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in partial fulfillment of the degree

Master of Science (MSc)

Vienna, 2011

program code acc. student data protocol: A 066 876

student ID: 0963000

field of study acc. student data protocol: Masterstudium Physik UG200

supervisor: Univ.-Prof. Dr. Markus Aspelmeyer





Master thesis

Towards magnetic levitation in
optomechanics

Jonas Schmöle∗
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Abstract

High quality mechanical systems are of interest in the field of optomechan-
ics. We discuss if the levitation of mirrors attached to diamagnets trapped in
static magnetic fields can provide a feasible route towards high-Q mechanical
oscillators at room temperature. We experimentally analyze the mechanical
properties of levitated pyrolytic graphite using optical readout. A theoretical
model for the mechanical modes, frequencies and damping by air and eddy
currents is provided and compared to the experiment.

Zusammenfassung

Mechanische Systeme hoher Güte sind von besonderem Interesse auf dem
Gebiet der Optomechanik. Wir diskutieren, ob die Levitation von Spiegeln auf
Diamagneten in permanentmagnetischen Fallen einen möglichen Zugang zu me-
chanischen High-Q-Oszillatoren bei Raumtemperatur eröffnen kann. Wir ana-
lysieren experimentell die mechanischen Eigenschaften von levitiertem pyrolyti-
schen Graphit mit einem optischen Ausleseverfahren. Ein theoretisches Modell
für die mechanischen Moden, Frequenzen und Verluste durch Luftreibung und
Wirbelströme wird beschrieben und mit dem Experiment verglichen.
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1. Introduction

Optomechanics [1, 2, 3, 4] is currently receiving considerable interest as being a cross
field discipline of quantum optics, solid state physics and nano-/micro-fabrication.
The field focuses on the creation and manipulation of nano- and micro-structures
with the goal to bring these systems into regimes where the center of mass motion
is dominated by quantum laws and hence they behave as macroscopic quantum
objects, even though they consist of several billion atoms. More than 75 years after
the first thoughts on quantum effects in macroscopic systems, i.e. Schrödinger’s cat
[5], technology in optics- and structure-fabrication has advanced to a point where
for the first time one might see macroscopic quantum mechanics in the lab.

The field of optomechanics utilizes optical cavities to enhance the interaction of
light fields with mechanical structures (cavity optomechanics). With this, many
interesting effects, such as laser cooling based on radiation pressure [6, 7, 8], can
be exploited. While the interaction between the mechanics and the light field needs
to be strong, one tries to minimize the coupling between the mechanics and its
environment. An oscillating micro-structure will “talk” to its environment through
dissipation of energy, leading to decoherence. The rate of dissipation is determined
by the quality factor Q, the fraction of the stored energy and the energy dissipated
per cycle, of the oscillator.

Current systems rely on a rigid suspension between the oscillating structure and its
environment. Recently new ideas towards yet unexplored systems in optomechanics
were proposed which drop rigid connections in favor of levitated structures. This
might be realized by optical levitation of microspheres [9, 10, 11] or mirrors [12].
Even levitation by repulsive casimir forces might be possible [13].

In this thesis we focus on a magnetic levitation approach towards optomechanics at
room temperature, which is possible with materials inhabiting strong diamagnetism.
Similar systems have been proposed to be used in MEMS accelerometers [14], but
have not yet been exploited as high-Q oscillators. We study the main loss mech-
anisms in such a diamagnetically levitated system by setting up an appropriate
experiment and working out a theoretical model to describe the mechanics. Ul-
timately we want to show if mechanical levitation schemes can be a competitive
approach for optomechanics.1

1Since the rate with which a system couples to its environment is independent of its frequency
(appendix B.1), high-Q systems are very interesting even if they have (comparably) low frequen-
cies.
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1. Introduction

An overview over the topic of magnetic levitation and the different possible schemes
is provided in section 2. In sections 3 and 4 we describe an experimental setup in
order to characterize the mechanical properties of a particular magnetically levitated
system and the results we obtained with it. A better understanding of the results
from the experiment is achieved with a numerical model of the mechanics (section 5)
and an analytical treatment of energy dissipation mechanisms (section 6). We sum-
marize the results in section 7 and give an outlook on possible ways to improve the
current geometry and to set up advanced experiments.

2



2. Magnetic levitation

Typically one envisions the term magnetic levitation as a strong permanent magnet
floating over a (type II) superconductor in a bath of liquid nitrogen. Another popular
image is that of a superconductor sliding almost frictionless on a rail of permanent
magnets. However, those schemes rely on the flux pinning effect [15] and are only
two special cases of a bigger class of static magnetic levitation effects we describe
here.1

2.1. Earnshaw’s theorem

The reason why levitation in general appears quite fascinating to us is that it seems
to be unexplainable with most everyday-forces we experience. Mathematically, this
is expressed through Earnshaw’s theorem [16]. It states that with any combination
of forces obeying a 1/r2 law, like

FG = −G m1m2

r2
er gravity,

FE =
1

4π ε0

q1 q2

r2
er electrostatic force,

it is not possible to achieve stable levitation. The reason is that stability requires
a (local) minimum in the overall potential U , which makes it necessary that the
Laplacian of the potential is greater than zero in some finite connected region,

∇2U
!
> 0 somewhere.

Since 1/r2 forces are always related to 1/r potentials and

∇2 1

r
= 0 ∀ r

one sees that stable levitation is not possible with these forces.2

1In this context, static means that there is no need for actively modulated time-dependent magnetic
fields.

2If you start to think about this statement more deeply, you might ask the question why one can
achieve stability without active regulation in everyday situations (e.g. a book lying on a shelf,
a person standing on the floor), since collision of rigid bodies is mainly due to electrostatic
repulsion. The answer is that Earnshaw’s theorem is strictly only valid for point-like particles in
given potentials and does not account for rigid lattices of particles or continuous distributions.
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2. Magnetic levitation

A similar situation occurs for objects with a magnetic moment m in a magnetic
field B, where [17]

U = −m ·B .

For paramagnets, m is constant and

∇2B = ∇(∇B)−∇× (∇×B) = 0

from the Maxwell equations for the static case in absence of charges. Therefore,
∇2U = 0 and Earnshaw’s theorem does also apply for paramagnets.

2.2. Loopholes in Earnshaw’s theorem

It is clear that if one wants to establish magnetic levitation, one has to find a way
to work around Earnshaw’s theorem. One way to do this is to “allow” periodic mo-
tion of the levitated object, e.g. a gyroscope (an object with cylindrical symmetry
spinning around its symmetry axis). Such an object would, once it is levitated, not
change its orientation or center of mass position due to gyroscopic forces and there-
fore appear as being effectively static for most practical reasons. The Levitron [18]
is such a spinning top built around a permanent magnet, which levitates above an-
other permanent magnet (with opposite pole orientation) as long as its spinning fast
enough. For a full treatment of the physics involved, see e.g. [19].

Another way to achieve magnetic levitation despite Earnshaw’s theorem is to use
materials which do not have a fixed magnetic moment m, but one which depends
on the field B the material is brought into. Those materials are diamagnets and
paramagnets, where

dm =
V

µ0
χdB with

{
χ > 0 for paramagnets,

−1 ≤ χ < 0 for diamagnets.

The work necessary to switch on a magnetic field from 0 to B in presence of a dia-
or paramagnetic object is expressed as3

dU = −dm ·B ⇒ U = − V

2µ0
χB2.

Since ∇2B2 ≥ 0 (appendix B.2), ∇2U can be positive for −1 < χ < 0 leading to
the possibility to achieve magnetic levitation with diamagnets. The phenomenon of
diamagnets repelling magnetic fields is known as the Meissner effect [15]. It is most
extreme for a type I superconductor where χ = −1 and no magnetic field lines can
penetrate the object.

3This is only valid for point-like, isotropic objects. The generalized case is treated in section 5.
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2.3. Diamagnetic levitation

2.3. Diamagnetic levitation

One can distinguish two types of diamagnetic levitation [20]:

• Levitation of a diamagnet, where one levitates a diamagnetic object in a per-
manent field (section 2.3.1),

• diamagnetically stabilized levitation, where one levitates a small permanent
magnet using a strong permanent magnet and stabilizes the levitation with
diamagnets (section 2.3.2).

Both schemes can also be varied by using superconductors (section 2.3.3).

2.3.1. Levitation of a diamagnet

The levitation of a diamagnetic object using a strong magnetic field gained huge
popularity not only among physicists in 1997, when the stable levitation of a living
frog in a 16 Tesla bitter magnet was demonstrated [21, 20]. As seen above, stable
levitation of a point-like diamagnet requires a local minimum in the total magnetic
field strength. For the geometry of a solenoid orientated in vertical direction, such
a point can be found towards the upper end of the solenoid. If the field is strong
enough, even the weak diamagnetism of water inside the frog is enough to achieve
stable levitation. For a cylindrical symmetry, it is possible to have an analytical
treatment of the situation and to write down stability criteria [21].

One does not necessarily need very strong magnets to achieve levitation of a
diamagnet. A “living-room diamagnetic levitation” setup can be bought as toy.
It works with comparably weak rare-earth magnets (roughly 1 Tesla) but uses the
extremely strong diamagnetism of pyrolytic graphite. Eventually we used this kind
of setup for the experiment described below.

2.3.2. Diamagnetically stabilized levitation

One can also use diamagnet blocks of bismuth or graphite to stabilize an other-
wise unstable levitation of a permanent magnet with a strong lifter magnet (also
permanent) [22, 23]. The drawbacks of this elegant scheme are the low frequencies
achievable, which are in the regime of 10 Hz and the difficulties in optical address-
ability, since the diamagnetic blocks need to be close to the permanent magnets from
two sides in the oscillation direction. Also, there is no constraint in the geometry
which keeps the levitated magnet from rotating around its axis and we could not
find reliable information about the smallest pure permanent magnets with strong
enough fields that could be manufactured.

5



2. Magnetic levitation

2.3.3. Levitation using superconductors

Apart from flux-pinning in type II superconductors, which is an effect of impuri-
ties and not desirable for quantum physics [24], one can use superconductors for
their property of being perfect diamagnets (χ = −1) [15], making them usable for
the schemes proposed above. The advantage is that the occurring forces are larger
by several magnitudes and currents are lossless within the superconductors. The
disadvantage is that all known superconductors require cryogenic temperatures to
reach their superconducting state, which makes the experimental setup more sophis-
ticated and leads to additional challenges. These include the cooling of an object
which starts to levitate at a critical temperature and the need for ultra-reflecting
mirror coatings to avoid heating through absorption.4

4This problem is less present with standard mechanical oscillators, since they can dissipate heat
to their (cooled) environment. However, a levitated structure can only dissipate heat through
black body radiation, so the heating of the structure through absorption and the cooling through
black body radiation have to balance at a temperature below the critical temperature of the
superconductor.

6



3. Experimental Setup

The goal of the experimental work done was to create a sample using diamagnetic
levitation, to have a way to read out its position and orientation and to apply a
suitable measurement scheme to determine the mechanical properties.

We chose to levitate a diamagnet as described in section 2.3.2 with the sample
described below (section 3.1). The read-out of the sample was done optically by
reflection of a collimated beam on a mirror put on the sample (section 3.2). The
advantage of an optical readout is that it makes it easy to resolve different degrees
of freedom in the motion of the sample. Also, in the context of optomechanics, the
optical addressability is obligatory anyway. A vacuum chamber for the sample was
designed to see how its properties change with pressure (section 3.3).

Eventually we applied three different measurement schemes to characterize the
system, all of them with certain (dis-)advantages (section 3.5).

3.1. The sample

To the author’s knowledge, few publications exist that give explicit information on
materials that are suitable for diamagnetic levitation, with the only material known
to work being pyrolytic graphite. Thin sheets of pyrolytic graphite can be levitated
on different compositions of strong permanent magnets.

3.1.1. Levitated diamagnet

A commercial piece of pyrolytic graphite was used for levitation. In the direction
orthogonal to its internal carbon layers, pyrolytic graphite has the highest diamag-
netic susceptibility and by far the highest mass susceptibility (which is important
for levitation, since the weight needs to be lifted) at room temperature among all
materials known.

The important parameters of the sample we used are summarized in table 3.1.
The shape was chosen to be non-square to avoid close eigenfrequencies which are
hard to resolve experimentally. For the orientation readout described below, we put
a GaAs mirror on the sample using a small drop of adhesive (figure 3.1a).

Pyrolytic graphite is a very inhomogeneous, rough material which is not suitable
to create clean, polished surfaces one would need to grow thin mirror layers on
it. However, there is an alternative called highly ordered pyrolytic graphite which

7



3. Experimental Setup

symbol description value

m weight (incl. mirror) 61.5 mg
s dimensions (6.85, 7.95, 0.3)T mm

χ susceptibility tensor

(
−1.4·10−5

−1.4·10−5

−6.1·10−4

)
I inertia tensor

(
3.27·10−10

2.43·10−10

5.69·10−10

)
m2 kg

Table 3.1.: Parameters for the sample used throughout the experiments: A piece of
pyrolytic graphite with a gallium arsenide (GaAs) mirror with slightly
smaller dimensions glued to the surface. All values are given in Cartesian
coordinates with axes parallel to the sample edges.

was not available for this experiment but does have properties which could make
it suitable to create nice micromechanical samples [25]. Both variants of pyrolytic
graphite are highly anisotropic, with a distinct axis of strong diamagnetism and
weak conductivity.

3.1.2. Array of magnets

We used the most simple configuration of magnets which is known to work and which
stabilizes a rectangular shaped sheet of pyrolytic graphite in all degrees of freedom.
This is a checkerboard configuration of four strong cube magnets (figure 3.1, ta-
ble 3.1).

(a) Array of gold-coated magnets with levi-
tated graphite and attached GaAs mir-
ror.

x3

x2
x1

(b) Checkerboard configuration of mag-
nets with a plane through the magnetic
field lines.

Figure 3.1.: Magnet array for levitation of graphite. The geometry allows for four
stable levitation positions obtained by rotation of the graphite in steps
of 90◦ around x3.

8



3.1. The sample

Even though the exact shape of the potential is not obvious (and in fact strongly
depends on the individual tensor components χij of the levitated diamagnet), it is
easy to see that this configuration leads to a diamagnetic potential which is zero along
the x3-axis and increases when going away from it. Remember that diamagnets are
repelled by strong field amplitudes |B| and notice that due to the two fold mirror
symmetry the magnetic fields of each individual magnets cancel out along the x3-axis
but nowhere else. One finds the strongest amplitude of B at the center of the upper
surface of each individual magnet. Adding the homogeneous force of gravity, at one
point on the x3-axis one obtains an effective total potential well for a diamagnet in
all six degrees of freedom:

• The translation in x1- and x2-direction as well as the according rotations are
controlled by the increasing total field amplitude within the diamagnet,

• the rotation about the x3-axis is covered by the twofold mirror symmetry of
the potential,

• the x3-translation sees a potential minimum where diamagnetic repulsion and
gravitational attraction balance.

From this geometry, it is evident that the diamagnet must have a certain minimal
size in order to get levitated by the magnets. A point-particle would simply fall
along the x3-axis, since it does not feel any field there. The minimal size depends
on the strength of the magnets and the susceptibility χ of the diamagnet.

symbol description value

l dimensions (12.0, 12.0, 12.0)T mm
B0 surface field 1.4 T
M0 magnetization 866-995 · 103 A/m

Table 3.2.: Parameters for the array of magnets used throughout most measure-
ments; values taken from specification of manufacturer.

The diagonal equilibrium orientation of the rectangular sheet of graphite is ex-
plained by its anisotropy. Because the diamagnetism is much stronger along the
axis orthogonal to the plane, the diamagnetic repulsion is mainly determined by B2

3

instead of |B|2. An isotropic diamagnet would maintain an equilibrium with its
edges parallel to those of the magnets. The effect is visualized in figure 3.2.

The magnets in our experiments are NdFeB rare-earth magnets [26] with a gold
coating (since the material is highly corrosive) and have the properties listed in
table 3.2.

The levitation height in this configuration was measured to be 0.5[2] mm.

9



3. Experimental Setup

(a) Equipotential surface of B2
3 (as

seen by pyrolytic graphite with
strong diamagnetism along x3).

(b) Equipotential surface of |B|2
(as seen by an isotropic diamag-
net with equal diamagnetism in
all directions).

Figure 3.2.: Dependence of equipotential surfaces on the isotropy of the susceptibility
tensor.

3.2. Position and orientation readout

The position readout of the sample is implemented using a simple reflection scheme
as shown in figure 3.3a, equivalent to a Michelson interferometer. A collimated fiber
beam with a wavelength of 1064 nm is split on a beam splitter. One path is reflected
at the mirror on the sample, the other path on a fixed mirror. Because of the slight
divergence of the beam, the two mirrors are adjusted such that the distance from the
beam splitter to the mirrors is about equal. Both beams are reflected and interfere
at the output of the beam splitter where they are focused on a quadrant diode. This
setup allows for two different readout schemes of the mechanics:

• In the interferometric scheme one measures the total intensity at the diodes
and therefore observes the interference fringes through the vertical displace-
ment of the sample. If the beam hits the center of the sample, only the
translation along x3 direction is visible.

• In the displacement scheme one blocks the path with the fixed mirror. A
change of the orientation of the sample leads to a displacement of the spot on
the diode.1 With a quadrant-diode, both tilting directions can be measured
independently. Because the quadrant diode is mounted vertically and the
beam hitting the sample is adjusted to be not exactly vertical, one can also

1The lens in the setup was necessary to reduce the displacement of the spot. Without the lens,
the spot displacement just by lab noise was multiples of the diode size.
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3.2. Position and orientation readout

levitated
sample

split/quadrant diode

fiber output

beamsplitter

lens

gravity

mirror

mirror

mirror

vacuum chamber

1064nm, 1mW

piezo

(a) Illustration of the basic readout scheme. The upper vertical beam path can be
blocked to perform sample-tilt induced beam displacement measurements. The
green arrows indicate the motion of the levitated sample and the according beam
displacements visible on the quadrant diode.

(b) Experimental setup with the vacuum chamber on a low-frequency vibration iso-
lation stage and the vertically mounted interferometer.

Figure 3.3.: Readout scheme and photo of experiment.
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3. Experimental Setup

measure the x3 displacement - the measurement is just less sensitive than
interferometric readout.

It is important to note that displacement in some degrees of freedom will not
cause any change of the beam phase or displacement. These are the rotation about
the x3 axis and the translation in x1 and x2 direction. If these degrees of freedom
correspond to individual modes, i.e. not coupling to visible degrees of freedom, there
is no direct way of identifying them with this readout scheme.

An actual picture of the setup can be seen in figure 3.3b, including the vacuum
chamber described below.

3.3. Vacuum chamber

In order to find the relation between the mechanical quality of the levitated sample
and the background pressure, a simple high vacuum chamber was designed (fig-
ure 3.4). The requirements were low complexity, fast production time and no need
for welding (to exclude sources of leaks). The final design is general-purpose and
only uses off-the-shelf components except for the base block. It has two KF25 open-
ings for pumps and gauges and a K100 lid on the top which can either have a window
for free-space measurements or a fiber-feedthrough to do fiber interferometry.2 Be-
cause of the versatile design, the chamber can be reused for other experiments which
require a quick and simple vacuum solution.

(a) Custom building block
of the vacuum chamber
(rendered).

(b) Standard components
clamped to the chamber
(picture of an early stage
of the experiment).

(c) Window on top of the
chamber for free space
optical access.

Figure 3.4.: Vacuum chamber.

2Because of huge noise issues with interferometric readout described below, the fiber option was
actually never used in this experiment.
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3.4. Vibration isolation

Inside the chamber, the suspension magnets are mounted on a piezo which can
be driven from outside using a vacuum feedthrough. A gauge is mounted at the
chamber for pressure readout. The chamber is evacuated with a Pfeiffer HiCube
Eco turbo pump stand.

3.4. Vibration isolation

From the sample weight and the non-rigid suspension, it was reasonable to expect
fairly low vibration frequencies (below 100 Hz). Since standard optical tables do not
provide good vibration in this range, we mounted the entire setup on an additional
minus k low-frequency vibration isolation stage. This required mounting the entire
optics on a very limited space while maintaining the center of mass above the center
of the stage. The stage needs to be locked with four screws before its payload can
be modified. For a detailed explanation of the steps which eventually lead to this
setup, see appendix B.4.

3.5. Applied methods

In order to minimize systematic errors, we used three different methods to explore the
mechanical properties of the system. The required formulas for the driven damped
harmonic oscillator, which approximates our system, can be found in appendix A,
page 53.

3.5.1. Ringdown

Without external driving, the trajectory of the sample is fully described by the
homogeneous solution A.2 to the equations of motion A.1:

x(t) = A e−ζ ω0 t sin(
√

1− ζ2 ω0 t+ φ)

where A is the amplitude of the ringdown, ζ = 1
2Q is the damping ratio, ω0 is the

eigenfrequency of the excited mode and φ an arbitrary phase. We utilize this by
first driving the system up to a certain amplitude with the frequency of the mode
we want to measure. Then the driving is abruptly switched off and the ringdown
trajectory is measured and fitted with the equation above. A simplified plot of a
single ringdown is shown in figure 3.5a.

A problem with this method is that energy might be transfered into non-visible
modes (e.g. rotation about the x3 axis), which results in a shorter ringdown time and
thereby a smaller quality factor. Also, if the correct eigenfrequencies are not exactly
known (for example because they change with temperature and other environmental
influences), it is almost impossible to drive just one specific mode. Depending on
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3. Experimental Setup
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the individual peaks in both ringdown
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Figure 3.5.: Illustrations of typical Cauchy-Lorentz and ringdown curves.

the frequency separation, the observed oscillation will always be a superposition of
several ringdowns.

3.5.2. Lock-in amplification

With the piezo mounted under the magnets, one can indirectly drive the sample.
This is used for lock-in measurements as described in appendix A.3. The squared
amplitude of the lock-in signal is a relativistic Breit-Wigner function and can be
approximated with a Cauchy-Lorentz distribution (appendix A.7):

|F(x)(ω)|2 =
(F0/m)2(

ω2
0 − ω2

)2
+ (2 ζ ω0 ω)2

≈
(
F0/m

2ω0 ζ

)2 (ζ ω0)2

(ω − ω0)2 − (ζ ω0)2
, (3.1)

with the damping ratio ζ = 1
2Q and the eigenfrequency ω0 as above.3 F0/m is the

driving amplitude divided by the sample mass. The term ζ ω0 =: γ corresponds to
the half width of the peak at the half height of its maximum amplitude (HWHM,
figure 3.5b).

A disadvantage of this method is that for every measured frequency, one needs
to wait for the system to reach the steady-state before one can perform the actual
lock-in integration. If the system has a ringdown time of a second, one needs to wait
several seconds before being able to measure at each point. For a high-resolution
scan over a broad frequency range, a lock-in scan can take several hours, over which
the properties of the system might change e.g. due to temperature drifts. The
advantage of this method are the very nice and smooth system response curves one
gets from it.

3For ζ it does not matter if one measures ω in radian or not, since the factor of 2π gets absorbed
by γ depending on the definition.
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3.5. Applied methods

3.5.3. Noise spectra

The sample picks up random noise from the lab (e.g. people walking around, air
conditioning) which we approximate as being white in the relevant frequency range.
We do not apply any direct driving and just observe the systems response to the
environment. As described in appendix A.1, one expects that a Fourier transform
of a time trace is of relativistic Breit-Wigner form (3.1) very similar to the lock-in
signal.

When recording a time trace of low-frequency systems, it is important to trace
over a sufficiently long interval. For example, a quality factor Q = 200 at a frequency
of 20 Hz corresponds to γ = 0.31 Hz. To resolve this peak, one needs at least 3.2
seconds of data, corresponding to a measurement bandwidth of 0.31 Hz. To resolve
Q = 10000, the measurement has to run for almost 3 minutes.

Besides the need to record long time traces, the noise spectrum method has an-
other disadvantage when used for a low-frequency system. Any noise from the
environment which is not white will show up in the spectrum, usually resulting in
sharp peaks with unknown origin.

15



4. Measurements and results

4.1. Noise spectra of the levitated diamagnet

We estimated the frequency and the mechanical quality by “driving” it with white
noise from the lab and fitting a Cauchy–Lorentz distribution (figure 3.5b, see ap-
pendix A.4, equation (A.7) for detailed explanation)

DCL(ω) = I0
γ2

(ω − ω0)2 − γ2
, (4.1)

where I0 is an arbitrary amplitude, for each individual peak we see in the spectrum
obtained by Fourier transformation of a sufficiently long time trace. A spectrum at
atmospheric pressure can be seen in figure 4.1a. One can distinguish a number of
peaks and noise. Reasonable assumptions for mechanical modes are the peaks at
5 Hz and 20 Hz (see below).
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(a) Measurement with intact low-frequen-
cy vibration isolation stage. A huge
peak at 5 Hz as well as a weaker peak at
20 Hz are visible. Very high Q peaks at
50 Hz and 100 Hz indicate interference
from electronics and are most likely not
mechanical, since they do not show up
on other recording devices.
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(b) The same spectrum on a broken iso-
lation stage (see below). The 20 Hz
peak becomes so dominant that it sup-
presses all other peaks. Multiple orders
show up.

Figure 4.1.: Typical fourier spectra from interferometric measurements.

The dependence of the quality factor on pressure was determined from the width
of the spectra peaks at different pressures. Before each measurement, the valve
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4.1. Noise spectra of the levitated diamagnet

at the chamber was closed. The pump was shut down while slowly being flooded
to avoid damage and then disconnected. The minus k stage was released from
being locked and the beam was realigned. Since the pump must not be connected
during the measurement (appendix B.4), we could not reach very low pressures
with the HV components. The values at the lower end of the reachable pressure
range (roughly 10−3 mbar) were taken while the pressure in the chamber was rapidly
increasing. Because these measurements were performed just at the border from
molecular damping to viscous damping (section 6.1), values in the lower pressure
range have to be taken with caution. Unfortunately the vibration isolation stage
broke just before the first measurement of the series, which we did not realize until
the entire data was collected.

Interferometric measurements and tilt measurements were performed at the same
time. In the spectra of the time traces one can only identify one mode at 20 Hz with
several higher orders. A typical spectrum is shown in figure 4.1b.

Both interferometric and tilt displacement data show multiple-frequency peaks of
the same mode at 20 Hz. For the interferometry data, where the sum of all quadrants
was recorded, the higher orders show up because the motion of the sample spans
several half-wavelengths of the light. The same holds for the tilt measurement since
the overlap of the displaced beam with the undisplaced reference beam causes fringes
which shift with a multiple rate of the oscillation frequency.1

 0
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interferometry
horizontal tilt

vertical tilt

Figure 4.2.: Q versus P for the 20 Hz mode from noise spectra.

The resulting plot of quality factor versus pressure for the 20 Hz mode is shown
in figure 4.2. Note that the horizontal axis has a logarithmic scale while the vertical

1One should investigate if it is possible that the value of Q obtained from fitting just the first of
multiple peaks changes compared to a fit where one mathematically deducts the multiple peaks
an creates a “clean” spectrum before fitting.
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4. Measurements and results

axis is scaled linearly. There seems to be some increase of Q below 1 mbar, but
one cannot estimate the shape (logarithmic, linear or exponential). As explained in
section 6.1, in the regime below 10−2 mbar we would expect Q ∝ 1/p if air damping
was the only damping mechanism.

With the low-frequency vibration isolation stage broken we dropped the inter-
ferometric measurements and focused on the tilt displacement scheme. The noise
issues (one dominant mode having a particularly strong response to the environ-
mental noise and suppressing all other peaks in the spectrum) in the noise spectra
measurements make the data unreliable and suggest that a driven readout scheme
is preferable.

4.2. Lock-in amplification scans of the levitated diamagnet

We performed several lock-in scans using different modifications for the sample in
order to characterize its properties. The peaks were fitted with the same Cauchy-
Lorentz distribution (4.1) as seen before.

During these measurements, only a split diode was available (instead of a quadrant
diode)2. In order to still be able to resolve both beam displacement degrees of
freedom, the whole sample (magnets and levitated graphite) was rotated by 90◦ for
some of the measurements. Therefore we divide the data into landscape and portrait
data. As shown in figure 4.3, in the landscape data the split diode separation
line maps onto the (x1, x2) axis and makes tilts of the sample around this axis
visible, which corresponds to the short axis of the sample. In the portrait data, the
separation line maps on the (x1,−x2) direction making tilts around the long axis of
the sample visible.

Since the sharpness of the piezo driving frequency peak is crucial in the lock-in
scheme, we checked it independently without the sample (appendix B.3). The values
listed in each following respective table were taken in close succession in the same
measurement run.

4.2.1. Frequency scan at atmospheric pressure of the levitated
diamagnet

A basic scan where the driving frequency was scanned over a broad range can be
seen in figure 4.4. The most dominant peaks are located at approximately 16 and
20 Hz. At higher frequencies, nothing significant happens except for one peak at
approximately 60 Hz which is weaker by roughly one order of magnitude.

2A split diode consists of two individual diodes. In contrast to a quadrant diode, it can resolve
just one direction of beam spot displacement
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4.2. Lock-in amplification scans of the levitated diamagnet
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Figure 4.3.: Split axis of the split diode mapped on the sample. In the experiment,
not the split diode but the sample itself was rotated. Since the face of
the split diode was vertical with the split axis horizontal dividing it in an
upper and a lower diode, the x3 motion was visible in both orientations
of the sample.
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(a) Lock-in spectrum from 0 to 40 Hz.
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(b) Lock-in spectrum from 40 to 300 Hz; amplitude multiplied by 10.

Figure 4.4.: Landscape lock-in scan of the sample at atmospheric pressure.
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4. Measurements and results

4.2.2. Identification of mechanical oscillation modes and their quality
factors

We focus on the three peaks which were most significant in most scans. They are
located at approximately 16.2 Hz, 20.0 Hz and 21.7 Hz (figure 4.5).
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(a) Lock-in spectrum in landscape position.
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(b) Lock-in spectrum in portrait position.

Figure 4.5.: Lock-in scan of the sample in landscape and portrait position with
Cauchy-Lorentz fits. The frequency shifts of the visible modes indi-
cate that the reproducibility of the measured frequencies is given to a
about 0.5 Hz, even though the fit errors (table 4.1) suggest much smaller
errors.

One can see that the 21.7 Hz peak is almost invisible in the landscape orientation
but clearly stands out in portrait orientation. For the 16.2 Hz peak, it is the other
way around. The 20.0 Hz peak is visible in both orientations. From this we conclude
that 20.0 Hz corresponds to the vertical translation (since this motion should be
visible on the split diode in both orientations), 16.2 Hz corresponds to a tilting
mode around the (x1, x2) axis and 21.7 Hz to a tilting mode around the (x1,−x2)
axis (figure 4.6).

From fitting Cauchy-Lorenz distributions to the squared response curve at atmo-
spheric pressure (figure 4.5), we obtain the quality factors listed in table 4.1.
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4.2. Lock-in amplification scans of the levitated diamagnet

orientation f [Hz] Q

landscape 16.28[1] 48.3[17]
19.96[1] 37.8[26]

portrait 16.09[1] 59.1[10]
20.12[7] 36[11]
21.66[2] 43.2[39]

Table 4.1.: Q at atmospheric pressure from lock-in measurements.

x1

x2x3

(a) 16.2 Hz

x1

x2x3

(b) 20.0 Hz

x1

x2x3

(c) 21.7 Hz

Figure 4.6.: Inferred mechanical oscillation modes from the visible frequencies in
figure 4.5. The first mode was only visible when the sample and magnets
were rotated such that the division of the split diode corresponds to the
(x1, x2) axis. For the third mode, the division had to be along (x1,−x2).
The second mode displayed was visible for both orientations.

4.2.3. Deviations between equilibrium positions

In the previously described measurements, we checked just one of the four possible
equilibrium positions obtainable by rotation of the graphite around the x3 axis. Due
to impurities of the graphite amplifying slight deviations of the magnetic field, the
four positions might not be degenerate. We checked this by leaving the orientation
of the graphite in the setup constant while rotating the permanent magnets to all
four positions which allow stable levitation. The data can be seen in table 4.2.

Rotation [◦] f [Hz] Q

0 16.44[1] 54.0[17]
90 16.93[1] 56.7[13]
180 16.59[1] 51.6[20]
270 17.02[1] 60.1[23]

Table 4.2.: Lock-in scan of the sample in the four stable levitation positions. Rota-
tion refers to the relative rotation of the permanent magnets against the
standard position used in all other measurements.
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4. Measurements and results

It is clearly visible that the frequency of the mode is different for the four orienta-
tions, which could be caused by different total magnetizations of the four permanent
magnets or a magnetization which is not exactly directed along x3. Regarding the
piece of pyrolytic graphite used throughout the experiments it is no suprise to see
such effects, since it does not even look homogeneous by visual inspection.

4.2.4. Measured mechanical dependence on the driving amplitude

In the same fashion as in the section above we checked if the amplitude of the driving
has an influence on the broadening of the peaks, which might be caused through
deviations of the potentials from being harmonic. This is probably not the case as
you can see from table 4.3. The measured frequencies and quality factors are within
the typical fluctuations between measurements.

driving power [V] f [Hz] Q

0.25 16.47[2] 54.8[10]
0.5 16.47[2] 55.8[10]
0.75 16.47[2] 58.9[11]
1.0 16.47[2] 57.5[9]

Table 4.3.: Change of mechanical properties with different driving powers from lock-
in.

4.2.5. Measured mechanical dependence on pressure

With the modes of the system identified and possible sources of errors excluded,
we checked if the mechanical quality of the system increases when going to low
pressures. When these measurements were performed, we did not have the possibility
to regulate the pressure in the system to certain values. Therefore the measurement
was performed at the lowest pressure which could be maintained while the pump was
disconnected (otherwise it just caused too much noise), which was about 10−2 mbar.
In a scan from 14 Hz to 23 Hz in landscape orientation, we got the results listed in
table 4.4.

P [mBar] f1 [Hz] Q1 f2 [Hz] Q2

103 16.21[1] 57.6[17] 19.96[1] 41.4[8]
10−2 16.19[1] 61.3[7] 19.93[1] 42.0[3]

Table 4.4.: Change of mechanical quality with decreased pressure from lock-in scans.

Unexpectedly, the measured quality factor does not significantly increase with the
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4.2. Lock-in amplification scans of the levitated diamagnet

pressure being lowered by five orders of magnitude. This could either mean that
there is another dominant loss mechanism already at atmospheric pressure, or that
there is a systematic error in the lock-in measurements leading to peak-broadening.
To check this, we re-checked the Q versus P dependence in another, independent
scheme, which is described in section 4.3.

4.2.6. Measured mechanical dependence on the sample weight

We checked how the frequencies of the modes depend on the mass of the sample by
putting additional masses of paper on it, shown in figures 4.7a, 4.7b. The results
from the lock-in scan are shown in table 4.5.

total weight [mg] f1 [Hz] Q1 f2 [Hz] Q2 f3 [Hz] Q3

61.5[1] 16.26[1] 49.6[14] 19.93[2] 41.5[15] 21.48[3] 45.1[58]
64.4[1] 16.05[1] 52.3[9] 19.98[2] 38.0[18]
67.0[1] 15.74[1] 44.8[8] 20.11[2] 35.9[20] 21.16[2] 47.8[25]

Table 4.5.: Change of mechanical properties with different sample weights derived
from lock-in measurements.

Naively one would have expected that the ratio of squared frequencies corresponds
to the inverse ratio of total masses, which is the case for the harmonic oscillator
(appendix A) as long as the potential does not change. However, adding mass
changes the levitation height of the sample and therefore also changes the gradient
of the potential around the equilibrium position. This means that we cannot deduce
that the 20 Hz peak is not of mechanical nature just because its frequency does not
change when adding mass, which we further investigate in section 5.6.3.

(a) Weight 1 (2.9 mg) (b) Weight 2 (2.6 mg) (c) Aluminum foil

Figure 4.7.: Pieces of paper and aluminium put on the sample to see weight- and
damping dependencies.
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4. Measurements and results

4.2.7. Measured mechanical dependence on eddy currents

In order to examine the influence of eddy currents, a small piece of aluminum foil
was put on the sample (figure 4.7c). It has a mass of 1.6 mg and dimensions as
listed in table 4.6. This significantly broadens the peaks (figure 4.8) and results in
a decreased mechanical quality (table 4.7).

symbol description value

s dimensions (5.0, 8.2, 0.015)T mm
m weight 1.6 mg
σ conductivity 1/

(
40 · 10−9 Ω m

)
1

Table 4.6.: Parameters of the aluminum sample used to induce eddy current damp-
ing.
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Figure 4.8.: Lock-in scan of the sample with added foil.

sample modification f1 [Hz] Q1 f2 [Hz] Q2 f3 [Hz] Q3

original 16.29[1] 53.2[8] 19.97[2] 46.1[31] 21.48[3] 45.1[58]
with foil 16.24[1] 15.4[4] 19.50[5] 11.3[6] 21.38[6] 13.8[13]
just foil 21.7[8] 15.0[11] 19.9[29]

Table 4.7.: Change of mechanical properties with induced eddy currents derived from
lock-in measurements.

The value given for just foil is quality factor corresponding to the damping ratio
from just the aluminum foil. We call this a limiting Q since without other damping
mechanisms, this would be the maximum value of Q achievable. Using (A.4), it is
obtained by

1

Qjust foil
=

1

Qwith foil
− 1

Qoriginal
.
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4.3. Ringdown curves of the levitated diamagnet

These results qualitatively prove that there indeed is a damping mechanism induced
through eddy currents generated by the moving graphite in the magnetic field.

4.2.8. Measured mechanical dependence on the size of the magnets

We substituted the gold-coated permanent magnets (1.4 T) with nickel-coated cube
magnets with a slightly weaker surface field of 1.3 T, about the same magnetization
(900 · 103 A/m) and a side length of 10 mm. The results are listed in table 4.8.

magnets f1 [Hz] Q1 f2 [Hz] Q2 f3 [Hz] Q3

gold, 12 mm 16.59[2] 50.5[52] 20.07[2] 42.3[37] 21.56[2] 49.3[53]
nickel, 10 mm 17.42[1] 49.9[19] 20.52[4] 40.53[96] 21.48[2] 41.2[30]

Table 4.8.: Change of mechanical properties with smaller permanent magnets de-
rived from lock-in measurements.

While the frequency of the first mode goes up and the quality factor does not
change, the frequency of the third peak is unaffected but the quality factor increased.
The second mode appears to be completely unaffected. This could be caused by the
stronger gradient in the magnetic field created by the smaller permanent magnets,
but there is no obvious interpretation of this behavior. Also, the differences in
the frequencies between the two samples almost lie in the range we saw from just
changing the orientation of the sample on the magnets (section 4.2.3), so one cannot
see in which way the smaller magnets affect the sample modes and frequencies.

4.3. Ringdown curves of the levitated diamagnet

In order the have a third, independent scheme to determine the frequencies and
mechanical qualities of the system, we performed ringdown measurements. For these
measurements, a quadrant diode was available again. The driving was performed for
30 sinusoidal periods with silent intervals of 2 to 3 seconds, depending on the driving
frequency. During the silent intervalls, ringdown curves were recorded. We averaged
the ringdown curves over 15-30 cycles. This is legitimate since after a few transient
cycles, the phase of the oscillator is reproduced every time the driving is shut off
and therefore, without too much influence from the environment, the ringdown curve
should be the same in each cycle. We fitted the curves using a double-ringdown

x(t) = o+A1 e−γ1 t cos (ω01 t+ φ1) +A2 e−γ2 t cos (ω02 t+ φ2) (4.2)

where we add two ringdown curves to account for energy dissipation from one mode
into another mode and to compensate for not exactly hitting the right frequency
when driving a certain mode. All measurements could be performed while the
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4. Measurements and results

turbo pump was connected and running, making it possible to reach comparably
low pressures.

4.3.1. Qualitative comparison of Q at atmospheric pressure and vacuum

A first measurement was performed to check if, in agreement with the measurement
shown in section 4.2.5, the quality factor does not significantly improve when going
to lower pressures. During these measurements we also analyzed a peak at roughly
5 Hz which we did not check in previous measurements, since we did not identify it
as being of mechanical origin. With the quadrant diode available we could leave the
sample in landscape orientation and resolve the direction of beam displacement at
the diode. To put this into context with previous experiments, the vertical beam
displacement now corresponds to what before was visible in the landscape orientation
and the horizontal displacement maps to the portrait orientation from before, except
for the vertical displacement which cannot be seen in both directions but only in
the vertical direction. Each drivable mode was only visible in one direction.

Just from looking at the ringdown time traces in figure 4.9 it is quite evident
that in disagreement with the results obtained before (table 4.4), the ringdown time
increases at lower vacua, showing an increase in Q. This is quantified in the following
section.

4.3.2. Quality factor versus pressure

When repeating the measurement described above we had access to a stronger turbo
pump. The pump itself did not allow to regulate the pressure to higher values than
the lower limit by decreasing the rotation speed. We obtained higher pressures by
using a needle valve and slowly flooding the chamber while pumping at the same
time. We also checked different lengths of the tubing between the pump and the
chamber (a short tube with 0.5 m, a middle tube with 2.0 m and a long tube with
2.5 m, which was fixed to the lab floor) to see if the vibrations of the pump add
additional damping or driving to the sample. The results can be seen in figure 4.10.

One can clearly see an improvement of mechanical quality for all frequencies when
approaching low pressures; however by no means impressive, especially not on a log-
lin scale. For 5 Hz, Q barely exceeds 20.

Another thing to notice here is the scattering of the data points and the small
errors for Q. Since the errors were directly obtained from the ringdown fits, this
indicates a low reproducibility of the experiment and possibly systematic errors.

When comparing the quality factors obtained for different tube lengths, it is not
evident if the pump vibration adds a damping mechanism. We discuss the possibility
for noise-induced damping in section 6.3. However, for the majority of data points
the difference between the long tube and the middle tube seems to be small, which
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4.3. Ringdown curves of the levitated diamagnet
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Figure 4.9.: Typical ringdown curves for driving frequencies of 5 Hz, 16 Hz, 20 Hz and
21.7 Hz. Red curves are fitted double ringdowns as in (4.2). Only every
third data point is shown. hor. and ver. denote horizontal and verti-
cal beam spot displacement direction; air and vac denote atmospheric
pressure and a vacuum of about 10−2 mBar.
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Figure 4.10.: Q versus P from ringdown measurements. The fitted curves are ex-
plained in section 6.1.
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4.4. Conclusion of the experiments

indicates that with the long tube the pump noise is damped out to a point where it
does not significantly limiting the mechanical quality.

It is legitimate to ask why we see a significant increase of Q when going to lower
pressures, which we did not see in the lock-in scans (section 4.2.5). This might be
explainable with fluctuations in the phase picked up by the lock-in amplifier. Since
the frequencies of the system are comparably low, the lock-in electronics might
not be able to always get a sharp phase signal, which eventually could lead to
broadened peaks. Alternatively, the frequencies of the system could vary during
the measurements which would also lead to broadened peaks. Since the amplitudes
occurring in lock-in measurements are large, one might also push the oscillator into
non-linear regimes where the potential is not harmonic. Whatever the reason is,
it seems safe to say that the broadening of the peaks in the lock-in measurements
prohibits that method from giving trustable results for the quality factor.

4.4. Conclusion of the experiments

We identified four mechanical frequencies in the system: 5.0 Hz, 16.2 Hz, 20.0 Hz and
21.7 Hz. The second and fourth frequency seem to correspond to tilting modes of the
pyrolytic graphite, while the third frequency is connected to a vertical translation.

We checked the mechanical quality of the different modes at atmospheric pressure
and at different vacua. We saw a slight increase of Q at low pressures, but way
below our expectation. This might be due to a effect of energy dissipation through
induced eddy currents in the graphite, as implied by a measurement were we induced
additional currents using aluminum foil on the sample and saw Q drop.

In the following sections we work out a theoretical framework to describe the
mechanical frequencies and modes as well as the damping effects seen in the exper-
iments.
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5. Numerical simulation of levitated
diamagnets

There have been some attempts on modeling diamagnetic levitation systems by
drastically simplifying the geometry of the setup (e.g. by approximating a living
frog as being pointlike [21]).

Instead of searching for approximation schemes to get analytical closed expres-
sions, we work towards a full mechanical model of the experimental situation, which
can then be evaluated numerically. The model is based on the assumption that an
explicit expression for the magnetic flux density B0 as defined below can be written
down as a function of some coordinates suitable for a volume integration.

5.1. Potential energy

We need to know the total energy of a diamagnet with finite volume in a given
magnetic flux density B0,1 which is assumed to be static. The magnetic flux den-
sity B inside of the diamagnet is given by the sum of the magnetic field H and the
magnetization M :

B

µ0
= H +M .

For a diamagnet, M is directly related to H via

M = χ�H

where χ is a rank-2 tensor and � denotes a matrix product. From its definition, H is
the same quantity inside and outside of the diamagnet since there is no magnetization
outside. In other words, B0 6= B but H0 = H since M0 = 0. Therefore

M = χ�
B0

µ0
. (5.1)

The energy of a point-like object with magnetic moment m in a magnetic flux
density B0 is given by [17, chapter 15]

Vmag = −m ·B0,

1In this part we refer to the field B as a flux density since we need the notion of a magnetic field
for the quantity H.

30



5.2. Equilibrium position

which can be generalized to a finite volume reintroducing the magnetization M as
a density of magnetic moment :

Vmag = −1

2

∫
V
M(x) ·B0(x)dV,

where the integral needs to be carried out over the volume of the diamagnet and
appropriate coordinates need to be chosen in order to be able to perform the inte-
gration. The factor 1/2 is due to the fact that one has to integrate over magnetic
dipoles which are counted twice.2 With (5.1) this becomes

Vmag = − 1

2µ0

∫
V

(χ�B0(x)) ·B0(x)dV. (5.2)

In articles where the tensor nature of χ is neglected one often finds the statement
that the energy of the object is proportional to B2

0 and therefore does not depend
on the field direction, but only on the magnitude. However, for pyrolytic graphite,
the only diamagnet which (as a result of the model detailed here) can be levitated
using just rare-earth magnets at room temperature, there is a factor of more than
10 between the components of χ. Eventually this leads to a significantly altered
equilibrium position, as illustrated in figure 3.2 on page 10.

5.2. Equilibrium position

Since there is no rigid confinement, the diamagnetic object can have any position
and any orientation in space. Therefore we have to account for six degrees of freedom
denoted as

q̃ :=

(
x̃
α̃

)
= (x̃1, x̃2, x̃3, α̃1, α̃2, α̃3)T

where α1 is the (positive) rotation around the x1 axis and so on. This is not a
unique definition since the rotations do not commute. Instead we have to specify a
transformation ψ moving the object according to the parameters:

x → x′ = ψ (x, x̃, α̃)

We need to apply two steps of transformation. In the first step we transform the
object away from the origin to its equilibrium position q∗ = (x∗,α∗). In a second
step described below, we apply a similar transformation to deflect the object from
its equilibrium by q̃ = (x̃, α̃).3

2Another derivation of the factor was already shown in section 2.2.
3This treatment is not mandatory but convenient due to the noncommutativity of the degrees of

freedom, which would make an approximation of the potential around the equilibrium position
more complicated.
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5. Numerical simulation of levitated diamagnets

The transformation towards the equilibrium is defined as

ψ∗(x,x∗,α∗) := x∗ +R1(α∗1)�R2(α∗2)�R3(α∗3)�x

with rotation matrices in the Cartesian basis

R3(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 , R2(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 ,

R1(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 .

Now we can write down the potential energy Vmag as a function of the position
and orientation of the diamagnetic object:

Vmag(x∗,α∗) = − 1

2µ0

∫
V

(χ�B0(ψ∗(x,x∗,α∗))) ·B0(ψ∗(x,x∗,α∗)) dV, (5.3)

leading to a total energy

V (x∗,α∗) = Vmag(x∗,α∗) + Vg(x∗3) with Vg(x∗3) = mg x∗3. (5.4)

Depending on the parameters and the magnetic flux density, this expression can have
a local minimum which one can search numerically.4 If the minimum lies within the
permanent magnets or does not exist at all, the diamagnetic object cannot float.

5.3. Determination of frequencies and modes

If we have found an equilibrium position q∗, we can apply Lagrangian mechanics
to find the frequencies and eigenmodes of the system. In order to do that, we first
apply a second transformation

ψ̃(x, x̃, α̃,x∗) := x̃+ x∗ +R1(α̃1)�R2(α̃2)�R3(α̃3)�(x− x∗)

which acts like a rotation around the center of mass by α̃ plus a displacement by
x̃. In order to simplify things, these rotations and translations are assumed to be
small.

With this we can write down the kinetic energy as

T =
1

2
˙̃q
T
�M � ˙̃q =

1

2

6∑
i,j=1

Mij
˙̃qi ˙̃qj with M :=

(
m
m
m
I

)
(5.5)

4If the geometry has a certain symmetry, one might also just guess some of the equilibrium
parameters.
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5.3. Determination of frequencies and modes

where I is the inertial tensor of the object at equilibrium position in the Cartesian
basis around its center of mass:

I =
m

V

∫
V

(ψ∗(x, 0,α∗))2 13 −ψ∗T (x, 0,α∗)�ψ∗(x, 0,α∗) dx1 dx2 dx3.

With the second transformation applied, the potential is written as

Vmag(x̃, α̃,x∗,α∗) = − 1

2µ0

∫
V

(
χ�B0(ψ∗(ψ̃(x, x̃, α̃,x∗),x∗,α∗))

)
·

·B0(ψ∗(ψ̃(x, x̃, α̃,x∗),x∗,α∗))dV

Vg(x̃3, x
∗
3) = mg (x̃3 + x∗3) (5.6)

and again V = Vmag + Vg.
At the equilibrium position x∗,α∗ all first derivatives of V need to vanish:

∂V (q̃, q∗)

∂q̃i

∣∣∣∣
q̃=0

= 0 ∀ i.

We approximate the potential as being harmonic in all degrees of freedom around
the point x∗,α∗:

V ≈ V |q̃=0 +
1

2

6∑
i,j=1

∂2V

∂q̃i ∂q̃j

∣∣∣∣
q̃=0︸ ︷︷ ︸

Dij

q̃i q̃j . (5.7)

With this, the classical Euler-Lagrange equations

d

dt

∂L

∂ ˙̃qk
− ∂L

∂q̃k
= 0, L = T − V, k = 1, . . . , 6

take the form

Mkj
¨̃qj +Dkj q̃j = 0, k = 1, . . . , 6,

where we have used the symmetry of Mij and Dij . Making the ansatz

q̃(t) = ξ eiω t

leads to the eigenvalue/eigenvector equation(
−ω2M +D

)
�ξ = 0 (5.8)

which can be solved with standard algorithms and yields the desired frequencies and
modes.
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5. Numerical simulation of levitated diamagnets

5.4. Application to the experimental setup

In order to evaluate the integral in (5.3) we need an explicit form of the magnetic
field of a checkerboard-array of four cuboid magnets. The magnetic field B��� of
a single cuboid with dimensions l = (l1, l2, l3) and uniform magnetization M0 in
x3 direction is given by [27]

B�
1,2(x) =

µ0M0

4π

2∑
k1,2,3=1

(−1)k1+k2+k3 ln
[
x2,1 + (−1)k2,1 l2,1/2 + κ(x,k)

]

B�
3 (x) = −µ0M0

4π

2∑
k1,2,3=1

(−1)k1+k2+k3 arctan

[ ∏2
j=1

(
xj + (−1)kj lj/2

)
(x3 + (−1)k3 l3/2)κ(x,k)

]

κ(x,k) =

√√√√ 3∑
j=1

(
xj + (−1)kj lj/2

)2
.

In an approximation, the field of the checkerboard array is a superposition of four
single cuboid fields5

B�(x) ≈
1∑

i1,2=0

(−1)i1 i2B�
(
x+

(
(−1)i1 l1/2, (−1)i2 l2/2, 0

)T)
.

All experimental parameters are listed in table 3.1 on page 8 and table 3.2 on
page 9. For the magnetization we used M0 = 900 · 103 A/m.

The equilibrium position q∗ is numerically found to be6

x∗ =

 0
0

6.59

 mm, α∗ =

 0
0
π/4

 rad

using equations (5.3) and (5.4), where the integration was carried out in Cartesian
coordinates over the volume of the piece of pyrolytic graphite with dimensions s and
susceptibility tensor χ as given in table 3.1. This corresponds to a levitation height
of 6.59 mm − l3/2 = 0.59 mm, which agrees with the measured value (0.5[2] mm).
Again, note that the diagonal equilibrium orientation is due to the anisotropy of the
graphite.

5This is not exact since the magnets change each others respective magnetization and the field
can also be amplified by surrounding paramagnets.

6All values except for x∗3 initially have been guessed. It was then later verified that this position
corresponds to a local minimum by checking the positive definiteness of the Hesse matrix D of
V as defined in (5.7).
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5.4. Application to the experimental setup

When calculating the Hesse matrix D of V as in (5.7), it turned out that straight-
forward numerical differentiation was not possible and numerical integration of dou-
ble derivatives of the integrand of (5.6) did not converge. Eventually we ended up
with approximating the Hesse matrix of the integrand within the volume at equilib-
rium position by using interpolated functions with 9 interpolation points in x1 and
x2 directions and 5 points in x3 direction (figure 5.1), which takes about 15 minutes
on a well equipped desktop PC. After this, integration can be done within seconds.

-0.003 -0.002 -0.001 0.001 0.002 0.003
x1@mD

-250

-200

-150

-100

-50

Integrand

Figure 5.1.: Comparison between the second derivative in x3 of the original integrand
expression (blue) and an interpolating function (red) at a random x1 and
x2 coordinate within the sample. Clearly one should use more points;
however, the area below the curve, which one obtains from integration,
is approximately equal for both curves.

With M as in (5.5) and D as in (5.7) known, evaluation of (5.8) is possible,
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5. Numerical simulation of levitated diamagnets

yielding

ξI =



−0.018 m
0.018 m

0
0.71 rad
0.71 rad

0

 , ωI ≈ 2.7 Hz; ξII =



0.028 m
0.028 m

0
−0.71 rad
0.71 rad

0

 , ωII ≈ 3.2 Hz;

ξIII =



0
0
0
0
0

1 rad

 , ωIII ≈ 4.8 Hz; ξIV =



0.14 · 10−3 m
−0.14 · 10−3 m

0
0.71 rad
0.71 rad

0

 , ωIV ≈ 21.5 Hz;

ξV =



0
0

1 m
0
0
0

 , ωV ≈ 22.7 Hz; ξV I =



−0.07 · 10−3 m
−0.07 · 10−3 m

0
0.71 rad
0.71 rad

0

 , ωIV ≈ 23.4 Hz;

where the vectors were normalized to have a numerical length of 1 in the given units.
The modes are visualized in figure 5.2.

5.5. Comparison of simulation and experiment

If we identify the frequencies measured in the experiment with modes from the
simulation as done in table 5.1, we find a trend towards correspondence of the
simulated modes with the measured modes we inferred as described in section 4.2.2.

The simulation qualitatively gives the right order of the modes (when sorted by
frequency) but gives slightly too high frequencies. This could be explained by the
magnetization of the permanent magnets used for the calculation, which is only
given as a broad range (table 3.2, page 9). One could verify this using a Hall probe.

It is hard to say which mode corresponds to the 5 Hz peak we could drive in the
ringdown measurements. This could be answered by lock-in scans with a quadrant
diode in the sub-10 Hz region with long integration times, where at least one more
mechanical peak should show up which should have approximately the same (very
low) Q as the 5 Hz mode.
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5.5. Comparison of simulation and experiment

x1

x2
x3

(a) ωI ≈ 2.7 Hz

x1

x2
x3

(b) ωII ≈ 3.2 Hz

x1

x2
x3

(c) ωIII ≈ 4.8 Hz

x1

x2
x3

(d) ωIV ≈ 21.5 Hz

x1

x2
x3

(e) ωV ≈ 22.7 Hz

x1

x2
x3

(f) ωV I ≈ 23.4 Hz

Figure 5.2.: Visualized mechanical modes of the sample.

ωexp [Hz] inferred mode ωsim [Hz] computed mode

16.2

x1

x2x3

21.5 figure 5.2d

20.0

x1

x2x3

22.7 figure 5.2e

21.7

x1

x2x3

23.4 figure 5.2f

Table 5.1.: Comparison between the measured frequencies and the inferred modes
and the corresponding numerically found modes
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5. Numerical simulation of levitated diamagnets

5.6. Application to other samples

5.6.1. Levitation of different diamagnets

With this simulation, we could not find any other (known) material (e.g. bismuth,
diamond) in combination with any rare-earth magnet geometry which would allow
for levitation. This statement agrees with the fact that we could not find publications
on rare-earth magnet levitation of any diamagnet which is not pyrolytic graphite.
However, to our knowledge there is no known proof of this, and with the development
of new diamagnetic materials and stronger permanent magnets it could be possible
to levitate other diamagnets than graphite in the future.

Bismuth can be used for diamagnetically stabilized levitation of a permanent mag-
net and even the diamagnetism of the water inside human fingers is strong enough
to stabilize perma-magnetic levitation if one has a very strong lifter magnet [22].
However, this situation is not comparable to the case of levitation of a diamagnet,
since the density of bismuth is much higher than that of graphite, which matters
when bismuth is levitated but of course does not matter when it is fixed and just
used for stabilization of another levitator.

5.6.2. Smaller magnets

When we plug in the properties of the nickel-coated magnets used in the experiment
(section 4.2.8) we get the frequencies listed in table 5.2.

magnet side length [mm] f1 [Hz] f2 [Hz] f3 [Hz]

10 (simulated) 21.6 22.8 23.4
10 (measured) 17.42[1] 20.52[4] 21.48[2]

12 (simulated) 21.5 22.8 23.4
12 (measured) 16.59[2] 20.07[2] 21.56[2]

Table 5.2.: Comparison of magnet-size dependence in the experiment and the nu-
merical simulation.

Surprisingly, the frequency estimates from the simulation do only change slightly
for the smaller magnet geometry, which could be explained by the fact that the
magnetization of the permanent magnets is the same in both cases and the sample
size is small compared to the dimensions of the permanent magnets. It could also
indicate that the stray of magnetization of the commercial permanent magnets is
bigger than any changes in the frequencies caused by the geometry.
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5.6. Application to other samples

5.6.3. Different mass

Increasing the weight to 64.4 mg and 67.0 mg similar to the performed experiment
yields the frequencies listed in tab. 5.3.

sample mass [mg] f1 [Hz] f2 [Hz] f3 [Hz]

61.5 (simulated) 21.5 22.8 23.4
61.5 (measured) 16.26[1] 19.93[2] 21.48[3]

64.4 (simulated) 21.7 23.0 23.7
64.4 (measured) 16.05[2] 19.98[2]

67.0 (simulated) 21.4 22.5 23.3
67.0 (measured) 15.74[2] 20.11[2] 21.16[2]

Table 5.3.: Comparison of sample-mass dependence in the experiment and the nu-
merical simulation.

From these three points of data, it is clearly not possible to evaluate if the exper-
imentally observed behavior of the sample agrees with the model. A test with more
weight- and data points would lead to a more interpretation-friendly set of results;
however, performing these measurements was missed during the time frame of this
thesis.

5.6.4. Mechanical dependence on magnetization

To see if we can reproduce the frequencies seen in the experiment with our model by
just adjusting the magnetization M0, we checked the frequencies of the individual
modes for a range of magnetizations (figure 5.3). Interestingly, for magnetizations
below 850 kA/m the equilibrium position changes in all degrees of freedom, making
it hard to numerically determine if the sample can still levitate. For higher mag-
netizations we see that we are not able to reproduce the 16.2 Hz/20.0 Hz/21.7 Hz
frequencies. Also, the levitation height obtained for M0 = 2 · 106 A/m is 1.6 mm,
which is way above the height we saw in the experiment. Therefore, more param-
eters than just the magnetization would have to be adjusted in order to reproduce
the experimental values; assuming the model is correct. The obvious candidate for
further adjustments would be the susceptibility tensor of the pyrolytic graphite.

5.6.5. A superconductor scheme

We use the model to determine the frequencies of the vertically displaced mode for
a superconductor levitation scheme. The sample was assumed to be a square cuboid
of superconducting lead (χ = −1) with a thickness of 50µm and the side lengths
given in table 5.4. For the suspension we took the numbers from the same ordinary
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Figure 5.3.: Dependence of mechanical frequencies on the magnetization M0 of the
permanent magnets as obtained from the model.

rare-earth magnets as before (here, with a side length of 2 mm), but in a double
array configuration where above the lower checkerboard array we stack the same
array, but with magnetization pointing to the opposite direction and leave a gap of
150µm between the two arrays (figure 5.4).

fiber input

first magnet array

second magnet array

levitated super-
conductor

Figure 5.4.: A possible scheme to achieve higher oscillation frequencies using super-
conductors and a double magnet array.

side length [µm] weight [µg] ωsim [Hz]

400 91 10077
200 23 10244
100 6 does not levitate

Table 5.4.: Numerical estimations for frequencies of the x3 mode in a superconductor
levitation scheme.

The optical addressing of the sample would need to happen with a fiber, where
the fiber runs through the magnets. Still, looking at the estimated frequencies,
the stiffness of the trap is comparably weak even in a double-trap with a levitated
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superconductor.
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6. Estimations on damping

6.1. Air drag damping

In order to quantify the damping which is not due to air drag, we need an expression
for the air drag first. The treatment for air drag damping mechanisms explained
here follows that of [28].

It is useful to differ between two pressure regions: In the viscous region, the mean
free path length of the air molecules is smaller than the sample size, and the air acts
like a fluid. In the molecular region the mean free path length is larger and one has
to account for kicks of single molecules.

The mean free path length is given by

Λ(P ) =
µ

P

√
2 kB T

mair

where µ = 18.239 · 10−6 s Pa is the viscosity of air at T = 295 K and mair = 48.1 ·
10−27 kg is the (average) mass of an air molecule. The typical sample size is about
5 mm, resulting in a critical pressure of about 1.5 Pa.

The quality factor limit from air drag damping follows

Q = ρs b d ω/f1(P ) (6.1)

where ρs is the density of the sample, b is its width, d its thickness and f1(P ) =
β1(P )/l the dissipative drag per unit length.1

6.1.1. Molecular damping

In the molecular regime,

f1(P ) = km(P ) b P with km(P ) =
4

3

√
2mair

π kB T

1From the dimensions involved it seems questionable if the treatment, which is adopted from
cantilever beams, can actually be correct for a levitated object. However, the final expressions
are general and not restricted to a certain cantilever geometry.
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6.1. Air drag damping

which inserted into (6.1) gives

Q(P ) =
3

4

√
π

2

kB T

mair
ρs dω

1

P

=
3

4

√
π

2

kB T

mair

ms ω

A

1

P
, (6.2)

where A is the face area of the plate.

6.1.2. Viscous damping

In the viscous regime,

β1(P ) = 6π µR

(
1 +

R

δ(P )

)
where δ is the width of a boundary layer perpendicular to the direction of the motion
and is a measure for the depth of penetration of a lateral wave,

δ(P ) =

√
2µ

ρ0(P )ω
,

and R is the radius of a sphere which approximates the object. For an ideal gas,
ρ0(P ) = mair

kB T P . Insertion into (6.1) yields

Q(P ) =
ρs b d l ω

6π µR

1

1 +R
√

ω
2µ

mair
kB T

√
P

=
ms ω

6π µR

1

1 +R
√

ω
2µ

mair
kB T

√
P
. (6.3)

It is important to note that the effective air drag damping is not a superposi-
tion of the two mechanisms; just one of them is active depending on the pressure.
From (6.3), the quality factor from viscous damping does not diverge (as it should)
when the pressure goes to zero. Therefore the formula cannot be valid for very low
pressures.

6.1.3. Adoption to measurement data

The model for air-damping is fitted to the data given in section 4.3.2 (figure 4.10).
All parameters except for R, which should be in the mm range, are known. However,
the molecular damping treatment does only apply strictly for the direction of motion
orthogonal to the plane, hence we also include the surface A in the fitted parameters
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to get an effective surface for each respective mode. Since we expect at least one
other damping mechanism as stated above, the function fitted is

Qtotal(P ) =
1

1
Qair(P ) + 1

Qother

where we used the addition of quality factors from (A.4) and Qother summarizes the
limiting Q of all damping mechanisms which do not depend on pressure.

For each frequency, we first fit the molecular damping (6.2) through the points
below 1 mbar2 using the parameters A and Qother. Then we fit the viscous damp-
ing (6.3) through the point at atmospheric pressure and the point for the highest
pressure below 1 bar using the parameter R with Qother fixed from the fit done be-
fore. The fitted curves are shown in figure 4.10 on page 28 and the results are
collected in table 6.1.

f [Hz] Qother A [mm2] R [mm]

5 15.6[4] 14.8[13]
16 168.2[55] 310[37] 10.7[25]
20 139.1[20] 257[31] 13.1[10]

21.7 104.2[74] 361[103] 10.6[3]

Table 6.1.: Fit results for air damping mechanism.

Since A and R have to be seen as effective values for the respective modes, it is
not surprising that they vary from frequency to frequency. One should note that
other damping mechanisms, such as eddy currents (section 6.2), also depend on the
mode and therefore their respective Q does not need to be identical for different
frequencies. The important thing to note here is that the data points obtained from
the ringdown measurements cannot solely be explained by air damping and there is
at least one other damping mechanism, which ultimately limits Q. This can even
directly be seen from the data, since without other damping mechanisms a pressure
decrease from 10−2 mbar to 10−3 mbar would increase Q by a factor of 10 (since in
the molecular regime, Q ∝ 1/P ). A plot of Q versus p as one would expect if there
were no additional damping mechanisms is shown in figure 6.1.

6.2. Eddy current damping

We try to find an estimation for the eddy currents induced in the pyrolytic graphite
through its motion in the magnetic field. These eddy currents will induce damping

2Even though one or two per set of those points do not lie in the molecular regime, we included
them for fitting since the fit worked well and the boundary between the viscous and the molecular
regime is not sharp.
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6.2. Eddy current damping
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Figure 6.1.: Behavior of air damping without additional damping mechanisms with
parameters A and R obtained from the fit to the 20 Hz mode data
(table 6.1). Please note the logarithmic scale for Q (as opposed to the
linear scale in figure 4.10).

as effectively energy is transfered from the motion to these currents which cause
heating due to the finite resistance of the graphite. We start by writing down the
electric field E′ seen by an observer moving with the graphite,

E′ = E + v ×B

where E is the electric field seen by a fixed observer, v is the velocity and B is
the magnetic field. From the definition of the conductivity tensor σ as the factor
between the current density J and the electric field, J = σ�E, we write

J ′ = σ� (E + v ×B) .

The electric field E arises through surface charges which are pushed towards the
edges of the volume. This field influences the moving charges and changes the
effective current density on the faces of the volume to be zero orthogonal to each
respective face. Therefore, there are not currents into or out of the volume, which
is required since the volume is surrounded by vacuum.

The effect of surface charges has to be individually modeled for a given symme-
try. This has been done for a cylinder symmetry in [29]. Unfortunately, the result
obtained in the reference is by no means applicable to our setup.3 As a first ap-
proximation we set the surface currents to zero by multiplying the components of J

3For a cylinder symmetry, one finds that the total radial current density J ′r(r, φ, z) is obtained by
taking the radial current density without the electric field Jr(r, φ, z) = v × B and subtracting
the mirrored current density at the double radius 2R, Jr(2R− r, φ, z). This fulfills J ′r(r, φ, z) =
Jr(r, φ, z) − Jr(2R − r, φ, z) = 0 at r = R, so at the surface there are no radial currents.
Adopting this result for our symmetry fails since subtraction of mirrored currents to fulfill the
boundary condition eventually leads to a wrong sign of J ′ and cannot be done with opposite
non-symmetrical boundaries.
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6. Estimations on damping

with a cosine function which is zero at the boundaries. Our J ′ is then given by

J ′(x) =

cos(π/2x1/s1) J1(x)
cos(π/2x2/s2) J2(x)
cos(π/2x3/s3) J3(x)


with s as in table 3.2. A plot of J and J ′ can be seen in figure 6.2.

(a) J1(x) (b) J ′1(x) (c) J2(x) (d) J ′2(x)
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Figure 6.2.: Comparison of J and J ′ in the x1-x2 plane. The modified J ′ fulfills the
boundary condition that currents orthogonal to the faces of the volume
must vanish.

The force resulting from the currents is given by the magnetic force (often referred
to as Lorentz force)

F =

∫
V
J ′ ×B dV,

where the integration is carried out over the volume of the object.
Let us focus on the x3 mode which has a frequency of roughly 20 Hz. We write

v = v

0
0
1

 .
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6.2. Eddy current damping

If we transform the magnetic field inside of the integration volume, we can perform
the integration in the Cartesian basis and write down the conductivity tensor σ as a
diagonal matrix with entries σ1, σ2, σ3. Then the expression for the force evaluates
to

F = −v
∫
V

 −σ2B1B3

−σ1B2B3

σ1B
2
2 + σ2B

2
1

 dV

where one has to evaluate every component of B at the equilibrium coordinates
ψ∗(x,x∗,α∗), i.e. Bi = Bi(ψ

∗(x,x∗,α∗)). When the integrated volume is centered
around any point on the x3-axis, due to the symmetry of the magnetic field the
B1B3 and B2B3 terms will vanish in the integration and the resulting force only
has a non-zero x3 component. Using (A.1) and (A.3), we find

Q =
mω0

F3
=

mω0∫
V

(
σ1B2

2 + σ2B2
1

)
dV

. (6.4)

The conductivity of pyrolytic graphite is4

σ =

(
1/(4·10−6 Ωm)

1/(4·10−6 Ωm)
1/(10−3 Ωm)

)
.

Numerical evaluation of (6.4) yields Qeddy,graphite ≈ 13.5.
The piece of aluminum foil used for additional damping has properties listed in

table 4.6 on page 24. If it was oscillating with a frequency of 20 Hz and had the
same mass as the graphite sample5, the limiting quality factor of just the aluminum
would be Qeddy,alu ≈ 2.9.

When compared to the experiment, these values are certainly too small. For the
x3 mode at 20 Hz, the limiting Q from eddy currents in the graphite should be 139.1
(table 6.1) if there are no damping mechanisms but air and eddy currents while the
numerical approximation gives 13.5. For the aluminum, it is a Q of 15.0 from the
lock-in measurements (table 4.7) and 2.9 from the numerical approximation. The
factors between the prediction and the measured values are 10 for the graphite and
5 for the aluminum. This indicates that the image charge mechanism, which we
more or less neglected, has a huge impact on the currents in the sample and needs
to be further investigated, i.e. by either finding a full analytical treatment or by

4European Carbon and Graphite Association, http://www.carbonandgraphite.org/pdf/

graphite_production.pdf. These values represent the lower conductivity boundary of the
values given in the source.

5This appears strange, but if the mass of the aluminum is small against the mass of the sample,
which is the case, this corresponds to the damping ratio difference of the sample without and
with aluminum, as calculated in the last column of table 4.7.

47

http://www.carbonandgraphite.org/pdf/graphite_production.pdf
http://www.carbonandgraphite.org/pdf/graphite_production.pdf


6. Estimations on damping

performing a finite-element simulation of this problem. However, it is quite evident
that indeed eddy currents lead to a significant and most-likely dominant dissipation
mechanism in the investigated system.

6.3. Noise damping

In section 4.3.2 we saw that environmental noise, such as that of a vacuum pump,
can decrease the effective mechanical quality of an oscillating system. This appears
to be counter-intuitive but there are some arguments why this actually makes sense.

A possible explanation comes from comparison with air damping in the molecular
regime. Both, environmental noise shaking the setup and molecules hitting the
sample, can be described as random kicks from all directions. Since air damping
is well understood, it is not surprising that environmental noise adds damping as
well. However, the environmental kicks are less frequent but have a much higher
amplitude than kicks of air molecules, so the two situations are not quite comparable.

Another argument relates to the change of the potential through noise kicks. In
one dimension, a random kick will only change the position of the object within the
potential, but not the frequency. However, in multiple dimensions a change of the
position in one direction leads to a change of the effective potential seen in the other
degrees of freedom. This change of frequency is a damping mechanism.

A more profound argument comes from interpreting the environmental noise as a
bath that interacts with the system, which can lead to both inhomogeneous broaden-
ing and damping. In this case one could also check if Voigt profiles, which arise from
the combination of a Lorentzian and a Gaussian broadening mechanism, give better
error estimations for the fits for the data obtained in the lock-in measurements in
section 4.2.
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7. Wrap-up

7.1. Outlook

We provide some ideas on what could be done in the future in order to better
understand the effects seen in the present experiment and to improve the setup to
approach higher frequencies and mechanical qualities.

7.1.1. Improving magnet geometry

The checkerboard array of four magnets used throughout the experiments might
not be the ideal solution in terms of stability and frequencies. Pieces of pyrolytic
graphite also levitate on checkerboard arrays of more than four magnets (and can
actually take an equilibrium position centered on one of them as shown in figure 7.1)
or single toroidal magnets.

It would be comparably easy to increase the gradient in the magnetic field and
thereby the frequency by having an identical magnet (-array) with opposite field
direction above the levitated sample.

Figure 7.1.: Alternative levitation geometry.

7.1.2. Levitating superconductors

As described above, it could be possible to reach frequencies of about 10 kHz in
an opto-magnetical superconductor levitation experiment. The dominant damping
mechanism in such an experiment is induced eddy currents in the permanent mag-
nets, since in presence of a completely field-repelling diamagnet the field felt by the
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7. Wrap-up

magnets changes when the diamagnet moves. Also, the emission of electromagnetic
waves due to aforementioned movement dissipates energy; however, those waves
would have very low frequency. If one were to replace the permanent magnets with
superconducting magnets, one could get rid of the eddy current damping effect and
have a mechanical system almost completely free of damping. However, this system
provides experimental challenges which need to be investigated in detail.

7.1.3. Mapping the current density

In order to better understand the induced currents, one could experimentally obtain
a map the induced currents J in the x1-x2 plane. This could be done by fixing
the graphite and moving the magnets. By taking the induced voltage between two
points, one could create a map of the voltage throughout the sample. The gradient
of this is the total electric field E which then gives the currents via J = σ�E.

7.2. Conclusion

We used three different measurement schemes along with models of the mechanical
properties and the damping mechanisms to characterize the properties of a dia-
magnetically levitated system. We investigated if room-temperature diamagnetic
levitation provides a feasible way for optomechanic experiments. The answer is
most likely no. Even in high vacuum, damping through induced eddy currents pre-
vents the only diamagnetic material which can be levitated at room temperature,
pyrolytic graphite, from providing a high-quality mechanical system. To get rid of
eddy currents, one would need either a non-conducting strong diamagnet, which has
not yet been discovered, or a superconductor, which requires low temperatures.

Based on the results gathered throughout this thesis we suggest that further in-
vestigation should focus on superconductor mechanics schemes. There are some
interesting things to discover, e.g. magnetomechanics where one could explore lev-
itated diamagnets without the use of light, or levitation of a superconductor in
suprafluid helium.
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A. Driven damped harmonic oscillator

We briefly describe the theory of a damped harmonic oscillator with external driving.
This treatment is for the 1-dimensional case but can easily be generalized to multiple
dimensions as soon as the decoupled eigenmodes are found.

A classical damped oscillator in a harmonic potential is described by a restoring
force −αx and a damping force −β ẋ. It can also be driven by a force Fext(t). Since
all forces together must equal Ftotal = mẍ, the equations of motion can be written
as

mẍ+ β ẋ+ αx = Fext(t).

We rewrite this as

ẍ+ 2 ζ ω0 ẋ+ ω2
0 x =

Fext(t)

m
(A.1)

where we have introduced the damping ratio ζ = β/(2ω0m) and the eigenfre-
quency ω0 =

√
α/m.

For the full solution to the problem, one needs the general solution to the ho-
mogeneous problem (without driving) and a special solution for the inhomogeneous
case (with driving).

The solution for the homogeneous case of (A.1) where Fext = 0 is

xhom = A e−ζ ω0 t sin(
√

1− ζ2 ω0 t+ φhom) (A.2)

where A and φ depend on the boundary conditions. The homogeneous solution will
eventually be damped out depending on the damping ratio ζ, so after an adequate
time, the trajectory will be described by just the inhomogeneous solution.

In opto-mechanics, the quality factor Q is of main interest. It is defined as

Q =
1

2 ζ
=

1

2
T1/e ω0 (A.3)

where T1/e denotes the time after which the system’s amplitude has dropped to 1
e of

its original value. This corresponds to 1
2 times the number of oscillations the system

does within the time T1/e. Since damping ratios add as ζtotal = ζ1 + . . .+ ζn, quality
factors add as

1

Qtotal
=

1

Q1
+ . . .+

1

Qn
(A.4)
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A. Driven damped harmonic oscillator

The solution to the inhomogeneous equation can be obtained by continuous Fourier
transformation F of (A.1):

−ω2
F F(x)(ωF ) + 2i ξ ω0 ωF F(x)(ωF ) + ω2

0 F(x)(ωF ) =
F(Fext)(ωF )

m

⇔ x(t) = F−1

(
F(Fext)(ωF )

m
(
−ω2
F + 2i ζ ω0 ωF + ω2

0

)) (t). (A.5)

A.1. Driving with white noise

If the driving is white noise, the Fourier transform of the driving force is unity (this
is the definition of white noise); F(Fext) = F0 1. With (A.5) we get

|F(x)(ωF )|2 =
(F0/m)2(

ω2
0 − ω2

F
)2

+ (2 ζ ω0 ωF )2
.

A.2. Harmonic driving

For a periodic harmonic driving force Fext(t) = F0 sin(ω t),

F(Fext)(ωF ) =

√
2π

2i
F0 (δ(ωF − ω)− δ(ωF + ω))

which inserted into (A.5) leads to the solution for the inhomogeneous equation

xinhom(t) =
F0

mZ
sin(ω t+ φinhom) with

Z =
√

(ω2
0 − ω2)2 + (2ω0 ω ζ)2

φinhom = arctan
(
−2ω0 ω ζ
ω2
0−ω2

) .

(A.6)

A.3. Lock-in amplification

To obtain the unknown parameters in (A.6), lock-in amplification provides a nice
way of extracting the amplitude F0

mZ . This is done by driving the system with a
certain frequency ωlock and integrating the product of the reference signal and the
response signal I(t):

Ilock(ωlock) =
1

T

∫ T

0
sin
(
ωlockt

′ + φlock

)
I(t′) dt′
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A.4. Approximation

Insertion of (A.6) for the response signal with driving frequency ωlock yields

Ilock(ωlock) =
1

2

F0/m

Z(ωlock)
cos(φlock − φinhom)

− 1

2T

F0/m

Z(ωlock)ωlock
[sin(2ωlock T + φlock + φinhom)

− sin(φlock + φinhom)] .

For sufficiently large integration times T , the second term will approach zero and
one gets the amplitude of the driven oscillator, F0/m

Z(ωlock) and the phase φinhom (since

φlock is known).

A.4. Approximation

Both the squared total amplitude of the Fourier transformed amplitude of the white
noise driven oscillator and the squared amplitude of the periodically driven oscillator
are relativistic Breit–Wigner distributions of the form

f(ω) =
(F0/m)2(

ω2
0 − ω2

)2
+ (2 ζ ω0 ω)2

.

When the quality factor Q is large, the Cauchy–Lorentz distribution is a very good
approximation. It is written as

DCL(ω) =

(
F0/m

2ω2
0 ζ

)2 (ζ ω0)2

(ω − ω0)2 + (ζ ω0)2
. (A.7)

Both distributions are compared in figure A.1.
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Figure A.1.: Comparison of the relativistic Breit-Wigner peak and the Cauchy-
Lorentz approximation for a frequency of 20 Hz.
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B. Technical notes

In this section we cover some auxiliary calculations and technical remarks concerning
the experimental setup.

B.1. Q and mechanical heating

The effective occupation number neff of a laser-cooled oscillator under certain re-
strictions is given by [30]

neff =
Γheating +A+

γm + Γlaser
,

where Γheating is the heating rate through coupling to a thermal bath, γm = ω
Q is

the natural coupling rate, Γlaser = A−−A+ is the laser cooling rate and A+, A− are
the rates at which laser photons are scattered into the Stokes/anti-Stokes sideband
of the oscillator.

We ask for the rate Γheating at which a system at an occupation number neff relaxes
to equilibrium with its environment (approaching the equilibrium occupation n̄) if
no cooling is applied. This process can be approximated by

n(t) = n̄− (n̄− neff) e−γm t.

From the definition of Γheating,

Γheating := ṅ(t = 0) = γm n̄− γm neff

which approaches

Γheating ≈ γm n̄ (B.1)

if the bath temperature is high; n̄� neff. From Bose-Einstein statistics, the thermal
occupation number is given by

n̄ =

(
e

~ω
kB T − 1

)−1

≈ kB T

~ω
for ~ω � kB T,
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where the condition is fulfilled if the bath temperature is high compared to the
ground state temperature. Inserting this into (B.1) and using γm = ω

Q , we get

Γheating ≈
kB T

~Q

which does not depend on ω. This is the reason why systems with very high quality
factors are interesting, even if they have very low frequencies.

B.2. Laplace of B and B2

The static Maxwell equations without currents yield

∇ ·B = 0 and ∇×B = 0.

Therefore B and its individual components B1, B2, B3 fulfill Laplace’s equation:

∇2B = ∇(∇B)−∇× (∇×B) = 0. (B.2)

Furthermore [21],

∇2B2 =(∂2
1 + ∂2

2 + ∂3
3) (B2

1 +B2
2 +B2

3)

=2 (∂1B1)2 + 2 (∂2B1)2 + . . .+ 2 (∂3B3)2

+ 2B1∂
2
1B1 + 2B1∂

2
2B1 + . . .+ 2B3∂

2
3B3

=2 (∇B1)2 + 2 (∇B2)2 + 2 (∇B3)2

+ 2B1∇2B1 + 2B2∇2B2 + 2B3∇2B3

(B.2)
= 2 (∇B1)2 + 2 (∇B2)2 + 2 (∇B3)2 ≥ 0

B.3. Excluding sources of peak broadening

To check if the driving of the piezo is smeared out at low frequencies, which would
set a lower bound on the achievable width of the peaks measured when performing
lock-in scans, we independently checked the output of the lock-in-amplifier (fig-
ure B.1a) and of the piezo by driving it with a frequency generator and performing
the usual reflection measurement, but without the magnets (figure B.1b). Both
frequencies were set to 15 Hz. For the output of the lock-in amplifier, we obtained
ω = 14.9998[2] Hz with Q = 12.9[43] · 103. The output of the frequency generator
was ω = 15.0[3] Hz with Q = 90.8[52] · 103. Therefore, device limitations are not an
issue.
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(a) Sharpness of the frequency output of
the lock-in amplifier.
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(b) Sharpness of the piezo driven by a fre-
quency generator.

Figure B.1.: Sharpness of the device signals used throughout the experiments. The
peaks are significantly narrower than those seen in the measurements
with the sample.

B.4. Interferometric readout of noisy low-f systems

This section should serve as an overview of the obstacles we encountered when setting
up the experimental setup and as an advice which mistakes one should avoid when
dealing with low-frequency oscillators in interferometers.

B.4.1. Why we used a low-frequency vibration isolation stage and why
we should have bought a bigger one

In the first version of the setup, all components including the chamber were mounted
on a standard optical table. When performing interferometric measurements in
this setup, it turned out that the oscillations from low-frequency noise of the lab,
which made their way through the optical table to the sample, had an amplitude of
more than one or even two times a wavelength (1064 nm). The directly detectable
displacement range of a Michelson interferometer is limited to half a wavelength
and displacements of more than that will show up as sin(sin(t)) type modulations,
leading to higher orders in the spectrum.

Our initial approach to this problem was to put the vacuum chamber on a special
vibration isolation table for low frequencies. We chose a model from minus k with
a maximum payload of 14 kg and an area of about 30× 30 cm2 which was sufficient
for mounting the chamber. When performing the first interferometric measurements
with the now vibration-isolated chamber and the optical components still directly
mounted on the optical table, a huge noise at low frequencies became evident, sup-
pressing all other peaks which were visible before (figure B.2). This massive noise
is simply explained by the fact that the sample mirror was damped in low frequen-
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cies, while all other components in the setup were still vibrating in this frequency
range. Therefore the interferometer collected everything the table dampened out.
The solution for this problem was to mount all optical components on the vibration
isolation stage.
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Figure B.2.: Comparison of fourier noise spectra of the undamped setup, the setup
with the vibration-isolated vacuum chamber and the setup with all
components isolated.

Mounting a whole interferometer on the stage which originally was planed for
just the vacuum chamber, while at the same time keeping the center of mass in the
middle of the stage and the total payload below the max of 14 kg was a task which
could only be accomplished with a vertical interferometer as seen in figure 3.3b,
page 11. Eventually it lead to less noisy spectra (figure B.2). With the chamber,
some new peaks at 150 Hz, 310 Hz, 410 Hz, 510 Hz, 610 Hz showed up which could
not be seen before - probably they are mechanical modes of the vibration isolation
stage. With the combined damping from both tables, the undriven motion of the
sample was decreased, but the amplitude was still more than a half wavelength.
Therefore, higher orders in the interferometric measurements could never be totally
eliminated.

The biggest problem with the interferometric readout scheme is that it is not
compatible with driving in this setup. Every driven frequency was directly visible
as a sharp peak in the spectrum as shown in figure B.3. This makes it impossible
to identify mechanical peaks by checking their response to external driving.

60



B.4. Interferometric readout of noisy low-f systems

 0  20  40  60  80  100  120  140  160  180  200  220  240  260  280  300

un
dr

iv
en

f [Hz]

75
.6

 H
z

84
.1

 H
z

91
.3

 H
z

97
.4

 H
z

21
4.

8 
H

z
22

4.
4 

H
z

22
9.

4 
H

z

 0  20  40  60  80  100  120  140  160  180  200  220  240  260  280  300

27
5.

5 
H

z (fft data)2

Figure B.3.: Interferometric spectra with certain frequencies driven (left column).
Every driven frequency shows up as a sharp peak in the spectrum.

61



B. Technical notes

B.4.2. Why we built a HV chamber and why we should have built an
UHV chamber

With all optical components on the low-frequency vibration isolation stage, nice
results could be achieved as long as there was no connection from the setup to
anything else in the lab, e.g. a pump. Connecting a pump completely canceled the
effect of the stage and lead to massive noise with sidebands and many multiple-
frequency peaks becoming visible (figure B.4).
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Figure B.4.: Interferometric spectrum at low vacuum with the pump running.

Our idea to solve this issue was to have a connection from the vacuum chamber
to a fixed block mounted to the optical table (visible in figure 3.3b, page 11) with
some low-frequency absorbing bellows and another connection from there to the
pump with high-frequency absorbing bellows to effectively filter the pump using
the weight of the optical table. Sadly, this did not work at all and produced the
same amount of noise as seen with a direct connection between pump and chamber.
However, it turned out to be quite easy to break the vibration isolation stage with
this configuration. Since the bellows contract when evacuated and the stage has
to be clamped down during that process,1 it was almost impossible to adjust the
bellow suspension on the optical table in order such that it did not exert a force on
the stage. A few adjustment tries eventually lead to a broken spring, which we did
not notice until all measurements were finished.

From this observations it seems reasonable to completely detach the chamber from
the pump while interferometric measurements are performed. However, the pressure
of our HV setup goes up quite fast while no pump is connected - we could not hold
10−3 mbar for more than a few minutes, which made the measurements described in
section 4.1 quite stressful. It would have been a good idea to build the whole setup
with UHV components in order to be able to hold low pressures longer, since holding
a pressure of 10−5 mbar is no problem with a UHV chamber. Another solution would

1From the specifications of the stage manufacturer, it is not allowed to even touch the payload
when the stage is set free due to the fragile springs which might break.
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B.4. Interferometric readout of noisy low-f systems

have been to design the HV chamber in a way that an ion pump, which does not
have mechanical elements, can be mounted, allowing continuous pumping of the
chamber.

B.4.3. Why dealing with low frequency non-rigidly suspended oscillators
is painful

Apart from the noise problem described above, there are further issues with a levi-
tating low-frequency system like this.

Because of the low frequencies, a usual scheme to find mechanical modes and
frequencies, which is connecting a frequency spectrum analyzer to the output and
scanning through driving frequencies in order to see a response, is difficult for two
reasons: First, peaks with similar frequencies (small spacing) broaden into one and
second, the resolution is limited by the refreshing rate - when the screen is refreshed
every 2 seconds, the resolution limit is 0.5 Hz.2

In free-space, it is necessary to hit the sample in a way the beam is reflected into
itself. One could solve this problem in a fiber interferometer, but there one would
have to map the surface of the sample in x1 and x2 direction in order to find all
modes (since beam displacement cannot directly be seen).

The adjusted setup was so sensitive, that placing laser safety goggles (or any other
object of similar or higher weight) anywhere on the optical table caused the beam
to almost go out of the range of the quadrant diode. In a busy lab with several
people working on other experiments, it was actually quite a challenge to not touch
anything slightly attached to the table for the whole time a measurement ran - which
was between 5 minutes and a few hours. Therefore, for further experiments more
care should be taken to exclude sources of noise and increase the repeatability, e.g.
heavier vibration isolation systems, more stable mounts for optics and avoidance of
vertical beam paths if possible.

Ultimately, even the worst and most painful experiment is no excuse for being
stupid, as was obvious when some of the magnets, which were still needed for the
experiment, accidentally were used for the creation of a PhD celebration hat.

2The latter issue is a general problem which can also occur for high-frequency mechanics with
very high quality, since the resolution of the frequency spectrum needs to match the peak width
given by γ = ω0

2Q
.
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