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Abstract

The present diploma thesis deals with the identification and description of stable ordered

phases in the ternary iron-nickel-aluminium system (Fe-Ni-Al) based on a first principle

concept. The aim of the work was to perform a concentration dependant search for

ground state phases of a ternary system with the precision of density functional theory

calculations. For this the Cluster expansion in combination with Monte Carlo simulations

was applied.

As a basic quantity the enthalpy of formation was calculated, which is the responsible

for the formation of stable phases in an alloy system. By including the enthalpies of

formation of the calculated structures in a ground state diagram the stable phases could

be identified.

The body centered cubic (bcc) parent lattice was chosen, since we were interested in

the Fe-rich FexNiyAl1−x−y alloy system as an example for the application of a Cluster

Expansion on a multicompound system. The Fe-Ni-Al system is of high scientific and

technological interest since the binary subsystems (Ni-Fe, Al-Fe, Ni-Al) are of different

characteristics (i.e. lattice types, phase stability) while the ternary phase diagram shows

a stable B2-phase regime in the pseudo binary Fex(NiAl)1−x part. On the basis of ab

initio results for various configurations from DFT, calculated with the Vienna Ab initio

Simulation Package (VASP) effective cluster interaction energies were calculated employ-

ing the UNiversal CLuster Expansion (UNCLE) code. After an extensive ground state

search the stable phases in the bcc lattice were identified. By combining the results of the

binary and ternary ground state searches to construct phase diagrams at finite tempera-

tures the converged ECIs were used in both, canonical and grand-canonical Monte-Carlo

simulations. The formation of ordered phases was simulated by starting from completely

unordered systems –which represents an infinite high temperature– and cooling down to

100 Kelvin. By slowly heating up again the effect of the configurational entropy was

studied.

The identification of the formed phases in the simulation boxes was done by a self

elaborated method analyzing short range ordering with an extension of 3x3x3 atoms for

binary and ternary phases and 10 atoms for elemental precipitations.

As expected the investigations done on the binary systems lead to somehow different

results. The binary Ni-Al system has shown to form the most stable phases in the ternary

system, with B2-NiAl showing the lowest enthalpy of formation. Other two stable ground

states have been identified. In contrast to Ni-Al the Ni-Fe system did not tend to form

ordered structures in the bcc lattice. The ground states of the Al-Fe system turned out to

be less stable then in the Ni-Al system, but the ordering is still energetically favourable.

From the found phases at T=0K three have shown to be stable also at finite temperatures.
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B2-NiAl has shown to form deep into the ternary region, while Fe forms elemental pre-

cipitations. The ratio between nickel and aluminium concentration has a great influence

in the extension of the B2 region. On the Al rich side of the investigated concentra-

tion range B2-NiAl is formed up to 80 % iron, while on the Ni-rich side the phase is

destablilized already at 60 % Fe. As the reason for this behaviour a stabilization of the

excessive aluminium in the iron matrix by Fe3Al like ordering has been identified. Since

nickel did not tend to form ordered structures with iron in a bcc lattice the excess of Ni

destablilizes the B2-NiAl ordering by replacing Al in the B2 crystal.

In the region of nearly pure iron nickel and aluminium still have shown to cluster in

a B2-like way.
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Zusammenfassung

Die eingereichte Diplomarbeit befasst sich mit der Identifikation und Beschreibung sta-

biler geordneter Phasen im ternären Eisen-Nickel-Aluminium System (Fe-Ni-Al). Die

grundlegende Zielsetzung bestand darin eine konzentrationsabhängige Suche nach den

Grundzustandsphasen eines ternären Systems mit der Präzision der Dichtefunktionalthe-

orie durchzuführen. Um dies zu erreichen wurde ein Cluster Expansion Ansatz in Kom-

bination mit Monte Carlo Simulationen gewählt.

Als grundlegende Größe in der CE wird die Formationsenthalpie verwendet, welche

Aussage über die Stabilität einer gebildeten Phase gibt. Durch Herausfiltern der Struk-

turen, welche die größte Formationenthalpie besitzen können durch ein Grundzustands-

diagramm die stabilen Phasen einer mehrkomponentigen Legierung identifiziert werden.

In der vorliegenden Arbeit wurde das kubisch innenzentrierte Gitter (bcc) basierend

auf der Fe-reichen Seitedes ternären Systems FexNiyAl1−x−y als Beispiel verwendet um die

Anwendung der CE auf Systeme mit mehr Komponenten zu zeigen. Dieses Legierungssys-

tem ist in wissenschaftlicher und technologischer Sicht wertvoll, da die binären Subsys-

teme (Ni-Al, Fe-Al, Fe-Ni) verschiedene Eigenschaften aufweisen, während das ternäre

System eine stabile B2 Phase über einen grossen Bereich im pseudo- binären Fex(NiAl)1−x-

Bereich zeigt.

Auf der Basis von ab initio Ergebnissen, welche mittels des Vienna Ab initio simula-

tion packages VASP für einige ausgewählte Strukturen berechnet wurden, wurden durch

die Anwendung des UNiversal CLuster Expansion UNCLE codes effektive Cluster Wech-

selwirkungen bestimmt. Nach einer ausgiebigen Grundzustandssuche konnten die stabilen

Phasen im System identifiziert werden. Durch Kombination der Ergebnisse, die von den

binären und ternären CE erhalten wurden, wurden mittels Monte Carlo Simulationen

in kanonischen und grosskanonischen Ensembles die Phasendiagramme bei ausgewählten

Temperaturen gezeichnet.

Als Start fuer die Beschreibung der Formation von stabilen Phasen bei finiten Temper-

aturen wurde eine komplett ungeordnete Monte Carlo Box –entspricht unendlich hoher

Temperatur– verwendet und im Laufe der Simulation auf 100 Kelvin abgekühlt. Durch

langsames Aufheizen wurde der Effekt der Konfigurationsentropie studiert.

Zur Identifikation der gebildeten Phasen wurde eine selbstentwickelte Methode ver-

wendet, welche die Analyse der kurzreichweitigen Ordnung in einer Ausdehnung von

3x3x3 Atomen für binäre und ternäre Phasen beinhaltet. Elementare Ausscheidungen

wurden ab einer Clustergröße von 10 Atomen als solche gekennzeichnet.

Die Untersuchungen an den binären Systeme führten wie erwartet zu verschiedenen

Ergebnissen. Die binären Phasen des Ni-Al Systems besitzen die höchste Stabilität im

untersuchten ternären System. Als stabilste Struktur wurde B2-NiAl identifiziert. Zwei
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weitere Phasen wurden gefunden. Im Gegensatz zu Ni-Al zeigt das Ni-Fe System keine

Tendenz zur Bildung geordneter Strukturen im kubisch innenzentrierten Gitter. Die

Phasenbildung im Al-Fe System ist energetisch sehr begünstigt. Drei Grundzustände

wurden gefunden, welche auch bei höheren Temperaturen stabil sind.

Als stabilste Struktur im System bildet sich B2-NiAl weit in das ternäre System hinein,

wobei Eisen in diesem Fall als elementare Ausscheidungen formt. Diese Ausdehnung wird

stark durch das Verhältnis der Konzentration von Nickel und Aluminium beeinflusst.

Während auf der aluminiumreichen Seite des untersuchten Konzentrationsbereichs B2-

NiAl bis zu einer Konzentration von 80 % Eisen gebildet wurde, wird die binäre Phase

auf der nickelreichen Seite bereits bei 60 % Eisen destabilisiert. Als Grund für dieses

Verhalten wurde eine Stabilisierung des überschüssigen Aluminiums in der Eisenmatrix

durch die Bildung von Fe3Al gefunden. Da Nickel und Eisen keine geordneten Phasen im

bcc Gitter bilden, wird die B2-Phase auf der nickelreichen Seite durch die Bildung von

Ni-Antisites auf den Aluminiumplätzen des Kristalls destabilisiert.

Im Bereich des ternären Systems, welcher aus nahezu reinem Eisen besteht wurde

bereits ein Clustern von Nickel und Aluminium in einer B2-artigen Struktur identifiziert.
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Introduction 1
In the last decade, application of density functional theory (DFT) to materials properties

became very successful and in quite a few cases it works on the same level of accuracy as

experiments. Most of the standard DFT work consists in working with systems of rather

small unit cells of a few hundreds of atoms at most describing ordered structures, even

when alloy properties and configurational averages are described. If, however, one wants

to go far beyond such a size limitation and wants to bridge the length scale one has to

think about other extended concepts.

Another problem consists in finding the actual ground state, i.e. the equilibrium

structure of a compound at low temperatures. Experimentally, this is also a problem

because e.g. synthesizing an alloy by melting the consituent metals and measuring its

properties at lower temperatures means to cool down; then atomic motion is frozen in and

metastable states can survive for a considerable time. Finally reaching the thermody-

namic ground states could mean that after some years cracks and materials failures form.

This happened e.g. to air plane wings made of Al-rich Al-Li alloys. The theoretical way

out is to make an extensive and exhaustive search for all possible structures, requiring

the calculation of 104 to 106 different structures. Such a task is clearly impossible if its

done brute force.

For both problems the method of choice is the Cluster Expansion (CE), which -

if done properly- maintains DFT accuracy for systems with many atom types and for

concentration dependent configurational averages.

One of the most basic problems in material sciences is the determination of phase

stabilities of alloy systems with two or more atoms.

The determination of a phase diagram by theoretical calculations with useful accuracy

needs basically two major requirements, namely many atomic configurations have to be

searched through and temperature must be taken into account. Theoretically, on a DFT

level this can be achieved by combining the CE with Monte Carlo simulations, which

includes the configurational entropy. The temperature dependency can be taken even

further and be made more realistic by including vibrational free energies, again derived

from DFT calculations with their inherent accuracy. This is, however, a very demanding

task but nevertheless it was done by D. Reith (also in the working group of R. Podloucky)
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for Fe-Cu binary alloys.

The CE is a concept to model configuration dependent properties of a system by

taking a set of DFT calculations and deriving the unknown effective cluster interactions

(ECIs) from fitting the CE ansatz to the DFT input. If the system is friendly, by using a

rather small number of DFT treated input structures properties like the free energy, the

formation energy, volume and magnetic behaviour can be determined. The basic principle

of the CE is that physical observables such as the enthalpy of formation, which is defined

for periodically repeated structures, can be reformulated in terms of interacting building

blocks (i.e. clusters). The building blocks are known because of the underlying crystal

lattice. (At present, this is a basic requirement for CE, that one common lattice is used

for all configurations). The unknown glue between the blocks is derived from fitting the

CE derived enthalpies of formations of selected structures to the hard numbers of DFT

calculations. By that no empirical values are needed and the configuration dependent

properties at every composition can be determined truly from first principles. After a

convergent CE is obtained, the many body cluster interactions can be used for Monte

Carlo simulation in order to derive temperature dependent configurational averages.

In the present work the phase stabilities of the ternary Fe-Ni-Al alloy system is de-

scribed using CE in combination with Monte Carlo simulations. Dealing with ternary

systems using CE is a very demanding task, in particular concerning computer ressources,

accuracy of DFT calculations, the evaluation of a large set of data and the design of a

suitable Monte Carlo strategy. Even though the Universal CLuster Expansion (UNCLE)

code [1] could be used, quite some effort went into designing a proper expansion (apart

from partially debugging and extending the code). Thanks to close collaboration with the

group of G. Kresse, the VASP code was used, which is a very powerful working horse for

DFT calculations. The focus was put on the Fe-rich part of the phase diagram in order

to model NiAl precipitations in Fe. By that, the basic lattice for the CE is bcc, and the

concentration range of Ni and Al can also be narrowed down. The three binary systems,

Al-Fe, Ni-Al, and Fe-Ni, were however studied over the whole concentration range.

The thesis consists of two main parts. In the first part the theoretical backgrounds

will be shown introducing the mathematical framework and algorithms used in the work.

In the second part the work done on the Fe-Ni-Al system is presented. Starting with

an analysis of the elements contained in the ternary alloys, the derived parameters like

e.g. cutoff energies and k -point sets will be mentioned. In the next section the three

binary systems populating the sides of the Gibbs triangle will be described through

binary CE+MC approaches. As a result of these the ground state lines and derived

binary phase diagrams will be shown. Finally the ground state structures gotten from

the binary alloys will be used as a starting point for the description of the ternary Gibbs

triangle by ternary CE+MC.
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Theoretical background 2
2.1 Density Functional Theory

2.1.1 History

The fundamental concepts of density functional theory (DFT) were proposed by Hohen-

berg and Kohn (HK) in their famous paper in the year 1964 [2]. The basic proposition

of their work was, that all ground state properties of a quantum system - in particular

the ground state total energy - are unique functionals of the ground state density. If this

would work then all the ground state properties can be expressed by a function of 4 vari-

ables (space and spin), the density namely, rather than by the manybody wavefunction

which is a function of 4×N variables, N being the number of particles. This way of think-

ing in terms of the density rather than the wavefunction was not new: Thomas [3] and

Fermi [4] (TF) published a somewhat similar -but much less rigorous- concept already in

1927, but in their work the crucial manybody electronic interactions were left out. The

idea of TF was, that the kinetic energy can be described as a functional of the electron

density of non-interacting electrons representing a homogeneous electron gas. The many-

body exchange and correlation terms of the electrons were added by Dirac [5] in 1930,

who formulated the local density approximation, which is still used today. It turned out,

however, that the Thomas-Fermi-Dirac theory based on the homogeneous electron gas is

not accurate enough for a predictive precision, in contrast to the modern applications of

DFT.

A problem of the original HK theory is the uniqueness of the dependency of the

energy functionals on the ground state density. It could be proven that this problem

can be lifted for reasonable physical densities, but nevertheless the HK formulation is

not useful for actual calculations of ground state properties with sufficient accuracy. A

major progress was achieved one year after HK, when Kohn and Sham [6] presented a

formulation by partially going back to a wavefunction description in terms of orbitals of

independent quasi particles. The basic -and crucial- idea is that the manybody problem

can be mapped onto a system of non-interacting quasiparticles. Since then up to now the

Kohn-Sham equation (as derived later on) are used in practically all calculations based

on DFT.
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2.1.2 Schrödinger’s equation

The basis of every ab initio approaches is the Schrödinger equation, which in its stationary

(non-relativistic) form is an eigenvalue equation of the form

ĤΨ({ri}, {Rα}) = EΨ({ri}, {Rα}) (2.1)

with Ψ({ri}, {Rα}) as the wave function of the system, depending on the electron

coordinates ri, i = 1,N (including the spin) and the coordinates of all nuclei in the system

Rα, α = 1,Nα. Making use of the Born-Oppenheimer approximation and separating

electronic and nuclear motion the electronic Schrödinger equation is then defined as

Ĥel({ri}, {Rα})Ψel({ri}) = EelΨel({ri}, {Rα}) (2.2)

with the Hamilton operator,

Ĥel = − ~

2me

∑

i

▽2
i +

∑

i

Vext(r) +
1

2

∑

i 6=j

e2

| ri − rj |
(2.3)

which consists of the kinetic energy, the electron-nuclei Coulomb energy (the so-called

external potential in the language of DFT),

Vext(r) = −
∑

α

Zα

riα
(2.4)

and the electron-electron interaction. This definitions lead to an implicit dependency

of Eel on the spatial distribution of the nuclei in the system. The ground state energy

Eel,0 is the lowest energy eigenvalue for a given distribution of nuclei. To calculate the

total energy of the system the Coulomb energy between the nuclei has to be added,

E0({Rα}) = Eel,0({Rα} +
∑

α<β

ZαZβ

Rαβ

(2.5)

which then results in a potential energy E0({Rα}) in terms of the position of the

nuclei.

The wave function in equation (2.2) depends on the electron positions and spins and

has to be antisymmetric regarding the exchange of electrons.

4



2.1.3 Hohenberg-Kohn theorems

The HK approach consists in formulating an exact theory for manybody systems in terms

of the electron density n(r), which is defined as

n(r) =

∫
...

∫
d3r2...d

3rN |Ψel(r1, ...rN)|2 (2.6)

and has to obey the relation

∫
n(r)d3r = Nel (2.7)

when Nel is the number of electrons in the system. This can be achieved by proper

normalization of the manybody wavefunction.

There are two HK theorems:

• Theorem I: The external potential Vext(r) of a system is determined uniquely -

except for a constant- by the ground state density n0(r). As a consequence, the

Hamiltonian is fully defined -except for a constant energy shift- and with the Hamil-

tonian also the wavefunction for the ground state is known.

• Theorem II: The ground state total energy E[n] of a system with a particular

Vext(r) is the global minimum of this functional when n = n0.

Based on these two theorems the electronic energy-functional can be written as a sum

of the kinetic energy operator, the external potential (equation (2.4)) and the so called

exchange correlation functional Exc. This leads to the form

E[n] = T [n] + Exc +

∫
d3rn(r)Vext(r)

≡ FHK [n] +

∫
d3rn(r)Vext(r)

(2.8)

with

FHK [n] = T [n] + Exc (2.9)

The universal functional FHK [n] includes the kinetic energy and the exchange-correlation

potential (described in section 2.3) and is universal for the electronic system, because it

only depends on the electronic density n. The minimization of the energy functional is

now done requiring conservation of charge by integrating the density according to relation

(2.7). Making use of the chemical potential µ as a Lagrange parameter one derives

µ =
δE[n]

δn(r)
= Vext(r) +

δFHK [n]

δn(r)
. (2.10)
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This very elegant equation is, however, of no use in practical calculations. The crucial

step towards practical applications of DFT is elaborated in the following section dealing

with the Kohn-Sham equations.

2.2 Kohn-Sham equations

In the year 1965 Kohn and Sham (KS) reformulated DFT by introducing orbitals, i.e.

mapping the fully interacting manybody system onto a fictious independent-particle sys-

tem with the requirement, that these KS orbitals build up the true ground state density.

The derived KS equations are the ones which are solved when DFT is applied in all mod-

ern DFT calculations (as also used in the Vienna Ab initio Simulation Package, VASP).

For deriving the KS equations it is required, that the ground state density is built up by

the KS orbitals, i.e. the solutions of the KS equations:

ĤKSφi = εiφi (2.11)

The Hamiltonian HKS is built by the single particle kinetic energy term TS and the

effective potential Veff(r) which are acting on one electron at the point r.

ĤKS = −1

2
▽2

i +Veff(r) (2.12)

Since the Kohn Sham Hamiltonian is a functional of just one electron at the point r

the kinetic energy term and the classical Coulomb interaction energy of the electrons are

defined analogous to the Hartree-Fock theory:

Ts = −1

2

N∑

i=1

〈φi | ▽2 | φi〉 = −1

2

N∑

i=1

∫
d3r| ▽ φi(r)|2 (2.13)

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′| (2.14)

with the electron density defined according to the HK theories:

n(r) =
∑

i

|φi(r, σ)|2 (2.15)

The Hohenberg-Kohn ground state energy can now be rewritten according to the

Kohn-Sham approach:

EKS =
N∑

i

ǫi − EHartree[n] + Exc[n] −
∫

δExc

δn(r)
(2.16)

6



The one electron energies ǫi in equation (2.16) are results of the single particle Kohn

Sham equations and generally have low physical meaning. By the addition of the many

particle terms the ground state energy of the investigated system can be determined.

The most sophisticated term in equation (2.16) is the exchange correlation energy, which

contains all the many-body interactions of exchange and interaction of the electrons. It

can be interpreted as the universal Hohenberg-Kohn functional -shown in equation (2.9)-

with the one particle kinetic energy Ts[n] and the classical Coulomb term EHartree[n]

taken out.

Exc[n] = FHK [n] − (Ts[n] + EHartree[n]) (2.17)

or

Exc[n] = 〈T̂ 〉 − Ts[n] + 〈V̂ee〉 −EHartree[n] (2.18)

Since EKS contains only the electronic energy the total ground state energy of the

system is calculated by adding the nuclei-nuclei repulsion term.

E0 = E0,KS + ENN (2.19)

The total energy is dependent of the ion positions Rα and -as a consequence- of the

volume and the cell shape, so by minimizing the total energy term the ground state

structure of the system can be computed.

The crucial point in the solvation of the single particle Kohn Sham equations is the

approximation of the exchange correlation functional Exc[n]. If it was known then the

ground state energy of a many-body system could be computed by solving the indepen-

dent Kohn-Sham equations and extend them with the Exc[n] energy. That’s why a few

approximation techniques have been developed.

2.3 Calculating the exchange-correlation en-

ergy

By extracting the one particle kinetic energy and the long range Hartree energy from

the exchange-correlation functional, the remaining term is now local. This means lo-

cal or nearly local approximations can be used for the exchange and correlation energy

calculation and the functional can be written as

Exc[n] =

∫
drn(r)ǫxc([n], r) (2.20)
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where ǫxc([n], r) is a one electron energy term at the point r, which is only dependent

of the density n(r) in the neighborhood of the point r. The spin densities are integrated

in the ǫxc([n], r), that’s why only the total densities appear in (2.20).

2.3.1 Exchange and correlation functionals

The derivation of the KS equations in section 2.2 is exact. As mentioned all compli-

cations of the electronic manybody problem, i.e. exchange and correlation, are packed

into the energy functional Exc[n
↑, n↓] and its functional derivative Vxc[n

↑, n↓], using the

spin-polarized notation. In general, these functionals are unknown for realistic systems

and, therefore, approximations have to be made. The usefulness of an DFT application

depends now on the quality of such approximations. As the success story of DFT proves

such useful approximations could be made, and improving the quality of the approxima-

tion is one of the forefront field in modern DFT developments. Two of the most commonly

used parametrizations of the exchange-correlation functionals are briefly introduced.

2.3.2 Local spin density approximation

In the local spin density approximation (LSDA) the exchange-correlation functionals of

the general system are replaced by the corresponding expressions for a homogeneous elec-

tron gas. Locally, for each point in space and spin the value of the densities n, n↑, n↓ are

determined and for these values the corresponding results for the homogeneous electron

gas are inserted according to,

ELSDA
xc [n↑, n↓] =

∫
d3r n(r)ǫhomxc (n↑(r), n↓(r)) (2.21)

in which ǫhomxc is the exchange-correlation energy per electron of the homogeneous

electron gas. Now, ǫhomxc = ǫhomx + ǫhomc and numerical parametrizations have to be made

for the correlation functional ǫhomc , whereas ǫhomx is known for any value of the density.

Including LSDA in any DFT computer code is easy and very fast. Although the ap-

proximation seems to be very crude it, nevertheless, works astonishingly well for many

realistic systems. LSDA however gets inaccurate when the true density is strongly deviat-

ing from the constant density of an homogeneous electron gas, which occurs for localized

states, such as e.g. 3d-states of transition metals or surface states. Then, LSDA leads to

overbinding effects, i.e. bonding is too strong.

The spin can be taken into account either by the spin densities n↑(r) and n↓(r) or by

a fractional spin polarization ζ(r)

ζ(r) =
n↑(r) − n↓(r)

n(r)
(2.22)
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Figure 2.1: DFT total energy E(V) for Ni the fcc and bcc structure, both spin polarized

(FM) and nonpolarized (NM) using the LSDA of Ceperley and Alder [8] and using the

GGA of Perdew, Burke and Ernzerhof [9]. LSDA, overestimates the binding, because

the equilibrium volume (i.e. energy minimum) is 10.00 rA3. GGA yields a ground state

minimum of 10.90 rA3, which is very good when compared to the experimental value of

10.94 rA3 [10]

To improve the failure of LSDA it was suggested to include also the gradient of the

density in the Taylor expansion of ELSDA
xc [n↑, n↓], as briefly discussed in the next section.

2.3.3 Generalized gradient approximation

The idea of the generalized gradient approximation (GGA) by taking into account also

the gradient of the density was already proposed by Kohn and Sham in their original

paper [6] and advanced by Herman et al [7]. Doing so the functional is now reformulated

as

EGGA
xc [n↑, n↓] =

∫
d3rn(r)ǫxc(n

↑, n↓, | ▽ n↑|, | ▽ n↓|) (2.23)

Including the density gradient is by far not straightforward and therefore a variety

of parametrizations exist. Throughout this work the functional of Perdew, Burke and

Ernzerhof (PBE) was applied. Applying GGA cures most of the overbinding problems of

LSDA. The most famous example is the ground state of Fe. LSDA predicts the ground

state, namely the nonmagnetic fcc-structure. Making use of GGA correctly predicts the

ferromagnetic ground state with bcc structure. On the other hand, for heavier atoms

such as the 5d-transition metals, GGA leads to too large lattice spacings of about the

same error which occurs for LSDA but in the other direction for too small volumes.

The accuracy of the two discussed (semi)local exchange correlation approximations is

tested for Ni in figure 2.1, for which GGA is the better choice.
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2.4 Computational implementation of DFT

All calculations of this diploma thesis are done by the Vienna ab Initio Simulation Package

(VASP) from Kresse et al. [11, 12], which is a pseudopotential method. Pseudopotential

approaches have big advantages concerning computational speed, because the KS basis

functions are plane waves. Building the Hamiltonian matrix and solving the eigenvalue

problem is very fast and the power of parallel architectures can be exploited in a powerful

way. The disadvantage of a pseudopotential code is the need of pseudopotentials, i.e.

of potentials which describe the Coulomb interaction of atomic nuclei screened by the

innermost electronic states, which do not participate in the bonding. There is a very

long history of pseudopotential construction and the most flexible and powerful is based

on the projected augmented wave (PAW) construction of P. Blöchl [13]. The potentials

have to be provided before any pseudopotential calculations start, i.e. they are input

files. Often several choices of such pseudopotentials for the same atom are available,

depending on the accuracy needed. Given all these ingredients total energies are derived.

(Actually, due to the usage of pseudopotentials the so-called total energies are rather

cohesive energies, because the references are atomic ions.) Finding (hopefully) the true

ground state energy E0 as a function of lattice parameters, volume and atomic positions

needs also forces, which can be derived within the Hellman-Feynman theorem. [14, 15]

The minimization procedure is the following: for a given structure (lattice vectors and

volume fixed) the forces acting on each atom are derived by the negative gradient of the

DFT energy due to the atomic positions. The structure is relaxed until the forces are

numerically zero. Then, volume and –if necessary– cell shape are changed and again the

forces are relaxed until the minimum total energy E0 is reached. Thanks to the features

of VASP, all these minimization steps can be done separately or in a combined way. The

parameters needed for convergency in the present work are shown in chapter 3.

2.5 Determination of ground state proper-

ties

Before the theoretical and practical aspects of the Cluster Expansion (CE) will be elab-

orated the ground state properties of a system will be introduced and the definition of

a ground state phase diagram will be explained. Results of DFT calculations provide a

basis for the CE (see following section), but they are –strictly speaking– only valid at zero

temperature. To overcome this limitation due to temperature Monte Carlo simulations

based on the CE/DFT data are made which then deliver the ground state phase diagram
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for a given temperature. The key quantity for the definition of the ground state is the

enthalpy of formation as discussed in this section.

2.5.1 Ground state phase diagrams

A useful concept for describing a stable ground state of a thermodynamical system is

the (internal) energy of formation ∆Uf (constant volume) or the enthalpy of formation

∆Hf (constant pressure). It is defined as the difference between the ground state energy

E0(σ) of the system with a given atomic configuration σ of atoms A,B... and composition

AxA
BxB

..., and the sum of reference energies of the pure elemental ground state energies

E0,i weighted by the mole fraction xi of the components,

∆Hf = E0(σ) − (xA · E0,A + xB ·E0,B + ...) (2.24)

From the differences ∆Hf or ∆Uf the stability of investigated structures can be

extracted. By combining the formation data in a so-called ground state diagram the

compositions with highest stability (i.e. lowest formation energy or enthalpy) can be

identified. Figure 2.2 shows an example of such a ground state diagram for the binary

system AxA
BxB

. It is constructed by plotting the calculated formation enthalpy ∆Hf of

different phases (i.e. compounds) versus the mole fraction x of a chosen component, e.g.

component A. The most stable phases form a convex hull which at T=0 consists of lines

connecting the lowest points. At higher temperatures this would be the convex enthalpies

as function of x properly connected with common tangents, according to the construc-

tion of stable phases in physical chemistry. The structures, which span the convex hull

dominate the phase behaviour of the system and form the ground state structures. For a

mole fraction x0 between the fixed points the stable phase is a mixture of the phases left

and right from x0 according to the thermodynamic lever rule. Also the stability relation

between the different ground state structures can be extracted from the diagram. In the

example shown figure 2.2 the structure at xA=0.5 shows higher stability then the one at

xA=0.75.

In the selfconsistent fitting procedure of the Cluster Expansion shown in section 2.7

the ground state diagram will be determined in every iteration. Its importance lies in

finding new possible ground state structures which could be added to the DFT-derived

input set. Such a new ground state structure is determined by calculating the enthalpy

of formation with the fitted effective cluster interaction energies (see section 2.6.1) and

inserting the thus estimated enthalpies into the ground state diagram as determined by

the DFT input structures. If such a newly estimated formation enthalpy lies below the

convex hull it is characterized as a new ground state structure. The Cluster Expansion

is considered to be converged when the ground state line does not change anymore after

the next iterations.
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Figure 2.2: Sketch of a ground state diagram. The black circles represent the ground

state structures. Connecting the ground state structures results in the ground state line

or diagram. The blue dots are other phases, which are thermodynamically not stable.

2.6 The Cluster Expansion

Modern DFT methods are able to calculate material properties with reasonable to high

precision (depending on the quality of the approximations to the exchange and correla-

tion effects, see section 2.7). Standard DFT applications are, however, restricted to unit

cells of a few hundreds of atoms. If one wants to model an alloy with varying atomic

concentrations and crystal structures a huge number of very large supercells would be

needed, if one tries to solve this problem in a brute force way. Such a procedure is, of

course, not feasible. A successful strategy to overcome this limitation is offered by the

cluster expansion (CE) [16] in particular when combined with Monte Carlo simulations.

The concept of CE is to describe every configuration dependent property of a system

by a linear combination of interacting building blocks or figures. By configuration one

understands a distribution of atoms over a given lattice. Then the energy for a given con-

figuration σ is written as a sum over pairs, tripletts, quadruplets, and so on, the so-called

figures or clusters. It was shown [16] that such an expansion exists if –mathematically–

the expansion goes over all configurations (i.e. atomic distributions). For practical rea-

sons the expansion has to be limited to reasonably small clusters, so that the expansion

converges numerically. If the input of a convergent cluster expansion is provided by DFT

calculations, then the accuracy of DFT calculations can be carried over to systems con-

sisting of 104−106 atoms. Many studies were made for binary bulk systems (e.g. [17–20]).
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Ternary systems (or binary systems with vacancies) (e.g. Refs, [21] or [22]) are still rather

scarce because of the effort they need. More detailed information about CE can be found

e.g. in the PhD theses of Lechermann [23] and Wiekhorst [24] with application to bulk

as well as surface systems.

2.6.1 Basic principles of the Cluster Expansion

The cluster expansion (CE) is based on an Ising Model [25] for modeling the Hamiltonian.

A ’pseudo’ spin Si is defined which characterizes the atom type at each lattice site i. The

spin variables are Si=1,-1 in a binary and Si = -1, 0, 1 in a ternary system (see figure

2.4). The distributions of spins over the lattice of a structure represents the configuration

σ. In general, CE can be expanded up to any number of species. The configuration space

grows, however, fast with the number of atomic species involved. because for a binary

case with N lattice sites 2N configurations are possible which even grows up to 3N in a

ternary system, and so on. Because of the need of a sufficient number of input structures

the number of required DFT calculations grows roughly in the same way. The present

work focuses on the modeling of three binary (NiAl,AlFe and NiFe) and a ternary system

(FeNiAl) based on a bcc-lattice. Although elemental Al and Ni crystallize in a fcc lattice,

fcc-structures and others were not considered for the CE because the main interest of this

work is on Fe-rich alloys, for which the bcc structure dominates the phase diagram. In

the binary case atom type A is characterized by the spin -1 and atom type B by +1. Any

physical property of the system, which is dependent on the atomic configuration σ can now

be described by a sum of spin products, as written in equation (2.25). An example for such

a property is the energy or enthalpy of formation, but also other observable properties

can be cluster expanded such as tensorial quantities [26], Curie temperature [27] and

density of states [28]. For fitting and finding the optimum set of figures, the energy or

enthalpy of formation is much better suited because they have to reach a minimum.

E(σ) = J0 +
∑

i

JiSi +
∑

i<j

JijSiSj +
∑

i<j<k

JijkSiSjSk + ... (2.25)

The parameters Ji in equation (2.25) are the so-called effective cluster interactions

(ECI), which are of the same dimension as the expanded property. J0 stands for the empty

figure, which serves as a constant value. The ECIs are independent of the configuration σ

and contain the properties of the figures as determined by the spinproducts. The approach

of calculating a configuration dependent property in this way is exact in principle. Of

course, in practical applications it has to be truncated and its convergency has to be

tested. The precision of the CE fit is then dependent of the number of terms used in

the sum. Practical calculations show that in standard case the sum can be truncated at

rather small cluster sizes maintaining the precision of the DFT input energies. Typical
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Figure 2.3: Sketch of the cluster expansion procedure and its mathematical formulation.

The structure is decomposed into a set of clusters (or figures). The energy E of a con-

figuration is a sum over interacting cluster, whereby their geometry is described by Πi

and their (effective) interaction energy by Ji. These energies are independent of the con-

figuration, whereas the selection of figures (i.e. the summation) depends on it. If the

summation runs over all possible clusters the cluster expansion yields the exact result. In

practice, this sum is truncated to reasonably small clusters, which has reached numerical

convergency.

values for the accuracy of the fit are a few meV per atom. As a short remark, the CE

can also be extended for surface alloys. [29] Then, such an expansion has to be made for

each layer of the material. Another and very important new development is to make the

ECIs temperature dependent, which is the case when free energies of lattice vibrations

are included. [30, 31]

Expanding the basis for ternary systems

In a binary CE approach the desired property of the system can be determined by using

the spinproduct as a basis (as shown in equation (2.25)). In a ternary CE the spinproduct

is conveniently replaced by a orthogonal basis set which is constructed by Chebyshev

polynomials Θn of order n, for which their arguments are the spin variables [16],

Θ0 = 1, Θ1(Si) =
√

3/2 ∗ Si Θ2(Si) =
√

2 − 3/
√

2 ∗ S2
i (2.26)

From now on, we will use the term ”figure” instead of ”cluster”. The spinproduct of

a figure f used in equation (2.25) for the binary case is now replaced by the product of

polynomials on each lattice site which is occupied by spin Si,

Πf,s(σ) = Θs1(S1) · Θs2(S2) · ..... · Θsn(Sn) . (2.27)

The vector s has components sj ǫ {1; 2}, which designate the order of the polynomial.

The number of factors n is equal to the number of lattice sites (or so-called vertices)
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Figure 2.4: Schematic picture of mapping a physical configuration in terms of a relaxed

structure (left panel) with a given atomic occupation (circles with different colours) onto

the virtual lattice (right panel), which is then decomposed into the clusters or figures of

the CE. The atom types in the CE fit are defined as the spin variable Si=-1,+1. A basic

lattice type (e.g. bcc) has to be chosen for both of the systems. Structural relaxations

(see left panel) are allowed if they are not too large: the CE converges also for the given

set of relaxed structures, see discussion in the text.

which belong to a figure f . By making use of Θsj each figure can now be described by

a different basis. For example the correlation function of the figure with one vertex Π1,s

describes two different characteristics:

• Πf,(1) describes correlations only between atom types with spin -1 and 1, since the

atoms with Si=0 do not contribute because the Chebyshev polynomial of first order

is zero. If atoms are labelled by A,B,C and their occupation variables are -1,0,+1

in respective order, then only correlations between A and C atoms are described.

• Πf,(2) describes correlations between all three atoms, because the Chebyshev poly-

nomial of second order is different from zero for Si=0 and |Si|=1

In a ternary system, the maximum number of figures with k vertices or lattice sites is

3k possibilities. This can be reduced if clusters are equivalent because of symmetry.

Summing over all figures f , the Hamiltonian has now the form

E(σ) = J0 +
∑

f

Jf · Πf,s(σ) (2.28)

with the configuration dependent spin products Π and the configuration independent

effective cluster interaction energies J .

The main task of the CE consists in getting the effective cluster interactions Jf (ECI)

connected to each figures f , as sketched in figure 2.5. The correlation functions can now

be symmetrized for a set of symmetry equivalent figures, ΠF (σ)

ΠF (σ) =
1

NDF

∑

fǫF

Πf(σ) (2.29)
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Figure 2.5: Example of figures in a two dimensional lattice. Two dublets and a triplets

are shown in two different but symmetry equivalent arrangements.

where DF is the number of symmetry operations by which the clusters fǫF are related.

Now, the summation runs over all F symmetrized spin products. For the sake of normal-

ization one divides by the number of lattice sites N as used in the actual CE. The energy

of a certain configuration σ is now decomposed by the expansion

E(σ) = N
∑

F

DFJFΠF (σ) (2.30)

Because of the given lattice the correlations ΠF are known and can be constructed. What

is not known are the ECIs JF . The main task is now to calculate the ECIs. This is done by

DFT calculations for the configuration dependent property of interest (e.g. the formation

energy EDFT ) for suitably selected compounds with a given structure and fitting these

results to the corresponding CE for each configuration (=compound). The quality of the

CE strongly depends on the quality of the fitting, for which sophisticated selfconsistent

procedures were developed [1]. These fitting procedures are based on a least square fit,

Nσ∑
|EDFT (σ) −N

NF∑
DFJFΠF (σ)|2 = min . (2.31)

2.7 The UNCLE-code

All the CE calculations of the present work were done by making use of the program

package UNiversal CLuster-Expansion (UNCLE) [1] which was developed by the group

of S. Müller, now at the Technical Univeristy of Harburg-Hamburg. The code is able to

perform a complete CE-fit using a genetic algorithm and to predict the ground states

of systems containing up to three and more elements. For deriving results for tempera-

tures T 6= 0 Monte Carlo simulations are implemented (as discussed in section 2.8). By
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Figure 2.6: Selfconsistent working plan as used by UNCLE for the cluster expansion for

finding new input structures [1]

this, configurational entropies are taken into account. The working scheme for a cluster

expansion is sketched in figure 2.6.

2.7.1 Selecting the input structures

A very important task of a convergent CE is to guarantee that the figures, that are

chosen are not biased by the set of input structures. To prevent a wrong interpretation

of the whole system by choosing the wrong input, UNCLE uses the chosen figure set to

fit the energy of other structures. New structures can now be designed and if they lie

energetically below the existing ground state line they are recalculated by DFT, providing

a new set of input structures. Then, a new set of figures is fitted and the procedure

repeated. Such an iterative approach has the advantage that a reliable ground state line

can be achieved together with a figure set which yields accurate results.

2.7.2 Determination of the ECIs

Equation (2.31) shows the basic procedure for deriving the set of ECIs. However in

practice this procedure has to be modified for efficiency reasons by giving smaller figures

a larger weight. The expression is extended by a damping term.

Nσ∑
(EDFT (σ) −

NF∑
DFJFΠF (σ))2 +

NF∑
fFJF = min (2.32)
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fF is the damping factor, which lowers the importance of figures containing more atoms.

It is defined by the mean spatial extension rF of pairs and multipletts by

fF = c1r
λ1
F for pairs

fF = c2r
λ2
F for multipletts

(2.33)

By variation of the parameters ci and λi the importance of the different cluster sizes can

be scaled. An example of the importance of figures containing more atoms is a system

with strong relaxation of the structures.

To select the figures for a (hopefully) convergent CE two possible technique can be

applied.

• Hierarchic approach: Figures including a smaller number of atoms get a higher

weight in the determination of configuration dependent properties. In the method

from Zarkevich and Johnson [32] the figures are listed by their dimensions. A

maximum extension for the figures is chosen and the figures, which exceed this

limit are neglected. The disadvantage is that this approach needs a large number

of smaller figures in the final set. Since strong relaxations are better described by

larger figures with more vertices, the final figure set needs to contain every partial

figure of the set, which build up the more extensive ones.

• Selective approach: A large pool of figures is generated. Using convenient algo-

rithms the best set of these figures can now be chosen. The quality of the figure set

is defined by the so-called Cross validation score (CVS) SCV . For its calculation

first a set of input structures (Nfit) is determined which is taken for fitting the ECIs,

and then a set of structures (Npred) for predicting energies for structures different

from the input set. These are now used for testing the convergency. The energy of

the test set is calculated by the CE of equation (2.31) and compared to the input

DFT energies. By repeating these scheme and changing both sets n times – so such

that every structure has been predicted at least once– the cross validation score can

be defined as the mean error in prediction over all n sets.

SCV =

√√√√ 1

nNpred

n∑ Npred∑
|EDFT (σ) −ECE(σ)|2 (2.34)

The procedure is considered to be convergent if CVS is smaller than a given value;

for energies such values are 1 − 2 meV per atom.

2.7.3 The genetic algorithm

UNCLE uses a selective approach with a genetic algorithm (GA). It was first described

in 1975 by J. H. Holland in his book Adaption in natural and artificial systems [33].
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(a) Crossing: Parts of the parent

individua are exchanged to form

children.

(b) Mutation: Single bits of the

individuum are switched

Figure 2.7: Operational scheme of the genetic algorithm for creating a new generation

of children from their parents. An individuum is represented by a chain of bits, i.e. a

sequence of the numbers 0 and 1. After determining the fitness values (for a CE these are

the cross validation scores) of a population the fittest individua (described by the binary

chains) are mated by exchanging parts of their binary chain (left panel). In a next step

the fittest individua are taken and bits are switched randomly (right panel).

The basic principle is the survival of the fittest. Like in nature the weaker elements of a

fitting set are replaced by other in a stochastic way until the fittest population evolves.

At the start of a GA-run a starting population is defined in terms of individuals, which

are possible solutions of the problem. In a CE an individuum would be a set of figures,

appropriate for the given structure and number of atoms. A binary chain is used to

code these individuals according to figure 2.7. The figures used in such a binary chain

are determined by 1, the ones neglected by 0. Each solution is now examined according

to its fitness, which in the CE is determined by the value of its cross validation score.

Depending on the fitness of a set of individuals a new generation of individuals is created

in two ways:

• Crossing: Two parent individuals are used to produce two new children. This is

done by exchanging pieces of the chains with the two different binary codes of the

parents. The cutting points are chosen randomly way. The idea behind this method

is, that good parts (figures that describe the system best) of the individuals binary

codes may bond and create a fitter individuum. Usually a n-point crossover is done,

which means that the chains are cutted in n places. Doing so fitter combinations

of the figures are generated, as sketched in the left panel of figure 2.7.

• Mutation: One bit of the binary chain, which describes an individuum, is changed

as described in the right panel of figure 2.7. The selection of the involved bit is

random.
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The characterization of the individua can also be done in more complex ways than

using a binary chain: for example constructing a chain of rational numbers. In this case

the function of mutation and crossing have to be changed. However, for the CE a binary

chain is sufficient, because the configurational quantity is defined by a linear combination

of the clusters. This means, that a figure occurring in the sum gets a value 1, otherwise

its value is 0. Within the concept of a GA the fittest individuum would be the one

containing all the figures, since it would lead to the best fit or SCV . To avoid such a big

figure set a maximal extension of the binary chain is chosen. The selection of the parent

individuals, which produce the children for the next generation is done in a stochastic

way by the roulette wheel method. Every individuum gets a weight dependent on its

SCV . An individuum with a better SCV has then a better chance to be chosen. After

crossing the chosen parent individua the children mutate by switching randomly bits of

their chains. By that individua, which have a bad cross validation score, are replaced

by fitter children. The thus produced individua become now the parents for the next

generation.

The end of the genetic algorithm can be defined in two ways:

• Production of an individuum, which has an SCV smaller than the one defined before

starting the genetic algorithm.

• Determination of a maximum number of GA runs. When these predefined number

of runs is finished the best individuum (death or alive) is chosen as the figure set for

the CE. Using this method also the best figure sets can die during the GA: if a set

is found, whose value is a local minimum of the SCV the whole population is killed

and substituted by a new one produced randomly. In that way, different starting

generations can lead to different minima. The best set is chosen in the end.

2.7.4 Running the Cluster Expansion

After the genetic algorithm has converged a set of figures is chosen to describe the system

best. This set predicted all the DFT derived ground state energies of the starting input

set and resulted in the lowest SCV . Structures, which were not members of the input set

of the GA run, should now be predicted sufficiently correct. Now, the ECIs –as derived

from the fitting– are taken to describe all possible structures of the system on the given

parent lattice. If the enthalpy of formation of one of these structures is below the ground

state line –as defined by the DFT input data– this structure is included in an enlarged

input set. As a consequence, its formation enthalpy is calculated by DFT and added

it to the list of input structures. With this enlarged input set a new GA is done. This

procedure is repeated until no new ground states are predicted by the CE. As a result, the

stable structures of the system are obtained and the final ground state line (for a binary
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system, shown in figure 2.8) or the convex hull (for a ternary system) can be constructed.

For calculating phase stabilities at T > 0 Monte Carlo simulations are performed making

use of the figures and ECIs of the converged CE.

2.8 Monte Carlo simulations

The cluster expansion needs effective interaction energies (ECI), which in the present

case were derived from standard DFT calculations. Strictly, speaking DFT total energies

are only valid for T=0K. To include temperature effects one might think first about

configurational entropies, which in this work are included by performing Monte Carlo

calculations based on the cluster expansion ingredients. Another and very important

temperature effect comes from vibrational entropies, which can be derived from DFT

calculations for suitably selected displacements, like it is currently done by David Reith

in his PhD. thesis [30]. This is computationally very demanding in particular for ternary

cases, and is far beyond the scope of a diploma thesis. Doing this then the ECI would

become temperature dependent and with that also the whole CE. In the present work

the Monte Carlo (MC) technique without lattice vibrations is applied.

The Monte Carlo method (MC) is a stochastic method and it is often used for statis-

tical thermodynamics. Its major application consists in the approximation of integrals,

the calculation of mean values and the search for global minima in phase space. Since

it is often very demanding or even impossible to cover the complete phase space just a
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sample of it is taken into account. The choice of this sample is the most crucial point

in the simulation. In the so-called simple or naive MC the sample is chosen randomly.

This procedure is not very efficient for tasks such as finding a global minimum since the

chosen phase points are distributed over the whole phase space. For such a distribution

the probability to jump into the global minimum is quite small. An improvement would

be a sample of suitably weighted points in phase space, which then leads into the global

minimum. In this way, points in phase space with low weight would be neglected. Such

an MC simulation is reasonable in describing a thermodynamical system at finite temper-

atures since the configurational entropy can be derived. For elucidating the application

of MC in combination with the cluster expansion (CE) the basic principles will now be

explained together with the MC implementation in the UNCLE-code.

2.8.1 Random walks and Markov-chains

As already mentioned before the choice of the sample is the crucial point in finding

thermodynamic characteristics of the investigated system. The crucial question is, how

does the jump from one phase point to the next one happen? MC uses a random procedure

for changing the point in the phase space: by applying the so-called random walk strategy

every point has the same probability to be chosen as the next one to be considered. The

corresponding transition probability P depends now only on the current point in phase

space, but not on the n-2 points, which have been chosen before. This description of the

transition probability is called a Markov chain.

P (Kn = i|Kn−1 = j|.....|K0 = l) = P (Kn = i|Kn−1 = j) = Pij(n) . (2.35)

Assuming that each transition probability P can be written as Pij(n) a matrix which

contains the transition into each point of phase space can defined as

P =




P11 . . . P1K

P21 . . . P2K

...
. . .

...

PK1 · · · PKK




(2.36)

This matrix has to fulfill two conditions, because it is stochastic, namely:

1. Because the matrix elements are probabilities, all the components have to be posi-

tive, Pij ≥ 0.

2. The probability to change position in phase space has to be 1, which means
∑K

j=1 Pij =

1, with i being the current point and K being the number of points in phase space.
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The next step in the random walk through phase space consists in defining the sta-

tionary probabilities of a point i to be populated after n steps:

wi(n) = P (Kn = i) (2.37)

Now the stationary probability vector w(n) is defined whose components are the proba-

bilities of arriving at each point of the whole phase space,

w(n) = (w1(n), w2(n)...wK(n))T (2.38)

This vector has to fulfill again the conditions rules as the transition matrix P ≡ Pij.

Knowing the probability w of a given point in phase space for step n the probability for

step n+1 is then defined as

wj(n + 1) =

K∑

i+1

wi(n)Pij , (2.39)

which –in a matrix notation– looks like

w(n + 1) = Pw(n) (2.40)

The vector w can now be constructed for s following steps by

w(n + s) = Psw(n) (2.41)

which for n=0 is

w(s) = Psw(0) (2.42)

At this point the probability distribution over the whole phase space after s steps can be

predicted by knowing the probabilities of the points in phase space being populated and

the transition probabilities at the start. Since in a random walk approach every step has

the same probability, until now each element of the transition matrix and the stationary

probability vector have the form

Pij =
1

K
, wi =

1

K
(2.43)

In order to construct an efficient algorithm a weight for the transition to different points

in the phase space has to be implemented.

2.8.2 The Metropolis Rosenbluth algorithm

A still valuable method for MC simulations is the algorithm proposed by Metropolis

and Rosenbluth by which already in the year 1953 a system of 32 hard spheres was simu-

lated. This approach is still used nowadays. The transition probability in the Metropolis-

Rosenbluth algorithm is defined to be dependent on the stationary probabilities,

Pij =





1
K

if wj > wi

1
K

wj

wi
if wj < wi

(2.44)
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The random walk probability is still present in the factor 1
K

, but the transition rate P ∗
ij

in the calculation can now be defined as an accepted step and a neglected step by just

comparing the fraction
wj

wi
to a random number ǫ between 0 and 1.

P ∗
ij =





1 if ǫ <
wj

wi

0 if ǫ >
wj

wi

(2.45)

For wj > wi the fraction in equation (2.45) is always larger than 1 and therefore the step

will always be accepted.

For starting a simulation a definition of the stationary probabilities wi is needed. Since

the energy of a system is often the property of interest in most of the cases a Boltzmann

distribution is used to weight the points in phase space,

wi =
e−E(xi)/kbT

∑K
i=1 e

−E(xi)/kbT
(2.46)

The symbols in this equations are the Boltzmann constant kb, the energy E(xi) at the

point xi, the total number K of points the phase and the temperature T . Within the

Metropolis- Rosenbluth-algorithm the transition rates P∗
ij to a randomly chosen point is

defined by

P ∗
ij =





1 if ǫ < e−(E(xj)−E(xi))/kT

0 if ǫ > e−(E(xj)−E(xi))/kT
(2.47)

Analogous to the case described in equation (2.45), the transition will be accepted if the

energy of the point reached after the transition is smaller than the one for the starting

point, because the Boltzmann factors in relation (2.47) is larger than 1. If the energy of

the reached point is higher then one of the previous point it is compared to a random

number between 0 and 1: if the value is larger than ǫ the step is accepted. Due to this

procedure local minima on the potential surface can be left.

2.8.3 Implementation of the MC simulation in the UNCLE code

In the UNCLE code a MC calculation with a grandcanonical and a canonical ensemble

is possible. The system the calculation is dealing with is a box of atoms with a given

extension and it obeys periodic boundary conditions: the box is a unit cell. For both

the grandcanonical and the canonical calculation different implementations are made, as

illustrated in figure 2.9.

Grandcanonial ensemble

In a grandcanonical ensemble the system can be seen as the crystal of interest, which is

connected to a reservoir of atoms that can propagate into the system. The total number
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(a) Grandcanonical ensemble (b) Canonical ensemble

Figure 2.9: Visualization of a MC step in UNCLE. In the grandcanonical simulation the

type of one atom in the crystal is changed, in the canonical approach the positions of two

atoms in the crystal are changed. In both cases the Boltzmann distribution of the old

and the new system are calculated and compared to decide if the transition is made or

not.

of atoms in the simulation box has to stay constant, which means that if an atom is

added into it another one has to be removed. The thermodynamic which controls the

propagation of the atoms in and out of the box is the chemical potential µ. If the chemical

potential of one atom type in the system is raised, then the number of atoms of this type

will be decreased. The reason for that is that if one atom (e.g. atom A) is removed

from the system and another one (e.g. B) is added then the chemical potential changes

by ∆µ = µA − µB with µi being the chemical potentials for the atomic species. The

transition rate for changing a configuration σ into σ′ is then defined as

P ∗
σσ′ =





1 ifǫ < e−(∆E−∆µ)/kT

0 if ǫ > e−(∆E−∆µ)/kT
(2.48)

where ∆E = E(σ′) −E(σ). This means, that if the energy of the system after the atom

exchange is lowered by a larger amount than the change of the chemical potential then

the step will be accepted, otherwise it will be compared to the random number in the

usual way as described above. Using the Ising model of the cluster expansion makes it

easy to change an atom type at a defined position. The atom is chosen randomly and

by changing the spin variable of it the atom type is obviously changed. In the next step

the energy of the simulation box is calculated using the ECIs and the energy difference

∆E can now be calculated. Since the chemical potentials of the atom types are essential

starting parameters ∆µ and the Boltzmann factors are defined as well.
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Canonical ensemble

In a canonical ensemble the conserved quantity is the concentration of each atom type in

the simulation box. In each step the position of two randomly chosen atoms is exchanged.

Doing so the energy of the composition in box changes and the transition rate can be

written as

P ∗
σσ′ =





1 if ǫ < e−(E(σ′)−E(σ))/kT

0 if ǫ > e−(E(σ′)−E(σ))/kT
(2.49)

The random walk through phase space is continued until a chosen number of steps is

done or the change in the energy of the system is below a given numerical limit. In the

present work the grandcanonical simulations as done for the binary systems were limited

to a certain number of steps done. The ternary system was treated canonically with the

change of energy as the convergence criterion.The parameters set for convergence will be

shown in chapter 4 and section 5.4.
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Elemental metals 3
3.1 Nickel (Ni)

Ni is a hard silvery-white metal. Its nuclear charge is 28 and the electronic configuration

of the free atom is [Ar]4s23d8. Ni has a molar weight of 58.6934 g/mol. Ni metal

crystallizes in an fcc-lattice with an experimental lattice constant of 3.524 rA. Because

of the unsaturated 3d shell the atoms carry spin magnetic moments. In the metal they

are ferromagnetically aligned with a Curie temperature of 355℃. [34]

The need of pure Nickel in industrial application is low in comparison to Fe. It is

used for corrosion-resistant surface coverages of metallic substrates and for equipments

chemical laboratories because it has a high stain and chemical resistance. Ni surfaces of

particles on surfaces are used for catalytic purposes, e.g. for the hydrogenation of fatty

acids.

More important than the pure metal are Ni alloys. Most of the produced Nickel

is taken to refine steel because of strengthening corrosion resistance and hardness, and

improving ductility. The alloy formed of 55% Cu and 45 % Ni known as Konstantan

plays an important role in producing accurate resistances, since its electrical resistivity

is constant against changing temperatures. Nickel-superalloys are high temperature and

corrosion resistant materials composed by Ni and a mixture of other elements with the

intention to maximize the melting point(for example: 0.04 % C, 19 % Cr, 3.0 % Mo, 52.5 %

Ni, 0.9 % Al, ≤0.1 % Cu, 5.1 % Nb, 0.9 % Ti, 19 % Fe). There (future) main application

is for turbines needed for aircrafts and gas fired power plants, and for instruments in

chemical industry. Further applications are Raney-Nickel for catalysis and Nickel silver

(alloys composed of Ni-Cu-Zn) in electronics. This work was also (partially) motivated

by technological aspects: NiAl precipitates hardens steel (=Fe) and NiAl alloys with

additions of Fe is belong to the class Ni-alloys as described above.

3.1.1 DFT results

Metalic Ni element was studied by applying VASP with PBE and LDA pseudopotentials.

The fcc as well as the bcc structure was studied. In the PBE pseudopotential 16 (valence)
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Figure 3.1: Convergency tests for fcc ferromagnetic (FM) Ni using the PBE pseudopo-

tential. panel (a): varying k-point meshes with a fixed basis function cutoff of 490 eV. A

7x7x7 Monkhorst Pack k-point set [35] is found to be sufficient; panel (b) varying cutoff

for a fixed 7x7x7 mesh. A cutoff of 400 eV yields sufficiently accurate results.

electrons have been calculated explicitly regarding the 3p, 3d and 4s atomic orbitals. The

calculations done with the LDA pseudopotential just computed 10 electrons explicitly

regarding only the 3d and 4s atomic orbitals. The optimized cutoff for the plane wave

basis functions was 400 eV, and a 7x7x7 k-point mesh was found to be sufficient, (see

figure 3.1.1).

The resulting ground state properties are listed in table 3.1. As expected, the DFT

results for the GGA-PBE calculation agrees well with experiment. The ground state as

derived from the minimum of the total energy as a function of volume was determined

to be fcc-ferromagnetic with the cubic lattice parameter a=3.52 rA. The LDA calcula-

tion overestimates the binding, which in particular is noticeable for 3d transition metals:

because of that the optimized lattice parameter is 3% smaller than experiment. Never-

theless, also for the LDA calculations the ferromagnetic fcc state is the ground state.
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Structure a [rA] ∆E0 [eV/atom] µ [µB]

PBE

bcc FM 2.802 0.103 0.48

bcc NM 2.793 0.116

fcc FM 3.520 0 0.58

fcc NM 3.515 0.050

LDA

bcc FM 2.720 0.103 0.42

bcc NM 2.722 0.115

fcc FM 3.420 0 0.51

fcc NM 3.418 0.05

Exp. fcc FM 3.5241∗ 0.62∗

Table 3.1: Ground state properties of Ni calculated with VASP for bcc and fcc structures

with ferromagnetic (FM) ordering and without spin polarization (NM). Two approxima-

tions for the exchange-correlation interaction are studied: a GGA type (PBE; [9] and an

LDA type [8] potential. The quantities in the table are the lattice parameter (a), the

energy difference (∆E0) relative to the ferromagnetic fcc ground state, and the magnetic

moment µ. As a cutoff energy of 400 eV and a k-point set of 7x7x7 have been determined

to give reasonable results for Ni. The last line shows experimental values. [34]

3.2 Aluminium (Al)

Aluminium is a silvery white, light metal with a nuclear charge of 13 and the electron

configuration of the free atom of [Ne]3s23p1. It crystallizes in the fcc structure. Al is

widely used in technology, because of its remarkable low density and its ability to form a

passivation layer on its surface: Al is used to produce light weight and corrosion resistant

materials. Pure Al is rarely needed but its alloys are important. Al alloys are part of

the modern life, they are used for automobiles, cans, foils, window frames, construction

material, and so on. Nevertheless its low fatigue strength, leads to Al alloys with a

relatively low lifetime. In spite of its low melting point of 660℃ Al occurs in materials

which are used for aircraft and rocket engines, because it forms high temperature stable

alloys with transition metal elements, such as NiAl (as will be also studied in this work)

with a melting point of 1680℃.

3.2.1 DFT results

Table 3.2 presents the results of the search for the ground state. As for Ni, the calculations

were done with both the PBE and LDA pseudopoentials. Three electrons with a (valence)

electronic configuration of 3s23p1 where computed explicitly in both the pseudopotentials.

Again as expected for lighter elements the GGA (PBE) approximation is superior to

29



LDA, because it yields more reliable ground state properties, e.g. the calculated lattice

parameter for fcc Al of 4.03 rA, is in accordance with the experimental value of 4.05

rA [36] The determination of the best k-point set and the cutoff energy was done for the

PBE pseudopotential. A mesh of 11x11x11 point was found to be optimal, and for the

cutoff energy a value of 450 eV was chosen.

Structure a [rA] ∆E0 [eV/atom]

PBE
bcc 3.325 0.085

fcc 4.03 0

LDA
bcc 3.189 0.097

fcc 3.980 0

Exp. fcc 4.05

Table 3.2: VASP results for the ground state properties of Al with a cutoff of 450 and

a k-point mesh of 11x11x11 using the PBE pseudopotential. For the bcc as well sa the

ground state fcc structure the lattice parameter a and the total energy difference with

respect to the fcc ground state energy is presented. Experimental value according to

reference [36]
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Figure 3.2: VASP convergency tests for the fcc ground state of Al. panel (a): the

optimized k-point set is searched for a fixed cutoff of 500 eV and the 11x11x11 Monkhorst

Pack mesh [35] is the result. panel (b): the optimal cutoff energy is determined for a

fixed 11x11x11 mesh. Its optimal value is 450 eV.
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3.3 Iron (Fe)

Iron is a silver ductile metal with a nuclear charge of 26 and the electron configuration

[Ar]3d64s2. In the ground state (α-Fe) its crystal structure is bcc with ferromagnetically

aligned spin moments. Its large magnetic moment of 2.22 µB (experimental value) is the

consequence of the large number of unpaired 3d electrons. There are at least four al-

lotropic forms of iron, depending on temperature and pressure. The most important ones

at ambient pressures are the α and the γ phase. The bcc α Fe or Ferrite is ferromagnetic

with a Curie temperature TC of 910℃. Its lattice parameter is 2.86 rA [37]. Above TC up

to 1397℃ γ Fe or Austinite is stable with an fcc structure and the lattice parameter of

a=3.65 rA. Its magnetic properties are still under discussion. DFT calculations allow no

conclusion either. First principle calculations done by Paduani and Silva have proposed a

antiferromagnetic ordering at T=0, with spin alternating layers in the crystal [38]. Both

Fe phases are of great interest for steel industry and technology. Steel is a very impor-

tant material used in many ways. At temperatures between 1670K and its boiling point

(1808K) the fcc-γ-iron changes into a bcc crystal again and δ-iron (δ-Ferrite) is formed.

An experimental Fe-C phase diagram, which is important for steel fabrication, can be

found in reference [39].

3.3.1 DFT results

Fe was calculated in both the bcc and fcc structure with PBE and LDA pseudopotentials.

In both the pseudopotentials seven electrons in the 3d orbitals and one electron in the 4s

orbital have been calculated explicitly. Using a PBE pseudopotential Fe the ground state

is bcc in contrast to LDA, which yields an fcc ground state. Actually, the crass LDA

failure for Fe was one of the major driving forces for the application and development of

GGA potentials, such as PBE. The PBE derived lattice parameter is 2.83 rA and for the

ferromagnetic ordering a magnetic moment of 2.17 µB,is obtained which agrees well with

experiment, see table 3.3. As mentioned, LDA leads to a wrong structure for the ground

state with its magnetic configuration rather undefined. A theoretical improvement can

be obtained by the so-called LDA+U approach as applied by Zhu et al. [40]. Within

LDA+U the d-states are considered to be strongly localized and their (high) correlation

is included by the Coulomb interaction parameter U.

The optimum k-point mesh was determined to be 9x9x9. For the cutoff energy a

value of 450 eV is suitable (see figure 3.3).
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Structure lattice constant [rA] ∆E0 [eV/atom] magnetic moment [µB]

PBE

bcc FM 2.834 0 2.17

bcc NM 2.756 0.047

fcc FM 3.483 0.137 0.99

fcc NM 3.445 0.142

LDA

bcc FM 2.754 0.091 2.01

bcc NM 2.690 0.34

fcc FM 3.373 0 0.0

fcc NM 3.373 0

Exp. bcc FM 2.866 2.22

Table 3.3: VASP derived ground state properties of Fe calculated with PBE and LDA

pseudopotentials. For the fcc and bcc structure ferromagnetic (FM) and non spinpolar-

ized (NM) calculation were made. Experimental values according to [41]. The quantities

in the table are the lattice parameter a, the energy difference (∆E0) relative to the fer-

romagnetic bcc (PBE) and the ferromagnetic/nonmagentic fcc (LDA) ground state, and

the magnetic moment µ. For the cutoff energy a value of 450 eV and a 9x9x9 Monkhorst

Pack [35] were used.

By analyzing the results the elemental phases the k-mesh set for all the the following

VASP calculations was 11x11x11, and the cutoff energy EC was set chosen to be 400

eV as a basis. The number of used k-points was changed depending on the extension of

supercell of the calculated structure. If the size of such a cell increased in one dimension

the k-point set in this direction was decreased by the same scale, since an increase in

real space leads to a shortening in the reciprocal space where the k-point set is applied.

The convergency studies hinted at somewhat larger values for EC . However, because of

the huge computational effort in particular for deriving the input data for the cluster

expansion, a value of EC = 400 eV is considered to be a good compromise. Furthermore

it should be noted, that for the compounds the formation energy is needed which is an

energy difference and thereby small numerical inaccuracies due to the slightly smaller EC

will cancel out.
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Figure 3.3: Convergency tests for bcc ferromagnetic Fe using the PBE pseudopotential.

VASP Convergency tests for fcc ferromagnetic (FM) Ni. panel (a): varying k-point

meshes with a fixed basis function cutoff of 500 eV. A 9x9x9 Monkhorst Pack k-point

set [35] is found to be sufficient; panel (b) varying cutoff for a fixed 9x9x9 mesh. A cutoff

of 450 eV yields sufficiently accurate results.
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Binary alloys and compounds 4
Before starting the full ternary system the respective binary systems have to be studied

by searching for the phase stabilities along the sides of the ternary Gibbs triangle. The

study was done in the same way as for the ternary system (see chapter 5). A Cluster

Expansion (CE) based on a body centered cubic lattice was performed, which yielded the

ground state phase diagram of the three binary alloy systems Fe-Al, Ni-Al, and Fe-Ni.

Since nickel and aluminium crystalize in a fcc lattice the description in a bcc lattice might

seem inappropriate at a first glance. There are two points to consider for justification.

Firstly, this work is mostly interested in the study of Fe-rich ternary Fe-Ni-Al alloys, which

definitely crystallize in bcc-type structures. Secondly, the binary alloys and compounds

of the Ni-Al and Fe-Al system (and a large part of the ternary phases) prefer a bcc-type

structure, which are strongly bonding. The most important phase for the present work is

NiAl with a B2 (prototype CsCl) structure, which is highly stable and occurs in a wide

concentration range of the experimental phase diagram. Concerning the Fe-Al a very

stable B2 FeAl phase exists. The only exception is the Fe-Ni system, which shows no

tendency to crystallize in a bcc lattice. As a consequence of that the modeling in the

present work of the Fe-Ni system has turned out to be rather difficult, because of its very

weak stability. More details will be discussed in the next sections.

It should be mentioned, that the CE can be done for any lattice type. Because of

that, an fcc lattice type study is also possible. For the final determination of the stable

phases the bcc and fcc phase diagrams have to be overlayed, which was and can be done.

However, doing the fcc CE requires an effort comparable to the bcc CE. All both of them

are beyond the scope of a diploma work.

Technical details of the Cluster expansions

To start the iterative CE on the binary systems the formation energies of the small-unit

cell structures such as B2,B32, and DO3 in all their modifications for all the three systems

were calculated by VASP. The actual number of starting input structures will be shown

in the specific sections (sec. 4.1,4.2,4.3). To get the ground state DFT-energies for the

relaxed structures the calculations were done in 3 steps:
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1. Volume relaxation: In a first step of the VASP calculation only the volume of the

unit cell was relaxed but the atomic positions were kept fixed. Doing so the unit

cell maintains the given symmetry minimizing the energy as a function of volume.

This is important since –even if the unit cells of the DFT calculated structures are

relaxed– the symmetry of the bcc structures has to be maintained because the CE

can only fit the energy on a given parent lattice.

2. Ion position relaxation: After the equlibrium volume of the cell was determined in

the first step the atomic positions were relaxed for the fixed volume maintaining the

given symmetry. Combining volume and ion relaxation lead to an almost completely

relaxed system.

3. Volume, atomic relaxation and cell shape relaxation: In a final step the volume and

ionic positions were relaxed simultaneously. There are two reasons for this step:

(a) By further relaxing the system when modifying volume and the atomic posi-

tions at the same time the true ground state can be found and taken as input

of the genetic algorithm.

(b) Comparing the ground state energy after step 2 and step 3 gives an idea of

how large the change of the ideal bcc lattice to the relaxed structure is. If

the DFT-energy difference between the ideal and fully relaxed structure was

larger then 10 meV/atom the energy after step 2 was taken as the CE input.

The thus derived DFT-energies were then used as input data for the fitting in the

Cluster Expansion via the genetic algorithm. After the best set of cluster energies was

determined the prediction of new structures was done and the structures with an energy

below the actual ground state line were re-calculated with VASP to include all the ground

states as the CE-input and to enlarge the input set.

After the CE is converged and the ECIs for this set were fitted the final ground

state line was searched and the Monte Carlo (MC) simulations in a periodic simulation

box were started. A grandcanonical ensemble was chosen for finding the stable phases

at elevated temperatures. In a first step the range of the chemical potential difference

∆µ was determined. This range can only be estimated approximately because for the

calculation of the internal energy the composition has to be known. As demonstrated in

section 2.8.3 the preparation of the ensemble of atoms in the simulation box (meaning the

exchange between atom types) is done randomly and a large number of internal energies

is calculated, leading to a iterative approach in finding the energy minimum at a given

∆µ. Through the Boltzmann factor the box with minimal energy at the given chemical

potentials is found. The chemical potential at this point plays the role of a constant

term, which influences the probability of a build up composition to form a minimum in
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the energy landscape. The only value of ∆µ, which can be estimated in advance is when

xA = xB. This is the same value as the one for the difference of the formation enthalpies

containing the pure elements.

After determining the range of the chemical potential difference it was changed in

small steps always starting with the final configuration of the step before. The number of

MC steps needed for convergence is different for the three binary systems. The actually

chosen parameter will be discussed in the sections dealing with the calculations. Six

different temperatures have been investigated for each binary alloy: 100K, 250K, 500K,

750K, 1000K and 1200K.

At the end of the MC runs the ordered phases and the slope of ∆µ versus the concentration

were used to derive phase diagrams for the corresponding systems.

37



4.1 Nickel-Aluminum

4.1.1 Experimental findings

The Ni-Al binary system is a very important system for forming Ni-based superalloys.

According to Huang and Chang [42] the well ordered compound Ni3Al with the fcc-type

L12 structure is mainly responsible for the high temperature properties. But this phase

has not the the highest melting point (∼ 1668 [43]) of the Ni-Al system, because NiAl with

the bcc-type B2 structure has a melting point of ∼ 1680℃ [44] reflecting its high stability.

B2-NiAl is often used in the construction of high energy materials in e.g. aircraft turbines

because of its high thermal stability and its oxidative resistance. As it is usual for these

intermetallic alloys and compounds they are brittle at room temperature [45], i.e. its

ductility is poor. The ductility can be raised by adding ternary (or more) elements. [46].

The thermoelastic transition from the B2-NiAl to the L10 phase (tetragonal structure)

is used in Ni-based shape-memory alloys [47]. The metastable L10 structure is formed

by quenching hot B2-NiAl rapidly. By increasing the temperature the system can return

to the B2 phase and vice versa. The transition temperature may be as high as 900℃,

depending on the chemical composition. Fig 4.1 shows the NiAl phase diagram as derived

from experimental informations. Seven stable phases are formed:

• fcc Ni-rich solid solution

• fcc Al-rich solid solution

• L12-Ni3Al (fcc-type)

• B2-NiAl (bcc-type)

• D519-Al3Ni2 (trigonal)

• D020-Al3Ni (orthorombic)

• “Ga3Pt5“- Al3Ni5 (orthorombic)

Table 4.1 presents the calculated ground state structures of the Ni-Al system. The

formation enthalpies of B2-NiAl, L12-Ni3Al, D020-Al3Ni and ”Ga3Pt5“- Al3Ni5 were de-

termined by DFT calculations with the PBE potentials. Although the structural data

could in principle be optimized by DFT calculations, for the compounds with more com-

plex structures they were taken from experiment, such as D020-Al3Ni [48], “Ga3Pt5‘-

Al3Ni5 [49], D519-Al3Ni2 [50].
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struc./compound E0/atom [eV] ∆Hf,DFT [meV]

fcc Ni -5.783 0.0

L12 −Ni3Al -5.704 -0.435

Ga3Pt5“- Ni5Al3 -5.404 -0.393

B2-NiAl -5.425 -0.670

D519-Al3Ni2 -0.660 [50]

D020-Al3Ni -4.663 -0.423

fcc Al -3.725 0.0

Table 4.1: DFT derived total energies per atom E0/atom and formation enthalpies of

the ground state structures of the Ni-Al system. The corresponding crystal structure is

denoted for each of the compounds.

Figure 4.1: Experimental/empirical phase diagrams of Ni-Al: a) collection of experimen-

tal data according to Singleton et al. [51], b) CALPHAD derived empirical data. [52].
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Figure 4.2: Ground state line of the Ni-Al system as derived from model: full lines

calculated data of by Huang et al. [42] at 298K and 1100K using a Bragg-William model;

symbols are experimental results. [53–55]

4.1.2 Search for the ground states

To start the CE for searching for the ground states of the Ni-Al system the DFT energy

formation enthalpies of B2-NiAl, D03-Ni3Al, D03-NiAl3 and B32-NiAl were computed.

In addition, 25 other structures -as suggested by the genetic algorithm (GA)- were added.

By starting a GA with these structures a cross validation score (CVS) of 15.4 meV per

atom was achieved and a new input structure -which was predicted as a ground state by

the CE- was chosen in this first run to be calculated with VASP and to be added to the

input set. The maximal size of the unit cells for the CE predictions were adjusted during

the fitting procedure and finally the largest unit cells contained 12 atoms. When no new

ground state structures were found by CE, the system was considered to be converged.

Figure 4.3 shows the progress during minimization of the cross validation score, their

deviation from the DFT data and the increase of the number of input structures with the

number of GA runs. As can easily be seen after a few starting runs the CVS decreases

along with the increase of the number of input structures. The final energy fit was done

with an input set of 84 structures and resulted in a CVS of 2.1 meV per atom.

The final ground state line relative to the fcc ground states of the elements and the

predicted enthalpies of formation are shown in figure 4.4. The blue squares show the
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Figure 4.3: Progress of the CE fit for Ni-Al; (a) CVS versus number of GA runs; (b)

number of input structures versus number of GA runs.

phases which were predicted as ground state structures in the previous CE runs and

which were recalculated by DFT. The ECIs were fitted to these phases and then used for

the CE to predict all the possible bcc-type structures with maximal 12 atoms per unit cell

(red crosses).The ground state line is characterised by the stable structures of B2-NiAl,

Ni5Al3,Ni3Al, whose calculated properties are revealed in table 4.2. The B2-phase has

the lowest enthalpy of formation, followed by the Ni5Al3 structure.

From the averaged distance of the predicted structures from the final ground state

line the preference of the system to crystalize in a bcc lattice can be estimated. In

the extremal parts of the concentration range (near the pure elements) the predicted

structures show formation enthalpies, which are more distant from the ground state line.

At intermediate concentrations the enthalpies of formation reach lower values, which show

comparable stability (lie directly above the ground state line). This behaviour results in

more DFT derived structures for this segment of the phase diagram, since these structures

often occured to be the predicted as real ground state structures during the CE-fit.

The comparison of the ground states for the experimentally established structures and

the CE for the bcc-lattice (see figure 4.5) enforces the interpretation of the energetical

behaviour on concentrations distant from the 50:50 B2-NiAl structure. Towards pure

Al the formation enthalpies have the largest differences to the (metastable) bcc-type

phases, because the Al-rich compounds crystallize in a quite different crystal structure

(i.e. orthorhombic and trigonal structures). Out of the in total 329 possible clusters in

the CE 39 were chosen at the end for deriving the ECIs. These ECIs were then used for

the Monte Carlo simulation as discussed in the following section.
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E0,DFT/atom [eV] ∆E0 [meV] E0,CE/atom [eV] ∆ Hf , DFT [eV] ∆ Hf , CE [eV]

Al-fcc -3.725 0.0 -3.7250 0.0 0.0

B2-NiAl -5.425 -1.026 -5.424 -0.671 -0.670

Ni5Al3 -5.564 2.755 -5.567 -0.535 -0.538

Ni3Al -5.683 -1.962 -5.681 -0.414 -0.412

Ni-fcc -5.783 0.0 -5.783 0.0 0.0

Table 4.2: Ni-Al system: the ground state enthalpies of formation as derived by DFT

and CE.
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4.1.3 Monte Carlo simulations

Computational aspects

A grandcanonical ensemble was chosen for the Monte Carlo (MC) simulation of the Ni-Al

system. Periodic boxes containing 40x40x40 atoms were used. A reasonable range for

the chemical potential difference ∆µ = µNi − µAl from 0.3 eV to 3.85 eV was chosen,

which was studied in steps of 0.05 eV. In practice this was done by setting the chemical

potential of Ni to 0 and varying the chemical potential of Al accordingly. The calculations

were always done isothermic over the whole concentration range. At the beginning, every

third grid point of the ∆µ range was studied (e.g. 0.3, 0.45, 0.6, and so on) running two

cycles with 50,000,000 MC steps each to compute the starting simulation boxes for the

final simulation run. In the next step the full ∆µ range was split into sets containing

3 consecutive ∆µ (e.g. 0.3 0.35 0.4 in one set) values each. By reading in the already

prepared boxes the final simulation has been started by computing the first ∆µ contained

in the set (which was also chosen to prerelax the box, 0.3 in the example). Two cycles

with 50,000,000 steps each were used to converge the simulation. The resulting simulation

box was now taken as the input for the second ∆µ step (∆µ = 0.35 in the example) in

the set, which was simulated with the same number of steps. The routine was repeated

for the missing third step (∆µ = 0.4 in the example).

After the MC runs were finished the convergence of the MC simulation at each step

was checked. Figure 4.6 presents the convergence of such a set of MC runs. If the system

did not converge after the two shown cycles the simulation was repeated reading the

simulation box of the not converged run as a starting point.

The calculations were done in parallel for all investigated temperatures.

The interpretation of the formed phases in the simulated box was done by attributing

locally ordered atomic arrangements to crystal structures, This was done by arbitrarily

defining the range of local ordering in terms of small boxes consisting of 3x3x3 atoms. For

the ordered phases the identification was first done by eye and the atomic distributions

over the full concentration range were scanned for periodically repeating clusters. After

an ordered structure was recognized the structural data of the corresponding periodical

structures was implemented in the search routine. The search consisted of a scanning of

the whole box for the 3x3x3 clusters consistent with periodical boundary conditions. The

minimal size for the definition of a elemental exclusion was defined at 10 atom.

Results and Discussion

The three ground states found in the Ni-Al system are stable also at T>0. Being the

most stable structure in the system the B2-phase dominates the phase diagram. It is

stable over a range of ∆µ=2.5 eV. In terms of the concentration this means that the
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Figure 4.6: Convergency test for Ni-Al at a temperature of 1000K and for ∆µ = 1.9. The

left figure (a) shows the first cycle of the simulation. There, the box as prepared in a

previous simulation was taken as input and relaxed in 5*107 steps. The resulting atomic

distribution was taken as an input for the final simulation (b) which finally reached the

convergency criterion.

ordered phase is stable in the range of 40% to 51 % Al. In the experimental phase

diagram shown (figure 4.1) the B2 phase extends from ≈ 42% Al to ≈ 55% Al at 400 ℃

and this range even widens, namely to 32 % - 56 % Al at 1400 ℃. Ni3Al crystallizes in

the fcc-type L12 structure, which is not included in the present CE, since it just deals

with bcc-type structures. Nevertheless, at the 3:1 composition even the bcc-type phase

diagram (see figure 4.4) indicates a possible phase stabilization. In both the experimental

and the CE-MC derived phase diagram a phase forms at concentrations of 25 % - 27 %

Al. According to the present calculations, at lower temperatures, which are not shown

in the experimental diagram, the concentration range of Ni3Al-like phase even widens.

The CE-MC derived Ni5Al3 phase forms at temperatures larger than 500K. Since such

low temperatures are not treated in the experimental phase diagram [51] the calculation

can not be compared to experiment. Raising the temperature in the simulation the

Ni5Al3 phase is formed by the eutectic reaction Ni3Al + B2-NiAl =⇒ Ni5Al3. A small

mixed phase area was found between Ni5Al3 and the surrounding phases. There is good

agreement to the experimental phase diagram, in which Ni5Al3 is formed in a range of

32 % to 36 %, whereas the CE-MC derived stability range is 29 % to 33 % Al. The

small range of phase mixtures containing the Ni3Al and the NiAl phase and the range of

formation of Ni5Al3 could be a consequence of the property of both phases to form in the

same (bcc) lattice by Monte Carlo simulation. Changing between these two structures is

done by just replacing Ni in the crystal with Al. Similar ordered cells have been taken

as the input crystal. The two phases are shown in figure 4.7 a) and b).
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(a) Experimental phase diagram [51]
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Figure 4.9: Comparison of the experimental phase diagram by Singleton et al. and the

Cluster Expansion + Monte Carlo simulation calculated phase diagram in this work. It

is important to mention that the investigation in the present work has only been done in

the bcc lattice.

4.1.4 Summary

The Ni-Al system consists of ground states which form in different lattice types, and one

should keep in mind that the CE+MC calculations were done for bcc-type structures.

Since the only ground state structure ordering in a bcc structure is the B2-NiAl phase,

it was the only one of the experimental ground states predicted by the present study.

Other ground states like the L12-Ni3Al phase could not be described since it is fcc-based,

but another phase with the same stoichiometry has been found instead. This indicates

a strong ordering tendency even if the structure is not the one for the actual ground

state. As a consequence, the enthalpy of formation of the bcc-type variant is not so

stable as for the L12-structure. Experimentally, Ni5Al3 is also a stable ground state

and it crystallizes in the Ga3Pt5 structure. Nevertheless, the bcc-type CE+MC again

finds a ground state phase for this composition. For the experimentally stable phsaes

of D020-NiAl3 and D519-Ni2Al3 no CE+MC bcc-related phase could be found at higher

temperatures. Summarizing, the CE-MC derived phase stabilities at finite temperatures

behave similarly to the experimental ones as shown in figure 4.1, which indicates the

quality of the present approach for extending DFT precision to system with a large

number of atoms at elevated temperatures.
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4.2 Iron-Aluminum

4.2.1 Experimental findings

Iron-Aluminium compounds became materials of great interest in the last decades. Their

corrosion and oxidation stability at high temperatures in combination with their relatively

light weight are promising properties for e.g. resistant coatings [56, 57] preferable to

steel. Furthermore, Al-Fe materials are easily available and their cost is comparably

low. As it is usual for intermetallic compounds also Fe-Al alloys (consisting of FeAl and

Fe3Al) is brittle and breaks even at lower temperatures. Its low thermal ductility at

room temperature in combination with its low flow stress at temperatures above 500◦C

are problematic shortcomings. A lot of effort went into improving their properties by

adding ternary (or more) elements for hardening [58, 59], by introducing second phase

precipitates [60] or by adding grains of borides, oxides and Laves phase intermetallics

[61–63]. Nevertheless, its corrosive/oxidation resistance was intensively studied at higher

temperatures, for which the Fe-Al alloys are of interest.

Figure 4.10: Al-Fe phase diagram [64]

Figure 4.10 shows the phase diagram of the Al-Fe system [64]. Note, that a number

of stable phases can be found.

• α and δ (bcc)- Fe and γ (fcc)- Fe

• D03-Fe3Al

• triclinic - FeAl2 [65]
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• orthorombic - Fe2Al5

• FeAl3 (complex structure, see refence [66])

• fcc- Al

4.2.2 Search for the ground states

Similar to the Ni-Al system the cluster expansion for Al-Fe has been started by calculating

the simple bcc structures B2-AlFe, D03-Al3Fe, D03-AlFe3 and B32-AlFe with all their

possible modifications. After a short starting period were the best starting input set was

identified. 10 structures with 8 atoms per unit cell were chosen as a starting set. The first

fit led to a cross validation score of 26.25 meV and CE predicted 7 new structures , which

were found to lie below the ground state line. This new structures were re-calculated by

DFT and added to the original input. As for the Ni-Al system the size of the unit cell of

the predicted structures was first set to 8 atoms and increased later on to 12 atoms until

no new ground state structures were found.

Figure 4.11 shows the evolution of the cross validation score and the number of input

structures during the complete energy fit. As already mentioned, at the beginning the

fit was not good because the best starting input had to be found first. After CE reached

convergency the input set consisted of 94 structures and the cross validation score had a

value of 1.82 meV. 44 subsequently runs were needed to converge.

The final ground state line relative to bcc-Fe and fcc-Al is shown in figure 4.13. The

ground state structures found in this system for the bcc parent lattice are AlFe11, AlFe5,

AlFe4, AlFe3, AlFe, and Al2Fe. Their enthalpies of formation are presented in table 4.3.

The dominating structure in the Al-Fe system is the Al2Fe phase with an enthalpy of

formation of ∆Hf = -0.368 eV. The overall enthalpies of formation are less stable than

in the Ni-Al system. The trend to crystalize in the bcc-lattice can be realized from figure

4.13. Since pure Al crystalizes in an fcc structure CE derived phases with an excess of

Al show a higher mean distance from the ground state line, resulting in even positive

formation enthalpies (decomposition) for very Al-rich cases. Somehwat exceptional is

Al2Fe which dominates the phase diagram. At the Fe-rich region the predicted structures

lie near the ground state line and no unstable bcc phases are derived.
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Figure 4.11: Evolution of the CE fit for Al-Fe: (a) decrease of the CVS with the number

of GA runs; (b) increase of the number of input structures.

E0,DFT/atom [eV] ∆E0[meV] E0,CE/atom [eV] ∆ Hf,DFT [eV] ∆ Hf,CE [eV]

bcc- Fe -8.333 0.0 -8.333 0.0 0.0

AlFe11 -8.023 3.28 -8.026 -0.081 -0.084

AlFe5 -7.716 0.66 -7.717 -0.166 -0.166

AlFe4 -7.591 0.82 -7.591 -0.193 -0.197

AlFe3 -7.395 0.06 -7.395 -0.235 -0.235

AlFe -6.361 -0.67 -6.360 -0.332 -0.331

Al2Fe -5.629 -0.17 -5.629 -0.368 -0.368

fcc- Al -3.725 0.0 -3.725 0.0 0.0

Table 4.3: Al-Fe system: Formation enthalpies of the ground state structures predicted

by CE and calculated by DFT.

4.2.3 Monte Carlo simulations

Calculation details

As for Ni-Al the Al-Fe system was computed in 40x40x40 simulation box with periodical

boundary conditions. Since the difference between the DFT-energies of the two elements

is 4.61 eV, a range for the difference of the chemical potential ∆µ from 3.0 eV to 6.55 eV

has been chosen, which covers the whole concentration range. The step of width chosen

for ∆µ was taken as 0.05 eV. The MC calculations for the Al-Fe system converge faster

than for Ni-Al. Calculational details are given in section 4.1.3, with a difference in the

MC steps for the convergence. For the Al-Fe system 2 cycles consisting of 30.000.000

steps have shown to be enough for convergence.
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Figure 4.13: Ground state line of the Al-Fe system with the final ground state structures

shown explicitly.
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Discussion

Figure 4.15 shows the ground state diagram including the ground state lines at the in-

vestigated temperatures. At all the temperatures the Al2Fe structure is the most stable

one with ∆Hf = -0.352 eV at T=0K. The other phases which have been found to be

stable at T=0 are mostly destabilized at higher temperatures. The B2-AlFe phase does

not form as a pure phase. It was just found in combination with the Al2Fe structure, but

more of AlFe is stabilized at higher temperatures.

The ground state diagram predicts an AlFe3-like stable phase (will be denoted as

“c392“) at ≈ 25% Al with its maximum stability at 500K indicating strong ordering: fig-

ure 4.14c shows a cut through the MC box revealing the well ordered structural nature of

c392 because its typical local pattern fills most of the space. Comparing the experimental

phase diagram with the MC simulations a few differences are observed. Only two bcc

structures are described in experimental works:
• The B2-AlFe phase is documentated in most of the experimental studies on Fe-Al,

see e.g. Crimp and Vedula [67]. However, the experimental phase diagram shown

the present work [64] does not contain this ground state. The result from the binary

CE plus grandcanonical MC leads to the result shown in the phase diagram. The

B2-phase occurs only as a mixed phase in combination with Al2Fe. A test using

canonical MC was done at 50:50 composition revealing, that the AlFe does actually

form in this system but contains lot of antisite atoms (i.e. Fe sitting on Al-sublattice

sites). Accordingly, the structure was drawn in the phase diagram symbolizing that

it was found at the fixed B2-concentration (result of canonical MC) and as a mixed

phase in combination with the Al2Fe phase (result of the grandcanonical MC).

• The D03-AlFe3 as phase documentated in the experimental literature has not formed,

and it also not been part of the ground state line at T=0K. DFT calculations yield

a difference of 0.014 eV between the unstable D03 phase and the most stable phase

(”c392”) whose structure was predicted by MC at the same concentration. It might

be possible that temperature dependent phonon free energies resolve this problem,

because experimentally the phase with the DO3 structure only appears at elevated

temperatures.
The temperature dependant stability of the in this work found well ordered c392-AlFe3

structure is particular. It is formed in a temperature range of 250K-750K and transforms

into a solution of Al in Fe at higher temperatures.

The Al2Fe phase turned out to be the most stable phase in the bcc alloy system

and it has formed in accordance to the experiment even if the experimental found Al2Fe

structure crystallizes in a triclinic lattice. According to Corby and Black [65] its unti cell

containes 6.5 Fe and 11.5 Al atoms and has the space group P1. The concentration range

where the phase appears is broadened in comparison to the experimental value leading

to a stability at concentrations of ≈ 32%-38% Al.
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Figure 4.14: Cut through the MC boxes for the AlxFe1−x system. The figure shows the

found stable phases at finite temperatures. (a) and (c) have been taken from the MC

simulation at 500K, since AlFe3 has its highest stability at this temperature. Al2Fe is

stable at every investigated temperature. (b) is taken from the simulation at 1200 K

since the B2-phase is stabilized at higher temperatures.
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Figure 4.15: Fe-Al: enthalpy of formation at the investigated temperatures calculated

by grandcanonical MC. Values are calculated relative to the ground states of bcc-Fe and

fcc-Al. Since CE+MC was done for a bcc lattice the enthalpy of formation gets even

positive near pure fcc Al. The value of 0.085 eV for pure Al is the difference between fcc

and bcc Al.
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Figure 4.16: Cluster expansion and grandcanonical MC calculated phase diagram of

the Al-Fe system for a bcc parent lattice. The most stable ordered phase is Al2Fe.

Experimentally, its structure was found to be triclinic.

4.2.4 Summary

A variety of stable ground states are found in the binary Al-Fe alloy system by the

CE for a bcc parent lattice. The stable structures reveal some complex ordering: cubic,

orthorombic and triclinic structures were documentated by experiment. The ground state

line at T=0K consists of the following phases: AlFe11,AlFe5,AlFe4,AlFe3,AlFe and Al2Fe.

According to experiment from all these phases only AlFe has a bcc like structure, namely

B2. The experimentally claimed high temperature phase AlFe3 of bcc-like D03 structure

is not stable in the CE plus MC calculations. The most stable phase in the system is Al2Fe

with an enthalpy of formation of ∆Hf=-0.352 eV/atom, which in experiment is found

to crystalize in a triclinic symmetry [65]. The experimentally more important phase

is the B2-phase AlFe, which was studied extensively, see like e.g. [68–70]. According

to the results of the present work it is the second most stable phase at T=0K with

a value of ∆Hf=-0.288 eV/atom. From the Fe-rich phases only AlFe3 is a topic in

literature. As already mentioned its ground state conformation is mostly described as an

D03 structure. The ground state predicted in the present work is 0.014 eV lower in energy,

but it should be noted that the D03 is experimentally stable only at elevated temperatures.

The MC simulations at finite temperatures resulted the ground state diagram of figure

4.15 and the phase diagram of figure 4.16. As it is the case at T=0K Al2Fe dominates the
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phase diagram at every investigated temperature. It shows a broadened concentration

range in comparison to the phase diagram in figure 4.10, which even increases at higher

temperatures. The B2-AlFe phase is not part of the ground state line as derived from

grandcanonical MC. At Al concentrations of 60 to 66 % Al B2 AlFe only occurs in

combination with Al2Fe structural fragments . Nevertheless a canonical MC results in a

stable B2-phase formed with perfect stoichiometry. From the Fe rich structures formed

at T=0 only AlFe3 remained stable at finite temperatures.
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4.3 Nickel-Iron

4.3.1 Experimental findings

Experimental investigations on the Ni-Fe binary alloys have shown that the system forms

a solid solution with fcc structure over the whole concentration range at elevated tem-

peratures. Only two ordered phases are reported, namely NiFe with the tetragonal L10

structure and Ni3Fe with the cubic fcc-like L12 structure. The Ni3Fe phase is indeed a sta-

ble phase with a melting point of 517 ℃documented in the paper of L.J. Schwartzendruber

et al. [71]. On the other hand, the stability of NiFe was not described in this experimental

work. Nevertheless Peterson et al. identified the L10 structured NiFe phase in the iron

meteorite “Cape York“ [72]. The meteorite was studied with X-ray and Mössbauer spec-

troscopy resulting in the finding that the ordered L10 structures has formed in the lamella

of the meteorite under the circumstances in space (cooling rate of 1℃over 106years).

Figure 4.17: Experimental phase diagram of the Ni-Fe alloy system [71]. Most of the

region of solid phases at elevated temperatures is covered by a solid solution of fcc-Ni

and fcc-γ-Fe. structure. At lower temperatures the ordered compound Ni3Fe with fcc-L12

is stable.

Figure 4.17 presents an experimental phase diagram [71] showing only one stable

compound, namely Ni3Fe. However, according to the DFT calculations of the present
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study NiFe is also a stable ground state. The reason why this structure is not found

experimentally because at elevated temperatures it might be entropically destabilized in

comparison to its neighbouring phases, which are a Ni-rich solid solution and Ni3Fe. For

this it is important that Ni3Fe has the lowest ∆Hf according to table 4.4.

E0,DFT [eV] ∆ Hf [eV/atom]

bcc-Fe -8.333 0.0

L10-NiFe -7.127 -0.069

L12-Ni3Fe -6.510 -0.090

fcc-Ni -5.783 0.0

Table 4.4: DFT formation enthalpies of Ni-Fe for the experimental ground state struc-

tures. The refernce phases are fcc-Ni and bcc-Fe.

4.3.2 Search for the ground states

To start the ground state search 28 DFT input structures varying from pure Fe to pure

Ni were used. By applying the cluster expansion on these structures a cross validation

score of 16.05 meV was achieved. Since there are almost no stable ordered structure in

the whole concentration range the description of the ground state line is rather subtle.

Therefore, in subsequent MC runs ∆Hf was calculated relative to bcc-Ni and not for fcc-

Ni (the stable phase of Ni). Of course, for the second elemental reference ground state

bcc-Fe was taken. Then a stable ground state line could be derived because of one stable

phase as shown in panel (b) of figure 4.19 with ∆Hf,bcc−Ni=-0.0027 eV. When now using

fcc-Ni enthalpy of formation is lowered to a value of ∆Hf,fcc−Ni=-0.0012 eV as shown in

panel (a) of figure 4.19.

The size of the unit cells of the predicted structures was limited to 8 atoms, which was

sufficient for a converged CE. Similar to the other binary systems the cross validation

score varied strongly variation at the beginning of the CE. After ≈ 10 runs the input

set was quite stable and the CVS decreased finally to a value of 1.1 meV. At this point

the CE was considered to be converged. In total, DFT calculations for 101 structures

were made. The evolution of the CVS runs with the number of DFT input structures is

sketched in figure 4.18.
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E0,DFT/atom [eV]∆E0 [eV] E0,CE [eV] ∆Hf,DFT [eV] ∆Hf,CE [eV]

fcc-Ni -5.7848 0 -5.784 0 0

bcc-Ni -5.68 0 -5.68 0 0

NiFe3 -7.697 -0.0007 -7.697 -0.028 -0.027

bcc-Fe -8.333 0 -8.333 0 0

Table 4.5: Ground state and formation enthalpies as derived by DFT and predicted by

CE for Ni-Fe for bcc-like parent structures. It should be noted, that the bcc-Ni was taken

as a reference and not the fcc ground state phase.
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Figure 4.18: Evolution of the CE fit for Ni-Fe. (a) Decrease of CVS vs. number of GA

runs; (b) increase of number of input structures vs. CE runs.

4.3.3 Monte Carlo simulation

Calculation details

As a consequence of the low ∆Hf of the only ground state structure and the systems

tendency to form a solid solution at elevated temperatures the range of chemical potential

differences ∆µ needed for the grandcanonical Monte Carlo simulation was rather small.

At 100K the ∆µ range which leads to a simulation box containing both the elements goes

from 2.5 up 3.05 eV but it widens to a range of 2.0-4.5 eV at 1200K. Taking into account

this range of ∆µ and knowing that the difference between the ground state energies of

the elements is 2.652 eV the final range of ∆µ was chosen to reach from 2.0 eV to 5.0

eV with a step size of 0.025 eV for varying ∆µ. Because no ordered phase is found for

the bcc-like parent lattice the grandcanonical MC converges very fast. Because of that

a larger 50x50x50 simulation box could be taken. Then, two cycles with 10,000,000 MC

steps for each of them were sufficient for converging the MC at every each temperature.
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Figure 4.19: Calculated ground state line of Ni-Fe. The calculated ground state line

relative to the fcc-Ni and bcc-Fe is shown in both panels. Upper panel (a): ground state

diagram containing input DFT (blue squares) and CE-predicted (red crosses) results.

Lower panel (b): Ground state line containing the phases described in the literature as

calculated by DFT (formation enthalpies, see table 4.4) and predicted by CE for a bcc-

like parent lattice. The black line shows the CE ground state relative to the fcc ground

state of Ni; blue line refers to bcc-Ni as a reference; red line shows DFT results for the

experimentally stable phases.
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Figure 4.20: MC results of Ni-Fe for the bcc-like parent lattice: Enthalpy of formation

at the investigated temperatures with fcc-Ni and bcc-Fe as reference phases. Even at

elevated temperatures no stable phase was found. The rather large positive value on the

Ni-rich side is due to the enthalpy difference between fcc- and bcc-Ni, which is 0.101 eV.

Discussion

No stable phase was found in the bcc-lattice type system at finite temperatures according

to the enthalpies of formation relative to fcc-Ni and bcc-Fe as shown in figure 4.20 over

the whole concentration, since all ∆Hf are positive. At temperatures under 500 K the

∆Hf ’s show similar behaviour as resulted form the CE at the temperature zero point.

At and above 500 K the ∆Hf reaches clearly positive values over the whole ground state

diagram if calculated relative to fcc-Ni.

The raise of the ∆Hf to values near to the zero point (fcc-Ni,bcc-Fe) can be interpreted

as the tendency to form a random alloy instead of ordering in a defined crystal structure.

As a consequence, for temperatures as low as 500 Kelvin the system behaves as a solid

solution over the whole composition range. For the MC results at 100 and 250 K the

formation enthalpies are close to zero at the Fe-rich end. Checking the atomic distribution

in the MC boxes a trend to form stable structures is visualized. Since these ordered phases

only occur at such low temperatures no comparison to experimental values is possible.

No phase diagram was made because practically no ordered phase was found in the

calculations.
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4.3.4 Summary

Experimentally, the Ni-Fe alloy system consists of solid solutions with fcc structure at

higher temperatures. Doing the CE and MC for a bcc-type parent lattice (and also

taking bcc-Ni as a reference) yields one stable ground state phase with a very small

negative enthalpy of formation at T=0K, which is of the order of the fitting error of

the CE. Furthermore, Monte Carlo simulations at finite temperatures reveal atendency

for ordering at temperatures above 250 Kelvin the system is a solid solution of the two

elements over the whole concentration range.

For a more realistic simualtion of the Ni-Fe system a CE for an fcc-type parent lattice

would be necessary. However, this work is mainly interested in the formation of NiAl

precipitations and phases at the Fe-rich side up to temperatures at which bcc-Fe, the

ground state α phase, is stable. When including also fcc-phases for the ternary case the

complete set of studies –as presented here for the bcc parent lattice– must be done for

the fcc lattice, and finally the two CE have to be merged: a scope which is ceratinly

well beyond the time horizon given by a diploma thesis. Such a task, however, will be a

promising adventure for a doctoral thesis.
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The ternary system (Fe-Ni-Al) 5
5.1 Introduction

Deriving temperature dependent phase stabilities for the ternary alloy system Fe-Ni-Al

is the ultimate goal of the present work. To do it with DFT precision –by means of the

CE and MC– is a particularly challenging task. Nevertheless, thanks to the very recent

developments of computational methods and computer hardware such a task is feasible

in a diploma thesis sincs a suitable expertise is available.

As already mentioned in section 4.1 the compounds NiAl and Ni3Al exhibit high

strength at high temperatures with a good oxidation resistance and low density but –as

usual with intermetallic compounds– they are brittle at lower temperatures. To improve

this failure third components are mixed to the binary Ni-Al alloys. Liu and Pope [73]

deduced that small additions of boron result in an increase of the ductility of the alloys.

Also adding small amounts of Fe to the binary system improved the ductility according

by Darolia and Lahrmann [46], who investigated small crystal slabs of B2-NiAl with a

substitution of up to 2 at. % of Al by Fe. A substantial improvement of the room

temperature ductility occurred when adding 0.1-0.25 % Fe, but increasing the Fe content

did not lead to further improvements. Letzig et al. [74] have even observed, that adding

Fe to B2-NiAl at Ni-rich regions leads to a weakening by forming solid solutions of NiFe

in the B2 phase. Also magnetic properties of the ternary system are of interest. Marcon

et al. [75] studied the magnetic properties in the ternary system already in 1978. In their

work the Fe2NiAl compound was suggested to be an interesting permanent magnet. The

experimental investigations were mostly limited to selected concentration ranges and they

show some differences in their results. The miscibility gap between γ-Fe and B2-NiAl is

an example of such an inconsistent description.

From a theoretical point of view, the Fe-Ni-Al system is also of some interest. Pure

Ni and Fe are two transition metals with localised valence d-states being ferromagnetic

in their ground state, whereas Al is a simple metal and its electronic nature is rather

free-electron like. Concerning binary compounds, Fe and Ni form ordered compounds

with Al such as FeAl and NiAl, which is particularly stable. The crystal structure of

both compounds is the bcc-type B2 structure, although pure Ni and Al prefer the fcc
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structure. Only Fe (below the martensitic transformation temperature) crystallizes in

a bcc structure. The 1:1 compounds NiAl as well as FeAl crystallize in the bcc-type

B2-structure, and they are very stable. On the other hand Ni-Fe alloys tend form a solid

solution over most of the mixing range.

In the present work, we are mainly interested in the formation of Ni-Al phases within

the Fe-rich Fe-Ni-Al alloy system. Therefore, a CE and subsequent MC simulations were

done for concentration ranges defined by |x(Ni) - x(Al)| < 0.3 and 0 < x(Fe) < 1.

5.2 Fe-Ni-Al phase diagram

A variety of experimental and theoretical studies were made on the phase stabilities of

the Fe-Ni-Al-system.

Figure 5.2 shows a collection of phase diagrams as collected and reviewed combined

by Eleno et al. [45] at different temperatures. Clearly, the phase diagrams are dominated

by the B2-NiAl, the B2-AlFe, and the α-Fe phases, which all form in bcc-type lattices.

But also stable fcc phases such as the L12-Ni3Al and the Al3Ni2 compounds are formed.

The extension of the B2-NiAl phase reaches up to 90% of iron forming a mixed phase

with the elemental A2-Fe phase at 750℃. Raising the temperature leads to decrease of the

mixed phase extension. A small mixed phase between the B2 ordered composition and

elemental iron is still formed at 950℃, but most of the area relevant for the present work

is dominated by B2 ordering. The solid solution containing fcc Fe and Ni has been found

in a relatively stable concentration range up to 10 % Al over all the shown temperatures.

The mixed phase containing the mentioned solid solution and the B2 phase enlarges to

both higher Ni and higher Fe concentrations (at constant Al concentration) rising the

temperature. The description of the Al-rich side in the experimental Gibbs triangles is

not described accurately. Since this part of the phase diagram is not contained in this

work investigated concentration range, this fact can be neglected.

A theoretical study was done by Lechermann within his PhD thesis [23], where he

modelled the phases by the so-called cluster variation method (CVM) for the fcc as well

as the bcc parent lattice. CVM is a predecessor of CE, the main difference being that CE

is based on DFT energies for relaxed structures. A Gibbs triangle as derived in this work

is shown in figure 5.1. As described for the experiment the B2 phase (consisting of NiAl

and AlFe) is the dominating stable ordered phase. It is formed up to Fe concentrations

of about 80%. The other stable binary phases found are the L12-Ni3Al and the L12-

AlFe3, which form in rather small concentration regions only. The phases formed by the

elemental ground states are stable up to the regions of mixed phases.

In the thesis of Lechermann phase diagrams for the bcc-parent lattice only are shown
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Figure 5.1: Gibbs triangle at 1250K of Fe-Ni-Al as calculated by the Cluster Variation

Method of Lechermann [23]. Shown are phases formed within fcc and bcc parent lattices.

in figure 5.3. There, the D03 phases Fe3Al and Ni3Al are stable over an extended region of

the Gibbs triangle. However the thermal stability of AlFe3 is not very expressed because

it is only stable to 500K. In contrast to that D03-Ni3Al does not extend over such a wide

region, but is stable to high temperatures up to 1500K. Summarising, the stable bcc-

structure that are found experimentally and theoretically are the B2-(NiAl,AlFe),D03-

(AlFe3,Ni3Al) and the A2(fcc)-Fe phases.
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Figure 5.2: Fe-Ni-Al phase diagrams derived from experimental data as assessed by Eleno

et al. [45] at several temperatures.
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Figure 5.3: Fe-Ni-Al phase diagram for the bcc-type phases as calculated by Lechermann

[23] with the Cluster Variation Method. The designation of the elements on the corners

of the Gibbs triangles has been added by the author.
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5.3 Ground state search

5.3.1 Technical details

In comparison to a CE for a binary alloy expanding the CE for a ternary system leads to

several consequences. As already shown in section 2.6.1 the set of basis functions needs

to be extended and the introduction of the third atom species increases the number

of correlation functions, because each figure has now be described by more than one

correlation function depending on the symmetry of the structure, which also increases

the computational effort needed for the GA. Furthermore, the size of the configuration

space for N lattice sites is now 3N instead of 2N for the binary case. Clearly, the number

of input structures has to be raised significantly increasing the computational effort for

the DFT calculations.

Introducing a third element needs an extension also for constructing the ground state

diagram in the CE. Having determined the best set of figures, the ECIs and the cor-

responding enthalpies of formation the so-called convex hull has to be designed, which

characterizes the now two-dimensional ground state surface. The convex hull is the

ternary equivalent to the binary ground state line. The determination of the structures,

which span the hull is much more elaborated. In a binary case the ground state line

can be determined by starting with the phase with most negative (or smallest) ∆Hf . If

there are structures, whose enthalpies of formation lie below the line connecting the left-

and right-neighbouring values in the phase diagram, they are by definition new ground

states. Then, a new ground state line is designed and the CE-derived ∆Hf of all possible

compounds are compared to the values of the connecting lines.

Expanding this problem to a 3-dimensional representation, whereby the concentration

x(Ei) of each element Ei constitutes a coordinate axis with the condition
∑3

i=1 = 1,

needs a more sophisticated mathematical treatment in finding the ground states and the

enclosing 2-dimensional convex hull. At T=0K the convex hull is built up by planes

and therefore, searching for the most stable phases with lowest ∆Hf linear equations

express the criterion for stability, correspondingly. The start of the CE may be done in

the same way as for the binary case extracting the most stable phase of the total system.

After introducing this phase into the ground state diagram three triangles are defined,

which contain the value of ∆Hf of the most stable phases and ∆Hf of two of the three

elements as their edges. In the next step, the equations of the planes describing the areas

containing the formed triangles are constituted. Now the ∆Hf values of all other CE-

fitted structures can be compared to the value on the planes, which form such a triangle

at the structures concentration.

In the present work this constructions was done by calculating the distance of the
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Figure 5.4: Mapping of the 3-dimensional ternary convex hull to 2-dimensional space.

The vectors shown in panel (b) represent the construction for finding the triangle which

contains the point PS.

point

PS = (x(Ni), x(Al),∆Hf ) (5.1)

characterising the structure of interest S by the vectors defining the formed planes in

the ternary ground state diagram. x(Fe) in this description is defined by the relation

x(Fe) = 1 − (x(Ni) + x(Al)

To describe the routine used for the construction of the convex hull an example is

given. Let us assume, that the most stable phase P1 has already been found with a

composition of Fe10Ni50Al40 and ∆Hf = -0.6 eV.

P1 = (0.5, 0.4,−0.6)T (5.2)

The sides of the three resulting triangles are described by the three vectors (also shown

in figure 5.4 panel b mapped to 2-dimensional space):

1. triangle:

v1,(1) = (0.5, 0.4,−0.6)T

v2,(1) = (0.5,−0.4, 0.6)T

v3,(1) = (−1, 0, 0)T

2. triangle:

v1,(2) = v1,(1) = (0.5, 0.4,−0.6)T

v2,(2) = (−0.5, 0.6, 0.6)T

v3,(2) = (0,−1, 0)T

3. triangle:

v1,(3) = v2,(2) = (−0.5, 0.6, 0.6)T

v2,(3) = (1,−1, 0)T

v3,(3) = v2,(1) = (0.5,−0.4, 0.6)T

In the next step we make a 2D projection (neglect the z-component, see figure 5.4) of

the vectors since we only want to know which triangle contains a new structure PS. Let

us further assume that for a composition of Fe30Ni50Al20 we calculated a ∆Hf=-0.4 eV.

The task now is to determine if this structure is a new ground state of the system.

PS = (0.5, 0.2,−0.4)T (5.3)

To do so the equations of the lines
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vn− c = 0 (5.4)

defining the triangles are derived by computing the vectors n (normalized to a length

of 1) normal on the vectors vi,(j) and the constants (will only be shown for one triangle

denoted with the index (1)):

n1,(1) = (−0.625, 0.781)T

n2,(1) = (0.625, 0.781)T

n3,(1) = (0,−1)T

c1,(1) = 0

c2,(1) = 0.625

c3,(1) = 0

Calculating the distance of the point PS from the three lines can now easily be done

by introducing the position vector in equation 5.4 resulting in the distances d:

d1,(1) = −0.156

d2,(1) = −0.156

d3,(1) = −0.2

All of the three distances are negative, which means that the structure lies in the

triangle described by the vectors v1,(1),v2,(1),v3,(1).

Now the ∆Hf value on the triangle at the point (0.5,0.2) has to be defined. To do so

the equation of the plane is derived analogue to the 2D picture is defined. A plane can

be described by equation 5.4, with the difference, that the vectors are now 3 dimensional.

The normalized normal vector m to the plane can be calculated by the cross product of

two of the plane delimiting vectors.

m(1) = v1,(1) × v2,(1) = (0.0,−0.832,−0.555)T (5.5)

Since the chosen plane goes through (0,0,0) the constant is 0.

The ∆Hf value on the plane at the concentration of PS can now be calculated:




0.0

−0.832

−0.555


 ·




0.5

0.2

∆Hf


 = 0 ⇒ ∆Hf = −0.3 eV

Comparing this value to the ∆Hf of PS (=-0.4eV) results in the finding, that PS is

a new ground state of the system, which can now be used as an edge of the new formed

triangles.
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E0,DFT [eV] ∆E0 [meV] E0,CE [eV] ∆Hf,DFT [eV] ∆Hf,CE [eV]

fcc- Ni -5.783 0.0 -5.783 0.0 0.0

fcc-Al -3.725 0.0 -3.725 0.0 0.0

bcc- Fe -8.333 0.0 -8.333 0.0 0.0

AlFe5 -7.717 3.5 -7.720 -0.152 -0.155

AlFe4 -7.591 0.1 -7.591 -0.179 -0.179

AlFe3 -7.395 -0.3 -7.395 -0.214 -0.214

AlFe -6.361 -0.4 -6.361 -0.332 -0.332

Al2Fe -5.629 0.1 -5.629 -0.368 -0.368

NiFe3 -7.697 0.5 -7.698 -0.002 -0.002

NiAl2Fe -5.933 -0.2 -5.932 -0.609 -0.609

NiAl -5.425 1.9 -5.427 -0.671 -0.673

Ni5Al3 -5.564 -6.2 -5.558 -0.553 -0.547

Ni2Al -5.604 1.5 -5.606 -0.507 -0.509

Ni3Al -5.683 0.5 -5.684 -0.414 -0.415

Table 5.1: DFT and CE derived total energies and enthalpies of formation at T=0K of

the ground state phases as found for the Fe-Ni-Al system studying bcc-type structures

only. The formation enthalpies are calculated relative to the experimental ground state

structures of the elements (i.e. fcc for Ni and Al; bcc for Fe). The difference ∆E0

represents the difference of the DFT and CE total energy.

5.3.2 CE calculations and results

To start a ground state search for the ternary system 19 structures with unit cells con-

taining 16 atoms and the stoichiometry varying over the whole range of concentrations

and the ground states resulting from the binary CEs were taken as the starting input set.

The GA was started and the maximal size of the predicted structures was truncated to 4

atoms at the start. As described, only a selected concentration range had to be covered,

namely all the structures, whose concentrations differ from x(Ni)=x(Al) by more than

15%. Now only those compositions within the range of |x(Ni)-x(Al)| <0.3 were used for

the CE predictions and had the chance to become a new ground state.

Progressing the CE the maximal size of the predicted structures was increased steadily

until it reached a size of 8 atoms per unit cell resulting in 6623 possible structures. This

procedure led to a final input set consisting of 162 input structures with a very reasonable

cross validation score of 2.0 meV. The maximal number of vertices for the figures, which

were used to fit the energy of the system was truncated to 6 atoms. The best set of

clusters -which led to a convergence of the cluster expansion- was truncated to 60 figures.

According to table 5.1 11 ground states with bcc-type structures were found for the
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ternary system, including the ground states of the binary systems whose concentrations

lie outside the concentration range of the ternary CE. From these results the convex

hull of the system was constructed, as illustrated by figure 5.6. Its coordinate axes are

represented by x(Ni), x(Al), and ∆Hf , respectively. The depth of the hull (i.e. z-axis) at

different points represents the enthalpy of formation ∆Hf , and by that the stability of

the corresponding phase. As it can be seen from table 5.1 B2-NiAl is represented by the

lowest point of the hull because the ∆Hf is less negative in all directions until reaching

zero at the corners, where the elemental phases are placed. Analyzing the boundary

planes of the convex hull (i.e. the area of the binary phases) results in the energetical

properties as discussed in sections 4.1,4.2, and 4.3. The triangular area between the

points of the convex hull, which correspond to ground state phases, is a mixed phase

region: it consists of a mixture of the phases defining the corner points of the triangle in

question. The concentration of each stable phase in the mixture can be determined by

the lever rule extended now to three components.

As a results of the ternary investigation of bcc-type phases, NiAl2Fe is the only truly

ternary ground state structure found. All the other ground state phases consist of mix-

tures of binary or elemental phases. The reason for this is that NiAl is dominating the

investigated part of the phase diagram because of its lowest formation enthalpy. The

binary ground states which populate the sides of the triangle are the ones also found for

the binary ground state search with one exception, namely Ni2Al is found to be a stable

ground state of the ternary system. The reason of the difference to the binary CE is

a very small discrepancy between DFT and binary CE derived enthalpies of formation

for the compound. In more detail, the structure of Ni2Al has already been included in

the binary CE and has shown to be a ground state structure if the DFT calculated total

energies were regarded. Figure 5.5 shows a comparison of the final ground state lines of

the binary Ni-Al system regarding the DFT- and CE-derived values for ∆Hf . It can be

seen that the stability of Ni3Al2 is overestimated in the CE fit by 2.8 meV compared to

the DFT total energy. This small shift is sufficient to remove the Ni2Al structure as a

ground state of the binary system, since the CE-fitted ∆Hf of Ni2Al now lies 0.34 meV

above the final binary ground state line resulting from CE. The CE-fit for the ternary

system resulted in the determination of the Ni2Al phase as a ground state of the system.

Nevertheless, this small discrepancies between the different approaches is of no physical

consequence because Ni2Al is not stable anymore at slightly elevated temperatures.
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Figure 5.5: Comparison of the Ni-Al ground state lines gotten from DFT calculations

and CE fit.

5.4 Monte Carlo simulations

5.4.1 Technical details

At the beginning of the MC simulations for the ternary system a grand canonical approach

was tested for deriving the lowest internal energy at finite temperatures. For this task a

path for ∆µ was searched, which described the evolution of the system on concentration

trajectories ranging from x(Fe)=0 to x(Fe)=1 for a fixed ratio of x(Ni)/x(Al). Such an

approach, however, does not yield the result for the desired concentrations if the difference

in the chemical potential is changed in equidistant steps since e.g. the formation of more

stable areas in the energy landscape lead to a deviation from the estimated path. This

means that the internal energy landscape had to be known before the values of ∆µ could

be chosen, which described the system on such a chosen path. Because of that, for further

MC simulations a canonical ensemble was used. By keeping the concentrations constant

well defined parts of the phase diagram can be computed and the phases that form at

this compositions can be described more easily.

Different to the MC simulations for the binary systems, which were done with a grand

canonical ensemble, for the canonical description of the ternary system the number of

steps used to converge the energy at a certain composition was defined by the change

in the internal energy. For this purpose a number of steps was chosen for which the

energy difference was calculated. If the difference in the internal energy was lower then

the convergency limit then the simulation was stopped. Then the resulting energies

and simulation boxes were used to define the phases in the phase diagram for the given

temperature, at which the MC simulation was done.

Starting from completely random ordered distribution of atoms an energy difference
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CE predicted structures
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(a) Two-dimensional projection of the convex hull

(b) top view (c) side view (AlFe—FeNi) (d) side view (NiAl)

Figure 5.6: Convex hull as a result of the ground state search done by the ternary
CE for bcc-type structures. Panel (a) shows a projection of the convex hull onto the
Gibbs triangle. The ground states as described in table 5.1 are drawn as black squares.
The DFT input phases are symbolized by blue crosses. Red squares denote structures,
whose formation enthalpies were predicted by the converged CE ground state search.
Because of the projection each red square represents more then one phase, since different
ordering at a certain concentration leads to different energetical behaviour. In summary,
162 DFT-input structures (blue crosses) and 6623 predicted structures (red squares)
are included in the plot. Panels (b-d) illustrate the three-dimensional convex hull form
different points of view. The corners represent the elemental ground states of table 5.1.
The differently coloured areas represent mixed phases consisting of the ground states, at
the corresponding corner points.
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of 10 µeV after a set of 27,000 steps at 100 K was chosen as the convergence criterion

for the chosen composition. In the next step the thus achieved distribution was taken

as an input for an MC run with a refined convergence criterion of 5 µeV after 100.000

steps. After convergence was achieved at 100 K the temperature was raised by 200 K

and the converged simulation box was used as a starting point for the MC run for the

new temperature. For some of the compositions, convergency happened into even lower

internal energy when rising the temperature. The reason for that lies in the stochastic

nature of the MC simulation due to the randomness of the choice of the next simulation

step a local internal energy minimun might even be left at higher temperatures leading to

the global minimun of the energy landscape. But since the temperature is just contained

in the β=1/kT of the Boltzmann distribution (shown in section 2.8.3) a decrease of the

internal energy at higher temperatures is not possible, since the value of Ei/kT in the

canonical MC is lowered rising the temperature. As a result of this decrease the internal

energy minimum is less deep and the Botzmann distribution is broadened. The structural

consequence is that the strict ordering -which leads to the minimum in the internal energy-

is disturbed. Being aware of this fact lead to the following proceeding: The most stable

composition formed at the temperature, which resulted in a lower minimum, was taken

as starting point for a new MC run again starting at 100 K with the same convergency

parameters.

Another technical point is that the size of the simulation boxes had to be reduced

for the ternary system. To get convergence in a reasonable time a 30x30x30 box with

periodical boundary conditions was used for the final computations.

The already mentioned limiting of the investigated concentrations consisted in choos-

ing a range of concentrations defined by a maximum deviation of 15% from the x(Ni)/x(Al)=1

line. Figure 5.7 shows the calculated concentrations in two representations. Because

x(Fe)=1-x(Ni)-x(Al) is defined when x(Ni) and x(Al) are chosen, it was sufficient to vary

the concentrations of Ni and Al. The chosen points of the range were constructed by

the relation x(Al)=x(Ni)-d (-0.3 6 d 6 0.3) according to panel (a) of figure 5.7. The

concentration mesh was then constructed by steps of ∆d = 0.05 yielding 14 to 21 points

per line and resulting in concentration steps of ∆x(Fe)=0.05 and ∆x(Ni)=∆x(Al)=0.025

for each fixed x(Fe).

The analysis of the results of the MC simulations is focusing on two quantities. First,

on the internal energy at each temperature and concentration and the subsequent calcu-

lation the formation enthalpy, which results in an image of the energy landscape of the

system. This step was rather straightforwardly extracted from the MC output data in

terms of the internal energies over the whole investigated concentration range and then

deriving the enthalpies of formation from them. The resulting data are presented by

contour plot in figure 5.13.
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Figure 5.7: Two different representations of the selected concentrations.
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A much more elaborate procedure was needed for the second task, for the definition of

phases in the phase diagram in terms of pure and mixed phases, and for the formation of

precipitations in the simulated alloys. The characterization method is already described

in section 4.1.3. It consist in searching within a 3x3x3 box of atoms for local ordering,

which is characteristic for the stable ordered phases.

5.4.2 Results and Discussion

Figures 5.10 to 5.12 show the phase diagrams as derived from the ternary CE and the

subsequent MC simulation. The phase boundaries were constructed by fitting the shown

data points with polynomials up to 5th order.

The phase diagram is dominated by B2-NiAl and mixed phases containing B2-NiAl

and elemental phases. It is found at concentrations of x(Fe)= 0 up to 70 % Fe. The

wide extension of the binary phase may be expected because of the very stable formation

enthalpies of NiAl. This phase formation is in reasonable agreement to both experimental

and other theoretical investigations, which indicate that a mixed B2-(NiAl,AlFe)phase

forms even up to 80% Fe. On the Al rich side the B2-phase -consisting of mostly NiAl

mixed with B2-AlFe- is stable up to higher Fe-concentrations compared to the Ni rich

side. This behaviour can be explained by the stabilization of Fe precipitations in the

B2- matrix, because Fe and Al tend to form a B2 ordered phase too. The Fe in the

Al rich region is stabilized by the introduction into the B2 crystal replacing Ni in the

Ni cubic sublattice by Fe atoms or by the formation of ordered phases, which do not

destroy the B2-NiAl phase. At the nickel rich side such a stabilization is not favourable

due to the fact, that bcc-Fe and Ni do not tend to form ordered stable phases. As a

result the B2-NiAl phase breaks up at lower Fe concentrations at the Ni rich side of

the Gibbs triangle, since the remaining Ni atoms -in contrast to the Al concentration-

occupy antisite positions in the B2-NiAl phase instead of forming stable alloys with Fe.

Figure 5.8 is an example of such a antisite formation at the Ni rich side in contrast to

the Al rich region. It is obvious that on the Ni rich side the B2-phase is destroyed,

while in regions with excess Al (relative to Ni) the system tends to maintain the B2-

NiAl phase by placing Al into elemental Fe forming locally ordered AlFe3 and B2-AlFe

alloys. Jiang et al. [76] studied theoretically off-stoichiometry effects in NiAl in terms of

point defects by modeling quasi random structures in a concentration range of 0.25 <x<

0.5. They derived formation enthalpies, lattice parameters and elastic constants of non-

stoichiometric B2-NiAl phases in accordance with experimental data. The basic result of

their work is, that the stabilization of B2-NiAl for varying concentrations happens via Ni-

antisites (excess of Ni) or Ni-vacancies (excess of Al). The present CE approach does not

describe vacancies, because for that an additional vacancy-sublattice would be necessary.

However the formation of Ni antisites in the B2 ordered phase in Ni rich region agrees

77



Ni

Al

Fe

(a) Fe0.3Ni0.4Al0.3

Ni

Al

Fe

(b) Fe0.3Ni0.3Al0.4

Figure 5.8: At 100K a cut through the MC simulation box at the Ni-rich (a) and the

Al-rich (b) side of the phase diagram. At an excess of Ni the nickel atoms reside on Al

sublattice sites (antisite defect). At the Al-rich side the B2-phase is not defective. The

excessive Al atoms are found in regions containing Fe and tend to form ordered structures

instead of forming antisites in the B2-NiAl phase.

nicely with previous findings. Basically this is an atomic size effect applying a simple

model: Ni is smaller than Al and can be much more easily placed (i.e. the energy costs

are low) on Al-sites than vice versa, because then Al would have Al-nearest neighbours.

The elemental phases are dominated by the A2-Fe phase. Due to the stability of the

B2-NiAl phase into the ternary area the A2-Fe phase forms as a precipitation down to a Fe

concentration of 60% Fe in the Al-rich side and down to almost 10% Fe in the Ni-rich side

of investigated range. The reason for this behaviour may be illustrated by means of the

binary phase diagrams. At the Ni rich side Fe precipitates up to higher Fe concentrations

because the two elements do not tend to form ordered structures. Concerning Fe-Ni alloys

(i.e. small Al concentrations) the binary and ternary CE give somewhat different results.

In the binary CE the Ni-Fe system forms a solid a solution over the whole concentration

range already at 500 K, because Ni seems to be rather randomly distributed in the Fe

matrix, and vice versa. According to the ternary CE, Ni atoms seem to precipitate in

the iron matrix (and vice versa) even at 900 K. Possibly, the analysis of the short range

order characteristics has to be refined, as will be implemented in a newer version of the

UNCLE code.

In contrast to the trend of the Ni-Fe system in forming precipitations, the binary

Al-Fe system tends to form ordered structures over the whole binary phase diagram.

The formation of binary AlxFey alloys is in contrast to the system containing B2-NiAl

structures with A2-Fe precipitations. Other ground states than the B2-NiAl -as a single

phase and as a mixed phase with B2-AlFe- found at the temperature zero point have not

formed at finite temperatures in the ternary area of the Gibbs triangle. In the region

78



Al
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Figure 5.9: A cut through the MC simulation box for the binary alloy Al25Fe75 at 100 K.

with very low Al concentration this trend was expected, since the formation enthalpy in

this area has values, which are almost zero. As a consequence a formation of ordered

structures at finite temperatures did not happen. At the quasi-binary Ni-Al side of the

Gibbs triangle the B2-phase has formed over the whole investigated area. Comparing this

result to the binary phase diagram would suggest that the Ni5Al3 phase might form at

the border of the investigated region. Nevertheless the phase was not identified at finite

temperatures. The final quasi-binary subsystem is Al-Fe, which formed three ground

states in the investigated area. From the ground states found by the binary CE only the

AlFe3 structure has build on the side of the Gibbs triangle, which contains a neglectable

Ni concentration. This finding is consistent with the description of the binary Al-Fe

system (see section 4.2). Figure 5.9 shows an example of a layer in such a formed phase.

The box contains a mixture of different oriented AlFe3 structures.
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Figure 5.10: Fitted phase diagram at 100 Kelvin for the ternary FeNiAl system in a bcc

lattice
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Figure 5.11: Fitted Gibbs triangle for the FeNiAl system in a bcc lattice at 700 Kelvin
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Figure 5.12: Fitted gibbs triangle for the FeNiAl system in a bcc lattice at 1300 Kelvin

Enthalpies of formation

As already mentioned the B2-NiAl phase shows the lowest formation enthalpy in the

system and is therefore dominating the energy landscape. Figure 5.13 shows contour

plots of formation enthalpies for three of the investigated temperatures. As can be seen,

the figure corroborates the role of the B2 phase as the dominating composition. Along the

x(Ni)=x(Al) path the formation enthalpies are raised rather linearly until they reach 0 at

pure Fe. Even more information can be extracted from the contour plots. A significant

information is the thermodynamical stability of Fe-Al like phases in contrast to Fe-Ni

phases. On the Al rich side of the investigated area the enthalpies of formation reach

significantly lower values than on the corresponding Ni side. This trend has already been

found for the binary systems. Since the binary phases are the main responsible for energy

landscape in the ternary phase diagram too, this behaviour is not surprising.

Comparing the contour plots at different temperatures reveals, that by just introduc-

ing the configurational entropy as the main responsible for the behaviour of the system

at elevated temperatures does not lead to high energetical differences. Comparing the

contour plots at 100 and 700 K induces the interpretation, that the configurational en-

tropy lead to no significant difference in the energy of the system. The transition from

700 to 1300 Kelvin shows more differences in the energy landscape. The weak tendency

of Fe and Ni to order in (quasi-) binary structures is weakened even more at higher tem-

peratures leading to formation enthalpies near the zero point in the binary area. As a
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consequence, the formation enthalpy at the Al rich side of the Gibbs triangles is much

less temperature dependent than on the Ni rich side. This leads to a notable raise in the

negative value of the ∆Hf of the ternary alloys when Al is alloyed to Fe-Ni.
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Figure 5.13: Formation energy contour plots at chosen temperatures in the investigated

concentration area.

82



5.4.3 Pseudo binary Fex(NiAl)1−x system

To describe the iron precipitations behaviour in system containing in presence of a stoi-

chiometric ideal formed B2-NiAl phase the x(Ni)=x(Al) (y=x line of figure 5.7 (a)) was

extracted explicitly from the ternary MC data.

Figure 5.14 presents a rather old experimental pseudo binary phase diagram elab-

orated in the year 1951 [77] and it reveals the interplay of the B2-(NiAl,AlFe) phase

(denoted as β) and the bcc-Fe elemental phase (denoted as αδ). The B2 ordered struc-

ture reaches up to 95 at% of (NiAl) at a temperature of 500 ℃. At higher temperatures

the ordered phase is destabilized reducing the range down to 70 at% of NiAl at 1370 ℃,

where melting starts. The Fe exclusions in the mixed phases reach up to 97 at% Fe at

500 ℃. At 1370 ℃, where the mixed phase starts to melt the highest iron concentration

forming exclusion is about 30 at%. It should be noted that the transition from bcc-Fe

into fcc-γ-Fe and vice versa is not part of the current work dealing with CE for bcc-type

structures.

Figure 5.14: Pseudo binary phase diagram for Fex(NiAl)1−x [77]. The β phase displayed

in the picture represent the B2-NiAl phase here. The phase denoted as αδ is the A2

(bcc) elemental phase, since iron crystallizes in a bcc-structure at lower (α) and higher

(δ) temperatures splitted by the fcc-γ phase.

Figure 5.16 compares the experimental phase diagram with the results of the present

calculation. Regarding just configurational entropy in the MC simulation seems not to
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contribute significantly to the stability of the two phases and the phases start to form

at the same Fe concentrations at every temperature. The extension of the A2 phase of

Fe at low temperatures is in good agreement to the experimental phase diagram. The

raise of the concentration range, where the A2-Fe phase is formed as a single phase at

higher temperatures have not resulted of the CE + MC simulation done. Introducing

temperature dependency via vibrational free energies may lead to a better agreement to

the experiment. In the calculation the extension of the B2-NiAl phase is underestimated

over the whole temperature range. Figure 5.15 shows the transition from the mixed phase

containing both the B2-NiAl and the A2-Fe phases to the pure A2-Fe phase with Ni and

Al dissolved. It is obvious that at a concentration of Fe70(NiAl)30 the Ni and Al still

cluster in form of a B2-NiAl patches but the formation of an explicitly ordered phase is

hindered by the excess of Fe atoms. By comparing the temperature dependency the effect

of the configurational entropy is visible. It is characterized by the destabilization of the

ordered B2 phase. This effect is reduced at the transition from 100 to 700 K compared

to the transition from 700 to 1300 K.
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Figure 5.15: Selected layers of MC boxes for pseudo binary system. The concentration

have been chosen to represent the transition from the mixed phase consisting of B2-

NiAl and A2-Fe to the phase consisting of A2-Fe and dissolved Ni and Al atoms. By

comparing the results for different temperatures the increase in entropy is visualized

because at the Fe65Ni17.5Al17.5 and Fe60Ni20Al20 composition NiAl cluster are formed. At

the concentration of Fe70Ni15Al15 Ni and Al still try to form B2-like clusters way, but the

clustering is hindered by the presence of Fe atoms. At higher temperatures the formation

of NiAl cluster gets less probable.
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Figure 5.16: Pseudo binary phase diagram based on the results of the present work. The

nomenclature has been taken from the work form Bradley [77]: β denotes B2-NiAl and

α A2-Fe.

5.4.4 Fe-rich side of the phase diagram

Since the main scope of this thesis was the determination of the phase stability at the

Fe rich side of the phase diagram this final section will deal in more detail with this part

of the Gibbs triangle. The main characteristics of the system in this concentration area

will be elaborated for zero up to 20% concentration of Ni and Al. from almost no nickel

and aluminium concentration up to 20 percent.

Figure 5.17 shows the MC results at compositions from Fe95Ni2.5Al2.5 up to Fe80Ni10Al10.

At very low temperatures Ni and Al cluster in the Fe matrix forming precipitations and

they already tend to assemble in a B2 like way. Raising the temperature the clusters

dissolve quite easily and a solid solution of the two metal atoms in the Fe matrix is

formed already at a temperature of 700 K. At even higher temperature the dissolution is

enhanced. The situation is different when the Ni to Al ratio of is changed. Figure 5.18

shows the MC results for a ratio of 3:1 (and vice versa) and 90% Fe. When Ni is abundant

compared to Al the formation of precipitations is in favor. Even at temperature of 700

K precipitations are formed. Nevertheless, mixing into the Fe matrix is enhanced. At

the highest investigated temperature of 1300 K the clusters break up and a solid solution

with Ni and Al in Fe s the result. In general, Al tends to assemble with Ni.

At an excess of Al the situation is completely different. Al dissolves in the Fe matrix

already at 100 K and even tends to form ordered clusters corresponding to AlFe3. As can
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be seen, the MC simulation at this low temperature is dominated by AlFe3 precipitates.

Raising the temperature to 700 K leads to a partially destruction of AlFe3 due to the

mixing of Al in the Fe matrix. This trend is enhanced at higher temperatures. Adding

Ni is always attracted by Al which finally weakens the formation of AlFe3.
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100K:

700K:

1300K:

Fe95Ni2.5Al2.5 Fe90Ni5Al5 Fe80Ni10Al10

Figure 5.17: Visualization of the MC simulations at different temperatures and compo-

sitions in the Fe rich side of the Gibbs triangle. Ni atoms are colored in red, Al atoms in

blue. The Ni/Al ration is 1.
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100K:

700K:

1300K:

Fe90Ni7.5Al2.5 Fe90Ni2.5Al7.5

Figure 5.18: Visualization of the MC simulations at different temperatures and compo-

sitions in the Fe rich side of the Gibbs triangle. Ni atoms are colored in red, Al atoms in

blue. The Ni/Al and Al/Ni ratio is 3:1.
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Conclusion 6
The aim of the the present diploma thesis was the determination of phase stabilities of

the ternary alloy system Fe-Ni-Al maintaining the accuracy, as customary for density

functional theory calculations. The chosen procedure consisted in the application of the

Cluster Expansion in combination with Monte Carlo simulations, whereby the interaction

parameters were obtained from fitting to density functional theory calculations. Because

the Fe-rich region of the ternary alloy system was of interest, the body centered cubic

lattice was chosen as the parent lattice for the Cluster Expansion. All stable phases found

on the basis of the Cluster Expansion have therefore bcc-type structures.

Starting with the density functional theory investigation of the elemental phases, then

continuing with the binary systems for the complete concentration ranges the ternary

phases were studied for the concentration ranges of |x(Ni)-x(Al)| < 0.3 and 1<x(Fe)<0.

The most remarkable result of the binary phases is that a very stable B2-NiAl com-

pound is formed which dominates the energy landscape also for the ternary case. Other

two ground states of the Ni-Al system were identified, namely Ni3Al and Ni5Al3. For the

Al-Fe system it was discovered, that the most stable phase is Al2Fe, followed by AlFe in

the B2 structure. Also, an AlFe3-phase with a bcc-type structure has been found as a

ground state, which so far is not found in literature. More investigations on this phase

are in progress. The overall enthalpies of formation of the Al-Fe alloys has less negative

values than for Ni-Al alloys, but still reflect high stability. The third binary system,

Ni-Fe, did not tend to form ordered structures in the bcc lattice.

The results of the Cluster Expansion for the binary systems were then taken as starting

configurations for the ground state search of the Cluster Expansion of the ternary phases.

In addition to the stable binary phases one ternary phase, namely FeNiAl2, was found to

be a ground state structure.

The converged set of cluster interaction energies was used to perform Monte Carlo

simulations, which where based on a grandcanonical ensemble for the binary systems and

a canonical ensemble for the ternary case. An adequate procedure of heating and cooling

was elaborated to simulate the ordering of the formed phases starting from completely

unordered systems (infinite temperature) and cooling down to 100 Kelvin. The effect of

the configurational entropy was studied by then slowly heating up again.
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The identification of the formed phases in the Monte Carlo simulation boxes was done

by analyzing the short range ordering in an extension of 3x3x3 atoms for the binary and

ternary phases. Elemental precipitations where identified by clusters consisting of at least

10 atoms.

Because of the expressed stability of the NiAl binary phase, it also occurs in larger

regions of the Gibbs triangle for the ternary case. NiAl is detected to form down to

20 % NiAl, while the Fe forms elemental precipitations. In the Fe-rich part of the ternary

system the phase behaviour as already found for the binary systems leads to different

orderings for varying Al and Ni concentrations. While in a Al rich region stable phases

of AlFe3 type, the Ni rich side of the Gibbs triangle is characterized by Ni precipitates in

the iron matrix. In both cases Ni and Al already tend to cluster in a B2 like way.
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überhaupt nicht möglich gewesen wäre. Weiters darf man in diesem Zusammenhang
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sie auch einen grossen Einfluss darauf hatten dass diese Arbeit zustande gekommen ist.
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Der Arbeitsgruppe um Stefan Müller möchte ich hier auch für die Bereitstellung des
UNCLE codes herzlich danken. Allen voran gebührt hier Tobias Kerscher großer Dank,
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Abschliessend möchte ich hier auch noch dem “Fond zur Förderung der wissenschaftlichen
Forschung” (FWF) anführen, welche mir durch die finanzielle Unterstützung dieser Arbeit
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