
Masterarbeit

Titel der Masterarbeit

”
Investigation of Strategies for the Parallel Computation
of Eigenvectors of Block Tridiagonal Matrices – Parallel

Twisted Block Factorizations“

Verfasser

Michael Moldaschl, BSc

angestrebter akademischer Grad

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2011

Studienkennzahl lt. Studienblatt: A 066 940

Studienrichtung lt. Studienblatt: Scientific Computing UG2002

Betreuer: Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche

kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungs-

behörde vorgelegt und auch noch nicht veröffentlicht.

Wien, am September 16, 2011

Michael Moldaschl

Abstract

Today the quality of an algorithm is not only defined by the numerical accuracy

and the sequential runtime (or complexity), it is also essential to be able to parallelize

the computation on many computing units and to use new hardware and their new

features efficiently. The multi- and many-core architecture changes the structure of

work and data distribution to optimize the use of the given hardware. The algorithms

used for example in LAPACK are constructed for sequential process and are limited in

their parallelization and furthermore ScaLAPACK is not optimized for shared memory

systems like we can also see in the results of this master thesis. Therefore it is nec-

essary to look for other algorithms where the work can be easier distributed on large

systems based on a multi-core architecture. Furthermore it is important to exploit

the structure of specific problems, like LAPACK which has special methods for band

and/or symmetric matrices. The twisted block factorization can be used to compute

the eigenvectors of a block tridiagonal matrix, which can be seen as a generalization

of band matrices. For all this reasons this algorithm, with the possibility of many in-

dependent operations, is parallelized on state-of-the-art hardware to mention also the

aspects of new hardware architectures.

Different parallelization strategies are investigated and implemented to evaluate how

the twisted block factorization can be parallelized most efficiently. The evaluation

shows that the parallelization strategies are more efficient than the tested ScaLAPACK-

Routine and new CPU features are able to strongly influence the speedup of parallel

programs. Furthermore the detailed analysis of the runtime shows the new challenge

of creating an efficient function on a multi-core system. The numerical accuracy is not

the main aspect of this work, but a very interesting correlation between the distance

of the eigenvalues and the orthogonality of the eigenvectors was found. This knowl-

edge could be used in further researches to optimize the accuracy of the twisted block

factorization.

Zusammenfassung

Heutzutage wird die Qualität eines Algorithmus nicht nur durch die numerische

Genauigkeit oder die sequentielle Laufzeit (oder Komplexität) definiert, es ist auch

essenziell das Berechnen auf viele Recheneinheiten parallelisieren und neue Hardware

und deren neuen Merkmale effizient verwenden zu können. Die multi- und many-core

Architektur verändert die Struktur der Arbeits- und Datenverteilung um die Verwen-

dung der gegebenen Hardware zu optimieren. Die Algorithmen, welche zum Beispiel

in LAPACK verwendet werden, sind für den sequentiellen Ablauf konstruiert und sind

in deren Parallelisierung limitiert. Außerdem ist ScaLAPACK nicht für gemeinsam

genutzten Speicher, wie auch in den Ergebnissen dieser Masterarbeit zu sehen ist, op-

timiert. Deswegen ist es notwendig andere Algorithmen zu finden bei denen die Arbeit

einfacher auf großen Systemen basierend auf einer multi-core Architektur verteilt wer-

den können. Weiters ist es wichtig die Struktur spezieller Probleme auszunutzen, wie es

auch LAPACK durch spezielle Methoden für Band- und/oder symmetrische Matrizen

tut. Die twisted block Faktorisierung kann verwendet werden um Eigenvektoren von

Block-Tridiagonalen-Matrizen, welche als Verallgemeinerung von Bandmatrizen ange-

sehen werden können, zu berechnen. Aus all diesen Gründen wird dieser Algorithmus,

mit der Möglichkeit auf viele unabhängige Operationen, auf aktueller Harware paral-

lelisiert um auch Aspekte von neuen Hardwarearchitekturen zu analysieren.

Verschiedene Parallelisierungsstrategien sind entwickelt und implementiert worden um

zu evaluieren wie die twisted block Faktorisierung am effizientesten parallelisiert werden

kann. Die Evaluierung zeigt das die Parallelisierungsstrategien effizienter sind als die

getestete ScaLAPACK-Routine und neue Prozessoreigenschaften können den Speedup

eines parallelen Programms stark beeinflussen. Außerdem zeigt die detaillierte Analyse

der Laufzeit die neue Aufgabe effiziente Funktionen für multi-core Systeme erstellen

zu müssen. Die numerische Genauigkeit ist nicht der Hauptaspekt der Arbeit, aber

eine sehr interessante Korrelation zwischen dem Abstand der Eigenwerte und der Or-

thogonalität der Eigenvektoren wurde gefunden. Diese Erkenntnis könnte in weiteren

Untersuchungen verwendet werden um die Genauigkeit der twisted block Faktorisierung

zu verbessern.

Contents

1 Introduction 1

1.1 Objective . 1

1.2 Motivation . 1

1.3 Related Work . 2

1.4 Twisted Block Factorization and Inverse Iteration 5

2 Optimization of the sequential implementation 9

3 Parallelization Strategies 11

3.1 The first and simple parallel version (version0) 11

3.2 More parallel version (version1) . 12

3.3 Easier alternative to the second version (version2) 13

3.4 Exploiting shared memory for easier implementation (version3) 14

3.5 Combination of the OpenMP Implementations (version4) 14

3.6 Inverse use of OpenMP and MPI (version5) 14

3.7 Improved second version (version6) . 15

3.8 Directed Cyclic Graph (DCG) . 15

4 Evaluation 19

4.1 Performance . 19

4.1.1 Performance evaluation on system Standard1 20

4.1.2 Performance evaluation on system Orestis 29

4.1.3 Performance evaluation for different block sizes 32

4.1.4 The Performance-Model for a parallel program 36

4.1.5 Performance comparison with ScaLAPACK 44

4.2 Accuracy . 45

i

5 Conclusion 51

5.1 Results . 51

5.2 Future Work . 52

Bibliography 55

ii

Chapter 1

Introduction

1.1 Objective

The objective of the master thesis is the construction and implementation of paral-

lelization strategies of the in [1] described and as a sequential program implemented

algorithm. It is not the only aspect to create and describe the fastest implementa-

tion (for specific multi-core and multiprocessor systems) but also to analyze in detail

all possible parallelizations of the algorithm and the influence of different aspects of

state-of-the-art multi-cores. The evaluation of the different implementations should

build a basis for the parallelization of future algorithms based on the twisted block

factorization, because the actual version ignores some aspects of the accuracy which

need to be mentioned in the future. This will change the process of the algorithm and

will also influence the parallel computation.

1.2 Motivation

This master thesis concentrates on the parallelization of a new algorithm based on

twisted block factorizations to calculate eigenvectors of a block tridiagonal matrix. [2]

showed that the sequential implementation can be very fast and theoretically eigenvec-

tor computation based on reverse iteration (like the twisted block factorization) can

have a high parallelization potential by the independent computation of the eigenvec-

tors. That is why this method sounds very promising and furthermore the twisted block

factorization consists of partly independent computations that can be used for more

parallelization. Very important are possible applications where the matrix is of this

kind of special structure, but there are three other possibilities to use this algorithm

to calculate eigenvectors. The first one is the use of band matrices as a special case

1

of block tridiagonal matrices. The second strategy is the band reduction of the given

matrix (band reduction can also be used for full matrices) to calculate the eigenvectors

of the transformed problem and finally transform the eigenvector matrix in the reverse

way. The third and last possibility is the transformation of the full matrix directly to

a block tridiagonal matrix (described in [3]).

We can see that there are many applications possible for the calculation of the eigen-

vectors of a block tridiagonal matrix. Of course the approach based on twisted block

factorizations only calculates the eigenvectors, so the eigenproblem cannot be solved

alone by this algorithm. But this aspect is excluded in this master thesis. Other

studies (actually in process) concentrate on the combination of different algorithms to

calculate only eigenvalues of the block tridiagonal matrix and use this result for the

twisted block factorization to calculate the corresponding eigenvectors.

In the next section (1.3) an overview of other works, that are related to the paralleliza-

tion of eigenproblem computations or to the twisted block factorization, is given. In

Section 1.4 the twisted block factorization algorithm is reviewed. In Chapter 2 im-

provements of the sequential implementation (implemented in [4]) are described. In

Chapter 3 a short overview of its sequential implementation and different paralleliza-

tion strategies for the parallel program are given. Furthermore, a detailed evaluation of

all possible parallelization strategies is done by creating a directed cyclic graph (DCG)

in Section 3.8.

In Chapter 4 an evaluation of the runtime of the different programs and a comparison

with the well known library ScaLAPACK on different test systems is given and the ac-

curacy is analyzed. This master thesis is focused on the parallel runtime, because the

accuracy of the sequential program is already discussed in [2] and the parallelization

does not change the results. Chapter 5 is the summary and conclusion describing the

feasibility and the efficiency of parallelizing the twisted block factorization followed by

important aspects of the algorithm and the parallel implementation which need to be

further discussed.

1.3 Related Work

The related works can be split into three different areas:

1. The twisted block factorization of block tridiagonal matrices (described in [2] and

[1])

2. The parallelization of eigensolver (described in [5], [6], [7], [8] and [9]) and

2

3. the parallelization of algorithms for block tridiagonal matrices (described in [10])

The first area is the basic for this master thesis and is important to understand

what is done by the program and how the calculation of the eigenvectors work (and

obviously how efficient the algorithm can be). In [2] we can see that the performance

of this algorithm can be faster than LAPACK-Routines. Of course this algorithm only

calculates the eigenvectors while the LAPACK-Routines calculate both (eigenvalues

and eigenvectors) or only eigenvalues. But this is also an important fact: There is no

option to calculate only eigenvectors with standard methods. So this algorithm can be

used in combination with a method which calculates only the eigenvalues or if a problem

is given where the eigenvalues are known (or easily calculated). The functionality of

the twisted block factorization is detailed described in Section 1.4.

The second point is the best known and best developed area and is therefore inter-

esting for ideas how parallelization can be done most efficiently, which limitations exists

for parallelization and which compromise must be accepted to reach a good speedup

also for massive parallelization. It is also very important to compare the results of

this thesis with the best developed programs to be able to evaluate the results. The

ScaLAPACK-Routine PDSYEVR described in [5] is based on the standard LAPACK

algorithm, which transform the given matrix to a tridiagonal matrix, calculate the

eigenvalues and eigenvectors and transform the eigenvectors to get the solution for the

original problem. An important aspect of this parallel implementation is, that the

whole tridiagonal matrix is broadcasted to all processes to calculate the eigenvalues

and eigenvectors. This is a proceeding which can also be used for the parallelization of

the twisted block factorization, even though the amount of data, representing the block

tridiagonal problem, is even higher. The amount of non zero values of a tridiagonal

matrix is equal 3n− 2 and of a block tridiagonal matrix equal
(

3n
b
− 2

)

b2 = 3nb− 2b2.

If we ignore the subtrahend (because b << n) the ratio of the data of both matrix

types is b.

In PDSYEVR a representation tree is constructed to distribute the computation

of the different eigenvectors. The problem is, that not all eigenvectors can be cal-

culated independently from all other and therefore crossover must be considered in

the parallelization. In Figure 1.1 a simple example is illustrated how the tree is con-

structed/distributed. In this example processor 1 is responsible for the eigenvalues 4 to

6, but to check all crossover the local representation tree consists of further parts of the

complete tree. So it is redundantly distributed to allow all processes the independent

calculation (no need of data of other processes during the calculation). This distributed

calculation could be interesting in the context of the improvement of the orthogonality

3

Figure 1.1: An example of the local representation tree for eigenvector calculation
(based on [5]). Processor 1 is responsible for the eigenvalues 4-6, but uses information
about the eigenvalues 3-8 to ensure the orthogonality of the eigenvectors. Therefore a
larger part of the whole representation tree is locally used.

in the twisted block factorization and the parallelization of this improved version. The

actual version of the twisted block factorization can have problems with the automatic

orthogonality of the calculated eigenvectors for specific matrix types (see Section 4.2).

The last area is most compatible, because it handles the same type of problem (or

rather matrix type) it just uses another algorithm to solve the eigenproblem. The block

divide and conquer algorithm (BDC) described in [10] is based on the idea to transform

the block tridiagonal matrix into a block diagonal matrix plus updating vectors. As

an initial step the eigenpairs of each diagonal block are calculated and all updating

vectors are transformed to get the following equation: W = Q(D +
∑

i yiy
⊤
i)Q

⊤

This equation is a sequence of rank-one modifications that are sequential applied on

the diagonal matrix. In each step the new values of the diagonal matrix are calculated

and the matrix which must be multiplied with Q and each remaining vector y. After

all rank-one modifications are done, the matrix Q represents the eigenvectors and D

the eigenvalues. Each y has at the beginning only entries at two blocks and is therefore

not changed in all steps of the computation. In each step two blocks are merged and

all other blocks are not influenced. The parallelized implementation distributes the

computation of the steps by building a tree of all merge operations and all merging

operations in one level of this tree can be computed independently of all others. In the

first step the parallel tasks can be up to the half amount of blocks, in the second only

half of this and so on. So the amount of parallel tasks decrease in each step exponential.

4

Therefore a second parallelization is involved. In each step two blocks are merged, so

the blocks and the cost of the operations grow in each step. The blocks are cyclically

distributed among the processes and the operations are parallelized. While the blocks

are small only a few processes are involved in one operation, but many parallel oper-

ations are available. When the blocks get greater the amount of parallel operations

decrease, but more processes are involved in one operation. So the parallel calculation

is guaranteed over the whole computation.

All these areas try to solve a whole or a part of a eigenproblem, but they do this in

different ways. The first area computes the eigenvectors of a block tridiagonal matrix

sequentially, the second solves the whole eigenproblem in parallel but for full matrices

and the third solves the whole eigenproblem in parallel for a block tridiagonal matrix

but uses a very different algorithm. Interesting is how these concepts can be combined

to compute the eigenvectors of a block tridiagonal matrix in parallel. The second area

includes optimizations for the accuracy which are actually not part of the twisted block

factorization. Therefore this area could be more interesting for the future, but in this

master thesis the concept of a representation tree is excluded. Nevertheless this master

thesis tries to give a basic idea for the improvement of the orthogonality, but further

concepts and implementations for the improvement are explicitly excluded (this topic

is very complex and need to be analysed in a separate work).

The sequential implementation of the twisted block factorization is actually well

optimized by using state-of-the-art libraries like Blas or LAPACK and algorithmic

optimizations (described in 1.4) for the computation of the different twisted block

factorizations are also included, but further improvements are never tried. Therefore

this master thesis analyses in the progress of the parallelization which sequential op-

timizations can be done. The third area uses the same matrix type, therefore it is

analysed if the used concept could also be used for the twisted block factorization in

the combination with small and during the algorithm not growing block sizes.

1.4 Twisted Block Factorization and Inverse Itera-

tion

In this section a short description of the twisted block factorization is given and how

the eigenvectors are calculated by using an inverse iteration. First of all a definition of

5

a block tridiagonal matrix is given: M =



















B1 C1

A2 B2 C2

A3
.
. Cp−1

Ap Bp



















In the symmetric case the blocks have the following structure: B1 = B⊤
1 , Ai+1 = C⊤

i

Like in the implementation in [4] the size of each block is equal b (generally the algo-

rithm would work for different sizes for each diagonal block, but the sequential imple-

mentation supports only one size for all blocks). The number of blocks p multiplied

with the block size is equal the matrix size n. The eigenproblem which is defined by

the matrix M can be written as

(M − λI) x = Wx = 0. (1.1)

To solve this equation and compute the eigenvector x, a starting vector x0 can

be chosen and inserted. The following inverse iteration can be constructed (λ̂ is the

approximation of λ which is used in the twisted block factorization) :

1. choose x0 with ‖x0‖2 = 1 and set i = 0

2. solve
(

M − λ̂I
)

xi+1 = xi

3. normalize vector xi+1

4. increase i by one and continue with point 2

The computation of the new vector can be generally done by creating a LU-

Factorization of the shifted matrix W and then solve the equation. Similar to that, a

LU-Factorization is constructed by exploiting the special structure of the matrix. The

result of the LU-Factorization of W can have the following structure:

W =













P+
1

P+
2

. . .

P+
p

























L+
1

M+
2 L+

2

.

M+
p L+

p

























U+
1 N+

1

.

U+
p−1 N+

p−1

U+
p













(1.2)

6

In Equation (1.2) each entry is a block of size b×b. The plus in the equations define

that this blocks are parts of the forward factorization. The other possibility is the minus

which is used for the backward factorization which is defined in Equation (1.3).

W =













P−
1

P−
2

. . .

P−
p

























L−
1 M−

1

.

L−
p−1 M−

p−1

L−
p

























U−
1

N−
2 U−

2

.

N−
p U−

p













(1.3)

When we multiply the matrices of the forward and backward factorization we get

the following two illustrations of W :

W =















P
+
1 L

+
1 U

+
1 P

+
1 L

+
1 N

+
1

P
+
2 M

+
2 U

+
1 P

+
2 L

+
2 U

+
2 + P

+
2 M

+
2 N

+
1

. . .

. . .
. . . P

+
p−1L

+
p−1N

+
p−1

P+
p M+

p U
+
p−1 P+

p L+
p U

+
p + P+

p M+
p N

+
p−1















=

(1.4)














P
−
1 L

−
1 U

−
1 + P

−
1 M

−
1 N

−
2 P

−
1 M

−
1 U

−
2

P
−
2 L

−
2 N

−
2

. . .
. . .

. . . P
−
p−1L

−
p−1U

−
p−1 + P

−
p−1M

−
p−1N

−
4 P

−
p−1M

−
p−1U

−
p

P−
p L−

p N
−
p P−

p L−
p U

−
p















(1.5)

The first matrix can be calculated by starting at the first block. A LU-Factorization

of B1 is calculated, then the result can be used to solve the two systems P+
1 L+

1 N
+
1 = C1

and P+
2 M+

2 U
+
1 = A2. One result is directly L+

1 while the other one is P+
2 M+

2 , but M2

could be calculated when P2 is known after the next step (this is not necessary for

the algorithm). The second summand of the next block is totally known and can be

subtracted from B2 to get the next equation: B2 − P+
2 M+

2 N
+
1 = P+

2 L+
2 U

+
2 . This can

also be solved by a LU-Factorization. These steps can be repeated down to the last

block to calculate the whole forward factorization.

The backward factorization works identical, we only start at the last block with a LU-

Factorization and go up to the first block.

Now we can combine both factorizations to build a twisted factorization (see Equa-

tion (1.6)). The variable i defines where the forward and backward factorization come

together. There are p different possibilities where this can happen, so p different twisted

7

factorizations are possible. In this algorithm all of them are calculated (this can be

done efficiently by calculating the complete forward and backward factorization and

solve the following p equations: Bi − P+
i M+

i N
+
i−1 − P−

i+1M
−
i+1N

−
i = PiLiUi ∀i ∈ [1, p]).

W = P

































L
+
1

M
+
2

. . .

. . . L
+

i−1

M
+

i Li M
−

i+1

L
−

i+1

. . .

. . . M−

p

L−

p































































U
+
1 N

+
1

. . .
. . .

U
+

i−1 N
+

i−1

Ui

N
−

i U
−

i+1

. . .
. . .

N
−

p−1 U−

p































(1.6)

This result is not only used to solve the equation in the inverse iteration it is pri-

marily interesting for the definition of the starting vector (this and also other strategies

for the definition of the starting vector are described and compared in [2]) . The im-

portant part of the twisted factorizations are the Ui or rather the diagonal entries in

this blocks. To define the starting vector for the inverse iteration the minimal diagonal

entry in all Ui is searched. The position of this value defines the position in the starting

vector which is not null (this means only one field in the starting vector is not null).

The inverse iteration uses the fact that the eigenvalues of the inverse matrix are the

reciprocal values and that subtract each diagonal element by the same scalar changes

the eigenvalues in the same way. The combination of these two facts can transform

any eigenvalue to the largest of the inverse problem. Therefore an approximation of

the eigenvalue λ̂ is used to shift the matrix, the eigenvalue λ becomes nearly zero and

the inverse eigenvalue becomes very large (or rather the largest).

Each starting vector would converge to the eigenvector of the largest eigenvalue (as long

as the starting vector is not orthogonal to this eigenvector1), but for a fast convergence

the starting vector is very important. In [2] we can see, that a good approximation

of the searched eigenvectors can be reached by using only one iteration. Therefore in

Chapter 4 all tests are done with one iteration.

1If we consider numerical errors in the computation also in this case the starting vector could
converge to the eigenvector of the largest eigenvalue, because the perfect orthogonality could be
destroyed

8

Chapter 2

Optimization of the sequential

implementation

Before we start to parallelize the given algorithm respectively the given program, we

are looking for possible improvements. This can include better performance, but also

simplified code (more readable, fewer lines of code) or a better memory usage.

In the original code three possible cases are distinguished for solving the equation

((M − λ̂)xi+1 = xi), depending on where the minimal entry in U was found.

• The first case is that the minimal value was found in the first block (the twisted

factorization is simplified to a forward factorization).

• The second case is that the minimal value was in the last block (the twisted

factorization is simplified to a backward factorization).

• The third and most common case is that the minimal value was found in one

of the middle blocks (the twisted factorization is a combination of the forward

and backward factorization, while the position of the starting block defines which

part of the forward and backward factorization is used)

We can easily see, that the first two cases are only special cases of the third one. For

example, if the starting block is the first one, the twisted factorization uses all iterations

of the forward factorization and zero iterations of the backward factorization. This

improvement reduces the lines of code and makes the code more readable, but does

not influence the performance of the program.

A second possible improvement needs less amount of memory, but can slow down

the program by not saving all possible twisted factorizations to find the minimal entry

9

in all U . When one twisted factorization is calculated all entries can be compared with

the so far smallest value. If a smaller value is found the value and the whole twisted

factorization block is saved. Only two blocks would be necessary (instead of number

of blocks). One to store the block with the smallest value and the other to temporally

compute the next twisted factorization. The disadvantage is, that whenever a smaller

value is found the corresponding block must be copied. This could result in a higher

amount of operations if the smallest value often changes.

The pivoting function uses memory which can already be used by the program to

store a later needed result. This is an error which has only small influence to the result,

but this error must be changed to ensure that no failure can occur.

The last change of the sequential program is mentioned in Section 3.8 where two

pivoting operations are identified which are not necessary for the calculation. This

operations would pivot the matrices M , but the explicit construction is not necessary

for the calculation. The remove of this operation improves the runtime up to 8%.

10

Chapter 3

Parallelization Strategies

In this chapter the parallelization strategies of the twisted block factorization and their

implementations are described. We assume that the serial code is known along general

lines (description is given in another master thesis [4]) or at least the mathematical pro-

cedure is known (see Section 1.4). Like in Figure 1.1 it could be necessary to consider

the attributes of the eigenvalues to ensure correct results. This would be important to

ensure orthogonal eigenvectors, but this aspect is excluded in this master thesis. So

all parallelization strategies ignore possible dependencies between the computation of

different eigenvectors.

3.1 The first and simple parallel version (version0)

The first try to get a parallel version of the block twisted factorization is the use of

the independent calculation of each eigenvector. The eigenvalues and the matrix are

distributed. Each process has some of the eigenvalues and the whole matrix to compute

the corresponding eigenvectors. After the computation, the eigenvectors are merged to

get the whole eigenvector matrix (one process gets all eigenvectors computed by the

other processes).

It is important that every process gets nearly the same amount of eigenvalues to do

nearly the same amount of work. The work distribution is very important to get a good

speedup by using more processors. A very easy distribution which will produce the best

work balance which is possible for this simple parallelization is a cyclic distribution of

the eigenvalues. The problem is that the eigenvectors calculated by one process are not

in one series in the eigenvector matrix. This would cause a more complex merge process

(see Figure 3.1). Therefore an improved version would be a block distribution where

11

the first blocks are one element greater than the last blocks and the merge operation

of all eigenvectors becomes easy (see Figure 3.2). The number of the blocks which are

one greater is equal the rest of the matrix size n divided by the number of processes p.

So the first processes has more work than the others, but this is only 1/n of the whole

work.

Figure 3.1: The merge/gather operation
of all eigenvectors if the data are cycli-
cally distributed among all processes

Figure 3.2: The merge/gather operation
of all eigenvectors if the data are blocked
distributed among all processes

3.2 More parallel version (version1)

The previous version (version0) can be improved by splitting the forward and back-

ward factorization into two nearly independent calculations. The forward factorization

is calculated up to the half of the matrix while the backward factorization is also

calculated up to the half. When the middle is reached, the last calculated block of

the forward and backward factorization is exchanged with the other process. Then

the other process can continue calculating the backward or forward factorization (the

process which calculated the first part of the forward factorization, calculates the last

part of the backward factorization and vice versa). After that, one process has the

data of the forward and backward factorization of the first half of the matrix and the

other process has the data of the second half. These data can be used to calculate

all possible twisted factorizations without need of the other data (except two blocks

which where calculated in the first or second half but are necessary for the other part).

After the computation of all twisted factorizations the minimal diagonal entry in all U

are searched in parallel by two processes to create the starting vector. The resulting

12

equation is then calculated in parallel by the two processes. Because of the data distri-

bution, the upper part of the equation is solved by the first process and the lower part

by the second. The computation starts at the point where the twisted factorization is

chosen. From this position the calculation moves parallel up and down. If the starting

point is in the upper half, the calculation is first moving down to reach the lower half

fastest possible to enable the second process the calculation. Only one block must be

send from the first to the second process. The program works equivalent if the starting

point is in the lower half, only the computation direction is reverse.

3.3 Easier alternative to the second version (ver-

sion2)

The first implementation of the previous idea (version1) is done with MPI, so the

communication is really done by sending the data to the other process. Normally MPI is

that efficient implemented that it uses the shared memory (if available) to communicate

and should be very fast [11]. But to compare this solution with a easier implementation

for a multi-core processor, the second version is also implemented with OpenMP. The

forward and backward factorization is defined as (parallel OpenMP) sections and the

twisted factorization is parallelized by splitting the loop. So one thread calculates the

whole forward and the other thread calculates the whole backward factorization, then

the twisted factorization is parallel calculated by them. The solving of the equation

or the searching of the minimal entry is not parallelized, because this would be much

more complicated and the runtime for this parts is much less than the calculation of

the factorizations. This implementation is much easier and the resulting code is much

more readable than the MPI-Version. So it has already two improvements, but much

more important will be the performance (see Chapter 4.1). Another disadvantage of

OpenMP is, that it is not as flexible as MPI. If no shared memory is available between

two cores (if single core CPUs are given), the OpenMP implementation will get very

slow (if multiple threads are running on one CPU). On the other hand the MPI would

use two single core CPUs in the same way like a dual core, only the communication

would need more time.

13

3.4 Exploiting shared memory for easier implemen-

tation (version3)

Another idea is to parallelize version0 partly by OpenMP. This means that the eigen-

values are distributed between the different MPI-Processes and then the loop over all

eigenvectors, that must be calculated by one MPI-Process, is parallelized with OpenMP.

The improvement of this variant is, that the given Matrix need not to be copied for

each core because all OpenMP-Threads assigned to one MPI-Process can access the

same. It can also help to avoid unnecessary communication overhead (although the

MPI-Broadcast and the MPI-Gather methods should be that intelligent implemented

to automatically avoid this overhead by using the shared and fast memory of the pro-

cessors).

3.5 Combination of the OpenMP Implementations

(version4)

Version2 has the disadvantage that only two OpenMP-Threads can be used for paral-

lelization. This is a very strong constraint and therefore another parallelization strat-

egy is constructed which combines the parallelization of the forward and backward

factorization and the distribution of the calculation of different eigenvectors through

OpenMP. A very important problem in the implementation could be the need of nested

OpenMP. We need to distribute with OpenMP two different times, which means to cre-

ate threads and each thread creates later new threads. Normally this must be explicitly

activated (with the command OMP SET NESTED) but this is not everywhere sup-

ported1 so the implementation could get problems on different systems or by using

different compiler (the used compiler are defined in Table 4.1).

3.6 Inverse use of OpenMP and MPI (version5)

The parallelization with OpenMP is normally very easy and could be used to fur-

ther distribute the computation of version1. The improvement of OpenMP is the use

of the shared memory, therefore OpenMP is normally used for the inner paralleliza-

tion (each MPI-Process creates threads which work together on a specific problem).

This strategy will use OpenMP in another way. MPI parallelize the calculation of

1eg. not supported in: IBM R©XL C for AIX R©[12] or SunTMONE Studio 8 compilers[13]

14

one eigenvector and OpenMP distributes the different eigenvectors. In more detail,

MPI is first used to distribute the calculation of all eigenvectors among different pro-

cesses (two processes solve the same eigenvectors), then each process creates threads

(by using OpenMP) to further distribute the calculation of all eigenvectors that are

calculated by one MPI-Process. The distributed calculation of the factorization is then

calculated among two threads among two different MPI-Processes. To be able to use

MPI-Communication in OpenMP-Threads, MPI must be initialized in another way.

Instead of using the MPI Init-Function, in this case MPI Init thread is called with the

parameter MPI THREAD MULTIPLE which defines that multiple threads can use

MPI-Communication2.

3.7 Improved second version (version6)

Version2 distributes only the forward, backward and twisted factorization with OpenMP.

The other calculations are not relevant for the runtime and are therefore ignored, but

the use of OpenMP for all eigenvectors cause the creation and deletion of many threads

which could cost much time. The improvement of this would be the creation of the

threads outside the loop, but only one thread is responsible for the calculation of the

rest. So the distribution of the calculation is nearly the same as in version2 but the

threads are only created one time.

3.8 Directed Cyclic Graph (DCG)

Traditionally a directed acyclic graph (DAG) of all dependencies is created to find

the critical path to define priority of operations and to identify all possible parallel

operations. An easier illustration is the use of a directed cyclic graph to analyze the

program for any problem size (see Figure 3.3). The illustration contains in detail only

the calculation of one eigenvector. The subgraph starting with the nodes 2, 3 and 4

defines this computation (the other nodes with the same number show only the other

eigenvectors). A directed arrow defines which operation must be calculated before the

next can be done (the required nodes point at the followed nodes). The dashed lines

define a loop and allow the computation of nodes multiple times. All nodes below

the beginning of the loop are also executed more often, but a red arrow defines that

the next node can only be executed if all multiple executions of the above node are

2all possibilities for the parameter are MPI THREAD SINGLE, MPI THREAD FUNNELED,
MPI THREAD SERIALIZED and MPI THREAD MULTIPLE [14]

15

finished. A node can only be executed if all required nodes are finished. The structure

of the graph implies that only one node is allowed to have incoming but no outgoing

edges (the end node). But in this example we can see that the nodes 15, 22 and 30

have no outgoing edges. This means for the program that calculations are done which

are never used. So the nodes 22 and 30 can be deleted, like it is also mentioned before

at the beginning of this chapter.

In the right part of Figure 3.3 a list of all operations is given to identify which node

represents which function. Furthermore a simple syntax is used to define loops. A row

where a number is written in a square bracket defines how often the loop is executed

and all operations which are included in this loop are indented. In the graph we can see

the large parallel blocks which are already used in the different implemented methods.

The basic parallelization is done by splitting the nodes 2, 3, 4 and all below. More

parallelized methods additionally split the nodes 15 to 21 and 23 to 29, which are the

forward and backward factorization. Furthermore the twisted factorization (and the

search of the minimum) could be used as a third parallel task, but this would depend on

both other processes (much synchronization would be needed). Normally the number of

processes are a multiple of 2 (except triple core CPUs would be used) and the program

would get inhomogeneous (e.g. the three processes that work together could be on the

same quad-core or two are on the same but one is on another). The nodes 24 and 26

can also be calculated by two processes, but most of the loop cannot be parallelized

(except the basic operations itself). So we can see that for the calculation of one

eigenvector no further efficient parallelizations can be found. The last possibility would

be the calculation of more than one eigenvector among many processes to distribute

all possible parallel tasks and if at one time the parallel calculation for one eigenvector

is not possible the remaining processes can calculate the others. The problem of this

method would be, that for each eigenvector a separate memory is necessary (the amount

of needed memory would grow with the number of parallel calculated eigenvectors) and

the used memory must be synchronized (more communication occurs).

16

Figure 3.3: The directed cyclic graph of the twisted block factorization. Mainly only
the computation of one eigenvector is illustrated. The nodes 2 to 4 define the start
of the computation of one eigenvector, therefore this operations can be done for n
eigenvectors simultaneously. Node 5 would be the collection of all eigenvectors to one
process to create the whole eigenvector matrix. This operation can only be started
after all eigenvectors are computed.

17

18

Chapter 4

Evaluation

The evaluation of the different parallelization strategies and their implementation

is divided into the performance (defined by the parallel efficiency in Section 4.1) and

the accuracy (defined by the residual and the orthogonality in Section 4.2). The per-

formance is much more important, because the accuracy is already discussed in [2] and

should not change in parallel. So the accuracy is mainly used to specify the correctness

of the parallelization. Nevertheless a short but detailed evaluation of the accuracy is

given in Section 4.2 to show the advantages and disadvantages of the used algorithm.

In Table 4.1 the hardware of the test systems is specified, which are used to measure

the runtime of the implementations.

System 1 System 2
Name Standard1 Orestis
Type - Sun Fire X4600 M2

Processor-Type Intel i7-860 AMD Opteron 8356
Frequency 2.8 GHz 2.3 GHz

Processor Amount 1 (=4 Cores) 8 (=32 Cores)
Memory 8GB 32GB
Compiler GNU Fortran 4.4.3 GNU Fortran 4.4.3

Table 4.1: Test Systems

4.1 Performance

The hardware is not the exclusive aspect which is changed in the evaluation of the

performance. Furthermore features of new processors, the automatic overclocking (e.g.

19

Intel Turbo Boost Technology) and hyper-threading (e.g. Intel Hyper-Threading Tech-

nology), are included in the evaluation, because it can de- or increase the benefit of the

parallelization. This new features are only supported on the test system Standard1.

In Section 4.1.1 the results of the different implementations on the smaller test system

Standard1 are illustrated. It is separated into the evaluation of the speedup with dis-

abled features and then it is compared with the results of the same system but with

enabled features (this contains four possible combinations: no hyper-threading and no

turbo boost, no hyper-threading but turbo boost, hyper-threading but no turbo boost

and hyper-threading and turbo boost). In Section 4.1.2 the results on the larger test

system Orestis are illustrated. In this section the processor does not support any of

these features, therefore only one type of result exists. In both sections the speedup

is only tested for two different block sizes (b = 5 and b = 10) but for many different

matrix sizes. In Section 4.1.3 the matrix size is constant but the block size varies. The

results are very similar to the others and therefore both test systems are compared in

one section.

4.1.1 Performance evaluation on system Standard1

The system Standard1 has only four cores on one processor, therefore the scalability

cannot be analyzed in detail. In this section the efficiency for up to four cores and the

influence of new CPU-features is evaluated.

A very informative way to illustrate the efficiency of the different methods is the parallel

efficiency which is the runtime of the sequential program divided by the runtime of the

parallel program and furthermore divided by the number of used cores. In this master

thesis this metric is simply called efficiency. The advantage of the used illustration is

that in all cases the axis can have the same range (which makes it easier to compare

all figures/tests).

Evaluation of scalability for two and four cores

Not all implementations can be used with two cores. Only version0 to version3 (ver-

sion3 only with two threads) and version6 can be used because of the minimal number

of processes that are needed for the other implementations.

In Figure 4.1 the parallel efficiency of different matrix sizes for block size 5 is illustrated

for two processes. We can see that the methods have very different efficiency and that

it is almost independent of the problem size. The two best methods in this case are the

simplest version (version0) and the improvement of this implementation with OpenMP

20

Version2
Version6

Version1
Version3
Version0

Parallel efficiency of two processes for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

1600014000120001000080006000400020000

1.2

1.1

1

0.9

0.8

0.7

Figure 4.1: Efficiency of the different methods for different n with b = 5 using 2
processes on test system Standard1

(version3). Version1 can also reach a good speedup, although both processes are in-

volved in the calculation of all eigenvectors. Version2 (which uses OpenMP instead of

MPI to parallel calculate one eigenvector like version1) and version6 (which is only a

improved implementation of version2) are significantly slower. This first figure is not

very significant, because two processors are not enough to test all methods and the

influence of the block size could change the results.

In Figure 4.2 we are using four processes and are able to use all implementations

and constellations of thread and processes based parallelizations. The best implemen-

tations are the same as before (version0 and version3). Version3 is tested with two and

four threads and it seems that two threads are a little bit faster. But it is important

to consider, that version3 with four threads uses totally no MPI communication. So

it will be interesting how this implementation will work for more than four processes

when MPI must be used. The speedup of the different methods are nearly constant

over all matrix sizes. Apparently because of the small number of processes used in this

test, the need of a higher amount of data to efficiently distribute the computation is

not necessary. Version1 reaches also a good efficiency and in opposition to version0

and version3, the speedup has nearly the same level as for two processes. Another

interesting result is, that version5 is nearly as good as version1, although MPI and

OpenMP is unconventionally used (MPI is used in all Threads of OpenMP, see Section

3.6). Till now the other methods (version2, version4 and version6) are not able to reach

the good speedup of the best versions, independently of a higher matrix size.

21

Version2
Version6
Version4
Version5

Version1
Version0

Version3, NT=4
Version3, NT=2

Parallel efficiency of four processes for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

1600014000120001000080006000400020000

1.2

1.1

1

0.9

0.8

0.7

Figure 4.2: Efficiency of the different methods for different n with b = 5 using 4
processes on test system Standard1

The next step is the evaluation of a higher block size (b = 10) to see the influence of

this factor on the speedup. In Figure 4.3 we see that the order of the implementations

is very similar to block size 5, but the efficiency of version1 and version6 increased

significantly. Therefore this methods could get interesting for higher block sizes. The

speedup of version0 and version3 becomes quite the same, but both are slightly worse

than for the smaller block size.

Figure 4.4 shows the speedup of four processors for different matrix sizes with

block size 10. In this case the different methods are not clearly separated, but version3

with two threads is generally the best method. The speedup of version0 and version3

strongly decreased from block size 5 to 10, but increases again with greater matrix size.

The efficiency of nearly all versions decreases from matrix size 3000 up to 10000 before

it increases again. Version1 became the best method for n = 4000 to n = 5000, but then

decreases faster than the other methods. Generally all methods have a lower efficiency

then in all other cases. This is very interesting, because the efficiency of version1

increased from block size 5 to 10 by using two processors, but stronger decreased when

four processors are used.

Evaluation of the influence of new CPU-features

The new CPU-features that are analyzed are the automatic overclocking of the cores if

higher performance is needed and hyper-threading which should provide the possibility

to run two threads on one core at the same time.

22

Version2
Version6

Version1
Version0
Version3

Parallel efficiency of two processes for random matrix with b=10

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

1600014000120001000080006000400020000

1.2

1.1

1

0.9

0.8

0.7

Figure 4.3: Efficiency of the different methods for different n with b = 10 using 2
processes on test system Standard1

Version2
Version4
Version6
Version5

Version1
Version3, NT=4

Version0
Version3, NT=2

Parallel efficiency of four processes for random matrix with b=10

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

1600014000120001000080006000400020000

1.2

1.1

1

0.9

0.8

0.7

Figure 4.4: Efficiency of the different methods for different n with b = 10 by using 4
processes on test system Standard1

23

”Intel Turbo Boost Technology is supported in Intel Core i7 processors

[...] to dynamically increase processor performance for single-threaded and

multi-threaded/multi-tasking environment.” [15]

How much the frequency of the cores can be increased depends on the number of

cores which will be overclocked. If only one core should give more performance the

frequence can be increased by 0.66ghz, each of two cores could be increased by 0.53ghz

and three or four cores could be increased by only 0.13ghz (see [16]). This decreasing

amount of higher frequency when the multi-core architecture is used, decreases the

efficiency of parallel programs. Theoretically if we want to get the same efficiency as

before each core must increase the performance by 0.66ghz. We will now calculate the

decrease of the speedup because of the lower turbo boost for more cores:

2 Cores:

c2 =
2.8 + 0.660

2.8 + 0.530
≈ 1.0464 (4.1)

4 Cores:

c4 =
2.8 + 0.660

2.8 + 0.130
≈ 1.2357 (4.2)

The difference for two cores is quite too small to definitely evaluate the calculation,

therefore only four cores are compared. The relative difference of the efficiency of all

methods with turbo multiplied by c4 and of all methods without turbo are illustrated

for block size 5 in Figure 4.5 and for block size 10 in Figure 4.6. The y axis describes the

efficiency reached with activated turbo boost (Efficiencyt) multiplied with c4 minus the

efficiency without turbo boost (Efficiency) and both divided by Efficiency. The result

is the relative Error of turbo boost model = Efficiency
t
·c4−Efficiency

Efficiency
.

We can see that the inaccuracy is about ±7%. So it is obvious that two cores cannot

be analyzed, because the difference of the efficiency is (based on the Equation (4.1))

only 4.6%.

These figures show not only the accuracy of the theoretical model, it also confirms how

high the loss of efficiency on new processors with the Intel Turbo Boost Technology

is. If we compare the runtime of one and four cores with turbo boost the speedup for

the four cores is about 19% (= 1− 1/1.2357) lower than the speedup which would be

calculated if the runtime of one and four cores without turbo boost are compared.

”Intel Hyper-Threading Technology and Intel multi-core technology are

extensions to Intel 64 and IA-32 architectures that enable a single physi-

cal processor to execute two or more separate code streams (called threads)

24

Version2
Version3, NT=4
Version3, NT=2

Version1

Version6
Version5
Version4
Version0

Error of Turbo Boost model for four processes for random matrix with b=5

Matrix size n

re
la
ti
v
e
E
rr
o
r
o
f
T
u
rb
o
B
o
o
st

m
o
d
el

[%
]

1600014000120001000080006000400020000

6

4

2

0

-2

-4

-6

Figure 4.5: Relative Error of Equation (4.2) and the real results measured for the
different methods and different n with b = 5 using 4 processes with activated turbo
boost on test system Standard1

Version4, NT=4
Version3, NT=2

Version6
Version2

Version1
Version0

Version3, NT=4
Version5, NT=2

Error of Turbo Boost model for four processes for random matrix with b=10

Matrix size n

re
la
ti
v
e
E
rr
o
r
o
f
T
u
rb
o
B
o
o
st

m
o
d
el

[%
]

1600014000120001000080006000400020000

6

4

2

0

-2

-4

-6

Figure 4.6: Relative Error of Equation (4.2) and the real results measured for the
different methods and different n with b = 10 using 4 processes with activated turbo
boost on test system Standard1

25

concurrently. In Intel Hyper-Threading Technology, a single processor core

provides two logical processors that share execution resources” [15]

The hyper-threading technology is tested for all four cores by enabling the feature. 8

cores are simulated and used by the different methods in the same way like they would

be real. Furthermore the simultaneous use of the turbo boost is possible. It would

be possible to use less cores1, but it does not seem to be a realistic test to use hyper-

threading on a quad-core processor and not using all real cores. The difference between

using hyper-threading or not is illustrated in Figure 4.7 without and in Figure 4.8 with

turbo boost. A new variable Sh is used to define the relative improve of the efficiency

or speedup (the relative change of both metrics is equal) by using hyper-threading.

Sh is the speedup reached with p cores (Sp) minus the speedup reached with p cores

with activated hyper-threading (Shp) and both divided by Sp (see Equation 4.3). The

maximal number of available cores defines the variable p and the variable Shp is defined

by the runtime of the sequential program (absolutely no parallelization, which implies

that no hyper-threading, is used) divided by the runtime of the parallel program using

2 · p processes on p hardware but 2 · p logical cores.

Sh =
Sp − Shp

Sp

(4.3)

We would expect that the hyper-threading technology cannot improve the efficiency

of the implementations, because they use LAPACK and Blas routines and are therefore

very efficient. The synchronization time of the different processes or threads should

also be not that long. But we can see that hyper-threading strongly optimizes the

runtime of the methods. Some of them are more influenced than others. For block size

5 version2, version4 and version6 were using the additional threads in the best way.

When we compare this results with the efficiency without hyper-threading in Figure

4.2, we can see that the implementations with the worst efficiency got the highest

speedup from the hyper-threading. This is a coherent result, because all methods are

doing the same amount of work, but they need not the same time. So some are using

the hardware more efficient than others, and those who use the hardware less efficient

can be better optimized by hyper-threading which uses the idle time of one process to

compute another. The improvement with hyper-threading is for block size 5 at least

10% of the runtime (for all methods) and the best is over 25%.

For block size 10 we can generally see different improvements of using hyper-

threading, but the best improvement was also reached by version4, which is very similar

1Up to 3 Cores can be disabled in the BIOS

26

Version0
Version5

Version3, NT=2
Version3, NT=4

Version1
Version2
Version6
Version4

Compare parallel efficiency of 8 and 4 processes for random matrix with b=5

Matrix size n

S
h
[%

]

800070006000500040003000200010000

26

24

22

20

18

16

14

12

10

8

Version3, NT=2
Version1
Version5
Version0

Version3, NT=4
Version6
Version2
Version4

Compare parallel efficiency of 8 and 4 processes for random matrix with b=10

Matrix size n

S
h
[%

]

800070006000500040003000200010000

24

22

20

18

16

14

12

10

8

6

4

Version2
Version5
Version6
Version1

Version4
Version3, NT=4
Version3, NT=2

Version0

Parallel efficiency of 8 processes on 4 cores for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

800070006000500040003000200010000

1.2

1.1

1

0.9

0.8

0.7

Version2
Version6
Version4
Version5

Version1
Version3, NT=2
Version3, NT=4

Version0

Parallel efficiency of 8 processes on 4 cores for random matrix with b=10

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

800070006000500040003000200010000

1.2

1.1

1

0.9

0.8

0.7

Figure 4.7: Efficiency of the different methods for different n using hyper-threading
with 8 processes and 4 cores on test system Standard1, left b = 5 and right b = 10

to block size 5. Interesting is the good improvement of version0 and version3 with four

threads, although they were also very efficient without hyper-threading. On the other

hand version6 got nearly only half of the improvement as before.

Because of the strong improvement and the large differences between the different

methods the efficiency of all methods are illustrated in Figure 4.7 for block size 5 and

for block size 10.

For block size 5 version0 becomes clearly the best version. version4 sometimes reached

a very high efficiency, but never as good as version0 or both version3. The most

interesting result of this test is, that version0, version1, version3 and version5 always

reached an efficiency of over 1. This means that the speedup of this methods is always

higher than 4 for 4 cores. This shows obviously, that a core can be more efficiently

used by a parallel program with hyper-threading than by a sequential program.

The turbo boost which was already tested for this methods can also be combined with

the hyper-threading. This combination is also tested with all cores, which results in

a very similar speedup (like discussed before, the overclocking of 4 cores is minimal).

For block size 5 version2, version4 and version6 get the best improvement (see Figure

4.8). The efficiency of version4 increased nearly to the same level as the best methods

(version0 and version3). The efficiency is low because the turbo boost of one core is

27

that high that this results cannot be reached by more processes.

For block size 10 version4 has got clearly the best improvement, but like in all other

cases the efficiency is nevertheless not the highest. The minimal improvement decreases

in the case of activated turbo boost and in the combination with block size 10 and

matrix size 500 the efficiency of version1 got worse with activated hyper-threading.

But this is the only constellation where activated hyper-threading is less efficient.

Version1
Version3, NT=2

Version5
Version0

Version3, NT=4
Version6
Version2
Version4

Compare parallel efficiency of 8 and 4 processes for random matrix with b=5

Matrix size n

S
h
[%

]

800070006000500040003000200010000

25

20

15

10

5

0
Version1
Version2
Version5

Version3, NT=2

Version0
Version6

Version3, NT=4
Version4

Compare parallel efficiency of 8 and 4 processes for random matrix with b=10

Matrix size n

S
h
[%

]

800070006000500040003000200010000

20

15

10

5

0

-5

-10

Version2
Version6
Version5
Version1

Version4
Version3, NT=2
Version3, NT=4

Version0

Parallel efficiency of 8 processes on 4 cores for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

800070006000500040003000200010000

1.2

1.1

1

0.9

0.8

0.7

Version2
Version6
Version5
Version4

Version1
Version0

Version3, NT=2
Version3, NT=4

Parallel efficiency of 8 processes on 4 cores for random matrix with b=10

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

800070006000500040003000200010000

1.2

1.1

1

0.9

0.8

0.7

Figure 4.8: Efficiency of the different methods for different n using hyper-threading
and turbo boost with 8 processes and 4 cores on test system Standard1, left b = 5 and
right b = 10

28

Version2
Version6

Version3
Version0
Version1

Parallel efficiency of two processes for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

100009000800070006000500040003000200010000

1.4

1.2

1

0.8

0.6

0.4

Figure 4.9: Efficiency of the different methods for different n with b = 5 using 2
processes on test system Orestis

4.1.2 Performance evaluation on system Orestis

After a detailed evaluation of the test system Standard1 and two new features of pro-

cessors, the different implementations are tested on a higher number of cores. Although

the efficiency of the parallelization running on a quad-core is important, the implemen-

tation needs a good scalability for far more cores. In this section the performance is

evaluated for up to 32 cores. We start with 2 processes and increase them to analyze

how the efficiency of the different implementations changes for different matrix and

block sizes and number of processes.

The first figures (4.9 and 4.10) can be compared with the results in Section 4.1.1 to

evaluate the influence of the used system on the efficiency of the different versions.

In Figure 4.9 the parallel efficiency of two processes for different matrices with block

size 5 is illustrated. Like in Figure 4.1 version0 and verion3 are very good, but in

this case also version1 reaches a similar or rather a little bit better performance than

version3. Another interesting result is that the efficiency reached a value higher than

1, although 1 should be the optimal (best) value. A so far unidentified effect causes

less cache misses for the parallel version (see Table 4.5 in Section 4.1.4). The worst

value of version2 and version6 reached nearly 0.5, which means that using two cores

can be almost as fast as using one. This is far worse than the result on the test system

Standard1.

In Figure 4.10 four processes, and so also all different implementations, are evalu-

ated for block size 5. In this case four versions reached for some matrices a better than

optimal speedup. While version0 is for smaller matrices far the best implementation,

29

Version4
Version2
Version6

Version3, NT=4

Version3, NT=2
Version5
Version0
Version1

Parallel efficiency of four processes for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

100009000800070006000500040003000200010000

1.4

1.2

1

0.8

0.6

0.4

Figure 4.10: Efficiency of the different methods for different n with b = 5 using 4
processes on test system Orestis

version1 got a better result for the largest tested matrix (n = 10000) and furthermore

a higher efficiency than 1. It seems that besides version1 also version5 is better com-

patible with the second system and slightly outperforms version3. Version2, version4

and version6 reached in the worst case an efficiency around 0.5. This is the same value

as before, but this means that the speedup increased by a factor 2.

There is no figure for the number of processes between 4 and 16, because the results

are very similar to Figure 4.10. The efficiency only decreases slightly and uniformly

over all methods. In Figure 4.11 we see that also 16 processes are very similar. The

only difference we can expect is that version3 with 2 threads loses a little bit less than

the other methods and version0 becomes better for larger matrices than version1.

The two expected changes for 16 processes further changed for more cores. In Figure

4.12 we can see that version0 becomes definitely the best and version3 becomes as good

as version1. Interesting would be how the efficiency would further change when more

processors are used.

All this tests are also done with block size 10 for up to 32 cores, but they are not

illustrated because there are only a few differences. Generally all versions lose more or

less of the efficiency but the order of the methods are equal. Only version1 can get as

fast as version0 and becomes one of the best methods. It seems that version1 could

get very good for larger block sizes but we will see in Section 4.1.3 that this is not true

for block sizes greater than 10.

In the previous figures the efficiency was used to illustrate the quality of the parallel

programs, because this metric can be used to easily compare the use of different number

30

Version4
Version6
Version2

Version3, NT=4

Version5
Version3, NT=2

Version1
Version0

Parallel efficiency of 16 processes for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

100009000800070006000500040003000200010000

1.4

1.2

1

0.8

0.6

0.4

Figure 4.11: Efficiency of the different methods for different n with b = 5 using 16
processes on test system Orestis

Version2
Version6
Version4
Version5

Version3, NT=4
Version3, NT=2

Version1
Version0

Parallel efficiency of 32 processes for random matrix with b=5

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

100009000800070006000500040003000200010000

1.4

1.2

1

0.8

0.6

0.4

Figure 4.12: Efficiency of the different methods for different n with b = 5 using 32
processes on test system Orestis

31

Version4
Version2
Version6

Version3, NT=4

Version3, NT=2
Version5
Version0
Version1

Speedup for random matrix with n=8000 and b=10

of processes

S
p
ee
d
u
p

35302520151050

35

30

25

20

15

10

5

0

Figure 4.13: Speedup of the different methods for different n with b = 10 and different
number of processes on test system Orestis

of processes. The disadvantage of this metric is that it does not illustrate how the

(absolute) speedup changes and how fast it grows with increasing number of cores.

Therefore in Figure 4.13 the speedup for different number of processes is illustrated.

We can see that the speedup is up to 16 nearly optimal and between 24 and 32 processes

the speedup is nearly the same (version2 is the only method which loses speedup by

using 32 instead of 24 processes). In Section 4.1.4 it is analyzed in detail why the

speedup is changing in this way.

4.1.3 Performance evaluation for different block sizes

In the previous sections we saw that the efficiency of the different methods vary for the

two different tested block sizes. Therefore in this section the efficiency of the methods

are tested for different block sizes on both test systems. On the system Standard1

the changes of the speedup is tested for the smallest significant matrix size where the

efficiency of all methods reaches a value that does not change for larger matrices. For

block size 5 it seems to be always quite constant (see Figure 4.2), but for block size 10

it reaches the final value at matrix size 8000 (see Figure 4.4).

Because of the limitation that the size of all blocks of the matrix must be equal (see

Section 1.4), the possible different block sizes are strongly restricted 2.

In Figure 4.14 we see that the efficiency of version0, version1 and version3 with two

processes does not change for block sizes greater than 10. Only for smaller blocks the

2For matrix size 8000 all possible block sizes are: 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80

32

Version2
Version6

Version1
Version3
Version0

Parallel efficiency of two processes for random matrix with N=8000

Block size b

P
a
ra
ll
el

effi
ci
en
cy

80706050403020100

1

0.95

0.9

0.85

0.8

0.75

Figure 4.14: Efficiency of the different methods for different b with n = 8000 using 2
processes on test system Standard1

speedup is significantly lower. The efficiency of version2 and version6 increases steadily

for larger block sizes and at block size 64 version6, which is always a little bit better

than version2, reaches the the runtime of version1.

In Figure 4.15 the efficiency for the same matrices but with four processes are

illustrated. Ignoring the smallest block size the speedup of all methods decrease up to

block size 16. For greater blocks the efficiency of all versions increases, version0 and

version3 reach the same level as for block size 5, while the speedup of the other methods

further increases. But both version3 (with two and four threads) are the best methods

and version0 is close behind. Like in the previous case, version6 seems to profit most

of greater block sizes. Theoretically it would be interesting how the efficiency further

increases, but too large block sizes make the twisted block factorization very slow.

Therefore it is not useful to further analyze the method in this context.

Testing only one matrix size (although the size is well chosen) cannot show the

whole evolution of all methods. Therefore the same (or rather nearly the same3) block

sizes are tested with matrices of size 6000. There are only two differences to the pre-

vious results. The first is that for two processes the efficiency of version0 and version3

slightly decreases from block size 8 to 16 and then increases, but both are always the

best methods. The second difference is much more significant. Version5 strongly de-

creases and becomes definitely the worst version (efficiency about 0.65, while the other

methods are around 0.9). The other methods are very similar to Figure 4.15.

3For matrix size 6000 the block sizes 32 and 64 cannot be used, they are replaced by 30 and 60

33

Version2
Version4
Version1
Version5

Version6
Version0

Version3, NT=4
Version3, NT=2

Parallel efficiency of four processes for random matrix with N=8000

Block size b

P
a
ra
ll
el

effi
ci
en
cy

80706050403020100

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

Figure 4.15: Efficiency of the different methods for different b with n = 8000 using 4
processes on test system Standard1

Version2
Version4
Version6
Version5

Version1
Version3, NT=2

Version0
Version3, NT=4

Parallel efficiency of four processes for random matrix with N=6000

Block size b

P
a
ra
ll
el

effi
ci
en
cy

80706050403020100

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 4.16: Efficiency of the different methods for different b with n = 6000 using 4
processes on test system Orestis

34

Version4
Version2
Version6
Version5

Version0
Version1

Version3, NT=4
Version3, NT=2

Parallel efficiency of 32 processes for random matrix with N=6000

Block size b

P
a
ra
ll
el

effi
ci
en
cy

80706050403020100

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 4.17: Efficiency of the different methods for different b with n = 6000 using 32
processes on test system Orestis

In Figure 4.16 the efficiency for different block sizes on the test system Orestis for

four cores is illustrated. For block sizes between 4 and 8 the efficiency of all methods

decreases, then up to a block size of 20 it increases and is then nearly constant. Only

version6 slightly increases for greater block sizes and the efficiency of version1 is very

constant also for small block sizes. Version0 is one of the best methods up to a block

size of 40 and then both version3 becomes the best for all greater sizes. Version2,

version4 and version6 are also in these tests definitely the worst implementations. The

efficiency of the other methods are nearly always over, the theoretical best value, 1.

In Figure 4.17 the efficiency for 32 processes is illustrated. The results are very similar

besides the general decrease of the efficiency because of the use of all cores (discussed

in Section 4.1.4). The speedup of version1 for small block sizes also decreases in the

same way like it happens for the other methods in this and the previous test case. For

larger block sizes the efficiency of version0, version1 and both version3 are very similar

and so no definite best method can be determined. Version5 becomes as fast as the

best implementations for the largest tested block size 80.

35

4.1.4 The Performance-Model for a parallel program

In this section three different things are mentioned. First of all a model for the runtime

of the algorithm on different systems is created, then the quality of the prediction is

evaluated and at the end it is also analyzed which influences decrease the speedup

of the implementations by taking a detailed look on the work distribution (in the

other sections of this chapter it is evaluated how efficient the different methods are for

different matrix and block sizes on different test systems, but it was never mentioned

why they are that fast).

Theoretical construction of the Performance-Model

An interesting theoretical analysis of the performance is described in [17]. There a

model is created that can be used to predict the runtime of a parallel program on

different computer systems. The model parameter for defining a formula describing

the performance of a parallel algorithm are the following five variables:

• τDGEMM : Time the BLAS-Routine DGEMM needs (divided by n3)

• τDGEMV : Time the BLAS-Routine DGEMV needs (divided by n2)

• τ÷: Time the division operation needs

• τlat: Time which is minimal needed to communicate with another process (la-

tency)

• τband: The inverse of the amount of data that can be transferred to another

process per second

The formula constructed for PDSYEVX in [17] is given in Equation (4.4). The

model is created by splitting the ScaLAPACK-Routine in four different parts (the

tridiagonalization, the bisection, the inverse iteration and the back-transformation).

Then the dominating operations in each part are defined (these factors define the

needed variables to describe the runtime of the routine) and how often and with which

problem size the operations are called. This information allows the description of the

runtime of PDSYEVX by using the 5 defined variables. In [17] it is also mentioned that

the model for the bisection and the inverse iteration needed to be improved empirically,

because these two operations are very compiler dependent.

8

3

n3

p
τDGEMM+

(

2

3

n3

p
+ 520

n2

p

)

τDGEMV+71
n2

p
τ÷+21nτlatlg (p)+

(

7
n2lg (p)√

p
+ 4

n2

p

)

τband

(4.4)

36

This model will also be created and tested for the twisted block factorization on

the different test systems. For the given algorithm additional variables are defined to

construct the model. These new parameters are τDGETRF and τDTRSM which represent

the runtime for the LAPACK-Routine DGETRF and the Blas-Routine DTRSM (for

these two variables the runtime is also divided by n3). The parameter τ÷ is not neces-

sary. The performance model is constructed for version0, thread based parallelizations

would be more complicated and for this method the formula is easier to define.

The computation of each eigenvector needs almost the same operations, uses the

same problem size and the same number of operation calls. Therefore it is only neces-

sary to look on the computation of one eigenvector and multiply the result with n. The

twisted block factorization consists of a forward, backward and twisted factorization.

In the forward factorization a DGETRF is called for each block (n/b is the number

of blocks and the size of each block is equal b × b), two DTRSM and one DGEMM

are called for each block except the first one. In the backward factorization the same

operations are called. In the twisted factorization one DGETRF is called for each block

except the first and the last. The last part is the inverse iteration which consists of

DGEMV and DTRSM calls, but DTRSM is in this case only called to solve one row.

Therefore we cannot use the variable τDTRSM , but to avoid an additional parameter

the same value as for DGEMV is used. The variables τDGEMM and τDTRSM are for the

same size very equal, so the time of DGEMV should generally be a good approximation

for the time of DTRSM solving one row. Furthermore both runtimes are much lower

than the rest, so an error in this part would not occur a significant failure. In the

inverse iteration one DTRSM and DGEMV is called for each block, except the block

where the forward and backward factorization of the chosen twisted block factorization

meet. For this block two DTRSM are called.

In Equation (4.5) the formula of the sequential program is defined. Furthermore

the communication overhead must be defined. The factor for the broadcast is described

in [17] as lg(p) ∗ (τlat +message size ∗ τband). The message size is equal the number

of elements of the block tridiagonal matrix which is 3bn − 2b2 plus the number of

eigenvalues n (to make the communication more easy all data are distributed in one

step by a broadcast). The gather-method, used to get all eigenvectors, is the sending

of n2 data to one process. The parallel aspect is defined in Equation (4.6) and in

Equation (4.7) the whole model is constructed for a parallel twisted block factorization

of a n× n matrix with block size b which is computed on p processes. This formula is

compared with the real runtime in Figure 4.20.

37

τserial =
(

τDTRSM ∗
(

n

b
− 1

)

∗ 4 + τDGETRF ∗
(

3 ∗ n

b
− 2

)

+ τDGEMM ∗
(

n

b
− 1

)

∗ 2
)

∗b3∗n

+2 ∗ n

b
∗ τDGEMV ∗ b2 ∗ n (4.5)

τcomm = lg(p) ∗
(

τlat +
(

3nb− 2b2 + n
)

∗ τband
)

+ n2 ∗ τband (4.6)

τversion0 =
τserial
p

+ τcomm (4.7)

Evaluation of the Performance-Model

In this section the performance model which is previously created is compared with

the results on the test systems. In the first step the parameters of the model are de-

termined. Therefore a program is written which does the necessary operations and

measures the time.

The first variable which is examined is τDGEMM . It seems to be easy to get the correct

value, but which matrix size should be used for the reference value? In [17] it is not

clearly defined how the performance of DGEMM is evaluated. It is only specified that

the size is ”large enough to allow acceptable DGEMM (BLAS 3 matrix-matrix multiply)

and DGEMV (BLAS 2 matrix-vector multiply) performance”. One possible procedure

would be the use of growing matrices up to a size where the efficiency of DGEMM

does not further increase. The maximal value could be used as a reference. This would

be very easy to test on different systems, but in the twisted block factorization the

DGEMM is only used for small blocks and will not be able to reach the optimal effi-

ciency. Therefore in the first step the evolution of DGEMM is illustrated for different

matrix sizes in Figure 4.18.

The next value which is defined is τDGEMV . There is the same problem like before

and thats why the results for different matrix sizes are also illustrated in the same

figure. The evolution of the two new values, τDGETRF and τDTRSM , are also illustrated

in Figure 4.18.

The last two variables are defining the time which is needed for communication.

The latency is easy measured by sending a message to another process and the other

process sends back a message to the first one (the time is divided by 2).

For the bandwidth growing messages are send to see when the amount of data per

38

τDGEMM

τDTRSM

τDGETRF

τDGEMV

Values of the variables of the performance model

Matrix size n

T
im

e
(s
)

100806040200

0.0001

1e-05

1e-06

1e-07

1e-08

1e-09

1e-10

Figure 4.18: The value for the different variables depending on the used size used for
the operations

second does not further increase. The problem is, that in the algorithm the amount

of data which is communicated need not to be that high that this asymptotic value

can be reached in the program. So the question is how good the use of the highest

measured value is.

The best efficiency of DGEMM and DGEMV is nearly reached at size 20 (in logarith-

mic scale, the improvement up to size 100 is although factor 2). The runtime divided

by n3 of DGETRF and DTRSM converge slower and decreases significantly longer (see

Figure 4.19). For smaller problems these methods also seems to need more time than

DGEMM, but between matrix size 100 and 200 the methods become faster. DGEMV

cannot be directly compared with the other methods, because the complexity order is

only O(n2) instead of O(n3). Therefore it is always much faster than the other three

routines (in the figures the runtime of DGEMV is only divided by n2).

In the twisted block factorization the operations are only used for small problems,

therefore the maximum value would cause a large error in the performance model. The

problem is, that all functions change their efficiency up to 20 very fast and this sizes

are the most common for this algorithm.

We will use the correct value for the specific block size to be able to get an accurate re-

sult and evaluate the performance model by reducing the influence of the measurement

method as good as possible. The results for the different variables for block size 10 on

both test systems are given in Table 4.2. The variables are all defined in nanoseconds.

We can see that the values are very different for the systems. While on test system

39

τDGETRF

τDTRSM

τDGEMM

τDGEMV

Values of the variables of the performance model

Matrix size n

T
im

e
(s
)

30002500200015001000500100

1e-09

1e-10

Figure 4.19: The value for the different variables depending on the used size used for
the operations. The same illustration as in Figure 4.18 but for much larger problem
sizes.

Orestis DGEMM needs only about 2.2 times longer than on Standard1, DGEMV needs

about 3.7 times longer. In the third column of the table all ratios are given to be able

to compare how the different variables change on both systems.

System 1 [ns] System 2 [ns] Ratio
τDGEMM 0.9108 2.0313 2.2302
τDGEMV 2.7895 10.395 3.7264

τlat 214.59 702.50 3.2736
τband 1.6397 6.6380 4.0483

τDGETRF 2.3794 3.5620 1.4970
τDTRSM 0.8798 1.5306 1.7397

Table 4.2: Values of the variables for the performance model for block size 10

The values of the variables can be used in Equation (4.5) to predict the needed

runtime for different matrix and block sizes. In Figure 4.20 the difference between

the real runtime and the prediction divided by the real runtime (relative error of the

prediction) is illustrated for different matrix sizes. The error for test system Standard1

is for all problems nearly the same and about 17%. The prediction for test system

Orestis is not that constant and the error is up to 30%. The quality of the results are

very similar to [17].

The error in the prediction comes from other functions which are used but not men-

tioned in the performance model and the other problem is the data reuse. The problem

size in the twisted block factorization is very small, therefore the use of the same data

40

Standard1
Orestis

Error in performance model for random matrix with b=10

Matrix size n

re
l.
E
rr
o
r

1000080006000400020000

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

Figure 4.20: Error of the performance model for both test systems

for the same or different operations can be faster.

Evaluation of the Work-Distribution

Possibly a version could be created where the whole work is not automatically dis-

tributed, so processes which finished faster can get more work. The most important

aspect for this solution is the different runtimes of the processes. If all processes need

nearly the same time, better work distribution would not be able to improve the ef-

ficiency. Therefore in this section it is evaluated how efficient a dynamic scheduling

could be and how good the static scheduling in the different implementations already

are.

An easy example would be the dynamic distribution of the eigenvalues. The improve-

ment could be, that not all eigenvalues are distributed at the beginning. For example,

90% are computed and when one process completes the calculation it could get further

work. So the 10% are distributed between the fastest processes.

Therefore in the first step the runtime of the broadcast, the calculation and the gather

method for sending the eigenvectors distributed among all processes to the root process

is compared for different number of processes. In Table 4.3 the times on the system

Standard1 for 1, 2 and 4 processes of version0 (for the work-distribution only this im-

plementation is mentioned) are illustrated. We can see that the needed time for the

communication is not significant for the complete runtime, but the time needed for

the calculation increases with the number of used processes although the calculation is

done completely independent. This happens because some processes share the cache

41

memory, which results in more cache misses4. At the end of this section a quantitative

evaluation of this phenomenon is given by using PAPI5. For the work-distribution the

difference of the calculation time between the processes is the most important aspect.

We can see that in this example, the runtime for two processes is nearly equal. So a bet-

ter work-distribution would not be able to improve the runtime. The difference of the

highest and the average time of four cores is about 1.6%, so the best work-distribution

would only be able to improve up to this value (ignoring the overhead which would be

produced by the dynamic work-distribution). Based on the highest time (40.899s) the

calculation of one eigenvector would need 0.002s = 40.899s/5000/4 and the slowest

process should calculate 82 eigenvectors less to reach the average runtime of all four

processes (which is the optimal runtime), while the fastest process should calculate

these 82 eigenvectors.

Cores (process) Broadcast (s) Calculation × p (s) Gather (s)
1 (1) 3.8147E-006 36.994 8.9898E-002
2 (1) 6.4802E-004 37.558 8.3605E-002
2 (2) 6.4802E-004 37.608 8.3511E-002
4 (1) 1.1420E-003 39.413 8.1405E-002
4 (2) 1.1430E-003 40.852 6.1627E-002
4 (3) 1.1389E-003 40.899 4.2129E-002
4 (4) 1.1389E-003 39.745 8.1314E-002

Table 4.3: Runtime of the broadcast, the calculation and the gather-method for matrix
size 5000 and block size 10 of version0 on test system Standard1

The next tests are done on the larger test system Orestis to see the changes for 1 to

32 processes. In Table 4.4 instead of illustrating the runtime of all processes, the sum

of the calculation times of all processes and the maximum of all times multiplied by the

number of processes are shown. The last column is the best theoretical optimization

which can be reached with better work distribution. We can see that the calculation

time is nearly constant for up to 8 processes. The reason for this is that 8 cores

of different processors can be used and so no conflict in the caches can occur. For

16 processes at least 2 cores of each processor must be used and the shared cache

significantly increases the sum of the calculation time. Using 24 or 32 processes the

efficiency of each process strongly decreases because of the shared memory.

We can see that the best work distribution would only be able to improve the runtime

in the most cases about 3%, only the result for 24 processes could be increased up

to 4.8%. An interesting result is the runtime of the Gather-Method. It needs nearly

4Data which are currently not used can be replaced by data used by another process.
5Performance Application Programming Interface: http://icl.cs.utk.edu/papi/

42

the same time independently of the number of processes. This happens because the

amount of data is always the same, only the amount of messages increases.

Cores Broadcast (s) Calculation Time (s) Gather (s) Max. Optimization (%)
Sum Maximum × p

1 6.9141E-006 70.420 70.420 0.24143 0.0000
2 2.2271E-003 69.229 71.382 0.23474 3.0162
4 3.7260E-003 70.442 72.759 0.26383 3.1845
8 5.4801E-003 70.006 72.660 0.23839 3.6526
16 7.9391E-003 76.021 78.739 0.26641 3.4519
24 1.4227E-002 80.616 84.723 0.27406 4.8476
32 1.4291E-002 94.225 97.827 0.26337 3.6820

Table 4.4: Runtime of the broadcast, the calculation and the gather-method for matrix
size 5000 and block size 10 of version0 on test system Orestis

Cores L1 cache misses L2 cache misses FP-Operations Total Cycles
1 6561323 160059 293440001 1317657944
2 5856744 163443 293440001 1295261590
4 6309719 204369 293440001 1281330751
8 6038785 234659 293440001 1275810079
16 6300249 301661 293440001 1263427341
24 6033947 362003 293440001 1256580641
32 6216261 451790 293440001 1257494754

Table 4.5: Cache-misses, floating point operations and total cycles for matrix size 500
and block size 10 on test system Orestis, the sum over all processes is shown in each
cell

The efficiency on both systems strongly decreases with the number of processes,

although the communication overhead is not significant. In Table 4.5 different values

measured with Papi on the test system Orestis or calculated with them are shown. We

can see for different number of processes how many L1 and L2 cache misses totally

occur over all cores. The L1 cache misses are constant (except the normal fluctuation),

because each core has his own L1 cache while the L2 cache misses strongly increases.

It also matches with the runtime where the first significant increase happens with 16

processes and we can now see the same for the cache misses. The chosen matrix size

for these measurements is 500 because the given hardware of the test system Orestis

has three cache levels, but no event counter for the L3 cache is supported6. A larger

matrix would result in more L3 and not L2 cache misses, but this effect cannot be

shown on this system.

6All supported Papi-Events are checked with the program papi avail

43

4.1.5 Performance comparison with ScaLAPACK

After the detailed evaluation of the performance of the different parallelization strate-

gies and the analysation why the efficiency is changing in that way, in this section the

results of the parallel twisted block factorization are compared with the ScaLAPACK

implementation of the Divide-and-Conquer algorithm (PDSYEVD7). In the last sec-

tion we saw that the communication overhead is not significant. This could imply

that other implementations cannot be more efficient, but a better data distribution

or rather data usage could reduce the overhead caused by the shared caches. ScaLA-

PACK is unfortunately not made for multi-core architecture and will therefore be not

very efficient. A better library would be Parallel Linear Algebra for Scalable Multi-core

Architectures (PLASMA) which is constructed for the new architectures, but actually

there is no eigensolver implemented [18]. The comparison of the parallel twisted block

factorization and PDSYEVD is quite difficult, because the amount of data used in

this functions is extremely different and therefore also the amount of memory needed

to solve the eigenproblem. For a good comparison it is necessary to use the ScaLA-

PACK routine in the most efficient way. Therefore different parameters are changed

to find the best configuration for PDSYEVD. The parameters that can be changed

are the Process Grid8 or the blocking of the rows and columns of the data (this pa-

rameters are different for the two test systems and depend on the amount of processes).

PDSYEVD computes the eigenvalues and eigenvectors of the given matrix, while

the twisted block factorization computes only eigenvectors. For a complete comparison

a optimized parallel program should be used to calculate only the eigenvalues of the

block tridiagonal matrix, but actually this is not available. Therefore this is excluded

in these tests, but would be interesting for the future. In Figure 4.21 the efficiency of

PDSYEVD is compared with all parallel twisted block factorization implementations

on test systems Standard1 using 4 processes.

For small matrix sizes the efficiency of PDSYVED is very low, but is strongly

increasing up to a matrix size of 6000. For matrices greater than 8000 the efficiency

is slightly decreasing. In all cases the ScaLAPACK-Routine is not able to reach the

speedup of the worst parallel twisted block factorization. This result confirms the good

quality of the parallelization strategies.

In Figure 4.22 the speedup of PDSYEVD is compared with the other implementa-

7It would be better to compare the twisted block factorization with an implementation for banded
matrices, but in ScaLAPACK no eigenproblem solver for banded matrices is available (List of functions
on http://www.netlib.org/scalapack/double/)

8http://netlib.org/scalapack/slug/node70.html

44

ScaLAPACK/PDSYEVD
Version2
Version4
Version6

Version5
Version1

Version3, NT=4
Version0

Version3, NT=2

Parallel efficiency of four processes for random matrix with b=10

Matrix size n

P
a
ra
ll
el

effi
ci
en
cy

1600014000120001000080006000400020000

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 4.21: Efficiency of the different methods and the ScaLAPACK-Routine
PDSYEVD for different n with b = 10 using 4 processes on test system Standard1

tions on test system Orestis. In this case the efficiency is illustrated for different number

of processes because there are more cores available and it is interesting to see how the

value decreases. For a smaller number of processes (2,4 and 8) the ScaLAPACK-

Routine reaches a quite good efficiency, nearly as good as the best parallel twisted

block factorization. For 16 processes the speedup strongly decreases (this is the first

case where more than one core of each processor is used). We can see that the multi-

core architecture has a very large influence on the performance of PDSYEVD. The

speedup for 16, 24 and 32 processes is nearly the same and therefore the efficiency is

strongly decreasing to a very low value.

4.2 Accuracy

Basically the accuracy is of course an essential aspect of an algorithm, but for the

sequential program the accuracy is already discussed in [2]. Therefore this section

will analyze shortly the accuracy of the parallel implementations to give an complete

view of the twisted block factorization and how efficient this algorithm can be used for

eigenproblems with different attributes.

The following matrix types are used to test the twisted block factorization:

0. Random matrices with values uniformly distributed in [0,1]

45

ScaLAPACK/PDSYEVD
Version6
Version2
Version4

Version5
Version3, NT=4
Version3, NT=2

Version1
Version0

Efficiency of 32 processes for random matrix with b=10

Matrix size n

E
ffi
ci
en
cy

100009000800070006000500040003000200010000

1

0.8

0.6

0.4

0.2

0

Figure 4.22: Efficiency of the different methods and the ScaLAPACK-Routine
PDSYEVD for different number of processes with b = 10 and n = 8000 on test system
Orestis

1. Eigenvalues clustered around ±ε9

2. Eigenvalues clustered around ±1

3. Eigenvalues geometrically distributed in [−1,−ε] ∪ [ε, 1]

4. Eigenvalues arithmetically distributed in [−1,−ε] ∪ [ε, 1]

5. Eigenvalues whose logarithms are uniformly distributed in [−1,−ε] ∪ [ε, 1]

6. Eigenvalues uniformly distributed in [−1, 1]

The following aspects could be mentioned to analyze and define the accuracy of the

twisted block factorization:

• Residual: Ri =
(

‖(A−λiI)xi‖1
‖A‖

1
‖xi‖1

)

From the mathematical point of view, the matrix A shifted by one of his eigen-

values multiplied by the corresponding eigenvector must result in the null-vector.

So the error in the calculation is given by the norm 1 of the resulting vector

9ε defines the machine epsilon which is the largest value for a double precision variable where
1.0 + ε ≡ 1.0

46

normalized by the norm 1 of the matrix A and the norm 1 of the correspond-

ing eigenvector (which is in this case equal 1). Ri is the residual for the i-th

eigenvalue and eigenvector.

• Orthogonality Oi =
∥

∥

(

X⊤X − I
)

(:, i)
∥

∥

∞

Another attribute is that all eigenvectors are orthogonal to each other (scalar

product of xi and xj is 0 ∀i, j with i 6= j) and each eigenvector is normalized

(scalar product of xi with itself is 1 ∀i). The given metric for the orthogonality

considers both attributes. The transposed of the eigenvector matrix X, composed

of the eigenvectors xi, multiplied by X should result in the identity matrix. Each

diagonal element represents the scalar product of each eigenvector with itself and

all the off-diagonal elements represent the scalar product of all eigenvectors with

each other. Subtract the resulting matrix by the identity matrix should result

in a matrix with all elements equal zero. Splitting this matrix into vectors and

calculating the maximum norm of each calculates the quality for each eigenvector

separately.

This master thesis illustrates the quality of the accuracy in a new way by creat-

ing two tables (see tables 4.6, 4.7) where the residual and the orthogonality of each

eigenvector is used to calculate the mean, the standard deviation, the minimum, the

maximum and the percentage of values which are smaller or equal than n · ε or smaller

or equal than n·√ε. In the context of accuracy the average of all values can be strongly

dominated by only one (or a few) values. Therefore the mean and the standard devia-

tion of the logarithm of the values are created to look on the number of correct digits.

This metric is less influenced by outliers.

For the residual we can see in Table 4.6 that the twisted block factorization gets a

good approximation with only one inverse iteration in nearly all cases. Only one out-

lier, which is also larger than the greater threshold n · √ε, in matrix type 3 was found

during these tests10. The results for matrix type 0, 1, 2 and 4 are perfect, the residual

is for all eigenvectors smaller than n · ε. In matrix type 6 one eigenvector has a little

bit larger residual, but it is even though very good. In matrix type 5 some eigenvectors

have a larger residual, but also all of them are smaller than the greater threshold.

10Further researches are necessary to find out in which cases the residual can get that bad

47

matrix type ≤ n · ε [%] ≤ n · √ε [%] average deviation maximum minimum
0 47.6 100 -12.7 0.58 -10.82 -16.0
1 0.06 0.06 -0.06 0.46 0 -14.8
2 0.06 0.06 -0.08 0.50 0 -15.0
3 12.6 67.5 -7.22 4.64 0 -16.0
4 73.9 100 -13.0 0.49 -10.9 -16.0
5 43.4 62.1 -8.20 6.44 0 -16.0
6 92.6 100 -13.8 0.72 -10.5 -16.0

Table 4.7: The table consists of different information about the orthogonality of the
eigenvectors for matrices of different matrix types. The first column defines the type,
the second and third columns are the percentage of all orthogonalities that are smaller
than the two thresholds, the other columns are the average exponent, the deviation of
the exponent, the maximal and the minimal exponent of the orthogonality, this table
is an advancement of the illustration in [2]. If the exponent is less than 10−15 the value
is rounded down to zero, which means that the orthogonality is almost one.

matrix type ≤ n · ε [%] ≤ n · √ε [%] average deviation maximum minimum
0 100 100 -15.9 0.22 -14.0 -16.4
1 100 100 -28.7 4.38 -15.3 -33.1
2 100 100 -16.1 0.44 -13.9 -18.9
3 99.9 99.9 -18.6 1.73 -0.97 -23.6
4 100 100 -16.3 0.41 -13.7 -18.1
5 84.5 100 -17.6 4.10 -8.60 -28.0
6 99.9 100 -15.8 0.53 -12.1 -17.4

Table 4.6: The table consists of different information about the residual of the eigen-
vectors for matrices of different matrix types. The first column defines the type, the
second and third columns are the percentage of all residuals that are smaller than
the two thresholds, the other columns are the average exponent, the deviation of the
exponent, the maximal and the minimal exponent of the residuals, this table is an
advancement of the illustration in [2]

In Table 4.7 we can see that the twisted block factorization has problems with

the orthogonality of the different eigenvectors. In the matrix types with no clustered

eigenvalues (0, 4, 6) the orthogonality of each eigenvector is smaller than the greater

threshold and in matrix type 6 it is also in nearly all cases smaller than the other

threshold. In matrix type 3 and 5 some eigenvectors are absolutely not orthogonal

while others are. Completely not useful in the context of orthogonal eigenvectors is

the twisted block factorization without any further orthogonalization strategies for the

matrix types 1 and 2. There is only one eigenvector in each of the two matrices which

is orthogonal to all others (these are the two eigenvalues which are not in the clusters).

In Figure 4.23 the orthogonality for each eigenvector of 50 different matrices of each

48

Typ6
Typ5
Typ4
Typ3
Typ2
Typ1

Orthogonality for each eigenvector of different matrices of the matrix types 1 to 6

Absolute distance to nearest eigenvalue

M
a
x
im

a
l
o
rt
h
o
g
o
n
a
li
ty

11e-051e-101e-151e-201e-251e-30

1

0.01

0.0001

1e-06

1e-08

1e-10

1e-12

1e-14

1e-16

Figure 4.23: The distribution of the orthogonality depending on the minimal absolute
gap between the eigenvalues, each illustrated point is the maximal orthogonality of one
eigenvector to all others of the same matrix, 50 matrices with n = 1000 of each matrix
type are used

constructed matrix type (1 to 6) related to the absolute distance to the nearest eigen-

value is illustrated (the matrix size is always equal 1000, this are 6 · 50 · 1000 = 300000

eigenvectors which are all illustrated in the figure). For the smallest gaps (< 10−30) the

orthogonality is between 1 and 10−4, for very small gaps up to 10−18 the orthogonality

is nearly always 1. For larger gaps the orthogonality is inversely proportional to the

smallest distance of the nearest eigenvalue. This is a very interesting result, because it

seems to be possible to estimate the quality of the orthogonality only with the distance

between the eigenvalues (which is very easy to calculate). This information can be used

to reorthogonalize only the eigenvectors corresponding to eigenvalues with a very small

distance (even though how many eigenvectors must be orthogonalized depends on the

needed accuracy). Another result is that the orthogonality cannot be guaranteed to be

smaller than 10−12, independent on the distribution of the eigenvalues11.

11sole exception was found for eigenvectors if the distance for the eigenvalues is nearly 1, then the
orthogonality was always smaller than 10−13

49

50

Chapter 5

Conclusion

5.1 Results

Different aspects of the parallelization of the given sequential twisted block factoriza-

tion were mentioned in this master thesis. Therefore different parallelization strategies

are investigated. We saw that version0, version1 and version3 (in two different con-

stellations of MPI-Processes and OpenMP-Threads) are the best implementations. On

the smaller system System1 the efficiency that is reached suggested a bad scalability

for a larger number of processes. The first conclusion of this is normally, that the

communication overhead strongly increases with the number of processes and that this

would be the reason for the decreasing efficiency. But a detailed analyzes of the run-

time showed that the communication needs no significant time. The needed time for

the complete independent calculation of the eigenvectors increases with the number of

used cores per processor. This is very good illustrated on the larger system Orestis

were this phenomenon occurs not until using more processes than processors are avail-

able. So the number of processes is not the reason for the increasing runtime (for

the computation of one eigenvector) it only depends on the amount of cores, with a

shared cache, which are used. So the problem of the parallel implementation is the

need of different data for each eigenvector, which can occur conflicts between the, apart

from that, independent processes. A very interesting aspect of new architectures is the

Hyper-Threading-Technology, which can produce a significant improvement of parallel

programs. We saw that in all cases and for all versions a better efficiency was achieved

by using this new feature. Further tests in this direction would be very interesting on a

much larger system which also supports hyper-threading. To find out if any other pos-

sibly parallel operations exist in the algorithm, a directed cyclic graph is constructed.

More commonly than this is a directed acyclic graph (DAG), but it cannot be con-

structed for any matrix and block size. A DAG must be constructed individually for

51

each given problem and the resulting graph would be that big that it cannot be illus-

trated on any normal sized paper. The used graph is based on the operations which

are defined by different Blas- and LAPACK-Routines. So further parallelization would

be possible if we would look inside the basic operations. One simple idea would be

the use of thread parallel Blas, PBlas and ScaLAPACK. The problem of this is the

very small runtime of one operation. This was also mentioned in this master thesis by

comparing the efficiency of the basic operations for different sizes. The runtime of the

basic operations were analysed while a performance model was created which should

predict the runtime of the algorithm on different systems by using a few parameters.

There we saw that the efficiency of the basic operations strongly increases with growing

problem size, especially for small problem sizes. This implies that the parallelization

of this functions will not be efficient. The performance model is able to predict the

runtime on both systems if a fault tolerance of up to 30% is acceptable.

5.2 Future Work

The scalability of the parallel twisted block factorization is mentioned in the pre-

vious chapter, but the important factor accuracy or rather the orthogonality must be

mentioned in further researches. The orthogonality can be guaranteed by a reorthog-

onalisation of the calculated eigenvectors. An improvement could be the correlation

between bad orthogonality of the eigenvectors and a small gap between the corre-

sponding eigenvalues, which could result in a reorthogonalisation of small subsets of

the eigenvectors. If this would work in all cases, the distribution of the work (eigenvec-

tors) through the processes must be changed adequate to the clusters of the eigenvalues.

Another possibility to get orthogonal eigenvectors could be the choice of other starting

vectors. This could be very efficient, because it would replace an expensive orthogo-

nalization.

Important aspects of the performance, which are not mentioned in this master thesis,

are the efficiency of the different parallelization strategies for a much larger system.

There the influence of the multi-core architecture could get smaller, because the com-

munication overhead increases and the idle caused by this could reduce the conflict in

the shared cache. Furthermore a larger modern system would be interesting to find

out how good the hyper-threading technology is in massive parallel applications and

when the overhead caused by the doubled number of processes is larger than the im-

provement of the CPU feature. On the other hand the turbo boost could result in a

52

situation where the use of less cores of each processor is more efficient than use all of

them.

There is much more to do to get a general useable parallel eigenvector solver which

guarantees always accurate results with high efficiency on large systems, but the ac-

tual results show that this algorithm is already better than normally used methods for

specific problems.

53

54

Bibliography

[1] W. N. Gansterer and G. König, “On twisted factorizations of

block tridiagonal matrices,” Procedia Computer Science, vol. 1,

no. 1, pp. 279 – 287, 2010, iCCS 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1877050910000323

[2] G. König, M. Moldaschl, and W. N. Gansterer, “Computing eigen-

vectors of block tridiagonal matrices based on twisted block fac-

torizations,” Journal of Computational and Applied Mathematics,

vol. In Press, Corrected Proof, pp. –, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0377042711003967

[3] Y. Bai and R. C. Ward, “Parallel block tridiagonalization of real symmetric

matrices,” J. Parallel Distrib. Comput., vol. 68, pp. 703–715, May 2008. [Online].

Available: http://portal.acm.org/citation.cfm?id=1360708.1360738

[4] G. König, “Computation of Eigenvectors of Block Tridiagonal Matrices Based on

Twisted Factorizations,” 2009, masterthesis.

[5] C. Vömel, “ScaLAPACK’s MRRR algorithm,” ACM Trans. Math.

Softw., vol. 37, pp. 1:1–1:35, January 2010. [Online]. Available:

http://doi.acm.org/10.1145/1644001.1644002

[6] P. Bientinesi, I. S. Dhillon, and R. A. van de Geijn, “A Parallel

Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust

Representations,” SIAM J. Sci. Comput., vol. 27, pp. 43–66, July 2005. [Online].

Available: http://portal.acm.org/citation.cfm?id=1081198.1081222

[7] F. Tisseur, J. Dongarra, M. Eprint, F. Tisseur, and J. Dongarra, “A parallel

divide and conquer algorithm for the symmetric eigenvalue problem on distributed

memory architectures,” SIAM J. Sci. Comput, vol. 20, pp. 2223–2236, 1999.

55

http://www.sciencedirect.com/science/article/pii/S1877050910000323
http://www.sciencedirect.com/science/article/pii/S0377042711003967
http://portal.acm.org/citation.cfm?id=1360708.1360738
http://doi.acm.org/10.1145/1644001.1644002
http://portal.acm.org/citation.cfm?id=1081198.1081222

[8] I. S. Dhillon, B. N. Parlett, and C. Vömel, “The design and implementation of the

MRRR algorithm,” ACM Trans. Math. Softw., vol. 32, pp. 533–560, December

2006. [Online]. Available: http://doi.acm.org/10.1145/1186785.1186788

[9] J. W. Demmel and I. Dhillon, “On The Correctness Of Some Bisection-Like Paral-

lel Eigenvalue Algorithms In Floating Point Arithmetic,” Electronic Trans. Num.

Anal, vol. 3, pp. 116–149, 1995.

[10] Y. Bai and R. C. Ward, “A parallel symmetric block-tridiagonal divide-and-

conquer algorithm,” ACM Trans. Math. Softw., vol. 33, August 2007. [Online].

Available: http://doi.acm.org/10.1145/1268776.1268780

[11] Argonne National Laboratory, “Frequently Asked

Questions,” May 14, 2011. [Online]. Available:

http://wiki.mcs.anl.gov/mpich2/index.php/Frequently Asked Questions

[12] Sun Microsystems, Inc., “IBM XL C/C++ Enterprise Edi-

tion V8.0 for AIX, Compiler Reference,” May, 2003,

http://www.bluefern.canterbury.ac.nz/UCSC%20userdocs/ForUCSCWebsite/C

/AIX/compiler.pdf.

[13] ——, “OpenMP API User’s Guide, Sun ONE Studio 8,” May, 2003. [Online].

Available: http://www.filibeto.org/sun/lib/development/studio 8/817-0933.pdf

[14] MPI Forum, “MPI: A Message-Passing Interface Stan-

dard, Version 2.2,” September 4, 2009. [Online]. Available:

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

[15] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3A: System Programming Guide, Part 1,” May 2011. [Online].

Available: http://download.intel.com/design/processor/manuals/253668.pdf

[16] ——, “Intel Core i7-860 and Core i5-750 Proces-

sors for Embedded Computing,” 2009. [Online]. Available:

http://download.intel.com/newsroom/kits/embedded/pdfs/Core i7-860 Core i5-750.pdf

[17] D. Stanley and K. Stanley, “The Performance of Finding Eigenvalues and Eigen-

vectors of Dense Symmetric Matrices on Distributed Memory Computers,” in In

Proceedings of the Seventh SIAM Conference on Parallel Proceesing for Scientific

Computing. SIAM. SIAM, 1994, pp. 528–533.

56

http://doi.acm.org/10.1145/1186785.1186788
http://doi.acm.org/10.1145/1268776.1268780
http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions
http://www.filibeto.org/sun/lib/development/studio_8/817-0933.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://download.intel.com/design/processor/manuals/253668.pdf
http://download.intel.com/newsroom/kits/embedded/pdfs/Core_i7-860_Core_i5-750.pdf

[18] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

J. Langou, H. Ltaief, P. Luszczek, and A. YarKhan, “PLASMA

Users’ Guide, Version 2.0,” November 10, 2009. [Online]. Available:

http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users guide.pdf

57

http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf

Michael Moldaschl, BSc
Eipeldauerstraße 21-25/43/6

1220 Wien
+43 650 8894418

a0607892@unet.univie.ac.at

Curriculum Vitae

GeburtsdatumGeburtsdatumGeburtsdatumGeburtsdatum 14.07.1987

GeburtsortGeburtsortGeburtsortGeburtsort Wien

StaatsbürgerschaftStaatsbürgerschaftStaatsbürgerschaftStaatsbürgerschaft Österreich

SchulbildungSchulbildungSchulbildungSchulbildung

π Master “Scientific Computing” auf der Universität Wien (seit 2009)
π Bachelor “Physik” auf der Universität Wien (seit 2006)

π Bachelor of Science auf der Universität Wien in Informatik mit Auszeichnung

abgeschlossen (2009)

π HTL Donaustadt, Abteilung EDV, Matura mit Auszeichnung bestanden (2006)
π AHS Franklinstraße 26 (1997 – 2001)
π Volkschule Brioschiweg 3 (1993 – 1997)

TätigkeitenTätigkeitenTätigkeitenTätigkeiten

since 10/2010 Projektmitarbeiter, Divide and Conquer Algorithm for Eigenvalue computation of

block tri-diagonal matrices und Twisted Block Factorization for Eigenvector

computation of block tri-diagonal matrices

Universität Wien

03/2011 – 07/2011 Tutor, Algorithmen und Programmierung in Scientific Computing

10/2010 – 02/2011 Tutor, Introduction in Scientific Computing - Applications and Algorithms
Universität Wien

03/2010 – 07/2010 Tutor, Algorithms and Programming in Scientific Computing

Universität Wien

07/2008 – 07/2009 Projektmitarbeiter, Exploiting Structure in Complex Symmetric Eigenproblems -

Applications in the Numerical Solution of Maxwell's Equations in Optoelectronics
Simulations (resulting in Bachelor Thesis)
Universität Wien

03/2008 – 07/2008 Tutor, Algorithms and Data structures
Universität Wien

Michael Moldaschl, BSc
Eipeldauerstraße 21-25/43/6

1220 Wien
+43 650 8894418

a0607892@unet.univie.ac.at

Auszeichnungen und ZertifikateAuszeichnungen und ZertifikateAuszeichnungen und ZertifikateAuszeichnungen und Zertifikate

π 2. Platz in „Best of the Best“ 2011 in der Kategorie „Bester Bachelor Abschluss
Informatik“ (Auszeichnung für die besten Studenten)

π 2. Platz in “Best of the Best” 2007 in der Kategorie “Bachelor Informatik”
π Best Paper Award 2008 in Informatik auf der Universität Wien für die Arbeit

“Quantum Computing”
π Microsoft Certified Professional (2004): Developing and Implementing

Windows-based Applications with Microsoft Visual Basic .Net and Microsoft
Visual Studio .Net

PublikationenPublikationenPublikationenPublikationen

π Computing eigenvectors of block tridiagonal matrices based on twisted block

factorizations, Journal of Computational and Applied Mathematics, 2011.
(http://www.sciencedirect.com/science/article/pii/S0377042711003967)

π Towards Parallel twisted block factrization, Parallel Numerics, 2011

IT SkillsIT SkillsIT SkillsIT Skills

Operating systems Linux, Windows

Programming skills JAVA, MATLAB, C/C++, Visual Basic, VB.NET, SQL,
Fortran, XML, PHP, HTML
Multicore Programming (MPI, OpenMP)
OpenCL (Computing on graphical unit)
Software Libraries (Blas, Lapack, Slepc, SBR-Toolbox)

Others UML, Latex

Wien, September 2011

	1 Introduction
	1.1 Objective
	1.2 Motivation
	1.3 Related Work
	1.4 Twisted Block Factorization and Inverse Iteration

	2 Optimization of the sequential implementation
	3 Parallelization Strategies
	3.1 The first and simple parallel version (version0)
	3.2 More parallel version (version1)
	3.3 Easier alternative to the second version (version2)
	3.4 Exploiting shared memory for easier implementation (version3)
	3.5 Combination of the OpenMP Implementations (version4)
	3.6 Inverse use of OpenMP and MPI (version5)
	3.7 Improved second version (version6)
	3.8 Directed Cyclic Graph (DCG)

	4 Evaluation
	4.1 Performance
	4.1.1 Performance evaluation on system Standard1
	4.1.2 Performance evaluation on system Orestis
	4.1.3 Performance evaluation for different block sizes
	4.1.4 The Performance-Model for a parallel program
	4.1.5 Performance comparison with ScaLAPACK

	4.2 Accuracy

	5 Conclusion
	5.1 Results
	5.2 Future Work

	Bibliography

