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Abstract

The aim of the paper is to evaluate the applicability of a multi-objective
genetic algorithm to a Periodic Vehicle Routing Problems (PVRP). In the
beginning of the paper the theoretical background of the areas involved will
be outlined. The PVRP will be explained from a business administrative
point of view, followed by a positioning of the PVRP in the area of optimiza-
tion problems. In the following section, firstly, genetic algorithms in general
and then multi-objective genetic algorithms will be discussed. A further
discussion of the NSGA-II in detail will be followed by the presentation of
approach how the genetic algorithm can be adopted to a PVRP. The main
characteristic of this approach is the division of the problem into a master
problem and a sub-problem. The NSGA-II will be responsible for solving the
master problem which refers to providing a periodic delivery schema. The
sub-problem refers to solving a Travelling Salesman Problem (TSP). The
sub-problem will be solved as an Integer Linear Program (ILP) with the help
of CPLEX in one case and with a Next-Neighbor heuristic enhanced by a
two-opt move in the later case. After introducing the NSGA-II there will be
given an overview about the structure of the actual PVRP implementation
and the interdependencies to CPLEX. Then the setting up of the test envir-
onment and how the test runs are designed will be presented. In the final
sections the results from the various test runs will be discussed showing the
performance of the two different PVRP implementations.
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1 Introduction

The aim of the paper is to adopt the NSGA-II algorithm to a Periodic Vehicle
Routing Problem (PVRP) which is a special form of a Vehicle Routing Prob-
lem (VRP). The specialty of the NSGA-II is that the algorithm can optimize
more than just one objective at the same time. Moreover, the NSGA-II offers
a mechanism for constraint handling. Thus, the NSGA-II will be adopted to
a PVRP where two objectives should be optimized simultaneously and where
certain constraints need to be considered. In total, two different implement-
ations will be provided to see how well the NSGA-II can handle the PVRP
and to experience how the results differ between these two implementations.

The main question needed to be answered in order to reach the goals
specified above is how the NSGA-II can be adopted to a PVRP. Therefore, in
the second chapter the business background of the PVRP will be pointed out
trying to give a general understanding of the problem to be solved. Moreover,
the various variants and aspects of a VRP are discussed.

The third section outlines an approach to solve a PVRP. Therefore, a gen-
eral background and working mode of genetic algorithms will be presented.
The capability of optimizing more objectives at the same time is related to a
certain group of genetic algorithms, the so-called multi-objective evolution-
ary algorithms (MOEAs). With the introduction of MOEAs also concepts
like pareto optimality and pareto front are explained. Furthermore, a meas-
ure for evaluating the performance of a MOEA, the so-called hypervolume
indicator is introduced. This measure is essential as it allows comparing the
performance of different MOEA implementations. After that, the NSGA-II
will be discussed in detail showing important characteristics and how the
algorithm will be adopted to the PVRP.

The PVRP will be divided into a master problem and a sub-problem.
The NSGA-II will be responsible for solving the master problem which refers
to providing a periodic delivery schema. The sub-problem refers to solving a
Travelling Salesman Problem (TSP) and will be called from within the master
problem. The master problem needs the information from the sub-problem
in order to provide a good periodic delivery schema. For the sub-problem two
implementations will be provided. One implementation will make use of IBM
ILOG CPLEX Optimizer to solve the sub-problem; the other implementation
will be based on a heuristic.

In section 4 the program written to solve the PVRP will be described.
This section contains a description of the main components, expected input
parameters and output produced by the program.

The following section informs about the setting up of the test environment
and the test procedure. The setting up of the test environment involves
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the design of the test instances, tuning of the PVRP implementation and
planning of the test runs.

In section 6 the results of the test runs will be presented. In the final
section a summary of the paper will be given.
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2 Business Background of the Vehicle Rout-

ing Problem (VRP)

The idea of this chapter is to provide the reader with the necessary business
background of the problem to be researched. The following sections should
make clear the importance of the topic chosen and its position in the business
world.

2.1 Informal introduction of the research problem

The research problem focuses on a company which is supplying its customers
with goods. It is of no importance whether these goods are purchased or
produced by the company itself. The paper is only looking at the aspects of
distributing the goods to the customers.

The problem under discussion involves finding a periodic delivery schema
which determines when to deliver to which customer with a certain amount
of goods. A period could be e.g. a week running from Monday to Friday or
from Monday to Sunday. A customer could be delivered once within a period,
twice within a period or even every day of that period. The delivery schema
to be found must be periodic which means that the schema can be adopted
for the current week but also for the following weeks and is still meeting all
requirements. The frequency a customer is served and the number of goods
delivered to the customer must ensure that the customer does not run out of
stocks.

The goal then is to find a periodic delivery schema for a network of
customers which satisfies the daily demands of all the customers and at the
same time minimizes transportation and inventory costs. If a 5 days period
running from Monday to Friday is considered, then the transportation costs
are given by 5 tours starting and ending at a depot including all the customers
to be delivered. The inventory costs are a sum of all the inventory costs of
all the customers for the 5 days period.

2.2 Positioning of the VRP in the Business Environ-
ment

The problem introduced above belongs to the group of Vehicle Routing Prob-
lems (VPR) and is a typical problem in the area of supply chain management
(SCM) and logistics [1]. SCM deals with managing the so-called supply chain.
The supply chain comprises the various phases a product goes through, from
its first occurrence till the product is eventually in consumer hands. Figure 1
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Figure 1: Typical Supply Chain [2]

shows a typical supply chain around a manufacturer [2]. To the left of the
manufacturer the purchasing and assembly process for a certain product is
shown, to the right of the manufacturer the distribution process until the
product reaches the end users is depicted.

Considering the problem to be researched the company trying to find an
optimal delivery schema for its customers could be a wholesaler (first tier
customers) supplying a number of retailers (second tier customers) having
certain daily demands at their premises made up by the demands of their
customers (third tier customer) as shown in figure 1.

Organizing a supply chain in an efficient way is a rather complex process
and, therefore, requires to be managed in a way that optimizes the benefits
for suppliers and consumers. Already within an organization exist conflicting
goals which hinder reaching the overall goal of an optimized supply chain.
According to [2] the purchasing might look for the most reliable supplier,
the inventory management might strive for low unit costs, the main goal of
warehousing might be having fast stock turnover and transport management
might look for full vehicle loads.

Furthermore, it is important that the organizations within a certain sup-
ply chain recognize that they share an overriding objective, namely satisfying
their final customers [2]. If only one member of a supply chain fails to provide
the expected service, then eventually all members of that supply chain will
suffer a loss. This calls for cooperation among the members of a supply chain
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in order to be able to satisfy the final customers and to be able to compete
with other supply chains.

2.3 The Perspective of the Customer

In this section the perspective of a retailer (see figure 1) within a supply
chain is discussed. The retailer is purchasing a certain product from a sup-
plier, keeps the product in stock and sells these products to the end con-
sumers. The retailer wants to satisfy the end consumers by not running out
of stocks, i.e. meeting the customers demands. This calls for a proper invent-
ory management which is responsible for the control of stock levels within
an organization [2].

The questions arising here are when should the retailer place an order
and how much should the retailer order. These questions obviously result
in a trade-off between large, infrequent orders and small, frequent orders.
The first case gives high average stock levels but low costs for transport. On
the other hand, the second case gives low average stocks but high costs for
transport.

Keeping stocks is an inevitable necessity in order to overcome shortages
or unexpected rises in demand. Stock serves as a buffer between supply and
demand and gives the retailer the necessary flexibility to keep the business
running smoothly. In order to minimize the overall cost for holding stock,
the various types of costs involved have to be considered. According to [2]
the costs of carrying stock can be divided into the following four types:

• Unit Cost: The price of a product charged by the supplier

• Reorder Cost: The cost of a repeat order for a product

• Holding Cost: The cost of keeping one unit of a product in stock

• Shortage Cost: The loss of profit if demanded product is not available

The unit cost is directly linked to the price offered by the supplier and
can be lowered through price negotiations or by simply finding alternative
suppliers. The reorder cost denotes administrative costs occurring when re-
peatingly placing orders. The holding cost not only involves the costs for
keeping a product in stock but also involves the opportunity costs caused by
the money tied up. The shortage cost not only involves a loss of profit for
now but also a loss of reputation and potential future profits.

Having found a promising supplier, knowing the costs of carrying stock
and knowing the end customers demands it is possible to find the economic

7



Figure 2: Inventory Model with Constant Demand Rate

order quantity (EOQ) which is the optimal size for an order in a simple
inventory system [2]. The EOQ model is a deterministic inventory model
where it is reasonable to assume that the rate of demand is constant [3]. A
constant demand rate simply means that the same amount of items is taken
from inventory every day. Considering the stock level over a longer period
of time with a constant demand rate gives a repeated pattern of stock cycles
as shown in figure 2. Here, the initial stock level is 50 and the daily demand
amounts up to 25. This means that within two days the goods on stock
are sold out which calls for a reliable supplier providing new goods on the
third, fifth, seventh day and so on. One way to overcome some uncertainty
regarding supply or demand is keeping safety stock.

An alternative for the retailer is to outsource the activities around man-
aging the inventory. The outsourcing of managing inventory activities can
be limited to only some activities or can comprise all activities relating to
inventory management.

2.4 The Perspective of the Supplier

In this section the perspective of the supplier delivering goods to the customer
from the section above will be discussed. The supplier could be either the
manufacturer or the wholesaler (first tier customers) depicted in figure 1. As
mentioned before in section 2.1 it is of no importance whether these goods are
purchased or produced by the supplier himself. Figure 3 shows an example
of the supplier’s depot (blue square) and his customers (green dots).

Basically, each customer has his own demand and chooses to order when it
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Figure 3: Supplier and Customers

suits him best according to the implemented inventory management policy.
The customers manage their inventories themselves and can optimize the
purchasing process individually. The supplier accepts the orders from his
customers and delivers the ordered goods within the promised lead time. If
the orders of the customers vary a lot and are not on a regular basis, then
the supplier finds it hard to achieve optimization through proper scheduling
and planning of the delivery tours. If the supplier can rely on regular orders
which stay the same over periods, then improved scheduling and planning is
possible.

2.5 Vendor Managed Inventory (VMI)

However, if the supplier and his customers come to an arrangement which
makes the supplier responsible for finding a schedule when to deliver and how
much to deliver to each customer, then an improved solution for all parties
involved might be found. An example for such an arrangement between
supplier and customers is the so-called Vendor Managed Inventory (VMI).
According to [4] in a VMI partnership, the supplier makes the main in-
ventory replenishment decisions for his consumers. The vendor monitors the
inventory of the buyer and makes periodic resupply decisions regarding order
quantities, shipping and timing.
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As in the VRP announced in section 2.1 the supplier knowing the average
demand and the current stock of all customers can start to optimize the
delivery process. By deciding when to deliver and how many goods to deliver,
the supplier can ensure full truck loads, optimized tours as well as ensuring
that the customers do not run out of stock. Moreover, the customer neither
needs to monitor his stock, nor to order goods anymore.

The idea is to reduce costs (transportation costs, inventory costs), but at
the same time guaranteeing a high service level. Moreover, the supplier has
more security that he can deliver on time as he is responsible for scheduling,
thus, increasing security for the customers that they will obtain the goods
on time as well.

2.6 Defining the Vehicle Routing Problem and its Vari-
ants

The VRP is a generic name for a whole class of problems in which a set
of routes for one or more vehicles based at one or several depots must be
retrieved for a certain number of customers. There exist numerous variants
of the classical VRP depending on certain features and characteristics. Com-
binations of the following characteristics/features form the different variants
of the VRP:

• one vehicle or multiple vehicles

• vehicles with or without capacity

• homogenous or heterogeneous vehicle fleet

• one depot or multiple depots

• planning period finite or infinite/periodic

• each customer is visited exactly once or multiple times within a delivery
tour

• customers must be visited within certain time windows

• vehicle can pickup goods at depot between deliveries

• vehicle picks up at customer and delivers to customer

• supplier manages customer’s inventory
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The list above is not complete but shows the most important character-
istics which make up the variants listed and described below. Extending the
classic VRP by one or more of the features from above leads to a VRP of
higher complexity.

Multi Depot Vehicle Routing Problem (MDVRP) In the MDVRP the
focus lies on the existence of multiple depots responsible for storing the
products and serving as starting and end point for vehicle tours. In
problems with only one depot all the vehicles start and terminate their
tours at the same depot, whereas, in a MDVRP vehicle tours start and
end in different depots. The MDVRP is NP-hard which means that it
is not possible to find an optimal solution within reasonable time [5].

Split Delivery Vehicle Routing Problem (SDVRP) The main charac-
teristic of this VRP in contrast to the other variants is that each cus-
tomer can be visited more than once. As a consequence the demand of
a customer may be greater than the vehicle capacity and a customer
may be served by more than just one vehicle from a fleet. The object-
ive of the CVRP is to find a set of vehicle routes that minimizes the
total distance travelled by not exceeding the vehicle capacity for each
tour [6].

Periodic Vehicle Routing Problem (PVRP) The idea behind the PVRP
is to construct vehicle routes over multiple days within a planning
period. Each day of the planning period a fleet of capacitated vehicles
delivers the customers. The objective of the PVRP is to find a set of
tours which minimizes the total travel cost taking into consideration
the vehicle fleet capacity and visit requirements [7].

VRP with Time Windows (VRPTW) The VRPTW is a classic VRP
extended by time windows, i.e. that the customers must be delivered
within a certain time. This results in the same objective as in the classic
VRP which is finding a route for the vehicles to serve all customers
minimizing the travel costs. However, in addition to the tour capacity
constraint, also the time window constraint defined by the customers
must be considered [8].

VRP with Backhauls (VRPB) Extending the classical VRP with back-
hauls allows a vehicle to pickup goods on the return trip after delivers
have been made. Thus, the objective is to minimize the total distance
travelled over a set of tours [9].
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VRP with Pick-Ups and Deliveries (VRPPD) In the classical VRP the
vehicles pick up the goods at a depot and then deliver the goods to the
customers which means that all goods to be delivered originate from a
depot. In case of a VRPPD, however, goods need to be delivered to
customers but also need to be picked up at customer locations. The
objective and constraints stay the same; the total distance travelled
should be minimized considering maximum distance and maximum ca-
pacity constraints. NP-hard [10].

Inventory Routing Problem (IRP) The IRP shares the routing problem
with all the VRPs above which means shipping products from a supplier
to customers minimizing the transportation costs. In case of the IRP
the supplier does not only need to consider the demand of the customers
but also inventory, limited storage capacity and stock holding costs.
Thus, the supplier is responsible for the managing the inventory at the
customers avoiding stock-outs. Furthermore, the objective function has
to take into account the stock holding costs [11].

Considering the problem to be researched as described in 2.6 the following
characteristics/features can be determined:

• one vehicle with capacity

• one depot

• each customer is visited exactly once within a delivery tour

• planning period is infinite/periodic

• supplier manages customer’s inventory

The the PVRP and the IRP are the two variants which match the problem
to be researched most precisely. The problem to be researched and the
PVRP have in common the characteristic of being periodic. Periodic means
that a feasible solution follows a certain cyclic pattern and can be adopted
continously for multiple periods guaranteeing the same results provided that
the problem parameters do not change.

Except for the IRP all the VRP variants introduced above have exactly
one objective function which is to minimize the distance travelled. In case
of the IRP not only the distance travelled should be minimized but also the
stock holding costs. This results in either one aggregate objective function
consisting of travelling costs and stock holding costs or in two objective
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functions, one objective function for the travelling costs and one objective
function for the stock holding costs.

As being the supplier managing the inventories of the customers in addi-
tion to delivering the products, it is vital to consider the transportation costs
independently from the stock holding costs. The supplying party will bear
the transportation costs and each customer will bear the stock holding costs
occurring at his warehouse. Considering these two objectives independently
allows the parties involved to evaluate whether a found solution is in favor
of the supplier or the customers. Therefore, a solution approach is needed
which can handle minimizing two objective functions at the same time.

In this paper the problem to be discussed will always be called a PVRP
as the planning horizon is more than just one period. However, it needs to
be kept in mind that the actual problem is a special variant of a PVRP. The
PVRP is extended by the characteristic that the supplier is responsible for
managing the customers’ inventory (IRP). Considering this, it can be realized
that this constellation represents a VMI as defined in 2.5.
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3 Approach to Solving Vehicle Routing Prob-

lems

This chapter describes an approach based on an algorithm called Non-dominated
Sorting Genetic Algorithm II (NSGA-II) to solve the Periodic Vehicle Rout-
ing Problem defined in chapter 2. The NSGA-II belongs to the group of
genetic algorithms, more specifically, the algorithm belongs to the group of
multi-objective evolutionary algorithms. Therefore, first genetic algorithms
and multi-objective evolutionary algorithms will be explained. After a gen-
eral understanding of the working mode of genetic algorithms the approach
based on the NSGA-II to solve a PVRP will be put forward.

3.1 Genetic Algorithms

From the second half of the 20th century on the natural evolution has be-
come a source of new strategies for solving optimization problems [12]. In
the scientific world [8] the development of genetic algorithms is attributed
to Holland [13]. Concepts from the nature have been adapted to match the
requirements of solving optimization problems in areas such as logistics, pro-
duction, medicine, etc. Genetic algorithms are simply simulating the process
of the natural evolution.

According to [14] the main concept behind the natural evolution can be
explained as the ability to survive through adaption to a changing environ-
ment. The natural evolution incorporates an innovative problem solution
mechanism that allows to efficiently find solutions for complex problems.

The following list shows a selection of terms which appear in the natural
evolution as well as in the area of evolutionary algorithms (see Table 1):

Name Natural Evolution Evolutionary Algorithms
Population: set of humans/anmials set of chromosomes/individuals
Chromosome: blueprint of human/animal string of characters or numbers
Gene: part of a chromosome character, feature, variable
Allele: specification of a gene value of a character
Fitnes: survivability of human/animal goodness of a chromosome
Reproduction: production of offsprings creation of new chromsomes
Generation: population at a certain point of time same as for natural evol.

Table 1: Evolutionary Vocabulary in Nature and Computer Science [14]

Genetic algorithms work with a population of chromosomes or also so-
called individuals. A chromosome/individual represents a possible solution
to a certain problem and is expressed by a string of characters or numbers.
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Figure 4: Basic components of a genetic algorithm [8]

Figure 4 shows an example of a simple chromosome structure consisting of
binary genes having values ‘0’ or ‘1’. Depending on the environment or
a specific problem some chromosomes of a population will perform better,
some others will perform worse. Therefore, each chromosome is assigned a
fitness score which evaluates a chromosome regarding a specific problem.

Furthermore, figure 4 shows the reproduction process of a genetic al-
gorithm by undertaking selection, crossover and mutation operators. In this
reproduction process highly fit chromosomes/individuals of a population are
selected (selection), recombined (crossover) and partly manipulated (muta-
tion) in order to build an evolved population of new possible solutions.

The process of deriving a new population from an original population is
called generation and is repeated again and again. With an increasing num-
ber of generations the evolving population will contain a higher proportion
of characteristics possessed by good performing individuals from previous
generations. In the course of the evolution of the population the individuals
with a bad evaluation will die out. According to [15] the most promising
areas of the search space are explored by favoring the mating of the more fit
individuals. The procedure of a simple genetic algorithm can be summarized
as follows:

1. Randomly initiated population

2. Calculation of fitness

3. Selection

4. Execution of genetic operators (recombination/mutation)
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3.2 Multi-objective Evolutionary Algorithms (MOEAs)

As discussed in section 2.6 a solution approach is required which allows
the optimization of two objectives simultaneously. In the literature [16] a
problem with multiple objective functions to be optimized is called multi-
objective optimization problem (MOOP). Fonseca and Fleming [16] point out
that evolutionary algorithms (EAs) can handle multi-objective optimization
problems (MOOPs) very well. EAs inherently find multiple pareto-optimal
solutions in one single simulation run since they work with a set of solu-
tions in each generation, thus, an EA can be extended in a way to maintain
multiple solutions [17].

3.2.1 Pareto optimality

As in case of MOOP where more objectives at a time are considered, there
does not exist one single optimal solution. In contrast to single objective op-
timization problems, there exists rather a set of alternative solutions. These
alternative solutions within a search space are also called Pareto-optimal
solutions or Pareto-optimal front. The model for a MOOP can be represen-
ted by a minimization/maximization function described as a vector function
f that maps m decision variables to n objectives [16, 18, 19, 20]:

min/max y = f (x) = (f1 (x) , f2 (x) , . . . , fn (x))

subject to x = (x1, x2, . . . , xm) ∈ X

y = (y1, y2, . . . , ym) ∈ Y

where x is called the decision vector and X is the parameter space; y is
the objective vector and Y is the objective space. In [18] Pareto optimality is
defined as a set of solutions of a MOOP consisting of all decision vectors for
which the relevant objective vectors cannot be improved in any dimension
without decreasing any other. Considering a minimization problem a decision
vector a ∈ X is said to dominate a decision vector b ∈ X (written as a � b)
only if:

∀i ∈ {1, . . . , n} : fi (a) ≤ fi (b) ∧
∃j ∈ {1, . . . , n} : fj (a) < fj (b)

Following this, if a decision vector a ∈ X dominates a decision vector
b ∈ X, any member of decision vector a is said to be non-dominated or
non-inferior [20].
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3.2.2 Measuring Pareto Optimality

As MOOPs do not deliver one single solution consisting of a single scalar
value but a non-dominated collection of vectors the question arises whether
there exist quantitative measures revealing information about the quality of
the outcomes. Due to the fact of optimizing more than just one objective at
the same time and obtaining more than one solution within a test run, the
need for special measures arises.

In case of a standard TSP a test run delivers only one objective value.
Consequently, various problem instances of the TSP can be easily compared
with each other with the help of the objective value. When having a minim-
ization problem simply the problem instance with the lowest objective value
dominates the other problem instances.

In case of the NSGA-II solving a PVRP, there are two objective functions
(Transportation and Storage costs) involved and usually there is more than
just one possible solution making up the pareto front. This calls for a metrics
indicating the performance of an optimization technique allowing the com-
parison of different multi-objective optimization implementations. However,
Zitzler et al [21] emphasize the difficulty of defining a quality measure for
multi-objective optimization problems as the optimization goal itself consists
of multiple objectives. Therefore, in [21] the following aspects are suggested
which define a good solution of a MOOP:

• Minimization of the distance of the resulting non-dominated set to the
Pareto-optimal front

• A good (in most cases uniform) distribution of the solutions is found
desirable.

• Maximization of the extent of the obtained non-dominated front, i.e.,
for each objective a wide range of values should be present

In this paper the focus will be laid on the hypervolume indicator (also
known as Lebesgue measure or S metric). According to [22] the hypervolume
measure is one of the most frequently applied measures. The hypervolume
measure takes into consideration the size of the objective value space which
is covered by a set of non-dominated solutions (e.g. A, B and C as shown
in figure 5). In order to be able to calculate the multi-dimensional regions
made up by the non-dominated solutions an arbitrary reference point needs
to defined. By adding together the areas covered by the Pareto-optimal
solutions a measure is obtained which allows comparing the performance of
different multi-objective optimization implementations.
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Figure 5: Hypervolume Indicator

However, in [23] the weakness of the hypervolume measure is pointed out
as the choice of the reference point can have an effect on the evaluation of the
performance of various non-dominated sets. In case of the PVRP introduced
in this paper, a reference point will be chosen which refers to the maximal
transportation and storage costs occurring in a test instance.

3.2.3 Introducing the NSGA-II

The NSGA-II [17] is an improved version of the NSGA presented in [20] and
was chosen to be adopted for the PVRP as the NSGA-II is reported to de-
liver promising results when tackling multi-objective optimization problems.
The main improvements of the NSGA-II approach can be summarized as
follows [17]:

Better non-dominated sorting algorithm The original implementation
of the non-dominated sorting used in the NSGA was criticized for its
computational complexity of O (MN3) where M refers to the number
of objectives and N is the population size. The execution of the highly
complex non-dominated sorting in every generation caused the NSGA
to be computationally expensive for large population sizes. The new
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Figure 6: NSGA-II procedure [17]

implementation of the non-dominated sorting in the NSGA-II reduced
the time complexity to O (MN2).

Introduction of elitism In the NSGA-II elitism was introduced which res-
ults in speeding up the performance of the NSGA-II and helps to keep
good solutions once found.

Elimination of the need for specifying a sharing partner In order to
obtain a good spread of solutions a sharing function method involving
a sharing parameter is used in the NSGA. One problem with this ap-
proach is that the performance of the sharing function method largely
depends on the chosen value for the sharing parameter. Moreover, the
sharing function method is highly complex ( O (N2) ) as each solution
must be compared with all other solutions in the population.

In the NSGA-II the sharing function approach is replaced with a crowded-
comparison approach. Now, the NSGA-II does not require the specific-
ation of a parameter for maintaining diversity and the computational
complexity is reduced as well.

Basically, the NSGA-II varies from a simple genetic algorithm only in the
way the selection operator works and the enhancements just described above.
The crossover and mutation operators work the same way.

Figure 6 shows the overall procedure of the NSGA-II. After the initializ-
ation of a population as known as from genetic algorithms, the population
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is sorted based on non-domination into several fronts (F1, F2, F3, etc.). The
so-called first front is a completely non-dominated set, i.e. none of the in-
dividuals from the first front are dominated by any other individuals. The
individuals of the second front are dominated by the individuals of the first
front, but dominate all the individuals from the subsequent fronts. The same
is valid for the next fronts. The individuals from the third front are domin-
ated by the individuals from the previous fronts and so on. Every individual
in each front is assigned a fitness value which is called rank by Deb et al. [17].
The value of the rank assigned depends on the front of an individual, i.e. in-
dividuals from the first front have rank 1, and individuals from the next front
have a rank incremented by one and so on.

Furthermore, the NSGA-II considers a measure called crowding distance
which indicates the distance of an individual to its neighbors. With the
help of the crowding distance the NSGA-II tries to ensure better diversity in
the population. The crowding distance is assigned front-wise and basically,
represents the Euclidean distance between the individuals based on their m
objectives in a m dimensional hyper space.

As soon as the individuals are sorted based on non-domination and the
crowding distance is computed for all the individuals, then a binary tourna-
ment selection with a crowded-comparison-operator is carried out. Parents
are selected from the population by using binary tournament selection based
on the rank and the crowding distance. An individual is selected if the value
of the rank is smaller or if the crowding distance is greater than the other.
The selected population generates offsprings from crossover and mutation op-
erators. The population with the current population and current offsprings
is sorted again based on non-domination and only the best individuals are
selected according their rank and crowding distance.

3.3 Implementing the NSGA-II as a PVRP

As described before in 2.6 the goal of the PVRP is to find a set of tours which
minimizes the total costs travelled and the stock holding costs simultaneously.
This kind of problem is a typical MOOP as defined in 3.2 and therefore,
perfectly suits the requirements of a genetic algorithm, such as the NSGA-II.
However, the NSGA-II needs assistance in solving the defined problem.

Therefore, the solution approach will be decomposed into two phases. In
the first phase each customer will be assigned for each day within the planning
period whether the customer will be serviced or not. The NSGA-II will be
responsible for this assignment. In the second phase each tour according to
the assignment of phase 1 will be optimized, thus, leading to an improved
overall solution. Finding an optimal tour is known as a Travelling Salesman
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Problem (TSP). For solving the TSP two different approaches haven been
implemented: (1) Integer Program and (2) 2-opt move based heuristic.

This 2 phase approach can also be seen as a master problem (NSGA-II)
and a sub-problem (TSP).

3.3.1 Problem Formulation

The specialty of the specified problem can be seen in the fact that not only
one but two objectives are to be optimized at the same time. Minimizing
the transportation costs automatically leads to higher storage costs. At the
same time minimizing the storage costs leads to higher transportation costs.

Objective: Minimizing transportation and storage costs

Feasibility: The solution is feasible if all constraints of the specified VRP
are satisfied, i.e. deliveries must be scheduled in a way so that the daily
stock levels do not fall below a certain limit. Therefore, there exists
one constraint ensuring that each customer is service at least once a
week. Additionally, there exist 5 more constraints (Mon - Fri) ensuring
that the daily delivery amount does not exceed the truck capacity.

Formulation: Minimizing the total costs of all tours while minimizing the
costs for holding stocks. The tour with minimum costs for each day is
found with the help of the sub-problem.

3.3.2 Chromosome Representation

The chromosomes (also called individuals) can be represented by characters
or numbers. In case of the actual PVRP a binary representation was found to
be the best way to describe a solution. A binary variable determines whether
a certain customer is delivered on a certain day of a period. Table 2 shows the
binary representation for a PVRP with two customers and a delivery period
from Monday to Friday. The number of customers and the period length
define the number of binary variables (number of customers x period length).
According to table 2 customer 1 is delivered on Monday and Wednesday;
customer 2 is delivered on Tuesday and Thursday.

Customer 1 Customer 2
Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

1 0 1 0 0 0 1 0 1 0

Table 2: Chromosome Representation
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3.3.3 Generation of Initial Population

The population size defines how many individuals are computed for each gen-
eration and is expected as an input parameter. Following this a population
size of 4 requires the generation of 4 individuals for the first generation and
all the following generations. This initial population is generated randomly
and could look like as follows for a population size of 4:

Individual 1: 00001 00101 11110 00111 00000

Individual 2: 10000 10011 11100 10111 01111

Individual 3: 01010 00101 00010 00010 11011

Individual 4: 10001 11010 01101 01110 00101

From the above chromosome representation it can be learnt that a pattern
should be found how to supply 5 customers for a period of 5 days. Each block
represents a delivery schema for a certain customer. The spaces are not
necessary; they only should help the reader to realize which binary variables
belong to a customer.

3.3.4 Selection Process

With the help of a mechanism called binary tournament selection [24] indi-
viduals from a population will be randomly chosen as parents being respons-
ible for mating and reproduction. In case of the binary tournament selection
tournaments are held between pairs of individuals, i.e. always 2 individuals
will be randomly chosen and compared with each other. Always the domin-
ating individual will be selected as parent. If two individuals are evaluated
equally then there is a 50 percent chance for both of them to be selected for
further processing.

For a population size of 4, 2 pairs of individuals will be selected and the
winner of each tournament becomes a parent. Below it can be seen that in-
dividual 2 was chosen to compete with individual 1 and individual 1 proved
to be a better solution and therefore was select as a parent. Among the two
remaining individuals, individual 4 proved to be the better solution. This
process happens a second time for the original population, thus in the end
there are four parents. As the pairs are randomly selected the same constel-
lation as shown below can be the consequence. In both cases individual 1
and individual 4 are selected as parents. Individual 1 dominates individual
2 and individual 4 dominates individual 3.

Individual 2 vs. Individual 1: Individual 1

Individual 3 vs. Individual 4: Individual 4
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Individual 2 vs. Individual 1: Individual 1

Individual 3 vs. Individual 4: Individual 4

Due to the selection process chosen the population size for the imple-
mentation of the NSGA-II must always be a factor of 4. This way it is
ensured that enough parents are selected from the population, thus, allowing
the generation of a sufficient number of children keeping the population size
constant.

3.3.5 Reproduction

The reproduction process is responsible for combining useful traits from par-
ent chromosomes and passing them on to the children [8]. The reproduction
process involves crossover and mutation. The idea behind a crossover is to
move toward promising regions of the search space by matching good parents
to construct better offsprings. On the other hand, with the help of mutation
it is thought to avoid over homogenous populations by randomly swapping
binary variables of an individual.

In order to perform crossover the NSGA-II requires a crossover probability
as an input parameter. The crossover is applied to two parents. For each
position there exists the given probability that a crossover will be executed
which simply means exchanging the values of the binary values of parent 1
and parent 2 at the relevant position. For example, a crossover rate of 0.2
means that there is a 20 percent chance that the binary variables of two
parents at a certain position become eligible for a crossover. Once the binary
variables of two parents are eligible for a crossover, then there is a 50 percent
chance of exchanging the binary variables of the two parents. If the binary
variables of the two parents have the same value, then the crossover does not
have any effect.

As shown below the crossover applied to two parents results in 2 off-
springs. The mark (C) indicates at which position a crossover has been
carried out. The possible swaps are: (0,1) to (1,0), (1,0) to (0,1), (0,0) to
(0,0) and (1,1) to (1,1).

Parent 1: 00001 00101 11110 00111 00000

Parent 2: 10001 11010 01101 01110 00101

C C C C CC C C C

Child 1: 10001 10101 11110 01110 00101

Child 2: 00001 01010 01101 00111 00000
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For accomplishing mutation the NSGA-II also needs a mutation probabil-
ity as an input parameter. This parameter defines the probability of changing
the value of an individual’s binary variable from either 0 to 1 or from 1 to
0. After having executed the crossover operands, then the mutation operand
will be applied to all individuals of a population. Below an example is shown
with an assumed mutation probability of 0.2. The binary variables marked
with ‘M’ indicate a successfully mutated gene.

Individual: 10001 10101 11110 01110 00101

M M MM M M M

Individual: 10011 10100 10010 11100 10101

As shown, with the selection and reproduction operators the NSGA-II
can find more and more promising solutions. In case of the PVRP imple-
mentation based on the NSGA-II, the master problem implementation just
presented relies on the implementation of a sub-problem which will be intro-
duced in the next section.

3.4 Solving the Sub-Problem: TSP

The sub-problem which needs to be solved within the execution of the PVRP
is a TSP and is called by the master problem. The master problem provides
all parameters which are needed in order to solve the problem. The paramet-
ers provided involve the distances between the relevant customers and the
depot. As the aim of this paper is to compare the results of the PVRP with
two different TSP implementations, two different implementations will be
presented here. One approach is based on CPLEX and delivers the optimal
solution. The second approach is a heuristic which does not necessarily give
an optimal solution but promises to deliver good results.

3.4.1 Problem Formulation

Here, in contrast to the master problem only one objective needs to be min-
imized.

Objective: Minimizing transportation costs for a given number of customers

Feasibility: The solution is feasible if all constraints of the specified TSP
are satisfied, i.e. the depot and each customer in the given tour is
visited exactly once

Formulation: Finding the sequence of customers to be visited which min-
imizes the transport costs
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3.4.2 Sub-Problem: Integer Program

The first implementation of the TSP was done with the help of IBM ILOG
CPLEX Optimizer1. IBM ILOG CPLEX Optimizer is a software for solving
linear optimization problems and will be simply referred to as CPLEX in
this paper. The TSP under discussion consists of a set of customers (n) and
the transportation costs (vector c) between these customers. The TSP was
modeled as an Integer Linear Program (ILP) as follows in CPLEX considering
a binary decision variable x:

Objective:

min
n∑

i=1

n∑
j=1

cijxij

Subject To:

n∑
j=1

xi = 1(i = 1, . . . , n)

n∑
i=1

xj = 1(j = 1, . . . , n)

xij ∈ {0, 1}

The idea is to find a set of edges which guarantees the minimal travel-
ling costs (objective function) and connects all nodes involved (constraints).
However, the solution returned by CPLEX is not necessarily a valid TSP
solution. Below there are shown two possible solutions for a TSP problem
with 6 nodes involved. Both solutions are valid regarding the ILP model
from above, but only one of them is a valid TSP solution.

Valid TSP tour: (1 2 3 4 5 6)

Not valid TSP tour: (1 2 3)(4 5 6)

In both cases the solution adheres to the constraints so far and the truck
would visit each customer exactly once. In the second case the solution does
not consist of one but of two tours. Therefore, it must be checked whether the
solution returned by CPLEX is a valid TSP solution or not. If the solution

1http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (last
access: 23.04.2011)
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consists of more than one sub-tour, then constraints need to be added to the
model from above in order to avoid the generation of found sub-tours. After
the modification of the model, the ILP will be executed once again. It will
be checked if there still exist sub-tours in the returned solution. If not, then
the optimal and valid TSP solution was found, otherwise the model needs to
be adapted again and again until a solution without sub-tours is provided by
CPLEX.

3.4.3 Sub-Problem: Nearest-Neighbor Heuristic

The alternative implementation of the TSP is based on the nearest-neighbor
which is improved by the 2-opt move. The nearest-neighbor algorithm be-
longs to the group of greedy heuristics and is straightforward. The next
customer to be serviced is always the one who incurs the minimal travelling
costs for the supplier. Once a customer was serviced within a tour, then the
customer will not be considered anymore. The truck starts at the depot and
transports the products always to the nearest customer. As soon as all the
relevant customers were serviced, the truck returns to the depot.

In order to increase the efficiency of the nearest-neighbor algorithm the
heuristic was enhanced by the so-called 2-opt move. After an initial gener-
ation of a tour with the nearest-neighbor heuristic, the tour is scanned for
improvement possibilities. The idea behind the 2-opt move is that a given
tour could be easily improved if two nodes are exchanged with each other.
Following this, for each node of a given tour a simulated exchange with every
other node is carried out. If the simulated exchange promises a better overall
solution of the TSP, then the exchange of two nodes will be processed for
real. The heuristic scans for better solutions until the simulated exchanges
do not deliver improvements anymore.

This implementation is not expected to deliver the optimal solution of a
TSP, but still should deliver good results in relatively short time. In later
sections this implementation of the sub-problem will be simply referred to as
2-opt move heuristic.
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4 Program Description

The PVRP was implemented as a C++ program and is composed of the
following components:

Main component C++
NSGA-II [25] C++
TSP CPLEX C++ and CPLEX
TSP 2-opt move C++

Table 3: PVRP Components

The main component takes care of reading the input parameters (see
table 4) and the test instance (see table 5). Furthermore, the test instance
data is prepared in a way to satisfy the needs of the NSGA-II and the TSP
implementations. This involves converting the x and y coordinates of the
customers to a vector consisting of the distances between the customers. In
case of a test instance with 20 customers and 1 depot, then a vector of size
210 is created to hold all the distances. Assuming n = 21 the size of the
vector is determined as follows: (n + (n− 1)) /2.

The NSGA-II specific implementation is based on the NSGA-II presented
by Deb et al. [25]. The C implementation2 provided by Deb was converted
into pure C++ code and modified in a way to satisfy the needs of the PVRP
implementation, especially the minimiation function of the problem (see 3.2.1
and 3.3.1).

The PVRP implementation controls the program flow and the interaction
between the NSGA-II specific implementation and the TSP implementation.
Depending on the TSP solver input parameter (see table 4) the PVRP im-
plementation will make use of CPLEX or the 2-opt move heuristic to solve
the TSP.

The program will be started with the parameters defined in table 4 and
generates as many generations as defined in the input parameter ‘Genera-
tion’.

4.1 Input

The program expects the following input parameters as specified in table 4.
According to the instance parameter a certain instance file is read into the
program and prepared for the PVRP. The instance file to be read needs to
follow the structure as defined in table 5. The data defined in the instance file

2http://www.iitk.ac.in/kangal/ (last access: 23.04.2011)
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Generation Defines how many generations to be considered
(stop criterion)

Population size Defines the population size; must be a factor of 4
Mutation rate Specifies the probability of the mutation rate

(must be between 0 and 1)
Crossover rate Specifies the probability of the crossover rate

(must be between 0 and 1)
TSP solver Determines the TSP implementation to be used

(0=CPLEX; 1=2-opt Move heuristic)
Random seed Specifies the random seed for the random number

(must be between 0 and 1)
Instance Specifies the instance to be optimized

Table 4: PVRP Implementation - Expected input parameters

describe the problem to be solved. Additionally, the reference point for the
stock holding costs needs to specified in the instance file. The reference point
for the transportation costs does not need to be specified as this reference
point is calculated in the initialization phase of the PVRP program.

No of customers Specifies the size of the problem
Period length Specifies the length of the planning period
Truck capacity Specifies the maximum a truck can deliver a day
Reference point
(storage costs)

Specifies the reference point for the storage costs

X-Y coordinates For each customer the x and y coordinates are specified
Demand For each customer the daily demand is specified
Storage costs For each customer the storage costs per item are spe-

cified

Table 5: Structure of instance file

4.2 Output

The output of the program is a file showing the final feasible population. For
each individual of the population the parameters from table 6 are shown.
For each individual two objective values (transportation and storage costs)
are displayed. Moreover, the service constraint and the capacity constraint is
shown. Constraints with a negative value indicate that the individual found
does not represent a feasible solution. The subsequent binary string refers
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to the periodic delivery schema. The last two values are the rank and the
crowding distance of the individual.

Objective values Shows the transport and storage costs
Service constraint Shows the value of the constraint ensuring that

each customer is supplied at least once
Capacity constraints Shows the values of the 5 constraints ensuring that

the truck capacity is not exceeded on one day of
the period

Binary string Represents which day each customer is serviced
Rank Shows the rank of the individual
Crowding distance Shows the value of the individual’s crowding dis-

tance

Table 6: PVRP Implementation - Output file

A second output file logs information about every test run as shown as in
table 7. Besides the basic parameter settings, the logged information contains
the runtime a test run needs to compute all generations and the hypervolume
of the solution found. Moreover, the reference point for the transportation
costs is included in the file.

Runtime (seconds) Shows time needed to compute all generations
Hypervolume Shows the performance of the test run (see 3.2.2)
Generations Number of computed generations
Population size Shows the population size of test instance
Mutation rate Shows mutation rate of the test run
Crossover rate Shows crossover rate of the test run
Random seed Shows the random seed of the test run
Instance Refers to the relevant instance file
TSP solver Shows the TSP implementation used
Reference Point
(transportation costs)

Shows the reference point for the transportation
costs

Table 7: PVRP Implementation - Log file
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5 Setting up of a Test Environment

5.1 Test Procedure

As defined in the introductory chapter the aim of the paper is to evaluate to
which degree the NSGA-II heuristic is applicable for a PVRP. Therefore, a
number of tests need to be executed in order to find out how well the NSGA-
II performs on the PVRP. The setting up of the test environment contains
the steps as follow and is discussed in detail in the subsequent sections:

1. Design of Problem Classes

2. Parameter Tuning

3. Execution of Test Runs

5.2 Design of Problem Classes

Table 8 shows the parameters defining the various problem classes of test
instances. In total there exist 16 problem classes of test instances. The
PVRP as defined in the introductory chapter restricts the number of depots
to one. As a consequence there exists only one depot in each test instance.

The number of customers is set to either 20 or 30 in the test instances to
be generated. The reason for having two size ranges is to see how the PVRP
implementations perform on larger problems compared to smaller ones. The
numbers of customers chosen should neither be too small nor too large. The
number should not be too small as it is tried to create test instances close to
the real world problem. However, the number of customers should not be too
large in order to avoid too long and complex test runs. In one half of the test
instances the customers will be distributed evenly, whereas in the other half
of the test instances the customers will be clustered around certain points.

The spread of the demand will be weak in one half of the test instances
and strong in the second half. The truck capacity will be 50% above the
daily average demand for the test instance used for parameter tuning; a
truck capacity of around 33% and 66% above the daily average demand will
be used for the later test runs. The daily average demand is the amount of
goods needed to be delivered every day to satisfy all the customers within a
period. An increasing truck capacity above the daily average demand results
in a larger tolerance and, thus, relaxes the tour capacity constraint.

The depot and the customers will be located in a map of size 100 × 100.
For all test instances the depot will be located at the point (x = 50; y = 50).
In case of the evenly distributed customer landscapes the x and y variables
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Number of Depots 1
Number of Customers 20 or 30
Distribution of Customers Evenly distributed or clustered
Spread of Demand Weak [40. . . 80] or strong [20. . . 100]
Truck Capacity 33%, 50% or 66% above daily average demand

Table 8: Design of Problem Classes

will be randomly generated. In case of the clustered distribution of customers,
first, in each quadrant of the 100 × 100 map one point will be randomly
generated and then, the customers will be randomly located around these
four points.

The range of the weak spread of the demand is within 40. . . 60 and the
range of the strong spread is within 20. . . 80. The truck capacity directly
depends on the randomly generated demand as the daily average demand
serves as the basis for the calculation of the truck capacity.

5.3 Parameter Tuning

The objective of parameter tuning is to find a parameter setting which allows
the algorithm to find better solutions. Test runs with various parameter
settings are necessary as parameters such as population size, mutation and
crossover rates differ strongly depending on the underlying problem [14].

For the parameter tuning one random test instance with 20 customers
and one depot has been generated. Table 9 shows the parameters for the
generation of the tuning instance. The parameters are chosen in a way to
generate an average test instance. Figure 7 shows the tuning instance with
the location of the depot (blue square) and all the 20 customers (green dots)
to be served.

Number of Depots 1
Number of Customers 20
Distribution of Customers Evenly distributed
Spread of Demand Strong [20. . . 80]
Truck capacity 50% above daily average demand

Table 9: Design of Tuning Instance

The tuning instance is then used to find the optimal parameter setting
considering the population size, mutation and crossover rate. With the help
of the hypervolume indicator (see 3.2.2) the most promising parameter setting
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Figure 7: Tuning instance

will be identified. The values of the reference parameters for the tuning
instance are:

1. Reference value - Transportation Costs: 189305

2. Reference value - Storage Costs: 478400

The parameter tuning was accomplished in two phases. The first phase
was a broad search for the area of best parameter settings with a smaller
number of generations and population size. The second phase was responsible
for confirming the results from the first phase and searching more thoroughly
the confirmed areas with a larger number of generations and population size.

In the first phase, in total 3 test runs with the following seeds were ex-
ecuted: 0.5, 0.6 and 0.7. The number of generations was limited to 60 and
the population size chosen was 100. For each test run all the combinations
shown as in table 10 were processed resulting in a total of 108 executions of
the NSGA-II.

Table 11 shows the best 5 parameter combinations from a multiple test
runs with changing parameter settings and random number seeds. The four
columns denote the parameter settings (mutation and crossover rate), the
hypervolume and standard deviation. The hypervolume column refers to the
average hypervolume over the 3 test runs and the following column shows its
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Mutation Crossover
0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

Table 10: Tested Parameter Combinations

standard deviation. These results clearly show that the current implementa-
tion performs best with a mutation rate of 0 and a high crossover rate. The
best performing parameter setting with a hypervolume of 0.4474 as shown
in the table 11 has a mutation rate of 0 and a crossover rate of 0.8.

Mutation Crossover Hypervolume Std. Deviation
0 0.8 0.4474 0.0140
0 0.6 0.4402 0.0172
0 0.4 0.4355 0.0184
0 1.0 0.4310 0.0146
0 0.2 0.4129 0.0058

Table 11: Best 5 Parameter Combinations - Tuning Phase 1

These results indicate that the NSGA-II implementation delivers the best
solutions when no mutation operators at all are performed. In the second
phase of parameter tuning it will be analyzed whether the results of the first
phase can be confirmed or not. Moreover, the search will be extended to
parameter values with two decimal places.

In table 12 the results of the test runs with random seeds 0.1, 0.2, 0.3, 0.4
and 0.5 are shown. For this test series the number of generations was set to
250 and the population size was limited to 20. These results show that the
best parameter settings from tuning phase 2 are much better than the best
parameter settings from tuning phase 1. Considering the input parameters
of this test series, the best parameter setting from tuning phase 1 delivers a
hypervolume of 0.2991 which is about 25% lower than the hypervolumes of
the parameter settings as shown in table 12.

The parameter setting with a mutation rate of 0.02 and a crossover rate
of 0.18 has the highest hypervolume (0.4009) in the tuning phase 2 and,
therefore, is regarded as the overall best performing parameter setting. This
parameter setting will be applied for all NSGA-II test runs involving com-
parisons between the implementations of the different sub-problems.
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Mutation Crossover Hypervolume Std. Deviation
0.02 0.18 0.4009 0.0230
0.02 0.29 0.4001 0.0235
0.01 0.18 0.3991 0.0105
0.02 0.11 0.3973 0.0129
0.02 0.22 0.3968 0.0199

Table 12: Best 5 Parameter Combinations - Tuning Phase 2

5.4 Generation of Test Instances

Table 13 and table 14 show an overview of all the test instances which are
generated according to section 5.2. For each problem class there have been
generated 3 test instances which results in a total of 48 test instances; table 13
shows 24 instances each with 20 customers and table 14 shows 24 instances
each with 30 customers.

The first column denotes the problem class and the second column refers
to the consecutive number of the relevant test instance. The following column
(Dist) shows whether the test instance has an evenly distributed or clustered
customer landscape. The fourth column (D range) refers to the demand
range specified for the relevant test instance. For all test instances the storage
costs range between 5 and 100. Apart from describing the characteristics of
the test instances, table 13 and 14 also provide information about the daily
average demand the supplier has to satisfy (Avg D), the truck capacity of the
supplier (Truck C) and the reference points for the storage costs (RefPnt(S))
and transport costs (RefPnt (T)).
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Class Instance Dist D range Avg D Truck C RefPnt (S) RefPnt (T)
1 1 even 20...100 1104 1500 575180 202880
1 2 even 20...100 1233 1500 937130 161040
1 3 even 20...100 1012 1500 611170 202340
2 4 even 20...100 1226 1800 768420 190055
2 5 even 20...100 1401 1800 674310 170565
2 6 even 20...100 1287 1800 878440 203780
3 7 clust 20...100 1188 1500 829520 149435
3 8 clust 20...100 1174 1500 678840 145050
3 9 clust 20...100 1257 1500 806760 164305
4 10 clust 20...100 1182 1800 639470 155585
4 11 clust 20...100 1168 1800 762830 154210
4 12 clust 20...100 1152 1800 743400 157255
5 13 even 40...80 1188 1500 708690 197885
5 14 even 40...80 1182 1500 696670 203800
5 15 even 40...80 1175 1500 738730 201035
6 16 even 40...80 1170 1800 757300 207280
6 17 even 40...80 1176 1800 693250 160490
6 18 even 40...80 1055 1800 600210 193735
7 19 clust 40...80 1255 1500 755690 168595
7 20 clust 40...80 1282 1500 756170 172985
7 21 clust 40...80 1200 1500 694290 189975
8 22 clust 40...80 1260 1800 765320 129065
8 23 clust 40...80 1196 1800 719300 138870
8 24 clust 40...80 1162 1800 693110 159315

Table 13: Test Instances: 20 Customers
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Class Instance Dist D range Avg D Truck C RefPnt (S) RefPnt (T)
9 25 even 20...100 1475 2200 883660 241375
9 26 even 20...100 1961 2200 1166910 208815
9 27 even 20...100 1599 2200 954560 247970
10 28 even 20...100 1513 2800 839000 262320
10 29 even 20...100 1836 2800 1262010 233330
10 30 even 20...100 1859 2800 1044230 207590
11 31 clust 20...100 1512 2200 893620 247410
11 32 clust 20...100 1765 2200 1086650 241440
11 33 clust 20...100 1674 2200 1038830 227385
12 34 clust 20...100 1702 2800 901260 188685
12 35 clust 20...100 1631 2800 1183450 186035
12 36 clust 20...100 1720 2800 973430 222005
13 37 even 40...80 1864 2200 1129950 263150
13 38 even 40...80 1733 2200 1041980 236370
13 39 even 40...80 1863 2200 1106900 235775
14 40 even 40...80 1821 2800 1080970 231555
14 41 even 40...80 1801 2800 1072000 236395
14 42 even 40...80 1706 2800 1037200 228665
15 43 clust 40...80 1752 2200 1092200 216155
15 44 clust 40...80 1780 2200 1066420 204855
15 45 clust 40...80 1829 2200 1038900 234265
16 46 clust 40...80 1703 2800 1067480 226605
16 47 clust 40...80 1836 2800 1079090 212250
16 48 clust 40...80 1784 2800 1115940 215370

Table 14: Test Instances: 30 Customers
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6 Results

In this section the results of the test runs with the implementation of the
PVRP described in the previous section are discussed. The main focus of the
test runs lies on the comparison between the PVRP implementation based on
CPLEX and the PVRP implementation based on the 2-opt move heuristic.

6.1 Displaying the solution of a PVRP

In the following subsection a solution of test instance 1 (see table 13 in
section 5.4) will be presented. The number of generations and the popu-
lation size were set to 100. The mutation rate was set to 0.002 and the
crossover rate was set to 0.18. The random seed chosen was 0.1 and the
TSPs were solved with the help of the 2-opt move heuristic-based PVRP
implementation. The optimization process took 1710 seconds and delivered
a hypervolume of 0.3946.

6.1.1 Pareto-Front

Figure 8 shows the pareto front for problem instance 1 after 100 generations.
In total, 100 points are depicted in figure 8; each point represents a possible
solution. The slope of the pareto-front shows the trade-off between the two
objectives to be optimized. Solutions to the left tend to have lower trans-
portation costs but higher storage costs; solutions to the right tend to have
higher transportation costs but lower storage costs.

As a consequence a decision maker can choose among the pareto-optimal
solutions. The solutions range from solution A to solution B and have the
objective values as shown in table 15. Considering the perspectives of the
supplier and the customers, a solution near point A is preferable for the
supplier and a solution near point B is preferable for the customers. However,
this overview does not reveal the individual storage costs of all the customers
involved.

Solution Transportation Costs Storage Costs
A 104376 338892
B 176016 30987

Table 15: Solution A vs. B

Figure 9 shows the pareto-front as in figure 8 for test instance 1 after
100 generations. Additionally, it shows the pareto-fronts for the same test
instance after 10 generations and after 1000 generations. From figure 9 it

37



Figure 8: NSGA-II: Pareto-front

can be clearly recognized that the pareto-front moves to the left with an
increasing number of generations. This movement towards left indicates a
better set of alternative solutions for the decision maker and can be confirmed
by an increasing hypervolume:

• Hv 1: 0.2562 (10 Generations)

• Hv 2: 0.3946 (100 Generations)

• Hv 3: 0.4573 (1000 Generations)

Moreover, it can be recognized that the pareto-fronts after 100 or 1000
generations are made up of more points (alternative solutions) than after only
10 generations. This simply implies that the NSGA-II has not found that
many alternative solutions after 10 generations as after 100 or even more gen-
erations. Besides that, it can be recognized that the NSGA-II finds a better
spread of solutions with an increasing number of generations. The applied
NSGA-II after 10 or 100 generations still has several discontinuous regions,
whereas the applied NSGA-II after 1000 generations is already converging to
the true front keeping the discontinuous regions to a minimum.

6.1.2 Presenting the Periodic Delivery Schema of solution A

Table 16 shows the periodic delivery schema of solution A introduced before
in section 6.1.1. The service level varies from customer to customer. For ex-
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Figure 9: NSGA-II: Pareto-fronts

ample, customer 1 is serviced only once a week (Tuesday), whereas customer
11 is serviced 4 times a week. Consequently, customer 1 needs a storage ca-
pacity having the capability of keeping products demanded within one week.
Customer 11 only needs a storage capacity for the relevant product from
Wednesday to Thursday. These different service levels result in much higher
periodic storages costs for customer 1 (e 19380.00) compared with customer
11 (e 2016.00). In case of solution B from section 6.1.1, both customers
would be serviced every day and, thus, no storage costs would occur at all.

6.1.3 Presenting transport routes of Solution A

From the values in table 16 the supplier knows which customer should be
supplied on which day. However, this representation does not reveal any-
thing about the actual tour of each day in the planning period. Therefore,
with the help of the TSP sub-problem implementation it is possible to find
the optimal tours regarding the travel costs. Figure 10 shows a comprised
form of the periodic delivery schema, not only indicating which customer
should be serviced which day but also showing the exact route the supplier’s
truck has to follow in order to keep travelling costs to a minimum level.
Moreover, figure 10 displays the customer landscape and the delivery routes
from Monday to Friday.
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Customer Mon Tue Wed Thu Fri
01 0 1 0 0 0
02 1 1 0 0 0
03 1 1 0 0 1
04 0 0 0 1 0
05 1 0 0 0 0
06 0 0 1 1 0
07 0 1 1 0 1
08 0 0 0 1 1
09 1 0 0 0 0
10 0 1 1 0 1
11 1 1 1 0 1
12 0 0 1 0 0
13 0 0 0 1 0
14 0 0 0 1 0
15 0 1 0 0 1
16 1 0 1 0 0
17 0 0 1 1 0
18 1 0 0 0 0
19 1 0 0 0 0
20 0 0 1 0 0

Table 16: Periodic delivery schema of Solution A

6.2 Comparison of PVRP Implementations

In this section the PVRP with two different TSP solver implementations will
be compared. One implementation of the TSP sub-problem makes use of
CPLEX, the other implementation relies on the nearest neighbor algorithm
improved by a 2-opt move modification. The input for the TSP problem is
basically always one column of the assignment table 16 and the travelling
costs associated from one point to another. The main difference between
the TSP solver implementations is that the CPLEX-based implementation
always finds the optimal solution, whereas the 2-opt move implementation
only finds good solutions but not necessarily the best solution. However, the
CPLEX implementation which always delivers the optimal solution to a TSP
problem needs much more time to solve a problem than the heuristic-based
implementation.

The question arising here is whether the PVRP implementation is deliv-
ering better results when relying on a TSP solver which is coming up with
optimal solutions but takes relatively long time for the problem solving pro-
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Figure 10: Solution A: Tours: Mon - Fri

cess or when relying on a fast TSP solver only coming up with relatively
good results. For each individual of a generation there needs to be solved 5
TSP problems (Mon - Fri), in case of a population size of 100 and a number
of generations of 100 this would result in a maximum of 5× 100× 100 TSP
problems needed to be solved. This implicitly raises the question whether
the problem solving time or the solution quality of the TSP solvers affects
the overall result to a higher degree.

6.2.1 Comparison of PVRP implementations with equal number
of generations

In order to compare the PVRP implementation with the two different TSP
solvers a series of test runs haven been executed. Therefore, the PVRP has
been applied to the test instances introduced in section 5.4.

In a first test run the parameters were set to the following values: The
number of generations was set to 250 and the population size was set to
20. The mutation rate was set to 0.02 and the crossover rate was set to
0.18. Figure 11 shows the average hypervolumes of the problem classes 1 - 8;
figure 12 shows the average hypervolumes of the problem classes 9 - 16. Each
problem class consists of 3 test instances and each of these test instances was
solved three times (random seed: 0.1, 0.2, 0.3).
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Figure 11: Comparison of Hv: PVRP: CPLEX vs. Heuristic (1 - 8)

Figure 12: Comparison of Hv: PVRP: CPLEX vs. Heuristic (9 - 16)
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The problem classes are numbered from 1 to 8 (Figure 11), respectively
from 9 - 16 (Figure 11). For each problem class the average hypervolume
is shown for the CPLEX-based PVRP (left bar) and heuristic-based PVRP
(right bar). It can be seen that for all problem classes the PVRP imple-
mentation with CPLEX as TSP solver has better results. When looking at
the individual test results, the CPLEX-based PVRP delivered better results
in 118 cases and only in 26 cases the PVRP with the heuristic TSP solver
delivered better results. In other words, the PVRP implementation with
CPLEX delivered better results in 81.94% of the test runs when having the
same parameter setting. Moreover, the average hypervolume of the CPLEX-
based test runs was about 5.87% higher than the heuristic-based PVRP test
runs. However, the PVRP implementation relying on CPLEX needs about
10086 seconds on average to solve a test instance, whereas the other PVRP
variant does not even need 1 second.

6.2.2 Comparison of PVRP implementations with similar runtimes

As a consequence, the number of generations was increased for the test runs
with the 2-opt move-based PVRP implementation to produce test results
with similar runtimes. Therefore, the number of generations was set to
1000000 resulting in an average runtime of 1041 seconds needed to solve
a test instance but which is still only one tenth of the average runtime of the
CPLEX variant.

The average time the PVRP implementations need for each problem class
is shown in figure 13. The implementation relying on the heuristic TSP solver
seems to be very constant regarding the runtime. The problem classes with
20 customers (1 - 8) are solved within an average runtime of around 700
seconds, whereas the problem classes with 30 customers (9 - 16) are solved
within an average runtime of around 1400 seconds. The problem solving
times of all problem classes with 30 customers exceed the problem solving
time of the problem classes with 20 customers.

Problem Classes CPLEX-based PVRP Heuristic-based PVRP
01 - 16 15602 375
01 - 08 18735 91
09 - 16 11596 230

Table 17: Comparison of standard deviations (runtime)

Table 17 shows the standard deviation of the runtimes of the heuristic-
based PVRP implementation which is 375. The CPLEX-based PVRP im-
plementation gives a much higher standard deviation which amounts up to
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Figure 13: Comparison of runtime: PVRP: CPLEX vs. Heuristic (1 - 16)

15602. The remarkable fact when looking at the CPLEX-based implementa-
tion is that problem classes with 30 customers do not necessarily need longer
time in order to be solved compared to problem classes with only 20 cus-
tomers. This fact is underlined when comparing the average runtime of the
problem classes with 20 customers (34336 sec) with the average runtime of
the problem classes with 30 customers (10913 sec). When considering the
CPLEX-based implementation, then the problem classes 4 and 8 are the ones
with the highest average runtimes although only 20 customers need to be ser-
viced. In contrast, the problem classes 1, 5 and 6 are the ones which need less
time to be solved than any other problem classes and to a certain degree can
even compete with the average runtimes of the equivalent problem classes of
the heuristic-based implementation (e.g. Problem Class 1: 917s vs. 706s).

As indicated by the standard deviations presented in table 17 the runtimes
of the CPLEX-based implementation fluctuate to a much higher degree than
the runtimes of the heuristic-based implementation.

Figure 14 and figure 15 provide the comparison of the hypervolumes of
the PVRP implementations with the runtimes just discussed. With the adap-
tion of the number of generations to be computed the heuristic-based PVRP
implementation now can surpass the results of the CPLEX-based implement-
ation. Especially, for the problem classes with 20 customers to be serviced the
heuristic-based implementation has better results in all the problem classes
(1 - 8). When looking at the problem classes with 30 customers, the results
look much more balanced. In 4 (10, 12, 14 and 16) out of 8 problem classes
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the CPLEX-based implementations delivers slightly better results regarding
the hypervolume, whereas in the other 4 problem classes the heuristic-based
PVRP implementation comes up with better results.

Figure 14: Comparison of Hv: PVRP: CPEX vs. Heuristic (1 - 8)

Overall, the heuristic-based implementation performs better than the
CPLEX-based implementation. This can also be confirmed by comparing
the individual results; in 93 out of 144 cases the heuristic-based PVRP de-
livered better hypervolumes than the CPLEX-based PVRP which results in
a percentage of 64.50%. As discussed before the heuristic-based PVRP ob-
tains better average hypervolumes by needing much less time to solve the
test instances.

6.2.3 Development of Hypervolume over Time

Figure 16 shows the development of the hypervolume for the CPLEX-based
PVRP (blue line) and the heuristic-based PVRP (red line) implementation
over 500 generations (Test instance 1). The test run was performed with
a population size of 100 and a random seed of 0.1. The hypervolume was
measured every 10 generations; the hypervolume of the CPLEX-based PVRP
after one generation is 0.1928 and increases up to 0.4795 after 500 generations,
whereas the hypervolume of the heuristic-based PVRP initially starts with
0.1763 and has a final value of 0.4744.

After one generation the CPLEX-based implementation delivers a hyper-
volume which is about 8.56% higher than the hypervolume of the heuristic-
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Figure 15: Comparison of Hv: PVRP: CPEX vs. Heuristic (9 - 16)

based implementation. At the end of the test run this difference in hyper-
volumes is reduced to only 1.06%. In total, the hypervolume of the CPLEX-
based implementation increases by 148.61%. The strongest improvement
can be recognized within the first ten generations (48.20%), respectively
within the first 100 generations (89.59%). The following 100 generations
only provide an increase of 6.76% and this increase is further reduced to
3.52% for the next 100 generations. The last 100 generations merely come
up with an increase of less than 1% (0.88%). The behavior of the hyper-
volume development of the heuristic-based PVRP implementation is similar.
The improvement of the hypervolume starts off slightly slower, but proves to
maintain higher increase rates within the execution of the 500 generations.

6.3 Discussing the Influence of the Problem Class As-
pects

6.3.1 Truck Capacity

All the uneven-numbered problem classes have a relatively small truck ca-
pacity; all the even-numbered problem classes have a relatively larger truck
capacity. Problem classes with 30 customers have a larger truck capacity
than the problem classes with 20 customers in order to be able to satisfy the
higher demand caused by the additional customers.

When directly comparing an uneven-problem class with its neighboring
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Figure 16: Comparison of Hv over time (500 gen)

problem class (e.g. 1 vs. 2, 3 vs. 4, etc.), then all parameters specifying
the problem class except the truck capacity are equal. Figures 11, 12, 14
and 15 show that the problem classes with a larger truck capacity (even-
numbered problem classes) tend to have higher hypervolumes. In figure 11 all
the problem classes with higher truck capacity have better results regarding
the hypervolume compared to the corresponding neighboring problem class.
According to the figures 12 and 14 in 7 out of 8 cases problem classes with a
higher truck capacity deliver better hypervolumes.

This tendency can be explained due to the mitigation of the truck capa-
city constraint. Consequently, the PVRP implementation can find more and
better solutions allowing to reaching a better hypervolume. However, this ad-
ditional space for optimization also leads to increased runtimes for the even-
numbered problem classes. For both, the CPLEX-based and the heuristic-
based PVRP implementations, in 6 out of 8 cases the even-numbered problem
classes need more time to finish the optimization problem than the uneven-
numbered problem class.

6.3.2 Demand Range

The demand range of a problem class is a similar constraint like the truck
capacity. Depending on the specification of this constraint the PVRP im-
plementation has more or less space for optimization. The problem classes
from 1 - 4 and 9 - 12 have a broader demand range, whereas the remain-
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ing problem classes have a smaller range. The comparison of the problem
classes with their corresponding problem classes regarding the demand range
(1 vs. 5, 2 vs. 6, etc.) confirms that a more severe constraint leads to lower
hypervolumes, but in turn also requires less time to finish the execution of
the optimization process. For both PVRP implementations, in 6 out of 8
cases the problem classes with a broader demand range deliver higher hy-
pervolumes. The problem classes with a broader demand range need more
time in 5 out of 8 comparisons in case of the CPLEX-based implementation
and need more time in 7 out of 8 comparisons in case of the heuristic-based
implementation.

6.3.3 Distribution of Customers

The distribution of the customers to be serviced is either even or clustered.
Both PVRP implementations find it harder to obtain good hypervolumes
when the customer distribution is clustered compared to an even distribu-
tion. In case of the CPLEX-based implementation, in 7 out of 8 comparisons
the problem classes with an even distribution have a relatively higher hyper-
volume. In case of the heuristic-based implementation all problem classes
with an even distribution perform better than their clustered counterparts.
The higher complexity induced by the clustered distribution of the customers
also leads to longer runtimes, but this is only true for the CPLEX-based im-
plementation. Here, in 6 out of 8 cases the problem classes with a clustered
distribution need more time to get solved. Surprisingly, the clustered prob-
lem classes do not necessarily take more time to finish the optimization pro-
cess when considering the heuristic-based PVRP implementation. Only in 3
out of 8 cases the clustered problem classes take more time than the evenly
distributed problem classes.

6.3.4 Problem Size

The problem sizes tested are related to the number of customers to be de-
livered. In the problem classes 1 - 8, there need to be serviced 20 customers
and in the problem classes 9 - 16 need to be serviced 30 customers. Problem
class 1 can be directly compared with problem class 9 as all other problem
characteristics are kept the same. Problem class 2 can be directly compared
with problem class 10 and so on.

When comparing the hypervolumes of the corresponding problem classes
(1 vs. 9, 2 vs. 10, etc.) for the CPLEX-based PVRP, it cannot be concluded
that the problems with smaller problem classes deliver better hypervolumes.
In 4 out of 8 direct comparisons the problem classes with 20 customers (1, 2,
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6 and 7) have higher hypervolumes, but in the other 4 cases they have lower
hypervolumes. However, it is remarkable that the 4 problem classes (with
20 customers) delivering higher hypervolumes all have an even distribution
of customers. This indicates that the CPLEX-based implementation is less
affected by a clustered distribution with an increasing problem size. It neither
can be recognized that the runtimes are increasing due to a larger problem
size (see figure 13).

In case of an evenly distributed customer landscape with an increasing
problem size the CPLEX-based PVRP finds it harder to obtain good results
and needs more and more time. But in case of a clustered customer landscape
with an increasing problem size, the implementation can find better solutions
in even less time. The increasing problem size seems to reduce the complexity
of the clustered customer landscape.

When directly comparing the hypervolumes of the corresponding problem
classes for the heuristic-based PVRP, similar results can only be confirmed
for the test runs with 250 generations. The test runs with 1000000 genera-
tions give totally different results. The way the customers are located in the
customer landscape seems to hardly impact the hypervolume and runtime.
In 7 out of 8 comparisons the hypervolume of the problem classes with 20
customers surpasses the hypervolume of the problem classes with 30 custom-
ers. Moreover, all the problem classes with 30 customers have a runtime
which is about 100% longer than the problem classes with 20 customers.

The difference in how the PVRP implementations behave can be ex-
plained by the working mode of the underlying TSP solvers. First of all,
the TSP solver needs more time than the heuristic-based TSP solver to solve
an individual TSP problem. Additionally, the CPLEX-based TSP solver is
prone to certain complex TSP problems; when trying to solve a TSP problem
of higher complexity then the runtime will increase further. On the other
hand, the heuristic-based TSP solver will solve an individual TSP problem
very fast and will not need extra time to find a solution for TSPs of higher
complexity. Tricky TSPs only could cause the heuristic-based TSP solvers
to find a solution which is relatively far from the optimal solution provided
by the CPLEX-based TSP solver.
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7 Summary

This paper discusses an approach to solve a Periodic Vehicle Routing Prob-
lem (PVRP) with the help of the NSGA-II. The PVRP is a special variant
of the generic Vehicle Routing Problem (VRP) which refers to a whole class
of problems in which a set of routes for one or more vehicles based at several
depots must be retrieved for a certain number of customers. The main char-
acteristics which make the PVRP so special are an infinite planning period
and that the inventories of the customers are managed by the supplier. As
a consequence the supplier needs to consider storage costs and transporta-
tion costs when defining a periodic delivery schema for the customers to be
serviced.

The NSGA-II is a genetic algorithm which belongs to the group of multi-
objective evolutionary algorithms (MOEAs) and is capable of optimizing
more objectives simultaneously. Consequently, the NSGA-II suits the needs
of the PVRP with two objectives to be minimized perfectly. Moreover, the
NSGA-II does not only deliver one solution but delivers a whole set of solu-
tions. The solutions of this set are deemed to be pareto-optimal which means
that the increase of one objective of a solution from the set leads to a de-
crease in the other objective of that solution. Thus, the NSGA-II provides
the supplier with a number of alternative solutions representing the trade-off
between the storage and transportation costs.

The pareto-optimal solutions enable a supplier to select a periodic deliv-
ery schema with relatively high transportation costs and low storage costs
favoring the customers or with relatively low transportation costs and high
storage costs favoring the supplier. This scope of action provided by the set
of solutions can help the supplier and the customers to find a solution which
satisfies both parties to a high degree.

For solving the PVRP the NSGA-II needs assistance in solving a sub-
problem. The NSGA-II is only responsible for solving the master problem
which refers to assigning deliveries to customers within the planning period.
The sub-problem is a so-called Travelling Salesman Problem (TSP) and op-
timizes the delivery tours provided by the master problem. Two implement-
ations are provided for the sub-problem. In the first implementation the TSP
is modeled as an Integer Linear Program and is solved with the help of IBM
ILOG CPLEX Optimizer. The second implementation is based on a heuristic
called Nearest Neighbor enhanced by 2-opt move. The CPLEX-based TSP
solver is expected to deliver optimal solutions whereas the heuristic-based
TSP solver is deemed to deliver only good solutions. However, the heuristic-
based TSP solver is much faster in finding a relatively good solution than
the CPLEX-based TSP solver in finding an optimal solution.
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Test runs were executed for the CPLEX-based and the heuristic-based
PVRP implementation. When comparing the performance of the imple-
mentations with the same number of generations and population size, then
the CPLEX-based PVRP finds slightly better solutions than the heuristic-
based PVRP but needs much more time to compute all the generations.
When increasing the number of generations for the heuristic-based PVRP
to obtain similar runtimes, then the CPLEX-based implementations delivers
worse results.

Both PVRP implementations react similar to the different problem classes.
For example, an increasing truck capacity or a broader demand range leads
to a better performance while the runtime is extended for both implement-
ations. They also find it harder to obtain good hypervolumes when the
customer distribution is clustered compared to an even distribution. The
higher complexity induced by the clustered distribution of the customers
also leads to longer runtimes, but this is only true for the CPLEX-based
implementations. Surprisingly, the clustered problem classes do not neces-
sarily take more time to finish the optimization process when considering the
heuristic-based PVRP implementation.

Interestingly, it cannot be concluded that the problems with smaller prob-
lem classes deliver better hypervolumes. In case of an evenly distributed cus-
tomer landscape with an increasing problem size the CPLEX-based PVRP
finds it harder to obtain good results and needs more and more time. But in
case of a clustered customer landscape with an increasing problem size, the
implementation can find better solutions in even less time. The increasing
problem size seems to reduce the complexity of the clustered customer land-
scape. In contrast, the way the customers are located in the customer land-
scape seems to hardly impact the hypervolume and runtime of the heuristic-
based PVRP.

The difference in how the PVRP implementations behave can be ex-
plained by the working mode of the underlying TSP solvers. First of all, the
CPLEX-based TSP solver needs more time than the heuristic-based TSP
solver to solve an individual TSP problem. Additionally, the CPLEX-based
TSP solver is prone to certain complex TSP problems; when trying to solve a
TSP problem of higher complexity then the runtime will increase further. On
the other hand, the heuristic-based TSP solver will solve an individual TSP
problem very fast and will not need extra time to find a solution for TSPs
of higher complexity. Tricky TSPs only could cause the heuristic-based TSP
solvers to find a solution which is relatively far from the optimal solution
provided by the CPLEX-based TSP solver.

Summarizing the work accomplished it can be said that the paper and
the relating implementation of the NSGA-II were highly challenging, but
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also very interesting. The challenging aspects were the inherent complexity
of the problem to be researched and the technologies involved. For example,
when considering a problem with 20 customers and a planning horizon of 5
days, the problem to be solved is represented by 100 binary variables. In
case of a population size of 100, the PVRP implementation computes 100
individuals per generation. For each individual always 5 TSPs need to be
computed. Consequently, the computing time of the TSP sub-problem is
vital as it is required to solve a large number of TSPs within the execution
of the PVRP implementation. The resulting computational expense called
for well-planned test series. Depending on the parameter settings chosen test
series could vary from minutes to several days. As a consequence, repetition
of test runs may lead to suffering a huge delay in progress.

The technologies involved were not of extreme complexity, but, never-
theless it was my first encounter with IBM ILOG CPLEX Optimizer which
required me to learn how to implement an optimization model for the optim-
izing software and how to link it with the PVRP implementation. Moreover,
due to the necessary interaction between the C++ program and the CPLEX
optimizer program development and testing were hindered. However, alto-
gether it was a great and sound project which did not have to overcome any
real obstacles.
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A.1 Zusammenfassung

Das Ziel dieser Masterarbeit ist die Evaluierung der Anwendbarkeit eines Ge-
netischen Algorithmus auf ein periodisches Vehicle Routing Problem (PVRP).
Bei dem zu evaluierenden Algorithmus handelt es sich um den sogenannten
“Non-Dominated Sorting Algorithm Version II”(NSGA-II). Der angesproche-
ne Algorithmus gehört zur Gruppe der Genetischen Algorithmen und zeichnet
sich durch die gleichzeitige Optimierung mehrerer Zielfunktionen aus.

Im Zuge der vorliegenden Arbeit wird der NSGA-II auf ein periodisches
Vehicle Routing Problem angewandt. Bei dem Problem handelt es sich um
eine Fragestellung aus dem Bereich des Transport- bzw. Lagerwesens. Es ist
ein Warendepot vorhanden und mit Hilfe eines Fahrzeuges sollen Kunden
periodisch an gewissen Tagen der Woche beliefert werden. Für ein solches
Problem werden u.a. Transportkosten, Lagerkosten, täglicher Bedarf und An-
fangslagerbestand angenommen.

Der anzuwendende Algorithmus liefert eine Menge von Lösungen für ein
konkretes PVRP. Eine Lösung bezeichnet ein periodisches Belieferungssche-
ma und drückt aus, an welchen Tagen welche Kunden beliefert werden sollen.
Bei der Anwendung des NSGA-II auf das vorgestellte PVRP sind zwei Ziel-
funktionen involviert, denn es werden sowohl die Transportkosten als auch
die Lagerkosten minimiert. Außerdem müssen Nebenbedingungen eingehal-
ten werden, die sicherstellen, dass den Kunden die Waren nicht ausgehen und
der tägliche Bedarf stets gedeckt werden kann.

Die Lösungen, die ein NSGA-II liefert sind pareto-optimal. Das heißt,
dass der Anstieg einer Zielfunktion die gleichzeitige Reduktion der anderen
Zielfunktion bedeutet. Bei der Wahl eines Belieferungsschemas kann somit
aus einer Menge an alternativen Belieferungsschemata ausgewählt werden.
Diese Auswahl drückt demzufolge den Trade-off zwischen Transport- und
Lagerkosten aus. Folglich existieren Belieferungsschemata, die den Anbieter
favorisieren; gleichzeitig gibt es aber auch Lösungen, die die zu beliefern-
den Kunden bevorzugen. Aus dieser Menge an Belieferungsschemata kann
nun eines gewählt werden, welches die unterschiedlichen Anforderungen der
Kunden und des Anbieters am besten abdecken.

Das zu lösende Problem wird unterteilt in ein Hauptproblem und ein
Subproblem. Das Hauptproblem wird in C++ umgesetzt und bezeichnet das
oben beschriebene PVRP. Im Vordergrund steht hierbei die Zuordnung an
welchen Tagen einer Planungsperiode die Kunden beliefert werden sollen. Um
die Minimierung der Transportkosten für das Beschaffungsschema gewähr-
leisten zu können, muss für jeden Tag die Fahrtroute mit den geringsten
Transportkosten berechnet werden. Dieses Subproblem ist auch bekannt als
Travelling Salesman Problem (TSP). Für das Subproblem wurden zwei Im-
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plementierungsvarianten erstellt.
Eine Implementierungsvariante des Subproblems wurde mit Hilfe von

IBM ILOG CPLEX (ilog.com/products/cplex/) gelöst. Die zweite Imple-
mentierungsvariante wurde mit einer modifizierten Variante des “Nearest
Neighbour Algorithmus” umgesetzt. Durch zusätzliche Anwendung des “2-
opt move”wird versucht in einem weiteren Schritt eine bessere Lösung zu
finden. Die erste Implementierungsvariante liefert stets eine optimale Lösung
für ein TSP, braucht für die Lösungsfindung jedoch relativ länger als die
zweite Variante, welche im Normalfall nur gute Lösungen findet.

Testläufe wurden durchgeführt mit der CPLEX-basierten Subproblem-
Variante sowie mit dem modifizierten “Nearest Neighbour Algorithmus”. Ver-
gleicht man das PVRP mit den zwei verschiedenen Subproblem Implemen-
tierungen bei gleichen Parametereinstellungen, so findet die CPLEX-basierte
Variante bessere Lösungen bei höherer Laufzeit. Passt man die Parameterein-
stellungen an, sodass beide Implementierungsvarianten ähnliche Laufzeiten
vorweisen, dann liefert die Variante mit der zweiten Subproblemimplemen-
tierung bessere Ergebnisse.

Interessanterweise reagieren beide PVRP Implementierungen ähnlich auf
unterschiedliche Problemklassen. Beispielsweise bedeutet ein größeres Trans-
portvolumen des Fahrzeugs, dass die NSGA-II Implementierung bessere Lösun-
gen findet, dabei aber auch mehr Zeit zur Lösungsfindung in Anspruch ge-
nommen wird. Das heißt, dass bei Problemklassen mit “gelockerten”Neben-
bedingungen ein größerer Suchraum vorhanden ist. Dementsprechend dauert
die Lösungsfindung länger, führt aber gleichzeitig zu besseren Ergebnissen.

Es ist ebenso erkennbar, dass die PVRP Implementierung bei einer gleich-
mäßigen Verteilung der Kunden bessere Lösungen im Vergleich zu Kunden-
verteilungen in Form von “Clustern”findet. Für die CPLEX-basierte Imple-
mentierung bedeuten geballte Anhäufungen von Kunden längere Laufzeiten,
die Heuristik-basierte Implementierung reagiert nicht notwendigerweise mit
längeren Laufzeiten. Weiters kann beobachtet werden, dass Problemklassen
mit weniger zu beliefernden Kunden nicht automatisch bessere Lösungen lie-
fern.

Das unterschiedliche Verhalten der beiden PVRP Implementierungen kann
durch die Eigenschaften der darunterliegenden TSP Implementierungen er-
klärt werden. Der CPLEX-basierte TSP Solver benötigt mehr Zeit zur Lösungs-
findung als der Heuristik-basierte TSP Solver. Außerdem weist die CPLEX-
basierte Implementierung besonders schlechtes Verhalten in Bezug auf kom-
plexe TSPs auf. Die Heuristik-basierte Implementierung reagiert stabiler auf
komplexe Problemklassen; kein wesentlich größerer Zeitaufwand ist zu be-
merken.
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