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1. Zusammenfassung 

Die Elemente Eisen und Sauerstoff sind für die Erythropoiese von besonderer 

Bedeutung. Eisen ist der essentielle Bestandteil von Häm, welches in Erythroblasten 

gebildet wird, um Sauerstoff zu binden und über den Blutkreislauf im ganzen Körper zu 

verteilen. Außerdem beeinflusst die Verfügbarkeit von Sauerstoff die Expression des 

Hormons Erythropoietin, dessen Konzentration im Körper die Neubildung von 

Erythrozyten reguliert. In dieser Arbeit wird mit Hilfe eines primären erythroiden 

Zellsystems gezeigt, wie es differenzierenden Erythroblasten gelingt, Eisenimport und 

Speicherung sowie die Synthese von Protoporphyrin IX so zu regulieren, dass eine 

optimale Abstimmung zwischen den einzelnen Mechanismen gewährleistet wird. Das ist 

deshalb von Bedeutung, da ein Überschuss an Eisen als auch an Protoporphyrin IX 

aufgrund ihrer Toxizität eine normale Erythropoiese behindern würde. Wir konnten 

zeigen, dass die Hauptbestandteile des zellulären Eisenstoffwechsels nicht so exprimiert 

werden, wie es das zelluläre Eisen Regulationssystem erwarten lässt. Die Ursache 

hierfür liegt in der Kopplung des Eisenimports mit der sofortigen Verwertung in den 

Mitochondrien, die trotz der gesteigerten Eisenaufnahme dazu führt, dass im Zytosol 

praktisch kein freies Eisen vorhanden ist. Zusätzliche Daten, die mit iron regulatory 

protein (IRP) defizienten Erythroblasten gewonnen wurden, zeigen, dass die beiden 

IRPs unterschiedlich relevant für die Regulation des Eisenstoffwechsels sind, was 

wiederum eine der Situation angepasste Expression der beteiligten Proteine erlaubt. 

Weiters konnten wir feststellen, dass sich eine Verknappung der Sauerstoffversorgung 

auf die Aktivität der IRPs auswirkt. Überraschenderweise ist dieser Effekt an die unter 

diesen Bedingungen geringere Bereitschaft der Erythroblasten vollständig zu 

differenzieren gekoppelt und wird deshalb nur indirekt durch die geringere 

Sauerstoffkonzentration verursacht. Vielmehr konnten wir zeigen, dass eine niedrige 

Sauerstoffkonzentration die Proliferation unreifer Erythroblasten begünstigt, während 

eine Erhöhung der Konzentration die vollständige Differenzierung ermöglicht. Diese 

Beobachtung korreliert mit den in vivo Gegebenheiten in hämatopoietischen Geweben. 

Hier befinden sich unreife Vorläuferzellen in Regionen mit geringer 

Sauerstoffversorgung, während differenzierende Zellen sich mit zunehmendem 

Reifegrad in Richtung höherer Sauerstoffkonzentration orientieren. Veränderungen der 

Sauerstoffversorgung in hämatopoietischen Geweben bewirken daher eine direkte 

Regulierung der Erythropoiese, zusätzlich zur indirekten Regulation über Erythropoietin. 

Ferner führt die Zugabe des HIF-Aktivators Dimethyloxalylglycin bei kultivierten 

Erythroblasten zu den gleichen Ergebnissen wie eine Inkubation bei niedriger 
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Sauerstoffversorgung. Daraus schließen wir, dass die Aktivierung von HIFs für die 

direkte, sauerstoffabhängige Regulierung der Erythropoiese verantwortlich ist.  
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2. Abstract 

The chemical elements iron and oxygen are of special importance for the generation of 

red blood cells. Iron is essential for the formation of heme that is synthesized in 

erythroblasts in order to bind oxygen in the lungs and to distribute it all over the body via 

the blood circulation. Furthermore, oxygen influences the expression of the glycoprotein 

hormone erythropoietin, whose concentration regulates the production of erythrocytes. 

By using a primary erythroid cell culture system, we show how differentiating 

erythroblasts are able to regulate iron-import, iron-storage and synthesis of 

protoporphyrin IX in a way that allows an optimal balance between these three 

processes. This is of special importance since an excess of iron or protoporphyrin IX 

would interfere with normal erythropoiesis due to their toxic properties. We could show 

that the main components of cellular iron metabolism are not expressed as the 

conventional iron regulatory system implies. This is caused by the coupling of iron import 

with its instant processing in the mitochondria, which leads to a virtually iron free cytosol 

despite increased iron acquisition during erythroid differentiation. Additional data 

generated with iron regulatory protein (IRP) deficient erythroblasts show that the two 

IRPs are of different relevance for the regulation of iron metabolism in the erythroid 

system, which allows a flexible and situation-dependent expression of the relevant 

proteins needed for heme synthesis during terminal erythroid differentiation. In addition 

to iron, oxygen has been shown to influence the activity of IRPs as well. This is 

particularly important with cell culture systems. In fact we could show that a reduction of 

oxygen supply affected the IRP activity in differentiating erythroblasts. Surprisingly, this 

effect was coupled to a reduced ability of the cells to differentiate properly and therefore 

was only indirectly caused by the low oxygen levels. Actually, we could show that low 

oxygen levels promote the proliferation of immature erythroblasts while an increase of 

the oxygen concentration allows terminal differentiation. This observation correlates with 

the in vivo situation in hematopoietic tissues. Immature progenitor cells reside in regions 

that are hypoxic whereas differentiating cells migrate to increasingly oxygenated areas 

the more mature they become. Consequently, changes of the oxygen supply of 

hematopoietic tissues allow the modulation of erythropoiesis directly, additionally to the 

indirect induction via erythropoietin. Furthermore, addition of the HIF-activator 

dimethyloxalylglycine resulted in the same effects observed with incubation at low 

oxygen levels. Therefore, we conclude that the activation of HIFs during systemic 

hypoxia is sufficient for a direct oxygen dependent regulation of erythropoiesis. 
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3. Introduction 

3.1. Hematopoiesis 

Hematopoiesis comprises the formation of leukocytes, erythrocytes and thrombocytes. 

These cells are required for the immune response, the oxygen transport and the blood 

coagulation in case of injury. Since blood cells in general have a limited life span, the 

organism is forced to continuously replenish lost cells. This is achieved by the self 

renewal and differentiating capacity of the multipotent long-term hematopoietic stem cells 

(LT-HSC)1. The self renewal capacity guarantees the survival of LT-HSCs in its niche as 

a source for all types of blood cells2. Differentiation leads to the formation of more 

committed cell types, starting with short-term hematopoietic stem cells that further 

differentiate into different types of multipotent progenitors (MPP) including lymphoid 

primed multipotent progenitor, the common myeloid or the common lymphoid progenitor 

(Figure 1), although the exact sequence and branching points of lineage commitment are 

still under discussion3. The MPPs further differentiate into different lineages and 

committed precursors and finally develop into fully differentiated mature blood cells. In 

general, the self renewal capacity of the hematopoietic cells decreases with each 

differentiation step. Furthermore, the entire process of hematopoiesis is dependent on 

the activity of several transcription factors that cooperate to regulate the decision 

between self renewal and differentiation1,4. The environment of the hematopoietic cells 

therefore plays a major role in their maintenance and differentiation by regulating the 

activities of these transcription factors3,5. This is also reflected in the change of the 

location of the hematopoietic tissue during development. The first organ of 

hematopoiesis in the murine embryo is the yolk sac, followed by the aorta-gonad 

mesonephros (AGM) region and the chorio-allantoic placenta6. Subsequently, 

hematopoiesis takes place in the fetal liver, followed by the bone marrow after birth. 

Each of these organs favors the production of specific blood cells. For instance, during 

the fetal liver phase the main part of hematopoietic capacity is focused on the production 

of erythrocytes in order to supply the growing embryo with sufficient amounts of oxygen. 
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Figure 1. Schematic overview of hematopoiesis with a detailed look at erythropoiesis. The long 

term hematopoietic stem cell (LT-HSC) is able to self renew or to differentiate in more mature 

hematopoietic precursor cells giving rise to all the hematopoietic lineages. As indicated by the 

arrows, the lineage commitment of early progenitors is not totally restricted but includes a certain 

degree of plasticity. For simplicity, the final steps of lineage differentiation are not shown in detail 

and involve several additional cell stages. The lower panel shows erythropoiesis in more detail, 

starting with the BFU-E and finally resulting in the formation of the mature erythrocyte.  

Figure adapted and simplified from Miranda-Saavedra and Göttgens, Current opinions in genetic 

and development65 20084 and A.Rad, Wikimedia.commons, 2011 

http://commons.wikimedia.org/wiki/File:Hematopoiesis_%28human%29_diagram.png 
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3.2. Erythropoiesis 

3.2.1. Ontogeny of erythropoiesis 

Erythropoiesis is a special branch of hematopoiesis and is responsible for the generation 

of red blood cells. Primitive erythropoiesis begins at embryonic day 7.5 (E7.5) in the yolk 

sack and guarantees the oxygen supply of the early developing embryo7. The first 

primitive erythroid cells enter the circulation around E8.5 with the onset of the heartbeat. 

Their maturation is still in progress after the release from the yolk sac into the circulation 

and comprises hemoglobin accumulation, globin type switching and enucleation8-10. At 

E9.5 yolk sac derived progenitor cells initiate the definitive erythropoiesis in the fetal 

liver11. By E11.5 they are displaced by HSCs of the AGM-region that continue with the 

production of red blood cells until erythropoiesis is transferred to the bone marrow after 

birth6,12.  

Definitive erythropoiesis in mammalians results in the production of erythrocytes 

that are characterized by a biconcave shape and the lack of the nucleus, mitochondria 

and other organelles13. Furthermore, they are packed with hemoglobin in order to carry 

out their function as oxygen transporters. The major part of the maturation process of 

definitive erythroblasts takes place in the hematopoietic organs and only enucleated 

reticulocytes are released into the blood stream to become mature erythrocytes14. The 

specialized anatomical unit of erythropoiesis within the fetal liver and the bone marrow is 

the so called erythroblast island15. It consists of one or two central macrophages 

surrounded by several erythroblasts. During maturation the erythroblasts migrate from 

the center of the island to its borders and finally are released into a blood sinusoid. 

During the last steps of this process the cell’s nucleus is released and endocytosed by 

the central macrophage. 

 

3.2.2. Erythroid development 

Erythropoiesis is part of the myeloid lineage of hematopoiesis. Therefore, the progenitors 

of erythroid cells are HSCs that differentiate into the common myeloid progenitor and 

subsequently into the megakaryocyte/erythroid progenitor. Further differentiation results 

in the blast forming unit erythrocyte (BFU-E; Figure 1), the first committed precursor that 

is restricted to the erythroid lineage. The BFU-E is dependent on the presence of stem 

cell factor (SCF) and erythropoietin (epo) and has a relatively high proliferation capacity: 

one single BFU-E can give rise to several thousand erythrocytes16,17. The BFU-E is 
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succeeded by the colony forming unit erythrocyte (CFU-E), a more committed progenitor 

that is dependent on the availability of epo and insulin or insulin-like growth factor 118-20. 

Further differentiation leads to the proerythroblast that is limited to 3-4 additional cell 

divisions, which result in the sequential formation of basophilic, polychromatic and 

orthochromatic erythroblasts21. The transition from the proerythroblast to the 

orthochromatic erythroblast includes cell size decrease, condensation of the nucleus, 

increased production of hemoglobin and changes in the membrane organization22,23. 

Finally, orthochromatic erythroblasts release the condensed nucleus and become 

reticulocytes that detach from the erythroblastic island and enter the circulation to 

become mature erythrocytes. 

 

3.2.3. Regulation of steady state and stress erythropoiesis 

The normal turnover of erythrocytes makes it necessary to constantly produce new red 

blood cells. Nevertheless, in special situations like embryonic development or during 

insufficient oxygen supply due to blood loss or caused by a transfer to elevated altitudes 

the demand for red blood cells becomes higher than provided by steady state 

erythropoiesis. In this situation the body reacts by increasing the production rate of 

erythrocytes, a process called stress erythropoiesis. This response is tightly regulated by 

the interplay of signals transmitted by the SCF receptor (c-Kit), the epo receptor (epoR) 

and the glucocorticoid receptor (GR)24,25.  

The epoR and epo are essential for definitive steady state as well as stress 

erythropoiesis and their deletion leads to death at E12.526,27. Upon binding of epo to the 

epoR, the epoR-associated Janus kinase 2 (Jak2) activates several signal cascades 

involved in the maturation of red blood cells28,29. This includes activation of the signal 

transducer and activator of transcription 5 (Stat5). The Bcl-2 gene family members Bcl-XL 

and Mcl-1 belong to the targets of Stat5 and prevent apoptosis of differentiating 

erythroblasts if activated by epo signaling30-32.  

SCF and its receptor c-Kit are essential for the development of several 

hematopoietic lineages and promote proliferation of hematopoietic progenitors. The 

absence of functional SCF or c-Kit causes severe anemia and premature death33. 

Regarding erythropoiesis, c-Kit mediated signaling stimulates expansion and delays 

differentiation of hematopoietic/erythroid progenitors including the BFU-E34. The SCF/c-

Kit complex activates the PI3K as well as the Ras/MAPK/ERK pathway. These signals 

are further enhanced by the formation of a joined signaling complex with the epoR, which 
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also activates these pathways, although less intensely26,35-37. Furthermore it has been 

shown that the Jak2 dependent activation of the epoR-target Stat5 is induced by c-Kit as 

well38. 

Glucocorticoids in combination with SCF and epo increase the proliferation 

capacity of erythroid cells and interfere with terminal erythroid differentiation39,40. Mice 

with a mutation of the GR that prevents binding of the transcription factor to its target 

sequence are viable and show normal steady state erythropoiesis41. However, these 

mice are not able to induce stress erythropoiesis during reduced oxygen supply 

indicating the importance of GR signaling under hypoxic conditions42. 

Taken together, the combination of SCF, epo and glucocorticoids induces stress 

erythropoiesis and can be used in vitro to establish cultures of proliferating primary 

erythroblasts that resemble BFU-Es and CFU-Es. These cells can be induced to undergo 

synchronous terminal differentiation by withdrawing SCF and replacing glucocorticoids 

by glucocorticoid-antagonists43. The close resemblance of this system to in vivo 

erythropoiesis makes it a perfect tool to analyze erythropoiesis as well as special 

aspects that are linked to this process.  

 

3.3. Iron metabolism 

Iron is essential for almost all cells due to its ability to easily transfer electrons in 

chemical reactions and therefore mediating catalytic reactions as well as due to its 

flexibility in the association with proteins and oxygen44. Hence, iron plays a crucial role in 

energy metabolism and DNA synthesis and is well known for its function in oxygen 

transport by hemoglobin in vertebrates. Nevertheless, the same abilities are also 

responsible for toxic effects, namely the generation of reactive oxygen species and other 

radicals, reactions that are summarized under the term Fenton chemistry45. Additionally, 

the oxidized trivalent form of iron (Fe3+) shows limited solubility in aqueous solutions and 

has to be sequestered by specific proteins in order to prevent accumulation of 

precipitates of iron in tissues and plasma. Therefore, iron uptake, utilization and storage 

have to be tightly regulated in order to prevent the occurrence of oxidative stress that 

would lead to damage of cellular macromolecules and tissue injury46.  
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3.3.1. Systemic Iron metabolism 

The major part of body iron can be found in erythrocytes and developing erythroblasts. 

More than 2.1 g circulate in the blood of an average adult human incorporated in 

hemoglobin47. Macrophages that are responsible for recycling of iron derived from 

senescent erythrocytes contain 0.6 g iron. Further 0.3 g can be found in muscle cells 

embedded in myoglobin. Excess iron is stored in the liver, where up to 1 g can 

accumulate in hepatocytes under normal non-pathological conditions48,49. The remaining 

iron is distributed over the different tissues of the body. Surprisingly, only 2.5-3 mg of 

iron are actually directly available for the organism in the form of iron saturated plasma 

transferrin (Tf-Fe2). This indicates the highly dynamic nature of the daily iron turnover, 

since 20-30 mg of iron, 10 times as much, are processed each day. As already indicated 

by the iron distribution in the body, the major part of the turnover is used for heme 

synthesis in developing erythroblasts (Figure 2). Under normal conditions, the body 

absorbs only 1-2 mg iron each day in the proximal small intestine since the iron needs 

are for the most part covered by the recycling and release of heme-bound iron of 

senescent erythrocytes. Iron absorption compensates for the iron loss caused by 

sloughing of intestine and skin cells as well as loss of iron associated with menstruation 

and the excretion of urine and bile. 

The body can import iron in the form of heme as well as non-heme iron. Both are 

absorbed at the apical brush boarder of intestinal enterocytes (Figure 2). In the case of 

heme import the corresponding transporter is not known. The only candidate up to date 

is the solute carrier 46A1 (SLC46A1) but its primary function seems to be folate and not 

heme transport50. After heme import, iron is separated from protoporphyrin by heme 

oxygenase 1 (HOX1) and enters the cytosolic iron pool of the enterocyte51. Non-heme 

iron import is performed by the divalent metal ion transporter 1 (DMT1, SLC11A2)52 and 

is dependent on the ferrireductase activity of duodenal cytochrome B (DcytB, CYBRD1) 

that transforms Fe3+ into Fe2+ 53,54. At the basolateral membrane of enterocytes 

ferroportin (SLC40A1) exports cytosolic Fe2+ into the circulation55,56. The export is linked 

to the oxidization of Fe2+ to Fe3+ by hephaestin that additionally allows the binding of iron 

to the plasma protein transferrin (Tf)57,58. 

 



Introduction 

15 
 

 

Figure 2. Systemic iron metabolism. Dietary iron is imported by duodenal enterocytes and 

released into the plasma were it binds to transferrin (Tf). The major part of the circulating iron is 

used by differentiating erythroblasts in order to synthesize heme whereas the iron consumption by 

all other tissues contributes less to the overall iron turnover. Senescent erythrocytes are recycled 

by splenic macrophages and their iron is released into the plasma, making the major contribution 

to the daily iron turnover while the duodenal iron import compensates for the systemic loss of iron 

caused by sloughing and bleeding (not shown). The liver has an iron storage function and 

releases iron if the body is confronted with iron deficiency. Furthermore, hepatocytes express 

hepcidin that induces the degradation of ferroportin in the case of iron overload and therefore play 

an important role in the regulation of systemic iron metabolism. For detailed description of distinct 

proteins see text. Figure adapted from Hentze et al., Cell 201059. 
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3.3.2. Cellular iron uptake and trafficking 

Tf is responsible for the iron supply of most of the cells within the body. The iron loaded 

form (Tf-Fe2) has a relatively high affinity for the transferrin receptor (TfR1) compared to 

the iron depleted form (apo-Tf) and is therefore preferentially bound. The Tf-Fe2/TfR1 

complex formation triggers clathrin dependent endocytosis and subsequent acidification 

of the endosomal compartment by proton pumps leads to a conformational change that 

releases Fe3+ from Tf but keeps the Tf/TfR1 complex intact60 (Figure 3). The 

ferrireductase Steap3 converts Fe3+ into Fe2+ and DMT1 transports iron across the 

endosomal membrane into the cytosol61. The Tf/TfR1 complex is redirected to the 

plasma membrane where the readjustment of the pH leads to the release of the iron 

depleted apo-Tf. While the TfR1 is now able to bind another Tf-Fe2, apo-Tf can be 

reloaded with Fe3+ released by enterocytes, hepatocytes or macrophages (Figure 2).  

 Tf/TfR1 independent import is limited to special cell types and physiological 

situations and therefore plays a minor role in general iron metabolism. Erythropoiesis for 

example is strictly dependent on iron supply by TfR1 as its targeted disruption leads to 

early lethality of murine embryos due to severe anemia62. Confirming the importance of 

the Tf/TfR1 pathway, TfR1+/- mice are not able to provide developing erythroblasts with 

sufficient amounts of iron and develop microcytic hypochromic anemia. Furthermore, Tf 

deficient humans and mice develop severe iron deficiency anemia63,64. Nevertheless it is 

still under discussion whether macrophage derived ferritin makes a contribution to the 

iron supply of developing erythroblasts65,66. A well known alternative route of cellular iron 

uptake that is restricted to macrophages is the already mentioned phagocytic recycling of 

senescent erythrocytes (Figure 3). Macrophages are also able to directly internalize 

heme (bound to plasma hemopexin)67 and hemoglobin (bound to haptoglobin)68. The iron 

supply through the blood brain barrier is not well understood but probably involves 

mechanisms comparable to the iron uptake in the duodenum69,70. Further alternative iron 

uptake pathways are connected to anti inflammatory reactions71,72 and pathological 

states linked to iron overload73 and extracellular ferritin74,75. 

The iron transport mechanisms within the cell are not well understood. When iron 

enters the cytosol it becomes part of the transient labile iron pool (LIP) that can be 

detected with the help of fluorescent sensors (reviewed in Breuer et al, 2008)76. The 

substances that bind iron of the LIP are still not defined but may include citrate, peptides, 

ATP or different phosphates. Nevertheless, the major part of cellular iron does not stay in 

the cytosol but is directed to mitochondria, where it is used for the synthesis of heme and 

iron sulfur clusters (Fe/S cluster; Figure 3). In yeast it has been shown that Grx3p and 
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Grx4p are essential for iron sensing in the cytosol and its transport to mitochondria77. It is 

still discussed whether differentiating erythroid cells bypass the cytosol by direct 

interaction of endosomes with mitochondria78 or use the conventional iron transport 

pathway involving the LIP79. The iron transporters mitoferrin1 (Mfrn1) and Mfrn2 are 

responsible for the mitochondrial iron import. Mfrn1 is essential for effective erythroid 

differentiation80 and is stabilized by the interaction with the erythroid specific ABC 

transporter Abcb1081. Mfrn2 is ubiquitously expressed but is not upregulated during 

increased mitochondrial iron demand and therefore cannot compensate for the loss of 

Mfrn1 that leads to severe defects in heme synthesis and Fe/S cluster assembly82.  

 

 

Figure 3. Cellular iron metabolism. Note that some of the components are only available and 

active in certain cell types, e.g. iron import in most cell types is dependent on the TfR1, while 

macrophages are able to phagocytose senescent erythrocytes and duodenal enterocytes 

transport dietary iron directly via DMT1. Furthermore, iron export of enterocytes is linked to the 

oxidative activity of hephaestin instead of ceruloplasmin. For further details see text. Figure from 

Hentze et al., Cell 201059. 
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3.3.3. Iron utilization – heme synthesis and Fe/S cluster assembly 

Mitochondria are responsible for the synthesis of heme and Fe/S clusters and therefore 

are the main consumers of cellular iron. Heme is not only needed for the transport of 

oxygen but is also part of several hemoproteins that are involved in oxidative 

metabolism, thyroid hormone synthesis and other cellular processes. The 

protoporphyrin/heme synthesis pathway starts with the reaction of succinyl-CoA with 

glycine that leads to the formation of δ-amino levulinic acid (ALA; heme synthesis and 

transport reviewed in Severance et al. 2009)83. This reaction is catalyzed by either of the 

two homologue enzymes ALA synthase 1 (ALAS1) and ALAS2 (ALAS-E)84-86. ALAS1 is 

ubiquitously expressed and responsible for the baseline synthesis of heme whereas 

ALAS2 expression is limited to erythrocytes and allows increased heme synthesis during 

erythropoiesis87,88. Furthermore, ALAS2 expression is linked to iron availability and 

connects heme synthesis with iron supply (see below). ALA is exported into the cytosol 

where it is processed to coproporhyrinogen III involving four sequential enzymatic 

reactions. Subsequently, coproporhyrinogen III is imported into mitochondria and 

oxidized to protoporphyrin IX (PPIX). In the last step of the heme synthesis pathway, 

ferrochelatase catalyzes the insertion of Fe2+ into PPIX. Heme is then incorporated into 

heme dependent proteins in mitochondria, the cytosol, the endoplasmatic reticulum and 

the nucleus. Little is known of the mitochondrial export of heme or of the transport of 

heme to the places of hemoprotein assembly. Since free heme is hydrophobic and 

cytotoxic it is postulated that it involves specific molecules and pathways89. 

 Fe/S clusters are part of several enzymes and proteins that are essential for 

electron transfer, energy metabolism, lipoate synthesis, nucleotide metabolism and iron 

metabolism90. The functions of the Fe/S clusters as part of these proteins include 

electron transfer, stabilization of protein structure and regulation of enzyme activity. The 

Fe/S cluster synthesis depends on a complex pathway involving several components 

and despite recent advances in the understanding of the cluster formation there still 

remain several open questions. There is evidence that the iron chaperone frataxin is 

responsible for the delivery of iron to the Fe/S cluster formation machinery although this 

issue is still controversial and the exact mechanism is not known91,92. Besides the Fe/S 

cluster assembly machinery in the mitochondria several homologue components of the 

machinery could also be detected in the cytosol and the nucleus. Although one model 

proposes totally independent de novo Fe/S cluster assembly machinery in the cytosol93 

there is evidence that cytosolic cluster assembly is dependent on the mitochondrial 

machinery94-98. Defects in the generation of Fe/S clusters result in deregulation of iron 
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metabolism and are linked to several diseases like Friedreich’s ataxia or X-linked 

sideroblastic anemia with cerebellar ataxia90,99. 

 

3.3.4. Cellular iron export and storage 

Ferroportin is the only known cellular exporter of elemental iron55,56. The function of the 

transporter is linked to ferroxidase activity of hephaestin in enterocytes and 

ceruloplasmin in all other cell types100. Disruption of ferroportin is embryonically lethal 

since the iron transfer via the extraembryonic visceral endoderm and the placenta is 

ferroportin dependent101. The targeted deletion of ferroportin that does not affect 

embryonic iron supply results in the accumulation of iron in macrophages, hepatocytes 

and duodenal enterocytes and leads to severe anemia, demonstrating the important role 

of ferroportin for systemic iron metabolism. Additionally to the cellular export of elemental 

iron, cells are able to export iron in the form of heme via FLVCR1102. The physiological 

function of this transporter is not well understood but it is linked to erythroid maturation 

and recycling of heme-iron by macrophages. 

 When the cellular iron demand is low, excess iron must be stored in a non toxic 

form within the cell. For this purpose the iron storage proteins ferritin H (FtH1) and ferritin 

L (FtL) assemble in a shell like structure containing 24 ferritin subunits103 (Figure 3). FtH1 

has an intrinsic ferroxidase activity while FtL contains a nucleation center that facilitates 

accumulation of excess iron. Up to 4500 Fe3+ ions can be stored in the form of ferric 

oxyhydroxide phosphate in a single ferritin cavity. Little is known about the transfer of 

iron from the LIP to the ferritin shell. It has been shown that Poly(rC)-binding protein 1 

promotes iron loading of ferritin in vitro and is essential for iron loading in cell culture 

experiments104. The importance of iron storage is underlined by the early embryonic 

lethality of FtH1 knock out mice105. Conditional deletion of FtH1 leads to liver damage 

and disturbed iron absorption in the duodenum106,107. Mutations of FtL are linked to 

neurodegenerative disorders due to increased iron dependent redox activity in the 

brain108. Remobilization of ferritin bound iron involves lysosomal turnover109 or is linked to 

ferroportin dependent export of iron that is followed by proteasomal degradation of iron 

depleted ferritin110,111. However, it has been shown that macrophages are not able to use 

ferritin bound iron as iron source for induced endogenous heme synthesis112. Ferritin can 

also be found in the serum and is used as a clinical marker of anemia since its levels 

correlate with tissue iron stores but are also increased during inflammation. It has been 
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shown that serum ferritin is excreted mainly by splenic macrophages and proximal tubule 

cells of the kidney113. 

An H-type ferritin isoform known as mitochondrial ferritin encoded by a nuclear 

intronless gene is targeted to mitochondria by an N-terminal leader sequence114. It is 

normally expressed at low levels but its expression is elevated in iron loaded 

erythroblasts (ring sideroblasts) during sideroblastic anemia115 and therefore is thought 

to protect mitochondria from toxic effects of excess iron.  

 

3.3.5. The two regulation systems of iron metabolism 

Iron is essential for several physiological functions in the organism but at the same time 

excess iron harms cells and tissues. Since there is no mechanism that allows the active 

excretion of iron, regulation of dietary iron import is the only possible way to control its 

total amount in the body. The central regulator of systemic iron metabolism is the 

peptide-hormone hepcidin (reviewed by Nemeth and Ganz, 2009)116. Hepcidin is 

produced in the liver as an 84 amino acid propeptide that is cleaved into its 25 amino 

acid active form, which is then released into the blood117. It inhibits cellular iron export by 

binding to the iron transporter ferroportin. The complex formation triggers its own JAK2 

dependent phosphorylation followed by internalization and lysosomal degradation118,119. 

Thus, if hepcidin levels are high, nutritional iron cannot enter the plasma since it is 

literally trapped within duodenal enterocytes that are removed through naturally 

occurring sloughing in the intestine within several days. Iron stores in hepatocytes and 

heme derived iron recycled by macrophages are retained by the same mechanism in 

order to reduce plasma iron levels120,121. Pathologically reduced levels of hepcidin result 

in iron overload or hemochromatosis and consequently lead to liver cirrhosis, cancer, 

diabetes, hypogonadism, heart failure and arthritis if not treated by iron depletion 

therapy122. Pathologically high levels of hepcidin result in iron deficiency anemia123,124. 

The expression of hepcidin is regulated transcriptionally and integrates signals of 

systemic iron supply122,125,126, inflammation127-129, oxidative stress130 and erythropoiesis131-

133. The pathways involved in the transduction of these signals include the BMP6/SMAD 

and the C/EBPα pathways as well as STAT3 and TLR4 signaling.  

Additional to the hepcidin-dependent regulation of systemic iron metabolism, the 

posttranscriptional regulation of cellular iron uptake, storage and utilization is mediated 

by the iron regulatory protein 1 (IRP1; ACO1) and IRP2 (IREB2)47,59. The IRPs are able 

to bind to cis-acting hairpin structures of their target mRNAs, the iron responsive 
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elements (IRE). IREs are conserved in the majority of metazoa134 and up to date have 

been found in the 3’ untranslated region (UTR) of TfR1135, DMT1136, myotonic dystrophy 

kinase-related Cdc42-binding kinase α137 and human Cdc14A138 as well as in the 5’ UTR 

of ferritin H and L139, ferroportin140, ALAS286, mammalian mitochondrial aconitase141, 

drosophila succinate dehydrogenase142, Alzheimer amyloid precursor protein143, α-

synuclein144 and HIF2α145. IRP binding to 3’ UTR IREs results in the stabilization of the 

corresponding mRNA whereas binding to the 5’ UTR IREs interferes with translational 

initiation (Figure 4). The canonical IRE contains a conserved loop (CAGUGN) and a 

variable stem-sequence146. The α-helix formed by the stem is distorted by an unpaired C-

bulge or a UGC/C-bulge/loop in the case of ferritin mRNA147,148. HIF2α and DMT1 

mRNAs contain a non canonical IRE with an additional bulge in the upper stem. The C-

bulge and the loop directly interact with the IRPs149 but there is also evidence for 

variation of IRP1 binding affinity dependent on the stem sequence150.  

 The IRPs belong to the family of iron-sulfur-cluster isomerases and are closely 

related to the mitochondrial aconitase, which is responsible for the conversion of citrate 

to isocitrate during the citric acid cycle151. The bifunctional IRP1 becomes the cytosolic 

isoform of the mitochondrial aconitase when it binds a 4Fe-4S cluster. Simultaneously, 

this inhibits the interaction with IREs, since the binding sites for the IRE and the Fe/S 

cluster overlap149,152. Therefore, the switch between IRE binding and aconitase activity is 

dependent on iron availability and a functional mitochondrial Fe/S cluster synthesis. IRP2 

shares large homology with IRP1 but does not bind a Fe/S cluster and has no aconitase 

activity. In fact, the IRE binding activity of IRP2 is regulated by proteasomal degradation 

initiated by iron dependent ubiquitination. The F-box and leucine-rich repeat protein 5 

(FBXL5), which is part of an E3 ubiquitin ligase complex, is responsible for the 

ubiquitination 153,154. FBXL5 contains a hemerythrin domain with a Fe-O-Fe center 

making its function dependent on the availability of iron and oxygen. If iron levels are 

high, the enzyme is active and ubiquitination of IRP2 takes place. Upon iron depletion 

FBXL5 loses its functionality and becomes degraded.  

 In addition, IRPs are also responsive to non-iron signals. As already indicated 

above, hypoxia favors stabilization of IRP2 but also of Fe/S clusters, thereby decreasing 

IRP1 binding activity155. Reactive oxygen and nitrogen species activate IRP1 binding 

activity by destabilizing the bound Fe/S cluster156 and there is evidence that nitric oxide 

as well as oxidative stress stabilize IRP2157,158. Furthermore, both IRPs are targets for 

specific phosphorylation influencing their binding activity and stability159-162. Taken 

together, these regulatory mechanisms allow the fine tuning of IRP binding activity 

additional to the regulation by iron availability. 
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 The importance of IRP dependent regulation of cellular iron metabolism is 

demonstrated by IRP1/IRP2 double deficient mice that die during embryonic 

development at the blastocyst stage163. Targeted deletion of both IRPs in the duodenum 

results in intestinal mal-absorption and death within 4 weeks after birth164. In these mice 

iron import of enterocytes via TfR1 and DMT1 is decreased whereas iron storage by 

ferritin H and L as well as iron export by ferroportin are increased leading to cellular iron 

depletion and intestinal dysfunction. Mice with IRP deficient livers show mitochondrial 

iron deficiency and dysfunction of hepatocytes165. This leads to compromised heme and 

Fe/S cluster synthesis and premature death due to liver failure. IRP1 and IRP2 single 

knockout mice are both viable and fertile showing that their function is essential but 

partly redundant. IRP1 deficiency shows no pathological phenotype besides 

misregulation of ferritin and TfR1 expression in the kidney and brown fat tissue166. IRP2 

knockout mice develop a mild microcytic anemia and show excessive iron deposits in the 

duodenum and the liver as well as iron deficiency in the spleen167,168. Furthermore, these 

mice also show a tendency for neurodegeneration linked to accumulation of iron in the 

brain169. The severity of this neuropathology is still under discussion and may be 

influenced by different target strategies170,171. Targeted deletion of IRP2 in enterocytes, 

hepatocytes or macrophages only affects the intrinsic iron metabolism of the respective 

cells and does not alter plasma iron levels indicating that microcytic anemia in IRP2 

knockout mice is a cell autonomous effect as well172.  

 Although the involved mechanisms of activation and action are different, the 

cellular regulators IRP1 and IRP2 and the systemic regulator hepcidin do not operate 

isolated from each other59. They both control the uptake of dietary iron as well as the 

release of iron into the plasma by directly regulating the abundance of ferroportin. The 

expression of hepcidin itself is modulated by the IRP-controlled iron availability in 

hepcidin-producing hepatocytes. Furthermore, the HIF transcription factors regulate the 

expression of hepcidin, ferroportin and DMT1173,174 whereas HIF2α expression is 

controlled by IRP binding activity145. A fourth connection between the two regulatory 

systems is TfR1. The expression of the receptor is regulated by the IRE/IRP system but 

the receptor itself interacts with the HFE protein, which participates in the systemic iron 

status mediated control of hepcidin expression175,176. Since the regulation of hepcidin 

expression is still not fully understood and additional IRP targets are likely to be found, 

further connections may be revealed in the future. Nevertheless, the above mentioned 

mechanisms already illustrate the complexity and importance of proper iron regulation in 

each single cell as well as in the whole organism. 
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Figure 4. The IRE/IRP system – regulation of cellular iron metabolism. Iron deficiency increases 

the binding activity of IRPs and results in the downregulation of mRNAs containing a 5’ IRE (e.g. 

ferritin or ALAS2) due to inhibition of translational initiation. 3’ IRE-containing mRNAs (e.g. TfR1) 

are stabilized leading to increased expression of the corresponding proteins. If sufficient iron is 

available, the IRP1 binding activity is blocked by the incorporation of an iron sulfur cluster while 

IRP2 is degraded resulting in unbound IREs. This leads to the translation of 5' IRE-containing 

mRNAs while 3' IRE containing mRNAs become accessible to degradation. See text for further 

details. 

 

3.4. Oxygen and the organism 

Oxygen is one of the most abundant elements in our environment. It does not only 

contribute 21% to the earth’s atmosphere but also can be found in large amounts in the 

lithosphere, the oceans as well as the biosphere of our planet. Furthermore, the 

circulation of oxygen between the biosphere and the atmosphere is very dynamic due to 

the oxygenic photosynthesis performed by cyanobacteria, green algae and terrestrial 

plants. In fact, the light-powered splitting of water is responsible for the high amount of 

oxygen in the atmosphere177. When more than two billion years ago free elemental 

oxygen first appeared in the oceans and subsequently in the atmosphere, the anaerobic 

organisms where confronted with an increasingly oxidizing environment178. Since the 
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aggressive properties of elemental oxygen and its derivates are a constant source of cell 

damage, only the development of antioxidant systems including the enzymes superoxide 

dismutase and catalase allowed the survival under these conditions179. Nevertheless, the 

abundant availability of oxygen led to an enormous improvement of energy metabolism 

since oxygen can be used as the final electron acceptor during the generation of ATP via 

oxidative phosphorylation180. In fact, most mitochondria containing eukaryotes as well as 

many bacteria and archaea use this mechanism and moreover, higher eukaryotes are 

even dependent on this form of ATP generation and therefore must guarantee sufficient 

oxygen supply. Unicellular as well as less complex organisms can realize this by simple 

diffusion but higher organisms like vertebrates additionally need a sophisticated 

respiratory/circulatory system. The oxygen transport in vertebrates is achieved by the 

bloodstream. For this purpose the blood contains erythrocytes that consist mainly of 

hemoglobin in order to bind higher amounts of oxygen than normally could be dissolved 

in the plasma alone. The gradient between inbreathed air and the blood within the 

capillaries surrounding the alveoli causes the diffusion of oxygen to oxygen depleted red 

blood cells. The oxygen is released again, when the erythrocytes that are transported by 

the cardiovascular system reach peripheral tissues. Following the concentration gradient 

it diffuses to the site of oxidative phosphorylation, the mitochondria. 

 

3.4.1. Oxygen sensing 

The carotid body is the organ that monitors the oxygen supply of the mammalian 

organism as a whole181. It is situated near the fork of the common carotid artery and 

senses not only the oxygen pressure but also the carbon dioxide pressure, the glucose 

level and the pH value in the blood182. The exact mechanisms that are involved in the 

sensing of oxygen levels by the carotid body are still under investigation and include 

functions of mitochondria and the cellular membrane of glomus cells. These cells release 

neurotransmitters that directly induce signaling to the medulla oblongata, the region of 

the brainstem that regulates oxygen supply relevant parameters like ventilation and heart 

rate. The carotid body responds to very small changes in oxygen tension of the arterial 

blood and is very fast in inducing changes of the cardiovascular and respiratory systems. 

Therefore, it is perfectly adapted to respond to acute changes of oxygen supply induced 

by increased physical activity. 

The cardiovascular system transports oxygen to every tissue of the body but, 

dependent on variable metabolic activity and the distance of cells to blood vessels, the 
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oxygen supply of cells varies within the tissues and can even decrease to suboptimal 

levels. Therefore, each individual cell has certain mechanisms enabling it to sense 

reduced oxygen levels and result in short/long term adaption to this special situation 

involving cellular and systemic mechanisms. The sensing systems can be divided into 

bioenergetic and biosynthetic mechanisms. Bioenergetic mechanisms involve 

perturbations of the mitochondrial function and the energy state of the cell including the 

redox state and the change of reactive oxygen species production. Biosynthetic sensing 

mechanisms include the oxygen dependent function of different enzymes, like NADPH 

oxidases, heme oxygenases, cytochrome P-450 monooxygenases and 2-oxoglutarate 

and iron(II)-dependent dioxygenases183. The dioxygenases are responsible for the 

regulation of the transcriptional response to reduced oxygen levels (see below). 

 

3.4.2. Transcriptional response to hypoxia – HIF 

The transcriptional response to reduced oxygen supply plays an essential role in the 

cellular and also in the systemic adaption to hypoxia. The central components of this 

response in vertebrates are the hypoxia inducible factors (HIFs). HIFs were identified as 

transcription factors that induce the expression of epo184 in specialized cells of the kidney 

and to a lesser extent in the liver and the brain23,185,186. Today, more than 100 target 

genes are known to be directly modulated by the activity of HIFs emphasizing its 

importance during hypoxia187. The transcription factor binds to DNA at the so called 

hypoxia response element (HRE) that contains an RCGTG consensus sequence. The 

expression of HIF target genes affects metabolic adaption, erythropoiesis, angiogenesis, 

vascular tone, cell growth, differentiation, survival and apoptosis188. There is also 

evidence that the HIF-regulated expression of certain microRNAs189-191 as well as of 

histone demethylases192,193 may further broaden the signaling output of the HIF 

transcription factors. 

 HIFs are heterodimeric proteins, consisting of an α-subunit that is induced by 

hypoxia and a β-subunit that is constitutively expressed. Both subunits are basic helix-

loop-helix (bHLH) proteins and are part of the PAS domain (Per; AHR; ARNT; SIM) 

protein family194. In mammalians there are three HIF-α proteins that are encoded by 

distinct gene loci (Figure 5). HIF-1α was the first HIF-α subunit identified and is widely 

expressed in normal tissues184. HIF-2α was identified in endothelial cells but is also 

expressed in parenchyma and interstitial cells of multiple organs195,196. While HIF-1α and 

HIF-2α share a similar domain structure, HIF-3α is less closely related197. Its function is 
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not well understood, although it has been shown that an alternative splicing variant 

leading to a shorter version of the protein called inhibitory PAS domain protein (IPAS) 

forms transcriptionally inactive heterodimers with HIF-1α198. This and more recent data 

indicate that HIF-3α may be of relevance for the regulation and fine tuning of the 

transcriptional activity of HIFs199 (Figure 5). In addition to the already mentioned bHLH 

and PAS domains that are essential for DNA binding and dimerization, HIF-α proteins 

contain transactivation domains (TAD) that are involved in the recruitment of other 

transcription factors200. During hypoxia, the C-terminal-TAD (C-TAD) is able to interact 

with the CH-1 domain of the transcriptional coactivator p300/CBP201. This interaction is 

sterically inhibited by the oxygen dependent hydroxylation at an asparaginyl residue202,203 

(see below). Further oxygen dependent regulation is mediated by the two oxygen 

dependent degradation domains (N-terminal, N-ODD and C-terminal, C-ODD)204,205, 

each of which contains a prolyl residue that is hydroxylated if oxygen is present206,207. 

The hydroxylated prolyl residues trigger the interaction with the von Hippel-Lindau tumor 

suppressor protein (pVHL) that is part of an E3 ubiquitin ligase complex which 

ubiquitinates the HIF-α proteins at several sites leading to proteasomal degradation208. 

Additionally, several other factors influencing the activity of HIFs besides hydroxylation 

are known to date, but their physiological relevance is still under discussion209.  

The HIF-1β proteins, also known as aryl hydrocarbon receptor nuclear 

translocators (ARNT1, 2 and 3) contain a bHLH and a PAS domain but lack the ODDs 

making them insensitive to oxygen supply194,210,211. HIF-1β forms heterodimers with HIF-α 

proteins as soon as the latter are stabilized under hypoxic conditions. 

 Knock out studies have shown that HIF-1α as well as HIF-2α are both essential 

for normal embryogenesis. Interestingly, inactivation of either one of the two proteins 

leads to different phenotypes, indicating their non redundant functions in the organism. 

HIF-1α negative mice die around E10.5 and these embryos show defective 

vascularization and cardiac morphogenesis212. Furthermore, heterozygous or tissue 

specific loss of HIF-1α function has revealed the importance of this transcription factor 

for hypoxic adaption and also for physiological functions in different cell types as well as 

for tumor survival188,213-215. The phenotype of HIF-2α inactivation has been shown to be 

dependent on the genetic background. Whereas the first established knock out mice died 

in utero (E9.5-13.5) due to defective catecholamine production and vascularization216,217 

backcrossing into different mouse strains resulted in a small number of viable adult mice 

that suffer from multiple organ pathology, metabolic abnormalities and impaired 

homeostasis of reactive oxygen species218. The distinct phenotypes of HIF-1α and HIF-

2α deficient mice demonstrated that the two transcription factors have unique targets. 
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Further studies that addressed the question of specific transcriptional activation in more 

detail revealed that HIF-1α is responsible for the hypoxic dependent regulation of several 

glycolytic enzymes, carbonic anhydrase and BNIP-3219-221 whereas HIF-2α induces the 

expression of Oct4, cyclin D1, TWIST1, TGF-α and epo amongst others222-226. Finally 

there are also genes like VEGF, adrenomedullin and GLUT-1 that are regulated by both 

transcription factors219,227. In general, HIF-1α and HIF-2α bind to HREs equally well and 

consequently this does not play a major role in specificity of transcriptional induction228. 

In fact, it could be shown that the C-terminal domains, which mediate the interaction with 

other transcription factors, are responsible for the target specificity of HIFs229,230. Further 

investigation is needed to fully understand the mechanisms determining the distinct 

targets of both HIFs that may include interaction with other transcription factors, signaling 

cascades and the local chromatin status. 

 

Figure 5. Domain structure of HIF family members. All HIF proteins contain a bHLH domain 

needed for DNA binding and two PAS domains involved in dimer-formation. The HIF-α subunits 

additionally contain an oxygen dependent degradation domain (ODD) making these proteins 

sensitive to high oxygen levels. The initial signal for HIF-1α degradation is the hydroxylation of 

two proline residues of this domain. Within the ODD lies the N-terminal activation domain (NTAD) 

that is involved in the interaction with other transcription factors. The C-terminal activation domain 

(CTAD) of HIF-1α and HIF-2α contains an asparaginyl residue that is hydroxylated as well when 

oxygen is available, inhibiting the interaction of the CTAD with transcription factors like p300. 

IPAS is a splice variant of HIF-3α and is assumed to be involved in the regulation of HIF activity. 

HIF-1β or ARNT lacks the ODD and therefore is insensitive to oxygen dependent degradation. 

Together with the HIF-α subunits HIF-1β forms heterodimers, i.e. functional HIF transcription 

factors. Figure adapted from Lisy and Peet, Cell Death and Differentiation, 2008231.  
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3.4.3. Regulation of HIF-α by oxygenases – PHDs and FIH1 

As already mentioned above, the oxygen dependent hydroxylation of a specific 

asparagyl residue interferes with the interaction of the HIF-α C-TAD with p300/CBP, 

thereby reducing its activity as transcription factor. Furthermore, hydroxylation of either 

one or both of two prolyl residues triggers the proteasomal degradation of HIF-α by 

promoting pVHL dependent ubiquitination (Figure 6). Both modifications are catalyzed by 

hydroxylases that belong to the family of 2-oxoglutarate and iron(II)-dependent 

dioxygenases231,232. As indicated by the name, the activity of these enzymes depends on 

the availability of ferrous iron that is situated in the enzymatic center of the proteins233,234. 

There it is involved in the transfer of one oxygen atom of O2 to the target amino acid 

whereas the second atom is transferred to 2-oxoglutarate, which leads to the formation 

of succinate and CO2. Therefore, besides low oxygen levels, chelating or replacing iron 

by other metal ions like cobalt as well as the replacement of 2-oxoglutarate by structural 

homologues like dimethyloxalylglycine (DMOG) inhibit oxidase activity and consequently 

stabilize and activate HIFs207,235.  

The two proline residues are hydroxylated by HIF prolyl hydroxylases (PHDs) that 

belong to the larger family of prolyl-4-hydroxylases236. In mammalians there are three 

isoforms described: PHD1-3237. PHD2 is the most abundant isoform whereas PHD1 and 

PHD3 expression is restricted to specific tissues like testis and heart238. Moreover, PHD2 

prefers HIF-1α as substrate, while PHD1 and PHD3 prefer HIF-2α239. Differences in 

tissue distribution and different contribution to the regulation of the two HIFs may 

therefore partly explain the observed target specificity of HIF-1α and HIF-2α. Recently, 

P4H-TM, a prolyl-4-hydroxylase that is located in the endoplasmatic reticulum 

membrane, has been shown to hydroxylate HIFs as well but its physiological importance 

for the regulation of HIFs is still under investigation240.  

 In contrast to prolyl hydroxylation, asparaginyl hydroxylation is performed by one 

single enzyme called factor inhibiting HIF (FIH)202,241,242. FIH is ubiquitously expressed 

and predominantly localized in the cytoplasm243,244. Interestingly, in vitro data showed 

that the KM values of PHDs for oxygen are higher than those of FIH indicating that FIH is 

still active when prolyl hydroxylation is already absent due to reduced oxygen 

levels245,246. Therefore, in a mild hypoxic environment C-TAD mediated transcriptional 

activation by p300/CBP is still blocked although the HIF proteins are already stabilized 

and the N-TAD is active231. Generally, the KM values for oxygen of all hydroxylases 

involved in HIF-α regulation are relatively high compared to physiological oxygen 

concentrations. Hence, the change of hydroxylase activity is highly dynamic over the 



Introduction 

29 
 

whole physiological range of oxygen concentrations and allows immediate reaction to 

even very small changes of oxygen supply183,247,248. 

 

Figure 6. Regulation of HIF activity. Under hypoxic conditions HIF-α subunits form dimers with 

HIF-β subunits and induce the transcription of HRE regulated genes by the interaction with other 

TFs like p300. However, if oxygen is available, HIFs are hydroxylated by FIH and PHD1-3, which 

leads to transcriptional inactivation and eventually ubiquitination of the protein. The ubiquitinated 

HIF-α proteins are recognized and degraded by the proteasomal complex. See text for more 

details.  
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3.4.4. Oxygen distribution in the mammalian body 

In order to provide all cells of the body with oxygen, higher organisms have developed 

sophisticated transport systems using convection as the driving force. In the case of 

mammalians this system consists of the respiratory tract and the cardio-vascular system. 

Nevertheless, the oxygen supply is also dependent on diffusion that allows the transition 

of oxygen through the alveolar-capillary membranes as well as from the blood to 

mitochondria, the main oxygen consumers. Due to the cell type dependent equilibrium 

between delivery and consumption the oxygen concentration of different tissues as well 

as within a tissue itself shows considerable variation183. The lung parenchyma are 

obviously relatively well supplied with oxygen due to the direct contact to atmospheric 

oxygen levels of 20-21%249. Accordingly, the arterial blood that leaves the lungs still 

contains about 14% oxygen but the oxygen concentration steadily decreases to about 

4% when it reaches the capillaries of the most peripheral tissues250,251. Therefore, the 

range of oxygen concentration within organs that are well supplied with arterial blood like 

the liver and the heart are comparable to the concentrations measured within the blood 

itself. However, the combination of constant oxygen consumption and increased distance 

to the capillaries leads to a lower oxygen concentration at least in some regions 

especially of less well irrigated tissues. Measurements of the brain oxygenation showed 

that depending on the observed region, the oxygen concentration lies between 0.5% and 

7%252,253. Comparable results could be obtained for the bone marrow although the levels 

here are even lower, lying between 0% and 5%254,255. Chow et al. further addressed the 

question of oxygen distribution in the bone marrow based on the Kroghian model in more 

detail256-259. Founded on their calculations they could show that hematopoietic 

progenitors are localized in regions of the bone marrow with very low oxygen tension. 

Furthermore, the oxygen concentration within smaller structures like the erythroblastic 

island becomes reduced towards the center and increased maturity of the erythroblasts 

correlates with increased oxygen tension. This correlation of tissue oxygen concentration 

and maturity of hematopoietic cells doesn't seem to be a coincidence but can contribute 

to the decision between self renewal and differentiation. In fact, it has been shown that 

low oxygen levels support the maintenance of stem cells and enhance the self renewal 

capacity of early progenitor cells of several lineages including erythroblasts260-265. The 

underlying mechanisms are still unknown and may be linked to the reduced formation of 

ROS or the hypoxia induced expression of certain growth factors and cytokines266. 
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Figure 7. Distribution of oxygen concentrations in the cardiovascular system and tissues. The 

rectangles represent variation of the available data. Note that in some cases the oxygen 

concentration in tissues and the cytosol is lower and can even drop to zero. For further details see 

text. Figure simplified from Ward, Biochimica et Biophysica Acta 2008183. 

 

3.4.5. Oxygen and tissue culture 

As mentioned above, the oxygen concentration plays an important role in the fate of cells 

in vivo. During the in vitro culture of cell lines or primary cells this is of equal relevance. 

In fact, it is crucial for the work with in vitro cultures to establish conditions that resemble 

the physiological situation, since inadequate oxygen supply may affect the cultivation of 

the cultivated cells in general and in addition, may influence the specific mechanisms 

that are analyzed. Nevertheless, the standard tissue culture incubator does not allow the 

adjustment of the oxygen concentration but uses the ambient atmosphere containing 20-

21% oxygen supplemented with CO2. In addition, the use of conventional polystyrene 

dishes in tissue culture limits the oxygen supply of the cells by one dimensional diffusion 

through the culture medium. This is physically described by Fick’s first law of gas 

diffusion that adapted to tissue culture conditions says that: 

 

𝑑𝑈𝑜𝑥𝑦
𝑑𝑡

= −𝐷𝐴
𝐶𝑔𝑎𝑠 − 𝐶𝑐𝑒𝑙𝑙

ℎ
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where dUoxy/dt is the quantity of oxygen transported from the top to the bottom of the 

culture dish in a period of time, D is the diffusion constant of the medium, A is the area of 

diffusion, Cgas is the oxygen concentration defined by the composition of the incubator 

atmosphere, Ccell is the oxygen concentration at the bottom of the dish (i.e. pericellular 

oxygen concentration) and h is the diffusion distance from the top to the bottom of the 

dish267. Several papers that addressed the problem of oxygen supply in tissue culture on 

the basis of this equation came to the conclusion that several cell types that are 

cultivated at 20% oxygen under conventional conditions are indeed facing a severely 

hypoxic environment since the oxygen consumption rate exceeds the diffusion rate 

through the culture medium268-270. Metzen et al. confirmed these estimations by 

comparing the calculations with direct measurements of the pericellular oxygen 

concentration271. Despite these observations, some cell culture studies that address 

oxygen dependent mechanisms are performed at reduced levels of ambient oxygen. 

These levels were chosen to resemble the oxygen concentration in the corresponding 

tissue in order to ensure physiological conditions. In view of the fact that atmospheric 

oxygen levels are often insufficient to allow adequate oxygen supply in tissue culture, 

further reduction of the oxygen concentration rather leads to the establishment of 

severely hypoxic conditions that eventually result in artificial results. Thus, tissue culture 

experiments must be performed under consideration of the cell type, the state of 

confluence, the metabolic activity, the diffusion distance and the oxygen fraction of the 

incubator atmosphere in order to ensure reliable results267.  
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4. Aims of this work 

Although erythropoiesis is a well studied process there are still several open questions to 

be addressed. The formation of red blood cells is dependent on the import and handling 

of exceptionally increased amounts of iron but since an excess of iron is toxic this 

requires stringent regulation. In non erythroid cells this is perfectly accomplished by the 

IRE/IRP system. Nevertheless, with erythroid cells the situation is more complex. IRP 

binding activity regulates the equilibrium between iron import by TfR1 and iron storage 

by ferritin47. During terminal erythroid differentiation iron accumulates within the cell, 

which conventionally leads to a decrease of iron import and increased storage of iron 

within ferritin shells and would interfere with normal heme synthesis. An additional 

aspect that contributes to the complexity of the situation is the IRP dependent 

posttranscriptional regulation of the erythroid specific enzyme ALAS2. ALAS2 and ferritin 

contain both an IRE within their 5’UTR indicating synchronous posttranscriptional 

regulation. Nevertheless, during the period of heme synthesis the expression of ferritin 

needs to be low in order to prevent iron sequestration while the increased expression of 

ALAS2 is essential for protoporphyrin synthesis. We addressed the question how 

erythroid cells accomplish to maintain sufficient iron supply during differentiation using an 

erythroid culture system that is perfectly suited to analyze system intrinsic processes 

under in vivo-like conditions43. 

 The analysis of IRP1 and IRP2 deficient mice has shown that the lack of IRP1 

does not affect erythropoiesis whereas IRP2 knock out mice show microcytic anemia, at 

least under laboratory conditions167,168. Since the targeted deletion of IRP2 in 

macrophages, hepatocytes and enterocytes shows no erythroid related phenotype, this 

indicates that the observed anemia of IRP2 deficient mice is an inherent erythroid 

phenotype172. We were interested in the specific contribution of IRP1 and IRP2 on the 

regulation of ferritin and TfR1 expression in our erythroid culture system that allows the 

analysis of the anemic phenotype in more detail. Hence, with this system we are not only 

able to modulate heme synthesis and the iron household of the cells but can also 

monitor the differentiation of IRP1 and IRP2 deficient erythroblasts in a defined 

environment, making it possible to investigate the intrinsic effects of disturbed IRP 

activity. 

 The oxygen concentration is known to influence the binding activity of IRPs as 

well as the process of erythroid differentiation. The latter is not only affected indirectly by 

hypoxia dependent expression of epo but also directly by a still less well understood 
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mechanism. Nevertheless, the classical cultivation of cells within incubators does not 

consider the adjustment of the oxygen concentration to physiological levels.  In order to 

minimize artificial effects on the outcome of our work due to inappropriate oxygen supply 

we were interested in the influence of changed oxygen concentration on the iron 

regulatory system as well as on the proliferation and differentiation of cultivated 

erythroblasts. Furthermore, we addressed the question, which mechanism is relevant for 

the direct influence of oxygen on erythropoiesis.  
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5.2. Low cytosolic non-heme iron levels in erythroid cells prevent IRP2-
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5.1.1. Abstract 

 

Terminal erythropoiesis is accompanied by extreme demand for iron to ensure proper 

hemoglobinization. Thus, erythroblasts must modify the "standard" post-transcriptional 

feedback regulation, balancing expression of ferritin (Fer; iron storage) versus transferrin 

receptor (TfR1; iron uptake) via specific mRNA binding of iron regulatory proteins (IRPs). 

Although erythroid differentiation involves high levels of incoming iron, TfR1 mRNA 

stability must be sustained and Fer mRNA translation must not be activated because iron 

storage would counteract hemoglobinization. Furthermore, translation of the erythroid-

specific form of aminolevulinic acid synthase (ALAS-E) mRNA, catalyzing the first step of 

heme biosynthesis and regulated similarly as Fer mRNA by IRPs, must be ensured. We 

addressed these questions using mass cultures of primary murine erythroid progenitors 

from fetal liver, either undergoing sustained proliferation or highly synchronous 

differentiation. We indeed observed strong inhibition of Fer mRNA translation and 

efficient ALAS-E mRNA translation in differentiating erythroblasts. Moreover, in contrast 

to self-renewing cells, TfR1 stability and IRP mRNA binding were no longer modulated by 

iron supply. These and additional data stemming from inhibition of heme synthesis with 

succinylacetone or from iron overload suggest that highly efficient utilization of iron in 

mitochondrial heme synthesis during normal erythropoiesis alters the regulation of iron 

metabolism via the IRE/IRP system. 
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5.1.2. Introduction 

 

Maturing erythroid progenitors require large amounts of iron to enable high rates of heme 

synthesis. The daily generation of about 20 g erythrocytes in adult humans requires the 

delivery of 20 mg iron via iron-loaded transferrin (Fe2-Tf) to the bone marrow. The 

corresponding transferrin receptor (TfR1) is highly expressed on the cell surface of 

erythroblasts. Recently, a second variant, TfR2, was characterized, which among other 

cells is also found on the surface of immature erythroid cells1,2, but seems to play a minor 

role during terminal maturation2,3. Tf-TfR1 complexes are internalized into endosomes 

via receptor-mediated endocytosis, and endosome acidification leads to release of iron4,5 

and, subsequently, to its export into the cytoplasm via the transporter DMT-16,7. Finally, 

iron is delivered to its sites of utilization; any excess gets stored in ferritin (Fer). This 

sequestration is important to avoid oxidative damage via this highly reactive metal. 

Therefore, the balance between iron uptake, utilization, and storage has to be tightly 

regulated.  

Cis-acting elements involved in this control are the stem-loop structures called 

iron regulatory elements (IREs) in several mRNAs (for a review, see Pantopoulos8). Such 

IREs are found in the 5'-untranslated region (UTR) of ferritin light (FerL) and heavy chain 

(FerH) mRNA, and in 5 copies within the 3'-UTR of TfR1 mRNA. These elements are 

recognized by trans-acting factors, that is, iron regulatory proteins 1 and 2 (IRP1, IRP2), 

which bind with high affinity to IREs in their cognate mRNAs. One difference between 

IRP1 and IRP2 lies in their mode of regulation. IRP1 is a bifunctional protein, which 

under high iron releases the IRE, incorporates a cubane 4Fe-4S cluster, and gains 

enzymatic activity as cytosolic aconitase9. In contrast, IRP2 mRNA-binding activity is 

turned off by proteasomal degradation10-12. 

In a generally accepted "standard" model, cytosolic iron concentrations regulate 

the mRNA-binding activity of IRP1/2 to IREs, which are localized in the UTRs of a 

growing number of transcripts8. IRPs bind to IREs under low iron concentrations, which, 

for example, inhibits translation of Fer messages13,14 and stabilizes TfR1 mRNA15-17. 

Consequently, cellular iron uptake is stimulated18,19, whereas storage is inhibited. At high 

iron concentrations, IRP1 incorporates iron-sulfur clusters and thus does not bind target 

mRNAs while IRP2 gets degraded10-12. This leads to an increase in Fer synthesis and 

TfR1 mRNA degradation via a specific endonuclease pathway15-17, which in turn reduces 



Results 

41 
 

cellular iron uptake rates. These posttranscriptional feedback mechanisms allow cells to 

balance cellular iron homeostasis.  

There are, however, growing numbers of reports on specialized cell types and 

tissues that at least under certain instances bypass the IRE/IRP system20-23, one 

prominent example being erythroid cells24,25. Apart from their especially high iron needs, 

they express an erythroid-specific isoform of aminolevulinic acid synthase (ALAS-E), a 

key enzyme in erythroid heme synthesis. ALAS-E is essential for erythroid 

differentiation26. Like Fer mRNAs it contains a functional IRE in its 5'-UTR (for a review, 

see Sadlon et al27). Thus iron-dependent regulation of ALAS-E should allow cells to 

coordinate the production of protoporphyrin IX with cellular iron levels. The resulting 

coregulation of TfR1, Fer subunits, and ALAS-E may be meaningful in erythroid cells 

undergoing self-renewal (ie, sustained proliferation without differentiation), but once 

induced for terminal differentiation, these cells need saturating doses of Fe2-Tf for proper 

maturation28-30. Consequently, committed erythroblasts have to maintain high expression 

of TfR1 despite increasing intracellular iron concentrations. Furthermore, synthesis of Fer 

must not be activated by incoming iron, because this would lead to counterproductive 

storage in a phase of high iron demand31. Thus, the regulation of TfR1, Fer, and ALAS-E 

expression during erythroid differentiation is difficult to reconcile mechanistically with the 

principles outlined.  

In this paper, we therefore addressed iron metabolism during terminal 

erythropoiesis of primary mouse erythroid progenitors, using a unique hematopoietic 

culture system. This, for the first time, permitted us to analyze the complexity of 

posttranscriptional regulation of IRE-containing mRNAs by iron during sustained 

proliferation versus terminal differentiation of immature erythroid progenitors under in 

vivo–like conditions. This cell model allows (1) proliferation and differentiation of 

erythroblasts derived from mouse fetal liver in serum-free medium, (2) mass cultures with 

up to 107-fold expansion of cells, yielding enough material for studies requiring a high 

amount of sample material, such as polysome gradient analyses, and (3) production of 

enucleated, fully hemoglobinized cells32,33.  

Analyses of self-renewing or differentiating mouse erythroblasts demonstrated 

that the coordinate regulation of Fer, ALAS-E, and TfR1 mRNAs via iron is abolished 

during terminal differentiation. Instead, both proteins involved in iron homeostasis (Fer 

and TfR1) are insensitive toward changes in physiologic concentrations of Fe2-Tf. 

Moreover, translation of Fer mRNA is almost entirely blocked, whereas ALAS-E mRNA is 

used to a significant extent. Artificially boosting cytosolic iron levels by addition of ferric 
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ammonium citrate (FAC), succinylacetone (SA), an inhibitor of heme biosynthesis, or 

unphysiologically high concentrations of Fe2-Tf could, however, reinduce expression of 

Fer in maturing erythrocytes. 
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5.1.3. Material and Methods 

 

Culture of primary mouse erythroblasts 

Erythroid cells were isolated and cultivated as described32,33. Briefly, cells were grown 

from fetal livers from E12.5 embryos (wild-type, MF1 background) and resuspended in 

serum-free StemPro-34 medium plus Nutrient Supplement (Invitrogen-Gibco, Carlsbad, 

CA) plus 2 U/mL human recombinant erythropoietin (Epo; 100 ng/mL), murine 

recombinant stem cell factor (SCF; 100 ng/mL), the synthetic glucocorticoid 

dexamethasone (Dex; 10–6 M), and insulin-like growth factor 1 (IGF-1; 40 ng/mL). Cell 

number and size distribution of cell populations were monitored daily in an electronic cell 

counter (CASY-1, Schärfe-System, Reutlingen, Germany). Dead or differentiating cells 

were removed by Ficoll purification.  

To induce terminal differentiation, continuously self-renewing erythroblasts were 

washed twice in PBS and seeded in StemPro-34, containing 10 U/mL Epo, insulin (4 x 

10–4 IU/mL), the Dex antagonist ZK-112993 (3 x 10–6M)34 and iron-saturated human 

transferrin (Fe2-Tf; 1 mg/mL = 12.5 µM = 25 µM Fe = physiologic levels; Sigma, St Louis, 

MO). Where indicated, heme synthesis was inhibited by 0.2 mM SA (Sigma)35. 

To induce iron starvation, cells were incubated with 50 µM of the iron chelator 

desferrioxamine (Des); iron overload was induced by adding Fe2-Tf up to 0.1 mM or FAC 

(20 µg/mL, 17% saturation = 63 µM iron) 24 hours before harvest. 

 

Cell morphology, histologic staining, and determination of hemoglobin content 

Changes in cell morphology during differentiation were monitored by phase-contrast 

microscopy. For histologic analysis, erythroblasts were cytocentrifuged36 at various 

stages of maturation onto glass slides and stained with histologic dyes and neutral 

benzidine for hemoglobin as described36. Hemoglobin content was analyzed by removing 

50-µL aliquots from the cultures and by undergoing photometric determination as 

described37. Values obtained from triplicate determinations were averaged and 

normalized to cell number and cell volume. 
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Flow cytometry 

Self-renewing or differentiating erythroblasts (1 x 106) were washed twice with PBS/2% 

fetal calf serum (FCS) and stained with fluorescently labeled antibodies against 

transferrin receptor (FITC; PharMingen, San Diego, CA; no. 01595) and Ter119 (PE; 

PharMingen, no. 09085)38. Surface marker expression was analyzed by flow cytometry 

(LSR-I; Becton Dickinson, Franklin Lakes, NJ). 

 

Northern blot analysis 

Total RNA was prepared from 2 to 4 x 107 cells using TRIzol (Invitrogen). Then, 10 µg 

total or polysomal RNA/sample was separated in denaturing 1% formaldehyde-agarose 

gels. Equal loading was controlled by ethidium bromide staining. RNA was transferred to 

nylon membranes (Gene Screen; DuPont, Wilmington, DE), and fixed by UV irradiation 

(1200 mJ; UV-Crosslinker; Stratagene, LaJolla, CA). Membranes were sequentially 

hybridized with [32P]-labeled cDNA probes generated by random-primed labeling (Prime-

it-II; Stratagene) specific for mouse FerH (0.85-kb AatII-NdeI fragment), FerL (0.3 kb, 

AatII-NdeI), ALAS-E (1.4 kb, AatII-NotI), TfR1 (0.75 kb, EcoRI-HindIII), and -globin 

mRNAs. Probes for IRP1 and IRP2 mRNA were obtained from the RZPD library of the 

German Resource Center for Genome Research (#IMAGp998J182131, Eco-HindIII; 

IRP2 #IMAGp998I191339, SacII-MluI, respectively). Signals were quantified by phospho-

imaging. 

 

Polysome gradients 

The extent of mRNA association with polysomes was determined by sucrose-gradient 

analysis39 with RNA prepared from 2 to 4 x 107 cells. After removal of nuclei and cell 

debris by centrifugation, lysates were laid onto 15% to 40% sucrose gradients and 

separated by ultracentrifugation. RNA was harvested from 18 fractions, separated on 

denaturing agarose gels, and transferred onto nylon membranes as described40. 

Distribution of 18S and 28S rRNA was visualized by staining of filters with methylene 

blue. 
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Electrophoretic mobility shift assays 

RNA-protein complexes were resolved essentially as described39,41. Briefly, for 

electrophoretic mobility shift assays (EMSAs), cytoplasmic extracts were incubated with 

[32P]-labeled transcripts produced by T7 RNA-polymerase after linearization of the 

plasmid pGEM-3Zf(+)-mouse FerH-IRE (clone42)42 with BamHI. Protein (2 µg) and 1.3 x 

106 disintegrations per minute of labeled IRE-containing in vitro transcript were incubated 

for 20 minutes at room temperature. The total amount of IRP1 was assessed by in vitro 

reduction with 2% β-mercaptoethanol (2-ME)43 prior to the binding reaction. After 

treatment with RNAse T1 and heparin, RNA-protein complexes were resolved on 6% 

non–denaturing polyacrylamide gels at 4°C. Bands corresponding to IRE/IRP complexes 

were quantified by phospho-imaging (Molecular Dynamics, Sunnyvale, CA). 

 

Western blot analysis 

Cell pellets were lysed in sample buffer as described38 and 10 to 20 µg protein was 

separated on sodium dodecyl sulfate-polyacrylamide gels. Protein transfer and loading 

were visualized by staining with acidic Ponceau-S solution. Thereafter, membranes were 

blocked 1 hour at room temperature with 1% low-fat dry milk in TBS and probed 

overnight with anti–horse spleen ferritin (Sigma; no. F-6136) or anti–rat IRP144, rat 

monoclonal anti–mouse TfR1 (BioSource, Nivelles, Belgium; no. AMS7102) or, for 

normalization, with anti-Erk1/2 (Sigma; no. 5670). After washing, filters were incubated 

with second antibody (horseradish peroxidase–coupled anti–rabbit IgG antibody 

(Jackson Laboratories, West Grove, PA; no. 111-035-008) for Fer, IRP1, Erk1/2, eIF4E, 

and anti–rat IgG (Jackson Laboratories; no. 112-035-008) for TfR1. After washing, 

immunoreactive signals were detected by enhanced chemoluminescence (Amersham, 

Buckinghamshire, United Kingdom). 

 

ALAS-E immunoprecipitation and enzyme activity 

Protein levels of ALAS-E were determined by immunoprecipitation of [35S]-methionine 

pulse-labeled cell extracts using a polyclonal antiserum developed in rabbit (a kind gift 

from M. Hentze and B. Galy, European Molecular Biology Laboratory, Heidelberg, 

Germany EMBL) and visualized by phospho-imaging. Enzyme activity was determined 
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by fluorometric high-performance liquid chromatography (HPLC) of the reaction product 

δ-aminolevulinic acid45 in cell extracts after removal of nuclei.  

  



Results 

47 
 

5.1.4. Results 

 

Extended self-renewal and synchronous differentiation of primary, fetal liver–

derived erythroblasts 

Most studies on iron metabolism in erythroid cells so far were done with erythroleukemic 

cell lines or reticulocytes. Murine erythroleukemia cells have provided insights into 

mechanisms controlling erythroid differentiation46 but have severe drawbacks. 

Importantly, they are unresponsive toward physiologic maturation stimuli, including Epo. 

Thus, differentiation is induced artificially by nonphysiologic agents such as dimethyl 

sulfoxide, hexamethylenebis-actamid and the like. In addition, poor hemoglobinization 

and abnormal morphologic changes during differentiation originate from patterns of gene 

expression different from those in normal erythropoiesis47. Reticulocytes represent a 

more physiologic system, but poorly represent the proliferative and early differentiation 

aspects of erythropoiesis48.  

In this study, primary mouse erythroid cells were used, which closely recapitulate 

several aspects of terminal maturation in vivo, including size decrease, full 

hemoglobinization, and enucleation33,49. These cells, from fetal livers of E12.5 mouse 

embryos, can be expanded under self-renewing conditions (sustained proliferation 

without differentiation) for 15 to 20 days before undergoing senescence (Figure 1A). 

Substitution of SCF plus Dex with insulin and the glucocorticoid antagonist ZK34 plus 

increase of erythropoietin are sufficient to induce highly synchronous terminal maturation, 

largely completed within 72 hours (Figure 1B). Noteworthy, the most substantial increase 

in hemoglobin content occurs between 24 and 48 hours after induction of differentiation 

(Figure 1D), accompanied by cell size decrease to half the original volume (Figure 1C). 

At this stage, the erythroblasts up-regulate differentiation markers like Ter119, whereas 

markers typical for immature cells disappear32. Thus, with respect to regulation of iron 

metabolism, special focus was put on this interval. This period is also characterized by 

sufficient transcriptional activity allowing interference with gene expression, whereas at 

later stages chromatin condensation (prior to enucleation) shuts down nuclear activity. 
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Translational repression of Fer mRNA and efficient utilization of ALAS-E mRNA 

in differentiating mouse erythroblasts 

Following the "standard" model of IRP/IRE-mediated translational regulation, increase in 

cellular iron uptake in hemoglobinizing cells should not only activate more efficient 

translation of ALAS-E mRNA (to ensure high levels of protoporphyrin IX synthesis) but 

also favor (futile) synthesis of iron storage proteins. 

To address this question, translation of both Fer and ALAS-E mRNAs was 

monitored by polysome gradient analysis of erythroblasts kept under proliferation or 

differentiation conditions, either iron-depleted by addition of the iron chelator Des or fully 

iron-loaded by incubation with additional Fe2-Tf (1 mg/mL). Polysome-associated mRNAs 

were fractionated from untranslated mRNPs by linear sucrose gradients (see "Materials 

and methods"). After RNA isolation and separation, blots were hybridized with probes 

specific for FerH, FerL, ALAS-E, and α-globin mRNAs. In self-renewing erythroblasts, 

translation of FerH, FerL, and ALAS-E mRNAs was still modulated by availability of iron 

(Figure 2A). Under high iron conditions, there was an increase of mRNA in polysome-

bound fractions from 2% to 9% for FerH, from 2% to 19% for FerL, and from 9% to 25% 

for ALAS-E (Figure 2B, left panels). The small percentages of polysome-bound FerL/H 

mRNA in proliferating erythroblasts even under high iron conditions are comparable to 

the earlier observations51,52. When erythroblasts differentiating for 48 hours were 

subjected to the same analysis, however, iron-induced translational activation of FerH or 

FerL (or both) was abolished (Figure 2A-B). Control α-globin mRNA was translated with 

high efficiency under both low and high iron conditions. Thus, Fer mRNA translation can 

be activated by physiologic concentrations of Fe2-Tf under self-renewal conditions but not 

in maturing erythroblasts that are accumulating hemoglobin. In contrast, ALAS-E mRNA 

translation remained regulated by iron levels after the onset of differentiation (16% 

polysome-bound mRNA under iron starvation versus 41%; Figure 2B, right panels). 

Therefore, under all conditions tested, ALAS-E mRNA was translated more efficiently 

than Fer transcripts in proliferating as well as differentiating cells. 

In maturing erythroid progenitors, efficient ALAS-E mRNA translation was 

accompanied by a massive increase in transcript levels of more than 20-fold. 

Interestingly, also transcription of FerL augmented significantly (3-fold; Figure 2E)53 but 

unlike ALAS-E mRNA, this increase was not accompanied by an increase of transcripts 

engaged to polysomes (Figure 2B), as reported earlier for differentiating murine 

erythroleukemia (MEL) cells54. 
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The data on the mRNA level were corroborated by analyses at the protein level. 

In differentiating mouse erythroblasts Fer expression stayed at low levels, irrespective of 

cell preincubation with Des or Fe2-Tf (Figure 2C), whereas ALAS-E protein synthesis 

rates as measured by immunoprecipitation indicated a 2.4-fold increase (Figure 2D). The 

low levels of ALAS-E protein synthesis in proliferating cells were in accordance with the 

much lower abundance of the corresponding mRNA (Figure 2E). Moreover, quantitation 

of the ALAS-E reaction product, δ-aminolevulinic acid by HPLC produced similar results 

(data not shown). 

 

TfR1 expression in differentiating primary mouse erythroblasts is independent of 

iron 

It is well documented that during definitive erythropoiesis uptake of iron by mouse 

erythroid cells is mediated predominantly via Fe2-Tf/TfR1 endocytosis30. Studies with 

mouse erythroid cell lines24,25 have emphasized the importance of this pathway to supply 

maturing erythroid cells with sufficient iron. After initial work with primary chicken 

erythroid progenitors24,55, here we extended these observations to primary mouse 

erythroblasts, using physiologic concentrations of Fe2-Tf as iron source and Des to 

induce iron deprivation. Whereas in self-renewing cells TfR1 mRNA levels were 

regulated by iron, erythroblasts induced to differentiate maintained high expression of 

TfR1 mRNA under both conditions (Figure 3A). Furthermore, TfR transcript levels in 

maturing cells were elevated, even in comparison to self-renewing cells supplemented 

with Des. The corresponding total cellular TfR1 protein levels followed the same pattern 

(Figure 3B). Additionally, cell-surface TfR1 expression was determined by flow 

cytometry. In the absence of iron chelator, self-renewing erythroblasts decreased the 

number of TfR1 molecules on the cell surface, whereas during differentiation, in the 

phase of high iron demand, no iron-dependent changes could be observed (Figure 3C). 

Interestingly, although terminal erythropoiesis led to a significant elevation of TfR1 mRNA 

and total protein levels, cell-surface expression was even somewhat reduced compared 

with self-renewing cells, reminiscent of the situation in chicken erythroblasts55 and 

arguing for redistribution of TfR1 toward later endosomal compartments in the cell during 

maturation56. 
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In differentiating erythroblasts, IRP1 and IRP2 are not regulated by iron 

Next we sought to address the role of IRPs during self-renewal and late stage of 

erythroid differentiation. For this, we performed EMSAs between IRP1 and IRP2 and 

radiolabeled mouse FerH-IRE RNA probes transcribed in vitro, using the IRE probe C42, 

which was shown to exhibit an equal binding affinity for IRP1 and IRP2.42  

In line with the regulation observed for FerH/L, ALAS-E, and TfR1 mRNAs, self-

renewing erythroblasts still showed an iron-dependent regulation of IRP1 mRNA-binding 

activity, even though this difference was clearly weaker compared with extracts prepared 

from control mouse embryo fibroblasts (Figure 4A). In differentiating erythroblasts, 

however, mRNA-binding activity of IRP1 declined strongly and remained totally 

indifferent toward iron sequestration. To determine the total amount of potentially 

available IRP1 mRNA-binding capacity, β-mercaptoethanol (2-ME)43,57 was added to the 

binding reaction prior to addition of labeled IRE probes. Whereas this treatment strongly 

activated binding activity in self-renewing erythroblasts as well as control cells, the level 

of activation in differentiating cells was weaker, although comparison of the differences in 

IRP1 expression revealed that total IRP1 protein and mRNA levels from self-renewing 

versus differentiating cells remained almost constant under all conditions tested (Figure 

4B-C). One reason for this apparent discrepancy (see "Discussion") lies in the technical 

principle of EMSAs. This assay for native IRE/IRP complexes using radiolabeled IRE 

transcripts detects free IRP not already stably associated with endogenous unlabeled 

IREs.58 Therefore, in committed erythroid cells, a higher proportion of IRPs may be 

associated with an increased number of IRE-bearing transcripts. 

We also assessed the regulation of IRP2 expression during terminal 

erythropoiesis by Northern and Western blot analyses. Similar to IRP1, no significant 

increase in total IRP2 mRNA or protein levels was detected during differentiation; thus 

the decline in IRP1 mRNA-binding activity is apparently not compensated by an increase 

of IRP2 expression. More importantly, whereas pretreatment with Des in self-renewing 

cells was able to increase IRP2 protein abundance (and thus mRNA-binding activity as 

measured in EMSAs; Figure 4A), no iron-dependent response was detectable in 

differentiating erythroblasts (Figure 4C). 

 

http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#REF42�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#FIG4�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#REF43�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#REF57�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#FIG4�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#FIG4�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#REF58�
http://bloodjournal.hematologylibrary.org/cgi/content/full/107/10/4159#FIG4�
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Iron overload and inhibition of heme synthesis restore up-regulation of Fer 

expression in differentiating mouse erythroblasts 

Finally, we tried to gain some mechanistic insight into the question why high iron levels 

fail to induce Fer mRNA translation during normal differentiation of mouse erythroid 

progenitors. For this we used (1) FAC to test whether iron overload via this reagent would 

result in a cellular response, (2) unphysiologically high concentrations of Fe2-Tf, and (3) 

the heme synthesis inhibitor SA. All 3 types of intervention led to a substantial increase in 

the protein level of FerL and FerH (Figure 5A), arguing against an iron-independent 

mechanism specifically inhibiting Fer mRNA translation. None of these treatments, not 

even addition of high Fe2-Tf levels, resulted in significantly elevated rates of heme 

synthesis, but, as expected, was reduced by 70% on treatment with SA (Figure 5B). 

Judging by the amount of Fer synthesized, Fe2-Tf endocytosis rates may reach 

saturation at about 4 mg/mL, 4-fold higher than the in vivo serum concentration. 

Apparently the endocytosis machinery for TfR1 internalization is not the limiting factor for 

hemoglobin production but rather the synthesis capacity for heme/hemoglobin itself. At 

present we cannot distinguish between 2 alternative explanations for our results. First, 

the reagents used may directly increase the so called "labile iron pool"59,60 in the cytosol. 

This is likely to occur in the case of FAC, which might be taken up directly via non–TfR-

based pathways20-25. Second, cytoplasmic iron levels might increase secondarily after 

efflux of excess iron from mitochondria, a plausible event in response to SA and high 

Fe2-Tf treatment.  

In either case our data strongly support the view that the IRE/IRP system in 

differentiating erythroid cells is sensing a "low-iron" state despite increasing cellular iron 

levels, but remains fully functional. Furthermore, the results obtained from inhibition of 

heme synthesis support the hypothesis that the cytoplasmic iron levels sensed by IRP 

may actually be kept low during erythropoiesis by a vectorial transport of iron into 

mitochondria29,61-63, the site of iron insertion into protoporphyrin, thus bypassing the 

cytoplasmic "labile iron pool." As detailed (Figure 6), all our observations can be 

integrated into a comprehensive working model of how the flow of iron might occur during 

the phase of massive hemoglobinization.  
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5.1.5. Discussion 

 

Here we demonstrate that during terminal differentiation of primary mouse erythroid 

progenitors, Fer mRNA translation is massively impaired, whereas translation of ALAS-E 

mRNA, presumed to be regulated coordinately with Fer mRNA via the IRE/IRP system, 

proceeds unimpeded. Furthermore, maturing erythroblasts express very high levels of 

TfR1, again independent of varying iron supply or IRP activity levels. These observations 

contrast the "standard" mode for regulation of intracellular iron metabolism in most other 

cell lineages, which includes (1) up-regulation of IRP mRNA-binding activity on iron 

depletion, which in turn (2) increases Fe2-Tf import via stabilization of TfR1 mRNA and 

(3) represses iron storage via translational inhibition of Fer mRNA. Interestingly, this 

"standard" mode also applies to committed, self-renewing mouse erythroid progenitors, 

which do not yet accumulate hemoglobin and are thus independent of mechanisms to 

ensure high iron uptake. In contrast, terminal differentiation into erythrocytes uncouples 

the coordinate regulation of Fer and ALAS-E mRNA translation, and elevated expression 

of TfR1 persists despite the presence of high (physiologic) levels of Fe2-Tf. This type of 

regulation is perfectly suited to ensure maximum hemoglobin accumulation but difficult to 

reconcile mechanistically with the "standard" model. 

Previously we reported related findings for committed or differentiating chicken 

erythroid progenitors55. There, (1) TfR1 levels were very high, even under saturating 

doses of Fe2-Tf, involving transcriptional and posttranscriptional mechanisms15,25,55,64,65; 

(2) Fer mRNA translation was massively impaired and could not be modulated by iron40, 

whereas (3) ALAS-E mRNA was translated efficiently40. Nevertheless, avian 

erythroblasts differ in several aspects from those in mammals, for example, in their lack 

of enucleation. Furthermore, apparently missing expression of FerL40 and deviation in the 

hexa-loop consensus sequence (5'-CAGUGN-3' 5'-CAGCGN-3') of the ALAS-E-IRE40 

could result in differences of iron metabolism during avian versus mammalian 

erythropoiesis. 

Obviously, based on both, chicken and mouse data, the regulation model of iron 

metabolism needed extension to account for specific requirements of maturing 

erythroblasts, which have to establish exceedingly high rates of iron uptake for 

successful hemoglobinization without activating iron storage. We addressed this problem 

using primary mouse erythroblasts32,33, which expand more than 107-fold in serum-free 

media and undergo terminal differentiation in response to Epo plus insulin (Figure 1). In 
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polysome gradient analyses, we compared iron-dependent translational regulation of 

FerH, FerL, and ALAS-E mRNAs. "Low" iron conditions were simulated by addition of the 

iron chelator Des, "high" iron conditions were achieved by supplementing the medium 

with physiologic levels of Fe2-Tf (1 mg/mL). In immature, self-renewing erythroblasts, 

translation of all 3 transcripts was still coordinately regulated by the availability of iron. 

During advanced stages of erythroid maturation, however, translation of both Fer 

transcripts was almost completely blocked, irrespective of iron (Figure 2A-B). In contrast, 

the fraction of polysome-bound ALAS-E mRNA almost doubled during differentiation. 

Furthermore, there was a more than 10-fold increase in total ALAS-E mRNA (Figure 2D). 

Interestingly, the 2.5-fold difference in the amount of polysome-bound ALAS-E transcripts 

(2.4-fold in protein expression) between samples treated with or without iron chelator 

only slightly affected hemoglobin formation (15% ± 2%; not shown). This suggests that 

ALAS-E alone is not limiting for hemoglobinization under physiologic conditions (12.5 

µMFe2-Tf), in line with our observation that in ALA assays the factor of regulation by iron 

was smaller (1.6-fold ± 0.1) than on the level of ALAS-E-protein or -mRNA. These and 

related findings by others are most likely due to compensatory mechanisms66,67. A 

potential contribution of the non–IRE-containing isoform of ALAS68 is unlikely, because 

ALAS-E–/– mouse embryos have no hemoglobinized cells and die at day E11.5, at the 

onset of fetal liver erythropoiesis26 

Why then should ALAS-E mRNA expression be regulated by iron at all? 

Translational repression in self-renewing cells, together with other mechanisms, might 

help to avoid premature onset of heme synthesis. One might further assume that, 

together with high expression of TfR1 mRNA, massive transcriptional activation of the 

ALAS-E gene leads to an excess of IRE sites over available IRP molecules. Thus 

abundant de novo synthesized ALAS-E transcripts would escape this inhibitory 

interaction due to the limiting amount of "free" IRPs available. 

Reduced availability of IRPs and increase in IREs may be, however, insufficient to 

fully explain the observed uncoupling of translation efficiency between Fer and ALAS-E 

mRNAs during erythropoiesis. A second important factor in the translational activation of 

ALAS-E mRNA may be the potentially different role of IRP1 versus IRP2 in 

erythropoiesis. As recently reported, IRP2 knockout mice exhibit microcytic anemia69,70. 

Although there are discrepancies regarding the regulation of Fer and ALAS-E in erythroid 

cells from these animals, which may arise from the use of total bone marrow cells versus 

sorted erythroid progenitors, both reports describe down-regulation of TfR1 in the 

erythroid compartment. On the other hand, mice lacking IRP1 did not show an erythroid 

phenotype. Thus, in mice, IRP2 can compensate for the loss of IRP1 but not vice versa71. 
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This, however, does not rule out an important function for IRP1 during erythropoiesis 

because heme synthesis in zebrafish is strongly connected to regulation of IRP1 binding 

activity72. Moreover, the microcytic anemia observed in IRP2–/– mice is more severe in an 

IRP1+/– background, again arguing for a contribution of IRP1 to iron regulation in erythroid 

cells. These in vivo data and in vitro experiments showing a higher affinity of IRP2 for 

bulge/loop hairpins as in Fer mRNA73,74 plus high affinity of IRP2 for the multiple IREs in 

the context of TfR mRNA75 could explain the difference in IRE-mediated translational 

inhibition via IRPs in erythroid cells; IRP2 might be mainly responsible for regulation of 

TfR1, whereas IRP1 would preferentially modulate expression of ALAS-E. At present this 

scenario is speculative, especially because the existing knockout data on the roles of 

IRPs in the hematopoietic lineage are somewhat contradictory. 

The observations described in this paper would fit to the so called "kiss-and-run" 

hypothesis29,62. It suggests that during terminal erythropoiesis endosomes come into 

close vicinity/physical contact with mitochondria to directly shuttle iron into this organelle 

for heme synthesis61,63. Thus, intermediary release of iron from endosomes into the 

cytosol would be avoided, rendering the metal concentration "low" for the IRE/IRP 

system. Alternatively, and to the same consequence, increased activity of mitochondrial 

iron importers may prevent metal accumulation in the cytosol. Increased iron influx into 

mitochondria also might explain why ALAS-E but not TfR1 or Fer mRNA remains subject 

to translational control during erythroid differentiation. Excess iron not incorporated into 

heme can be used for Fe-S cluster synthesis, which on export from mitochondria will 

reduce IRP1 mRNA-binding activity. Consequently, as described, this might activate 

mainly ALAS-E mRNA translation, as detected in polysome gradients and 

immunoprecipitations. 

Building on the "kiss-and-run" hypothesis, we put our data into a working model of 

iron utilization in late-stage erythropoiesis (Figure 6). During differentiation, ALAS-E 

mRNA abundance increases. Because total IRP1 and IRP2 protein levels do not rise in 

parallel, IRP may become limiting. This might primarily affect ALAS-E mRNA due to the 

lower affinity of IRP1 for its IRE73,74, resulting in enhanced ALAS-E synthesis. The 

increase in TfR1 expression can be reconciled with potentially limited availability of IRPs 

by a decline in the activity of the endonuclease involved in TfR mRNA turnover, as in 

chicken55. At the same time, endosomes might increasingly shuttle their iron load directly 

toward mitochondria, requiring coordinated and directed vesicle flow (Figure 6A)61-63, 

most likely involving the iron transporter DMT176-78. In differentiating erythroblasts 

endosomes become increasingly acidified, favoring release of Fe from Fe2-Tf and its 

export56. Furthermore, endosomes are redistributed from the cell periphery toward the 
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deeper intracellular space, confirmed by confocal laser and electron microscopy (Lioba 

Lobmayr and Iris Killisch, unpublished data, June 2004). Thus, the cytosol may again be 

recognized as "low iron" by the IRE/IRP system, despite a massive net increase of iron 

import into the cell. Within mitochondria, iron will be efficiently incorporated in 

protoporphyrin IX by ferrochelatase to form heme, which is assembled into hemoglobin 

immediately after mitochondrial export. 

To test the idea of a "low iron" cytosol, we artificially increased the cytosolic iron 

pool. For this we either inhibited heme biosynthesis or overloaded the cells with iron 

(Figure 6B). A block of heme synthesis by SA, an inhibitor of ALA-D62, resulted in a 

significant increase in Fer protein. Most likely, this was due to an efflux of non–heme-

bound iron via the mitochondrial iron export machinery77, inducing secondary cytosolic 

iron overload (as confirmed by others26). In turn, this should reduce IRP mRNA-binding 

activity and actually increased Fer protein expression. Fer protein levels were similarly 

up-regulated on iron overload with FAC, which enters many cell types directly, bypassing 

TfR-mediated endocytosis20-23. However, TfR-independent FAC uptake has not been 

rigorously confirmed for mouse erythroid progenitors so far24,25,79. 

At present, we cannot address whether or not mitochondrial Fer80,81 may influence 

iron efflux versus storage in mitochondria. Although mitochondrial Fer has high homology 

to cytosolic Fer and is abundant in mitochondria of human patients with sideroblastic 

anemia, its role in healthy individuals is unclear81,82. 

Here we present a comprehensive analysis of key players regulating iron 

metabolism in self-renewing versus differentiating primary mouse erythroblasts. Terminal 

erythropoiesis caused a switch of regulation to a mode where the IRP/IRE system 

sensed a low-iron state despite massively increased iron uptake, intracellular transport, 

and utilization for hemoglobin synthesis. The altered iron metabolism in differentiating 

erythroblasts may have evolved to ensure maintenance of high levels of TfR1 mRNA for 

rapid uptake of large amounts of Fe2-Tf. This mode of regulation should be important to 

ensure efficient heme production by synthesizing high levels of ALAS-E without favoring 

Fer mRNA translation, thus avoiding futile iron storage during a phase of high iron 

demand, a situation known to disturb hemoglobinization31. 
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5.1.7. Figures 

Figure 1 

 

 

 

Figure 1. Extended self-renewal and synchronous differentiation of primary, fetal 
liver–derived mouse erythroblasts. (A) Cells from fetal livers of E12.5 mouse embryos 
were cultivated in serum-free StemPro (Life Technologies) medium plus NutriMix 
supplement in the presence of stem cell factor (SCF), erythropoietin (Epo; 2 U/mL), and 
the synthetic glucocorticoid dexamethasone (Dex). Proliferation kinetics of outgrowing 
erythroblasts were determined by daily measurements of aliquots in an electronic cell 
counter (CASY) and cumulative cell numbers calculated as described50. (B) Terminal 
differentiation was induced by replacing proliferation factors with insulin, the 
glucocorticoid antagonist ZK11299334 plus high levels of Epo (10 U/mL) and Fe2-Tf (1 
mg/mL = 12.5 µM). To monitor morphologic changes in maturing cells, aliquots were 
withdrawn at daily intervals, cytocentrifuged onto slides, and stained with neutral 
benzidine (to detect hemoglobin; brownish stain) and histologic dyes36. Note size 
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decrease and enucleation of mature cells (72 hours, bottom right panel). 
Photomicrographs were taken using an Axiovert 10 microscope (Zeiss, Oberkochen, 
Germany) equipped with a 63 x oil-immersion objective lens (numerical aperture 44-07-
61; Zeiss). Images are presented at original magnification, x 630. Images were captured 
with a Sony 3CCD color video camera (Sony, Tokyo, Japan) and prepared for 
publication with IP Lab Spectrum P software 3.1.1 (Signal Analytics, Vienna, VA). (C) 
Measurements of the decline in cell volume during differentiation were performed with an 
electronic multichannel cell analyzer. Appearance of 5-µm peak indicates mature cells 
with volumes close to that of peripheral blood erythrocytes. (D) Hemoglobin levels during 
differentiation were quantitated using a photometric assay previously described, and 
normalized to both cell numbers and cell volume from 50-µL aliquots in triplicate32,37; 
error bars, SD of mean, n = 4. 
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Figure 2 
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Figure 2. Translational repression of Fer mRNA and efficient utilization of ALAS-E 
mRNA in differentiating mouse erythroblasts. Self-renewing (designated 
"proliferation" in this and the following panels) or differentiating (labeled "48h diff") 
primary mouse erythroblasts were incubated with the iron chelator desferrioxamine (Des, 
50 µM) or physiologic concentrations of iron-loaded human transferrin (Tf, 12.5 µM) for 
24 hours prior to harvesting. (A) Polysome gradient analysis. Cytoplasmic extracts were 
separated in linear 15% to 40% sucrose gradients39 and the RNA isolated from 18 
fractions analyzed by Northern blotting. Fraction 1, top, fraction 18, bottom of the 
gradient. Filters were sequentially hybridized with [32P]-labeled probes specific for mouse 
FerH, FerL, ALAS-E, and (in the case of differentiating cells) α-globin mRNA as control. 
Bottom panel, loading control; methylene blue stain of total RNA. The constant molar 
ratio between 28S and 18S RNA (top and bottom band, respectively) around fraction 9 
indicates the assembly of 80S initiation complexes and marks the approximate boundary 
between the ribosome-free, untranslated, and polyribosome-bound, translated mRNA 
compartment, as schematically depicted at the bottom. (B) Quantification of polysome-
bound, translated mRNA. Bar diagrams depict the sum of the percentage of mRNA in 
fractions 9-18 as determined by PhosphoImage analysis. (C) Fer protein expression in 
proliferating and differentiating cells. The antibody used (see "Materials and methods") 
recognizes both FerH and FerL. (D) ALAS-E expression as determined by 
immunoprecipitation of cell extracts (normalized to equal number of counts per sample) 
pulse labeled for 20 minutes with [35S]-methionine; to visualize the ALAS-E band in 
proliferating cells, this signal was amplified electronically 5 times. (E) Total mRNA levels 
for ALAS-E, FerH, and FerL mRNAs. Loading and quality control, 28S rRNA stained with 
methylene blue. 
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Figure 3 

 

 

 

Figure 3. Transferrin receptor expression is independent of iron in differentiating 
mouse erythroblasts. Fetal liver–derived mouse erythroid progenitors pretreated as 
described in the legend to Figure 2 were analyzed for transferrin receptor (TfR1) 
expression. (A) TfR1 mRNA determined by Northern blotting (28S rRNA hybridization as 
control); (B) total TfR1 protein determined by Western blotting; Erk1/2, loading control. 
(C) TfR1 cell-surface expression was determined by flow cytometry. 
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Figure 4 

 

 

 

Figure 4. mRNA-binding activity of IRP is independent of iron in differentiating 
primary erythroblasts. (A) Determination of apparent (left panels) and total IRP mRNA-
binding activities (right panels; +2-ME43) in extracts of mouse erythroblasts (designated 
"FL," for fetal liver–derived cells), pretreated as described in Figures 2 and 3. 
Electrophoretic mobility shift assays (EMSAs) of complexes between IRP and 
radiolabeled in vitro–transcribed RNAs containing the IREs of mouse FerH mRNA (clone 
42)42 were performed as described in "Materials and methods." Control extracts, 
demonstrating the full regulatory potential of IRP, were prepared from mouse embryo 
fibroblasts (MEFs). Total IRP1 and IRP2 protein (B) and mRNA levels (C) were 
determined by Western (Erk1/2 used as loading control) and Northern blotting (28S 
rRNA signal as RNA quality and loading control), respectively. 
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Figure 5 

 

 

 

Figure 5. Iron overload and inhibition of heme synthesis restore iron-dependent 
Fer expression in differentiating mouse erythroblasts. Fer expression as determined 
by Western blotting in erythroid progenitors differentiating for 48 hours. (A) Cells were 
either incubated for 24 hours with Fe2-Tf (6.3-100 µM; highest concentration corresponds 
to 8 times the physiologic level; top left panel), or Des (50 µM), Fe2-Tf (12.5 µM), FAC 
(63 µM Fe) and SA (0.2 µM; inhibition of heme synthesis) (top right panel). FAC probably 
can enter the cells directly, bypassing Tf/TfR-mediated endocytosis and the assumed 
vectorial iron transport from endosomes into mitochondria, and may thus lead to direct 
cytosolic iron overload ERK1/2 (bottom panels), loading control; membranes restained 
with corresponding antibody. (B) Hemoglobin synthesis in the cells described in panel A. 
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Figure 6 

 

 

Figure 6. Working model for the regulation of iron metabolism in differentiating 
primary erythroblasts. (A) The model shown in this scheme is essentially based on the 
"kiss-and-run" hypothesis62 of vectorial iron transport toward mitochondria. It depicts the 
distribution of iron (cytosolic versus mitochondrial) in differentiating erythroid cells as well 
as how the expression levels of TfR1, Fer, and ALAS-E are regulated via IRP. Thick and 
thin black arrows symbolize high and low rates of iron flow, respectively; open white 
arrows depict heme synthesis; lettering size for hemoglobin, TfR1, Fer, ALAS-E and "Fe" 
(iron-loaded heme) indicates the expression level of the corresponding protein or 
compound. (B) Predicted and in part experimentally verified consequences of (1) 
perturbation of mitochondrial iron uptake/flow by adding inhibitors of heme biosynthesis 
like succinylacetone (SA; upper panel) or (2) of direct cytoplasmic iron overload with low-
molecular-weight iron salts (ie, addition of ferric ammonium citrate, FAC; lower panel).  
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5.2.1. Abstract 

 

Differentiating erythroid cells shuttle iron with very high efficiency towards mitochondria 

for the formation of heme. Recently we have demonstrated that primary erythroid cells 

satisfy their exceptionally high requirements for iron during terminal differentiation by 

switching to a mode where the post-transcriptional, iron-dependent regulatory system, 

based on iron responsive proteins (IRP1 and IRP2) and iron responsive elements (IREs), 

seems to sense low iron levels within cells. This occurs despite a massive net increase 

of iron import into cells1.  

To examine the hypothesis that erythroid cells have low non-heme iron levels in 

their cytosol, we experimentally increased the cytosolic iron pool by either inhibiting 

heme biosynthesis or overloading cells with iron. Both treatments resulted in a clear 

increase in ferritin levels. Strikingly, increases in ferritin expression upon perturbation of 

cellular iron homeostasis strongly correlated with the loss of IRE-binding activity of IRP2 

but not IRP1. This suggests that IRP2 is the major regulator of ferritin expression in 

erythroid cells. To further elaborate on this observation, we cultured primary 

erythroblasts derived from IRP1-/- and IRP2-/- mice. In agreement with the published 

phenotype of microcytic hypochromic anemia, only erythroblasts lacking IRP2 exhibited 

a reduction in hemoglobinization and showed a significant increase in ferritin expression. 

Together with the observation that surface expression of transferrin receptor (TfR1) was 

reduced in IRP2-/- erythroblasts during self renewal but not during terminal 

differentiation, our results suggest that not only down-regulation of TfR1, but also up-

regulation of ferritin may be a major factor causing the anemic phenotype observed in 

IRP2-/- mice. 
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5.2.2. Introduction 

 

The major function of mature red blood cells is to supply oxygen to all body tissues using 

hemoglobin as a docking molecule and to remove carbon dioxide in order to deliver it to 

the lungs. To satisfy this requirement, each erythrocyte is packed with hemoglobin 

molecules. Therefore, terminally differentiating erythroid cells focus their metabolic 

efforts on the synthesis of globin and heme. Heme biosynthesis is a very efficient 

process which involves eight enzymes. The first step occurs in mitochondria and 

involves the condensation of succinyl CoA and glycine to form 5-aminolevulinic acid 

(ALA), catalyzed by ALA synthase (ALAS). The next four steps take place in the cytosol 

and are initiated by the ALA dehydratase (ALAD). The final three steps of the 

biosynthetic pathway, including the insertion of ferrous iron into protoporphyrin IX (PP IX) 

by the last enzyme of the pathway, ferrochelatase, occur again in mitochondria.   

The need for iron as a substrate for heme biosynthesis makes differentiating 

erythroid cells the major consumers of circulating iron. This plasma iron is bound to 

transferrin (Tf) which binds to the TfR1 on the cell surface. The binding is followed by 

internalization of the Tf/TfR1 complex via receptor mediated endocytosis. Endosomal 

acidification is necessary for the release of iron from the Tf-TfR1 complex2,3. Thereafter 

Fe is reduced by the ferrireductase Steap34 and transported across the vesicular 

membrane by the divalent transporter DMT15,6. Finally, iron is delivered to its place of 

utilization. Excess Fe is trapped in the iron storage protein ferritin. This sequestration 

prevents the formation of cell damaging radicals by free iron.  

Coordinated control between iron uptake and storage is mainly achieved by the 

post-transcriptional regulation of ferritin and TfR1 synthesis. Under low cellular iron 

concentrations the iron regulatory protein (IRP) 1 and IRP2 can independently bind to 

specific RNA motifs called iron responsive elements (IREs; reviewed by Pantopoulos K7). 

One type of these stem loop structures is localized in the 5’ untranslated region (UTR) of 

both transcripts of the ferritin subunits and multiple copies are found in the 3’ UTR of the 

TfR1 mRNA. Binding of IRPs to IREs leads to stabilization of TfR1 mRNA and 

consequently, to increased expression of the protein involved in iron uptake8-10. 

However, IRP/IRE complex formation in the 5’ UTR of ferritin mRNA inhibits initiation of 

translation and prevents sequestration of iron into storage compartments11,12. The 

opposite occurs if cellular iron levels are high. Release of IRPs from IREs destabilizes 

TfR1 mRNA and allows for efficient synthesis of ferritin protein. Paradoxically, this would 
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be also the situation in terminally differentiating red blood cells which show a dramatic 

increase in the uptake of cellular iron needed for hemoglobinization. Therefore, 

according to the classical IRP/IRE sensing system, this should result not only in a down-

regulation of TfR1, but also in an increase in ferritin protein expression. Hence, if this 

system operated in terminally differentiating RBCs iron would be diverted to iron storage 

instead of towards heme synthesis. In fact it has been shown that overexpression of 

ferritin H in a mouse erythroleukemic cell line leads to reduced hemoglobinization when 

these cells were induced to differentiate13. 

Recently we showed that during late stages of erythroid differentiation the 

regulation of key proteins in cellular iron metabolism do not correlate to cellular iron 

levels and are not coordinately regulated by the IRP/IRE system1. The view was initially 

that IRP1 and IRP2 may be functionally redundant; however IRP2 knock out (KO) 

animals exhibit a microcytic anemia14,15, whereas IRP1 ko animals are similar to wild type 

(WT) animals16. This difference in the RBC parameter seems to be mainly due to a 

decreased expression of TfR1 on the cell surface of erythroid progenitors in the IRP2 

knock out (KO) animals14,15, suggesting that IRP2 has a dominant role over IRP1 in 

cellular iron metabolism of erythroid cells. 

Using a primary erythroid cell system17,18 we show that during differentiation 

efficient formation of heme keeps the cytosol in an iron-deprived state and consequently 

ferritin protein levels low. This translational repression is primarily achieved by IRP2. 

Furthermore we demonstrate that erythroid progenitors derived from IRP2 KO animals 

have low TfR1 expression only in the undifferentiated state but reach levels equal to WT 

cells during the end stage of terminal differentiation. In contrast, ferritin expression stays 

up-regulated during the entire differentiation process suggesting that sequestration of 

incoming iron by ferritin in these cells might be the major cause of the observed 

microcytic anemia.  
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5.2.3. Material and Methods 

 

Culture of primary mouse erythroblasts 

Erythroid cells were isolated and cultivated as described17,18. Briefly, cells were grown 

from fetal livers collected from E12.5 embryos (WT, MF1 background) and re-suspended 

in serum-free StemPro-34™ medium plus Nutrient Supplement (Invitrogen-GIBCO, 

Carlsbad, CA) plus 2U/mL human recombinant erythropoietin (Epo; 100ng/mL), murine 

recombinant stem cell factor 100ng/mL (SCF), synthetic glucocorticoid dexamethasone 

(Dex; 10-6M) and insulin-like growth factor 1 (IGF-1; 40ng/mL). Cell number and size 

distribution of cell populations were monitored daily in an electronic cell counter (CASY-

1, Schärfe-System, Reutlingen, Germany). Dead or differentiating cells were removed by 

Ficoll purification. 

To induce terminal differentiation, continuously self-renewing erythroblasts were 

washed twice in PBS and seeded in StemPro-34TM, containing 10U/mL Epo, insulin (Ins, 

4x10-4IE/mL), Dex antagonist ZK-112993 (3x10-6M)19 and iron-saturated human 

transferrin (Fe2-Tf; 1mg/mL=12.5µM=25µM Fe=physiological levels; Sigma, St. Louis, 

MO). Where indicated, heme synthesis was inhibited by 0.2mM succinylacetone (SA; 

Sigma)20. 

To induce iron starvation, cells were incubated with 50µM of the iron chelator 

desferrioxamine (Des); iron overload was induced by adding ferric ammonium citrate 

(FAC; 20µg/mL, 17% saturation=63µM iron) 24h before harvest. 

 

Cell morphology, histological staining, and determination of hemoglobin content 

Changes in cell morphology during differentiation were monitored by phase-contrast 

microscopy. For histological analysis, erythroblasts were cytocentrifuged at various 

stages of maturation onto glass slides and stained with histological dyes and neutral 

benzidine for hemoglobin as described21. Hemoglobin content was determined 

photometrically from 50µl aliquots from the cultures as described22. Values obtained from 

triplicate determinations were averaged and normalized to cell number and cell volume. 
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Flow cytometry 

1x106 self-renewing or differentiating erythroblasts were washed twice with PBS/2% fetal 

calf serum (FCS) and stained with fluorescently-labeled antibodies against transferrin 

receptor (FITC, PharMingen, San Diego, CA, #01595). Surface marker expression was 

analyzed by flow cytometry (LSR-I, Becton Dickinson, Franklin Lakes, NJ) and 

processed with CellQuest Pro Software version 1.3. 

 

Electrophoretic mobility shift assays 

RNA-protein complexes were resolved essentially as described23,24. Briefly, for 

electrophoretic mobility shift assays (EMSAs), cytoplasmic extracts were incubated with 

[32P]-labeled transcripts produced by T7 RNA-polymerase following linearization of the 

plasmid pGEM-3Zf(+)-chicken FerH-IRE with BamHI. 20µg of protein and 1.3x106 dpm of 

labeled IRE-containing in vitro transcript were incubated for 20min room temperature. 

The total amount of IRP1 was assessed by in vitro reduction with 2% beta-

mercaptoethanol (2-ME)25 prior to the binding reaction. After treatment with RNAse T1 

and heparin, RNA-protein complexes were resolved on 6% non-denaturing 

polyacrylamide gels at 4°C. Bands corresponding to IRE/IRP complexes were quantified 

by phospho-imaging (Molecular Dynamics, Sunnyvale, CA). 

 

Western blot analysis 

Cell pellets were lysed in sample buffer as described26 and 10-20µg of protein separated 

on SDS-polyacrylamide gels. Protein transfer and loading were visualized by staining 

with acidic Ponceau-S solution. Thereafter, membranes were blocked one hour at room 

temperature with 1% low-fat dry milk in TBS and probed overnight with anti-horse spleen 

ferritin (Sigma, #F-6136) or, for normalization, with anti-Erk1/2 (Sigma, #5670) or anti-

eIF4E (Cell Signaling). After washing, filters were incubated with second antibody 

(horseradish peroxidase coupled alpha-rabbit IgG antibody (Jackson Labs., West Grove, 

PA, #111-035-008). After washing, immuno-reactive signals were detected by enhanced 

chemo-luminescence (Amersham, Buckinghamshire, England). 
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5.2.4. Results 

 

Ferritin expression is iron-dependent in terminally differentiating primary erythroid 

cells 

Although cellular iron levels increase dramatically in differentiating erythroid cells, 

translation of ferritin remains in a repressed state1. To test whether ferritin expression is 

still responsive to iron we employed ferric ammonium citrate (FAC) as an iron source. 

Both undifferentiated and differentiating (48h) erythroblasts were incubated for 24h with 

FAC. Western blot analysis shows that increasing concentrations of FAC correlate with 

increasing expression of ferritin (Figure 1). Thus, these data argue against the possibility 

that an iron independent mechanism specifically inhibits ferritin mRNA synthesis during 

terminal differentiation. 

 

Inhibition of heme synthesis activates expression of ferritin in differentiating 

erythroblasts 

The switch to a repressed state of ferritin levels despite a net increase in cellular iron 

correlates with a rise in hemoglobinization (data not shown). In order to test for a link 

between heme biosynthesis and regulation of ferritin expression, we blocked heme 

biosynthesis at two different stages. First, we used succinylacetone (SA) to inhibit ALAD, 

the second enzyme of the heme biosynthesis pathway20. As shown in Figure 2A, 

inhibition of ALAD by 0.2mM SA for 24h clearly reduced heme biosynthesis and led to an 

equivalent increase in ferritin protein expression (Figure 2B). This indicates that 

functional heme biosynthesis is necessary to keep ferritin expression at low levels. 

  

Ferritin expression negatively correlates with heme synthesis 

Secondly, we used isonicotinic hydrazide (INH) to inhibit aminolevulinic acid synthase 

(ALAS-E), the first enzyme of the heme synthesis pathway. As shown in Figure 3A 

inhibition of heme production by INH was comparable to the inhibitory effect of SA on 

48h differentiated erythroblasts. INH causes a similar block of heme biosynthesis and a 

marked increase in ferritin protein expression (Figure 3B). The block of heme 

biosynthesis by INH could be partially restored by addition of ALA. As shown in Figure 3, 
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0.5mM and 1mM ALA can re-establish about 30% and 60% of heme biosynthesis, 

respectively. Strikingly, with augmented restoration of heme formation we obtain a 

parallel decrease in ferritin protein levels as shown by western blot analysis. Thus, this 

data supports the view of an inverse correlation between heme biosynthesis and ferritin 

protein expression.  

  

Cytosolic iron overload by FAC or inhibition of heme synthesis is sensed by IRP2 

but not IRP1 

To determine if the incubation with FAC or the inhibition of heme synthesis that were 

both followed by an upregulation of ferritin changed the binding activities of IRPs we 

performed electro mobility shift assay (EMSA) using a radio-labeled IRE probe and 

looked at complex formation between this probe and IRP1 and IRP2. As previously 

shown, incubation of both undifferentiated and differentiated erythroid cells with FAC 

increased the expression of ferritin in those cells (Figure 4A, left panel). Again the same 

is true upon treatment of 48h differentiated erythroblasts by SA only or in combination 

with FAC (Figure 4, right panel). Following analysis of IRP1 and IRP2 binding activity, 

however, only the formation of IRP2/IRE complexes was reduced, whereas the binding 

activity of IRP1 is unaffected (Figure 4B). Because decrease in binding activity of IRP2 

nicely correlates with the increase in ferritin expression, we conclude that changes in the 

cellular iron balance by administration of FAC or inhibition of heme synthesis by SA are 

mainly sensed by IRP2 and not by IRP1. Therefore we postulate that translational 

regulation of ferritin in these cells is primarily achieved by IRP2 and not by IRP1. 

 

IRP2 is the major regulator of iron-dependent expression of ferritin 

To further investigate the possibility that the translation of ferritin is mainly regulated by 

IRP2 and not IRP1 in erythroid cells, we used erythroid progenitors derived from fetal 

livers of mice deficient in IRP1 or IRP215. We kept the isolated erythroblasts under either 

undifferentiated conditions or induced them to differentiate for 48h17. Expression of TfR1 

was determined by fluorescence-activated cell sorting analysis (FACS). In agreement 

with in vivo data14,15 only undifferentiated erythroblasts deficient in IRP2 but not those 

deficient in IRP1 showed a reduced expression of TfR1 on their cell surface (Figure 5C). 

Moreover only erythroid cells derived from IRP2 KO animals showed a decrease in 

hemoglobin accumulation after 48h of differentiation (Figure 5A), in agreement with the 
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microcytic anemia observed only in these animals14,15. Western blot analysis of ferritin 

expression in undifferentiated and 48h differentiated erythroblasts demonstrated that 

ferritin protein was strongly elevated in IRP2-/- cells, but not in IRP1-/- cells as compared 

to the WT counterpart (Figure 5B). These results underline the notion that IRP2 is the 

major translational regulator of ferritin expression in erythroid cells. 

Moreover, the TfR1 expression on the cell surface was compared between 

undifferentiated erythroblast derived from KO and WT animals and their differentiated 

counterparts (Figure 5C). We could not detect any significant difference in the cell 

surface expression of TfR1 during the late stage of erythroid differentiation between all 

three genotypes (Figure 5C, right panel). Hence TfR1 is downregulated in IRP2 deficient 

erythroblasts at a stage of low hemoglobinization, whereas ferritin expression is 

upregulated throughout the whole terminal differentiation process. This suggests that the 

microcytic anemia observed in IRP2 KO animals might be less a result from 

downregulation of TfR1 during early stages of terminal erythropoiesis but primarily a 

consequence of up-regulated ferritin expression during the phase of high 

hemoglobinization. 
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5.2.5. Discussion 

 

Erythroid cells are the major consumers of iron in the human body. Differentiating 

erythroid cells shuttle the metal with very high efficiency towards mitochondria in order to 

use it for the formation of heme27. To satisfy their high iron needs, developing red blood 

cells (RBC) have to sustain high expression of TfR1 despite increasing cellular iron 

concentration. Moreover, synthesis of ferritin must not be activated by incoming iron, 

since this would represent a counterproductive storage during the phase of high iron 

demand. Recently we have demonstrated that during terminal differentiation primary 

erythroid cells maintain high TfR1 expression and low ferritin expression despite a 

massive net increase of iron import into the cell1. 

We have hypothesized that erythroid cells have low non-heme iron levels in their 

cytosol and show in this report that both block of heme synthesis by either SA or INH or 

administration of FAC, resulted in a clear increase in ferritin levels. Moreover, the effect 

of INH, the inhibitor of ALAS2, could be reversed by the addition of ALA. 

The positive correlation between increasing concentrations of FAC treatment and 

the increased expression of ferritin protein demonstrates that ferritin expression is still 

responsive to iron in differentiating erythroblasts (Figure 1). This eliminates the possibility 

of an iron-independent inhibition of the translational regulation of ferritin. Similarly the 

inhibition of heme synthesis increases the ferritin expression, however it remains to be 

elucidated how this treatments increase the regulatory iron pool. Basically, there are two 

possibilities upon treatment with FAC or inhibitors of heme synthesis: (I) once iron is 

released from endosomes it accumulates in the cytosol and this regulatory iron pool 

inactivates binding activity of IRP27; (II) iron is shuttled directly into mitochondria28 and is 

then released from this organelle when the iron availability exceeds the iron demand and 

so increases the regulatory iron pool in the cytosol. The data presented here cannot 

answer this question and we are currently trying to address these issues. 

Although it is unclear how the regulatory iron pool forms upon treatment with FAC 

or inhibitors of heme synthesis, both treatments lead to a decreased binding activity of 

IRP2, but not IRP1. Therefore we suggest that expression of ferritin is mainly regulated 

by IRP2 in undifferentiated and differentiating erythroid cells. 

This correlates with recent data using an siRNA approach showing that 

knockdown of IRP1 did not affect ferritin H expression, whereas knockdown of IRP2 
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caused an increase in ferritin expression29. This seems to be in contrast to in vitro 

translation assays demonstrating that IRP2 inhibited ferritin mRNA translation with a 

molar efficiency equal to that of IRP1 in vitro30. But additional cellular factors might tune 

the binding activity of the two IRPs differently in vivo in a tissue specific manner31. The 

view of IRP2 as a more potent regulator of the IRE than IRP1 is consistent with results 

obtained in knockout mice: IRP1 knockout mice display normal iron metabolism in most 

tissues, whereas IRP2 knockout mice show high ferritin and low TfR1 levels in multiple 

tissues16. A tissue specific effect of IRP2 deletion was shown for the erythroid 

compartment localized to the bone marrow. Only mice deficient for IRP2 but not IRP1 

developed hypochromic microcytic anemia14,15. Results of this two independent groups 

have suggested that microcytic anemia in IRP2 deficient mice is caused by deficiency of 

heme synthesis due to a decreased iron uptake which results from a significant decrease 

in TfR1 expression on erythroid precursor cells. In agreement with these data we show 

that indeed proerythroblasts have a decreased TfR1 expression on the cell surface. 

However, this difference in expression vanished at the late stage of terminal 

differentiation, i.e. at a stage of highly efficient hemoglobinization. This suggests that iron 

uptake by erythroblasts from IRP2 KO mice may not be limited during this period. On the 

other hand, expression of ferritin is still high in IRP2 deficient erythroblasts at the late 

stage of differentiation, likely sequestering the iron into storage and thus impairing heme 

synthesis. 

We conclude that the major factor responsible for hypochromic anemia in IRP2 

KO mice is the hyper-expression of ferritin which diverts iron away from mitochondrial 

heme synthesis. 

Erythroid cells express a specific erythroid form of the aminolevulinic acid 

synthase, ALAS2. In contrast to the housekeeping form, regulation of ALAS2 is 

independent of heme32. Furthermore it includes a functional IRE in its 5’-UTR. Although 

this constellation would suggest a regulation similar to that of ferritin by the IRE/IRP 

system, several studies have shown that ferritin mRNA is more potently regulated than 

ALAS2 mRNAs1,34. Furthermore, this could be potentially achieved by different roles of 

IRP1 and IRP2 in the translational regulation of ferritin and ALAS2. At present this 

scenario is speculative, especially since the existing knock out data on the roles of IRPs 

in mice and other animal models are somewhat contradictory. In fact studies in zebrafish 

have suggested that translation of ALAS2 mRNA is regulated by IRP1 and not IRP233. 

However, analysis of ALAS2 expression in IRP1 and IRP2 KO mice support IRP2 to be 

the major regulator of ALAS214. Latter observation would imply that differences in the 

translational regulation of ferritin and ALAS2 are due to differences in the structure of 
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their IRE leading to different binding affinities for IRP2. On the other hand Galy et al. do 

not observe any differences in the expression of ALAS2 between WT and KO animals. 

Therefore future studies on the expression of ALAS2 using erythroid cells derived from 

IRP1 and IRP2 KO animals should help to clarify these discrepancies. 

Although in this report we mainly focused on the expression of ferritin, one very 

interesting observation was the normalization of the TfR1 expression at the late stage of 

differentiation in the IRP2 KO cells. This suggests that at this point of erythropoiesis TfR1 

expression is regulated mainly at the level of transcription but not translation. Moreover it 

weakens the hypothesis that the microcytic anemia developed in the IRP2 KO animals is 

a consequence of decreased cellular iron uptake by erythroid cells. 



 

84 
 

5.2.6. Figures 

Figure 1 

 
 

Figure 1. Ferric ammonium citrate (FAC) activates ferritin expression in 
undifferentiated and differentiated erythroblasts.  
Undifferentiated (designated “undiff” in this and the following panels) or cells 
differentiating (labeled “48h diff” in this and following panels) primary mouse 
erythroblasts were incubated with increasing concentrations of FAC for 24 hours prior to 
harvesting. Bar diagrams depict the quantification by Li-Cor’s Odyssey infrared imaging 
system of the respective ferritin signals below obtained by western blot analysis.  
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Figure 2 
 

 

 

Figure 2. Inhibition of heme biosynthesis activates ferritin expression in 
differentiating mouse erythroblasts.  
Differentiating mouse erythroblasts were incubated for 24 hours with either des (50µM) 
or FAC (63µM Fe) in contrast to untreated control cells (ctrl), with or without additional 
SA treatment (0.2mM; inhibition of heme synthesis). (A) Heme assay of the described 
cells. (B) Ferritin expression was determined by western blotting; Erk1/2 (lower panels) 
was used as loading control; membranes re-stained with corresponding antibody.  
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Figure 3 

 

Figure 3. Expression of ferritin correlates positively with heme biosynthesis  
(A) Heme biosynthesis in 48h differentiating erythroblasts was inhibited by incubation 
with 4mM or 8mM of INH for 24h prior to harvesting. Where indicated, cells were 
additionally treated with increasing concentrations of ALA to partially restore heme 
biosynthesis (upper panel). The heme assay was performed as described under 
“materials and methods”. (B) Ferritin protein expression was determined by western blot 
analysis and quantified by Li-Cor’s Odyssey infrared imaging system (bar diagrams); 
eIF4E (lowest panel) was used as loading control.  
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Figure 4 
 

 

Figure 4. Binding activity of IRP2 but not IRP1 is decreased upon treatment 
with FAC or SA 
The cell extracts of undifferentiated and 48h differentiating erythroblasts were used to 
determine ferritin expression and IRP binding activity. The cells were treated with FAC 
and/or SA as indicated (A) Western blot analysis of ferritin protein expression, eIF4E was 
used as loading control. (B) Aliquots of the cell extracts used for western blot were used 
for a band shift assay in order to determine the binding activity of IRP1 and IRP2. The 
total abundance of free IRP1 was monitored by the activation of non-binding IRP1 
molecules by reduction with 2-mercaptoethanol (2-ME).   
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Figure 5 
 

 

Figure 5. Analysis of hemoglobin levels, ferritin expression and TfR1 
expression in erythroid cells derived from IRP KO and WT animals 
Erythroblasts were isolated from fetal liver of KO and wt mice and either kept in an 
undifferentiated state or induced to differentiate for 48h. (A) Hemoglobin levels in 
undifferentiated and differentiating erythroid cells isolated from wt, IRP1-/- and/or IRP2-/- 
animals. (B) Ferritin protein expression was determined by western blot analysis (C) 
TfR1 expression was determined by FACS analysis.   
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5.3.1. Abstract 

 

The availability of oxygen regulates the production of erythropoietin (epo) and thus 

determines the amount of newly generated erythrocytes. Furthermore, it has been shown 

that oxygen directly influences hematopoiesis and additionally modulates iron 

metabolism, which is essential during the synthesis of heme. Hence, the adjustment of 

the oxygen concentration during the in vitro cultivation of erythroblasts is of special 

importance. 

Using a murine erythroid in vitro model, we show that low oxygen levels or the 

addition of the HIF-α activator dimethyloxalylglycine interfered with heme synthesis and 

cell-size decrease and promoted prolonged proliferation of immature erythroblasts. 

Moreover, limited oxygen supply obstructed terminal erythroid differentiation despite high 

epo levels. Our data suggest that the oxygen gradient in erythrocyte-forming 

compartments is able to directly influence the progression of erythropoiesis and that 

hypoxic oxygen levels interfere with terminal erythroid differentiation via stabilization of 

HIF-α. Furthermore, parameters like cell density and metabolic activity contribute to the 

effective oxygen concentration in the microenvironment of cultivated erythroblasts. 

Therefore, in vitro oxygen levels have to be individually adjusted to the specific needs of 

different cell types and culture conditions in order to prevent artificial effects. 
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5.3.2. Introduction 

 

Oxygen is an important factor in hematopoiesis as well as in the regulation of iron 

metabolism. Several publications have shown that hypoxia is able to directly regulate the 

cycle/quiescence balance of hematopoietic stem cells and the differentiation of 

progenitor cells1-4. Furthermore, the activity of the RNA-binding iron regulatory proteins 

IRP1 and IRP2 that post-transcriptionally regulate the expression of several proteins 

involved in iron uptake, storage and utilization is not only dependent on the availability of 

iron but also of oxygen5-7. During erythropoiesis these two regulatory functions of oxygen 

are of special importance. It has been shown that oxygen directly affects erythropoiesis 

but the underlying mechanisms are not well understood 8. In addition, reduction of 

systemic oxygen availability is responsible for the increased production of erythropoietin 

(epo) in the kidney, which is the main signal that promotes the production of mature 

erythrocytes in the hematopoietic tissues9,10. Furthermore, the influence of oxygen on the 

regulation of the IRE/IRP system is of special importance during erythropoiesis, since 

heme synthesis is dependent on the availability of iron. 

Several of these aspects are analyzed in vitro using tissue culture incubators that 

use atmospheric oxygen supply. Since the oxygen levels in vivo are generally lower than 

the atmospheric concentration of 21%, the oxygen concentration has to be adjusted to 

physiological levels in vitro, when oxygen dependent mechanisms are analyzed. 

Although this sounds trivial, there are two major aspects that make this adjustment less 

straightforward: First, the oxygen concentration is not equally distributed in the body but 

varies in the range of 14% in arterial blood to virtually 0% in ischemic tissues11. The 

adjustment of the oxygen supply in vitro should therefore correspond to the correct in 

vivo concentration of the specific area of the tissue where the cultivated cell type would 

normally be found. Furthermore, in the special case of hematopoiesis the developing 

cells are confronted with increasing oxygen concentrations during maturation, thereby 

literally travelling throw increasingly oxygenated tissue12. This variation of the oxygen 

concentration would therefore also be necessary during in vitro cultivation of 

differentiating hematopoietic cells. 

The second point that makes the adjustment of the oxygen supply comparable to 

the in vivo situation more complicated is that the modification of the oxygen 

concentration to a defined value within a tissue culture incubator does not necessarily 

mean that the cultured cells are actually facing exactly this oxygen concentration. In fact, 
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the oxygen supply rate in tissue culture is limited by the diffusion velocity of oxygen 

through the cultivation medium13,14. When the cultivated cells consume more oxygen 

than can be transferred through the medium the effective oxygen concentration becomes 

lower than the supplied concentration of the incubator. Therefore, additional parameters, 

like cell density, metabolic activity and diffusion distance also contribute to the oxygen 

supply of the cells and can further reduce the oxygen concentration in their direct 

environment15. 

We are interested in the process of erythropoiesis in general and use a murine 

primary cell culture system to study different aspects of this process including iron 

metabolism. Therefore, the influence of oxygen on this in vitro system is of special 

importance for our work. It has already been shown that the applied oxygen 

concentration of tissue culture incubators is able to modulate the process of erythroid 

differentiation in vitro8. Just recently, it has further been shown that that 

dimethyloxalylglycine (DMOG), an activator of hypoxia inducible factor-1α (HIF-1α) has a 

direct epo independent promoting influence on the proliferative capacity of the early 

erythroid progenitor BFU-E (burst-forming unit-erythroid)16. In the work presented here 

we used a murine primary cell culture system in order to further investigate the interplay 

between culture conditions, oxygen and the maturation of erythroblasts17 . We could 

show that reduced oxygen levels (3%) in contrast to near-atmospheric oxygen levels 

(20%) can promote and extend self renewal of immature erythroblasts in vitro. 

Furthermore, the same reduced oxygen levels interfered with heme synthesis, 

enucleation and proliferation even in combination with factors promoting terminal 

erythroid differentiation. Nevertheless, we could eliminate the inhibitory effect of reduced 

oxygen levels by variation of cell density and diffusion distance, demonstrating their large 

impact on the effective oxygen supply of cultivated cells. In fact, we could show that the 

conventional culture conditions reduced the oxygen concentration in the direct 

environment of the cells compared to the oxygen concentration provided by the 

incubator. This demonstrates the huge impact of different tissue culture parameters that 

need to be evaluated in order to retrieve reproducible results especially if in vivo like 

conditions need to be established.  

In addition we could show that the oxygen concentration is a potent direct 

regulator of erythroid differentiation and this regulation is mediated by the activity of 2-

oxoglutarate-dependent oxygenases. Finally, this study shows that hypoxia is able to 

directly promote the generation of erythrocytes by keeping erythroblasts in an immature 

state longer than during normal oxygen supply and at the same time allowing terminal 
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differentiation of more mature erythroblasts in more oxygenated areas of the 

hematopoietic tissue. Hence, hypoxia is able to directly promote erythropoiesis additional 

to the indirect regulation via epo expression in the kidney. 
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5.3.3. Material and Methods 

 

Culture of primary mouse erythroblasts 

Erythroid cells were isolated and cultivated as described17. Briefly, cells were grown from 

fetal livers collected from E12.5 embryos (WT, C57BL/6 background) and re-suspended 

in serum-free StemPro-34™ medium plus Nutrient Supplement (Invitrogen) 

supplemented with human recombinant erythropoietin (Epo; 2 U/mL; Erypo, Janssen-

Cilag), murine recombinant stem cell factor (SCF; 100 ng/mL; R&S Systems), synthetic 

glucocorticoid dexamethasone (Dex; 10-6 M, Sigma-Aldrich) and insulin-like growth factor 

1 (IGF-1; 40 ng/mL; Promega). Cell number and size distribution of cell populations were 

monitored daily in an electronic cell counter (CASY-1, Schärfe-System). Dead or 

differentiating cells were removed by Ficoll purification. Cumulative cell numbers were 

calculated as described18 

To induce terminal differentiation, continuously self-renewing erythroblasts were 

washed twice in PBS and seeded in StemPro-34TM, containing 10 U/mL Epo 10 U/ml) 

insulin (4x10-4 IE/mL; Actrapid HM), Dex antagonist ZK-112993 (3x10-6 M)19 and iron-

saturated human transferrin (1 mg/mL=25 µM Fe; Sigma-Aldrich). 

All cells were cultivated in an incubator supplied with 5% CO2 or an incubator 

supplied with 5% CO2 and N2 (Kendro). The oxygen concentration in the latter was 

adjusted to 3%. In order to inhibit 2-oxoglutarate–dependent dioxygenases, cells were 

incubated with 500 µM dimethyloxalylglycine (DMOG; Cayman Chemical). 

 

Cell morphology, histological staining, and determination of hemoglobin content 

Changes in cell morphology during differentiation were monitored by phase-contrast 

microscopy. For histological analysis, erythroblasts were cytocentrifuged at various 

stages of maturation onto glass slides and stained with histological dyes and neutral 

benzidine for hemoglobin as described20. Photomicrographs were taken using an 

Axiovert 10 microscope (Zeiss) equipped with a 20x lens and a 63x oil-immersion lens, a 

Zeiss AxioCam MRc5, and Axiovision LE software. Images are presented at x200 and 

x630 magnification. 
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Hemoglobin content was determined photometrically from 50 µl aliquots from the 

cultures as described21. Values obtained from triplicate determinations were averaged 

and normalized to cell number and cell volume. 

 

Flow cytometry 

1x106 self-renewing or differentiating erythroblasts were washed twice with PBS/2% fetal 

calf serum (FCS) and stained with fluorescently-labeled antibodies (all from BD 

Biosciences) against transferrin receptor (biotinylated; APC-streptavidin for detection), c-

Kit (FITC-conjugated) and Ter119 (PE-conjugated). Surface marker expression was 

analyzed by flow cytometry (FACS Calibur, BD Biosciences) and processed with FlowJo 

Software (Tree Star). 

 

Electrophoretic mobility shift assays 

RNA-protein complexes were resolved essentially as described22. Briefly, for 

electrophoretic mobility shift assays (EMSAs), cytoplasmic extracts were incubated with 

[32P]-labeled transcripts produced by T7 RNA-polymerase (Promega) following 

linearization of the plasmid pGEM-3Zf(+)-chicken FerH-IRE with BamHI (New England 

Biolabs). 40 µg of protein and 1.3x106 dpm of labeled IRE-containing in vitro transcript 

were incubated for 20 minutes at room temperature. The total amount of IRP1 was 

assessed by in vitro reduction with 2% β-mercaptoethanol (2-ME)23 prior to the binding 

reaction. After treatment with RNAse T1, RNA-protein complexes were resolved on 6% 

non-denaturing polyacrylamide gels at 4°C. Bands corresponding to IRE/IRP complexes 

were quantified by phospho-imaging (Molecular Dynamics). 

 

Western blot analysis 

Cell pellets were lysed in sample buffer as described24 and 10-20 µg of protein separated 

on SDS-polyacrylamide gels. Protein transfer and loading were visualized by staining 

with acidic Ponceau-S solution. Thereafter, membranes were blocked one hour at room 

temperature with 1% low-fat dry milk in TBS and probed overnight with anti-horse spleen 

ferritin (Sigma-Aldrich), anti-mouse TfR1 (AbD Serotec) and anti-mouse eIF4E (Cell 

Signaling). After washing, filters were incubated with second antibody (IRDye700DX or 
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IRDye800DX conjugated IgG [H&L]; Rockland). After washing, immuno-reactive signals 

were detected with an Odyssey infrared imaging system (Li-cor Biosciences). 
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5.3.4. Results 

 

The binding activity of IRPs is modulated by oxygen in terminal differentiating but 

not in self renewing erythroblasts 

The main regulator of the binding activity of IRPs is iron. Nevertheless, other factors 

including oxygen are known to influence the regulation of iron metabolism via these 

proteins5,6. In order to investigate the role of oxygen in the regulation of iron metabolism 

during the development of erythroblasts we performed electro mobility shift assays 

(EMSA) with the cytosolic extracts of immature, non-differentiating as well as terminally 

differentiating cells (Figure 1A). First, we cultivated fetal liver derived primary 

erythroblasts under non-differentiating conditions and compared cultivation at low 

oxygen concentration (3% oxygen) to cultivation at atmospheric oxygen concentration 

(20% oxygen). The binding activity of IRP1 and IRP2 was only slightly affected by the 

different oxygen concentrations. 3% oxygen faintly reduced IRP2 binding activity 

whereas IRP1 binding activity was not affected. In contrast to this, terminally 

differentiating erythroblasts that were cultivated in 3% oxygen showed a binding activity 

reduction of IRP1 and IRP2 compared to cells cultivated in 20% oxygen. 

Since a change of IRP binding activity affects the expression of several proteins 

that are linked to the iron metabolism of the cell, we also determined protein levels of 

TfR1 and ferritin by western blot analysis. As expected, the expression of both proteins 

stayed constant in non-differentiating cells (data not shown) but were considerably 

altered in terminally differentiating erythroblasts when the oxygen concentration was 

reduced (Figure 1B). Corresponding to the well known posttranslational effect on the 

expression of these two proteins, ferritin protein levels were increased whereas TfR1 

protein levels were decreased, although the effect on ferritin was stronger. 

Other groups have already shown that the IRP binding activity is modulated by 

oxygen7. In order to compare the effects observed with differentiating erythroblasts to 

other cell types, we incubated J774 macrophages and mouse embryonic fibroblasts 

(MEFs) at 3% and 20% oxygen and measured the IRP binding activity by performing 

EMSAs. Interestingly, these two cell types showed diverse regulation of IRP binding 

activity in response to changed oxygen concentrations (Figure 1C). J774-macrophages 

cultivated at 3% oxygen reduced their IRP1 binding activity drastically compared to 20% 

oxygen while IRP2 binding activity increased in these cells. In contrast to this, MEFs did 

not show any difference in the binding activity of IRPs under those oxygen conditions. 
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Therefore, the effect of oxygen on the regulation of IRP binding activity in vitro was 

dependent on the cell type and in the special case of erythroblasts on the developmental 

stage of the cells. 

 

Low oxygen levels inhibit spontaneous differentiation during the outgrowth of 

immature fetal liver erythroblasts 

The regulation of iron metabolism via the binding activity of IRPs is of special importance 

during terminal erythroid differentiation since erythroblasts depend on the uptake of high 

amounts of iron for the biosynthesis of heme. Down-regulation of IRP binding activity as 

observed in our in vitro culture of differentiating erythroblasts at 3% oxygen leads to 

down-regulation of TfR1. The iron uptake via this receptor is essential for heme 

synthesis during erythropoiesis and thus a decrease in its expression would interfere 

with the accumulation of hemoglobin. Furthermore, down-regulation of IRP also reduces 

the accessibility of iron within the cell by up-regulating ferritin. Available cellular iron is 

trapped within the nano-cages that are formed by this protein, leading to the same effect 

as down-regulation of TfR1. Altogether this would interfere with heme synthesis and 

hence with normal erythroid differentiation. Tissue oxygen levels are normally in the 

range of 3-5%, therefore the incubation of erythroblasts at this concentration in vitro is 

favorable compared to atmospheric 20-21% oxygen that are never reached in tissues. 

Nevertheless, the observed decrease of iron supply that is linked to the decrease of 

oxygen to "physiological levels" during a phase of high iron demand contradicts this 

assumption. Since we used a well defined erythroid in vitro system for our studies, we 

were able to take a closer look at this seemingly paradox situation in the context of 

changed oxygen supply.  

First, we measured the size distribution of outgrowing murine fetal liver 

erythroblasts cultivated at 3% or 20% oxygen (Figure 2A). The major part of E12.5 fetal 

livers consists of erythroblasts of different differentiation status ranging from immature 

self-renewing cells to mature enucleated red blood cells. Immature murine fetal liver 

erythroblasts have a mean diameter of 9 to 11 µm. During the process of differentiation 

the diameter shrinks to about 5 µm.  

During the first days of cultivation at 20% oxygen, the originally heterogeneous 

population was enriched in immature cells due to the signals provided by SCF, dex and 

epo. After 5 to 6 days in culture the cell population consisted mainly of immature 

erythroblasts (Figure 2A, left panel). Starting with day 7, spontaneous differentiation of 
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this population occurred and resulted in a mixed population of mature and immature 

erythroblasts, although the combination of factors was not changed. This was not the 

case when we cultivated fetal liver cells in the same medium but at 3% oxygen. Within 7 

to 8 days these cells developed to a homogenous population of immature erythroblasts. 

Interestingly, these cells did not show spontaneous differentiation until day 12 of 

cultivation. Benzidine stainings of erythroblasts at day 7 of cultivation confirmed the 

above described oxygen dependent differences in cell size distribution (Figure 2B). 

Furthermore, the frequency of cells with a more condensed nucleus and with a 

hemoglobin containing cytoplasm showing a tendency for spontaneous differentiation 

was higher when erythroblasts were cultivated at 20% compared to 3% oxygen. 

In order to test if these effects are reversible we switched the erythroblasts from 

20% oxygen to 3% oxygen at day 5 (Figure 2A, middle left panel). After 2 days of 

adaption to the low oxygen concentration these erythroblasts remained in an immature 

state whereas those erythroblasts kept under normoxic conditions showed increased 

spontaneous differentiation. When this switch took place in the opposite direction by 

keeping the erythroblasts first at 3% oxygen and then shifting to 20% oxygen at day 10, 

the cells immediately started to differentiate and after 48 hours the major part of the 

population consisted of small, mature erythroblasts (Figure 2A, right panel). 

 

Oxygen concentration modulates terminal erythroid differentiation 

As shown above the oxygen concentration had an obvious effect on the outgrowth of 

erythroid precursors. Consequently, we also wanted to investigate whether a change of 

oxygen concentration affects the induced terminal erythroid differentiation. We are able 

to induce terminal erythroid differentiation of cultured erythroblast by the withdrawal of 

SCF, the replacement of dex by its antagonist ZK and the increase of epo concentration 

from 2 U/ml to 10 U/ml. This leads to a synchronous terminal differentiation of all 

erythroblasts, including substantial synthesis of heme and enucleation. In view of the fact 

that the iron metabolism of these cells is disturbed under low oxygen conditions (Figure 

1A, right panel and Figure 1B), their general response regarding differentiation would 

help to clarify if this modification of iron regulation is a primary effect due to the lack of 

oxygen or a secondary effect of disturbed terminal erythroid differentiation. 

Fetal liver cells were cultivated at 3% and 20% oxygen during erythroid 

outgrowth. At day 7 the cells were transferred into medium containing differentiation 

factors while keeping the oxygen concentrations constant. Under both oxygen conditions 
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the erythroblasts reduced their size during differentiation (Figure 3A). Nevertheless, 

erythroblasts showed a delayed size reduction when kept at 3% compared to 20% 

oxygen. The delayed cell size decrease of erythroblasts cultivated at 3% oxygen was 

accompanied by reduced proliferation, which resulted in a decrease of the cumulative 

cell number by more than 50% 48 hours after the induction of differentiation (Figure 3B). 

Furthermore, hemoglobinization was reduced by 40% (Figure 3C). Benzidine stainings of 

these erythroblasts confirmed the differences regarding cell size distribution and 

hemoglobin accumulation (Figure 3D). 

Taken together, these data show that 3% oxygen supplied by the used incubators 

interfere with normal terminal erythroid differentiation in our in vitro culture system. 

 

p53 -/- erythroblast are more sensitive to low oxygen concentrations during 

terminal erythroid differentiation than wild type erythroblasts 

Immortalized normal erythroblast clones isolated from fetal livers of p53-/- mice are 

characterized by reduced spontaneous differentiation when kept at non-differentiating 

conditions but behave otherwise like wt fetal liver erythroblasts25. We used such a clone 

(I/11) to further analyze the effect of oxygen on the proliferation and the differentiation of 

erythroblasts, since these cells do not show spontaneous differentiation and the switch 

between immature self renewal and terminal differentiation is strictly dependent on the 

factors added. Reduced oxygen levels had similar effects on the differentiation of I/11 

erythroblasts compared to wild type fetal liver erythroblasts. The cell size decrease was 

normal at 20% oxygen: 72h after induction of differentiation a major part of the 

population reduced its diameter to 5 µm (Figure 4A, left panel). As expected, 3% oxygen 

interfered with cell size decrease but interestingly, the effect was even stronger 

compared to wild type erythroblasts (Figure 4A, right panel). The whole population of I/11 

cells reduced the cell size only slightly each day. After 72 hours the mean diameter was 

still above 7 µm and cells with a diameter of 5 µm were virtually absent. Cell proliferation 

was also affected (Figure 4B). While I/11 erythroblasts increased the cell count more 

than 6 fold within a time span of 72 hours when cultivated at 20% oxygen, 3% oxygen 

reduced the increase to 2.5 fold. Furthermore, proliferation stopped after 48 hours 

indicating that differentiation was not only delayed but completely blocked. In addition, 

the mean heme amount/cell volume was reduced to 30% when the oxygen levels were 

reduced to 3% oxygen during differentiation (Figure 4C). Taken together, I11 cells are a 
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perfect tool to further evaluate the effect of oxygen concentration and of parameters 

linked to oxygen supply on erythroid differentiation. 

 

Cell density and diffusion distance modulate the oxygen microenvironment of 

differentiating erythroblasts 

The oxygen concentration in the direct environment of in vitro cultured cells is dependent 

on the oxygen concentration in the incubator. Nevertheless, it is often neglected that the 

cell density, the height of medium and the metabolic rate of the used cell type play an 

important role regarding the oxygen supply of the cell15. In order to investigate if the 

erythroblasts cultivated in our in vitro setting sense an oxygen environment that 

corresponds to the oxygen concentration of the incubator we challenged the system by 

manipulating factors that are known to influence oxygen availability. 

First, we modulated the oxygen consumption rate per culture plate by reducing 

the number of erythroblasts seeded in the same volume of medium on an unchanged 

area. Proliferation rates of cells that were cultivated under self-renewing conditions were 

markedly affected by cell density (Figure 5A). When I/11 erythroblasts were readjusted 

daily to a concentration of 1x10E6 cells/ml, the cells grown at 3% oxygen showed a 50% 

decreased proliferation rate compared to cells that were grown at 20% oxygen. When 

the cell concentration was reduced by a factor of 4, the difference of the oxygen 

concentration did not influence the proliferation rates any longer. Interestingly the 

proliferation rate of cells cultivated at 3% oxygen at low density was comparable to the 

proliferation rate of cells seeded at high density in a 20% oxygen incubator. This 

demonstrates that the effective oxygen concentration in the environment of the 

proliferating erythroblasts in our in vitro system can be reduced by a high cell 

concentration. 

When we looked at differentiating erythroblasts we could observe that the cell 

size decrease was perturbed by low oxygen levels (Figure 4A). This effect was still 

present when we reduced the cell concentration from 2x10E6 to 5x10E5 cells/ml (Figure 

5B, left panel). Surprisingly, further reduction to 1.25x10E5 cells/ml erased any 

difference between the cultivation at 3 or 20% oxygen and the cell size distributions of 

erythroblasts 72 hours after the start of differentiation were practically equal (Figure 5B, 

right panel). The efficiency of heme accumulation was also dependent on oxygen 

concentration when differentiation was initiated at 2x10E6 cells/ml but this dependency 

diminished when the concentration was reduced, reaching comparable levels at 5x10E5 
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cells/ml and below (Figure 5C). Interestingly, the heme synthesis rate generally 

increased when the cell concentration became lower, indicating that heme synthesis was 

limited at higher cell concentrations. Comparable results were obtained when we looked 

at the proliferation rate during differentiation (Figure 5D). The observed reduction in 

proliferation caused by lower oxygen supply of the incubator at higher cell densities 

diminished with lower cell densities and was absent at a concentration of 1.25x10E5 

cells/ml. Taken together, our results clearly show that the cell density modulates oxygen 

availability during the culture of erythroid cells leading to lower effective oxygen supply 

than the actual external oxygen concentration provided by the incubator. 

Another oxygen-supply relevant parameter that we changed was the diffusion 

distance of oxygen through the medium that covers the cells. It is possible to reduce the 

distance to virtually zero if gas permeable tissue culture dishes are used15. Furthermore, 

other possible limiting factors that could be dependent on cell density can be neglected 

since these cultivation factors remain constant. When we cultivated I/11 erythroblasts in 

gas permeable dishes, we observed an effect that was comparable to a reduction of cell 

density. The proliferation rate of self renewing (Figure 6A) and terminal differentiating 

cells (Figure 6D) was similar in normal tissue culture dishes at 20% oxygen and in gas 

permeable dishes at 3% oxygen in contrast to the reduced proliferation rate in 

conventional tissue culture dishes at 3% oxygen. Interestingly, the proliferation rate of 

immature erythroblasts in gas permeable dishes at 20% oxygen was higher than in 

conventional dishes at the same oxygen concentration (Figure 6A). The heme synthesis 

rate was also positively affected by the usage of gas permeable dishes at 3% oxygen 

(Figure 6C). The cell size decrease could be improved but was still not as fast as with 

20% oxygen (Figure 6B). However, erythroblasts that were cultivated in gas permeable 

dishes at 20% oxygen showed a comparable retardation in cell size decrease (data not 

shown). This indicates that this is an inherent effect of the gas permeable dishes and not 

due to a limited supply of oxygen. 

 

2-oxoglutarate–dependent dioxygenase inhibitor DMOG prevents immature 

erythroblast from spontaneous differentiation in vitro 

Since the cultivation of erythroblasts at low oxygen levels resulted in a reduction of 

spontaneous differentiation we wanted to further investigate the mechanisms behind this 

observation. HIFs are the regulators of the transcriptional response to hypoxia in 

metazoan organisms. In mammalians their activity is dependent on the hydroxylation of 
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three residues of their α-subunits (either HIF1α or HIF2α), which leads to the subunit’s 

deactivation and degradation26-28. As this process is oxygen dependent, HIFs are active 

in a hypoxic environment. A simple possibility to activate HIFs despite high oxygen 

concentrations is by adding the 2-oxyglutarate-dependent dioxygenase inhibitor DMOG 

to cultured cells27. DMOG replaces 2-oxoglutarate, which is an essential co-substrate for 

HIF hydroxylation and therefore prevents HIF inactivation, since DMOG cannot be used 

by the relevant hydroxylation enzymes (PHDs, FIH). We used DMOG in order to 

investigate the role of HIFs in the regulation of erythroid differentiation. 

The effects of DMOG on the outgrowth of fetal liver erythroblasts were not only 

comparable to the incubation at low oxygen levels but resulted in an even more 

pronounced effect. While the population of untreated control cells proliferated and 

differentiated simultaneously as shown above, DMOG treated cells proliferated but did 

not show any tendency to differentiate as demonstrated by cell size distribution (Figure 

7A). This period of exclusive proliferation could be extended to at least 2 weeks, when 

DMOG was added regularly to the medium. 

Using flow cytometry we further looked at the expression levels of the cell surface 

markers CD117/c-Kit and CD71/TfR1 that change during the process of erythropoiesis 

(Figure 7B). CD117, the receptor of the stem cell factor, is generally expressed on 

immature hematopoietic cells29. At day 7 of cultivation we could observe that the majority 

of erythroblasts that were grown in medium containing DMOG expressed CD117. In 

contrast to this, the greater part of cells without DMOG grown at 20% oxygen showed no 

CD117 expression, demonstrating that these cells are more mature than DMOG treated 

cells. CD71 is expressed on virtually every growing cell as iron import is essential for cell 

growth and proliferation. Regarding erythroblasts, its expression is strongly increased 

during terminal differentiation due to the high heme synthesis rate which is linked to high 

iron demands. As expected, erythroblasts cultivated with DMOG showed a lower 

expression of CD71 when compared to cells cultivated without DMOG, supporting the 

assumption that DMOG treated cells are more immature. Although CD71 expression is 

generally accepted as erythroid differentiation marker, its expression is also regulated by 

iron metabolism and consequently also linked to heme synthesis per se. Benzidine 

staining of day 7 erythroblasts showed that heme synthesis was strongly reduced by 

DMOG (Figure 7C, upper panels). Furthermore, the untreated population consisted of 

erythroblasts at different stages of maturation ranging from immature cells with large 

nuclei to small, mature, heme containing and even enucleated cells. In contrast to this, 

the DMOG treated population consisted mainly of a homogenous population of non-
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differentiated cells. Taken all these data together, i.e. cell size distribution, the 

expression rates of erythroid markers, cell morphology and heme synthesis, this 

demonstrates that the addition of DMOG to the cultivated erythroblasts kept these cells 

in a more immature state than control cells. 

In order to find out how an immature continuously DMOG treated population 

reacts to DMOG withdrawal we divided an 8 days old homogenous population of fetal 

liver derived erythroblasts cultivated with DMOG into a cell population with prolonged 

DMOG treatment and a population cultivated without DMOG. Cells that were 

supplemented with DMOG continued to proliferate without signs of spontaneous 

differentiation for at least 10 days (Figure 7D, middle panel). Interestingly, erythroblasts 

without DMOG showed an increase of the mean sell size of about 1 µm during the first 

24 hours of DMOG withdrawal (Figure 7D, left panel). Thereafter the cells continuously 

reduced their mean cell size to 5 µm within 10 days. The cell size decrease was 

accompanied by an increase in the total proliferation rate until day 7 after DMOG 

withdrawal (Figure 7E). When we discriminated between the accumulating cell numbers 

of larger, immature cells (>7.5 µm diameter) and smaller, mature cells (4-7.5 µm 

diameter), we could observe that the higher proliferation rate of erythroblasts without 

DMOG was mainly caused by an increase in the number of small mature cells. In 

contrast, the relative amount of larger self renewing cells decreased, which consequently 

led to an increased “aging” of the population and finally to a stop of proliferation due to 

progressive depletion of immature erythroblasts. The decrease of cell size was 

accompanied by an increase of heme levels confirming terminal erythroid differentiation 

(Figure 7F; left panel). Both observations were confirmed by cytospin stainings. A major 

part of erythroblasts cultivated without DMOG was stained by benzidine indicating 

accumulation of heme and these cells also showed a cell size decrease which was 

accompanied by condensation of the nucleus or even enucleation (Figure 7C; lower 

panels). Erythroblasts that were grown in medium containing DMOG did not show this 

shift to more mature cells and continued to proliferate. 

After about three weeks in culture DMOG treated cells showed a less defined cell 

size distribution with somewhat increased proportions of smaller cells. Interestingly, at 

the same time proliferation rates began to decrease. Furthermore, the heme levels 

remained low, indicating that the cells did not differentiate. In order to test if these 

erythroblasts are actually still able to undergo terminal differentiation, we again divided 

the DMOG treated population into two cultures with and without prolonged DMOG 

treatment at day 19. The effects of DMOG withdrawal were comparable to the effects at 

day 8, including cell size decrease (Figure 7D, right panel), increased proliferation and 
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heme synthesis rates (Figure 7F, right panel). However, the kinetic of spontaneous 

differentiation was accelerated and proliferation stopped within 5 days (Figure 7E). This 

indicates that although terminal differentiation was blocked by DMOG, the erythroid 

population became more inclined to differentiate if this block was removed. 

 

DMOG interferes with induced terminal erythroid differentiation 

The addition of DMOG to erythroblasts kept under non-differentiating conditions resulted 

in the extension of their proliferation potential linked to an abrogation of spontaneous 

differentiation when compared to cells without DMOG. Thus, we wanted to know whether 

there is an effect of DMOG on erythroblast induced for terminal differentiation. 

For this purpose we cultivated fetal liver cells under self renewal conditions in the 

presence of DMOG until we established a homogenous population of immature 

erythroblasts. Subsequently we induced terminal erythroid differentiation by changing the 

supplemented factors and cultivated them further with or without the addition of DMOG. 

When we measured the cell size distribution it was obvious that differentiating 

cells that were cultivated in the presence of DMOG reduced their cell size to a lesser 

extent than control cells without DMOG (Figure 8A). This observation was supported by 

cytospins of erythroblasts 48 and 72 hours after induction of differentiation (Figure 8B). 

Untreated cells showed a normal reduction in cell size including condensation of the 

nucleus and enucleation. In contrast to this, DMOG treated cells showed only a minor 

reduction of cell size and enucleation could not be observed. Furthermore, even 72h 

after induction of terminal erythroid differentiation heme synthesis was not detectable by 

benzidine staining in contrast to control cells without DMOG. Photometric determination 

of heme levels indeed showed that heme synthesis of DMOG treated cells was only 

slightly above or even beyond detection limits throughout differentiation, whereas control 

cells showed a normal increase of heme levels over time (Figure 8D). Interestingly, 

DMOG also negatively affected proliferation rates, resulting in a reduction of cell number 

by 50% 72 hours after induction of differentiation (Figure 8C). Finally, we also analyzed 

the expression of CD71 and Ter119, two known markers of terminal erythroid 

differentiation, by flow cytometry. The expression of both was increased on differentiated 

control cells as well as on DMOG treated cells compared to immature erythroblasts 

(Figure 8E). However, the increase was weak in DMOG treated cells compared to 

control, supporting an inhibitory effect of DMOG on terminal erythroid differentiation.  
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5.3.5. Discussion  

 

The activation of epo transcription via stabilization of HIF-2α in the kidney links 

hypoxia/oxygen-supply to erythropoiesis. The direct contribution of the oxygen 

concentration to the development of red cells in the erythropoietic tissues itself is less 

well understood. Furthermore, the regulation of the cellular iron metabolism, which is 

vital during erythropoiesis in order to supply the heme synthesis machinery with sufficient 

amounts of iron, is also affected by oxygen. The aim of this work was to analyze the 

effects of cultivation-dependent parameters on oxygen supply and furthermore, the direct 

effect of the oxygen concentration on erythropoiesis, including the regulation of the 

cellular iron metabolism by the IRE/IRP system.  

We could show that a reduction of the external oxygen supply had no influence 

on the binding activities of IRPs as long as erythroblasts were kept in an immature state. 

Nevertheless, when we induced terminal differentiation, which is accompanied by a 

drastic increase in heme biosynthesis and a considerable reduction in cell size, the 

IRP/IRE system responded to low oxygen concentrations by reducing IRP binding 

activity. This would be in conflict with an increased iron demand during this period of 

erythropoiesis, since reduced IRP binding activity leads to reduced iron import via TfR1 

and increased sequestration of iron by ferritin30. Indeed, the incubation of erythroblasts at 

low oxygen concentrations resulted in reduced heme levels. Surprisingly, we also 

observed disturbed cell proliferation and cell size decrease during induced differentiation 

at 3% oxygen compared to atmospheric oxygen levels. Apparently, reduced oxygen 

levels interfered with the whole process of terminal differentiation of the cultivated 

erythroblasts suggesting that the reduction of IRP binding activity was a secondary 

effect, caused by the inhibition of heme synthesis and the resulting iron overload31. This 

is supported by the fact that we could not observe a change in IRP binding activity in 

more immature erythroblasts, i.e. before the induction of heme synthesis.  

The occurrence of an inhibitory effect of low oxygen levels on erythroid 

differentiation was very surprising, since physiological oxygen concentrations in 

mammalian tissues are normally in the range of 3 to 5% or even lower, depending on 

oxygen supply and metabolic activity11. It is generally assumed that in vivo-like tissue 

culture experiments should be performed at oxygen concentrations corresponding to the 

physiological levels, especially if oxygen dependent processes are analyzed. 

Nevertheless, several groups have shown that the effective oxygen concentration that is 
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perceived by in vitro cultured cells is not equivalent to the oxygen concentration of the 

incubator but is also dependent on other factors, like cell density, metabolic rate or 

diffusion distance15. We could show that the cell density modulates the oxygen 

availability in our in vitro system and our results suggest that the effective oxygen 

concentration perceived by erythroblasts cultivated at atmospheric oxygen levels is in 

fact below 20%. Furthermore, when we used gas permeable dishes that eliminate the 

limiting effects of oxygen diffusion through the medium, we detected no difference 

between erythroblasts cultured at 3% oxygen and conventional cultivation at 20% 

oxygen, indicating that the oxygen supply of the cells is comparable. This implies that 

under conventional culture conditions combined with normal atmospheric oxygen supply 

the effective oxygen concentration is similar to physiological conditions during terminal 

erythroid differentiation. Consequently, when the oxygen concentration is decreased to 

3% the effective oxygen supply is further decreased and reaches hypoxic levels that 

interfere with the late stages of differentiation. This was still the case when the oxygen 

concentration was adjusted to less "hypoxic" levels of 6% oxygen (data not shown). 

Since HIFs are the transcription factors that regulate the cellular response to 

reduced oxygen supply, we wanted to analyze if they are also responsible for the 

observed effects on erythropoiesis. To test the role of HIFs, we added the HIF stabilizer 

DMOG to cultured erythroblasts. Surprisingly, the outcome was even more pronounced 

than with cells cultured under low oxygen levels. This observation can be explained by 

our method of cultivation, which includes the daily addition of fresh medium containing 

the respective factors. Hence, it was necessary to interrupt the cultivation in the low 

oxygen incubator and to expose the erythroblasts to atmospheric oxygen levels every 24 

hours. Therefore, the activity and stabilization of HIF-α is interrupted as well and has to 

be reestablished after the medium change leading to a gap in the activation of its targets. 

In contrast to this, DMOG is present continuously and activates HIFs without interruption, 

independent of exposure to oxygen and medium changes. 

As already described, the used erythroid in vitro model includes two phases of 

cultivation17. In the first phase, immature erythroblasts are cultivated in the presence of 

factors promoting self renewing with only a minor tendency for spontaneous 

differentiation. In the second phase, they are replaced by factors inducing synchronous 

terminal differentiation, which finally leads to a population of small, enucleated and highly 

hemoglobinized cells. In both phases, reduced oxygen supply as well as DMOG 

treatment inhibited cell size decrease, enucleation and heme synthesis, which resulted in 

a homogenous immature population in the first phase and perturbed terminal 

differentiation in the second phase of the cultivation. Obviously, low oxygen supply and 
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stabilization of HIF-α support self renewal of immature erythroblasts and interfere with 

terminal erythroid differentiation. 

Furthermore, the addition of DMOG to fetal liver cells not only prevented the 

terminal differentiation of erythroblasts, which resulted in a homogenous population of 

immature cells during the first phase of cultivation, but also prolonged their limited 

capacity to proliferate. The cell size distribution of the cultured cells already indicates that 

cells without DMOG become more mature within several days and the proportion of 

immature cells with still higher proliferation capacity decreased. Recently it has been 

shown that the expansion rate of purified BFU-Es but not of more mature CFU-Es can be 

increased by the addition of DMOG and it was demonstrated that HIFs and 

glucocorticoids, which are essential for stress erythropoiesis, share transcription 

targets16. Addition of DMOG to fetal liver cells would therefore result in an accumulation 

of BFU-Es in our culture system. This is in line with the observation that 24 hours after 

DMOG withdrawal erythroblasts increase their mean cell volume, which would confer 

with the transition of smaller BFU-Es to larger CFU-Es32. The BFU-Es isolated from fetal 

livers normally are able to proliferate for 10 days, which corresponds to the proliferative 

capacity of this cell type33,34. Nevertheless, our total fetal liver culture could be kept 

proliferating for at least 28 days, indicating that beside BFU-Es more immature cells with 

still higher proliferation capacity can be found in the cultivated population. These early 

erythroid progenitors would therefore be responsive to hypoxia and HIFs as well. 

Another explanation would be that the self-renewing capacity of BFU-Es themselves is 

prolonged under the influence of hypoxia.  

Although terminal erythroid differentiation was virtually absent throughout the 

incubation with DMOG, SCF and dex, the erythroblasts obviously became more 

disposed to differentiation during cultivation. While the population of fetal liver cells 

depleted of DMOG at day 8 of cultivation, needed about 10 days until all cells were fully 

differentiated, erythroblasts that were already three weeks in culture fully differentiated 

within 5 days as soon as DMOG was withdrawn. Additional characterization of cultivated 

erythroblasts treated with DMOG will help to clarify in detail how oxygen and HIF 

influence the different stages of erythropoiesis. 

Based on these data we can conclude that the oxygen concentration in 

combination with growth factors effectively and directly regulates the progression of 

erythroid differentiation and that the activity of HIFs is responsible for this oxygen 

dependent regulation. This is in perfect agreement with the in vivo situation, since the 

oxygen concentration in hematopoietic tissues increases in line with increasing maturity 
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of the developing erythroblasts12. Therefore, cultivation of maturing erythroblasts requires 

adjustment of the oxygen concentration during the process of terminal differentiation in 

order to assure in vivo like conditions. 

Since low oxygen concentrations inhibited the last phase of erythroid 

differentiation, we are confronted with a seemingly paradox situation. Hypoxia generally 

leads to an increased formation of fully developed erythrocytes mainly induced by an 

increase of epo synthesis in the kidney9,10,35. A direct inhibitory effect of hypoxia on 

erythroid differentiation would therefore contradict the observed amplification of 

erythrocytes. Based on our data, we want to propose a model that clarifies this paradox 

and furthermore demonstrates how hypoxia contributes to the increased generation of 

erythrocytes directly in the hematopoietic tissue. We show that there is an oxygen 

threshold that is essential for the decision between self renewal and differentiation. This 

threshold divides the hematopoietic tissue into a hypoxic area, which promotes self 

renewal and contains immature cells, and a normoxic area that allows terminal erythroid 

differentiation. If an organism is confronted with reduced oxygen supply, this will lead to 

a shift of the threshold leading to an enlargement of the hypoxic area. Hence, developing 

erythroblasts reside in the hypoxic area for a longer time period and therefore are able to 

stay in a self renewal state and divide more often before the onset of terminal erythroid 

differentiation compared to an organism that is sufficiently supplied with oxygen. This 

leads to an increase in the proliferation rate and consequently to an increased number of 

mature erythrocytes, since terminal differentiation can still take place in the more 

oxygenated regions. Thus, in our model hypoxia induces erythropoiesis indirectly via the 

induction of epo and directly via the oxygen distribution at the site of erythropoiesis in 

order to guarantee increased generation of erythrocytes.  

The promoting activity of dioxygenase inhibitors like DMOG on the early stages of 

erythropoiesis shows promising potential for a therapy addressing certain non epo 

responsive types of anemia16. Nevertheless, a possible therapy by the administration of 

these inhibitors must take into account that the site of early erythropoiesis is already 

hypoxic12. An additional activation of HIFs would indeed increase the proliferation rate of 

BFU-Es and more immature erythroid progenitors, but at the same time terminal 

erythroid differentiation would be perturbed. In vivo experiments including determination 

of oxygen concentration and expression of HIFs would therefore help to evaluate a 

possible therapy. 

Taken together, we could show that cultivation parameters like cell density and 

diffusion distance have to be considered, when oxygen is an important factor of in vitro 
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experiments. Furthermore, the oxygen concentration can be used as a regulator of 

erythroid development in vitro and is an important factor in the cultivation of 

erythroblasts. Finally we present a model, describing how hypoxia can contribute in vivo 

to induce erythropoiesis directly, additional to the activation of epo expression in the 

kidney.  
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5.3.6. Figures 

Figure 1 

 

Figure 1. The response of the iron regulatory system to changed oxygen levels is 
cell type specific. (A) Cytosolic extracts of in vitro cultured immature and differentiating 
erythroblasts (48 hours after induction of differentiation) were used for EMSA to analyze 
the binding activity of IRP1 and IRP2 at different oxygen conditions (3% and 20%). 2-
mercaptoethanol treated lysates were used as loading control. (B) The protein levels of 
TfR1 and Fer of the cell lysates described above were determined by western blot 
analysis. eIF4E was used as loading control. (C) Cytosolic extracts of J774 
macrophages and MEFs cultivated at hypoxic and normoxic conditions were analyzed 
for IRP binding activity.  
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Figure 2 

 

Figure 2. Low oxygen prevents spontaneous terminal differentiation of immature 
erythroblasts. Murine fetal liver cells were cultivated in medium containing SCF, dex 
and epo at 3% and 20% oxygen. (A) Cell size distribution was monitored daily with an 
electronic cell analyzer starting 4 days after the onset of cultivation. At day 5, a fraction 
of the erythroblasts cultivated at 20% oxygen was transferred to 3% oxygen and at day 
10 erythroblasts cultivated at 3% oxygen were transferred to 20% oxygen. Immature 
erythroblasts have a mean diameter of 9 to 11µm whereas mature differentiated 
erythroblasts show a diameter of 5µm. (B)  Seven days after starting the cultivation of 
fetal liver cells, cultured erythroblasts were cytocentrifuged onto glass slides and stained 
with benzidine and histological dyes. Decrease of cell size is accompanied by 
condensation of the nucleus and enucleation. Benzidine stain of hemoglobin containing 
cells results in a brown colored cytosol.  
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Figure 3 
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Figure 3. Hypoxia perturbs normal induced terminal differentiation of 
erythroblasts. Immature erythroblasts were cultivated under self renewal conditions for 
seven days at 20% and 3% oxygen and consequently switched to medium containing 
differentiation factors. (A) Cell size distribution was determined starting with the onset of 
differentiation. (B) Cumulative cell numbers of differentiating erythroblasts were 
calculated as described in material and methods; error bars indicate SD of mean, n=4. 
(C) Heme/cell volume of erythroblasts 48 hours after induction of differentiation was 
determined as described in material and methods; error bars indicate SD of mean, n=3. 
(D) Benzidine staining of terminally differentiating erythroblasts 48 hours after induction. 
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Figure 4 

 

 

Figure 4. p53 -/- erythroblast are more sensitive to low oxygen concentrations 
during terminal erythroid differentiation than wild type erythroblasts. p53 -/- fetal 
liver derived erythroblasts were induced to terminal differentiation. (A)Cell size 
distribution of these cells was measured every 24 hours starting with induction of 
terminal differentiation. (B) Cumulative cell numbers and (C) heme levels of 
differentiating p53 -/- erythroblasts; error bars indicate SD of mean, n=3. 

  



Results 

121 
 

Figure 5 

 

 

Figure 5. Cell density modulates the oxygen microenvironment of cultivated p53-/- 
erythroblasts. We cultivated p53 -/- fetal liver derived erythroblasts at different cell and 
oxygen concentrations and monitored the outcome on proliferation and differentiation. 
(A) Growth rate/day of self renewing erythroblasts cultivated at 3% and 20% oxygen at 
the indicated cell density; error bars indicate SD of mean, n = 3 (B) Differentiating 
erythroblasts were cultivated at the indicated cell densities and cell size distribution, (C) 
heme levels and (D) growth rates were determined 72 hours after induction of 
differentiation; error bars indicate SD of mean, n=3. 
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Figure 6 

 

 

Figure 6. The diffusion distance limits the oxygen availability for cultured 
erythroblasts. p53 -/- fetal liver derived erythroblasts were cultivated in conventional 
and gas permeable tissue culture plates (Lumox). (A) Self renewing erythroblasts were 
cultivated at 3% and 20% oxygen and the daily proliferation rate was determined; error 
bars indicate SD of mean, n = 5. (B) Differentiating erythroblasts were cultivated as 
indicated and cell size distribution and (C) heme levels were determined 96 hours after 
induction of differentiation. (D) Cell numbers were determined every 24 hours; error bars 
indicate SD of mean, n=3. 
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Figure 7 
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Figure 7. 2-oxoglutarate–dependent dioxygenase inhibitor DMOG reduces 
spontaneous differentiation and extends the proliferation capacity of immature 
erythroblasts. Fetal liver cells were cultivated at 20% oxygen in the presence or 
absence of DMOG. (A) Cell size distribution was monitored daily with an electronic cell 
analyzer, starting 3 days after the onset of cultivation. (B) Flow cytometry histograms of 
fetal liver cells cultivated for 7 days, stained for CD117/c-kit and CD71/TfR1. (C) 
Benzidine staining of erythroblasts cultivated for 6 days (upper panel) with or without 
DMOG. The erythroblasts initially cultivated with DMOG were further cultured in the 
presence or absence of DMOG until day 14 (lower panel).  

(D) A homologous, DMOG treated population of fetal liver cells was divided into two 
separate populations at day 8 of cultivation. One population was further supplemented 
with DMOG while the other population was cultivated without DMOG. This procedure 
was repeated at day 19. We determined cell size distribution, (E) cumulative cell 
numbers and (F) heme levels of these cell populations. 

  



 

126 
 

Figure 8 

 

 

Figure 8. DMOG interferes with induced terminal erythroid differentiation. Immature 
erythroblasts were cultivated under self renewal conditions and consequently switched to 
medium containing differentiation factors including or excluding DMOG. (A) Cell size 
distribution was determined daily, starting with the onset of differentiation. (B) Benzidine 
staining of terminally differentiating erythroblasts 48 and 72 hours after induction of 
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differentiation. (C) Cumulative cell numbers and (D) heme levels of differentiating 
erythroblasts. (E) Flow cytometry histograms of erythroblasts differentiating for 48 hours, 
stained for CD71/TfR1 and Ter119. Immature erythroblasts were used as control. 
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6. Discussion 

6.1. The regulation of iron metabolism in differentiating 

erythroblasts 

The proper acquisition of iron for heme synthesis is essential for the successful 

differentiation of erythroblasts, since reduced iron supply results in the development of 

anemia. Nevertheless, it is not sufficient that an adequate amount of iron-bound 

transferrin provided by the systemic iron household is available for heme synthesis. In 

fact, the differentiating erythroblasts must be able to handle the large amounts of iron 

that need to be imported, transferred to the mitochondria and finally incorporated into 

protoporphyrin IX in order to produce heme for the formation of hemoglobin. We are 

interested in how the cellular IRE/IRP system regulates the expression of ferritin, ALAS2 

and TfR1, three main components of the erythroid iron metabolism, in order to ensure an 

unobstructed heme synthesis. Theoretically, induced heme synthesis requires increased 

iron import via TfR1 and minimal iron sequestration by ferritin. Furthermore, ALAS2 

expression must be elevated in order to allow the synthesis of sufficient amounts of 

protoporphyrin IX. This is in perfect agreement with our observations when we examined 

the expression rates of these proteins in differentiating erythroblasts. Nevertheless, this 

contradicts the expected regulation pattern of the IRE/IRP system: Increased iron 

accumulation within a cell normally decreases the iron binding activity of IRPs, which 

consequently leads to the downregulation of TfR1 and the upregulation of ferritin47,59. 

Surprisingly, this expression pattern was not only turned upside down after the induction 

of terminal differentiation but also did not respond to the modulation of the iron 

household by the addition of the iron chelator desferrioxamine. In contrast to the 

observed discrepancies between expected regulation by the IRE/IRP system and 

observed expression of TfR1 and ferritin, ALAS2 translation was not only induced during 

differentiation but also still responded to the addition of desferrioxamine. Nevertheless, 

this comprises another inconsistency since due to the IREs in the 5' UTRs of both, 

ALAS2 and ferritin, their expression is expected to be regulated synchronously.  

 Thus, what are the mechanisms that explain the discrepancy in the expression 

between erythroblasts before and after the onset of differentiation? In fact, the increased 

import of iron is combined with increased iron processing during the production of heme. 

Although the exact path of iron from the endosomes to the mitochondria is still not 

known, it is obvious that iron is shuttled very fast to the site of heme synthesis. 
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Consequently, we hypothesize that the residence time of iron within the cytosol is 

reduced to a minimum leading to a virtually iron depleted environment. This results in an 

increase of IRP binding activity and explains the observed increase of TfR1 expression 

as well as the decreased translation of ferritin mRNA. Furthermore, the insensitivity to 

desferrioxamine treatment is explained by the fact that the cytosol is already iron 

depleted and hence the addition of the chelator is without effect. We challenged this 

hypothesis by artificially increasing the cytosolic iron concentration of cultured 

erythroblasts using FAC as additional iron source. Indeed, ferritin expression correlated 

with the used iron concentration indicating the full functionality of the IRE/IRP system. 

Moreover, inhibition of heme synthesis by the addition of INH or SA activated ferritin 

expression as well. This demonstrates that under normal conditions mitochondria use 

iron instantaneously for heme synthesis and as a result they deprive the cytosol of iron. 

Nevertheless, this still does not explain the differences between Fer and ALAS2 

expression. We hypothesize that two reasons are responsible for this discrepancy. First, 

although all IREs share common properties, it has been shown that due to differences in 

structure and sequence their binding affinity for IRPs varies147,148. Second, the presence 

of two IRPs that bind to specific IREs with different affinities allows a certain degree of 

fine-tuning of the regulatory system. Furthermore, the IRP1 binding activity is dependent 

on the iron sulfur cluster synthesis and becomes activated if the mitochondrial iron 

supply is reduced. In contrast to this, IRP2 stability is dependent on the presence of 

cytosolic iron. Therefore, IRP1 activity is linked to mitochondrial iron supply while IRP2 

mediates adaption to cytosolic iron availability respectively iron excess. In combination, 

these features allow a more specific regulation of IRE containing mRNAs and might 

explain the observed differences between ferritin and ALAS2 expression.  

 The generation of IRP1 and IRP2 deficient mice demonstrated that despite a 

basic redundancy of IRP activity, allowing survival without either one of the two IRP 

homologues, there are obvious differences in their phenotypes166. In general, IRP1 

deficiency is linked to only minor changes of iron distribution, whereas IRP2 knock out 

mice show several pathological effects including an erythroid phenotype. The observed 

microcytic anemia of IRP2 deficient mice correlates with reduced TfR1 expression in 

bone marrow cells and therefore it was proposed to be caused by reduced iron import of 

differentiating erythroblasts167,168. We further addressed this question by using IRP1-/- 

and IRP2-/- fetal liver cells. In line with the anemic phenotype of IRP2 deficient mice, 

differentiated IRP2-/- erythroblasts showed reduced heme levels compared to control 

cells demonstrating that anemia is indeed an intrinsic erythroid effect. Interestingly, TfR1 

expression of IRP2 deficient erythroblasts was reduced before the onset of heme 
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synthesis compared to control cells but the expression returned to normal levels during 

terminal differentiation, indicating that IRP independent mechanisms may contribute to 

TfR1 upregulation. In contrast, ferritin expression was elevated in IRP2-/- erythroblasts 

throughout the cultivation before and after the onset of heme synthesis. Based on these 

data we conclude that the upregulation of ferritin leads to the sequestration of iron in 

IRP2-/- erythroblasts and therefore is the main cause for the observed microcytic anemia 

in IRP2 deficient mice. Since TfR1 is expressed at high levels during the period of heme 

synthesis its contribution to the phenotype is of minor importance.  

Taken together, cultivated primary erythroblasts derived from IRP deficient mice 

are a perfect tool to investigate special aspects of iron metabolism during erythroid 

differentiation. For instance, further analysis will reveal the contribution of IRP1 and IRP2 

to the regulation of ALAS2 activity and thereby will clarify the discrepancy between 

ferritin and ALAS2 regulation mentioned above. 

 

6.2. The impact of oxygen on the regulation of erythropoiesis 

Oxygen has been shown to influence the binding activity of IRPs155,272,273. Furthermore, 

the oxygen concentration has an impact on differentiation in general and on 

erythropoiesis in particular, although the underlying mechanisms are not well 

understood261,266. Since we use a cell culture system in order to analyze the iron 

metabolism during erythropoiesis these oxygen dependencies are of special importance 

for our work. As a consequence, the application of conventional incubators supplied with 

atmospheric oxygen levels imply that the oxygen concentration is unphysiological 

compared to the in vivo situation. The reduction of the oxygen concentration to 

“physiological levels” (3-5% oxygen) indeed affected the IRP binding activity in terminally 

differentiating erythroblasts but surprisingly did not alter the binding activity in immature 

erythroblasts before the onset of heme synthesis. Furthermore, cultured fibroblasts 

showed no response to changes in oxygen supply, while macrophages responded, 

although the changes were distinct from those observed with differentiating 

erythroblasts. Consequently, we conclude that the effect of the oxygen concentration on 

the IRP binding activity is dependent on additional indirect factors. In the case of 

differentiating erythroblasts we could show that reduced oxygen in general had an 

inhibiting effect on terminal differentiation. In combination with SCF and glucocorticoids 

this resulted in the establishment of a homogenous population of immature erythroblasts 

with a minor tendency to spontaneously differentiate than cells cultivated at atmospheric 
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oxygen levels. On the other hand, the induction of terminal differentiation by the 

withdrawal of SCF and dex and the increase of epo concentration was inhibited by 

reduced oxygen levels which resulted in reduced proliferation, perturbed cell size 

decrease and reduced heme synthesis. As mentioned above, inhibition of heme 

synthesis during terminal erythroid differentiation increases cytosolic iron levels and 

leads to the downregulation of IRP binding activity. Taken together, this explains why the 

limited oxygen supply decreases the binding activity of both IRPs and why the IRPs of 

immature cells are not responsive to reduced oxygen since the differentiation-linked 

heme synthesis is not yet induced in these cells.  

 The average oxygen concentration in tissues is normally in the range from 3% to 

5%, but locally it is even lower183. Compared to these values the atmospheric oxygen 

concentration of 20-21% seems far too high. As a consequence some cell culture 

experiments are performed at oxygen concentrations that correspond to the in vivo levels 

in order to allow physiological conditions, especially if oxygen dependent processes are 

analyzed. Nevertheless several papers that addressed the question of oxygen supply in 

conventional tissue culture could show that the effective oxygen concentration is not 

equivalent to the ambient oxygen concentration267,269,271. Moreover, the limitations of 

oxygen diffusion in combination with high oxygen consumption rates can lead to a 

virtually anoxic environment for certain cell types268,271. We modulated the cell density 

and reduced the diffusion distance in our cell culture system in order to find out whether 

the cultivated erythroblasts face oxygen concentrations that are below the levels 

provided by the used incubators. As mentioned above, the reduction of the ambient 

oxygen concentration to 3% resulted in the inhibition of erythroid differentiation under 

conventional culture conditions. The reduction of the cell density that at the same time 

reduces the overall oxygen consumption led to a complete elimination of this effect. 

Similar results were achieved by reducing the diffusion distance using gas permeable 

dishes. Hence, our data clearly show that the conventional culture conditions result in a 

decrease of the effective oxygen concentration in the direct environment of the 

erythroblasts compared to the ambient levels. Furthermore, we can assume that under 

modulated culture conditions the diffusion to consumption ratio increases and 

consequently the effective oxygen concentration approximates the levels supplied by the 

incubator. This illustrates that an effective oxygen concentration of 3% still allows normal 

erythroid differentiation and only lower levels interfere with the maturation of these cells.  

The link between erythropoiesis and oxygen levels corresponds to the in vivo 

situation in hematopoietic tissues, where the increase of maturity correlates with an 

increase of oxygen concentration266,274. Our data show that oxygen is able to actively 
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regulate the ongoing of erythropoiesis, which allows its fine tuning during a hypoxic 

situation. A systemic oxygen undersupply not only induces epo production in the kidney, 

but also increases the low-oxygen area in the hematopoietic tissues. Consequently, this 

leads to a prolonged proliferation period of erythroblasts before the onset of terminal 

differentiation and, in combination with increased epo levels, eventually results in an 

increased number of mature erythrocytes.  

Since our data show that the oxygen concentration directly regulates the 

development of erythroblasts we were interested in the mechanisms that are responsible 

for this effect. Promising candidates that might be involved in the regulation of 

erythropoiesis are the HIF proteins, which are responsible for the main part of the 

transcriptional response to reduced oxygen supply. 2-oxoglutarate dependent 

oxygenases induce the inactivation and degradation of the HIF-α subunits if oxygen is 

present, but these enzymes can be inhibited by the addition of 2-oxoglutarate analogs 

like DMOG207. The addition of DMOG to cultured erythroblasts indeed resulted in the 

same effects that we observed at reduced oxygen concentrations, including reduced 

heme synthesis, cell size decrease and proliferation. Moreover, the proliferation capacity 

of immature erythroblasts could be extended even longer than with low oxygen supply. 

Therefore, our data demonstrate that the inhibition of 2-oxoglutarate dependent 

oxygenases is sufficient to reproduce hypoxic conditions. Recently, Flygare and 

coworkers presented comparable results that show a positive effect of DMOG on the 

proliferation of cultivated BFU-Es, although they report increased proliferation in contrast 

to prolonged proliferation as presented in our work and they do not describe an inhibiting 

effect of DMOG on terminal erythroid differentiation275. They could show that 

glucocorticoids and HIF share common target genes and therefore propose that this 

redundancy is responsible for the effect on erythroid proliferation. Nevertheless, it cannot 

be excluded at the moment that oxygenases not involved in the regulation of HIF-α may 

contribute as well. Currently we are generating erythroid cells that express a stable and 

active version of HIF-1α in order to clarify these uncertainties.  

Taken together we could show that the oxygen concentration directly affects 

erythropoiesis. Furthermore we present a model that incorporates these observations in 

the systemic response to hypoxia. Finally, we demonstrated that the underlying 

mechanism is dependent on the activity of 2-oxoglurarate dependent oxygenases. 

Further analysis of the involved HIF-regulated genes will contribute to a better 

understanding of the direct contribution of oxygen concentration to the regulation of 

erythropoiesis. 
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