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22  ABSTRACT  ABSTRACT

Translation of cellular mRNAs is most frequently started by the cap-dependent scanning 

mechanism. However, another initiation process directly recruits ribosomes to a RNA motif 

located within the 5’-untranslated region (5’-UTR), referred to as internal ribosome entry site 

(IRES). Several IRES-containing mRNAs have important roles during tumor progression. The 

epithelial to mesenchymal transition (EMT) represents a crucial mechanism of hepatocellular 

carcinoma development, which is caused by the synergy of transforming growth factor 

(TGF)-β and oncogenic Ras, involving an upregulation of platelet-derived growth factor 

(PDGF) signaling. Interestingly, elevated translation of the extracellular matrix component 

laminin B1 (LamB1) was observed during hepatocellular EMT. The increase of LamB1 was 

found to depend on an IRES element located in the 5’-UTR of its mRNA. Furthermore, the 

IRES trans-acting factor La showed accumulation in the cytoplasm and was identified to bind 

and enhance LamB1 IRES activity upon EMT. In this study we analyzed the signaling 

pathways regulating LamB1 IRES translation during hepatocellular EMT. We employed 

different murine hepatocyte cell lines expressing oncogenic Ras or mutant versions of Ras 

subeffector signaling. Additionally, we performed pharmacological interference in murine 

hepatocytes. Our results suggest that mainly the mitogen-activated protein kinase (MAPK) 

pathway controls LamB1 IRES translation in epithelial hepatocytes and that upon EMT the 

MAPK as well as the phosphatidylinositol 3-kinase (PI3K) pathway regulate the LamB1 

IRES translation. Moreover, the data indicate that the MAPK pathway is the major regulatory 

pathway of LamB1 IRES during hepatocellular EMT. Further investigations showed that 

PDGF signaling enhances LamB1 IRES activity by controlling cytoplasmic La localization in 

EMT-transformed hepatocytes. Therefore, we propose that the PDGF signaling enhances 

MAPK and PI3K signaling as well as cytoplasmic La localization, which upregulates LamB1 

IRES translation upon hepatocellular EMT. 
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33  ZUSAMMENFASSUNG  ZUSAMMENFASSUNG

Die Initiation der Translation zellulärer mRNAs wird von einem „Scanning“-Mechanismus 

reguliert, welcher von der Präsenz der m7G-Cap-Struktur am 5‘-Terminus der mRNA 

abhängig ist. Zusätzlich gibt es einen Prozess, bei dem Ribosomen innerhalb der 5’-

untranslatierten Region (5’-UTR) direkt an ein RNA-Motiv, dem sogenannten „internal 

ribosome entry site“ (IRES), binden. Zelluläre mRNAs mit IRESs spielen eine wichtige Rolle 

in der Tumorprogression. Die epitheliale-mesenchymale Transition (EMT) von Hepatozyten 

nimmt eine Schlüsselrolle in der Tumorentwicklung ein und wird durch die Kooperation von 

„Transforming Growth Factor“ (TGF)-β und onkogenem Ras induziert. Diese EMT-

transformierten Zellen weisen nicht nur einen verstärkten „Platetelet-Derived Growth Factor” 

(PDGF) Signalweg, sondern auch eine vermehrte Translation der Laminin B1 (LamB1) 

mRNA auf. Ein IRES innerhalb der LamB1 5’-UTR ist für die Hochregulierung dieser 

extrazellulären Matrixkomponente verantwortlich. Während der EMT neoplastischer 

Hepatozyten akkumuliert der IRES trans-aktivierende Faktor La im Zytoplasma und bindet an 

den LamB1 IRES um seine Translation zu verstärken. In dieser Arbeit haben wir Signalwege 

analysiert, welche die LamB1 IRES Translation regulieren. Wir untersuchten Zelllinien 

maligner Hepatozyten, die onkogenes Ras oder mutierte Versionen von Ras Subeffektor 

Signalwegen exprimieren. Zusätzlich verwendeten wir pharmakologische Inhibitoren in 

Maushepatozyten. Unsere Ergebnisse deuten darauf hin, dass primär der „Mitogen-Activated 

Protein Kinase” (MAPK) Signalweg die LamB1 IRES Translation in epithelialen 

Hepatozyten kontrolliert und dass nach der EMT sowohl der MAPK als auch der 

„Phosphatidylinositol 3-Kinase” (PI3K) Signalweg die LamB1 IRES Translation erhöhen. 

Zusätzlich weisen unsere Daten darauf hin, dass der MAPK Signalweg der 

Hauptregulationsweg für die LamB1 IRES Translation während der hepatozellulären EMT ist. 

Weitere Untersuchungen zeigten, dass der PDGF Signalweg die La Akkumulation im 

Zytoplasma kontrolliert und dadurch die LamB1 IRES Aktivität in EMT- transformierten 

Hepatozyten erhöht. Daraus schließen wir, dass der PDGF Signalweg während der 

hepatozelluären EMT nicht nur die MAPK und PI3K Signalwegaktivierung steigert, sondern 

auch zu einer Akkumulation von La im Zytoplasma führt, welche eine Erhöhung der LamB1 

IRES Translation bewirkt. 
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44  INTRODUCTION  INTRODUCTION

4.14.1  Comparison  of  epithelial  and  mesenchymal  cells  Comparison of epithelial and mesenchymal cells

Epithelial cells connect to each other to form polarized layers [1]. The basal lamina, also 

referred to as basement membrane, is an extracellular matrix (ECM) located at the basal side 

of epithelial structures [2]. Its main components, laminins and collagen IV, form a meshwork 

that gives mechanical support, separates epithelial cells from connective tissue, serves as 

barriers for epithelial cell movement into connective tissue and regulates cell polarity, 

differentiation as well as migration [2]. Epithelial cells bind to the ECM via heterodimeric 

integrins that are connected to the intracellular cytoskeleton [3]. Notably, integrins influence 

migration, cell proliferation and survival [3]. Tight junctions close intercellular gaps, hinder 

diffusion of molecules and support apical/basolateral polarity, whereas gap junctions facilitate 

exchange of small molecules from cell to cell [4]. Direct cell-cell adhesions are based on 

cadherins, which are Ca2+-dependent homophilic transmembrane proteins [5]. An adhesion 

belt is formed via contacts of cadherins with actin filaments by -catenin and additional 

anchor proteins [4]. Desmosome junctions facilitate mechanical strength of epithelia [6]. They 

are formed by cadherins, which are linked to intermediate filaments over adaptor proteins like 

desmoplakin [6]. Epithelial cells mainly express E-cadherin whereas fibroblasts or nerve cells 

express N-cadherin [4, 7]. Cadherins are important for contact guidance and tissue assembly 

during embryonic development [4].  

In contrast to epithelial cells, mesenchymal cells are neither polarized nor arranged in cell 

layers [1]. However, mesenchymal cells can have a front-back polarity [8]. Cultured epithelial 

cells form clusters whereas fibroblast-like mesenchymal cells appear spindle-shaped [1]. 

Mesenchymal cells are normally partly attached to their neighbors, but not linked to a basal 

lamina and therefore often involved in cell migration [1].  

4.24.2  An  overview  of  epithelial  to  mesenchymal  transition  (EMT)  An overview of epithelial to mesenchymal transition (EMT)

EMT describes the change of highly organized epithelial cells to migratory mesenchymal 

cells [9]. This conversion is mediated by complex alterations in cell signaling and architecture 

(Figure 1). EMT is reversible by the process termed mesenchymal to epithelial transition 

(MET). Typical epithelial markers are for instance E-cadherin as well as the intermediate 

filament proteins cytokeratin-8, -9 and -18 [9]. Mesenchymal markers include the ECM 

component fibronectin, the intermediate filament vimentin and smooth-muscle actin [9].     



 

Figure 1 Epithelial cells convert into mesenchymal cells by EMT and vice versa via MET [9]. 

Diverse effectors, which influence junctional complexes, and typical markers are outlined.   

 

EMT is involved in (1) morphogenesis, (2) tissue homeostasis, (3) disease and (4) (cancer) 

stemness (Figure 2) [10]. (1) For example, during embryogenesis, EMT is essential for the 

development of the three-layered embryo, a process known as gastrulation [11]. In mice, 

fibroblast growth factor (FGF) signaling regulates the expression of the transcriptional 

repressor Snail, which in turn blocks E-cadherin transcription [11]. Furthermore, previous to 

offspring formation, neural crest cells have to pass through EMT to migrate, which is partly 

mediated by Snail [12]. Snail-induced EMT was also reported to be involved in cardiac valve 

development in the chick [13]. (2) During wound healing, transcriptional repressor Slug-

mediated partial EMT enables keratinocytes to migrate into de-epithelialized area [14]. (3) 

ECM deposition by elevated numbers of myofibroblasts is a characteristic of fibrosis [15]. 

Fibroblasts accumulating in the connective tissue have been shown to partially derive from 

EMT-transformed epithelial cells [15]. For example, inflammatory signaling mediated by 

transforming growth factor-β (TGF-β) and FGF induces EMT in the kidney [15]. 
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Interestingly, inflammation triggers tumor necrosis factor-α (TNF-α)-mediated EMT during 

fibrosis or cancer [16]. EMT has a major role in tumor progression, which it is particularly 

outlined below in  4.3. (4) Recently it was proposed that EMT-transformed cells gain stemcell-

like properties [17]. For instance, the EMT-involved transcriptional repressor Zeb1 is 

associated with tumor cell stemness [18]. 

 

(4)
(1) 

(2)

(4) 

(3) 

Figure 2 EMT plays a role in (1) morphogenesis, (2) tissue homeostasis, (3) disease and (4) 

(cancer) stemness. Adapted from [10]. 
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4.34.3  EMT  in  cancer    EMT in cancer

One hallmark of cancer is tissue invasion and metastasis, which causes most human cancer 

deaths [19, 20]. Cancer cells escape from primary tumors by migrating either collectively or 

individually as amoeboid cells or mesenchymal cells [21]. The latter ones are derived from 

epithelial cells that have undergone EMT [10]. Figure 3 shows a scheme of invasion and 

metastasis driven by EMT and MET in carcinoma cells [22]. The key pathway for EMT 

induction is TGF- signaling as discussed in  4.6 [23]. Notably, EMT is not only implicated in 

cancer cell dissemination but also in resistance to oncogene-induced premature senescence 

[24]. The EMT-involved transcriptional repressors Twist 1 and 2 protect cells from 

senescence by inhibition of p21 and p16. Furthermore, EMT correlates with resistance to 

chemotherapy and is suggested to be involved in immune-suppressive and -resistance 

mechanisms [10, 25]. 



 

Figure 3 EMT and MET drive tumor progression in carcinoma [22]. Polarized epithelial cells 

(blue) are connected to basement membrane. Local proliferation results in adenoma formation, 

which further develops to a carcinoma in situ by additional transformation. The carcinoma in 

situ is still surrounded by an intact basement membrane. Local invasion is characterized by 

EMT and basement membrane fragmentation. Mesenchymal cells (red) intravasate into blood 

or lymph vessels to colonize distant organs. After extravasation cancer cells undergo MET in 

order to form micro or -macrometastases. 
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4.44.4  Signaling  in  EMT    Signaling in EMT

EMT is regulated by same or related signaling pathways during physiological and 

pathological events [10]. An excerpt of central pathways influencing EMT is outlined in 

Figure 4. Extracellular signals, including ECM constituents such as hyaluronic acid or soluble 

growth factors such as TGF-β and FGF, regulate EMT [26-28]. Hepatocellular growth factor 

(HGF) for instance transduces signals via the receptor tyrosine kinase (RTK) c-Met and the 

mitogen-activated protein kinase (MAPK) cascade to downregulate E-cadherin expression 

[29]. Furthermore, growth factors such as FGF can signal via phosphatidylinositol-3’-kinase 

(PI3K), which is an essential pathway for EMT [30]. Notch signaling was also described to 

play a role during EMT [31]. In addition, microRNAs and hypoxia were reported to control 

EMT [32, 33].  



Notably, most EMT inducers and pathways downregulate E-cadherin expression, which is 

fundamental for EMT [22]. Downregulation of E-cadherin is achieved amongst others by 

transcriptional repression and promoter hypermethylation [34]. Important transcriptional 

repressors include the zinc finger proteins Snail and Slug, homodomain/zinc finger proteins 

Zeb1 and Zeb2 as well as basic helix-loop-helix (bHLH) proteins E12/E47 and Twist [34]. 

Notably, E-cadherin protein expression or activity can be lost by mutations as well [35]. Loss 

of E-cadherin leads to the dissociation of epithelial junctions [9]. As a consequence, β-catenin 

translocates to the nucleus where it acts as a co-activator for TCF4/LEF to induce Wnt 

signaling. Not only cell-cell but also cell-matrix junctions are remodeled during EMT. 21 

integrins are for instance necessary for collagen and FGF1-mediated EMT [36].  

 

Figure 4 Overview of signaling pathways regulating EMT [10]. Biological processes are shown 

with their matching EMT inducing signals. 
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4.54.5  EMT  in  hepatocellular  carcinoma  (HCC)  EMT in hepatocellular carcinoma (HCC)

HCC is a primary liver cancer, which is generally caused by chronic liver disease and 

cirrhosis [37]. The main reasons for HCC are hepatitis B, hepatitis C, alcoholic liver disease 

and nonalcoholic steatohepatitis [37]. Further risk factors of HCC are aflatoxin, obesity, 

diabetes mellitus and predispositions like hemochromatosis [37]. HCC is frequently 



diagnosed at advanced stages of disease and curative treatments include liver resection or 

liver transplantation [38, 39]. In an immunohistochemical analysis it was observed that E-

cadherin and β-catenin levels are frequently decreased in HCC patients [40]. This 

downregulation significantly correlated with tumor progression, intrahepatic metastasis and 

reduced patient survival. Another study of HCC patients revealed that increased levels of 

Snail, Slug and the ECM component laminin-5 associated with decreased E-cadherin levels 

and nuclear translocation of -catenin [41].  

To investigate the molecular mechanisms of hepatocellular EMT, a murine EMT tumor model 

was established (Figure 5). Immortalized murine p19ARF-/- hepatocytes (termed MIM) undergo 

EMT by the cooperation of constitutive active Ras and TGF- signaling [42, 43]. EMT- 

transformed hepatocytes acquire an autocrine loop of TGF- signaling, leading to the 

activation of platelet-derived growth factor (PDGF) signaling and increased malignancy (for a 

detailed view see Figure 15) [42, 44].  

Ha-Ras TGF- β

liver perfusionhepatocytes

MIM1-4
(immortalized)

MIM-R
(malignant)
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MIM-RT
(metastatic)

TGF- 

p19ARF(-/-)

liver perfusionhepatocytes

Ha-Ras TGF- β

MIM1-4
(immortalized)

MIM-R
(malignant)

p19ARF(-/-)

MIM-RT
(metastatic)

TGF- 

 

Figure 5 The hepatocellular EMT model. Immortalized MIM-1-4 hepatocytes were established 

after liver perfusion of p19ARF-/- mice [43]. These epithelial cells grow in monolayers and are non-

tumorigenic. Stable transmission of MIM-1-4 cells with oncogenic v-Ha-Ras gave rise to MIM-R 

cells [42]. These cells show still a polarized epithelial morphology but are tumorigenic. Long-

term TGF-β-treatment of MIM-R induces hepatocellular EMT resulting in MIM-RT cells [42]. 

These cells have a mesenchymal phenotype and grow in polylayers without contact inhibition. 

Importantly, MIM-RT cells form metastases and are therefore more malignant than MIM-R. 

Phase contrast images are adapted from [42].  
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4.64.6  TGF-  signaling  in  cancer  TGF- signaling in cancer

TGF- signaling has fundamental roles during tumor development and progression since it 

influences cell survival, proliferation and invasion [45].Remarkably TGF- signaling shows 

both tumor suppressive as well as promoting functions [46]. TGF- ligands (TGF-1, -2 and 

-3) bind serine/threonine kinase TGF- type 1 and 2 receptors (TGFBR1 and TGFBR2, 

respectively) to initiate signaling [47]. TGF- ligands are expressed in latent forms and need 

to be activated by proteolytic cleavage or structural modifications [48]. Upon activation they 

bind specifically to TGFBR2, inducing heterotetramerization of receptors and 

phosphorylation of TGFBR1 by TGFBR2 (Figure 6) [47]. TGFBR1 in turn becomes active 

and recruits as well as phosphorylates receptor-regulated Smads (R-Smads) [47]. Active R-

Smads interact with common partner Smad (co-Smad) that facilitate nuclear translocation 

[47]. Smads form complexes with additional transcription factors and regulate gene 

expression [47]. TGF- controls besides canonical Smad signaling also non- Smad pathways 

such as PI3K and MAPK pathways [49].  

 

Figure 6 TGF- signal transduction [46]. The receptors are activated upon binding to TGF- 

resulting in phosphorylation of R-Smads (SMAD2 and 3) and formation of the Smad-complex 

(R-Smad and co-Smad, SMAD4) that translocates to the nucleus. TGF- target genes are 

regulated through interaction of Smad-complexes with DNA-binding factors and co-factors. 

Additionally, non-Smad pathways can be activated. 
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On the one hand several findings suggest that TGF- acts as a tumor suppressor, for instance 

TGFBR2 and SMAD4 are frequently inactivated [50]. Furthermore, TGF- blocks cell 

proliferation by regulating cyclin-dependent kinase inhibitors (CDKIs) and MYC expression 

[51, 52]. TGF- antagonists like c-Ski and SnoN bind SMAD3 and 4, thus counteract tumor 

suppressive TGF- effects [53]. Moreover, TGF- is able to induce apoptosis by activating 

downstream targets such as death-associated protein kinase (DAPK) [54]. Recently it was 

reported that TGF- signaling transcriptionally activates autophagy genes (ATG) in certain 

hepatocellular carcinoma, which mediates autophagy and growth arrest [55]. In some cancers 

TGF- inhibits angiogenesis, for example in diffuse-type gastric carcinoma it increases the 

expression of the angiogenic inhibitor thrombospondin 1 (TSP1) [56]. 

On the other hand TGF- has tumor promoting features. It stimulates proliferation through 

activation of PDGF pathway in diverse mesenchymal and cancer cells [57, 58].  Moreover, it 

has an anti-apoptotic function by inducing the transcription factor Differentially Expressed in 

Chondrocytes 1 (DEC1) [59]. Recently, TGF- was suggested to be involved in the regulation 

of cancer stem cells (CSCs), which are a subpopulation of cancer cells with stem cell features 

and elevated ability to initiate tumors [46, 60]. Furthermore, tumor angiogenesis is positively 

influenced by TGF- through the activation of regulators like vascular endothelial growth 

factor (VEGF) [61].  

As mentioned earlier, TGF- activates signaling pathways, which are essential during EMT 

[23]. TGF- leads to the downregulation of proteins that mediate tight junctions and adherens 

junctions [62]. Main transcription factors and their function in TGF--mediated EMT are 

displayed in Figure 7. Moreover, TGF- induces the expression of Mdm2, which in turn 

destabilizes p53 [63].  



 

Figure 7 TGF--regulated transcription in EMT [62]. TGF- activated Smads control 

transcription of target genes by interactions with other transcription factors. The additional 

transcription factors belong to the Snail, ZEB and bHLH family, listed in yellow boxes. 

Repressed epithelial markers are indicated in green boxes and enhanced mesenchymal markers 

are shown in pink boxes. 

 

Overall, the cell type as well as the cellular context defines TGF- signaling [46]. TGF- acts 

as a tumor suppressor during initial steps of tumor development whereas it has tumor 

promoting functions through cancer progression [64]. 
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4.74.7  PDGF  signaling  in  cancer  PDGF signaling in cancer

PDGF ligands (PDGF-A, -B, -C, -D) form generally homodimers, with PDGF-AB being the 

exception [65]. The RTKs PDGF-R and -R homo- or heterodimerize upon ligand binding, 

leading to autophosphorylation and activation [66]. Downstream signal transduction is 

mediated by the Ras-MAPK cascade or phoshoylipase C-γ (PLC-γ), which positively 

influence cell growth and migration [67, 68]. PI3K signaling is another pathway downstream 

of PDGF that mediates cell movement and growth as well as inhibition of apoptosis [69, 70]. 

Further reported PDGF pathways include Src, signal transducers and activators of 

transcription (STATs) as well as integrins [67]. PDGFs and its receptors are expressed in 



specific patterns depending on the cell type and stimuli [65]. For instance, epithelial cells 

display PDGF-A expression, whereas vascular endothelial cells PDGF-B, pericytes PDGF-R 

and mesenchymal cells PDGF-R expression. Furthermore, hypoxia induces PDGF-A, -B 

and -R expression in liver [71].  

PDGFs are often expressed in cancer cells to support tumor progression (Figure 8) [66]. 

Paracrine PDGF signaling acts on tumor stroma such as pericytes and cancer-associated 

fibroblasts (CAFs) [72]. For instance, it was reported that increased numbers of pericytes 

stabilize tumor vessels [72]. Furthermore, excessive PDGF signaling leads to pericyte 

detachment and elevated metastasis [73]. CAFs recruited by PDGF signaling were shown to 

enhance tumor growth, dissemination and angiogenesis through CXCL12, CCL5 and VEGF, 

respectively [74-76]. Autocrine PDGF signaling enhances EMT in colon caricinoma by the 

translocation of -catenin to the nucleus [77].  

 

 

Figure 8 PDGF in tumor progression [65]. Autocrine PDGF signaling enhances EMT in tumor 

cells. PDGF-A, C secretion engages cancer-associated pericytes and fibroblasts. The latter ones 

enhance tumor growth, dissemination and angiogenesis through factors like CXCL12, CCL5 

and VEGF, respectively [74-76]. Vessel stabilization and pericyte detachment, which promote 

metastasis, are influenced by PDGF-B and -D [65]. Thick arrows indicate direct effects. 
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4.84.8  Cap-dependent  translation  and  its  role  in  cancer  Cap-dependent translation and its role in cancer

Translation of mRNA consists of four steps that are initiation, elongation, termination and 

ribosome recycling [78, 79]. Initiation is well known as being the rate-limiting step [78, 79]. 

The majority of mRNAs is translated by a cap-dependent mechanism where the eukaryotic 

initiation factor 4F (eIF4F) complex binds to the 7-methyl guanosine (m7G) cap of the mRNA 

(Figure 9) [80]. The eIF4F complex includes the cap-binding protein eIF4E, the scaffolding 

protein eIF4G and the RNA helicase eIF4A. eIF4G interacts with polyA tail binding protein 

(PABP), leading to mRNA circulation and enables ribosome recycling [80]. The small 

ribosomal subunit (40S), the ternary complex consisting of eIF2, GTP and Met-tRNAi,, form 

together with eIF3, eIF1 and eIF1A the 43S initiation complex [80]. eIF3 interacts with 

eIF4G, which recruits the 43S initiation complex to the mRNA, initiating ribosome scanning 

for a suitable AUG initiation codon along the 5’-end [80]. eIF1 and eIF1A enable start codon 

recognition and the presence of AUG will lead to eIF2-bound GTP hydrolysis, large (60S) 

ribosomal subunit joining, 80S ribosome formation and translational initiation [80].  

 

Figure 9 A simplified view of translational initiation by the cap-dependent mechanism. eIF4F 

complex binds to the capped 5’-end of the mRNA, leading to small subunit binding, ribosome 

scanning and translational initiation. Adapted from [81]. 

  

Translation is often deregulated during cancer development and progression. For instance, 

translation in tumor cells is unaffected by hypoxia-mediated inhibition [82]. Furthermore, 

overexpression of eIF4E enhances amongst others HCC and B cell lymphomas [83]. 

Interestingly, eIF4E inhibitory binding proteins (4E-BPs) regulate the accessibility of eIF4E 

[84]. Hypophosphorylated (active) 4E-BPs remove eIF4E from eIF4F complex and impede 

cap-dependent translation. Reduced 4E-BPs expression or augmented 4E-BPs 

phosphorylation was linked to tumor progression and decreased survival [84]. 
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4.94.9  Cellular  IRES-mediated  translation  and  its  role  in  cancer  Cellular IRES-mediated translation and its role in cancer

Investigations of viral gene expression revealed an alternative translational initiation 

mechanism [85]. Transcripts that harbor a highly structured motif, referred to as internal 

ribosome entry site (IRES), allow direct binding of the 40S ribosomal subunit and cap 

independent translation (Figure 10) [86]. Cellular IRESs are predominately located in the 5’-

untranslated regions (5’-UTRs) of mRNAs, however, they have no shared sequence or 

structural motifs [81]. Highly structured 5’-UTRs hinder efficient ribosome scanning, thus 

cap-dependent translation [81]. IRESs within such 5’-UTRs allow translation of these 

mRNAs. Furthermore, cellular IRESs allow constant translation of specific mRNAs during 

conditions when cap-dependent translation is downregulated [81]. Such conditions include 

amino acid starvation, endoplasmatic reticulum stress, hypoxia, mitosis, cell differentiation, 

growth arrest and apoptosis. Notably, several of these stress conditions play an important role 

during cancer [19, 87]. IRES elements are regulated by canonical initiation factors of 

translation (eIFs) and IRES trans-acting factors (ITAFs) (Figure 10). It is suggested that most 

IRESs do not need eIF4E or eIF4G, which is cleaved under stress conditions [88]. For 

instance, c- and N-myc IRES activity does not depend on eIF4E and eIF4G, but still requires 

eIF4A and eIF3 [89]. In contrast, c-Src kinase mRNA was shown to bind directly to 40S 

ribosome [90]. ITAFs are RNA binding proteins that typically have a wide range of functions 

beside the regulation of internal initiation [91]. Nevertheless, they do not directly influence 

cap-dependent translation [92]. Many ITAFs are able to shuttle between nucleus and 

cytoplasm, which regulates their activity [93]. However, little is known about mechanisms 

regulating cellular IRES, which provides an interesting target for future studies. 

IRES-mediated translation influences tumorigenesis through IRES regulated mRNAs, the 

corresponding polypeptides are involved in angiogenesis, cell proliferation and apoptosis 

[87]. Recent reports describe a hypoxia-activated switch from cap-dependent to -independent 

translation that is induced by elevated levels of eIF4G1 and 4E-BP-1 during tumor 

progression [94]. This enhanced tumor size, angiogenesis and survival by IRES translated 

HIF-1, VEGF-A and BCL-2 mRNAs. In multiple myeloma, interleukin-6-induced binding 

of the ITAF heterogenous nuclear ribonucleoprotein A1 (HnRNPA1) augments IRES-

mediated Myc translation leading to the activation of cell proliferation [95]. In non-small-cell 

lung carcinoma, the anti-apoptotic factor X-linked inhibitor of apoptosis (XIAP) is 

upregulated by IRES-mediated translation, resulting in resistance to radiation [96]. 

 



 

 

Figure 10 IRES-mediated translational enables 40S ribosome binding without eIF4E and intact 

eIF4G. Suggested mechanisms: (i) many eIFs and ITAFs are necessary (ii) less eIFs are needed 

(iii) only ITAFs are required. Adapted from [81]. 

 19

4.104.10  Signaling  pathways  regulating  translation  Signaling pathways regulating translation

Translation is mainly controlled by the PI3K and MAPK pathway, which are frequently 

altered in cancer (Figure 11). Mitogenic signals like growth factors, hormones or cytokines 

activate RTKs that in turn stimulates Ras and PI3K. Activated Ras plays an important role 

during cancer by activating for example the MAPK cascade Raf (Ras activated factor)- 

extracellular signal-related kinase (ERK) kinase (MEK)-ERK [97]. Ras recruits Raf in its 

GTP-bound activated status, which leads to conformational changes and phosphorylation of 

Raf [97]. Activated Raf in turn phosphorylates and activates MEK, which then phosphorylates 

and activates ERK [97]. ERK further phosphorylates cytoplasmic substrates as well as 

transcription factors after nuclear translocation [97]. Erk enhances translation through 

activation of the downstream targets p90RSK (RSK) and eIF4G-associated kinases MNK1 

and 2 [79]. RSK and ERK block tuberous sclerosis 1 (TSC1) and TSC2 GTPase activating 

protein (GAP), therefore supporting Ras homologue enriched in brain (RHEB)-GTP 

activation of mTOR complex 1 (mTORC1) [79]. RSK also phosphorylates eIF4B to enhance 

binding to eIF4A [79]. Activated MNK1 and 2 phosphorylate eIF4E, which promotes 

translation and tumorigenesis [98]. 

Activated PI3K phosphorylates phosphatidylinositol (4’, 5’)-bisphosphate (PIP2) and creates 

thereby phosphatidylinositol (3’, 4’, 5’)-trisphosphate (PIP3) [99]. PIP3 in turn attracts 



proteins exhibiting pleckstrin homology (PH) domains, for example the serine-threonine 

kinase AKT [99]. Binding and subsequent phosphorylation of AKT leads to its functional 

activation [99]. AKT acts positively on translation by inhibiting TSC1 and 2 as well as 

PRAS40 (mTORC1 inhibitor) [79]. TSC1 and 2 are activated by ATP-sensing AMP kinase 

(AMPK) in response to low ATP levels [79]. mTORC1 promotes cap-dependent translation 

through inhibition of 4E-BP and activation of ribosomal S6 kinase (S6K) [79]. S6K 

phosphorylates eIF4B and inhibits programmed cell death protein 4 (PDCD4), which blocks 

eIF4A [79]. Inhibition of mTORC1 leads to eIF4E sequestration and inactivation of eIF4A as 

well as eIF4B [79].  

 

Figure 11 Schematic overview of pathways that control translation [79]. Activated PI3K and 

MAPK pathways promote hyperphosphorylation of 4E-BP, thereby enhancing translation. 
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4.114.11  Laminin  B1  (LamB1)  mRNA  and  IRES  Laminin B1 (LamB1) mRNA and IRES

To investigate the role of IRES translation during EMT, a hepatocellular EMT model (Figure 

5) was employed that depends on the cooperation of oncogenic Ras and TGF- [42]. 

Translational upregulated genes were identified by expression profiling of hepatocellular 
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EMT comparing polysome-bound to total RNA [100]. Further analysis, such as selection of 

mRNAs containing unusual long 5’-UTRs, revealed LamB1 to contain a putative IRES [100]. 

The IRES activity of LamB1 IRES could be verified excluding the presence of cryptic 

promoter or splice sites within the 5’-UTR [101]. Additionally, the minimal LamB1 IRES 

sequence was determined [101]. LamB1 IRES activity was measured by bicistronic assays, 

which revealed an upregulation upon EMT [101]. To our knowledge this is the first described 

cellular IRES that is controlled upon EMT.  

Laminins belong to the class of glycoproteins and are main components of the basement 

membrane (see  4.1). They are flexible heterotrimers (Laminin αxβyγz) and LamB1 is one of 

the three known β-subunits [102]. Notably, LamB1 knock-out is embryonic lethal due to a 

lack of basement membranes [103]. Laminin chains have common structures like globular and 

rod-like domains (Figure 12) [104]. Laminin N-terminal domains (LN) are necessary for self-

assembly whereas laminin globular domains (LG) mediate interactions with cell surface 

receptors and ECM constitutes [104, 105]. Laminins show a tissue specific distribution and 

their functions cover basement membrane organization and its anchorage to cells, cell 

polarization and proliferation [102, 106]. Furthermore, they are implicated in several diseases 

like epidermolysis bullosa, muscular dystrophy type 1A and cancer [106-108]. Laminins 

affect cell proliferation, angiogenesis, invasion and metastasis during cancer development 

[106, 109, 110]. Laminins signal via integrin as well as non-integrin receptors such as -

dystroglycan and 67kDa laminin receptor (LamR) [111, 112]. Recently it has been reported 

that laminin-511, which contains LamB1 as β-chain, controls breast cancer invasion and 

metastasis in an integrin-dependent manner [113].  Moreover, it was shown that LamB1 

influences laminin-integrin-signaling, which enhances cell adhesion, motility and 

differentiation [114]. LamB1 was also identified to be involved in endothelial cell adhesion, 

tube formation and aortic sprouting [115]. Furthermore, LamB1 binds to LamR [116]. LamR 

is upregulated in several aggressive cancers and correlates with increased invasion and 

metastasis [117]. For example, LamR interacts with Laminin-111, which contains LamB1 as 

β-chain, to mediate migration of multiple myeloma cells [118]. 
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Figure 12 Laminin-111 (11γ1) is shown as an illustration for laminin structure and functions. 

LNs facilitate self-assembly and LGs bind to ECM molecules like heparin, perlecan as well as 

fibulin-1. γ1 and γ3 chains bind to the ECM component nidogen and the coiled-coil domain 

interacts with the heperan sulfate proteoglycan agrin. Adapted from [104]. 
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4.124.12  La  enhances  LamB1  IRES  translation  upon  EMT    La enhances LamB1 IRES translation upon EMT

Recently we identified La as an ITAF, which binds the LamB1 IRES in vivo and in vitro 

[101]. Importantly, we could show that binding of La positively regulates IRES-mediated 

LamB1 translation [101]. In our hepatocellular EMT model, we did not observe any changes 

in La protein expression (Figure 13A). However, analysis of cytoplasmic and nuclear cell 

fractions revealed that most of La is located in the nucleus in MIM-R hepatocytes and that La 

accumulates in the cytoplasm upon TGF-β treatment as well as EMT (MIM-RT) (Figure 

13B). These data indicate that cytoplasmatic La accumulation enhances LamB1 IRES 

translation upon hepatocellular EMT.  



 

A B 

Figure 13 La protein expression in hepatocellular EMT. (A) Total protein levels are not changed 

upon EMT, (B) whereas cytoplasmic La protein levels increase upon EMT (MIM-RT) and after 

TGF- treatment. Adapted from [101]. 

 

La is a highly abundant, multifunctional protein, which was discovered as an autoantigen in 

systemic lupus erythematosus and Sjogren’s syndrome [119-121]. The N-terminal domain 

(NTD) is the most conserved part of La proteins (Figure 14). It includes the La motif and the 

RNA recognition motif 1 (RRM1) [122]. Another RRM located next to NTD has an unknown 

function. The region around the short basic motif (SBM) was suggested to be involved in 

homodimerization [123]. The C-terminus of La proteins is less conserved and highly charged 

and is the site of phosphorylation as well as cleavage [121, 124-126]. Moreover, the C-

terminal nuclear localization signal (NLS) is responsible for nuclear import of La and the 

nuclear retention element (NRE) causes nuclear accumulation of La [127]. Thus, La is mainly 

located in the nucleus (nucleoplasmic as well as nucleolar) [128]. Interestingly, it was 

reported that La can shuttle between nucleus and cytoplasm. Protease cleavage, removing the 

NLS, and C-terminal phosphorylation by AKT were proposed to mediate cytoplasmic 

translocation [124, 126, 129]. La is involved in many processes such as pre-tRNA maturation, 

stabilization of nascent RNAs and regulation of IRES-mediated translation [121]. In 

summary, La works as an RNA chaperon and ITAF. The ITAF function of La was initially 

reported in poliovirus-infected cells [130]. It was shown that La redistributes to the cytoplasm 

upon poliovirus infection where it enhances IRES-mediated poliovirus translation. Notably, 

cytoplasmic La localization was suggested to be mediated through cleavage of La by a 

polivovirus-encoded protease [126]. Moreover, it was proposed that homodimerization of La 

is necessary for enhanced Poliovirus translation [123]. Further translational upregulation by 

La was described for the cellular IRESs in heavy chain binding protein (BiP), XIAP and 

cyclin D1 (CCND1) transcripts [131-133]. In addition, one transcript of La harbors an IRES 

which is thought to lead to an positive feedback loop of La translation during conditions when 
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cap-dependent translation is impaired [134]. Notably, the study of CCND1 IRES indicated a 

role of La in cell proliferation and found an overexpression of La in cervical cancer [133].  

 

Figure 14 Scheme of the human La protein. Adapted from [122]. 
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4.134.13  Working  hypothesis  and  aim  of  the  thesis    Working hypothesis and aim of the thesis

A working model for the regulation of LamB1 IRES translation during hepatocellular EMT is 

shown in Figure 15. Epithelial MIM-R hepatocytes expressing constitutive active Ras signal 

via MAPK or PI3K pathway without additional stimuli [42]. Cytoplasmic La binds to LamB1 

IRES to enhance cap-independent translation [101]. Long-term TGF- treatment of MIM-R 

cells induces hepatocellular EMT, leading to an activation of autocrine PDGF signaling and 

increased PI3K and MAPK signaling [42, 44]. Moreover, in EMT-transformed cells elevated 

levels of cytoplasmic La were shown to enhance LamB1 IRES translation [101]. Activation of 

PDGF signaling during EMT might regulate LamB1 IRES translation through PI3K or 

MAPK pathway by stimulating accumulation of cytoplasmic La. The aim of the thesis was 

therefore to understand which signaling pathways and downstream effectors control LamB1 

IRES translation.  
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Figure 15 Working model for the regulation of LamB1 IRES translation during hepatocellular 

EMT. TGF- signaling cooperates with constitutive active Ras to induce EMT in murine 

hepatocytes [42]. This in turn activates PDGF signaling and enhances MAPK as well as PI3K 

pathway activation [42, 44]. Main questions of the study are marked in red: (i) Does MAPK or 

PI3K pathway regulate LamB1 IRES translation in epithelial and EMT-transformed cells? (ii) 

Does PDGF signaling control LamB1 IRES translation upon EMT? 
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55  MATERIALS  AND  METHODS  MATERIALS AND METHODS

5.15.1  Cell  lines  Cell lines

MIM-1-4:  

MIM-1-4 cells are immortalized primary hepatocytes isolated from p19ARF-/- mice [43]. These 

cells are able to undergo Fas-induced apoptosis. Moreover, they possess a non-tumorigenic 

phenotype and express liver-specific markers such as albumin, hepatocyte nuclear factor-1 

and phenylalanine hydroxylase. MIM-1-4 cells form monolayers and show morphological 

characteristics of liver parenchyma cells. In culture MIM- 1-4 cells need additional growth 

factor supplying the medium as described. 

 

MIM-R:  

MIM-R cells were established by stable retroviral transmission of MIM-1-4 cells with 

constitutive active, oncogenic v-Ha-Ras and green fluorescent protein (GFP) [42]. These cells 

show a polarized epithelial morphology, grow in a contact-inhibited fashion and exhibit a 

malignant phenotype.  

 

MIM-C40: 

MIM-C40 cells were established by stable retroviral transmission of MIM-1-4 cells with C40-

V12-Ras [42]. This Ras mutant selectively activates PI3K signaling in response to cognate 

signals. The cells show a polarized epithelial morphology, grow in a contact-inhibited fashion 

and possess a non-tumorigenic phenotype. Notably, MIM-C40 cells grow slower than MIM-R 

and MIM-S35 cells (see below) and need additional growth factor supplying the medium as 

described. 

 

MIM-S35:  

MIM-S35 cells were established by stable retroviral transmission of MIM-1-4 cells with S35-

V12-Ras [42]. This Ras mutant selectively activates MAPK signaling in response to cognate 

signals. The cells show a polarized epithelial morphology, grow in a contact-inhibited fashion 

and are malignant transformed.   
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MIM-R-dnP: 

MIM-R-dnP cells were generated by retroviral transmission of MIM-R with pMSCV-

dnPDGF-Rα-red, which exhibits red fluorescent protein (RFP) and a dominant negative 

PDGF-Rα [44]. These cells show a polarized epithelial morphology and grow in a contact-

inhibited fashion. Compared to MIM-R cells, they have a decreased tumorigenic phenotype. 

 

MIM-RT, -RT-dnP, -ST and -CT: 

MIM-RT, -RT-dnP, -ST and -CT cells were established by long-term TGF-β-treatment of 

MIM-R, -R-dnP, -S35 and -C40 cells, respectively [42, 44]. These cells display a 

mesenchymal phenotype and grow in polylayers without contact inhibition. MIM-RT and -ST 

cells show an increased malignancy compared to their corresponding epithelial cells. MIM-

RT-dnP cells are less tumorigenic compared to MIM-RT cells and MIM-CT cells need to be 

cultured with additional growth factor.  

5.25.2  Cell  culture  Cell culture

Cultivation of cells:  

Murine hepatocyte cell lines were grown on collagen-coated culture dishes (rat-tail collagen, 

BD Transduction Lab, Franklin Lakes, USA) in RPMI 1640 plus 10% fetal calf serum (FCS) 

and antibiotics (50 U Penicillin and 50 µg/ml Streptomycin). To induce EMT, 2,5 ng/ml 

recombinant human TGF-β1 (R&D Systems, Minneapolis, USA) was added to the culture 

medium for 72 hours and constant treatment of epithelial cells with 1 ng/ml TGF-β1 gave rise 

to spindle-shaped MIM-RT, -RT-dnP, -CT and -ST cells. MIM-C40 and -CT cells were 

cultured with extra growth factor supply (GFs), consisting of 20 ng/ml human recombinant 

transforming growth factor-α (TGF-α, Sigma, St. Louis, USA), 30 ng/ml human recombinant 

insulin-like growth factor II (IGF-II, Sigma, St. Louis, USA) and 35 ng/ml insulin (Sigma, St. 

Louis, USA). For Western blot and bicistronic assays after TGF-β treatment, the medium was 

changed and 2,5 ng/ml TGF-β1 was applied for 24 hours. For pharmacological treatment, 10 

M PI3K (LY294002, Cell Signaling, Danvers, USA) and/ or 10 M MEK1/2 (UO126, Cell 

Signaling, Danvers, USA) inhibitor or DMSO (control) was added to the culture medium and 

cells were harvested 24 hours after incubation. For stimulation were cells serum starved for 24 

hours and treated for 30 minutes, 2 hours or 24 hours with either 20 ng/ml PDGF-AB 

(PeproTech, Rocky H-ill, USA), 20% FCS, 40 ng/ml TGF-α or 70 ng/ml insulin. For 

bicistronic assays after PDGF stimulation, long-term treated cells were cultured with 20 µM 

TGF-β-RI/II inhibitor (Lilly, Indianapolis, USA) and 24 hours treated with 10 ng/ml PDGF-
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AB. All cells were grown at 37°C and 5%CO2 and routinely screened for the absence of 

mycoplasma. 

 

Splitting of cells:  

To split cells, the medium was removed and cells were washed with phosphate buffered saline 

(PBS). Cells were trypsinized with Trypsin/EDTA (0,1% Trypsin/ 0,01% EDTA), 

resuspended in medium and split in desired ratio onto collagen-coated culture dishes.  

 

Freezing of cells: 

To freeze cells, the medium was removed and cells were washed with PBS and trypsinized 

with T/E. After resuspending cells in medium, they were transferred into a 15 ml Falcon tube. 

Cells were centrifuged for 6 minutes at 272 g at 4°C and the cell pellet was washed with PBS 

and centrifuged again. The cell pellet was then resuspended in freezing medium (95% FCS / 5 

% DMSO) and transferred into round bottom freezing vials (1 ml suspension/vial). The tubes 

were immediately placed on ice for 30 minutes and stored at least over night at -80°C. Frozen 

cells were put at liquid nitrogen for long-term storage.  

 

Thawing of cells: 

Frozen cells were quickly thawed in water bath at 37°C, carefully resuspended and put into a 

15 ml Falcon tube containing culture medium. After centrifugation for 6 minutes at 272 g, the 

supernatant was removed and the cell pellet was resuspended in culture medium. The cell 

suspension was further put onto collagen-coated 6cm culture dishes. 

 

Buffers and solutions: 

- 10 x PBS: 

80 g NaCl 

2 g KCl 

11,5 g Na2HPO4.2H2O 

2 g KH2PO4 

Fill up with ddH2O to 1 l and autoclave 

5.35.3  Vector  for  bicistronic  assays    Vector for bicistronic assays

The pβGal/Lam/CAT vector (Figure 16) was cloned to study the IRES activity of LamB1. A 

schematic overview of the bicistronic reporter expression is given in Figure 17. The first 



reporter β-galactosidase (β-Gal) is located behind a CMV promoter and is therefore used to 

control transfection efficiency and to analyze cap-dependent translation [101]. The second 

reporter chloramphenicol acetyltransferase (CAT) is located downstream of the LamB1 5’-

UTR, thus its translation is mediated by the IRES located within the 5’-UTR. 

 

Figure 16 The bicistronic vector pGal/Lam/CAT contains the LamB1 5’-UTR located between 

the two reporters β-Gal and CAT.  
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Figure 17 Translation of pGal/Lam/CAT reporters (Figure was kindly provided by Michaela 

Petz). (I) The β-Gal reporter is translated in a cap-dependent manner, whereas (II) the CAT 

reporter is produced in an IRES-mediated fashion.     
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5.45.4  Transient  transfection      Transient transfection

Cells were seeded onto collagen-coated 6-well plates. Respective cell numbers were seeded to 

reach a confluency of 70% after 24 hours (Table 1). For each transfection, 1 µg DNA 

(pβGal/Lam/CAT vector) were resuspended with 6 µl Plus reagent in 100 µl DMEM 

(Invitrogen, Carlsbad, USA). In a second tube, 4 µl Lipofectamine was resuspended in 100µl 

DMEM (Invitrogen, Carlsbad, USA). The two solutions were mixed after 15 minutes 

incubation at room temperature and incubated for another 15 minutes at room temperature. 

Cells were washed in PBS and then 0,8 ml DMEM as well as 0,2 ml transfection mix were 

drop-wise added to the cells. The medium was changed to full RPMI after 3 hours of 

incubation and, if not otherwise indicated, were cells cultured as described in  5.2. Cell 

extracts were prepared after 48 hours of transfection (see  5.5).   

Table 1 Cell numbers seeded for transfection. 

Cell Number/ 6-well Cells 
3 x 105 MIM-S35 and -C40 

3,5 x 105 MIM-R and -R-dnP 
4 x 105 MIM-RT and -CT 

4,5 x 105 MIM-RT-dnP and -ST 

5.55.5  Preparation  of  cell  extracts  Preparation of cell extracts

For RNA generation: 

Cells were kept on ice during the whole procedure. 10 µl/ml ß-mercaptoethanol was added to 

lysis buffer RLT (provided by RNeasy Mini Kit, Quiagen, Hilden, Germany). Cells were 

washed with cold PBS. 350 µl lysis buffer was added per 6-well and cells were incubated for 

5 minutes. Cells were scraped, transferred into a tube and snap frozen. Lysates were stored at 

-20°C and for long-term storage at -80°C.  

 

For -Gal assay and CAT ELISA: 

Cells were kept on ice during the whole procedure. Lysis buffer was prepared from CAT 

ELISA Kit as recommended by the manufacturer (Roche, Mannheim, Germany). Cells were 

washed with cold PBS, 500 µl lysis buffer was added per 6-well and incubated for 30 

minutes. Cells were scraped, transferred into a tube and snap frozen. Lysates were stored at -

20°C and for long-term storage at -80°C. 
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For Western blot: 

Cells were kept on ice during the whole procedure. Phosphatase inhibitors consisting of 2 µl 

500 mM NaF, 2 l 5 mg/ml Leupeptin, 2 l 5 mg/ml Aprotinin, 1 l 1 M Na3VO4 and 10 l 

100 mM PMSF in 100% ethanol were added to 1 ml RIPA lysis buffer. Cells were washed 

twice with cold PBS. Lysis buffer was added (200 l/10 cm plate, 100 l/6 cm plate and 80 

l/6-well) and incubated for 10 minutes. Cells were scraped, transferred into a tube and snap 

frozen. Lysates were stored at -20°C. 

 

Buffers and solutions: 

- RIPA buffer: 

50 mM Tris pH 7,5 

150 mM NaCl 

1 mM -Glycoperphosphate  

0,5% DOC 

1% NP-40 

5.65.6  RNA  isolation    RNA isolation

To isolate total RNA the RNeasy Mini Quiagen Kit was used (Quiagen, Hilden, Germany). 

Prepared cell lysates (see  5.5) were passed 30 times through a 20 gouche needle. 350 µl 70% 

ethanol (RNase free) was added, mixed by pipetting and transferred onto spin column. After 1 

minute centrifugation at 20800 g, the supernatant was removed, 700 µl buffer RW1 was 

added and centrifuged again. The supernatant was removed, 500 µl buffer RPE were added 

and the column was again centrifuged. After removing the supernatant, 500 µl buffer RPE 

were added and the column was centrifuged 2 minutes at 20800 g. Supernatant was removed 

and the column was centrifuged again for 2 minutes at 20800 g. To elute RNA the spin 

column was placed into a new RNase free tube and 30 µl RNase free water was piptetted at 

the center of the column. After 5 minutes incubation, the column was centrifuged 1 minute at 

20800 g. RNA was stored at -20°C or at -80°C for long-term.  

5.75.7  Reverse  transcription  (RT)    Reverse transcription (RT)

To abrogate secondary RNA structures, 2 µl wipeout buffer (Quiagen, Hilden, Germany), 5 µl 

RNA sample and 7 µl ddH2O were mixed and incubated for 2 minutes at 42°C. The mix was 

immediately put on ice, 1 µl primer mix, 4 µl RT buffer and 1 µl reverse transcriptase were 
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added and incubated for 30 minutes at 42°C (Quiagen, Hilden, Germany). To inactivate the 

reverse transcriptase, the mix was incubated 3 minutes at 95°C. cDNA was stored at -20°C. 

5.85.8  Quantitative  polymerase  chain  reaction  (qPCR)  Quantitative polymerase chain reaction (qPCR)

In a Fast Reaction Tube (Applied Biosystems, CA, USA), 3 µl cDNA (1:100 diluted in 

ddH2O), 2 µl primer mix (4 µM stock of forward and reverse primer in ddH2O) and 5 µl Fast 

SYBR green (Applied Biosystems, CA, USA) were mixed. Duplicates for RhoA and -Gal 

were measured by the 7500 Fast Real Time PCR System (Applied Biosystems, CA, USA). 

Conditions for qPCR, see Table 2; Primer sequences, see Table 3.   

Table 2 qPCR conditions. 

Step 1 2 3 
Function Enzyme activation Denaturation Anneal/Extend 
Repeat 1 40 
Temp [°C] 95 95 60 
Time [sec] 20 3 30 

Table 3 Primer sequences. 

Primer Forward Reverse 
β-Gal  ACTATCCCGACCGCCTTACT CTGTAGCGCTGATGTTGAA 
RhoA GGAAGAAACTGGTGATTGTTGGTG TCGTGGTTGGCTTCTAAATACTGG 

5.95.9  β-Galactosidase  assay  β-Galactosidase assay

Cell lysates (see  5.5) were centrifuged 10 minutes at 16100 g and 4°C. For each sample, 4 µl 

100 x Mg solution, 88 µl o-nitrophenyl-ß-d-galactopyranoside (ONPG) solution, 268 µl 0,1 M 

sodium phosphate solution and 20-30 l cell lysate were mixed. Reaction mix without lysate 

was used as blank. The reaction mix was incubated for at least 30 minutes at 37°C until a faint 

yellow color had developed. Samples were measured in triplicates (each 100µl) at 405 nm.  

 

Buffers and solutions (stored at 4°C): 

- 100 x Mg solution:  

0,1 M MgCl2 

4,5 M ß-Mercaptoethanol 

- 0,1 M sodiumphosphate solution pH7,5:  

16,4 ml 0,5 M Na2HPO4 

9 ml 0,2 M NaH2PO4 

74,6 ml ddH2O 

- ONPG: 
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4 mg/ml in 0,1 M sodiumphosphate pH 7,5 

5.105.10  CAT  ELISA    CAT ELISA

Procedure was performed with the CAT ELISA kit (Roche, Mannheim, Germany). Cell 

lysates (see  5.9) were applied in duplicates. 200 l cell lysate was pipetted into each well.  

The plate was covered with foil and incubated for 1 hour at 37°C. After three times washing 

with 200 l washing buffer 200 l 2 µg/ml anti-CAT-DIG in sample buffer was added per 

well. The plate was covered with foil and incubated for 1 hour at 37°C. The ELISA was 

washed three times with 200 l washing buffer, 200 l 150 mU/ml anti-DIG-POD in sample 

buffer was added per well.  The plate was covered with foil and incubated for 1 hour at 37°C. 

The ELISA was washed three times with 200 l washing buffer, 200 l POD substrate was 

added per well and incubated 10-40 minutes at room temperature until the appropriate 

development of green color. Each well was resuspended to ensure homogeneous distribution 

of the reaction product. The OD was measured at 405 nm.  

5.115.11  Calculations  for  bicistronic  assays  Calculations for bicistronic assays

qPCR for β-Gal:  

First the average of the two measured Ct values was calculated. Then the mean-RhoA value 

was subtracted from corresponding mean-β-Gal value to calculate ΔCt. Relative expression E 

was calculated by the formula E = 2-ΔCt.  

 

β-Gal assay:  

The average of the three measured values was calculated and the mean blank was subtracted 

from mean-sample value. Normalization to the mRNA levels was used in assays that 

interfered with translation (assays using PI3K and MEK1/2 inhibitors). Therefore, the 

calculated β-Gal values were divided through the corresponding E values of qPCR. 

 

CAT ELISA:  

The average of the two measurements was calculated. Normalization to the mRNA levels was 

used in assays that interfered with translation (assays using PI3K and MEK1/2 inhibitors). 

Therefore the calculated CAT values were divided through the corresponding E values of 

qPCR. For normalization of the other assays, the calculated CAT values were divided through 

the corresponding β-Gal-values. 
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End-analysis and statistics: 

Bicistronic assays were carried out at least in triplicates and results correspond to the average 

of at least three independent experiments. Statistical significance was calculated by paired 

Student’s t-test, p-values (p) <0,05 (*), <0,01 (**) and <0,005 (***) indicate statistical 

significant differences.  

5.125.12  Bradford  assay  and  Western  blot  sample  preparation  Bradford assay and Western blot sample preparation

Cell lysates (see  5.5) were centrifuged 5 minutes at 16100 g and 4°C. The supernatants were 

transferred in a new tube and 1:5-1:20 dilutions in ddH2O were prepared to determine protein 

concentrations. Bradford reagent (Protein assay, BioRad, Munich, Germany) was diluted 1:5 

in ddH2O and 400 µl of the fresh prepared Bradford solution were mixed with 10 µl of sample 

or BSA standards. After vortexing and incubation for 5 minutes at room temperature, 3 x 100 

µl of Bradford mix were transferred in a 96 well plate and measured at 620 nm. A BSA 

standard curve was calculated and protein sample concentration was determined. 30 µg 

protein were diluted with PBS to a total volume of 10 µl and 10 µl 2xSDS sample buffer was 

added. Prepared samples were used for Western blotting and stored at -20°C.  

 

Buffers and solutions: 

- BSA standards:  

BSA dilutions in ddH2O were prepared with following concentrations: BSA [mg/ml] 

0,1; 0,2; 0,4; 0,6; 1,8; 1,0; 1,2 and stored at -20°C 

- 2 x SDS sample buffer:  

1 ml Tris/HCl pH 6,8 

2,5 ml 20% SDS 

0,5 ml β-Mercaptoethanol 

4 ml 50% glycine 

0,5 ml 1M DTT 

1,5 ml ddH2O  

 0,2% bromphenole blue 
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5.135.13  Western  blot  Western blot

SDS polyacrylamide gel electrophoresis (SDS-PAGE): 

The gel apparatus with 0,75 mm spacer was assembled. To prepare two 10% separation gels 

4,45 ml 30% PAA/1% PDA; 2,5 ml 2 M Tris pH 8,8; 6,2 ml ddH2O; 45 l 10% APS and 7,5 

l TEMED were mixed and immediately filled into gel apparatus until the gel reached 1 cm 

below the upper edge. Gels were overlaid with isopropanol and allowed to polymerize. 

Isopropanol was removed, gels were washed three times with ddH2O and the water was 

removed with a piece of whatman paper. Stacking gels were prepared by mixing 0,5 ml 30% 

PAA/1% PDA; 0,5 ml 1 M Tris pH 6,8; 3 ml ddH2O; 20 l 10% APS and 4 l TEMED and 

filled immediately into the gel apparatus. The comb was inserted and the gels were left for 

polymerization. Gels were placed into gel electrophoresis chambers and filled up with 

electrophoresis buffer. The combs were removed and slots were rinsed with electrophoresis 

buffer. Prepared cell extract samples (see  5.12) were heated for 2 minutes at 95°C, cooled 

down on ice and spun down. Samples (18 l for comb with 10 slots and 10 µl for comb with 

15 slots) or 5l prestained protein ladder (Fermentas, Maryland, USA) were loaded. A current 

of 15 mA/gel was applied for 1-2 hours. Electrophoresis buffer was reused several times.  

 

Blot: 

One nitrocellulose membrane, three 3 mm Whatman papers and two pads were wetted in 

blotting buffer for each gel. Blotting sandwich was assembled according to Table 4 and air 

bubbles were removed. Then the blotting sandwich was placed into the blotting chamber with 

stir bone and ice for cooling. The chamber was filled up with blotting buffer and a constant 

voltage of 100 V was applied for 1 hour. The blotting buffer was reused several times. 

Table 4 Schema for blotting sandwich. 

1. Black plastic (minus pole) 
2. Pad 
3. Whatman paper 
4. Gel  
5. Nitrocellulose membrane  
6. 2x Whatman papers  
7. Pad  
8. White plastic (plus pole) 

 

 

Membrane developing and detection: 

The membrane was washed with ddH2O and stained for 1-2 minutes with Ponceau S. The 

membrane was washed with ddH2O until bands were visible. After imaging, the membrane 
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was cut into appropriate pieces. Then the Ponceau staining was completely washed out and 

the membrane was blocked in 5% BSA in TBST (for LamB1 antibody in 1% Milk in TBST) 

for 1 hour at room temperature with shaking. The 1st antibody was diluted in TBST (see Table 

5), applied to the membrane and incubated over night at 4°C with shaking. The 1st antibody 

solution was saved and stored at -20°C for reuse. The membrane was washed 3 times for 15 

minutes with TBST and incubated with 2nd antibody diluted in TBST (see Table 6) for 1 hour 

at room temperature with shaking. Then the membrane was washed three times for 10 minutes 

with TBST and put on a glass plate where it was incubated 2 minutes with freshly prepared 

ECL- H2O2 solution. Per ml Luminol/ Coomaric solution, 3 µl 3% H2O2 were added and 

vortexed. After dripping the membrane on a paper towel, it was put into a cassette and 

developed in a darkroom with a hyperfilm (Amersham HyperfilmTM ECL, GE Healthcare 

Limited, Buckinhamshire, UK). 

Table 5 1st antibodies.  

Antibody Company Dilution Reactivity Source Size [kDa] 
Actin Sigma 1 : 2000 wide range r 42 
Phospo-Akt Cell Signaling 1 : 1000 h, m, rat, c  r 60 
Akt BD Transduction Lab 1 : 1000 h, m, rat, dog m 59 
Phospho-Erk Cell Signaling 1 : 1000 h, m, rat, hm, c r 42, 44 
Erk Cell Signaling 1 : 1000 h, m, rat, hm r 42, 44 
La Cell Signaling 1 : 2000 h, m, rat, mk r  50 
LamB1 NeoMarker 1 : 1000 h, m, pig, hm rat 210 
Nucleoporin BD Transduction Lab 1 : 1000 m, rat, c m 62 
Tubulin-α Sigma 1 : 1000 h, m, rat, b, c m 50 
b = bovine, c = chicken, dog = dog, hm = hamster, h = human, mk = monkey, m = mouse, pig = pig, r = rabbit, 
rat = rat 

Table 6 2nd antibodies.  

Conjugate Company Dilution  Reactivity Source 
Peroxidase Vector Laboratories 1 : 10000 Mouse IgG Horse 
Peroxidase Vector Laboratories 1 : 10000 Rabbit IgG Goat 
Peroxidase Santa Cruz 1 : 10000 Rat IgG Goat 

 

Stripping: 

7 l β-Mercaptoethanol were added to 1 ml stripping buffer. The buffer was applied to the 

membrane and incubated for 30 minutes at 50°C to remove attached antibodies. The 

membrane was washed with ddH2O until it was inodorous, followed by three times washing 

for 10 minutes with TBST. Then the membrane was blocked for one hour and antibodies were 

applied.  
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Buffers and solutions: 

- 30% Acrylamide/ Bisacrylamide solution:  

292,1 g Acrylamide 

7,8 g bisacrylamide 

Fill up with ddH2O to 1 l, sterile filtrate, and store at 4°C with light protection  

- 10 x Tris/ glycine: 

25 mM Tris  

192 mM Glycine  

- Electrophoresis buffer: 

100 ml 10 x Tris/glycine  

5 ml 20% SDS  

Adjust with ddH2O to 1 l 

- Blotting buffer: 

100 ml 10 x Tris/glycine  

150 ml methanol  

1 ml 20% SDS  

Adjust with ddH2O to 1 l 

- 10 x TBS (low salt Tris-buffered saline): 

 200 mM Tris  

1,5 M NaCl  

Adjust pH to 7,5 

- TBST: 

10 ml 10% Tween in 1l 1xTBS (final 0,1% Tween) 

- Ponceau S: 

0,2% Ponceau in 3% trischloroacetic acid (TCA) 

- Sripping buffer: 

20 mM Tris/HCl pH 6,8  

2% SDS 

- Luminol/ Coomaric solution: 

200 ml 0,1M Tris pH 8,8 

500 µl p-Coumaric acid (stock: 340 mg in 26 ml DMSO) 

1 ml Luminol (stock: 2,26 g in 51 ml DMSO) 



 38

5.145.14  Reverse  transcriptase  (RT)-PCR    Reverse transcriptase (RT)-PCR

cDNAs were diluted in ddH2O to adjust RhoA amplification products to each other. For RT-

PCR, 10 l cDNA dilution, 15 l primer mix (4 µM stock of forward and reverse primer in 

ddH2O; primer sequences see Table 7) and 1 Ready-To-Go bead (Amersham, Uppsala, 

Sweden) were mixed in a PCR tube. The following PCR program was used: 2 cycles 63°C, 2 

cycles 61°C, 32 cycles 59°C. Amplified PCR products were analyzed by agarose gel 

electrophoresis. 

Table 7 Primer sequences. 

Primer Forward Reverse Amplicon [bp]

PDGF-A GGCTTGCCTGCTGCTCCTCG CTCCACTTTGGCCACCTTGAC 456 

PDGF-Rα CAGACTTCGGAAGAGAGTGCCATC CAGTACAAGTTGGCGCGTGTGG 468 

PDGF-B TGCTGAGCGACCACTCCATC GATTCTCACCGTCCGAATGG 550 

PDGF-Rβ CCTGAACGTGGTCAACCTGCT GGCATTGTAGAACTGGTCGT 765 

RhoA  GGAAGAAACTGGTGATTGTTGGTG TCGTGGTTGGCTTCTAAATACTGG 721 

5.155.15  Agarose  gel  electrophoresis  Agarose gel electrophoresis

1% agarose was dissolved in 1 x TAE by heating. Ethidium Bromide was added at a ratio of 

1: 10000 after the solution was cooled down. The gel was poured into the apparatus and left 

for polymerization. 5 x loading buffer was added to PCR products (form  5.14.) and 10-15 l 

sample or 4 µl 100 bp Plus DNA Gene Ruler (Fermentas, Maryland, USA) was loaded.  A 

voltage of 100 V was applied to the gel for at least 30 minutes. Pictures were taken with a gel 

imaging software.  

 

Buffers and solutions: 

- 50 x TAE:  

242 g Tris      

57,1 ml glacial acetic acid   

100 ml 0,5 M EDTA pH 8  

Adjust with ddH2O to 1 l and sterile filtrate  

- 5 x Loading buffer: 

60 mM Tris/HCl pH 7,5 

40% sucrose (w/v) 

0,2% bromphenole blue 

Store at 4°C 
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66  RESULTS  RESULTS

6.16.1  LamB1  IRES  translation  is  controlled  by  MAPK  and  PI3K  pathway      LamB1 IRES translation is controlled by MAPK and PI3K pathway

Constitutive activation of Ras and TGF-β signaling induces EMT in murine hepatocytes [42].  

Recently it was shown that LamB1 IRES translation as well as MAPK and PI3K signaling is 

elevated in these EMT-transformed cells [42, 100]. Since these two pathways are known to be 

important for the regulation of translation, we addressed the question whether they are 

responsible for LamB1 IRES activity [79]. We therefore employed several hepatic cell lines 

for these studies. MIM-R cells express constitutive active Ha-Ras whereas MIM-S35 and 

MIM -C40 either expresses a Ras mutant selectively activating MAPK or PI3K pathway in 

response to cognate signals, respectively [42]. Epithelial MIM-S35, -C40 -and -R as well as 

their corresponding EMT-transformed cells (MIM-ST, MIM -CT and MIM -RT) were 

transfected with the bicistronic vector pβGal/Lam/CAT and analyzed for LamB1 IRES 

activity (Figure 18). Furthermore, we studied LamB1 IRES translation at the initial steps of 

EMT. Hence, we treated MIM-S35, MIM -C40 and MIM-R cells after bicistronic vector 

transfection for 24 hours with TGF-. Untreated epithelial cell lines showed almost same 

levels of relative CAT activities, thus LamB1 IRES activities. After 24 hours TGF- 

treatment, LamB1 IRES activity was not significantly increased. Highest IRES activity was 

observed in EMT-transformed cells, which corroborates previously observed findings [100]. 

Notably, levels in MIM-ST and MIM -RT cells were higher than in MIM-CT. Although 24 

hours TGF-β treatment did not increase LamB1 IRES translation, these results show that 

TGF-β-mediated EMT-transformation leads to elevated LamB1 IRES activity. Furthermore, 

the data indicate that the PI3K as well as the MAPK pathway influence LamB1 IRES 

translation and that the latter one could be more important upon EMT.  
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Figure 18 LamB1 IRES translation is increased upon EMT and is affected by the PI3K and 

MAPK pathway. Different hepatocyte cell lines including MIM-S35 and MIM -C40 which 

selectively activate MAPK or PI3K pathway, respectively and MIM-R which expresses a 

constitutive active Ras were transfected with pβGal/Lam/CAT and treated 24 hours or long-

term with TGF-β. LamB1 IRES activity was assessed by relative CAT activity (CAT to β-Gal 

ratio). *** p<0,005 

 

Since we observed that LamB1 IRES is affected by PI3K and MAPK pathway, we analyzed 

the downstream targets AKT and ERK, respectively, as well as LamB1 protein levels in cell 

lines that were used for the bicistronic assay (Figure 18). Recently, it was observed that La 

regulates the LamB1 IRES [101]. Furthermore, it has been reported that the protein 

expression of La is regulated by AKT [129]. We therefore determined whether La protein 

levels differ in the cell lines under investigation. Protein lysates of above described MIM-S35, 

MIM-C40 -and MIM -R cells, as well as MIM-ST, MIM -CT and MIM –RT cells were 

subjected to Western blot analysis (Figure 19). Comparing untreated epithelial cells, MIM-

C40 showed highest p-AKT levels. Moreover, untreated MIM-S35 and MIM -R had similar 

levels of p-ERK, which were higher than in MIM-C40. In line with previous studies, AKT 

activity was low after 24 hours TGF- treatment and EMT transformation lead to a strong 

increase (manuscript in preparation). 24 hours TGF- treatment did not influence p-ERK 

levels in MIM-S35 and MIM-R but induced a slight elevation in MIM-C40 cells. Long-term 

treated cells showed the highest ERK activation. Interestingly, ERK activity decreased from 

MIM-ST to MIM -RT to MIM-CT. La levels were not different in investigated cells and 
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LamB1 expression raised during course of TGF-β treatment. Notably, lowest LamB1 levels 

were in untreated MIM-C40 cells, which elevated to a high degree after 24 hours TGF-β 

treatment. However, MIM-CT had lower LamB1 levels than MIM-ST and MIM-RT. On the 

one hand results confirm selective activation of PI3K and MAPK pathway in MIM-C40 or 

MIM-S35, respectively. On the other hand they show that during EMT transformation the 

activation of these two pathways correlates with increased LamB1 expression. This points to a 

regulative role of PI3K and MAPK pathway in LamB1 IRES translation. In line with results 

of the bicistronic assay (Figure 18), these data suggest that MAPK pathway is more important 

for LamB1 expression. 

 

MIM-R MIM-RTMIM-C40MIM-S35

24h

MIM-ST

- 24h - 24h+

p-AKT

AKT

LamB1

Actin

La

ERK

p-ERK

- +

MIM-CT

+ TGF-β
MIM-R MIM-RTMIM-C40MIM-S35

24h

MIM-ST

- 24h - 24h+

p-AKT

AKT

LamB1

Actin

La

ERK

p-ERK

- +

MIM-CT

+ TGF-β

 

Figure 19 LamB1 expression correlates with activation of PI3K and MAPK pathway. Different 

MIM hepatocytes (MIM-S35 and MIM-C40 selectively activating MAPK or PI3K pathway, 

respectively, and MIM-R expressing constitutive active Ras) were treated 24 hours or long-term 

with TGF-β. AKT and ERK activation as well as La and LamB1 levels were analyzed by 

Western blotting. 
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6.26.2  MAPK  pathway  predominantly  regulates  LamB1  expression  in  epithelial  

hepatocytes    

MAPK pathway predominantly regulates LamB1 expression in epithelial

hepatocytes

Investigation of the hepatic cell lines MIM-S35, MIM-C40 and MIM-R revealed that LamB1 

IRES translation is controlled by PI3K and MAPK pathway. We further evaluated the role of 

these pathways on LamB1 IRES expression by applying pharmacological inhibitors against 
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PI3K and MAPK pathway. Epithelial MIM-R and mesenchymal MIM-RT were transfected 

with the bicistronic vector pβGal/Lam/CAT, treated with PI3K or MEK1/2 inhibitor and 

analyzed for LamB1 IRES activity (Figure 20). Both inhibitors had a significant effect on 

LamB1 IRES translation in MIM-R cells (Figure 20A). Compared to the DMSO treated 

control, LamB1 IRES translation was reduced to 50% activity upon inhibition of PI3K 

pathway and was even more decreased to 35% residual activity when interfering with MAPK 

pathway. In EMT-transformed MIM-RT cells, the inhibitors had only marginal effects on 

LamB1 IRES translation (Figure 20B). Upon PI3K pathway inhibition, LamB1 IRES activity 

was almost as high as in the DMSO treated control and MAPK inhibition lead to 40% 

reduction of LamB1 IRES translation. Taken together, the results support the observations 

that PI3K and MAPK pathway regulate LamB1 IRES translation and that the latter one might 

have a greater impact. Interestingly, PI3K and MAPK pathway did not inhibit LamB1 IRES 

activities to the same extend in MIM-R and MIM-RT cells. These results suggest that the 

PI3K and especially the MAPK signaling control LamB1 IRES translation in MIM-R 

hepatocytes and that in EMT-transformed MIM-RT cells LamB1 IRES activity is influenced 

by additional mechanisms. 
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Figure 20 Inhibition of PI3K and MAPK pathway decreases LamB1 IRES translation to a 

different extend in MIM-R and MIM-RT cells. (A) MIM-R and (B) MIM-RT were transfected 

with pβGal/Lam/CAT and treated for 24 hours with inhibitors against PI3K or MEK1/2. Same 

amounts of DMSO served as vehicle control. LamB1 IRES activity was assessed by relative CAT 

activity (CAT values were normalized to mRNA levels). ** p<0,01 

 

We further addressed the question whether specific inhibition of PI3K or MAPK pathway has 

an impact on the signaling required for LamB1 translation. MIM-R and MIM-RT cells were 

therefore treated with PI3K or MEK1/2 inhibitors and then analyzed by Western blotting 

(Figure 21). In both cell lines, specific inhibition of PI3K resulted in decreased p-AKT levels 

and MEK1/2 inhibition to reduced p-ERK levels. Interestingly, the PI3K inhibitor caused 

MAPK pathway activation and MEK1/2 inhibitor PI3K pathway activation in MIM-RT cells. 
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La expression was similar in the investigated cells, nevertheless, in MEK1/2 treated MIM-R 

there was a slight decrease. Notably, besides the specific upper La band one lower band 

appeared in all cells besides MEK1/2 inhibited cells. Consistent with previous studies, MIM-

RT control cells displayed higher LamB1 levels than MIM-R control cells [100]. PI3K 

inhibitor treated MIM-R and MIM-RT cells showed no difference in LamB1 levels compared 

to their controls. Upon MEK1/2 inhibition, the LamB1 level did not change in MIM-RT cells, 

however levels were reduced in MIM-R cells. Results show that interference with MEK1/2 in 

MIM-R cells is sufficient to impair LamB1 expression, indicating that MAPK pathway is 

important for LamB1 translation in epithelial hepatocytes. In addition, observations in MIM-

RT propose that these cells can bypass inhibition of PI3K or MAPK pathway by activating 

(an) alternative pathway(s). Hence, possibly either both pathways influence LamB1 

translation or none of them is essential for the enhancement of LamB1 translation in EMT-

transformed cells. 
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Figure 21 LamB1 expression is reduced upon MEK1/2 inhibition in MIM-R and is not decreased 

in MIM-RT upon inhibition of MEK1/2 or PI3K. MIM-R and MIM-RT cells were treated 24 

hours with PI3K or MEK1/2 inhibitor and same amounts of DMSO served as vehicle control. 

Protein lysates were analyzed by Western blot for AKT and ERK activation as well as for La 

and LamB1 levels. 
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6.36.3  PI3K  and  MAPK  pathway  regulate  LamB1  expression  in  mesenchymal  

hepatocytes    

PI3K and MAPK pathway regulate LamB1 expression in mesenchymal

hepatocytes

Since inhibitor studies revealed that MIM-RT cells are insensitive to inhibition of either PI3K 

or MAPK pathway, we addressed the question whether MIM-RT cells are sensitive to the 

combined inhibition of PI3K and MAPK pathway. Therefore, EMT-transformed MIM-RT 

cells were transfected with the bicistronic vector pβGal/Lam/CAT, treated with PI3K together 

with MEK1/2 inhibitor and analyzed for LamB1 IRES activity (Figure 22A). Combined 

inhibition had a significant effect on LamB1 IRES translation in MIM-RT cells. Compared to 

the DMSO treated control, LamB1 IRES translation was reduced to 35% residual activity 

when interfering with PI3K and MAPK pathway. These results together with data of single 

inhibitions (Figure 20B) indicate that PI3K or MAPK pathway alone are able to control 

LamB1 IRES translation and that the combined inhibition is needed to decrease LamB1 IRES 

activity in EMT-transformed cells. 

We further investigated the effect of combined inhibition of PI3K and MAPK pathway on the 

signaling required for LamB1 translation. MIM-RT cells were treated with PI3K and MEK1/2 

inhibitor and analyzed by Western blotting (Figure 22B). Specific inhibition of PI3K and 

MEK1/2 resulted in decreased p-AKT and p-ERK levels. La expression was similar in the 

investigated cells. Although inhibition of either PI3K or MEK1/2 did not change LamB1 

protein levels (Figure 21), combined inhibition lead to reduced LamB1 expression in MIM-

RT cells. Taken together, these data show that PI3K as well as MAPK pathway regulate 

LamB1 translation in EMT-transformed cells. 
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Figure 22 Inhibition of PI3K together with MAPK pathway decreases LamB1 IRES translation 

and LamB1 expression in MIM-RT cells. (A) MIM-RT cells were transfected with 

pβGal/Lam/CAT and treated for 24 hours with inhibitors against PI3K and MEK1/2. Same 

amounts of DMSO served as vehicle control. LamB1 IRES activity was assessed by relative CAT 

activity (CAT values were normalized to mRNA levels). * p<0,05 (B) MIM-RT cells were treated 

24 hours with PI3K and MEK1/2 inhibitor and same amounts of DMSO served as vehicle 

control. Protein lysates were analyzed by Western blot for AKT and ERK activation as well as 

for La and LamB1 levels.  
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6.46.4  EMT-transformed  cells  activate  PDGF  signaling    EMT-transformed cells activate PDGF signaling

Moreover, we aimed to identify additional signaling pathways, besides TGF-β signaling, that 

activate AKT as well as ERK signaling upon EMT, thereby controlling LamB1 IRES 

translation. We decided to stimulate cells for 30 minutes with different growth factors to 

evaluate immediate response and 2 hours to analyze late signaling events. FCS, TGF-α, 

insulin and PDGF were used for stimulation since these are known to activate PI3K and 

MAPK pathway [67, 68, 70, 135-139]. MIM-R and MIM-RT cells were serum starved for 24 

hours, stimulated for 30 minutes or 2 hours with FCS, TGF-α, insulin or PDGF and analyzed 

by Western blotting for LamB1 levels, AKT and ERK activation (Figure 23). TGF-α and FCS 

activated ERK after 30 minutes but did not influence AKT activity in both cell lines. Insulin 



increased p-AKT and p-ERK levels in MIM-R and MIM-RT cells after 30 minutes. 

Interestingly, PDGF was able to activate AKT and ERK in MIM-RT but not in MIM-R cells 

after 30 minutes. All AKT and/ or ERK activations were downregulated after 2 hours 

stimulation and were most persistent in insulin- as well as TGF-α -treated cells. LamB1 

expression was not influenced, except of a slight increase in MIM-RT after 2 hours PDGF-

treatment. This experiment indicates that MIM-R and MIM-RT cells are capable for FCS, 

TGF-α and insulin stimulation, however, MIM-RT cells exclusively respond to the PDGF 

stimulus.    
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Figure 23 MIM-R and MIM-RT respond to FCS, TGF-α and insulin stimulation, but only MIM-

RT to PDGF. MIM-R and MIM-RT were 24 hours serum starved and stimulated with FCS, 

TGF-α, insulin and PDGF for 30 minutes or 2 hours. Protein lysates were analyzed by Western 

blotting for AKT and ERK activation as well as for LamB1 levels. 

 

It was recently reported that EMT leads to autocrine activation of PDGF signaling in murine 

hepatocytes (MIM-RT) [44]. As MIM-RT cells were sensitive to PDGF stimulation, which is 

in line with these results, we determined PDGF signaling in different hepatocytic MIM cells. 

MIM-R-dnP and MIM-RT-dnP cells that express the dominant negative PDGF-Rα were 

employed for further studies [44]. PDGF-A, -B, -Rα and -Rβ levels were analyzed by RT-

PCR in epithelial MIM-S35, MIM-C40, MIM-R and MIM-R-dnP as well as in their 

corresponding EMT-transformed cells (MIM-ST, MIM-CT, MIM-RT and MIM-RT-dnP) 

(Figure 24). PDGF-A was expressed in all epithelial cells and levels increased in 

mesenchymal cells, except in MIM-RT-dnP. Similarly, PDGF-B, -Rα and -Rβ levels were 

elevated in EMT-transformed cells compared to their epithelial cells. Notably, MIM-R-dnP 

and MIM-RT-dnP showed similar PDGF-Rα levels due to the expression of dominant 
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negative PDGF-Rα in these cell lines. The results suggest that not only MIM-RT but also all 

other EMT-transformed MIM cell lines exhibit enhanced PDGF signaling.   
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Figure 24 PDGF signaling is increased in EMT-transformed hepatocytes. Cell lines were 

analyzed for PDGF-A, -B, -Rα and -Rβ expression by semi-quantitative RT-PCR.  
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6.56.5  PDGF  controls  cytoplasmatic  La  accumulation  and  LamB1  IRES  translation  upon  

EMT  

PDGF controls cytoplasmatic La accumulation and LamB1 IRES translation upon

EMT

As mentioned in the introduction, cytoplasmic La localization is enhanced upon TGF--

induced EMT [101]. Interestingly, it was reported that cytoplasmic La translocation is 

regulated by PDGF [129]. We therefore investigated the impact of PDGF on cytoplasmic La 

localization in our cell model as PDGF signaling is increased upon hepatocellular EMT. 

Michaela Petz treated MIM-R, MIM-RT, MIM-R-dnP and MIM-RT-dnP with 20 ng/ml 

PDGF for 24 hours, isolated cytoplasmic and nuclear fractions, which were subsequently 

subjected to Western blot analysis (Figure 25). Tubulin and nucleoporin were used as controls 

for cytoplasmic or nuclear fractions, respectively. Both EMT-transformed cells showed higher 

LamB1 levels and cytoplasmic La levels than their corresponding epithelial cells. More 

importantly, LamB1 and cytoplasmic La levels increased only in MIM-RT cells upon PDGF 

treatment. These results suggest that PDGF regulates cytoplasmic La accumulation and 

LamB1 expression in EMT-transformed cells. They furthermore indicate that there is 

probably an additional, PDGF-independent, pathway for cytoplasmic La localization and 



LamB1 expression since MIM-RT-dnP cells also displayed higher LamB1 levels and 

cytoplasmic La compared to their epithelial cells.  
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Figure 25 PDGF signaling controls LamB1 expression and cytoplasmic La accumulation in 

hepatocellular EMT. Michaela Petz treated MIM cells with 20 ng/ml PDGF for 24 hours and 

analyzed cytoplasmic and nuclear fractions by Western blotting. Tubulin and nucleoporin 

served as controls for cytoplasmic and nuclear fractions, respectively. 

 

To evaluate the direct consequence of PDGF signaling on LamB1 IRES activity upon EMT, 

we transfected MIM-RT as well as MIM-RT-dnP with the bicistronic vector pβGal/Lam/CAT 

and treated the cells with PDGF (Figure 26). Additionally, a TGF-β-RI/II inhibitor was 

applied to prevent TGF-β-mediated autocrine PDGF signaling. As expected, untreated MIM-

RT showed higher LamB1 IRES translation than MIM-RT-dnP. Inhibition of TGF-β signaling 

did not influence LamB1 IRES activity in untreated MIM-RT cells. Interestingly, PDGF 

stimulation resulted in increased LamB1 IRES translation only in MIM-RT treated with TGF-

β-RI/II inhibitor. Together, these results propose that PDGF enhances LamB1 IRES activity 

by regulating cytoplasmic La translocation.   
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Figure 26 PDGF positively regulates LamB1 IRES translation in EMT-transformed cells. MIM-

RT and MIM-RT-dnP cells were transfected with pβGal/Lam/CAT and treated for 24 hours 

with PDGF and TGF-β-RI/II inhibitor (+I). LamB1 IRES activity was assessed by relative CAT 

activity (CAT to β-Gal ratio). Please note that this assay was performed once and must be 

repeated. 
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6.66.6  Further  investigation  of  PDGF  downstream  signaling    Further investigation of PDGF downstream signaling

To further understand how LamB1 IRES translation is regulated, we addressed the question 

whether PI3K or MAPK signaling is specifically activated by PDGF in EMT-transformed 

cells. MIM-ST, MIM-CT and MIM-RT cells were serum starved for 24 hours, stimulated for 

30 minutes or 24 hours with PDGF and analyzed by Western blotting for LamB1 and La 

levels as well as AKT and ERK activation (Figure 27). MIM-CT showed lower AKT, ERK, 

p-ERK and LamB1 levels than MIM-ST and MIM-RT cells. Highest ERK activation was 

observed in MIM-ST cells. Interestingly, LamB1 levels in MIM-ST were similar to MIM-RT. 

AKT activity increased after 30 minutes PDGF stimulation in MIM-CT cells only. In neither 

cell line p-ERK or LamB1 levels changed upon treatment. Furthermore, cell lines showed 

similar La expression levels and besides the specific upper La band an additional lower band 

appeared in MIM-ST and MIM-RT cells. On the one hand these results propose that MAPK 

pathway is important upon EMT for LamB1 expression, as MIM-ST, but not MIM-CT, 

showed similar LamB1 levels as MIM-RT cells. On the other hand this experiment leads to 

the suggestion that PDGF signaling is neither AKT nor ERK-mediated because no activation 

was observed in MIM-RT. Taken together, these observations are not conclusive since MIM-



RT cells were previously capable for PDGF stimulation (Figure 23, Figure 26). Therefore 

further investigations are required to evaluate the role of these pathways upon PDGF 

treatment.  
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Figure 27 MIM-CT activates AKT upon PDGF treatment whereas MIM-ST as well as MIM-RT 

cells show no AKT or ERK response. MIM-ST, MIM-CT and MIM-RT cells were 24 hours 

serum starved and stimulated with PDGF for 30 minutes or 24 hours. Protein lysates were 

analyzed by Western blot for AKT and ERK activation as well as for La and LamB1 levels. 
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77  DISCUSSION  DISCUSSION

TGF- signaling induces EMT of murine hepatocytes in cooperation with constitutive active 

Ras, leading to enhanced MAPK and PI3K pathway activation [42]. Upon EMT, the ECM 

component LamB1 is translationally upregulated [100]. This upregulation results from 

increased activity of the IRES located in the 5’-UTR of LamB1 transcript [100]. The main 

purpose of the thesis was to understand how LamB1 IRES translation is controlled.  

Since PI3K and MAPK is able to control translation we addressed the question whether one of 

them or even both are important for the activity of the LamB1 IRES [79]. We employed 

various malignant hepatocyte cell lines for our studies. MIM-R cells expresses constitutive 

active Ha-Ras whereas MIM-S35 and MIM-C40 cells express Ras mutants that selectively 

activate the MAPK or PI3K pathway in response to cognate signals, respectively [42]. LamB1 

IRES activity was analyzed in untreated epithelial cells (MIM-S35, MIM-C40 and MIM-R), 

after initiating EMT by 24 hours TGF-β treatment and upon EMT transformation by long-

term TGF- treatment (MIM-ST, MIM-CT and MIM-RT) (Figure 18). Untreated epithelial 

cells showed similar levels of LamB1 IRES translation and 24 hours TGF-β treatment did not 

significantly increase LamB1 IRES activity. However, consistent with published findings, 

strong elevation of LamB1 IRES translation was observed in EMT-transformed cells [100]. 

These data points out that PI3K as well as MAPK pathway control LamB1 IRES translation. 

Though, upon EMT MAPK pathway seems to have a larger impact than PI3K pathway since 

MIM-ST showed higher LamB1 IRES levels than MIM-CT cells.  

We further evaluated MAPK and PI3K signaling by analyzing their downstream targets ERK 

and AKT. Recently we found that La binds to the LamB1 IRES and controls its activity [101]. 

La in turn was reported to be regulated by AKT signaling in glial progenitors [129]. We 

therefore compared La and LamB1 protein levels in untreated MIM-S35, MIM-C40 and 

MIM-R cells, after 24 hours TGF- treatment and in MIM-ST, MIM-CT and MIM-RT cells. 

Western blot analysis verified selective activation of PI3K and MAPK pathway in MIM-C40 

and MIM-S35, respectively (Figure 19). Untreated MIM-C40 showed lowest LamB1 levels, 

which increased upon 24 hours TGF- treatment. Notably, also p-ERK levels were elevated in 

24 hours TGF- treated MIM-C40 cells, leading to the suggestion that MAPK pathway is 

important for LamB1 expression in epithelial hepatocytes. Moreover, activation of AKT and 

ERK1/2 correlated with increased LamB1 expression upon EMT. This supports a regulatory 

role of PI3K and MAPK pathway in LamB1 translation. In addition, MIM-ST showed higher 

LamB1 levels than MIM-CT cells, which is in accordance with LamB1 IRES activities 
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(Figure 18), indicating a central role of MAPK pathway in the regulation of LamB1 

expression upon EMT.  

Furthermore, we used pharmacological inhibitors against PI3K and MAPK pathways to study 

their role in the regulation of LamB1 IRES translation. LamB1 IRES activity was analyzed in 

epithelial MIM-R and mesenchymal MIM-RT after inhibition of PI3K or MEK1/2 (Figure 

20). Both inhibitors lead to a significant decrease of LamB1 IRES translation in MIM-R cells 

(Figure 20A). Interference with the PI3K pathway reduced LamB1 IRES activity to 50% and 

MEK1/2 inhibition let to a decrease by two thirds as compared to control. However, inhibitors 

had less effect in EMT-transformed cells (Figure 20B). After applying the PI3K inhibitor, 

LamB1 IRES activity was almost as high as in control cells and when inhibiting MEK1/2, 

60% activity remained. On the one hand these results support a regulatory role of PI3K and 

MAPK pathway on LamB1 IRES. On the other hand these data show that LamB1 IRES is 

differently controlled between epithelial hepatocytes and EMT-transformed cells since 

inhibitors had different effects in MIM-R and MIM-RT cells. The PI3K and MAPK pathway 

regulate LamB1 IRES in MIM-R cells while in EMT-transformed MIM-RT some additional 

mechanisms might control LamB1 IRES translation. 

We then assessed signaling after PI3K and MAPK pathway inhibition in MIM-R and MIM-

RT cells by Western blotting (Figure 21). Decreased p-AKT or p-ERK levels confirmed 

inhibition of the PI3K or MAPK pathway, respectively. Interestingly, MIM-RT cells showed 

activation of MAPK signaling when PI3K pathway was inhibited and vice versa. This leads to 

the suggestion that upon EMT cells can bypass inhibition of the PI3K or MAPK pathway by 

activating the non-inhibited pathway. La expression did not change upon inhibition, in 

addition to the specific upper La band, a lower band appeared in all cells except the one after 

MEK1/2 inhibition. This additional band could be a cleaved or phosphorylated variant of La, 

which is inhibited after interfering with MAPK pathway. Consistent with earlier findings, 

EMT-transformed MIM-RT control cells expressed higher LamB1 levels than epithelial 

MIM-R control cells [100]. Interference with PI3K signaling influenced LamB1 levels in 

neither cell line. Moreover inhibition of MAPK pathway did not alter LamB1 levels in MIM-

RT cells. On the contrary, levels were strongly decreased in MIM-R, suggesting that MEK1/2 

inhibition is sufficient to block LamB1 expression. In summary, bicistronic assays and 

Western blotting (Figure 20, Figure 21) propose that the MAPK pathway is necessary for 

LamB1 IRES translation in epithelial hepatocytes and that both pathways can activate IRES 

translation upon EMT. Notably, a further possibility is that neither MAPK nor PI3K pathway 

influence LamB1 IRES translation in EMT-transformed cells. 



 54

We therefore addressed the question whether MIM-RT cells are sensitive to the combined 

inhibition of PI3K and MAPK pathway. LamB1 IRES activity was analyzed in mesenchymal 

MIM-RT cells after inhibition of PI3K and MEK1/2 (Figure 22A). Combined interference 

significantly reduced LamB1 IRES activity to two thirds as compared to control. Taken 

together results propose that PI3K as well as MAPK pathway regulate LamB1 IRES 

translation (Figure 20B, Figure 22A). The effect of PI3K and MAPK pathway inhibition on 

the signaling in MIM-RT cells was analyzed by Western blotting (Figure 22B). Decreased p-

AKT and p-ERK levels confirmed inhibition of the PI3K or MAPK pathway. Interestingly, 

MIM-RT showed reduced LamB1 protein levels upon combined inhibition. These findings of 

bicistronic assays and Western blotting (Figure 22) corroborate the suggestion that upon EMT 

PI3K and MAPK regulate LamB1 IRES translation and that cells can bypass inhibition of one 

pathway alone by activating the non-inhibited pathway. 

We further performed experiments to identify additional signaling pathways that are able to 

control LamB1 IRES translation upon EMT through AKT and ERK activation. Serum starved 

MIM-R and MIM-RT cells were stimulated with FCS, TGF-, insulin or PDGF and analyzed 

by Western blotting (Figure 23). The results indicate that MIM-R and MIM-RT response to 

FCS, TGF-α and insulin, but only MIM-RT to PDGF. Interestingly it was previously 

described that EMT leads to an autocrine activation of PDGF signaling in murine MIM-RT 

hepatocytes [44]. We therefore determined PDGF ligand and receptor expression in different 

hepatic MIM cell lines by RT-PCR (Figure 24). The results revealed that PDGF signaling is 

increased not only in MIM-RT cells but also in all other EMT-transformed cell lines. 

As mentioned earlier, La was found to bind and regulate LamB1 IRES [101]. In 

hepatocellular EMT, total La protein expression levels did not vary (Figure 13A). However, 

we observed that most of La is located in the nucleus in MIM-R and that La accumulates in 

the cytoplasm upon TGF-β treatment as well as EMT (Figure 13B). Moreover, it was reported 

that cytoplasmic La translocation is regulated by PDGF [129]. Since PDGF signaling 

increased during EMT we investigated the possible role of PDGF on La translocation. 

Michaela Petz stimulated MIM-R, MIM-RT as well as corresponding MIM cells that express 

dominant negative PDGF-R (MIM-R-dnP and MIM-RT-dnP) with PDGF and analyzed 

cytoplasmic and nuclear fractions by Western blotting (Figure 25). Results show that PDGF 

positively regulates cytoplasmic La localization and LamB1 expression upon hepatocellular 

EMT. These data also propose that probably an additional, PDGF-independent, pathway 

regulates La translocation and LamB1 expression since MIM-RT-dnP cells displayed higher 

LamB1 levels and cytoplasmic La compared to epithelial MIM-R-dnP. 
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We then assessed the direct effect of PDGF on LamB1 IRES translation upon EMT by 

performing bicistronic assays in PDGF-stimulated MIM-RT and -RT-dnP (Figure 26). TGF- 

signaling was inhibited in these assays in order to block TGF-β-mediated autocrine PDGF 

signaling. Inhibition of TGF- signaling did not decrease LamB1 IRES activity in untreated 

MIM-RT cells. We would have expected a decrease since TGF- is important for autocrine 

PDGF signaling and EMT. Possible explanations could be that TGF- inhibition induces 

stress and thereby a TGF- independent pathway maintains IRES activity. Untreated MIM-

RT had a higher LamB1 IRES activity than MIM-RT-dnP, which already indicates a 

regulatory role of PDGF in LamB1 IRES translation. More importantly, PDGF stimulation 

resulted in elevated LamB1 IRES activity in MIM-RT cells treated with TGF-β-RI/II 

inhibitor, suggesting that PDGF positively regulates the LamB1 IRES. Taken together, these 

results indicate that PDGF signaling enhances LamB1 IRES activity by regulating 

cytoplasmic La localization upon EMT. 

To evaluate whether PDGF particularly activates the PI3K or MAPK pathway upon EMT we 

stimulated serum starved MIM-ST, MIM-CT and MIM-RT cells with PDGF and analyzed the 

downstream targets AKT and ERK by Western blotting (Figure 27). MIM-ST and MIM-CT 

are derived from epithelial MIM-S35 and MIM-C40 which selectively activate MAPK or 

PI3K pathway in response to cognate signals, respectively [42]. MIM-ST, MIM-CT and 

MIM-RT showed similar La levels. Moreover a second lower band appeared in MIM-ST and 

MIM-RT in addition to the specific upper La band. This observation fits to Figure 21, where 

interference of MAPK pathway inhibited this second band and to Figure 19, where MIM-ST 

showed highest expression of the second La band. Hence, this second band might be a 

differently modified, for instance cleaved or phosphorylated, variant of La, which is induced 

by MAPK pathway. Investigations to characterize this second La band would be an 

interesting task for future studies. Consistent with Figure 19, MIM-ST, but not MIM-CT, 

showed similar LamB1 levels as MIM-RT cells, suggesting that MAPK regulates LamB1 

expression upon EMT. Additionally, only MIM-CT showed AKT activation, which further 

supports MAPK pathway in regulating LamB1 expression. However, neither AKT nor ERK 

activation upon stimulation was observed in MIM-ST and MIM-RT cells. Thus, these data 

lead to the suggestion that PDGF signals not via MAPK or PI3K pathway in EMT-

transformed cells. These observations are contrary to previous findings where MIM-RT cells 

were capable for PDGF stimulation (Figure 23, Figure 26). Therefore further investigations 

are necessary to understand the role of MAPK and PI3K pathway in PDGF signaling. Since 

unstimulated control cells showed high p-ERK levels, it would probably help to inhibit TGF-



 56

-mediated autocrine PDGF signaling before analyzing PDGF downstream pathways. 

Furthermore it would be important to determine LamB1 IRES activity in MIM-ST, MIM-CT 

and MIM-RT cells upon PDGF stimulation.  

Since La enhanced LamB1 IRES translation it would be of interest to further analyze its 

regulation. Cytoplasmic and nuclear fractions of cells that were treated with MEK1/2, PI3K or 

both inhibitors could identify the regulatory pathway for cytoplasmic La accumulation. 

Possible phosphorylation and cleavage sites of La could be predicted and deletion 

experiments using green fluorescent protein (GFP)- La constructs could be used for analyzing 

shuttling and La localization in vivo [129]. MIM-La knock-down cells could be employed for 

this approach and LamB1 IRES activity could be measured besides La localization. Also cell-

free experimental systems could be employed to identify minimal ITAFs and canonical 

initation factors needed for LamB1 IRES translation [81]. An interesting task would be to 

analyze LamB1 IRES activity in vivo under different conditions. Upon stable transduction of 

MIM cells with a construct harboring the LamB1 5’-UTR upstream of a luciferase reporter 

and cell injection into mice, luciferase expression could be detected in living animals by 

charged-couple device cameras [140].   

A final model for the regulation of LamB1 IRES translation is displayed in Figure 28. 

Epithelial MIM-R hepatocytes express constitutive active Ras, which is able to signal via 

MAPK or PI3K pathway without additional stimuli [42]. The MAPK pathway predominantly 

regulates LamB1 IRES translation and cytoplasmic La binds the LamB1 IRES to induce 

translation [101]. Long-term TGF- treatment of MIM-R cells induces EMT, which leads to 

an activation of autocrine PDGF signaling [44]. This elevates MAPK as well as PI3K 

signaling and cytoplasmic La levels increase, thereby upregulating the IRES-mediated 

translation of LamB1 [42, 101]. The inhibition of MAPK pathway is sufficient to block 

LamB1 IRES translation in epithelial cells, whereas EMT-transformed cells are able to bypass 

inhibition of a single pathway. However, the MAPK pathway seems to be the primary 

regulatory mechanism also in EMT transformed cells.  In addition a second, La-mediated but 

PDGF-independent, regulation is suggested to influence LamB1 IRES translation in EMT-

transformed cells. Regulation of cytoplasmic La could be mediated by direct cytoplasmic 

localization of newly synthesized La or translocation of nuclear La to the cytoplasm. Possible 

modes of regulation for the latter one include protease cleavage where the NLS is removed 

and (de)phosphorylation of nuclear La. Phosphorylation of nuclear La by ERK1/2 or AKT 

seems likely since MAPK and PI3K pathway transduce their signals via phosphorylation. 



Furthermore, AKT was shown to phosphorylate La, which leads to La translocation to the 

cytoplasm in glial progenitors [129].  
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Figure 28 Suggested regulation of LamB1 IRES translation during hepatocellular EMT. 

Constitutive active Ras transduces signals via MAPK or PI3K pathway independently of stimuli 

[42]. LamB1 IRES translation is mainly controlled by MAPK signaling and binding of 

cytoplasmic La to its IRES [101]. Long-term TGF- treatment of MIM-R cells leads to EMT, 
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which activates autocrine PDGF signaling [44]. MAPK and PI3K signaling as well as 

cytoplasmic La increases, which in turn upregulates LamB1 IRES translation [42, 101]. 

Moreover, a second La-mediated but PDGF-independent, pathway could be involved in the 

regulation of LamB1 IRES translation in EMT-transformed cells. Phosphorylation and 

subsequent translocation of La to the cytoplasm could regulate cytoplasmic La accumulation. 

7.17.1  Concluding  remarks  and  future  perspectives  Concluding remarks and future perspectives

EMT is involved in invasion and metastasis, which is one hallmark of cancer and is associated 

with poor prognosis [10, 19, 20]. Several mechanism were described to control EMT, such as 

upregulation of TGF- signaling and transcriptional repression of E-cadherin [22]. 

Conversion of polarized epithelial cells to spindle-like mesenchymal cells and increased 

migratory potential are characteristics of EMT [9]. Interestingly, we found an IRES-mediated 

translational upregulation of LamB1 upon hepatocellular EMT [100]. In epithelial 

hepatocytes, the MAPK pathway controls the LamB1 IRES. Upon hepatocellular EMT, 

activated PDGF signaling and cytoplasmic La accumulation enhances LamB1 IRES 

translation. To our knowledge, these findings display a new mode of regulation upon EMT.  

Notably, IRES-mediated translation is important during conditions when cap-dependent 

translation is downregulated such as during angiogenesis, cell proliferation and apoptosis 

[81].  These processes are known to be important during cancer progression [87]. We suggest 

a possible involvement of LamB1 IRES-mediated translation in tumor progression. LamB1 is 

the -subunit of several laminins and it has been reported to influence integrin-mediated cell 

migration and differentiation [102, 114]. It furthermore binds to LamR, which affects tumor 

invasion and metastasis [116, 117]. Therefore, a possible role of LamB1 during tumor 

progression could be the regulation of tumor cell migration and invasion. Angiogenesis is 

regulated by IRES-mediated translation of HIF-1, VEGF-A, PDGF-B [71, 94, 141]. 

Interestingly, LamB1 is involved in endothelial cell adhesion, tube formation and aortic 

sprouting [115]. Additionally, we observed that PDGF signaling enhances LamB1 IRES 

translation in our hepatocellular model. Thus, another role of LamB1 could be regulating 

tumor angiogenesis, which is induced by hypoxia during tumor progression [71, 94, 141]. 

PDGF signaling is involved in at least three hallmarks of cancer, namely self-sufficiency in 

growth signals, sustained angiogenesis as well as invasion and metastasis [19, 65]. In our 

EMT model, TGF- leads to an autocrine PDGF signaling that supports tumor progression 

and LamB1 IRES translation [44]. A recent study compared extracellular matrix components 

in hepatocarcinogenesis and found LamB1 specifically upregulated in tumors of mice with 
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liver-specific transgenic expression of PDGF-C [142]. This observation further underlines a 

PDGF-dependent role of LamB1 in tumor progression. 

Downstream pathways of PDGF include the PI3K and MAPK pathway, which regulate 

LamB1 IRES translation [67]. Notably, the latter one is suggested to be the main regulatory 

pathway in our hepatocellular EMT model [42]. Both pathways are known to regulate 

translation and are frequently altered in cancer [79]. Interestingly, it was shown that tumors 

with coexistent mutations in PI3K and MAPK pathway are insensitive to inhibition of either 

pathway alone but are sensitive to their combined inhibition [143]. Furthermore, 4E-BP1 was 

identified as a key downstream target of MAPK and PI3K pathway [143]. Another study 

revealed that human tumors with mutations in MAPK and PI3K pathway were insensitive to 

MEK inhibition, which normally leads to decreased cyclin D1 expression [144]. Notably, also 

cyclin D1 contains an IRES that is positively regulated by La [133]. In line with these 

observations, our results propose that EMT-transformed cells bypass inhibition of PI3K or 

MAPK pathway by activating the non-inhibited pathway. Hence, it could be that both 

pathways are able to control LamB1 IRES translation, probably through a shared downstream 

target. These findings are of relevance for treatment of cancer patients since inhibition of both 

pathways under certain conditions could impede tumor progression. Moreover, interference 

with La function would be an interesting therapeutic target as LamB1 IRES translation was 

enhanced by cytoplasmic La accumulation upon EMT [101]. However, as La is highly 

abundant and multifunctional, many side effects are likely after intervention [121]. Thus, 

understanding mechanistic modes of IRES translation will help to design new therapies in 

diseases like cancer. Accordingly, it will be of interest to dissect the function of LamB1 IRES 

translation upon hepatocellular EMT. 
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