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 9 Zusammenfassung 

1 ZUSAMMENFASSUNG 

1.1 ZIELSETZUNG 

Infektionen mit dem obligat intrazellulären Gram-negativem Bakterium Chlamydia 

trachomatis gehören zu den häufigsten bakteriellen Geschlechtskrankheiten überhaupt; 

darüber hinaus sind sie für meisten verhinderbaren Fälle von Erblindungen, vor allem in 

Entwicklungsländern, verantwortlich. Während die Infektion oft und lange asymptomatisch 

verläuft, kann ein Ausbruch zu entzündlichen Beckenerkrankungen, ektopischen 

Schwangerschaften oder auch Unfruchtbarkeit führen. 

Das Bacterial Ghost-System ist eine Technologieplattform, bei der Gram-negative Bakterien 

mittels Lyse durch das Protein E des Bakteriophagen φX174 ‘entleert’ und getötet werden. 

Die leeren, bakteriellen Hüllen (sogenannte Bacterial Ghosts, abgekürzt BGs) behalten die 

strukturellen, morphologischen und antigenen Eigenschaften ihrer Vorgängerzellen bei. Sie 

können entweder direkt für Vakzinierungen verwendet werden, oder mit aktiven Substanzen 

beladen werden. 

Eine weitere Möglichkeit ist die Verankerung rekombinanter Antigene, die im Rahmen der 

immunstimulierenden Umgebung der BGs präsentiert werden. Dabei kommt den BGs die 

Rolle als natürliches Adjuvans bei. Dies ist besonders ausgeprägt bei Bakterien des 

Escherichia coli Stamms Nissle 1917, der für seine probiotische und immunstimulierende 

Wirkung seit Jahrzehnten verwendet wird. 

Ziel dieser Studie war es daher, BGs auf Basis von E. coli, bevorzugt E. coli Nissle zu 

produzieren, deren Periplasma vor der Lyse mit chlamydialen Antigenen, den 

Vakzinkandidaten PorB und MOMP, befüllt wurde. 

Zu diesem Zweck sollten Plasmide für die Expression und den co-translationalen Export 

dieser beiden Antigene konstruiert werden. Desweiteren sollten unterschiedliche Methoden 

der Induktion der Expression, des Exports in das Periplasma sowie der Markierung und 

Quantifizierung von Antigenen mittels Tags ausgetestet und verglichen werden. Nach 

Experimenten im kleinen Maßstab, in denen zuerst Antigenexpression und anschließend 

Antigenexpression und Lyse getestet wurden, sollten durch Fermentationen in einem 
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Volumen von 20l große Mengen BGs hergestellt werden, deren Periplasma mit chlamydialen 

Antigenen beladen wurde. 

Abschließend soll die Menge chlamydialer Antigene in BGs bestimmt werden. 

1.2 ERGEBNISSE 

Plasmide für die Expression, den Transport ins Periplasma, und die einfache Detektion 

mittels Antikörpern für zwei Chlamydia trachomatis-Antigene, MOMP und PorB, konnten 

erfolgreich kloniert werden. 

Die Expression gefolgt von periplasmatischer Lokalisation von MOMP und PorB wurde 

mittels Western Blot gezeigt. Sie interferiert nicht mit der gleichzeitigen Protein E-

vermittelten Lyse der Bakterien, und Lyse führt zu keinem merklichen Verlust an 

exprimierten chlamydialen Antigenen. 

Bei abschließenden 20l Fermentationen wurden BGs des Stamms E. coli NM522 mit 

periplasmatischem PorB und BGs des Stamms E. coli NM522 mit periplasmatischem MOMP, 

sowie BGs des Stamms E. coli Nissle mit periplasmatischem PorB erzeugt. 

PorB machte dabei etwa ein Fünftel des BG-Trockengewichts aus. In BGs mit MOMP betrug 

dessen Anteil am Trockengewicht etwa ein Drittel; die berechnete Anzahl von PorB-

Molekülen pro BG betrug 2.63∙106 im Fall von E. coli NM522 BGs und 5.08∙106 im Fall von E. 

coli Nissle BGs. Für BGs des Stamms E. coli NM522 wurden 2.19∙107 MOMP Moleküle pro BG 

berechnet. 

Sterile BGs mit den Chlamydia trachomatis-Antigenen PorB und MOMP stehen für weitere 

Versuche bereit, um ihre Immunogenität zu prüfen. 
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2 SUMMARY 

2.1 OBJECTIVES 

Infections with the obligate intracellular Gram-negative bacterium Chlamydia trachomatis 

are a world-wide major healthcare concern. While trachoma is the world’s leading cause of 

preventable blindness (primarily found in developing countries), Chlamydia trachomatis is 

the most common sexually transmitted bacterial pathogen in Western countries. Infection 

often remains asymptomatic, but when they become acute, complications such as Pelvic 

Inflammatory Disease, ectoptic pregnancies and infertility can arise. 

The Bacterial Ghost system is a technology platform with many recognized uses. It utilizes 

protein E of bacteriophage φX174 to lyse and thereby empty and kill Gram-negative 

bacteria, with the remaining empty bacterial envelopes, the so-called ‘Ghosts’, retaining 

their morphological, structural and antigenic characteristics. Bacterial Ghosts (hereafter 

referred to as ‘BGs’) of pathogenic strains can directly be used for vaccination. BGs from 

non-pathogenic strains can be loaded with active substances or DNA for DNA vaccinations. 

Another option is the anchoring of recombinant antigens from other species somewhere in 

the envelope of the BG, taking advantage of its immunostimulatory nature and its capability 

to act as a natural adjuvant. This is especially promising in the case of Escherichia coli Nissle 

1917, a probiotic bacterial strain that has long been recognized as both safe and beneficiary. 

The aim of this project was the production of BGs from E. coli NM522, or (preferentially) E. 

coli Nissle, with their periplasms loaded with the chlamydial vaccine candidate proteins 

MOMP and PorB before the initiation of lysis. 

To achieve these goals, chlamydial antigens were to be cloned into inducible expression 

plasmids with targeting sequences for the export to the periplasm. Furthermore, different 

methods of expression induction, transport to the periplasm and quantification of antigen 

using different tag systems were to be tested and compared. 

After first establishing antigen expression and combined antigen expression and E-mediated 

lysis in small scale experiments, large quantities of BGs with chlamydial antigen-loaded 

periplasms were to be produced by fermentation in a volume of 20l. 
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Subsequently, the amount of chlamydial antigens in BGs was to be quantified. 

2.2 RESULTS 

Plasmids for the expression and the periplasmatic localization of the chlamydial antigens 

PorB and MOMP were successfully cloned. Their correct sequence was first assessed by 

restriction digest pattern analysis, and later shown by the Western Blot detection of tagged 

proteins expressed upon induction in small scale experiments. Protein E-mediated lysis did 

not interfere with protein expression, and vice versa. Lysis did not lead to significant loss of 

protein, indicating the correct localization to the periplasm and the tight sealing of the 

periplasm throughout lysis. 

Large scale fermentation in 20l media produced BGs of the strain E. coli NM522, loaded with 

periplasmatic MOMP and BGs of the strain E. coli NM522, loaded periplasmatic PorB, as well 

as BGs of the strain E. coli Nissle, loaded with periplasmatic PorB. 

Quantification of chlamydial antigens showed that PorB accounted for one fifth of BG mass, 

whereas MOMP constituted one third of its BGs’ mass. The calculated number of PorB 

molecules per individual BG is 2.63∙106 in the case of E. coli NM522 BGs and 5.08∙106 in the 

case of E. coli Nissle BGs. For BGs of E. coli NM522 a total of 2.19∙107 MOMP molecules per 

BG were calculated. 

Sterile BGs, loaded with the chlamydial antigens PorB and MOMP, are available for further 

experiments to assess their immunogenicity. 
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3 INTRODUCTION 

3.1 THE BACTERIAL GHOST PLATFORM TECHNOLOGY 

3.1.1 E-MEDIATED LYSIS OF GRAM-NEGATIVE BACTERIA: 

AN OVERVIEW 

Bacteriophage φX174 of the Microvirus genus preys on Enterobacteriae such as E. coli and 

Salmonella. Virions consist of non-enveloped capsids with icosahedral symmetry, with a 

diameter of 25 – 27nm. The non-segmented, circular ssDNA genome has a length of 5,386bp 

and constitutes 26% of the virion’s weight (Büchen-Osmond, 2006). 

φX174 has been studied extensively; its genome was the first to be sequenced, (Sanger, et 

al., 1977) and the overlapping nature of its genome, resulting in high conservation over time, 

lead to speculations about it being a means of communication by an extraterrestrial society 

(Yokoo, et al., 1979). 

Infection of bacteria with φX174 results in lysis and the release of progeny phage particles; 

lysis requires bacterial growth and is impaired when bacteria are grown on a nutrient-

depleted minimal medium. The lysis protein E is the necessary and sufficient viral factor for 

bacterial lysis (Lubitz, et al., 1984). However, several cellular factors, notably the cell division 

factors FtsZ and FtsA are required for E-lysis, too (Witte, et al., 1998). 

Lysis protein E is a highly hydrophobic, 91aa long structural protein with a mass of 10.5kDa 

and no known enzymatic function. Membrane-bound oligomerization leads to the fusion of 

the inner and the outer membrane, resulting in lysis of the bacteria (Bläsi, et al., 1989). 

The transmembrane tunnel formed by oligomerization of protein E is preferentially located 

at the septum or at polar regions of bacteria; the driving force in cytoplasmic expulsion and 

hence lysis is the osmotic pressure difference between the cytoplasm and the environment 

of the bacteria (Witte, et al., 1992). A transmission electron micrograph of E. coli 

immediately after E-induced lysis, with the transmembrane tunnel indicated, is shown in 

Figure 1. 
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Figure 1: Transmission electron micrograph of E. coli immediately after E-induced lysis. 
Transmembrane tunnel formed by protein E oligomerization is indicated by an arrow. Taken from (Witte, et al., 
1990). 

Lysis leads to the expulsion of cytoplasmic content (including plasmid DNA), to the 

fragmentation of chromosomal DNA and to the breakdown of membrane potential; while 

roughly 90% of the cytoplasmic content is expelled, only 5-10% of the periplasmic content is 

released. The overall structure and morphology of the cell envelope is not affected (Witte, et 

al., 1989). A scanning electron micrograph of the expulsion of cytoplasmic content is shown 

in Figure 2. 

The empty bacterial envelopes with sealed periplasms are called ‘Bacterial Ghosts’, and are 

hereafter referred to as BG (singular) or BGs (plural). 
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Figure 2: High resolution field emission scanning electron micrograph of a Gram-negative bacterium; 
expulsion of cytoplasmic content by E-induced lysis is indicated by an arrow. Taken from (Ebensen, et al., 2004) 

A single lysis tunnel formed by protein E oligomerization is sufficient to lyse bacteria; indeed, 

since lysis takes place in a short time frame (≈1sec), the formation of a second lysis tunnel 

has to take place concomitantly (Witte, et al., 1990). The diameter of the tunnel lies typically 

between 40 – 80nm (Witte, et al., 1990), allowing for the easy passage of virion particles, 

and the expulsion of cytoplasmic components as large as ribosomes (Witte, et al., 1989). 

Since as little as 100 copies of protein E are sufficient for loss of host viability (Maratea, et 

al., 1985) and lysis tunnel formation, tight control and suppression of gene E transcription 

before lysis induction is required (Bläsi, et al., 1985). 

3.1.2 LYSIS PLASMID pGLYSIVB 

For the regulated, inducible formation of BGs the lysis plasmid pGLysivb was developed 

(Haidinger, 2001); a schematic overview of the plasmid is given in Figure 3. 

It is derived from the pBBR1MCS5 variant of plasmid pBBR1 (Szpirer, et al., 2001) and carries 

the bacteriophage φX174 lysis protein E under the regulation of the mutated 
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thermosensitive λpL/pR-cI857 promoter-repressor system. The repressor is active at 

temperatures below 37°C, and full transcriptional activity is reached at 42°C (Jechlinger, et 

al., 1999). 

The plasmid carries a gentamicin resistance cassette. The MOB gene sequence has been 

mutated, with a decreased mobilization activity of 3∙10-2, compared to non-mutated pBBR1 

(Szpirer, et al., 2001). Protein E carries an in vivo biotinylation sequence for easy detection of 

protein E with streptavidin. This increases the molecular weight of Eivb (protein E in vivo 

biotinylated) to 12.7kDa without interfering with lysis ability (Haidinger, 2001). 

 

Figure 3: Schematic representation of plasmid pGLysivb. Indicated are the gentamicin resistance 
cassette (Gent), the mutated mobilization sequence (MOB*), the thermosensitive phage λ repressor system 
(cI857) and the in vivo biotinylated E protein (Eivb). 

3.1.3 POSSIBLE APPLICATIONS 

A wide range of applications for BGs has been proposed and tested, as reviewed in e.g. (Eko, 

et al., 1999) or (Langemann, et al., 2010). These applications include, but are not limited to: 

- direct application of BGs derived from pathogenic bacteria as vaccines, possible for a 

wide range of Gram-negative bacteria 

- usage of recombinant BGs to deliver antigens, either attached to the inner or outer 

membrane, transported to the periplasm or fused to S-layer monomers 

- loading of BGs with active substances, leading to a targeted release in specific cell 

types 

- loading of BGs with DNA, targeted to specific cell types for DNA vaccination 

The retention of the morphological, structural and antigenic features of their living 

precursors, as well as the generation of sealed compartments by the fusion of outer and 

inner membrane, make the BG system an intriguing technology platform, as shown in Figure 

4 (Langemann, et al., 2010). 
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Figure 4: Presentation of antigens in the bacterial envelope/BG. Besides naturally occurring antigens (like LPS, 
flagellae, pili, OMPs and IMPs) acting as adjuvants, a transgenic antigen (TA) can be (1) fused to SbsA or MBP-
SbsA to form a cytoplasmic/periplasmic S-layer; (2) exported to the periplasm fused to MBP; (3) exported to 
the periplasm using a small GIII tag; presented on the Outer Membrane as an OmpA-fusion protein; fused to 
inner membrane proteins like L’, E’, or both; attached via a biotinylation sequence to membrane-bound 
streptavidin; or finally cccDNA carrying a lac operator can be immobilized to the inner membrane, where LacI is 
bound. Taken from (Langemann, et al., 2010) 

BGs have several advantages compared to chemically- or heat-inactivated bacteria: they 

retain their morphological shape and their antigenic features, which are often compromised 

using traditional methods. Furthermore, the loss of cytoplasmic content reduces the risk of 

horizontal gene transfer (Szostak, et al., 1996). 

BGs are taken up efficiently by macrophages and dendritic cells, and actively stimulate 

macrophages and monocytes to induce a TH1-directed immune response. The natural 

adjuvants found on the surface of BGs are recognized and targeted by the innate immune 

system (Haslberger, et al., 2000). 

Furthermore, the production process for BGs is comparatively quick and cheap; lyophilized 

BGs are stable for years at room temperature, which makes the administration as a vaccine 

cold-chain independent (Szostak, et al., 1996). 
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3.2 CHLAMYDIA TRACHOMATIS 

3.2.1 PROPERTIES OF CHLAMYDIA TRACHOMATIS 

In the animal kingdom in general as well as in humans in particular, bacteria of the genus 

Chlamydia are among the most common bacterial pathogens. As non-motile, Gram-negative, 

obligate intracellular bacteria they are distinguished from all other microorganisms by their 

unique developmental cycle. Chlamydia are energy parasites, taking up ATP from their host-

cells without generating it themselves by metabolic reactions (Schachter, 1990). 

Chlamydia replicate in the host cell’s cytoplasm, forming intracellular inclusions observable 

via light microscopy. They exist in two distinct organisational forms, the extracellular 

Elementary Body (EB) and the Reticulate Body (RB) which is formed inside an infected cell 

(Schachter, 1990). 

Chlamydia lack peptidoglycan, both in their EB and RB form (Fox, et al., 1990). The structural 

rigidity of EBs is provided by the cross-linking of three cysteine-rich proteins found in the 

outer membrane, of which the Major Outer Membrane Protein (MOMP) is the most 

important, constituting about 60% of the outer membranes mass (Hatch, et al., 1986). 

EBs are taken up by susceptible host cells via an endocytosis-related process, which is 

enhanced and stimulated by the bacteria. Recent studies have shown that the uptake 

process is likely dependent on clathrin, whereas phagocytosis, caveolae and 

macropinocytosis do not appear to play an important role (Hybiske, et al., 2007). 

Once inside the cell, the fusion of the endosome with phagolysosomes is actively prevented 

by Chlamydia by expressing SNARE-like proteins that block SNARE-mediated membrane 

fusion, protecting the inclusions and the bacteria within them (Paumet, et al., 2009). 

Inside the host cell, the EB reorganizes in the larger, more RNA-rich RB, which is also less 

rigid. This is due to the reduction of the formerly cross-linked outer membrane proteins, 

which also allows MOMP to act as a porin (Bavoil, et al., 1984). Chlamydial cells begin to 

multiply by binary fission as soon as eight hours after the infection, and approximately 18 to 

24 hours after the primary infection, some of the RB reorganize into EB, are released into the 

environment and begin to infect further cells (Schachter, 1990). 
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An overview of the chlamydial lifecycle is given in Figure 5: 

 

Figure 5: Lifecycle of Chlamydia trachomatis. EB – Elementary Bodies. RB – Reticulate Bodies. N – 
Nucleus. Taken from (Mabey, et al., 2003) 

3.2.2 CLINICAL SIGNIFICANCE 

Of the three known species of the Chlamydia genus, C. suis, C. muridarum and C. 

trachomatis, only the latter infects humans. Two other human-pathogenic species of the 

Chlamydiaceae family that were once considered Chlamydia, were recently moved to a new 

genus and are now called Chlamydophila pneumonia and Chlamydophila psittaci (Everett, et 

al., 1999). 

For C. trachomatis, 18 serovars, clustered into two biovars, are known. The 

Lymphogranuloma Venereum biovar consists of serovars L1, L2, L2a and L3, whereas the 

Trachoma biovar consists of serovars A-K plus Ba, Da and Ia and infects superficial columnar 

epithelial cells (Schachter, 1978). 
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Of the 14 Trachoma serovars, A-C are associated with endemic trachoma, the world’s 

leading cause of preventable blindness (Mabey, et al., 2003), whereas serovars D-K are 

primarily associated with sexual infections (Everett, et al., 1999). 

C. trachomatis is the most common sexually-transmitted bacterial pathogen. Even though it 

is treatable with antibiotics, in most cases the genitourinary infection remains asymptomatic 

and hence undetected until major complications arise. These include ectopic pregnancies, 

pelvic inflammatory disease and infertility (Schachter, et al., 1998). 

The need for an effective vaccination against chlamydial infections has lead to a multitude of 

approaches, one of which was the vaccination with inactivated bacteria, which lead to 

severe side-effects due to immunopathogenic components (Brunham, et al., 1994). 

While patients infected with C. trachomatis often develop immunity against re-infection, this 

effect is typically temporarily only; re-infections occurring after waning immunity often lead 

to increased incidences of sequelae, especially infertility (Hillis, et al., 1997). This has at least 

partially been attributed to immunopathogenic complications arising from actions of both 

CD8+ and CD4+ T-lymphocytes, with the former dominating. In contrast, vaccine-induced 

immunity in a murine model is not accompanied by these sequelae upon infection challenge, 

while providing significant levels of protective immunity (Igietseme, et al., 2009). 

The usage of BGs as efficacious vehicles for different chlamydial antigens has been proposed 

using recombinant Vibrio cholera Ghosts (rVCG) (Eko, et al., 2003). These rVCGs induced 

protection from infertility and lead to a significant reduction of infection clearance time in a 

mouse model (Ifere, et al., 2007). 

3.2.3 CHLAMYDIAL ANTIGENS: PORB 

PorB is a 38kDa porin that was first bioinformatically predicted after the C. trachomatis 

genome was sequenced (Stephens, et al., 1998). It is encoded by the porB gene and notably 

conserved among different serovars of C. trachomatis, with only minor or no sequence 

variations, in stark contrast to e.g. MOMP. 

Like MOMP, PorB localizes to the outer membrane, but in much smaller numbers. Its 

transcription and translation coincides with ompA transcription, and PorB is present in both 
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RBs and EBs, throughout the whole developmental cycle. Its surface accessibility to 

antibodies, as well as its function as a porin have been shown experimentally (Kubo, et al., 

2000). 

Human sera from female Chlamydia patients show little or no Anti-PorB-Antibodies, with 

Anti-MOMP-Antibodies dominating. In mice, immunisation with PorB elicits a strong 

antibody response against PorB, especially if mice are subsequently infected with EBs (Kawa, 

et al., 2004). The possibility of neutralizing antibodies against PorB protecting against 

different serovars of C. trachomatis justifies its consideration for vaccine development. 

3.2.4 CHLAMYDIAL ANTIGENS: MOMP 

The Major Outer Membrane Protein, MOMP, of C. trachomatis is encoded by the ompA 

gene, has a mass of 40kDa and constitutes about 60% of the chlamydial outer membrane. In 

its oxidized, cross-linked form the protein is responsible for maintaining the structural 

integrity of the EB, while the reduced form found in RBs is able to act as a porin with an 

upper-size limit of 700Da (Caldwell, et al., 1981). 

MOMP is the key immunogenic antigen of C. trachomatis infections, and antibodies against 

it dominate the humoral response of infected individuals. This evolutionary pressure has 

lead to a plethora of mutations, culminating in MOMP polymorphisms responsible for 18 

different serovariants, which are used to classify C. trachomatis. 

While the five transmembrane β-strands are fundamentally conserved and known as the 

Conserved Domains I-V (CDI – CDV), the four surface-exposed regions are highly variable and 

mutations are clustered here (Variable Domains, VDI – VDIV) (Nunes, et al., 2009). 

The high immunogenicity of MOMP has lead to a focus on this protein for vaccine 

development, but its high variability would necessitate the use of multi-subunit vaccines to 

target the various serovars of C. trachomatis. 
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3.3 ESCHERICHIA COLI NISSLE 1917 

Escherichia coli Nissle 1917 is an E. coli strain first isolated in 1917 by a German physician 

named Nissle, from a soldier who alone among his comrades did not develop 

gastrointestinal diseases (Nissle, 1918). 

E. coli Nissle possesses an H1 flagellum, a K5 capsule and an unusual O6 LPS, with only one 

O6 antigen repeating unit attached to the R1-type core, which contributes to the semi-rough 

morphology of Nissle colonies and is responsible for its serum-sensitivity and hence its safety 

(Grozdanov, et al., 2002). 

E. coli Nissle has been used as a probiotic for over 90 years, meaning that its administration 

in living form in adequate amounts confers health benefits to its host (International Scientific 

Association for Probiotics and Prebiotics, 2009). 

Beside its prophylactic use that has been shown to protect against, amongst others, acute 

and chronic intestine inflammation (Schultz, et al., 2004) and acute secretory diarrhoea 

(Schroeder, et al., 2006), E. coli Nissle has been used therapeutically in Crohn’s Disease and 

Ulcerative Colitis (Schultz, 2008). 

E. coli Nissle has been shown to interact with Peripheral Blood T cells (PBT) via their Toll Like 

Receptor-2 (TLR2), resulting in the downregulation of Interleukin-2 (IL2), Tumor Necrosis 

Factor Alpha (TNF-α) and Interferon Gamma (INFγ) as well as the upregulation of IL-10, 

explaining the beneficial effects on (chronic) intestinal inflammation (Sturm, et al., 2005). 

Furthermore, E. coli Nissle contributes to intestinal immunity by stimulating the production 

of human β–Defensin 2 (Wehkamp, et al., 2004). 

The preferential accumulation of E. coli Nissle in tumour tissue (Stritzker, et al., 2007) has 

lead to speculations about the possibility of using E. coli Nissle expressing apoptin as a 

targeted vehicle for colorectal cancer treatment (Zhou, et al., 2011). 

Additionally, the use of commensal E. coli Nissle in prevention of HIV infection, by having E. 

coli Nissle secrete peptides inhibiting HIV fusion has been discussed (Rao, et al., 2005). 

The recognized safety and the established beneficiary effects of E. coli Nissle make it an 

attractive target for the production of a recombinant BG vaccine. 
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3.4 ADDITIONAL DIAGNOSTIC TOOLS 

3.4.1 LYSIS OBSERVATION VIA FLOW CYTOMETRY 

Once E-lysis is induced, a sharp drop in culture OD600nm is usually observed, which can be 

used as a direct, albeit crude indicator of successful lysis. More reliable data are gathered 

after overnight incubation of count agar plates, which allow the cfu determination before, 

during and after lysis. However, this method is neither able to distinguish between killed 

(dead, intact) and lysed (dead, translucent) cells, nor can it assess killing that takes place 

after the lysis process on the agar plates, during overnight incubation. 

Flow cytometry was used before to assess E lysis and to sort lysed from non-lysed cells 

(displaying Green Fluorescent Protein, GFP) via FACS (Haidinger, et al., 2001). Recently a new 

method was developed to observe E-mediated lysis with a very short time delay (less than 

10min) without the need of GFP expression. 

Two fluorescent dyes are used to distinguish between live intact, dead intact and dead lysed 

cells via flow cytometry: 

- RH414 stains phospholipids indiscriminately, providing a tool with which non-cellular 

background (‘junk’) can be distinguished from biogenic particles. All particles not 

stained by this dye are excluded from the observation. 

- DiBAC4(3) stains only those cells that have lost their membrane potential, i.e. dead 

intact and dead lysed cells.  

By excluding all non-biogenic particles via RH414 and by combining the Forward Scatter 

Signal (FSC) of a particle with its fluorescence signal 1 (FL1) given by DiBAC4(3), three regions 

can be drawn: 

- Region 1 (R1), live intact cells: low FL1 signal (intact membrane potential), high FSC 

(opaque cells) 

- Region 2 (R2), dead intact cells: high FL1 signal (no membrane potential), high FSC 

(intact cells maintaining their opacity) 

- Region 3 (R3), dead lysed cells: medium to high FL1 signal (no membrane potential), 

low FSC (BGs are more translucent than intact cells) 
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Except for a time frame of ≈30min immediately after lysis induction, the live cell counts from 

flow cytometry and the cfu data obtained the next day (after plating) match very closely, 

showing that flow cytometry is an adequate tool for the quasi-live observation of growing, 

possible killing and E-mediated lysis of bacterial cultures (Langemann, et al., 2010). 

3.4.2 PROTEIN QUANTIFICATION USING S-TAG 

The standard method to quantify recombinant proteins in BGs relies on the comparison of 

signal strength from recombinant proteins and a commercially available positope, containing 

several epitopes for commonly used tags (Invitrogen, 2011), in a standardized concentration, 

using Western Blot (Schlacher, 2009). 

Because of the high cost of positope, the time consuming Western Blot procedure, and the 

limited comparability of different-sized proteins due to different blotting efficiencies, a new 

quantification system for recombinant BGs was to be tested. 

The S-Tag system provided by Novagen fuses a 15aa long peptide to recombinant proteins. 

This peptide, known either as S-Peptide or S-Tag, interacts with the S-Protein to form a 

functionally intact RNAse S. 

The native form of RNAse S is called bovine pancreatic RNAse A; the N-terminal α–helix of 

the protein is connected to the globular rest of the structure via a flexible linker; cleaving the 

linker gives rise to the S-Peptide (the N-terminal α–helix) and the S-Protein (the residual 

protein), neither of which is enzymatically active. However, the S-Peptide binds with a very 

high affinity to the S-Protein (KD=109M), and functionality is restored. 

This can be used to purify recombinant, S-tagged proteins (with immobilized S-Protein), or 

for quantification: in its intact form, RNAse S cleaves poly(C). A standardized amount of S-

Tag as well as a sample of bacterial culture with recombinant S-tagged proteins is incubated 

with substrate and S-Protein. After the reaction is stopped, the concentration of free 

nucleotides in the supernatant can be measured at A280nm; given an excess of S-Protein and 

substrate, the concentration of free nucleotides is directly proportional to the amount of S-

Tag, and hence of recombinant, S-tagged protein (Novagen, 2009). 
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4 GOALS 

The aims of this work are: 

- to clone the chlamydial antigens MOMP and PorB into expression vectors for export 

into the periplasm 

- to express MOMP and PorB in E. coli NM522 and E. coli Nissle 

- to express MOMP and PorB, followed by E-mediated lysis, generating BGs carrying 

the chlamydial antigens MOMP and PorB, in small scale and large scale experiments 

- to quantify the amount of MOMP and PorB in BGs 

- to test and compare different methods of expression induction (L-arabinose/IPTG), 

transport to the periplasm (fusion to DsbC/GIII) and antigen detection (using Myc/S-

Tags) using the example of PorB 

In order to achieve these goals, a number of plasmids have been designed, as detailed 

below. 

4.1 CLONING STRATEGY pBGKB-PORB 

The pBGKB vector (as seen in Figure 6) is based on Invitrogen’s pBAD-GIII-B vector 

(Invitrogen, 2001), with the ampicillin resistance cassette having been exchanged to a 

kanamycin resistance cassette (Schlacher, 2009). 

The plasmid incorporates a GIII export signal derived from bacteriophage fd, which directs 

proteins to the periplasm using the bacterial Sec transport system; the 18aa signal sequence 

is usually removed after crossing the inner membrane. The export signal is followed by a 

Multiple Cloning Site (MCS), a Myc tag and a C-terminal PolyHis tag. The fusion protein which 

is generated by cloning into the MCS is tightly regulated by the pBAD promoter system. 

Protein expression is turned on by adding L-arabinose and the expression level can simply be 

varied by varying the concentration of L-arabinose (Guzman, et al., 1995). The expression of 

the recombinant protein can be detected (and quantified) using antibodies against either the 

PolyHis or Myc tag. 
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Plasmid pMAL-PorB that served as a template for PCR amplification of porB, was a gift from 

F. Eko (Morehouse School of Medicine, Atlanta, GA, USA) and was constructed by PCR 

amplifying gene porB from Chlamydia trachomatis serovar D and cloning it into vector 

pMAL-p2x (F. Eko, personal communication). Vector pMAL-p2x is commercially available 

(NEB, 2011). 

The cloning strategy for pBGKB-PorB construction is detailed in Figure 6. 

 

Figure 6: Cloning strategy to incorporate PorB into pBGBK, giving rise to pBGKB-PorB 

To effect this cloning, porB is PCR amplified, introducing restriction sites for KpnI and EcoRI, 

giving a PCR fragment of 955bp. Both the PCR product and pBGKB are then digested with 

those restriction enzymes and the fragments are ligated to each other afterwards. 

The primer pair used for PCR amplification is given in Table 1: 

Name Enzyme Direction Sequence (5’ – 3’) Tm 

pBGKB-PorB KpnI Fwd ATATAGGTAC’CATGCCTGCGGGGAATCCG 60°C 

pBGKB-PorB EcoRI Rev ATATAG’AATTCCGAATTGGAATCCTCCGGAGA 60°C 

Table 1:   Primers used to clone PorB into pBGKB 
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The resultant plasmid pBGKB-PorB has a size of 4979bp; upon induction with L-arabinose, a 

40.8kDa protein in the form of GIII-PorB-Myc-PolyHis is translated and exported to the 

periplasm. When the GIII export sequence is cleaved off, the resultant protein has a size of 

38.7kDa. 

4.2 CLONING STRATEGY pET40B-PORB 

The pET40b vector is available from Novagen (Novagen, 2011) and designed to export 

proteins to the periplasm, fused to the 236aa long DsbC-tag, using the SRP transport system. 

It carries a kanamycin resistance cassette, and the MCS lies between a C-terminal PolyHis tag 

and a 15aa S-Tag. Proteins fused to the S-Tag can interact with the S-Protein to form a 

functionally intact RNAse S. This can be used to quantify proteins in a so called S-Tag assay 

(Novagen, 2011). 

Expression of the fusion protein is induced by activation of T7 RNA Polymerase, which is not 

present on the plasmid, but has to be supplied from the bacterial host strain. The strain E. 

coli C41 which carries an IPTG-inducible T7 RNA polymerase on its chromosome can be used 

for expression experiments with pET40b vector derivates. 

The cloning strategy for pET40b-PorB construction is detailed in Figure 7: 
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Figure 7: Cloning strategy to incorporate PorB into pET40b, giving rise to pET40b-PorB 

To effect this cloning, porB is PCR amplified using pMAL-PorB as a template, introducing 

restriction sites for HindIII and XhoI, giving a PCR fragment of 954bp. These enzymes are 

used to digest the PCR product and pET40b, and the resulting fragments are ligated to each 

other. 

The primer pair used for PCR amplification is given in Table 2: 

Name Enzyme Direction Sequence (5’ – 3’) Tm 

pET40b-PorB HindIII Fwd TATATA’AGCTTATGCCTGCGGGGAATCCG 60°C 

pET40b-PorB XhoI Rev TATATC’TCGAGGAATTGGAATCCTCCGGAGA 60°C 

Table 2:  Primers used to clone PorB into pET40b 

The resultant plasmid pET40b-PorB has a size of 7123bp; upon induction with IPTG, a 

69.1kDa protein in the form of DsBC-PolyHis-S-Tag-PorB-PolyHis is translated and exported 

to the periplasm. While the first 20aa of DsbC, corresponding to the signal sequence for 

periplasmic translocation, are cleaved off by a signal peptidase, the remaining part of DsbC 

stays fused to PorB, in form of a 67.0kDa protein. 
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4.3 CLONING STRATEGY pASK 

To combine the ability of S-Tag quantification with a host-strain independent inducing 

system where the expression level can also be varied by L-arabinose addition, a new 

expression plasmid is constructed and dubbed pASK (plasmid Arabinose-inducible, S-Tagged, 

Kanamycin resistant). Plasmid pASK was designed to export recombinant proteins to the 

periplasm using the GIII export signal; recombinant proteins are tagged with PolyHis and S-

Tags, and their expression can be detected and quantified using Anti-His-Antibodies or S-

Proteins. 

The cloning strategy for pASK construction is outlined in Figure 8: 

 

Figure 8: Cloning strategy for pASK, combining pBGKB’s backbone with pET40b’s MCS and S-Tag 

To effect this cloning, the MCS, S-Tag and one of the His-Tags of pET40b are PCR amplified, 

carrying over the existing SalI restriction site found in the MCS and introducing a BspHI 

restriction site behind the His-Tag, giving a PCR fragment of 200bp. Vector pBGKB is cleaved 

with SalI and StyI (which gives compatible ends to BspHI), the PCR product is cleaved with 

SalI and BspHI, and the fragments are ligated to each other. 
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The primer pair given in Table 3 is used for PCR amplification: 

Name Enzyme Direction Sequence (5’ – 3’) Tm 

pASK BspHI Fwd TATATT’CATGAGTCATCACCATCACCATCACTC 60°C 

pASK SalI Rev TATATG’TCGACGGAGCTCGAATTC 60°C 

Table 3:  Primers used to clone pET40b’s S-Tag, MCS and one of its PolyHis-Tags into pBGKB 

The resultant plasmid pASK has a size of 4142bp; upon induction with L-arabinose, a 10.0kDa 

protein in the form of GIII-PolyHis-S-Tag-PolyHis is translated and exported to the periplasm. 

When the GIII export sequence is cleaved off, the resultant protein has a size of 8.0kDa. 

4.4 CLONING STRATEGY pASK-PORB 

Like pBGKB-PorB, pASK-PorB exports PorB to the periplasm upon arabinose induction, but in 

this case the PorB protein is also S-tagged, in addition to its Myc and PolyHis tag. 

The cloning strategy for pASK-PorB construction is detailed in Figure 9: 

 

Figure 9: Cloning of pASK-PorB by cleaving PorB-Myc out of pBGBK-PorB and ligating it into pASK 

In this case, no PCR amplification is necessary and porB including its Myc tag is cleaved from 

pBGBK-PorB by double digestion with StyI and SalI. The same restriction enzymes are used to 
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digest pASK, effectively removing the entire MCS, and the fragments are ligated to each 

other. 

The resultant plasmid pASK-PorB has a size of 5141bp; upon induction with L-arabinose, a 

46.6kDa protein in the form of GIII-PolyHis-S-Tag-PorB-Myc-PolyHis is translated and 

exported to the periplasm. When the GIII export sequence is cleaved off, the resultant 

protein has a size of 44.6kDa. 

4.5 CLONING STRATEGY pBGKB-MOMP 

The second chlamydial antigen used in this work is the Major Outer Membran Protein, 

MOMP from Chlamydia trachomatis serovar D. It was also a gift from F. Eko, in the form of 

the plasmid pKS-MOMP, which itself is a derivate of plasmid pKSEL5-2, and which has been 

published (Eko, et al., 2003). 

The cloning strategy of pBGKB-MOMP construction is detailed in Figure 10 below: 

 

Figure 10: Cloning strategy to incorporate MOMP into pBGKB, giving rise to pBGKB-MOMP 
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To effect the cloning, ompA is PCR amplified introducing restriction sites for BglII and KpnI, 

giving a PCR fragment of 1133bp. Both the PCR product and pBGKB are then digested with 

those two restriction enzymes, and the fragments are ligated to each other afterwards. 

The primer pair given in Table 4 is used for PCR amplification: 

Name Enzyme Direction Sequence (5’ – 3’) Tm 

pBGKB-MOMP KpnI Fwd TATATGGTAC’CCGAAGCGGAATTGTGCATTTAC 58°C 

pBGKB-MOMP BglII Rev TATATA’GATCTCCTGTGGGGAATCCTGCT 60°C 

Table 4:  Primers used to clone MOMP into pBGKB 

The resultant plasmid pBGKB-MOMP has a size of 5147bp; upon induction with L-arabinose, 

a 46.5kDa protein in the form of GIII-MOMP-Myc-PolyHis is translated and exported to the 

periplasm. When the GIII export sequence is cleaved off, the resultant protein has a size of 

44.4kDa. 
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5 RESULTS 

5.1 CLONING A NEW EXPRESSION PLASMID – pASK 

Midipreps were performed of E. coli C2988J (pET40b) and of E. coli C2988J (pBGKB) to be 

used as source material for this cloning. The MCS, S-Tag and internal His-Tag of pET40b was 

PCR amplified at an annealing temperature of 60°C and an elongation time of 30sec, 

introducing a restriction site for BspHI while carrying over the restriction site of SalI. The 

expected size of the PCR product was 200bp; the PCR product, run on a 2% agarose gel, can 

be seen in Figure 11. 

 

Figure 11: Pfu production PCR, using different amounts of template DNA, of the MCS, S-Tag and internal 
PolyHis tag of pET40b, run on a 2% agarose gel. The correct-sized band can be seen at 200bp. Marker: 
O'GeneRuler™ 50bp DNA Ladder (Fermentas) 

After cleaning up the PCR product with the PCR Purification Kit, two large scale double 

digests were performed for three hours: the PCR product was cut with BspHI and SalI, 

whereas an aliquot of pBGKB was digested with StyI and SalI. 
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Digested DNA was put on an agarose gel, with expected sizes of 190bp for the PCR fragment 

(see Figure 12), and 3940bp for the large fragment of pBGKB (see Figure 13). 

 

Figure 12: PCR product after double-digestion with 
BspHI and SalI, on a 1% agarose gel. The correct sized 
band can be seen at 190bp. Marker: O'GeneRuler™ 
50bp DNA Ladder (Fermentas) 

 

Figure 13: Vector pBGKB after double-digestion with 
StyI and SalI on a 1% agarose gel. The correct-sized 
band is visible at 3940bp. Marker: GeneRuler™ 1kb 
DNA Ladder (Fermentas) 

DNA fragments were excised from the gel and eluted in 50µl dH2O using the Gel Extraction 

Kit. An aliquot of 5µl was put on a 1% agarose gel for concentration determination (not 

shown) and ligation was performed overnight. 

The next day, the ligation mixture was transformed into MOPS-competent E. coli C2988J, 

which were then plated on LB+Kan plates. After overnight incubation at 36°C, plates showed 

good efficiency of transformation. Four clones were picked, inoculated overnight in LBv+Kan 

and miniprepped on the next day. 

Miniprep DNA of different clones was first digested with a single enzyme (not shown), then a 

correct-sized clone was further digested with a total of four different restriction enzymes to 

check for the characteristic, correct pattern of pASK, as seen in Figure 14. 
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Figure 14: Digest of pASK clone A4 on a 1% agarose gel. Lane E1: undigested DNA; Lane R1: pASK 
digested with EcoRI, expected size: 4142bp; Lane R2: pASK digested with HindIII, expected size: 4142bp; Lane 
R3: pASK digested with EcoRV, expected sizes: 1159/2983bp; Lane R4: pASK digested with SmaI, expected sizes: 
1075/3067bp (digest incomplete; repeated digests have found correct pattern). Marker: GeneRuler™ 1kb DNA 
Ladder (Fermentas) 

The correctly-identified clone A4 of E. coli C2988J (pASK) was stored as a glycerol culture and 

later midiprepped for further cloning procedures; since the plasmid was not sequenced, 

confirmation of the correct cloning relies on the restriction digest pattern. 

5.2 CLONING CHLAMYDIAL ANTIGENS 

5.2.1 CLONING pBGKB-PORB 

Midipreps of E. coli C2988J (pBGKB) and E. coli C2988J (pMAL-PorB) were used as source 

material for this cloning. Gene porB was PCR amplified with primers introducing restriction 

sites for KpnI and EcoRI, with an annealing temperature of 60°C and an elongation time of 

60sec. The size of the expected PCR product was 955bp. After the PCR run, the product was 

put on an agarose gel, shown in Figure 15: 
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Figure 15: Pfu production PCR of PorB, using primers introducing XhoI and HindIII restriction sites in 
lanes S1-S7, and using primers introducing KpnI and EcoRI restriction sites in lanes S8-14. The amount of 
template DNA (pMAL-PorB) is indicated under the respective lane. Correct-sized PCR product can be seen at 
954bp (lanes S1-7) and 955bp (lanes S8-14). Samples were run on a 2% gel. Marker: O'GeneRuler™ 50bp DNA 
Ladder (Fermentas) 

After cleaning up the PCR product with the PCR Purification Kit, the PCR product and the 

vector pBGKB were doubly-digested in a large scale restriction digest, using enzymes KpnI 

and EcoRI. After three hours of digestion, fragments were put on an agarose gel, with 

expected sizes of 940bp for the PCR product and 4034bp for the larger vector fragment of 

pBGKB, as seen in Figure 16: 
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Figure 16: PorB PCR product and vector pBGKB after double digestion with KpnI and EcoRI, on a 1% 
agarose gel. Correct-sized bands can be seen at 940bp (PCR product) and 4034bp (pBGKB fragment). Marker: 
GeneRuler™ 1kb DNA Ladder (Fermentas) 

Both fragments were excised from the gel and eluted in 50µl dH2O using the Gel Extraction 

Kit. An aliquot of 5µl was put on a 1% agarose gel for concentration determination (not 

shown), the fragments were ligated to each other overnight and transformed in MOPS-

competent E. coli C2988J cells that were then plated on LB+Kan plates. 

The plates showed good growth after overnight incubation at 36°C; four colonies were 

picked, inoculated in 5ml LBv+Kan overnight and miniprepped on the next day. The four 

clones were first digested with one restriction enzyme to look for the correct size (not 

shown), and a conforming clone was then digested with four enzymes to look for the correct 

digestion pattern of pBGKB-PorB, shown in Figure 17: 
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Figure 17: Digest of pBGKB-PorB clone C1 on a 1% agarose gel. Lane R1: pBGKB-PorB digested with KpnI, 
expected size: 4979bp; Lane R2: pBGKB-PorB digested with BamHI, expected size: 4979bp; Lane R3: pBGKB-
PorB digested with SmaI, expected sizes: 1993/2986bp; Lane R4: pBGKB-PorB digested with HindIII, expected 
sizes: 829/4150bp. Marker: GeneRuler™ 1kb DNA Ladder (Fermentas) 

Restriction digest patterns (not sequencing) were used to identify the correct clone C1 of E. 

coli C2988J (pBGKB-PorB); an aliquote was stored as a glycerol culture and its midiprep DNA 

was used to transform other strains for all further experiments with pBGKB-PorB. 

5.2.2 CLONING pET40B-PORB 

Midipreps of E. coli C2988J (pET40b) and E. coli C2988J (pMAL-PorB) were used as source 

material for this cloning. Gene PorB was PCR amplified with primers introducing restriction 

sites for XhoI and HindIII, with an annealing temperature of 60°C and an elongation time of 

60sec. The size of the expected PCR product was 954bp. After the PCR run, the product was 

put on an agarose gel (see lanes S1-7 of Figure 15). 

After the PCR was cleaned up using the PCR Purification Kit, both the PCR product (see 

Figure 18) and vector pET40b (see Figure 19) were subjected to a large scale double-digest, 

using XhoI and HindIII. After three hours of digestion, the fragments were put on an agarose 
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gel. The expected sizes are 942bp for the PCR fragment and 6175bp for the larger fragment 

of pET40b. 

 

Figure 18: PCR product after double-digestion with 
XhoI and HindIII, on a 1% agarose gel. The correct 
sized band can be seen at 942bp. Marker: 
GeneRuler™ 1kb DNA Ladder (Fermentas) 

 

Figure 19: Vector pET40b after double-digestion with 
XhoI and HindIII, on a 1% agarose gel. The correct 
sized band can be seen at 6175bp. Marker: 
GeneRuler™ 1kb DNA Ladder (Fermentas) 

Correct-sized fragments were excised from the gel and eluted in 50µl dH2O using the Gel 

Extraction Kit; an aliquot of 5µl was put on a 1% agarose gel for concentration determination 

(not shown). Overnight, the fragments were ligated to each other and the ligation product 

was transformed into MOPS-competent E. coli C2988J cells and plated onto LB+Kan plates. 

After overnight incubation at 36°C, plates showed good growth and four colonies were 

picked and inoculated in 5ml LBv+Kan. After overnight inoculation, the four clones were 

miniprepped, and miniprep DNA was digested with one restriction enzyme to find correct-

sized clones (not shown). A correct sized clone was then digested with four different 

restriction enzymes to look for the correct restriction digest pattern of pET40b-PorB, as seen 

in Figure 20: 
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Figure 20: Digest of pET40b-PorB clone B4 on a 1% agarose gel. Lane R1: pET40b-PorB digested with 
DraI, expected size: 7123bp; Lane R2: pET40b-PorB digested with XhoI, expected size: 7123bp; Lane R3: 
pET40b-PorB digested with SmaI, expected sizes: 93/2155/4875bp (smallest band too small to see); Lane R4: 
pET40b-PorB digested with AvaI, expected sizes: 93/910/1245/4875bp (smallest band too small to see). 
Marker: GeneRuler™ 1kb DNA Ladder (Fermentas) 

The correctly-identified clone B4 of E. coli C2988J (pET40b-PorB) was stored as a cryoculture 

and its midiprep DNA was used to transform strain E. coli C41 for further experiments. 

Correctness was assessed by restriction-digest patterns as well as sequencing of regions 

flanking the restriction sides, performed by Microsynth (Microsynth, Balgach, Switzerland). 

Sequencing confirmed the correct insertion (no frameshift) of porB into the pET40b MCS 

(data not shown). 

5.2.3 CLONING pASK-PORB 

Midipreps of E. coli C2988J (pASK) clone A4 and of E. coli C2988J (pBGKB-PorB) clone C1 

were used to perform this cloning; no PCR amplification was necessary. Instead, both vectors 
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were used for a large scale digest with StyI and SalI that linearized pASK and excised PorB 

(including the Myc-tag) from pBGKB-PorB. The expected sizes of the fragments were 4108bp 

for the pASK fragment and 1039/3948bp for the pBGKB-PorB fragments (of which the 

1039bp fragment includes PorB). After three hours of digestion, the fragments were put on 

an agarose gel, shown in Figure 21: 

 

Figure 21: Vectors pASK and pBGKB-PorB after double digestion with StyI and SalI, on a 1% agarose gel. 
Correct-sized bands can be seen at 4108bp (pASK) and 1039/3948bp (pBGKB-PorB). Linearized pASK and the 
PorB fragment at 1039bp were excised and purified for further use. Marker: GeneRuler™ 1kb DNA Ladder 
(Fermentas) 

Correct-sized bands were excised from the gel and eluted in 50µl dH2O using the Gel 

Extraction Kit. An aliquot of 5µl was put on a 1% agarose gel for concentration determination 

(not shown). Overnight, the fragments were ligated to each other and the ligation product 

was transformed into MOPS-competent E. coli C2988J cells and plated onto LB+Kan plates. 

After overnight incubation at 36°C, plates showed good growth and four colonies were 

picked and inoculated in 5ml LBv+Kan. After overnight inoculation, the four clones were 

miniprepped, and miniprep DNA was digested with one restriction enzyme to find correct-

sized clones (not shown). A correct sized clone was then digested with three different 

restriction enzymes to check the correct restriction digest pattern of pASK-PorB. This can be 

seen in Figure 22: 
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Figure 22: Digest of pASK-PorB clone A3 on a 1% agarose gel. Lane R1: pASK-PorB digested with XbaI, 
expected size: 5141bp; Lane R2: pASK-PorB digested with XhoI, expected sizes: 2321/2820bp; Lane R3: pASK-
PorB digested with HindIII, expected sizes: 829/4312bp. Marker: GeneRuler™ 1kb DNA Ladder (Fermentas) 

The correctly-identified clone A3 of E. coli C2988J (pASK-PorB) was stored as a glycerol 

culture; its midiprep DNA was used to transform other strains for all further experiments 

with pASK-PorB. The identification relied on restriction-digest pattern analysis, and not 

sequencing. 

5.2.4 CLONING pBGKB-MOMP 

Midipreps of E. coli C2988J (pBGKB) and E. coli C2988J (pKS-MOMP) were used as source 

material for this cloning. Gene MOMP was PCR amplified with primers introducing restriction 

sites for KpnI and BglII, with an annealing temperature of 58°C and an elongation time of 

60sec. The size of the expected PCR product was 1133bp. After the PCR run, the product was 

put on an agarose gel, shown in Figure 23: 
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Figure 23: Pfu production PCR of MOMP, using primers introducing KpnI and BglII restriction sites. The 
amount of template DNA (pKS-MOMP) is indicated under the respective lane. Correct-sized PCR product can be 
seen at 1133bp. Samples were run on a 1% agarose gel. Marker: GeneRuler™ 1kb DNA Ladder (Fermentas) 

After cleaning up the PCR product with the PCR Purification Kit, the PCR product and the 

vector pBGKB were doubly-digested in a large scale restriction digest, using enzymes KpnI 

and BglII. After three hours of digestion, fragments were put on an agarose gel, with 

expected sizes of 1117bp for the PCR product and 4026bp for the larger fragment of pBGKB; 

the gel picture can be seen in Figure 24: 
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Figure 24: Vector pBGKB and PCR product of MOMP after double digestion with KpnI and BglII, on a 1% 
agarose gel. Correct-sized bands can be seen at 4026bp (pBGKB) and 1117bp (PCR Product MOMP). Marker: 
GeneRuler™ 1kb DNA Ladder (Fermentas) 

Correct-sized bands were excised from the gel and eluted in 50µl dH2O using the Gel 

Extraction Kit. An aliquot of 5µl was put on a 1% agarose gel for concentration determination 

(not shown). Fragments were ligated to each other overnight and the ligation product was 

transformed into MOPS-competent E. coli C2988J cells and plated onto LB+Kan plates. After 

overnight incubation at 36°C, plates showed good growth and twenty colonies were picked 

and inoculated in 5ml LBv+Kan. After overnight inoculation, the twenty clones were 

miniprepped, and miniprep DNA was digested with one restriction enzyme to find correct-

sized clones (not shown). A correct sized clone was then digested with four different 

restriction enzymes to look for the correct restriction digest pattern of pBGKB-MOMP, 

shown in Figure 25: 
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Figure 25: Digest of pBGKB-MOMP clone A11 on a 1% agarose gel. Lane R1: pBGKB-MOMP digested with 
EcoRV, expected sizes: 1371/3776bp; Lane R2: pBGKB-MOMP digested with HindIII, expected sizes: 
315/829/4003bp (the smallest band is too small to be seen); Lane R3: pBGKB-MOMP digested with KpnI, 
expected size: 5147bp; Lane R4: pBGKB-MOMP digested with XhoI, expected sizes: 818/1671/2658bp. Marker: 
GeneRuler™ 1kb DNA Ladder (Fermentas) 

The correctly-identified clone A11 of E. coli C2988J (pBGKB-MOMP) was stored as a glycerol 

culture; its midiprep DNA was used to transform other strains for all further experiments 

with pBGKB-MOMP; identification relied on restriction-digest pattern analysis, and not 

sequencing. 

5.3 EXPRESSING CHLAMYDIAL ANTIGENS 

All of the following small scale experiments were carried out in E. coli C2988J, except for the 

expression experiment of pET40b-PorB, which requires the chromosomal T7 RNA 

Polymerase of E. coli C41. While the growth rate of E. coli C2988J is lower than of E. coli 

NM522 (the preferred strain for antigen expression for BG production), this is not relevant 

for the simple determination whether antigen is expressed using the cloned plasmids. 
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5.3.1 EXPRESSION STUDY pBGKB-PORB 

In this small scale expression experiment, two noseflasks (1 and 2) were inoculated with 

overnight culture of the backbone plasmid carrying E. coli C2988J (pBGKB) and two 

noseflasks (3 and 4) where inoculated with overnight culture of clone C1 of E. coli C2988J 

(pBGKB-PorB). 

All four noseflasks were grown at 36°C until an OD600nm≈0.3, when expression was induced in 

noseflasks 2 and 4 by adding 0.2% L-arabinose (time point 0min). OD values were measured 

and samples were collected for WB and cfu determination throughout the experiment; 

plates for cfu counting were incubated at 36°C overnight. A graph showing OD600nm and cfu 

values for all four noseflasks is given in Figure 26. 

 

Figure 26: OD and cfu values over time during an expression experiment of E. coli C2988J (pBGKB) (flasks 
1 and 2) and E. coli C2988J (pBGKB-PorB) (flasks 3 and 4). L-Arabinose was added at time point 0min to flasks 2 
and 4. 

While the OD values of all four flasks behave similarly, the induction of pBGKB-PorB (but not 

pBGKB) leads to a decrease in cfu of roughly 40% 60min after expression induction, which is 

not seen after 30min of expression, suggesting the mild toxicity of PorB when exported to 

the periplasm. 
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Western Blot samples just prior to L-arabinose induction and after 60min of protein 

expression were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was blotted 

onto nitrocellulose, the nitrocellulose incubated with HRP-coupled-Anti-Myc-antibodies and 

developed by chemiluminiscence; the protein GIII-PorB-Myc-PolyHis was expected at a size 

of 40.8kDa, protein PorB-Myc-PolyHis, lacking the GIII export sequence, at a size of 38.7kDa. 

The developed Western Blot is shown in Figure 27. 

 

Figure 27: Western Blot of E. coli C2988J (pBGKB-PorB) Expression Experiment, using Unstained Protein 
Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES Running 
Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-antibodies and developed. Samples A are at the time point of expression induction, samples 
C are 60min later. Expression was induced in flasks 2 and 4. 

The Western Blot shows the correct-sized signal only upon induction and only in samples 

where plasmid pBGKB-PorB was present (C4); hence it can be concluded that PorB can 

successfully be expressed from plasmid pBGKB-PorB upon induction. 

5.3.2 EXPRESSION STUDY pET40B-PORB 

Since the expression system of the pET40b vector system relies on T7 RNA polymerase, 

plasmid pET40b-PorB was transformed into MOPS-competent E. coli C41 cells. For the small 
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scale expression experiment, two noseflasks (1 and 2) were inoculated with the empty 

backbone plasmid carrying E. coli C41 (pET40b) whereas two noseflasks (3 and 4) were 

inoculated with clone A1 of E. coli C41 (pET40b-PorB). After growing at 36°C to an 

OD600nm≈0.35, expression was induced in noseflasks 2 and 4 by adding 1mM IPTG (at time 

point 0min). OD600nm values were measured and samples for WB and cfu determination were 

collected throughout the experiment; plates for cfu counting were incubated at 36°C 

overnight. OD600nm and cfu values of this experiment, plotted over time are shown in Figure 

28. 

 

Figure 28: OD and cfu values over time during an expression experiment of E. coli C41 (pET40b) (flasks 1 
and 2) and E. coli C41 (pET40b-PorB) (flasks 3 and 4). IPTG was added at time point 0min to flasks 2 and 4. 

The overall picture is quite similar to the expression experiment of pBGKB-PorB: while the 

OD values of all four flasks behave similarly, the induction of pET40b-PorB (but not pET40b) 

leads to a strong decrease in cfu (almost 98%) 180min after expression induction, compared 

to the value before induction. This cfu decrease is apparent after 60min of expression, 

becoming more dramatic over time, but is not detected 30min after expression induction. 

Western Blot samples just prior to IPTG induction and after 60min of protein expression 

were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto 
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nitrocellulose, the nitrocellulose incubated with S-Protein-HRP and developed by 

chemiluminiscence; the protein DsbC-PolyHis-S-Tag-PorB-PolyHis was expected at a size of 

69.1kDa (67kDa for DsbC-PolyHis-S-Tag-PorB-PolyHis with the signal sequence of DsbC 

cleaved off). The developed WB is shown in Figure 29. 

 

Figure 29: Western Blot of E. coli C41 (pET40b-PorB) Expression Experiment, using Unstained Protein 
Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES Running 
Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:10,000 diluted S-
Protein-HRP and developed. Samples A are at the time point of expression induction, samples C are 60min 
later. Expression was induced in flasks 2 and 4. 

Unfortunately, the Western Blot fails to detect a specific signal associated with PorB, even 

though the cfu values of flask 4 show a similar trend as in the experiment with pBGKB-PorB, 

where PorB is also expressed. 

While the background signal is fairly high, a distinct and unique band can be seen in lane C2, 

corresponding to the expressed product of the empty backbone vector, DsbC-PolyHis-S-Tag-

PolyHis at 34.7kDa. This shows the ability of the HRP-coupled S-Protein to bind to the S-Tag, 

which makes the absence of signal in lane C4 even more conspicuous. Anyhow, since the 

backbone expression is very weak (compared to the background signal) a problem with the 

WB development can be assumed. 
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Therefore, a second Western Blot (not shown) with a similar loading scheme was performed 

and incubated with HRP-coupled-Anti-His-antibodies, showing the same result – very weak 

recognition of DsbC-PolyHis-S-Tag-PolyHis, but no detection of a PorB protein and a high 

background signal. 

No further work with this plasmid was performed. 

5.3.3 EXPRESSION STUDY pASK 

In order to test whether the expression of GIII-PolyHis-S-Tag-PolyHis (the gene product 

encoded by the newly cloned backbone vector pASK) has any influence on the viability of 

bacteria, a small scale expression experiment was carried out. 

Two noseflasks (1 and 2) were inoculated with overnight culture of clone A4 of E. coli C2988J 

(pASK). Both noseflasks were grown at 36°C until an OD600nm≈0.35, when expression was 

induced in noseflask 1 by adding 0.2% L-arabinose (at time point 0min). OD values were 

measured and samples for WB and cfu determination were collected throughout the 

experiment; plates for cfu counting were incubated at 36°C overnight. OD600nm and cfu 

values over time are shown in Figure 30. 
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Figure 30: OD and cfu values over time during an expression experiment of E. coli C2988J (pASK). L-
Arabinose was added at time point 0min to flask 1. 

No significant difference in OD600nm or cfu values could be observed, indicating that the 

newly cloned expression plasmid pASK per se is not harmful to bacterial growth when 

expression is induced. 

Since the of GIII-PolyHis-S-Tag-PolyHis and PolyHis-S-Tag-PolyHis are only 10.0kDa and 

8.0kDa, respectively, no Western Blot was performed to detect the expression product of 

pASK. However, a quantification using the S-Tag system was performed, as described in 

Chapter 5.6.4 Quantification of Recombinant Proteins Using the S-Tag System and in detail in 

Figure 64. 

5.3.4 EXPRESSION STUDY pASK-PORB 

In this small scale expression experiment, two noseflasks (1 and 2) were inoculated with 

overnight culture of clone A3 of E. coli C2988J (pASK-PorB). Both noseflasks were grown at 

36°C until an OD600nm≈0.35, when expression was induced in noseflask 1 by adding 0.2% L-

arabinose (at time point 0min). OD values were measured and samples for WB and cfu 

determination were collected throughout the experiment; plates for cfu counting were 

incubated at 36°C overnight. OD600nm and cfu values over time are shown in Figure 31. 
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Figure 31: OD and cfu values over time during an expression experiment of E. coli C2988J (pASK-PorB). L-
Arabinose was added at time point 0min to flask 1. 

Similar to previous expression experiments of PorB (in different vector systems), induction of 

PorB expression leads to a decrease of viability in comparison to a non-induced sample. 

Interestingly the effect seen in pASK-PorB is smaller than in either pBGKB-PorB or pET40b-

PorB, and after 120min of expression, the cfu is still higher than it was at the induction point 

(in contrast to previous experiments). As before, OD values behave nearly identical on both 

samples, regardless to induction. 

Western Blot samples just prior to L-arabinose induction, after 20min, 60min and 120min of 

protein expression were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was 

blotted onto nitrocellulose, the nitrocellulose incubated with S-Protein-HRP and developed 

by chemilumiscence; the protein GIII-PolyHis-S-Tag-PorB-Myc-PolyHis was expected at a size 

of 46.6kDa, and the protein PolyHis-S-Tag-PorB-Myc-PolyHis (lacking the GIII export 

sequence) at a size of 44.6kDa. The developed blot is shown in Figure 32. 
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Figure 32: Western Blot of C2988J + pASK-PorB Expression Experiment, using Unstained Protein 
Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES Running 
Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 diluted S-Protein-
HRP and developed. Samples are at 0min (B), 20min (C), 60min (E) and 120min (F) of protein expression after 
induction. As a positive control, a sample from a C41 + pET40b expression experiment was used. Expression 
was induced in flask 1. 

Again, the background signal is fairly high. The specific signals detected by the HRP-coupled-

S-Protein are the positive control of DsbC-PolyHis-S-Tag-PolyHis, and the S-Tagged PorB 

protein of induced pASK-PorB. Signal can first be detected after 60min (but not 20min) of 

expression in sample E1, and again after 120min (F1). 

5.3.5 EXPRESSION STUDY pBGKB-MOMP 

In this small scale expression experiment, two noseflasks (1 and 2) were inoculated with 

overnight culture of clone A11 of E. coli C2988J (pBGKB-MOMP). Both noseflasks were grown 

at 36°C until an OD600nm≈0.35, when expression was induced in noseflask 1 by adding 0.2% L-

arabinose (at time point 0min). OD values were measured and samples for WB and cfu 

determination were collected throughout the experiment; plates for cfu counting were 

incubated at 36°C overnight. OD600nm and cfu values are plotted against time in Figure 33. 
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Figure 33: OD and cfu values over time during an expression experiment of E. coli C2988J (pBGKB-
MOMP). L-Arabinose was added at time point 0min to flask 1. 

As seen with PorB, the expression and export of MOMP to the periplasm seems to have a 

toxic effect on bacteria, with a cfu decline of 97% 90min after expression induction, in 

comparison to the cfu at the start of the expression. Just like in other experiments, OD 

values behave nearly identical regardless to induction. The cfu decrease is first apparent 

60min after expression induction, becoming more dramatic over time, but is not detected 

30min after expression induction. 

Western Blot samples just prior to L-arabinose induction, after 30min, 60min and 90min of 

protein expression were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was 

blotted onto nitrocellulose, the nitrocellulose incubated with HRP-coupled-Anti-Myc-

Antibody and developed by chemiluminiscence; the protein GIII-MOMP-Myc-PolyHis was 

expected at a size of 46.5kDa, while protein MOMP-Myc-PolyHis (with the GIII signal 

sequence removed) was expected at a size of 44.4kDa. The developed blot is shown in Figure 

34. 
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Figure 34: Western Blot of E. coli C2988J (pBGKB-MOMP) Expression Experiment, using Unstained 
Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 diluted 
HRP-coupled Anti-Myc-antibodies and developed. Samples were taken 0min (B), 30min (C), 60min (D) and 
90min (E) after expression induction. Expression was induced in flask1. As a positive control, an induced sample 
of pBGKB-PorB has been used. 

Expressed MOMP can successfully be detected first 30min after expression induction, and 

strongly after 60min and 90min, at the expected size. No signal at the correct size can be 

seen without induction. 

5.4 SMALL SCALE EXPRESSION/LYSIS EXPERIMENTS 

After the successful expression of the chlamydial antigens from plasmids pBGKB-PorB, pASK-

PorB and pBGKB-MOMP had been shown, those plasmids were to be co-transformed with 

the E-lysis plasmid pGLysivb into E. coli NM522 and into E. coli Nissle, since those two strains 

yield higher growth rates and are the preferable strains for in vivo immunization trials. 

Small scale expression/lysis experiments attempted to show that it was possible to: 

- first express and export chlamydial antigens to the periplasm, 

- to induce lysis afterwards, and 

- to retain the antigens in the BGs. 

Representative expression/lysis curves are shown in the following chapters. 
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5.4.1 EXPRESSION/LYSIS OF pBGKB-PORB IN E. COLI 

NM522 

The goal of this first small scale expression/lysis experiment was to determine the optimal 

time of expression before lysis induction in regards to lysis efficiency and expression yield. 

Two noseflasks (1 and 2) were inoculated with a clone of E. coli NM522 (pBGKB-PorB, 

pGLysivb). 

After reaching an OD600nm≈0.3, 0.2% L-arabinose was added to all three flasks. In flask 1, lysis 

was induced by temperature shifting to 42°C after 30min of expression, whereas in flask 2 

this was done after 60min (time point 0min for both cases). 

OD600nm values were measured and samples were collected for WB and cfu determination 

throughout the experiment; plates for cfu counting were incubated at 36°C overnight. 

OD600nm and cfu values are plotted against time in Figure 35. 

 

Figure 35: OD and cfu values over time during an expression/lysis experiment of E. coli NM522 (pBGKB-
PorB, pGLysivb). L-Arabinose was added at time point -30min to flask 1, and time point -60min to flask 2. Lysis 
was induced by shifting to 42°C at time point 0min. 

After expression induction with L-Arabinose, OD600nm increases in both flasks until lysis 

induction at time point 0min, whereas cfu values increase only in flask 1 up until lysis 
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induction, while in flask 2 cfu values start to drop after 45min of expression, even before 

lysis induction at time point 0min. While the cfu decreases in both flasks, it does less so in 

flask 2, where lysis was preceded by 60min of expression. While flask 1 has a lysis efficiency 

of 99.86% from time point 0min to time point 120min (as determined by cfu counting), lysis 

efficiency of flask 2 is only at 97.70% percent in the same time frame, indicating interference 

of prolonged PorB expression with successful lysis. Additionally, killing is also apparent 

before lysis induction in flask 2, whereas cfu still increases during the expression time of 

PorB in flask 1. Indeed, PorB expression seems to become toxic between 30min and 45min 

of expression, just about the time lysis becomes effective as well in flask 1, where lysis is 

induced after 30min of expression. 

Western Blot samples just prior to L-arabinose induction, after 60min and after 120’ of 

protein expression were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was 

blotted onto nitrocellulose, the membrane incubated with HRP-coupled-Anti-Myc-

Antibodies and developed by chemiluminiscence, as seen in Figure 36. Protein GIII-PorB-

Myc-PolyHis was expected at a size of 40.8kDa, protein PorB-Myc-PolyHis at a size of 

38.7kDa. 
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Figure 36: Western Blot of E. coli NM522 (pBGKB-PorB, pGLysivb) Expression/Lysis Experiment, using 
Unstained Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with 
MES Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 
diluted HRP-coupled Anti-Myc-Antibodies and developed. Samples B are at the time point of expression 
induction, samples E are 60min later – after 30min of lysis for samples 1 and 3, and just before lysis induction 
sample 2. Samples G are 120min after expression induction, after 90min of lysis for 1 and 3, and 60min of lysis 
for 2. Samples 3 are E. coli NM522 (pBGKB, pGLysivb), and are used as an expression-negative control. 

The expression of PorB can be seen in induced samples with no visible background 

expression. Only a slight decrease over time was detected (compare sample E1 with sample 

G1) which could be due to protein degradation or due to loss of expressed protein that was 

not exported to the periplasm before E-lysis. Because of higher lysis efficiency for shorter 

expression time and less killing by recombinant protein, future experiments will use an 

expression time of 30min before lysis induction. 

5.4.2 EXPRESSION/LYSIS OF pBGKB-PORB IN E. COLI NISSLE 

E. coli Nissle was co-transformed with plasmids pBGKB-PorB and the E-lysis plasmid 

pGLysivb, at very low transformation efficiencies. In a small scale expression/lysis 

experiment, the successful expression and export to the periplasm of PorB followed by E-
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lysis was to be shown. As a lysis negative control, E. coli Nissle was also co-transformed with 

pBGKB-PorB and pBBR1MCS5 (the backbone plasmid of pGLysivb). 

One noseflask (sample 1) was inoculated with a clone of E. coli Nissle (pBGKB-PorB, 

pGLysivb), while a second noseflask (sample 2) was inoculated with E. coli Nissle (pBGKB-

PorB, pBBR1MCS5). 

After reaching an OD600nm≈0.3, 0.2% L-arabinose was added to both flasks. After 30min of 

expression, both flasks were shifted to 42°C, activating the thermosensitive promoter of 

pGLysivb (time point 0min). 

OD600nm values were measured and samples for WB and cfu determination were collected 

throughout the experiment; plates for cfu counting were incubated at 36°C overnight. 

OD600nm and cfu values are plotted against time in Figure 37. 

 

Figure 37: OD and cfu values over time during an expression/lysis experiment of E. coli Nissle (pBGKB-
PorB, pGLysivb), with E. coli Nissle (pBGKB-PorB, pBBR1MCS5) used as a lysis negative control. L-Arabinose was 
added at time point -30min to flasks 1 and 2; lysis was induced by shifting to 42°C at time point 0min. 

In both samples cfu values rise until the temperature shift to 42°C, after which they drop 

rapidly for sample 1, indicating successful E-lysis, and stagnate for sample 2, indicating the 

toxic effects of prolonged PorB expression and export to the periplasm. OD600nm values 
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continue to rise for sample 2, and drop for sample 1 after the temperature shift. The lysis 

efficiency for E. coli Nissle (pBGKB-PorB, pGLysivb) is 99.80%, as determined by cfu counting. 

Western Blot samples just prior to L-arabinose induction, just prior to lysis induction and 

after 40min and 90min of lysis were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The 

gel was blotted onto nitrocellulose, the membrane incubated with HRP-coupled-Anti-Myc-

Antibodies and developed by chemiluminiscence, as seen in Figure 38. Protein GIII-PorB-

Myc-PolyHis was expected at a size of 40.8kDa, and protein PorB-Myc-PolyHis at a size of 

38.7kDa. 

 

Figure 38: Western Blot of E. coli Nissle (pBGKB-PorB, pGLysivb) Expression/Lysis Experiment, using 
Unstained Protein Molecular Weight Marker (Fermentas). As a positive control, a PorB sample from an E. coli 
NM522 (pBGBK-PorB, pGLysivb) Expression/Lysis Experiment was used. Proteins were separated on a 4-12% 
Bis-Tris-Gel with MES Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated 
with 1:5000 diluted HRP-coupled Anti-Myc-Antibodies and developed. Samples B are at the time point of 
expression induction, samples C at the time point of lysis induction. 

The signal of Myc-tagged PorB can first be seen 30min after expression induction at the 

correct-size. Signal is strongest after 70min of expression/40min of lysis in flask 1 and while 

the signal somewhat diminishes with time, it does so in both the samples where lysis was 

induced (samples 1) and where no lysis took place (samples 2). Therefore, this slight signal 

decrease is most likely due to protein degradation, and not due to loss during the E-lysis 

process. 
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5.4.3 EXPRESSION/LYSIS OF pASK-PORB IN E. COLI NM522 

After the successful co-transformation of pASK-PorB (as well as pASK as an expression-

negative backbone plasmid) and pGLysivb into E. coli NM522, two noseflasks were 

inoculated with E. coli NM522 (pASK, pGLysivb) overnight culture (samples 1 and 2) and two 

other noseflasks (samples 3 and 4) were inoculated with E. coli NM522 (pASK-PorB, 

pGLysivb); all four noseflasks were incubated in a water bath at 36°C 

After reaching an OD600nm≈0.3, 0.2% L-arabinose was added to all four flasks. After 30min of 

expression, flasks 2 and 4 were shifted to 42°C, inducing lysis at time point 0min. 

OD600nm values were measured and samples for WB and cfu determination were collected 

throughout the experiment; plates for cfu counting were incubated at 36°C overnight. 

OD600nm and cfu values are plotted against time in Figure 39. 

 

Figure 39: OD and cfu values over time during an expression/lysis experiment of E. coli NM522 (pASK-
PorB, pGLysivb), with E. coli NM522 (pASK, pGLysivb) used as an expression negative control. L-Arabinose was 
added at time point -30min to all four flasks; lysis was induced by shifting flasks 2 and 4 to 42°C at time point 
0min. 

Whereas the induction of pASK and pASK-PorB without lysis induction leads to cfu 

stagnation (samples 1 and 3), combination of expression induction and lysis induction 

(samples 2 and 4) leads to strong decrease of cfu after temperature shift to 42°C, with 
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calculated lysis efficiencies (from cfu counting) of 99.97% for E. coli NM522 (pASK-PorB, 

pGLysivb) and of 99.90% for E. coli NM522 (pASK, pGlysivb). 

Western Blot samples just prior to lysis induction and after 60min of lysis (in flasks 2 and 4) 

were separated on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto 

nitrocellulose, the membrane incubated with HRP-coupled S-Protein and developed by 

chemiluminiscence, as seen in Figure 40. Protein GIII-PolyHis-S-Tag-PorB-Myc-PolyHis was 

expected at a size of 46.6kDa, and protein PolyHis-S-Tag-PorB-Myc-PolyHis at a size of 

44.6kDa. 

 

Figure 40: Western Blot of E. coli NM522 (pASK-PorB, pGLysivb) Expression/Lysis Experiment, using 
Unstained Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with 
MES Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5,000 
diluted S-Protein-HRP and developed. Samples are at 30min (B) and 90min (E) of protein expression. As a 
positive control, a sample from an E. coli C41 (pET40b) Expression Experiment was used. Expression was 
induced in all flasks, whereas lysis was induced only in flasks 2 and 4. 

While the background signal is again very high, S-tagged PorB is recognized 90min after 

induction in both samples carrying pASK-PorB, regardless whether they underwent lysis or 

not. No signal is visible after 30min of expression in either sample. Expulsion of cytoplasmic 

content during E-lysis is evident by the strongly diminished background signal in samples E2 

and E4 (where lysis was induced). 
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5.4.4 EXPRESSION/LYSIS OF pBGKB-MOMP IN E. COLI 

NM522 

After the successful co-transformation of pBGKB-MOMP and pGLysivb into E. coli NM522, 

four noseflasks were inoculated with overnight cultures of four different clones and grown 

at 36°C. 

After reaching an OD600nm≈0.3, 0.2% L-arabinose was added to all four flasks. After 30min of 

expression, all flasks were shifted to 42°C, inducing lysis at time point 0min. 

OD600nm values were measured and samples for WB and cfu determination were collected 

throughout the experiment; plates for cfu counting were incubated at 36°C overnight. 

OD600nm and cfu values are plotted against time in Figure 41. 

 

Figure 41: OD and cfu values over time during an Expression/Lysis Experiment of four different clones of 
E. coli NM522 (pBGKB-MOMP, pGLysivb). L-Arabinose was added at time point -30min; lysis was induced by 
shifting all four flasks to 42°C at time point 0min. 

All four clones show similar OD600nm and cfu behaviour; while cfu increases after induction of 

MOMP expression at time point -30min and until lysis induction at time point 0min, it drops 
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sharply afterwards, with lysis efficiencies between 99.79% (clone 4) and 99.97% (clone 1), as 

calculated by cfu counting. 

Western Blot samples just prior to lysis induction and after 60min of lysis were separated on 

two identical 4-12%-Bis-Tris-Gels with MES buffer. The gels were blotted onto nitrocellulose; 

one of the membranes incubated with HRP-coupled-Anti-Myc-Antibodies (see Figure 42), 

the second first with Goat-Anti-MOMP-Antibody and then with HRP-coupled-Anti-Goat-

Antibodies (see Figure 43), and developed by chemilumiscence. Protein GIII-MOMP-Myc-

PolyHis was expected at a size of 46.5kDa, protein MOMP-Myc-PolyHis at a size of 44.4kDa. 

 

Figure 42: Western Blot of E. coli NM522 (pBGKB-MOMP, pGLysivb) Expression/Lysis experiment with 
four different clones, using Unstained Protein Molecular Weight Marker (Fermentas). Proteins were separated 
on a 4-12% Bis-Tris-Gel with MES Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose 
was incubated with 1:5000 diluted HRP-coupled Anti-Myc-Antibodies and developed. Samples were taken 0min 
(B) and 60min (E) after lysis induction. As a positive control, an induced sample of an E. coli C2988J (pBGKB-
MOMP) Expression Experiment was used. 

Myc-tagged MOMP can be detected in all samples at the correct size; while the 

concentration varies considerably 30min after expression induction, after 60min of lysis the 

amount of MOMP is roughly equal in all clones, with a slightly stronger signal for flask 1. 
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Figure 43: Western Blot of E. coli NM522 (pBGKB-MOMP, pGLysivb) Expression/Lysis experiment with 
four different clones, using Unstained Protein Molecular Weight Marker (Fermentas). Proteins were separated 
on a 4-12% Bis-Tris-Gel with MES Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose 
was incubated with 1:500 diluted Goat-Anti-MOMP-Antibodies and with 1:5000 diluted HRP-coupled-Anti-
Goat-Antibodies, and developed. Samples were taken 0min (B) and 60min (E) after lysis induction. As a positive 
control, an induced sample of an E. coli C2988J (pBGKB-MOMP) Expression Experiment was used. 

MOMP can also be detected with polyclonal Anti-MOMP-Antibody preparation, even though 

the signal:noise ratio is worse compared to detection via the Myc-tag (see Figure 42). In 

addition to the correct-sized product, two smaller fragments at roughly 16kDa and 35kDa 

are detected. They disappear after lysis induction, suggesting a previous cytoplasmic 

location. 

5.4.5 EXPRESSION/LYSIS OF pBGKB-MOMP IN E. COLI 

NISSLE 

Even though numerous attempts were made, using different midipreps and freshly prepared 

MOPS-competent cells, in my hands it was not possible to co-transform pBGKB-MOMP and 

pGLysivb into E. coli Nissle. 
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5.5 LARGE SCALE EXPRESSION/LYSIS EXPERIMENTS 

For the large scale production of BGs ,fermentation was performed in a volume of 22l LBv pH 

7.2, with antibiotics kanamycin and gentamicin added. In 30min intervals, samples were 

withdrawn to measure OD600nm, check bacterial viability via the microscope, prepare 

Western Blot samples and plate dilutions for cfu determination on count agar plates; flow 

cytometry was performed for live-monitoring of the growth and lysis process. 

Important fermentation parameters such as flow, stirring rate, temperature or pO2 were 

documented using the IRIS software. 

After an initial growth phase at 35°C, protein expression was induced by adding 0.2% L-

arabinose; after 30min of expression for PorB, and after 20min of expression for MOMP, 

lysis was induced by temperature upshift of the culture to 42°C. 

After 120min of lysis, harvesting by Tangential Flow Filtration and killing of viable bacteria 

using β-Propiolactone took place. After washing, the concentrate was aliquoted and 

lyophilized. Plates for cfu determination were incubated at 36°C overnight. 

5.5.1 E. COLI NM522 (pBGKB-PORB, pGLYSIVB) 

FERMENTATION 

After testing several clones of E. coli NM522 (pBGKB-PorB, pGLysivb) for differences in lysis 

efficiency and PorB expression, working stocks of clone A3 of E. coli NM522 (pBGKB-PorB, 

pGLysivb) were prepared. These were used to inoculate an overnight culture for 

fermentation. 

OD600nm values and cfu counts (taken the next day) plotted against time are shown in Figure 

44. 
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Figure 44: OD and cfu values over time during fermentation in 22l of E. coli NM522 (pBGKB-PorB, 
pGLysivb). L-Arabinose was added at time point C (-30min); lysis was induced by increasing the temperature to 
42°C at time point D (0min). 

While both OD600nm and cfu values increase after expression induction, they drop sharply 

after lysis induction (5.45*108cfu/ml at D to 4.09*105cfu/ml at H – a lysis efficiency of 

99.93%). 

No flow cytometry was performed for this fermentation because of malfunctioning 

equipment. Microscopic analysis (see Figure 45) using the membrane potential staining dye 

DiBAC4(3) also showed no killing before lysis induction. The development of BGs is clearly 

seen in Figure 45C after lysis induction by temperature shifting to 42°C. 

A B C 

Figure 45: Light microscopy of samples taken during the fermentation process. Intact cells at time point C after 
45min of growth (A), intact cells at time point D after 30min of protein expression (B) and translucent lysed 
cells at time point F after 60min of lysis (C). 
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Figure 46: IRIS diagram documenting fermentation parameters like pH (regulated at 7.2), temperature 
(35°C during growth and expression, 42°C during lysis), flow rate, stirring rate, oxygen concentration and 
addition of anti-foam. 

In the IRIS diagram of this fermentation (see Figure 46), the oxygen curve is of particular 

interest, which typically registers a sharp drop within minutes of lysis induction, followed by 

a strong increase in oxygen concentration after 30min of lysis. Additionally, anti-foam is 

added after roughly 40min of lysis to counteract the foaming initiated by expulsion of 

cytoplasmic content during lysis. 

Several other specifications as well as follow-up experiments of this particular fermentation 

are detailed in Table 5 below: 
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E. coli NM522 (pBGKB-PorB, pGLysivb) Bacterial Ghosts 

Pre-Culture 

Volume: 4*500ml Additives: Gentamicin + Kanamycin 

Medium type: LBv Other: - 

Date: 2009-10-15 Clone: c. A3 (2009-09-30/ WS 2009-10-15 FHO) 

Starting time: 8:19 Strain: NM522 

End time:  Plasmids: pGLysivb, pBGKB-PorB 

ON culture OD: 5.39 Recombinant Protein Expression: GIII-PorB-Myc-
PolyHis 

Inoculation Volume: 1.6l Expression Induction: L-Arabinose, 0.2% 

Medium: LBv Expression Induction Time Point: C 

Antibiotics: Gentamicin + Kanamycin Lysis Induction: 42°C 

Temperature: 35°C Lysis Induction Time Point: D 

Total Volume: ≈22l Killing: after harvest, 0.075% ß-PL (2*0.0375%) 

Acid: F. A.:       31 units Volume harvested: 20l 

Base: A. W.:     30 units Harvested by: TFF 

Antifoam A:     25 units OD separator flow: - 

Eivb blot: - Yield: 6447mg 

Recombinant blot: OK (by FHO) Particles/mg: 1.69 x 109 

BPL Test: Survivors (by AME) Sterility: OK (by EDZ) 

Microscopy: ok Efficiency: 99.925% 

Table 5:  Data sheet of E. coli NM522 (pBGKB-PorB, pGLysivb) Fermentation 

While some colonies after ß-PL killing could be detected, PCR analysis could not detect 

gentamicin or kanamycin resistance genes in these colonies, suggesting a later 

contamination. Sterility tests of the freeze-dried lyophilisate indicate a sterile product. From 

a total of 20l fermentation volume, harvesting and lyophilisation yielded 6447mg of BGs dry 

weight. Calculating from a cfu count of 5.45*108/ml at the time point of lysis induction, and 

a harvested volume of 20l, the lyophilisate contains 1.69*109particles/mg. 

Western Blot samples taken throughout the fermentation process were separated on a 4-

12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto nitrocellulose, the membrane 

incubated with HRP-coupled-Anti-Myc-Antibodies and developed by chemiluminiscence, as 

seen in Figure 47. Protein GIII-PorB-Myc-PolyHis was expected at a size of 40.8kDa, protein 

PorB-Myc-PolyHis at a size of 38.7kDa. 
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Figure 47: Western Blot of E. coli NM522 (pBGKB-PorB, pGLysivb) Fermentation, using Unstained Protein 
Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES Running 
Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-Antibodies and developed. As a positive control, a sample from a previous small scale 
experiment was used. 

Myc-tagged PorB is detected after induction and reaches its highest concentration after 

60min of expression/30min of lysis. While the concentration slightly decreases afterwards, 

the majority of protein is retained during lysis. 

5.5.2 E. COLI NISSLE (pBGKB-PORB, pGLYSIVB) 

FERMENTATION 

Clone A1 of E. coli Nissle (pBGKB-PorB, pGLysivb) already tested in small scale experiments 

(see 5.4.2 Expression/Lysis of pBGKB-PorB in E. coli Nissle) was used to produce working 

stocks. These were used to inoculate an overnight culture for fermentation. 

OD600nm values and cfu counts plotted against time are shown in Figure 48. 
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Figure 48: OD and cfu values over time during fermentation in 22l of E. coli Nissle (pBGKB-PorB, 
pGLysivb). L-Arabinose was added at time point C (-30min); lysis was induced by increasing the temperature to 
42°C at time point D (0min). 

While both OD600nm and cfu values increase after expression induction, they drop sharply 

after lysis induction (3.36*108cfu/ml at D to 3.45*104cfu/ml at H – a lysis efficiency of 

99.99%). 

A B C 

Figure 49: Light microscopy of samples taken during the fermentation process. Intact cells at time point C after 
45min of growth (A), intact cells at time point D after 30min of protein expression (B) and translucent lysed 
cells at time point F after 60min of lysis (C). 

Microscopic analysis (see Figure 49) using the membrane potential staining dye DiBAC4(3) 

also showed no killing before lysis induction. The development of BGs is clearly seen in 

Figure 49C after lysis induction by temperature shifting to 42°C. Note the typical clustering of 

E. coli Nissle seen for growth in LBv medium before lysis is induced. 
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Flow Cytometry was used to observe the influence of expression of foreign antigen (PorB) 

and induction of lysis on cells. Three exemplary results are given below in Figure 50: 

 

C 
 
1.25µl 
Stain 
 
Speed  
2.8 

 
1:1000 

   
 

 R1 - Living R2 - Dead / Intact R3 - Ghost Total Particles 

Count / ml 1.83 e 8 0.97 e 6 1.47 e 7 1.99 e 8 

% Gated 70.0% 0.4% 5.6% 76.0% 
 

 

D 
 
1.50µl 
Stain 
 
Speed  
1.6 

 
1:1000 

   
 

 R1 - Living R2 - Dead / Intact R3 - Ghost Total Particles 

Count / ml 4.85 e 8 0.93 e 6 1.47 e 7 5.01 e 8 

% Gated 81.5% 0.2% 2.5% 84.2% 
 

 

F 
 
1.50µl 
Stain 
 
Speed  
1.2 

 
1:1000 

   
 

 R1 - Living R2 - Dead / Intact R3 - Ghost Total Particles 

Count / ml 2.32 e 7 1.15 e 7 8.90 e 8 9.25 e 8 

% Gated 2.5% 1.2% 95.1% 98.8% 
 

Figure 50: Flow cytometric analysis of fermentation samples, prior to expression induction (C), after 
30min of expression, prior to lysis induction (D) and after 60min of lysis (F). Samples were stained with the 
indicated volume/ml of DiBAC4(3) and RH414. Gate R1 denotes live, intact cells; R2 dead, intact cells and R3 
dead, lysed cells. 
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While a small amount of particles is gated in the R3 region even before expression or lysis 

induction, no toxic effect of PorB expression during the first 30min can be seen when 

samples C and D are compared. After 60min of lysis (time point F), 95% of particles are gated 

in the R3 (BG) region. 

As seen before in the IRIS diagram, the oxygen concentration drops within minutes of lysis 

induction, only to sharply rise again after roughly 30min of lysis, as seen in Figure 51. 

 

Figure 51: IRIS diagram documenting fermentation parameters like pH (regulated at 7.2), temperature 
(35°C during growth and expression, 42°C during lysis), flow rate, stirring rate, oxygen concentration and 
addition of anti-foam (used to counteract the foaming initiated by expulsion of cytoplasmic content during 
lysis). 

Several other specifications as well as follow-up experiments of this particular fermentation 

are detailed Table 6 below: 
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E. coli Nissle 1917 (pBGKB-PorB, pGLysivb) Bacterial Ghosts 

Pre-Culture 

Volume: 4*500ml Additives: Gentamicin + Kanamycin 

Medium type: LBv Other: pH 7.6 

Date: 2009-11-19 Clone: c.1 (2009-10-22/ WS 2009-11-05 FHO) 

Starting time: 9:18 Strain: E. coli Nissle 1917 

End time: Plasmids: pGLysivb, pBGKB-PorB 

ON culture OD: 6.18 Recombinant Protein Expression: GIII-PorB-Myc-
PolyHis 

Inoc. Volume: 1.4l Expression Induction: Arabinose, 0.2% 

Medium: LBv Expression Induction Time Point: C 

Antibiotics: Gentamicin + Kanamycin Lysis Induction: 42°C 

Temperature: 35°C Lysis Induction Time Point: D 

Total Volume:  ≈22 L Killing: after harvest, 0.075% ß-PL (2*0.0375%) 

Acid: F. A.:       34 units Volume harvested: 20l 

Base: A. W.:     49 units Harvested by: TFF 

Antifoam A:     15 units OD Separator flow: - 

Eivb blot: - Yield: 10376 mg 

Recombinant blot: OK (by FHO) Particles/mg: 7.12 x 108 

BPL Test:  OK (by AME), no survivors Sterility: OK (by EDZ) 

Microscopy: ok, cluster Efficiency: 99.990% 

Table 6:  Datasheet of E. coli Nissle (pBGKB-PorB, pGLysivb) Fermentation 

No survivors after ß-PL killing could be detected, and sterility tests of the freeze-dried 

lyophilisate indicate a sterile product. From a total of 20l fermentation volume, harvesting 

and lyophilisation yielded 10376mg of BGs dry weight. Calculating from a cfu count of 

3.36*108/ml at the time point of lysis induction, and a harvested volume of 20l, the 

lyophilisate contains 7.12*108particles/mg. 

Western Blot samples taken throughout the fermentation process were separated on a 4-

12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto nitrocellulose, the membrane 

incubated with HRP-coupled-Anti-Myc-Antibodies and developed by chemiluminiscence as 

seen in Figure 52. Protein GIII-PorB-Myc-PolyHis was expected at a size of 40.8kDa, and 

protein PorB-Myc-PolyHis at a size of 38.7kDa. 
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Figure 52: Western Blot of E. coli Nissle (pBGKB-PorB, pGLysivb) Fermentation, using Unstained Protein 
Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES Running 
Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted HRP-coupled 
Anti-Myc-Antibodies and developed. As a positive control, a sample from a previous small scale experiment 
was used. 

A faint signal of Myc-tagged PorB can first be seen 30min after expression induction (D); 

after 60min of expression/30min of lysis (E), the signal reaches its maximal intensity; in 

contrast to the fermentation in E. coli NM522, where lysis lead to a small but noticeable loss 

of PorB, (almost) no loss of product upon lysis induction is visible in this E. coli Nissle 

fermentation. 

5.5.3 E. COLI NM522 (pBGKB-MOMP, pGLYSIVB) 

FERMENTATION 

Working stocks were prepared from clone A3 of E. coli NM522 (pBGKB-MOMP, pGLysivb). 

These were used to inoculate an overnight culture for fermentation. In contrast to PorB 

fermentations, due to the toxicity of MOMP expression, E-lysis was induced by temperature 

upshift to 42°C already 20min after induction of MOMP expression. 

OD600nm values and cfu counts plotted against time are shown in Figure 53. 
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Figure 53: OD and cfu values over time during fermentation in 22l of E. coli NM522 (pBGKB-MOMP, 
pGLysivb). L-Arabinose was added at time point C (-20min); lysis was induced by increasing the temperature to 
42°C at time point D (0min). 

While OD600nm increases from the time point of induction until lysis induction, the cfu more 

or less stagnates during the whole fermentation, until lysis is induced. After that, both values 

drop sharply (from 6.90*107cfu/ml at time point D to 1.10*104cfu/ml at time point H – a lysis 

efficiency of 99.98%). In contrast to cfu determination, FACS live cell counts do increase by 

50% from the start of the fermentation until lysis is induced (compare Figure 55). 

Microscopic analysis (see Figure 54) using the membrane potential staining dye DiBAC4(3) 

also showed no killing before lysis induction. The development of BGs is clearly seen in 

Figure 54C after lysis induction by temperature shifting to 42°C. 

A B C 

Figure 54: Light microscopy of samples taken during the fermentation process. Intact cells at time point C after 
45min of growth (A), intact cells at time point D after 20min of protein expression (B) and translucent lysed 
cells at time point F after 60min of lysis (C). 
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Flow Cytometry was used to observe the influence of  foreign antigen expression (MOMP) 

and induction of lysis on cells. Three exemplary results are given below in Figure 55: 

C 
 
1.25µl 
Stain 
 
Speed  
3.0 

 
1:1000 

   
 

 R1 - Living R2 - Dead / Intact R3 - Ghost Total Particles 

Count / ml 3.21 e 8 1.56 e 6 4.71 e 6 3.28 e 8 

% Gated 80.6% 0.4% 1.2% 82.1% 
 

 

D 
 
1.50µl 
Stain 
 
Speed  
1.3 

 
1:1000 

   
 

 R1 - Living R2 - Dead / Intact R3 - Ghost Total Particles 

Count / ml 3.62 e 8 1.65 e 6 6.53 e 6 3.70 e 8 

% Gated 81.5% 0.4% 1.5% 83.3% 
 

 

F 
 
1.50µl 
Stain 
 
Speed  
1.0 

 
1:1000 

   
 

 R1 - Living R2 - Dead / Intact R3 - Ghost Total Particles 

Count / ml 6.19 e 6 1.50 e 7 4.15 e 8 4.36 e 8 

% Gated 1.4% 3.3% 90.2% 94.8% 
 

Figure 55: Flow cytometric analysis of fermentation samples, prior to expression induction (C), after 
20min of expression, prior to lysis induction (D) and after 60min of lysis (F). Samples were stained with the 
indicated volume/ml of DiBAC4(3) and RH414. Gate R1 denotes live, intact cells; R2 dead, intact cells and R3 
dead, lysed cells. 
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Only a small amount of particles is gated in the R3 region before expression or lysis 

induction, and no toxic effect of MOMP expression during the first 20min can be seen when 

samples C and D are compared. After 60min of lysis (time point F), 90% of particles are gated 

in the R3 (BG) region. 

Important fermentation parameters such as flow, stirring rate, temperature or pO2 are 

documented using the IRIS software and detailed below in Figure 56: 

 

Figure 56: IRIS diagram documenting fermentation parameters like pH (regulated at 7.2), temperature 
(35°C during growth and expression, 42°C during lysis), flow rate, stirring rate, oxygen concentration and 
addition of anti-foam (used to counteract the foaming initiated by expulsion of cytoplasmic content during 
lysis). 

Paralleling previous fermentations, the oxygen concentration drops rapidly upon lysis 

induction, only to sharply rise again after roughly 30min of lysis, as seen in the IRIS diagram. 

Several other specifications as well as follow-up experiments of this particular fermentation 

are detailed in Table 7 below: 
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E. coli NM522 (pBGKB-MOMP, pGLysivb) Bacterial Ghosts 

Pre-Culture 

Volume: 4x500ml Additives: Gentamicin + Kanamycin 

Medium type: LBv Other: pH 7.64 

Date: 2009-12-10 Clone: c. A3 (2009-12-03/ WS 2009-12-07 FHO) 

Starting time: 8:55 Strain: E. coli  NM522 

End time:  Plasmids: pGLysivb, pBGKB-MOMP 

ON culture OD: 5.69 Recombinant Protein Expression: GIII-MOMP-Myc-
PolyHis 

Inoc. Volume: 1.47l Expression Induction: Arabinose, 0.2% 

Medium: LBv Expression Induction Time Point: C 

Antibiotics: Gentamicin + Kanamycin Lysis Induction: 42°C 

Temperature: 35°C Lysis Induction Time Point: D 

Total Volume:  ≈22l Killing: after harvest, 0.075% ß-PL (2*0.0375%) 

Acid: F. A.:   38 units Volume harvested: 20l 

Base: A. W.: 22 units Harvested by: TFF 

Antifoam A: 12 units OD separator flow: - 

Eivb blot: - Yield: 6209mg 

Protein Gel: OK (by FHO) Particles/mg: 2.1 x 108 

BPL Test: OK (by AME), no survivors Sterility: OK (by EDZ) 

Microscopy: ok Efficiency: 99,984% 

Table 7:  Datasheet of E. coli NM522 (pBGKB-MOMP, pGLysivb) Fermentation 

No survivors after ß-PL killing could be detected, and sterility tests of the freeze-dried 

lyophilisate indicate a sterile product. From a total of 20l fermentation volume, harvesting 

and lyophilisation yielded 6209mg of BGs dry weight. Calculating from a cfu count of 

6.90*107/ml at the time point of lysis induction, and a harvested volume of 20l, the 

lyophilisate contains 2.10*108particles/mg. 

Western Blot samples taken throughout the fermentation process were separated on a 4-

12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto nitrocellulose, the membrane 

incubated with HRP-coupled-Anti-Myc-Antibodies and developed by chemiluminiscence, as 

seen in Figure 57. Protein GIII-MOMP-Myc-PolyHis was expected at a size of 46.5kDa, and 

protein MOMP-Myc-PolyHis at 44.4kDa. 
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Figure 57: Western Blot of E. coli NM522 (pBGKB-MOMP, pGLysivb) Fermentation, using Unstained 
Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-Antibodies and developed. As a positive control, a sample from a previous small scale 
experiment was used. 

Myc-tagged MOMP is detected first 50min after induction (not after 20min) and remains at a 

stable level throughout the whole experiment, with no loss occurring during lysis. 

5.6 QUANTIFYING CHLAMYDIAL ANTIGENS IN BGs 

Chlamydial antigens presented in BGs after fermentation were quantified using two different 

techniques: (1) the established protocol of comparing signal strength of a positope of known 

size and concentration and signal strength of known concentrations of lyophilised BGs on a 

Western Blot and (2) the S-Tag system that is based on measuring an enzymatic reaction that 

is proportional to the amount of S-tagged protein in a sample. 

5.6.1 QUANTIFICATION OF PORB IN E. COLI NM522 BGs 

In order to quantify the amount of recombinant PorB per µg E. coli NM522 BGs, the signals 

obtained from a serial dilution of BGs (Techfors Fermentation of E. coli NM522 (pBGKB-PorB, 

pGLysivb), see 5.5.1) with known concentration and a serial dilution of positope (containing 
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the Myc epitope) with known concentration were compared on a Western Blot, as seen in 

Figure 58. 

 

Figure 58: Western Blot of E. coli NM522 (pBGKB-PorB, pGLysivb) BGs and positope, using Unstained 
Protein Molecular Weight Marker (Fermentas). Samples were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-Antibodies and developed. The amount of lyophilized BGs, as well as of positope per lane is 
indicated. 

The chemiluminiscence signals generated by HRP-coupled-Anti-Myc-Antibodies at the site of 

positope and PorB bands were measured using the ChemidocXRS machine; with the 

standard curve provided by the positope, the amount of PorB per µg BG could be calculated, 

as outlined in Figure 59: 
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Figure 59: Quantification curve for E. coli NM522 (pBGKB-PorB, pGLysivb) BGs. Signals generated by 
positope with known concentration are indicated by blue diamonds, the linear regression curve is shown in 
black. Signals generated by BG samples are indicated as detailed in the legend. 

The square of the correlation coefficient is R²=0.902, indicating a good fit of the standard 

curve provided by the positope. Calculated on that basis, Table 8 shows the amounts of PorB 

that are found in E. coli NM522 BGs. 

Lane Amount of BGs Calc. Total Amount of PorB Calc. Amount PorB/µg BG 

U1 1µg 332.72ng 332.72ng 

U2 2µg 475.56ng 237.78ng 

U3 5µg 894.21ng 178.84ng 

U4 10µg 1308.02ng 130.80ng 

U5 20µg 1857.50ng 92.88ng 

Table 8:  Calculating the average amount of PorB per µg of E. coli NM522 BGs 

On average, one microgram of E. coli NM522 BGs contains 194.60 ± 94.35ng PorB. 

Therefore, recombinant PorB constitutes roughly one fifth of the lyophilized BGs. Taking in 

account that only 1µg and 2µg BG samples fall on the standard curve given by the positope, 

a different amount of PorB/µg BG is calculated; if only these two values are included, one 

microgram of E. coli NM522 BGs contains 285.25 ± 67.13ng PorB. 

The molecular weight of PorB of 38.7kDa translates into a mass of 6.42∙10-20g, therefore, one 

microgram of E. coli NM522 BGs contains 4.44∙1012 PorB molecules (using the second 
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calculated value). Assuming a particle count of 1.69∙106 BGs/µg, a single E. coli NM522 BG 

contains 2.63∙106 PorB molecules. 

5.6.2 QUANTIFICATION OF PORB IN E. COLI NISSLE BGS 

For the quantification of recombinant PorB per µg E. coli Nissle BG (Techfors Fermentation of 

E. coli Nissle (pBGKB-PorB, pGLysivb), see 5.5.2), the signals obtained from a serial dilution of 

BGs with known concentration and a serial dilution of positope (containing the Myc epitope) 

with known concentration were compared on a Western Blot, as seen in Figure 60. 

 

Figure 60: Western Blot of E. coli Nissle (pBGKB-PorB, pGLysiv) BGs and positope, using Unstained 
Protein Molecular Weight Marker (Fermentas). Samples were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-Antibodies and developed. The amount of lyophilized BGs, as well as of positope per lane is 
indicated. As a negative control, BGs from an E. coli Nissle (pGLysivb) fermentation were used. 

The chemiluminiscence signals generated by HRP-coupled-Anti-Myc-Antibodies at the site of 

positope and PorB bands were measured using the ChemidocXRS machine; with the 

standard curve provided by the positope, the amount of PorB per µg BG could be calculated, 

as seen in Figure 61: 
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Figure 61: Quantification curve for E. coli Nissle (pBGKB-PorB, pGLysivb) BGs. Signals generated by 
positope with known concentration are indicated by blue diamonds, the linear regression curve is shown in 
black. Signals generated by BG samples are indicated as detailed in the legend. 

The square of the correlation coefficient is R²=0.9695, indicating a very good fit of the 

standard curve provided by the positope. Calculated on that basis, Table 9 details the 

following amounts of PorB are found in BGs. 

Lane Amount of BGs Calc. Total Amount of PorB Calc. Amount PorB/µg BG 

U1 1µg 238.04ng 238.04ng 

U2 2µg 454.18ng 227.09ng 

U3 5µg 807.14ng 161.43ng 

U4 10µg 1582.81ng 158.28ng 

Table 9:  Calculating the average amount of PorB per µg of E. coli Nissle BGs 

On average, one microgram of E. coli Nissle BGs contains 196.21 ± 42.24ng PorB. Therefore, 

recombinant PorB constitutes roughly one fifth of the lyophilized BGs. Taking in account that 

only 1µg and 2µg BG samples fall on the standard curve given by the positope, a different 

amount of PorB/µg BG is calculated; if only these two values are included, one microgram of 

Nissle BGs contains 232.57 ± 7.74ng PorB. 

These values are remarkably similar to the amount of PorB found in E. coli NM522 BGs, 

indicating a good reproducibility using the pBGKB-PorB vector. 
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The molecular weight of PorB of 38.7kDa translates into a mass of 6.42∙10-20g, therefore, one 

microgram of E. coli Nissle BGs contains 3.62∙1012 PorB molecules (using the second 

calculated value). Assuming a particle count of 7.12∙105 BGs/µg, a single E. coli Nissle BG 

contains 5.08∙106 PorB molecules. 

5.6.3 QUANTIFICATION OF MOMP IN E. COLI NM522 BGS 

To quantify the amount of recombinant MOMP per µg E. coli NM522 BG (from Techfors 

Fermentation of E. coli NM522 (pBGKB-MOMP, pGLysivb), see 5.5.3), the signals obtained 

from a serial dilution of BGs with known concentration and a serial dilution of positope 

(containing the Myc epitope) with known concentration were compared on a Western Blot, 

as seen in Figure 62. 

 

Figure 62: Western Blot of E. coli NM522 (pBGKB-MOMP, pGLysivb) BGs and positope, using Unstained 
Protein Molecular Weight Marker (Fermentas). Samples were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-Antibodies and developed. The amount of lyophilized BGs, as well as of positope per lane is 
indicated. BGs from a fermentation of E. coli NM522 (pGLysivb) were used as a negative control. 

The chemiluminiscence signals generated by HRP-coupled-Anti-Myc-Antibodies at the site of 

positope and MOMP bands were measured using the ChemidocXRS machine; with the 
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standard curve provided by the positope, the amount of MOMP per µg BG could be 

calculated, as seen in Figure 63: 

 

Figure 63: Quantification curve for E. coli NM522 (pBGKB-MOMP, pGLysivb) BGs. Signals generated by 
positope with known concentration are indicated by blue diamonds, the linear regression curve is shown in 
black. Signals generated by BG samples are indicated as detailed in the legend. 

The square of the correlation coefficient is R²=0.9876, indicating a very good fit of the 

standard curve provided by the positope. Calculated on that basis, Table 10 gives the 

following amounts of MOMP for E. coli NM522 BGs. 

Lane Amount of BGs Calc. Total Amount of MOMP Calc. Amount MOMP/µg BG 

U1 1µg 567.15ng 567.15ng 

U2 2µg 763.64ng 381.82ng 

U3 5µg 1223.16ng 244.63ng 

U4 10µg 1663.95ng 166.40ng 

Table 10:  Calculating the average amount of MOMP per µg of E. coli NM522 BG 

On average, one microgram of NM522 BGs contains 340.00 ± 175.67ng MOMP. Therefore, 

recombinant MOMP constitutes an impressive one third of the lyophilized BGs. 

All samples are out of the range of the standard curve; the sample using 1µg BG comes 

closest to the upper limit of the standard curve, and gives a value of 567.15ng MOMP per 

microgram BG – more than half of the BGs’ dry mass. 
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The molecular weight of MOMP of 44.44kDa translates into a mass of 7.38∙10-20g, therefore, 

one microgram of E. coli NM522 BGs contains 4.61∙1012 MOMP molecules (using the first 

calculated value). Assuming a particle count of 2.10∙105 BGs/µg, a single E. coli NM522 BG 

contains 2.19∙107 MOMP molecules. 

5.6.4 QUANTIFICATION OF RECOMBINANT PROTEINS 

USING THE S-TAG SYSTEM 

Samples were collected during an Expression Experiment of E. coli C2988J (pASK) and an 

Expression/Lysis Experiment of E. coli NM522 (pASK-PorB, pGLysivb) (already described 

above) and treated according to protocol, as detailed in 7.10.3 Quantification Using the S-

Tag System. 

In the case of E. coli C2988J (pASK), the quantification result is shown in Figure 64: 

 

Figure 64: S-Tag Detection Assay, using induced (1) and non-induced (2) samples of E. coli C2988J (pASK). 
Time point 0min is the moment of L-Arabinose addition to (1). 

While the RNAse S activity as measured by A280nm absorption remains at baseline levels in 

non-induced samples (2), and is at baseline levels at the induction point for sample 1 (0min), 

absorption increases rapidly when pASK is induced by addition of 0.2% L-Arabinose. The 

calculated amount of GIII-PolyHis-S-Tag-PolyHis (the gene product of pASK) is 0.002pmol/µl 

at time point 0min, 0.161pmol/µl after 30min and reaches 0.236pmol/µl 60min after 

expression induction, while it stays at 0.004pmol/µl for the non-induced sample. 
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An S-Tag standard sample was used for calculating unknown samples. 

Using samples from a E. coli NM522 (pASK-PorB, pGLysivb) and an E. coli NM522 (pASK, 

pGLysivb) Expression/Lysis Experiment, the following data were collected, as shown in Figure 

65: 

 

Figure 65: S-Tag Detection Assay, using samples of E. coli NM522 (pASK, pGLysivb) (1-2) as well as 
samples of E. coli NM522 (pASK-PorB, pGLysivb) (3-4). Time point 0min is the moment of L-Arabinose addition 
to all samples. Lysis was induced at time point 30min for samples (2) and (4). 

In general, the yield was much lower than in the previous experiment, even after 30min of 

expression, before loss of protein due to lysis might have occurred. In sample 1, where pASK 

expression was induced but no lysis occurred, 0.153pmol/µl are reached after 90min of 

expression, whereas lysis (in sample 2) reduces this number to 0.038pmol/µl. Anyhow, at 

time point 30min (just before lysis induction), no real difference was observed between 

samples 1 and 2. 

Yields for pASK-PorB translation products were even lower, possibly reflecting the larger 

mass of the recombinant protein. After 90min of expression, 0.027pmol/µl PorB are 

detected in samples 3, but when lysis is induced (sample 4) this number is reduced to 

0.015pmol/µl. This is somewhat conflicting with the Western Blot seen in Figure 40, where 

sample E3 does not appear to be twice as intensive as sample E4. 
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6 DISCUSSION 

6.1 TESTING THE S-TAG SYSTEM 

While the S-Tag Assay, as described in the Materials & Methods chapter, is less time 

consuming than a Western Blot (90min compared to roughly 8 hours), it also gives less 

information. While in theory S-tagged proteins can be quantified, the enzymatic reaction 

measured in this assay only gives information about the total S-Tag present in samples. 

Whether the S-Tag is still attached to the recombinant protein, or the protein has undergone 

degradation, is not immediately visible. 

By coupling the signal strength (indicating concentration) with information about protein 

size, Western Blot quantification techniques are intrinsically more informative, and signal 

given by degraded protein can be excluded from the quantification calculation. On the other 

hand, quantification via WB is strongly dependent on the blotting behaviour of the protein 

and needs a standard protein of similar size compared to the protein that has to be 

quantified. The S-Tag system is independent of protein size and a unique standard can be 

used for proteins of any size. Also multiple samples can be analyzed in parallel, making it a 

suitable for tool for the pretesting several clones. To allow quantification using the S-tag for 

BGs, further studies are necessary to implement this technique successfully. 

Given the need of multiple assays for statistically significant data and the necessity of many 

pipetting steps, the established WB quantification system might at the moment be the more 

accurate and more economic mode to quantify recombinant proteins in BGs. For the future, 

a combination of both techniques, using the S-Tag also for detection on WB, is desired. 

6.2 CLONING EXPRESSION VECTORS  

To analyse expression of foreign proteins transported to the periplasm, three different 

vectors were used, differing in the promoter/repressor system, the transport signal to the 

periplasm and the tags used. 
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A new expression system for the export of S-tagged proteins to the periplasm upon L-

arabinose addition was successfully cloned in the form of pASK. Its correct size was proven 

by the correct pattern after restriction digests (see Figure 14). 

The pASK vector was used as an expression backbone vector for PorB, a chlamydial outer 

membrane protein, giving rise to pASK-PorB (see Figure 22). PorB was also successfully 

cloned into an IPTG-inducible, T7 RNA polymerase dependent vector system for the DsbC-

dependent periplasmic export of S-tagged proteins, pET40b. The correct size and restriction 

digest pattern of the resulting plasmid pET40b-PorB was confirmed (see Figure 20). 

Another expression vector used for foreign protein expression and periplasmic export of 

proteins upon L-Arabinose induction is pBGKB. Restriction digests again showed the correct 

size and pattern of pBGKB-PorB (see Figure 17) and pBGKB-MOMP (see Figure 25), the latter 

encoding the chlamydial Major Outer Membrane Protein, MOMP. 

All expression vectors used conferred kanamycin resistance to their host and signalled 

protein transport to the periplasm. No difference in cloning efficiency was observed for the 

different backbone vectors; expected restriction digest patterns were seen after control 

digests, but no sequence analysis was performed. 

6.3 EXPRESSING CHLAMYDIAL ANTIGENS 

After expression vectors were cloned successfully, their function was tested in small scale 

experiments. The effect of recombinant protein expression on viability and on cell shape was 

observed using cfu counting and light microscopy, while protein expression was detected via 

Western Blotting using antibodies against tags fused to the expressed proteins. 

Neither PorB nor MOMP expression and periplasmic transport had notable effect on cell 

shape, but both influenced the viability of bacteria negatively. PorB lead to a decrease in 

growth rate once expression was induced, resulting in cfu stagnation or mild killing (see 

Figure 26 and Figure 31). This effect was even more pronounced for MOMP, where killing 

reached almost 99% after 120min of expression (see Figure 33). For both PorB and MOMP, 

these effects were only seen in the cfu behaviour after more than 30min of protein 

expression. 
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Western Blots were able to detect Myc-tagged PorB (see Figure 27) and MOMP (see Figure 

34) as well as S-tagged PorB from pASK-PorB (see Figure 32), usually faintly after 20min of 

expression, and at saturated levels after 60min. Little or no degradation over time is 

detectable, and no protein is present before the induction of protein expression. 

While the same stagnation/killing effect is seen upon induction of pET40b-PorB (see Figure 

28), no protein could be detected in Western Blots using HRP-coupled-S-Protein, even 

though the gene product of the empty vector pET40b can be detected (see Figure 29), but 

only faintly. No ready explanation can be given for that. From the cfu behaviour it can be 

concluded that PorB is expressed, but to ensure the functionality of the S-Tag, sequencing 

would be necessary. Also changing to another antibody could solve this problem, as low 

efficiency of the HRP-coupled-S-Protein can be seen when trying to detect the gene product 

of pET40b. 

In all cases where a stagnation of killing was observed in the cfu, no such effect was seen in 

OD600nm measurements. Together with the microscopy analysis an increase in cell size can be 

excluded. A possible explanation for this behaviour could be a delayed killing effect by the 

protein, coming into effect only during ON incubation on the plate. This is supported by 

observations via flow cytometry that failed to detect large-scale killing in the first 30min of 

protein expression during fermentations. 

6.4 SMALL SCALE BG PRODUCTION 

Expression plasmids that were shown to be able to express their cloned proteins were co-

transformed with lysis plasmid pGLysivb into E. coli NM522, and if possible, E. coli Nissle to 

perform small-scale Expression/Lysis Experiments in order to test whether foreign antigens 

interfere with lysis and whether they are lost upon lysis induction. 

6.4.1 SMALL-SCALE BG PRODUCTION IN E. COLI NM522 

Plasmids pASK-PorB, pBGKB-PorB and pBGKB-MOMP were used in Expression/Lysis 

experiments in E. coli NM522. In all three cases expression of recombinant proteins under 

the chosen conditions did not negatively influence lysis efficiency, even though in the case of 
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MOMP it is possible that killing contributes to the reduction in cfu used for the calculation of 

lysis efficiency. 

Lysis efficiencies of clones selected for later fermentation were: 

- 99.97% for E. coli NM522 (pASK-PorB, pGLysivb) c. B2 (fermentation not performed) 

- 99.96% for E. coli NM522 (pBGKB-PorB, pGLysivb) c. A3 (used for fermentation) and 

- 99.93% for E. coli NM522 (pBGKB-MOMP, pGLysivb) c. A3 (used for fermentation). 

Western Blot analysis of Expression/Lysis experiments showed similar amounts of expressed 

protein regardless whether lysis was induced or not, implying that little or no loss due to 

lysis occurs. This is especially striking in contrast to other cellular proteins, that are visibly 

lost on lysis induction (see Figure 40). Therefore it can be concluded that the expressed 

proteins are located within the membrane complex. Even though the exact location was not 

determined, the presence of the signal sequence for the periplasm makes a periplasmatic 

localization most likely. 

These findings suggest that neither PorB nor MOMP infer under given conditions with E-

mediated lysis, and E-mediated lysis does not lead to the loss of these antigens in significant 

numbers. 

6.4.2 SMALL-SCALE BG PRODUCTION IN E. COLI NISSLE 

Even though numerous approaches were tried, in my hands it was not possible to transform 

pBGKB-MOMP into E. coli Nissle, neither alone nor in combination with pGLysivb. 

Interestingly, also the precursor plasmid that was used to clone pBGKB-MOMP, pKS-MOMP, 

could not be transformed into E. coli Nissle in my hands. 

In contrast, pBGKB-PorB (as well as its precursor plasmid, pMAL-PorB) was easily (even 

though with reduced efficiencies compared to an E. coli NM522 transformation) transformed 

into E. coli Nissle. 

An Expression/Lysis Experiment of E. coli Nissle (pBGKB-PorB, pGLysivb) showed similar 

results as in E. coli NM522. Lysis was efficient (99.80% for c. A1, that was used for 

fermentation), but nearly one log stage lower than seen in NM522 (pBGKB-Porb, pGLysivb) 
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(99.96% lysis efficiency). Again, lysis did not affect the concentration of PorB in comparison 

with non-lysed samples (see Figure 38). 

6.5 LARGE SCALE BG PRODUCTION 

For the large scale production of BGs carrying chlamydial antigens, E. coli NM522 (pBGKB-

PorB, pGLysivb) c. A3, E. coli NM522 (pBGKB-MOMP, pGLysivb) c. A3, as well as E. coli Nissle 

(pBGKB-PorB, pGLysivb) c. A1 were used for fermentations in 22l volume. Sterility of the final 

product was shown by follow-up experiments. 

Quantification using Western Blots with a known concentration of positope showed that 

PorB constituted 20% of E. coli NM522 (see Table 8) and E. coli Nissle (see Table 9) BGs, and 

that MOMP accounted for one third of the mass of E. coli NM522 BGs (see Table 10). 

In contrast to the pretestings in Expression/Lysis experiments, where lysis efficiency of E. coli 

NM522 (pBGKB-PorB, pGlysivb) was higher than in E. coli Nissle, the opposite was observed 

for fermentations, but a repeated number of fermentations would be necessary for any 

statistically sound conclusions. 

Additionally, in the three fermentations performed, the one using E. coli Nissle had a roughly 

60% higher yield than fermentations using E. coli NM522, but once again, not enough 

fermentations were performed for statistically sound conclusions. 

Furthermore, the calculated particle numbers per microgram of BG dry-weight varies by 

almost a log stage (2.1 x 105 for E. coli NM522 (pBGKB-MOMP, pGLysivb) and 1.69 x 106 for 

E. coli NM522 (pBGKB-PorB, pGLysivb)). In addition to more fermentations, a second, 

independent particle count method would be necessary to test these results. 
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Below in Table 11 is given an overview detailing the large scale BG production: 

 E. coli NM522 
(pBGKB-PorB, 

pGLysivb) 

E. coli Nissle 
(pBGKB-PorB, 

pGLysivb) 

E. coli NM522 
(pBGKB-MOMP, 

pGLysivb) 

Lysis Efficiency: 99.925% 99.990% 99.984% 

Yield: 6447mg 10376mg 6209mg 

Particles/µg: 1.69∙106 7.12∙105 2.1∙105 

ng Antigen/µg BG: 194.60 ± 94.35ng 196.21 ± 42.24ng 340.00 ± 175.67ng 

Proteins/Particle: 2.63∙106 PorB/BG 5.08∙106 PorB/BG 2.19∙107 MOMP/BG 

Table 11: Product details of BGs displaying chlamydial antigens produced during this study. 

Previous studies attempted 

- to display fertility proteins in the periplasm of BGs to induce immunocontraception in 

possums (Schlacher, 2009) 

- to display human choriongonadotropin-ß fused to heat labile enterotoxin B (hCG-ß-

LTB) in the periplasm of BGs for immunocontraception induction (Hodul, 2010) or 

- to display luteinizing hormone releasing hormone (LHRH) in the periplasm of BGs for 

wildlife control by immunocontraception (Champeimont, 2008). 

In these cases, quantified antigen accounted for:  

- 0.35ng/µg BG to 6.35ng/µg BG in the case of LHRH (Champeimont, 2008)  

- 44.51ng/µg BG to 49.75ng/µg BG in the case of hCG-ß-LTB (Hodul, 2010) and  

- 14.6ng/µg BG to 403ng/µg in the case of the possum antigen ZP2C (Schlacher, 2009). 

The quantified yields of roughly 200ng/µg BG for PorB-displaying BGs and 340ng/µg BG for 

MOMP-displaying BGs compare favourably to previous experiments. 

Furthermore, the calculated amounts of proteins per individual BG are found in a range 

between 2.63∙106 PorB/BG for E. coli NM522 (pBGKB-PorB, pGLysivb) and 2.19∙107 

MOMP/BG for E. coli NM522 (pBGKB-MOMP, pGLysivb), and thus are between 30 and 

300times higher than in previous studies where proteins per particle were calculated 

(Champeimont, 2008). 

In previous studies, the particle numbers for fermentations were found to be between 1.65 x 

106/µg and 1.85 x 106/µg (Schlacher, 2009), between 1.89 x 106/µg and 2.85 x 106/µg 

(Champeimont, 2008) and between 1.19 x 105/µg and 1.05 x 106/µg (Hodul, 2010). 
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The calculated particle numbers for fermentations of BGs displaying chlamydial antigens 

were found to be well within these numbers. 

6.6 CHLAMYDIAL ANTIGENS IN BGS 

Regarding the goals stated before this study – to express chlamydial antigens in E. coli, to 

localize them in the periplasm and to retain them there during and after E-lysis, followed by 

their quantification – it can be concluded that they were completed successfully. 

The efficaciousness of BGs as natural adjuvants, displaying chlamydial antigens, to induce 

(protective) immunity has to be addressed in future studies. With BGs derived from E. coli 

NM522 displaying PorB and MOMP, and E. coli Nissle displaying PorB in sufficient, an further 

preclinical studies can be initiated.  
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7 MATERIALS AND METHODS 

7.1 BACTERIAL STRAINS, MEDIA, CULTIVATION 

7.1.1 BACTERIAL STRAINS 

The following strains of Escherichia coli have been used in this work. 

For cloning and plasmid storage, E. coli C2988J is used; E. coli NM522 and E. coli Nissle are 

used for Expression/Lysis experiments, and E. coli C41 is used for experiments with plasmids 

of the pET40b variant, which requires a T7 RNA polymerase (which E. coli C41 carries on its 

chromosome). 

 Escherichia coli K12 NM522: supE thi-1 Δ(Lac-proAB) Δ(mcrB-hsdSM)5 (rK
-mK

+) [F’ 

proAB lacIqZΔM15] – obtained from Stratagene, Heidelberg, Germany (Stratagene, 

2011) 

 Escherichia coli K12 C2988J (NEB 5-alpha competent E. coli): fhuA2 Δ(argF-lacZ)U169 

phoA glnV44 Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 – obtained 

from New England Biolabs, Ipswich, MA, USA (NEB, 2011) 

 Escherichia coli K12 C41 (OverExpress™ C41(DE3)): F– ompT hsdSB (rB
- mB

-) gal dcm 

(DE3) – obtained from Lucigene, Middleton, WI, USA (Lucigene, 2011) 

 Escherichia coli Nissle 1917: O6:K5:H1 ΔpMut1 ΔpMut2 – obtained from Ardeypharm, 

Herdecke, Germany (Nissle, 1918) 

7.1.2 CULTIVATION MEDIUM 

Bacteria are cultivated in “Lennox Lysogeny Broth” (LBv), 1l of which consists of 10g soy 

peptone, 5g animal product free (vegetable) yeast extract and 5g NaCl, with pH adjusted to 

7.2. 

Plate Count Agar (ROTH) is used for agar plates for cfu counting. 23.5g are dissolved in 1l 

dH2O, autoclaved and poured at ≈45°C using a plate pouring machine. 
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Lennox LB-Agar (ROTH) is used for agar plates supplemented with antibiotics. 35g are 

dissolved in 1l dH2O and autoclaved. Antibiotics are added when agar is hand-warm, and 

plates are poured next to the flame. 

7.1.3 BACTERIAL CULTIVATION 

Bacteria are inoculated from either frozen cryocultures or single colonies on agar plates and 

grown in test tubes in a volume of 5ml LBv plus antibiotic(s) and other additives as needed. 

Samples are incubated at 36°C in an incubating wheel. 

For long time storage, bacterial cultures are kept in 25% v/v glycerol at -70°C (in a total 

volume of 1.8ml). 

7.1.4 ANTIBIOTICS 

Stock solutions are stored at +4°C for immediate use and at -20°C for long time storage. 

From these, necessary dilutions to achieve the final desired concentration in culture media 

are made, as detailed in Table 12. 

Antibiotic [Stock Solution] [Desired Concentration] µl stock solution/5ml 

Ampicillin 50mg/ml 100µg/ml 10 

Gentamicin 25mg/ml 50µg/ml 10 

Kanamycin 10mg/ml 20µg/ml 10 

Table 12:   Antibiotics and their concentration used in this work. 

7.2 CHEMICALS 

Chemicals used for buffers, solutions and media, as well as some ready to use stock solutions 

(e.g. 10x TBS, 20x TAE) are obtained from ROTH (ROTH Carl, Karlsruhe, Germany), except 

noted otherwise. 

For Western Blots, the NuPage System including gels, buffers and chambers is used 

(Invitrogen, Paisley, UK) 
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7.3 USED APPLIANCES 

The following appliances have been used during this work: 

Name Description Manufacturer 

BK7200 Incubator WTB Binder, Tuttlingen, Germany 

Sigma 3K30 Cooling centrifuge Sigma Aldrich, St. Louis, MO, USA 

Biofuge pico Tabletop centrifuge Heraeus, Hanau, Germany 

Minispin Tabletop centrifuge Eppendorf, Hamburg, Germany 

Uniflow UVUB 1200 
Biohazard 

Laminar Flow Kojair, Vilppula, Finland 

Spectronic 20+ Nose flask photometer Milton Roy, Ivyland, PA, USA 

UV-160 Spectrophotometer Shimadzu, Kyoto, Japan 

DW spiral plater Spiral plater Don Whitley Scientific, Shipley, UK 

ProtoCOL 92000 Colony counter Bartelt Labor- und Datentechnik, Graz, 
Austria 

ChemidocXRS Gel detection system Bio-Rad, Hercules, CA, USA 

Lyolab B Secfroid Lyophilisator Inula, Vienna, Austria 

iCycler IQ PCR machine Bio-Rad, Hercules, CA, USA 

Leica DMRB Microscope Microscope Leica Microsystems, Wetzlar, Germany 

CyFlow Flow Cytometry Analyzer Partec, Görlitz, Germany 

Techfors 30l Fermenter Infors HT, Bottmingen, Switzerland 

Table 13:  List of appliances and machines and their manufacturers used in this work. 

7.4 BUFFERS AND SOLUTIONS 

7.4.1 50% GLYCEROL 

- 25ml dH2O 

- 25ml 100% Glycerol 

- Mix well and autoclave before using 

7.4.2 0.85% SALINE 

- 8.5g NaCl 

- Fill up to 1l with dH2O 

- Distribute to test tubes using a dispenser for 9.0ml and 9.9ml, autoclave before using 
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7.4.3 MOPS I SOLUTION 

- 10.47g MOPS (100mM) 

- 0.74g CaCl2 x 2H2O (10mM) 

- 0.6g RbCl2 (10mM) 

- Dissolve in 400ml dH2O 

- Adjust pH to 7.0 with KOH 

- Fill up to 500ml and autoclave before using 

7.4.4 MOPS II SOLUTION 

- 10.47g MOPS (100mM) 

- 5.15g CaCl2 x 2H2O (70mM) 

- 0.6g RbCl2 (10mM) 

- Dissolve in 400ml dH²O 

- Adjust pH to 6.5 with KOH 

- Fill up to 500ml and autoclave before using 

7.4.5 20% L-ARABINOSE STOCK SOLUTION 

- 20g L-Arabinose 

- Fill up to 100ml with dH2O 

- Sterilize by filtration (Steritop 0.22µm pore size, obtained from Millipore, Billerica, 

MA, USA) 

7.4.6 ANTIBIOTIC STOCKS 

- Weigh in antibiotics: 

o 2g D(-)-α-aminobenzylpenicillin sodium salt (Ampicillin) for a stock 

concentration of 50mg/ml 

o 0.4g Gentamicin sulfate for a stock concentration of 10mg/ml 

o 1g Kanamycin monosulfate for a stock concentration of 25mg/ml 

- Dissolve and fill up to 40mg with dH2O 
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- Sterilize via filtration using syringes (Millex filters, obtained from Millipore, Billerica, 

MA, USA) 

- Stocks are aliquoted into 1ml aliquots (ampicillin) or 8ml aliquots (gentamicin, 

kanamycin) and stored at 4°C during use or at -20°C for long-time storage. 

7.4.7 1x TRIS-ACETATE-EDTA (TAE) BUFFER 

- 50ml 20x TAE stock solution 

- 950ml dH2O 

7.4.8 AGAROSE GEL 

- Weigh in appropriate amount of agarose (e.g. 3g for 1% gel) 

- Dissolve in 300ml 1x TAE buffer 

- Melt in the microwave until a clear solution is reached 

- Cool down on magnetic stirrer to ≈40°C 

- Pour into gel electrophoresis tray with appropriate combs 

7.4.9 1x GEL RED NUCLEIC ACID GEL STAIN SOLUTION 

- 15µl GelRed (obtained from Biotium, Hayward, CA, USA) 

- 5ml 1M NaCl 

- 45ml dH2O 

- Replace after 3-4 days of using 

7.4.10 1x TRIS-BUFFERED SALINE (TBS) 

- 100ml 10x TBS stock solution 

- 900ml dH2O 

7.4.11 1x TRIS-BUFFERED SALINE TWEEN-20 (TBST) 

- 100ml 10x TBST stock solution 

- 900ml dH2O 
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7.4.12 1x NUPAGE SAMPLE BUFFER 

- 6.5ml 1x TBS 

- 2.5ml NuPAGE® LDS Sample Buffer (4x) 

- 1ml NuPAGE® Reducing Agent (10x) 

7.4.13 1x NUPAGE MES RUNNING BUFFER 

- 50ml 20x NuPAGE® MES Running Buffer 

- 950ml dH2O 

7.4.14 1x TRANSFER BUFFER 

- 50ml 20x NuPAGE® Transfer buffer 

- 100ml Methanol 

- 850ml dH2O 

7.4.15 1x BLOCKING SOLUTION 

- 3ml 10x Blocking Solution 

- 27ml dH2O 

7.4.16 PONCEAU-S MEMBRANE STAIN SOLUTION 

- 0.2g Ponceau-S 

- 3.0g Trichloric Acetic Acid 

- Dissolve in and fill up 100ml with dH2O 

- Can be reused multiple times 

7.4.17 LUMINOL CHEMILUMINISCENCE DEVELOPING AGENT 

- Mix 2ml of solution A with 2ml of Solution B (Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA, USA) directly before use 
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7.5 ENZYMES 

Enzymes are purchased either from Fermentas (Thermo Fischer Scientific, Waltham, MA, 

USA) or New England Biolabs. 

Manufacturer’s instructions are followed and buffers supplied with enzymes are used when 

performing restriction digests, ligations, PCR, and other enzymatic reactions. 

7.6 MICROBIOLOGICAL TECHNIQUES 

7.6.1 MOPS-COMPETENT CELLS 

- Inoculate 500ml LBv medium with an overnight culture and grow in a shaking water 

bath at +36°C until OD600 of ≈0.5 

- Centrifuge 10min at +4°C at 1660g 

- Decant supernatant 

- Resuspend pellet in 100ml MOPS I and keep on ice for 10min 

- Centrifuge again for 10min at +4°C at 1660g 

- Decant supernatant 

- Resuspend pellet in 100ml MOPS II and keep on ice for 30min 

- Centrifuge for 10min at +4°C at 1660g 

- Decant supernatant 

- Resuspend pellet in 8ml MOPS II and 3ml 50% glycerol  

- Keep 10min on ice 

- Aliquot in 100µl portions and freeze at -70°C 

- Check competent cells by microscopy and single cell strike on LB agar plates. 

7.6.2 TRANSFORMATION OF MOPS-COMPETENT CELLS 

- Add DNA (e.g. 2µl of miniprep DNA or up to 10µl of ligation) to a 100µl aliquot of 

competent cells 

- Keep 30min on ice 
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- Heat shock at +36°C or +42°C for 2min (depending whether a thermosensitive 

plasmid is used) 

- Keep 5min on ice 

- Add 700µl of medium and regenerate for 1h at proper temperature 

- Strike cells on LB agar plates with the corresponding antibiotics (100µl and the 

remaining rest) 

- Incubate agar plates overnight at +36°C 

7.6.3 ISOLATION OF PLASMID DNA (MINIPREP) 

Between 1.5ml and 3ml of an overnight culture are harvested via centrifugation and the 

plasmid DNA is isolated from the pellet using the small volume PeqGOLD Miniprep Kit I 

(PeqLab, Erlangen, Germany), following the manufacturer’s instructions. (PeqLab, 2011) 

Up to 60µl of plasmid DNA solution are isolated and used directly or stored at -20°C. 

7.6.4 ISOLATION OF PLASMID DNA (MIDIPREP) 

100ml LBv (with selective antibiotic(s) added) are inoculated in the evening and grown 

overnight in a shaking water bath at +35°C. Cells are harvested via centrifugation and 

plasmid DNA is isolated from the pellet using Promega’s PureYield™ Plasmid Midiprep 

System (Promega, Madison, WI, USA), following the manufacturer’s instructions. (Promega, 

2011) 

DNA is eluted twice, first in 1000µl (Elution 1 – E1) and secondly in 300µl (E2); DNA 

concentration and purity is determined by absorption measurements at A260nm and A280nm, 

using the empirical equation: 
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7.7 ENZYMATIC REACTIONS 

7.7.1 RESTRICTION DIGESTS 

For site-specific restriction digests, FastDigest enzymes by Fermentas are used. Digests are 

carried out at +37°C for at least 15min. After digestion is complete, fragment lengths are 

routinely checked on agarose gels. Preparative digests are either excised and eluted from 

the agarose gel, or directly purified using columns (see below). 

7.7.1.1  SMALL SCALE (CONTROL) DIGEST 

- 8µl of miniprep plasmid DNA or 3µl of midiprep plasmid DNA 

- 9µl (miniprep) or 14µl (midiprep) dH2O 

- 2µl 10x FastDigest buffer 

- 1µl FastDigest enzyme 

7.7.1.2  LARGE SCALE (PREPARATIVE) DOUBLE DIGEST 

- 34µl midiprep DNA 

- 4µl 10x FastDigest buffer 

- 1µl FastDigest enzyme 1 

- 1µl FastDigest enzyme 2 

Note: incubate at least 60min to account for higher amount of DNA 

7.7.2 ISOLATION OF DNA FRAGMENTS 

Doubly-digested DNA is run on agarose gels to check the quality of the digest and to purify 

correct-sized fragments. Bands corresponding to the desired DNA fragments are excised 

from the gel under low intensity UV light. The gel is then liquefied and the DNA eluted using 

the PureLink™ Quick Gel Extraction Kit from Invitrogen (Invitrogen, Paisley, UK), following 

the manufacturer’s instructions. (Invitrogen, 2011) 

PCR product is cleaned up using the PureLink™ PCR Purification Kit (Invitrogen, Paisley, UK), 

following the manual. (Invitrogen, 2011) 
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7.7.3 LIGATION 

- For standard ligation, prepare the following mix: 

o 3µl plasmid DNA 

o 5µl insert DNA 

o 2µl 10mM ATP 

o 2µl 10x T4 DNA Ligase Buffer 

o 7µl dH2O 

o 1µl T4 DNA ligase (NEB) 

- Incubate at +4°C overnight or at room temperature for 180min 

Note: Different vector:insert ratios may be necessary; a control ligation including only the 

insert (or the vector) may be included to check ligation ability of the insert (or the vector) 

itself. 

7.8 PCR AMPLIFICATION 

Target DNA sequences are amplified using PCR with sequence specific binding primers that 

have incorporated restriction sites used for cloning in their non-binding sites. 

Generally, a small scale Taq test PCR is performed first to assess whether a correct-sized 

product is synthesized. This is followed by a small scale Pfu test PCR, which in turn (if 

correctly performed) is followed by a large scale Pfu production PCR. 

7.8.1 TAQ TEST PCR 

Materials are thawed on ice. The 2x PCR Master Mix (Fermentas) contains dNTPs, 

polymerase and the needed buffer. To ensure minimum contamination, pipetting is done 

under the laminar flow hood. 

- Prepare master mix on ice: 

o 50µl  2x PCR Master Mix 

o 1µl Primer 1 (50pmol/µl) 

o 1µl Primer 2 (50pmol/µl) 

o 40µl dH2O 



 106 Bacterial Ghosts Displaying Chlamydia trachomatis Antigens 

- Pipette into three labelled PCR tubes: 

o 23µl master mix + 2µl template DNA   – tube 1 

o 23µl master mix + 1µl template DNA + 1µl dH2O  – tube 2 

o 23µl master mix + 2µl dH2O (negative control)  – tube 3 

- Run the following PCR program: 

o Step 1:  Denaturation  95°C 3min 

o Step 2 (30x): 

 Denaturation  95°C 30sec 

 Annealing  Tm°C 30sec 

 Elongation  72°C 1min/1000bp 

o Step 3:  Final Elongation: 72°C 10min 

- Check quality of PCR product on agarose gel. 

7.8.2 SMALL SCALE PFU TEST PCR 

Materials are thawed on ice. To ensure minimum contamination, pipetting is done under the 

laminar flow hood. 

- Prepare master mix on ice: 

o 10µl 10X Pfu Buffer 

o 10µl dNTPs (2mM) 

o 1µl Primer 1 (50pmol/µl) 

o 1µl Primer 2 (50pmol/µl) 

o 1µl Pfu Polymerase (Fermentas) 

o 69µl dH2O 

- Pipette into three labelled PCR tubes: 

o 23µl master mix + 2µl template DNA   – tube 1 

o 23µl master mix + 1µl template DNA + 1µl dH2O  – tube 2 

o 23µl master mix + 2µl dH2O (negative control)  – tube 3 

- Run the following PCR program: 

o Step 1:  Denaturation  95°C 3min 

o Step 2 (30x): 

 Denaturation  95°C 30sec 
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 Annealing  Tm°C 30sec 

 Elongation  72°C 1min/1000bp 

o Step 3:  Final Elongation: 72°C 10min 

Check quality of PCR product on agarose gel. 

7.8.3 LARGE SCALE PFU PRODUCTION PCR 

Materials are thawed on ice. To ensure minimum contamination, pipetting is done under the 

laminar flow hood. 

- Prepare master mix on ice: 

o 30µl 10X Pfu Buffer 

o 30µl dNTPs (2mM) 

o 3µl Primer 1 (50pmol/µl) 

o 3µl Primer 2 (50pmol/µl) 

o 3µl Pfu Polymerase (Fermentas) 

o 207µl dH2O 

- Pipette into three labelled PCR tubes (as control): 

o 23µl master mix + 2µl template DNA   – tube 1 

o 23µl master mix + 1µl template DNA + 1µl dH2O  – tube 2 

o 23µl master mix + 2µl dH2O (negative control)  – tube 3 

- Pipette into four labelled PCR tubes (for production) 

o 46µl master mix + 4µl template DNA   – tube 4 

o 46µl master mix + 2µl template DNA + 2µl dH2O (3x) – tubes 5 - 7 

- Run the following PCR program: 

o Step 1:  Denaturation  95°C 3min 

o Step 2 (30x): 

 Denaturation  95°C 30sec 

 Annealing  Tm°C 30sec 

 Elongation  72°C 1min/1000bp 

o Step 3:  Final Elongation: 72°C 10min 
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Check quality of PCR product on agarose gel. Purify PCR product of tubes 5 – 7 and use for 

downstream applications. 

7.9 USED PRIMERS 

All primers are ordered from and synthesized by Microsynth (Microsynth, Balgach, 

Switzerland). Sequence specific binding regions are coloured green, introduced restriction 

sites are coloured red. An apostrophe (‘) denotes the position where the restriction enzyme 

cleaves. 

Note: In the case of the pASK reverse primer, the restriction site is also a binding site. 

The melting temperature Tm has been calculated using the (crude) empiric equation: 

                                 

Name Enzyme Direction Sequence (5’ – 3’) Tm 

pBGKB-PorB KpnI Fwd ATATAGGTAC’CATGCCTGCGGGGAATCCG 60°C 

pBGKB-PorB EcoRI Rev ATATAG’AATTCCGAATTGGAATCCTCCGGAGA 60°C 

pASK BspHI Fwd TATATT’CATGAGTCATCACCATCACCATCACTC 60°C 

pASK SalI Rev TATATG’TCGACGGAGCTCGAATTC 60°C 

pET40b-PorB HindIII Fwd TATATA’AGCTTATGCCTGCGGGGAATCCG 60°C 

pET40b-PorB XhoI Rev TATATC’TCGAGGAATTGGAATCCTCCGGAGA 60°C 

pBGKB-MOMP KpnI Fwd TATATGGTAC’CCGAAGCGGAATTGTGCATTTAC 58°C 

pBGKB-MOMP BglII Rev TATATA’GATCTCCTGTGGGGAATCCTGCT 60°C 

Table 14:  Primers, their sequences, Tm and the restriction sites introduced by them. 

7.10 ANALYTICAL TECHNIQUES 

7.10.1 AGAROSE GEL ELECTROPHORESIS 

Agarose gels are poured with concentrations of 1% for fragments ranging from 103 – 104bp 

or 2% for fragments smaller than 103bp. For control digests, small-welled gels that can 

accommodate 10µl samples are used. For preparative gels, large wells that hold up to 20µl 

samples are used. 

For fragments ranging from 103 – 104bp, 5µl of GeneRuler™ 1kb DNA Ladder (Fermentas) are 

used as a size marker. For smaller fragments, 5µl of O'GeneRuler™ 50bp DNA Ladder 

(Fermentas) are used. 
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10µl samples are mixed with 2µl of 6x Loading Dye (Fermentas) and loaded onto the gel. 

Gels are run at 160V until the loading dye’s lower front reaches the gel’s end, incubated on a 

shaker in 1x GelRed solution for 15min, exposed to UV radiation and photographed using the 

ChemiDoc. 

7.10.2 WESTERN BLOT ANALYSIS 

For separation of proteins according to their electrophoretic mobility followed by blotting 

and antibody detection, the Novex NuPAGE® Bis-Tris Electrophoresis System using the XCell 

SureLock mini-cells (Invitrogen) has been used according to the manufacturer’s instructions. 

(Invitrogen, 2011) 

As a size marker, the Unstained Protein Molecular Weight Marker, ranging in size from 14.4 

to 116kDa has been used (Fermentas). 

7.10.2.1 SCALING THE SAMPLE AMOUNT 

For Western Blot analysis, samples can be gathered from expression experiments (live cells), 

expression and/or lysis experiments (lysed bacteria) or samples can be lyophilized BGs. 

Additionally, for quantification purposes it is necessary to establish a standard curve using a 

dilution series. Sample preparation protocols are explained in the following sections. 

7.10.2.1.1 USING A BACTERIAL CULTURE 

From an ongoing experiment, 1ml of culture are withdrawn under sterile conditions and 

centrifuged for 3min at 17,000g. Supernatant is removed and the ensuing pellet can either 

be stored at -20°C or prepared for Western Blots directly (see below) according to OD600nm 

values: 

Before lysis induction : OD600nm x 250 = volume in µl of 1x NuPAGE sample buffer 

After lysis induction : highest OD600nm x 250 = volume in µl of 1x NuPAGE sample buffer 
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7.10.2.1.2 USING LYOPHILIZED BGS 

10mg of BGs are weighed in using an analytical balance and dissolved in 1000µl dH2O using 

vigorous vortexing. 200µl of the BG suspension are mixed with 200µl of 2x NuPAGE sample 

buffer and incubated for 10’ at +99°C (1:2 dilution). 

After centrifugation at 17,000g for 3min, 100µl are mixed with 400µl 1x NuPage sample 

buffer (1:5 dilution) to give a concentration of 1µg/µl. 

To establish standard dilutions, 2µl, 5µl, 10µl and 20µl of the 1µg/µl sample of the BGs are 

filled up with 1x NuPAGE sample buffer to 20µl and loaded onto a gel. 

7.10.2.1.3 QUANTIFICATION USING A POSITOPE 

In order to quantify proteins, a detectable standard with a known concentration of 25ng/µl, 

called Positope (Invitrogen) is used for a serial dilution. 

60µl of the positope (already delivered in sample buffer) are incubated at +99°C for 5min. 

20µl of the positope are directly applied to the gel, the remainder is diluted with 40µl 1x 

NuPAGE sample buffer (1:2 dilution). These serial dilutions are repeated twice, and 20µl of 

each are loaded onto the gel, giving the following standards: 

- Std1: 20µl positope are directly applied to the gel 500ng / 20µl 

- Std2:  40µl positope + 40µl NuPAGE sample buffer 250ng / 20µl 

- Std3:  40µl Std2 + 40µl NuPAGE sample buffer  125ng / 20µl 

- Std4:  40µl Std3 + 40µl NuPAGE sample buffer  62.5ng / 20µl 

7.10.2.2 SAMPLE PREPARATIONS 

- Dissolve pellet in the appropriate volume 1x NuPAGE sample buffer 

- Vortex vigorously 

- Incubate at +99°C for 10min 

- Spin down at 17,000g for 3min 
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7.10.2.3 SDS-PAGE 

- For SDS-PAGE, pre-cast 10 well NuPAGE® Novex 4-12% Bis-Tris Gels (Invitrogen) are 

used with 1x MES running buffer 

- Load 20µl of prepared samples and 5µl of protein marker into the pre-cast wells 

- Run SDS-PAGE at 180V according to the protocol (see above) 

7.10.2.4 TRANSFER 

- A semi-dry blotting sandwich with Whatman paper soaked in 1x transfer buffer is 

assembled in an XCell II Blot module according to the manufacturer’s instructions 

(see above) 

- Proteins separated through electrophoresis are transferred onto 0.2µm nitrocellulose 

for 60min at 30V (one gel per apparatus) or at 60V (two gels per apparatus) 

- Successful transfer of proteins onto the nitrocellulose membrane is controlled via 

Ponceau-S staining, allowing the labelling of marker bands. Ponceau-S is afterwards 

rinsed off with dH2O. 

7.10.2.5 BLOCKING 

- The membrane is incubated in 30ml 1x RotiBlock solution 

- Incubation is at least 90min on the shaker at room temperature or over night at +4°C 

7.10.2.6 ANTIBODY INCUBATION 

- The membrane is washed with 1x TBST for 3x 5min, 1x 10min 

- The membrane is incubated with the primary antibody diluted in 10ml 1x TBS 

- The membrane is washed again with 1x TBST (1x TBS if Streptavidin-HRP is used) for 

3x 5min, 1x 10min 

- If necessary, the membrane is incubated with a secondary antibody diluted in 10ml 

1x TBS, 0.3% BSA, 0.05% NaN3 

- Afterwards, the membrane is washed again with 1x TBST for 3x 5min, 1x 10min 
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7.10.2.7 WESTERN BLOT DEVELOPMENT 

- Incubate membrane in 4ml Luminol Developing Agent for 3min at the shaker 

- Photograph the membrane in white light using the Chemidoc XRS 

- Shut off the Chemidoc’s lamps, expose the membrane for a total of 200sec to the 

camera 

- Combine the white-light photograph and the chemiluminiscence photograph using 

Quanitity One software, and quantify signal strength if applicable. 

7.10.3 QUANTIFICATION USING THE S-TAG SYSTEM 

- Harvest 1ml of bacterial culture by centrifugation; use samples from cultures not 

carrying an S-Tag encoding plasmid as blank 

- Remove supernatant, resuspend pellet in 100µl of 1% SDS. Vortex thoroughly and 

heat at +70°C for 10min 

- Centrifuge for 1min at max speed and transfer supernatant to a new tube. Dilute 10-

100fold in dH2O 

- Assemble the following components in a set of sterile 1.5ml microcentrifuges: 

 Tube 1 Tube 2 Tube 3 

dH2O 348µl 346µl 346µl 

S-Tag Standard - 2µl 2µl 

Sample Lysate - - 2µl 

Blank Lysate 2µl 2µl - 

10x S-Tag Assay Buffer 40µl 40µl 40µl 

S-Tag Grade S-Protein 10µl 10µl 10µl 

- Incubate the tubes at +37°C for exactly 5min 

- Stop the reaction by adding 100μl ice-cold 25% TCA, vortex and place on ice for 5min 

- Centrifuge the tubes at max speed for 10min 

- Read the absorbance of the supernatants at A280nm. Zero the spectrophotometer with 

sample #1 

- To calculate the amount of S-tagged protein in the sample, use the following 

equation: 
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7.11  USED ANTIBODIES 

Antibodies were used to detect antigens on Western Blots. The biotinylated E-Protein used 

for lysis could be detected via HRP-conjugated streptavidin; for detection of MOMP, a 

polyclonal antibody was used. Genes cloned into expression vectors were fused either to a 

PolyHis-Tag, a Myc-Tag or both, and could be detected via the corresponding antibodies, of 

which an overview is given below. 

7.11.1 PRIMARY ANTIBODIES 

 

Name Isolated from Specificity Dilution Source 

Anti-MOMP-AB Goat C. trachomatis MOMP 1:500 in TBS Santa Cruz 
Biotechnology 

Table 15:  Primary, non-HRP-coupled antibodies used during this work 

7.11.2 HRP-COUPLED ANTIBODIES 

 

Name Isolated from Specificity Dilution Source 

Anti-Goat-HRP Rabbit Goat-IgG 1:5000 in TBS Sigma-Aldrich 

Streptavidin-HRP n/a Biotin 1:5000 in TBS Invitrogen 

S-Protein-HRP n/a S-Tag 1:5000 in TBS Novagen 

Anti-His-HRP Mouse C-terminal (His)6 1:5000 in TBS Invitrogen 

Anti-Myc-HRP Mouse EQKLISEEDL 1:5000 in TBS Invitrogen 

Table 16:  HRP-coupled primary and secondary antibodies used during this work 

7.12  GROWTH, EXPRESSION AND LYSIS STUDIES 

(NOSEFLASKS) 

7.12.1 GROWTH AND LYSIS (SMALL SCALE) 

E. coli NM522 carrying a lysis plasmid is inoculated in 5ml LBv plus antibiotic and grown 

overnight at +36°C. 
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100ml nose flasks with 25ml LBv plus antibiotic and a magnetic stirrer are inoculated with 

≈1ml over night culture (starting OD600nm should be at 0.1) and grown in a water bath at 

+36°C at a stirring rate of 300rpm. OD600nm measurements are taken using a noseflask 

spectrophotometer until an OD600nm of 0.5 is reached. Lysis is then induced, for 

thermosensitive lysis plasmids by transferring nose flasks into a second water bath at +42°C. 

Lysis is observed for 120min. 

7.12.1.1 MICROSCOPIC OBSERVATION 

10µl of culture are withdrawn at regular intervals and observed using a microscope, first to 

assess viability and growth, and later to look for BGs. These appear translucent in the 

microscope (as opposed to live or dead cells), with darker spots accounting for membrane 

engulfments due to E-lysis. 

7.12.1.2 DETERMINATION OF LYSIS EFFICIENCY VIA CFU 

In order to assess the efficiency of the lysis process, colony forming unit (cfu) counts are 

performed at regular intervals. 

100µl of culture are withdrawn at regular intervals (at least twice before lysis induction, to 

assess the growth rate of the bacterial culture before lysis takes place) and diluted in 9.9ml 

0.85% saline (102 dilution). Samples are further diluted to 103 – 106 in respect to the OD600nm 

and the status of the culture (see Table 17). 

Before Lysis Induction After Lysis Induction 

OD600 Dilution OD600 Dilution 

<0.20 102 1.00 – 2.00 105 

0.20 – 0.50 104 0.50 – 1.00 104 

0.50 – 1.00 105 0.20 – 0.50 103 

1.00 – 2.00 106 <0.20 102 

Table 17:  Dilutions used for plating of cultures before and after lysis induction 

From the respective dilutions, 50µl are plated in duplicates in logarithmic manner on count 

agar plates using a spiral plater. After overnight incubation at +36°C, plates are counted 

using the Colony Counter machine and cfu counts per ml calculated. 

  



 115 Materials and Methods 

7.12.2 GROWTH AND EXPRESSION (SMALL SCALE) 

E. coli NM522 carrying an expression plasmid is inoculated in 5ml LBv plus antibiotic and 

grown over night at +36°C. 

100ml nose flasks with 25ml LBv plus antibiotic and a magnetic stirrer are inoculated with 

≈1ml over night culture (starting OD600nm should be at 0.1) and grown in a water bath at 

+36°C at a stirring rate of 300rpm. OD600nm measurements are taken using a noseflask 

spectrophotometer until an OD600nm of ≈0.35 is reached, when expression is induced by 

adding a chemical inducer at an appropriate concentration (e.g. L-arabinose with a final 

concentration of 0.2% for plasmids using the pBAD promoter system). 

Like in a lysis experiment, cfu counts and microscopy analyses are performed to assess the 

influence of foreign protein expression on the viability, shape and size of bacteria. 

Additionally, aliquots of 1ml are withdrawn for later Western Blot analysis. These samples 

are also taken at least once before expression induction to distinguish between non-induced 

baseline expression and induced expression. 

Samples are centrifuged for 3min at 17,000g; after the withdrawal of supernatant, pellets 

can be stored at -20°C. 

7.12.3 GROWTH, EXPRESSION AND LYSIS (SMALL SCALE) 

E. coli NM522 carrying expression and lysis plasmids is inoculated in 5ml LBv plus antibiotics 

and grown over night at +36°C. 

100ml nose flasks with 25ml LBv plus antibiotics and a magnetic stirrer are inoculated with 

≈1ml overnight culture (starting OD600nm should be at 0.1) and grown in a water bath at 

+36°C at a stirring rate of 300rpm. OD600nm measurements are taken using a noseflask 

spectrophotometer until an OD600nm of ≈0.35 is reached, when expression is induced by 

adding a chemical inducer at an appropriate concentration (e.g. L-arabinose with a final 

concentration of 0.2% for plasmids using the pBAD promoter system). 

Depending on the  toxicity of the expressed gene, interference of the expressed gene with 

lysis and the desired accumulation of the expressed gene, lysis can be co-induced with 
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expression induction, or induced at a later time point, by shifting to +42°C (for a 

thermosensitive lysis plasmid). 

Cfu counts and microscopy analysis are performed to assess the influence of foreign protein 

expression on the viability, shape and size of bacteria and later, E-lysis. Additionally, aliquots 

of 1ml are withdrawn for later Western Blot analysis. These samples are also taken at least 

once before expression induction to distinguish between non-induced baseline expression 

and induced expression. 

Samples are centrifuged for 3min at 17,000g. After the withdrawal of supernatant, pellets 

can be stored at -20°C. 

The typical setup of an Expression/Lysis experiment can be seen in Table 18 below. The 

intervals between inoculation, expression induction and lysis induction at time point 0min 

are subject to variations and dependent on bacterial growth rate; typical approximate values 

are given for illustration only. Expression is induced at time point “B”, lysis at time point “C”. 

Time App. OD600nm Sample OD600 Microscopy CFU Western Blot 

≈ -120min 0.10  √    

≈ -60min   √    

≈ -40min 0.25 A √  √  

≈ -20min 0.35 B √ √ √ √ 

0min 0.50 C √ √ √ √ 

20min  D √  √ √ 

40min  E √  √ √ 

60min  F √ √ √ √ 

90min  G √  √ √ 

120min  H √ √ √ √ 

Table 18:  Typical setup of an Expression/Lysis experiment; expression time (time difference 
between points B and C) is subject to deliberations considering toxicity of the expressed protein and expected 
yield 

7.13  GROWTH, EXPRESSION AND LYSIS (FERMENTATION) 

For the large scale production of BGs, fermentation is performed in a 30l fermenter, using 

22l LBv as a medium. 
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7.13.1 PREPARATIONS, STERILITY AND MONITORING 

LBv medium is autoclaved (30min at +121°C) at least 18h prior to use, from which time on 

the conditions inside the fermenter are monitored using the IRIS software, which gives 

online information about pH, temperature, oxygen saturation and flow. 

Blank samples of medium taken from the fermenter prior to inoculation are plated on plate 

count agar to verify sterility. A second blank sample is taken after addition of antibiotics. 

After setting the pO2 value to 100% of the fully saturated medium, standard conditions are 

set and regulated by the IRIS software and documented in the fermentation report. 

7.13.2 OVERNIGHT CULTURE 

For the overnight culture, four 2l flasks containing 500ml medium plus antibiotics are 

inoculated from glycerol stocks, with 800µl stock per flask (necessitating two glycerol stocks 

with 1.8ml of cryoculture each for one fermentation). 

The flasks are incubated overnight at +34°C in a shaking water bath. 

7.13.3 FERMENTATION PROCESS 

After inoculating the fermenter with overnight culture to an OD600nm ≈0.4, growth is 

monitored and 50ml samples are taken every 30min via the sterilized sample valve. Like in 

small scale experiments described before, samples are used for OD600nm measurement, 

microscopy, cfu analysis (in independent duplicates) and for preparation of Western Blots 

samples, but also for Flow Cytometry analysis (see below). Expression is induced by injecting 

the chemical inducer (e.g. L-arabinose) at an OD600nm ≈0.75 via a septum. E-lysis is induced 

15-30min later by temperature increase to +42°C. Lysis is conducted after pO2 levels reach 

the plateau and flow cytometric analyses show complete lysis (≈120min). 

7.13.4 ONLINE MONITORING VIA FLOW CYTOMETRY 

To monitor the status of the bacterial culture and distinguish between live cells, dead intact 

cells and dead empty cells (BGs), flow cytometry is used. 
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Samples from the fermentation broth are diluted in 0.85% saline 103 to 104fold in order to 

keep count rates at roughly 1000sec-1. To 1ml diluted sample, 1µl each of two fluorescent 

dyes (DiBAC4(3) and RH414, both obtained from Anaspec, Fremont, CA, USA) are added.  

After vortexing, the sample is run through a CyFlow analyzer, with flow rates adjusted to 

keep the count rate at ≈1000sec-1. 

By excluding non-cellular background not stained by RH414 and combining the Forward 

Scatter Signal (FSC) and the Fluorescence Signal (FL1) of DiBAC4(3), three different areas can 

be defined: 

- Region 1 (R1), live intact cells: low FL1 signal (intact membrane potential), high FSC 

(opaque cells) 

- Region 2 (R2), dead intact cells: high FL1 signal (no membrane potential), high FSC 

(intact cells maintaining their opacity) 

- Region 3 (R3), dead lysed cells: high FL1 signal (no membrane potential), low FSC 

(BGs are more translucent than intact cells) 

This allows an “online” (approximately 10min after sample taking) observation of the 

bacterial culture, and more importantly, for the differentiation between lysis and killing 

because of e.g. foreign gene expression, which is not possible via cfu determination. 

7.13.5 HARVESTING 

After completed lysis, BGs are harvested via Tangential Flow Filtration (TFF) in a 0.2μm 

hollow fibre module at a temperature of 15°C, reducing the volume from 22l to 2l. 

7.13.6 KILLING 

To kill remaining, non-lysed cells, β-Propiolactone (BPL – obtained from Ferak, Berlin, 

Germany) is added to the 2l concentrate in two 0.0375% doses 30min apart. Inactivation is 

done while stirring at 42°C. 
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7.13.7 WASHING AND LYOPHILIZATION 

To remove medium and residual cytoplasmic content from the product, the broth is washed 

with a total of 5l of sterile dH2O by diafiltration, using a smaller 0.2μm hollow fibre module. 

During the non-steady state diafiltration, the volume is further reduced to 400ml, a 55fold 

reduction from the starting volume. 

The 400ml of BG suspension are aliquoted into weighted lyophilisation bottles, stored at -

20°C over night, followed by -80°C over night storage and are lyophilized in a Lyolab B 

machine for three days. Lyophilized BG bottles are weighted and the dry weight yield is 

calculated and labeled. BG bottles are stored at RT. 

7.13.8 STERILITY TESTING 

To test the sterility of the final product, about 10mg of lyophilisate are resuspended in 1.5ml 

LBv medium in triplicates. 

- 1ml of the suspension are used for pour plating with 20ml of hand-warm agar. 

- 100µl of the suspension are plated on a count agar plate 

- 200µl of the suspension are plated on a count agar plate 

- 100µl of the suspension are used to inoculate 5ml LBv and incubated overnight. 

o 100µl of this enrichment are plated on a count agar plate 

o 200µl of this enrichment are plated on a count agar plate 

- All plates are incubated at +36°C for at least 24h. 

7.14  CALCULATING LYSIS EFFICIENCY AND YIELD 

Lysis efficiency is calculated by comparing the highest cfu value with the lowest cfu value: 

                  
            

   

                
       

Particle yield per mg is calculated by multiplying the cfu per ml prior to lysis induction with 

the total volume of the fermentation process, divided by the total yield after harvesting: 



 120 Bacterial Ghosts Displaying Chlamydia trachomatis Antigens 

         

  
        

             
                   

              
 

To calculate the average amount of quantified antigen per BG, first the number of proteins 

per µg BG is calculated. To this end, the protein’s mass in kDa has to be converted to gram: 

     1.660538921         

Using this calculated mass per µg, the number of proteins per µg BG is calculated: 

        

  
       

               
 
   

                
 

Using the above calculated particle yield per mg, the amount of protein per particle (BG) can 

be derived: 
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8 APPENDIX 

8.1 IMMUNOCONTRACEPTION IN POSSUMS 

8.1.1 INTRODUCTION 

The brushtail possum (Trichosorus vulpecula) is a recent addition to the biosphere of New 

Zealand; it was introduced by humans to start a fur industry, but the lack of natural 

predators lead to a rapid and (for other species) disastrous proliferation (Montague, 2000). 

Possums harm trees and other plants, destroy bird’s habitats and are a vector of diseases 

affecting cattle and deer (National Science Strategy Committee for the Control of Possums 

and Bovine Tuberculosis., 2000). 

As a cost-effective, long-term and humane method to reduce possum numbers and their 

impact on the biosphere of New Zealand, the development of an immunocontraceptive to 

decrease possum fertility was suggested (Magiafoglou, et al., 2001). 

Several target molecules acting during early embryonic stages of the possum’s development 

were identified to be used for a BG derived immunocontraceptive (Walcher, et al., 2008). 

Among them is the Coat Protein 4 (CP4), a protein found in the shell coat of the possum’s 

egg, unique among marsupials and therefore an ideal candidate for immunocontraception 

(Selwood, 2000). CP4 is secreted by the oviduct and uterus, and plays an important role in 

late cleavage of blastocyte development, as well as in epithelial maintenance (Frankenberg, 

et al., 1998). 

8.1.2 GOALS 

Among several other immunocontraceptive target proteins, the CP4 of the possum’s egg was 

to be cloned into an expression vector system for the periplasmatic presentation, followed 

by E-mediated lysis to produce CP4-loaded BGs. 

While the Zona pellucida protein 2 C-terminal region (ZP2C) was successfully cloned and 

used for production of BGs, in previous studies in this laboratory CP4 was not successfully 
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cloned into the expression vector system pBGKB, due to an overwhelming amount of 

mutations (Schlacher, 2009). 

Since mutations were possibly already present in the original plasmids used to amplify the 

CP4 gene, it was decided to synthesize CP4 – in its E. coli-codon optimized form – de novo. 

The coding sequence as described at Genbank was used (Genbank accession number: 

EF121769.1), and synthesis was done by Microsynth (Microsynth, Balgach, Switzerland). 

The CP4opt gene was cloned into a standard vector by Microsynth. The CP4opt gene was 

transferred from this plasmid (pSlo1.0A-CP4opt) into pBGKB without the need for PCR 

amplification as shown in Figure 66. 

 

Figure 66: Cloning strategy to incorporate CP4opt into pBGBK, giving rise to pBGKB-CP4opt 

The resultant plasmid pBGKB-CP4opt has a size of 4937bp; upon induction with L-arabinose, 

a 39.8kDa protein in the form of GIII-CP4-Myc-PolyHis is expressed and exported to the 

periplasm. When the GIII export sequence is cleaved off, the resultant protein has a size of 

37.0kDa. 

Additionally, as a positive control to check both induction with L-Arabinose as well as the 

detection with Anti-Myc-Antibodies, pBAD-GIII-Calmodulin was used in an early experiment. 

This plasmid is available from Invitrogen (Invitrogen, 2008) and its features are detailed in 

Figure 67. 
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Figure 67: Schematic representation of plasmid pBAD-GIII-Calmodulin. Indicated are the ampicillin 
resistance cassette (Amp), the pBR322 origin of replication (pBR322 ori), the PBAD promoter (PBAD), the 
regulatory AraC protein (araC) and the GIII-Calmodulin-Myc-PolyHis fusion gene. 

The pBAD-GIII-Calmodulin has a size of 4556bp; upon induction with L-arabinose, a 21.3kDa 

protein in the form of GIII-Calmodulin-Myc-PolyHis is expressed and exported to the 

periplasm. When the GIII export sequence is cleaved off, the resultant protein has a size of 

19.2kDa. 

8.1.3 RESULTS 

8.1.3.1  CLONING pBGKB-CP4OPT 

Midipreps of E. coli C2988J (pBGKB) and of E. coli C2988J (pSlo1.0A-CP4opt) were used to 

perform this cloning; no PCR amplification was necessary. Instead, both vectors were used 

for a large scale digest with BglII and XbaI that ‘linearized’ pBGKB and excised CP4opt from 

pSlo1.0A-CP4opt. After three hours of digestion, the fragments were put on an agarose gel; 

correct sized bands were excised and eluted from the gel using the Gel Extraction Kit. An 

aliquot of purified DNA was put on an agarose gel (see Figure 68); the expected sizes of the 

fragments were 4005bp for the pBGKB fragment and 948bp for the CP4opt. 

Ligation was performed overnight; the ligation mixture was transformed into MOPS-

competent E. coli C2988J, which were then plated on LB+Kan agar plates. After overnight 

incubation at 36°C, plates showed good efficiency of transformation. Four clones were 

picked, inoculated overnight in LBv+Kan and miniprepped on the next day. 

Miniprep DNA of different clones was first digested with a single enzyme (not shown), then a 

correct-sized clone was further digested with a total of four different restriction enzymes to 

check for the characteristic, correct pattern of pBGKB-CP4opt, as seen in Figure 69. 
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Figure 68: Vectors pBGKB and purified CP4opt after 
double digestion with BglII and XbaI, and 
purification, on a 1% agarose gel. Correct-sized 
bands can be seen at 948bp (CP4opt) and 4005bp 
(linearized pBGKB). Marker: GeneRuler™ 1kb DNA 
Ladder (Fermentas) 

Figure 69: Digest of pBGKB-CP4opt clone A1 on a 1% 
agarose gel. Lane R1: pBGKB-CP4opt digested with 
HindIII, expected size: 4937bp; Lane R2: pBGKB-CP4opt 
digested with ApaI, expected size: 4937bp; Lane R3: 
pBGKB-CP4opt digested with PvuI, expected sizes: 
1865/3072bp; Lane R4: pBGKB-CP4opt digested with 
XhoI, expected sizes: 2279/2658bp. Marker: GeneRuler™ 
1kb DNA Ladder (Fermentas) 

Clone A1 of E. coli C2988J (pBGKB-CP4opt) was identified as correct by restriction digest 

pattern analysis and stored as a glycerol culture; no sequencing analysis was performed. The 

clone was used for a small scale Expression Experiment in E. coli C2988J and its midiprep 

DNA was used for transformation in E. coli NM522. 

8.1.3.2  SMALL-SCALE EXPRESSION EXPERIMENT 

In this small scale Expression Experiment, eight noseflasks were inoculated with overnight 

culture of six different E. coli C2988J (pBGKB-CP4opt) clones, one noseflask with E. coli 

C2988J (pSlo1.0A-CP4opt), and one noseflask with E. coli C2988J (pBAD-GIII-Calmodullin). 
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All noseflasks were grown at 36°C until an OD600nm≈0.3, when expression was induced by 

adding 0.2% L-Arabinose to pBGKB vectors and 5mM IPTG to pSlo1.0A-CP4opt (time point 

0min). OD600nm were measured and WB samples were collected throughout the experiment, 

but no cfu counts were analysed; the OD600nm over time are given in Figure 70. 

 

Figure 70: OD values over time during an Expression Experiment of E. coli C2988J (pSlo1.0A-CP4opt) 
(flask 1), six clones of E. coli C2988J (pBGKB-CP4opt) (flasks 2 – 7) and E. coli C2988J (pBAD-GIII-Calmodullin) 
(flask 8). L-Arabinose was added at time point 0min to flasks 2-8, and IPTG to flask 1. 

The induction of protein expression had no noticeable influence on OD600nm. 

Western Blot samples after 90min of protein expression were separated on a 4-12%-Bis-Tris-

Gel with MES buffer. The gel was blotted onto nitrocellulose, the nitrocellulose incubated 

with HRP-coupled-Anti-Myc-Antibodies and developed by chemiluminiscence and can be 

seen in Figure 71. Protein GIII-CP4opt-Myc-PolyHis was expected at a size of 39.8kDa, 

CP4opt-Myc-PolyHis at a size of 37.0kDa, GIII-Calmodulin-Myc-PolyHis at 21.3kDa and 

Calmodulin-Myc-PolyHis at a size of 19.2kDa. 
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Figure 71: Western Blot of E. coli C2988J (pBGKB-CP4opt) Expression Experiment, using Unstained 
Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 diluted 
HRP-coupled Anti-Myc-Antibodies and developed. Samples were taken 90min after expression induction. 

Very faintly, and at the correct position, the putative CP4 signal can be seen in samples C2-7 

after induction. Since CP4 is not Myc-tagged in sample C1, no detection was expected for 

pSlo1.0A-CP4opt samples. The positive control sample of pBAD-GIII-Calmodulin also shows a 

very faint sample at the expected size (GIII-Calmodulin-Myc-PolyHis at 21.3kDa and 

Calmodulin-Myc-PolyHis at a size of 19.2kDa). As also the positive control’s signals are very 

weak, better pictures can be expected from repeated blots and/or new batches of 

antibodies. 

8.1.3.3  SMALL-SCALE EXPRESSION/LYSIS EXPERIMENT 

A total of eight different clones of E. coli NM522 (pBGKB-CP4opt, pGLysivb) were tested. 

While lysis efficiency was >99.8% in all cases, the amount of CP4 detectable by Western Blot 

Analysis was very low and often hardly distinguishable from non-specific background signal. 

The small-scale Expression/Lysis Experiment of one clone (A8) that was later used for 

fermentation is shown below in Figure 72: 
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Figure 72: OD and cfu values over time during an Expression/Lysis Experiment of two different clones of 
E. coli NM522 (pBGKB-CP4opt, pGLysivb) and one clone of E. coli NM522 (pBGKB, pGLysivb). L-Arabinose was 
added at time point -60min; lysis was induced by shifting all four flasks to 42°C at time point 0min. 

Lysis efficiency is at 99.88%, regardless whether pBGKB-CP4opt or the empty backbone 

plasmid pBGKB is induced by 0.2% L-Arabinose addition. 

Western Blot samples after 60’ of protein expression and after 60min of lysis were separated 

on a 4-12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto nitrocellulose, the 

nitrocellulose incubated with HRP-coupled-Anti-Myc-Antibodies and developed by 

chemiluminiscence, as seen in Figure 73. Protein GIII-CP4opt-Myc-PolyHis was expected at a 

size of 39.8kDa, and protein CP4opt-Myc-PolyHis at a size of 37.0kDa. 
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Figure 73: Western Blot of E. coli NM522 (pBGKB-CP4opt, pGLysivb) Expression/Lysis experiment, using a 
sample from E. coli C2988J (pBGKB-CP4opt) Expression Experiment as a positive control (C7), and using 
Unstained Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with 
MES Running Buffer, the gel was blotted onto nitrocellulose. The nitrocellulose was incubated with 1:5000 
diluted HRP-coupled Anti-Myc-Antibodies and developed. Samples were taken 60min after expression 
induction, and again 60min after lysis induction. 

While CP4 can faintly be detected before lysis (C8), the signal drops further after lysis 

induction (F8) suggesting that the product is partially lost during E-lysis. Nevertheless, a 

fermentation was performed to see growth and expression behaviour in large scale. 

8.1.3.4  E. COLI NM522 (pBGKB-CP4OPT, pGLYSIVB) FERMENTATION 

After testing several clones of E. coli NM522 (pBGKB-CP4opt, pGLysivb) for differences in 

lysis efficiency and CP4 expression, working stocks of clone A8 of E. coli NM522 (pBGKB-

CP4opt, pGLysivb) were prepared. These were used to inoculate an overnight culture for 

fermentation. 

Fermentation was performed in a volume of 22l LBv pH 7.2, with antibiotics kanamycin and 

gentamicin added. In 30min intervals, samples were withdrawn to measure OD600nm, check 

bacterial viability via the microscope, prepare Western Blot samples and plate dilutions for 

cfu determination on count agar plates. No flow cytometry was performed for this 

fermentation because of malfunctioning equipment. 
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Protein expression was induced after 30min of growth at 35°C by adding 0.2% L-Arabinose; 

after 90min of expression, lysis was induced by temperature upshift of the culture to 42°C; 

OD600nm values and cfu counts over time are shown in Figure 74. 

 

Figure 74: OD and cfu values over time during fermentation in 22l of E. coli NM522 (pBGKB-CP4opt, 
pGLysivb). L-Arabinose was added at time point B (-90min); lysis was induced by increasing the temperature to 
42°C at time point E (0min). 

Both OD600nm and cfu increase from the time point of expression induction until lysis 

induction, but the cfu increase is only a little more than twofold in the 120min until lysis 

induction. After that, both values drop sharply (from 6.65*108cfu/ml at time point E to 

1.48*105cfu/ml at time point I – a lysis efficiency of 99.978%). 

Important fermentation parameters such as flow, stirring rate, temperature or pO2 are 

documented using the IRIS software and detailed below in Figure 75: 
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Figure 75: IRIS diagram documenting fermentation parameters like pH (regulated at 7.2), temperature 
(35°C during growth and expression, 42°C during lysis), flow rate, stirring rate, oxygen concentration and 
addition of anti-foam (used to counteract the foaming initiated by expulsion of cytoplasmic content during 
lysis). 

In the IRIS diagram, the oxygen curve is of particular interest, as the oxygen curve does not 

show the characteristic sharp drop upon lysis induction, but only a smaller drop followed by 

a stepwise increase and finally a typical shift up to the plateau. This final increase happens at 

about 60min, while normally it is seen already after 30min. 

Several other specifications as well as follow-up experiments of this particular fermentation 

are detailed below in Table 19: 

E. coli NM522 (pBGKB-Cp4opt, pGLyisvb) Bacterial Ghosts 

Pre-Culture 

Volume: 2l Additives: Gentamicin + Kanamycin 

Medium type: LBv Other: GJS80, 7 drops Antifoam (1:3) 

Date: 2009-07-01 Clone: c.8 (2009-05-20/WS 2009-06-24 FHO) 

Starting time: 09:35 Strain: E. coli NM522 

End time:  Plasmids: pGLysivb, pBGKB-CP4opt 

ON culture OD: 1.407/0.315 Recombinant Protein Expression: GIII-CP4opt-Myc-
PolyHis 

Inoc. Volume: 2l Expression Induction: L-Arabinose, 0.2% 

Medium: LBv Expression Induction Time Point: B 

Antibiotics: Gentamicin + Kanamycin Lysis Induction: 42°C 

Temperature: 35°C Lysis Induction Time Point: E 

Total Volume: ≈22l Killing: after harvest, 0.075% BPL (2*0.0375%) 

Acid: F.A.: 52 units Volume harvested: 20l 

Base: A.W.: 75 units Harvested by: TFF 
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antifoam A: 10 units OD separator flow: - 

Eivb blot: - Yield: 7480mg 

Recombinant blot: OK (by FHO) Particles/mg: 1.78 x 109 

BPL killing: Survivors (by AME) Sterility: OK (by EDZ) 

Microscopy: ok / some dead / some 
elongated 

Efficiency: 99.978% 

Table 19:  Fermentation data sheet of E. coli NM522 (pBGKB-CP4opt, pGLysivb) fermentation 

While colonies after ß-PL killing could be detected, PCR analysis of these colonies failed to 

detect the gentamicin resistance gene, suggesting a later contamination. Sterility tests of the 

freeze-dried lyophilisate indicate a sterile product. From a total of 20l fermentation volume, 

harvesting and lyophilisation yielded 7480mg of BGs dry weight. Calculating from a cfu count 

of 6.65*108/ml at the time point of lysis induction, and a harvested volume of 20l, the 

lyophilisate contains 1.78*109particles/mg. 

Western Blot samples taken throughout the fermentation process were separated on a 4-

12%-Bis-Tris-Gel with MES buffer. The gel was blotted onto nitrocellulose, the membrane 

incubated with HRP-coupled-Anti-Myc-Antibodies and developed by chemilumiscence; the 

protein GIII-CP4opt-Myc-PolyHis was expected at a size of 39.8kDa, while CP4opt-Myc-

PolyHis was expected at 37.0kDa. Several Western Blots of this fermentation were done 

because of the very low signal. Besides detection employing Anti-Myc-Antibodies, Anti-CP4-

Serum (not shown) and Anti-His-Antibodies were used, but all showed the same results of 

very low recombinant protein expression, as seen in Figure 76. 
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Figure 76: Western Blot of E. coli NM522 (pBGKB-CP4opt, pGLysivb) Fermentation and BGs, using 
Unstained Protein Molecular Weight Marker (Fermentas). Proteins were separated on a 4-12% Bis-Tris-Gel with 
MES Running Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted 
HRP-coupled Anti-His-Antibodies and developed. Samples after β-PL treatment are five-fold concentrated 
compared to samples taken during the fermentation process. Different concentrations of lyophilized BGs were 
also loaded onto the gel (2µg, 5µg, 20µg). As a positive control, a sample from a previous small scale 
experiment was used. 

While detection of CP4 after lysis is possible, it is only seen in highly concentrated samples 

(such as after ß-PL treatment), or high amounts of lyophilized BGs, indicating its low 

abundance. 

8.1.3.5  QUANTIFICATION OF CP4 IN E. COLI NM522 BGS 

In order to quantify the amount of recombinant CP4 per µg E. coli NM522 BG, the signals 

obtained from a serial dilution of BGs (Techfors Fermentation of E. coli NM522 (pBGKB-

CP4opt, pGLysivb), see 8.1.3.4) with known concentration and a serial dilution of positope 

(containing the Myc-epitope) with known concentration were compared on a Western Blot, 

as seen in Figure 77. 
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Figure 77: Western Blot of E. coli NM522 (pBGKB-CP4opt, pGLysivb) BGs and positope, using Unstained 
Protein Molecular Weight Marker (Fermentas). Samples were separated on a 4-12% Bis-Tris-Gel with MES 
Running Buffer, the gel was blotted onto nitrocellulose. Nitrocellulose was incubated with 1:5000 diluted HRP-
coupled Anti-Myc-Antibodies and developed. The amount of lyophilized BGs, as well as of positope per lane is 
indicated. As a negative control, lyophilized BGs from an E. coli NM522 (pGLysivb) Fermentation were used. 

The chemiluminiscence signals generated by HRP-coupled-Anti-Myc-Antibodies at the site of 

positope and CP4 bands were measured using the ChemidocXRS machine; with the standard 

curve provided by the positope, the amount of CP4 per µg BG could be calculated, as 

outlined in Figure 78: 
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Figure 78: Quantification curve for E. coli NM522 (pBGKB-CP4opt, pGLysivb) BGs. Signals generated by 
positope with known concentration are indicated by blue diamonds, the linear regression curve is shown in 
black. Signals generated by BG samples are indicated as detailed in the legend. 

The square of the correlation coefficient is R²=0.9842, an acceptable fit of the standard curve 

provided by the positope. Calculated on that basis, the amounts shown in Table 20 of CP4 

are found in BGs. 

Lane Amount of BGs Calc. Total Amount of CP4 Calc. Amount CP4/µg BG 

U1 100µg 62.64ng 0.63ng 

U2 40µg 54.85ng 1.37ng 

U3 20µg 28.38ng 1.42ng 

Table 20:  Calculating the average amount of CP4 per µg of E. coli NM522 BGs 

On average, one microgram of E. coli NM522 BGs contains 1.14 ± 0.44ng CP4. 

The molecular weight of CP4 of 37.0kDa translates into a mass of 6.14∙10-20g, therefore, one 

microgram of E. coli NM522 BGs contains 1.86∙1010 CP4 molecules. Assuming a particle count 

of 1.78∙106 BGs/µg, a single E. coli NM522 BG contains 1.04∙104 CP4 molecules. 

8.1.4 DISCUSSION 

In contrast to previous attempts (Schlacher, 2009), it was possible to clone the CP4opt gene 

into the periplasm anchoring backbone vector pBGKB. The plasmid pBGKB-CP4opt was 

checked for correct size by restriction digests, but not sequence analysed, since the CP4opt 

sequence itself was synthesized and sequenced prior to shipping by Microsynth. Expression 
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was determined to be very low in Expression Experiments. In Expression/Lysis Experiments, 

a slight decrease of CP4 after lysis induction, as seen e.g. in Figure 73, might hint at 

incomplete transport into the periplasm. However, no CP4 expression at all was observed in 

samples taken during fermentation process, only concentrated samples and lyophilized BGs 

were shown to contain traces of CP4. 

While the total amount of CP4 – calculated to be 1.14ng per µg BG – is comparatively low, 

this does not necessarily reflect its antigenicity or the strength of the induced immune 

response. On average, 10,000 CP4 molecules are present on a single BG, values that are well 

in the range of previous experiments (Champeimont, 2008). 

More than 7g of BGs displaying CP4 are available for shipping to New Zealand to assess their 

immunogenicity, and thereby the concept of using BGs for immunocontraception. 
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8.2 USED ABBREVIATIONS 

The abbreviations and symbols used during this work are given in Table 21: 

Abbreviation Meaning 

µg microgram 

µl microlitre 

aa amino acid 

AB antibody 

BG(s) Bacterial Ghost(s) 

bp base pair 

C. trachomatis Chlamydia trachomatis 

cfu colony forming unit 

CP4 Coat Protein 4 of Trichosorus vulpecula 

CP4opt 
DNA sequence of Coat Protein 4 of Trichosorus 

vulpecula, codon-optimized for E. coli 

Da 
Dalton, atomic mass unit 
1Da = 1.660538921∙10-30g 

dH2O deionised water 

DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

fwd Forward 

g Gram 

g 
standard acceleration due to free fall, i.e. 

9.81m/s² 

hCG-ß-LTB 
human choriongonadotropin-ß fused to heat 

labile enterotoxin B 

HRP Horseradish Peroxidase 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

KD dissociation constant 

kb kilo base pair 

kDa kilo Dalton 

l litre 

LHRH Luteinizing Hormone Releasing Hormone 

LPS Lipopolysaccharide 

M Molar, i.e. mol/L 

MCS Multiple Cloning Site 

mg milligram 

min minute(s) 

ml millilitre 

ng nanogram 

nm nanometre 

nt nucleotide 

OD600nm Optical Density at 600nm 

ORF Open Reading Frame 

ori Origin of Replication 

PCR Polymerase Chain Reaction 

PPS Periplasmic Space 
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rev reverse 

rpm rounds per minute 

sec Second 

Tm Annealing Temperature 

WB Western Blot 

Table 21:  List of used abbreviations and their meanings 

8.3 SYMBOLS USED IN CLONING STRATEGIES 

The following symbols were used to denote genes, promoters, and other genetic elements in 

schemes showing cloning strategies: 

8.3.1 GENES 

 

Symbol Meaning 

 

GIII export sequence of Gene III protein from 
bacteriophage fd, followed by a Multiple Cloning 

Site, a Myc tag and a PolyHis Tag. 

 

Gene encoding the Thiol:disulfide interchange 
protein DsbC precursor protein for the export to the 
periplasm, followed by PolyHis tag, followed by an S-
Tag, followed by a Multiple Cloning Site and again a 

PolyHis Tag 

 
Kanamycin resistance cassette 

 
Ampicillin resistance cassette 

 
Gentamicin resistance cassette 

 

Gene AraC, encoding the repressor protein of the L-
arabinose operon of E. coli 

 
Gene encoding a mutated mobility protein 

 

Gene encoding the lysis gene E of bacteriophage 
ΦX174 fused to an in vivo-biotinylation sequence 

 
Thermosensitive allele of the λ phage repressor gene 

 

LacI gene, regulated by a mutated high expression 
lacI promoter 

 

Repressor of Primer gene, regulating the plasmids 
copy number 

 

Gene encoding the N-terminal part (323aa) of 
Maltose Binding Protein, which targets fused 

proteins to the PPS 
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Gene encoding the lacZα protein, allowing for Blue-
White-Screening of transformants 

 

Gene encoding the lysis protein L of the 
bacteriophage M2 for C-terminal anchoring in the 

Inner Membrane 

 

Gene encoding protein PorB from Chlamydia 
trachomatis 

 

Gene encoding Major Outer Membran Protein from 
Chlamydia trachomatis 

 

Gene encoding codon-optimized Coat Protein 4 from 
Trichosorus vulpecula 

 
Gene encoding Calmodulin 

Table 22:  Symbols used for genes in cloning strategies 

8.3.2 OTHER GENETIC ELEMENTS 

 

Symbol Meaning 

 

 

Promoter of the ara operon 

 

 

Terminator region of the E. coli rrnB gene 

 

 

Origin of Replication, taken from plasmid pBR322 

 

 

Promoter of the lac operon 

 

 

M13 intergenic region, Origin of Replication 

 

 

Promoter recognized by the T7 RNA polymerase 

 

 

Terminator region for the T7 RNA polymerase 

 

 

Origin of Replication of bacteriophage F1 

 

 

Origin of Replication of the pUC plasmid 
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Origin of Replication of the pMB1 plasmid 

 
Origin of Replication of the ColE1 plasmid 

Table 23: Symbols used for genetic elements other than ORFs in cloning strategies 

 

8.4 PLASMID OVERVIEW 

An overview of plasmids used in this work is given in Table 24. 

Plasmid Expression Marker Ori Size Reference Page 

pBGKB GIII-Myc-PolyHis Kan pBR322 4042bp (Schlacher, 
2009) 

23 

pBAD-GIII-
Calmodulin 

GIII-Calmodulin-
Myc-PolyHis 

Amp pBR322 4556bp (Invitrogen, 
2011) 

- 

pSlo1.0A-
Cp4opt 

lacZ-CP4opt-
lacZ 

Amp pUC 3908bp This Work 122 

pET40b DsbC-PolyHis-S-
Tag-PolyHis 

Kan pBR322 6190 (Novagen, 2011) - 

pKS-MOMP LacZ-MOMP-L* Amp ColE1 ≈4870bp (Eko, et al., 
2003) 

- 

pMAL-PorB MBP-PorB Amp pBR322 7767 Eko, pers. 
communication 

- 

pGLysivb Eivb Gent Rep 6201 (Haidinger, 
2001) 

175 

       

pET40b-PorB DsbC-PolyHis-S-
Tag-PorB-

PolyHis 

Kan pBR322 7123bp This Work 28 

pASK GIII-PolyHis-S-
Tag-PolyHis 

Kan pBR322 4142bp This Work 29 

pASK-PorB GIII-PolyHis-S-
Tag-PorB-Myc-

PolyHis 

Kan pBR322 5141bp This Work 30 

pBGKB-PorB GIII-PorB-Myc-
PolyHis 

Kan pBR322 4979bp This Work 26 

pBGKB-
MOMP 

GIII-MOMP-
Myc-PolyHis 

Kan pBR322 5147bp This Work 31 

pBGKB-
CP4opt 

GIII-CP4opt-
Myc-PolyHis 

Kan pBR322 4937bp This Work 122 

Table 24: Overview of plasmids and their origin used in this work. 
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