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1. INTRODUCTION 

 
 
1. 1. RNA STRUCTURE 
 

For decades, RNA was seen as a transport molecule, delivering information from DNA 

to protein. The discovery of transfer RNAs (tRNAs) and ribosomal RNA (rRNA) in the 

nineteen fifties didn’t change much about the notion that RNA only plays a minor role in 

cellular processes. tRNA nucleotide sequences and evolutionary comparisons revealed 

important folding patterns. The first three-dimensional structure of a tRNA was 

determined by X-ray crystallography in the nineteen eighties. From this structure it 

became apparent that RNAs need to fold into distinct three-dimensional structures in 

order to execute their cellular function. The final breakthrough in RNA biology was the 

discovery of the group I intron, which is able to catalyze its own removal from the 

precursor RNA molecule. The finding that such RNA enzymes (ribozymes) have both 

functions, the transport of genetic information as well as a catalytic activity, made RNA 

a possible candidate for a important role in a pre-biotic or rather a pre-protein world. 

This hypothesis is nowadays commonly known as the “RNA world hypothesis”. In the 

past years until now, RNA has been found to play key roles in nearly all cellular 

processes, ranging from catalytic functions in the ribosome and splicosome to the 

regulation of gene expression on the post-transcriptional level (mRNA autoregulation, 

small RNAs) and the transcriptional level (X-chromosome inactivation). In any case, the 

correct three-dimensional structure is the key to RNA function.  

 

1. 1. 1. RNA Secondary Structure 
 

Under physiological conditions, RNA exists in a structured, well ordered arrangement of 

secondary and tertiary elements. RNA secondary structure consists of mostly short 

helical regions with single-stranded interceptions (figure 1A). Such helices are stabilized 

by hydrogen bonding of complementary bases and stacking interactions of the coplanar 

aromatic rings of bases. The most common base-pairs in RNA secondary structure are 

the canonical Watson-Crick base-pairs between guanine (G) and cytosine (C) as well as 

adenine (A) and uracil (U). G and C are able to form three hydrogen bonds as 

compared to only two hydrogen bonds between A and U. This explains the higher 
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thermodynamic stability of G:C rich sequences. The presence of the 2'-hydroxyl group 

causes RNA helices to predominantly adopt the A-form geometry. A-form RNA has a 

deep and narrow major groove (deep groove) and a broad and shallow minor groove 

(shallow groove). This burial of discriminating base characteristics in the major groove 

leaves less possibility for proteins to interact specifically with a regular A-form RNA 

(reviewed in Weeks and Crothers 1993). Regions for specific ligand and protein binding 

and catalytic sites are mostly found in single-stranded regions and in regions where the 

helix geometry is perturbed by non Watson-Crick base-pairs, loops or bulges (reviewed 

in Lescoute and Westhof 2006). Among the various non canonical base-pairs found in 

RNA structures, the “wobble” base-pair G:U is the most common. In helices, G:U base-

pairs introduce regions of higher structural flexibility and distinct structural, chemical and 

thermodynamic properties. The pairing results in an additional, non-paired amino group 

in the minor groove and a deeply negative electrostatic potential in the major groove 

and makes such regions important recognition sites for proteins and ligands (reviewed 

in Varani and McClain 2000). 

 

Hairpins consist of a helical region that is closed by a single-stranded loop. The most 

frequently found hairpin loops in RNA structures are tetraloops (figure 1A), most likely 

due to their high thermodynamic stability (Woese et al. 1990). Small hairpins are 

generally more stable, since the entropic penalty to form a hairpin increases with the 

loop size (reviewed in Tinoco and Bustamante 1999). Hairpin loops are key functional 

elements, with many of them being involved in tertiary structure formation, as discussed 

in the next section. In addition, hairpins can be sites of specific recognition. 

 

Internal loops are single-stranded regions linking two helical segments. In comparison, 

regions linking three or more helical segments are called junctions. Internal loops can 

be as small as one or two base-pairs like pyrimidine-pyrimidine or purine-purine 

mismatches. Larger internal loops are suggested to be frequently highly structured and 

important protein binding sites. A prominent example for an internal loop is the 11nt 

GAAA tetraloop receptor (figure 1A). 

 

Bulges form when there is an excess of bases on one side of a helix (figure 1A). Single 

base bulges are either looped out of the helix or stack between the bases of the helix. In 

the latter case they reduce the overall stability of the helix. Bulges can introduce a 
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backbone bend and thereby increase the major groove accessibility at base-pairs 

flanking the bulge. 

 

1. 1. 2. Tertiary Structure 
 

An RNA tertiary structure is a three-dimensional arrangement of secondary elements, 

which is stabilized by the interaction of mainly non-Watson-Crick base-pairs of different 

secondary structure elements and base-backbone or backbone-backbone interactions 

(reviewed in Brion and Westhof 1997, Lescoute and Westhof 2006 and Woodson 2010). 

As mentioned in the previous section, regular A-helical segments have less potential to 

form specific interactions, because discriminatory base-pair edges are buried in the 

deep and narrow major groove (reviewed in Weeks and Crothers 1993). Therefore, 

tertiary interactions occur mainly in stretches of single-stranded RNA or at helical 

regions that are perturbed by mismatched bases, loops or bulges. This explains the 

generally lower thermodynamic stability of tertiary interactions compared to secondary 

interactions. Another factor contributing to the low stability of the overall tertiary fold of 

an RNA molecule is that in many cases backbone-phosphate burial goes along with 

these folding events, resulting in electrostatic repulsion and the loss of chain entropy 

(Moghaddam et al. 2009). 

The classification of tertiary interactions and motifs is inconsistent in the literature. In 

this section, a distinction is made between tertiary structure motifs and tertiary 

architecture. A motif is defined as an elementary tertiary interaction, with one or more 

motifs being necessary to stabilize an overall tertiary architecture.  

 
1. 1. 2. 1. Motifs 

Tertiary motifs involve hydrogen bonds between bases, backbone-phosphates and 

backbone-riboses. Some of the best-studied motifs, such as base triplets and base- and 

ribose-zippers, give a good representation of possible interactions contributing to the 

stabilization of RNA architectures. 

 

Base triplets and quadruplets. Mismatched bases are a common source of tertiary 

contacts, with G:U and A:G being among the most frequently observed (Gautheret et al. 

1994; reviewed in Hermann and Patel 1999 and Varani and McClain 2000). By 

changing the helix geometry, such mismatched bases allow for the formation of triple 
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Figure 1. The P4-P6 domain of the Tetrahymena thermophila group I self-splicing intron as an example for RNA 

secondary and tertiary structure. Figures A – G were adapted from Cate et al. (1996) (A) The secondary structure of 

the ribozyme consists of paired regions (P) that are linked by junctions (J). (B) The colours correspond to figure A. 

The helices P4 and P6 as well as P5a and P5b are coaxially stacked. A sharp kink in J5/5a allows the side-by-side 

docking of the two quasi-continuous helices. Two major sets of tertiary interactions contribute significantly to the 

overall stability of the ribozyme. The first are interactions of residues of the A-rich bulge (coloured in orange) with the 

minor groove of helix P4. The second is the docking of the GAAA tetraloop (coloured in gold) into its receptor 

(coloured in green). (C) The backbone of the A-rich bulge makes a sharp turn which is stabilized by specific binding 

of two magnesium ions (yellow spheres). The residues of the bulge are flipped out and interact with the minor groove 

of helix P4 as well as with the three helix junction of P5a, P5b and P5c via a network of stacking and base-pairing 

interactions. The interaction between the A-rich bulge and helix P4 is further stabilized by a ribose zipper as shown in 

figure D. The hydrogen bonds are shown as dashed lines. (E) Schematic representation of the interaction of the 

GAAA tetraloop with the internal loop of helix J6a/6b (tetraloop receptor). Three adenosines of the tetraloop stack on 

an adenine and a guanine of the receptor, indicated by a dashed box. The first adenine (GAAA) is involved in a triple 
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base-pair as shown in figure F. The packing of an adenine into the minor groove of an acceptor base-pair is also 

called an “A-minor interaction”. The third adenine (GAAA) forms a quadruple base-pair with a guanine from the 

tetraloop and a G:C base-pair of the receptor as shown in figure G. The dashed lines in figures F and G represent 

hydrogen bonds. 
 

 

and quadruple base-pairs (figure 1F and 1G). Triple base-pairs occur when a single-

stranded region or a single, for example bulged out residue approaches the major or 

minor groove of a helical segment. A well-known example for a triple base-pair is the “A-

minor” interaction, which was identified in high abundance in the 50S ribosomal subunit 

and in almost every other tertiary folded RNA. As the name suggests, the interaction 

comprises an adenine residue packed against the 2'-hydroxyls and the minor groove 

edge of an acceptor base-pair (figure 1E and 1F) (Strobel 2002). The energetic 

contribution of A-minor interactions is usually lower than 1 kcal mol-1 (reviewed in 

Woodson 2010). An example for a base quadruple is the GAAA tetraloop receptor motif 

of the P4-P6 domain of the group I ribozyme (figure 1A and 1G) (Cate et al. 1996). 

 

Cross-strand stacking of bases. Single “free” bases and mismatched base-pairs can be 

involved in stacking interactions with other strands. Due to their sometimes periodic 

occurrence, such interactions are also referred to as “interdigitation” or “base zippers” 

(figure 2). Interdigitation contributes significantly to the stability and compactness of 

tertiary structures (reviewed in Hermann and Patel 1999). 

 

Ribose zippers are hydrogen bonding interactions of the backbone-ribose 2'-hydroxyls 

of different strands. One 2'-hydroxyl group is able to form two hydrogen bonds to both 

the 2'-hydroxyl group of another ribose and either the O2 atom of a pyrimidine or the N3 

atom of a purine nucleotide (reviewed in Hermann and Patel 1999). Although the minor 

groove edge of bases is also involved in these hydrogen bonds, the interaction is not 

sequence specific (reviewed in Strobel and Doudna 1997). The contribution of ribose 

zippers to the overall thermodynamic stability of the RNA fold is as small as 1 kcal mol-1 

or even lower (reviewed in Woodson 2010). 
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Figure 2. The T and D loop in tRNA interact via cross-strand stacking of bases. This arrangement is sometimes 

referred to as “interdigitation” or “base zipper”. The two loops are shown in grey. The stacked coplanar bases are 

highlighted in magenta (guanine) and yellow (adenine). The figure was obtained from Hermann and Patel (1999). 

 

 

1. 1. 2. 2. Architectures 

The overall spatial arrangement of RNA segments is called an architecture. Such an 

architecture can be mediated by above mentioned tertiary motifs as well as by standard 

Watson-Crick base-pairs. In most cases, tertiary architectures lead to strong twists and 

sharp turns of the backbone that have to be stabilized by specific ion binding and further 

tertiary motifs (figure 1C). 

 

Stacking and docking. Coaxial stacking and side-by-side docking of helical segments 

are universal themes that change the overall architecture of RNA structures (figure 1B) 

(reviewed in Strobel and Doudna 1997). Coaxial stacking describes the arrangement of 

two or more helices to a quasi-continuous helix. Since such helices are linked by single-

stranded regions, this interaction involves significant backbone aberrations, which are 

stabilized by further tertiary interaction motifs. The organization of helices via their sides 

is called helix docking. Docking is mainly mediated by the interaction of backbone-

ribose 2'-hydroxyl groups, but can involve further tertiary contacts. 

 

Pseudoknots are formed by base-pairing of a hairpin loop with a nearby complementary 

single-stranded region (figure 3) (Pleij et al. 1985; Puglisi et al. 1988). This architecture 
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has a thermodynamic stability that is comparable to secondary structures due to the 

involvement of standard Watson-Crick base-pairs (reviewed in Russell 2008). However, 

the backbone arrangement in pseudoknots leads to highly compact folds with coaxial 

and non-coaxial stacking of helices (reviewed in Hermann and Patel 1999). These 

arrangements are further stabilized by extensive tertiary interactions like base 

quadruples and ribose zippers (Ferré-D'Amaré et al. 1998; Su et al. 1999). 

 

 
Figure 3. Schematic representation of the folding of an RNA pseudoknot. The complementary regions between the 

hairpin loop and the 5’ end of the RNA molecule form an additional hairpin. The two helices stack coaxially to form a 

quasi-continuous helix. The figure was adapted from Puglisi et al. (1988). 

 

 

Kissing complex. The base-pairing of complementary regions of two loops is called a 

kissing complex (Rist and Marino 2001). Like pseudoknots, kissing complexes have a 

high thermodynamic stability of -6 to -13 kcal mol-1 because they mainly consist of 

standard Watson-Crick base-pairs (reviewed in Woodson 2010). In many cases, the 

overall structure of a kissing loop resembles a quasi-continuous helix due to coaxial 

stacking of the flanking stems (reviewed in Hermann and Patel 1999). A prominent 

example comes from tRNA, where the D and the T loop form a kissing complex, which 

is stabilized by additional tertiary contacts of the flanking regions (Quigley and Rich 

1976). 

  

Tetraloop-tetraloop receptor interactions play an important role for long-range 

interactions in the tertiary fold of many RNAs (Costa and Michel 1995). A common 

example is the GAAA tetraloop interaction with its 11-nucleotide tetraloop receptor 

duplex in the Tetrahymena group I ribozyme (figure 1A and 1E) (Strobel 2002). The 

three adenines of the tetraloop are stacked on the bases of the tetraloop-receptor helix. 

This conformation results in a kink in the receptor backbone opening up the minor 
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groove, which can be accessed by the first adenine (GAAA) of the tetraloop to form a 

base triple with an A:U base-pair of the receptor (A-minor interaction). The third adenine 

(GAAA) is involved in a base quadruple with a guanine of the tetraloop and a G:C base-

pair of the receptor (figure 1G). The interaction is stabilized by further hydrogen bonds 

and a ribose zipper between the backbones of the tetraloop and the receptor (reviewed 

in Strobel and Doudna 1997). However, the overall stability of this interaction is small 

with only -2 to -4 kcal mol-1 (reviewed in Woodson 2010). 
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1. 2. RNA FOLDING 
 

RNAs need to fold into distinct three-dimensional structures in order to execute their 

multiple cellular functions like the translational regulation of mRNAs, catalysis, ligand 

binding, protein binding and many more (reviewed in Brion and Westhof 1997). The 

notion that folding is not just a simple collapse into a native structure but rather a 

complex task arose with the finding of stable alternative conformers in isolated tRNAs 

(Hawkins et al. 1977). RNAs inability to easily fold into the functional structure in vitro as 

well is in vivo is commonly accepted (Waldsich et al. 2002; Jackson et al. 2006) and is 

the central issue of the “RNA folding problem”. Herschlag (1995) proposed that the RNA 

folding problem consists of two distinct challenges for a newly synthesized RNA strand. 

First, the RNA has the tendency to get kinetically trapped into non-native conformations, 

and second, some RNA molecules can have different tertiary folds of similar 

thermodynamic stability. However, not all of them are native. 

 
1. 2. 1. RNA Folding is a Hierarchical Process 
 

The general framework for RNA folding is a hierarchical process (figure 4) (reviewed in 

Brion and Westhof 1997). The initial collapse of an RNA strand towards more compact 

structures is induced by the shielding of backbone-charges and leads to the formation of 

stable secondary structures. The largest fraction is formed by simple hairpins of < 10 bp 

(reviewed in Russell 2008). Subsequently, interactions of secondary elements lead to 

the formation of higher order tertiary architectures (reviewed in Brion and Westhof 

1997). However, a factor that makes this process more complex is that in some cases, 

the formation of secondary and tertiary structures is coupled during folding. The 

propagation of secondary structures can be mediated by tertiary structure formation 

(reviewed in Woodson 2010) and sometimes the formation of tertiary structures 

changes the secondary structure (Hilbers et al. 1976; reviewed in Wu and Tinoco 1998). 
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Figure 4. The free energy (E) of RNA secondary structure (1D > 2D) and tertiary structure (2D > 3D) formation.  

Tertiary folding is the spatial arrangement of stable secondary structures. Due to their high thermodynamic stability, 

secondary structures are usually not altered by the process of tertiary folding. Therefore, RNA folding is hierarchical. 

The figure was obtained from Brion and Westhof (1997)  
 

 
1. 2. 2. Thermodynamics of Folding 
 
The folding can be thought of as the sum of all favourable and unfavourable energies 

acting on the RNA primary sequence as well as the chronological order of their 

influence. Base-pairing and base-stacking drive secondary structure formation, but are 

opposed by unfavourable interactions such as the electrostatic repulsion of the 

backbone-phosphates and the loss of chain entropy (Heilman-Miller et al. 2001b). 

Electrostatic repulsion plays an important role in the burial of phosphate-backbones 

upon tertiary structure formation. In order to create active sites in an RNA structure, the 

backbone often adopts sharp turns and kinks. Such arrangements have a low 

thermodynamic stability and, in addition, often are created at the cost of canonical 
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Watson-Crick base-pairs (reviewed in Woodson 2010). Formation of secondary 

structures and formation of such architectures is only possible in the presence of 

cations that neutralize the backbone-charge and allow the strands to get in proximity to 

each other (Soto et al. 2007). Stretches of Watson-Crick base-paired structures have a 

high thermal stability. Once some stable base-pairs have formed, the zipping, i. e. the 

propagation of base-pairing interactions, is fast. Zipping is mainly driven by base-

stacking with a nearest neighbour free energy contribution of -1 to -3.6 kcal mol-1 per 

base-pair (1 M NaCl, 37 °C) (Freier et al. 1986). 

 
1. 2. 3. The Rough Folding Energy Landscape 
 

Despite the fact that there is a thermodynamically most stable interaction for each 

stretch on an RNA molecule, chances are still high that there are alternative interactions 

with a similar thermal stability. Given the length of time needed to search all potentially 

accessible conformational states the question remains how RNA manages to fold on a 

biologically relevant time scale. One solution to this question, known as the Levinthal 

paradox, is the presence of intermediate organizational levels (reviewed in Brion and 

Westhof 1997). Such intermediates are generally described in the framework of folding 

from an unfolded state (U) to one or several intermediate states (I) consisting of native 

and non-native interactions. Such “metastable” intermediates have to be disrupted and 

refolded in order to find the functional, native state (N). Only a small fraction of U (Ф) is 

expected to collapse directly into a native-like conformation, thereby bypassing the slow 

refolding process. The underlying mechanism of two factions of intermediates is called 

the “kinetic partitioning mechanism” (Thirumalai and Woodson 1996) and can be 

explained by the framework of a rough energy landscape (figure 5) (Thirumalai et al. 

2001; reviewed in Chen 2008). In such a landscape, mountains represent 

conformations of low stability such as unfolded structures and accordingly, valleys 

represent conformations of higher stability. The unfolded RNA sits on the highest 

mountain and has to find its way through the rough landscape of valleys and mountains 

to the deepest valley, which is usually the native state. The barrier between valleys 

represents the energy that has to be overcome in order to refold from one conformation 

to the other. Overcoming such barriers slows down the folding process. Accordingly, the  
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Figure 5. RNA folding can be explained by the framework of a rough energy landscape. The highest point 

corresponds to the highest free energy, which is the unfolded state of the molecule, and accordingly the deepest 

valley represents the lowest free energy which is usually the native state. A fraction (Ф) of the molecules directly 

collapses into the native state whereas the rest (1- Ф) adopts alternative conformations with similar thermodynamic 

stability as the native state. Such misfolded states have to be refolded in order to reach the native state. The figure 

was obtained from Thirumalai and Woodson (1996). 

 

 

folding of complex RNAs can take from 1 – 1000 seconds (reviewed in Woodson 2010) 

compared to only about 10 ms in tRNA (Crothers et al. 1974). If the valley is too deep, 

i.e. the thermodynamic stability of the interaction is too high, the molecule may be 

trapped in this non-native intermediate conformation. Individual RNAs may take different 

routes through this landscape, because of slight variations in the environments of 

individual molecules. This explains why individual molecules with the same sequence 

may need different times to fold (reviewed in Woodson 2010). 

 

1. 2. 4. Sequential Folding 
 

A second solution to the Levinthal paradox is the fact that during transcription, 

sequences become available sequentially. The transcription rate of the RNA 
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polymerase II is about 100 nucleotides per second. In contrast, secondary structures 

are formed on a micro- to millisecond timescale (reviewed in Woodson 2010). One can 

assume that the timing, with which regions of the RNA become available during 

transcription, strongly influences the folding pathway. This idea of a sequential fold is 

supported by studies of transcriptional pausing, circular permutations and elongation 

kinetics (Mahen et al. 2010 and references therein). However, interactions that occur 

during transcription are not necessarily functional. Mahen et al. (2010) showed that non-

native interactions can exchange rapidly in vivo, but not in vitro. Interestingly, this is true 

for interactions up to a certain threshold of thermal stability. Above this threshold, the 

interaction is trapped even if an alternative interaction with a higher thermal stability is 

available. These results are in line with a study of Giuliodori et al. (2010) on the cspA 

mRNA, in which the RNA was shown to adopt two different conformations at 37 °C and 

at cold-shock temperatures (< 20 °C). Since the 37 °C structure cannot switch to the 

cold-shock structure upon decreasing the temperature, the structures are expected to 

be determined by co-transcriptional folding at the respective temperatures. Likely, 

during transcription at low temperature, secondary structures are too stable to exchange 

and remain trapped in these interactions. In such a case, the functional RNA structure is 

not the most stable one. 

 
1. 2. 5. Metal Ions and Folding 
 

As mentioned earlier, RNA requires cations (counterions) in order to neutralize the 

negative backbone-charge of RNA (Heilman-Miller et al. 2001b and references therein). 

RNA-ion interactions are complex and it is not easy to break them down into distinct 

classes or simple rules. The effects of ions on RNA depend on the charge, size and 

topology of the ions. It is useful to distinct between ions that are bound to specific sites 

of the RNA molecule and ions that interact indirectly (territorially bound) as part of a 

delocalized ion atmosphere covering the negative surface of RNA (figure 6). Most ions 

remain hydrated when interacting with RNA (outer sphere coordination) (Granot and 

Kearns 1982). However, if the binding energy exceeds the energy of ion hydration, at 

least some or even all water molecules of the hydration layer are removed (inner sphere 

coordination).  
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Figure 6. RNA-ion interactions. (A) A potassium ion (violet sphere) and a magnesium ion (green sphere) bound to 

specific sites of an rRNA fragment. Specific ion binding neutralizes sites of high negative charge density and can 

stabilize fragile backbone architectures. (B) An ion atmosphere around a cross section of an RNA hairpin. The red 

shading indicates the electrostatic potential and the contour lines show the concentrations of counterions of 1.6, 0.8, 

0.4, 0.2 and 0.1 M (from the inside out). The figure was obtained from Draper (2008). 

 

 

Specific ion binding. Backbone-phosphates that come into proximity upon tertiary 

structure formation form cavities of high negative charge density. This is especially true 

for backbone regions that are deformed in order to create active sites of ribozymes. 

Specifically bound magnesium or potassium ions are able to stabilize such fragile 

architectures (Soto et al. 2007 and references therein; reviewed in Draper 2008 and 

Woodson 2010). The strength of this interaction usually exceeds the hydration energy 

and at least some of the water molecules of the first hydration layer are removed. 

Another important contribution of specifically bound ions is their impact on the folding 

pathway. The stabilization of specific regions during the folding process adds a further 

strategy to the variety of folding pathways. Although these effects are essential for RNA 

folding, the energetic contribution of specifically bound ions is thought to be rather 

small, considering the actual number of such ions in all known tertiary structures. Most 

high-resolution crystal structures do not show bound Mg2+ ions at all (reviewed in 

Draper 2008) and only about 200 cations have been shown to be bound in the large 

subunit of the Haloarcula marismortui ribosome (Klein et al. 2004). 
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Delocalized ions represent the major contribution to the free energy of RNA folding 

(Soto et al. 2007) This is attributed to the long-range character of electrostatic 

interactions (Leipply et al. 2009). As a result, the RNA molecule is influenced by all ions 

surrounding it (Misra and Draper 2001). Delocalized ions are suggested to remain 

hydrated and mobile relative to the RNA surface (Granot and Kearns 1982). Therefore, 

instead of tight binding, this interaction resembles an atmosphere of fluctuating ions 

surrounding the negatively charged backbone. Anions are excluded from this 

atmosphere, adding a further contribution to the neutralization of backbone-charges 

(Leipply et al. 2009; reviewed in Draper 2008). 

 

1. 2. 5. 1. Charge Density 

In vitro, the most efficient folding and refolding of RNAs can be achieved in counterion 

mixtures of approximately physiological concentrations (Furtig et al. 2010). This can be 

explained by the diverse effects of different ions on RNA folding. Crucial for the effect of 

ions on RNA folding is the charge density, which can be simplified to the term ζ = Z / V, 

where Z is the valence and V is the volume of the counterion (Koculi et al. 2004). 

Heilman-Miller et al. studied the influence of ions of different charge density on the 

folding as well as on the folding kinetics of the Tetrahymena group I ribozyme (Heilman-

Miller et al. 2001a; Heilman-Miller et al. 2001b). An increasing charge density correlates 

with a more effective stabilization of RNA structures but with slower folding kinetics. 

This is not surprising, considering that folding of the group I ribozyme involves the 

refolding of misfolded intermediates. A stabilization of these intermediates is equivalent 

to an increase of the energetic barrier for refolding (see section 1. 2. 3.). In line with 

these findings is that subdenaturing concentrations of urea increase the rate of folding 

of RNAs in Mg2+ (Pörschke 1976; Pan et al. 1997; Rook et al. 1998; Heilman-Miller et 

al. 2001a). 

The impact of size is explained by the excluded volume of the counterions, limiting the 

number of ions allowed in the atmosphere at the same time. Larger ions cannot 

approach the RNA surface as closely as small ions. This results in weaker electrostatic 

interactions with RNA and weaker competitive binding with monovalent salts (Koculi et 

al. 2004). 
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1. 2. 5. 2. Entropic Contributions 

Entropy changes have considerable influence on the RNA folding energy. This is not 

only true for the loss of chain entropy during the compaction of RNA chains, but also for 

every molecule that interacts with RNA. Ions, proteins and other small molecules lose 

translational entropy upon binding. The fewer molecules that have to bind in order to 

execute the same function, e.g. the neutralization of backbone-charges, the smaller is 

this entropy penalty. Accordingly, there is a more favourable entropy term for Mg2+ 

binding than for Na+ binding (reviewed in Draper 2008). The same principle applies for 

ion release. The release of monovalent ions upon RNA folding and multivalent ion 

binding results in a favourable entropy (Misra and Draper 2000). This explains the lower 

activation energy of transition states in monovalent salts, since more monovalent than 

multivalent ions have to be released (Heilman-Miller et al. 2001b). 
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1. 3. FACTORS THAT INFLUENCE RNA FOLDING 
 

The folding pathway is affected in multiple ways by the direct environment around the 

RNA molecule. The two probably strongest impacts are metal ions and temperature. A 

decrease in temperature strongly increases the thermodynamic stability of RNA-RNA 

interactions. In vitro, the stabilization of non-native intermediates in the RNA folding 

pathway results in slower folding kinetics or kinetically trapped RNAs. A cell usually 

compensates for this increase in stability by the production of balancing factors such as 

RNA chaperones.  

The following chapter focuses on proteins and small metabolites that are upregulated 

during cold-shock and in addition influence RNA folding. For small metabolites, the 

influence on RNA stability was only shown in vitro so far. Whether it is of relevance 

under cold-shock conditions still has to be elucidated. 

 
1. 3. 1. RNA Chaperones 
 

Although the rules governing RNA folding seem to be the same in vivo and in vitro, RNA 

often misfolds in vitro (Zuker 1989; reviewed in Uhlenbeck 1995) but folds efficiently in 

vivo. The reason for this is that cells contain proteins with RNA chaperone activity, 

which guide the RNA folding process by resolving misfolded conformations (reviewed in 

Herschlag 1995 and Weeks 1997). 

Rajkowitsch et al. (2007) defined RNA chaperones as proteins that are able to displace 

one strand on an RNA helix with an alternative one. Such proteins have to be 

discriminated from proteins that support RNA folding by only enhancing hybridization 

rates of complementary sequences or that stabilize tertiary structures by specific 

binding. In vitro, RNA chaperones are defined by following features: 

(i) An RNA chaperone has non-specific and transient, mostly electrostatic interactions to 

the RNA substrate and does not require ATP to enhance RNA folding (Mayer et al. 

2007). (ii) The RNA chaperone is only needed during the folding process, but can be 

removed afterwards, showing that the RNA chaperone acts by resolving non-native 

intermediates rather than stabilizing the native fold (Coetzee et al. 1994; Zhang et al. 

1995). (iii) An excess of protein over RNA is needed (Mayer et al. 2007; reviewed in 

Cristofari and Darlix 2002). As testing RNA chaperone activity in vivo is technically not 

trivial, it remains to be elucidated whether these features also apply inside the cell. In 
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vivo, all RNA chaperones known so far have distinct cellular functions, such as 

hnRNPA1, a protein involved in the mRNA processing and export, the ribosomal 

proteins S1 and S12, bacterial proteins involved in the transcription regulation like 

histone-like protein StpA as well as the bacterial cold-shock protein cspA. Interestingly, 

all these proteins do not share any common sequence, structural motif or fold, indicating 

that there might be more than one mechanism behind RNA chaperone activity 

(reviewed in Rajkowitsch et al. 2007). Nevertheless, a common structural feature is that 

many RNA chaperones like NCp7, StpA and HNS, Hfq or CspE have an overall positive 

charge or interact with RNA via a positive surface. A positive charge allows for the 

interaction with the negative backbone-phosphates and seems to be of special 

importance in the annealing process (reviewed in Rajkowitsch et al. 2007). However, at 

least for CspE, the positively charged surface is not sufficient for its nucleic acid melting 

activity. Binding of CspE to the RNA is assumed to involve stacking of aromatic side 

chains with RNA bases. A mutant lacking the central aromatic residues of the RNA 

binding region loses its RNA nucleic acid melting activity but not its ability to bind to 

RNA (Phadtare et al. 2002). One interesting theory as to how proteins might be able to 

promote strand-exchange without consuming energy is the “entropy transfer theory”. 

Proteins with a high level of intrinsically disordered regions can undergo induced folding 

upon binding (Love et al. 2004; Dyson and Wright 2005). The folding might be 

accompanied by the unfolding of non-native interactions (Tompa and Csermely 2004). 

 

1. 3. 2. Small Molecules and RNA Folding 
 

Small organic compounds represent a main fraction of the cellular milieu. As discussed 

later, their composition changes dramatically upon biotic and abiotic stress. It is 

therefore important to understand their impact on macromolecules. Previous studies 

concentrated on polyhydric alcohols and sugars, amino acids, N-methylated glyines and 

urea and their influence on DNA and protein stability, but only little is known about their 

impact on RNA. The following section gives an overview of metabolites that are most 

prominent in literature and their impact on RNA folding (figure 7). There are no simple 

rules to explain the impact of small molecules on RNA folding because RNAs can react 

differently to their environment dependent on the abundance and type of their 

secondary and tertiary structures. That is why one metabolite can have opposing effects 

on RNA depending on the identity of the RNA substrate (Lambert and Draper 2007). In 
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general, small molecules have three distinct ways to influence RNA folding. First, ions 

interact mainly with backbone-phosphates via electrostatic attraction or repulsion (see 

section 1. 2. 5.). Second, small molecules compete with water for the solvation of RNA 

and are either accumulated at or excluded from phosphates, backbone-sugars or 

bases. Third, small molecules can interact with ions, thereby changing their activity, the 

strength of their electrostatic interactions with RNA or their solvation free energy 

(Lambert and Draper 2007). 

 

 
Figure 7. Small molecules that influence RNA folding. The figures were created with Pc3D viewer v2.0 from 

http://pubchem.ncbi.nlm.nih.gov/. Carbon atoms are shown in grey, nitrogen atoms in blue and oxygen atoms in red. 

(Glycine betaine) is an osmolyte commonly accumulated in plants in response to various stress conditions. It 

stabilizes proteins but destabilizes RNA secondary structures. Its effects on RNA tertiary structure vary between 

strongly stabilizing and strongly destabilizing, depending on the RNA substrate and the metal ion concentration. 

(Spermidine) belongs to the class of polyamines, a group of organic compounds comprising two or more amino 

groups. Many polyamines were shown to influence RNA folding by predominantly interacting with the negative 

backbone-phosphates. Most studies have been conducted on spermidine, which was shown to stabilize secondary 

structures and distinct folding-conformers as well as to increase base flexibility. (TMAO) is a ubiquitous osmolyte in 

sea organisms. It has a weak destabilizing effect on secondary structures and a stabilizing effect on most tertiary 

structures. (Urea) is a protein and nucleic-acid denaturant. As such it is able to increase the folding rate of certain 

RNA substrates by destabilizing non-native interactions. 

 

 

Polyamines are organic compounds containing two ore more primary amino groups. 

The concentration of polyamines in cells is tightly regulated (Koculi et al. 2004), and, 

due to non-specific interactions with other cellular factors, held low (Rubin 1977; 

Kusama-Eguchi et al. 1991; Williams et al. 1992). Koculi et al. (2004) studied the folding 

of the Tetrahymena group I ribozyme in polyamines of different charge density and 

topology. The same rules governing metal ion induced folding were found to apply for 

polyamines, namely a higher charge density and a higher concentration go in line with a 

more effective stabilization of folding intermediates and a therefore decreased overall 

folding rate. However, there are some exceptions to this rule. (i) Polyamines with a 

spacing of amino-groups resembling one of the backbone-phosphates are more 

effective in compacting the ribozyme than would be expected of their size alone. The 
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interacting surface of such polyamines is similar to basic peptides that interact with RNA 

like RNA chaperones (Koculi et al. 2004). (ii) Spermidine increases the flexibility of RNA 

bases although increasing the overall stability of secondary structures as shown by CD 

spectroscopy (Furtig et al. 2010). (iii) Spermidine increases the folding rate of a bistable 

hairpin studied by (Furtig et al. 2010), but decreases the folding rate of the Tetrahymena 

group I ribozyme (Koculi et al. 2004). This is explained by the fact that spermidine can 

stabilize distinct conformers. These conformers may be native-like structures in the 

folding pathway of the bistable hairpin, or they may be non-native intermediates such as 

in the folding of the Tetrahymena group I ribozyme. 

 

Urea is commonly known to act as a protein (Liu and Bolen 1995; Bolen and Baskakov 

2001) and nucleic acid (Klump and Burkart 1977) denaturant at high concentrations. It 

lowers the melting temperature for secondary and tertiary unfolding transitions of RNA, 

with a stronger effect on AU-rich sequences (Schwinefus et al. 2007 and references 

therein). Interestingly, the addition of 4,5 M urea, although destabilizing, does not 

change the structure of RNA hairpins (Furtig et al. 2010). The destabilization goes hand 

in hand with a higher fraction of more open conformers in a Boltzmann distribution. In 

line with these findings is that moderate concentrations of urea can enhance overall 

RNA folding. This was shown for the folding of the Tetrahymena group I ribozyme and 

attributed to the ability of urea to resolve non-native intermediates (Heilman-Miller et al. 

2001a and references therein) and for a 34mer bistable hairpin by Fürtig et al. (2010), 

which was explained by the destabilization of the ground states but not the transition 

state of the bistable hairpin. In addition, subdenaturing concentrations of urea oppose 

the effects of stabilizing metabolites like cobalt hexamine (Heilman-Miller et al. 2001a). 

This may explain why cells that accumulate urea often also accumulate stabilizing 

metabolites like glycine betaine or TMAO (Lin and Timasheff 1994; reviewed in Yancey 

et al. 1982). Surprisingly, urea is not able to stimulate the reconstitution of a folding-

retarded 23S RNA, which was effectively stimulated by the RNA chaperone StpA and 

the osmolytes TMAO and glycine betaine (Semrad and Green 2002). 

The destabilizing effect of urea is explained by its accumulation around amide functional 

groups that become exposed upon unfolding (Shelton et al. 1999; Hong et al. 2004; 

Schwinefus et al. 2007). This leads to an accumulation around single-stranded nucleic 

acids and an increased solubility of bases (Lambert and Draper 2007). Urea shows 
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neither accumulation at nor exclusion from backbone-oxygens of DNA (Hong et al. 

2004). 

 

Trimethylamine-N-oxide (TMAO) is an osmolyte that is commonly found in various sea 

organisms to compensate for high extracellular salt concentrations (reviewed in Yancey 

2005). As such, its effects on protein and nucleic acid stability were examined in various 

studies. As mentioned above, TMAO is able to stimulate the reconstitution of a folding-

retarded 23S RNA (Semrad and Green 2002). In addition, TMAO was shown to be able 

to induce the Mg2+ dependent native fold of a 58mer RNA even in the absence of Mg2+ 

(Lambert et al. 2010). This is especially surprising since the mechanisms of TMAO and 

Mg2+ induced folding have to be considerably different. Mg2+ has a strong attraction to 

negative backbone-phosphates from which TMAO is strongly excluded. This strong 

exclusion from the backbone is assumed to reduce the penalty for phosphate 

dehydration, which is accompanied by tertiary structure formation (Lambert et al. 2010) 

and therefore to effectively stabilize tertiary structures. This stabilization of tertiary 

structures was shown for different RNA substrates, even though the extent of the 

stabilization is considerably different depending on which RNA substrate is studied 

(Lambert and Draper 2007). However, TMAO shows a weak destabilizing effect on 

secondary structures. Lambert et al. (2010) explained this effect on secondary 

structures by a mutual elimination of favourable and unfavourable effects of TMAO with 

base surfaces. TMAO should serve as a good hydrogen bond acceptor but not as a 

hydrogen bond donor (Noto et al. 1995). The melting of a helix exposes an equal 

number of acceptors and donors on the base surface to the solvent. The favourable 

interactions with donors and the unfavourable ones with acceptors give rise to an 

equilibrium that is slightly destabilizing (Lambert et al. 2010). 

 
Glycine betaine (GB) is an osmolyte that is accumulated upon various stress responses 

including cold acclimation in plants (reviewed in Janska et al. 2010). As for TMAO, GB 

was shown to stimulate the reconstitution of a folding-retarded 23 S RNA (Semrad and 

Green 2002) and was shown to stimulate translation in vitro (Brigotti et al. 2003). 

Another similarity to TMAO is that some cells tend to increase their GB concentration in 

response to an accumulation of urea (Lin and Timasheff 1994; reviewed in Yancey et al. 

1982). GB probably compensates for the destabilizing effects of urea on proteins, since 

GB was shown to act as a protein stabilizer (Santoro et al. 1992). Interestingly, GB 
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either strongly stabilizes or strongly destabilizes RNA tertiary structure, depending on 

which RNA substrate is studied, whereas urea has a general destabilizing effect. 

Whether GB stabilizes or destabilizes tertiary structures seems to be at least partially 

dependent on the presence and concentration of salts. The human telomerase RNA 

(hTR) pseudoknot studied by (Schwinefus et al. 2007) is destabilized by increasing GB 

concentrations in 40 mm NaCl while it is stabilized in 135 mm NaCl. Another factor that 

might explain the behaviour of glycine betaine is its isostabilizing character (Rees et al. 

1993; Barone et al. 1996). That is, the high preference of GB to destabilize G:C base-

pairs over A:U base-pairs lowers the dependence of the melting temperature on G:C 

base-pairs. Therefore, the extent by which GB destabilizes secondary structures 

depends on their GC content (Lambert and Draper 2007). Similar to TMAO, the 

destabilization is explained by favourable interactions with hydrogen bond donors like 

amide nitrogens and unfavourable ones with hydrogen bond acceptors like amide 

oxygens (Capp et al. 2009), giving a destabilizing equilibrium by the accumulation of GB 

on base surfaces (Lambert and Draper 2007; Schwinefus et al. 2007). However, GB is 

strongly excluded from protein and dsDNA surfaces (Schwinefus et al. 2007 and 

references therein; Hong et al. 2004). 
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1. 4. COLD-SHOCK RESPONSE 
 
Plants and microorganisms cannot escape from abiotic and biotic stresses like 

temperature changes, which is why they have developed strategies to tolerate them. A 

decrease in temperature leads to a number of physiological and biochemical changes in 

order to inhibit ice nucleation, to maintain the cells osmolarity, to maintain the stability of 

the cell membrane and macromolecules as well as to scavenge reactive oxygen 

species (ROS) (Kaplan et al. 2004; reviewed in Janska et al. 2010). Such adaption 

involves the change of the metabolite and protein profile as well as changes in the 

membrane structure and in the tissue water content.  

In general, the metabolism is redirected towards synthesis of cryoprotectant molecules 

(reviewed in Janska et al. 2010). Although modern high throughput methods for 

metabolite and protein profiling allow for the detection of these changes and their 

correlations, little is known about their actual function. This is especially true for the role 

of metabolites in the cold-shock response. 

 
1. 4. 1. Changes in the Protein Profile of Plants 
 

A temperature decrease results in a global change of the protein profile in a plant cell. 

As would be expected, proteins linked to the common cell metabolism are generally 

down-regulated. This involves photosynthesis, cell wall, lipid and nucleotide metabolism 

(Atienza et al. 2004; Hannah et al. 2006). In addition, proteins known to be involved in 

the cold-tolerance are up-regulated. Their prevalent function is thought to be the 

maintenance of hydrophobic interactions and ion homeostasis as well as the 

scavenging of reactive oxygen species (ROS) (reviewed in Janska et al. 2010). 

Dehydrins and heat-shock proteins (HSPs) are thought to protect membranes and 

proteins by their protein chaperone activity (Renaut et al. 2006; Nakayama et al. 2008; 

Timperio et al. 2008). In addition, the level of cold-regulated (COR) proteins shows a 

strong correlation to the level of cold hardiness of plants (Pearce et al. 1996) as well as 

to levels of cold-induced metabolites (Cook et al. 2004). 

Several proteins involved in metabolite synthesis and transport are also up-regulated. 

This includes the metabolism of amino acids, osmolytes, secondary metabolites and 

raffinose family oligosaccharides (Fowler and Thomashow 2002; Atienza et al. 2004; 

Hannah et al. 2006; Renaut et al. 2006) as well as transporters of the carbohydrate 
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metabolism (Kaplan et al. 2007; reviewed in Guy et al. 2008). Cold-induced changes in 

the metabolite profile are discussed in section 1. 4. 3. 

 

1. 4. 2. Cold-Shock Proteins as RNA Chaperones 
 

Low temperatures increase the thermodynamic stability of RNA-RNA interactions. This 

also involves a stabilization of non-native intermediates. As discussed in section 1. 2. 3., 

an increased stability of non-native interactions is equivalent to an increased energetic 

barrier for refolding. This slows down the folding rate of RNA molecules or even traps 

RNAs in non-native conformations. It is therefore not surprising that some cold-induced 

proteins have RNA chaperone activity. This is in line with the finding that malfunction of 

RNA chaperones in vivo often leads to a cold-sensitive phenotype.  

 

 
Figure 8. Schematic representation of different cold-induced proteins that act as RNA chaperones. Plant CSDPs 

such as CSDP1 are comprised of an N-terminal cold-shock domain (CSD) as well as a C-terminal glycine-rich region 

interspersed with zinc fingers. The CSD shows a high sequence similarity to the bacterial cold-shock protein A 

(CspA). Cyanobacteria lack cold-shock proteins but instead have cold-inducible glycine-rich RNA binding proteins 

(GRPs) containing an RNA recognition motif (RRM) as well as a C-terminal glycine-rich region. Many GRPs from 

Arabidopsis thaliana, such as GRP7, are as well cold-induced. The figure was adapted from Kim et al. (2007). 

 

 

Cold-shock proteins (CSPs) are a well-studied group of small and mostly acid proteins 

(figure 8) including RNA chaperones like CspA (reviewed in Graumann and Marahiel 

1998).  

 

Cold-shock domain proteins (CSDP). The counterpart of bacterial CSPs in plants are 

cold-shock domain proteins (CSDPs) (figure 8). Their N-terminal cold-shock domain 

shows a high similarity to CSPs, but in addition CSDPs contain a glycine-rich region 

interspersed with CCHC-type zinc fingers at the C-terminus. Also CSDPs have been 
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shown to function as RNA chaperones (Nakaminami et al. 2006; Kim et al. 2007). In a 

study by Kim et al. (2007), CSDP1 was shown to have a DNA melting activity as well as 

the ability to complement the cold-sensitivity of the E. coli BX04 mutant (which lacks 

CspA, CspB, CspE and CspG). Surprisingly, these activities are attributed to the zinc 

fingers in the glycine-rich region rather than to the cold-shock domain (Kim et al. 2007). 

 
Glycine-rich RNA binding proteins (GRPs). Cyanobacteria lack CSPs, but instead have 

cold-inducible proteins containing an RNA recognition motif (RRM) (figure 8). This led to 

the hypothesis that RRM proteins substitute the function of CSPs in cyanobacteria 

(Maruyama et al. 1999; reviewed in Graumann and Marahiel 1998). GRPs in plants 

contain one or more RRMs at the N-terminus and a glycine-rich region at the C-

terminus and are highly induced by low temperature in a wide variety of plants (Kim et 

al. 2007 and references therein; Sachetto-Martins et al. 2000 and references therein). 

The Arabidopsis thaliana protein GRP7 was shown to have DNA melting activity, to 

complement the cold-sensitivity of the E. coli mutant BX04 and to increase the 

susceptibility of RNA to RNAse T1 cleavage (Kim et al. 2007). RNAse T1 is an 

endonuclease that specifically cleaves single-stranded RNA but nut double-stranded 

RNA indicating that GRP7 favours open RNA conformers. The N-terminal RRM is more 

effective than the C-terminal glycine-rich region. Another GRP assumed to have an 

RNA chaperone activity is the Arabidopsis thaliana protein atRZ-1a, also consisting of 

an N-terminal RRM and a C-terminal glycine rich region interspersed with zinc fingers 

(Kim et al. 2005). 

 

1. 4. 3. Cold-Induced Metabolites in Plants 
 

The concentrations of low molecular weight metabolites like carbohydrates, amines or 

other polar metabolites are significantly changed upon a plant cells response to biotic 

and abiotic stress (Cook et al. 2004; Kaplan et al. 2004; Wienkoop et al. 2008; reviewed 

in Yancey 2005 and Janska et al. 2010). They have been shown to act as signalling and 

regulatory agents, as antioxidants, as defense against pathogens and as compatible 

solutes (Kaplan et al. 2004). Interestingly, many metabolites cannot be assigned to a 

specific stress response but seem to play a more general role (Kaplan et al. 2004). This 

might be explained by the fact that the same cellular stress can be induced by different 

environmental stimuli. Biotic and abiotic impacts can result in the formation of free 
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radicals (reviewed in Mittler 2002) and osmotic stress can be a result of drought, salt, 

cold- and heat-shock as well as of radiation (Kaplan et al. 2004). As an example, an 

ensemble of osmolytes is up-regulated during cold-stress, acting supposably 

predominantly as compatible solutes (reviewed in Janska et al. 2010). 

In this study, the focus is set on the change of the metabolite profile upon cold 

acclimation and cold-shock in plants. Cold acclimation describes the changes in cells 

upon preparation for overwintering and goes hand in hand with acquired freezing 

tolerance upon previous induction at low temperatures. In contrast, cold-shock 

describes the cells response to a sudden decrease in temperature. These two 

conditions are not well distinguished in the literature for studies with Arabidopsis 

species. However, most of the metabolites used in this work show the same change 

upon cold acclimation and cold-shock (table 5). 

 

1. 4. 3. 1. Changes in the Metabolite Profile Upon Cold Acclimation 

During the cold acclimation in plants, concentrations of metabolites with cryoprotective 

properties increase, while the major part of the metabolism is reduced to a minimum. 

The cell needs to stabilize membrane phospholipids, stabilize proteins and retain their 

hydrophobic interactions, maintain ion homeostasis and scavenge reactive oxygen 

species (reviewed in Janska et al. 2010). For this purpose, the metabolite profile 

changes dramatically. The function of different metabolites or metabolite groups, 

however, is poorly understood. Here, an overview of the most prominent changes is 

given. 

 
Sugars and sugar alcohols. During cold acclimation, the raffinose oligosaccharide 

pathway is up-regulated, resulting in the accumulation of mono- and disaccharides like 

glucose, fructose, sucrose, galactinol, melbiose and raffinose (table 5) (Cook et al. 

2004; Hannah et al. 2006; Usadel et al. 2008). Concentrations of other sugars like 

saccharose, stachyose and trehalose as well as sugar alcohols like sorbitol, ribitol and 

myo-inositol were also found to increase (reviewed in Janska et al. 2010). Many of 

these metabolites are up-regulated in multiple stress situations (Kaplan et al. 2004) 

indicating that they predominantly act as osmoprotectants and compatible solutes.  

Considering that the raffinose pathway is significantly up-regulated under cold-stress, it 

is interesting that a raffinose accumulation on its own is neither sufficient nor necessary 

for the induction of freezing tolerance or cold acclimation in A. thaliana (Zuther et al. 
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2004). In contrast, overexpression of the E. coli trehalose biosynthetic gene in rice 

increased tolerance against drought, salinity and cold (Garg et al. 2002). Moreover, the 

Arabidopsis mutant eskimo1 contains high levels of soluble sugars and proline and 

possesses an enhanced freezing tolerance (Xin and Browse 1998). In line, failure to 

accumulate sucrose and glucose results in reduced freezing tolerance in Arabidopsis 

(McKown et al. 1996). 

Maltose and fructose have also been shown to increase during cold acclimation (table 

5) (reviewed in Janska et al. 2010). Kaplan et al. (2006) hypothesized that the synthesis 

of maltose may provide some protection of the photosystem II photochemical efficiency. 

Fructose based polymers (fructans) stabilize membranes by binding to the phosphate 

and choline groups of membrane lipids, resulting in a reduced water loss upon 

dehydratization (reviewed in Valluru and Van den Ende 2008). 

 
Amino acids and other nitrogenous compounds. Transcript levels of proteins involved in 

amino acid metabolism like proline, cysteine and polyamine synthesis as well as 

glutamate and ornithine pathways are up-regulated in Arabidopsis thaliana (reviewed in 

Janska et al. 2010). In line is the increase of nitrogenous compounds like proline and 

glycine betaine upon cold acclimation (table 5). 

 
Lipids. Cold acclimation leads to a general suppression of the lipid metabolism (Hannah 

et al. 2006). Nevertheless, an increase of free fatty acids can be detected (reviewed in 

Janska et al. 2010). 

 
Secondary metabolites. Freezing tolerance in Arabidopsis generally correlates well with 

the expression of secondary metabolism genes (Hannah et al. 2006; Usadel et al. 

2008). Concentrations of flavonoids and anthocyanins along with glucosinolates, 

terpenoids and phenylpropanoids tend to be increased in Arabidopsis thaliana. 

Anthocyanin is known to help to protect chlorophyll against over-excitement at very low 

temperatures (Hannah et al. 2006; Korn et al. 2008). The role of other secondary 

metabolites in cold acclimation is yet largely unknown. 

 
Antioxidants. Many environmental stress factors like drought, cold, heat or radiation can 

result in the formation of reactive oxidative species (ROS). Accordingly, antioxidants like 
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tripeptidthiol, glutathione, ascorbic acid and alpha-tocopherol are up-regulated under 

cold-stress (Chen and Li 2002). 

 

1. 4. 3. 2. Changes in the Metabolite Profile Upon Cold-Shock 

A series of metabolites is well-known to be up-regulated upon cold-shock in Arabidopsis 

species. GC-TOF studies reported hundreds of metabolites to be influenced by 

temperature. The most prominent are presented here.  

In a study of Cook et al. (2004), 325 low molecular weight carbohydrates, amines, 

organic acids and other polar molecules were shown to be up-regulated. Along with 

proline, glucose, fructose, myo-inositol, galactinol, raffinose and sucrose, which are 

already known from previous studies, they further identified glutamine, asparagine, 

trehalose, putrescine, ascorbate and many others to be strongly induced by cold-shock 

(table 5). Interestingly, the majority of these metabolites are also induced by heat-shock. 

While the early responses to temperature were more diverse, the late responses were 

more collinear. One reason for this may be that many of these metabolites are well-

known compatible solutes. Moreover, many of these metabolites are expected to be 

precursors for secondary metabolites. Nevertheless, the plant cells response is far more 

profound for cold-shock than for heat-shock (Kaplan et al. 2004). Some metabolites 

show no response or even decrease upon heat-shock in contrast to an increase upon 

cold-shock (table 5). Wienkoop et al. (2008) identified glutamine, raffinose, galactinol, 

sucrose and proline to be the most prominent metabolites to be increased upon cold-

shock in Arabidopsis (table 5). Sucrose is known to act as an osmoprotectant as well as 

a signalling molecule (reviewed in Janska et al. 2010). More interestingly, 

concentrations of glutamine and proline show strong correlations with the protein level 

of GRP7 (see section 1. 4. 2.), a cold-induced protein that was previously proposed to 

act as an RNA chaperone (Kim et al. 2007), but not with raffinose or galactinol. 

Raffinose family oligosaccharides (RFOs) are general temperature stress markers, 

whereas proline and glutamine are cold-shock specific (Wienkoop et al. 2008). 

Also for Chlamydomonas reinhardtii, a model organism used in this work, the 

Weckwerth laboratory showed a change in the metabolite profile for sugars, amino 

acids and other low molecular weight compounds upon cold-shock (unpublished data, 

Weckwerth laboratory, personal communication). The abundance of metabolites such 

as lactic acid, glycolic acid, alanine, serine, glutamic acid and myo-inositol increases 
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upon cold-shock whereas the abundance of metabolites such as urea, ethanolamine, 

sorbitol and sucrose decreases (figure 9). 

 
Figure 9. A metabolite profile from Chlamydomonas reinhardtii cells under standard growth conditions (A) and from 

cold-shock treated cells (B) analyzed with gas chromatography-mass spectrometry (GC-MS) visualized in a total ion 

chromatogram (TIC). The peaks represent a sum of ions with the same retention time. The abundance of metabolites 

such as lactic acid, glycolic acid, alanine, serine, glutamic acid and myo-inositol increases upon cold-shock whereas 

the abundance of metabolites such as urea, ethanolamine, sorbitol and sucrose decreases. GC-MS measurements 

and data analysis were carried out by the Weckwerth laboratory (unpublished data, personal communication), the  

figure was adapted from chromatograms provided by Dr. Takeshi Furuhashi and Dr. Luis Valledor (Weckwerth 

laboratory). 

. 

 

Weckwerth and Fiehn (2002) showed that the dynamic fluctuations of experimentally 

determined metabolite concentrations in a cell are connected with the elasticity of the 

underlying enzymatic pathways, and that such fluctuations propagate throughout the 

cells regulatory network. Although these results show that metabolite levels may change 

over time even under a constant environment, they also underline the tight regulation of 

metabolite levels in cells. Therefore, a dramatic change in the metabolite profile as seen 

upon cold-shock reflects the change in the protein pattern. But considering that a cell 

needs to keep its cell environment compatible with the stability and functionality of all 
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present macromolecules, the question remains whether a cell simply compensates for 

the presence of functional metabolites with other compounds, e.g. to create an 

equilibrium between stabilizing and destabilizing metabolites, or whether a previously 

unknown functionality exists behind these changes besides the few functions known so 

far. 
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1. 5. SCIENTIFIC AIM 
 

Plant cells react to cold-shock by a dramatic change of the metabolite profile. Only little 

is known about the function of these metabolites. Previous studies predominantly 

concentrated on metabolites that help to sustain the cells osmolarity during stress but 

that do not interact with proteins or nucleic acids. However, many metabolites shown to 

increase during cold-stress were also shown to influence the structural stability of RNA. 

Interestingly, the extent to which these metabolites influence RNA stability differs 

considerably depending on which RNA is studied. Some metabolites even have 

opposing effects on secondary and tertiary structures. Such interactions may be of 

functional importance for a plant cell.  

In this study, cold-shock metabolites were examined for their ability to help the cell to 

cope with the increased thermodynamic stability of RNA-RNA interactions at low 

temperatures by acting as RNA chaperones. A FRET-based annealing and strand-

displacement assay was applied for individual metabolites as well as metabolite groups. 

Melting studies were carried out in order to link the RNA chaperone activity with RNA 

structural stability. Physiological metabolite combinations were approximated with polar 

metabolite-extracts from Chlamydomonas reinhardtii cells. The extracts were tested for 

their ability to enhance the trans-splicing activity of a splicing-retarded group I intron as 

well as to promote the strand-displacement of a double-stranded RNA oligonucleotide 

by a fully complementary competitor RNA. 

In addition, a protein purification protocol for a tag-free protein GRP7 was developed. 

GRP7 is a proposed RNA-chaperone that is upregulated upon cold-stress in 

Arabidopsis thaliana. During the cold adaption process, the concentration of GRP7 

correlates with the cold-shock metabolites proline and glutamine (Wienkoop et al. 

2008). 
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2. MATERIAL AND METHODS 

 

 
2. 1. MATERIALS, BUFFERS AND SOLUTIONS 
 
2. 1. 1. Materials 
 
RNA Oligonucleotides 

 
Table 1. RNA oligonucleotides used for annealing and strand-displacement assays as well as thermal melting 

studies.  

 Sequence (5' to 3') 

21R+ AUG UGG AAA AUC UCU AGC AGU 

21R- ACU GCU AGA GAU UUU CCA CAU 

32R- ACU GCU AGA GAU UUU CCA CAU AGU AUC GAA UU 

J1 AAU UUA AUG UUU UAU UUA UUA 

M1 UAA UAA AUA AAA CAU UAA AUU 

SAM GGA GUC UUU UCG AAA UGG GAA AGA UUC CC 

 

DNA Oligonucleotides 

 
Table 2. DNA oligonucleotides used for polymerase chain reaction (PCR). Bold letters mark the start- and stop-

codons. 

 Sequence (5' to 3') 

21660 forward primer AA ACC ATG GCA ATG GCG TCC GGT G 

21660 reverse primer AA GGA TCC TTA CCA TCC TCC ACC AC 

37220 forward primer TGC AAG ACC ATG GCT GCT TCA GC 

37220 reverse primer AAA GGA TCC TCA ATA TTG GCG CCT TG 

53460 forward primer AA ACC ATG GCC ATG TCT GCC TCT G 

53460 reverse primer GAA GGA TCC TCA AAA TTG GCC TCT TGG 
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Plasmids 

 

 
Figure 10. Plasmids used in this study. pTWIN-1 was used for protein purification. pTZH1 and pTZH2 carry the 

fragments H1 and H2 of the td group I self-splicing intron, respectively. bla (ApR), ampicillin resistance gene; ori, 

origin of replication; CBD, chitin binding domain.  
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2. 1. 2. Buffers and Solutions 
 

 Buffer B1 

  20 mM  TRIS-HCl pH 8.4 

  500 mM  NaCl 

  1 mM  EDTA pH 8.0 

  0.2 %  Tween-20 

  20 µM  PMSF 

 
 Buffer B2 

  40 mM  TRIS-HCl pH 7.0 

  1 M  NaCl 

  2 mM  EDTA pH 8.0 

  20 µM  PMSF 

 
 PAA gel elution buffer  

  10 mM  MOPS pH 6.0  

  1 mM  EDTA pH 8.0  

  250 mM  sodium acetate  

 
 LTE solution 

  10 mg  lysozyme diluted in  

  1 mL  TE-buffer 

 

 Sørensen phosphate buffer 

  330 mM  KH2PO4 

  670 mM  Na2HPO4 

  adjusted to pH 7.2 with additional KH2PO4 or Na2HPO4 

 

 Splicing buffer 

  4 mM  TRIS-HCl pH 7.0 

  3 mM  MgCl2 

  400 µM  spermidine 

  4 mM  DTT 
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 STET-buffer 

  8 %  sucrose 

  0.5 %  Triton X-100 

  10 mM  TRIS-HCl pH 8.0 

 

 STOP solution for strand-displacement gels 

  9 %  sucrose 

  0.2x  TBE 

  0.04 %  bromphenol blue 

  50 mM  EDTA pH 8.0 

 prepared in 100 % formamide 

 

 T7 RNA polymerase buffer 

  40 mM  TRIS-HCl pH 7.0 

  26 mM  MgCl2 

  3 mM  spermidine 

  10 mM  DTT 

 

 TE-buffer 

  10 mM  TRIS-HCl pH 8.0 

  1 mM  EDTA pH 8.0 

 adjusted to pH 8.0 

 

 TER-solution 

  10 µg  RNAse A diluted in  

  1 mL  TE-buffer 

 
 P-solution (for Chlamydomonas reinhardtii culture medium) 

  1.65 M  K2HPO4 

  1.06 M  KH2PO4 
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HP salts (for Chlamydomonas reinhardtii culture medium) 

  280 mM  NH4Cl 

  16 mM  MgSO4 

  14 mM  CaCl2 

 

 Hunters trace (for Chlamydomonas reinhardtii culture medium) 

  135 mM  EDTA pH 8.0 

  185 mM  H3BO3 

  77 mM  ZnSO4 

  26 mM  MnCl2 

  18 mM  FeSo4 

  7 mM  CoCl2 

  6 mM  CuSO4 

  890 µM  (NH4)6Mo7O24 

EDTA was added to the boiling solution. The pH was adjusted to pH 6.7 at 

70 °C with KOH. The solution was sealed with a cotton plug and incubated 

for 1-2 weeks at room temperature and shaken once a day. The 

precipitate was removed by filtration. 

 

 Chlamydomonas reinhardtii culture medium 

  0.375 mL  P-solution 

  25 mL  HP salts 

  1 mL  Hunter's Trace 

 prepared in 20 mM HEPES buffer pH 7.0 

 adjusted to pH 7.0 with HCl and KOH 
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2. 2. EXPERIMENTAL STANDARD-PROCEDURES 
 

2. 2. 1. Plasmid Minipreparation According to Holmes and Quigley (1981) 
 
2 mL of an E. coli overnight culture were harvested at 6800 rpm for 3 minutes. All 

following centrifugal steps were carried out at maximum speed in a tabletop centrifuge 

for 5 minutes at room temperature. The pellet was resuspended in 500 µL STET-buffer. 

The enzymatic lysis was started by the addition of 50 µL LTE-solution. The reaction 

proceeded for 3 minutes at room temperature and was stopped by incubation at 95 °C 

for 90 seconds. The lysate was centrifuged and the pellet removed with an autoclaved 

toothpick. The nucleic acids in the supernatant were precipitated by centrifugation after 

addition of 50 µL 7.5 M ammonium acetate and 500 µL isopropyl alcohol. The pellet 

was resuspended in 500 µL cold (-20 °C) 70 % ethanol and the suspension again 

centrifuged. The pellet was dried and resuspended in 100 µL TER-solution for 

30 minutes at 37 °C on a shaker. The solution was purified by PCI extraction when DNA 

was used for sequencing.  

 

2. 2. 2. Bradford Assay According to Bradford (1976) 
 
Standard curves were prepared with BSA dilutions in 0.15 M NaCl. 1 mL of Bradford 

dye (AppliChem) was added to 100 µL of protein sample. Protein concentrations were 

measured in an Eppendorf BioPhotometer® at 595 nm. The time between the addition of 

dye and the measurement were equal for every sample. 

 

2. 2. 3. Colony PCR  
 
Colonies were picked from culture plates and transferred to an empty PCR tube, the 

rest was used to inoculate 5 mL LB (amp) for future plasmid preparation. The cells 

break upon the first cycles of the PCR. A standard PCR protocol for Taq-polymerase 

(Promega GoTaq®) was carried out and the reactions were examined on a 1.5 % 

agarose gel. 
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2. 2. 4. Ethanol Precipitation (for DNA and RNA Samples)  
 
Precipitation with ethanol was used for sample volumes between 10 µL and 500 µL. 

0.1 volume of 3 M sodium acetate pH 7.5 and 2.5 volumes of cold (-20 °C) ethanol were 

added to the sample. The mixture was incubated at -20 °C for at least 20 minutes and in 

succession centrifuged at 16000 rmp at 4 °C for at least 20 minutes. The pellet was 

flushed with 1 mL of cold (-20 °C) 70 % ethanol, then dried and resuspended in desired 

buffer. 

 

2. 2. 5. Elution of RNA from Polyacrylamide Gels  
 
RNA bands were cut out from PAA gels using UV shadowing. Gel pieces were covered 

with elution buffer and incubated over night at 4 °C on a shaker (~ 1000 rpm). Eluted 

RNA was precipitated with ethanol.  

 

2. 2. 6. In Vitro Transcription 
 
Plasmids pTZH1 and pTZH2 were linearized with SalI and BamHI, respectively. The 

restriction was tested on a 1 % agarose gel and the plasmids purified by PCI extraction. 

In vitro transcription of H1 and H2 constructs was carried out as follows: 

100 µL reaction 

- 5 µg linearized plasmid 

- 5 mM ATP 

- 5 mM CTP 

- 5 mM GTP 

- 2.5 mM UTP 

- 3 mM 35S-α-UTP 

- 100 U T7 RNA polymerase (New England Biolabs) 

- 1x T7 RNA polymerase buffer 

- 40 U ribonuclease inhibitor (Promega, RNasin®) 

After incubation for 3 hour at 37 °C, 4 U of RNase free DNase (New England Biolabs) 

were added to the sample and the reaction proceeded for another 30 minutes at 37 °C. 

RNA was purified by separation over a 5 % denaturing PAA gel and subsequent gel 
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elution. The purified RNA was resuspended in 20 µL TE buffer. The RNA concentration 

was determined with the equation 

 
where DF is the dilution factor, A260 is the absorbance of the sample at 260 nm, eave is 

the approximate extinction coefficient of RNA (0,027 (µg/mL)-1cm-1) and P is the path 

length of the cuvette (1 cm). 

 

2. 2. 7. Kits 
 
Table 3. List of applications that were carried out with purchased systems according to the protocol provided by the 

manufacturer. 

Application Kit 
Agarose-gel elution Promega wizard® SV gel and PCR clean-up kit 
Midiprep Promega Pure Yield™ Plasmid Midiprep System 
Miniprep Promega Pure Yield™ Plasmid Purification System 
PCR purification Promega wizard® SV gel and PCR clean-up kit 

 

2. 2. 8. PCI extraction of nucleic acids 
 
The extraction with PCI was used for watery samples with a volume of at least 100 µL. 

One volume of phenol:chloroform:isoamyl alcohol (25:24:1) (AppliChem) was added 

and the sample mixed thoroughly. The phases were separated by centrifugation at 

maximum speed for 2 minutes at room temperature. The aqueous phase was collected 

and the phenol-phase mixed with an additional volume of RNAse-free water. The 

procedure was repeated and nucleic acids in collected aqueous phases were recovered 

by ethanol precipitation. 

 

2. 2. 9. RNA hybridization (21R and JM1) 
 
Equimolar concentrations of complementary RNA strands were heated to 95 °C for 

2 minutes and subsequently slowly cooled to < 40 °C over a time span of 15 to 

30 minutes. The samples were protected from light when RNA was fluorescently 

labeled. 
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2. 2. 10. T4 Polynucleotide Kinase (PNK) labelling 
 
T4 PNK catalyzes the transfer of the γ-phosphate of ATP to a free 5' hydroxyl group of 

DNA or RNA. The reaction mix contained 12 pmoles of RNA, 10 pmol of 32P-γ-ATP 

(6000 Ci / mmol, 25 µCi / µL), 30 U T4 PNK (New England Biolabs) and 40 U RNAse 

inhibitor (Promega, RNasin®). The reaction was carried out in T4 PNK buffer (New 

England Biolabs) and was allowed to proceed for 1 hour at 37 °C. The reaction was 

stopped by PCI extraction and succeeding ethanol precipitation. 

 

2. 2. 11. Transformation of E. coli strains DH5α and ER2566  
 

Chemically competent cells were kept on -80 °C until usage. 100 µL thawed competent 

cells were added directly to a ligation reaction (100 ng plasmid DNA) and incubated for 

20 minutes on ice. The cells were heat-shocked at 42 °C for 45 seconds. 800 µL 

antibiotic-free LB medium was added and the sample was shaken at 400 rpm for 

30 minutes at 37 °C. The cells were harvested at 6800 rpm for 3 minutes and the 

supernatant was poured off. The cells were resuspended in the remaining supernatant 

(~100 µL) and plated on LB (+100 µg/mL amp) plates. Plates were incubated at 37 °C 

over night. 

 

2. 2. 12. UV melting analysis  
 

UV melting studies were carried out in a Varian “Cary Bio100” UV/VIS 

spectrophotometer. The absorbance was measured at 260 nm in Quartz cuvettes with 1 

cm path length (500 µL sample volume). The samples were heated and cooled at a rate 

of 0.2 °C per minute with two temperature ramps (10 °C to 80 °C, 80 °C to 10 °C for 

SAM RNA and 10 °C to 85 °C, 85 °C to 10 °C for 21R RNA. 

Samples contained 500 nM RNA, 50 mM Sørensen phosphate buffer pH 7.2, 100 µM 

NaCl, 500 µM EDTA and respective metabolite at different concentrations. Temperature 

dependent absorbance was manually blanked. Blanks contained all components except 

for RNA. The melting temperature and thermodynamic parameters were evaluated by 

manual baseline setting. ΔH0 and ΔS0 were obtained from the slope (-ΔH0/R) and the Y-

axis intercept (ΔS0/R) of a ln(Ka) vs. 1/T representation of the melting profile as 

described by Mergny and Lacroix (2003). Ka is the equilibrium-affinity constant and is 
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the ratio between the folded and the unfolded fraction of the RNA as extracted from the 

melting profile. The linear regression of values in the ln(Ka) vs. 1/T representation was 

restricted to a fraction of folded RNA between 0.15 and 0.85.  
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2. 3. METHODS 

 
2. 3. 1. Protein Purification 
 

The protein purification of Arabidopsis thaliana proteins At2g21660, At2g37220 and 

At3g53460 was carried out according to the protocol of vector pTWIN-1 accessible on 

http://www.neb.com/nebecomm/products/productE6950.asp. The protocol was adapted 

as presented here. 

 
Cloning. Sequences were obtained by PCR with Pfu-polymerase (Promega) from 

Arabidopsis thaliana cDNA. At3g53460 was amplified with KOD polymerase (Novagen) 

according to protocol due to low yield with Pfu-polymerase. Primers introduced a NcoI 

restriction-site at the 5' end of the fragment and a BamHI restriction-site at the 3' end. 

Two to three nucleotides were added to the 5’ end of the primer to enhance the 

restriction efficiency and to match the melting temperatures. For At2g21660 and 

At3g53460, the primers extended the 5' protein coding sequence by an additional ATG 

start codon and one alanine residue. Vector pTWIN-1 was prepared by double 

restriction with NcoI and BamHI to remove the coding sequence for the Mxe intein and 

the C-terminal chitin binding domain (CBD). Ligation of the fragment into the prepared 

pTWIN-1 vector created a CBD-Ssp intein-protein of interest fusion protein.  

 
Transformation and sequence verification. The ligation product was transformed into the 

chemically competent E. coli strain DH5α via heat shock and the presence of the 

fragment was confirmed by Colony PCR and restriction analysis. The sequence 

accuracy of the insert was confirmed by sequencing (AGOWA genomics, Germany). 

For protein purification, the vector was transformed into the chemically competent E. 

coli expression strain ER2566 via heat shock. 

 
Overexpression and lysate preparation. Cells were grown in 1 L LB medium 

(+100 µg/mL ampicillin) at 37 °C at 180 rpm to an OD600 between 0.5 and 0.7. Protein 

expression was induced by addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a 

final concentration of 0.3 mM and incubation at 18 °C over night. Cells were harvested 

at 5000 g for 15 minutes at 4 °C and put on -80 °C for at least 5 hours. Cells were 

resuspended in 50 mL of buffer B1 at 4 °C and lysed by 3 cycles of freezing in liquid 
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nitrogen and thawing in a water bath at 25 °C and subsequent sonification. The lysate 

was centrifuged at 15000 g for 30 minutes at 4 °C to remove the cell debris. The 

clarified cell extract was used for protein purification. 

 
Protein purification. Proteins were purified via gravity flow through a column packed with 

10 mL of chitin beads (New England Biolabs) per litre of culture medium. All steps were 

performed at 4 °C except for the on-column cleavage reaction. After equilibration of the 

column with ten bed volumes of buffer B1, the clarified cell extract was loaded with a 

flow rate of 0.5 mL – 1 mL per minute. The column was again washed with ten bed 

volumes of buffer B1, and then the on-column cleavage reaction was induced by 

flushing the column with ten bed volumes of buffer B2. The cleavage reaction was 

allowed to proceed in one bed volume of buffer B2 over night at room temperature on a 

slow shaker. The protein was eluted with additional buffer B2 at 4 °C. The fractions with 

the highest protein concentration were re-buffered in 50 mM TRIS-HCl pH 7.0 with a 

centrifugal concentration device and stored at 4 °C. 

 

2. 3. 2. Polar Metabolite-Extracts from Chlamydomonas reinhardtii Cells 
 

Chlamydomonas reinhadtii culture conditions. All experimental cultures were obtained 

from the same agar stock culture. Each culture was grown on a shaker at 110 rpm at 

constant light (100 µE m-2 s-1 in a 12 hours / 12 hours light-dark cycle) and constant 

temperature (20 °C) to an OD750 = 1. For cold-induction, the cultures at OD750 = 1 were 

grown for further 48 hours on 7 °C. 

 
Extraction of polar metabolites. Polar metabolites were extracted from Chlamydomonas 

reinhardtii cultures as described by Weckwerth et al. (2004) with modifications (Lena 

Fragner and Anne-Mette Hanak, Weckwerth laboratory, personal communication). 

Samples were drawn 6 hours and 48 hours after cold-induction. 20 mL of culture were 

quenched with the same volume of methanol at -70 °C. The sample was lyophilized and 

the remaining cell debris resuspended in 10 mL of methanol:chloroform:water 

(2.5:1:0.5 v:v:v). The suspension was vortexed every 5 minutes while incubating on ice 

for a total of 45 minutes, then aliquoted in 2 mL Eppendorf tubes and centrifuged at 

14000 g for 4 minutes at 4 °C. After addition of 500 µL sterile water and another 

centrifugation step at 14000 g for 4 minutes at 4 °C, the solution separated into two 
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clear phases. The aqueous phase was collected and dried in a centrifugal vacuum 

concentrator. The remaining pellet was stored at -80 °C until usage. 

 

2. 3. 3. Trans-Splicing Assay 
 

The self-splicing group I intron derived from the bacteriophage T4 thymidylate synthase 

(td) gene was in vitro transcribed as two separate parts (namely H1 and H2) to largely 

repress its catalytic activity due to misfolding at 37 °C. The fraction of RNA with the 

functional conformation can be increased in vitro by high temperatures (55 °C) and 

proteins with RNA chaperone activity (Coetzee et al. 1994). The system was used to 

test Chlamydomonas reinhardtii metabolite extracts for their ability to promote the 

splicing-competent conformation. 

 

 
Figure 11. Self-splicing reaction of the Tetrahymena group I intron. (A) Schematic representation of the splicing 

reaction. The in vitro transcribed RNA fragments H1 and H2 associate in trans. The addition of radiolabeled GTP as a 

splicing cofactor starts the reaction that results in the exclusion of the intron sequence. The intron is released with 

GTP covalently joined to its 5’ end. (B) In vitro splicing is inefficient at 37 °C whereas the splicing competent 

conformation can be promoted by high temperatures (55 °C) and by the presence of RNA chaperones. Aliquots were 

drawn from the reaction at different time points (0, 1, 3, 10 and 30 minutes) and loaded onto a 12 % denaturing PAA 

gel. The efficiency of the reaction was monitored by the presence of the splicing product Intron H1 with 32P covalently 

coined to its 5’ end. 
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The reaction mixture contained 35S body-labeled H1 and H2 (200 nM each) in splicing 

buffer and different concentrations of metabolite extracts. The reaction was started with 

the addition of 0.8 pmol 32P-γ-GTP (5000 Ci / mmol) and proceeded at 37 °C. The “RNA 

only” reaction mix containing no cold-shock metabolites served as the negative control 

at 37 °C, and as the positive control at 55 °C. 2.5 µL aliquots were drawn from the 

reaction mix at different time-points and stopped by the addition of 7.5 µL STOP 

solution. Bands were separated on a 12 % denaturing PAA gel (figure 11). The bands 

were quantified with ImageQuant®. The relative splicing efficiency was calculated with 

the equation RSE = Intron H1 / H1 + H2 + Intron H1 

 

2. 3. 4. FRET-based Annealing and Strand-Displacement Assay 
 

The annealing and strand-displacement reaction of fluorescently labeled (Cy3 and Cy5), 

complementary short RNA oligonucleotides was monitored with a FRET-based assay, 

previously described by Rajkowitsch and Schroeder (2007). Fluorescence resonance 

energy transfer (FRET) occurs when two fluorophores with overlapping excitation and 

emission spectra come into sufficient proximity. The excited state energy of the donor 

fluorophore is partially transferred to the acceptor fluorophore. This results in a time-

dependent change in fluorescence which is equivalent to the change of the fraction-size 

of double-stranded RNA present in the sample (figure 12). These data can be fit to the 

following equations with GraphPadPrism® and can be used to derive the observed rate 

constants (kobs) for both the annealing (1) and the strand displacement (2) reaction (with 

Y being the normalized FRET index (ratio of FCy5:FCy3) and t being time)  

 

The change of fluorescence was monitored in a TECAN Infinite® F500 Microplate 

Reader with one data point per second. All measurements were carried out at 

30 °C (± 0.5 °C). The reaction was carried out in a final concentration of 50 mM TRIS-

HCl pH 7.0, 500 µM MgCl2 as well as the tested metabolite in concentrations ranging 

between 400 nM and 100 mM in a total volume of 50 µL. Cy3-labeled RNA was pre-

incubated in buffer. The annealing reaction was started by the injection of Cy5-labeled 
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RNA (phase I) (figure 12). Both RNAs were added to a final concentration of 10 nM. The 

reaction was allowed to proceed for 180 seconds, then 5 µL of an unlabeled fully 

complementary competitor RNA was added to a final concentration of 100 nM to start 

the strand-displacement reaction (phase II). The strand-displacement reaction was 

monitored for another 180 seconds.  

As a control experiment, the strand-displacement reaction was also carried out without 

previous annealing-reaction with pre-annealed double-stranded RNA at a concentration 

of 10 nM over a time-period of 240 seconds. 

 

 
Figure 12. A FRET-based annealing and strand-displacement assay. Two fluorescently labeled short RNA 

oligonucleotides are allowed to anneal (phase I). Annealing places the two dyes in sufficient proximity to promote 

fluorescence resonance energy transfer (FRET) to occur when the donor dye (Cy3) is excited. The addition of a fully 

complementary, unlabeled competitor RNA starts the strand-displacement reaction (phase II). The displacement of a 

labeled strand leads to a decrease in FRET. The figure was obtained from Rajkowitsch & Schroeder (2007). 

 

 
2. 3. 5. Strand-Displacement Gels 
 

Polar metabolite extracts from Chlamydomonas reinhardtii were tested for their ability to 

enhance the strand-displacement reaction between a 21R double-strand and 32R-, a 

fully complementary 32mer competitor RNA. Similar assays were previously described 

by Tsuchihashi and Brown (1994) and Zhang et al. (1995). The 21R+ strand was 5’ 

radiolabeled with a polynucleotide kinase to be able to monitor this reaction on a gel 

even at low RNA concentrations. 21R+ and 21R- were pre-annealed in 50 mM TRIS-HCl 

pH 7.5, 1 mM EDTA pH 8.0 and 3 mM MgCl2 by heating to 95 °C for 5 minutes and slow 

cooling to 37 °C over a time span of 30 minutes. A two-fold excess of 21R- was used for 

pre-annealing to assure that no radiolabeled single-strand is present in solution. 500 nM 

32R- in 50 mM TRIS-HCl pH 7.5, 1 mM EDTA pH 8.0 and 3 mM MgCl2 and varying 

concentrations of metabolite extract were pre-incubated at 37 °C. The reaction was 
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started by the addition of 21R double-strand to a final concentration of 10 nM. The 

reaction was allowed to proceed for 30 minutes at 37 °C. To stop the reaction and to 

remove metabolites that interfere with the RNA migration on native PAA gels, the RNA 

was ethanol precipitated. The RNA was separated on a 12 % native PAA gel. The 

bands were quantified with ImageQuant®. 
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3. RESULTS AND DISCUSSION 
 

 

3. 1. COLD-INDUCED METABOLITES AND RNA FOLDING 
 

RNA chaperones assist RNA folding by resolving non-native intermediates (reviewed in 

Herschlag 1995). Such non-native intermediates are believed to be resolved by a 

strand-exchange mechanism rather than simple helix dissociation with succeeding re-

annealing. Mahen et al. (2010) showed that the rate of helix melting is the same in vitro 

and in vivo whereas the rate of strand-exchange is considerably enhanced in the 

cellular milieu. Moreover, urea has been shown to increase the folding rate of kinetically 

trapped RNA molecules but is not able to promote strand-displacement (Boris Fürtig, 

personal communication). However, it can be assumed that factors that destabilize 

helical segments also facilitate a strand-exchange mechanism, considering that the 

competitor-strand has a higher chance to catch a part of the partially opened helix.  

RNA chaperones commonly have an overall positive charge or interact with RNA via a 

positively charged surface (reviewed in Rajkowitsch et al. 2007). A positive charge may 

lower the energetic cost for a competitor to approach a double-stranded segment and 

may further provide residual positive charges to attract other RNA strands. 

Centrimonium bromide (CTAB), a substance comprised of a positive trimethylamine 

group and a long hydrophobic tail, effectively enhances annealing and strand-exchange 

(Homann et al. 1996; Nedbal et al. 1997). 

So far, no other small metabolite is known to enhance the strand-exchange between 

RNA molecules. However, it is reasonable to assume that other small molecules also 

fulfill the requirements. A FRET-based annealing and strand-displacement assay was 

carried out to screen for such metabolites. The assay was combined with UV-melting 

studies to further understand the relationship between an RNA chaperone activity and 

secondary structure stability. 

 



 58

 
Figure 13. Secondary structure representation of cold-induced metabolites that were used in a FRET-based 

annealing and strand-displacement assay as well as in thermal melting studies. 

  

 

3. 1. 1. Choice of Metabolites 
 

The metabolites used in this study were selected based on following criteria. First, the 

intracellular concentration of the metabolites changes upon temperature stress in 

plants. In addition, the metabolites were shown to have effects on the secondary or 

tertiary structure stability of RNA and/or were shown to influence RNA folding. All 

metabolites used in this study, the dependence of their concentration on temperature 
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change in plants and their influence on secondary and tertiary structure stability are 

summarized in table 5. Their structure is shown in figure 13. 

 

3. 1. 2. The Thermal Melting of a Hairpin RNA is Unaffected by the Presence of 
Cold-Shock Metabolites 
 

The objective of UV melting studies was to gain a more comprehensive picture of the 

relationship between the influence of small metabolites on strand-displacement and on 

RNA structural stability. To monitor the effects of metabolites on secondary structure of 

RNA, the simple hairpin RNA “SAM” was chosen for this study. The hairpin loop is 

closed by an 11 bp helix with a predicted thermodynamic stability of -13.8 kcal mol-1 

(1 M NaCl, 37 °C) (Zuker 2003) and an experimentally determined thermodynamic 

stability of -4.6 kcal mol-1 (100 µM NaCl, 37 °C) (figure 14). The large number of base-

pairs and high stability make it a good model RNA to screen for metabolites that should 

act on RNAs with an increased thermodynamic stability due to low temperatures. 

Helices in natural occurring RNAs rarely succeed 10 bp (Fuertig et al. 2007). The 

thermodynamic stability of longer stretches is usually too high to be exchanged by a 

competing RNA strand in vivo (Mahen et al. 2010). Due to the high stability of the 

substrate, a low salt concentration of 100 µM NaCl had to be used in order to be able 

resolve the melting profile.  

UV-melting studies were carried out at metabolite concentrations that were considered 

biologically relevant. However, the absolute quantities of all metabolites in plant cells 

are not known. A study of Lewis et al. (2007) showed that the concentrations of the 

most abundant metabolites in Arabidopsis are about 1 mM – 10 mM (table 5). This 

study was used as a guideline for concentrations used in UV melting studies.  

In the absence of metabolites, the midpoint of the melting transition (Tm) of SAM is 

59.3 °C ± 0.5 °C. The effects of spermidine and urea on RNA structural stability have 

been previously shown. As anticipated, 1 mM spermidine effectively stabilizes the 

hairpin by 6.2 °C and 1 M urea destabilizes the hairpin by -3.4 °C (figure 14 and 15, 

table 4). Other metabolites tested here are neither able to significantly change the 

melting temperature nor the shape of the melting transition (figure 15B). To understand 

whether the lack of effect of metabolites presented here is due to structural features or 

due to the base-pair composition of the RNA substrate, each metabolite was in addition 

tested at least once with 21R RNA (data not shown). For this substrate, the melting 
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temperature and the shape of the melting transition also remain unaltered by the 

presence of cold-shock metabolites.  

 
Table 4. Melting temperature (Tm) of a 29mer hairpin 

RNA (SAM) in the presence or absence of 

approximately physiological concentrations of 

metabolites. C, concentration. The deviation is 

presented as 2 x standard error of mean. Spermidine 

and urea were used as a positive control. 

 

 

 
Figure 14. Hairpin RNAs. (A) A small hairpin 

designed by Lambert and Draper (2007). The melting 

temperature of the hairpin is slightly decreased in the 

presence of high concentrations of urea, proline, 

glycine betaine, glycerol and TMAO. (B) Hairpin RNA 

(SAM) used in this study. The melting temperature 

remains unaltered in the presence of cold-shock 

metabolites. 

 

 
  C [mM] Tm [°C] 

   

SAM only - 59.2 ± 0.3 

allantoin  1 59.5 ± 0.3 

allantoin  10 59.6 ± 1.0 

asparagine 1 59.8 ± 0.8 

betaine 10 59.7 ± 0.5 

ethanolamine 10 59.9 ± 0.3 

fructose  1 59.2 ± 0.8 

galactinol 1 59.5 ± 0.6 

glutamine  1 59.4 ± 0.1 

glycerol  10 59.5 ± 0.5 

myo-inositol   10 59.4 ± 0.5 

maltose  10 59.4 ± 0.1 

proline  10 59.5 ± 0.1 

spermidine  1 65.4 ± 0.6 

TMAO   1 59.4 ± 0.2 

urea  1000 55.7 ± 0.2 

      

 

Interestingly, CTAB is not able to change the melting temperature of the 21R duplex at 

a concentration of 100 µM. As will be discussed later (see section 3. 1. 3.), 100 µM 

CTAB is sufficient to effectively enhance annealing, but not to catalyze strand-

displacement of the same RNA substrate. It was not possible to record melting curves 

at higher concentrations of CTAB. At 500 µM CTAB, the absorbance profile showed a 

slow but continuous decrease in absorbance with time that may result from 

precipitation. 

 

 



 61

 change in change in change in effects on effects on reconstitution of a  
 concentration upon concentration upon concentration upon sec. structure tertiary structure folding retarded intracellular 

 cold acclimation cold-shock heat shock stability stability 23S rRNA concentration 

        
allantoin - I [3] / N [4] I [4] / N [3] - - - - 
asparagine I [1] I [3] I [3] / N [4] - - - 61.5 mM [9] 
glycine betaine I [2] - - D [5][6] D + I [5] [6] I [8] - 
ethanolamine - D [4] - - - - 4.6 mM [9] 
fructose I [1] [2] I [3] / N [4] I [3] [4] - - - 5.9 mM [9] 
galactinol I [1] [2] I [3] [4] I [3] [4] - I [5] - - 
glutamine I [1] I [3] [4] N [3] [4] - - - 37.4 mM [9] 
glycerol I [1] I [3] / N [4] I [3] [4] D + I [5] - N [8] 10.4 mM [9] 
maltose I [1] I [3] I [3] - - - 0.1 mM [9] 
myo-inositol I [1] [2] I [4] / D [3] I [3] [4] - - - - 
proline I [1] [2] I [3] [4] N [3] / D [4] D [5] D [5] - 1.9 mM [9] 
raffinose I [1] [2] I [3] [4] I [3] [4] - - - - 
spermidine I [1] N [4] N [4] I [7] - - - 
TMAO - - - D + I [5] I [5] I [8] - 
urea I [1] - - D [5] D [5] N [8] - 
        
 
Table 5. Metabolites used in UV-melting studies and in the FRET-based annealing and strand-displacement assay. Metabolites that change in concentration upon temperature 

stress and metabolites that influence the thermodynamic stability of RNA-RNA interactions are considered candidates as RNA chaperones. I, increase; D, decrease; N, no 

influence; -, not determined in given references. Glycine betaine, glycerol and TMAO were shown to increase and decrease RNA structural stability depending on which RNA 

substrate was studied. The numbers refer to the following references: [1] Cook et al. (2004); [2] Janska et al. (2010); [3] Kaplan et al. (2004); [4] Wienkoop et al. (2008); [5] 

Lambert and Draper (2007); [6] Schwinefus et al. (2007); [7] Furtig et al. (2010); [8] Semrad and Green (2002); [9] Lewis et al. (2007). 
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Figure 15. Thermal melting of a 29mer hairpin RNA (SAM) in the presence of different metabolites. At the melting 

temperature (Tm), the fraction of folded RNA is 0.5. (A) Spermidine and urea were used as positive controls: 1 mM 

spermidine increases the Tm by 6.2 °C and 1 M urea decreases the Tm by 3.4 °C. The shape of the melting transition 

remains unaltered. (B) At approximated physiological concentrations of metabolites, neither the Tm nor the shape of 

the melting transition of SAM is altered. 
 

 

The lack of effect is also true for metabolites for which a stabilizing or destabilizing 

effect has previously been published. This may be explained by the fact that previous 

studies were carried out with very high metabolite concentrations. Lambert and Draper 

(2007) published a weak destabilizing effect of urea, proline, glycine betaine, glycerol 

and TMAO on a small hairpin shown in figure 14. However, the ΔG only changed by a 

factor of 0.08 kcal mol-1 to 0.57 kcal mol-1 per molal of metabolite. The experimental 

setup of melting studies presented here is not able to resolve effects that small.  

The effects of different osmolytes such as glycine betaine and urea on the DNA stability 

can be influenced by the presence of monovalent salts in high concentrations. However, 

the salt dependence of osmolyte-DNA interactions is small (Lambert and Draper 2007). 

Therefore, a detrimental influence of the used sodium concentration can be excluded. 
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3. 1. 3. Testing Metabolites for their Ability to Enhance Annealing and Strand-
Displacement. 
 

A FRET-based assay developed by Rajkowitsch & Schroeder (2007) monitors the 

annealing and strand-displacement of short oligonucleotides in a fast and simple 

approach. Two fluorescently labeled short RNA oligonucleotides are annealed in the 

presence or absence of small metabolites (phase I). After 3 minutes, a competitor-

strand is added which starts the strand-displacement reaction (phase II). Annealing 

increases the FRET index whereas strand-displacement decreases it. It has to be 

considered that the FRET signal from phase II also includes residual annealing from 

phase I. These measurements allowed the calculation of the observed rate-constant 

(kobs) which is a measure of the velocity of the reaction.  

All measurements were carried out at least twice in quadruplicates for four different 

metabolite concentrations ranging from 400 nM to higher than 5 mM. The concentration 

of 400 nM was chosen as the lower limit because at this concentration, the number of 

small metabolite molecules equals the number of backbone-phosphates for both RNA 

substrates studied. The upper limit varied depending on the solubility of the metabolite 

in water as specified by the manufacturer. 

 

3. 1. 3. 1. Neither Destabilization nor a Positive Charge is Sufficient to Promote 

Strand-Displacement 

 

Screen of individual metabolites 

The screen was carried out with two RNA substrates, namely 21R and JM1. Both 

substrates are 5’ fluorescently labeled (Cy5-21R+ and Cy3-21R-; Cy5-J1+ and Cy3-M1-) 

and are able to form a fully complementary 21mer duplex. 21R has a higher 

thermodynamic stability due to a higher G:C content of 38 % compared to only 5 % in 

JM1. All single-strands were specifically designed such that they do not form secondary 

structures at the reaction temperature of 30 °C. Therefore, phase I does not involve the 

unwinding of any secondary structures. In the absence of enhancers (RNA only), JM1 

anneals slightly faster than 21R (table 6). 
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Table 6. Rate constants (kobs) for the annealing and strand-displacement for two RNA substrates, JM1 and 21R, in 

the presence and absence of small metabolites as determined with a FRET-based assay. The deviation is presented 

as 2 x  standard error of mean. nd, not determined. -, no activity. 

 annealing (kobs (M-1sec-1))  strand-displacement (kobs (M-1sec-1)) 
  JM1 21R   JM1 21R 
      
RNA only 2.3 • 105 ± 1.5 • 104 1.9 • 105 ± 1.5 • 104  - - 
500 µM CTAB 6.3 • 106 ± 1.4 • 106 3.9 • 106 ± 8.0 • 105  1.9 • 106 ± 1.2 • 105 1.6 • 106 ± 1.0 • 105 
100 µM spermidine 1.3 • 105 ± 2.9 • 104 nd  - - 
1 mM spermidine 2.8 • 105 ± 3.6 • 104 nd  - - 
10 mM spermidine 7.0 • 105 ± 3.9 • 104 nd  - - 
       

 

 

Cetyltrimethylammonium bromide (CTAB) was used as a positive control for the strand-

displacement reaction. In the combined assay, CTAB mediated rate constants vary 

considerably in phase I (annealing), whereas they are comparable to each other in 

phase II (strand-displacement). Annealing rate constants are in good agreement with 

previously published results (table 6). The slightly higher CTAB-mediated annealing rate 

presented by Nedbal et al. (1997) may be a result from the higher reaction temperature 

(37 °C). CTAB mediated strand-displacement of JM1 and 21R is more than 2000-fold 

more efficient than the strand-displacement between a 56 bp duplex and 645 nt 

competing RNA studied by Homann et al. (1996). The RNA substrate and factors such 

as the concentration of competitor RNA and the experimental set-up may strongly 

influence the velocity of the strand-displacement reaction. However, the exact reason 

for this discrepancy remains a matter of speculation. 

CTAB shows slightly slower kinetics in a FRET-based strand-displacement assay with 

pre-annealed duplexes (data not shown) compared to the combined assay. This may be 

due to a higher concentration of competitor molecules in the combined assay because 

annealing is not completed at the end of phase I. 
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Figure 16. Spermidine enhances the annealing of JM1 RNA but does not promote strand-displacement. 

(A) Representation of data from the FRET-based annealing and strand-displacement assay. The FRET index (Cy5 

signal / Cy3 signal) was normalized to 1 for clarity. Annealing is monitored in the first 180 seconds (phase I), the 

injection of competitor RNA starts the strand-displacement reaction (phase II). CTAB was used as a positive control 

for the strand-displacement reaction. (B) 10 mM spermidine enhances the annealing of JM1 RNA about 3-fold. 100 

µM and 1 mM spermidine do not significantly alter or even slightly decrease the annealing rate constant. Error bars 

represent 2 x standard error of mean. 

 

 

10 mM spermidine enhances the annealing of JM1 2 – 3-fold (table 6, figure 16). At 

lower concentrations of spermidine (100 µM and 1 mM), the annealing rate constant is 

unaltered or even seems to be slightly decreased compared to RNA only (figure 16). 

Interestingly, 1 mM spermidine effectively stabilizes the double-strand as shown in the 

UV-melting study (see 3. 1. 2.). Spermidine-mediated annealing enhancement is rather 

small considering that a 106-fold molar excess of metabolite to RNA is needed. In 

contrast, the 18 amino acid long basic peptide Tat(44-61) derived from the HIV-1 Tat 

protein accelerates annealing of the 21R duplex 7 – 8-fold at an only 15-fold molar 

excess in the same assay (Doetsch et al. 2011). This difference is unlikely due to a 

varying base-pair composition of the two RNA substrates since amines primarily interact 

with the sugar-phosphate backbone of RNA (Quigley et al. 1978). None of the other 

metabolites carrying a positive charge examined in this study such as amino acids, 

glycine betaine or TMAO show any effect on the annealing reaction. This may be 

explained by entropic effects upon RNA-metabolite interaction. Doetsch et. al. (2011) 

showed that the annealing-enhancement of Tat(44-61) is accompanied by a favourable 
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entropy term that may result from ion and water release upon peptide binding. 

Annealing enhancement is proposed to be a result from this favourable entropy and the 

conversion of the RNA strand into an annealing-competent conformation. A favourable 

entropy term was also shown for CTAB-mediated annealing enhancement (Nedbal et al. 

1997). The replacement of one salt ion with a monovalent metabolite may leave the net-

entropy unaltered. Spermidine carries three positive charges instead and more ions 

have to be released upon spermidine binding. This results in a favourable entropy term. 

The same may be true for CTAB assuming that CTAB forms aggregates by hydrophobic 

interactions of the alkane-tails as suggested by Nedbal et al. (1997). 

Neither spermidine nor any other metabolite (data not shown) was found to enhance 

strand-exchange of 21R and JM1 at any concentration. Noteworthy, metabolites such 

as proline, glycine betaine and TMAO were shown to have a destabilizing effect on 

secondary structures at high metabolite-concentrations and in addition carry a positively 

charged group. Nevertheless, even at a 100 mM concentration of metabolite, no strand-

displacement was detectable. It has to be considered, that the time frame of the 

measurement is short. In a later experiment, it was shown that strand-displacement 

between 21R and a competitor does occur at similar conditions over a time span of 30 

minutes in the absence of enhancing metabolites (see section 3. 2. 2.). Such a small 

effect cannot be visualized in this assay due to a restricted time-span of the 

measurement and due to residual annealing of phase I. To exclude the possibility that 

the effect is covered by residual annealing, all metabolites were in addition tested in a 

FRET-based strand-displacement assay with a pre-annealed 21R double-strand (data 

not shown). Also in this assay, no cold-induced metabolite was found to be able to 

promote strand-displacement. 

 

Screen of metabolite groups 

Another possible explanation for the lack of activity is that the effect of one metabolite 

may not be sufficient to promote strand-displacement. This is in line with the finding that 

urea is unable to promote strand-exchange in the same assay even at concentrations 

that significantly destabilize secondary structures (Boris Fürtig, personal 

communication). For that reason, previously tested metabolites were combined and 

tested in groups. Metabolites containing the same functional group or metabolites 

predicted to have the same effect on RNA structural stability were combined to test for 

additive effects (table 7). However, most metabolites carry two or more functional 
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groups. This renders also cooperative effects possible. The metabolite groups 

contained equimolar concentrations of all metabolites.  

None of the metabolite groups are able to enhance the annealing or strand-

displacement of the JM1 substrate at any of the tested concentrations. Also metabolite 

groups consisting of RNA denaturants like glycine betaine, TMAO or proline in 

combination with metabolites that carry a positive charge were not able to do so. Since 

the destabilization of helices and the neutralization of the charge repulsion are not 

sufficient, it is likely that an additional functionality is crucial for the process of strand-

displacement. 

 

 
Table 7. Individual cold-shock metabolites were not able to promote annealing or strand-displacement of the 21R and 

the JM1 substrate. In order to test whether additive or cooperative effects of different metabolites are required for this 

activity, cold-shock metabolites were combined to arbitrary groups of metabolites that share common features and 

were tested for their ability to enhance the annealing or strand-displacement of the JM1 substrate. Since many 

metabolites carry more than one functional group, the grouping covers additive and cooperative effects. The points 

indicate that the respective metabolite was part of the group. (1) Two major cold-shock metabolites. (2) Amino acids. 

(3) Metabolites with a previously shown destabilizing effect on RNA secondary structure. (4) Metabolites that carry a 

COOH functional group. (5) Arbitrary group (6) Metabolites that carry an amino-group. (7) All metabolites that carry 

an OH group. 
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1      ●     ●    

2  ●     ●    ●    

3   ●        ●  ● ● 
4  ●     ●    ●   ● 
5    ●   ● ●  ● ● ●   

6 ● ● ● ●   ●    ●   ● 
7  ●  ● ● ● ● ● ● ● ● ● ●  
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3. 2. CELL-EXTRACTS FROM COLD-SHOCK TREATED CELLS 
 

In previous experiments, metabolites were grouped in order to cover additive or 

cooperative effects. To approximate physiological metabolite concentrations and 

combinations, polar metabolite extracts were produced from Chlamydomonas reinhardtii 

cells as previously described by Weckwerth et al. (2008). The metabolite profile of this 

monocellular alga changes drastically during cold-shock (figure 9) (Weckwerth 

laboratory, unpublished data, personal communication).  

All experimental cultures were grown at 20 °C up to an OD750 = 1. Afterwards, cultures 

were incubated at 7 °C for 48 hours. Control cultures remained at 20 °C. Samples for 

metabolite extraction were drawn at 6 hours (CSE6) and at 48 hours (CSE48) after 

cold-induction. Kaplan et al. (2004) showed that Arabidopsis plants gain an enhanced 

freezing tolerance as early as 6 hours after cold-induction that proceeds to 96 hours 

after cold-induction. After the metabolite extraction procedure, the metabolite pellet was 

resuspended in the amount of water which was estimated to be the total cell volume of 

cells used for extraction in order to approximate cellular metabolite concentrations. It 

was not possible to avoid the presence of pigments within the polar cell extract without 

diminishing the quality of the extract. Since all extracts showed a high absorbance at 

the wavelength used for FRET measurements, a FRET-based assay could not be 

applied. A trans-splicing assay as well as strand-displacement gels were carried out 

instead. 

 

3. 2. 1. Trans-Splicing is Equally Efficient in Cold-Shock Extracts and in Controls 
 

To test the metabolite-extracts for their RNA chaperone activity, their ability to enhance 

the splicing reaction of a splicing-retarded group I intron was tested (Galloway Salvo et 

al. 1990; Coetzee et al. 1994) (figure 17). At a 0.5-fold estimated cellular concentration, 

no splicing is detectable in CSE6 or in extracts of control cells. The increase of the 

MgCl2 concentration from 3 mM to 30 mM restores some of the splicing activity of the 

reaction in metabolite extracts. However, the reaction is still more efficient in the 

absence of small metabolites. It was considered that the metabolite extracts may inhibit 

splicing by destabilizing the intron too efficiently as it was previously shown for StpA on 

mutant group I introns (Grossberger et al. 2005). However, decreasing the reaction  
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Figure 17. In vitro trans-splicing in the presence and absence of 0.5-fold the estimated cellular concentration of  

polar metabolite extracts of Chlamydomonas reinhardtii cells. The cells were cold-induced by lowering the 

temperature to 7 °C. Cell extracts of cells that were not cold-induced were used as controls. Trans-splicing is 

inefficient at 37 °C (negative control) but is enhanced at 55 °C (positive control) and in the presence of RNA 

chaperones. (A) Schematic representation of the splicing reaction. The in vitro transcribed RNA fragments H1 and H2 

associate in trans. The addition of radiolabeled GTP as a splicing cofactor starts the reaction that results in the 

exclusion of the intron sequence. The intron is released with GTP covalently joined to its 5’end. 

 (B – D) The upper band corresponds to 35S body labeled H2 RNA, the lower band to the H1 intron splice product 

with 32P-γ-GTP covalently joined to its 5’end. (B) Splicing in 3 mM MgCl2 in the presence of CSE6. The splicing 

activity in both extracts is below the detection limit. (C) The MgCl2 concentration was increased to 30 mM. The 

increase restores some splicing activity in the control extract, in the cell extract of cold-shock treated cells 48 hours 

after cold-induction (CSE48) as well as in CSE6 (data not shown). Splicing is equally efficient in cold-shock extracts 

and control extracts and in both cases lower than splicing in the absence of extracts. (D) To increase the 

thermodynamic stability of the intron, the reaction temperature was lowered to 25 °C for the reaction in 30 mM MgCl2. 

The splicing activity in both extracts is below the detection limit.  

 
 

temperature to 25 °C (in order to counteract a too strong destabilizing effect) further 

inhibits the splicing reaction. Decreasing the concentration of the metabolite extract 

under the same experimental conditions again restores some of the splicing activity 

(figure 18). However, the reaction does not reach the activity of the intron in the 

absence of metabolites in any case. Therefore, the increased activity in higher Mg2+ 
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concentrations may not result from an Mg2+-induced stabilization. Contrarily, higher 

Mg2+ concentrations seem to compensate for a reduced availability of Mg2+ in the 

presence of the metabolite extract. The reason for the low observed splicing-rate may 

be the presence of GTP in polar metabolite cell-extracts. Radiolabeled GTP is added to 

the splicing reaction as a splicing cofactor and marker. Additional unlabeled GTP would 

result in weaker bands due to unlabeled splicing products. Therefore, from these results 

it cannot be concluded that the metabolite extracts inhibit the splicing reaction.  

Regardless of the overall splicing rate in metabolite extracts, the efficiency of splicing in 

the cold-shock extract always equalled the one in the control extract. Therefore, the 

splicing reaction is not enhanced in cold-shock extracts as compared to the control 

extract. 

 

 
Figure 18. In vitro trans-splicing in the presence of decreasing concentrations of polar metabolite extracts of 

Chlamydomonas reinhardtii cells. A decrease in the concentration of the polar metabolite extract restores some 

splicing activity. (A and C) Splicing in the presence of 0.5-fold, 0.2-fold and 0.1-fold the estimated cellular 

concentration of the control extract and CSE6 in 30 mM MgCl2 at 25 °C. 32P-I: H1 intron splice-product with 32P-γ-

GTP covalently joined to its 5’end. (B and D) The bands were quantified with ImageQuant®. The relative splicing 

activity is the ratio between the intensity of the splicing product (32P-I) and the combined intensities of the fragments 

H1 and H2 and the splicing product. The splicing activity increases with decreasing concentration of the extract but 

remains lower than the negative control. The ratio between the splicing activity in extracts and in RNA only samples 

at 37 °C is the same for control extracts and cold-shock extracts except for 0.1 x the control-extract. 
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3. 2. 2. Polar Metabolite-Extracts Enhance the Strand-Exchange Reaction 
 

The ability of polar metabolite extracts to enhance the exchange between a 21R duplex 

and a 32mer competitor RNA with full complementarity was examined. Interestingly, the 

strand-displacement reaction is efficient in the absence of metabolites under 

experimental conditions (figure 19). After 30 minutes at 37 °C, 54 % ± 4 % of strands 

are present in a duplex with the 32mer competitor RNA. However, no strand-

displacement between the same double-strand and a similar competing RNA (21R-) can 

be detected in the FRET-based annealing and strand-displacement assay at similar 

buffer conditions. This can be attributed to the much smaller time-frame of the 

measurements as well as to the lower concentration of competitor used in the FRET-

based assay.  

At a 0.5-fold estimated cellular metabolite concentration, the fraction of the displaced 

strand increases to 66 % for the control extract and to 72 % for CSE6 (figure 19). 

Interestingly, CSE6 also enhances the strand-exchange reaction to a similar extent at a 

0.15-fold metabolite concentration, whereas the strand-exchange was slightly inhibited 

at this concentration in the control extract. This has only been tested once for two 

biological replicates each. These results indicate that the change of the metabolite 

profile in the cell can have an influence on the folding reaction in vitro. However, a 

difference is seen only at a fraction of the estimated cellular concentration. Whether this 

is of biological relevance still has to be elucidated. 

 

 
Figure 19. Strand-displacement between a 21R duplex RNA (32P-21R+:21R-) and a 32mer fully complementary 

competitor RNA. (A) The RNA was incubated for 30 min at 37 °C in the absence (RNA only) or in the presence of 

increasing concentrations (0.05 x, 1.5 x, 0.5 x) of polar metabolite extracts from Chlamydomonas reinhardtii. Control 

extract: extract from cells without cold-treatment. (B) Quantification with ImageQuant®. After 30 minutes, about 55 % 
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of the strands are displaced in the absence of metabolites. Cold-shock extracts and control extracts enhance the 

strand-displacement reaction at a 0.5-fold estimated cellular concentration to 72 % and 66 %, respectively. In CSE6, 

also 0.15 x the estimated cellular concentration enhance the reaction to a similar extent whereas the reaction is 

slower at this concentration in the control extract compared to RNA only. Error bars represent 2 x standard error of 

mean. 
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3. 3. DEVELOPMENT OF A PROTEIN PURIFICATION STRATEGY FOR GRP7 
 

The concentration of the small metabolites glutamine and proline was shown to 

increase upon cold-shock in Arabidopsis thaliana (Wienkoop et al. 2008). In the study 

presented here, the two metabolites were shown not to be sufficient to promote strand-

displacement in the FRET-based annealing and strand-displacement assay. 

Interestingly, the concentrations of glutamine and proline correlate with the one of 

protein GRP7 (At2g21660) during the cold-shock response in Arabidopsis thaliana 

(Wienkoop et al. 2008). GRP7 was suggested to act as an RNA chaperone due to its 

ability to complement a cold-sensitive E. coli phenotype as well as its ability to increase 

the susceptibility of RNA to RNAse T1 cleavage. The protein also has a DNA melting 

activity (Kim et al. 2007). However, an RNA strand-exchange activity was not explicitly 

shown so far. For future experiments, it would be of interest to verify the RNA 

chaperone activity of GRP7 in the FRET-based annealing and strand-displacement 

assay discussed earlier. This assay can also be used to study the activity of the protein 

in the presence of glutamine and proline. 

Protein GRP7 was overexpressed in E.coli strain ER2566 and purified without a tag 

using the IMPACT™ TWIN system. Two other proteins were considered possible 

candidates to act as RNA chaperones, namely At2g37220 and At3g53460. Both 

proteins contain at least one RRM as well as a glycine-rich region and are strongly 

induced upon cold-shock (Wienkoop et al. 2008). The proteins could not be purified. 

The on-column cleavage reaction of the CBD-intein-At37220 fusion protein was not 

successful for all conditions tested. For the protein At3g53460, different cDNAs did not 

result in a clone with a 100 % identity to one of the published sequences. 
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4. CONCLUSION 
 

 

The ability of cold-shock metabolites are able to act as RNA chaperones was 

investigated. Individual cold-shock metabolites as well as metabolite combinations were 

tested in a FRET-based annealing and strand-displacement assay. The metabolites 

were shown not to fulfill the requirements to enhance annealing or strand-displacement 

at any concentration (400 nM – 100 mM) or in any combination studied. Neither a 

destabilizing effect of metabolites nor positive functional groups neutralizing the charge 

repulsion between strands nor both is sufficient. This indicates that a further function is 

needed for the process of strand-displacement. It is possible that strand-exchange is 

not achieved by a competitor strand catching a single-strand of a partially opened helix 

but rather by the formation of another ternary complex. Such a ternary complex may be 

a triple helix. The formation of triple helices is usually dependent on helical regions 

where the regular A-form geometry is perturbed by mismatches. Factors that induce 

such a perturbation may favour strand-exchange. This idea is supported by the finding 

that CspE loses its nucleic acid melting activity when the intercalating amino-acids of 

the interacting surface are removed (Phadtare et al. 2002). Moreover, 

tetramethylammonium chloride, a metabolite that is equal to the head-group of CTAB, 

was shown to induce structural changes in DNA (Marky et al. 1981). CTAB effectively 

enhances annealing and strand-displacement. It may be worth testing whether 

metabolites that enhance annealing are able to promote strand-displacement of JM1 in 

combination with metabolites that perturb the helical geometry or of an RNA substrate 

containing mismatched bases.  

Spermidine is able to enhance the annealing but not the stand-displacement reaction. 

Interaction of spermidine with the RNA backbone may result in a favourable entropy 

upon ion release and the convert the RNA into an annealing-competent conformation as 

was hypothesized for the annealing enhancement by the basic peptide Tat(44-61) 

(Doetsch et al. 2011). 

Thermal melting studies were carried out in order to examine the effects of 

approximately physiological concentrations of cold-shock metabolites on RNA structural 

stability. The melting temperature as well as the shape of the melting transition of a 

small hairpin RNA is unaltered in the presence of cold-shock metabolites. 
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In order to approximate physiological combinations of metabolites, polar metabolite 

extracts of Chlamydomonas reinhardtii cells were prepared and it was tested whether 

the extracts are able to promote the functional fold of a splicing-retarded group I intron 

as well as to enhance strand-exchange. Trans-splicing is equally efficient in cold-shock 

extracts as in non-cold-shock extracts. In general, the assay was found to be not suited 

to test polar metabolite cell extracts, most likely due to remaining GTP in the extract. 

Strand-exchange was monitored between a 21R duplex and a fully complementary 

32mer competitor strand. Metabolite extracts of cold-shock treated cells as well as 

control-extracts were able to enhance the strand-displacement reaction at a 0.5-fold 

estimated cellular concentration. At lower concentrations, the cold-shock extract but not 

the non-cold-shock extract is able to do so.  

A protein purification protocol for a tag-free protein GRP7 was developed. GRP7 is a 

proposed RNA-chaperone that is upregulated upon cold-stress in Arabidopsis thaliana. 

During the cold adaption process, the concentration of GRP7 correlates with the cold-

shock metabolites proline and glutamine (Wienkoop et al. 2008). In future experiments it 

would be worth to verify the RNA chaperone activity of GRP7 in the FRET-based 

annealing and strand-displacement assay as well as to study its activity in combination 

with the cold-shock metabolites proline and glutamine. 

In conclusion, cold-shock metabolites were not found to influence RNA folding. 

However, the change in the metabolite profile upon cold-shock can have an influence 

on RNA in vitro as shown in the strand-displacement assay. Whether this influence is of 

biological relevance cannot be concluded.  
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7. APPENDIX 
 

 

7. 1. PUBLICATIONS 
 

Doetsch M, Gstrein T, Schroeder R, Fuertig B. 2010. Mechanisms of StpA-mediated 

RNA remodeling. RNA Biology 7(6): 735-743. 

 

Doetsch M, Fuertig B, Gstrein T, Stampfl S, Schroeder R. 2011. The RNA annealing 

mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-

competent conformation. Nucleic Acid Res. [in process] 
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7. 2. ABSTRACT 
 
Low temperature is a major stress factor for plants. The plants response to this kind of 

stress involves a dramatic change in the metabolite and protein profile. Among other 

cold-inducible proteins, RNA chaperones are highly expressed. RNA chaperones are 

able to resolve RNA-RNA interactions and thereby help the cell to cope with the 

increased thermodynamic stability of non-native RNA structures at low temperature. 

The change in the metabolite profile is poorly understood. One major group of 

upregulated metabolites are “osmolytes”, a group of metabolites that maintain the cells 

osmolarity but do not show any interaction with macromolecules. However, many cold-

inducible metabolites were shown to influence the thermodynamic stability of proteins 

and nucleic acids. This study tested whether these metabolites can help the plant cell 

during cold stress by acting as RNA chaperones. 
Individual cold-shock metabolites as well as groups of cold-shock metabolites do not 

fulfill the requirements to enhance annealing or strand-displacement of short RNA 

oligonucleotides in a FRET-based assay. Approximately physiological concentrations of 

these metabolites also did not alter RNA stability nor the shape of the melting transition. 

In order to approximate physiological metabolite combinations, polar metabolites were 

extracted from cold-treated Chlamydomonas reinhardtii cells. The extracts were tested 

for their ability to promote the functional conformation of a folding retarded group I intron 

in a trans-splicing assay. The splicing was equally efficient in extracts from cold-treated 

cells and from not-cold-treated cells. Both extracts were found to enhance the strand-

displacement reaction between a 21mer duplex RNA and a 32mer fully complementary 

competitor. The cold-shock extract enhanced the displacement-reaction already at 

lower concentrations. In addition, a protocol for a tag-free purification of the proposed 

RNA chaperone GRP7 was developed. 

In conclusion, cold-shock metabolites were not found to influence RNA folding. 

However, the change in the metabolite profile upon cold-shock can have an influence 

on RNA in vitro as shown in the strand-displacement assay. Whether this influence is of 

biological relevance cannot be concluded.  
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7. 3. ZUSAMMENFASSUNG 

 
Die Anpassung von Pflanzen an Kältestress beinhaltet eine drastische Änderung des 

Metabolit- und Proteinprofils. Neben anderen Proteinen werden auch RNA-Chaperone 

vermehrt exprimiert. RNA-Chaperone können RNA-RNA Interaktionen lösen und 

dadurch der Zelle helfen, die erhöhte thermodynamische Stabilität von RNA Strukturen 

bei niedriger Temperatur zu kompensieren. Dagegen ist über die Funktion von 

Metaboliten während der Kälteadaption wenig bekannt. Eine gut untersuchte Gruppe 

stress-induzierter Metaboliten sind Osmolyte. Osmolyte halten die Osmolarität der Zelle 

aufrecht, ohne jedoch mit Makromolekülen der Zelle zu interagieren. In hohen 

Konzentrationen verändern jedoch viele kälte-induzierte Metaboliten die Stabilität von 

Proteinen und Nukleinsäuren. In dieser Studie wurde getestet, ob diese Metaboliten als 

RNA-Chaperone fungieren können, indem sie den Austausch zwischen RNA-Strängen 

beschleunigen.  

Weder individuelle kälte-induzierte Metaboliten noch Metabolitgruppen beschleunigen 

die Hybridisierung von oder den Austausch zwischen kurzen RNA Oligonukleotiden. Es 

konnte ebenfalls kein Einfluss auf die strukturelle Stabilität von RNA festgestellt werden. 

Um eine physiologische Metabolitzusammensetzung zu approximieren, wurden 

Metabolitextrakte von kältebehandelten und nicht-kältebahandelten Chlamydomonas 

reinhardtii Zellen hergestellt und verglichen. Beide Extrakte fördern die korrekte Faltung 

von RNA im selben Ausmaß und beschleunigen den Austausch zwischen kurzen RNA 

Oligonukeotiden. Allerdings ist diese Beschleunigung in Kälteschockextrakten, im 

Vergleich zu Kontrollextrakten schon bei niedrigeren Metabolitkonzentrationen zu 

beobachten. 

Ein Protokoll für die Aufreinigung von GRP7, einem kälte-induzierten Protein welches 

vermutlich RNA-Chaperon Aktivität aufweist, wurde entwickelt. 

Zusammenfassend konnte kein Einfluss von individuellen kälte-induzierten Metaboliten 

auf die RNA-Faltung festgestellt werden. Kälte-Schock Extrakte beschleunigen den 

Austausch zwischen RNA Strängen in vitro. Dies weist darauf hin, dass die Änderung 

des Metabolitprofils während Kälteschock einen Einfluss auf RNA haben könnte. 

Allerdings lassen diese Ergebnisse keine Schlussfolgerung zu, ob dieser Einfluss von 

biologischer Relevanz ist. 
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