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1 INTRODUCTION 

 

1.1 Marine Sponges – the Origin of Metazoans 

 

The phylum Porifera is the most ancient branch of the animal kingdom. The 

fossil record documents that all classes of sponges were present at least since 

the earliest Cambrian (Reitner and Mehl, 1995; Reitner and Mehl, 1996) 

possibly starting the cambrian “explosion” of metazoans (Hadzi, 1963). Their 

simple body plan and the lack of organisation or tissue led to a taxonomic 

assignment to the animal kingdom only in 1766 (Pallas, 1766). It is assumed 

that porifera evolved from a colonization of choanoflagellates (Haeckel, 1868) 

based on the astonishing resemblance of those protozoans to the ‘feeding cells’ 

(choanocytes) of a sponge (James-Clark, 1868) and supported by molecular 

analyses (Lang et al., 2002). The sponge body is composed of functionally 

independent cells (Pechenik, 2000) and resembles an aggregation of different 

protozoans. Choanocytes, flagellated cells residing in internal chambers of 

the mesohyl (Figure 1.1), pick up food particles, such as bacteria and 

phytoplankton with their sticky collars, which are in turn taken up by 

amoebocytes via phygocytosis and are transported to other cells within the 

sponge for digestion (Bergquist, 1978; Simpson, 1984; Osinga et al., 1999). 

Choanocytes are also responsible for pumping oxygen-rich water to the 

internal cavity of the sponge by movement of their flagella. However, sponges 

do not pump constantly and within 15 minutes of inactivity, the sponge 

mesohyl can get almost anoxic (Hoffmann et al., 2008).  

Sponges have sexual and asexual reproduction, with larvae, budding and the 

formation of gemmulae. Sponges have sexual and asexual reproduction, with 

larvae, budding and the formation of gemmulae. 
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Figure 1.1. Schematic representation of the bodyplan of a marine sponge. Arrows indicate 
waterflow through channels and choanoderm.  Drawing by RR (in Taylor et al., 2007). 
 

The taxonomic classification of the estimated 15 000 species of sponges is still 

challenging. Classically it was based on the analysis of spicules and 

nowadays it is refined by molecular genetics. The phylum Porifera 

encompasses three classes according to their skeletal structure: 

Hexactinellida with siliceous spicules and no pinacoderm, Calcarea with 

calcareous spicules and Demospongiae with siliceous spicules and often a 

mineral skeleton. While Hexactinellida have a very simple structure, 

Demospongiae have more complexly folded structure and are the most 

diverse class, comprising 95% of all extant sponge species, with morphologies 

ranging from encrusting layers to massive tubular sponges up to 1 m in size 

(Ruppert and Barnes, 1994). Although most sponges described stem from 

tropical reefs, they also inhabit temperate, polar and deep-sea regions as well 

as freshwater lakes and streams. Their ecological importance is constituted 

by their lifestyle, as they are sessile filter-feeding animals, with hourly 

filtering capacities of up to 1 000 litres per kilogram biomass (Vogel, 1977), 

leaving the expelled seawater essentially sterile (Reiswig, 1974; Turon et al., 

1997). Besides their close association with microorganisms, they are refuge 

habitats also for other invertebrates, such as bivalvia and crustaceans. Due to 

their sessile lifestyle, their physical defence is restricted to repelling spicules 
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and more elaborate mechanisms, like the production of bioactive secondary 

metabolites preventing predation and biofouling.  

Despite their simple structure, sponges have been successful in colonising 

nearly all contemporary, aquatic environments and are essential components 

in reef ecosystems. The symbiotic interaction of marine sponges and 

microorganisms is likely the basis for their sustained evolutionary and 

ecological success. 

 

1.2 Symbioses of Microbes and Eukaryotes 

Microorganisms have evolved about 3.5 billion years ago and more than two 

billion years ago they helped to shape the chemical environment in which 

plants and animals have evolved (Schopf, 1978). With the possession of 

unique metabolisms they carry out many steps of biogeochemical cycles 

necessary for life to continue on Earth. 

A number of marine invertebrates including species of corals, sponges, 

oligochaete worms, squids, shipworms (Muscatine, 1980; Waterbury et al., 

1983; Boettcher and Ruby, 1990; Dubilier et al., 1995; Dubilier et al., 2001) 

and others are associated with unique bacterial and/or archaeal symbionts. 

Symbiosis is defined as “two dissimilar organisms living together” (deBary, 

1879) and probably represents the most abundant life form on Earth. 

Nevertheless, the diversity of marine symbionts and the nature of many 

symbiotic interactions involving microorganisms remains to a large extent an 

open field. Microorganisms can probably benefit from the physically, 

nutritionally and chemically different environment when living in association 

with marine eukaryotes as compared to seawater. The specific symbiotic 

lifestyle may result in the formation of unique microbial communities. 

Symbionts can enable their hosts to take advantage of a new environment, for 

instance by providing nutrients or essential compounds through nitrogen 

fixation, sulphate reduction, cellulose degradation, or by serving other needs, 

such as bioluminescence or production of bioactive compounds (Muscatine, 



1. Introduction 

 - 4 - 

1980; Waterbury et al., 1983; Boettcher and Ruby, 1990; Kobayashi et al., 

1993; Dubilier et al., 1995; Dubilier et al., 2001). 

Only few symbioses between eukaryotes and specifically adapted 

microorganisms are well studied. They include the interaction between 

Olavius algarvensis and Proteobacteria (Dubilier et al., 2001), Euprymna 

scolopes and Vibrio fisheri (Boettcher and Ruby, 1990), Aphids and Buchnera 

(Zientz et al., 2001), numerous insects and Wolbachia (O'Neill et al., 1992) 

and the interaction between Elysia chorotica and Proteobacteria (Rumpho et 

al., 2008). The association of complex microbial consortia and eukaryotes, like 

in sponges, is also a common form of symbiosis including the gut microbiome 

of mammals and insects (Buchner, 1965; Nogge, 1976; Savage, 1977) as well 

as the microbiota on epithelia including the skin. There is even an association 

with Gammaproteobacteria living endosymbiotically in Betaproteobacteria 

inside mealybugs (von Dohlen et al., 2001). Generally, bacteria seem to be 

more common symbionts of eukaryotes than archaea, although this might be 

at least in part due to the lack of knowledge regarding the widespread 

distribution of archaea, which were thought to be restricted to extreme 

environments until 20 years ago (DeLong, 1992). Thus common approaches, 

based on polymerase chain reaction (PCR), targeting symbiotic micr-

organisms were focused on the detection of bacteria. 

An ancient symbiosis was likely the origin of today’s eukaryotic cell (Sagan, 

1967). The exact timing and mechanisms of this merging event giving rise to 

Eukarya is not clear and is undergoing intense investigations (chapter 1.5.2). 

Generally, symbioses facilitate the exchange of genes during evolution. An 

example for a recent transfer is a ±11kb fragment that moved from the 

gammaproteobacterial Wolbachia genome to the genome of the bean beetle 

Callosobruchus (Kondo et al., 2002).  

Genes of microbial origin are commonly found in eukaryotic host genomes, for 

example with 18% cyanobacterial genes in the nucleus of Arabidopsis (Martin 

et al., 2002) and more than half of the genes in the yeast genome having 

bacterial homologues (Rivera et al., 1998). The nature of those observations is 

issue of discussion amongst microbiologists with manifold hypotheses on the 
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origin of eukaryotic cells and their evolution (reviewed in Hoffmeister and 

Martin, 2003). 

1.3 Sponge-Microbe Associations 

The first detection of symbiotic microorganisms in marine sponges dates back 

to the 1970s (Vacelet, 1970; Vacelet and Donadey, 1977; Wilkinson, 1978a, b, 

c) followed by the finding that sponges can distinguish food bacteria from 

symbionts in feeding experiments (Wilkinson, 1984; Wehrl et al., 2007). Since 

then, our knowledge regarding identity of sponge associated bacteria and 

archaea increased immensely, while the functions of most sponge symbionts 

are still unknown. In “Bacteriosponges” (Reiswig, 1981) or high microbial 

abundance (HMA) sponges (Hentschel et al., 2006) the mesohyl is densely 

packed with microbes (108-1010 cells per cm3) and can comprise up to 30% of 

the sponge biomass (Vacelet, 1970; Vacelet and Donadey, 1977). The majority 

of marine sponges harbour a range of microbes, whereby Acidobacteria, 

Chloroflexi, Proteobacteria, Nitrospira, Firmicutes, Bacteroidetes and 

Spirochaetes are consistently found (Althoff et al., 1998; Friedrich et al., 1999; 

Webster et al., 2001; Hentschel et al., 2002; Taylor et al., 2007; Webster and 

Taylor, 2011). Furthermore, archaea and the candidate phylum Poribacteria, 

which are not captured by general primer-based PCR searches (Fieseler et al., 

2004; DeLong, 1992), are detected commonly in targeted approaches. 

The diversity of symbionts in some marine sponges exceeds that of typical 

symbiotic interactions by far. Furthermore, the microbiota of sponges is 

distinctively different from the communities of typical seawater (Vacelet, 

1970, 1975; Vacelet and Donadey, 1977; Wilkinson, 1978c, b, a; Santavy et al., 

1990; Hentschel et al., 2002; Taylor et al., 2007; Webster and Taylor, 2011) 

and appears highly stable in space and time (Friedrich et al., 2001; Webster 

et al., 2004; Taylor et al., 2005). Notably, the microbial consortia from various 

sponges in different oceans share sponge-specific bacterial and archaeal taxa 

(see section 1.4), giving an indication of specific symbiotic adaptations, as it 

has been shown, for example, for Cyanobacteria, which provide the host with 

photosynthates.  
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Specific associations between microorganisms and their sponge host were also 

supported by the observation of vertical transmission of some of the 

symbionts via the gametes (reviewed in (Taylor et al., 2007). In particular, 

microbes potentially involved in nitrogen cycling, such as potential ammonia-

oxidizing archaea and distinct nitrite-oxidizing bacteria from the phylum 

Nitrospira are transmitted vertically over sponge larvae (Sharp et al., 2007; 

Schmitt et al., 2008; Steger et al., 2008; Lee et al., 2009) suggesting an 

evolutionary adaptation.  

Amongst others, Actinobacteria, Proteobacteria, Firmicutes and Cyano-

bacteria can produce bioactive compounds, which are beneficial for the hosts 

chemical defence system against biofouling and predators (Bakus et al., 1986; 

Paul, 1994; Proksch, 1994; Unson et al., 1994; Bewley et al., 1996). The 

identification of bacteria producing these metabolites leads to the discovery of 

a high number of substances with biotechnological potential each year (Blunt 

et al., 2008). Marine sponges are the most promising candidates to find 

metabolites even against cancer and HIV (reviewed in Thomas et al., 2010) 

Culture collections of marine microorganisms from sponges thus also provide 

the foundation for the sustainable production of biotechnological products.  

 

1.3.1 Sponge-Specific Sequence Clusters 

In an encompassing survey in 2007, all publicly available sponge-derived 16S 

rRNA sequences were included in phylogenetic analysis followed by the 

identification of sponge-specific clusters (Taylor et al., 2007). In overall 16 

bacterial phyla and the archaeal lineages Euryarchaeota and 

Thaumarchaeota group I.1A were identified in sponges from all oceans, from 

which 12 phyla contained monophyletic, sponge-specific clusters (Taylor et 

al., 2007). These clusters were originally defined by harboring three or more 

16S rRNA sequences from different sponge species, or from the same sponge 

species but from different geographical locations, and were stable with 

different treeing algorithms (Hentschel et al., 2002). 



1. Introduction 

 - 7 - 

Two-thirds of the ≈1500 sponge-derived 16S rRNA sequences available in 

2007 were included in one of 33 clusters, with the biggest encompassing 52 

sequences retrieved from 21 different sponges. This cluster was affiliated to 

the bacterial phylum Cyanobacteria, to which the well-studied phototrophic, 

nitrogen fixing mutualistic symbiont “Candidatus Synechococcus 

spongiarum” belongs to (Usher et al., 2004).  

The results of this survey suggested the presence of a mixture of 

evolutionarily ancient, permanently associated bacteria (transmitted 

vertically), and those that are acquired horizontally from the water column. 

In 2011, almost 10-fold the number of 16S rRNA sequences as in 2007 were 

deposited in public databases, dispersed over more than 25 phyla (Webster 

and Taylor, 2011). An update of treeing calculations to track sponge-specific 

sequence clusters is in process and a reduction of sequences falling into those 

clusters is expected (M. Taylor, pers. comm.), also due to the detection of rare 

microbial sequences in seawater with deep sequencing methods. High-

throughput sequencing techniques allow the detection of low abundant 

microbes, but often do not allow the high phylogenetic resolution needed to 

infer the presence of sponge-specific sequence clusters. A study from 2010 

applied V6-tagging (analysis of a small variable region of the 16S rRNA gene) 

on three marine sponge species and matched this region to sequences from 

previously described sponge-specific sequence clusters (Webster et al., 2009). 

In two of the adult sponges analysed, approximately a third of all tag-

sequences were affiliated to formerly known sponge-specific clusters. 

Overall, the formation of phylogenetic sequence clusters found specifically in 

sponges (and other invertebrates) might indicate an evolutionary adaptation 

of the symbiotic microorganisms to their hosts and thus can help to 

distinguish microbial symbionts from other commensalic or food bacteria in 

these complex consortia. 
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1.4 Tackling the Functions of Sponge-Associated 

Prokaryotes 

Only in the past few years, investigations on marine sponges have started to 

focus on the function of sponge symbionts. The challenge and beauty hereby 

is the need of methods, allowing to link function to community structure to 

characterise a highly complex microbiome. Many marine sponges and the 

majority of microbial symbionts resist cultivation in the laboratory. The 

phylogenetic placement of lineages can, however, only rarely give an 

indication for the specific physiology of microorganisms. Furthermore, DNA-

sequence information of ribosomal RNA (rRNA) genes does neither allow for a 

prediction of the viability of the respective microbe at the time of sampling, 

nor is a reliable indication for activity. Studies targeting RNA of sponge 

symbionts (Kamke et al., 2010) are certainly a step towards capturing 

metabolically active symbionts (DeLong et al., 1989; Poulsen et al., 1993), 

although the concentration of rRNA in the cell does not always correlate with 

growth and activity (Morgenroth et al., 2000). In contrast, messenger RNA 

(mRNA) is degraded much faster and hence a good indicator for activity on 

the RNA level. 

The characterisation of processes in nutrient cycles can also be adressed by 

amplification of functional marker genes, encoding enzymes involved in 

specific reactions. In addition, metagenomics can unravel properties of 

uncultured organisms, like it was shown for the archaeal symbiont of the 

marine sponge Axinella mexicana (Hallam et al., 2006) and for the gutless 

marine oligochaete (Dubilier, 2007). While metagenomics describes the 

genomic inventory of a microbial community, metatranscriptomics targets the 

subset of genes that are transcribed, which gives a better indication for 

activity of the respective microorganisms. The first metatranscriptome study 

involving high throughput sequencing was done on soil in 2006, where 

Leininger and colleagues were able to show the vast abundance of archaea in 

different soil communities and the activity of archaeal ammonia oxidizers 

(Urich et al., 2008). The approach, as also used in this study, involves the 

simultaneous analyses of rRNA and mRNA sequences, thus providing 
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taxonomic information of the microbial community side-by-side with 

functional information from protein encoding genes. 

High-throughput sequencing technology was also applied to mRNA analyses 

of marine surface waters (Frias-Lopez et al., 2008; Gilbert et al., 2008; 

Hollibaugh et al., 2010) including a step for rRNA depletion for a higher 

output of mRNA sequence reads (Stewart et al., 2010). The use of deep 

sequencing technologies in metagenomics and metatranscriptomics has 

opened a new era in microbial ecology, as it allows to study complex natural 

microbial communities with a more adequate resolution than it was possible 

before. 

However, major challenges remain. One of the major limitations of shotgun 

sequencing approaches of DNA and RNA from environmental samples lies in 

the assignment of genes or transcripts to specific microbial lineages. These 

assignments are not only dependent on excellent bioinformatic tools that are 

constantly refined and developed in parallel to novel sequencing technologies, 

but are also dependent on the availability of fully sequenced reference 

genomes. 

In order to provide such full genomic information from specific taxa that can 

not be cultured in the laboratory, single-cell genomics was applied, e.g. on a 

Poribacterium and a Chloroflexi living in symbiosis with the mediterranean 

sponge Aplysina aerophoba (Siegl and Hentschel, 2010; Siegl et al., 2010). A 

mixotrophic pathway was reconstructed from the poribacterial genome and 

the potential involvement of Poribacteria in chemical defence and 

denitrification was suggested due to the identification of genes encoding for 

PKS (polyketide synthase) and nitrite reductase (NIR) as well as nitric oxide 

reductase (NOR) (Siegl et al., 2010). However, methods based on sequence 

homology are dependent on the quality and content of sequence databases 

and are only of limited use for organisms containing a large set of genes 

whereof the function is not yet defined. Furthermore, the presence of 

functional genes in the genome does not necessarily correlate with metabolic 

activity. Therefore physiological studies used in combination with the 

detection of functional and/or 16S rRNA genes were employed to describe the 
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activity of sponge-associated microbes in specific processes, like nitrification 

(Bayer et al., 2008) and sulfate reduction (Hoffmann et al., 2005). Also, the 

combination of modern techniques like FISH (fluorescence in situ 

hybridization) in combination with microautoradiography (MAR), Raman 

spectrometry or Nano-SIMS (secondary ion mass spectrometry) now offer the 

possibility of a more direct characterisation of structure-function 

relationships of uncultured microbes whose activities may have been 

predicted by metagenomics or metatranscriptomics. 

  

1.5 Conversion of nitrogen compounds in marine 

sponges 

Nitrification, the two-step conversion of ammonia to nitrate via nitrite, is a 

crucial component of the natural nitrogen cycle (Figure 1.2). In sponges, this 

process was observed already more than 20 years ago with the detection of 

ammonia uptake and release of nitrite and nitrate in tropical sponges 

(Corredor et al., 1988; Diaz and Ward, 1997). More recently, the nitrification 

potential of mediterranean sponges began to be explored, with considerable 

lower nitrification rates measured in comparison to tropical sponges and the 

observation of seasonal fluctuation in the uptake and release of ammonia in 

the sponge Aplysina aerophoba (Jimenez and Ribes, 2007; Bayer et al., 2008; 

Schläppy et al., 2010). Fluctuations in temperature and nutrient availability 

are more pronounced in tropical and other shallow water habitats, than they 

are in deeper marine habitats, as represented by the cold-water sponges 

investigated in this study.  

Microorganisms exclusively belonging to two physiologically distinct groups, 

the ammonia oxidizers, which convert ammonia into nitrite and the nitrite 

oxidisers, which further oxidize nitrite to nitrate perform nitrification. 

The symbiosis between those nitrifying microorganisms and sponges might be 

mutualistic if the ammonia, produced as a waste product by the invertebrate, 

is taken up by microbial symbionts as they can gain energy from inorganic 

nitrogen compounds. Nitrifyers known from sponges include archaea (phylum 
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Thaumarchaeota) conducting the oxidation of ammonia (ammonia oxidizing 

archaea, AOA), and marine sponge-specific bacteria (phylum Nitrospira), that 

can oxidize nitrite to nitrate (nitrite oxidizing bacteria. NOB) (reviewed in 

(Taylor et al., 2007; Bayer et al., 2008). Furthermore, putative ammonia-

oxidizing bacteria (AOB) related to the subdivisions of Gamma- 

(Nitrosococcus) and Betaproteobacteria (Nitrosomonas, Nitrosopira) are 

sometimes found in 16S rDNA libraries of sponges (Hentschel et al., 2002; 

Diaz et al., 2004; Bayer et al., 2008; Meyer and Kuever, 2008; Mohamed et al., 

2009). The ecological niche partitioning between AOA and AOB is an open 

question remaining to be solved, therefore the abundance and activity of 

those groups in various nitrifying sponges offers valuable clues about their 

requirements to thrive in certain ecological conditions. 

 
Figure 1.2 Microbial nitrogen cycle in marine sponges: Ammonia-oxidizing bacteria convert 
ammonia (NH3) to nitrite (NO2-), which is further processed to nitrate (NO3-) by nitrite 
oxidisers. Nitrate is then metabolized to atmospheric nitrogen (N2) by denitrifying bacteria. 
PON = particulate organic matter. Figure adapted from Taylor et al. 2007. 
 

Denitrification was suggested to occur in sponge mesohyl because a sponge-

derived Alphaproteobacterium, closely related to the denitrifier Pseudovibrio 

denitrificans was isolated (Enticknap et al., 2006). Additionally, it was 

further proposed that Planctomycetes might be involved in anaerobic 

ammonia oxidation in marine sponges (this work and (Mohamed et al., 2009). 

Considering the significant areal coverage and biomass of sponges in certain 

oceanic regions (Tendal et al., 1993), as well as their high filtration rates, 
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marine sponges might constitute important sites for regeneration of 

nitrogenous compounds in marine habitats.  

 

1.6 Archaea – Phylum Thaumarchaeota 

After their discovery as a separate domain of life in 1977 (Woese, 1977), 

archaea were considered for a long time to be specialized in thriving in 

extreme environments, such as hot springs and hypersaline lakes (Barns et 

al., 1994; Barns et al., 1996; Jones et al., 1998; Grant et al., 1999; Takai and 

Sako, 1999) or anaerobic habitats. The first report of mesophilic, aerobic 

archaea came 15 years later with the discovery of 16S rRNA sequences in the 

picoplankton of the ocean (DeLong, 1992; Fuhrman et al., 1992) and related 

species in the sponge Axinella mexicana (Preston et al., 1996). Metagenome 

sequences of “Candidatus Cenarchaeum symbiosum” (the Axinella symbiont) 

and other marine and terrestrial archaea unraveled a greater evolutionary 

and physiological diversity than previously assumed (Könneke et al., 2005; 

Treusch et al., 2005; Hallam et al., 2006; Hatzenpichler et al., 2008; Blainey et 

al.), see chapter 1.5.2.1 for more detail). Besides their widespread 

distribution, these archaea are also highly abundant in marine and 

terrestrial habitats (Francis et al., 2005; Leininger et al., 2006; Wuchter et al., 

2006; Jiang et al., 2008), hence possibly play an important role in global 

biogeochemical cycles. Furthermore, some (if not all) of those archaea 

harbour genes for a potential ammonia monoxygenase (Venter et al., 2004; 

Könneke et al., 2005; Treusch et al., 2005; Hallam et al., 2006; Hatzenpichler 

et al., 2008; Blainey et al., 2011) (Figure 1.3) and might therefore be capable 

of gaining their energy from ammonia oxidation.  

Recently, they were assigned their own phylum, the Thaumarchaeota 

(previously considered a subgroup of the phylum Crenarchaeota) (Brochier-

Armanet et al., 2008; Spang et al., 2010), with subgroup I.1a, mainly 

consisting of 16S rRNA sequences derived from marine habitats (including 

sponges) and group I.1b, with mainly soil and sediment-derived sequences. 

Sequence analyses on based on amoA, encoding subunit A of the key enzyme 
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ammonia monooxygenase the marker gene for ammonia oxidation, show a 

similar phylogenetic pattern (Pester et al., 2011). 

 
Figure 1.3. 16S rRNA consensus tree of ammonia-oxidizing Thaumarchaeota. Taken from 
Pester et al., 2011.  
 

There is evidence that Thaumarchaea are a deep-branching lineage in the 

evolutionary archaeal tree (Brochier-Armanet et al., 2008; Spang et al., 2010). 

Therefore, the association between these archaea and sponges might 

constitute a symbiosis between the most basal organisms within the eukaryal 

and archaeal domains of life. The quest for the last eukaryotic common 

ancestor (LECA) is intertwined with the archaeal phylogeny, as archaea and 

eukarya are evolutionary related in a way that is not fully understood yet 

(Brown and Doolittle, 1997). In particular, most factors involved in cellular 

information processing in archaea, i.e. in replication, transcription, 

translation, cell division are homologues of eukaryotic counterparts (Klenk 

and Garrett, 2006). One proposed scenario for the phylogenetic relationship 

between archaea and eukaryotes show Eukaryota as a secondary domain, 

that emerged by phagocytosis of an Alphaproteobacterium by an archaeon 

(Rivera and Lake, 1992; Lake and Rivera, 1994; Martin and Muller, 1998; 

Cavalier-Smith, 2002; Embley and Martin, 2006; Poole and Penny, 2007a; 
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Poole and Penny, 2007b; Cox et al., 2008), equating the most recent ancestor 

of archaea with LECA. The eocyte hypothesis (Lake et al., 1984; Rivera and 

Lake, 1992) suggests, that an association between a bacterium and a 

crenarchaeote (nowadays including a subgroup of the thaumarchaeotes, 

Forterre 2010; Foster et al., 2009) lead to the origin of eukaryotes. The second 

scenario for the origin of the eukaryal domain places it as a monophyletic 

sister group to the archaea, congruent to the 16S/18S rRNA tree of life 

(Gogarten et al., 1989; Woese, 1990). In this case, the Alphaproteobacterium 

was an endosymbiont of a protoeukaryote leading to a gene transfer. 

However, there are arguments for both scenarios (Gribaldo et al. 2010) and 

with the lack of evolutionary intermediate stages it seems difficult to solve 

this issue (Poole and Penny, 2007b). Advancements in taxonomic sampling, 

genome sequence analysis and new models for phylogenetic analysis might 

eventually help to find the missing link(s). 

 

1.6.1 Physiology of Ammonia oxidizing archaea  

The mechanism of ammonia-oxidation in archaea is not fully understood. The 

first isolate exhibiting this metabolism was Nitrosopumilus maritimus, which 

grows chemoautotrophically on low concentrations of ammonia (Martens-

Habbena et al., 2009), although there are indications of a heterotrophic mode 

of carbon assimilation in other thaumarchaea (Ouverney and Fuhrman, 2000; 

Herndl et al., 2005; Ingalls et al., 2006; Teira et al., 2006; Tourna et al., 2011). 

The complete genome sequence of the sponge symbiont “Candidatus 

Cenarchaeum symbiosum” (Hallam et al., 2006) exhibits high similarity to 

the genome of N. maritimus (Walker et al., 2010), derived from seawater 

(marine aquarium). Both archaea are phylogentically related to Group I.1a 

Thaumarchaea, together with the recently described “Candidatus 

Nitrosoarchaeum limnia” (Blainey et al., 2011). Putative metabolic functions 

of those archaea coincide in terms of ammonia oxidation and carbon 

assimilation inferred from genome annotation. Genes encoding the ammonia 

monooxygenase protein (AMO) and ammonia transporter are consistently 
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found, together with multicopper oxidases and blue copper domain-containing 

proteins that are supposed to be involved in electron transfer. Noteworthy is 

the incessant finding of unannotated proteins, partly in close genomic 

proximity to genes for subunits of the AMO. The genomic repertoire of group 

I.1a Thaumarchaota suggests a differing metabolic pathway for the oxidation 

of ammonia from that of bacteria. The energy-gaining step of AOB involves 

an enzyme called hydroxylamine oxidoreductase (HAO), which has no 

homologue in archaeal genomes so far. A homologue of nitrite reductase 

(nirK), reducing nitrite to nitric oxide in bacteria under denitrifying 

conditions is present in the genome of N. maritimus, but not of “Cand. C. 

symbiosum”. In this context it will be interesting to explore the genetic setup 

of other archaeal sponge symbionts and correlate it to nitrification activity.  

One hypothesis for the biochemistry of archaeal ammonia oxidation proposes 

the existence of a – not yet annotated – nitroxyl oxidoreductase (HNO) 

instead of the bacterial HAO (Walker et al., 2010) and an involvement of the 

archeal nirK in providing nitric oxide (NO), activating AMO together with 0.5 

O2 per NH3 oxidized (model by M. Klotz in Schleper and Nicol, 2010). This 

would widen the range of environmental niches of AOA to even 

microaerophilic environments, congruent with their occurence in suboxic 

marine waters and sediments (Erguder et al., 2009; Schleper and Nicol, 2010 

and references therein, Labrenz et al., 2010;). Possibly there is also an 

evolutionary adaptation to different oxygen concentrations, as distinct 

lineages of AOA are found in stratified marine sediments and the Black Sea 

(Coolen et al., 2007; Durbin and Teske, 2010). This adaptation could certainly 

be of advantage for symbionts of massive marine sponges, as oxygen 

concentrations in the mesohyl decrease in zones of no active pumping activity 

(Hoffmann et al., 2005). 

 

1.6.2 Thaumarchaeota and sponges 

Starting with the discovery of a psychrophilic crenarchaeon (now 

thaumarchaeon) living in association with a sponge (Preston et al., 1996), 16S 
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rDNA of thaumarchaea were detected in many marine sponges all over the 

world (Taylor et al., 2007 and referencess therein, Bayer et al., 2008). 

Archaeal AMO genes were found both in adult sponges and in their free-

swimming larvae (Sharp et al., 2007; Schmitt et al., 2008; Steger et al., 2008), 

suggesting a vertical transmission mode of these symbionts. As mentioned 

before, different sponge species from various geographic locations share 

similar thaumarchaeal 16S rRNA sequences, distinct from those derived from 

seawater samples. This clustering also occurs for archaeal amoA sequences, 

with a potential sponge-specific cluster in phylogenetic proximity to the amoA 

sequence of “Cand. C. symbiosum” (Steger et al., 2008; Turque et al., 2011). 

Further investigations on sponge-derived archaea will tell more about 

possible adaptations of those organisms to the ecological conditions in 

different sponges. 

 

1.7 Aims of this study 

The overall goal of this study was to investigate the diversity, activity and 

genomic potential of ammonia oxidizing archaea in cold-water sponges of the 

North Atlantic and to compare it to their bacterial counterparts, the ammonia 

oxidizing bacteria (AOB). Nitrification in cold-water sponges has not been 

investigated before and thus these data should allow for comparison with 

temperate and tropical environments. The four sponges from the mesopelagic 

zone of the Norwegian Sea exhibit different morphologies which allows to 

relate differences in abundance, phylogeny and activity of nitrifyers to 

chemoclines interrelated with the diffusion boundary layer. 

The analyses included physiological tests and molecular and phylogenetic 

investigations as well as the use of in depth metatranscriptomics to study 

archaeal and bacterial activity in the frame of the complex microbiota of the 

high microbial abundance (HMA) sponge Geodia barretti.  

 

The complete analysis and results are presented in the following three 

chapters, which represent 3 manuscripts, one of which has been published 
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(Hoffmann et al., 2009) and two have been submitted for publication on 

Environmental Microbiology and ISME Journal, respectively. 

 

The first manuscript, entitled “Ammonia-oxidizing archaea as main drivers of 

nitrification in cold-water sponges” is under review in Environmental 

Microbiology and describes the occurrence and abundance of potential 

ammonia oxidizing archaea (AOA) in four morphologically different cold-

water sponges from the mesopelagic zone of the Norwegian coast. 

Nitrification rates in these sponges were determined in laboratory 

incubations. Phylogenetic analyses confirmed the presence of specific 

populations of nitrifying microorganisms in the sponge mesohyl, which were 

either affiliated to groups previously detected in marine sponges or consisted 

of typical inhabitants of cold and deep water environments. AOA 

outnumbered their bacterial counterparts as measured by  quantitative PCR 

analyses on DNA and cDNA of the functional gene amoA. Fluorescence in 

situ hybridizations (FISH) confirmed their high abundance in the sponge 

mesohyl and showed spacial distribution of archaeal cells in the sponge 

Phakellia ventilabrum. Our measurements allowed the calculation of cell-

specific nitrification rates, which were in the range of planktonic archaea. 

(Own contribution: RR sampled sponges, performed incubation experiments 

with Phakellia ventilabrum, Antho dichotoma and Tentorium semisuberites, 

quantitative PCR, FISH on Geodia barretti, gene library construction, 

phylogenetic analyses and wrote most of the manuscript) 

 

The second manuscript, published in Environmental Microbiology, is entitled 

“Complex nitrogen cycling in the marine sponge Geodia barretti” describes 

the quantification of both aerobic (nitrification) and anaerobic 

(denitrification, anammox) microbial processes of the nitrogen cycle in the 

sponge G. barretti by stable isotope techniques and the identification of 

microbial taxa possibly involved in those processes by molecular techniques. 

Thaumarchaeota and nitrite-oxidizing bacteria of the genus Nitrospira were 

detected based on functional gene and 16S rRNA gene analyses as well as 
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potentially denitrifying Betaproteobacteria and Planctomycetes, which might 

be responsible for the anaerobic processes we measured. This was the first 

proof of anammox and denitrification in marine sponges. 

(Own contribution: RR did PCR amplification, gene library preparation and 

phylogenetic analyses of archaeal amoA and bacterial nirS genes and wrote 

parts of the paper) 

 

The third manuscript is entitled “Metatranscriptomics of the marine sponge 

Geodia barretti: Tackling phylogeny and function of an uncharacterized 

microbial community” and describes a metatranscriptomic approach of the 

microbiota in G. barretti, based on the simultaneous analysis of rRNA and 

mRNA. Analyses of sequence tags assigned to small subunit rRNA resulted in 

a detailed qualitative and quantitative community profile, dominated by 

Chloroflexi, Poribacteria and Acidobacteria, which was different from that 

obtained in the bacterial clone library produced from the same nucleic acid 

preparation. Optimized assembly strategies of the metatranscriptome data 

allowed the reconstruction of full-length rRNA genes and consequently, 

detailed phylogenetic studies of the dominant phylotypes. Genes encoding key 

metabolic enzymes of the nitrification process were among the most abundant 

mRNAs, in particular those from ammonia oxidizing archaea. A number of 

concomitantly transcribed archaeal genes with unknown function pointed to 

their putative role in the energy metabolism of these archaea. 

(Own contribution: RR sampled sponges, prepared cDNA for sequencing, 

analyzed data, constructed cDNA 16S gene libraries and wrote the 

manuscript draft) 
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2.1 Abstract 

The association of archaea with marine sponges was first described 15 years 

ago and their role in the nitrification process in mediterranean and tropical 

sponges has been suggested. Here we explore the occurrence and abundance 

of potential ammonia oxidizing archaea (AOA) in four morphologically 

different cold water sponges from the mesopelagic zone of the Norwegian 

coast, and relate them to nitrification rates determined in laboratory 

incubations. Nitrification rates up to 1880 nmol N cm-3 day-1 were observed; 

i.e. comparable to those measured in mediterranean sponges. Furthermore, a 

high abundance of archaeal cells was determined by fluorescent in situ 

hybridizations and quantitative PCR, targeting archaeal amoA genes 

(encoding the alpha subunit of ammonia monooxygenase). AmoA genes as 

well as amoA transcripts were either only detectable from archaea or were 

orders of magnitudes higher in abundance than their bacterial counterparts. 

Phylogenetic analyses of AOA and bacterial nitrite oxidizers (genus 

Nitrospira) confirmed the presence of specific populations of nitrifying 

microorganisms in the sponge mesohyl, that were either affiliated to groups 

detected earlier in marine sponges or were typical inhabitants of cold and 

deep water environments. AOA cells in sponge mesohyl occur in very high 

density while exhibiting cell-specific nitrification rates comparable to 

planktonic organisms (estimated 0.6 to 6 fmol archaeal cell-1 day-1). Our 

results identify AOA as the major drivers of nitrification in cold-water 

sponges, and indicate an important role of these archaea for nitrogen cycling 

in ocean regions with high sponge biomass. 
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2.2 Introduction 

Sponges have existed for more than 600 million years and are considered to 

represent the earliest branching lineage of metazoans (Müller, 1998). They 

are found in diverse morphologies and live in many environments and 

varying depths of the oceans. Their evolutionary success is likely correlated 

with their close association with microorganisms, which can make up over 

half of the sponge body weight (Wang, 2006; Kennedy et al., 2009), and can 

amount to up to 1010 microbial cells per g of sponge (Hentschel et al., 2006). 

The sponge-associated microbes are phylogenetically highly diverse (reviewed 

in Taylor et al., 2007) and many of them are presumably involved in 

metabolic processes that are directly or indirectly beneficial to the sponge. 

Some bacteria, as e.g. actinobacteria and proteobacteria (reviewed in 

(Thomas et al., 2010), produce bioactive compounds that serve as defense 

against predation and biofouling (Thompson et al., 1983; Teeyapant et al., 

1993; Ebel et al., 1997) and are of special interest for pharmaceutical 

industry. Another well-known example of beneficial symbiotic partners is 

photosynthetic Cyanobacteria that reside in various sponge species and 

provide fixed organic carbon and nitrogen to their host through their 

autotrophic life style (Wilkinson and Fay, 1979; Wilkinson, 1983a; Wilkinson 

et al., 1999; Thacker, 2005). Correspondingly, cyanobacterial symbionts from 

sponges all over the world are phylogenetically closely related (Taylor et al, 

2007) and transmitted vertically via sponge larvae (Usher, 2001; Oren, 2005). 

The symbiosis between nitrogen transforming microorganisms and marine 

animals is common in corals, sponges, sea urchins and tunicates and has 

great influence on their host’s ecology and nutrient biochemistry (see Fiore et 

al., 2010 for a review). The release of nitrite and nitrate, indicating microbial 

nitrification, was discovered in tropical sponges more than 20 years ago 

(Corredor et al., 1988; Diaz and Ward, 1997). Aplysina aerophoba, a 

Mediterranean sponge showed considerable seasonal fluctuation with 

ammonia uptake in spring and release in autumn, paralleled by high and low 

nitrate excretion, respectively (Bayer et al., 2008). More recently, aerobic 



2. Archaeal Nitrification in cold-water Sponges 

 - 34 - 

nitrification, but also the anaerobic microbial processes denitrification and 

anaerobic ammonium oxidation (anammox) were detected in Geodia barretti 

a cold-water sponge from the Norwegian Sea (North Atlantic) (Hoffmann et 

al., 2009). This demonstrated complex nitrogen cycling within the animal. By 

quantification of nitrification, denitrification and anammox rates, we 

concluded that sponge-mediated nitrogen mineralization processes might be 

more important than sediment processes in certain marine environments 

with high sponge coverage (Hoffmann et al., 2009), e.g. sponge grounds on 

continental margins (Klitgaard and Tendal, 2004). 

The first step of nitrification, aerobic ammonia oxidation - in which ammonia 

is converted into nitrite - is known from Proteobacteria (Beta-, Gamma- and 

Deltaproteobacteria), and from Group I archaea, recently renamed 

Thaumarchaeota (Brochier-Armanet et al., 2008; Spang et al., 2010). Both 

lineages, AOB (ammonia oxidizing bacteria) and AOA (ammonia oxidizing 

archaea) have been detected in sponges (Bayer et al., 2007; Meyer and 

Kuever, 2008; Mohamed et al., 2009; Taylor et al., 2007; Steger et al., 2008), 

however, their relative abundance has never been assessed. Archaeal 

ammonia oxidizers have only recently been discovered by metagenomics 

(Treusch et al., 2005) and cultivation (Könneke et al., 2005). The first genome 

sequence from this group was obtained from “Candidatus Cenarchaeum 

symbiosum”, a symbiont of Axinella mexicana, a Californian sponge (Preston 

et al., 1996). Together with the genome of the cultivated planktonic isolate 

Nitrosopumilus maritimus it demonstrated the genetic potential of these 

archaea and their fundamental differences to bacteria (Hallam et al., 2006; 

Walker et al., 2010) 

AOA have been shown to be transmitted to the next generation via sponge 

larvae (Steger et al., 2008), together with potential bacterial nitrite oxidizers 

(Sharp et al., 2007; Webster et al., 2010). These bacteria, members of the 

phylum Nitrospira, perform the second step in the nitrification process 

converting nitrite into nitrate and are commonly found in bacterial gene 

libraries of marine sponges, forming a sponge-specific subcluster (named 

Nitrospira IVb) (Taylor et al., 2007; Bayer et al., 2008; Lopez et al., 2008; 
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Meyer and Kuever, 2008; Webster et al., 2008; Mohamed et al., 2009; Radwan 

et al., 2009; Kamke et al., 2010). Together, these findings confirm that 

nitrification might be a common and important process in sponges. The roles 

and relative contributions of bacterial and archaeal nitrifiers, however, 

remain unclear.  

We focus here on the role of Archaea and Bacteria in nitrification in cold-

water sponges by combining nitrification rate measurements and molecular 

analysis of potential microbial key players. Quantification of archaeal and 

bacterial ammonia monooxygenase subunit A, the key enzyme for ammonia 

oxidation on genomic and transcriptional level allowed an assessment of 

resident and active potential ammonia oxidizers in sponges for the first time. 

Direct quantification of archaeal cells by CARD-FISH allowed calculation of 

cell-specific nitrification rates of sponge-associated archaea in one of the 

investigated species. 

Four morphologically different demosponges from the Norwegian coast were 

included in this study: Phakellia ventilabrum (Linnaeus, 1767), Geodia 

barretti Bowerbank, 1858, Tentorium semisuberites (Schmidt, 1870) and 

Antho dichotoma (Linnaeus, 1767). P. ventilabrum (Halichondrida, 

Axinellidae) is a thin, fan-shaped sponge (up to 50cm) that lives attached by a 

narrow stalk on rocks or other solid substrate in current-exposed regions. 

Former studies revealed the presence of bioactive compounds (Amade et al., 

1982) and quorum sensing activity (Krick et al., 2007), but classified this 

sponge in low-bacterial abundance sponges based on their amount of mid-

chain branched fatty acids (Thiel et al., 2002). 

Geodia barretti (Astrophorida, Geodiidae) is a large (up to meter-scale), 

massive sponge, which harbors high numbers of microbes in both aerobic and 

anaerobic zones (Hoffmann et al., 2005b). Besides considerable rates of 

nitrification of 566 nmol N cm-3 sponge day-1 in laboratory incubations 

(Hoffmann et al., 2009), microbial sulfate reduction (Hoffmann, 2003; 

Hoffmann et al., 2005b) as well as denitrification and anammox (Hoffmann et 

al., 2009) were detected in this sponge. 
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Antho dichotoma, (Poecilosclerida, Microcionidae) is a thin, dichotomously 

branching sponge (10-30 cm) in which no microbiological investigations have 

been undertaken so far. Tentorium semisuberites (Hadromerida, 

Polymastiidae) is a small (1-2 cm), cone-shaped sponge, living partly buried 

in the (deep-sea) sediment (Barthel and Tendal, 1993) or attached to rocks 

and corals. A distinctive microbial community consisting of bacteria and 

archaea has earlier been demonstrated in this species (Pape et al., 2006; 

Queric et al., 2008). 

 

2.3 Material and Methods 

2.3.1 Sampling procedure 

The four species of sponges were collected in two fjord localities on the 

Norwegian west coast by the Norwegian research vessel Hans Brattstrøm. 

Samples were taken at Landrøypynten in Langenuen (59.58.7N 05.22.89E) 

on June 26th 2007, and from the nearby locality Skorpeodden in Korsfjord 

(60.10N 05.10.5E) in October 2006, March 2007 and end of October 2007. All 

samples were collected using a triangular dredge on rocky bottoms at 200-

300m depth. The sponge samples were transported to the aquarium facility at 

the University of Bergen where they were maintained in natural running 

seawater from 200 m depth. For nucleic acid extraction, sponge samples were 

immediately cut, rinsed with artificial seawater and plunged in liquid 

nitrogen on board of the research vessel. Samples were stored at -80°C until 

nucleic acid extraction. For CARD-FISH (catalyzed reporter deposition - 

fluorescence in situ hybridisation), sponges were fixed in 2% formalin and G. 

barretti samples for FISH were fixed in 4% paraformaldehyde after collection 

for 2-12 hours. Sponges were dehydrated in a 30, 50 and 70% ethanol series 

and stored in 70% ethanol at -20°C. 
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2.3.2 Nitrification rates 

Sponges were maintained for 1 to 5 days in running seawater before 

experiments started.  For the nitrification experiments with P. ventilabrum 

and A. dichotoma, 2-5 sponge fragments of 1-2 cm3 were placed in 900 ml of 

natural, unfiltered seawater from 200 m depth amended with 10 µM NH4+. 

For incubations with T. semisuberites, individual sponge specimen of 1-3 cm3 

each were placed in 600 ml of seawater. G. barretti samples were processed 

and incubated aerobically according to Hoffmann et al. (2009). 

Three parallel incubations and two controls (sea water without sponge and 

sponge without ammonia) were used. Beakers with air bubblers and 

magnetic stirrer were placed in a temperature-controlled room at 15°C in the 

dark. Water samples were taken every 4 hours over a time course of 24 hours 

and immediately frozen at -80°C until analyses. Ammonium concentrations 

were determined with a Scalar Continuous-Flow-Autoanalyzer using the 

chemistry described by (Grasshoff, 1983). Nitrite and nitrate were analyzed 

with a chemoluminescence NOx analyzer (Thermo Environmental 

Instruments Inc, USA).  

Experiments were performed in different seasons: October 2006 and March 

2007 with P. ventilabrum and T. semisuberites; July 2007 with P. 

ventilabrum; and November 2007 with P. ventilabrum, T. semisuberites and 

A. dichotoma. Production or consumption rates of ammonium, nitrite and 

nitrate were calculated from the average concentrations of all sponge 

replicates minus the concentration in the control without sponge sample. 

 

2.3.3 Fluorescence in situ hybridisation and quantification 

of Archaea  

Sponge cubes of P. ventilabrum and G. barretti and whole specimen of T. 

semisuberites were embedded in cryomedium (Jung Tissue Freeze medium®, 

Leica Microsystems, Nussloch, Germany). After saturation with liquid 

cryomedium for 12 h at 4°C, the blocks were embedded in base molds with 

fresh cryomedium and left to solidify for 12h at -80°C. 5-8µm longitudinal 
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sections were made using a cryostat microtome (HM 505E, Microm, Walldorf, 

Germany and Leica CM 3050 S for G. barretti) at -35°C. Sponge sections were 

mounted on gelatinized glass slides and stored at -20° C. 

For CARD-FISH, the slides were dehydrated in an ascending ethanol series 

(1 min in 50%, 70%, 2x 99% ethanol each). They were then incubated for 10 

min in 0.01M HCl for inactivating of endogenous peroxidases, and washed 

twice in MilliQ water. Slides were dipped for 30 seconds in 0.1M HCl and 

washed in MilliQ water and ethanol. CARD-FISH targeting Marine Group 

I.1.A Crenarchaeota (now Thaumarchaeota) was performed with the 

oligonucleotide probe CREN554 (Massana et al., 1997): Sequence 5’3’ TTA 

GGC CCA ATA ATC MTC CT; E. coli position number 554-573; 20% 

Formamid concentration in hybridisation buffer). Hybridization conditions 

were optimized for CARD-FISH applications by conducting a formamide 

series at 35°C hybridization temperature. Carboxyfluorescein-labeled 

tyramide (Invitrogen, Karlsruhe, Germany) was used. For CARD-FISH 

hybridisation, we followed the standard protocol by (Pernthaler et al., 2002). 

After CARD-FISH, sections were treated with 4,6-diamidino-2-phenylindole 

(DAPI). Color micrographs were taken using a Zeiss AxioImager M1 

microscope with an AxiCam MRc camera system. Digital image processing 

was performed using AxioVision 4.4 software. An ocular with 122 µm x 122 

µm-counting grid and scale bar was used for counting the DAPI- and CARD-

FISH-stained microbial cells at 1000 times magnification.  

For Dope-FISH (Stoecker et al., 2010) the sections were exposed to UV light 

for 15min to bleach parts of autofluorescence before dehydration with a 

graded series of ethanol (3 min in 50, 80 and 96% ethanol each). 30 ng of Cy5-

labelled EUB-I-III probe (Amann et al., 1995; Daims et al., 1999), and double-

Cy3-labelled probes Cren569 (Jurgens et al., 2000) and Arch915 (Stahl and 

Amann, 1991) each  were hybridized and incubated in an isotonically 

equilibrated chamber at 46°C in hybridization buffer, and 20% formamide 

concentrations for 3-4h. After hybridization, slides were incubated 10 min in 

preheated washing buffer (composition corresponds to hybridization 

stringency) at 48°C, subsequently dipped in ice-cold distilled water and air-
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dried. For visualization slides were mounted with the anti-fadent Citifluor 

(Citifluor Ltd., London, UK) and placed on a LSM 510 scanning confocal 

microscope (Zeiss). 

To distinguish signals resulting from unspecific binding of the probes and 

autofluorescence, 60ng of double-labelled Non338-probe (Wallner et al., 1993) 

was applied on a separate well and visualised with the exact same 

adjustments as for samples with archaeal probes. NonEUB-probes as 

negative controls were also applied on separate sections following the CARD-

FISH protocol. 

 

2.3.4 Nucleic acid extraction 

Frozen sponge pieces were quickly cut into approx. 1 mm3 pieces and parallel 

extraction of RNA and DNA was performed using a modified version of the 

Griffiths protocol (Griffiths et al., 2000). Cells of approximately 0.5 g sponge 

(fresh weight) were solubilized with 0.5 ml of CTAB buffer and PCI by bead 

beating in a lysing matrix E tube (Q-Biogene) for 45 seconds with at speed of 

4.5. 

 

2.3.5 cDNA synthesis for real-time PCR 

Diluted nucleic acid extracts were treated with RQ1 DNase (Promega) before 

reverse transcription of RNA with random hexamer primers (Invitrogen, 

Superscript III) was performed according to the manufacturer’s protocol for 

first strand cDNA synthesis. 

 

2.3.6 Real-time quantitative PCR 

Archaeal amoA genes of the four different sponge species (G. barretti, P. 

ventilabrum, A. dichotoma and T. semisuberites) were quantified on DNA and 

cDNA level with 1x QuantiTect SybrGreen PCR Kit solution (Quiagen), 1 µM 

forward primer 19F (5’ - ATG GTC TGG CTW AGA CG – 3’) (Leininger et al., 

2006) and 1 µM reverse primer thaum-amoA-628R (5’ - TGG ACA TAC MGR 
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TGG ATG G - 3’) (this study), 0.2 mg ml-1 BSA and H2O up to a final volume 

of 20 µl for each reaction. Dilution series of the linearized fosmid 14b11 from 

a metagenomic library of the sponge P. ventilabrum, containing the archaeal 

amoA gene, generated a standard curve spanning over six orders of 

magnitude from 460 to 4.6*108 copies. Cycling conditions were 95°C for 

15min and 45 cycles of 95°C for 1min, 50°C for 1min and 72°C for 1min. 

Reading of fluorescence intensities were measured after each cycle, before 

and after incubation for 1s at 78°C to avoid measuring potential primer 

dimerization. A final elongation on 72°C was followed by a melting curve 

analysis form 30-95°C.  

Bacterial amoA genes were quantified using 500nM of primers amoA-1F* 

(Stephen et al., 1999) and amoA-2R (Rotthauwe et al., 1997) and known 

amounts of linearized plasmids (pCR4-TOPO, Invitrogen) containing the 

amoA gene of Nitrosospira multiformis ATCC25196 ranging from 110 to 

1.1*108 copies per reaction. Cycling conditions were as described above, but 

annealing temperature was 55°C for bacterial amoA amplification. 

All reactions (20µl) were performed in low-profile thermostrips and ultra 

clear cap-strips (ABgene) in a DNA Engine Opticon2 real-time thermocycler 

(MJResearch) and analysed with Opticon Monitor software version 3.01 

(Biorad). Reactions were performed in triplicate using of 5ng of DNA or 2µl of 

cDNA per sponge individual respectively. For G. barretti, A. dichotoma, P. 

ventilabrum three specimen were analysed, while for T. semisuberites only 

two specimen were available. 

 

2.3.7 Clone library constructions 

16S rRNA genes of nitrite-oxidizing bacteria of the phylum Nitrospira were 

amplified with the universal primer 616V (Juretschko et al., 1998) and the 

specific primer 1158R (Maixner et al., 2006). Universal 16S rRNA genes of 

archaea were amplified with primer set 21F and 958R (DeLong, 1992) and 

archaeal amoA genes with primer set 19F (Leininger et al., 2006) and 643R 

(Treusch et al., 2005). The respective amplicons of three different sponge 
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specimen were cut out from a low-melting agarose gel and pooled for cloning 

using the TOPO TA cloning
® 

kit (Invitrogen Corporation, Carlsbad, CA, USA) 

following the manufacturer’s instructions. Clones with inserts of correct size 

were sequenced with the Big Dye Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, Darmstadt, Germany). 

 

2.3.8 Phylogenetic analyses 

16S rRNA sequences related to Archaea and Nitrospira were edited and 

analysed using the ARB program package (Ludwig et al., 2004) after 

proofreading and combined with an updated version of the sponge symbiont 

database (Taylor et al., 2007). Three phylogenetic treeing methods were 

employed and compared. Maximum likelihood trees are presented for 

Thaumarchaeota group I.1.A and the bacterial phylum Nitrospira, which 

were constructed including relevant reference sequences and closest BLAST 

16S rRNA sequences from NCBI. For the archaeal 16S rRNA tree an 

individual filter was used, including 875 base pairs, for Nitrospira a 50% 

conservation filter for this phylum was used over the full length of the 16S 

rRNA. Bootstraps were calculated from 100 maximum parsimony trees. DNA 

sequences of ammonia monooxygenase subunit A (amoA) were also edited 

and analyzed in ARB. The tree includes closest BLAST hits to sponge derived 

sequences from NCBI. Maximum likelihood tree was calculated in ARB from 

486 nucleotide positions.  

Phylogeny and distance matrix for statistical analysis were calculated using 

the distance matrix algorithm in ARB based on the same alignment as for 

treeing calculations. The calculation of UniFrac significance and clustering 

based on phylogenetic distance was done via the FastUniFrac homepage 

(Hamady et al., 2010), with 1000 permutations, weighted and normalized 

option. 

For operational taxonomic unit (OTU) analysis and downstream calculations 

all amoA and archaeal 16S rRNA sequences over 800 base pairs were used. 

Analysis was performed via the program mothur (Schloss et al., 2009). 
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16S rRNA gene sequences, from Archaea and Nitrospira and archaeal amoA 

sequences are available in GenBank under accession numbers JF802616-

JF802783. 

 

2.4 Results 

2.4.1 Nitrification rates 

Nitrite and nitrate production was followed over a time course of 24 hours in 

laboratory incubation experiments with sponge fragments. Nitrification 

activity was observed independent of the addition of ammonia (10 µM), 

indicating that nitrification was not limited by ammonia supply under these 

conditions.  

Table 2.1 shows the production/consumption rates of ammonium, nitrite and 

nitrate from three sponge species analyzed, as calculated from the average of 

all sponge replicates during the first 24 hours minus the concentrations of the 

control incubation without sponge.  

 

Table 2.1. Ammonia, nitrite, nitrate production and nitrification rates# in four cold-water 
sponges 

Species Time of incubation NH4+ NO2- NO3- 
total 

nitrification 

P. ventilabrum October 2006 3240 130 380 510 

 March 2007 3590 10 110 120 

 July 2007 4510 160 1720 1880 

 November 2007 4100 -20 360 340 

A. dichotoma November 2007 3810 270 0 270 

G. barretti* March 2007 0 - 8000 150 410 560 

# in nmol N cm-3 sponge day-1, rates were calculated from incubations of triplicate 
experiments 
* Hoffmann et al. 2009  

 

P. ventilabrum showed a constant release of ammonium in all experiments, 

with highest ammonium excretion in July (Fig. 2.1). In that month, the 

highest nitrate and nitrite excretion rates were also observed. Nitrite 
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production was generally lower than nitrate production, and in November 

20 nmol nitrite cm-3 sponge day-1 was consumed.  

 
Figure 2.1. Incubation of P. ventilabrum fragments with 12 mM NH4+: production of nitrate 
and nitrite and ammonium per cm3 sponge (as average water concentrations in three 
replicate incubations minus concentration in control incubation without sponge) at a given 
time point. Axis labels and months of the different data series as shown for the graph for 
ammonium production. 
 

Total nitrification, the sum of nitrate and nitrite release, varied considerably 

and was highest in July with 1880 nmol N cm-3 sponge day-1 (Table 2.1) and 

lowest in March, releasing 120 nmol N cm-3 sponge day-1.  

Incubation experiments with Antho dichotoma in November 2007 showed 

production of ammonia and nitrite within the range of Phakellia ventilabrum, 

but production of nitrate was not observed (Table 2.1).  

In earlier experiments nitrate and nitrite production of G. barretti was 

demonstrated to be 410 and 150 nmol N cm-3 sponge day-1, respectively, i.e. 

similar to that of P. ventilabrum in July and October. Only ammonium 

release was different, as consumption exceeded production in the first hours, 

while after that, net production of ammonium was observed (Hoffmann et al., 

2009).  

Incubation experiments with T. semisuberites did not reveal reproducible 

results. In October 2006, high nitrate production (4530 nmol N cm-3 sponge 
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day-1) was observed, while during following experiments in March and 

November 2007, no difference between incubation experiments and seawater 

control was detectable.  

 

2.4.2 Quantification of archaeal and bacterial amoA genes 

and transcripts 

Specific real-time PCR assays were employed to test and compare the 

abundance and activity of ammonia monooxygenase-encoding archaea and 

bacteria in the sponges.  

Highest copy numbers of amoA genes were found in G. barretti with 6*108 

copies per µg of nucleic acids and approx. 4*1011 copies g-1 sponge fresh 

weight, while bacterial amoA genes were below the detection limit (10 copies 

per reaction).  

 

Figure 2.2. Abundance of amoA genes (a) and transcripts (b) as estimated by qPCR on four 
cold-water sponges. Biological replicates were: n=3 for G. barretti, P. ventilabrum and A. 
dichotoma and n=2 for T. semisuberites. Three technical replicates per sponge individual 
were performed.  
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P. ventilabrum exhibited 1.5*107 copies per µg of nucleic acids (approx. 5*109 

copies g-1 sponge fresh weight) but only 5*103 bacterial amoA gene copies per 

µg of nucleic acids (9.7*104 copies g-1 sponge fresh weight). In A. dichotoma, 

amoA genes of archaea were considerably lower, but still about 150x more 

abundant than amoA of bacteria. Only archaeal amoA genes were detected in 

T. semisuberites (Fig. 2.2a). In line with the high numbers of archaeal amoA 

genes found in the mesohyl of all four sponges, highest mRNA levels were 

also detected for archaea, while no AOB transcripts were detected in G. 

barretti, P. ventilabrum and T. semisuberites (Fig. 2.2b). The relative amount 

of archaeal amoA transcripts between the different sponges correlated well 

with the relative abundance of amoA genes, indicating that the majority of 

archaea detected are indeed actively transcribing this marker gene. 

 

2.4.3 Phylogenetic analyses of archaea from cold water 

sponges 

16S rRNA genes of archaea from the four sponges were amplified by PCR, 

cloned and sequenced for phylogenetic analyses. In total, 85 sequences 

(between 14 and 38 sequences for each sponge) were obtained, of which 79 

were included in operational taxonomic unit (OTU) calculations because of 

their length and quality. The sequences were grouped based on 97 and 99% 

sequence similarity respectively, leading to 2 and 5 OTUs respectively (see 

Fig. 2.3 with OTUs on 99% threshold). Phylogenetic analysis shows a low 

diversity of archaeal 16S rRNA sequences, restricted to the Thaumarchaeota 

group I.1A, all of which supposedly represent ammonia oxidizers. G. barretti 

and P. ventilabrum exhibited highest diversity on 16S rDNA level, with a 

fraction of clones (OTU4) included in the open sponge specific cluster defined 

by “Candidatus Cenarchaeum symbiosum”. All 16 archaeal 16S rDNA 

sequences of A. dichotoma were identical and clustered in a phylogenetic 

group similar to most of the sequences of G. barretti and P. ventilabrum. 

Those sequences clustered in OTU1 with 99% sequence identity and showed 

highest sequence similarity to marine clones from cold- and deep-sea regions. 
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16S rDNA sequences amplified from T. semisuberites (TS13 and OTU5) and 

one sequence derived from P. ventilabrum (PV8) showed closest affiliation to 

Antarctic sponge-derived and (hydrothermal) deep-sea clones, whereas OTU3 

- including sequences from G. barretti and P. ventilabrum - was affiliated to 

marine sediment and hydrothermal vent clones.  

 
Figure 2.3. Maximum likelihood tree of archaeal 16S rRNA sequences derived from cold-
water sponges (shown in bold), belonging to the phylum Thaumarchaeota, group I.1A. Short 
sequences (under 1000 base pairs) were added using the parsimony insertion tool in ARB 
after tree calculation and are indicated with a dashed line. The sponge-specific sequence 
clusters (see Taylor et al., 2007) include only sponges or sponges and one non-sponge derived 
sequence and were reproduced with three different treeing methods. Bootstrap values, 
derived from maximum parsimony algorithm, are shown by closed (>97%) and open circles 
(>75%). The scale bar indicates 10% 16S rRNA sequence divergence. The outgroup (not 
shown) consisted of 16S rRNA sequences of group I.1B Thaumarchaeota.  
 

The highest similarity to the 16S rRNA gene of the only cultivated marine 

ammonia-oxidizer Nitrosopumilus maritimus was 98.3-98.6% (OTU1 and 
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OTU5) and sequences of all four sponges were 93.5-94.4% similar to the 16S 

rDNA sequence from the Californian sponge Axinella mexicana, “Cand. C. 

symbiosum”. 

Coverage calculations (Good, 1953) for OTUs with 99% threshold ranged from 

90 to 100%. Clustering on 3% sequence difference led to coverage of 100% for 

all four archaeal 16S rRNA gene libraries (suppl. material Figure S2.1). 

Sequences from A. dichotoma and T. semisuberites, and from G. barretti and 

P. ventilabrum respectively, showed clustering with 95.5 and 71% jackknife 

confidence in clustering analyses based on phylogenetic distances (see suppl. 

material Figure S2.2). 

The presence and diversity of archaea potentially involved in ammonium 

oxidation was also investigated by targeting the amoA gene. Out of a total of 

49 cloned genes 48 (22 from T. semisuberites, 17 from A. dichotoma, 9 of P. 

ventilabrum) were included in statistical analysis. Clustering nucleotide 

sequences on 5% distance threshold resulted in 5 operational taxonomic units 

(OTUs) and clustering on 1.5% amino acid level led to 4 comparable OTUs. 

The coverage estimation for amoA gene sequences from all sponges 

investigated was between 88.9 and 100% on 5% threshold on nucleotide level.  

 

Figure 2.4 displays a phylogenetic tree based on amoA gene sequences 

(nucleotides) of the investigated cold-water sponges, and other related 

sponge-derived amoA gene sequences and seawater sequences from different 

locations. The sequences of archaeal amoA genes showed around 83% 

similarity to the respective sequence of N. maritimus with one clone of P. 

ventilabrum (PVamo19) showing 92% nucleotide sequence identity (98% on 

protein level) to this ammonia-oxidizer. Sequence identities to “Candidatus 

C. symbiosum” were highest for P. ventilabrum and G. barretti with 78.4-80% 

on DNA and 90-94.4% on protein level while the other sponges had an amoA 

gene sequence similarity of around 76%. 
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Figure 2.4. Maximum likelihood tree showing the phylogenetic diversity of archaeal amoA 
sequences from cold-water sponges (bold). 486 nucleotide positions were included in 
phylogenetic treeing calculation. The open invertebrate-specific sequence cluster (see Taylor 
et al., 2007) includes sponges and one coral and was reproduced with three different treeing 
methods. The scale bar indicates 10% sequence divergence. The outgroup (not shown) 
consisted of amoA sequences of soil organisms.  
 

2.4.4 16S rRNA genes of nitrite oxidizing bacteria (NOB)  

To assess the presence and diversity of NOB in cold-water sponges, 16S 

rRNA gene libraries with primers specific for the phylum Nitrospira were 

constructed. In total, 34 clone sequences (13 from P. ventilabrum, 11 from A. 

dichotoma and 10 T. semisuberites clones) were sequenced and phylogenetic 

analysis showed the affiliation of sequences to the sponge-specific cluster in 

the phylum Nitrospira (Fig. 2.5) in proximity to the marine isolate Nitrospira 

marina. NOB received from G. barretti had 87.3-91.4% similarity to N. 

marina (Hoffmann et al., 2009), whereas sequences of A. dichotoma were 

88.7-93.2%, P. ventilabrum were 90.8-92.8% and T. semisuberites were 87.3-

97.6% identical to this nitrite oxidizing isolate. 
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Figure 2.5. Maximum likelihood tree showing the distribution of 16S rRNA gene sequences 
of the phylum Nitrospira from cold water sponges. Sponge-derived sequences from this study 
and Hoffmann et al. (2009) are highlighted in bold. Short sequences (under 800 base pairs) 
were added using the parsimony insertion tool in ARB after tree calculation and are 
indicated with a dashed line. The open invertebrate-specific sequence cluster (see Taylor et 
al., 2007) includes sponges and one coral and was reproduced with three different treeing 
methods. Filled circles indicate at least 90% bootstrap support and open circles indicate 75-
89% parsimony-bootstrap support. The scale bar indicates 5% 16S rRNA sequence 
divergence. The outgroup (not shown) consisted of 16S rRNA sequences of several other 
bacterial phyla.  
 

In the clone library of T. semisuberites some clones showed up to 94.2% 

similarity to Nitrospira moscoviensis whereas the other cold-water sponges 

had max. 89.5% similarity to this isolate. N. moscoviensis stems from a 

corroded iron pipe in Moscow (Ehrich et al., 1995) but is also found in waste 

water treatment plants (nitrifying fluidized bed reactor).  

 

2.4.5 Fluorescence in situ hybridisation of archaea in cold-

water sponges 

The distribution and abundance of archaea were investigated on the cellular 

level in three sponges using FISH (G. barretti) and CARD-FISH (P. 

ventilabrum, T. semisuberites). A. dichotoma was not included in the study 

because of the dense occurrence of autofluorescent spicules. G. barretti 

showed archaeal signals evenly distributed in the sponge mesohyl of all 
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specimen investigated. The dense background of bacterial signals (blue in 

Fig. 2.6a) reflects the high microbial biomass in the mesohyl of G. barretti 

making total cell counts impossible. The archaeal cells were relatively small 

(approximately 1-2 µm long) and their morphology resembled N. maritimus 

(Könneke et al., 2005) and the sponge symbiont “Cand. C. symbiosum” 

(Preston et al., 1996). No spatial distribution of archaeal cells was observed in 

G. barretti. However, the sponge surface is enriched in highly auto-

fluorescent spicules and was therefore not specifically analysed. 

 

 

Figure 2.6. Fluorescence in situ hybridisations of Geodia barretti (a) Group I thaumarchaea 
in the mesohyl of the sponge (small red dope-FISH signals, arrow), the mesohyl is green 
fluorescent and bacterial signals (EUB) are shown in blue. Bigger red/yellow signals are 
autofluorescence (AF), i.e. also detected with a nonsense probe (not shown) and (b) Phakellia 
ventilabrum, Group I thaumarchaeota (green CARD-FISH signals, arrows) represent approx. 
10% of total microbial cells (blue DAPI signals, arrowheads) in the uppermost layer beneath 
the sponge surface, but are more sparse further away from the sponge surface (towards the 
upper right corner of the image). Sponge cell = Ce. Note that G. barretti is classified as 
sponge with high-microbial abundance (HMA) and therefore harbors more bacteria and 
archaea than P. ventilabrum (low microbial abundance sponge, LMA). The bars represent a 
distance of 5 µm.  
 

 While no clear archaeal CARD-FISH signals were obtained in tissues of T. 

semisuberites, archaea were detected in all 5 investigated specimen of P. 

ventilabrum. They were found unevenly distributed in the sponge mesohyl 

(Fig. 2.6b), with different abundances in the different layers: In the 

uppermost 50 µm beneath the sponge surface, archaeal numbers were up to 3 

x 109 cells cm-3 sponge, which represents approx. 10% of the total microbial 

cells stained by DAPI (3 x 1010 cells cm-3 sponge) (Fig. 2.6b). At greater 
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distance from the sponge surface, archaeal signals were less frequent with 

approximately 2 x 107 cells cm-3 sponge, which represented only 0.1% of DAPI 

counts. This means that the archaea were approximately 100x more 

abundant in the outer 50 µm of the sponge compared to the interior. 

 

2.5 Discussion 

2.5.1 High abundance and activity of archaeal ammonia 

oxidizers in cold-water sponges 

A prevalence of archaeal versus bacterial amoA genes and transcripts (Fig. 

2.2) indicated that ammonia-oxidation in cold-water sponges should be 

mostly due to the activity of archaea. On the DNA level, archaeal amoA genes 

were either the only amoA genes detectable or were orders of magnitude 

more abundant than bacterial amoA.  Archaeal amoA was actively 

transcribed in all sponges, while bacterial amoA transcripts were only found 

in the detectable range in Antho dichotoma. Only in this latter sponge both 

groups of ammonia oxidizers might indeed be active.  

Highest gene copy numbers (2-4*1011 g-1 sponge wet weight) were found for 

Geodia barretti, a sponge with active ammonia oxidizing archaeal 

communities as confirmed in a metatranscriptomic study (Radax et al., 

submitted). This number is 5 to 7 orders of magnitude higher than in Atlantic 

ocean waters (Karner et al., 2001; Wuchter et al., 2006; Mincer et al., 2007), 

and even 108 times higher than in the water column of the Eastern 

Mediterranean Sea (De Corte et al., 2009), highlighting the high density of 

microbes in sponges, and thus their potential influence on the marine 

ecosystem in areas with high abundance of these animals.  

The relative number of AOA was determined to be about 10% of the total 

microbial cell count in the outer cortex of Phakellia ventilabrum, indicating 

that also in this (low microbial abundance) species the ammonia oxidizers 

represent a considerable fraction of the sponge microbiota. 

 



2. Archaeal Nitrification in cold-water Sponges 

 - 52 - 

2.5.2 Nitrification rates of cold-water sponges 

Nitrification rates in P. ventilabrum varied greatly between the different 

experiments from 120 nmol cm-3 sponge day-1 in March to 1880 nmol cm-3 

sponge day-1 in July, while ammonium production appeared to be relatively 

stable (around 4000 nmol cm-3 sponge day-1). In all experiments with P. 

ventilabrum, nitrate production exceeded nitrite production; in November, 

nitrite was even consumed. The higher rates of both nitrification and 

ammonium production in summer in P. ventilabrum could be explained by a 

higher metabolic activity caused by increased food availability in deep 

waters, due to export production from the photic zone. Temperature is stable 

throughout the year at the sponge collection sites and also for all incubation 

experiments, and can therefore not explain the observed differences. 

However, more seasonal studies on cold-water sponges would be needed to 

confirm the observed trends.  

In all our incubation experiments throughout the year, sponges produced 

excess ammonium and only a small proportion of it was oxidized by 

nitrification. We therefore conclude that nitrification in cold-water sponges is 

never limited by the amount of available ammonium. In contrast to our 

study, Bayer and colleagues observed clear seasonal trends in the ammonium 

metabolism of Aplysina aerophoba, a Mediterranean shallow-water sponge 

(Bayer et al., 2008). While nitrification rates were mostly stable in all 

seasons, net ammonium consumption was observed in April. In ammonia 

stimulation experiments an up to 4-fold increase in nitrate production was 

observed indicating that nitrification in this Mediterranean sponge is limited 

by the availability of ammonium in spring, while it seems available in excess 

later during the year.  

Table 2.2 shows that nitrification rates of cold-water sponges are comparable 

to those of other sponge species investigated so far. While the highest rates of 

nitrification of tropical sponges exceeded rates of cold-water sponges, their 

lower rates are also within the range of those observed in our study. Notably, 

most of the studies – except Hoffmann et al. (2009) and Schläppy et al., (2010) 

– did not take into account possible nitrate loss by sponge denitrification. The 
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rates reported here are net nitrification rates; the unconsidered factor of 

denitrification may explain some of the observed variability of nitrification 

rates in the sponges, but in any case might rather lead to an 

underestimation. Interestingly, comparable nitrification rates were observed 

in another marine invertebrate, an ascidian colony from the Mediterranean 

Sea, in which archaea were also found. (Martinez-Garcia et al., 2008)  

Table 2.2. Overview of nitrification rates from different sponge species investigated and 
compared to seawater, sediment and another invertebrate 

Sponge species 
Marine area, 

depth 

nmol N cm-3 

day-1 

nmol N g-1 

dry wt h-1 
Reference 

P. ventilabrum, 
Antho dichotoma, 
Geodia barretti 

Norwegian 
coast,  

200-300m 

120-1880 24 - 376 this study, 
(Hoffmann et al., 

2009) 
Chondrosia 
reniformis, 
Dysidea avara 

Mediterranean 
Sea, shallow 

211 - 360  (Schläppy et al., 
2010) 

Aplysina aerophoba Mediterranean 
Sea, 2-15m 

 89 - 344 (Bayer et al., 2008) 

Agelas oroides, 
Chondrosia 
reniformis, 
Ircina oros, 
Aplysina aerophoba, 
Axinella polypoides 

Mediterranean 
Sea, 10-20m 

 180 - 780 (Jimenez and 
Ribes, 2007) 

Pseudoaxinella zeai, 
Chondrilla nucula, 
Plakortis 
halichondroides 

Carribean sea, 
shallow 

 30 - 2640 (Diaz and Ward, 
1997) 

Chondrilla nucula, 
Anthosigmella 
varians 

Carribean sea, 
shallow 

 19 - 600 (Corredor et al., 
1988) 

Southern 
Californian 

coast 

0.04 (*AO)  (Ward et al., 1982) 

Monterrey bay, 
13°C 

0.021-0.074  (O'Mullan and 
Ward, 2005) 

Seawater 

North pacific 0.001-0.137 
(*AO) 

 Dore and Karl, 
1996 

 North pacific 0.028-0.103 
(*AO) 

 Beman, 2011 

Ascidian colony tunic layer 
actively 

nitrifying 

240-2160  (Martinez-Garcia et 
al., 2008) 

Estuarine sediment   0.02-7.7 (Bernhard et al., 
2007) 

*AO = ammonium oxidation rates 
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In line with lower observed cell counts, reported nitrification rates in 

seawater and sediments are orders of magnitudes lower than rates measured 

from sponges (see Table 2.2). They range from about 0.001 to maximally 0.14 

nmol N ml-1 day-1 (Ward et al., 1982; Dore and Karl, 1996; O'Mullan and 

Ward, 2005; Beman et al., 2010).  

  

2.5.3 Phylogeny of microbes involved in nitrogen cycling 

indicates the presence of distinct ecotypes in sponges 

Microorganisms most probably responsible for nitrification processes in the 

investigated sponges were thaumarchaeota and members of the bacterial 

phylum Nitrospira.  

Archaea were affiliated to group I.1A, forming at least one sponge-specific 

sequence cluster based on 16S rRNA phylogeny (boxed in Fig. 2.3). Notably, 

in particular those sponges that exhibited highest nitrification rates and 

transcriptional activity, i.e. P. ventilabrum and G. barretti contained 

phylotypes of this sponge cluster. These organisms might be particularly 

adapted to life in the sponge habitat, e.g. to higher ammonia concentrations. 

Highest transcriptional activity of AOA of this cluster was observed in a 

metatranscriptomic study (Radax et al., in review). Additionally, all sponges 

contained archaeal phylotypes that were related to sequences from deeper 

and colder waters (upper part of tree in Fig. 2.3) indicating cold-adapted 

ecotypes. Nitrite-oxidizing bacteria of G. barretti, P. ventilabrum, A. 

dichotoma and some clones of Tentorium semisuberites were related to the 

earlier identified sponge-specific sequence cluster with other sponge-derived 

NOBs (reviewed in Taylor et al., 2007). Different from all other sponges T. 

semisuberites showed additional 16S rRNA sequences more closely related to 

N. moscoviensis and other sludge or sediment-derived sequences. In this 

sponge, there might be a variable microbial community due to microbe 

exchange with the surrounding sediments (Queric et al., 2008) as the sponge 

exhibits a partly buried lifestyle. Unlike earlier studies of this sponge from 

the Arctic in which the presence of high amounts of archaea were suggested 



2. Archaeal Nitrification in cold-water sponges 

 - 55 - 

(Pape et al., 2006), we found little archaeal presence in T. semisuberites and 

also un-reproducible nitrification rates. The microbial community of this 

species might be unstable and might change in composition and activity 

between different individuals, between specimen from different sampling 

sites or even within the same specimen over time.  

 

The quantitative dominance of amoA-encoding archaea over AOB in marine 

sponges with high nitrification activity has not been shown before. This 

successful symbiosis might be due to the adaptation of archaea to 

environmental constraints that their bacterial counterparts can possibly not 

cope with, like fluctuating oxygen and nutrient (ammonia) concentrations. 

Ammonium concentration in seawater may vary, dependent on the region 

and anthropogenic input in coastal areas, but are generally low. While we 

measured low ammonium concentrations (<500 nM) in the water column of 

the sampling site, high ammonium production rates (4000 nmol cm-3 sponge 

day-1, see Table 2.1.) might cause high ammonium accumulation within the 

sponge, especially in phases of non-pumping (Hoffmann et al., 2008). N. 

maritimus, an ammonia-oxidizing isolate of the Thaumarchaeota group I.1A, 

shows inhibited growth above 2 mM (=2000 nmol cm-3) (Martens-Habbena et 

al., 2009) and “Candidatus Nitrososphaera gargaensis”, a thermophilic 

ammonia-oxidizer is partially inhibited from 3080 nmol cm-3 on 

(Hatzenpichler et al., 2008). This might hint towards the presence of a 

specialized group of Thaumarchaeota in marine sponges, which are able to 

tolerate fluctuating ammonium concentrations.  

 

2.5.4 Spatial distribution of archaea in P. ventilabrum 

The abundance of Thaumarchaeota in P. ventilabrum was up to 100x higher 

in the uppermost 50 µm beneath the sponge surface than further into the 

interior (Fig. 2.6.b). The observed pattern might indicate that the balance 

between ammonium and oxygen availability is most favorable for archaea in 

the outermost 50 µm of this sponge. This may be especially important in 
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situations when the animal is not pumping water: in non-pumping sponges, 

oxygen is only available in the uppermost layer of the sponge due to diffusive 

flux over the sponge surface (Hoffmann et al., 2005a; Hoffmann et al., 2008). 

Due to the lack of ventilation, ammonium concentration may become too high 

inside the body of non-pumping sponges due to extensive ammonium 

excretion by the sponge cells (see above).  

 

2.5.5 Quantification of archaea and cell-specific nitrification 

rates in P. ventilabrum 

Assuming an average thickness of 1 mm of P. ventilabrum, the uppermost 

50 µm of a given sponge section would represent 10% of the sponge volume. 

An average archaeal number in P. ventilabrum can therefore be calculated 

from the CARD-FISH counts: 

2*107 cells cm-3 *0.90 + 3*109 cells cm-3 * 0.1  = 3.2 *108 cells cm-3 sponge. 

 

An average archaeal number can also be calculated from qPCR results of 

AOA amoA g-1 wet weight (Table S2.1.), assuming a single amoA gene copy 

per genome and cell (Hallam et al., 2006; Walker et al., 2010) and that 1.2 g 

wet weight corresponds to 1 cm3 sponge (see above).  

This reveals an average archaeal number of 4 * 109 cells cm-3 sponge, i.e. 

roughly 10-fold higher than the results obtained by FISH counts. However, it 

should be noted that very small portions of sponge were used for the DNA 

preparation and these were preferably taken from the outermost regions of 

the sponge body that contains more archaeal cells. Another explanation could 

be the different time of sampling for the two analyses: samples for CARD-

FISH were taken in October, while samples for qPCR were taken at the end 

of July – in a season where nitrification rates were 10x higher than in the 

rest of the year. It is therefore also possible that archaeal numbers are 10x 

higher in summer.  

 

For calculating cell-specific nitrification rates, we used the average numbers 
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obtained by CARD-FISH counts of 3.2 *108 cells cm-3 sponge. The lowest 

nitrification rate measured in March (0.12 µmol N cm-3 day-1) thus 

corresponds to a specific nitrification rate of 0.38 fmol N archaeal cell-1 day-1, 

while the highest nitrification rate obtained in July (1.88 µmol N cm-3 day-1) 

obtains a specific nitrification rate of 6 fmol N archaeal cell-1 day-1. Assuming 

a 10x higher number of archaea in summer, as amoA gene quantification 

might indicate, specific nitrification rates in July would be around 0.6 fmol N 

archaeal cell-1 day-1.  

Cell-specific nitrification rates in enrichment cultures of planktonic AOA 

were reported to be 2 and 4 fmol NH3 per archaeal cell day-1 at 22 and 25°C 

respectively (Wuchter et al., 2006) and in pure cultures 12.7 fmol N per 

archaeal cell day-1 (0.53 fmol N per N. maritimus cell hour-1, Martens-

Habbena et al., 2009). An in situ estimation of archaeal nitrification rates of 

in the North Sea was maximally 7 fmol of NH3 cell-1·day-1 (Wuchter, 2006), 

but might include sedimentary nitrification. It can therefore be concluded 

that the estimated activity of AOA in cold-water sponges at 13°C is similar to 

or slightly below AOA in seawater at higher temperatures. 
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2.6 Conclusions 

Our study indicates that archaea are the major drivers of ammonia oxidation 

and thus of nitrification in marine cold-water sponges and show high specific 

nitrification rates. Since sponges have been identified as important 

contributors to marine nitrogen cycling (Wilkinson, 1983b; Corredor et al., 

1988; Diaz and Ward, 1997; Hoffmann et al., 2009; Mohamed et al., 2009), 

sponge AOA may play an important and so far unrecognized role for nitrogen 

cycling in ocean regions with high abundance and biomass of sponges in both 

warm and cold waters. This contribution should be considered in current 

ocean biogeochemistry models.  
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2.9 Supplemetary Figures 

 
Figure S2.1. Rarefaction curves of 16S rDNA clone libraries of four cold-water sponges with 
OTU calculation thresholds of 99% (dark grey) and 97% (light grey). 
 

 
Figure S2.2. Clustering analysis of archaeal 16S rRNA, normalized abundance weights, 
1000 permutations. The scale shows the distance between clusters in UniFrac units: a 
distance of 0 means that two samples are identical, and the distances of 1 means that two 
samples contain mutually exclusive lineages. 
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2.10 Supplementary Tables  

 
Table S2.1. Number of archaeal and bacterial amoA gene copies in investigated sponges  

 AOA 

amoA 

copies µg-1 

NA (S.D.) 

AOB 

amoA 

copies µg-1 

NA (S.D.) 

AOA amoA 

copies g-1 

fresh weight 

(S.D.) 

AOB amoA 

copies g-1 

fresh weight 

(S.D.) 

AOA amoA 

copies rxn-1 

(S.D.) 

AOB amoA 

copies rxn-1 

(S.D.) 

GB1 2*108  

(2*107) 

< 10 2*1011  

(2*1010) 

< 10 1.5*106 

(2*105) 

< 10 

GB2 3*108 

(1.6*107) 

< 10 2*1011  

(1*1010) 

< 10 1.4*106 

(4*105) 

< 10 

Geodia 

barretti 

GB3 6*108  

(8*107) 

< 10 4*1011  

(5*1010) 

< 10 8*105  

(3*105) 

< 10 

PV1 7*106  

(4*105) 

< 10 2*109  

(1*108) 

< 10 n.d. <10 

PV2 1.5*107  

(2*106) 

2.8*103 

(6*102) 

5*109  

(6*108) 

7*104  

(2*104) 

1.8*104  

(1.8*103) 

<10 

Phakellia 

ventilabrum 

PV3 1.5*107  

(3.5*106) 

5.2*103  

(2*103) 

8*109  

(2*109) 

9.7*104  

(4*104) 

2.8*104 

(8.8*103) 

<10 

AD1 2.3*105 

(2*104) 

n.d. 1*108  

(9*106) 

< 10 1.1*102 

(1.8*102)  

n.d 

AD2 4.5*105) 

(6*104) 

1.8*104 

(1.8*103) 

1.4*108 

(2*107) 

4.8*106 

(4.7*105) 

n.d. 11.7  

(1.3). 

Antho 

dichotoma 

AD3 4.1*105 

(3*105) 

2.7*103 

(4.7*103) 

1.1*108 

(7.6*107) 

2.3*106 

(2*106) 

1.3*103 

(2.2*103) 

7.6  

(13). 

TS1 1.9*105 

(6.6*104) 

< 10 6.5*107 

(2.3*107) 

< 10 < 10 n.d Tentorium 

semi 

suberites TS2 9*105 

(1.3*105) 

not 

determined 

2.5*108 

(3.7*107) 

not 

determined 

4.7*102 

(1.6*102) 

not 

determined 

Abbreviations: <10, under 10 copies per 5ng NA or 2µl cDNA; n.d., not detected, unspecific amplification 

 

 

 

 

 

 



2. Archaeal Nitrification in cold-water Sponges 

 - 68 - 

 
Table S2.2. qPCR data quality 

 Geodia barretti P. ventilabrum Antho dichotoma T. semisuberites 

AOA 6x (100-107), e=92% 

y=-3.524x+41.14, 

r2=0.995 

6x (100-107), e=88% 

y=-3.659x+40.74; 

r2=0.994 

6x (100-107), e=92% 

y=-3.528x+34.51; 

r2=0.996 

4x (100-105), e=82%, *92% 

y=-3.862x+29.8; r2=0.997 

*y=-3.519x+42.54; r2=0.962 

AOB 6x (10-106), e=80,25% 

y=-3.908x+37.08; 

r2=0.991 

6x (103-108), e= 91% 

y=-3.573x+35.6; 

r2=0.993 

4x (10-104), e=92.5%,  

y=-3.516x+37.78; 

r2=0.985 

4x (10-104), e=94% 

y=-3.487x+25.83; r2=0.981 
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3.1 Abstract 

Marine sponges constitute major parts of coral reefs and deep-water 

communities. They often harbour high amounts of phylogenetically and 

physiologically diverse microbes, which are so far poorly characterized. Many 

of these sponges regulate their internal oxygen concentration by modulating 

their ventilation behaviour providing a suitable habitat for both aerobic and 

anaerobic microbes. In the present study, both aerobic (nitrification) and 

anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle 

were quantified in the sponge Geodia barretti and possible involved microbes 

were identified by molecular techniques. Nitrification rates of 566 nmol N cm-

3sponge day-1 were obtained when monitoring the production of nitrite and 

nitrate. In support of this finding, ammonia-oxidizing Archaea 

(thaumarchaeotes) were found by amplification of the amoA gene, and nitrite-

oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene 

analyses. Incubation experiments with stable isotopes (15NO3- and 15NH4+) 

revealed denitrification and anaerobic ammonium oxidation (anammox) rates 

of 92 nmol N cm-3 sponge day-1 and 3 nmol N cm-3 sponge day-1, respectively. 

Accordingly, sequences closely related to “Candidatus Scalindua sorokinii” 

and “Candidatus Scalindua brodae” were detected in 16S rRNA gene 

libraries. The amplification of the nirS gene revealed the presence of 

denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof 

of anammox and denitrification in the same animal host, and the first proof of 

anammox and denitrification in sponges. The close and complex interactions 

of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are 

fueled by metabolic waste products of the sponge host, and enable efficient 

utilization and recirculation of nutrients within the sponge-microbe system. 

Since denitrification and anammox remove inorganic nitrogen from the 

environment, sponges may function as so far unrecognized nitrogen sinks in 

the ocean. In certain marine environments with high sponge cover, sponge-

mediated nitrogen mineralization processes might even be more important 

than sediment processes. 
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3.2 Introduction 

Phylogenetically complex, yet highly sponge-specific microbial communities 

live in close association with numerous marine sponge species, sometimes in 

such high densities that sponges can be viewed as “microbial fermenters” 

(Hentschel et al., 2006). While our knowledge about the phylogeny of sponge 

microbes is increasing rapidly (Hentschel et al., 2002, 2003; Taylor et al., 

2007), many open questions remain concerning their metabolic functions and 

their possible interactions with the host. 

The role of associated microbes in nitrogen cycling in sponges has received 

particular attention.  Symbiotic cyanobacteria may contribute to the sponge 

nitrogen budget via fixation of atmospheric nitrogen (Wilkinson and Fay, 

1979). This was observed for shallow-water sponges in oligotrophic waters, 

for example in coral reefs. Usually, sponges ingest nitrogen with their food 

and excrete NH4+ as a metabolic end product (Brusca and Brusca, 1990), 

which can fuel microbial ammonia and nitrite oxidation. Nitrification rates 

based on the release of nitrite and nitrate have been reported from numerous 

tropical and temperate sponges (Diaz and Ward, 1997; Bayer et al., 2007; 

Jimenez and Ribes, 2007; Southwell et al., 2008). Additionally, 16S rRNA 

gene sequences of several clades of ammonia-oxidizing Gamma- and 

Betaproteobacteria and nitrite-oxidizing Nitrospira were recovered from 

sponges (Hentschel et al., 2002; Diaz et al., 2004; Bayer et al., 2007). 

Recently, the involvement of Marine Group I Thaumarchaea (Archaea) in 

ammonia oxidation has received particular attention, and their stable 

affiliation with numerous sponge species has been demonstrated (Preston et 

al., 1996; Margot et al., 2002; Lee et al., 2003; Schleper et al., 2005; Hallam et 

al., 2006b; Pape et al., 2006; Holmes and Blanch, 2007; Steger et al., 2008; 

Bayer et al., 2008). Archaeal symbionts can be transmitted vertically through 

the larvae (Sharp et al., 2007; Steger et al., 2008), implying an important role 

of this host-microbe-interaction. A fully sequenced genome of a potential 

archaeal ammonia oxidizer from the sponge Axinella mexicana. is available, 

and demonstrates the genetic potential for ammonia oxidation (Hallam et al., 
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2006a,b), as predicted earlier through metagenomics (Venter et al., 2004; 

Treusch et al., 2005). The isolation of an autotrophic, free living ammonia-

oxidizing marine crenarchaeote gave the final proof for the predicted 

metabolism (Könneke et al., 2005). 

Anaerobic processes of the nitrogen cycle have not been investigated in 

sponges so far. Until recently, sponge metabolism was viewed as being based 

on aerobic respiration, similar to metazoan respiration in general. Oxygen is 

usually supplied in excess to the sponge body through the water current 

created by the choanocytes (flagellated cells) (Reiswig, 1974). The remarkable 

ability of sponges to pump large amounts of water through their body has led 

to the assumption that permanent oxygen saturation exists within the sponge 

body. The application of oxygen-sensitive microelectrodes on different sponge 

species, however, showed remarkable oxygen deficiencies in the sponge 

matrix, as a consequence of reduced pumping activity (Gatti et al., 2002; 

Schönberg et al., 2004; Hoffmann et al., 2005a,b; Hoffmann et al., 2007; 

Schläppy et al., 2007). Sponges with a massive growth form that stop 

pumping become anoxic within 15 minutes; oxygen is only present in the first 

millimeter of the sponge surface, due to molecular diffusion (Hoffmann et al., 

2008). Fluctuating ventilation behaviour, as frequently observed for sponges 

both in the field and in cultivation (Reiswig, 1971; Vogel, 1977; Gerodette and 

Flechsig, 1979; Pile et al., 1997; Schläppy et al., 2007; Schläppy et al 

submitted), thus leads to fluctuating oxygen concentrations in sponges.  

Consequently, both aerobic and anaerobic microbial processes can be 

expected in sponges. However the only proof so far of an anaerobic microbial 

process in a sponge was the detection of microbial sulfate reduction in the 

cold-water sponge Geodia barretti, in line with anoxia in this species as 

observed with oxygen-sensitive microelectrodes (Hoffmann et al., 2005b). 

Bacterial denitrification, the anaerobic reduction of nitrate (NO3-) to nitrogen 

(N2), coupled to the oxidation of organic matter or reduced sulfur species, is a 

major sink for nitrogen in global nitrogen budgets, and most denitrification 

takes place in the seafloor (Middelburg et al., 1996). Recently, anaerobic 

ammonium oxidation (anammox), which combines NO2- and NH4+ to produce 
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N2, was discovered as an alternative pathway for the loss of inorganic 

nitrogen (Van de Graaf et al., 1995), and has so far been identified in a broad 

range of natural environments such as marine sediments (Thamdrup and 

Dalsgaard, 2002), oxygen minimum zones (Kuypers et al., 2005), anoxic 

fjords/basins (Dalsgaard et al., 2003; Kuypers et al., 2003) and in arctic sea 

ice (Rysgaard and Glud, 2004). Under certain environmental conditions, 

anammox can even exceed denitrification as the main N-loss process 

(Kuypers et al., 2005; Hannig et al., 2007). Molecular methods and stable 

isotope approaches allow exploration of both the presence and the activity of 

denitrifying and anammox bacteria in the environment. 

The presence of microbial denitrification and anammox in sponges has been 

hypothesized (Taylor et al., 2007) but neither the processes nor the microbes 

involved were detected until now.  

G. barretti, which is common in the North Atlantic shelf and slope area, is a 

sponge with high microbial abundance, hosting > 1010 microbes cm-3 

(Hoffmann et al., 2006). The detection of both anaerobic zones (Hoffmann et 

al., 2005a,b) and sulfate reduction (Hoffmann et al., 2005b), as well as the 

possibility to grow explants of this species in the lab (Hoffmann et al., 2003), 

make it a suitable candidate to explore the anaerobic nitrogen cycle in 

sponges. The aim of the present study is to quantify the aerobic (nitrification) 

and anaerobic (denitrification, anammox) processes of the microbial nitrogen 

cycle in G. barretti, and to identify the microbes that are potentially involved. 

 

3.3 Materials and methods 

3.3.1 Sponge sampling and explant culture 

Sponges were sampled near the city of Bergen on the west coast of Norway, 

between 100 and 200 m depth on a hard bottom slope in Korsfjord 

(60°09’12’’N; 05°08’52’’E) using a triangular dredge operated from the 

research vessel R/V Hans Brattstrøm. Since it is not possible to maintain 

whole specimens of G. barretti in the lab, explant cultures of sponge tissue 

were established: Cube- or cuboid-shaped fragments of 0.3 – 0.4 cm3 were cut 
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from the choanosomal part of freshly retrieved G. barretti and kept in half-

open cultivation systems with unfiltered seawater as previously described 

(Hoffmann et al., 2003): Sponge explants were placed on fine mesh plastic 

grids (3 mm mesh) with no artificial connection, allowing the entire surface to 

be in contact with the ambient water. Explants can be maintained up to one 

year (Hoffmann et al., 2003); tissue and skeleton regeneration, growth and 

even the production of egg cells was observed during cultivation. Within the 

first months of cultivation, explants of G. barretti have no canal system and 

can not pump water through their body. Most of the animal is anoxic, except 

a surface layer of 1 mm where oxygen enters the sponge by molecular 

diffusion (Hoffmann et al., 2005a). Thus, explants of G. barretti reflect 

conditions of both pumping (oxic) and non-pumping (anoxic) sponges and are 

useful model organisms to investigate aerobic and anaerobic processes in 

sponges.  

 

3.3.2 Incubation experiments 

3.3.2.1. NH4+ incubation – nitrification 

Explants, which had been cultivated for 5 months and showed a visually 

healthy appearance, were used for the experiments. For the nitrification 

experiment, 2 explants of 0.3 – 0.4 cm3 (total sponge volume: 0.7 – 0.8 cm3) 

were placed in 500 ml natural, unfiltered sea water from 200 m depth 

amended with 12µM NH4+. Three parallel incubations and one control (sea 

water without sponge) were used. Beakers with air bubblers and magnetic 

stirrers were placed in a temperature-controlled room at 15°C (same as used 

for explant cultures) in the dark. Water samples were taken over a time 

course of 48 hours and immediately frozen at -80°C until nutrient analyses 

were carried out. Ammonium and phosphate concentrations were determined 

with a Scalar Continuous-Flow-Autoanalyzer using the chemistry described 

by (Grasshoff, 1983). Nitrite and nitrate were analysed with a 

chemoluminescence NOx analyzer (Thermo Environmental Instruments Inc, 

USA).  
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3.3.2.2. 15N incubations - denitrification and anammox 

The denitrification process combines two NO3- ions to form one molecule of 

N2. When 14NO3- is present in addition to the added 15NO3-, denitrification 

produces 14N14N, 14N15N and 15N15N through random isotope pairing. The 

anammox process, in contrast, combines one NO2- and one NH4+ ion, which 

result in the production of 14N14N or 14N15N in incubation experiments with 

15NO3-, but no production of 15N15N (Thamdrup and Dalsgaard, 2002). 

For 15N incubations we slightly modified a previously published method 

(Dalsgaard et al., 2003; Hannig et al., 2007). Sponge explants of 0.3 -0.4 cm3 

(average 0.35 cm3) were incubated in gas-tight 12.5 ml glass vials (Labco 

exetainer, Labco Limited, UK) completely (bubble-free) filled with natural 

seawater. Seawater was amended with 10µM 15NO3- (14NO3- background: 8.2 

µM) for the denitrification experiment and 10µM 15NH4+ + 2µM 14NO2- 

(background: 0.4 µM NH4+, 0.3 µM NO2-) for the anammox experiment. 

Respiration rates of sponge explants (9 µmol O2 cm-3 sponge day-1 (Hoffmann 

et al., 2005a) depleted 90% of the initial oxygen concentration (280µM) in the 

exetainers during the 24 h of the experiment. Biological activity was stopped 

at 0, 3, 6, 12 and 24 hours by adding 150µl of saturated HgCl2 solution. A 

headspace of 2 ml of He gas was added to trap the produced N2. 1-2 replicates 

and 2 controls (sea water without sponge) were sampled per time point. To 

avoid any leakage of gas, samples were stored upside-down at room 

temperature until analyses. The isotope ratio (14N14N, 14N15N, and 15N15N) of 

the headspace nitrogen was determined by gas chromatography-isotopic ratio 

mass spectrometry by direct injections from the headspace according to 

(Kuypers et al., 2005). The concentrations of the produced 14N15N and 15N15N 

were assessed as excess relative to air and the N2 production rates were 

calculated from the slope of increase (Nielsen, 1992; Thamdrup and 

Dalsgaard, 2002; Risgaard-Petersen et al., 2003). 
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3.3.3 Molecular and phylogenetic analyses of sponge 

microbes 

3.3.3.1. DNA extraction 

For anammox bacterial 16S rRNA gene libraries, as well as for microbial 

community patterns, samples of freshly collected G. barretti were 

immediately fixed in 99% ethanol, washed once in 99% ethanol, and frozen at 

-20°C. Prior to DNA extraction, the sponge material was ground with mortar 

and pestle, and left at room temperature for several minutes to evaporate the 

ethanol. DNA was extracted using the Fast DNA spin kit for soil (BIO 101) 

according to the manufacturer’s instructions. For construction of gene 

libraries containing 16S rRNA genes of Nitrospira, amoA genes of archaea 

and nirS genes of bacteria, samples of freshly harvested G. barretti were fixed 

in liquid nitrogen directly on the boat and frozen at -80°C until DNA 

extraction with phenol-chloroform was performed as described before 

(Leininger et al., 2006). 

 

3.3.3.2. Microbial community patterns obtained by ARISA 

Since DNA for the molecular studies was obtained from freshly sampled G. 

barretti, while cultivated sponge explants were used for the physiological 

experiments, it was necessary to check if explants and wild sponges contain 

similar microbial communities. The high-resolution molecular fingerprinting 

technique ARISA (Automated rRNA intergenic spacer analysis) was used for 

this comparison. DNA of 3 freshly sampled Geodia barretti, of two explants 

which had been used for the nitrification experiments (2 independent DNA 

extractions per explant), and of 5 explants that died during cultivation and 

showed obvious signs of decay (black colour, bad smell) was extracted as 

described above. Comparison with the microbial community of dead explants 

was done to provide an additional proof that experimental explants were 

viable and healthy; this is not always obvious in explant cultures which lack 

an aquiferous system and thus can not pump (Hoffmann et al. 2005a). 

Universal bacterial ARISA was performed in triplicate using the primers 

ITSF and the HEX-labelled ITSReub (Cardinale et al., 2004). ARISA-PCR, 
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fragment analysis and processing of ARISA profiles was performed as 

described elsewhere (Böer et al., 2009). Non-metric multidimensional scaling 

(nmds, Chord distance) was performed with the PAST data analysis package. 

Testing for significant differences between distinct sample groups (field 

sponges, experimental explants, dead explants) was done by non-parametric 

analysis of similarities (ANOSIM) in PAST. 

 

3.3.3.3. Construction of clone libraries  

In order to obtain 16S rRNA gene sequences from putative anammox 

bacteria, we constructed four clone libraries using primers with different 

specificities. The first clone library was constructed with the planctomycete 

specific primer PLA46F (Neef et al., 1998) and with BS820R targeting the 

anammox bacteria “Cand. Scalindua wagneri” and “Cand. Scalindua 

sorokinii” (Kuypers et al., 2003).  For the second clone library we used 

PLA46F in combination with Amx820R (Schmid et al., 2000), which targets 

the anammox bacterial genera “Cand. Brocadia” and “Cand. Kuenenia”. The 

third clone library was constructed with the primer Amx368F that should 

target all anammox bacteria (Schmid et al., 2003) and the universal primer 

1392R (Stahl et al., 1988). For the fourth clone library we used the 

planctomycete-specific primer PLA46F and the universal primer 1392R in 

order to target all planctomycetes. 34 PCR cycles were used for amplification 

with the first and the third primer set, 33 cycles for the second primer set and 

26 cycles for the fourth primer set. All PCR reactions were conducted in 12 

replicates, the replicates were pooled and the pooled PCR products were 

cloned. Preparative gels ensured cloning of PCR products of the correct size.  

PCR reactions were purified using the QIAquick Gel Extraction Kit 

(QIAGEN, Hilden, Germany), prior to cloning with TOPO TA Cloning kits for 

sequencing with vector pCR4 (Invitrogen Corporation, Carlsbad, CA, USA) 

according to the manufacturer’s instructions. Clones were screened by PCR 

for inserts of correct size and these were sequenced with the Big Dye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Darmstadt, 

Germany).  



3. Nitrogen cycling in G. barretti 

 - 78 - 

16S rRNA genes of Nitrospira were amplified with the universal primer 616V 

(Juretschko et al., 1998) and the Nitrospira-specific primer 1158R (Maixner et 

al., 2006). Amplification of archaeal amoA genes was performed with primer 

set 19F (Leininger et al., 2006) and 643R (Treusch et al., 2005) and 

amplification of nirS genes was achieved with primers nirScd3AF (Michotey 

et al., 2000) and nirSR3cd (Throbäck et al., 2004), using touchdown PCR 

conditions (Braker et al., 1998) in combination with GoTaq Polymerase 

(Promega Corporation, Madison, WI). The respective amplicons of three 

sponge individuals were cut out from a low-melting agarose gel and were 

pooled for cloning with the TOPO TA cloning
® 

kit (Invitrogen Corporation, 

Carlsbad, CA, USA) following the manufacturer’s instructions. Clones were 

screened for inserts of correct size and these were sequenced with the Big Dye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Darmstadt, 

Germany). 

 

3.3.3.4. Phylogenetic analysis 

16S rRNA sequences of anammox bacterial clone libraries were edited with 

the Sequencing Analysis Software (Applied Biosystems) and analysed for 

their closest relatives using the ARB 16S rRNA gene database (Ludwig et al., 

2004) and BLAST (Altschul et al., 1997). Sequences of about 800 base pair 

length were assembled from individual reads with the Sequencher v4.6 

software (Gene Codes Corporation, Ann Arbor, USA).  

The 16S rRNA gene sequences were checked for the presence of chimeric 

sequences by using the CHIMERA_CHECK program from RDP II (Cole et al., 

2003) and imported into the ARB 16S rRNA gene database. Phylogenetic 

analyses of the 16S rRNA sequences were made using distance matrix, 

maximum parsimony, and maximum likelihood algorithms in ARB with and 

without 50% variability filters. Consensus trees were constructed thereafter.  

16S rRNA sequences related to Nitrospira were edited and analysed using 

the ARB program package (Ludwig et al., 2004) after proofreading and were 

combined with the sponge symbiont database (Taylor et al., 2007). Sequences 
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with high similarity to G. barretti-derived sequences were identified by 

BLAST searches and were also imported into ARB. A consensus tree, based 

on three different treeing methods (neighbor joining, maximum likelihood 

and maximum parsimony) was constructed including relevant reference 

sequences and other available sponge-derived 16S rRNA sequences. 

Amino acid sequences of ammonia-monooxygenase (AmoA) and dissimilatory 

nitrite reductase (NirS) were also edited and analyzed in ARB. Databases for 

both genes were generated by importing sequences from NCBI, after BLAST 

searches using G. barretti-derived sequences were performed. Fitch trees 

(Fitch and Margoliash, 1967) were calculated in PHYLIP and imported into 

ARB for further formatting and the addition of shorter NirS sequences. 

Sequence identities were calculated using the similarity function of the 

distance matrix algorithm in ARB. Anammox bacteria-related 16S rRNA 

gene sequences, 16S rRNA gene sequences for Nitrospira, AmoA and NirS 

sequences are available in GenBank under accession numbers FJ230205-

FJ230287. 

 

3.4 Results 

3.4.1 Nitrification, denitrification and anammox rates 

For nitrification measurements, small sponge explants were incubated in 

ammonium-amended natural seawater under aerobic conditions and 

ammonium, nitrite and nitrate concentrations were monitored over a time 

course of 48 hour.  Figure 3.1a shows the production of NO3- and NO2- per cm-

3 sponge as an average of 3 replicate experiments. The amount of NO3- and 

NO2- production in a control incubation (without sponge) has been deducted 

from these values. Ammonium consumption exceeded production in the first 

24 hours, while after that, net production of ammonium was observed (Fig. 

3.1b). Ammonium depletion was also observed in the control incubation 

without sponge, which indicates algal growth during the experiment. Though 

we do not know to which extend the bottle effect of unwanted algal growth 
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may have masked some of the turnover of inorganic nitrogen, it is obvious 

that (1) the sponge-microbe system was always supplied with NH4+ in excess 

and (2) both nitrite and nitrate production was observed in all sponge 

treatments. A total net nitrification rate of 566 nmol N cm-3 sponge day-1 was 

calculated from the linear slopes of increase of NO3- and NO2- production as 

presented in Fig. 3.1a. 

 
Figure 3.1. Incubation of G. barretti explants with 12 µM NH4+: production/ consumption of 
ammonium, nitrite and nitrate per cm-3 sponge as average water concentrations in 3 
replicate incubations minus concentration in control incubation at a given time point. Nitrite 
and nitrate were produced during the experiment. A net nitrification rate of 566 nmol N cm-3 
sponge day-1 was revealed by the linear slope of increase (a). Ammonium consumption 
exceeded production in the first 24h of the experiments, thereafter, a net production of 
ammonium was observed (b).  
 

Production of N2 as an end product of denitrification and anmmox was 

examined by incubating sponge pieces in gas-tight glass vials filled with 

natural seawater. Seawater was amended with 10µM 15NO3- (14NO3- 

background: 8.2 µM) for the denitrification experiment and 10µM 15NH4+ + 

2µM 14NO2- (background: 0.4 µM NH4+, 0.3 µM NO2-) for the anammox 

experiment. Linear production of both 14N15N and 15N15N was observed in the 

15NO3- incubation (Fig. 3.2a). We assume that denitrifiers were not nitrate 

limited: The small diameter of the sponge explant and the high natural 

14NO3- concentration of 8 µmol/l allowed a fast diffusive transport that 

exceeds the denitrification rate. Therefore, the rates of 28N2, 29N2 (corrected 

for the 29N2 rate of the anammox experiment, see below) and 30N2 production 

were used to calculate a total denitrification rate of 92 nmol N cm-3 sponge 

day-1.  

The source of 14NO3- used for denitrification is either the ambient water (8 

µmol/l of 14NO3-) or 14NO3- produced via nitrification in the sponge. The 
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sources can be distinguished by comparing the ratio of labelled and 

unlabelled NO3- in the ambient water with the ratio calculated from the 29N2 

and 30N2 production (Nielsen, 1992).  

Of 49 nmol 14NO3- cm-3 sponge day-1used for denitrification only 26% can be 

attributed to coupled nitrification-denitrification whereas 74% derived from 

14NO3- in the ambient water. 

In 15NH4+ + 14NO2- incubations, a linear production of 14N15N, but no 

production of 15N15N was observed (Fig. 3.2b). This indicates the process of 

anammox and an anammox rate of 3.0 nmol N cm-3 sponge day-1 was 

calculated. Since no lag phase in the production of 14N15N could be observed, 

coupled nitrification-denitrification of 15NH4+ can be neglected, and the 

observed 14N15N production must be due to anammox. 

 

Figure 3.2. Incubation experiments with linear production of 14N15N and 15N15N from 15NO3- 
indicating denitrification (a), and 14N15N from 15NH4+ + 14NO2- indicating anammox (b).  
 

3.4.2 Microbial community patterns in freshly sampled and 

cultivated sponges 

ARISA (Automated rRNA intergenic spacer analysis) and statistical analyses 

were used to compare microbial communities in samples of sponge explants 

(used for the incubation experiments) to those of freshly sampled G. barretti 

sponges (used for the molecular studies). Nmds (Non-metric 

multidimensional scaling) – plots and ANOSIM (non-parametric analysis of 

similarities) of ARISA results showed that sponge explants and fresh sponges 

had overlapping community patterns. An R-value of 0.29 (p<0.001) was 

obtained by R test statistic measures. R values > 0.75 are commonly 
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interpreted as well separated, R>0.5 as separated, but overlapping, and 

R<0.25 as barely separable (Ramette, 2007). In contrast, microbial 

communities of explants used for the experiments were well separated from 

dead explants (R = 0.75, p<0.001). It can thus be concluded that explants that 

were used for the experiments were alive and healthy, and contained 

microbial communities that were similar to those in freshly sampled G. 

barretti. 

 

3.4.3 Identification of microbes involved in nitrogen cycling 

3.4.3.1. Ammonium monooxygenase of archaea  

The presence and diversity of archaea potentially involved in ammonia 

oxidation was analysed by targeting the amoA gene in PCR-based studies. 

AmoA encodes an archaeal homologue of subunit A of the ammonia 

monooxygenase enzyme. The homologous enzyme in bacteria has been shown 

to catalyze the transformation from ammonia to hydroxylamine, the first step 

in ammonia oxidation. The deduced amino acid sequences of 38 cloned PCR 

products of archaea obtained from G. barretti formed a specific, monophyletic 

cluster, which was stable with four treeing methods (neighbor joining, 

maximum parsimony, maximum likelihood, fitch). Although the phylogenetic 

classification of other marine AmoA sequences cannot be unambiguously 

resolved (see Fig. 3.3) the G. barretti cluster was clearly affiliated to the 

crenarchaeotal marine group and together with these was separated from the 

second major group of archaeal AmoA sequences mostly derived from soils 

(100 % bootstrap support). Similarities of G. barretti -derived amino acid 

sequences to those of “Candidatus Cenarchaeum symbiosum” ranged from 

93.3 to 94.4% and to those of Nitrosopumilus maritimus from 92 to 93.2% 

(both on amino acid level). The closest related sponge-derived sequence was 

from Chondrosia reniformis with a similarity of 95.6%. 
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Figure 3.3. Phylogenetic tree based on archaeal AmoA sequences of ammonia-oxidizing 
archaea showing the placement of AOA associated with the marine sponge Geodia barretti 
(bold and framed) within the thaumarchaeal group of mostly marine sequences. In this group 
are also numerous other sponge-derived sequences (bold) and the AmoA sequence from 
“Cand. Nitrosopumilus maritimus”, a known ammonia-oxidizing archaeon. 200 amino acids 
were used for tree construction and parsimony-based bootstraps values are given. Filled 
circles indicate ≥90% bootstrap support and blank circles indicate ≥70% bootstrap support. 
The scale bar indicates 5% sequence divergence. Tree is rooted with a second group of AmoA 
sequences of Crenarchaeota that mostly stem from soils and sediments.  The tree was 
constructed from a distance matrix using the Fitch-Margoliash algorithm. 

 

Intracluster similarities, i.e. differences between Geodia barretti-derived 

sequences only, were 99.38 -100%. PCR amplifications of bacteria-derived 

amoA genes were often at the detection limit, indicating far lower amounts of 

bacterial ammonia oxidizers (not shown). These results were confirmed by 

metatranscriptomic studies and quantitative PCR data in which amoA genes 

of archaea outnumbered by three to six orders of magnitude amoA genes of 

bacteria in different sponge individuals, both on cDNA and on DNA level 

(Radax et al., in review). Therefore, a gene library of bacterial amoA genes 

was not constructed. 

 

3.4.3.2. 16S rRNA genes of nitrite oxidizing bacteria (NOB)  

To assess the presence and diversity of potential nitrite oxidizers in Geodia 

barretti, a 16S rRNA gene library with primers specific for the phylum 

Nitrospira was constructed. The produced amplicons were approximately 

1100 nucleotides in length. Phylogenetic analysis of 20 genes suggested the 
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presence of sponge-specific nitrifiers from the phylum Nitrospira (Fig. 3.4) 

with 87.3-91.4% identity to the Nitrospira marina 16S rRNA gene and 84.2 to 

87.5% identity to the N. moscoviensis 16S rRNA gene. The nearest full length 

sequence derived from a sponge (AJ347039) had an identity of 98.6-98.9% to 

the G. barretti-derived sequences. G. barretti-derived clones formed an 

internal monophyletic group within this cluster with parsimony-bootstrap 

support of 95%. The 16S rRNA similarity range within the G. barretti group 

was 95.3 to 99.7 % and within the sponge-cluster it was 92.8 to 99.7 %. 

 
Figure 3.4. Consensus tree based on 16S rRNA gene sequences affiliated to the phylum 
Nitrospira, recovered from the marine sponge Geodia barretti. Sponge-derived sequences are 
highlighted in bold and sequences from this study have an additional frame. The tree shown 
is based on neighbor joining, maximum likelihood and maximum parsimony treeing methods. 
Branches not unambiguously resolved by different treeing methods are indicated by 
polytomies. Short sequences were added using the Parsimony insertion tool from ARB after 
tree calculation and are indicated with a dashed line. The dashed box depicts a sponge-
specific monophyletic sequence cluster including one coral-derived sequence. Filled circles 
indicate ≥ 90% bootstrap support and open circles indicate ≥ 75% parsimony-bootstrap 
support. The scale bar indicates 10% 16S rRNA sequence divergence. The outgroup (not 
shown) consisted of 16S rRNA sequences of several other bacterial phyla. 
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3.4.3.3. 16S rRNA genes of anaerobic ammonium oxidizing 

(anammox) bacteria  

Based on the process measurements we concluded that another group of 

microbes involved in the nitrogen cycling in G. barretti should be the 

anaerobic ammonium oxidizing (anammox) bacteria. Four different primer 

combinations were used to amplify the 16S rRNA genes of putative anammox 

bacteria: PLA46F/ BS820R, PLA46F/Amx820R, Amx368F/1392R, and 

PLA46F/1392R. Only the primer combination PLA46F and BS820R was 

successful in retrieving 6 gene sequences related to anammox bacteria, the 

rest of the sequences of this clone library were related to the candidate 

phylum Poribacteria. Poribacteria related sequences were also retrieved with 

the primer pairs PLA46F/Amx820R and PLA46F/1392R. The clone library 

with primers Amx368F and 1392R produced sequences related to the phylum 

Acidobacteria. Of the six anammox bacterial sequences retrieved with 

primers PLA46F and BS820R (Fig. 3.5), 5 sequences (clones 2G8_1, 2G8_6, 

2G8_7, 2G8_8 and 2G8_12) were almost identical to each other (sequence 

identity of 99.8 to 100%). Based on these calculations with full length 

anammox bacterial sequences they were most closely related to a sequence 

from Barrow Canyon sediment (Alaska, DQ869384, 97.5% sequence identity), 

whereas the sequence identity with “Candidatus Scalindua sorokinii” and 

“Candidatus Scalindua brodae” (Kuypers et al., 2003; Schmid et al., 2003; 

Schubert et al., 2006) was only ~95%. One sequence (clone 2G8_47) showed 

only 96% sequence identity to the former cluster of anammox bacterial 

sequences from G. barretti and was more closely related to “Candidatus 

Scalindua sorokinii” and “Candidatus Scalindua brodae” (~98% sequence 

identity). The highest sequence identity was observed with amplified gene 

fragments from the Peruvian upwelling system (Woebken et al., 2008) (98.3%, 

e.g. clones Peru_23, Peru_54 and Peru_88 of the Peruvian OMZ sea water 

cluster I).  
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Figure 3.5. Phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic 
affiliation of the anammox bacterial sequences retrieved from G. barretti (bold, framed). The 
consensus tree was constructed based on maximum likelihood, neighbor joining and 
maximum parsimony trees, calculated without and with 50% position variability filters using 
other cultured and uncultured planctomycete-sequences as outgroup (not shown in tree). The 
bar represents 10% estimated sequence divergence. 

 

3.4.3.4. Cytochrome cd1 nitrite reductase (nirS) of bacterial 

denitrifiers  

The denitrification rates measured in Geodia barretti implied the presence of 

denitrifying organisms. Since this metabolic capacity is spread between 

species of different bacterial phyla, we attempted to amplify genes encoding 

the key metabolic enzyme of this process, i.e. the dissimilatory nitrite 

reductase. Two unrelated forms of this enzyme exist, the copper-dependent 

enzyme, NirK, and the cytochrome cd1 nitrite reductase, NirS. Several 

attempts to amplify nirK genes from Geodia barretti failed, as only PCR 

products of unexpected size were obtained. Nevertheless, 20 potential 

candidate genes obtained with nirK1F and nirK5R (Braker et al., 1998) under 

conditions of low stringency, were sequenced, but as expected were no nirK 
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genes. Similarly, the use of the same reverse primer in combination with the 

forward primer nirK583F (Santoro et al., 2006) resulted in no products. In 

contrast, we were able to amplify bacterial nirS genes encoding the 

cytochrome cd1 nitrite reductases of bacterial nitrifiers. Thirteen out of 19 

NirS sequences were related to NirS of Thauera mechernensis with 99.2 to 

100% amino acid sequence identity and the second group with 6 sequences 

had 89 to 90.6% sequence similarity to NirS of Pseudomonas stutzeri and 91.3 

to 92.9% sequence identity to NirS of Alcaligenes faecalis on the protein level 

(Fig. 3.6). 

 
Figure 3.6. Phylogenetic Fitch tree based on bacterial NirS protein sequences showing the 
distribution of denitrifying organisms associated with Geodia barretti (bold and framed). The 
tree was calculated based on sequences with 192 amino acids, whereas short sequences (139 
amino acids) were added via the parsimony interactive tool and are indicated by a dashed 
line. Filled circles indicate ≥90% and blank circles indicate ≥70% bootstrap support. The 
scale bar indicates 10% sequence divergence. The tree is rooted with Roseobacter 
denitrificans.  
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3.5 Discussion 

3.5.1 Nitrification, denitrification and anammox rates in 

sponges 

Both, anammox and denitrification are important processes for nitrogen 

cycling in virtually all habitats on Earth, as they remove nitrogen from the 

environment and recycle it back to the atmosphere. While denitrification in 

other invertebrates was described recently (Stief et al., 2009), our study 

represents the first indication for anammox to occur in an animal and shows 

that both nitrification, denitrification and anammox can occur 

simultaneously in one sponge individual. Rates for nitrification, 

denitrification and anammox were quantified and putative involved microbes 

identified. Under suboxic and micro-oxic conditions as in G. barretti explants, 

these aerobic and anaerobic processes can apparently happen at the same 

time, as recently described for the suboxic zone of Black Sea sediments (Lam 

et al., 2007). Our bulk nitrification rate (566 nmol N cm-3 day-1) must thus be 

considered as a net rate, since part of the products are used to fuel 

denitrification and anammox. As pointed out in the results section, 26% of the 

nitrate used for denitrification (denitrification rate: 92 nmol N cm-3 day-1) 

stem directly from nitrification. Adding this amount to the net nitrification 

rate reveals a total nitrification rate of 582 nmol N cm-3 day-1. Similarly, the 

calculated anammox rate is a conservative estimate, since alternatively to the 

15NH4+ added, the microbes could use unlabelled NH4+ as a substrate which is 

continuously excreted by the sponge. This would result in the production of 

unlabelled N2, which would not be detected with our analysis method and 

thus is not attributed to the calculated anammox rate.  

We also observed nitrification and denitrification in a parallel study with two 

Mediterranean sponges (Schläppy et al., 2011). In Dysidea avara, net 

nitrification was 218 nmol N cm-3 day-1 while denitrification was 242 nmol N 

cm-3 day-1; in Chondrosia reniformis, nitrification was 319 and denitrification 

360 nmol N cm-3 day-1. Compared to the present study, nitrification rates 

were lower while denitrification rates were higher in the Mediterranean 
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sponges. Anammox was under the detection limit (Schläppy et al., 2011). 

These results show that complex nitrogen cycling processes as we observed in 

G. barretti may be common in sponges, but rates may be variable in different 

sponge species. It will be important to investigate the activity in further 

species to obtain a broader view on the significance of these processes in these 

and other animals. 

Besides our studies, there are no other reports on denitrification or anammox 

rates in sponges, whereas nitrification has been reported. The net 

nitrification rate we observed in G. barretti (566 nmol cm-3 day-1; approx. 

196 nmol g-1 dry wt h-1, assuming a sponge water content of 90%), is within 

the range of nitrification rates reported for Mediterranean sponges (89 – 1325 

nmol g-1 dry wt h-1 (Bayer et al., 2008); 180 – 780 nmol g-1 dry wt h-1 (Jimenez 

and Ribes, 2007) as well as tropical sponges (30 – 2650 nmol g-1 dry wt h-1, 

Diaz and Ward, 1997). It is also within the range of nitrification rates 

reported from other benthic animals (3 - 1020 nmol g-1 dry wt h-1) and it is 

orders of magnitude above nitrification rates of estuarine sediments (0.02 – 

7.7 nmol g-1 dry wt h-1 Bernhard et al., 2007). 

Rates of anammox have not been reported from animal hosts so far. The rate 

we found in the sponge G. barretti (3 nmol N cm-3 sponge day-1) is at least one 

order of magnitude higher than pelagic anammox rates (0.02-0.38 nmol ml-1 

day-1, Kuypers et al., 2003; Kuypers et al., 2005; Hannig et al., 2007).  

Denitrification rates of microbes dwelling in the guts of benthic invertebrates 

(insects, mollucs and shrimps) range between 7 and 38 nmol N ind-1 day-1, 

which equals 29 – 365 nmol cm-3 day-1 (Stief et al., 2009), and are thus 

comparable to denitrification rates we found in G. barretti.  

 

3.5.2 Microbial community patterns in freshly sampled and 

cultivated sponges 

ARISA analysis showed that healthy explants kept in the laboratory 

contained similar communities of microbes as wild G. barretti. This is 

consistent with a previous FISH (fluorescence in situ hybridization) study 
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targeting the main groups of the microbial community of G. barretti during 8 

months of cultivation. Hoffmann and co-workers (2006) showed that the 

respective microbial groups were stable throughout several months of 

cultivation; while aberrant microbes occurred during the first days.  

Microbial processes observed in healthy explants as monitored in this study 

can thus also be expected in complete sponges; and vice versa, the microbial 

sequences that we recovered from freshly sampled sponges should also be 

present in the explants. A more extensive study on the microbial community 

patterns of G. barretti investigating specimens from different sampling sites 

and seasons using ARISA and DGGE (denaturing gradient gel 

electrophoresis) revealed a species-specific microbial community in G. barretti 

(F. Hoffmann, S. Fortunato, unpublished). Moreover, these studies showed 

that the microbial community of G. barretti was very close to that of other 

sponge species of the family of Geodiidae; indicating that the complex 

nitrogen cycling processes described here may be found in many or even all 

sponges of the Geodiidae family.  

 

3.5.3 Phylogeny of microbes involved in nitrogen cycling 

We used PCR-based studies to screen specifically for microorganisms 

potentially responsible for nitrification, denitrification and anammox 

processes in the sponge G. barretti. The Nitrospira found in G. barretti and 

other sponge species formed a sponge-specific sequence cluster within the 

Nitrospira marina-related group (Hentschel et al., 2002; Taylor et al. 2007). 

The ammonia-oxidizing archaea found in G. barretti were closely related to 

other sponge-derived sequences within the group of Thaumarchaeota, mainly 

consisting of marine sequences. A prevalence of archaeal versus bacterial 

amoA genes as obtained by quantitative PCR as well as whole genome 

transcription patterns of the microbial communities in Geodia barretti (Radax 

et al, submitted) indicate that the ammonia oxidation we observed in G. 

barretti is most likely driven by the activity of archaea. In total, the 

phylogenetic analyses imply that sequences of G. barretti -associated 
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nitrifiers (AOA and Nitrospira) form monophyletic sequence clusters. This 

indicates a long-term stable association and/or adaptation of the microbes to 

their host sponge, which lives in environmental conditions notably different 

from that of shallow water sponges in tropical and temperate areas, i.e. cold 

water, darkness and high pressure. Anammox bacteria sequences derived 

from G. barretti were most closely related to the “Candidatus Scalindua” 

branch, like most other marine anammox bacteria sequences. The recovery of 

two groups of genes potentially encoding cytochrome cd1-type nitrite 

reductases (NirS) suggests that the denitrification activity, as measured in 

the sponge, is most probably performed by more than one group of bacteria. 

Based on sequence distributions the most likely denitrifying population to be 

specifically associated with Geodia could be related to the Thauera group (see 

Fig. 3.6).  Clear phylogenetic assignments based on the nirS gene are not 

possible as horizontal gene transfer (HGT) occurs frequently and can lead to 

wrongly assigned taxa (Braker et al., 1998). From cultivation studies it is 

known that organisms harboring the nirS gene are most prevalent in the 

Betaproteobacteria (Heylen et al., 2006). In our study we have found two 

clusters, one related to sequences from Betaproteobacteria, and another 

cluster related to sequences of Beta- and Gammaproteobacteria as well as a 

short Bacteroidetes-related sequence. Since this study provides the first 

phylogenetic analysis for denitrifying and anammox bacteria from a marine 

sponge, we cannot assign any group as being sponge-specific. It is worth 

noting in this context that a common alphaproteobacterial associate of 

marine sponges (Hentschel et al., 2001; Webster and Hill, 2001; Enticknap et 

al., 2006) was found to be very closely related to the marine denitrifier 

Pseudovibrio denitrificans, and that at least some of these sponge-derived 

strains had tested positive for denitrification (Enticknap et al., 2006). 
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3.5.4 Function and effects of complex nitrogen cycling in 

sponges 

It seems obvious that autotrophic partners such as nitrifying microbes may 

provide an additional source of carbon for the sponge. The exact nature of 

metabolic exchange between the respective partners is not well understood 

yet; however, direct feeding of sponge cells on associated microbes is well 

described (Wilkinson and Garrone, 1980; Ilan and Abelson, 1995; Vacelet et 

al., 1996) and we made similar observations by transmission electron 

microscope investigation of G. barretti (F. Hoffmann, not shown). The ratio of 

carbon fixation to nitrification by bacterial ammonium and nitrite oxidizers is 

approximately 1 mol of CO2 for every 9 mol of NH4+ oxidized to NO3- (Feliatra 

and Bianchi, 1993). Thus, nitrification rates of G. barretti (582 nmol cm-3 day-

1, regarding nitrate lost by denitrification) allow the nitrifying community in 

sponges to fix up to 64 nmol CO2 cm-3 sponge day-1. Differences in carbon 

fixation mechanisms of archaeal ammonia oxidizers (Hallam et al., 2006a) 

could alter this ratio. In any case, the possible carbon fixation rates are small 

compared to respiration rates of G. barretti explants (9 µmol O2 cm-3 day-1, 

Hoffmann et al., 2005a). Assuming that 1 µmol O2 consumption per cm3 

sponge per day is due to aerobic oxidation of ammonium to nitrate and 

nitrite, and the remainder is due to carbon oxidation, microbial nitrification 

would provide less than 1% of the carbon demand of G. barretti. Due to the 

even lower rate, carbon fixation by anammox bacteria can be neglected. 

Heterotrophic microbes consume simple compounds (dissolved organic 

carbon, DOC), while sponge cells prefer small particles (particulate organic 

carbon, POC) like pelagic bacteria or phytoplankton (Willenz, 1980; Pile et 

al., 1996; Witte et al., 1997; Ribes et al., 1999). Sponges with high amounts of 

associated microbes however have been identified as important DOC sinks 

(Yahel et al., 2003; De Goeij et al., 2008b). This leads to the conclusion that 

DOC uptake in sponges is mediated by sponge microbes. In fact, a recent 

investigation by (De Goeij et al., 2008a) showed that assimilation of 13C-

labelled DOC was both direct and bacteria mediated, as tracer carbon was 

recovered both in bacteria-specific and non-bacteria fatty acids within the 
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sponge. Considering an anoxic situation in the sponge matrix, DOC may also 

be excreted as a result of fermentation processes in sponge cells, and could 

thus feed an anaerobic heterotrophic microbial community, such as sulfate 

reducing prokaryotes (Hoffmann et al., 2005b) and denitrifiers (this study). 

The importance of these processes for sponge nutrition remains to be proven. 

 
Figure 3.7. Complex nutrient cycling in the sponge G. barretti showing the interaction of 
heterotrophic, autotrophic, aerobic and anaerobic processes within the sponge-microbe 
system and between sponge and environment. Rates of microbial processes of the sponge 
nitrogen cycle are given in nmol N cm-3 sponge day-1. Proposed processes of carbon transfer 
between sponge and microbes are indicated with dashed arrows. Thickness of the arrows 
reflect the quantitative importance of this process. DIC = dissolved inorganic carbon, DOC = 
dissolved organic carbon, POC = particulate organic carbon, PON = particulate organic 
nitrogen 
 
In conclusion, the physiologically complex community of microorganisms 

involved in sponge nitrogen cycling has the potential to make additional 

carbon sources available to the host sponge, although its impact on sponge 

nutrition may be rather small. 

We assume therefore, that the main benefit of the complex nitrogen cycling in 

sponges lies within the efficient removal of waste products. Ammonium 

removal by ammonium oxidizers (aerobic and anaerobic) may even exceed 

sponge ammonium excretion, as seen in the first 24 hours of the nitrification 

experiment (Fig. 3.1b). Similar observations were made with the 

Mediterranean sponge Aplysina aerophoba, which functions as an 

“ammonium sink” during the cold season (Bayer et al., 2008). Accumulation of 

detrimental nitrite and nitrate is counteracted by nitrite oxidation and 
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nitrate reduction, respectively. The energy gain and possible carbon transfer 

from sponge microbes to sponge cells is a positive, but minor side effect of this 

efficient waste product treatment. Nitrogen fixation by symbiotic 

cyanobacteria has been described for shallow-water sponges (Wilkinson and 

Fay, 1979; Mohamed et al., 2008). We do not expect this process in Geodia 

barretti, which lives in deep water where inorganic nitrogen is always 

available in excess as NO3-, and where cyanobacterial symbionts are not 

present due to the absence of light.  

 Complex nitrogen cycling within G. barretti and nitrogen fluxes between the 

sponge and the marine environment are summarized in Figure 3.7.  

 

3.5.5 Impact of sponge nitrogen cycling on marine 

ecosystems 

In sponge mass occurrences at the North Atlantic slope at about 200 – 500 m 

water depth (Klitgaard et al, 1997; Klitgaard and Tendal, 2004; Rapp, 

unpublished data), sponges of the family Geodiidae can be found in densities 

of up to 30 kg/m2. Assuming similar rates in situ to those we obtained in this 

study, sponge-mediated nitrification would transform up to 16 mmol N m-2 

day-1, while sponge-mediated denitrification would remove 2.7 mmol N m-2 

day-1 as N2. Nitrogen removal by these sponge mass occurrences can thus be 

2-10 times higher than by continental shelf sediments at similar water 

depths, where denitrification rates are 0.1-1 mmol N m-2 day-1 (Middelburg et 

al., 1996; Seitzinger and Giblin, 1996). 

Sponge mass occurrences, which can cover several km2 at certain areas in the 

North Atlantic (Klitgaard et al., 1997; Klitgaard and Tendal, 2004), can 

therefore be more important for nitrogen mineralization processes than 

marine sediments at these depths.  

The importance of sponge-mediated nitrification and the resulting fluxes of 

dissolved inorganic nitrogen in areas with high sponge cover, e.g. tropical 

coral reefs, has already been pointed out (Southwell et al., 2008 and 

references therein).  Denitrification and anammox, in contrast, remove these 
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nutrients from the environment. If denitrification and anammox rates as we 

observed them in G. barretti turn out to be common processes in sponges all 

over the world, then marine areas with high sponge cover, e.g. sponge mass 

occurrences of the North Atlantic as well as tropical and cold-water coral 

reefs, may function as so far unrecognized sinks for inorganic nitrogen. In 

order to evalulate the impact of sponges as nitrogen sinks in the ocean it will 

be important to measure such processes in other marine environments and in 

more sponge species. 
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4.1 Abstract  

Geodia barretti is a marine cold-water sponge, which harbours high numbers 

of microorganisms. High levels of nitrification have been observed in this 

sponge indicating that it might contribute substantially to nitrogen turnover 

in marine environments with high sponge cover.  

In order to get closer insights into the phylogeny and function of the active 

microbial community and of its interaction with its host, G. barretti, a 

metatranscriptomic approach was employed, using simultaneous analysis of 

rRNA and mRNA. Of the 262 298 RNA tags obtained by pyrosequencing, 

109 325 were assigned to small subunit ribosomal RNA and resulted in a 

detailed community profile, dominated by Chloroflexi, Poribacteria and 

Acidobacteria and clearly different from that obtained in the bacterial clone 

library produced from the same nucleic acid preparation. Optimized assembly 

strategies allowed reconstructing full-length rRNA genes from the 

metatranscriptome for detailed phylogenetic studies of the dominant 

phylotypes. Some of these phylotypes were visualised by FISH analyses. 

Among the most abundant mRNAs were those encoding key metabolic 

enzymes of nitrification, in particular from ammonia oxidizing archaea. A 

number of concomitantly transcribed archaeal genes with unknown function 

point to their putative role in the energy metabolism of these archaea. 

This analysis demonstrates the potential of using a combined rRNA and 

mRNA analysis approach to explore the microbial community profile, 

phylogenetic assignments and metabolic activities of a complex, but little 

explored microbial community. 

 

4.2 Introduction 

Marine sponges offer a particularly exciting environment to study microbial 

community composition and function, because i) they harbour highly complex 

and specific communities with some lineages and even a whole phylum 

(Poribacteria, Fieseler et al., 2004) being exclusively found in sponge 

symbioses, ii) the ecological function of most microbes inside the sponge 
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system is not understood and iii) sponges and their symbionts are of 

biotechnological importance as they produce a range of secondary metabolites 

that are often useful for clinical applications (e.g. treatment against HIV or 

cancer, (Andavan and Lemmens-Gruber 2010 and references therein).  

Although the role of most microbes in the complex sponge community has not 

been elucidated, several functions have been identified or suggested. Besides 

the complex chemical defence system of sponge-microbe associations, the role 

of bacteria in sponges is often coupled with food uptake (Reiswig, 1971, 1975; 

Pile et al., 1996), supply of photosynthates (Hinde, 1988; Wilkinson, 1992) as 

well as structural rigidity by mucous production (Wilkinson, 1978) and 

protection from sunlight (Becerro and Paul, 2004). Microbial processes like 

sulfur-oxidation and nitrification play a role in eliminating toxic metabolic 

end products such as hydrogen sulfide and ammonia (Hoffmann et al., 2005; 

Hoffmann et al., 2009).  

In particular, the role of associated microbes in nitrogen cycling has received 

attention. Usually, sponges ingest nitrogen with their food and excrete 

ammonia as a metabolic endproduct (Brusca and Brusca, 1990), which can 

fuel microbial ammonia and nitrite oxidation (Bayer et al., 2008). Using 

stable isotopes we have recently demonstrated high nitrification rates, but 

also denitrification and anammox in the Norwegian cold-water sponge Geodia 

barretti (Hoffmann et al., 2009) that harbours high microbial abundance. 

Beside bacteria, the presence of ammonia oxidizing archaea has been 

demonstrated in G. barretti and other sponges (Preston et al., 1996; Margot et 

al., 2002; Lee et al., 2003; Pape et al., 2006; Holmes and Blanch, 2007; Taylor 

et al., 2007; Bayer et al., 2008; Steger et al., 2008). Their high relative 

abundance (Radax et al, in review) indicates a major role in nitrification. 

Thus sponges offer a great opportunity to characterize these largely 

uncharacterized and newly detected ammonia oxidizers. 

While many studies on marine sponges aim at identifying key players or 

functions on the DNA level, i.e. by metagenomics (Siegl et al., 2010; Thomas 

et al.) they do not address the question if those microbes are active in situ. 

With the filter-feeding lifestyle of sponges, the detection of a portion of food-
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microbes is always a possibility. Therefore, this study aims at providing data 

on the diversity and function of (likely) metabolically active microbes with a 

particular focus on characterising the active nitrifying populations in this 

system. 

 

In the last few years metatranscriptomics has been added to the toolbox in 

microbial ecology and has been more and more used to characterize the 

functional response of environmental microbial communities to changing 

environmental conditions (Poretsky et al., 2005; Bailly et al., 2007; Frias-

Lopez et al., 2008; Urich et al., 2008; Poretsky et al., 2009; Gilbert et al. 2008; 

Shi et al. 2009; Stewart et al., 2010). This approach in combination with high 

throughput sequencing technology allows a deeper insight into those genes of 

the community that are actively transcribed and thus most probably belong 

to the gene pool that is functional in the given moment of sampling. The 

information is gathered independent of the knowledge about the taxonomic 

composition of the microbial community, but often metagenomic analyses or 

ribosomal rRNA gene studies are performed in parallel to address this.  We 

have recently explored the use of reversely transcribed total RNA for both 

determination of the structure of the active community and gene expression 

studies in soil samples, simultaneously (the “double RNA approach”, Urich et 

al., 2008). With this approach, the actively transcribing genes of a community 

can be studied in a single preparatory and sequencing effort on both levels 

(taxonomy and function) while it allows validation of taxonomic assignments 

of mRNA. Furthermore, it allows studying the composition of even relatively 

unexplored microbial communities with respect to all three domains of life 

simultaneously (Bacteria, Archaea and Eukaryota), and is independent of 

PCR-based methods that potentially introduce biases. Here we have applied 

an extended version of this RNA analysis to the characterisation of the 

microbial community of a sponge-microbe system.  

We demonstrate, that this metatranscriptomic approach allows a parallel and 

quantitative assessment of the active fraction of all three domains of life 

through analysis of rRNA tags, thus extending beyond the information 



4. Metatranscriptomics of G. barretti 

 - 109 - 

obtained by the novel deep sequencing approaches of PCR amplicon libraries 

(Sogin et al., 2006). In addition, it allows characterizing the most abundantly 

transcribed protein encoding genes concomitant with rRNA-based taxonomic 

information from the same cDNA preparation. Furthermore we demonstrate, 

that the approach can also be used to assemble up to full-length rRNA genes 

from the large dataset of randomly reversely transcribed ribosomal rRNA 

suitable for phylogenetic studies. Comparing the obtained data to those from 

16S rRNA clone libraries and FISH studies, revealed major biases introduced 

by primer-based studies, which can be circumvented with the approach 

shown here. 

 

4.3 Material and Methods 

4.3.1 Sampling procedure 

G. barretti specimen were collected on June 26th 2007 with the Norwegian 

research vessel “Hans Brattstrøm” using a triangular dredge at 

Landroeypynten in Langenuen at 59.58.7 N 05.22.89 E in 200-300 m and on 

October 24th 2007 from Skorpeodden, Korsfjord at 60.10 N 05.10.5 E in 200-

300 m. Both sites are located on the Norwegian west coast near the city of 

Bergen. The samples were cut, rinsed with artificial seawater and 

immediately plunged in liquid nitrogen on board for storage and further 

processing.  

G. barretti samples for FISH were collected on November 7th, 2008 with the 

“Hans Brattstrøm” using a triangular dredge from Skorpeodden, Korsfjord 

and immediately fixed in a solution of 2% formalin, 0.04% glutaraldehyde. 

After 2-4h the samples were dehydrated in an ethanol series of 15 (min. 1 h), 

30 (2 h or over night) and 50% and stored at -20°C in the latter solution of 

ethanol and artificial seawater. 
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4.3.2 Nucleic acid extraction 

Deep-frozen sponge pieces were cut into small pieces quickly before parallel 

extraction of RNA and DNA using a modified version of the Griffiths protocol 

(Griffiths et al., 2000), lysing the cells of approximately 0.5 g of sponge (fresh 

weight) with 0.5 ml of CTAB buffer and PCI in a lysing matrix E tube (Q-

Biogene) for 45 seconds with a speed of 4.5 followed by additional 

phenolisation to eliminate residual RNases and DNases. After precipitation 

with PEG8000 for 2h and a centrifugation step of 60min, extracts were 

cleaned and stored at -20°C after addition of RNase inhibitor. 

 

4.3.3 cDNA synthesis for transcriptomics 

To increase the amount of RNA transcribed into cDNA per reaction, input for 

DNase digestion was approx. 5µg and the standard protocol for reverse 

transcription with superscript III (Invitrogen) was optimised for the amount 

of input RNA and amount of random primer and enzyme as well as 

incubation times. In brief, first strand cDNA synthesis was performed with 

400 U enzyme and 200 µM random hexamer primers per reaction and 

transcription at 42°C for 240 min. Two reactions resulted in approximately 

500 ng double-stranded cDNA per sample. 

For quantitative PCR, only first strand cDNA was prepared according to 

manufacturer’s instructions, whereas 1-2 µg of double stranded cDNA was 

prepared with an adapted protocol for sequencing. To rule out DNA 

contamination, respective RNAs were included in qPCR and PCR 

respectively. Quantity and quality of nucleic acids were measured on a 

Bioanalyser (Agilent) and Nanodrop. 

 

4.3.4 Clone library construction 

Double stranded cDNA applied in metatranscriptomics was also used for 16S 

rRNA clone library construction. Archaeal and bacterial 16S rRNA, DNA and 

cDNA clone libraries were constructed individually with primers 21F, 958R 
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(DeLong, 1992) for archaeal 16S rRNA and 616V, 1492R (Lane, 1991; 

Juretschko et al., 1998) for bacterial 16S rRNA amplifications, respectively. 

The gel-purified PCR product was cloned into a pCR4 TOPO vector (TOPO 

TA cloning kit, Invitrogen) and positive clones were further processed and 

sequenced at AGOWA (LGC Genomics, Berlin, Germany) 

4.3.5 Pyrosequencing 

Double stranded cDNA was sequenced on a GF FLX sequencer (Roche 

Applied Sciences/454 Life Sciences, Barnford, CT) in the Centre for Ecological 

and Evolutionary Synthesis, Department of Biology, University of Oslo. 

Samples were independently test-sequenced, resulting in small subsets of 

RNA-tags (GB1: 200 tags; GB2: 361 tags). The sample GB1 was subsequently 

sequenced in depth and data in form of FastA files were used for the 

bioinformatics analyses. 

 

4.3.6 Bioinformatic analyses 

4.3.6.1. Separation of rRNA and mRNA tags  

Sequences stemming from rRNA and putative mRNAs were identified by 

comparing all sequences against a combined database of small and large 

subunits of rRNA (SSU and LSU rRNA) using blastN (Altschul et al., 1997) 

and MEGAN (Huson et al., 2007; Urich et al., 2008). Sequences with a bit 

score lower than 70 were tentatively assigned as putative mRNA tags. These 

were further screened for remaining rRNAs by parallel blastN and blastX 

analysis against the NCBI nt and nr databases, respectively. Reads with best 

hits against rRNAs in blastN were removed from the putative mRNA 

fraction, after verification with the blastX best hits. If the latter were 

identified as wrongly annotated hypothetical proteins derived from rRNA 

genes, the putative mRNA sequences were considered as rRNA and removed 

from the mRNA fraction.   
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4.3.6.2. Taxonomic assignment of SSU and LSU rRNA tags 

The rRNA sequences were compared against the SSU and LSU reference 

databases using blastN. The LSU rRNA database was beforehand updated 

with additional Chloroflexi LSU rRNA sequences from the SILVA LSUref 

database version 94 (www.arb-silva.de, Pruesse et al., 2007). For taxonomic 

assignment, the 100 best blast hits of each sequence were analysed with 

MEGAN (Huson et al., 2007) using the following LCA parameters: minimum 

support 1, minimum bit score 150, top percent 10.  

 

4.3.6.3. Ribo-contig assembly 

The ribo-tags had an average length of 223 bases and thus were of limited use 

for phylogenetic reconstruction using treeing methods. To overcome this 

problem an assembly approach on the taxonomically binned rRNA reads was 

applied. Therefore, the parameters of the program CAP3 (Huang and Madan, 

1999) were adjusted for it’s application on ±250 bp tags as follows. Ribo-tags, 

binned with MEGAN as phyla Chloroflexi, Poribaceria, Proteobacteria 

(Alpha-, Gamma- and Deltaproteobacteria), Archaea, Nitrospira, 

Actinobacteria and Acidobacteria were assembled using the CAP3 program. 

Parameters were optimized to two rounds of assembly with (1) an minimum 

overlap of 150 bp with a min. similarity threshold of 99% and mismatch and 

gap score of -130 and 150 and (2) min. overlap 150 and min. 97% similarity 

threshold respectively (see suppl. text: Optimisation of parameters for ribo-

contig assembly). All assembled ribo-contigs were imported into ARB for 

inspection and contigs over 800 bp containing a minimum of 100 reads – in 

addition to all four archaeal contigs were used for phylogenetic analyses. 

 

4.3.6.4. mRNA sequence annotation 

The putative mRNA sequence reads were filtered for containing a segment of 

at least 60 nt length having an average maximum error probability of 2% 

using LUCY (Chou and Holmes, 2001). The remaining reads were compared 

to the non-redundant NCBI protein database (Sayers et al., 2010), to a 

compilation of environmental databases: NCBI env (Sayers et al., 2010), 
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IMG/M (Markowitz et al., 2008) and HOT02/H179/H186 (courtesy of Y. Shi, 

E.F. DeLong) as well as an EST database of the marine sponge Amphimedon 

queenslandica (formerly known as Reneira sp., JGI-2005, NCBI trace archive) 

in order to identify homologues and assign a putative function.  

The cutoff to assign mRNA tags to a reference gene by blastX (using the 

option –w 15 to correct for sequencing errors causing frame-shifts) was a 

minimum E-value of 10-4 and an alignment covering at least 80% of the 

shorter sequence length (adapted from Mou et al., 2008). To obtain a list of 

highest transcribed genes for each kingdom, best blastX matches to the 

UniRef90 (Jain et al., 2009) database were parsed with a custom made perl 

script, separated according to the taxonomic affiliation of the respective 

homologue and normalized over the length of the corresponding gene 

sequence. 

 

4.3.7 Fluorescence in situ hybridization (FISH) 

Fixed samples of three G. barretti individuals were cut in small cubes and 

embedded in O.C.T. compound (Tissue Tek), followed by cryosectioning to 8-

9 µm thin sections. The sections were exposed to UV light for 15min to bleach 

parts of autofluorescence before dehydration with a graded series of ethanol 

(3 min each in 50, 80 and 96% ethanol). The hybridization was performed in 

an isotonically equilibrated chamber at 46°C in hybridization buffer, and 20% 

to 35% FA concentrations for 3-4 h. Probes and concentrations are given in 

Table S1. After hybridization, slides were incubated 10 min in preheated 

washing buffer (composition corresponds to hybridization stringency) at 48°C, 

subsequently dipped in ice-cold distilled water and air-dried. For 

visualization slides were mounted with the anti-fadent Citifluor (Citifluor 

Ltd., London, UK) and placed on a confocal laser-scanning microscope. 

Table S4.1: FISH probes used in this study 
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4.3.8 Data deposition 

The pyrosequenced metatranscriptomic data of G. barretti have been 

deposited in the EBI short reads archive (acc. No). Assembled ribo-contigs are 

available from the authors upon request. The SSU rRNA clones are deposited 

under accession numbers xxxxx to xxxxx (16S rRNA genes of archaea) and 

xxxxx to xxxx (16S rRNA genes of bacteria).  

 

4.4 Results and Discussion 

4.4.1 Sequencing of the G. barretti Metatranscriptome 

RNA preparations from two different biological samples of G. barretti were 

randomly reversely transcribed into double stranded cDNA without any 

intermediate amplification steps. The cDNA was subjected to pyrosequencing 

on a Roche GS FLX Sequencer, resulting in sequences with a mean read 

length of 223 bp.  

A small-scale pyrosequencing run of the biological replicates was performed 

to verify reproducibility of the analysis and revealed that approx. 25% of the 

SSU rRNA tags originated from the eukaryotic host in both samples (see Fig. 

S4.1). The remaining fraction was assigned to twelve bacterial phyla and one 

archaeal phylum (as discussed in detail below for sample GB1) with 

comparable relative distributions in both samples. 

Replicate GB1 was sequenced in-depth and yielded 262 298 “RNA-tags”. After 

comparison to the compiled rRNA reference databases more than 90% 

(240 973) of all sequences were assigned as ribosomal RNA reads (“ribo-

tags”), while 8.1% (21 325) were assigned as non-rRNA sequences. Putative 

mRNAs were identified by blastX searches. While 3 929 tags had a 

homologue in the NCBI-nr database, additional 5 471 and 327 reads were 

similar to sequences in the compiled environmental and sponge EST 

databases, respectively (see Table 4.1). This yielded 10 023 putative mRNA-

tags in total. 
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Table 4.1. Statistics of cDNA sequence analysis 

 No. of reads % 

total RNA-tags 262 298 100.0 

rRNA 240 973 91.9 

non-rRNA   21 325 8.1 

putative mRNA*   10 023 3.8 

NCBI-nr     3 929 1.5 

Env     5 471 2.1 

 sponge ESTs        327 0.1 

*The putative mRNAs were considered significant when a blastX hit to a homologue in one of 
the three databases had an e-value < 10-4 
 

4.4.2 Taxonomic community profile based on ribosomal RNA 

tags 

The analysis of the SSU rRNA community profile revealed Chloroflexi as 

dominant members of the community in G. barretti (36% of all and 50% of the 

bacterial ribo-tags) (Fig. 4.1). The number of their SSU ribo-tags exceeded 

even that of the host, G. barretti, which only constituted 27% of all ribo-tags, 

despite the considerably bigger cell size and therefore probably higher 

ribosomal content of the eukaryotic cells. With 73% of ribo-tags from bacteria 

and archaea, the sponge holobiont was constituted mostly of microorganisms. 

 
Figure 4.1. Three-domain community profile of SSU ribo-tags (rRNA tags) from the 
metatranscriptome of Geodia barretti. Phyla of Bacteria, Archaea and Eukaryotes with > 
0.01% relative abundance are displayed. 
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Other abundant bacterial phyla were Poribacteria (13.2% of bacterial ribo-

tags), Acidobacteria (12.2%), Proteobacteria (6.9%), and Spirochaeta (3.8%) 

(Fig. 4.1).  

According to SSU profiling, archaea accounted for 2% of the total microbial 

community, and 99.98% thereof were affiliated to group I.1A 

Thaumarchaeota, i.e. the lineage of ammonia-oxidizing archaea that is found 

in high abundance in marine environments, including sponges (DeLong, 

1992; Preston et al., 1996; Wuchter et al., 2006; Francis et al., 2007; Mincer et 

al., 2007; Martin-Cuadrado et al., 2008; Mosier and Francis, 2008; De Corte et 

al., 2009; Beman et al., 2010; Bernhard et al., 2010; Church et al., 2010; Dang 

et al.; Santoro et al., 2010; Urakawa et al., 2010). In total, ten prokaryotic 

phyla were present in considerable abundance (≥ 0.1%) in G. barretti, while 

rRNA of five phyla and candidate divisions was sequenced in lesser amount 

(not shown).  

 

4.4.3 Assembly of longer rRNA contigs from the 

metatranscriptome 

The reverse transcription yielded random regions on the 16S rRNA and 

therefore allows for in silico assembly of long, ideally full length, rRNA 

sequences for certain abundant taxa. This allows for phylogenetic analysis of 

the most abundant organisms in addition to a mere taxonomic assignment of 

reads. The alteration of variable and conserved regions on the SSU rRNA 

molecule poses challenges to a reliable assembly without chimeric rRNA 

formation from the short ribo-tags. We have therefore performed pilot studies 

on model “communities” in silico to evaluate the assembly of SSU rRNA 

sequences of closely and more distantly related species from the six most 

abundant bacterial higher taxa (phyla, classes) found in G. barretti. Briefly, 

each of the test communities consisted of three known rRNA genes with one 

(the “outlier”) being 87- 95% identical to the other two, which were more 

closely related to each other (97-99% identity). The rRNAs were randomly cut 

into 250bp fragments, mixed and reassembled using the program CAP3 



4. Metatranscriptomics of G. barretti 

 - 117 - 

(Huang and Madan, 1999). After extensive testing of different parameter (see 

materials and methods and supplementary information for details) a 2-stage 

assembly process was developed. The first stage involved assembly with 

highly stringent fragment-overlap (≥150 bases) and sequence similarity 

parameters (≥ 99%), resulting in contigs with increased read-lengths. These 

were assembled in the second stage with slightly more relaxed parameters 

(≥97% sequence identity, ≥150 bp overlap to obtain longer rRNAs, and to 

account for pyrosequencing errors. The tests showed good separation of the 

”outlier” rRNA from the more closely related sequences in all test-

communities, whereas a clear separation of the more similar sequences was 

not always achieved.  

From the metatranscriptomic dataset of G. barretti, 304 SSU rRNA contigs 

were assembled with sizes up to 1 820 base pairs and a mean length of 729 

base pairs (Table 4.2). 76.2 % of the 66 743 used SSU ribo-tags assembled 

into contigs. For Poribacteria even 85.6 % of the reads were assembled (Table 

4.2). Notably, some contigs extented over the 3’ end of the 16S rRNA into the 

intergenic spacer region, giving a good indication for active populations. This 

was observed for Poribacteria, Chloroflexi, Gemmatimonadetes and 

Nitrospira.  

Table 4.2. Ribo-contig assembly statistics 

  

no. of 

reads 

assembled 

reads 

% 

assembled 

No. 

contigs  

Ctgs>800bp  

(% reads) 

Mean contig 

length 

Archaea 1316 1052 80 4 2 (68%) 940 

Acidobacteria 8946 6006 67 49 19 (43%) 701 

Actinobacteria 640 283 44 10 2 (31%) 605 

α- proteobacteria 1284 701 55 10 3 (51%) 618 

γ- proteobacteria 2582 1263 49 36) 4 (25%) 523 

δ- proteobacteria 598 236 39 7 - 334 

Cand. div VC2 343 256 75 2 - 440 

Chloroflexi 36978 29428 80 137 46 (65%) 720 

Gemmatimonadetes 606 241 40 13 2 (16%) 532 

Nitrospirae 805 657 82 3 2 (76%) 1194 

Poribacteria 9748 8347 86 22 12 (79%) 1014 

Spirochaetes 2897 2424 84 11 6 (74%) 920 

overall assembly 66743 50894 76.2% 304 98 729 
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The quality of assembled ribo-contigs was evaluated by three different 

methods: (i) Similarity analysis against the NCBI nt database revealed that 

all contigs exhibited high similarity to sequences deposited in the databases. 

(ii) Alignments to reference sequences in ARB revealed that a fraction of 

short contigs (average of 543 bp) with a small number of reads (average of 24 

ribo-tags) were potential chimeras by manual inspection in ARB taking into 

account secondary structure and reference sequences. Those 5.3% of all 

contigs contained 0.8% of assembled ribo-tags and were excluded from further 

analysis. (iii) Comparison of assembled contigs with sequences from bacterial 

and archaeal 16S rRNA clone libraries (obtained from the same cDNA 

preparations) showed high sequence identity (see also phylogenetic studies 

below). 

 

4.4.4 Phylogenetic analysis of abundant sponge-derived 

sequences 

Ribo-contigs used for phylogenetic calculations were at least 800 base pairs 

long and contained 100 or more reads. Shorter contigs with more than 100 

reads were also added into phylogenetic trees. Furthermore, sequences from 

SSU rRNA clones obtained from PCR products with bacterial and archaeal 

primers, respectively, of the same cDNA preparations were included (224 

bacterial and 50 archaeal). 

Figure 4.2a and b display the phylogenetic relationships of two groups, which 

are potential nitrifying organisms in G. barretti, the ammonia oxidizing 

Thaumarchaeota and the nitrite oxidizing Nitrospira.  
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Figure 4.2a. Phylogenetic analysis (maximum likelihood algorithm) of 16S rRNA sequences 
from microorganisms potentially involved in nitrification, i.e. a) the archaeal phylum 
Thaumarchaeota group I.1a (potential ammonia oxidizers). Assembled ribo-contigs of the 
Geodia barretti metatranscriptome are depicted in blue, while clones from the DNA and 
cDNA 16S rRNA clone libraries are shown in green. The correspondingly colored circles at 
major branches of the tree indicate the relative amount of ribo-contigs or clones in the 
respective monophyletic group. The number of ribo-tags in each contig is given in brackets. 
Full-length sequences were used for treeing calculation and shorter sequences were added 
via the parsimony interactive tool in ARB. Parsimony bootstrap numbers are given if branch 
support is more than 75%. Size bar indicates 10% sequence divergence. Various sequences 
from Thaumarchaea group I.1b (in a) or other bacterial phyla (in b) were used as outgroup. 
 

The archaea are restricted to group I.1.a Thaumarchaeota, wherein they form 

two main phylotypes. The most abundant contig (843 ribo-tags) is affiliated to 

“Candidatus Cenarchaeum symbiosum” (95% similarity) and other sponge 

symbionts. The other three contigs (209 ribo-tags overall) cluster with 

seawater-derived clones, such as Nitrosopumilus maritimus (98-99% 

similarity). Both ribo-contigs and clones share the same phylogenetic clusters 

and are approximately 99% similar.  

 
Figure 4.2b. Phylogenetic analysis (maximum likelihood algorithm) of 16S rRNA sequences 
from microorganisms potentially involved in nitrification, i.e. b) the bacterial phylum 
Nitrospira (potential nitrite oxidizers). For further details on phylogenetic analysis, see 
Figure 2a. 
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Similarly, sequences affiliated with the nitrite-oxidizing genus Nitrospira 

(Fig. 4.2b), are recovered from ribo-tag assembly as well as in the clone 

library. They belong to a sponge-specific cluster (Nitrospira sublineage IVb, 

Maixner 2009) recognized in earlier diversity studies of sponges (reviewed in 

Taylor et al., 2007). 

Table 4.5. Results of contig assembly verification and overview of genome similarity 

  

Maximum similarity  

to NCBI 

Percentage of contigs 

with min. 97% 

similarity to clones 

Maximum similarity 

to genome 

Archaea 99% 100 98% 

Acidobacteria 99.8% 79.2 85.4% 

Actinobacteria 99.6% 100 92% 

α  - proteobacteria 100% 62.5 92% 

γ  - proteobacteria 100% 77 91.7% 

δ  - proteobacteria 99% 83 88.4% 

Cand. div. VC2 98% 100 89.2% 

Chloroflexi 99.6% 19.5 85.7% 

Gemmatimonadetes 98.9% 73 86.9% 

Nitrospirae 99.7% 66 92% 

Poribacteria 97.4% 0 97% 

Spirochaetes 98% 90 87.9% 

 

High congruence between ribo-contig phylogenies and rRNA clones was also 

obtained for Gamma-proteobacteria (suppl. Fig. S4.3: Phylogenetic analysis of 

16S rRNA sequences from gammaproteobacterial sponge symbionts), Delta-

proteobacteria, Actinobacteria, Spirochaetes and the candidate division VC2 

(see Table 4.5), indicating that the assembly of long, often full-length, rRNA 

molecules from metatranscriptomic datasets can be performed with high 

reliability.  

The assembly of full-length 16S rRNA contigs also allowed inferring the 

phylogenetic position of those highly abundant symbionts that were not (or 

poorly) recovered in the clone libraries. Most ribo-contigs of Chloroflexi 

belonged to the little characterised, yet uncultured SAR202 clade (Fig. 4.3) 

(Morris et al., 2004). The monophyletic sequence cluster comprising contig 

Chl_c24 and Chl_132 with 6 269 ribo-tags together (21.3% of assembled 
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Chloroflexi ribo-tags), appeared to be a sponge-specific cluster including 

sequences of at least four other sponges (Fig. 4.3).  

 
Figure 4.3. Maximum likelihood tree for the subgroup of the SAR202 cluster (phylum 
Chloroflexi) with the majority of sequences from the metatranscriptome. Assembled ribo-
contigs from the Geodia barretti metatranscriptome are depicted in blue, while clones from 
the cDNA 16S rRNA clone library are shown in green. The correspondingly colored circles at 
major branches of the tree indicate the relative amount of ribo-contigs or clones in the 
respective monophyletic group. The number of ribo-tags in each contig is given in brackets. 
Full-length sequences were used for treeing calculation and shorter sequences were added 
via the parsimony interactive tool in ARB. Parsimony bootstrap numbers are given if branch 
support is more than 75%. Size bar indicates 10% sequence divergence. Other sequences from 
SAR202 group were used as outgroup. 
 

Overall, 11 441 (39%) of the assembled ribo-tags classified as Chloroflexi were 

in this cluster, whereas only two sequences from the clone library (out of 226) 

were affiliated to this group. The second large cluster depicted on top of the 

tree (see Fig. 4.3) comprised sequences mainly derived from marine sediment 

and water and included 9 678 ribo-tags (32.8%) in contigs. 

The phylogenetic reconstruction with ribo-contigs from the Poribacteria 

revealed two subclusters (Fig. S4.4), one of them including two metagenome-

derived 16S rRNA sequences from the mediterranean sponge Aplysina 

aerophoba. In this cluster, ribo-contigs had maximally 97% similarity to the 
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16S rRNA from the draft genome of Poribacterium sp. WGA-A3 (Siegl et al., 

2010) and 98% similarity to the 16S rRNA located on the fosmid 64K2 

(Fieseler et al., 2006), respectively. From the overall 7 761 ribo-tags, 4 228 

(54.5%) were in this cluster and 3 533 (45.5%) were in the second subcluster. 

Figure S4.2 displays a comparison of the bacterial community structure from 

the 16S rRNA clone library and the ribo-tags (not contigs) of the 

metatranscriptome obtained from the same cDNA.  

Table 4.3. Matches/mismatches of universal primer set 616V/1492R to respective sequences 
of seven phyla from the metatranscriptome of G. barretti* 

5’ – 3’ 616V 

AGA GTT TGA TYM TGG CTC 

1492R 

GGY TAC CTT GTT ACG ACT T 
clones ribo-tags 

Proteobacteria AGA GTT TGA TYM TGG CTC GGY TAC CTT GTT ACG ACT T 25% 6.9% 
    Alpha- AGA GTT TGA TYM TGG CTC GGY TAC CTT GTT ACG ACT T 6.6% 1.8% 
    Gamma- AGA GTT TGA TYM TGG CTC GGY TAC CTT GTT ACG ACT T 7.6% 3.5% 

Spirochaeta AGA GTT TGA TYM TGG CTC 
GGY TAC CTT GTT Y*CG ACT T 

* T for 400 tags, C for 322 tags  
0.9% 3.8% 

Gemmatimonadetes AGA GTT TGA TYM TGG CTC GGY TAC CTT GTT ACG ACT T 5.3% 0.8% 

Acidobacteria AGA GTT TGA TYM C*GG CTC 

* for 75 tags 

AGY TAC CTT GTT T*CG ACT T 

* for 1162 tags  
35.6% 12.2% 

Nitrospira AGA GTT TGA TYM TGG CTC GGY TAC CTT GTT ACG ACT T 3.6% 1.1% 

Chloroflexi AGA GTT TGA TYM TGG CTC 
AGY TAC CTT GTT T*CG ACT T 

* for 176 reads 
8.0% 50.6% 

Poribacteria AGA GTA TGA TAM CGG CTC 
A*GY TAC CTT GTT T#CG ACT T 

* 188 tags # 65 tags 
0% 13.2% 

*Phyla with primer mismatches (in red) showed a clear shift in their relative abundance in 
the clone library compared to their relative abundance in the ribo-tag pool. 
 

Sequences of those phyla with a big discrepancy in their relative abundance 

between clone library and ribo-tag profile (Chloroflexi, Acidobacteria) showed 

a frequent mismatch on the 5’ end of the reverse primer 1492R with only 5 to 

8.6% of tags matching (guanine), and 90 and 92% respectively, having an 

adenine instead of the guanine, indicating potential primer biases in the 

clone libraries (Table 4.3).  

Poribacterial sequences are known to be un-amplifiable by commonly used 

primers, (Fieseler et al., 2004) and are therefore not represented in the clone 

library. 
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4.4.5 Visualization of bacteria and archaea by fluorescence 

in situ hybridisation  

In order to verify the presence of certain phyla, which were underrepresented 

by one of the two analyses (ribo-tags or clone libraries), fluorescent in situ 

hybridisations (FISH) with probes against Archaea, Poribacteria, gamma-

Proteobacteria (Fig. 4.4) and Chloroflexi in ultrathin sections of the sponge 

was performed.  

 
Figure 4.4. Fluorescence in situ hybridisations of Geodia barretti mesohyl sections, showing 
a) archaea b) Gamma-Proteobacteria c) Poribacteria and d) autofluorescence (non-EUB 
probe). Arrows indicate signals of respective cells and bars represent a distance of 5µm. 
 

Due to the high microbial density in G. barretti it was unreliable to perform 

cell counts relative to the amount of total microbial cells. However, we were 

able to demonstrate the presence of large amounts of archaea and 

poribacteria as well as the presence of gamma-proteobacteria (Fig. 4.4). 

Hybridisations for Chloroflexi did not result in clear signals, which could be 
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tracked down to mismatches of probes used (Table S4.1.) to ribo-contigs in the 

dominant cluster of uncultured SAR202-related bacteria. While the 

dominance of Poribacteria over gamma-Proteobacteria as seen in the rRNA-

based taxonomic profile was reflected in the FISH analysis, the large amount 

of archaea was surprising, given their relatively low abundance in the rRNA 

community profile, but also confirmed by real-time PCR (Radax et al., in 

review). 

An underestimation in the metatranscriptome could be due to a lower 

amount of ribosomes in archaea compared to bacteria or due to their smaller 

cell size.  

 

4.4.6 Functional profile of the microbial G. barretti 

community  

For a general insight into microbial processes in G. barretti, all mRNA tags 

were compared to a merged database of clusters of orthologous groups (COG, 

NOG, KOG)  and an updated version of archaeal COGs (= arCOG, Makarova 

et al., 2007). The deduced protein sequences of 3 158 mRNA sequence tags 

had homology to 1 206 fused COGs. The COG with highest number of mRNA 

tags was arCOG08647 (89 tags) assigned to a family of hypothetical proteins 

with PKD domains (suppl. Table S4.2), that are also found in N. maritimus 

and C. symbiosum and could represent the surface-layer protein of these 

archaea. 

The second abundant cluster was COG0004 (ammonia permease, 67 sequence 

tags), followed by COG5267 and NOG78312 with unknown functions and of 

bacterial origin. Generally, many highly transcribed genes were potentially 

involved in transport, energy metabolism or were of unknown function. When 

sorting the mRNAs to the three domains of life according to their best match 

to the UniRef90 database, we found that most of the functions (COGs) were 

represented by reads from only one domain, i.e. originating only from 

archaea, bacteria or eukaryotes, respectively (Fig. 4.5). While, according to 

the COG category “energy production and conversion”, archaea clearly gain 
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their energy from ammonia oxidation, bacterial key enzymes involved in a 

variety of metabolisms, including nitrite oxidoreductase (COG1140) and 

aerobic-type carbon monoxide dehydrogenase (COG1529, COG1319, COG 

2080), were transcribed.  

 
Figure 4.5. Depiction of mRNA tags with matches to clusters of orthologous groups (COG, 
NOG, KOG and arCOG), and their affiliation to the three domains of life in the 
metatranscriptome of Geodia barretti. Number of tags in a certain cluster corresponds to the 
size of the circle. The localisation of the circles is determined by the number of tags classified 
as bacteria, archaea and/or eukarya. Clusters in the vertices are specific, while clusters 
inside or on the sides of the triangle have matches to more than one domain.  
 

Coenzyme F420-dependent N5,N10-methylene tetrahydromethanopterin 

reductase related proteins (COG2141) were among the more abundant 

bacterial gene transcripts in this category, indicating an oxidation of 

aldehydes. Furthermore, oxidoreductases potentially related to alcohol 

dehydrogenases (COG0667, COG1062), pyruvate/2-oxoglutarate 

dehydrogenases (COG0022) and isocitrate dehydrogenases (COG2838) were 

found in this category. Eukaryotic transcripts (for top ten eukaryotic 

transcripts see Table S4.4) related to proteins involved in signal transduction 

and secretion, including fibrillins, TNF-receptor-associated proteins, clathrin-

associated proteins and phosphatidylinositol kinase (KOG1217, KOG0297, 

KOG2740, KOG0985, COG5032) were dominating, together with proteins 

from the cytoskeleton, like actin and tubulin (COG5277, COG5023). 
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In order to better characterize the distribution of COGs in our dataset, we 

compared mRNA reads from G. barretti to other marine metagenomic and 

metatranscriptomic datasets. Interestingly, the majority of COGs identified 

in G. barretti (244 COGs) were shared with a metagenomic dataset from an 

Australian sponge (Cymbastela concentrica) living in the photic zone (Thomas 

et al., 2010), while COGs in the G. barretti metatrasncriptome had 49 COGs 

in common with seawater sequences (Shi et al., 2009; Vila-Costa et al., 2010). 

The COGs exclusively found in both sponge datasets included, among others, 

transposases (COG0675, COG3335, COG2801, COG3293) that were 

implicated earlier to be abundant in sponge-symbiont interactions (Thomas et 

al., 2010; Siegl et al., 2010). Transcripts of the G. barretti dataset that 

pointed to specific activities of beneficial symbionts encoded cobyrinic acid 

a,c-diamide synthase (COG1797), involved in biosynthesis of 

cobalamin/vitamin B12, because the cofactor Vitamin B12 is essential for 

many animals and is primarily produced by symbiotic bacteria. Bacterial 

transcripts for phytanoyl-CoA dioxygenase (KOG3290, NOG81762) could 

point to a bacterial consumption of phytanic acid produced by the sponge. 

Transcripts of proteins involved in cell recognition, adhesion and/or signaling, 

like ankyrin repeat proteins (COG0666, KOG0522) Concanavalin A-like 

lectin/glucanase (arCOG07813), TonB dependent receptors and collagen-

binding surface proteins (COG1629, COG0811, COG0543, COG0810, 

NOG133096, NOG138886, NOG69105, NOG69934, NOG68430) are also 

present in the G. barretti metatranscriptome.  The occurrence of a subunit of 

the sup-operon (supD, sponge symbiont ubiquitous PKS) with  ~50% identity 

to the Aplysina aerophoba metagenome fragment pAPKS18 (Siegl et al., 

2010), suggests the production of bioactive compounds for chemical defense. 

 

4.4.7 Taxonomic classification of mRNA sequences 

Simultaneously obtained rRNA and mRNA provide the opportunity to obtain 

taxonomic profiles from both molecules (Urich et al., 2008). Whereas the 

taxonomic classification of mRNA-tags to the 3 domains, Archaea, Bacteria 
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and Eukarya using the best Blast match to Uniref90 reflected approximately 

the taxonomic composition obtained by the SSU ribo-tags, strong differences 

were observed at higher resolution, in particular for the bacterial phyla. For 

example, mRNA from Proteobacteria was most abundant, whereas only a 

small fraction of mRNAs was assigned to Chloroflexi and Acidobacteria (> 5% 

and >2%), the most abundant phyla reported by SSU rRNA. We tested if this 

incongruency resulted from the lack of suitable reference genomes. By 

running a simulation with 5 different classification programs – TACOA (Diaz 

et al., 2009), MEGAN (Huson et al., 2007), CARMA (Krause et al., 2008), 

SOrtITEMS (Monzoorul Haque et al., 2009), PhymmBI (Brady and Salzberg, 

2009). The simulation included 100 250 bp long randomly generated genome 

tags of three species from three different phyla and two different domains, i.e. 

Dehalococcoides sp. VS (phylum Chloroflexi), Nitrospira defluvii (phylum 

Nitrospirae) and the archaeal species “Candidatus Nitrososphaera gargensis” 

(phylum Thaumarchaeota). The latter two genomes were not yet in the 

reference databases at the time of simulation, reflecting a similar situation as 

in the G. barretti metatranscriptome dataset. Whereas most sequences of 

Dehalococcoides sp. VS were correctly assigned by all programs, comparably 

few correct assignments were obtained for N. defluvii and N. gargensis (see 

suppl. text: Optimisation of ribo-contig assembly). Only the program MEGAN 

resulted in exclusively correct assignments, although the majority of 

sequences (~75%) remained un-assigned. This highlights the importance for 

more references genomes from representatives of yet poorly characterised 

phyla. Initiatives like the Genomic Encyclopedia of Bacteria and Archaea 

(Wu et al., 2009) will be of special value. In this metatranscriptomic study no 

close reference genomes were available for SAR202-Chloroflexi and 

Acidobacteria (< 86% identity between sponge SSU rRNAs to SSU rRNA 

genes of closest related genome sequence), which however represented 

dominant groups in the microbial community. We therefore refrained from 

performing a general taxonomic classification of all mRNAs to the different 

bacterial phyla. 
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4.4.8 Highly transcribed genes from archaea are involved in 

ammonia oxidation 

Despite the limited success to taxonomically classify bacterial mRNA, we 

were able to identify mRNAs from the archaeal population in G. barretti due 

to the availability of two genomes from the closely related species of the 

thaumarchaeal group I.1.a (Fig. 4.2a.), “Candidatus Cenarchaeum 

symbiosum” (Hallam et al., 2006) and Nitrosopumilus maritimus, respectively 

(Walker et al., 2010). 

12% of all annotated mRNA tags (UniRef90) were from archaea, although the 

relative archaeal abundance measured on the level of ribosomal RNA was 

lower (2 %, Fig. 4.1.). High transcriptional activity of archaea has, however, 

been confirmed in a quantitative study of amoA genes using qPCR (Radax et 

al., in review) and by their high abundance in FISH analysis (Fig. 4.4.).  

All suspected archaeal key enzymes for ammonia oxidation were present 

among the highest transcribed genes (Table 4.4.), i.e. transcripts of the 

ammonia monooxygenase subunits A (Nmar_1500, CENSYa_0402), B 

(Nmar_1503, CENSYa_0394) and C (Nmar_1502, CENSYa_0670), as well as 

of NirK-like multicopper proteins (Nmar_1259, Nmar_1667, see (Bartossek et 

al., 2010) were found as main constituents in the archaeal mRNA-tag pool.  

Interestingly, also ammonia transporters (COG0004) were among the most 

highly transcribed genes suggesting that an effective transport system is 

needed for ammonia oxidation or perhaps ammonia assimilation in archaea. 

In parallel, also a urea transporter (COG0591) was transcribed (4 archaeal 

plus one bacterial tags, which might point to the capability of the archaeal 

population to use both ammonia and urea as substrates. Interestingly, genes 

of archaea involved in ammonia oxidation and transport were also found in 

high abundance in a metatranscriptomic study in a coastal bacterioplankton 

pointing to highly active archaeal populations (Shi et al., 2009; Hollibaugh et 

al., 2010). 
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Table 4.4. Ten most abundant archaeal transcripts in the G. barretti metatranscriptome* 

Cover

age* 
Accession no. 

Bit 

score 
Predicted function 

No. of 

hits 

Closest 

ortholog in 

7.88 A9A2R7 & A0RXK8 & B3T383 108.3 ammonium transmembrane 

transporter 

62 Thaumarchaeota 

4.10 A0RX84 & A9A3F6 84.7 Putative uncharacterized protein 8 Thaumarchaeota 

4.05 A9A3F7 91.1 Transcriptional regulator, AbrB family 7 Thaumarchaeota 

3.85 A9A5U2 & A9A4Y9 & A0RZ96 & 

A0RTY9 & A0RTY7 & A0RZ95 

78.15 Putative uncharacterized protein 86 Thaumarchaeota 

3.72 A9A4U4 147.1 Ammonia monooxygenase, subunit C 

(AmoC) 

10 Thaumarchaeota 

3.15 B5LRU4 & B3Y8E4 & C8BMD6 

& A0RUM1 & C9K7J9 & 

C0KGQ9 

144.8 Ammonia monooxygenase, subunit A 

(AmoA) 

9 Thaumarchaeota 

2.14 A9A1H6 113.9 multicopper protein/nitrite reducatase 

(NirK) 

14 Thaumarchaeota 

2.05 A0RUL3 & A9A4U5 108.9 Ammonia monooxygenase, subunit B 

(AmoB) 

6 Thaumarchaeota 

1.50 A9A4X9 163 4Fe-4S ferredoxin iron-sulfur binding 

domain protein 

2 Thaumarchaeota 

1.14 C3MKY5 105.7 Thiamine pyrophosphate protein 

domain protein TPP-binding 

5 Crenarchaeota 

*coverage was calculated with the mean read length of mRNA tags over the length of the 
protein (closest known ortholog).  
 

Within the highly transcribed archaeal genes were five proteins with 

unknown function but specific for group I.1a of Thaumarchaeota 

(Nmar_0992/CENSYa_1328, Nmar_0505/CENSYa_1398, Nmar_1506/ 

CENSYa_0391, Nmar_1282/ CENSYa_0064, Nmar_1498/CENSYa_0404), 

both subunits of the cell-division protein cdvAB (Nmar_700/CENSYa_0268 

and Nmar_0816/CENSYa_0986), a highly conserved 4Fe-4S ferredoxin iron-

sulfur binding domain protein (Nmar_1537/CENSYa_1647) and a blue copper 

protein (Nmar_1650, 1273/CENSYa_1796), which are probably involved in 

electron transfers and part of the energy metabolism in archaea (Table 4.4). 

No bacterial amo transcripts or any other dominant bacterial funtional genes 

were identified in our dataset (Table S4.3) indicating that ammonia oxidizing 

archaea are the major drivers of nitrification. Nitrite oxidizers performing the 

second step in nitrification (oxidation of nitrite to nitrate) could similarly be 

identified on the SSU RNA (Fig. 4.2b.) and functional gene level, as 

transcripts of the potential nitrite oxidoreductase nxr, subunit A and B with 

high similarity to the genes of Nitrospira defluvii, (Lücker et al., 2010) are 

found. Bacterial transcripts indicative of anaerobic nitrogen processes (i.e. 
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denitrification, anammox) could not be identified, whereas aerobic 

nitrification seemed to be active, indicating that the sponge was oxygenated 

at the time of sampling by actively pumping water.  

 

4.5 Conclusion 

We have used the marine cold-water sponge G. barretti as a case study to 

explore the applicability of metatranscriptomics for the characterization of a 

complex and little studied microbial community both on its structural and 

functional level. Different from other approaches the random reverse 

transcription of total RNA allows qualitative and quantitative assessment of 

both rRNA and mRNA markers in parallel.  

 This allowed us (1) to characterize the sponge “holobiont” (the host and its 

symbiotic microbial community) in a single RNA analysis and independent of 

PCR primers, (2) to use the large rRNA tag dataset for taxonomic profiling 

and quantitative assessment of eukaryota, archaea and bacteria, (3) to 

reassemble the full length rRNA genes of the most abundant OTUs and thus 

to obtain detailed phylogenetic characterization of the respective organisms, 

and (4) to analyse the most abundant mRNA species of the holobiont in the 

context of a detailed community profile and to identify archaeal genes of 

ammonia oxidation as the most abundantly transcribed genes in the 

community. 

The limitations of our approach (and similar approaches) are given through 

the quality of reference databases and reference genome sequences as well a 

by the quality of deep sequencing (all of which are, however, constantly 

improving). For example, the assembly of rRNA genes from the complex 

datasets needs to take into account the error rates of the sequencing and thus 

is not suitable for the study of “species-level” diversity. Our comparison of in 

silico assembled rRNA genes and genes from clone libraries shows, however, 

that the approach is well suited to even reconstruct complete or nearly 

complete rRNA genes. Additionally, different from PCR-based approaches it 

is less biased and allows detailed study of groups that are not or only 
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insufficiently captured in other analyses, as e.g. the Chloroflexi and 

Poribacteria.  
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4.8 Supplementary Material 

4.8.1 Supplementary Figures  

Figure S4.1. SSU ribo-tag community profile of two G. barretti samples  

 

 
Figure S4.2. Discrepancy between number of 16S rRNA sequences in clone library and ribo-
tags in metatranscriptome in the abundant phyla with > 0.5% of all sequence tags. 
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Figure S4.3. Maximum likelihood tree of a section of subdivision Gammaproteobacteria. 
Assembled contigs from Geodia barretti metatranscriptome ribotags with more than 100 
reads are depicted in blue, clones from the cDNA 16S rRNA clone library are shown in green. 
Respectively, the colored circles for major branches indicate the relative amount of contigs vs 
clones. Filled circles indicate >90% parsimony bootstrap support whereas empty circles 
indicate >75% bootstrap support. Size bar indicated 10% sequence divergence. Other 
proteobacterial sequences are used as an outgroup. 
 

 

 
Figure S4.4. Maximum likelihood tree of the phylum Poribacteria. Assembled contigs from 
Geodia barretti metatranscriptome ribotags with more than 100 reads are depicted in blue, 
clones from the cDNA 16S rRNA clone library are shown in green. Respectively, the relative 
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amount of contigs vs clones is indicated by the colored circles for major branches. The 
number of reads in a contigs is written in brackets for each contig. Full-length sequences 
were used for treeing calculation and shorter sequences are added via the parsimony 
interactive tool in ARB. Parsimony bootstrap numbers are given if branch support is more 
than 75% .Size bar indicated 10% sequence divergence. Various sequences from other 
bacterial phyla were used as an outgroup. 
 

 
Figure S4.5. In silico test results of optimized parameters (o 150 p 99 n -130 –g 150) used for 
contig assembly of ribo-tags. Red bar shows the clear sepapration of the full-length outlier 
sequence, whereas closely related sequences (light and dark blue) are not separated totally. 
 

 

 

4.8.2 Supplementary Tables 

 

 
Table S4.1. FISH probes used in this study 

 specificity FA conc. dye 
dArch915* Archaea 20 Cy3 
dCren569* Cren-/Thaumarchaea 20 Cy3 
EUBmix Bacteria 0-50 Cy5 
dGam42a* Gammaproteobacteria 35 Cy5 
Por1130 Poribacteria 35 Cy3 
GNSB-941 Chloroflexi 35 Cy3 
CFX1223 Chloroflexi 35 Cy3 
* indicates labeling on both 5’ and 3’- end (DOPE-FISH, Stoecker et al., 2010) 
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Table S4.2. Ten most abundant mRNA transcripts in G. barretti showing a match to clusters 
of orthologous groups 

OG functional description Protein description A B E ABE 

arCOG08647 Function unknown  Uncharacterized conserved protein  89 0 0 89 

COG0004 Inorganic ion transport and metabolism  Ammonia permease 62 5 0 67 

COG5267 Function unknown  Uncharacterized conserved protein  0 47 0 47 

NOG78312 Function unknown  Uncharacterized conserved protein  0 40 0 40 

COG2141 Energy production and conversion  F420-dependent N5,N10-methylene 

tetrahydromethanopterin reductase and 

related oxidoreductases 

0 37 0 37 

COG3391 Function unknown  Uncharacterized conserved protein  13 17 3 33 

COG0747 Amino acid transport and metabolism  ABC-type dipeptide transport system, 

periplasmic component 

0 33 0 33 

COG4102 Function unknown  Uncharacterized conserved protein  0 30 0 30 

COG0459 Posttranslational modification; protein 

turnover; chaperones  

Chaperonin GroEL (HSP60 family) 0 24 1 25 

COG1028 Secondary metabolites biosynthesis; & 

General function prediction & Lipid 

transport and metabolism  

Dehydrogenases with different 

specificities (related to short-chain 

alcohol dehydrogenases) 

2 16 1 19 

A = number of archaeal sequence tags, B = number of bacterial sequence tags, E = number of 
eukaryotic sequence tags, ABE = number of sequence tags from all three domains 

 

Table S4.3. Ten most abundant bacterial gene transcripts, best match to UniRef90 

coverage Accession no. bits Protein annotation hits read length protein length 

30.68 B7RDP9 55.6 Putative uncharacterized protein 70 239.3 182 

8.50 D2MKQ0 60.4 Putative uncharacterized protein 6 225.2 53 

7.38 Q1MYB0 65.2 Putative uncharacterized protein 11 239.5 119 

7.32 Q73YI1 58.7 Putative uncharacterized protein 10 241.7 110 

7.05 D2MLE1 87.3 Putative uncharacterized protein (Fragment) 13 224.5 138 

6.58 D2MHA0 67.9 Secreted protein (Fragment) 6 217 66 

4.97 UPI0001694AF3 60.3 hypothetical protein Xoryp_04050 7 253.6 119 

4.83 A6P143 51.3 Putative uncharacterized protein 6 200.3 83 

4.70 Q1YSE1 62.2 Putative uncharacterized protein 7 233.7 116 

4.38 Q5ZUQ1 67.4 Putative uncharacterized protein 8 243 148 

 
 

 

Table S4.4. Ten most abundant eukaryotic gene transcripts, best match to UniRef90 

coverage Accession no. bits Protein annotation hits 
read 

length 

protein 
length 

6.65 B5DX74 50.5 GA26398 8 244.4 98 

2.10 A8DUN7 51.8 Predicted protein (Fragment) 2 186 59 

1.85 B2LUN0 69.7 Thymosin beta 1 227 41 

1.68 O62543 100.4 Serum response factor 9 214.1 383 

1.67 O99359 135.1 Cytochrome c oxidase subunit 2 5 246.4 246 

1.48 A7TCN0 50.8 Predicted protein (Fragment) 1 236 53 

1.44 Q5MWS1 141 Cytochrome c oxidase subunit 1 (Fragment) 4 253.5 235 

1.43 B8YCQ7 56 Ferritin 3 245.3 172 

1.18 UPI00019245DA 102 similar to Histone H4 replacement CG3379-PC 2 212.5 120 

1.02 B4G2W4 127.8 GL23535, Actin (EST library of L.baicalensis) 5 231 379 
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4.8.3 Supplementary methods 

4.8.3.1. Optimisation of parameters for ribo-contig assembly  

The reverse transcription yielded random regions on the 16S rRNA and therefore 

allows for in silico reassembly of long, ideally full length rRNA for certain abundant 

taxa. However, the alteration of variable and conserved regions on the SSU rRNA 

molecule poses challenges to a reliable assembly without chimeric rRNA formation. 

We have therefore performed pilot studies on model “communities” in silico to 

evaluate the assembly of SSU rRNA sequences of closely and more distantly related 

species from the six most abundant bacterial higher taxa (phyla, classes) found in G. 

barretti. Three full-length 16S rRNA sequences of the taxa Alphaproteobacteria, 

Deltaproteobacteria, Acidobacteria, Chloroflexi, Spirochaeta and the candidate 

division Poribacteria were downloaded from GenBank. Each of the test communities 

consisted of three known rRNA genes with one (the “outlier”) being 87- 95% identical 

to the other two, which were more closely related to each other (97-99% identity). 

The rRNAs were randomly cut into 250bp and 400 bp fragments, mimicking the 

lengths of Roche FLX and FLX-Titanium pyrosequences, respectively. These were 

mixed and reassembled using the program CAP3 (Huang and Madan, 1999). Quality 

files with an average Phred quality score of 33 (as determined from the Geodia 

barretti transcriptome data) were produced and served as input for the assembly. 

Different parameters were varied in the assembly protocol.  

1. sequence coverage: 8x, 16x, 100x 
2. minimum sequence overlap: (-o): 50bp, 100bp, 150bp, 200bp 
3. minimum percent sequence identity in overlap: (-p): 90%, 95%, 97%, 99% 
4. mismatch score (-n): -5, -130  
5. gap penalty (-g): 6, 150  

 

Different combinations of these parameters were tested and evaluated for their 

success to reassemble the “original” full length 16S rRNA. These tests showed that 

especially assemblies with the longer sequence input (of 400 bp) yielded considerably 

better results (see for example Fig. S4.5.).  

Because of this result, we performed a highly stringent assembly with parameters 

set to –o 150 –p 99 –n 130 –g 150 to obtain longer reads from the 250bp FLX 

sequences which then serve as input for the further assembly in a second round.  

With these parameters sequence reads are assembled into the same contigs if they 

have no more than 2 mismatches over an overlap of 150bp. Resulting contigs were no 

technical chimeras. The second assembly round was subsequently performed with 
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less stringent parameters (-o 150 –p 97). Allowing 3% deviation of the sequences in 

the overlap reflects the technical error rate of pyrosequencing (Kunin et al., 2008) 

The second assembly round increased contig lengths to 300-1500 bp, with an average 

of 698bp. The tests showed good separation of the ”outlier” rRNA in all 

“communities”, whereas a clear separation of the more similar sequences was not 

always achieved.  

The application of this method onto the Geodia barretti dataset led to contigs with 

an average length of 347 base pairs from the first assembly round and an average 

length of 729 bp after the second round. (for more details see Table 4.2). 

Those 16S rRNA sequences were introduced in phylogenetic analysis together with 

Sanger sequenced 16S rRNA sequences of the same nucleic acid preparation (see 

Fig. 4.2, 4.3, S4.3, S4.4). 

 

4.8.3.2. Software comparison for mRNA binning 

Contemporary sequencing technology made sequencing less costly and quicker but 

on the other hand generates short sequence reads which are difficult to assemble 

and classify taxonomically. Taxonomic binning is especially challenging when the 

dataset contains genome fragments of novel taxa, that lack reference (meta)genomes 

in public databases. Different approaches have been developed in recent years. 

Ideally, they should be evaluated on large-scale test data, but so far, no critical 

assessment has been published. Therefore, we evaluated methods for taxonomic 

classification of metatranscriptome tags using a small-scale test dataset, 

representing the main challenges for the classification of mRNA sequence reads 

from environmental samples, like a marine sponge. An artificial metatranscriptome, 

stemming from 3 different microbial (2 bacterial and 1 archaeal) genomes (two 

thereof unpublished; not present in the reference database), was simulated and 

different computational approaches benchmarked with regard to the correct 

taxonomical classification of the sequence reads.  

Software programs tested for this purpose (see list below) are either based on 

sequence composition (e.g. oligonucleotide frequencies, GC-content, etc.) and/or on 

similarity to other sequences, employing evolutionary conservation of sequences. 

Both approaches are either supervised (dependent on a reference sequence database) 

or unsupervised (not dependent on a reference sequence database and directly 

learning from the analyzed dataset). 
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In this study, programs with different before mentioned approaches were evaluated 

with a small-scale simulated metatranscriptome, containing three important phyla 

represented in the Geodia barretti-transcriptome: Chloroflexi, Thaumarchaea and 

Nitrospira. The majority of sequence input (genome of archaea and nitrospira) was 

unpublished at the time of analysis, which reflects the metatranscriptome dataset of 

G. barretti in some respect, as this sponge harbours many microorganisms without 

closely related, genome sequences (Table 4.5.). 

For homology-based approaches that means, the nearest sequence match might be 

from a distantly related organism and consequently, has only low similarity. The 

application of stringent parameters to avoid unspecific classifications would 

therefore omit the detection of novel organisms. 

In total, the test set was composed of 100 simulated mRNA-tags from 3 proteomes 

(34 sequence reads of Nitrospira defluvii (Lücker et al., 2010), 13 of Dehalococcoides 

sp. (CP001827) and 53 sequences of Nitrososphaera gargensis (Hatzenpichler et al., 

2008)) with mean length of 250bp. The proteomes of those genomes were downloaded 

and DNA sequences randomly fragmented with the software Metasim (Richter et al., 

2008). 

 

Results 

 

1. Sequence composition-based approaches 

 

TACOA (Diaz et al., 2009) (TAxonomic COmposition Analysis method); supervised; 

applies the k-nearest neighbor (k-NN) approach.  

 
Figure S4.6. Results of taxonomic classification of mRNA-tags from a simulated 
metatranscriptome with the software TACOA. The simulated dataset included randomly 
fragmented nucleotide sequences of genes in Thaumarchaea (blue), Nitrospira (green) and 
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Chloroflexi (red), whereby the genome sequences of both the archaeon and the Nitrospira 
used were not deposited in a public database at the time of analysis. The percentage of 
correct classification is indicated by darker shades of the respective color and lighter shade 
indicates the percentage of incorrect classifications on the taxonomic levels given on the x-
axis. More than half the genes from a novel archaeal genome are classified as bacteria or 
eukarya, while around a quarter of genes from a novel bacterial genome are classified at all, 
but correctly. A taxonomic classification of 250 bp sequences of genes into different 
phyla/classes or genera seems generally inaccurate with this approach. 
 

In this simulation, the majority of reads were incorrectly assigned from phylum to 

genus level. Also on domain level the novel archaeal genome was incorrectly 

classified into bacteria or eukaryotes, while the bacterial sequence reads were 

correctly assigned to the bacterial domain. 

 

2. Homology-based approaches 

 

MEGAN (MEtagenome ANalyzer) assigns each read (or contig) of the dataset to a 

lowest common ancestor of the hits of a BLAST query using the NCBI taxonomy 

(Huson et al., 2007). 

 
Figure S4.7. Results of taxonomic classification of mRNA-tags from a simulated 
metatranscriptome with the software MEGAN. For color coding see Fig S4.6. While more 
than two thirds of gene tags from a published genome are classified correctly on all 4 
taxonomic levels, a third of tags from a novel bacterial genome are correctly classified on 
domain and phylum level and novel archaeal genes are correctly classified exclusively on 
domain level with this approach. 
 

MEGAN produced little incorrect assignments with the parameters used, but for the 

novel archaeon, a wrong classification on phylum level. On domain level, the results 

seem to be reliable if keeping in mind that only approximately 20% of novel archaeal 

and 30% of novel bacterial sequence reads are binned. 
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CARMA (Computational Analysis of Replicate Measures for Arrays) first identifies 

Pfam domain and protein family fragments in unassembled reads using Pfam profile 

hidden Markov models (pHMMs). A phylogenetic tree is reconstructed for each 

matching Pfam family. The reads containing identified domains are then classified 

into a higher taxonomy order according to their phylogenetic relationships (Krause 

et al., 2008).  

 
Figure S4.8. Results of taxonomic classification of mRNA-tags from a simulated 
metatranscriptome with the software CARMA. For color coding see Fig. S4.6. Around a third 
of tags stemming from the deposited Chloroflexi genome were correctly classified, while the 
results for novel genomes were insufficient, especially on taxonomic levels deeper than 
domain. 
 

A third of sequences from Dehalococcoides, with references deposited in the NCBI 

database, were binned correctly. 10% of reads stemming from genomes lacking 

references in the database were correctly binned on kingdom level (with 4%) wrong 

assignments for the new archaeon), on any taxonomic level below no binning is 

possible. 

 

SOrt-ITEMS (Sequence Ortholog based approach for binning and Improved 

Taxonomic Estimation of Metagenomic Sequences) starts with a BLAST alignment 

of the reads of the dataset followed by an assessment of the alignment using bit-

score, alignment length, percentage of identities, and positives. Assuming a uniform 

rate of evolution and based on thresholds for these parameters reads are either 

ranked into and assigned in a appropriate taxonomical level or binned as unassigned 

(Monzoorul Haque et al., 2009).  
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Figure S4.9. Results of taxonomic classification of mRNA-tags from a simulated 
metatranscriptome with the software SOrt-Items. For color coding see Fig. S4.6. A taxonomic 
classification of sequence tags from bacterial and archaeal genes was correct for up to a fifth 
of the input sequences, while the taxonomic information received for novel gene sequences 
was for about 10% correct. No reliable classification was made for novel gene sequence tags 
on class or genus level. 
 

This new software program gave results akin those of CARMA, showing correct 

binning only with sequences having references in the database. 

 

In homology-based approaches, the result depends on the presence of a closely 

related gene sequence in the database. Therefore, new genomes will not be binned 

correctly. 

 

3. Combined approaches 

 

PhymmBl (Brady and Salzberg, 2009) to identify putative prokaryotic ORFs, 

Phymm applies interpolated Markov models (IMMs) to characterize variable-length 

oligonucleotides typical of a phylogenetic grouping. In addition the program was 

combined with the BLAST algorithm to improve results (PhymmBl). 
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Figure S4.10. Results of taxonomic classification of mRNA-tags from a simulated 
metatranscriptome with the software PhymmBL. For color coding see Fig S4.6. This software 
classified all sequence tags on 3 taxonomic levels, while all assignments for novel bacterial 
and archaeal gene tags were incorrect. Gene sequences from the published Chloroflexi 
genome were classified correctly to almost 80% constantly over the taxonomic levels from 
phylum to genus. 
 

PhymmBL classified all input sequences, with 100% wrong assignments for novel 

sequences. Known sequences are binned correctly to almost 80% on all 3 

phylogenetic levels they allow, nevertheless the resuming >20% are binned 

incorrectly on all levels of assignment. 

 

The result of the binning attempt of 250 base pair sequences with five programs 

shows difficulties in reliable separation of sequences based on both composition and 

homology. In terms of correct read assignments in total, the program MEGAN is 

promising, but the majority of mRNA-tags (3/4) were not assigned at all due to their 

low bit-score and stringent parameters used.  

As most of the evaluated methods depend on publicly available sequence data, the 

challenge for them was how to deal with sequences that stem from organisms not 

present in the databases, as this is common in environmental microbial community 

analysis. Thus, we chose one organism present in the NCBI nr dataset, 

Dehaloccocoides sp. VS and two organisms that were not present in the NCBI nr 

dataset, Nitrospira defluvii and Nitrososphaera gargaensis.  

Although Dehalococcoides reads made up only 13% of the whole test-set all 

approaches yielded most correct assignments therewith. In terms of total correct 

read assignments (including simulated reads from the other two genomes), Megan 

was the program performing best. More importantly, the number of wrong 

assignment with MEGAN was zero. We want to emphasize at this point that it is 
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better not to assign a read than to get a wrong characterization of the present 

community. CARMA and Sort-ITEMS both had less sensitivity and an increased 

false positive rate compared to MEGAN. Remarkably, TACOA and phymmBl showed 

a huge increase in sensitivity, however most of the reads got wrongly classified.  

According to those tests, MEGAN was chosen for taxonomical binning of SSU/LSU 

rRNA and mRNA based on BLAST against the UniRef database. 
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5 GENERAL DISCUSSION 

 

Since the mid-1980s many new insights have been gained into the 

composition of naturally occurring microbial communities. Comparative 

analysis of ribosomal RNA (rRNA) sequences revealed the vast diversity of 

bacteria and archaea, reducing plants and animals to a peripheral branch in 

the phylogenetic Tree of Life (Olsen et al., 1986; Woese, 1987; Woese et al., 

1990; Pace, 1997). As environmental surveys were initiated, microbiologists 

were confronted with a natural diversity which far exceeds that represented 

by pure cultures, revealing major lines of descent that were previously 

unrecognized (Staley and Konopka, 1985; Fieseler et al., 2004). One of the 

important findings in this microbial revolution was the discovery of 

mesophilic archaea (DeLong, 1992; Fuhrman et al., 1992; Preston et al., 

1996), abolishing the paradigm of archaea being restricted to extreme 

environments. Studies thereafter (Francis et al., 2005; Leininger et al., 2006; 

Wuchter et al., 2006) unraveled a widespread occurrence and high abundance 

of archaea on land and in the ocean. Recent studies indicated that 

Thaumarchaea are deep branching in the evolutionary tree of archaea 

(Brochier-Armanet et al., 2008; Spang et al., 2010) and might even be the 

most closely related ancestors of Eukaryotes (Kelly et al., 2011). This makes 

them interesting candidates as sponge symbionts as their hosts are on the 

phylogenetic basis of eukaryotes with the next living relative being the 

protists choanoflagellata (Borchiellini et al., 2001). The association of those 

evolutionary ancient organisms could date back to early Cambrian times 

when sponges first appeared and this old interaction might have influenced 

the evolution of archaeal and eukaryotic metabolism and niche adaptation. 

 

5.1 Diversity of Sponge-Microbe associations 

The mesohyl of sponges harbors a huge diversity of organisms spanning over 

all three domains of life. In particular, a large amount of heterotrophic and 
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autotrophic bacteria are present, which can contribute to the sponge energy 

demands by uptake as food and through the fixation of carbon or nitrogen 

(reviewed in Taylor et al., 2007). 

A recent review of all sponge-derived 16S rRNA sequences available (Webster 

and Taylor, 2011) outlined more than 25 phyla within more than 10 000 

sequences - excluding around 259 000 V6-tags and 80 000 16S rRNA tags 

from pyrosequencing studies (Webster et al., 2009, chapter 4). This 

demonstrates the enormous effort made in the last 30 years to describe the 

microbial diversity in marine sponges and discern sponge-specific patterns in 

their phylogeny (reviewed in Taylor et al., 2007). 

Nevertheless, those studies were almost exclusively based on cloning of PCR 

products, which might have lead to a severe bias in the assessment of 

microbial community compositions inclusively resulting in whole phyla and 

domains undetected, as in the case of Poribacteria and Archaea. In addition, 

the mere taxonomical identification of microbial DNA in a complex system 

like a marine sponge seldomly indicates whether the microorganism 

originated from the seawater pumped through the sponge channels, or 

represented food particles, parasites or symbionts. 

In this study a metatranscriptomic approach was used as an attempt to 

overcome some of the limitations outlined above, allowing (i) the 

identification of active sponge associated microbial groups on RNA level 

independently of PCR amplifications and (ii) to simultaneously tackle 

functional information by analysing transcribed protein genes. In G. barretti, 

at least 10 bacterial phyla and thaumarchaea were present that were 

identified by analysing approximately 110 000 small subunit (SSU) rRNA 

sequence tags (chapter 4). The subsequent implementation of ribo-tag 

assembly into long 16S rRNA sequences (= ribo-contigs) allowed phylogenetic 

analyses and thus identification of potential sponge-specific clusters of the 

most abundant bacterial and archaeal phyla. Interestingly, the ribo-contig 

with the majority of bacterial ribo-tags was assigned to the bacterial phylum 

Chloroflexi, related to an uncultured cluster, which had potentially been 

underestimated in sponges so far. This cluster includes the seawater-derived 



5. Discussion 

 - 153 - 

sequence SAR202, which was found to be more abundant in deeper waters of 

the Atlantic Ocean (Morris et al., 2004; Varela et al., 2008). Ribo-tags from 

the phyla Acidobacteria, Proteobacteria, Candidate Phylum Poribacteria and 

Actinobacteria were also abundant in the community profile of G. barretti 

whereas tags from Bacteroidetes, Gemmatimonadetes as well as Archaea 

were found less frequently (see Fig. 4.1.). This diversity is in line with the 

microbial community found in other sponges (see section 1.3.). While the 

relative abundances of most bacterial phyla appear to reflect their occurrence 

within the sponge tissue (as also confirmed by FISH, chapter 4), the relative 

abundance of archaea found in the metatranscriptomic profile is likely an 

underestimation due to the cell size and ribosomal content of these organisms 

(own observation, Odaa et al., 2000). Furthermore, quantitative PCR of 

archaeal ammonia monoxygenase subunit A gene (amoA) in G. barretti 

(chapter 2) revealed high archaeal abundance, exceeding numbers found in 

any other habitat investigated. A high number of archaea could also be 

confirmed by FISH analysis (chapter 3 and 4), in which cell density of 

archaea was clearly higher than for Gammaproteobacteria (chapter 4), 

although their relative fraction in the taxonomic profile of the 

metatranscriptome was comparable (see chapter 4). In contrast to archaea, 

the abundance of Chloroflexi might have been overestimated because the 

organisms seem to occur as filaments in nature and therefore the cell size 

(and ribosomal content) might be notably bigger than in other bacterial cells 

(Miura and Okabe, 2008). Thus we conclude, that PCR-independent analyses 

via metatranscriptomics allows to identify the presence of organisms from all 

three domains simultaneously including organisms that are not identified in 

PCR-based studies. However, relative abundances deduced from ribosomal 

content of the cells might not always directly relate to the relative abundance 

of cells, underlining the importance of coupling different analytical methods.  
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5.1.1 Sponge-specific sequence clusters  

The work described in chapter 4 includes a new analysis method, with the 

assembly of ribosomal RNA reads obtained by pyrosequencing of 

approximately 250 base pairs in length into up to full-length 16S rRNA 

contigs for phylogenetic analysis and assessment of ITS (internal transcribed 

spacer) residues. We found contigs with a good coverage (a high fraction of 

reads) in sponge-specific sequence clusters. Deep sequencing techniques 

applied on sponges and seawater have the potential to break up sponge-

specific sequence clusters, if rarely detected sequences are taken into account. 

Nevertheless, the detection of similar microbes in various unrelated sponge 

species should indicate a related function and ecological niche, as shown by of 

the mutualistic cyanobacterial symbiont “Candidatus Synechococcus 

spongiarum”. This symbiont provides 50% of the host’s nutrition by carbon 

fixation. Akin, sponge-derived Nitrospira (nitrite-oxidizing bacteria) are 

exclusively related to the cluster IV of the phylum Nitrospira, with a growing 

sponge-specific cluster, called cluster IVb (Fig 4.2b.). For archaea, sequence 

information is sparse, but nevertheless, a sponge-specific cluster related to 

“Cand. C. symbiosum” is being recognized (chapter 2), including 80% of ribo-

tags in a contig related to this cluster (chapter 4). This phylogenetic pattern 

might point to these archaea being key ammonia oxidisers in certain sponges 

but further investigations are needed to prove this hypothesis.  

The dominant ribo-contig related to the subcluster 3 of the uncultured 

SAR202 cluster of Chloroflexi (Morris et al., 2004) is part of a sponge-specific 

sequence cluster (Fig. 4.3), encompassing sequences from seven different 

sponge species (including short sequences only shown in Taylor et al. 2007). 

Furthermore, a second and new sponge-specific cluster was composed by 16S 

rRNA sequences from G. barretti and two other sponges. The function of 

these Chloroflexi is not known, due to the lack of isolates from this cluster. A 

study by Morris and colleagues (2004) showed that they are abundant in 

meso- and bathypelagic waters and in 2008, fluorescence in situ 

hydbridisations in combination with microautoradiography analyses showed 

the preferential uptake of L-aspartic acids of SAR202-related Chloroflexi, in 
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contrast to other bacteria and Thaumarchaea in the water column, which 

take up D-aspartic acids (Varela et al., 2008). This adaptation to the ocean, in 

which the majority of amino acids is available as L-enantiomeric form, also 

indicates an important role of those Chloroflexi in biochemical cycling, which 

exactly stays elusive for now. 

Gammaproteobacteria were the most abundant proteobacterial class in G. 

barretti, and phylogenetic analysis with ribo-contigs affiliated with this class 

showed that the contig harboring the largest number of sequence tags was in 

a sponge-specific sequence cluster comprising sequences of at least four other 

sponge species (Fig. S4.3). The respective organisms might be involved in 

nitrite oxidation due to their phylogenetic relationship to Nitrococcus mobilis. 

Furthermore, ribo-contig sequences from abundant lineages in the 

metatranscriptome dataset of G. barretti were related to sponge-specific 

sequence clusters recognised before in the phyla Acidobacteria, 

Gemmatimonadetes, Spirochaeta, and Deltaproteobacteria. 

 

5.1.2 Nitrogen cycling in marine sponges 

The release of high amounts of nitrate from tropical sponges was discovered 

already in the 1980s (Corredor et al., 1988; Diaz and Ward, 1997), but only 

recently the identity and abundance of the potential key players in this 

processes were brought to light (chapter 2 – 4, Bayer et al., 2008; Schläppy et 

al., 2010). Although sponge cells tolerate ammonia to certain concentrations 

(25 mM, Sipkema et al., 2004), ammonia is generally toxic to aquatic animals 

and is produced in large amounts by eukaryotes as a waste product. However, 

for microorganisms it can serve as a nitrogen and energy source. The 

presence of large amounts of microbes in many marine demosponges and the 

presence and high abundance of ammonia oxidizers in their mesohyl (Bayer 

et al., 2008; Steger et al., 2008; Mohamed et al., 2009, chapter 2 and 3) 

indicate a considerable production and turnover of this compound.  

Furthermore, the measurement of anaerobic ammonia oxidation and 

denitrification in G. barretti (Hoffmann et al., 2009, chapter 2), denitrification 
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in mediterranean sponges (Schläppy et al., 2010) and the occurance of 

bacteria putatively involved in anaerobic ammonia oxidation in Mycale 

laxissima, (Mohamed et al., 2009) indicated that nitrogen turnover occurs 

also under anaerobic conditions in sponges, e.g. in phases of non-water-

pumping. 

The conversion of inorganic nitrogen compounds like ammonia and nitrate 

back to atmospheric nitrogen has great impact on the marine ecosystem. 

Since the turnover rates of nitrogenous compounds in sponges can exceed 

rates known from the water column and ocean sediments up to 10-fold, these 

animals might be nitrogen sinks in areas with high sponge biomass. 

The evidence for archaeal ammonia oxidation in marine cold-water sponges 

shown here (chapter 2-4) emphasizes the importance of these symbioses in 

ecosystem functioning and marine nitrogen cycling in deep and cold oceanic 

environments. 

 

5.2 Archaea as main ammonia oxidisers in marine cold-

water sponges 

Given the frequent association of Thaumarchaeota group I.1a with marine 

sponges and the indications for nitrification within these host organisms 

(Corredor et al., 1988; Diaz and Ward, 1997; Diaz et al., 2004; Bayer et al., 

2008, chapter 2 and 3), evidence suggests that ammonia-oxidizing archaea 

(AOA) frequently thrive in sponges. Nevertheless, AOB have also been found 

in marine sponges, albeit only identified by on PCR amplification (Diaz et al., 

2004; Bayer et al., 2008; Mohamed et al., 2009). The sponges investigated in 

this study showed nitrification activity in incubation experiments and a 

higher relative abundance of AOA in contrast to AOB on genomic as well as 

transcript level (chapter 2). Furthermore, the activity of AOA in G. barretti 

was supported by a metatranscriptomic study, in which genes potentially 

involved in ammonia oxidation of archaea were among the most abundant of 

all transcripts identified (chapter 4).  
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Growth of the only cultivated strain from marine thaumarchaea, N. 

maritimus, (group I.1a) is adapted to extreme nutrient-limited conditions 

(Martens-Habbena et al., 2009), with ammonia concentrations below 10 nM. 

This is more than 100-fold lower than the minimum nutrient requirements 

for growth of AOB in culture (Prosser, 1989; Bollmann et al., 2002).  

Although some thaumarchaea recovered from soil (in group I.1b) can grow on 

slightly higher ammonia concentrations (up to 15-20 mM, Tourna et al., 2011) 

these are still below the optimum for AOB, which can grow in environments 

with up to 1000 mM ammonia (Koops et al., 2003). Sponges seem to be a rich 

source in ammonia, as they release it either constantly (chapter 2), or only in 

autumn (Bayer et al., 2008). In times of active pumping activity, however, the 

conditions inside the sponge might resemble the conditions of the 

surrounding seawater, i.e. might be very low on nutrients. Nevertheless, 

ammonia accumulation could occur in phases of non-pumping, which would 

favour the activity of organisms that are adapted to higher concentrations. 

The differences in nutrient availability, oxygen concentration and 

temperature might contribute to shape the microbial community, including 

that of AOA and AOB associated with particular marine sponges.  

Table 5.1 indicates, that thaumarchaeal 16S rRNA sequences from sponges 

with stable nitrification activity phylogenetically cluster with other sponge-

derived thaumarchaea. AOA from G. barretti and P. ventilabrum are related 

to a sponge-specific cluster (ssc 1) together with 16S rRNA from sponge 

species living in warm- and cold-water habitats, including “Cand. C. 

symbiosum”. AOA sequences from the mediterranean sponge A. aerophoba 

cluster with archaea derived from sponge species sampled in Korea (ssc 2). It 

is possible that A. aerophoba harbours AOA with different affinity to distinct 

ammonia concentrations than in G. barretti and P. ventilabrum, because of 

the seasonal ammonia limitation in A. aerophoba in spring (Bayer et al., 

2008). In addition to the sponge-specific AOA lineage (ssc 1), all sponge 

species analysed in this study possessed a second lineage of Thaumarchaea, 

related to 16S rRNA sequences from cold and deep-water samples (chapter 2). 

However, the activity of AOA could be assigned to the sponge-specific lineage 
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(ssc 1) by the metatranscriptomics analysis of G. barretti, in which the 

majority of archaeal rRNA transcripts were related to this cluster (chapter 4).  

Table 5.1. Environmental factors of nitrifying sponges, possibly correlating with AOA and 
AOB abundance and phylogenetic patterns 

 G. barretti P. ventilab A. dichotoma T. semisub A. aerophoba 

Temperature Cold Cold Cold Cold moderate 

Nitrification  + + NH3 oxidation unstable + 

AOA 16S rRNA 

pattern 

ssc 1 & cold 

water cluster 

ssc 1 & cold 

water cluster 

cold water 

cluster 

cold water 

cluster 

ssc 2 

qPCR DNA AOA AOA + AOB AOA ± AOB AOA AOA + AOB 

qPCR RNA AOA AOA  ± AOA ± AOB ± AOA n. determined 

NH3 availability release release  release release release/ 

limited 

Oxygen oxic/anoxic oxic oxic oxic/anoxic oxic/anoxic 

Distribution of 

AOA 

equally upper layer  outer mm equally n. determined 

Morphology bulky fan branched mushroom  tubes 

Reference this study this study this study this study Bayer et al., 

2008 

ssc 1 and ssc 2 = two different thaumarchaeal sponge-specific cluster (see boxes in Fig. 2.3) 
P. ventilab = P. ventilabrum, T. semisub = T. semisuberites 

 

Furthermore, it is yet unclear to what extent also ammonia oxidizing bacteria 

(AOB) contribute to the nitrification observed in marine sponges. AOA and 

AOB might be differentially adapted to changes in ammonia or oxygen 

supply. Therefore, sponges with fluctuating ammonia secretion, like A. 

aerophoba could harbour more complex populations of ammonia oxidizers, 

which are adapted to the differences in ammonia concentrations.  

In this study, bacterial amoA was detected only in some individuals of Antho 

dichotoma also on the transcription level (but in far lower levels than AOA, 

chapter 2), inferring at least a partial involvement of bacterial ammonia 

oxidation activity in this sponge. A. dichotoma has thin branches with a core 

of spicules and a relatively thin layer of mesohyl (Table 5.1). Temperatures of 

15°C and nutrient availability from the surrounding seawater is comparable 

to the other sponges (showing no bacterial amoA transcription), so a 
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correlation with constant oxygen availability due to the diffusive boundary 

layer of 1 mm (Hoffmann et al., 2008) is possible. However, the distribution of 

AOA in the fan-shaped sponge P. ventilabrum, indicates that also AOA might 

be dependent on specific oxygen and ammonia levels. By FISH, 100 times 

more archaea were detected in the outer 50 µm of the mesohyl (chapter 2), 

where oxygen and ammonia concentrations seem more favourable (Table 

5.1.).  

Calculation of archaeal cell specific nitrification rates in P. ventilabrum 

resulted in up to 6 fmol per cell and day, which were in the same range as for 

planktonic AOA (Wuchter et al., 2006; de la Torre et al., 2008). This rate is in 

the lower range of AOB in seawater (Ward, 1987; Ward et al., 1989). Tropical 

sponges exhibit higher nitrification rates than cold-water sponges, therefore 

it might be possible that AOB are the responsible nitrifyers in those sponges, 

because AOB have generally higher conversion rates per cell (Ward et al., 

1989). However, the relative abundance of AOA and AOB has not yet been 

determined in sponges from warmer waters.  

This was the first quantitative analysis on AOA and β-AOB in marine 

sponges and more studies on the relative abundance and activity of those 

microbes in warm- and cold-water sponges and with different oxygen and 

ammonia availability would help to determine the factors involved in niche 

differentiation between AOA and AOB in sponges.  

 

5.3 Metatranscriptomics for the characterization of 

sponge microbiota  

Facing the challenges in sponge microbiology, a method combining in-depth 

diversity and insight in metabolic pathways of active symbionts was used to 

study the marine cold-water sponge G. barretti with its microbiota. The so-

called “double-RNA” approach, based on the sequencing of cDNA without 

previous depletion of rRNA, was applied only once before (Urich et al., 2008), 

and the analysis protocol was validated and further developed in this study. 

The approach allows the assessment of phylogenetic and genetic information 
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of active populations from all three domains of life in the holobiont sponge. 

However, the annotation of functional genes strongly depends on the 

availability of reference genomes, and since the largest fraction of sponge-

associated microbes defers isolation genes matching to sequenced genomes in 

the database were the minority in this study. This became especially 

apparent for the most abundant group, the Chloroflexi. According to the 

taxonomic profile, around half of the bacterial sequences were affiliated with 

this phylum, still a prevalence of chloroflexi genes was not seen in the 

functional profile. It is important to know the limitations of this kind of data 

analysis, as it can lead to incorrect results if not examined critically. After 

evaluating different methods (supplementary text 4.8.3.2), we used a rather 

conservative analysis protocol for the taxonomic binning of functional genes. 

Important information was obtained for active nitrifyers. Transcripts from 

genes encoding ammonia transporters and the ammonia monooxygenase 

(amoA, B and C) were related to archaea, as well as transcripts of genes 

encoding archaeal nirK, a gene expressed in bacteria only under denitrifying 

conditions, and an uncharacterised gene (Nmar_1506), that is highly 

conserved throughout thaumarchaeal genomes, were found in high 

abundance. As the mechanism of ammonia oxidation in archaea is unknown 

(see section 1.6.1), the involvement of the latter genes in the pathway is 

suggested. In the bacterial mRNA pool, functional genes for nitrite oxidation 

(nxrA and B) with similarity of the Nitrospira defluvii genome (Lücker et al., 

2010) were detected, confirming the identification of Nitrospira as the only 

NOB in the taxonomic analysis. This nitrite oxidoreductase gene was only 

identified because the reference genome mentioned above was published at 

the time of analysis, as was the first genome of a marine sponge 

(Amphimedon queenslandica, Srivastava et al., 2010) and a metagenome of 

the Australian shallow-water sponge C. concentrica (Thomas et al., 2010). 

Furthermore, genomic fragments of sponge-associated Poribacteria, 

Chloroflexi (Siegl and Hentschel, 2010; Siegl et al., 2010) and 

Deltaproteobacteria (Liu et al., 2010) were published. Although this sequence 

information was invaluable for the analysis of the metatranscriptome, the 
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Chloroflexi genome was unfortunately not from a representative of the 

uncultured SAR202 cluster, of which the abundant symbionts of G. barretti 

were related to. So this work emphasizes the importance of new methods to 

gain genome information of uncultured microorganisms. 

Originally, it was planned to perform comparisons of rRNA and mRNA 

transcripts between G. barretti in oxic and anoxic condition. However, that 

goal did not prove feasible due to techniqual difficulties. In future 

experiments, a comparison of different metatranscriptomes as well as the 

analysis of datasets with more mRNA (e.g. after depletion of rRNA) would 

allow a better coverage of less abundant transcripts, providing further 

insights into the active microbial processes. Although the dataset generated 

in this study harbors great potential, it can currently not be analyzed in the 

desired detail. However, it comprises a resource for future analyses (e.g. for 

studies on symbiotic interactions between eukaryotes and microbes) as more 

reference genomes become available. 

 

5.4 References 

Bayer, K., Schmitt, S., and Hentschel, U. (2008) Physiology, phylogeny and in 
situ evidence for bacterial and archaeal nitrifiers in the marine sponge 
Aplysina aerophoba. Environ Microbiol 10: 2942-2955. 

Bollmann, A., Bar-Gilissen, M.J., and Laanbroek, H.J. (2002) Growth at low 
ammonium concentrations and starvation response as potential factors 
involved in niche differentiation among ammonia-oxidizing bacteria. Appl 
Environ Microbiol 68: 4751-4757. 

Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet, J., and 
Le Parco, Y. (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 
14: 171-179. 

Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. (2008) 
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the 
Thaumarchaeota. Nat Rev Microbiol 6: 245-252. 

Corredor, J.E., Wilkinson, C.R., Vicente, V.P., Morell, J.M., and Otero, E. 
(1988) Nitrate Release by Caribbean Reef Sponges. Limnol Oceanogr 33: 114-
120. 



5. Discussion 

 - 162 - 

de la Torre, J.R., Walker, C.B., Ingalls, A.E., Konneke, M., and Stahl, D.A. 
(2008) Cultivation of a thermophilic ammonia oxidizing archaeon 
synthesizing crenarchaeol. Environ Microbiol 10: 810-818. 

DeLong, E.F. (1992) Archaea in coastal marine environments. Proc Natl Acad 
Sci U S A 89: 5685-5689. 

Diaz, M.C., and Ward, B.B. (1997) Sponge-mediated nitrification in tropical 
benthic communities. Mar Ecol Prog Ser 156: 97-107. 

Diaz, M.C., Akob, D., and Cary, C.S. (2004) Denaturing gradient gel 
electrophoresis of nitrifying microbes associated with tropical sponges. Boll 
Mus Ist Biol Univ Genova 68: 279-289. 

Fieseler, L., Horn, M., Wagner, M., and Hentschel, U. (2004) Discovery of the 
novel candidate phylum "Poribacteria" in marine sponges. App Environ 
Microbiol 70: 3724-3732. 

Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. 
(2005) Ubiquity and diversity of ammonia-oxidizing archaea in water 
columns and sediments of the ocean. Proc Natl Acad Sci U S A 102: 14683-
14688. 

Fuhrman, J.A., K., M., and A, D.A. (1992) Novel major archaebacterial group 
from marine plankton. Nature 356: 148-149. 

Harms, G., Layton, A.C., Dionisi, H.M., Gregory, I.R., Garrett, V.M., 
Hawkins, S.A. et al. (2003) Real-time PCR quantification of nitrifying 
bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37: 
343-351. 

Hoffmann, F., Røy, H., Bayer, K., Hentschel, U., Pfannkuchen, M., Brümmer, 
F., and Beer, D.d. (2008) Oxygen dynamics and transport in the 
Mediterranean sponge Aplysina aerophoba. Mar Biol 153: 1257-1264. 

Hoffmann, F., Radax, R., Woebken, D., Holtappels, M., Lavik, G., Rapp, H.T. 
et al. (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ 
Microbiol 11: 2228-2243. 

Kelly, S., Wickstead, B., and Gull, K. (2011) Archaeal phylogenomics provides 
evidence in support of a methanogenic origin of the Archaea and a 
thaumarchaeal origin for the eukaryotes. Proc Biol Sci 278: 1009-1018. 



5. Discussion 

 - 163 - 

Koops, H.P., Purkhold, U., Pommerening-Röser, A., Timmermann, G., and 
Wagner, M. (2003) The prokaryotes: An Evolving Electronic Resource for the 
Microbial Community. New York: Springer-Verlag. 

Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W. et al. 
(2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. 
Nature 442: 806-809. 

Liu, M.Y., Kjelleberg, S., and Thomas, T. (2010) Functional genomic analysis 
of an uncultured delta-proteobacterium in the sponge Cymbastela 
concentrica. ISME J 5: 427-435. 

Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B. et al. 
(2010) A Nitrospira metagenome illuminates the physiology and evolution of 
globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci U S A 107: 
13479-13484. 

Martens-Habbena, W., Berube, P.M., Urakawa, H., de la Torre, J.R., and 
Stahl, D.A. (2009) Ammonia oxidation kinetics determine niche separation of 
nitrifying Archaea and Bacteria. Nature 461: 976-979. 

Miura, Y., and Okabe, S. (2008) Quantification of cell specific uptake activity 
of microbial products by uncultured Chloroflexi by microautoradiography 
combined with fluorescence in situ hybridization. Environ Sci Technol 42: 
7380-7386. 

Mohamed, N.M., Saito, K., Tal, Y., and Hill, R.T. (2009) Diversity of aerobic 
and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4: 38-
48. 

Morris, R.M., Rappe, M.S., Urbach, E., Connon, S.A., and Giovannoni, S.J. 
(2004) Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster 
throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70: 
2836-2842. 

Odaa, Y., Slagmana, S., Meijerb, W.G., Forneya, L.J., and Gottschala, J.C. 
(2000) Influence of growth rate and starvation on fluorescent in situ 
hybridization of Rhodopseudomonas palustris. FEMS Microbiol Ecol 32: 205-
213. 

Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., 
Gebreyesus, B. et al. (2004) Application of real-time PCR to study effects of 
ammonium on population size of ammonia-oxidizing bacteria in soil. Appl 
Environ Microbiol 70: 1008-1016. 



5. Discussion 

 - 164 - 

Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R., and Stahl, D.A. (1986) 
Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev 
Microbiol 40: 337-365. 

Pace, N.R. (1997) A molecular view of microbial diversity and the biosphere. 
Science 276: 734-740. 

Preston, C.M., Wu, K.Y., Molinski, T.F., and DeLong, E.F. (1996) A 
psychrophilic crenarcheon inhabits a marine sponge: Cenarchaeum 
symbiosum gen. nov., sp. nov. Proc Natl Acad Sci U S A 93: 6241-6246. 

Prosser, J.I. (1989) Autotrophic nitrification in bacteria. Adv Microb Physiol 
30: 125-181. 

Schläppy, M.-L., Schöttner, S., Lavik, G., Kuypers, M., de Beer, D., and 
Hoffmann, F. (2010) Evidence of nitrification and denitrification in high and 
low microbial abundance sponges. Mar Biol 157: 593-602. 

Siegl, A., Kamke, J., Hochmuth, T., Piel, J., Richter, M., Liang, C. et al. 
(2010) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate 
phylum symbiotically associated with marine sponges. ISME J 5: 61-70. 

Siegl, A., and Hentschel, U. (2010) PKS and NRPS gene clusters from 
microbial symbiont cells of marine sponges by whole genome amplification. 
Environ Microbiol Rep 2: 507-513. 

Sipkema, D., Snijders, A.P., Schroen, C.G., Osinga, R., and Wijffels, R.H. 
(2004) The life and death of sponge cells. Biotechnol Bioeng 85: 239-247. 

Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., 
Spieck, E. et al. (2010) Distinct gene set in two different lineages of ammonia-
oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 
18: 331-340. 

Srivastava, M., Simakov, O., Chapman, J., Fahey, B., Gauthier, M.E., Mitros, 
T. et al. (2010) The Amphimedon queenslandica genome and the evolution of 
animal complexity. Nature 466: 720-726. 

Staley, J.T., and Konopka, A. (1985) Measurement of in situ activities of 
nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu 
Rev Microbiol 39: 321-346. 

Steger, D., Ettinger-Epstein, P., Whalan, S., Hentschel, U., de Nys, R., 
Wagner, M., and Taylor, M.W. (2008) Diversity and mode of transmission of 



5. Discussion 

 - 165 - 

ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10: 1087-
1094. 

Taylor, M.W., Radax, R., Steger, D., and Wagner, M. (2007) Sponge-
associated microorganisms: evolution, ecology, and biotechnological potential. 
Microbiol Mol Biol Revs 71: 259-347. 

Thomas, T., Rusch, D., DeMaere, M.Z., Yung, P.Y., Lewis, M., Halpern, A. et 
al. (2010) Functional genomic signatures of sponge bacteria reveal unique 
and shared features of symbiosis. ISME J 4: 1557-1567. 

Tourna, M., Stieglmeier, M., Spang, A., Konneke, M., Schintlmeister, A., 
Urich, T. et al. (2011) Nitrososphaera viennensis, an ammonia oxidizing 
archaeon from soil. Proc Natl Acad Sci U S A 108: 8420-8425. 

Urich, T., Lanzen, A., Qi, J., Huson, D.H., Schleper, C., and Schuster, S.C. 
(2008) Simultaneous assessment of soil microbial community structure and 
function through analysis of the meta-transcriptome. PLoS One 3: e2527. 

Varela, M.M., van Aken, H.M., and Herndl, G.J. (2008) Abundance and 
activity of Chloroflexi-type SAR202 bacterioplankton in the meso- and 
bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol 10: 1903-
1911. 

Ward, B.B. (1987) Nitrogen transformations in the Southern California Bight. 
Deep Sea Res 34: 785-805. 
 
Ward, B.B., Glover, H.E., and Lipschultz, F. (1989) Chemoautotrophic 
activity and nitrification in the oxygen minimum zone off Peru Deep Sea Res 
36: 1031-1051. 

Webster, N.S., and Taylor, M.W. (2011) Marine sponges and their microbial 
symbionts: love and other relationships. Environ Microbiol, early view. 

Webster, N.S., Taylor, M.W., Behnam, F., Lucker, S., Rattei, T., Whalan, S. et 
al. (2009) Deep sequencing reveals exceptional diversity and modes of 
transmission for bacterial sponge symbionts. Environ Microbiol 12: 2070-
2082. 

Woese, C.R. (1987) Bacterial evolution. Microbiol Rev 51: 221-271. 

Woese, C.R., Kandler, O., and Wheelis, M.L. (1990) Towards a natural system 
of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc 
Natl Acad Sci U S A 87: 4576-4579. 



5. Discussion 

 - 166 - 

Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., Bleijswijk, J.v., Timmers, 
P. et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 
103: 12317-12322. 



6. Conclusions 

 - 167 - 

6 CONCLUSIONS 

 

This thesis enhances the knowledge of nitrogen cycling in marine sponges, 

and in particular of microbially mediated nitrification. It gives evidence that 

species of Thaumarchaeota group I.1a are key ammonia oxidizers in these 

animals and that a full nitrogen cycle, including even anaerobic processes 

may be present, as shown for Geodia barretti. The high numbers of ammonia 

oxidizing archaea (AOA) and their high activities indicate that ammonia 

oxidation is generally a dominant process in the sponge. Although this study 

gives further evidence that the presence of these symbionts is beneficial for 

the sponge, it is still possible that AOA simply occupy a favorable niche with 

regular supply of ammonia. 

The high abundance of AOA also means that sponges are particularly suited 

to study archaeal physiology and activity as they represent natural 

fermentors for these archaea. The metatranscriptomic study performed on 

Geodia barretti was a first attempt in this direction and allows raising 

hypothesis on specific gene functions and activity of AOA. In more general 

terms sponges can serve in identifying the physiological activities of many 

organisms that are naturally enriched in these animals and that have 

resisted cultivation in pure laboratory cultures. Sponges are regarded as 

living fermenters for aerobic and anaerobic, photic and aphotic, autotrophic 

and heterotrophic and psychro- and mesophilic organisms. There are many 

things to be learned from sponges in microbial ecology, biotechnology and 

symbiotic interactions. 
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7 ABSTRACT 

 

Thaumarchaeota have been discovered not only in a diverse range of moderate 

terrestrial and marine habitats but also as frequent inhabitants of marine sponges. 

Based on metagenomic and cultivation studies, it has become evident over the past 

years that some (or all) thaumarchaea have the capability of oxidizing ammonia 

using the enzyme ammonia monooxygenase (Amo), a homologue of the well-known 

bacterial counterpart. Here we explore the activity and diversity of Thaumarchaeota 

in marine cold-water sponges of the Northern hemisphere (Norway) by combining 

quantitative physiological data and molecular analyses. By monitoring the 

production and consumption of nitrogen compounds in defined incubation 

experiments we have demonstrated and quantified nitrification in Geodia barretti, 

Phakellia ventilabrum, Tentorium semisuberites and Antho dichotoma. In parallel, 

large numbers of Amo-encoding archaea were detected by quantitative PCR (up to 

6*108 archaeal amoA gene copies per µg of nucleic acids) and fluorescence in situ 

hybridisation, with bacterial amoA genes mostly being under the detection limit. We 

report denitrification and anammox rates in the sponge Geodia barretti beside 

nitrification activity by employing stable isotope labelling techniques, thus closing 

the nitrogen cycle in a marine sponge for the first time. We also identified the 

potential microbial lineages that are responsible for the activities. 

To obtain insights into the in situ diversity and function of active microbes in Geodia 

barretti we employed the “double-RNA” approach, which involved analysis of 

reverse-transcribed total RNA. Of the approximately 260,000 RNA-tags obtained by 

pyrosequencing, we assigned ≈110,000 tags to small subunit rRNA and derived a 

detailed community profile of all three domains of life. Around 50% of all 16S rRNA-

tags were assembled and phylogeny of the abundant taxa was performed and 

compared to sequences of a 16S rRNA clone library of the same cDNA. Within the 

expressed sequence tags (mRNA), we identified a large number of archaeal genes 

that are potentially involved in transport and oxidation of ammonia. Some of these 

highly expressed genes are conserved in thaumarchaeal genomes but their potential 

function in ammonia oxidation was not previously recognized. From our studies we 

infer a key role for archaea in the nitrogen metabolism in marine sponges. 
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8 ZUSAMMENFASSUNG 

 

Thaumarchaea (Archaea) kommen in vielen terrestrischen und marinen 

Lebensräumen vor und sind oftmals mit marinen Schwämmen assoziiert. Basierend 

auf Metagenom- und Kultivierungsstudien hat sich gezeigt, dass viele (wenn nicht 

sogar alle) Thaumarchaea die Fähigkeit besitzen, mittels dem Enzym 

Ammoniummonooxygenase (AMO), Ammonium zu oxidieren. In dieser Studie 

untersuchen wir die Aktivität und Diversität der Thaumarchaea in 

Kaltwasserschwämmen aus Norwegen. Durch die Kombination von quantitativ-

physiologischen und molekularen Analysen und die Messungen von Produktion und 

Verbrauch bestimmter Stickstoffverbindungen in Inkubationsexperimenten wurde 

Nitrifikation in Geodia barretti, Phakellia ventilabrum, Antho dichotoma und 

Tentorium semisuberites nachgewiesen und quantifiziert. Zugleich konnte mittels 

quantitativer PCR und fluoreszenter in situ Hybridisierung eine hohe Anzahl an 

AMO-kodierenden Archaea (bis zu 6*108 archaeale amoA Genkopien pro µg 

Nukleinsäure) detektiert werden. Im Schwamm G. barretti wurden zum ersten Mal 

Raten von Denitrifikation und anaerober Ammoniumoxidation nachgewiesen und 

somit wurde gezeigt, dass der gesamten Stickstoffkreislauf in marinen Schwämmen 

ablaufen kann. 

Um die Diversität und Funktion der aktiven Archaea (und Bakterien) in G. barretti 

genauer zu untersuchen, haben wir den “Doppel-RNS” Metatranskriptomik Ansatz 

angewandt, wobei revers-transkribierte RNS direkt sequenziert und anschließend 

bioinformatisch ausgewertet wurde. Von den ca. 260.000 RNS-tags der 

Pyrosequenzierung, waren etwa 110.000 von der kleinen Untereinheit der 

ribosomalen RNS, woraus ein detailliertes taxonomisches Profil von den drei 

Domänen des Lebens des Schwammsystems erstellt wurde. Innerhalb der 

transkribierten mRNS-tags haben wir eine große Anzahl an archaealen Genen 

identifiziert, die wahrscheinlich in den Transport und die Oxidation von Ammonium 

involviert sind. Einige dieser hoch transkribierten Gene sind in thaumarchaealen 

Genomen konserviert, aber deren eventueller Beitrag in Ammoniumoxidation war 

bisher noch nicht bekannt. Aus den Messungen von Nitrifikationsraten, zusammen 

mit hoher Transkription von amoA Genen in mehreren Schwammarten aus der 

mesopelagischen Zone des Nordatlantiks, schließen wir eine Schlüsselrolle der 

Archaea für den Stickstoffmetabolismus mariner Schwämme. 
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