asterix marks a 
contaminant band. (C) Silver staining of APC/C subunits after Apc3- or GFP-IP experiments 
from HeLa Kyoto cells or hc11orf51-LAP expressing HeLa cells. (D) Immunofluorescence 
microscopy using GFP antibodies and DAPI confirms expression of the c11orf51 protein in 
hc11orf51-LAP cells.  
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2.3 C11orf51 antibody generation and antibody testing  

In order to recognize the endogenous protein, we raised peptide antibodies against c11orf51. 

Three rabbits were immunized with a peptide corresponding to a sequence located close to the 

C-terminus of c11orf51. The respective peptide sequence is depicted in Figure 2-3. All three 

antibodies were coupled to protein A beads for IP-experiments to test their specificity in 

purifying APC/C from asynchronous HeLa cells. Bound proteins were eluted with glycine 

and the eluates were analyzed by SDS-PAGE and silver staining. Of the three antibodies, the 

glycine eluate of antibody number 1006 (1006 G) could IP the largest amount of APC/C from 

extract of asynchronous HeLa cells, as indicated by silver staining (Figure 2-3). Antibody 

number 1007 G could also purify APC/C, but to a lesser extent. Western blotting with Apc4 

and Apc16 antibodies confirmed that c11orf51 antibody 1006 G was most efficient in 

purifying APC/C from HeLa extracts (Figure 2-3). Therefore, antibody 1006 G was used for 

further IP-experiments. 
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Figure 2-3: Testing c11orf51 antibodies in IP and WB. (A) Protein sequence of human 
c11orf51 depicting the peptide sequence (marked in red) used to generate the antibody. (B) 
Silver stain of purified APC/C after immunoprecipitation (IP)-experiments using three 
different α-c11orf51 antibodies. Glycin (G) and magnesium (M) eluates of purified antibodies 
(ab) raised against c11orf51 protein. (C)  Western blotting analysis of APC/C subunits after 
c11orf51 IP.  

The hypothetical protein encoded by C11ORF51 has a size of 14.3 kDa. To identify the size 

of c11orf51 protein in immunoblot experiments, I performed Western blots of c11orf51-

immunoprecipitated APC/C and from HeLa lysates. The antibodies 1006 and 1007 could both 

purify APC/C in the previous IP (Figure 2-3). Therefore, I also tested their ability to recognize 

the c11orf51 protein on Western blots. Figure 2-4 shows that 1006 G and 1007 G could 

recognize a band at about 20 kDa in the elution after c11orf51-IP and in the HeLa cell lysate.    

 

Figure 2-4: Reactivity of different c11orf51 antibodies in Western blot analysis. Antibodies 
1006 G and 1007 G could recognize a band at about 20 kDa in eluates after c11orf51-IP and in 
the lysate. No band could be detected using the 1008 antibody.  

To confirm that the 20 kDa band recognized by antibodies 1006 G and 1007 G represents the 

c11orf51 protein, APC/C was immunopurified using antibodies against c11orf51, Apc3 and 

GFP from extracts of logarithmically growing HeLa and from c11orf51-LAP-expressing 

HeLa cells.  Western blot analysis of the resultant immunoprecipitates showed that 1006 G 

could detect both the endogenous and LAP-tagged c11orf51 proteins (Figure 2-5, lanes 1, 2, 9 

and 10).  Consistently, the GFP antibody could detect only the c11orf51-LAP protein (Figure 
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2-5, lanes 4, 8 and 12) and in addition, both 1006 G and -GFP antibodies detected a product 

with similar mobility only in the LAP- tagged cell line (Figure 2-5, lanes 2, 4, 6, 8, 10 and 12). 

In addition, RNAi experiments were performed using esiRNA-mediated decay of c11orf51 

transcripts described by Kittler et al. (Kittler et al., 2004). HeLa cells were transfected with 1 

µg esiRNA for 68 hours and cell lysates were used for immunoblotting. The 20 kDa band 

detected by c11orf51 antibodies was strongly reduced upon RNAi of c11orf51 (Figure 2-5). 

These observations indicate that the 20 kDa band represents the c11orf51 protein. 

 

 

Figure 2-5: Detection of c11orf51 protein product by Western blotting (WB) analysis (A) 
Western blotting analysis to detect for c11orf51p after APC/C-IP from HeLa and c11orf51-
LAP tagged HeLa cells.  (B)  esiRNA-mediated decay of endogenous c11orf51 transcripts. 
Controls used were Firefly Luciferase, Apc6 and no esiRNA treatment. α-Tubulin protein 
levels confirm equal loading.    
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2.4 The c11orf51 protein associates with human APC/C at all cell 

cycle stages 

To further verify the interaction of c11orf51 with human APC/C, α-c11orf51-beads were used 

for immunoprecipitation (IP) experiments from extracts of asynchronous (log) HeLa cells. 

The positive control IP-experiment was performed with Apc3 antibody-coupled beads. 

Immunoprecipitated proteins were eluted with glycine and analyzed by SDS-PAGE and silver 

staining.  

 

 

Figure 2-6: C11orf51 antibody coupled protein A beads can immunoprecipitate (IP) APC/C 
from logarithmically grown (log) HeLa cells. (A)  Silver staining pattern characteristic of 
APC/C subunits after α-Apc3-IP. (B) C11orf51 antibody-coupled beads purify the APC/C in 
comparable amounts and purity as α-Apc3 antibody, confirming that c11orf51 associates with 
APC/C in vivo. 

Taken together, these observations indicate that c11orf51 is a specific interaction partner of 

human APC/C. As described in chapter 1.10, regulation of APC/C activity is mediated 

through binding of different proteins to the complex (Baker et al., 2007; Peters, 2006). It was 

therefore conceivable that c11orf51 is a novel APC/C subunit, a regulator, a substrate or an 
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inhibitor of the APC/C. The APC/C is inhibited by the MCC during early mitosis. The 

association of c11orf51 with the APC/C could also be either direct or indirectly mediated by 

the MCC. The observation that the c11orf51 antibody immunoprecipitated APC/C from 

interphase cells, where MCC is not associated with the complex (Sudakin et al., 2001), 

already indicated that c11orf51 is not part of the MCC. To confirm this notion and to further 

characterize c11orf51, we aimed to see if this protein is associated with the APC/C during all 

cell cycle stages. Therefore, I performed a cell cycle synchronization experiment, by a double 

thymidine arrest-release protocol (dTAR) to obtain cells arrested in early S-, G1- and in the 

G2 states (see Materials and Methods).  In order to arrest cells in the prometaphase stage in 

mitosis, HeLa cells were treated with nocodazole. Efficient cell cycle arrest was confirmed by 

FACS analysis using PI buffer (Figure 2-7). In this experiment, only Apc3 antibody-coupled 

beads were used to isolate APC/C from lysates and the presence of the c11orf51 protein was 

analyzed by immunoblotting (Figure 2-7). α-IgG beads were used as a negative control. Silver 

staining allowed direct comparison of the “APC/C pattern” of purified APC/C from all cell 

cycle stages. Moreover, it served to control the protein loading for further Western blots, and 

electrophoretic mobility shifts of the APC/C subunits Apc1, Apc3 and Apc8 due to 

phosphorylation indicated efficient mitotic arrest (Kraft et al., 2003). Furthermore, silver 

staining confirmed that α-IgG beads did not purify any APC/C (Figure 2-7). Nocodazole 

treatment activates the SAC, therefore MCC proteins are associated with the APC/C in 

prometaphase cells (see chapter 1.10.4).  Consistently, BubR1 and Mad2 exclusively co-

purified with APC/C in prometaphase arrested cells.  Furthermore, very little Cdc20 was 

found to co-IP with G1, S and G2 APC/C and on the other hand, significantly higher levels of 

Cdc20 was observed in prometaphase-arrested cells.  This is consistent with the fact that 

Cdc20 is the co-activator of APC/C during early stages in mitosis, in addition to the fact that 

it remains bound to MCC upon SAC activation. Therefore, the synchronization protocol 

works efficiently.  Apc4 provides us with a good loading control.   Importantly, c11orf51 

protein could be detected during all cell cycle stages, indicating that it associates with the 

APC/C during the entire cell cycle.  Furthermore, immunoprecipitation analysis of c11orf51 

shows that all APC/C subunits co-immunoprecipitate irrespective of the cell cycle stage.  This 

suggests that c11orf51 is a constitutive APC/C subunit rather than an APC/C regulator which 

associates with the APC/C only during specific times of the cell cycle. 
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Figure 2-7: C11orf51 protein is associated with the APC/C at all cell cycle stages. HeLa cells 
were synchronized by double thymdidine arrest release (dTAR) in G1, G1/S, G2 and 
prometaphase (PM). Immunoprecipitation (IP) experiments were performed using Apc3 
antibody-coupled protein A beads to purify APC/C from all cell cycle stages. α-IgG beads 
served as negative control. (A) The cell cycle arrests in G1, G1/S and G2 were confirmed by 
FACS analysis using PI buffer (B) Silver stain shows characteristic “APC/C pattern” after 
Apc3-IP. The asterix mark indicates contaminant proteins.  Phosphoshifts for Apc1, Apc3 and 
Apc8 was observed in mitotic extracts indicating efficient synchronization of HeLa cells. (C)  
Coimmunoprecipitation of MCC complex - BubRI, Cdc20 and Mad2 in mitotic extracts.  

As mentioned in chapter 2.1, c11orf51 protein contains a distinct acidic stretch at its C-

terminus.  Because this acidic stretch could affect elution by glycine, I compared glycine 

elution with that of peptide elution after c11orf51-IP. As a positive control, I performed an 

Apc3-IP, which showed no difference between the two methods of elution.  However, for the 

c11orf51-IP, higher amount of protein was released as a result of peptide elution in 
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comparison to the glycine elution (data not shown).  Therefore, in all subsequent experiments, 

I performed antigenic peptide elution for eluting protein after immunoprecipitation 

experiments. 

2.5 The  c11orf51  protein  is  associated with  the  active  form  of 

human APC/C 

In order to address how much of c11orf51 in HeLa cell extracts is associated with the APC/C, 

sucrose density gradient centrifugation experiments were performed. Immunoblotting with 

Apc2, Apc4, Apc6 and c11orf51 antibodies revealed that all proteins co-sedimented in the 

same fractions (Figure 2-8). 

 

 

Figure 2-8: C11orf51 co-sediments with the APC/C. Sucrose density gradient centrifugation 
of extracts prepared from logarithmically grown HeLa cells. Extracts were sedimented through 
a 10% to 30% sucrose gradient for 18 hours and fractionated into 36 fractions per gradient. 
APC/C sedimentation was analyzed by immunoblotting (IB) with Apc2, Apc4, Apc6 and 
c11orf51 antibodies.  
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Sucrose density gradient centrifugation indicated that the majority of cellular c11orf51 is 

associated with the APC/C. However, the intensity of the Western blot signal for c11orf51 

after density gradient centrifugation was weak compared to my earlier experiments in which 

cellular extracts were analyzed, perhaps because the concentration of c11orf51 in the sucrose 

density gradient fraction was too low.  Therefore, it could be possible that the c11orf51 

protein is distributed all across the gradient.  Another possibility is that the antibody is not as 

sensitive as other anti-APC/C antibodies in recognizing the c11orf51 protein despite all of the 

protein being associated with the APC/C. To test if all APC/C is associated with c11orf51, I 

performed a Re-IP experiment for c11orf51-associated APC/C after a first Apc3-IP 

experiment from logarithmically grown HeLa cells. To ensure that c11orf51 was depleted 

from the extract, I used a large excess of beads compared to the input (APC/C). 

 

Figure 2-9:  Presence of two APC/C populations: c11orf51-bound and -unbound. Native 
APC/C (input) was purified via Apc3 antibody-coupled beads and was subsequently used for a 
Re-IP step using c11orf51 antibody-coupled beads. To ensure complete depletion of 
c11orf51p, beads were provided in excess and the Re-IP step was performed using two 
different beads to lysate volumes (A and B). SDS-PAGE and Western blotting (WB) was 
performed on Apc3-immunopurified native APC/C (lane 1), the flowthrough after c11orf51 
Re-IP (lane 2 and 3), c11orf51 antibody coupled beads after Re-IP (lane 4 and 5) and lysate 
from logarithmically (log) grown HeLa cells (lane 6).  

Western blotting analysis using c11orf51 antibody confirmed that most c11orf51 bound to α-

c11orf51-beads since no c11orf51-specific band could be observed in the unbound fraction 
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(panel 3, lane 2 and 3). However, some APC/C could be detected in the unbound fraction after 

c11orf51 Re-IP in Western blot using Apc4 and Apc6 antibodies (panel 1 and 2). This 

indicates that not all APC/C molecules are associated with c11orf51 and that c11orf51 is 

limiting in amounts in comparison to other APC/C subunits.  Whether or not this has a 

functional implication towards APC/C activity remains to be seen.  It would therefore be 

interesting to see the differences in activities of c11orf51-bound and c11orf51-free APC/C 

populations.  

Immunoblotting on samples taken every 90 to 120 minutes within 14 hours after release from 

a double thymidine arrest showed that the c11orf51 protein is present continously during the 

cell cycle (Figure 2-10). However, c11orf51 signal intensities were slightly increased at some 

time points in Apc3-IP eluates (lane 4 to 6; mitotic and G1 stage). Further analysis will be 

required to test whether c11orf51 levels are constant or whether the apparent increase of 

c11orf51 protein levels is a reproducible observation. 

 

 

Figure 2-10:  Analysis of the c11orf51 protein levels during different cell cycle stages. Cells 
were synchronized by double thymidine arrest/release protocol and samples were taken at the 
indicated time points.  Apc6 serves as a loading control. Cyclin B levels are low during S (0h 
to 4h) and G2 (4h to 6h), accumulate as cells reach the mitotic stage (M) at around 8h and 
decrease again in G1 (12h and 13.5h) due to degradation of cyclin B.  

In order to address if c11orf51 is associated with active APC/C, ubiquitilation assays were 

performed using APC/C that was immunoprecipitated with c11orf51 antibody. APC/C was 

immunopurified from interphase extracts using c11orf51 antibody (1006 G) or Apc3 



63 

 

antibody-coupled beads. Bound protein was eluted with α-c11orf51 or α-Apc3 antigenic 

peptide solution to isolate native APC/C. A fraction of the eluate was analyzed by SDS-

PAGE and silver staining to adjust for similar amounts of APC/C to be used in the 

ubiquitilation reactions (Figure 2-11). Purified APC/C was used in an in vitro ubiquitylation 

assay, where I125-labeled human cyclin B1 fragment (amino acids 1-87) served as the 

substrate protein. The phosphorimage depicted in Figure 2-11 shows that the c11orf51 

antibody purifies APC/C from interphase extracts that is similarly active as Apc3-

immunoprecipitated complex. Moreover, APC/C activity can be stimulated by addition of the 

co-activator Cdh1. We conclude that c11orf51 protein associates with the active form of 

APC/C, which further indicates that c11orf51 protein does not inhibit APC/C ubiquitylation 

activity towards its mitotic substrates, at least not if APC/C is activated by Cdh1. 
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Figure 2-11:  Ubquitin-ligase activity of APC/C after immunopurification from interphase 
extracts using α-APC3 and α-c11orf51 antibodies. (A)  Silver staining of the immunopurified 
APC/C complex. (B) Normalized for APC/C concentration purified using different antibodies 
before performing the ubiquitilation assays. (C) In vitro ubiquitilation assay using [I125]-
labeled human cyclin B fragment (amino acids 1 to 87, cycB (1-87)) as model substrate. As 
controls, the ubiquitilation reaction mix including the antigenic peptide solution without 
APC/C was used. 

2.6 Localization  of  the  c11orf51  protein  within  the  APC/C  by 

electron microscopy  

The APC/C performs its enzymatic function through the concerted action of its numerous 

subunits (Passmore and Barford, 2004). Information about the overall APC/C structure and 

the 3D organization of its subunits is necessary for understanding the mechanisms of 

ubiquitylation reactions mediated by this complex. Moreover, localization of c11orf51 protein 

within the 3D structure of APC/C might help to better understand the role of c11orf51 within 

APC/C and to interpret interaction studies or experimental observations. 

All experiments so far showed that c11orf51 is associated with the APC/C during all cell 

cycle stages, indicating that it is a constitutive subunit of human APC/C. We used antibody-

labeling and negative staining electron microscopy (EM) analysis of human APC/C to address 

the localization of c11orf51 in the APC/C complex.  
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Therefore, I isolated human APC/C from asynchronous HeLa cells using Apc3 antibody-

coupled beads, followed by peptide elution to obtain functional APC/C. The purified complex 

was further prepared for EM analysis (in collaboration with Holger Stark, MPI-Göttingen, 

Germany). To localize APC/C components by antibody labeling, the antibody has to 

specifically recognize its native epitope. As previously shown in Figure 2-3, c11orf51 

antibody 1006 G could specifically purify APC/C from HeLa cell lysate, indicating that the 

1006 G antibody recognizes its epitope on c11orf51 within the APC/C. Therefore, the 

antibody 1006 G was used for this experiment. Native APC/C was incubated with decreasing 

amounts of antibody, starting at a molar IgG to APC/C ratio of 1:2. Theses samples were 

analyzed by negative staining for the formation of immunocomplexes that contain two APC/C 

particles (dimers) which are crosslinked via one c11orf51-specific immunoglobulin (Figure 

2-12). An antibody to APC/C ratio of about 1:5 yielded samples with the highest number of 

dimerized APC/C. The antibody-mediated APC/C dimer formation confirmed that c11orf51 is 

a constitutive subunit. Based on the raw image data, we suspect that the c11orf51 protein is 

located at the platform domain of the APC/C. A more detailed analysis of the localization of 

c11orf51 within the APC/C by negative-staining EM is currently under investigation (Holger 

Stark, MPI-Göttingen, Germany). 

 

Figure 2-12: c11orf51 antibody labeling and negative staining-electron microscopy of human 
APC/C. (A) Selected raw images of human APC/C. Native APC/C was incubated with 
c11orf51 antibody 1006 G at a ratio of IgG to APC/C of about 1:5, resulting in formation of 
the APC/C-IgG-APC/C complex. Complexes were formed by crosslinking two APC/C 
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molecules to one c11orf51-specific immunoglobulin. The arrows marked in the drawing on the 
top represent that the APC/C can rotate at the IgG binding site. 

2.7 iTRAQ labeling and quantitative mass spectrometric analysis 

of human APC/C 

The biochemical and EM-structural data so far supports the notion that c11orf51 is a 

constitutive subunit of human APC/C. However, because it is not possible to obtain 

quantitative data by Western blotting experiments based on enhanced chemiluminescence, we 

applied a quantitative proteomics approach to further verify this observation. If c11orf51 is a 

bona fide subunit of human APC/C, protein levels of APC/C-bound c11orf51 should remain 

constant throughout the cell cycle. In addition, we aimed to establish a protocol allowing 

quantifying APC/C components and APC/C associating proteins during the cell cycle, which 

might help in better understanding the regulation of APC/C during the cell cycle. 

In this experiment, immunopurified APC/C was chemically labeled using isobaric tags for 

absolute and relative quantification (iTRAQ) in combination with mass spectrometry (LC-

MS/MS) (in collaboration with Thomas Koecher and Karl Mechtler, IMP, Vienna). One 

major advantage of this method is that it allows quantifying proteins from different samples in 

one single MS/MS run, thereby reducing experimental errors. Therefore, I immunopurified 

APC/C from different stages during the cell cycle. Since peptide and glycine elutions are not 

conducive for quantitative MS/MS approach through iTRAQ labeling, I tested different 

APC/C elution procedures as will be described later in this section.  

iTRAQ is a chemical labeling technique based on stable isotopes that allows multiplexing of 

up to eight different samples on the peptide level (Pichler et al., 2010). In this study, we 

applied the four-plex labeling strategy. Purified protein is subjected to reduction and 

alkylation steps, followed by digestion with trypsin and derivatization of total peptide with the 

iTRAQ reagents, where primary amines are tagged via N-hydroxysuccinimide (NHS) 

chemistry (Ross et al., 2004). The iTRAQ labels consist of a charged reporter group, that is 

unique to each of the four reagents, an amine-reactive group and a neutral balancing group in-

between, which is necessary to maintain the total isobaric mass of 145 Da for all labels 
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(isobaric, by definition, implies that any two or more species have the same mass but different 

configuration) (Burkhart et al., 2011; Zieske, 2006). The reporter group is a tag with a mass of 

about 114, 115, 116 or 117 Da, depending on isotopic combinations of 12C/13C and 16O/18O in 

each of the four reagents. (Yan and Chen, 2005). Since the label does not change the 

physiochemical property of the peptide in LC-MS, identical peptides with different labels are 

selected for fragmentation as a single precursor, which increases sensitivity. Following 

collision-induced dissociation (CID), the iTRAQ-tagged peptides fragment to release the four 

reporter group ions which appear as distinct masses between m/z 114.1-117.1, while the 

remainder of the sequence informative y- and b- ions remain as additive isobaric signals 

(Zieske, 2006). This enables MS/MS-based relative quantification of the same peptide across 

the four labeled samples in one single measurement, which minimizes experimental errors. 

Chemical noise on the MS/MS level is also minimized, which improves accuracy, especially 

of low-abundant proteins in a complex sample. The iTRAQ labeling strategy is particularly 

useful for comparing different biological states (e.g. normal, diseased and drug-treated 

samples) simultaneously or to quantify proteins during a time course study, as it is the case 

for the cell cycle. We applied this method to study changes in the protein composition of 

human APC/C during the cell cycle stages G1, S, G2 and prometaphase. Thereby, protein 

levels of APC/C-subunits should remain constant throughout the cell cycle.  
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Figure 2-13: Isobaric tags for relative and absolute quantification (iTRAQ). Modified after 
(Yan and Chen, 2005). (A) Structure of iTRAQ reagents, consisting of a reporter group, a 
balance group and an amine-specific reactive group. (B) Strategy of iTRAQ labeling. APC/C 
isolated from four different cell cycle stages is proteolysed by trypsin. The resultant peptides 
are labelled with individual iTRAQ reagents which differ in the length of the reporter group. 
The labelled peptides are combined and analyzed by liquid chromatography and tandem mass 
spectrometry (LC-MS/MS).   

Purified proteins have to be compatible for iTRAQ labeling. Because the N-

hydroxysuccininimide-reactive group that is used for derivatization reacts rapidly with any 

primary or secondary amine, buffer or washing solutions that contain an amine group have to 

be omitted in immunoprecipitation experiments. For this reason, Tris buffer was replaced by 

1x PBS for washing steps and TEAB was used to neutralize the protein sample after acidic 

elution. Moreover, glycine could not be used for elution. Therefore, I first tested iTRAQ-
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compatible elution solvents for their capability to elute immunopurified APC/C. The silver 

stain in Figure 2-14 shows that hydrochloric acid (HCl) (with and without 30% MeOH), 

Trifluoroacidic acid (TFA) or 2% formic acid (CH2O2) all worked equally well. For the 

following experiments, I decided to use HCl as the elution solvent.  

 

Figure 2-14: Testing different eluants for their ability to release proteins bound to antibody 
beads.  

For iTRAQ labeling experiments, HeLa cells were arrested in the cell cycle stages G1, early 

S, and G2 by double thymidine arrest release. To obtain prometaphase cells with an active 

SAC, cells were treated with nocodazole for 16 hours. Cell cycle  synchronization efficiency 

was monitored by FACS analysis using PI buffer and by immunofluorescence microscopy 

using antibodies against Aurora B kinase for G1, G2 and PM or proliferating cell nuclear 

antigen (PCNA) for S phase (Figure 2-15). Aurora B kinase is present in G2 phase but absent 

in G1 phase due to its APC/C-dependent proteolytic degradation (Stewart and Fang, 2005). In 

prometaphase, Aurora B localizes to the centrosome. PCNA is present on the chromatin of 

cells during DNA synthesis. APC/C was isolated via Apc3 antibody-coupled beads. To ensure 

that similar amounts of sample were subjected to iTRAQ labeling and quantitative 

measurements, protein levels were controlled by silver staining. Figure 2-15 shows the silver 

stain of the three biological replicates that have been used for quantification of APC/C 

subunits and MCC proteins. Each replicate was measured three times. Therefore, the final 

data (Figure 2-16) represents the mean values of nine experiments.  
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Figure 2-15: iTRAQ labeling and quantitative mass spectrometry was performed from three 
biological replicates. (A) FACS profile using PI buffer confirms that cells have been arrested 
in the respective cell cycle stage. (B) Immunofluorescence staining of one biological replicate 
sample using Aurora B and PCNA antibodies. (C) Silver stain of Apc3-immunopurified 
APC/C which was used for iTRAQ labeling and quantitative MS/MS analysis.  

For quantitative mass spectrometry, purified APC/C was alkylated, and digested with trypsin 

followed by incubation with iTRAQ reagents for derivatisation. Samples from one biological 

replicate, containing G1, G1/S, G2 and prometaphase were combined and the labeled peptides 

were separated by liquid chromatography-MS (LC-MS). Collision induced dissociation (CID) 

resulted in fragmentation of the peptides into reporter ions, which were analyzed by tandem 

mass spectrometry (MS/MS). To quantify the amount of one protein in one cell cycle stage 

relative to another cell cycle stage, one state has to be used as reference. We decided to use 

the prometaphase state as a reference state and normalized the reporter ions of the other 

iTRAQ channels intensities accordingly. Therefore, fluctuations in protein levels were 

analyzed relative to the prometaphase state, whose measured value was set to one. We chose 

prometaphase as the reference stage because it is known that MCC proteins are bound to the 

APC/C in early mitosis. Consistent with this, we found that levels of BubR1, Mad2, Bub3 and 

Cdc20 were high in prometaphase and significantly reduced in G1, S and G2. In contrast, 

Cdh1 protein levels were high in G1 and decreased in the other cell cycle stages. This is 

consistent with the fact that Cdh1 activates the APC/C later in mitosis and remains associated 

until the end of G1. Moreover, all APC/C subunits could be quantified, including the recently 

identified Apc16 subunit. Their protein levels remain largely constant throughout the cell 

cycle. However, some APC/C subunits seem to be more abundant during some cell cycle 

stages. The iTRAQ data will be discussed in chapter 3.2.1. Importantly, c11orf51 was also 

found. Levels of c11orf51 remain largely constant throughout the cell cycle, which confirms 

the semi-quantitative Western blot results and further supports the notion that this protein is a 

constitutive subunit of the APC/C. MCC proteins and APC/C co-activator proteins could be 

accurately quantified, which validates this technique as a sensitive tool to resolve APC/C 

composition during time. Therefore, future studies can be directed towards the composition of 

other APC/C associating proteins using this technique, which might lead to a better 

understanding of APC/C regulation during the cell cycle.  
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Figure 2-16: combined result of iTRAQ labeling and quantitative MS/MS analysis of three 
biological replicates. Three replicates were measured three times and the mean value of each 
experiment was used for these graphs. Prometaphase was used as the reference state and the 
value measured on this sample was set to one. For simplificity, this is not depicted in the 
graphs. (A) MCC proteins (Cdc20, Mad2, BubR1, and Bub3) are associated with the APC/C in 
mitosis, but not in other cell cycle stages. Cdc20 is not only a MCC component but also an 

A 

B 
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APC/C activator in mitosis, but not in G1. Cdh1 is associated with APC/C in G1, but not in 
mitosis. (B) Quantification of APC/C subunits from the cell cycle stages G1, S, G2 and PM. 
All APC/C subunits remain relatively constant throughout the cell cycle. However, levels of 
Apc1, Apc2, Apc5, and Cdc26 differ significantly, which will be discussed in chapter 3.2.1. 
The c11orf51 protein could be detected in all cell cycle stages. 

2.8 What is the biological function of c11orf51? 

The results so far confirmed that c11orf51 is a newly identified subunit of human APC/C, but 

its function is still largely unknown. Previous studies  have shown that depletion of c11orf51 

by RNAi causes aberrant cell cycle progression in human cells and that the gene is 

misregulated in breast cancer cells (Kittler et al., 2004; Olson et al., 2010), indicating that 

c11orf51 has a function in mitosis, which is consistent with c11orf51 being a subunit of the 

APC/C. However, cell cycle defects that are caused by APC/C misregulation can have various 

reasons. APC/C malfunction can occur when the complex is directly perturbed and therefore 

unable to exhibit its function.  Alternatively, defects in other regulatory mechanisms that act 

on the complex could result in misregulation of the APC/C.  To gain better knowledge about 

the biological role of c11orf51, loss-of-function studies in combination with 

immunofluorescence microscopy and biochemical analysis were performed. 

2.8.1 Phenotypic characterization by RNAi and 

immunofluorescence microscopy 

Loss-of-function studies were combined with microscopic analysis for phenotypic 

characterization of c11orf51. To this end, the protein was depleted from HeLa Kyoto cells 

using siRNA (Dharmacon; see materials and methods) and esiRNA (Kittler et al., 2004) (see 

materials and methods). RNAi in human c11orf51-LAP cells (hc11orf51-LAP) was 

exclusively performed with esiRNA’s. Cell lysates were prepared and knock-down efficiency 

was controlled by Western blot analysis using c11orf51 antibodies. Untransfected cells which 

were only treated with RNAi-reaction mix without siRNA or esiRNA, were used as negative 

controls (Figure 2-17). Immunoblotting of cell lysates using c11orf51 antibody confirmed that 

c11orf51 can be efficiently depleted in both cell lines 48 hours after transfection.  
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Figure 2-17: c11orf51 can be efficiently depleted in HeLa Kyoto cells and in hc11orf51-LAP 
expressing cell pool using esiRNA and siRNA. (A) C11orf51 RNAi in Kyoto cells using 
siRNAs. Western blot using Apc6 antibody confirmed equal protein loading. (B) Depletion of 
c11orf51p in hc11orf51-LAP expressing cells using esiRNAs. Western blot using α-GFP and 
α-c11orf51 antibodies confirmed that depletion of both GFP-c11orf51 and endogenous 
c11orf51 was efficient. In both experiments, protein levels of c11orf51 were significantly 
reduced 48 hours after transfection. 

The c11orf51 protein has been implicated in mitotic progression since depletion of c11orf51 

leads to mitotic defects (Kittler et al., 2004). To confirm these results we analyzed the mitotic 

index after c11orf51 RNAi, by using immunofluorescence staining and microscopy on fixed 

cells. Cells expressing hc11orf51-GFP (hc11orf51-LAP cell pool) were treated with esiRNA 

for 70 hours. Cells were fixed with 4% PFA and stained for cyclin B1 and BubR1. DAPI was 

used to look at chromosome morphology (Figure 2-18). We tried to control for depletion 

efficiency in cells expressing hc11orf51-LAP by immunofluorescence microscopy using GFP 

antibodies. However, the GFP signal intensity was generally weak and therefore not 

informative (data not shown). Anaphase onset is characterized by degradation of cyclin B; 

therefore cyclin B staining was used as a marker for metaphase / anaphase cells. BubR1 is 

located at the kinetochore in prometaphase cells. The signal intensity of BubR1 decreases as 

cells enter metaphase and it becomes absent in late anaphase / telophase due to proteasomal 

degradation of BubR1 (Choi et al., 2009). Therefore, BubR1 was used as an indicator to 

differentiate the prometaphase and the metaphase state. Although Western blot analysis could 

confirm efficient c11orf51 depletion in hc11orf51-LAP cells (Figure 2-17), we could not 

observe a significant increase in mitotic index after c11orf51 RNAi compared to control 

transfected cells (F-Luc). However, when we analyzed mitotic cells only, we observed 
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differences in the abundance of different mitotic stages. Compared to control cells, depletion 

of c11orf51 resulted in a twofold higher metaphase arrest (Figure 2-18). This is consistent 

with c11orf51 being required for proper mitotic progression, as previously observed (Kittler et 

al., 2004). However, the mitotic arrest phenotype as analyzed in this experiment was not 

profound and conclusive enough. Therefore, we aimed to monitor cell cycle progression in 

real time by performing live cell imaging after c11orf51 RNAi.  

 

 

 

A 
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Figure 2-18: Analysis of mitotic stages after c11orf51 RNAi. (A) Immunofluorescence 
staining on fixed hc11orf51-LAP cells was performed, where c11orf51 was depleted by RNAi. 
DAPI was used to stain the chromosomes, BubR1 was used as a marker to distinguish 
prometaphase and metaphase cells, and degradation of cyclin B marks anaphase onset. (B) 
Distribution of cells during various stages of mitosis in c11orf51 RNAi or control (Luciferase) 
RNAi cells. 

2.8.2 Depletion of c11orf51 causes a mitotic progression defect  

The metaphase accumulation phenotype observed in Immunofluorescence microscopy on 

fixed cells after c11orf51 RNAi was not very severe. This could have several reasons. 

C11orf51 depletion may have been incomplete. Alternatively, c11orf51 depletion might cause 

a delay in mitotic progression, rather than an arrest. In this case, it would be difficult to obtain 

a significant population of cells arrested in mitosis for statistical IF-analysis. We therefore 

decided to monitor cell cycle progression by live cell imaging in control and c11orf51 RNAi 

cells (in collaboration with Yusuke Toyoda and Anthony Hyman, MPI Dresden, Germany). 

The live cell imaging technique does not only provide a better ability to visualize 

abnormalities in cell cycle progression but also provides a means by which changes in cell 

morphology or aberrant cell division kinetics processes can be monitored. For this 

B 
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experiment, HeLa cells were used that stably express histone H2B-mCherry (red channel) and 

mouse TUBB-LAP (green channel). H2B-mCherry TUBB-LAP cells were treated with 

esiRNA´s targeting Apc6, c11orf51, and Eg5. Eg5 (Kiff11) is a kinesin like motor protein 

required for centrosome separation. Therefore, Eg5 is important for establishment of a bipolar 

spindle (Harborth et al., 2001). Depletion of Eg5 results in a profound mitotic arrest 

phenotype with cells that round up and eventually undergo apoptosis. Eg5 was therefore used 

to control for transfection efficiency. Firefly-Luciferase esiRNA served as negative control. 

The cells were filmed 24 hours and 48 hours after esiRNA transfection. The filming was 

performed in 5 min intervals, for 20 hours in total. All cells in the movies were manually 

annotated for their cell cycle stage (see Appendix, chapter 5). Mitosis was defined by the 

time of nuclear envelope breakdown (NEBD) until anaphase onset. Exit from mitosis was set 

as the time from anaphase until loss of microtubule bridges of daughter cells (cytokinesis). 

The quantification of the movies is depicted in Figure 2-19. A mitotic defect was observed 24 

hours after Apc6 esiRNA transfection, when compared to Firefly-Luciferase (F-Luc) 

transfected control cells. This mitotic defect was significant as indicated by a p-value of 

<0.05. However, fewer Apc6-depleted cells could be counted after 48 hours, which might be 

the reason for the high standard deviation depicted in Figure 2-19. In contrast, c11orf51 

depletion showed a significant phenotype 48 hours after transfection compared to control 

transfected cells, but not after 24 hours. C11orf51 RNAi resulted in an arrest in mitosis 

(NEBD to anaphase onset); whereas the time those cells took to exit mitosis (anaphase till 

cytokinesis) was not largely unaffected. Knock-down efficiency of the RNAi target genes 

were confirmed by immunoblotting using GFP antibody from whole cell lysate of RNAi 

treated Apc6-LAP and hc11orf51-LAP cells (Figure 2-19). The Western blot also shows that 

maximal c11orf51 depletion was achieved after 48 hours, whereas Apc6 protein levels were 

already reduced 24 hours post-transfection, which correlates with the appearance of mitotic 

phenotypes. The median time that cells spent in mitosis upon esiRNA transfections reveals 

that mitosis lasted on average four times longer in c11orf51 depleted cells, compared to 

Luciferase-transfected cells (48 hours post-transfection) (Figure 2-19). The c11orf51 RNAi-

phenotype observed in live cell imaging microscopy showed aberrant mitotic spindle 

formation and cells that are unable to align their chromosomes and to divide. Moreover, a 

significant portion of cells formed polylobed nuclei after division (Figure 2-19).  
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Figure 2-19: c11orf51 RNAi causes defects in mitotic progression. (A) Time lapse 
microscopy of HeLa cells which stably express histone H2B-mCherry (red) and mouse TUBB-
LAP (green) in c11orf51 depleted cells compared to Firefly-Luciferase (mock) transfected 
cells. (B) Western blots confirming that Apc6 and c11orf51 could efficiently be depleted after 
one day or two days, respectively. (C) Graph showing the manual annotation of the time in 
minutes that cells spent in mitosis (prometaphase and metaphase) or that cells needed to exit 
mitosis (anaphase till cytokinesis) after c11orf51, Cdc16 and F-Luc RNAi for 24 hours. (D) 
Graph showing the movie result of the 48 hours-RNAi experiment. Apc6 transfected cells 
were largely apoptotic by that time. Therefore, fewer cells could be counted after Apc6 RNAi. 

RNAi and time lapse microscopy experiments confirmed that c11orf51 has an important 

function in mitosis. However, this experiment still does not answer the question how c11orf51 

contributes to correct cell division, particularly in respect to its role as an APC/C subunit. To 

further analyze the biological function of c11orf51, I combined siRNA-mediated knock-down 

studies with biochemical analysis.  
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2.8.3 Depletion of c11orf51 seems to retain MCC proteins bound to 

the APC/C 

As mentioned earlier, there are several reasons for misregulation of the APC/C in the absence 

of c11orf51. Depletion of c11orf51 could directly decrease the ability of the APC/C to 

ubiquitylate substrates, or it could indirectly keep the APC/C inhibited by interfering with 

disassembly of APC/CMCC. To distinguish between these possibilities, we analyzed how much 

MCC is bound to the APC/C in mitotic cells depleted of c11orf51. 

To obtain c11orf51 depleted cells in mitosis, I treated cells with c11orf51 siRNA for 32 hours 

and added nocodazole for the last 16 hours. C11orf51 depleted interphase cells were obtained 

by siRNA treatment of asynchronous HeLa cells for 48 hours. Firefly-Luciferase RNAi was 

performed as control. Apc3-immunopurified APC/C and lysates were analyzed by Western 

blotting analysis using antibodies against c11orf51, Apc4, Apc6 and the MCC proteins 

BubR1, Mad2 and Cdc20 (Figure 2-20). Western blotting using c11orf51 antibody confirmed 

that the c11orf51 protein was efficiently depleted, as the c11orf51-specific band was 

markedly reduced after c11orf51 RNAi (panel 6, lane 1 and 2). Apc4 and Apc6 confirmed 

equal loading (panel 1 and 2). Notably, the amounts of Apc3-immunopurified BubR1 (panel 

3, lane 8), Mad2 (panel 5, lane 8) and Cdc20 (panel 4, lane 8) were increased in c11orf51 was 

depleted nocodazole arrested cells, compared to control transfected cells. This was despite the 

fact that the total amount of BubR1 (panel 3, lane 1-4) and Mad2 (panel 5, lane 1-4) in the 

lysate was similar in all samples. Moreover, cellular Cdc20 protein was increased in c11orf51 

depleted cells, upon nocodazole treatment (panel 4, lane 2), compared to Cdc20 levels in 

control transfected cells.  
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Figure 2-20: Depletion of c11orf51 seems to retain MCC proteins bound to APC/C in cells 
arrested with an active SAC. Western blotting analysis of lysates and Apc3-eluates of c11orf51 
siRNA treated cells with and without nocodazole.  Firefly-Luciferase siRNA transfection was 
used as control. Apc4 and Apc6 confirm equal protein loading. The c11orf51-specific band is 
markedly reduced after c11orf51 RNAi as it can be seen in the lysate, confirming that the 
depletion was efficient. (A) Shorter exposure reveals that the cellular protein amount of BubR1 
and Mad2 are similar in all samples, whereas Cdc20 levels seem to be reduced in control 
transfected and nocodazole treated cells. (B) Longer exposure reveals that protein levels of 
immunopurified BubR1, Mad2 and Cdc20 are higher in c11orf51-depleted cells after 
activation of the SAC with nocodazole, compared to control transfected cells (panel 3, 4, and 
5; lane 6). 

It has been shown that Cdc20 is continuously turned over in SAC arrested cells (Nilsson et al., 

2008; Pan and Chen, 2004; Prinz et al., 1998; Reddy et al., 2007). Since I see more Cdc20 in 

c11orf51 depleted cells, the c11orf51 protein might be required for Cdc20 turnover. 

However, two opposing theories currently exist regarding Cdc20 turnover in mitosis. Studies 

in yeast and in human HeLa cells propose that APC/C-mediated Cdc20 ubiquitilation and 

proteolysis is important to maintain the SAC upon spindle disruption (King et al., 2007; 

Nilsson et al., 2008; Pan and Chen, 2004). The observation that more Cdc20 can be found in 

the lysate after depletion of c11orf51 in nocodazole arrested cells, compared to control 

transfected cells, might indicate that c11orf51 plays a role in regulating Cdc20 turnover in 

SAC arrested cells. Thereby, loss of c11orf51 would stabilize Cdc20, indicated by higher 

protein levels of cellular Cdc20. 
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However, if Cdc20 ubiquitilation and turnover is important to retain the checkpoint proteins 

on the APC/C, stabilization of Cdc20 should result in dissociation of MCC from the APC/C 

and should thereby promote premature anaphase onset. We observed the contrary in live cell 

imaging experiments after c11orf51 RNAi (see chapter2.8.2), where cells were delayed in 

mitosis, indicative for prolonged SAC activation.  

As mentioned in chapter 1.10.5, Cdc20 ubiquitilation has also been proposed to promote 

disassembly of checkpoint proteins from the APC/C. In this case, Cdc20 ubiquitilation would 

preceed the release of MCC proteins (Reddy et al., 2007). Structural studies imply that the 

MCC prevents substrate binding to the APC/C, possibly by repositioning Cdc20 (Herzog et 

al., 2009). Thereby, ubiquitilation of Cdc20 might be necessary for changing the structural 

conformation of Cdc20, resulting in MCC disossiaction.  

However, this experiment has to be repeated to validate this result. Therefore, the mentioned 

interpretations are preliminary at this point. Moreover, additional experiments will be 

necessary to further elucidate the biological role of c11orf51.  
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3 Discussion 

3.1 The c11orf51 protein is evolutionary conserved in metazoans 

Bioninformatic sequence alignment of the c11orf51 showed that this protein is evolutionary 

conserved from yeast to human. This comprises the N-terminal part, which is predicted to 

contain an α-helix and a small β-sheet, as well as the C-terminal region. Interestingly, the 

distinct acidic stretch at the C-terminal end of the protein is well conserved in higher 

metazoans such as humans, mouse, frog, fish and worm. Moreover, the length of this acidic 

sequence varies among species; it is longer in higher vertebrates and significantly shorter in 

fungi and plant. Structural prediction using the metaPrDOS-server suggested that this low 

complexity region is disordered. Natively disordered regions seem to fulfill the primary role 

of serving as molecular recognition motifs for proteins or DNA and are involved in many 

biological processes. The flexibility of these regions may be necessary to interact with 

multiple partners and binding to ligands often leads to disorder-to-order transitions (Dyson 

and Wright, 2005). In addition, a conserved tail composed of the hydrophobic amino acids 

tryptophane, methionine and isoleucine (WMI) is exclusively found in the c11orf51 protein of 

higher vertebrates. This suggests that the c11orf51 protein evolved during evolution and that 

it might fulfill an important function. 

Moreover, the bioinformatic analysis revealed that the c11orf51 protein is a distant 

homologue of budding yeast Mnd2. Mnd2 is a constitutive subunit of budding yeast APC/C 

and present in both, mitosis and meiosis (see chapter 1.10.3). This protein has been shown to 

be important for meiotic progression, whereas in mitosis it is not essential (Penkner et al., 

2005). However, Mnd2-depletion in budding yeast caused an accumulation of G2/M cells and 

it has been shown in in vitro transcription / translation experiments that Mnd2 associates with 

the APC/C subunits Cdc23, Apc5, Apc1 and weakly with Apc2 (Hall et al., 2003). Notably, 

the mammalian homologue of Mnd2 has not been reported so far. RNAi-mediated depletion 

of c11orf51 in HeLa cells resulted in a metaphase accumulation phenotype and biochemical 

experiments indicated an effect on Cdc20 turnover in prometaphase arrested HeLa cells. 
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However, our observations imply that c11orf51 is not essential in mitosis, but depletion of 

this protein causes aberrant spindle formation and it delays anaphase onset. However, it does 

not drive cells into apoptosis, which is the case if other APC/C subunits are absent (see 

chapter 1.6). 

In addition to its function in mitosis, c11orf51 could have an important role in meiosis as it 

was found to be a distant homologue of budding yeast Mnd2. However, this hypothesis still 

has to be experimentally confirmed.  

To identify binding partners of c11orf51 in vivo, cross-linking experiments in HeLa cells 

could be performed, although this might not be trivial. Alternatively, in vitro binding assays 

could be applied for identifying associating proteins of c11orf51. For example, different Flag-

tagged APC/C-subunits and MCC-proteins could be expressed in in vitro transcription / 

translation (IVT) reactions using rabbit reticolysate lysate. Recombinant and e.g. His6-tagged 

full length c11orf51 protein and deletion mutants could be added and proteins would be 

further isolated via α-Flag-antibodies. Immunoblotting using α-His-antibody would reveal 

presence of bound c11orf51. 

3.2 C11orf51 is a constitutive subunit of human APC/C 

Tandem affinity purification using the hc11orf51-LAP cell pool could purify the majority of 

APC/C subunits from asynchronous HeLa cells as analysed by LC-MS/MS. In addition, the 

APC/C could be immunoprecipitated using c11orf51 antibodies and Apc3-antibodies could 

co-purify c11orf51, as shown in Western blot experiments. These observations indicate that 

c11orf51 specifically associates with human APC/C during the entire cell cycle. Sucrose 

density gradient centrifugation revealed that the majority of cellular c11orf51 is bound to the 

APC/C as the protein co-fractionated with other APC/C subunits. However, it cannot be ruled 

out that some trace amounts of free cellular c11orf51 exist, which could not be detected with 

our α-c11orf51 antibody. Immunoprecipitation experiments using first Apc3- and then 

c11orf51-antibodies revealed the existence of two APC/C populations in human HeLa cells, 

with one APC/C fraction containing c11orf51, whereas the other one does not. The question 
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that arises is if both APC/C populations differ in their activity. Therefore, in vitro 

ubiquitilation assays could be performed. Negative staining electron microscopy showed 

c11orf51 antibody-mediated formation of APC/C dimers, confirming tight association of 

c11orf51 with the complex. A more detailed localization study of c11orf51 by negative 

staining EM, which is currently in progress, will more precisely show the position of c11orf51 

within the complex. However, our preliminary EM data suggests that the c11orf51 protein is 

located at the platform domain of the APC/C.  

3.2.1 iTRAQ labeling and quantitative mass spectrometric analysis 

of human APC/C 

To confirm the semi-quantitative Western blot result of c11orf51 being a constitutive subunit 

of human APC/C, we applied a sensitive and quantitative mass spectrometric approach. 

ITRAQ labeling (isobaric tags for relative and absolute quantitation) in combination with on-

line liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed to 

analyze c11orf51 protein levels during the cell cycle. Along with this, a protocol was 

established for arresting cells at all cell cycle stages and for performing iTRAQ-compatible 

protein purification. In the presented work, only G1, G1/S, G2 and prometaphase arrested 

cells were used for quantifying APC/C subunits, co-activators and MCC proteins. However, I 

also performed additional synchronization, immunofluorescence and immunoprecipitation 

experiments to obtain mitotic APC/C isolated from the cell cycle stages prometaphase, 

metaphase, anaphase and telophase. The purified proteins from these mitotic stages will be 

analyzed by the iTRAQ method in near future.  

The iTRAQ approach was validated by analyzing protein levels of MCC components and of 

both co-activators, as cell cycle-regulated association of these proteins with the APC/C had 

been confirmed in numerous studies (see chapters 1.7.3 and 1.10.4). Therefore, the 

prometaphase state was used as the reference state and the reporter ions of the other iTRAQ 

channels intensities were normalized accordingly. In addition, the bait protein Apc3 was used 

for normalizing the ratios of other APC/C-subunits and interacting proteins in order to 

compensate for different quantities recovered by the IP. Cdc20 functions in early mitotic 
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stages; in prometaphase arrested cells, Cdc20 is a component of the MCC, whereas Cdh1 is 

associated with the APC/C later in mitosis and remains bound to the complex until the end of 

G1 (see chapter 1.7.3 for details). Consistent with this, the iTRAQ-result shows that Cdc20 

protein levels are reduced in G1, G1/S and G2 compared to prometaphase, whereas APC/C-

bound Cdh1 is abundant in G1 but not in mitosis. BubR1 and Bub3 protein levels are also 

highest in prometaphase and significantly reduced in G1, G1/S and G2, as they inhibit APC/C 

activity in early mitosis by forming the MCC (see chapter 1.10.4 for details). However, Mad2 

protein levels seem to be higher in G1, G1/S and G2 when compared to the levels of other 

MCC components. This might lead to the assumption that Mad2 also associates with 

interphase APC/C. It has been shown that MCC proteins can bind to interphase APC/C, 

although only mitotic APC/C can efficiently be inhibited, possibly due to phosphorylation of 

APC/C subunits (Sudakin et al., 2001). However, it has also been shown that APC/C-bound 

MCC proteins are present in substoichometric amounts (Sudakin et al., 2001). Therefore, it is 

unlikely that Mad2 levels are higher in interphase and early S phase as compared to BubR1 

and Bub3. Since Mad2 is a small protein (26 kDa) fewer peptides could be identified and 

quantified by mass spectrometry. The distinct Mad2 profile can be explained by the weaker 

statistics of the result. However, the general trend of the iTRAQ result on the MCC proteins 

and co-activators confirms that the iTRAQ approach is sensitive enough to measure 

fluctuations in protein levels during the cell cycle.  

To analyze c11orf51 protein levels during the cell cycle, the APC/C was isolated using Apc3 

antibody-coupled beads. As mentioned above, the value measured on the prometaphase 

sample was used as the reference state and normalized to the intensities of the Apc3 subunit. 

The other APC/C subunits depicted in Figure 2-16 can be divided into three classes. The first 

class comprises the subunits Apc6, Apc7, Apc8, and Apc10, which show the most constant 

protein levels during the cell cycle. The second class of proteins consists of the subunits 

Apc1, Apc2, Apc4, and Apc5. These subunits show slightly higher values in G1, early S and 

G2, as compared to prometaphase. The observed fluctuations of these proteins might be 

explained by the 16 hours nocodazole treatment, which might have caused biological artifacts. 

The subunit Cdc26 was found by only one peptide, resulting in a higher standard deviation 

and fluctuation profile compared to the other proteins. The third class comprises the subunits 

Apc11, Apc13, Apc16 and c11orf51. All of these proteins are rather small. Therefore, 
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fluctuations in the protein levels might again be explained by fewer peptides that were used 

for quantification. Importantly, the iTRAQ-profile of c11orf51 does not significantly differ 

from the profile of other known APC/C-subunits, such as Apc11 or Apc16, confirming that 

the c11orf51 protein is a constitutive APC/C subunit. 

3.3 What is the biological function of c11orf51? 

APC/C associated with c11orf51 was similarly active in ubiquitylating its mitotic substrate 

cyclin B1 in in vitro ubiquitylation assays as Apc3-immunopurified APC/C (Figure 2-11). 

Moreover, its ligase activity could be stimulated when the co-activator Cdh1 was added to the 

reaction. This indicates that c11orf51 is not inhibiting APC/CCdh1 ubiquitin ligase activity. 

This is consistent with the fact that RNAi-mediated depletion of c11orf51 resulted in a 

metaphase accumulating phenotype, which suggests that this protein has more of an active 

function. To find out if c11orf51 is required for APC/C´s ligase activity, loss-of-function 

studies and in vitro ubiquitylation assays could be performed. It is likely that depletion of 

c11orf51 does not significantly interfere with the ubiquitylation capacity of the APC/C, at 

least not in interphase, since in vitro-reconstituted APC/C subcomplexes that do not contain 

c11orf51 show ligase activity (Brenda Schulman, personal communication). Moreover, the 

catalytic reaction had been assigned to the subunits Apc2, Apc11 and to the processivity 

factor Apc10 and other subunits are thought to be required for structural integrity of the 

APC/C or serve as platforms for other proteins to bind to the complex (see chapter 1.7 for 

details). However, it might be possible, that c11orf51 is specifically required for Cdc20 

ubiquitylation in early mitosis (see chapter 1.10.5), as Western blotting revealed increased 

levels of cellular Cdc20 in c11orf51-depleted and nocodazole arrested HeLa cells (Figure 

2-20). This could be tested in in vitro ubiquitylation assays of APC/C-bound Cdc20 using 

purified mitotic APC/C which is devoid of c11orf51. Although it is unlikely that depletion of 

c11orf51 destabilizes the complex, the possibility of structural disruption after c11orf51 

RNAi cannot be completely ruled out. Western blotting using Apc4 and Apc6 antibodies 

confirmed that these subunits are present c11orf51 depleted APC/C isolated after Apc3-IP. 

Apc4 is a subunit in the “arc lamp” domain; and it connects the catalytic subunit Apc2 to the 
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TPR-containing subunits via its interaction partner Apc1. The TPR-subunit Apc6 is located 

between Apc3 and Apc4. The fact that both proteins could be detected after Apc3-IP suggests 

that at least the head domain and the arc lamp are unperturbed after c11orf51 RNAi. To 

confirm this notion, Western blot experiments could be performed using more APC/C-

subunits or presence of APC/C subunits could be visualized by silver staining.  

Depletion of c11orf51 by RNAi in nocodazole-arrested prometaphase cells led to two 

observations: More MCC proteins remained stably bound to the APC/C, and the amount of 

cellular Cdc20 was increased, compared to control transfected cells. 

Two possibilities might have led to this result: 

1. c11orf51 might be needed for MCC disassembly. This would be in agreement with the IF 

and live cell imaging experiments, where c11orf51-RNAi caused a metaphase accumulation 

phenotype in HeLa cells, indicative for prolonged APC/C inhibition. Notably, cellular Cdc20 

levels were also increased after c11orf51-RNAi. 

2. c11orf51 might be needed for Cdc20 turnover. Thereby, c11orf51 would control the 

amount of cellular Cdc20 in proliferating cells with an active spindle assembly checkpoint.  

 

Cdc20 has been shown to be continuously synthesized and degraded in SAC activated cells 

(see chapter 1.10.5 and 2.8.3). Furthermore, Cdc20 turnover has been shown to depend on 

APC/C activity, but not on the co-activator Cdh1 (Pan and Chen, 2004). However, two 

opposing theories currently exist which address the role of Cdc20 turnover in early mitosis.  

 Studies in budding yeast and human cells suggest that APC/C-mediated Cdc20 poly-

ubiquitylation and degradation is required to maintain the SAC in nocodazole arrested 

prometaphase cells (King et al., 2007; Nilsson et al., 2008; Pan and Chen, 2004). In contrast 

to this, another study in human cells could show that Cdc20 poly-ubiquitylation mediates 

disassembly of the Mad2-Cdc20 complex from the APC/C, which leads to SAC silencing. 

However, although Cdc20 poly-ubiquitylation was needed for the disassembly of the Mad2-

Cdc20 inhibitory complex, Cdc20 proteolysis did not seem to be required for this process. 

Cdc20 levels are balanced by opposing deubiquitylation events (Reddy et al., 2007; Stegmeier 

et al., 2007).  
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We observed more MCC association with the APC/C and more cellular Cdc20 levels in 

c11orf51 depleted HeLa cells with an active SAC, which favours the hypothesis that Cdc20 

turnover is required for MCC disassembly. This is consistent with our IF / live cell imaging 

data, where c11orf51 depletion delayed anaphase onset, possibly because MCC could not 

disassemble and the SAC could not be silenced. However, based on our preliminary data, 

Cdc20 proteolysis seems to be required for disossiaction of MCC proteins from the APC/C. It 

is believed that the APC/C itself might be capable to some degree of regulating MCC 

disassembly (see chapter 1.10.5 for details). Hence, it might be possible even though 

speculative at this point, that c11orf51 would function as an APC/C subunit to promote 

silencing of the spindle assembly checkpoint by regulating Cdc20 turnover and MCC 

disassembly. 

Live cell imagining experiments after c11orf51 RNAi showed prolonged metaphase arrest in 

HeLa cells and Western blot analysis revealed increased MCC binding in nocodazole arrested 

cells. Therefore, we suspect that the mitotic progression defect observed in c11orf51 RNAi 

experiments is due to prolonged APC/C inhibition mediated by the MCC. To further test this 

hypothesis, APC/C activity could be measured in in vitro ubiquitylation experiments using 

cyclin B1 as a substrate and APC/C which had been purified from c11orf51 depleted and 

control transfected cells after release from a nocodazole arrest. In addition, MCC proteins that 

are bound to the APC/C could be analyzed by Western blotting. C11orf51 RNAi resulted in 

accumulation of cellular Cdc20 in cells that had been arrested with nocodazole. This further 

suggests that c11orf51 might be required for Cdc20 turnover which promotes MCC 

disassembly. Since it has been shown that Cdc20 is continuously synthesized and degraded in 

early mitosis, the protein synthesis inhibitor cyclohexamide could be used to further confirm 

this notion. Thereby, Cdc20 protein levels would decrease in siRNA-untransfected and 

nocodazole arrested cells upon cyclohexamide treatment. If Cdc20 degradation is required for 

MCC disassembly, these cells should be able to overcome the nocodazole-mediated arrest. 

However, if c11orf51 promotes Cdc20 proteolysis in early mitosis, c11orf51 depleted cells 

should arrest longer in prometaphase due to accumulating Cdc20 protein levels and impaired 

MCC disassembly, which would confirm that c11orf51 is required for Cdc20 turnover in 

mitosis. 



90 

 

Although c11orf51 RNAi resulted in accumulation of metaphase cells, we could observe that 

these cells could overcome the arrest after some time. This indicates that c11orf51 is not 

essential for mitotic progression, although it is important for correct cell division. Aberrant 

cell division is often caused by premature activation of the APC/C, which promotes cyclin B1 

and securin degradation even though the SAC had not been satisfied. Our observation from 

the live cell imaging experiment suggests that the APC/C could get activated after some time. 

Besides being a MCC component, Cdc20 is also an APC/C co-activator when not associated 

with MCC proteins. Thereby, in absence of c11orf51, Cdc20 levels might exceed MCC 

protein levels after a prolonged metaphase arrest, which could activate the APC/C. At that 

time, MCC proteins might have captured a large fraction of the APC/C because disassembly 

of the inhibitory complex is perturbed. Therefore, MCC-unbound APC/C molecules might be 

too few to target enough securin and cyclin B1 to promote a switch-like metaphase to 

anaphase transition, resulting in a “mitotic slippage” phenotype. It might be interesting to test 

how much MCC-unbound APC/C has to be activated before cells can progress into anaphase 

and how much cellular Cdc20 needs to accumulate to promote this process. This could be 

addressed by performing (Re-) IP and Western blot experiments using MCC- and Cdc20-

antibodies. In addition, accumulation of Cdc20 after c11orf51 RNAi at different mitotic 

stages could be visualized by immunfluorescence microscopy. However, mitotic exit seems to 

be largely unaffected, indicating that some mechanism might take over to restore APC/C 

levels which can be activated by the co-activator Cdh1 later in mitosis.  

Notably, all these possibilities and suggestions are very speculative. They are based on only 

two observations, MCC accumulation on the APC/C and increasing amounts of cellular 

Cdc20 after c11orf51 RNAi in nocodazole arrested cells. More experiments are necessary to 

further elucidate the biological function of c11orf51 in mitosis. 
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4 Material and Methods 

4.1 cDNA constructs 

Myc-His6-tagged H.s. cyclin B1 (aa 1-87) in pTrcHis2A was used for cloning of cyclin B1 in 

E.coli as an APC/C substrate for ubiquitylation assays. The construct was generated by 

Michael Gmachl. 

4.2 Antibodies 

4.2.1 Antibodies for immunoprecipitation and Western blots 

Antibodies for immunoblotting were used at 1-2 µg/mL in 4% milk-TBS-T unless other 

indicated. The c11orf51 antibodies were raised in rabbits (Gramsch laboratories) against one 

synthetic peptide covering one region of the protein sequence (see Figure 2-3 for details). 

Further antibodies used in immunoprecipitation and Western blots were: rabbit α-Apc3 

(Gieffers et al., 1999), , rabbit α-BUB1B (gift from Gregor Kohlmaier), rabbit α-Mad2 

(Herzog et al., 2009), goat α-GFP (Poser et al., 2008) and mouse α-GFP (11814460001, 

Roche), rabbit α-ANAPC16 (Lawo et al., 2009), mouse α-ANAPC2 (Gieffers et al., 1999), 

and rabbit α-Apc6 (Grossberger et al., 1999). 

protein ID species Produced in  Working 

dilution

Apc2 Apc2‐30 H.s. Mouse  

(monoclonal)

1:100 

(supernatant)

Apc3/Cdc27 3338 H.s. rabbit 1 µg/mL

Apc4 761 H.s. rabbit 1 µg/mL

Apc16 2184 H.s. rabbit 2 µg/mL

BubR1 1676 H.s. rabbit 1 µg/mL

C11orf51 1006 H.s. rabbit 2 µg/mL

Cdc20 450/2 H.s. rabbit 1 µg/mL

Cdh1 452 H.s. rabbit 1 µg/mL  
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Commercial antibodies for immunoblotting were used at a concentration of 1 µg/mL and 

include goat polyclonal GST antibody (Amersham, 27-4577-01), the mouse monoclonal α-

Cyclin B1 (GNS1, sc-245 from Santa Cruz Biotechnology), the α-Tubulin antibody (B-512, 

Sigma), antibody to Aurora B (AIM-1; BD Biosciences) and PCNA (Santa Cruz 

Biotechnology) as well as an antibody to Histone H3 phosphorylated on serine 10 (05-499, 

Upstate Biotechnology). Alexa-488 and Alexa-568-labeled secondary antibodies and DAPI 

for immunofluoresence staining were purchased from Molecular Probes (Invitrogen). 

4.2.2 Antibodies for immunofluorescence microscopy 

Antibodies were used at the following concentrations: chicken α-EGFP, 1:1000 (kind gift 

from the laboratory of Dr. Anthony Hyman) (Hutchins et al.); rabbit α-BubR1 (Gramsch 

Laboratory) kpep 3647, 1:500; mouse α-Cyclin B1 (GNS1, Santa Cruz Biotechnology), 

1:1000; rabbit α-Cdc20 (SAT107, Eurogentec) (Gieffers et al., 1999), 1:500; mouse α-Bub1 

(MBL International) (Herzog et al., 2009), 1:500. Alexa 488, Alexa 568 and Alexa 633 

labeled secondary antibodies as well as DAPI were from Molecular Probes (Invitrogen) 

4.3 HeLa cell culture 

4.3.1 Cultivation of HeLa­TDS and HeLa Kyoto cells 

Adherent HeLa cells were typically grown in 245x245cm tissue culture dishes at 37°C and 

5% CO2 in Dulbecco´s Modified Eagle Medium (DMEM), that is supplemented with 10% 

(v/v) fetal bovine serum (FBS, from PAA Laboratories GmbH, Pasching, Austria), 0.3 µg/mL 

L-glutamine (Sigma-Aldrich), 100 untis/mL penicillin (Sigma-Aldrich) and 100 µg/mL 

streptomycin (Sigma-Aldrich).  
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4.3.2 Cultivation of HeLa cells expressing human c11orf51­LAP 

protein 

To answer the question if the c11orf51 protein specifically interacts with the APC/C, we made 

use of a bacterial artificial chromosome (BAC)-transfected cell pool (Poser et al., 2008) 

expressing tagged c11orf51. Four different cell pools were tested for expression and 

incorporation into the APC/C. They included the mouse or the human version of the gene, 

either C-terminally tagged with the LAP-sequence or N-terminally tagged with a FLAP-

sequence, which only differs from the LAP-tag in an additional Flag-peptide.  The cell pools 

were kindly provided by the laboratory of Anthony Hyman, MPI Dresden. The LAP-tag is 

depicted in chapter 2.2, Figure 2-2. It is composed of a GFP-tag and S-peptide sequences, 

which allows performing tandem affinity purification (TAP). The first purification step is via 

the GFP-moiety, which captures the bait including its associated proteins. Following washing 

steps, bait-bound proteins are cleaved off the beads by using PreScission protease. The second 

purification step is via the S-peptide sequence and bound proteins are elution with glycine. 

The two step purification procedure increases purity and allows for isolating very specific 

binding partners. The only tagged c11orf51 bait protein that successfully incorporated into the 

APC/C was the C-terminally tagged human c11orf51 protein (hc11orf51-LAP). The LAP-tag 

also contains a sequence that encodes for Geneticin resistance. To select for the cells that 

express the recombinant protein, the growth medium was supplemented with 0.5 mg/mL 

Geneticin (G418) sulfate (Calbiochem). The hc11orf51-LAP cells were cultivated in 145 x 20 

mm (15 cm2 dishes) round tissue culture dishes at 37°C and 5% CO2 in Dulbecco´s Modified 

Eagle Medium (DMEM), supplemented with 10% (v/v) fetal bovine serum (FBS, from PAA 

Laboratories GmbH, Pasching, Austria), 0.3 µg/mL L-glutamine (Sigma-Aldrich), 100 

untis/mL penicillin (Sigma-Aldrich),  100 µg/mL streptomycin (Sigma-Aldrich) and 0.5 

mg/mL G418 sulfate. The APC/C was either tandem affinity-purified using the hc11orf51-

LAP expressing cell pool or immunoprecipitated from cultured HeLa cells using a c11orf51-

peptide specific antibody against the endogenous protein. 
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4.4 Cell cycle synchronization  

4.4.1 Mitotic arrest of HeLa cells 

To arrest cells in mitosis with an active spindle assembly checkpoint (SAC-on), one confluent 

245x245cm dish of HeLa cells was splitted 1:5 one day before addition of the spindle poison 

Nocodazole, and treated the next day with 100 ng/mL Nocodazole for 16 – 18 hours. 

Nocodazole inhibits microtubule polymerization. Hence, drug treated cells cannot form 

metaphase spindles, leading to a cell cycle arrest in prometaphase. The absence of 

microtubule attachment to kinetochores activates the spindle assembly checkpoint (see 

chapter 1.10.4). Detached mitotic cells were collected by shaking the dish (“mitotic shake-

off”). 

4.4.2 Cell cycle synchronization of HeLa cells by double thymidine 

arrest­release 

To arrest cells in the cell cycle stages G1, S and G2, one confluent dish of HeLa cells was 

split 1:10 into DMEM (containing 10% FBS, 0.3 µg/mL L-glutamine, 100 units/mL penicillin 

and 100 µg/mL streptomycin) a few hours before addition of 0.2 mM thymidine (Sigma 

T1895). Cells were incubated in thymidine under standard conditions for either 24 hours or 

for 16 hours before they were washed twice with pre-warmed (37°C) PBS and released into 

fresh DMEM media (10% FBS, 0.3 µg/mL L-glutamine, 100 units/mL penicillin and 100 

µg/mL streptomycin) for 7 hours. Cells were treated a second time with 0.2 mM thymidine 

for 16 hours and released again into fresh DMEM (10% FBS, 0.3 µg/mL L-glutamine, 100 

units/mL penicillin and 100 µg/mL streptomycin) after two PBS-washes. Cells arrested in 

early S phase (G1-S) were harvested while they were still in thymidine, G2 phase cells were 

harvested 4-5 hours after release from the second block, and cells arrested in G1 were 

harvested 14-15 hours after release. 
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4.5 FACS analysis  

Cells from one 245x245 square plate were resuspended in 20 ml cold PBS and 1/10th to 1/15th 

of the volume was used for FACS analysis. The cells were centrifuged at 1200 rpm for 4 min 

in a 15 ml Falcon tube and washed with cold PBS. The pellet was then resuspended in 800 µl 

PBS and 2.2 mL of cold Methanol (4°C) for fixation. After washing the cells with cold PBS, 

the pellet was resuspended in 500 µl to 1 mL of PI-buffer (50 µg/mL propidiumiodide, 10 

mM Tris-HCl, pH 7.5; 5 mM MgCl2 and 200 µg/mL RNase A) to digest the RNA, and 

incubated at 37°C for 30 min. The solution can be stored in the dark at 4°C for up to one 

week. Usually, the sample was analyzed directly using the FACS Calibur system. 

4.6 Immunofluorescence microscopy 

HeLa cells were grown on 22 mm coverslips and fixed with 4% paraformaldehyde in PBS at 

RT. Cells that were arrested in G1-S phase of the cell cycle, were fixed in -20°C methanol for 

20 min. Cells from the mitotic arrest experiment were prepared on coverslips using the 

Cytospin centrifuge (Thermo Shandon) at a speed of 1000 rpm, for 5 min. Kyoto cells that 

were used for loss-of-function studies were grown on 22 mm poly-L-lysine-coated coverslips 

(Sigma-Aldrich). After fixation in 4% PFA, the cells were washed with PBS, permeabilized 

with 0.1% Triton-X100 in PBS for 10 min and thereafter blocked for 1hour in 3% BSA-PBS 

solution containing 0.01% Triton-X100. Coverslips were incubated for 1 hour at RT with 

primary antibodies in 3% BSA-PBS solution and detected using Alexa 488 and Alexa 568 

labeled secondary antibodies (Invitrogen). DNA was counterstained with DAPI and slides 

were mounted using ProLong Gold (Invitrogen Molecular Probes).  

4.7 Protein depletion by esiRNA 

EsiRNA´s are enzymatically synthesized siRNA´s (Heninger and Buchholz, 2007; Kittler et 

al., 2007; Yang et al., 2002) which are reported to result in high transfection efficiency with 
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minimal cross-target effects. HeLa Kyoto cells or hc11orf51-LAP cells were seeded in a 6-

well plate (Nunc) at a concentration of 5x104 cells/well in DMEM supplemented with 10% 

FCS and 0.2 mM L-glutamine 16h before transfection. The media of the hc11orf51-LAP cells 

contained 100 U/mL penicillin, 100 µg/mL streptomycin, and 500 µg/mL G418 in addition. 

For transfection, the media of the hc11orf51-LAP cells was changed to media without 

antibiotics four hours before addition of esiRNA. RNAi depletion was performed using 

Oligofectamine (Invitrogen) as the transfection reagent and 3500 ng esiRNA of either human 

Apc6/Cdc16 or human c11orf51. Control transfections included Firefly-Luciferase and Eg5, 

using a concentration of 1800 ng esiRNA, each.  Eg5 is a motor kinesin protein and was used 

as transfection efficiency control. Cells were harvested 48h or 72h after transfection for 

Western blot analysis. The esiRNA’s were a gift from Dr. Mirko Theis and Dr. Frank 

Buchholz, MPI Dresden, Germany.  The sequences of the long dsRNA’s that got digested 

with RNase III to obtain esiRNA’s were the following:  

c11orf51 (Ensembl-ID: ENSG00000110200)  

CCACTTTGTTCCCCTCACTCTTCCCTCGTGTGACTGAGACTCTGTGGTTTAATCTG

GATCGACCCTGTGTGGAAGAGACAGAGCTGCAGCAGCAGGAACAGCAGCATCAG

GCCTGGCTCCAAAGCATCGCGGAGAAAGACAACAACCTGGTTCCTATTGGCAAG

CCAGCCTCAGAGCACTATGATGACGAGGAAGAAGAGGATGATGAAGATGATGAG

GATAGTGAAGAGGACTCAGAGGATGATGAGGATATGCAGGACATGGACGAGATG

AATGACTACAATGAGTCACCGGATGATGGAGAGGTCAATGAGGTGGACATGGAA

GGCAACGAACAGGATCAGGACCAGTGG 

Apc6 (Ensembl-ID: ENSG00000130177) 

AACAGGAATTGCTGCGTTTTCTATTTGAGAACAAATTGAAAAAATATAATAAGCC

TAGTGAAACGGTCATCCCTGAATCTGTAGATGGCTTGCAAGAGAATCTGGATGTG

GTAGTGTCTTTAGCTGAGAGACATTATTATAACTGTGATTTTAAAATGTGCTACAA

GCTTACTTCTGTAGTAATGGAGAAAGATCCTTTCCATGCAAGTTGTTTACCTGTAC

ATATAGGGACGCTTGTAGAGCTGAATAAAGCCAATGAACTTTTCTATCTTTCTCAT

AAACTGGTGGATTTATATCCTAGTAATCCTGTGTCTTGGTTTGCAGTGGGATGTTA
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CTATCTCATGGTCGGTCATAAAAATGAACATGCCAGAAGATATCTCAGCAAAGCC

ACAACACTTGAGAAAACCTATGGACCTGCATGG 

Eg5 (Ensembl-ID: ENSG00000138160) 

TCCCCGTAACAAGAGAGGAGTGATAATTAAAGGTTTAGAAGAAATTACAGTACA

CAACAAGGATGAAGTCTATCAAATTTTAGAAAAGGGGGCAGCAAAAAGGACAAC

TGCAGCTACTCTGATGAATGCATACTCTAGTCGTTCCCACTCAGTTTTCTCTGTTA

CAATACATATGAAAGAAACTACGATTGATGGAGAAGAGCTTGTTAAAATCGGAA

AGTTGAACTTGGTTGATCTTGCAGGAAGTGAAAACATTGGCCGTTCTGGAGCTGT

TGATAAGAGAGCTCGGGAAGCTGGAAATATAAATCAATCCCTGTTGACTTTGGGA

AGGGTCATTACTGCCCTTGTAGAAAGAACACCTCATGTTCCTTATCGAGAATCTA

AACTAACTAGAATCCTCCAGGATTCTCTTGGAGGGCGTACA 

4.8 Protein depletion by siRNA 

HeLa Kyoto cells were seeded in a 6-well plate (Nunc) at a concentration of 5x104 cells/well 

or on 100 x 20 mm round plates (BD Falcon) at a concentration of  about 3.5 x 105 in DMEM 

supplemented with 10% FCS and 0.2 mM L-glutamine 16h before transfection. For the 

hc11orf51-LAP cell pool the media additionally contained 100 U/mL penicillin, 100 µg/mL 

streptomycin, and 500 µg/mL G418. At the day of transfection, the media of the hc11orf51-

LAP cells was changed to media without antibiotics. RNAi depletion was performed using a 

mixture containing four preannealed siRNA oligos targeting different sequences of c11orf51 

(Dharmacon;NM_014042): 

1.CUACAAUGAGUCACCGGAU  

2.UCGCGGAGAAAGACAACAA 

3.GGACAUGGAAGGCAACGAA 

4.GGAUCGACCCUGUGUGGAA.  
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Firefly-Luciferase (GL2; Ambion, Cat. No. AM16106) was used as control siRNA and 

Lipofectamine RNAiMax (Invitrogen) as the transfection reagent. Cells grown in 6-well 

plates were transfected using 50 nM siRNA; cells grown on 100 x 20 mm plates were treated 

with 40 nM siRNA. Five hours after transfection, the media was changed to DMEM 

containing all supplements and the cells were harvested 48h or 72h after transfection. 

For Apc3-immunoprecipitation experiments and Western blot analysis, HeLa Kyoto cells 

were seeded at the respective concentration in 100 x 20 mm plate one day before transfection 

in growth medium without antibiotics. RNAi depletion was performed using 40 nM of 

c11orf51 (Dharmacon)- or GL2-siRNA (Ambion). GL2 is Firefly-Luciferase and served as 

control. The cells were either harvested 48h after transfection or they were treated with 100 

ng/µL Nocodazole 32h after transfection. Nocodazole-treated cells were further incubated for 

16h and collected by mitotic shake-off 48h after siRNA-transfection. 

4.9 Live cell imaging after RNAi 

HeLa cells stably expressing histone H2B-mCherry and mouse TUBB-LAP were used for live 

cell imaging analysis (histone H2B-mCherry plasmid is a gift from Dr. Jan Ellenberg). H2B-

mCherry TUBB-LAP HeLa cells were reverse transfected with esiRNA for Cdc16/Apc6, 

c11orf51, Eg5 (Kiff11), and Firefly Luciferase at 100 nM using oligofectamine reagent 

(Invitrogen). The cells were cultured in µ-Slide 8 well (ibidi GmbH, Martinsried, 

Germany). Live cells were filmed after 24 and 48 hours on a DeltaVision sectioning 

microscope system equipped with an IX71 microscope (Olympus) and a CoolSnap HQ CCD 

camera (Photometrics). Time-lapse images were taken at 5 min intervals and 13 sections with 

1 µm steps along z axis, deconvolved, and maximally projected to generate movies. All cells 

in the movies were manually annotated for the cell cycle stage to measure the duration of 

mitosis (from NEBD until anaphase onset) and mitotic exit (from anaphase until the loss of 

Microtubule Bridge of daughter cells).  

To confirm that the knock-down of the RNAi target genes were specific, whole cell lysate of 

the RNAi treated cells was resolved in SDS-PAGE and transferred onto a nitrocellulose 
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membrane. The membrane was incubated with primary and secondary antibodies, using α-

GFP (mAb, Roche) and α-mouse IgG-HRP conjugate (BioRad, 171-6516), respectively. ECL 

reagent (GE healthcare) was used for the developing step. 

4.10 Sucrose density gradient centrifugation 

Sucrose density gradients were prepared in ultra-clear centrifuge tubes (14 x 95 mm, 

Beckman) by mixing two sucrose solutions using a GradientMaster (Biocomp). Cell extract 

supernatants were centrifuged at 42 000 rpm (TLA45 rotor) for 15 min in an Optima MAX 

ultracentrifuge (Beckman Coulter). Supernatant containing 2.4 mg protein was layered on a 

10-30% sucrose gradient in TBS-Tween (0.01%). Gradients were centrifuged at 34 000 rpm 

for 18h at 4°C in a Beckman SW40 rotor in a Beckman Optima MAX ultracentrifuge 

(Beckman Coulter). Gradients were fractionated into 400 µl aliquots using an ISCO 

fractionator at flow rate of 1 mL/min. 

4.11 Recombinant protein expression in E.coli 

To obtain human cyclin B1 as a substrate protein for the ubiquitylation assay, the N-terminal 

fragment (aa 1-87) of human cyclin B1, fused to a myc-his-tag was expressed in E.coli. GST-

Hsl1 (aa 667-872) is a fragment of budding yeast protein Hsl1 containing a D-box and a 

KEN-box motif (Burton and Solomon, 2001), fused N-terminally with a GST (glutathione-S-

transferase) tag. The constructs were expressed and purified from E.coli BL21(DE3) strain. 

An overnight starter culture was diluted into two liters of LB medium to OD600 = 0.1. The 

culture was grown at 37°C, until the OD600 reached 0.6. Protein expression was then induced 

with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) and proteins were expressed for two 

hours at 37°C and atmospheric air on a shaker. 
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4.12 Protein purification 

4.12.1 Antibody coupling to Protein A beads 

The antibodies were first bound and then cross-linked to Affiprep protein A beads (BioRad). 

One volume protein A beads was washed twice with 10 volumes TBS-T (20 mM Tris-HCl pH 

7.5, 150 mM NaCl, 0.05% Tween-20) for equilibration. Beads were resuspended in 10 

volumes TBS-T, and affinity purified antibodies were added in a ratio of 1.33 µg antibody per 

1 µl beads. The beads were incubated on an end-over-end rotary shaker for one hour at room 

temperature and subsequently washed three times with TBS-T. After two additional washes 

with 20 volumes of 0.2 M sodiumborate solution (titrated to pH 9 with HCl), the beads were 

resuspended in 20 volumes of the same buffer. After the beads had settled down, a small 

amount of the buffer was used to resuspend solid dimethylpimelimidate (Sigma-Aldrich), 

which was used at a final concentration of 20 mM to initiate the cross-linking reaction. This 

solubilized powder was immediately added to the beads and the mixture was rotated at room 

temperature for 30 minutes. To stop the cross-linking reaction, the beads were incubated twice 

with 20 volumes of a buffer containing 200 mM Tris-HCl pH 7.5 and 150 mM NaCl with an 

incubation time of 10 minutes each, on an end-over-end rotatory shaker. The antibody-

coupled beads were washed twice with TBS-T and stored at 4°C in TBS-T containing 0.05% 

NaN3. 

4.12.2 Purification of human APC/C from HeLa cells 

HeLa cell pellets grown from the cell cycle stages G1, G1/S, and G2, were thawn on ice and 

were resuspended in 700 µl / 1g pellet of CytoBuster Protein Extraction Reagent (Novagen). 

Protease inhibitors (0.1 M PMSF, 20 µg/mL of each aprotinin, pepstatin, and leupeptin) were 

added to the suspension and the cells were incubated on an end-over-end rotary shaker for 20 

min at 4°C to be lysed. Cells arrested in mitosis by means of nocodazole treatment were 

resuspended in 500 µl – 600 µl / 1g of CytoBuster reagent. In addition, protease inhibitors 
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(0.1 M PMSF, 20 µg/mL of each aprotinin, pepstatin, and leupeptin) as well as phosphatase 

inhibitors (4 µg/mL okadaic acid (Alexis), 20 mM NaF, 20 mM beta-glycerophosphate, 10 

mM Na-pyrophsophate, 1 mM Na3VO4) were added to the suspension. The extract was 

cleared by centrifugation at 14.500 rpm for 40 min at 4°C. APC/C was isolated with 

antibodies against Cdc27/Apc3 or c11orf51. Antibodies were coupled to protein A beads 

(BioRad) and cross-linked using DMP as previously described (Harlow, 1988). The 

concentration of the HeLa cell extract that was obtained with this method typically ranged 

from 14 mg/mL to 22 mg/mL. The cleared lysate was further incubated on an end-over-end 

rotary shaker at 4°C for 60-90 min with 1/10 volume of antibody-coupled beads, followed by 

washes with TBS-T (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.01% Tween-20 (Sigma-

Aldrich), 10% glycerol). The APC/C was eluted off the beads by either using 1.3x the bead 

volume of 0.1M Glycine-HCl pH 2.2 solution, followed by neutralization of the lysate with 

1/10th volume 1.5 M Tris pH 9.2, or by two times 30 min incubation with 1.5x–2x the bead 

volume using 1 mg/mL antigenic peptide buffered solution (20 mM Tris-HCl, pH 7.5; 150 

mM NaCl, 5% glycerol, 0.1% Tween-20 (Sigma-Aldrich), 0.5 mM DTT) with pH 7.5. About 

20% of the eluate was analyzed by SDS-PAGE and silver staining. The remaining eluate was 

further used for Western blotting.  

The iTRAQ reagent used for quantitative MS/MS analysis of human APC/C reacts with 

primary and secondary amines. Therefore, Tris buffer was replaced by 1x PBS for washing 

steps and elution was performed with 0.1M hydrochloric acid (HCl). Eluted protein was 

neutralized using an equimolar amount (to the elution solvent) of TEAB (triethylammonium 

bicarbonate).  

4.12.3 Tandem Affinity Purification of human APC/C using the 

hc11orf51­LAP cell pool 

LAP-purification was performed using HeLa cells expressing C-terminally LAP-tagged 

human c11orf51. Cells were extracted in one pellet volume of lysis  buffer (50 mM HEPES-

KOH, pH 7.5; 5 mM EDTA, 150 mM KCl, 10% glycerol, 1% Triton X-100, 20 mM beta-

glycerophosphate, 10 mM NaF, 10 mM Na-pyrophosphate, 0.1 mM PMSF, 1 mM Na3VO4, 1 
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mM DTT and PIM). The extract was cleared by centrifugation at 14.500 rpm for 40 min at 

4°C and further incubated using 1/10th of the lysate volume of GFP-beads for 1 hour at 4°C on 

an end-over-end rotary shaker. After this first purification step, the beads were washed 3x 

with wash buffer (50 mM HEPES-KOH, pH 7.5; 5 mM EDTA, 150 mM KCl, 10% glycerol, 

0.05% NP-40, 20 mM beta-glycerophosphate, 10 mM NaF, 10 mM Na-pyrophosphate, 0.1 

mM PMSF, 1 mM Na3VO4, 1 mM DTT and PIM) and 2x with cleavage buffer (wash buffer 

without PIM). For cleavage, the beads were transferred to 1.5 mL low-retention eppendorf 

tubes and 300 µl cleavage buffer was added per 50 µl beads. After addition of 3 µl 

PreScission Protease, the beads were incubated for 30 min at 4°C on an end-over-end rotary 

shaker. After centrifugation at 1000 rpm for 2 min, the supernatant was saved and the beads 

were washed one additional time with 100 µl cleavage buffer. Both solutions were combined 

and incubated with 50 µl S-protein beads for 1 hour at 4°C, rotating. The beads were again 

washed 3x using wash buffer and 3x with 150 mM KCl to remove the detergents for later 

MS/MS analysis. For elution, the beads were incubated two times for 5 min at 4°C on an end-

over-end rotary shaker with 1.3x bead volume of 0.1M Glycine-HCl pH 2.2 solution. Both 

elutions were combined and the pH was neutralized by addition of 1/10th the elution volume 

using 1.5 M Tris-HCl pH 9.2. The final pH that was suitable for MS/MS was 8.0. About 20% 

of the eluate was analyzed by SDS-PAGE and silver staining; the remaining 80% was 

subjected to in-solution digest using trypsin. 

4.13 iTRAQ labeling and protein digestion 

iTRAQ (isobaric tag for relative and absolute quantitation) is a quantitative Mass 

Spectrometric approach to identify and quantify proteins from different sources in one single 

experiment making use of isotope coded covalent tags (Ross et al., 2004) (see chapter 2.7 for 

details). For quantitative mass spectrometric analysis of the APC/C during four different cell 

cycle stages, proteins were tryptically digested and the resultant peptide mixture was labelled 

using reagents from the iTRAQ reagent kit (Applied Biosystems; Foster City, Ca, USA) as 

described (Koecher et al., 2009; Ross et al., 2004). Protein eluates were adjusted to pH 8 

using 0.5 M triethylammonium bicarbonate (TEAB). Disulfide bonds were reduced in 5 mM 
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Tris-(2-carboxyethyl)phophine (TCEP) for 1 hour at 60°C, followed by alkylation of the 

cysteine residues with 10 mM methylmethanethiosulfonate (MMTS) for 30 min at room 

temperature. Proteins were digested with mass spectrometry-grade modified trypsin 

(Promega, Madison, WI) at 37°C over night. For labelling, each iTRAQ reagent was 

dissolved in 70 µl pure ethanol (Merck KGaA, Darmstadt, Germany) and added to the 

respective peptide mixture. Prior to LC-MS/MS, the labelling reactions were stopped with 

0.1% TFA and the four samples were mixed. Ethanol was removed by drying down the 

solvent to approximately 5 µl in a vacuum centrifuge. The peptide mixtures were again 

dissolved in 25 µl 0.1% TFA and analyzed by LC-MS/MS.  

4.14 HPLC and Mass Spectrometry 

All Nano-HPLC-MS/MS analysis were performed on an UltiMate 3000 RSLCnano LC 

system (Dionex), equipped with an analytical column (Acclaim PepMap C18, 25 cm x 75 µm 

x 2 µm, 100 Å, Dionex) with the following mobile phases for chromatographic separation: A: 

2% acetonitrile, 0.1% formic acid; and B: 80% acetonitrile, 0.08% formic acid and 10% 

trifluoroethanol. Loading buffer used contains 0.1% trifluoroacetic acid (Pierce). 

For analysis of iTRAQ-labeled proteins, a 300 minutes gradient from 100% A to 40% B was 

used, followed by a short gradient to 90% B (5 min). The HPLC was directly coupled to a 

nano-electrospray ionization source (Proxeon, Odense, Denmark) mounted on a LTQ-

Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) operating in positive ionization 

mode. The MS survey scan was performed in the Orbitrap recording a window between 400 

and 2000 m/z. The resolution was set to 60,000 and the automatic gain control was set to 

1,000,000 ions with a maximal acquisition time of 400 ms. Eluting peptides were analyzed in 

data-depended MS/MS acquisition mode. Minimum MS signal for triggering MS/MS was set 

to 500 and m/z values were put on an exclusion list for 240 s. In all cases one micro-scan was 

recorded. The lock mass option was enabled for both MS and MS/MS mode and 

polydimethylcyclosiloxane ions (protonated (Si(CH3)2O6); m/z 445.120025) were used for 

internal recalibration of the mass spectra (Olsen et al., 2005). Collision induced dissociation 

(CID) was performed with a target value of 3,000 in the linear ion trap, maximal acquisition 
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time 200 ms, collision energy of 35%, Q value of 0.25 and an activation time of 10 ms. HCD 

(Higher Energy Collision Dissociation) was performed with a target value of 100,000 in the 

Orbitrap, resolution of 7,500, maximum acquisition time of 250 ms and a collision energy of 

35%.peptide.  

Mass spectrometric analysis were conducted either on a hybrid linear ion trap/Fourier 

transform ion cyclotron resonance (FTICR) mass spectrometer with a 7-Tesla 

superconducting magnet (LTQ-FT Ultra) or on a hybrid linear ion trap/Orbitrap mass 

spectrometer (both ThermoElectron, Bremen, Germany). The mass spectrometer was 

equipped with a nano-electrospray ionization source (Proxeon Biosystems, Odense, 

Denmark). Metal coated nano ESI needles were used (New Objective, Woburn, MA, USA). 

For LC separation, samples were loaded onto the trap column at a flow rate of 20 µL/min of 

loading buffer and were washed for ten minutes. Thereafter, the sample was eluted from the 

trap column and separated on the separation column with a gradient from 0% to 35% mobile 

phase B in 85 minutes followed by 35% to 60% in 5 minutes at a flow rate of 300 nL/min. 

4.15 Protein  identification,  data  interpretation  and  protein 

quantification  

Proteins were identified searching the data against the human International Protein Index (IPI) 

database using Mascot 2.2.0 (Matrix Science, London, UK), against a customised protein 

sequence database comprising the complete human sequences from Swiss-Prot, TrEMBL, 

PIR, GenBank, EMBL, DDBJ, RefSeq and Celera (hKBMS), plus the Swiss-Prot entries 

corresponding to the human ‘bait’ protein c11orf51. In all cases a peptide mass tolerance of 5 

ppm was used and fragment ion masses were searched with a 0.5 Da mass window. 

For the iTRAQ-labeled proteins, one missed cleavage site for trypsin was allowed. 

Methylthio-cysteine and iTRAQ reagent labeling at the N-terminus and lysine residues were 

set as fixed modifications. Variable modifications included oxidation of methionine, 

phosphorylation of serine, threonine, and tyrosine. Identified proteins were grouped and 

further analyzed with Protein Center (v2.5.0. Proxeon Biosystems, Odense, Denmark). 
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Protein grouping was based on 98% homology. Quantitation of iTRAQ labelled peptides was 

performed with Mascot using the isotopic corrections supplied by the manufacturer (Applied 

Biosystems; Foster City, Ca, USA).  

Data interpretation for iTRAQ: For each selected precursor ion a CID and a HCD spectrum 

was recorded in order to maximize the number of identified and quantified peptides (Koecher 

et al., 2009). Both spectra were merged to a combined CID-HCD spectrum in order to obtain 

quantitative information for all CID spectra. In order to generate CID-HCD data sets, data 

processing was performed using a Perl script (QuantMerge) (Koecher et al., 2009). In short, 

intensities from the 4 iTRAQ reporter ions, m/z 114.112, 115.1083, 116.116 and 117.1150 

were extracted from the mgf-file of each HCD spectrum with a mass tolerance of 10 mDa. 

The intensities of the reporter ions were normalized to 1 and were combined into the 

corresponding CID spectrum, deleting at the same time the respective m/z region of the 

original CID spectrum. Details of the procedure can be found in (Koecher et al., 2009). 

For MS analysis using c11orf51 as “bait”, two missed cleavage sites for trypsin were allowed. 

Carbamidomethylation on cysteine was set as a fixed modification, oxidation of methionine 

as a variable modification. Monoisotopic masses were searched within unrestricted protein 

masses for tryptic peptides. The generation of dta-files for Mascot was performed using the 

Extract MSn program (version 4.0, Thermo Scientific). 

4.16 Electron microscopy 

4.16.1 Preparation of APC/C for electron microscopy 

HeLa cell lysate of unsynchronized cells was prepared as described in chapter 4.12.2 and the 

APC/C was isolated using Cdc27/Apc3 antibody-coupled beads. Bound protein was washed 

four times with 50 bead volumes of TBS (20 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.5 

mM DTT). The APC/C was eluted twice for 15 minutes at 4°C each, using twice the bead 

volume of a Cdc27 peptide solution in TBS (1 mg/mL stock concentration). Purified APC/C 

was directly used for antibody labelling.  
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4.16.2 Localization of c11orf51p on the APC/C by antibody labelling 

Peptide eluted human APC/C preparations were incubated with decreasing concentrations of 

the c11orf51-peptide specific antibody (ID 1006, glycine elution) starting at a molar APC/C 

to IgG ratio of 2:1. At an antibody concentration that yielded a high percentage of APC/C 

dimers, the samples were processed using the GraFix protocol (Kastner et al., 2008) and 

analyzed by negative staining EM. To ensure that APC/C-antibody complexes were not 

formed by accident due to a large number of APC/C molecules, the concentration of particles 

on the EM grid was chosen to be very low. To determine the antibody binding site in this 

labeling experiment, 200 – 300 APC/C-antibody complexes were selected. A more detailed 

localization study of c11orf51 is currently under investigation. 

4.17 In vitro APC/C activity assay 

4.17.1 Oxidative Iodination of proteins 

An N-terminal fragment of human cyclin B1 (aa 1-87, myc-his6-tagged) was iodinated using 

the chloramines T method according to Parker (Parker, 1990). 5 µg of the protein was 

incubated in a 30 µl reaction containing 250 mM Tris-HCl, pH 8.0; 3 µl Chloramine T (10 

mg/mL in H2O) and 3 µl Na125I (DuPont NEN, NEZ-033A, pH 8-10, 100 µCi/µL) for 3 min at 

RT. To stop the reaction, 10 µl of 1 M DTT was added, and the solution was dialyzed two 

times for 2 hours each in a Slide-A-Lyzer Mini Dialysis unit with a molecular weight cut off 

of 3.5 kDa (Pierce, Rockford, IL) against 2x 250 mL of XB buffer (10 mM HEPES-KOH, pH 

7.7; 100 mM KCl, 1 mM MgCl2, 0.5 mM CaCl2 and 1 mM DTT). The iodinated protein was 

then mixed in a ratio (v/v) of 1:1 with 87% glycerol and stored at -20°C. 
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4.17.2 APC/C ubiquitylation assay 

For ubiquitylation assays, 2.5-5 µl of peptide eluted APC/C after either c11orf51 or 

Cdc27/Apc3 immunoprecipitations was incubated in 10 µl XB buffer (20 mM Tris-HCl, pH 

7.5; 150 mM NaCl, 0.02% Tween-20) containing 10 µg ubiquitin (Sigma), ATP regenerating 

system (7.5 mM creatine phosphate, 1 mM ATP, 1 mM MgCl2, 0.1 mM EGTA, 30 U/mL 

rabbit creatine phosphokinase type I (Sigma), 0.25 µg His6-E1, 1 µg of E2 (His6-UbcH10 or a 

mixture of His6-UbcH10 and His6-Ubc4) and 0.2 µg purified FZR1/Cdh1 (as indicated). An 

iodinated fragment of human cyclin B (aa 1-87, myc-his6-tagged) was used as a substrate. 

Reactions were incubated in a thermomixer (1500 rpm, 37°C) for the times indicated and the 

reaction was stopped by addition of 4x SDS-sample buffer (125 mM Tris-HCl, pH 6.8; 4% 

SDS, 20% glycerol, 200 mM DTT, 0.02% Bromphenolblue). The quantification of the 

ubiquitylation reaction was analyzed by SDS-PAGE and phosphorimaging.  

4.17.3 Bioinformatic sequence alignment of c11orf51 

Alignment was performed using MAFFT (Katoh, Misawa, Kuma, Miyata 2002 Nucleic Acids 

Res. 30:3059-3066) and was colored using a clustal-like coloring schema. Conserved 

secondary structure elements were predicted using JNET and are indicated above the 

alignment. Structural prediction was performed using the metaPrDOS-Server 

(http://prdos.hgc.jp/cgi-bin/meta/top.cgi).
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5 Appendix 

Manual annotation of the time that HeLa cells spent in mitosis (NEBD to anaphase onset) and 

the time they needed to exit mitosis (anaphase to cytokinesis) after 24h and 48h RNAi (live 

cell imaging experiment, chapter 2.8.1) 
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6 Abbreviations 

 
Å   Ångström 
 
Ab   antibody 
 
Ama1   activator of meiotic APC protein-1 
 
amp   ampicilin 
 
APC/C   anaphase-promoting complex/ cyclosome 
 
ATP   adenosine triphosphate 
 
a.u.   arbitrary unit 
 
A260, A280  absorption at 260/280 nm 
 
bp     base pairs 
 
BSA   bovine serum albumin 
 
cDNA   complementary DNA 
 
cdc   cell devision cycle 
 
Cdk   cyclin dependent kinase 
 
2D / 3D  two-dimensional / three-dimensional 
 
DAPI   4´,6´-diamino-2-phenylindol 
 
DMEM  Dulbecco´s Modified Eagle Medium 
 
DMP   dimethylpimelimidate 
 
DNA   deoxyribonucleic acid 
 
DMSO   dimethylsulfoxyde 
 
Doc1   degradation of cyclin B protein-1 
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DTT   dithiothreithol 
 
DUB   deubiquitinating enzyme 
 
E1   ubiquitin-activating enzyme 
 
E2   ubiquitin conjugating enzyme 
 
E3   ubiquitin ligase 
 
E. coli   Escherichia coli 
 
EDTA   ethylenediamine tetraacetic acid 
 
EM   electron microscopy 
 
FACS   Fluorescence activated cell sorting 
 
fl   full length 
 
GST   glutathione-S-transferase 
 
Gly   glycine elution (of purified antibody) 
 
h   hour 
 
HCl   hydrochloric acid 
 
His6   His-tag comprising 6 histidines 
 
HECT   homology to E6-AP C-terminus 
 
Hepes   N-2-hydroxyethylpiperazin-N´-2-ethane sulphonic acid 
 
H.s.   homo sapiens 
 
HU   hydroxyurea 
 
IPTG   isopropyl β-D-1-thiogalactopyranoside 
 
IR   isoleucine-arginine 
 
iTRAQ  isobaric tags for relative and absolute quantification  
 
IVT   in vitro translation 
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kDa   kilo Dalton 
 
LAP   localization and affinity purification 
 
LB   Luria-Bertani 
 
log   logarithmic 
 
MCC   mitotic checkpoint complex 
 
MDa   mega Dalton 
 
Mnd2   meiotic nuclear division protein-2 
 
min   minute 
 
MR   methionine-arginine  
 
Noc   nocodazole 
 
OD600   optical density at 600 nm 
 
ORF   open reading frame 
 
PAGE   polyacrylamide gel electrophoresis 
 
PBS   phosphate buffered saline 
 
PCR   polymerase chain reaction 
 
Pds1   precocious dissociation of sister chromatids 
 
PFA   paraformaldehyde 
 
PMSF   phenylmethylsulphonyl fluoride 
 
PVDF   polyvinylidene fluoride transfer membrane 
 
RING   really interesting new gene 
 
RNA   ribonucleic acid 
 
Rpn   regulatory particle non-ATPase 
 
rpm   rounds per minute 
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RT   room temperature 
 
S   Svedberg 
 
SAC   spindle assembly checkpoint 
 
S. cerevisia / S.c. Saccharomyces cerevisiae 
 
SCF   Skp1/Cul1/F-box 
 
SDS   sodium dodecyl sulphate   
 
S. pombe / S.p.  Schizosaccharomyces pombe 
 
Swm1   spore wall maturation protein-1 
 
TAP   tandem affinity purification 
 
TBS   tris-buffered saline 
 
TBS-T   tris-buffered saline supplemented with Tween20 detergent 
 
TEAB   triethylammonium bicarbonate 
 
TEV   tobacco etch virus 
 
TPR   tetratrico peptide repeat 
 
Tris tris-(Hydroxymethyl)aminomethane, 2-amino, 2-(hydroxymethyl), 1-3-

propandiol 
 
tRNA transfer RNA 
 
UV ultraviolet 
 
v/v volume per volume 
 
WB Western blot 
 
WD tryptophane aspartate 
 
Wt wild type 
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